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Abstract 

Advances in programming language have improved the software developer’s ability to achieve 

separation of concerns (SOC). Although object-oriented (OO) technology offers greater ability 

than previous language paradigms to achieve this goal, it still has difficulty localising concerns 

that do not fit naturally into a single program module. Aspect-oriented programming (AOP) 

introduces a new style of decomposition for capturing such crosscutting behaviour that further 

enhances a software developer’s ability to achieve SOC. 

Although studies have shown that AOP is beneficial to many OO systems, it has yet to be 

proven for real-time systems development, where systems are bound by strict temporal 

constraints. Languages such as Real-time Java have encouraged the use of OO languages in 

real-time system development, but may result in codebases that significantly differ from 

conventional software systems due to the necessity of additional real-time constructs.  

The goal of the dissertation was to evaluate the use of AOP in the development of Java-based 

real-time systems. The main focus was on the seven enhanced areas introduced by the Real-

time Specification of Java. The Sentient Traffic Simulator application developed by the 

Distributed Systems Group in Trinity College, was extended to satisfy specific temporal 

constraints, with a subsequent re-implementation using AOP enhancements. The overall 

development process involved an initial analysis of areas in the original system that required 

real-time behaviour and the later identification of crosscutting real-time functionality that exists 

in the codebase.  

Evaluation of the effectiveness of AOP for Real-time Java was performed to illustrate the 

impact of this paradigm on understandability, maintainability, reusability, and testability 

attributes.   

Based on the results gathered, it has been concluded that AOP does provide useful 

enhancements but the improvements shown are significantly less impressive than previous 

studies carried out for AOP and OOP. The overall effectiveness of AOP is highly application 

specific and dependant on the amount of aspectual behaviour exhibited in the codebase of the 

for Java-based real-time system. 
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1 Introduction 

Advances in programming languages have aimed to improve the software developer’s ability to achieve 

separation of concerns (SOC). SOC refers to the identifying, encapsulating, and manipulating of those 

parts of a system that are relevant to a particular concern [1]. If successfully achieved, this can result in 

great benefits to system understandability, maintainability, testability, and reusability. 

Currently OO programming is the dominant programming paradigm where a problem is decomposed 

into objects that abstract behaviour and data in a single entity. Yet OO still has limitations in achieving 

total SOC [2]. Irrespective of how well designed and implemented, OO software may eventually lead to 

the problem scenarios of code scattering (concerns spread over many modules) and code tangling 

(concerns which are tightly intermixed) [2, 3],  which oppose the SOC principle.  

Aspect-oriented Software Development (AOSD) [4],  which encompasses Aspect-Oriented Programming 

(AOP) and other AOSD approaches, has built on the existing OO paradigm as the latest language 

advancement in the pursuit of achieving SOC. AOSD has introduced concepts that are designed to enable 

developers’ to cleanly capture and modularise crosscutting functionality in a system which were 

previously unavailable. A large volume of research has been carried out in the area of AOSD and in 

particular AOP with studies highlighting the SOC benefits that this new paradigm offers in the 

development of (non real-time) software systems [2, 5, 6]. 

The development of real-time systems differs significantly to that of conventional software applications 

[7]. The principles of predictability and performance, which are essential in a real-time environment, can 

only be achieved with stricter and more carefully designed programming constructs and practices than 

those used applied in non real-time applications. Traditionally real-time systems have been developed 

using procedural languages such as C and ADA or in some cases even assembler. Yet these languages do 

not provide the programming ease or simplicity evident in the OO paradigm. Moreover the growing 

popularity and programmer familiarity with OO languages in the development of distributed systems has 

thus encourages them to be adopted in the real-time domain. 

At present Java is one of the most commonly used programming languages in software development. 

However, traditional Java constructs incur unpredictability in performance which proves unsuitable for a 

real-time environment. The limitations of Java for real-time systems development have therefore resulted 

in an extension to its API which introduces a number of concepts enabling the language to satisfy real-

time constraints. Real-time Java (as this extended version is known) enhances its traditional counterpart 

in seven areas that were previously unsupportive of real-time principles.  

By introducing additional constructs, the development of Java-based real-time systems may lead to a 

codebase that may differ significantly to that of traditional (non real-time) applications. Therefore the 

effectiveness of AOP in such a domain is unclear.  



