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Summary

In this thesis I used models and computer simulations to investigate the

properties of two dimensional polydisperse foams from the dry limit of zero

liquid fraction to the wet limit of 0.16 liquid fraction.

Initially I used the Plat software, which implements the standard model

of two dimensional foams, to explore the full range of liquid fractions. As

the software becomes increasingly less reliable towards the wet limit, we use

over 500,000 simulations in order to obtain results in this regime. We found

the variation of energy and coordination number with liquid fraction, and

the internal distribution of contacts in the foams.

We then focus on the variation of the coordination number with liquid

fraction close to the wet limit. In particular, we compare the results of the

Plat simulation with those of the Soft Disk model, which is widely used in

the study of foams. The Soft Disk model is widely used due to its simplicity,

but it is approximate, and neglects deformations.

A stark di�erence between the two models is noted, with the Plat sim-

ulation exhibiting a linear variation of the coordination number with liquid

fraction, and the Soft Disk model exhibiting a square root variation.

We investigate the link between the radial density function (and its ana-

log, the distribution of separations), and the variation of the coordination

number with liquid fraction in the wet limit. We �nd a marked di�erence
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between the distributions of separations of the two models. This explains

the di�erence in the variation of the coordination number. It appears to be

due to the fact that the bubbles in the Plat simulation are deformable, while

those in the Soft Disk model are not.

In order to explore the wet limit of two dimensional foams further, we

develop a new model based on the theory of Morse and Witten. This model

is de�ned for the wet limit, with deformable bubbles. It accurately predicts

the response of a bubble of droplet to small deformations. We develop a

framework and an algorithm for applying this theory to the case of modeling

two dimensional foams.

The new simulation based on this model is tested against the Plat simu-

lation. It produces comparable foams, with similar variations of the energy

with liquid fraction. It also produces comparable contact changes with

changes in liquid fraction. We propose an extension of this model to the

case of three dimensional foams.

Finally, we demonstrate an additional application of the theory of Morse

and Witten in three dimensions to the calculation of the surface tension of

bubbles and drops. We derive a simple formula, taking two length measure-

ments, without any free parameters, which predicts the surface tension of

bubbles and drops to a reasonable degree of accuracy (within 2%).
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Chapter 1

What is a Foam?

Most generally, a foam is considered to be a two-phase system of gas bubbles

dispersed within a liquid. Foams are a part of everyday life, sometimes

bene�cial, other times a nuisance, but mostly we don't give foam a second

thought. Whether it's a squirt of shaving foam (which doesn't �ow o� skin

under gravity) in the morning, the white head creating the creamy texture of

a pint, or a pot of pasta boiling over, foam is everywhere. Industrial processes

which make use of foams include foam fractionation for water treatment and

froth �otation for mineral separation in mining [6]. Also studied in conjunc-

tion with foams are other two-phase systems such as emulsions, which consist

of one immiscible liquid dispersed within another. Foams and emulsions have

very similar physical properties. In this thesis reference will only be made

to foams, without loss of generality the simulations and results can also be

applied to emulsions.

The simplest way to make bubbles is to trap gas (often air) in a liquid

(often water). Turbulence and �ow instabilities can entrain gas bubbles in

poured or �owing liquids; for example when you �ll a water bottle from a

fast �owing tap. Usually these bubbles are unstable and the water quickly

1



CHAPTER 1. WHAT IS A FOAM?

(a) Shaving foam (b) A creamy pint

Figure 1.1: Everyday examples of foam

drains out of the �lms, causing the bubbles to burst. Bubbles collect and

build up into a foam when there are additives, such as soap or proteins,

in the liquid that can stabilise the �lms and prolong the lifetime of the

bubbles. Surfactants are a class of molecules to which soaps belong. These

are undecided molecules which have parts that energetically favour being in

water and parts that do not. Due to this, they place themselves at interfaces,

where both their parts can be satis�ed. There they lower the surface tension

and, thanks to gradients in their concentration, they can stabilise the thin

�lms that separate the air pockets, preventing rupture. How surfactants act

and how their properties in�uence those of the foam is a subject of ongoing

research [7, 8], but outside the scope of this thesis.

1.1 What are Two Dimensional Foams?

Up to this point in this thesis, Models of Wet Two Dimensional Foams, I

have referred to three dimensional foams. A two dimensional foam is a single

�at layer of bubbles that, in an idealised case, has zero height. In practice

it can be realised in quasi-two dimensional experiments as a single layer of

2



1.1. WHAT ARE TWO DIMENSIONAL FOAMS?

Figure 1.2: Top: A close up of a single layer of bubbles (diameter ' 0.5 mm)

�oating on a liquid pool (an example of a Bragg raft). Image credit: Steven

Burke, TCD Foams group. Bottom: A close up of a single layer of bubbles

(diameter ' 1 cm) sandwiched between two glass plates separated by 3 mm (an

example of a Hele-Shaw cell). Image credit: Benjamin Ha�ner, TCD Foams

group

regular three dimensional bubbles in one of three con�gurations: between

two parallel (transparent) plates (also called a Hele−Shaw cell [9]), �oating

on top of a liquid reservoir (also called a Bragg raft [10]), or �oating on a

liquid reservoir with a covering transparent plate pressed down on top. They

are called quasi-two dimensional because there is a three dimensional liquid

network surrounding the bubbles in the monolayers [11].

These experimental systems are often used in the lab to probe the be-

haviour of three dimensional foams because it is possible to observe every

3



CHAPTER 1. WHAT IS A FOAM?

bubble in two dimensions. For example, a two dimensional foam may be

sheared to measure its �ow behaviour while being imaged to track the motion

of individual bubbles [12]. This is very di�cult to do in three dimensions,

where simple imaging techniques fail due to the scattering of light as the light

passes through multiple interfaces. Therefore, in three dimensions, expensive

and cumbersome x-ray equipment is needed in order to see into the centre of

a foam.

Another area that is much more accessible in two dimensions is simu-

lation. A simulation in two dimensions is computationally quicker than in

three dimensions because there are fewer interactions to calculate. This can

be understood from the fact that, in a simple three dimensional cubic lattice

there are 26 (3D=3 − 1) next nearest neighbours, compared to only eight

(3D=2−1) in two dimensions. This is compounded by the fact that, for a three

dimensional simulation to be comparable with a two dimensional simulation

in terms of nearest neighbours, it has to be at least three times larger. For

instance, if a three dimensional simulation consists of N bubbles, it can

be considered to be N/26 nearest neighbours `across'. A two dimensional

simulation that is the same number of nearest neighbours across consists of

N(8/26) bubbles. The speed of modern computers and access to high perfor-

mance computing resources reduces the signi�cance of these di�erences when

running simulations. However, development of the simulation framework is

much easier in two dimensions as it reduces the length of the feedback cycle,

a signi�cant motivating factor behind the choice in this work to create a

two dimensional Morse−Witten simulation in Chapter 3, rather than a three

dimensional one.

4



1.2. PROPERTIES OF FOAMS

1.2 Properties of Foams

1.2.1 Liquid Fraction

A simple property of a foam that can be considered is its global liquid fraction,

φ [13]. This is the ratio of the total liquid volume to the total foam volume.

Foams with a liquid fraction below ∼ 0.10 are considered dry foams, with

polyhedrally shaped bubbles (see Figure 1.3 (top)). Foams with higher liquid

fractions are considered wet foams, with roughly spherically shaped bubbles

(see Figure 1.3(bottom)). The distinction between wet and dry foams is they

have both di�erent geometries and they both exhibit di�erent behaviours due

to the di�erent overall bubble shapes (see Section 1.2.5 for examples to do

with �ow behaviour).

The Dry Limit

Very dry foams (with a liquid fraction below 0.01) can be described as a

collection of thin �lms of negligible thickness around a cellular structure

of gas bubbles in (roughly) polyhedral shapes, though the interfaces are in

general curved, as described by the Young�Laplace law (see Section 1.3.2.

The Wet Limit

There is a particular value of liquid fraction, φc, know as the critical liquid

fraction. Beyond this point a foam behaves like a liquid with bubbles in it as

the bubbles are no longer in contact with one another. It is also called the

wet limit because it is the wettest a foam can be while still retaining foam

like properties. At the wet limit the bubbles, which are all perfect spheres,

are just in contact with each other without being deformed. Also known as

the jamming transition, this point has been of great interest in recent years
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CHAPTER 1. WHAT IS A FOAM?

Figure 1.3: Close-up examples of a dry foam (φ < 1 ∼ 2%) (top), and a wet foam

(φ ' 20 ∼ 25%) (bottom). Bubbles in the dry foam are mostly polyhedral,

while in the wet foam they look near spherical. Image credit: Gavin Ryan,

TCD Foams group

6
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since, close to this value of φ, other properties of foams exhibit interesting

scaling laws [14]. Some of these will be discussed in Sections 1.2.3 and 1.2.4.

At φc in three dimensions, a foam closely resembles a granular packing

of hard spheres, while in two dimensions, it is quite similar to a packing of

hard disks. φc for a polydisperse foam (with a range of bubble sizes, see

Section 1.2.2) in three dimensions is 0.36, while in two dimensions it is 0.16.

This is due to the fact that disks �ll a two dimensional plane more e�ciently

than spheres �ll a three dimensional space.

1.2.2 Bubble Sizes

When studying foams under gravity, a natural length scale arises from con-

sidering the competition between gravity pulling the liquid out of the �lms

and surface tension pulling the liquid back into the �lms. This is called the

capillary length

λc =

√
γ

ρg
, (1.1)

where γ is the surface tension, ρ is the liquid density, and g the acceleration

due to gravity. This length tells how far water will be drawn up into the

foam by capillary action. Typical water and soap solutions have a density of

1000 kg m−3 and a surface tension of 25 mN m−1 giving λc = 1.6 mm. This

can be compared to the typical bubble sizes in a foam.

One possible measure of the size of a bubble is given by its equivalent

sphere radius R. That is, the radius of a sphere with the same volume as

the bubble. These vary widely depending on the foam and can range from

less than a millimetre up to a metre [15], so can be smaller or larger than

the capillary length. Film thicknesses may be in the range of 5 nm to 10µm,

much smaller than the capillary length.

If all the bubbles in a foam have the same size it is called monodisperse.

7



CHAPTER 1. WHAT IS A FOAM?

This generally does not occur in nature where random processes are usually

at play, but the simplicity it a�ords makes it useful in the lab. Additionally,

using monodisperse liquid foams as a precursor to solid foam materials gives

a way to �nely control the structural properties of these materials [16]. The

bubbles in a monodisperse foam can tend to form an ordered, crystalline

structure. When the bubbles come in a range of sizes the foam is termed

polydisperse. The polydispersity is measured as the standard deviation of

the distribution of radii divided by the average bubble radius, de�ned in

terms of the mean (〈R〉) and squared mean (〈R2〉) of the distribution of R

as

σR =

√
〈R2〉
〈R〉2 − 1. (1.2)

For a perfectly monodisperse foam σR = 0, but for practical purposes a foam

is considered to be monodisperse if σR < 0.05. In contrast to monodisperse

foams, a polydisperse foam forms disorded, random structures. Polydisperse

two dimensional foams are found to crystallise, at least partially, for σR < 0.1,

and form truly random systems when σR > 0.1 [17]. In the intermediate

range of 0.05 < σR < 0.1, foams tend to form partially crystalline systems,

with localised regions or order and disorder. Another way to create disor-

dered, random structures is to mix two monodisperse foams with di�erent

bubble sizes. The result is called a bidisperse foam. In bidisperse foams the

critical size ratio of large bubbles radius to small bubble radius need to form

disordered structures is 1.14 [18]. The order and disorder, i.e. the respective

presence or absence of long range correlations in the bubble positions, in a

foam can greatly in�uence its properties. For example, in two dimensions an

ordered monodisperse foam has a φc = 1− π/(2
√

3) ' 0.09, compared with

the 0.16 of a random polydisperse foam.

8



1.2. PROPERTIES OF FOAMS

1.2.3 Energy

In the standard quasi-static models of foams (see Section 1.4.1 for two di-

mensional examples), the gas in the bubbles is treated as incompressible;

therefore, the surface energy is the only relevant energy for describing the

two dimensional foams. The surface energy of a foam is E = γA, where A is

the total surface area. In the case of two dimensional foams, the equivalent

of the surface energy is then a line energy, proportional to the total perimeter

of all the bubbles.

A foam will adopt a con�guration which minimises this energy. Therefore,

the �lms in a foam fall into a category know as minimal surfaces, a local

minimum. To globally minimise their energy, the �lms would collapse into

a single disk of liquid. This does not happen if the local minimum is stable

enough (i.e. the �lms don't burst). A corollary of this is that a bubble that is

free to move will always form a sphere in three dimensions, or a circular disk

in two dimensions. Note that, in the models described here it will always be

assumed that the �lms will not burst.

At all values of liquid fraction below the critical liquid fraction (φ < φc),

the bubbles are deformed from spherical, increasing their surface energy.

Therefore, a dimensionless excess energy can be de�ned as

ε(φ) =
E(φ)− Ec

Ec
=
E(φ)

Ec
− 1, (1.3)

where Ec = E(φc), the energy of the foam in the wet limit.

1.2.4 Coordination Number

The structure of a foam can be studied by looking at the average number

of contacts per bubble. However, due to the formation of structural �cages�

of bubbles supporting one another, some bubbles can �rattle� around in an

9
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otherwise stable con�guration. These, therefore, do not contribute to the

mechanical stability of the foam, and thus do not contribute to many of

the physical properties of the foam. In two dimensions these loose bubbles,

known as rattlers, can be identi�ed by the fact that they have less than three

contacts each (less than four each in three dimensions) and, thus, cannot be

mechanically stable. The coordination number, Z, of a foam is the average

number of contacts per bubble, after these rattlers have been discounted.

This does not a�ect the coordination number signi�cantly as the rattlers

make up at most 2% of the bubbles (see Chapter 2, Figure 2.6 for more

details). For a polydisperse, disordered foam, this is a function of liquid

fraction φ. Generally, in two dimensions, the distribution of contact numbers

appears to follow a Gaussian distribution with a �xed width, regardless of

the model used to simulate the foam (see Section 2.2.4).

The value of Z in the dry limit can be shown to be six via Euler's theorem

which relates the number of faces, edges, and vertices of a cellular structure

to a topological invariant (see [15] for a detailed explanation).

At the wet limit, φc, the limiting value of the coordination number,

Z(φc) = Zc, can be found by looking at degrees of freedom. For each dimen-

sion in a given model or experiment, a bubble has one degree of freedom. In

the wet limit there are just enough constraints on the foam that each bubble

is held in place. Each contact provides one constraint to two bubbles. This

leaves each bubble with, on average, Z/2 constraints. Equating degrees of

freedom with constraints, we get 3 = Zc/2 in three dimensions and 2 = Zc/2

in two dimensions. Therefore, on average in an system of in�nite size, Zc = 6

in three dimensions, and Zc = 4 in two dimensions [19, 20, 14].

By looking at a �nite system we generally lose a small number of degrees of

freedom. For example, in a two dimensional system with periodic boundary

10
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conditions and N bubbles, the system does not change if we move every

bubble by the same amount (it is invariant under translation). This means

that one bubble can be �xed (equivalent to �xing a point of view), leaving

2(N − 1) degrees of freedom. Equating this to the NZc/2 constraints we get

Zc = 4(1− 1/N). As we increase N we can see that the correction for �nite

size vanishes.

Various experiments for quasi-two dimensional foams [21] and two di-

mensional elastic disks [22], and simulations with the more approximate Soft

Disk model [23] have been in agreement in �nding the limiting form for the

average coordination number Z. In particular,

Z − Zc ∝ (φc − φ)1/2, (1.4)

where Zc = Z(φc).

The discovery of the square root scaling for Z(φ) appears to date back to

the work of Durian using the so-called Soft Disk model (see Section 1.4.2 for

details). Durian developed this model primarily to investigate the rheological

properties of foams, of which it indeed provides a good overall description

[24, 25, 26]. Two dimensional bubbles are approximated as disks, subject to

repulsive forces when they overlap.

The same square-root scaling for Z(φ) was also found in computer simu-

lations of packings of three dimensional soft spheres [27], a system which has

since been called the Ising model for jamming [14].

We will show in Section 2.4.1 that Relation (1.4) is not always the case.

In particular, for simulations built on an exact model for two dimensional

foams (see Section 1.4.1), the relationship is linear.

11
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l

∆l
τ

Figure 1.4: Schematic representation of the response of an elastic solid to an

applied shear stress, τ . The dashed lines represent the undeformed solid, the

solid sloped lines represent the solid's response to the strain τ . ∆l measures the

deformation of the solid, which has a height l, thus the resulting strain is ∆l/l.

1.2.5 Rheological Properties

When an elastic solid is subjected to a small shear stress, τ , as depicted in

Figure 1.4, the relative deformation, or strain, ∆l/l is linearly related to the

applied stress by the shear modulus, where ∆l is the change in length and l

is the width. Foams behave like elastic solids when a small stress is applied.

When the stress on a foam is increased it will reach a critical point after

which the foam will not deform like an elastic solid, but it will �ow like a

liquid. The amount of stress required to get a foam to start �owing (i.e. in

continuous motion with bubbles constantly rearranging) is called the yield

stress, τy.

A liquid deforms continuously under an applied stress. The strain rate,

γ̇, is linearly related to the applied stress by the resistance to �ow, viscosity.

In a �owing foam it is this same viscosity that provides resistance to �ow.

However, this friction is only experienced in the �lms between bubbles in

contact. Since the �lm is typically at least 104 times smaller than the bubbles

12



1.2. PROPERTIES OF FOAMS

in a foam, the resistance to �ow is ampli�ed by this same factor. This means

that the e�ective viscosity of a foam is typically at least 104 times greater

than that of the liquid in the foam.

Additionally, the relationship between stress and strain rate is no longer

linear. Firstly, the strain rate is zero for any stress below the yield stress.

Secondly, the relationship between stress and strain rate in a foam is in fact

τ = τy + κγ̇n, (1.5)

a power law know as the Herschel−Bulkley [28] law. Here, κ can no longer

be called a viscosity as its dimensions must change to compensate for the

e�ect the power n has on the dimensions of γ̇. Instead it is referred to as

the consistency, but it plays the role of an e�ective viscosity. As our models

are quasi-static rather than dynamic, the details of rheology, the study of

�ow, will not form part them. However, we will still be able to predict some

properties that can be related to the rheology of foams.

Wet foams, with higher liquid content, �ow much more easily than dry

foams. This is because as φ is increased towards φc, the area of the �lms

between contacting bubbles decreases. This makes it easier for bubbles to

rearrange, and as a result, both the shear modulus and the yield stress of

foams decrease as the liquid content of the foam is increased. Beyond φc, the

foam loses rigidity and the yield stress and shear modulus both go to zero.

The shear modulus going to zero was �rst con�rmed experimentally by

Princen and Kiss [29]. It was also tentatively identi�ed in the early two

dimensional Plat simulation (see Section 2.1.1 for details) of Bolton and

Weaire [30, 31, 32, 33], as well as in the two dimensional Soft Disk model

of Durian [34]. The yield stress also goes to zero in the wet limit. Again,

Princen may be credited with this �nding [35]. This trend was reproduced

in the early two dimensional Plat simulations of Bolton and Weaire [33], and

13
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Z-cone model for the energy of an ordered foam

Stefan Hutzler,* Robert P. Murtagh, David Whyte, Steven T. Tobin† and Denis Weaire

We develop the Z-Cone Model, in terms of which the energy of a foam may be estimated. It is

directly applicable to an ordered structure in which every bubble has Z identical neighbours. The energy

(i.e. surface area) may be analytically related to liquid fraction. It has the correct asymptotic form in

the limits of dry and wet foam, with prefactors dependent on Z. In particular, the variation of energy with

deformation in the wet limit is consistent with the anomalous behaviour found by Morse and

Witten [Europhysics Letters, 1993, 22, 549] and Lacasse et al. [Physical Review E, 54, 5436], with a

prefactor Z/2.