 2

1.1 Research Goal 

The main aim of the dissertation is to determine if AOP techniques provide better separation of concerns 

for the development of Java-based real-time systems. The focus of the project is on how AOP affects 

code implementing the seven enhanced areas of Real-time Java as set out by the Real-time Specification 

Group (RTSJ) [8] and an evaluation of the usefulness of AOP will be based on these outlined areas. 

1.2 Research Approach 

To achieve the goals of the dissertation, a Java-based real-time test application will be implemented in 

two versions, one using Real-time Java in pure OO programming, and a subsequent re-implementation 

using Real-time Java with AOP enhancements. The Sentient Traffic Simulator developed by the 

Distributed Systems Group in Trinity College will be the application adopted for the dual development.  

On completion of the two cases an evaluation of each will be performed highlighting their 

implementation differences.  

The main focus will be on the seven enhanced areas introduced in the Real-time Specification for Java. 

These are the areas where Java’s API has been extended to satisfy the real-time principle of 

predictability. They are thread scheduling and dispatching, memory management, synchronization and 

resource sharing, asynchronous event handling, asynchronous transfer of control, asynchronous thread 

termination, and physical memory access. 

Evaluation of the effectiveness of AOP for the above seven areas was performed to illustrate the impact 

of this paradigm on understandability, maintainability, reusability, and testability attributes. An 

OO metrics suite was selected as the basis for this evaluation as they are primarily designed to highlight 

important SOC issues regarding encapsulation and inheritance. In addition adopting such a metric will 

enable a further assessment into the suitability of OO metrics for evaluating AO software. 

Finally the data gathered from the evaluation will be analysed to conclude benefits and drawbacks of 

each approach in relation to each of the seven Real-time Java areas. The results will in turn be evaluated 

against the research question, and will assess the effectiveness of AOP in the domain-specific, Java-

based real-time arena.  

1.3 Work plan 

Accomplishing the research goal involves the following tasks: 

• Research the main considerations of system development in the real-time arena 

• Examine the seven enhanced areas associated with Java-based real-time systems that distinguish 

them from conventional Java systems 
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• Understand the advantages/disadvantages of AOP for separation of concerns 

• Determine suitable metrics for assessing the impact of AOP in Java-based real-time systems 

• Implement a Java-based real-time system 

• Re-implement the system using AOP techniques 

• Evaluate the effectiveness of AOP techniques for the implemented Java real-time system based 

on the metrics found 

1.4 Research Contributions 

Research in the RTJava area has mainly been concentrated on the seven enhanced areas as set out by the 

Real-time Specification of Java. Substantial work has been carried out to provide an acceptable 

implementation for the specification, while other work has focused on the evaluation of the suitability of 

implemented specification for the (hard and soft) real-time arena. 

Being a relatively new programming paradigm, AOP and the larger Aspect-oriented Software 

Development (AOSD) domain, is a wide research area in the growing AOSD community.  Previous work 

has mainly focused on certain non-functional areas that are common to most information systems such as 

tracing, logging, synchronization and exception handling. Large amount of statistics and figures have 

been made available with the majority heralding the arrival of AOP as a solution to modularising 

crosscutting functionality.  Very few have highlighted potential drawbacks that this relatively new 

paradigm brings with most research choosing to emphasis its benefits. Other work in the AOP area 

relates to suitable metrics that are applicable for assessing the effectiveness of AOP development. No 

suites of metrics have yet to be developed and work in this area is growing. 

Very few studies have been carried out on the areas of RTJava and AOP in conjunction. Those of which 

known are documented in the State of the Art chapter (chapter 2) of the dissertation.  

The work that was carried out was aimed to bring certain contributions to both the areas of real-time 

system development and AOP. They consist of the following: 

• AOP evaluation for real-time systems characteristics. The seven enhanced areas of RTJava 

highlight all the characteristics that distinguish real-time systems from non real-time ones. By 

applying AOP techniques to all these areas provides a solid basis for the study of how effective 

this paradigm is for real-time systems development. This contrasts previous studies which have 

mainly focused on applying AOP to individual areas but not all seven in conjunction. By 

applying AOP to all seven gives a high level analysis of Java-based real-time programming with 

the added dimension of interactions that may occur between the areas.  
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• An evaluation of metrics that could be applied for assessing the benefits and drawbacks of AOP 

to OOP systems. 

• Highlights the affect of AOP enhancements of numerous system attributes, namely 

understandability, maintainability, reusability, and testability. 