1 Introduction

Many of the physical properties of foams may be understood in
terms of the minimisation of surface area, under appropriate
constraints. This is the condition for static equilibrium, since
total energy is proportional to surface area if gas and liquid are
treated as incompressible.

Brakke's Surface Evolver1 provides a practical method to
compute such equilibrium structures, represented by nely
tessellated surfaces. It is natural to seek simpler representations
and models to provide estimates of energies and forces, even at
the expense of drastic approximations, such as pairwise inter-
action potentials between bubbles.2,3

This has raised a number of questions, addressed by Morse
and Witten4 and Lacasse et al.5 How valid is the assumption of
pairwise additive potentials? What is the true form of interaction
(i.e. the change in surface area) between two bubbles
which barely touch each other? We offer a new approximate
formulation, the Z-ConeModel, that advances our understanding
of such questions, in terms of analytic solutions of the model.

As in the work of Lacasse et al., we consider a foam in which
each bubble has Z equivalent neighbours, for example the face-
centred cubic structure (Z ¼ 12). We seek to evaluate the energy
(or surface area) as a function of Z and the degree to which the
bubbles are compressed together (that is, the liquid fraction).
Both gas and liquid are treated as incompressible.

Our essential geometrical approximation is inspired by
Ziman's early description of the Fermi surface of copper.6 The
bubble volume can be divided into Z equivalent objects
which meet at a central point. We take one such object and
approximate it by a cylindrically symmetric cone of the same
solid angle and volume, as shown in Fig. 1. Note that these new
cones, if assembled, would ‘overlap’ since cones cannot tile 3D
space.

The equivalence of the Z sections corresponds to a regular
polyhedron in the dry limit; such regular polyhedra have been
the starting point for theories of dry foams.7

Fig. 1 The shape of a bubble in a crystalline foam with Z equivalent
neighbours, shown in (a) for Z ¼ 12, may be approximated by an
assembly of Z cones of the type shown in (b). Its flattened surface
corresponds to a bubble–bubble contact. (c) 2D cross-section of a
cone with relevant notation. During bubble deformation, total
bubble volume V and total solid angle must be conserved, according

to V ¼ ZVc and 4p ¼ ZU, where Vc ¼ 2
3
pR0

3ð1� cos qÞ is the volume

of a cone with opening angle q¼ arccos(1� 2/Z), R0 is the radius of the
spherical sector (corresponding to an undeformed cone) and U is the
solid angle of the cone.
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Figure 1.5: An example of a Surface Evolver calculation of a three dimensional

bubble with 12 symmetric contacts in an ordered, monodisperse foam by Hutzler

et al. [38]. The dashed lines on the faces indicate the boundaries of the contact

faces when this single bubble is repeated to represent a crystalline foam.

Hutzler et al. [36].

1.3 Describing Foams

1.3.1 Minimal Energy Surfaces

We can completely describe a foam if we can fully describe the position

and shape of all of its �lms. Finding the �lm con�guration that minimises

the surface energy can, in general, only be done numerically. For this task, a

software called Surface Evolver is commonly used [37]. It is a program which,

when given an initial surface, will minimise its energy, subject to constraints.

There are many situations where the minimal energy condition is su�-

cient for calculating the con�duration of a foam, particularly if there is a
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1.3. DESCRIBING FOAMS

high degree of symmetry involved (see for example Figure 1.5). To aid our

understanding of foams, additional rules about the shapes and interactions

of �lms in foams can be derived from this condition.

1.3.2 Young�Laplace Law in Three Dimensions

Each gas-liquid interface has a pressure di�erence, ∆p, across it, and so its

curvature is given by the Young−Laplace law

∆p =
2γ

r
(1.6)

where γ is the surface tension and r the mean local radius of curvature. This

mean local curvature is related to the two principle curvatures of the surface,

r1 and r2, by
1

r
=

1

2

(
1

r1

+
1

r2

)
. (1.7)

A single gas bubble in a liquid is a sphere, and so only has one principle

curvature everywhere (r = r1 = r2). A bubble in air, as a child would blow

with a bubble wand, has two liquid−gas interfaces. This e�ectively doubles

the surface tension and the radius. This is because a higher surface tension

makes deforming the interface more costly in terms of energy.

In an ordered foam, with equal sized bubbles, there are su�cient symme-

tries to enable one to solve for the curvatures completely [39]. In a disordered

foam, however, Equation (1.6) must be applied to the individual faces of

contacts between bubbles in turn. This is because, in general, they do

not have the same symmetries and ∆p is di�erent at each face. Finding

a solution for the curvature of each face of a bubble is no easy task. Below

are some additional rules that foams obey which aid us in understanding their

behaviour. These give additional constraints that we can use to simplify the

problem of describing the general structure of �lms in foams.
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1.3.3 Plateau's Laws for Dry Foam in Three Dimensions

4864 S J Cox et al

δ

L

Figure 1. A single tetrahedral junction of Plateau borders. The radius of curvature of the Plateau
borders is equal to δ (as length L → ∞).

In practice v is often measured as the velocity of the front of the solitary wave that is
generated when a given flow is first imposed on the dry foam. The earliest experiments of this
kind [9] established a scaling law between v and Q:

v ∝ Q1/2 (2)

where the exponent was established to within about ten per cent. This result, later confirmed
for various detergent systems [10, 11] and protein foams [12, 13], was the spur to subsequent
theoretical analysis. The foam drainage equation based on Poiseuille flow was found to be
consistent with (2).

However, fresh experimental results obtained in 1999 [1] lead to a reappraisal of the model.
The new data, which were of greater extent and precision than previous results, indicated a
different power law:

v ∝ Q1/3. (3)

Koehler et al showed this to be consistent with an alternative model in which dissipation is
dominated by the vertices or nodes where the Plateau borders meet. The implication is that
there is plug flow rather than Poiseuille flow in the borders themselves.

While the earlier conclusions were based on data of a lesser accuracy, they had been
independently confirmed many times. There was therefore a sharp conflict of evidence, which
was soon resolved by the realization that different surfactants were used by the two groups [5].
The new experiments used the commercial detergent Dawn whereas the earlier work used
(mostly) Fairy Liquid. Not all dishwashing detergents are the same!

On closer examination, most of the experimental results deviate somewhat from the ideal
values 1/3 and 1/2 for the index which is at issue. They mostly lie between these extremes.
This calls for a combined model [12,14], and indeed further experimentation on a wide range
of surfactant systems which are better defined.

Now that the vertices are seen as important, it is useful to calculate the flow properties
associated with them. Here we present numerical calculations for the two limiting cases—
Poiseuille flow and free-boundary flow. Calculations for the Poiseuille case have been
previously reported by Pertsov et al [15], but not in a form readily amenable to comparison
with ours.

Figure 1.6: Figure reproduced from [40]. A Surface Evolver simulation of a

junction between four Plateau borders. This shape is di�cult to describe ana-

lytically, but the result of numerical calculations such as this one provide a lot

of information, such as how the width of the plateau border, δ, changes with

proximity to the node, L.

If we consider �lms with negligible thickness (i.e. in the dry limit) then

the meeting of these �lms is governed by Plateau's laws. The �rst of these

states that the meeting of �lms occurs in threes and, being symmetric, they

meet at 120◦. The lines along which the �lms meet are called Plateau borders.

When the liquid content of a foam is increased, these thicken into channels.

The second rule governs the meeting of these Plateau borders and states that

they meet in groups of four, and at equal angles. These meeting points are

called nodes. When the liquid content of a foam increases, they can take on

complex shapes and can be di�cult to describe analytically [15]. Figure 1.6
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shows a Surface Evolver calculation of the shape of a node. These laws are

a consequence of the energy minimisation of the �lms.

1.3.4 Young�Laplace Law in Two Dimensions

As discussed in Section 1.1, two dimensional foams are often used to study

complicated phenomena in real foams in a simpli�ed setting. In this case,

the gas-liquid interfaces are lines instead of surfaces. Therefore, there is only

one principal radius of curvature, r, per interface, and the Young−Laplace
law simpli�es to

∆p =
γ

r
. (1.8)

This has the implication that each segment of a bubble's boundary, be it a

bubble−bubble or bubble−liquid interface, is described by an arc of a circle

of radius given by Equation (1.8). At contacts with neighbouring bubbles

there are two liquid−gas interfaces, one for each bubble. To account for this

we use twice the surface tension in determining the curvature of these edges,

compared with the regular bubble−liquid interfaces.

1.3.5 Plateau's Laws in Two Dimensions

Plateau's �rst law for dry foam remains, with the substitution of lines for

�lms at the interfaces between bubbles. Films meet symmetrically in threes

at angles of 120◦. In dry two dimensional foams the Plateau borders where

they meet are points rather than the channels that are seen in three dimen-

sions (see Figure 1.7(a)). Therefore, there are no nodes in two dimensions.

Additionally, in two dimensions, a small amount of liquid may be added at

each dry Plateau border, up to a liquid fraction of ∼ 0.05 before this rule

breaks down (see Figure 1.7(b)). This is known as decorating a dry foam
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(a) Dry Plateau border (b) Wet Plateau border

Figure 1.7: Illustration of the decoration of a dry Plateau border with some liquid

in two dimensions. The wet Plateau border (b) is still a threefold meeting of

edges and at each corner of the Plateau border the lines meet smoothly.

[30]. When the amount of liquid exceeds 0.05, the condition of meeting in

threes is relaxed and Plateau borders begin to meet and join together. This

will be shown in more detail in Section 2.2.5.

1.3.6 Topological Changes in Two Dimensions

When two Plateau borders, with three sides each, come into contact they

merge into a four-sided Plateau border. For very dry foams, φ < 0.05, a

four-sided Plateau border is unstable and will revert back to two three-sided

Plateau borders, but with the opposite orientation to the original pair, see

Figure 1.8. This is termed a topological transition of the �rst kind by Bolton

and Weaire [31], or a T1 for short. Since the total number of contacts does

not change in a T1, the average coordination number cannot change through

these events. Only once the four-sided (and larger) Plateau borders become

stable can bubbles lose contacts and the coordination number decrease.

As the liquid fraction of the foam is increased above 0.05, we begin to

see contact losses without a corresponding contact gain to complete the T1.
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Figure 1.8: Illustration of the components of a T1 event. Two three-sided

Plateau borders merge to form an unstable four-sided Plateau border. This

in turn decays into two three-sided Plateau borders, but with the orientation

perpendicular to the original pair.

Therefore, we study simply the individual contact changes in the foam, rather

than T1 events. To study just the contact changes we can make use of an

idea from graph theory called the adjacency matrix. This is a square N ×N
matrix of zeros and ones whose elements ij equal to one if bubble i is in

contact with bubble j, and zero otherwise. Simply by subtracting successive

matrices, changes in the contact network show up as non zero elements in

the di�erence. I have used this approach to study rearrangements in two

dimensional foam simulations in Section 2.3.

1.4 Modelling Two Dimensional Foams

1.4.1 Standard Model of Two Dimensional Foams

Plateau's laws can be combined with the Young−Laplace law to build a model

of a two dimensional foam. In this model, the boundary of each bubble is

broken down into a collection of interface segments, each of which is a circular

arc, see Figure 1.9. The gas in the bubbles is assumed to be incompressible,

see Section 1.2.3. Thus, the pressure in each bubble is proportional to the
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2γ

2γ

pj

aj

(xk, yk)

pressure pi
area ai

gas

γ
γ

pb

pb

Plateau
border

Figure 1.9: Schematic of a single bubble in the standard model of two a dimen-

sional foam. (xk, yk) is the position of vertex k, γ the interfacial surface tension,

pb the Plateau border pressure, pi the gas pressure of bubble i, and ai the area

of bubble i.

area. The �lms between contacting bubbles are assumed to have negligible

thickness. The curvature of each �lm is determined by Equation (1.8).

When the foam is dry, these �lms meet in threes at point-like Plateau

borders, and their tangents at the meeting point each have an angle of

120◦ between them. When the liquid fraction is increased, these Plateau

borders swell into curved triangles. The pressure inside each Plateau border

is equal due to hydrostatics, because, in the physical systems that the model

represents such as a Hele−Shaw cell, each Plateau border is connected via

liquid in the �lms. The curvature of the sides of the Plateau borders is

also determined by Equation (1.8), except that there is only one liquid−gas
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interface so the surface tension used is half that of the �lms.

The corners of the Plateau borders are called vertices. At each vertex,

two liquid−gas interfaces meet one �lm. They must all meet smoothly, i.e.

their tangents much be equal at the vertex. This is the extension of Plateau's

law into wet two dimensional foams.

These conditions are su�cient to fully describe any two dimensional foam.

One implementation of this model is a software program called Plat, intro-

duced in the early 1990s by Bolton and Weaire [30, 31, 32, 33]. It has

been used extensively in this thesis and will be covered in further detail in

Section 2.1.1. It is a quasi-static model producing two dimensional foam

structures which satisfy Plateau's laws. The Plat simulation is very reliable

for dry foams and moderately wet foams, but unfortunately less so for very

wet foams (φ & 0.12), see Section 5.1.2 for detailed statistics. For systems

with over 20 bubbles it can fail to �nd an equilibrium con�guration at liquid

fractions beyond 0.1, with the probability of failure increasing with both

system size and liquid fraction.

The model can also be implemented for dry foams using Surface Evolver

in the manner of Cox and Davies et al. [41]. This is a quasi-static im-

plementation that they use to study the rheology of objects falling under

gravity through dry foam [42, 43], and dry foam �owing through channels

with various constrictions [44]. Simulating wet two dimensional foams with

Surface Evolver is also possible. However, due to numerical constrains, it

requires the use of a �nite contact angle at the meeting point of liquid and

gas which has signi�cant repercussions [45]. With a �nite contact angle, when

the liquid fraction of the foams is increased, the liquid does not distribute

evenly throughout the foam. In fact, the foam splits into two phases: a liquid

pool and a moderately wet foam (depending on the contact angle). While
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this is quite similar to real foams, it does not represent the idealised case of

zero contact angle which is used to study foams theoretically.

1.4.2 Soft Disk/Sphere Model

In the wet limit of two dimensional foams, the bubbles are all circular. In

fact, foams in the wet limit can be described as packings of hard disks, as

discussed in Section 1.2.1. This led to the development of the �Soft Disk�

model in which bubbles are approximated as circles. Away from the wet limit

the disks are allowed to overlap. When the disks overlap they repel via a

simple potential, often approximated as harmonic [34]. This has been chosen

mainly for computational simplicity. However, Surface Evolver simulations

have shown that, while the energy is harmonic in two dimensions, the bubble-

bubble interactions are not pairwise-additive [46]. That is, the model of

interaction that lies at the heart of the Soft Disk model does not represent

realistic bubble-bubble interactions. This will be addressed in Chapter 3.

(a)

pb

pressure pi

pj
(b)

Figure 1.10: Comparison between Plat and the Soft Disk model for φ = 0.90.

The bubbles in (a) Plat are deformed even close to the wet limit, as seen in the

example. In contrast (b) shows an example of overlaps in a Soft Disk simulation

at the same value for φ.
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Additionally, the Soft Disk model does not conserve gas area, while the

Plat implementation of the standard model of two dimensional foam does.

This is immediately apparent when considering visual representations of Plat

(Figure 1.10(a)) and the Soft Disk model (Figure 1.10(b)).

An associated di�culty is the de�nition of liquid fraction in the Soft

Disk model. The liquid fraction in the standard two dimensional model is

readily de�ned as the fraction of the whole simulation geometry not �lled

with bubbles. With the overlapping disks in the Soft Disk model it becomes

quite di�cult to calculate the area of each overlap when more than two

spheres partially overlap the same area. Computationally this would also

defeat the purpose of the simplicity of the model. Instead, in the spirit of a

�rst order approximation, the double counting of the overlap areas is simply

ignored, and the liquid area is calculated as the whole simulation area minus

the sum of the disk areas. For more compressed (i.e. dry) cases this can lead

to negative liquid fractions, a physical impossibility. Of course, the model is

de�ned in the wet limit and so should not be expected to produce sensible

results for dry foams.

In three dimensions an analogous model is used called the �Soft Sphere�

model. It treats the bubbles as spheres that are allowed to overlap. When

they overlap, they repel with a harmonic potential. In both the two and

three dimensional cases, part of the success of the model can be attributed

to the fact that the harmonic potential is arbitrary and may be tuned to

model one speci�c experiment.

While this has been successful in reproducing the Herschel−Bulkley type

rheological behaviour that is associated with emulsions and foams, it does

not reproduce all of the behaviours of foams.

In fact, the interaction of two bubbles that are just in contact (analogous
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to being close to the wet limit) is intrinsically anharmonic [47]. This anhar-

monic nature was identi�ed by Morse and Witten [48] and has resulted in a

model which will be outlined in Section 1.4.3.

1.4.3 Morse�Witten Model

One of the main issues with the Soft Disk model is that it does not conserve

bubble area as it does not allow bubbles to deform. The Plat implementation

of the two dimensional foam model does conserve area and allows bubbles

to deform, but it fails in the wet limit. Therefore, we wish to create a two

dimensional model for foams which combines some of the simplicity of the

Soft Disk model with deformable bubbles away from the wet limit.

To do this we turn to the work of Morse and Witten [48]. The result

of that work is a relationship between an applied force on a bubble and

the deformation of the bubble in response. Morse and Witten obtained an

expression for the deformation of a bubble from spherical, shown in three

dimensions in Figure 1.11 (a) and in two dimensions in Figure 1.11(b). Also

shown in Figure 1.11(c) is the response of a bubble to several applied forces. A

main result of this is that the interaction between three dimensional bubbles

is logarithmically soft for small deformations, much softer than a harmonic

interaction. This non-linear scaling is weaker than the Hertzian f−1/3 seen for

contacting elastic solids [49], but it still dominates the energetics of weakly

compressed foams.

A visually striking feature of this model in three dimensions is the log-

arithmic divergence of the bubble pro�le at the point of contact. This can

be seen clearly in Figure 1.11 (a). While initially quite alarming, as no

physical bubble does this, the divergent part of the bubble pro�le may be

safely discounted, as detailed in Chapter 3.
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The original model derivation will be elaborated on in Chapter 3, as well

as the two dimensional analogue. The process of building a model of two

dimensional foam from the force-deformation relation will also be detailed.

Chapter 4 will show a di�erent type of application of the three dimensional

Morse−Witten theory. With it we can estimate the surface tension of a

liquid−gas interface using two simple length measurements.
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(a) (b)

(c)

Figure 1.11: Examples of bubbles in the Morse−Witten theory in two and three

dimensions. (a) A slice through a three dimensional Morse−Witten bubble

under the action of a point force and a compensating body force. The divergence

of the pro�le at the point of contact can be seen clearly. When representing a

contact with a �at surface in this model the convex part of the pro�le outside

of the dimple is used and the divergence can be safely ignored. (b) A two

dimensional bubble under the action of a single point force and a compensating

body force. (c) The response of a two dimensional bubble to multiple point

forces.
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Chapter 2

Studying Two Dimensional Foams

with Plat

This chapter describes results for two dimensional foams, as obtained from

exhaustive computer simulations using the software Plat, introduced in Sec-

tion 1.4.1. Plat was used extensively throughout the 1990s; as much as

was possible given the available computing resources at the time. With this

preliminary data, Bolton and Weaire suggested that the critical behaviour

(that is, the behaviour in the wet limit) of the coordination number is

linear with liquid fraction [33], contradicting the square root scaling with

liquid fraction described in Section 1.2.4 for Soft Disk simulations. They

experienced some di�culty in thoroughly exploring the critical region. The

issues with the software that make �nding equilibrium structures in the wet

limit di�cult appear to be inherent in the simulation method. We have

explored these somewhat, but not made an attempt at �xing them in this

chapter. Indeed, it appears to be somewhat of a hard problem, which will be

outlined in Section 5.1.1. Instead, we have taken advantage of over 25 years

of improvement in computing technology to revisit the Plat software with a
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brute force approach in order to explore the wet limit.