• Identifies some myths that are present in previous AOP research where the consideration of 

certain issues may have AOP favourable results less compelling and conclusive. 

1.5 Sentient Traffic Simulator 

The Sentient Traffic Simulator (Simulator) was developed by a member of the Distributed Systems 

Group, Trinity College as part of an unrelated research project. This application was designed to simulate 

a sentient traffic management system that allows autonomous sentient vehicles to co-exist safely and 

efficiently. It is important to note that the application ignored any real-time considerations and did not 

include any code that provided real-time related attributes or functionality. Thus this along with the hard-

real time behaviour that the Simulator exhibits was the main reasons why this application was chosen for 

this dissertation. More information about the Sentient Traffic Simulator is available at [9].  

1.6 Development Environment 

All implementation was carried out with Eclipse version 2.0 Integrated Development Environment with 

Sun’s JDK 1.4. The Real-time Java implementation used was the TimeSys RTSJ Reference 

Implementation [10]. AspectJ version 1.1 was used for the aspect approach. All the above are running on 

Linux RedHat 7.1 with the TimeSys Linux/RT 3.0 GPL kernel [11].  

1.7 Dissertation Roadmap 

The remaining chapters of the dissertation are organised as follows: 

Chapter 2: State of the Art 

This chapter describes the current state of the art in the areas of real-time systems, in particular Real-time 

Java and AOSD. Several approaches to AOSD are documented. The chapter also discusses evaluation 

metrics that may be adopted for evaluating aspect-oriented software. The related work of the above areas 

is also described.  

Chapter 3: Object-oriented Design and Implementation 

This chapter describes the object-oriented (OO) version of the design and implementation of the Sentient 

Traffic Simulator. The details of system prior to any real-time alterations (i.e. original design and 
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implementation) are given. The subsequent OO design and implementation of Simulator inclusive of 

Real-time Java constructs is then provided, with each of the seven enhanced areas addressed.  

Chapter 4: Aspect-oriented Design and Implementation 

This chapter provides the design and implementation of the AO version of the Simulator. 

Chapter 5: Evaluation Metrics 

This chapter gives an in depth description of the Chidamber and Kemerer metrics suite that is used in the 

evaluation of the Simulator. Each of the metrics in the suite are described along with the affects that 

aspect-orientation may have on each. 

Chapter 6: Evaluation 

This chapter provides an evaluation of the use of aspect-oriented techniques for each of the seven Real-

time Java areas. The gathered metric results are analysed and a discussion on the implications of these 

results on certain system attributes (understandability, maintainability, reusability, and testability) is 

given.  

Chapter 7: Conclusions 

This chapter provides the concluding remarks based on the evaluated results and some future work 

related to the dissertation. 
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2 State of the Art 

This chapter describes the current state of the art in the areas of real-time systems and Aspect-oriented 

Software Development (AOSD).  In particular, the areas of Real-time Java (RTJava) and aspect-oriented 

programming will be addressed. The chapter also documents potential metrics that can be used in the 

evaluation of aspect-oriented software. 

2.1 Real-time Systems Defined 

This section provides an overview of real-time systems. 

2.1.1 Definition of a real-time system 

A real system is one which “must produce correct responses within a definite time limit” [12]. The effect 

if not responding within this limit is either performance degradation and/or system malfunction. It is 

important to note that the word “time” needs to be taken in the context of the total system. Depending 

upon that system this time limit could be microseconds, seconds, minutes or even hours. Yet regardless 

of the time limit, the computer system must be guaranteed to respond with the correct response within its 

specified time limit. In general, real-time systems are either event-triggered based on interrupts, or are 

time-triggered based on deadlines [13]. 

2.1.2 Characteristics of a real-time system 

All real-time system posses a number of special characteristics [7, 14]. According to [15] Real-time 

systems have a number of distinguishing characteristics. They are: 

• Timely in the sense that it’s possible to predict how long a particular task will take to execute 

and it’s possible to initiate task execution at a specific time. 

• Typically concurrent, with multiple sequences of execution (threads) if varying priority 

simultaneously (or pseudo-simultaneously) active within a task or process. 

• Responsive so as to interact with physical interfaces (hardware) to the surrounding environment 

in a predictable and usually rapid manner. 

• Often embedded into a system such that the behaviour of the real-time software system is 

indistinguishable from that of the host. 

• Highly predictable, in that they do the right thing all of the time. 