Before detailing the workings of the Plat simulation, I will revisit other

critical phenomena that two dimensional foams have been found to exhibit

in the wet limit. Following this, I will detail how Plat implements the stan-

dard model of two dimensional foams, along with the procedure used in the

simulations. The �rst data analysed will be the variation of energy and of

the coordination number with liquid fraction to complement previous work.

Subsequently, the occurrence of cascades of bubble rearrangements in the wet

limit is analysed. The coordination number variation provided some results

that contrast with much of the literature so that will then be revisited and

compared in detail with results from the soft disk model. This will show that

the deformation of the bubbles due to area conservation plays an important

role. This was our main motivation to develop the Morse−Witten model for

two dimensional foams, as will be described in Chapter 3.

2.1 The Plat Software

2.1.1 Details of the Implementation

Plat, as mentioned in Section 1.4.1, is a software package for the simulation

of a foam in two dimensions. It is based on the direct implementation of

Plateau's Laws, rather than an energy minimisation routine.

The simulations are initialised as follows: samples are generated by �lling

a square box (see Figure 2.1) with a random Delauney tessellation of triangles

[50]. A Delauney tessellation is a special way to join up a set of points into

triangles where, if a circumcircle is drawn through the three points used as

the corners of a triangle, there are no other points within the circle. The

Delauney tessellation is constructed by �rst randomly scattering N points
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2.1. THE PLAT SOFTWARE

Figure 2.1: Example of initial (dry, φ = 0.002) and �nal (wet, φ = 0.165) stages

of a sequence of Plat simulations for a foam with 60 bubbles. Note the periodic

boundary conditions.
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in the simulation box. (The randomness of bubble areas is controlled by

specifying a minimum separation between points, the so-called hard disk

parameter as described by Weaire and Kermode [51]. A lower minimum

separation results in greater polydispersity.) These points are then connected

into a triangular tessellation of the box. The de�nition of the tessellation is

used to connect the random points together.

Next, the Delauney tessellation is inverted to obtain its dual graph, a

Voronoi network. In this transformation, the random points used as the

corners of the triangles become the centres of the Voronoi cells. It is these

cells that represent the bubble in the simulation. The circumcentres of each

triangle become the corners of the Voronoi cells. Once the transformation

is complete, the resulting Voronoi network is converted to a relatively dry

foam (φ < 0.002), not yet equilibrated, by �decorating� its vertices with small

three-sided Plateau borders at equal pressures. This initialisation procedure

is provided by Plat and is based on the procedure described by Kermode and

Weaire [52].

The decorated Voronoi network is equilibrated into a two dimensional

foam by adjusting cell pressures and vertex coordinates in order to ful�l the

constraints of �xed cell areas and smoothly meeting arcs. The cell pressures

are updated by

∆pi = −γA∆Ai
∂Ai

∂pi

, (2.1)

where ∆Ai is the existing discrepancy of the current cell area from the true

area, ∂Ai

∂pi
is the numerically determined area derivative, and γA is a damping

factor required to stabilise the algorithm. The cell pressures change the cell

areas by controlling the boundary curvatures. This step is repeated until the

�xed cell areas are correct.

The vertex coordinates are changed such that the boundaries meet smoothly
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θ2

θ1

Figure 2.2: The equilibrium condition for smoothly meeting arcs demands that

θ1 = θ2 = π

at each vertex. In this way, the conditions of the standard two dimensional

foam model (Plateau's laws and the Young−Laplace law) are ful�lled (see

Section 1.4.1). The increments (∆xk,∆yk) are calculated via∆xk

∆yk

 = γθ

 ∂θ1
∂xk

∂θ1
∂yk

∂θ2
∂xk

∂θ2
∂yk

−1π − θ1

π − θ2

 , (2.2)

where the angles θ1 and θ2 are as in Figure 2.2, the derivatives are calculated

numerically, and γθ is a damping factor. This process is repeated until the

largest vertex increment falls below a convergence threshold. The threshold

is an adjustable fraction of the average Plateau border radius, defaulting to

0.02. See also [31] for a detailed discussion of the Plat representation of a

foam and the equilibration process.

There are two types of topological changes implemented during equilibra-

tion. These correspond to the two components of a T1 change (Section 1.3.6).

Cells lose contact when the vertices at either end of their shared cell−cell
boundary come within an adjustable fraction (defaulting to 0.01) of the

average radius of a Plateau border of each other. Cells come into contact

when their corresponding cell−border arcs overlap across a Plateau border.

If a cell with three neighbours loses a contact, it does not turn into a

�rattler�, but remains attached to its remaining neighbours. This procedure

has been chosen because, in this case, the bubble remains part of the foam
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network and can be dealt with easily. Even towards the wet limit, the

fraction of bubbles with just one or two contacts combined is less than 4%

(see Section 2.2.4).

2.1.2 Simulation Procedure

The simulations presented here progress by increasing the liquid fraction in

steps of ∆φ = 0.001 and equilibrating the foam at each step. Increases

in liquid fraction are performed by proportionally reducing bubble areas

(rather than increasing the total simulation area). This involves decreasing

the cell pressures in order to reduce the curvature of the liquid−gas interfaces,
followed by the equilibration of vertex positions. The change in pressure of

every cell undergoes one iteration before each vertex position undergoes one

iteration, and the two are brought towards equilibrium together. Calculations

of foam energy and/or average coordination number are made after each

equilibration.

Examples of structures simulated by Plat are shown in Figure 2.1. It is

the natural extension to wet foam of the earlier two dimensional �FROTH�

simulation method of Weaire and Kermode [53, 51, 52] for dry foam. Doubts

were expressed at the time of the inception of FROTH as to whether the

method might encounter anomalous equilibrium con�gurations not repre-

sentative of a real two dimensional foam. Thankfully, there is no evidence

that this is the case in practice. However, Plat exhibits a tendency to no

longer succeed in equilibrating the foam structure at high liquid fractions

for systems larger than about 20 bubbles, as mentioned in Section 1.4.1. As

Plateau borders tend to become semicircular, it is increasingly di�cult to

�t an arc of the correct curvature between its end points and the system no

longer converges. This is indeed the potential di�culty that was anticipated
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by Weaire and Kermode [53, 51]. As foams get wetter, large many-sided

Plateau borders become much more likely to be susceptible to involve such

anomalous arcs. This has not yet been positively identi�ed as the root cause

of the convergence issues, nor has an attempt at re�ning the program been

made yet. Some suggestions on how to tackle this issue will be outlined in

Section 5.1.1.

To reduce size e�ects we would prefer to use samples that are as large as

possible. Plat can reliably simulate dry foams with up to 500 bubbles, but

for systems with more than 20 bubbles it begins to exhibit failure from liquid

fractions of 0.1 and higher, with increasing frequency for larger systems. This

frequent failure of Plat made it impractical to simulate a full range of liquid

fraction for samples exceeding about 100 bubbles. As a compromise between

systems size and simulation reliability, we decided that each simulation would

consist of only 60 bubbles, and the properties of the simulations would be

averaged over multiple simulations. For the purposes of this thesis, all Plat

simulation results presented are the averaged results, regardless of the liquid

fraction reached. For details of averaging and statistics, see Section 2.2.1.

2.2 Simulation Results for Basic Quantities of

Interest

Before proceeding to the analysis of rearrangements, I will present results for

various basic quantities of interest, complementing and completing previously

published data from Plat [33, 30, 31, 36, 54].
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2.2.1 Averaging of Simulations and Statistics

All the results presented in this section are calculated and averaged across

almost 600,000 simulations of 60 bubbles each. Not all simulations ran to

completion, this can be seen in the decline of the statistics shown in Fig-

ure 5.2. These statistics nevertheless appear to be more than adequate for

our purposes as we have at least 100 simulations for φ < 0.1585.

Such a large number of simulations would have been entirely unachievable

in the 1990s when Plat was originally written. The (successful) calculation

of one single 60−cell sample for a range of values of liquid fraction would

have taken several hours.

The polydispersity of the simulations was measured to be σR = 0.072.

While this is less than the critical value of 0.1 mentioned in Section 1.2.2,

visual inspection of the simulations such as Figure 2.1 shows a su�cient lack

of positional correlation that we consider them to be disorded.

2.2.2 Variation of Energy with Liquid Fraction

Figure 2.3 shows the variation of the reduced excess energy, ε(φ), as a

function of liquid fraction (Equation (1.3)). Close to the wet limit a cubic

function, (see Equation (2.3)) �ts this well. This gives a critical liquid fraction

of φc = 0.166± 0.005 for the wet limit.

ε(φ) = 0.31(φc − φ)2 + 3.7(φc − φ)3 + (2× 10−4). (2.3)

This value of φc is consistent with other numerical results of 0.159 and 0.16

for two dimensional foams [33, 2], and experimental values of 0.16 and 0.158

[55, 22] and numerical results of 0.159 and 0.16 [34, 56] results for random

packings of disks. However, this is a four parameter �t. A simpler �t

involving only two parameters is obtained from considering the variation
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Figure 2.3: Top: Variation of reduced excess energy, ε(φ), with liquid fraction, φ.

The solid line is a �t to Equation (2.3) for φ > 0.08, over which range it shows

good agreement. Bottom: The variation of ε(φ) in the wet limit (φ > 0.14)

− plus signs, left y-axis. Error bars indicate the standard error of the sample

mean. Also shown is the linear variation of excess coordination number (Z−Zc)
with liquid fraction − squares, right y-axis. The solid line corresponds to the

two parameter �t Z(φ)− Zc = a ∗ (φc − φ), where a = 17.9 and φc = 0.159 are

the �t parameters, and Zc = 4(1− 1/60) = 3.93 is �xed.
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of Z(φ) (see Figure 2.3 (bottom), and Section 2.2.3 below). This results in

φc = 0.159 ± 0.001 [2] and it is this value that we will use when discussing

large scale rearrangements in Section 2.3. The very small o�set (the last term

in Equation (2.3)) is barely visible on the scale of the main plot of Figure 2.3.

Further calculations with tighter criteria (halving the fraction of a Plateau

border used as a minimum length) for convergence have indicated that this

small discrepancy is due to limited convergence. Given the extensive nature

of these calculations, as described above, we have not repeated them in full

to investigate this further.

2.2.3 Variation of Average Coordination Number with

Liquid Fraction

In order to investigate the variation of Z(φ) close to φc, and the value of φc

itself, we plotted log(Z(φ)−Zc) vs. log(φc−φ). We then varied φc, to obtain

the value which gives the best linear relationship between these quantities

(see Figure 2.4, bottom). In this way, the critical liquid fraction was found

to be φc = 0.159± 0.001, and the slope was 1.000± 0.004 in the logarithmic

plot.

The conclusion is, therefore, that Z approaches Zc linearly, i.e. (Z−Zc) ∼
(φc − φ) as plotted in Figure 2.16. Appropriately, �tting

Z = Zc + kf(φ− φc), (2.4)

with Zc = 4− 1/15 gives a slope of kf = 17.9±0.1 and a critical liquid fraction

of φc = 0.159 ± 0.001. Above, in Section 2.2.2, we obtained a critical liquid

fraction of φc = 0.161 ± 0.001 for the same system by looking at the excess

energy. This is consistent with the results of Section 2.2.2.
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Figure 2.4: Top: Coordination number, Z, versus liquid fraction, φ. The linear

behaviour is not restricted to the wet limit; it continues over a substantial range

of φ. Note the slight plateau in the dry limit where Z remains constant at a

value of six for φ < 0.01 at least. This happens because the Plateau borders

with more than three sides are still unstable so the total number of contacts

cannot decrease. Bottom: Logarithm of (Z−Zc) versus logarithm of (φc−φ) in
order to �t φc and to examine the behaviour of Z(φ) close to φc. The increased

scatter is due to the reduced number of simulations close to the wet limit.
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2.2.4 Distribution of Coordination Number

I now turn to the distribution of coordination numbers and present an empir-

ical procedure, inspired in part by the analysis of van Hecke [21], reproduced

in Figure 2.5 and Equations (2.5)-(2.8). The variance of van Hecke's data,

σ2, was 0.75. Equations (2.5)-(2.8) were applied separately to the left and

right parts of Figure 2.5.

Figure 2.5: Figure reproduced from [21] showing fractions of bubbles in the foam

with n contacts as a function of Z. Solid lines: solutions to Equations (2.5)-(2.8)

for the species listed at the top of the graph.

xn =
1

4

(
(Z − (n+ 2))2 + σ2 − 1

2

)
(2.5)

xn+1 =
1

4

(
−(Z − (n+ 1))2 − σ2 +

5

2

)
(2.6)

xn+2 =
1

4

(
−(Z − (n+ 2))2 − σ2 +

5

2

)
(2.7)

xn+3 =
1

4

(
(Z − (n+ 1))2 + σ2 − 1

2

)
(2.8)

Figure 2.6 shows distributions for the fraction of bubbles with n neigh-

bours as a function of Z. Here we propose the function f(n) (a normal

distribution), involving only a single free parameter σ (the standard deviation
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Figure 2.6: The fraction of bubbles with n neighbours as a function of average

coordination number, Z (top: Plat, bottom: Soft Disk). Simulation data (sym-

bols) can be approximated by the functional form of Equation (2.9) (dashed

lines), with only a single �t parameter σ ' 0.684± 0.004 for all the data. Note

that despite the di�erences in Z(φ) between the two models, the distribution of

contacts for a given Z is very similar.
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of the distribution), as an adequate description of the data,

f(n) =
1

σ
√

2π
exp

(−(Z − n)2

2σ2

)
, (2.9)

where Z is the coordination number, as above, and the value of σ used

in Figure 2.6 is 0.684, which was found by a least squares �t to the data.

This can be considered to be a continuous analogue of Equations (2.5)-(2.8).

It appears likely that the width of this distribution is connected with the

polydispersity of the sample, but this has not been investigated yet. Note

that in this analysis bubbles with 0, 1, and 2 neighbours are grouped together

as having 0 contacts as they are all rattlers.

5 5

6

8

6 6

5

7

Figure 2.7: Example of a T1 transition where the average coordination number,

Z, is unchanged, but the distribution f(n) does change. The numbers indicate

the number of neighbours of each bubble involved in the T1.

One notable feature of these statistics for the Plat data that is not rep-

resented in the simple �tting function is the steep variation of the curves as

Z tends to six. Recall that, for φ < 0.05, only T1 rearrangements that do

not change Z are possible (see Section 1.3.6). Such combined changes have

no e�ect on the average coordination number, Z, which remains at the value
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Figure 2.8: The fraction of bubbles with n neighbours as a function of liquid

fraction, φ for the Plat simulations. Note the minimum in the fraction of �ve

sided bubbles around φ ' 0.03 and the maximum in the fraction of six sided

bubbles around φ ' 0.04.

six, but do a�ect the distribution f(n), see Figure 2.7. Accordingly, it can be

seen in Figure 2.6 that the derivatives df/ dZ are in�nite at the dry limit.

However, for the Soft Disk data, there is no such feature at Z = 6. This

is likely due to the overly simpli�ed Soft Disk model which uses unrealistic

bubble-bubble interactions which lack area conservation. In Figure 2.8 it can

be seen that by plotting the distributions for the fraction of bubbles with

n neighbours as a function of liquid fraction, φ, there are no steep vertical

slopes in any of the curves at φ = 0.
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Figure 2.9: Distribution of number of sides of Plateau borders as a function of

liquid fraction. Top: The three sided Plateau borders clearly dominate the

statistics for any φ . 0.14. Bottom: The same data with a logarithmic y axis.

This shows that a Plateau border with n+ 1 sides is roughly 10 times less likely

than one with n sides.
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Figure 2.10: Euler's equation versus average coordination number [15]. I is the

average number of sides of the Plateau borders. The perfectly straight line

veri�es that Euler's equation (Equation (2.10)) holds in the Plat simulations.

2.2.5 Distribution of Plateau Border Sides

For completeness, the distribution of the number of sides of the Plateau

borders as a function of φ is shown in Figure 2.9. This data complements

data presented by Hutzler and Weaire [15]. The previous dataset was very

limited, while Figure 2.9 is very thorough and complete.

The distribution of number of sides of Plateau borders can be related to

the average coordination number via Euler's equation

Z =
2I

I − 2
, (2.10)

where I is the average number of sides of the Plateau borders in the foam

[15]. Figure 2.10 shows that this holds for the Plat simulations.
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2.3 Statistics of Bubble Rearrangements

As introduced in Section 1.2.5, the shear modulus and yield stress of foams

go to zero in the wet limit. Hutzler et al. [36] observed an associated

phenomenon, which can be considered to be an additional aspect of the

critical behaviour associated with the wet limit. This is the occurrence of

cascades of contact changes during equilibration in response to a small stress

increment above the yield stress.

The size of the cascades was found to increase with the liquid fraction,

possibly tending to in�nity (and thus preventing Plat from converging) at the

wet limit. However, it was not feasible for Hutzler et al. to fully explore the

wet limit, at which point the size of the cascades was expected to diverge.

Here we return to this phenomenon, using a progressive increase of liquid

fraction, rather than stress, as the small perturbation. Where the previous

results had to rely on counting the number of contact changes that occurred

over the course of the equilibration routine, we will use the technique of

successive adjacency matrices described in Section 1.4.1 to approach this

more thoroughly.

There are two types of elementary rearrangements in a two dimensional

foam of �nite liquid fraction, in which a contact between two bubbles is

either gained or lost, see Figure 2.11. In what follows, I will count the

fraction of bubbles involved in rearrangements in any given step, rather than

the rearrangements themselves. Another alternative would be to measure

changes in the energy of the system, as Durian did for the more rudimentary

bubble model [34, 57] discussed in Section 1.4.2.

As the wet limit is approached, it becomes particularly evident that more

elementary rearrangements are provoked by a small increment of φ.

The number of rearranged bubbles in one step is computed from the
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Dry Wet

Figure 2.11: Two alternative illustrations of rearrangements due to a small in-

crease in liquid fraction. Top row − Red bubbles lose contacts, blue bubbles

gain contacts, and gray bubbles both gain and lose contacts. Bottom row −
Red is the liquid before rearrangements, blue is the liquid after rearrangements,

and black is unchanged liquid. Left: in a dry foam (φ = 0.006), an increase

in liquid fraction ∆φ = 0.001 only leads to localised rearrangements. Centre:

example of extensive rearrangements in a moderately wet foam (φ = 0.112).

Right: Rearrangements involving nearly two thirds of all bubbles in a foam

(φ = 0.149) close to the critical liquid fraction. Note that the regions in which

changes occur appear spatially connected.

45



CHAPTER 2. STUDYING TWO DIMENSIONAL FOAMS WITH PLAT

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Fr
ac
ti
on

of
R
ea
rr
an
ge
d
B
ub

bl
es

Liquid Fraction, φ

Figure 2.12: Fraction of rearranged bubbles in a sample due to an increase in

liquid fraction by ∆φ as a function of liquid fraction φ. Data points are an

average of 105 simulations containing 60 bubbles each, with ∆φ = 0.001. The

solid line corresponds to a linear extrapolation of this data to the limit: ∆φ→ 0.

See Figure 2.13.
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change of the adjacency matrix between two equilibrium states, as described

in Section 1.3.6. Shown in Figure 2.12 is the fraction of bubbles involved in

rearrangements (as averaged over all our simulations) when increasing the

liquid fraction from φ to φ + ∆φ in small increments, ∆φ = 0.001. Since

this average depends on the size of ∆φ we have repeated the calculation for

a range of values of ∆φ from 0.005 to 0.0005 and used this data to linearly

extrapolate to the limit ∆φ→ 0.

The main plot of Figure 2.13 shows the average fraction of rearranged

bubbles due to an increase in liquid fraction from φ to φ + ∆φ for six

di�erent values of ∆φ. The dependence of this average fraction on ∆φ can

be studied by taking vertical slices through this data. We have done this for

four di�erent values of φ, indicated by the lines labelled �Liquid fractions for

�ts�. The result is shown in the inset plot. The average fraction of rearranged

bubbles is seen to decreases to a non−zero value when we extrapolate ∆φ to

zero. The straight line �ts contained in the inset all have slopes within error

of each other, indicating that the linear shift due to non-zero ∆φ is constant.

As such, we take an average of the �ts, giving an o�set of −(16.4± 0.5)∆φ.

The result of this extrapolation is shown as a solid line in Figure 2.12;

We also generated histograms of the number of rearranged bubbles per

step for all our simulation data, at each liquid fraction. Viewing these his-

tograms on a semi−log scale reveals that the tail of the distribution can be

well approximated by an exponential distribution (see Figure 2.14, top) of

the form:

p(ζ) = λ exp(−λζ), (2.11)

where ζ is the fraction of rearranged bubbles and λ is called the decay

parameter.

For an exponential distribution 1/λ equals the mean of ζ. Instead of
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Figure 2.13: Fraction of rearranged bubbles in a sample due to an increase in

liquid fraction by a range of ∆φ values, each as a function of liquid fraction φ

(data averaged over 105 simulations for ∆φ = 0.001, and 103 simulations for

all other values of ∆φ. Each simulation contains 60 bubbles with σR = 0.07).

Inset: Fraction of rearrangements as a function of step size ∆φ. Data sampled at

liquid fractions indicated on the main �gure. Solid lines mark the interpolations

as ∆φ → 0. These solid lines indicate the number of rearrangements that are

due to the perturbation of the system, rather than the actual change in liquid

fraction.
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Figure 2.14: Top: Log-linear plot of histograms of the fraction of bubbles involved

in rearrangements. Bottom: Manually rescaled histograms as described in the

text. The solid line is a straight line �t with slope λ0 = 17 ± 2, showing that

the tail is well approximated by an exponential form of Equation (2.11).
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�tting 15 di�erent exponentials (corresponding to the 15 datasets shown in

Figure 2.14 (top)), resulting in 15 values for λ as a function of φ, we have

chosen to rescale the data by a scale factor l(φ) which depends on liquid

fraction. In this rescaling ζ → ζ/l(φ) and p(ζ) → l(φ) ∗ p(ζ) so that the

normalisation of the area under the histogram is preserved. This leads to a

collapse of the data, as shown in Figure 2.14 (bottom). This rescaled dataset

is �tted to Equation (2.11), resulting in one decay parameter, λ0 = 17 ± 2.

Then λ(φ) = λ0/l
2(φ). Figure 2.15 shows the variation of 1/λ with liquid

fraction, φ. In the wet limit, the reciprocal of λ tends quadratically to a

constant of 1/λ(φc) = 0.150±0.001, whose value or origin is, as yet, unclear.

Rather than describing the data with an exponential, we have also probed

for a power law. However, the limited size of the Plat simulations (60 bub-

bles) makes is di�cult to �nd a power law, as the range of sizes of events

simply is not large enough. Regardless, preliminary analysis indicates that

the exponent would decrease in the limit φ→ φc, making us believe that the

exponential distribution is a more appropriate model for the data. Whether

this is due to a characteristic of the system, or size e�ects is not known at

this stage.

The cascades of rearrangements bear a resemblance to avalanches. There

are a variety of physical systems which exhibit avalanches, ranging from

earthquakes [58] and random fuse networks [59], to piles of rice [60]. However,

their statistics are usually described by power-laws of the form p(x) ∼ x−α,

where the exponent α has a value between one and two. Indeed, power-laws

are often seen as a signature feature of complex systems [61], which also

include foams [62]. These have been found, for example, in the statistics of

particle rearrangements in �owing colloidal suspensions [63] and the statistics

of popping bubbles in collapsing foams [64].
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Figure 2.15: Variation of the decay parameter, λ, with liquid fraction, φ. λ(φ) =

λ0/l
2(φ), where λ0 (obtained from Figure 2.14 (bottom)). The solid line is a �t

of the form (6.9± 0.9)× (φc−φ)2 + (−1.97± 0.07)× (φc−φ) + (0.150± 0.001).

Also shown is the mean of the fraction of bubbles involved in rearrangements as

a function of liquid fraction (see Section 2.3). The disagreement in the central

region of the plot may be due to the inaccuracy of the manual rescaling.
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Power law distributions of changes in energy with an exponential cut−o�
for high energies have been observed in simulations by Durian [57] in packings

of soft disks under shear. For these Soft Disk systems, it has been suggested

that a pure power−law distribution only occurs at the wet limit [65]. Such

simulations, where bubbles are modelled as overlapping disks, are successful

in reproducing many rheological properties of foams. However, recent work

points to marked di�erences regarding the variation of average coordination

number, Z(φ), in the wet limit (see Section 2.4.1) [2].

A transition between power law and exponentially distributed avalanches

was observed by Ritacco et al. [66] and Frette et al. [60]. The former was

for coalescence of bubbles in a bubble raft, while the latter was observed in

sliding grains in rice piles. In both cases, the statistics were controlled by the

dissipative forces in each system, viscosity [66] and friction [60] respectively.

Our simulations are quasi-static and, therefore, involve no dynamic processes

or dissipative forces. We are, therefore, unable to �nd an analogous control

parameter for the distribution of our large scale rearrangements. As such, the

reason why the distribution of rearrangements in our simulations follows the

exponential form of Equation (2.11) remains elusive at this stage. There have

been experiments with three dimensional foams [67] for which avalanches of

rearrangements following an increase in liquid fraction have been observed,

but there is no statistical data available.

2.4 Comparison of Z(φ) between Plat and the

Soft Disk Model

For a comparison with the Soft Disk model, random packings of overlapping

disks with similar conditions as in Plat (same polydispersity i.e. sigmaR =
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0.07, same sample preparation protocol .i.e liquid fraction increased from

0 to 0.16 in steps of ∆φ = 0.001) were created using a conjugate gradient

energy minimisation routine [68]. The average for Z(φ), excluding rattlers,

was taken over 20,000 independent simulations.

2.4.1 Discussion of Previous Results for Z(φ)

The linear increase of the average coordination number with liquid fraction

found in the Plat simulations close to the wet limit (Equation (2.4)) is unex-

pected, since it is at odds with previous �ndings from computation, theory,

and experiment. As an illustration, Figure 2.16 shows both results from Soft

Disk simulation and Plat simulations with the same distribution of bubble

sizes in both.

Before presenting further results to support this �nding, I will discuss the

contradiction with previous results and how to resolve this contradiction.

At �rst there might seem to exist such a weight of evidence for the square-

root scaling that it cannot be disagreed with (Equation (1.4)), but this is not

the case. We will discuss the two strands of contrary evidence in turn. These

are, �rstly, results from the soft-disk model, and secondly, experimental data

for bidisperse two dimensional foams.

As discussed in Section 1.2.4, the Soft Disk model produces a square-root

relationship for Z(φ). However, the model of interaction used in the Soft Disk

model does not represent realistic bubble-bubble interactions. One should,

therefore, treat the prediction that two dimensional foams will produce the

same square-root relationship in lowest order with some caution.

Experimental evidence of the square-root scaling, as found from mea-

surements of two-dimensional photoelastic disks under compression [22], is

in agreement with the prediction of the bubble-model. This is as one might
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Figure 2.16: For two dimensional foams (Plat) close to the critical liquid fraction,

Z was found to vary linearly with φc − φ (red data points). The average was

done over 600,000 independent simulations with 60 bubbles to compare with

the Plat results. A linear �t (solid red line) in the displayed range gave a slope

of kf = 17.9± 0.1 and a critical liquid fraction of φc = 0.159± 0.001. In the wet

limit (at φc), Zc is given by Zc = 4(1−1/N) due to �nite size e�ects. This results

in Zc = 3.933 for N = 60 bubbles. For comparison, Z(φ) is also plotted for a

soft disk systems (N = 60 with 20,000 simulations), which shows the mentioned

square-root scaling. Inset: Double-logarithmic scale for Z − Zc versus liquid

fractions φc − φ up to φ = 0. By �tting a linear function (solid line), the φc

which gives the best linear relationship is obtained as φc = 0.159± 0.001.
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expect to be applicable in this case, at least for qualitative purposes.

Let us now turn to the second strand of supposed evidence for the square-

root relationship by examining further experimental results which bear di-

rectly on two dimensional foams.

Katgert and van Hecke [21] performed experiments with disordered rafts

of bidisperse bubbles beneath a glass plate. The distance between plate

and liquid surface was varied to obtain foams at di�erent values of liquid

fractions. The concept of a liquid fraction is not well de�ned for such quasi-

two dimensional bubble rafts. In particular, in the wet limit where the gap

between covering plate and liquid interface is similar to the bubble extension

parallel to the plate, the three dimensional nature of the bubbles becomes

more relevant. For this reason, Katgert and van Hecke [21] proceeded by

imaging their rafts from the top to obtain an area liquid fraction. Based

on their analysis, Katgert and van Hecke established Z − Zc ∝ (φ − φc)
α,

with exponent α ' 0.70, Zc close to 4, and φc close to 0.84 [21]. Due to

the problem in de�ning a liquid fraction for such a quasi-two dimensional

experiment, and in optically identifying contacting bubbles, we do not think

that these experimental results can be taken to contradict our Plat �ndings,

even though Katgert and van Hecke describe their wet foams as consisting

of �soft frictionless disks�.

Our results in two dimensions also suggest that a deviation from the

square root scaling in Z(φ) for three dimensional foams might be observed,

since we conjecture that the reason for the deviation in the two dimensional

case is the model of interaction. However, the scaling does not have to be

linear. Apart from the non-pairwise interaction, the energy for the three

dimensional bubble-bubble interaction is also not harmonic. It scales with

the form f 2 ln(1/f), �rst predicted by Morse and Witten, where f is the force
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exerted between droplets (see Chapter 3 for details).

However, similar to the two dimensional case, evidence for the square root

scaling in three dimension seems to be very strong at �rst glance. Exper-

iments from Jorjadze et al. [69] with droplet emulsion in three dimensions

show a good agreement with the square root increase in Z(φ). However, as

in the experiments of Katgert and van Hecke, the identi�cation of contacting

bubbles and the de�nition of a liquid fraction is not straight forward. Jor-

jadze et al. reconstructed the droplets as overlapping spheres and de�ned

contacts as overlaps. The gas fraction is then the spherical volume reduced

by the overlaps which is simply 1−φ. Thus, it cannot be ruled out that this

procedure contains a bias towards the square root scaling of Z(φ) as in the

Soft Disk model.

The distribution of contacts in a packing can be predicted via the gra-

nocentric model [70] which has recently been extended to two dimensional

cellular structures [71] and two dimensional packings of discs [72]. However,

this model cannot predict the variation of Z with φ in packings as it only

applies to the wet limit (or jamming point).

2.4.2 Link Between Z(φ) and the Radial Density Func-

tion, g(r)

The radial distribution function, R(r), is de�ned as the probability to �nd

a particle a given distance r away from another particle. In two dimensions

the radial density function is given by g(r) = 1
2πr
R(r), and can be visualised

as in Figure 2.17.

For soft disk packings it has been argued that the square root scaling of Z

as seen in Relation (1.4) is connected with the variation of the radial density

function, g(r). The argument goes that the number of particles within ∆ε of

56



2.4. COMPARISON OF Z(φ) BETWEEN PLAT AND THE SOFT DISK
MODEL

r/D

g
(r

)

Figure 2.17: The radial density function, g(r), gives the probability of two disk

centers being a distance r apart.

touching is equal to the change in Z when compressed by ∆ε = (φc−φ)/(2φc)

⇒ Z(φ)− Zc = 2πρ

∫ D+∆ε

D

g(r)rdr, (2.12)

i.e. the integral of g(r) over a circular shell is equal to Z(φ) [14, 23, 73],

although the validity of this argument is still under discussion [74].

From simulations of three dimensional monodisperse soft spheres with

diameter D = 1 close to the jamming transition, the behaviour of g(r) is

found to be divergent according to the power law

g(r) =
cd√
r − 1

, (2.13)

where cd is a constant [23].

A similar divergence can be found in two dimensional polydisperse sys-

tems, when the radial density function is rescaled to g(ξ) with the rescaled

interparticle distance ξ = r/(Ri +Rj), where Ri and Rj are the radii of two

disks with distance r apart [14]. Assuming that the systems deforms in an

a�ne way (see Equation (2.14)), integrating g(r) over r then results in the

square root scaling for Z(φ) of Relation (1.4) [14, 23, 73].
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Figure 2.18: Interpartical distance measurements for calculating g(r). The

rescaled interparticle distance is ξ = r/(Ri +Rj).

2.4.3 Linking the Radial Density Function to the Dis-

tribution of Separations, f(w)

For two dimensional foams, such an argument involving g(ξ) is not straight-

forward to develop, since bubbles are deformable and only have well-de�ned

centres in the wet limit (at φc) where they are circular. For this reason we will

consider a di�erent approach, which involves a distribution of separations,

f(w), between bubbles (or disks), as in the work of Siemens and van Hecke

[75]. Here, the separation w is the shortest distance between two bubble

arcs/disk edges (see Fig 2.19). For the soft disk system, this separation is

then related to their distance by their radii, r = w + Ri + Rj. Therefore

w = r −D (D being the average disk diameter), so f(w) is identical to g(r)

close to the divergence, when shifted by the average disk diameter D. Thus

g(r −D) = f(w) and g(ξ − 1) = f(w/D).

Let us now consider the compression of a two dimensional, polydisperse

foam/disk sample of initial liquid fraction φc to a �nal value of φ < φc. The

fractional compression, ∆ε, is given by ∆ε = (φc−φ)/(2φc), and is considered

to be in�nitesimally small.
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(a)

w

(b)

w

Figure 2.19: An Illustration of the separation, w, between (a) bubbles and (b)

soft disks. The separation is de�ned as the shortest distance between two bubble

arcs/disk edges. Its distribution f(w) is connected to Z −Zc via an integration

(see Equation (2.14)) [14, 23].

We can estimate Z(φ) for the case of an a�ne compression from f(w).

An a�ne compression is one where the whole system compresses smoothly

without any internal changes, i.e. the internal compressions between bubbles

are proportional to the external compression of the system. In this case the

deformation of the sample will lead to an increase in coordination number due

to bubbles coming together that initially, i.e. in the wet limit (at φc), were

closest to each other. For an a�ne deformation, the fractional compression

can be expressed as ∆ε ≈ ∆w/D. Thus, the average number of contacts in

two dimensions can be estimated by integrating ρf(w/D) over a radial shell

up to D∆ε, and Equation (2.12) becomes

Z(φ)− Zc = 2πρ

∫ ∆ε

0

dwf(w)(D + w)

⇒ Z(φ)− Zc = 2πρ

∫ D∆ε

0

dwf(w)(1 + w/D), (2.14)

where ρ = 4φc/(πD
2) is the particle number density (number of bubbles per
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unit volume).

2.5 Distribution of Separations, f (w), for Two

Dimensional Foams and Soft Disk Systems

Figure 2.20 shows the distribution, f(w), for both foams and packings of

soft disks with the same system size (N = 60) and area polydispersity. The

di�erence between our results for simulated two dimensional foams and two

dimensional disk packings is striking. Whereas in the case of disks, f(w)

diverges in the limit

w/D → 0 as f(w) =
cd√
w/D

(2.15)

as expected from the divergence of g(ξ) with cd = 0.25 ± 0.01, for the two

dimensional foams a �nite limiting value cf = 2.9 ± 0.7 is reached in this

limit. Only at values of w/D & 10−2, f(w) is the same for both foams and

soft disks; see Figure 2.20.

The variation of Z(φ) was shown to be consistent with the distribution of

separations f(w) for the two dimensional foam, which is connected to Z−Zc
via the integration shown in Section 2.4.3. When inserting the power law

expression from Equation (2.15) that we obtained for the soft disk simulation

into Equation (2.14), we get

Z(φ)− Zc =2πρ

∫ D∆ε

0

dw
1√
w/D

(1 + w/D)

=
√

128φccd

√
φ− φc +O

(√
φ− φc

3
)

≈(2.6± 0.1)
√
φ− φc , (2.16)

where we neglected terms of higher order. For φc, the value 0.841 ± 0.002

was used [34].
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Figure 2.20: Distribution of separations, f(w), for two dimensional foam (red

circles) and two dimensional disk packing (blue crosses) at a similar average

coordination number ZSD = 4.07 ± 0.01 for soft disks and Zfoam = 4.06 ± 0.01

for the two dimensional foam. The data shown presents averages obtained from

1379 packings, each containing 60 bubbles or disks. In the case of foams, the

�nite value at f(w) in the limit of w/D → 0 is consistent with the observed linear

increase of the average coordination number Z, according to the approximate

argument, given in Section 2.5. The decay of f(w) ∝ (w/D)−1/2 in the same

limit as in the case of the disk packings is consistent with the square root increase

of Z.
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Fitting the soft disk data for N = 60 to a square root function, Z −Zc =

kd
√
φ− φc for all Z < 4 gives kd = 3.86± 0.01 and φc = 0.847± 0.001.

For the two dimensional foam simulation, the �nite limiting value, cf , can

be inserted for f(w) in the limit w/D → 0 in Equation (2.14). By integrating,

we then obtain for Z(φ)

Z(φ)− Zc = 2πρ

∫ D∆ε

0

dwcf (1 + w/D)

= 4 cf(φ− φc) +O
(
(φ− φc)2

)
≈ (11.6± 2.8)(φ− φc) . (2.17)

Again, we neglected terms of higher order.

Qualitatively both estimations agree with expectations, although the ap-

parent di�erence in the prefactor remains to be resolved. In both cases,

the prefactors are underestimated when obtained from our data for soft

disk/bubble separations.

lim
w→0

f(w)
Z(φ)− Zc

Computed via f(w) Direct calculation

2D foam: 2.9± 0.7 (12± 3)(φ− φc) (18.1± 0.1)(φ− φc)

soft disks: 0.25±0.01√
w/D

(2.6± 0.1)
√
φ− φc (3.86± 0.01)

√
φ− φc

Table 2.1: A summary of our results for two dimensional foams and soft disks. An

estimation of variation of Z(φ) results in the expected power-law relation, but

an underestimation of the expected prefactor. Di�erences in the distribution of

separation f(w), and the estimated and directly measured average coordination

number Z(φ), for two dimensional foam and soft disk simulation in the wet limit

were found.

Table 2.1 summarises all results that we found to di�er in two dimensional

foams and soft disks. It demonstrates that the linear variation of Z close to φc

62



2.6. CONCLUSIONS

is consistent with the distribution of separation found in wet foams. However,

this is still short of a full explanation of the asymptotic properties of the wet

limit.

2.6 Conclusions

A detailed study of the statistics of two dimensional foams at equilibrium

has been presented here, spanning the entire range of liquid fraction from

the dry to the wet limit. This was based on extensive computer simulations

using the Plat software that were not practical when Plat was developed

in the early 1990s. The reconstituted program still has di�culty in coping

with the wet limit, which should be addressed in future. However, we have

succeeded in calculating the excess energy of foams, the coordination number,

the distribution of cell sides, and the number of rearrangements over the full

range of liquid fraction.

An alternative approach to simulate wet foams with the Surface Evolver

software [37] is associated with di�erent complications. As it stands this

software uses �nite contact angles and it has been shown by Cox et al. [45]

that this largely suppresses the large scale rearrangements analysed here.

In addition to providing further possibilities for analysing properties of

two dimensional foams, we hope that our numerical results stimulate new

experiments. These may be realised in a variety of ways, see Section 1.1 for

examples. Although a two dimensional liquid fraction is not well de�ned in

any of those cases, such experiments should give an indication whether large

scale rearrangements occur on small increases of liquid fraction in the wet

limit, and increase in the manner suggested here.

The variation of Z as a function of liquid fraction was one of the �rst
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problems that was tentatively addressed with the Plat software, as soon as

it was developed in the early 1990s. The very limited data sets available

at the time (φ ≤ 0.125, 100 cells [33], 530 cells [76]) showed that a linear

extrapolation of the data leads to Z = 4 at φc ' 0.16 [55]. However, even

though later simulations using a lattice gas model for foams also showed a

linear variation of Z very close to φc, this data was based on an even smaller

sample of only 30 bubbles [77].

The success of Durian's bubble model [34, 57] in reproducing the Herschel−Bulkley
type rheology that is associated with emulsions and foams [24], and its ease

in simulating packings of 10,000 or more bubbles, led to it being treated as

the most e�cient model for simulations of two dimensional foams in general.

Thus, its square-root variation of Z with liquid fraction away from φc was

also expected to hold for two dimensional foams. Here I have shown, based

on a large amount of new data, that this is not the case. For two dimen-

sional foams we �nd that the average coordination number varies linearly

in this limit. The reason for this di�ering behaviour must ultimately lie in

the di�erent contributions that disk or bubble contacts make to the total

energy of the packing. In a foam the energy per bubble per contact increases

with the number of contacts [46]. Energy minimisation might thus favour a

reduction in the number of contacts in the wet limit of foams, compared to

disk packings.

In summary, I have shown that the disordered structure of a polydis-

perse two dimensional foam is signi�cantly di�erent compared to a soft disk

packing with the same polydispersity as evidenced by the di�erent Z(φ) and

corresponding distribution of separations. This is most likely due to the

fact that bubble-bubble interactions are much more complicated than the

simple pairwise interaction used in the Soft Disk model While this study only
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focussed on a two dimensional foam system, similar deviations are likely for

other two dimensional jammed systems with soft, deformable particles. The

relevance to three dimensional packings of soft particles, such as emulsions,

biological cells [78, 79], and microgel particles [80] remains to be examined.

In order to further investigate the in�uence of the deformability of bubbles

on the properties of foams a new model is required. In this new model, the

interactions of one bubble with all of its neighbours will be coupled via the

conservation of area. In the following chapter I will show how we can use the

work of Morse and Witten in three dimensions to derive such a model for two

dimensions. I will also give an implementation of this model for simulating a

two dimensional foam, and some preliminary results from these simulations.
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Chapter 3

Simulating Two Dimensional

Foams Using Morse�Witten

Model of Bubble Deformation

In 1993, Morse and Witten published a paper entitled �Droplet Elasticity

in Weakly Compressed Emulsions� [48]. In it, the authors describe, in un-

fortunately brief terms, a process by which they derive a �rst order theory

for the deformation of a droplet under low compression. Additionally, and

very importantly for us, the paper establishes a way to include the e�ects

of all neighbours in bubble−bubble interactions. That is to say, we can

now describe how a bubble's response to a contact is changed by additional

contacts around the bubble. This arises from the inclusion of volume con-

servation in the model, a feature lacking from the Soft Disk model. Morse

and Witten used this to produce an expression for the deformation energy of

a monodisperse three dimensional emulsion with small deformations. They

found that it scales logarithmically with contact force. This in itself is not

intuitive or obvious in any way, and so is an interesting result. Unfortunately,
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this work has seen very little follow-up until recently, due in part no doubt

to the sophisticated and highly compressed nature of the original work.

Buzza and Cates [81] calculated the elastic modulus of three dimensional

droplets on a simple cubic lattice under uniaxial strain using two di�erent

models. Using a simple truncated sphere approximation, they found a sharp

cut−o� discontinuity in the elastic modulus at the wet limit. Using a model

based on the theory of Morse and Witten, they found it to goes to zero

smoothly as 1/ ln (φc − φ) as the wet limit is approached. φc−φ is a measure

of how far the system is from the wet limit. Experimentally they measured a

linear dependence of the elastic modulus on φc−φ. Therefore, they concluded
that the experimental data could not be explained in terms of a model of

droplets on a monodisperse simple cubic lattice. They suggest that it is

the disorder in the experimental systems that is responsible for the linear

behaviour. Thus, it is important to be able to model disorded, polydisperse

systems.

Höhler and Cohen-Addad [82] compared the calculation of several physical

properties of crystalline bubble arrangements close to the wet limit using

di�erent interaction models. Primarily they compared a two-body interaction

law of the type used in the Soft Disk model (Section 1.4.2) with a many-body

law derived from the Morse−Witten theory; a Surface Evolver calculation

provided a baseline. They found that, for properties such as the uniaxial

elastic modulus, the many-body interaction agreed with the Surface Evolver

calculation over a range of values of φ, but the two-body law did not. They

also found that they could largely reproduce the results of the many-body law

using a two-body law that included a logarithmic term in the limit where the

contact force goes to zero. The critical scaling of a logarithmic interaction

cannot be approximated by a power law, see Figure 3.1. The two-body law
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parameters a and k. The values that we used in this section are
those reported in the literature, but for investigations focused
on a restricted range of excess packing fractions and a parti-
cular aspect of the mechanical response, better agreement may
be possible with other fit parameter values. However, no such
adjustment can provide the correct asymptotic scaling given by
eqn (10).

6 Conclusion

Our simulations of foam or emulsion microstructures show
that in general, the deformation at a given contact of a bubble
or droplet depends on the entire set of forces exerted by its first
neighbors. We show that this many-body effect cannot be
captured by an effective two-body potential. In the framework
of a theory based on first principles proposed by Morse and
Witten, we derive a model without free parameters which
predicts the interaction law quantitatively, provided that all
dimensionless contact forces are much smaller than one. For
monodisperse and weakly polydisperse packings with fixed
coordination number z = 12, the model correctly predicts the
macroscopic stress response to shear, uniaxial deformation and
isotropic strain found in ab initio simulations. Assuming an
effective two-body interaction leads to predictions of these
quantities that are correct for isotropic strain, but that strongly
deviate from these reference data if the case of anisotropic
strain.

Previous simulations and experiments with emulsions have
shown that the average coordination number in a random
packing varies rapidly with packing fraction. To study the
impact of the coordination number, we have calculated the
linear mechanical response of face centered cubic (z = 12), body
centered cubic (z = 8) and simple cubic (z = 6) ordered droplet

packings, using our interaction model derived from Morse and
Witten’s theory. We find that the impact of many-body effects
decreases with decreasing coordination number. Our calcula-
tions show significant differences between the predictions of
the mechanical response of ordered packings derived either
from the power law two-body interaction model eqn (1) or from
Morse and Witten’s theory, even in the limit f - fc.

In this limit we derive a new two-body interaction law in the
framework of the Morse and Witten theory. It contains a
logarithmic term and can therefore not be represented as a power
law. This interaction law without free parameters correctly predicts
the confinement pressure and the linear elastic response of ordered
packings in the limit f - fc in the range of investigated
coordination numbers 6–12. In further work we intend to explore
the usefulness of this non-standard two-body approximation for
simulating the mechanical response of disordered foams and
emulsions very close to the jamming transition.

The structure and rheology of foams, emulsions and similar
soft packings without static particle friction in the ‘‘deeply
jammed’’ regime has recently been investigated by several
simulations and models on the particle scale,9,10,27 and we
hope that our results may help to develop them further. Fig. 2
illustrates that for large strains, many contacts can persist in a
droplet packing even though they should be disconnected
according to two-body interaction models. Such changes of the
coordination in the packing can modify the yielding and non-
affine local deformation behavior. Moreover, since the nonlinear
viscous friction between particles9,10 in flowing samples is
governed by contact forces, their modification by many-body
effects needs to be considered in models of energy dissipation in
foams and emulsions.

Simulating the structure and mechanical response of random
close packings is indeed an important perspective for extending
the present work. Surface Evolver simulations of disordered
bubble or droplet packings are extremely difficult to perform
near the jamming transition where the size of the contacts is
typically orders of magnitude smaller than the bubble or droplet
diameter. The interaction model eqn (6) can be used to model
such packings. It thus provides the opportunity to study the
quasistatic local mechanical response of emulsions and foams,
governed by the interplay of many-body interactions, of the
singular change of coordination number with excess packing
fraction and of the non affinity of the deformation.4

In this context, an experimental validation of our model in
the case of fully disordered packings would be very useful.
Published data for disordered quasi-2D emulsions confined
between glass plates are unfortunately outside its range of
validity since in these experiments, the droplets were squeezed
between the plates so strongly that the dimensionless forces at
the contacts between the droplets and the plates were not much
smaller than one.17 Observations of quasi 2D emulsions with
almost spherical droplets or highly resolved confocal microscopy
images of 3D emulsions would provide a valuable reference.

We expect a large class of soft incompressible solid particles
(with Poisson ratio close to 0.5) to present many-body inter-
actions in disordered packings, similar to those that we have

Fig. 14 The shear modulus G for face centered cubic (fcc) bubble or
droplet packings is plotted versus the excess packing fraction df = f � fc.
The three curves are the predictions derived either from the power law
two-body interaction model eqn (1), the many-body model eqn (6) or the
non-standard two-body model eqn (11) derived from eqn (6) in the limit
df - 0.
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Figure 3.1: Shear modulus, G, versus excess packing fraction, δφ, repro-

duced from [82]. This shows the agreement between the many-body law

and the two body law with a logarithmic term in contrast with the power

law(Equation (3.1)), which cannot approximate a logarithmic interaction.

used was of the form

f(δR) = κ(z)α(z)
((1 + δR)−3 − 1)

α(z)−1

(1 + δR)4
, (3.1)

where δR is the contact deformation, and κ(z) and α(z) are �tted functions

that depend only on the coordination number. In general, they found that the

deformation of a bubble or droplet at a given contact depends on the entire

set of forces a bubble experiences due to all its neighbours. The model based

on the theory of Morse and Witten reproduced this behavior quantitatively

without any free parameters, validating the Morse−Witten model.

In the following section, I will attempt to present the derivation of the

Morse−Witten theory in a clearer fashion for foams. I will show how the
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case of multiple contacts of bubbles di�ers from the single contact case. I

will then apply this concept to the simulation of a disordered, polydisperse,

two dimensional foam.

In Chapter 4, I will show a di�erent application of the three dimensional

Morse−Witten theory. It can be used to derive a simple formula for the

determination of the surface tension of a drop of liquid [3]. This formula

uses two length measurements and contains no free parameters. We compare

this with exact calculations of the solution of the Young−Laplace equation
and �nd it exact in the limit of small deformation.

3.1 Morse�Witten Theory

3.1.1 A Summary of the Derivation of the Morse�Witten

Theory in Three Dimensions

The original paper by Morse and Witten, and much of the subsequent work

mentioned above, has been recently reviewed by Weaire and Höhler [47]. I

will summarise their explanation of Morse and Witten's derivation without

delving into the detailed mathematics. This is followed by an explanation

of Weaire et al.'s [83] corresponding derivation in two dimensions with equal

sized bubbles. To this I add my generalisation of the capping method which

accounts for the contacting bubbles being of di�erent sizes. This I further

generalise to the case of multiple contacts per bubble (in Section 3.1.5),

from which I formulate a two dimensional Morse−Witten foam model (Sec-

tion 3.2). I then develop an algorithm to �nd equilibrium con�gurations

of Morse−Witten foams (Section 3.3), implement this in a simulation, and

test it against Plat (Section 3.4). I conclude with some preliminary results
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from these simulations, and a discussion about extending the model to three

dimensions.

The initial problem is �What shape does a single bubble take when pressed

against a �at plate by buoyancy?� Equivalently, as Morse and Witten did,

one can consider a droplet under gravity, the di�erence is merely one of

orientation. This problem has rotational symmetry about the axis between

the centre of contact with the plate and the centre of mass of the bubble. We

will call this the z direction and consider a cross sectional pro�le vertically

through the bubble. The surface of the bubble will be described in terms of

a radial coordinate, ρ(θ), and a polar angle, θ. The cross-sectional pro�le is

given by

ρ(θ) = R0 + δR(θ), (3.2)

where R0 is the radius of the undeformed bubble and δR(θ) is the deformation

in polar coordinates (see Figure 3.2).

The equation that describes the shape of this pro�le is the Young−Laplace
equation (Equation (1.6)), which relates the curvature of the surface to the

di�erence in pressure across the bubble surface. The pressure di�erence ∆P

can be split up into the constant pressure di�erence between the internal and

external pressures at z = 0, and the pressure gradient due to hydrostatics

∆ρgz, where ∆ρ is the density di�erence between the inside and the outside

of the bubble and g is the usual acceleration due to gravity. The constant

pressure di�erence itself can be further split into ∆P0, a constant pressure

o�set to be determined by volume conservation, and 2γ/R0, the Laplace

pressure of the undeformed bubble. This leaves us with

∆P = ∆P0 +
2γ

R0

+ ∆ρgz. (3.3)

The total curvature is expressed in terms of the change in the pro�le, δR(θ)
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giving

2

r
=

(δR + 1) (−(δR + 1)δR′′ + 3δR′2 + 2δR2 + 4δR + 2)− cot(θ)δR′(δR′2 + (δR + 1)2)

2(δR + 1)(R′2 + (δR + 1)2)3/2
,

(3.4)

and this is linearised in the deformation δR to give

2

r
= −

(
2 + cot θ

∂

∂θ
+

∂2

∂θ2

)
δR(θ)

R2
0

+
2

R0

. (3.5)

Substituting Equation (3.5) and Equation (3.3) into Equation (1.6) we get

− γ
(

2 + cot θ
∂

∂θ
+

∂2

∂θ2

)
δR(θ)

R2
0

= ∆P0 + ∆ρgR0 cos θ, (3.6)

where we have used the approximation z = R0 cos(θ) and subtracted the

common Laplace pressure from both sides. The approximation is valid in

systems where surface tension dominates, i.e. γ � ∆ρgR2
0. By applying the

constraints of surface smoothness at θ = π, volume conservation, and that

the centroid of the bubble coincides with the origin, this is solved by

δR(θ)

R0

=
−FG(θ)

γR0

(3.7)

where

G(θ) = − 1

4π

{
1

2
+

4

3
cos θ + cos θ ln [sin2(θ/2)]

}
(3.8)

and F = 4π∆ρgR3
0/3 is the total buoyancy force exerted by the bubble on

the plate. This concludes the explanation of Morse and Witten's derivation.

A polar plot of this solution is given in Figure 3.2. The left shows the

full pro�le as given by the Morse−Witten theory. Note that, due to the

logarithmic term in Equation (3.8), there is a divergence in the pro�le at the

point of contact. In the left of Figure 3.2 this is highlighted in red. This is

perfectly acceptable as that component of the pro�le is actually unused. If

we consider a contact between a bubble and a hydrophobic plate, the bubble

surface is tangent to the plate at the meeting point. Therefore, the bubble
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z
θ ρ(θ)

R0

F

θ ρ(θ)
R0

Figure 3.2: Pro�le of the solution to the linearised Young−Laplace equation

according to Morse and Witten representing a cross-section of a three dimen-

sional bubble with volume 4/3πR3
0 pressed against a plate by buoyancy. The

undeformed bubble is indicated in dashed blue. θ is the radial coordinate and

θ = 0 at the center of the point of contact. Note the unphysical divergence of

the pro�le in the vicinity of the contact, highlighted in red (left). If we consider

a bubble in contact with a plate (right), the section of the pro�le outside the

contact region is used, and we neglect the divergent piece inside the contact

region.

pro�le is simply truncated at the point where its slope is equal to the slope

of the plate as in Figure 3.2 (right), where this slope is zero and the pro�le

is capped by a �at disk at the contact. This has the e�ect of including

the small additional volume between the bubble and the cap as part of the

bubble. This additional volume is of order f 2, and thus can be neglected

in this theory. For contact angles increased from zero the point of contact

between the two bubbles moves closer to the center of the contact. This

reduces the amount of volume neglected in this approach.
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3.1.2 A Summary of the Derivation of the Morse�Witten

Theory in Two Dimensions

Now we wish to carry out an analogous derivation in two dimensions. The

pro�le this will give us will form the basis for the new model of two di-

mensional foams we wish to create. This was not carried out by Morse and

Witten in their original paper, but it has been done by Weaire et al. [83] and

proceeds as follows.

The pressure di�erence in two dimensions is given by

∆P = ∆P0 +
γ

R0

+ ∆ρgz. (3.9)

(In two dimensions the Laplace pressure has no factor of 2 as there is only

one principal curvature). The linearised curvature expression is

1

r
= −

(
1 +

∂2

∂θ2

)
δR(θ)

R2
0

+
1

R0

. (3.10)

Combining these with the Young−Laplace equation in two dimensions,

the equation to be solved for the change in the pro�le becomes Substituting

Equation (3.10) and Equation (3.9) into Equation (1.8) (∆p = γ/r) we get

− γ
(

1 +
∂2

∂θ2

)
δR(θ)

R2
0

= P0 + ∆ρgR0 cos θ (3.11)

where P0 is a constant pressure o�set to be determined from area conserva-

tion. Again, we have used the approximation z = R0 cos(θ) and subtracted

the common Laplace pressure from both sides. The solution is of the form

δR(θ) = −R0F

2γπ
G(θ), (3.12)

with

G(θ) = (θ − π) sin(θ) +
cos(θ)

2
+ 1, (3.13)
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and F = πR2
0∆ρg, the buoyancy force in two dimensions. In general, the

force experienced by a bubble does not have to be a buoyancy force. The

natural normalisation in two dimensions is therefore the surface tension, γ,

rather than the buoyancy, and the normalised force is f = F/γ. (In three

dimensions the surface tension does not have the dimensions of a force, so

we use γR0 instead, which does have the required dimensions).

Equations (3.13) represents the deformation of the bubble in such a way

that its centroid (or centre of mass), which represents its location, is kept

�xed. The polar angle, θ, is measured from the contact with the �at plate

(or equivalently, identical neighbour, see Figure 3.3). Note that there is no

logarithmic term in the two dimensional pro�le, hence the pro�le does not

diverge at the point of contact. There is still a kink, a discontinuity in the

slope at the point of contact. The distance from the centroid to the kink is

simply ρ(0) = R0 [1− (3F )/(4πγ)]. In the case of a point force, this is correct.

It can be adapted, as in the three dimensional case, by the introduction of a

�at �cap� at the contact, see Figure 3.3. In this case, only the pro�le outside

the cap area is used. This has the e�ect of including the small additional

area between the bubble and the cap as part of the bubble. This additional

are is of order f 3, and thus can be neglected in this theory.

The point where the pro�le is ended and the cap begins can be found

quite readily. Since the orientation is arbitrary, we choose one such that the

direction of gravity is perpendicular to the contact cap. Then, the slope of

the cap is zero as in Figure 3.3. The slope is de�ned as

s(θ) =
∂
∂θ

[ρ(θ) cos(θ)]
∂
∂θ

[ρ(θ) sin(θ)]
. (3.14)

Performing the di�erentiation we get

s(θ) =
2[(F − 2πγ) sin(θ) + F (π − θ) cos(2θ)]

cos(θ)[4πγ + 4F (π − θ) sin(θ)− 2F ]− F . (3.15)
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(a) (b)

Figure 3.3: The shape of the two dimensional Morse−Witten pro�le given by

Equation (3.13). (a) The pro�le ρ(θ) of a two dimensional bubble under the

action of a point force f = F/γ. (b) Illustration of the capping of the pro�le to

represent a �at contact. In the simple case of a contact with a wall or an identical

bubble the cap meets the pro�le where the slope of the pro�le equals the slope

of the cap (zero in this case). Note that, in contrast with the three dimensional

case (Figure 3.2), there is no logarithmic divergence in two dimensions.

Expanding this to �rst order in the angle θ this reduces to

s(θ) = − 2π(F − 2γθ)

4πγ + F (4πθ − 3)
, (3.16)

and further expanding to the �rst order in the contact force F it further

reduces to

s(θ) =
F

2γ
−
(

1 +
3F

4πγ

)
θ. (3.17)

Setting s(θ0) = 0, we get the polar angle at which the pro�le is truncated

θ0 =
2πF

3F + 4πγ
. (3.18)

The distance from the centroid to the cap is then ρ(θ0) cos(θ0), which, to
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second order in the force, is

R0 + δR(θ0) = R0

(
1− 3F

4πγ
+
F 2

8γ2

)
. (3.19)

By comparing this with ρ(0), we can see that the correction term is simply

R0F
2/(8γ2), the second order term in Equation (3.19). This means that

the correction that would have to be introduced in order to maintain area

conservation is of order F 3, and thus negligible in this theory.

3.1.3 Modelling an Ordered Assembly of Equal Sized

Bubbles

At this stage, we have almost all of the components required to model a

monodisperse ordered foam, we just need to examine the case of multiple

contacts. We will make use of the fact that Equation (3.13) is the solution of

a linearised di�erential equation, and thus a linear combination of solutions

is also a solution.

This setup will no longer involve gravity, and so will not contain a buoy-

ancy force. However, the pressure gradient in Section 3.1.2, that was due

to buoyancy, is still valid. It is now simply provided by a �ctitious body

force at each contact that is equal and opposite to the contact force. Since

the contact forces are in mechanical equilibrium, so are their corresponding

body forces. The result is that the net �ctitious force is zero in mechanical

equilibrium.

By symmetry, every contact is deformed equally, and the contact forces

are equal. The deformation at contact i is given by the following sum over

all contacts j that a bubble has

δRi = − R0

2γπ

∑
j

FG(∆θij), (3.20)
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Figure 3.4: The shape of a two dimensional bubble trapped between two parallel

lines (grey area). In the Morse−Witten model (solid line) this is represented

as two opposing contacts of equal magnitude (left: f = 0.5, right: f = 0.8).

Note that the solid line is not the boundary of the grey area, that it appears

this way just indicates the close agreement between the analytic case and the

Morse−Witten approximation. The dashed line shows the undeformed bubble

of radius R0. The deformation of each contact is approximately 13% relative to

R0.

where ∆θij is the angle between the line from the centre of the bubble to

contact i and the line from the centre of the bubble to contact j.

Including the correction from Equation (3.19), this becomes

δRi = − R0

2γπ

∑
j

FG(∆θij) +
R0F

2

8γ2
. (3.21)

In the case of Z contacts per bubble, with angles of ∆θ = 2π/Z between

each contact, the sum can be calculated analytically. Weaire et al. [83]

showed this to be

δR =
πR0

6Zγ
F +

R0F
2

8γ2
. (3.22)

The case of two opposite contacts, representing a bubble trapped between

two parallel lines, can be easily tested. In this case the shape of a bubble,
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according to the Young−Laplace law, is two semicircles separated by a rect-

angle. Figure 3.4 illustrates this test for normalised contact forces f = 0.5

and f = 0.8, giving a relative deformation (δR/R0) of approximately 13%

and 17% respectively. Here, the exact solution is shown as the grey area and

the Morse−Witten model is the solid line, while the undeformed bubble is the

dashed circle. The close agreement of the two for f = 0.5 is remarkable, given

that the theory is derived in the wet limit (low deformation, low force) and

mostly �rst order in the force. At the larger force of f = 0.8 the di�erences

between the two becomes more apparent.

3.1.4 Contact Between Two Bubbles of Di�erent Sizes

Next I will provide a generalisation of the capping method to account for

contacts between bubbles of di�erent sizes. In this case, the ideal cap on

the bubble pro�les, the shared contact line, is now curved due to a pressure

di�erence between the bubbles. Therefore, the point of contact between the

two bubbles is shifted inside the dimple of the larger bubble and outside the

dimple of the smaller bubble. This is where the slopes of the pro�les of the

two bubbles are equal in magnitude and opposite in direction. We will not

worry about the curved nature of the contact line, but we need to �nd the

relationship between the point where the pro�les contact and the magnitude

of the contact force.

We require then to �nd the relationship between the contact force and

the deformation of each bubble, represented by xi, i.e the distance along

the centre−centre line from the undeformed bubble to the contact point (see

the inset of Figure 3.5). To lowest order, xi is the distance that the point

at the cusp of the contact is displaced, which is −δR1(0) = 3R1f/4π from

Equation (3.13). This is indicated in red in the inset of Figure 3.5. However,
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R1

R2

F

F

δR1(0) x1(f)

l

Figure 3.5: Two di�erent sized two dimensional bubbles held in contact with each

other by opposed body forces F , as calculated using Equations (3.2) and (3.13).

Their undeformed circular forms, with radii R1 and R2, are again illustrated

by the dashed lines. Here we have used a large force for illustrative purposes;

the theory is not accurate for deformations as large as this. Note the corrected

deformation of bubble 1 at the point of contact is indicated by x1(f), and

calculated with Equation (3.26).

this overestimates the deformation at the contact and would cause contacting

bubbles to overlap incorrectly. Instead we would like to know the distance

by which the cap is displaced, rather than the cusp of the pro�le.

A simple derivation of the required relation between F and xi follows. As

with many other aspects of the theory, this deals with lowest-order expres-

sions only, and can therefore be developed easily by using these approxima-

tions from the beginning. Thus, we can take the force between two bubbles,

to lowest order to be

F = 2lp0, (3.23)

where 2l is the width of the contact (Figure 3.5) and p0 is the mean of the
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two (lowest order) bubble pressures pi = γ/Ri. This is because, to lowest

order, the contact between two bubbles is �at. Hence

F = θiRiγ

(
R1 +R2

R1R2

)
, (3.24)

where 2θi is the opening angle of the contact. We can also express xi in terms

of θi, as

xi = Ri − cos (θi)ρ(θi) ' −δRi(θi) (3.25)

This improved expression for the deformation of bubble i (= 1 or 2) is then

expanded as a polynomial to O(f 2) to give

xi(f) =
3fRi

4π
− f 2Ri

2(2 +R1/R2 +R2/R1)
, (3.26)

which is indicated in the inset of Figure 3.5. The relative deformation, xi/Ri,

is the same for each of the two bubbles. The centre−centre distance ∆12 is

then given by

∆12 = (R1 − x1(f)) + (R2 − x2(f)). (3.27)

For two bubbles with radii R1 = R0 + ∆R and R2 = R0 −∆R, this results

in the dimensionless change in separation as

1− ∆12

2R0

=
x1(f) + x2(f)

2R0

=
3f

4π
− f 2

8

[
1−

(
∆R

R0

)2
]
. (3.28)

Since the term linear in f has no ∆R in it, terms of order f 2 or higher

need to be considered in the expansion of Equation (3.25) to account for

polydispersity. This is in contrast to the situation in three dimensions, see

Section 3.4.1. (Note that, in the monodisperse case, i.e. ∆R = 0, the

correction term in Equation (3.28) reduces to f 2/8, not to f 2/4, as wrongly

stated in the appendix of Weaire et al. [83]. This had no consequences for the

results presented in that paper.) In the other extreme, when ∆R = R0, i.e.
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Figure 3.6: Sequence of bubble positions illustrating the procedure used to numer-

ically measure centre−centre distance as a function of contact force magnitude.

The bubbles are each held in contact by a body force which opposes the contact

force. The centres of the two bubbles are moved apart until the area of overlap

is below 1× 10−8. This is repeated for a range of force magnitudes from 0.01

to 1.
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Figure 3.7: Dimensionless change in separation 1 − ∆12/(2R0) versus force

f = F/γ between two 2D Morse−Witten bubble pro�les (Figure 3.5) for vary-

ing size di�erence ∆R/R0. Symbols refer to numerical results, solid lines to

Equation (3.26). Up to a normalised force of 0.5 the relative error of the theory

is less than 2%, beyond this the theory begins to become less accurate.
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R2 = 0, the correction term vanishes as the interaction is properly described

by a point force, and no longer an approximation.

In order to test the accuracy of Equation (3.26), we proceed as follows.

For a given force, f , and size relationship ∆R/R0, we draw two overlapping

bubbles with facing contacts, using Equations (3.2) and (3.13) (see sequence

in Figure 3.6). The bubbles are each held in contact by a body force which

opposes the contact force. The centres of these are moved apart until their

area of overlap is zero, giving the separation for that force. The rightmost

image, where the bubbles are just in contact, is what we wish to achieve.

However, the process used here is not practical for large systems, so for large

scale simulation we will use the approximation given by Equation (3.28).

For the range of normalised force shown (0 < f < 0.5), Equation (3.28)

produces a relative error < 2% (the relative error when considering only the

linear part of Equation (3.28) is up to 25%).

3.1.5 Contact with Multiple Bubbles

We will now apply the case of the single contact between two bubbles of

di�erent sizes to a bubble i with multiple contacts j, i.e. a bubble in a foam.

In this case, the deformation, xij, of bubble i at its contact with bubble j, is

determined by the sum over all of the contacts of bubble i,

xij = − Ri

2πγ

(
N∑
k

Fikg(∆θjk)

)
− RiF

2
ij

2γ2(2 +Ri/Rj +Rj/Ri)
. (3.29)

Here ∆θjk is the angle between the centre-centre lines of bubbles ij and ik,

and k enumerates all the contacts of bubble i (including j).

Figure 3.8 shows Equation (3.29) in action. The pro�le of a bubble with

four unequal contact forces at four unevenly spaced points is shown on the

left. On the right is a closer look at just the top contact, where the cap of
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Figure 3.8: Left: The pro�le of a two dimensional Morse−Witten bubble resulting

from the linear combination of the individual pro�les associated with each of

the four contacts. Right: Capping the pro�le to show the e�ective deformation

at each contact. The capping procedure is similar to mean �eld aproximations,

where the remaining contacts are averaged while considering one contact in

particular.

the contact is shown as a dashed line. The contribution of the other three

contacts can be thought of as providing the body force for the top contact,

the body force being illustrated in the centre of the bubble. This is similar to

the ideas of mean �eld theory, where the interactions of the other contacting

bubbles are averaged while considering one particular contact.

Note, however, that the linearised theory contains errors of order f 2 from

the outset, which we do not claim to eliminate. Given that, the theory is

surprisingly successful in improving the lowest order estimate.

3.2 Formulation of a Two Dimensional Morse�

Witten Foam Model

We will proceed to apply Equation (3.29) to �nd an equilibrium structure of

a polydisperse foam, in a numerical simulation. We consider N bubbles in
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equilibrium in a square box with periodic boundary conditions. The bubbles

are represented by their centroid positions (ci) and radii, Ri. A contact

between bubbles i and j has an associated contact force of magnitude Fij.

This non-linear problem is naturally approached by iterative methods.

While its de�ning equations are simple, its implementation is challenging,

because of the role of the contact network, which needs to be continually

monitored and updated, as explained below.

3.2.1 De�ning Equations

We seek an equilibrium con�guration which satis�es the conditions stated in

A-D below where the variables to be yielded by iteration are

• the centre positions, ci,

• the contact force magnitudes, Fij,

• and the contact deformations, xij.

A) Force-Deformation Relation

Forces and deformations must be consistent, that is, satisfy Equation (3.29).

B) Deformation-Displacement Relations

For each contact, the separation of centres of mass, located at positions ci

and cj must be consistent with the deformations xij and xji, according to

Ri − xij +Rj − xji = |ci − cj|. (3.30)
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C) Action-Reaction

At each contact the force on bubble i due to bubble j must balance the force

on bubble j due to bubble i, so

Fij = Fji. (3.31)

D) Equilibrium of Forces

The vector net forces on each bubble i must satisfy

N∑
j

Fij
cj − ci
|cj − ci|

= 0. (3.32)

3.2.2 The Contact Network

As the system approaches equilibrium, the shapes and positions of bubbles

change. The contact network is not �nally determined until equilibrium

is reached, consistent with the above conditions. It requires updating as

the approach to equilibrium proceeds. As discussed at the beginning of

this chapter, Buzza and Cates [81] applied the Morse−Witten theory to

the case of an emulsion where the drops are arranged on a simple cubic

lattice, for which this di�culty does not arise. Höhler and Cohen-Addad

[82], while including a slight polydispersity, also used crystalline systems

in which contact changes were excluded. In the soft disk model contact

changes occur naturally as part of the energy minimisation proceedure as

each contact is independant. For the disordered foams discussed here the

contacts are coupled together, thus a new methodology is thus needed to

deal with bubble rearrangements (topological changes).
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3.3 Implementation of the Morse�Witten Model

3.3.1 Iterative Scheme

We have developed a practical iterative scheme that can produce an equi-

librium structure satisfying the conditions of Section 3.2. Separate steps of

iterations are designed to bring the con�guration closer to satisfaction of

these conditions.

A) Force-Deformation Relation

Given a con�guration and deformations of each bubble contact, the corre-

sponding forces are found by solving Equation (3.29) for Fik, for each bubble

in turn. This is a non-linear equation, hence we solve it iteratively. This

di�culty is also to be found in the work of Höhler and Cohen-Addad [82],

and we adopt the same method as was used by them. That is, in each

iteration, the forces from the previous iteration are inserted in the quadratic

term, leaving a linear system of equations to be solved. Additionally, we

apply some damping to this procedure, implemented as

F (n+1) = aF (n+1) + (1− a)F (n) (3.33)

where we have found a = 0.9 to be a su�cient criterion. This helps to prevent

divergent oscillations in the forces.

B) Deformation-Displacement Relations

The deformations are updated by

x
(n+1)
ij = x

(n)
ij +

Rj

Ri +Rj

[
(Ri − x(n)

ij +Rj − x(n)
ji )− |cj − ci|

]
(3.34)

in order to satisfy Equation (3.30).
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C) Action-Reaction

Fij and Fji are replaced by their average magnitude in order to balance

contacts.

D) Equilibrium of Forces

Each bubble located at position ci is moved in the direction of the net force

acting on it, according to

c
(n+1)
i = c

(n)
i + b

N∑
j

F
(n+1)
ij

ci − cj
|ci − cj|

, (3.35)

where b = 0.1R0/γ. This is the largest value found for which the algorithm

converges. If non-convergence is encountered, this value can be decreased, at

the cost of slower approach to convergence.

The �owchart of the iteration is shown in Figure 3.9. Note that it contains

additional steps in which the contact network is, if necessary, altered.

3.3.2 Updating the Contact Network

Negative Forces

A negative force indicates a spurious contact that is formed while the system

is out of equilibrium and these are removed from the contact network. In

practice, at most one negative force is eliminated per bubble in a given iter-

ation to provide stability of the algorithm. This is performed after updating

the forces.
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Start

Centre positions, forces and deformations are taken from the previous

equilibrium state if there is one, otherwise centre positions

need to be given, forces and deformations are set to zero

Calculate deformations of existing contacts (Eqn (3.34))

Check for new overlaps (Eqn (3.36))

Solve (Eqn (3.29)) for updated contact forces

Remove spurious contacts that have negative forces

Average forces at contacts (Eqn (3.31))

Move centre positions

according to net forces (Eqn (3.35))

Test all forces

for convergence

(Eqn (3.32))
Not converged

Converged

Figure 3.9: Iteration scheme for the computation of a two dimensional

Morse−Witten foam. While the net forces are not balanced, deformations,

overlaps, and contact forces are calculated and the centroid positions moved

accordingly. For a given collection of bubbles in a given con�nement this

procedure can be used to �nd an equilibrium con�guration.
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Overlapping Bubbles

After moving the bubble positions, nominally non-contacting bubbles may

overlap with each other. To detect this we calculate

xij =
Rj

Ri +Rj

[
ρ(θij) + ρ(θji)− |cj − ci|

]
(3.36)

for each possible pair i, j. For xij > 0, bubbles i and j overlap, which requires

an update of the contact network. This is performed before updating the

forces.

3.3.3 Convergence

The algorithm is terminated when the two dimensional foam is close to

equilibrium, satisfying all of the above requirements. This is determined

numerically by calculating the net force on each bubble in the foam using

the left hand side of Equation (3.32). We deem this equation to be satis�ed

for all bubbles if the largest net force encountered, F/γ, is less than 10−4.

In this case, the recurrence relation for the centroid positions given by

Equation (3.35) will have converged, leading also to a convergence of Equa-

tion (3.30) for the deformations. Thus, solving the deformation-force re-

lationship Equation (3.29) repeatedly will produce the same set of contact

forces each time and all the de�ning equations will be satis�ed.

When the algorithm converges, the approach to convergence is exponen-

tial, as in Figure 3.10. When convergence does not occur, the maximum

net force features oscillations, as in Figure 3.11. Both of these examples are

for the ten bubbles test simulations depicted in Figure 3.12, at φ = 0.138

and φ = 0.137 respectively. Visual inspection of the resulting foams does

not reveal any obvious di�erences or abnormalities, so the results are not
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Figure 3.10: A semi-logarithmic plot of the maximum net force as a function

of iteration number for a test simulation of ten bubbles. In this case the

convergence criterion was set to 10−8 to study the behavior. Since the remaining

net force decreases exponentially with the iteration number, a small increase in

the number of iterations provides a large decrease in the remaining net force,

but it will never go to zero net force (just small enough). A criterion of 10−8

was deemed to be excessive in practice, so 10−4 was selected for general use.
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Figure 3.11: An example of a ten bubble simulation that did not approach

convergence. Instead, the maximum net force appears to enter into oscillations.

This is avoided if the convergence criterion is not excessively small.

discarded. It is not yet clear how the algorithm may be improved to avoid

this, some suggestions will be outlined in Chapter 5.

3.4 Tests and Typical Results

We have run tests of the above scheme for systems of up to 200 bubbles, in a

square box with periodic boundary conditions. The computations converged

satisfactorily for liquid fractions exceeding around φ = 0.12, below which the

forces diverge. We have not identi�ed the reason for non-convergence beyond

that point, but it is hardly surprising in a non-linear problem of this kind.

This may be recti�ed in due course, see Section 5.3.
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(a) Hard disk packing, wet limit

(b) Plat (c) Morse−Witten

φ = 0.145

φ = 0.125

φ = 0.175

Figure 3.12: Comparison of polydisperse two dimensional foam as computed

using the Plat simulation software [32] and the Morse−Witten formulation.

Each structure is derived from the same hard disk packing (a), by gradually

decreasing the liquid fraction in steps of ∆φ = 0.001. The two simulation

methods produce almost the same sequence of contact changes. Note that in

(c) the contact dimples are still visable. They are left in for simplicity when

plotting, but are corrected in the simulations.
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Figure 3.13: The coordination number of the two foam simulations depicted in

Figure 3.12 as a function of φ. The Morse−Witten simulation has been shifted

by−0.011 in order to align the two curves. The broad alignment of the successive

steps in the coordination number Z shows that most of the same contact changes

occur in both simulations. Around φ < 0.12 the models begin to disagree, this

is consistent with other limitations of the Morse−Witten model.

In order to validate the method, we have compared it with simulations

using the Plat software, as introduced in Section 2.1.1. To begin, a system of

ten bubbles with a polydispersity of
√
〈R2〉/〈R〉2 − 1 ' 0.12 was generated

using the Plat software and the liquid fraction, φ, reduced until a hard disk

packing was achieved (Figure 3.12(a), top). As discussed in Section 1.2.1, a

hard disk packing corresponds to a foam in the wet limit (at φ = φc) where

all of the degrees of freedom are exactly taken up by the contacts between

bubbles, and there are no additional constraints. In this case the average

number of contacts is 4(1− 1/N) = 3.6 [2]. Ten bubbles constitutes a small

enough system that, despite the general failure of Plat to converge in the wet
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limit (see Section 2.1.2), the cost of repeating simulations until it is found

to be successful is su�ciently small (10 seconds) so as to make it feasible.

The centre positions of the bubbles were extracted and used to create a

Morse−Witten simulation of the same system. The liquid fraction of both

simulations was then decremented in parallel, down to a liquid fraction of

approximately φ ≈ 0.12.

We found that the Morse−Witten simulation produced almost the same

contact changes as the Plat simulation, although at values of φ shifted by

roughly ∆φ ' 0.01 higher (see Figure 3.13). In looking at this comparison,

it should be borne in mind that the Morse−Witten formalism is inherently

approximate.

We next consider the excess energy of a Morse�Witten foam, de�ned (in

dimensionless form) by

ε =
1

4πR0γ

N∑
i=0

∑
j

xijFij, (3.37)

where j enumerates the contacts of bubble i.

For ordered monodisperse foam, Princen calculated ε(φ) exactly [84, 45].

This presents a good test for the Morse�Witten model, which can be solved

exactly in this case. Figure 2.3(a) shows excellent agreement between Prin-

cen's exact result and the analytic solution of the Morse�Witten model in the

wet limit (∆φ < 0.02). Our numerical simulation results match the analytic

solution of the Morse�Witten model.

Also shown is a simple approximate solution of the Morse�Witten model,

which can be obtained as follows. The energy per contact is given by ele-

mentary methods as 0.5FδR/(γR0) and using the relation

F

γ
=

6Z

π

δR

R0

(3.38)
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Figure 3.14: Example of a 100 bubble simulation at φ = 0.13. Periodic bound-

aries are indicated by the grey border. Periodic copies of bubbles from the unit

cell are plotted in red.

from Weaire et al.[83], along with the a�ne compression relation δR/R0 =

∆φ/2(1− φ), we obtain

ε(∆φ) =

(
3√
2π

∆φ

∆φ+ φh

)2

, (3.39)

where φh = π/2
√

3 is the critical packing fraction for a hexagonal disk

arrangement. This relation (shown in Figure 2.3(a)) is in excellent agreement

with both our numerical data for monodisperse foam in the wet limit and

the result of Princen for ∆φ < 0.015.

In order to study the variation of excess energy ε as a function of liquid
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Figure 3.15: Variation of normalised excess energy ε (Equation (1.3)) as a func-

tion of ∆φ = φc − φ). (a) In the case of an ordered monodisperse foam the

Morse�Witten theory reproduces the exact result �rst derived by Princen [45,

84] (data points: simulation, dashed line: analytic). Also shown is a simple

analytic approximation obtained from Morse�Witten theory (Equation (3.39))

(dot-dashed line). (b) For disordered foams, our simulations of 1000 systems

of 100 bubbles each show that the excess energy is proportional to ∆φ2.2. An

example of one of the simulated foams is shown in the inset.
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fraction of polydisperse foams, 1000 foams of 100 bubbles each were prepared

with an average polydispersity of 0.21 ± 0.02. These simulations were run

for a range of liquid fraction from 0.18 to 0.12 in steps of 0.001. They were

started deliberately higher than the expected value of φc ' 0.16 so that the

transition from unjammed collection of disks to jammed foams will not be

missed. The critical value φc, marks the onset of the excess energy.

Our simulations show that, similar to results from Plat [1], close to φc, the

energy varies roughly quadratically with the distance ∆φ = φc − φ from φc.

Therefore, the values for φc were calculated individually for each 100 bubble

system by �tting a straight line to the lowest eight points of the square root

of the energy curve that were above 10−4. The average value obtained from

this procedure is 0.843 ± 0.003, consistent with previously published values

for φc [33, 2, 55, 22, 34, 56]. The energy curves for these simulations were

shifted by their respective φc values, and then averaged with a bin width of

0.001 in ∆φ to smooth the data. Figure 3.15 shows that, based on our 1000

simulations, ε(∆φ) ∝ ∆φ2.2.

In the study of granular matter, it is common to compute the contact

force network [85, 86]. Granular packings are characterised by a very slow

decay of the distribution of forces greater than the mean. Whether this is

exponential or faster than exponential depends on the details of the simu-

lations/experiments, such as dimensionality, solid friction, and partial size

distribution [87, 88, 89].

In Figure 3.16(a) we show the contact force network for an equilibrated

Morse−Witten foam of 100 bubbles at a liquid fraction of φ = 0.13. The

width of each line in the contact network is proportional to the force magni-

tude. In addition, the bubbles are shaded according to their individual excess

energies. Also shown in Figure 3.16 is a preliminary normalised distribution
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(a) Force network
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Figure 3.16: (a) Wet foam (φ = 0.87) with 100 bubbles showing the contact force

network. The thickness of the lines is proportional to the force magnitude and

the grey scale is proportional to the individual excess energy of a bubble. (b)

Normalised distribution of forces. This is in qualitative agreement with that

found by Höhler and Cohen-Addad [82].

of contact forces. This is broadly similar to that found by Höhler and Cohen-

Addad [82]; however, further simulations are required to analyse its shape.

3.4.1 Extension to a Three Dimensional Foam

The methodology developed above for the simulation of a two dimensional

foam based on the Morse−Witten model also lends itself to application for

three dimensions. As in two dimensions the foam will be represented by

the centroid of all bubbles and a network of contacts. In three dimensions,

the pro�le is expressed analogously to Equation (3.2), and Equation (3.13)

becomes
δR(θ)

R0

=
−F
γR0

G(θ) (3.40)
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where

G(θ) = − 1

4π

{
1

2
+

4

3
cos θ + cos θ ln [sin2(θ/2)]

}
, (3.41)

as in Section 3.1.1. The expression for the deformation of bubble i, equivalent

to Equation (3.29) and derivable in the same way, is given by

x1(F ) =
F

4πγ

[
11

6
− 2R2

R1 +R2

+ ln

(
FR2

4πR1γ(R1 +R2)

)]
, (3.42)

to lowest order in F . The relative change in separation (equivalent to Equa-

tion (3.28)) between two bubbles where R1 = R0 + ∆R and R2 = R0 −∆R

is

1− ∆12

2R0

=
F

4πγR0

(
5

6
+ ln

(
F

8πγR0

))
. (3.43)

Again, symmetry tells us not to expect any terms of odd orders of ∆R in the

separation. Equation (3.42) would need to be expanded to order F 2 to give

terms of ∆R2. Taking, for example, ∆R = 0.1R0, F = 0.5γR0, the relative

error that would result from using a formula for a monodisperse foam would

be of order 10−4. This explains the success by Höhler and Cohen-Addad [82]

in using an expression derived for the monodisperse case in treating a slightly

polydisperse case.

In order to model a three dimensional foam, an equivalent to Equa-

tion (3.29) is required. This is obtained by adding a non-local term to

Equation (3.42) (see Höhler and Cohen-Addad, [82]) giving

xij(F ) =
F

4πγ

[
11

6
− 2Rj

Ri +Rj

+ ln

(
FRj

4πRiγ(Ri +Rj)

)]
+
∑
k 6=j

G(∆θjk)
Fik
γ
.

(3.44)

Similar to the procedure of Section 3.1.4, we determined the separation

of two three dimensional Morse−Witten bubbles at their point of contact,

for a given force F . We found that Equation (3.43) is reasonably accurate

up to F/(Rγ) ∼ 0.5 (corresponding to the dry limit) for low polydispersity,
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and F/(Rγ) ∼ 0.05 (corresponding to φ ∼ 0.24) for high polydispersity. The

appearance of a logarithmic term makes the three dimensional case somewhat

di�erent from the two dimensional one presented here; nevertheless, we hope

that further improvement of the two dimensional methods will assist in the

greater computational task of implementation in three dimensions.

3.5 Conclusion

We have started this chapter by explaining the Morse−Witten theory for the

deformation of bubbles and drops. This was then reformulated in two dimen-

sions, before arriving at a methodology for the simulation of two dimensional

foams close to the wet limit.

We have shown how polydispersity can be accommodated in the Morse−Witten

theory in such a way as to give satisfactory results for a typical disordered

polydisperse foam that is close to the wet limit. The extension of the theory

to three dimensions is quite natural, although the implementation becomes

conceptually more di�cult to visualise and check, and there is an obvious

increase in computational demands. The transparency of the theory and its

direct relation to a force network (Figure 3.16(b)) is attractive. However, it

should be noted that it has proven to be a computational challenge that was

hardly anticipated, and is worthy of further attention.

In the polydisperse foam the interfaces are curved. This is accounted

for in the model presented here, being incorporated into Equation (3.29) for

dealing with di�erences in bubble sizes. One might well ask what is the

case in a monodisperse disordered foam? Despite some doubts in the past,

this can indeed exist, even in two dimensions. Since the bubbles are not

equivalent, surely their pressures are slightly di�erent, hence the interfaces
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CHAPTER 3. SIMULATIONS USING THE MORSE�WITTEN MODEL

are curved? This is correct in principle, but the e�ect is surely much smaller

than in the case of polydisperse bubble, and of higher order in the forces

than what is considered here.
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Chapter 4

Using the Three Dimensional

Morse�Witten Model to Compute

the Surface Tension of Bubbles or

Droplets

E�orts to determine the surface tension of a liquid drop from measurements

of its shape date back to the 19th century. In this chapter I will show how the

Morse−Witten theory, introduced in Chapter 3, can be successfully applied

to this problem, in the case of both hanging and sitting drops. After a brief

review of historical work (Section 4.1), I will discuss how this problem can

be treated within the framework of the Morse−Witten model. This includes

the derivation of the analytic expression that depends on two simple length

measurements, and on knowing the relative density of the two �uids. In

Section 4.3, I will demonstrate both the theoretical accuracy of the derived

expression, using numerical solutions of the Young−Laplace equation, to-

gether with an assessment based on some preliminary experimental data.
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4.1 History of Surface Tension Measurements

The history of the measurement of the surface tension of a liquid by the

observation of the shape of a liquid drop in equilibrium under gravity (or the

conditions for its instability) goes back well into the 19th century. The most

notable milestone was the contribution of Bashforth and Adams [90], which

is still widely cited, in both the present context and the methodology of the

numerical solution of ordinary di�erential equations. Their objective was to

provide extensive and accurate tables of drop radius versus surface tension,

by means of which the value of surface tension could be extracted from shape

measurements.

Many methods follow the same general approach, later translated into

modern computational form. While reliable, they are still elaborate and

somewhat obscure, since they generally involve �black box� commercial or

open software for computation of shape using image analysis. Here we o�er

a complementary method - an extremely simple and transparent alternative,

grounded in analytic theory.

Evaluation of surface tension of a sessile (sitting) drop (see Figure 4.1 (left)),

based on a simple formula which only involved a pair of length measurements

(maximum drop diameter and height of drop from top to equator), appears to

date back to Worthington in 1885 [93]. He improved upon an initial (cruder)

formula by Georg Quincke (1858) [94], which only involved one length (the

total height of the drop). Various further simple formulae were suggested,

and are reviewed in the book by Rusanov and Prokhorov [95]. However, all

of these approximations have one thing in common: they only apply for wide

(�at) sessile drops, corresponding to drop diameters exceeding 1.5cm in the

case of water, i.e. much larger than the capillary length (see Section 1.2.2).

Rusanov and Prokhorov proceed to state in 1996 that in order to calculate
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4.1. HISTORY OF SURFACE TENSION MEASUREMENTS

Figure 4.1: Examples of a (left) sessile and (right) pendant drop. Image credit:

(left) Brigham Young Univ. 2014. url: https://www.laboratoryequipment.

com/news/2014/05/super- waterproof- surfaces- make- water- bounce-

ball (visited on 01/29/2018), (right) Flickr user `Rather Anonymous'. 2005.

url: https : / / www . flickr . com / photos / 79262083 @ N00 / 34743746 / in /

photostream/

surface tension for the case of sessile drops of smaller dimensions, �one needs

to use numerical methods� [95].

The analysis of pendant (hanging) drops (see Figure 4.1 (right)) using a

pair of length measurements dates back to Andreas et al. [96] in 1938, who

used the maximum drop diameter and the drop diameter as measured at that

distance away from the apex. Surface tension may then be computed from

tabulated values obtained from numerical solutions of the Young−Laplace
equation (see Section 1.3.2) [97, 98], together with numerical approximations

and interpolations [99]. (The table initially provided by Andreas et al. [96]

was based on experimental measurements of drop shapes.)

For a sessile drop, the above choice for measurements of drop dimensions is

not possible. The maximum drop diameter (measured at a horizontal plane),
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and the distance of this plane from the apex provides an alternative pair

of dimensions, suitable for the characterisation of both pendant and sessile

drops. The pair features in the (cumbersome) second order perturbation

solutions of the Young−Laplace equation, as derived by O'Brien and van

den Brule [100] for the computation of surface tension. It is also used in our

method described below.

None of the above methods, we believe, have the transparency and analyt-

ical basis of what is described here. Our method can be applied in either two

or three dimensions for both pendant and sessile drops. The two dimensional

case may be of limited practical value, but we will also present the resulting

equation for line-tension in that case.

All of what we present applies equally well to the case of a bubble in a

liquid under gravity, with obvious changes.

The new formula is based on the theory of Morse and Witten (Sec-

tion 3.1.1), which provides an explicit analytical formula for drop shape,

in a linear approximation (Equation (3.8)). That is, it is exact in the limit

of high surface tension (or small drop size). We will indicate the regime

in which this approximation is reasonably accurate (within 2% of the true

surface tension) in Section 4.3.

Our work should prove to be a useful and instructive adjunct to the princi-

pal current methods. It yields an immediate value for the surface tension, by

means of a simple formula, requiring only two length measurements related

to the drop pro�le.
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4.2 Application of the Morse�Witten Theory

to Pendant and Sessile Drops

Here I show how the analytic theory of Morse and Witten was applied to

the problem of measuring surface tension. Much of the theoretical work in

Hutzler et al. [3] was carried out by Hutzler and Weaire, while the numerical

calculations were performed by Ryan-Purcell. My main contribution to this

is Section 4.3, where I explore the theoretical accuracy of the method by

comparing it with direct numerical solutions of the Young−Laplace equation.
The result is an analytic relationship between the drop size and the accuracy

of the Morse−Witten estimate of the surface tension.

To demonstrate the essence of the method, Figure 4.2 shows examples

of both sessile and pendant liquid drops, together with relevant notation.

We will derive a formula for their values of surface tension γ in terms of

the two distances, Lx (maximum �equatorial� drop radius) and Ly (distance

of this equator to the drop apex), which are indicated in Figure 4.2. This

assumes knowledge of ∆ρg, the product of density di�erence of two �uids and

acceleration due to gravity. The boundary condition at a contacting plane or

nozzle outlet is does not factor into the measurement, provided it does not

break the rotational symmetry of the drop.

To these cases we apply the analytic results of Morse and Witten (Equa-

tion (3.8)). These were not motivated by our present objective; rather they

were aimed at developing a method of simulating the interactions of multiple

bubbles (or drops) and exploring the form of that interaction in the limit of

slight contact [82] as we laid out in Chapter 3. To our knowledge, the results

of Morse and Witten have never been used to provide insights or methods

for surface tension methods, as below, or indeed introduced into the general
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Figure 4.2: Examples of pro�les of sessile and pendant drops (computed by inte-

grating the Laplace equation (Equation (4.9)) using standard numerical methods

[101]) with relevant notation. Measurements of both Lx and Ly are su�cient

to obtain an estimate of surface tension (for given value of ∆ρg). (Top) Sessile

water drop: ∆ρg = 9810kg/m3, volume 4π/3(3mm)3 and surface tension of

water, γ = 72mN/m result in values Lx = 2.645mm and Ly = 2.235mm. Using

Equation (4.8) we arrive at an estimate of surface tension as 71.7mN/m, under-

estimating the exact value by about 0.4 %. (Bottom) For a pendant water drop

of volume 4π/3(2mm)3 measurements of Lx = 1.474mm and Ly = 1.593mm

result in an estimate of surface tension as 71.9mN/m, using Equation (4.8). The

exact value is thus underestimated by about 0.2 %, indicating high accuracy.
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theory of sessile and pendant drops. This may be attributed to the di�culty

of the theoretical framework presented by Morse and Witten [83]. Despite

this, its essential results are simple, compact, and easily applied.

The analysis described in Chapter 3 gives the pro�le of a bubble or drop

as

ρ(θ) = R0 + δR(θ) (4.1)

where
δR(θ)

R0

=
−FG(θ)

γR0

(4.2)

and

G(θ) = − 1

4π

{
1

2
+

4

3
cos θ + cos θ ln [sin2(θ/2)]

}
. (4.3)

These describe the pro�le of a deformed drop in spherical coordinates R and

θ (the third coordinate being irrelevant on grounds of symmetry) in response

to an applied force, F , acting at θ = 0.

In the case considered here, F is the gravitational (or buoyancy) force of

the undeformed sphere given by F = ±4
3
R3

0π∆ρg, where the `+' sign is for

sessile and the `−' sign for pendant drops. We note that Morse and Witten

[48] only considered the case in which F ≥ 0, corresponding to a sessile drop

(or a drop contacting another drop). The possibility of also studying pendant

drops appears to be a new application of the theory.

Note again the divergence of the pro�le at the point of contact visible

in Figure 4.3 for both the sessile and pendant cases. As in Section 3.1.1,

the divergent part of the pro�le may be neglected by selecting appropriate

boundary conditions. The remaining solution for the displacement ∆R(θ) is

small for all angles θ, for small F .

In general, our method can be applied in various situations, such as

Figure 4.2 (top) or (bottom), which feature non-zero contact angles, provided

an equator exists (i.e. contact angle > 90◦). In this case, the con�guration
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θ

R(θ)

θ

R(θ)

Figure 4.3: Examples of pro�les of sessile and pendant drops, obtained from the

result of Morse and Witten, Equations (3.2) and (3.8). Only the parts indicated

by thick solid lines represent the physical drops of Figure 4.2. The end points

of the thick solid lines have been chosen to be near the equator for illustrative

purposes. Note that our derived equation for surface tension, Equation (4.8),

applies regardless of the boundary conditions imposed within the other part of

the pro�les (and also regardless of the volume that is enclosed).

can be extended past the contact plane to create the standard Morse−Witten

setup, as shown in Figure 4.3 with a small force F = ±4
3
πR3

0∆ρg.

In the following we adopt the Morse−Witten result, Equation (3.8) orig-

inally or Equation (4.3) above, to arrive straightforwardly at a method of

estimating surface tension γ.

At the equator (point P in Figure 4.2), the tangent of the pro�le of the

drop is vertical for our chosen coordinate system. The corresponding angle,

θP , is thus determined from

d

dθ
(ρ(θ) sin θ)|θ=θP = 0, (4.4)
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where ρ(θ) is given by Equation (4.1). Solving for θP , where we write θP =

π/2 + δθP , and Taylor expanded cosine and sine terms to �rst order in δθP

we get

δθP '
2F (3 log(2)− 4)

3(5F + 8πγR0)
. (4.5)

From this, and keeping only terms to �rst order in F , we can compute the

location of P=(Px,Py).

Px = R0

(
1 +

F/(γR0)

8π

)
Py = R0

(
1− F/(γR0)

4π
(ln 2− 1/2)

)
. (4.6)

We thus obtain the following expression for Lx and Ly, with Lx = Px and

Ly = ρ(π)− Py,

Lx = R0

(
1 +

F/(γR0)

8π

)
Ly = R0

(
1− F/(γR0)

4π
(ln 2− 1/2)

)
. (4.7)

We proceed by computing the sum and di�erence of Lx and Ly, resulting

in Lx−Ly = (ln 2/4π)F/γ and Lx +Ly = 2R0− (ln 2− 1)/(4π)F/γ. Setting

F = ±4
3
R3

0π∆ρg, as above, we can eliminate R0 to arrive at the following

exact expression for surface tension, which we denote by γMW , since it is

based on Morse−Witten theory,

γMW =
∆ρg ln 2

24

(Lx + Ly)
3

|Lx − Ly|
[
1∓ 3c+ 3c2 ∓ c3

]
, (4.8)

with c =
(

1−ln 2
ln 2

) |Lx−Ly |
Lx+Ly

(∓: − for sessile drop, + for pendant). There are

no terms with order higher than c3. This expression is accurate in the limit

γ−1 → 0, as will be shown below. For practical purposes the c2 and c3 terms

are negligible.
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4.3 Assessment of the Accuracy of the new For-

mula

Figure 4.2 shows examples of the application of Equation (4.8) to estimate

surface tension for test cases representing sessile and pendant water drops.

Shown are accurate solutions of the Young−Laplace equation (Equation (4.9),
below), computed by standard numerical methods [101], for ∆ρg = 9810kg/m3,

volume 4π/3 × (3mm)3, and surface tension of water, γ = 72mN/m. The

Young−Laplace equation being solved is

2κ =
∆ρg

γ
x+

∆P0

γ
, (4.9)

where κ is the mean curvature, ∆ρ is the density di�erence between the

drop and its surroundings, g is the acceleration due to gravity, γ is the

surface tension of the interface, and ∆P0 is di�erence in pressure between

the two �uids when they are not in contact. The solution for the boundary

shape as a function of height is found using standard numerical methods

[101]. Determination of Lx and Ly from these solutions results in estimates

of surface tension from Equation (4.8) as γMW = 71.7mN/m (sessile drop)

and γMW = 71.9mN/m (pendant drop), corresponding to 0.4% and 0.2%

errors, respectively.

To investigate the variation of accuracy of our estimate γMW compared

to the exact result, we have carried out simulations for a range of drop

volumes and surface tensions (γ) (for a �xed density of water). We present

our results in Figure 4.4 in terms of the variation of Lx−Ly with Lx+Ly, the

relevant combinations in Equation (4.8). Drop volumes for the simulations

were chosen such that γMW (Equation (4.8)) was within either 0.5%, 1%,

1.5%, or 2% of the value of γ set in the simulation. From Figure 4.4, we �nd

that, for data with the same percentage accuracy ε, Lx − Ly varies roughly
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linearly with Lx + Ly i.e.
(Lx − Ly)
(Lx + Ly)

= cε (4.10)

where the constant c = 0.11 ± 0.01 (sessile drop), and c = −0.06 ± 0.01

(pendant drop). Given values for Lx and Ly, this allows the computation of

the accuracy of the estimate of γ from Equation (4.8).

Figure 4.5 shows Equation (4.8) and the data from Figure 4.4 in the form

of a plot of the dimensionless ratios ∆ρg/γ(Lx +Ly)
2 versus |Lx−Ly|/(Lx +

Ly). The small deviations between the theory based on the Morse−Witten

result and the precise numerical values is an indication of the accuracy of the

Morse�Witten approximation, Equation (4.8), for both sessile and pendant

drops. As expected, the Morse−Witten result is asymptotically exact in the

limit of small deformation.

Having established the accuracy of the theory, what accuracy can we ex-

pect from applying Equation (4.8) to actual physical measurements? Images

obtained with digital cameras result in a length resolution of at best 0.001mm

per pixel. It is straightforward to see that Lx can be determined to within

± 1 pixel. However, there has been some discussion as to the accuracy of

determining, Ly [102, 95], which, when treated in the framework of random

errors, is greatly magni�ed. When looking at a pixelated image, it is obvious

that the accuracy in Ly is also ±1 pixel. This systematic error is due only

to the coarse-graining of the picture. The error in γMW is then given by

∆γMW (Lx, Ly) = ((
∂γMW

∂Lx
)2 + (

∂γMW

∂Ly
)2)1/2∆L (4.11)

where ∆L is the accuracy in Lx or Ly.

To test our result we have applied Equation (4.8) to photographs of a

pendant water drop published by [103] (Figure 4.6). Values for Lx and Ly

were obtained using the ImageJ software [104], resulting in γMW = 69mN/m.
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Figure 4.4: (Top) Variation of the di�erence of our two length measurements

(Lx − Ly) as a function of their sum (Lx + Ly) for numerical solutions, carried

out for both sessile and pendant drops over a range of values of surface tensions

equal to and below that of water. Dashed lines mark the respective accuracy

of the estimate γMW . (Bottom) Slope of the lines of constant accuracy as a

function of accuracy, see Equation (4.10). For details, see Section 4.3.
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Figure 4.5: A dimensionless plot of the data in Figure 4.4. Solid lines are obtained

from Equation (4.8), with the sessile case in red and pendant case in blue. The

dashed line is the prefactor of Equation (4.8). The percentages indicated refer

to the percentage error inγMW relative to the γ set in the simulation.

Note that in the published version of the image, the pixel resolution is only

∆L = 0.01mm. Evaluating ∆γMW we get ±6mN/m. Our value of γMW =

69 ± 6mN/m is then in agreement with the value of 72mN/m given by the

authors [103].

Figure 4.7 shows a drop of a water and glycerol mixture in silicone oil.

4.4 Conclusions

Following the work of Rotenberg et al. [105] and Huh and Reed [106] in

1983, many papers were published that describe the evaluation of surface
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Figure 4.6: Sample pendant drop image from Berry et al. [103]. Calculated

γMW = 69± 6mN/m is in agreement with the value of 72mN/m given by the

authors.

Figure 4.7: Example of a pendant drop. Image credit: Steven Burke, TCD Foams

group.
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tension based on the comparison of an image of the entire drop pro�le

with numerical solutions (see, for example, [107, 108, 103]). While such

an approach will be more accurate for numerical evaluation, we believe that

the method described here o�ers complementary advantages. It is based on

an analytically tractable theory, which is exact in the limit of small drop

deformation, the mathematical procedure is brief and transparent, and it

results in an equation for surface tension, Equation (4.8), which has a very

simple form.

The formula can also be generalised to other pairs of measurements (e.g.

the pair used by [97], see Section 4.1), by using non zero values on the right

hand side of Equation (4.4). This might mitigate measurement error, and

it will also allow for an extension of our formula to the case of a sessile

drop with contact angle greater than π/2 (where Lx doesn't exist). We will

examine this in future work, in which we will apply our result to the analysis

of experimental data for pure water and surfactant solutions, requiring a

computational scheme to extract values of Lx and Ly from high resolution

drop images. As we have shown above, the determination of these lengths to

high accuracy is important for an accurate estimation of surface tension.

Finally, for completeness, the derivation shown in Section 4.2 can also

be carried out for two-dimensional drops, using the corresponding two di-

mensional equations of the Morse−Witten model [83]. This results in the

following expression (exact for the model),

γ̃MWtwodimensional =
(π − 2)

4
∆ρ̃g

L3

|Lx − Ly|
. (4.12)

Here L = Lx for a pendant drop and L = Ly for a sessile drop, ρ̃ denotes a two

dimensional density (mass/area) and γ̃MW is a line tension (with dimension

of a force). However, it is unlikely to be of much use, as even quasi-two

dimensional systems will be better understood with the three dimensional
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form.
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Chapter 5

Outlook

Having summarised the achievements of each chapter locally, I will outline

how one could progress the di�erent strands of the work here.

5.1 Improvements to the Plat Software

As mentioned in Chapter 2, the Plat simulation exhibits a tendency to fail

in the wet limit. A �x to this issue would be highly desirable as the Plat

simulation is not based on any approximations and is thus more accurate

than any approximation, such as the Soft Disk model, or the Morse−Witten

model. In Section 5.1.1 I will discuss the problem of arc breakage, and in

Section 5.1.2 I will outline interesting features of the failure statistics of Plat.

5.1.1 The Problem of Arc Breakage

The failure is related to an ambiguity in the size of an arc de�ned only by its

curvature and end points. Since an arc is a piece of a circle of radius equal

to the radius of curvature r, there are in general two arcs that satisfy this

de�nition as shown by the solid lines in Figure 5.1.
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Figure 5.1: An illustration of the large arc - small arc ambiguity in the Plat

simulation. The two solid lines indicate the two possible arcs with the same

curvature that �t between the endpoints (black circles). The smaller arc is

mirrored by the dashed line to illustrate how the large and small arc together

make up a whole circle with radius equal to the radius of curvature.

If the total angle of the smaller arc is denoted by θ, then the larger arc has

a total angle of 2π − θ. Problems in the simulation arise when θ approaches

π. In this situation, if one of the endpoints gets displaced outwards, then it

is possible that the separation between the endpoints becomes larger than

2r, and the arc will no longer �t between the endpoints. This is termed arc

breakage and if it is not dealt with, will cause the program to crash.

This problem was identi�ed from the outset by Bolton and Weaire [31],

their attempt to address this problem is outlined below, but it is insu�cient.

The procedure involves �rst detecting when arc breakage occurs, followed by

an attempt to �x it. Detection is straightforward and simply a matter of

measuring the distance between endpoints of an arc relative to the curvature

of the arc. If arc breakage is detected on a bubble−bubble arc, the perimeter
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of both bubbles is traversed, and any broken arcs along it are switched from

being large to small or small to large (provided the accompanying change in

area is in the correct direction). Then, the pressure in the bubble being tra-

versed is lowered in an attempt to reduce the curvature of the arcs, allowing

them to �t between their endpoints once more. This procedure is referred

to as border popping [31]. This is quite successful in moderately wet foams

(φ . 0.1), but not very successful for foams approaching the wet limit.

In the wetter foams (φ & 0.1), what happens is that an endless sequence

of border popping is triggered which neither crashes the program, nor resolves

the issue. Therefore it is clear that the border popping procedure alone is

insu�cient to fully resolve the arc breakage. The next step would be to

move the vertices that constitute the endpoints of the broken arcs. This is

tricky because each vertex is at the edge of a contact with a neighbouring

bubble. A potential solution would be to trigger a contact loss at one edge

of a broken arc. It would be necessary to �gure out how to pick the contact

that should be lost, and whether this can be done in a stable and consistent

manner. Finding a simple con�guration that leads to continuous arc breakage

is straightforward, this can then be used as a test system to study this in

detail.

5.1.2 Analysis of the Failure Rate of Plat

Examining the liquid fraction reached by a simulation before it failed gives

rise to Figure 5.2. This depicts the number of successful simulations as

a function of liquid fraction, N(φ). The features of such quantity are of

interest in the general context of failure statistics, where it is presented in

its normalised form, i.e. S(φ) = N(φ)/N(0), this is also called the survival

function [109], The mortality, or failure rate, µ(φ), of the Plat simulations
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Figure 5.2: (Top) Number of successful simulations as a function of liquid frac-

tion. The decrease in successful simulations at higher liquid fractions is due to

stalls of the Plat software (see Sec. 2.1.1). (Bottom) Failure (Equation (5.1))

of simulations as a function of liquid fraction. The typical features of mortality

data are visible here: a brief period of high mortality in the beginning, a period

of low failure in the middle, and a strong increase (exponential in this case) in

failure in the end.
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may be de�ned as

µ(φ) = − 1

s(φ)

ds(φ)

dφ
=

d ln [s(φ)]

dφ
. (5.1)

This is shown in Figure 5.2. The typical features of failure data are visible

in this plot: a brief period of high failure in the beginning, a period of low

failure in the middle, and an increase in mortality in the end. Interestingly,

in the Plat data, this increase is exponential and does not scale according to

a power-law, as is commonly found for the failure of technical devices [109].

The exponential increase is seen in human mortality data, where it is called

the Gompertz law [110].

Additional features this data displays are a brief decrease in mortality

before the exponential increase, at φ ' 0.05. This could be related to features

in the local distribution of contacts, see Figure 2.8. Identifying what this

feature represents, and how it is related to the initial problem of failure in

the Plat simulation may shed light on how to �x the failures of Plat.

5.2 Further Analysis Using the Two Dimensional

Morse�Witten Model

In Chapter 3 I have shown how we can use the theory of Morse and Witten

to build a model of two dimensional foams. As discussed in Section 2.4.1, the

variation of coordination number as a function of liquid fraction has been a

quantity of interest in foams for a long time. Here I will outline where an

analysis of Z(φ) might lead for the Morse−Witten model.

A log-log plot of preliminary data (Figure 5.3) reveals a scaling of Z−Zc =

∆Z ∝ ∆φ0.52, consistent with results for packings using the soft disk model

[111]. In Chapter 2 such a scaling was disputed based on extensive computer
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Figure 5.3: Preliminary Z(∆φ) data for the two dimensional Morse−Witten

model. In the case of disordered foams, our simulations show an increase in the

excess coordination number with ∆φ of the form ∆Z ∝ ∆φ0.52, consistent with

previous simulations using the bubble model.

simulations with Plat which resulted in ∆Z ∝ ∆φ, and it was argued that

this was due to the deformability of soft bubbles. The preliminary results

presented here appear to put some doubts on this argument. Further sim-

ulations with Plat and the Surface Evolver software (currently restricted to

�nite contact angles in two dimensions as mentioned in Chapter 1) would

be required to determine whether the reported linear scaling with ∆φ might

be due to some inherent bubble-bubble attraction that arises from the al-

gorithms. An examination of the distribution of separations (f(w), as in

Section 2.5), may be required to give some insight into the functional form

of Z(∆φ).
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5.3 Limitations of the Two Dimensional Morse�

Witten Model

The range of φ that is possible to study with the Morse−Witten model is

limited by the assumptions that underpin the theory. Currently, in simu-

lations with φ < 0.12, the contact forces diverge to in�nity and cause the

simulation to crash. Whether this is due to the approximations of the theory,

or the implementation of the algorithm is not yet known.

The �rst approximation made in Section 3.1.2 is to linearise the expression

or the curvature. For the single contact case, this is valid for a contact force F

much less than the surface tension γ i.e. the dimensionless contact force f �
1 [47]. Figure 2.19 reinforces this fact, showing that the capping procedure

for two bubbles of di�erent size in contact is only accurate up to f < 0.5.

Exactly how this is related to the range of φ accessible by the simulation is

unclear and needs to be investigated, but it is worth investigating whether

it is related to our current minimum achievable liquid fraction of 0.12.

A larger range of φ would require the inclusion of higher order terms in the

curvature expression. However, the di�culty with this is twofold. Firstly,

solving a nonlinear di�erential equation for δR(θ) would prove extremely

di�cult. Secondly, the solutions to nonlinear di�erential equations are no

longer additive, removing the ease of coupling the contacts on a bubble to

each other. Therefore, the entire system of coupled, nonlinear di�erential

equations would have to be solved for the whole foam simultaneously at

each step. While not necessarily impossible, this problem would be much

more involved, without any of the bene�ts of simplicity and relative ease of

understanding the current model enjoys.
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5.3.1 Other Two Dimensional Systems that could be

Modelled with the Morse�Witten Theory

Systems under an external force may also be modelled with the Morse−Witten

theory. All that would be required in this case is to add the desired additional

force to the calculation of the net force on a bubble. For example, one

could add a gravitational term to Equation (3.32), and the corresponding

Equation (3.35).

The theory of Morse and Witten may also be applied to the case of

deformable disks in ordered channel structures. These structures have been

studied for the case of hard disks [112]. Using our model of deformable disks

instead of the Soft Disk model would provide area conservation, and thus

more applicable results.

5.4 Developing a Three Dimensional Morse�

Witten Model

There already exist several models widely used for studying three dimensional

foams, so why introduce yet another one? The three dimensional Bubble

Model is as approximate as the two dimensional one (see Section 2.4.1) and

does not reproduce the many body e�ects that the Morse−Witten model

does, as was discussed in Chapter 3 [82]. Another common tool, Surface

Evolver, can only model foams of any polydispersity if they are dry. It

can only manage wet foams if they are ordered (and thus have advantageous

symmetries), and even then any topological changes that should happen must

be handled manually. Therefore there is a need for a model that is relatively

straight forward to implement, and can deal with wet polydisperse foams in
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three dimensions. The wet foam model involving the least simpli�cations in

two dimensions is Plat (zero approximations). However, this approach cannot

be extended to three dimensions as there are two principal curvatures in three

dimensions, as opposed the single principal curvature in two dimensions. This

leaves extending the Morse−Witten model to three dimensions.

How can this be achieved? The �rst step is to verify that the force-

deformation relation in Equation (3.44) produces systems of equations that

are solvable (i.e. no singularities in the matrix equations). Once this is

con�rmed, a three dimensional visualisation of the foam needs to be imple-

mented. Without this it becomes more di�cult to debug any simulations and

verify that the results are physical. After that the overall algorithm proceeds

much the same as in two dimensions, in fact the �owchart (Figure 3.9) should

be transferable.

There are a number of simple test cases where the results are already

known that the model will need to pass. The �rst of these is a simple

ordered monodisperse foam. Here, the results can be compared with re-

liable Surface Evolver calculations, and to the Z-cone model [113, 114, 38].

Once the model produces correct results for a simple monodisperse foam, the

relative energy of foams with bubbles arranged in face centred cubic (fcc) and

hexagonally close packed (hcp) crystal structures may be compared. It was

a longstanding puzzle that wet monodisperse foams prefer to order as fcc,

despite the fact that, for hard spheres, there is no obvious di�erence in the

energy and packing fraction of fcc and hcp structures. This was addressed

by computing the energy di�erence between fcc and hcp foams with Surface

Evolver [39]. It is expected that the Morse−Witten model will reproduce

the di�erences between the energies of the two di�erent crystal structures.

After this, the introduction of polydispersity may be tested in two ways:
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modeling an ordered bidisperse foam crystal (like an NaCl crystal), and an

ordered crystal with slight random polydispersity of the kind that Höhler

and Cohen-Addad [82] studied. In the former case it is expected that the

Morse−Witten model will be able to produce the same excess energy, ε(φ), as

Surface Evolver for φ close to the wet limit. In the latter it is expected that

this implementation of the Morse−Witten model will reproduce the results

of Höhler and Cohen-Addad's implementation.

After passing the above tests, the model implementation will be ready for

use in simulating random polydisperse foams. Once these foams pass visual

inspection, and the simulations converge, the model can be used to study a

range of properties including, but not limited to, Z(φ) and ε(φ).

Another application could be the study of columnar packings of de-

formable spheres. Currently, columnar structures of equal volume soft spheres

have been well studied [115, 116], but those models use overlapping spheres

rather than deformable ones. The use of deformable spheres that conserve

volume would allow better comparison with experiments, as currently the

bubble interaction strength must be related to an e�ective spring constant.

5.5 Further Application of the Morse�Witten

Theory to Measuring the Surface Tension

of Drops

The expression for surface tension (Equation (4.8)) derived from the Morse−Witten

theory in Section 4.2 may be applied to any liquid boundary on a �uid-�uid

interface, as long as the di�erence in density between the two �uids is known.

In particular, it might be applicable to an experiment that has recently seen
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some media attention, namely the pitch drop experiment [117, 118]. This

is a long running experiment (since 1944 in Trinity College Dublin (TCD),

and 1927 in the University of Queensland in Brisbane) which enables the

estimation of the viscosity of a sample of pitch by allowing it to drip from

a funnel. With a very high viscosity (one drop every 10 years), the pitch

drop can have a very elongated pro�le. In this regime the Morse−Witten

based formula may perform better than the Young�Laplace �tting methods

currently employed [103].

However, one important aspect of this that should not get overlooked

is the question of whether the Morse−Witten expression, which is derived

from an equilibrium theory, can actually be applied to the slowly dripping

pitch drop. In other words, is the pitch drop slow enough to be considered

quasi-static? This can be quanti�ed using the Deborah number, the ratio of

the relaxation time to the observation time [119]. If the Deborah number

is small, i.e. the relaxation time is smaller than the observation time, the

pitch drop can be considered to be in equilibrium. It appears that way (10

years between drips), but this can be tested experimentally by using another

liquid that is quite viscous, but not prohibitively so. Honey would be an ideal

candidate, being much more viscous than water, but not nearly as viscous as

pitch, taking mere tens of seconds to drip. Analysing the drop shape as it

evolves in time would provide information on whether the surface tension is

consistent at all for a slowly dripping drop, and if so, when over the course

of the drip is it most stable. In general further experiments would provide

a better understanding of the accuracy and reliability of the surface tension

calculation presented in Chapter 4.
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