• Robust, in that they will do the right thing under unexpected or even erroneous conditions. 
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Real-time systems vary as to the degree to which they meet the above criteria. [16] divides software into 

four distinct groups based on time. Time plays a greater deal of importance in the latter two described. 

Soft real-time systems are those where response times are important but the system will still function 

correctly if deadlines are occasionally missed, while hard real-time systems are those where it’s 

absolutely imperative that responses occur within a specified deadline. Missing a hard deadline can result 

in catastrophic consequences or loss of system performance. 

2.1.3 Real-time dimensions 

The space of real-time problems has at least three useful dimensions: the precision with which the time is 

measured, the importance of consistency, and the shape of the utility curve around the deadline [17]. 

2.1.3.1 Precision of Measurement 

The precision of the units the real-time system uses to measure a period of time helps to characterise the 

type of system. Some systems use a submicrosecond as a time unit while others use conventional 

seconds. The time-scale pyramid shown below indicates the differing time constraints for different 

devices and applications [17]. 

  

Business and commercial real-time systems Hundred milliseconds/seconds 

Distributed real-rime systems Ten milliseconds 

General real-time systems Millisecond 

Tight real-time code Hundred microseconds 

Drivers Ten microseconds 

  

 

FIGURE 1: TIME-SCALE PYRAMID 

 

2.1.3.2 Consistency 

A vital property in the real-time domain is the notion of determinism, meaning that timing is predictable 

at the precision that is specified by the system. Consistency is more that mere determinism. The central 

idea of consistency in real-time is to reduce to a minimum the difference between expected performance 

and the worst possible performance. For example, it is useful to know that an urgent event will occur in 

your system at sometime between 10 and 200 microseconds. However it is better still to know that this 
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time interval will be between 50 and 70 microseconds. Reducing the gap between the best-case and 

worst-case can greatly improve the overall performance of the system. 

2.1.3.3 Utility Function Curve 

Utility occurs in the context of real-time when the system is late or misses a deadline. Dependant on the 

type of system (non real-time, soft or hard-real time), missing a deadline will result in different results or 

responses. The idea of the utility function curve is to aid in the design of real-time systems. They can 

depict when a time constraint is missed and help programmers identify the consequences and seriousness 

of early, late or non completion of an operation. 

2.1.4 Myths of real-time systems 

There are some myths associated with real-time systems that need to be expelled. One is that “real-time 

systems need to be fast” [12]. This may not necessarily be the case. Real-time systems need only respond 

within a specified time limit, whether it is microseconds, seconds, minutes or hours, depending on the 

specific system. Another myth is that real-time systems must be compact and require the use of minimum 

amount of memory. Again this is the requirement of a particular system, but is not a defining feature of a 

real-time system. To summarise, a real-time system is a system which must provide an appropriate 

response within a certain time period. 

2.2 Java technology and real-time 

This section describes the background related to transforming Java into a language suitable for real-time 

systems development. 

2.2.1 The language requirements for real-time systems 

There are two main additions to the requirements of a programming language to be used in the 

development of real-time systems [12, 15]. Firstly the language must provide predictable performance 

when handling different events as they occur. Thus the designer of the system must be able to predict the 

delivered performance of the system under all possible situations. Secondly, the language must support 

the servicing of multiple events, where theses events appear at random and asynchronously. This implies 

that it is possible to prioritise the processing of these events by separate, potentially asynchronous, 

processes. Other requirements relate to the execution speed and memory requirements. This is because 

some real-time systems need to be very fast or have to be able to run within limited resources such as 

memory. Yet the primary concern remains the predictability of the performance of the system, ensuring 

that the response time of the system is within prescribed limits. The performance characteristics of any 

language used for real-time systems must be deterministic.  
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2.2.2 Java for real-time systems 

The Java programming language was originally designed by Sun to facilitate the development of 

embedded systems software [18, 19], but has grown into the prominent language for web programming 

because of its ability to simplify the development of flexible, portable, distributed applications with high-

level graphical user interfaces [18].  

Java, as it stands, does not guarantee the performance predictability required for real-time systems, thus 

it is often claimed, “Java is not an appropriate language for real-time programming” [20]. Here Johnson 

et al. state some of the reasons for why Java cannot ensure a real-time acceptable level of determinism: 

• The nature of real-time systems requires a priority-based scheduler. In Java, tasks are modelled 

using threads, but working with thread priorities is difficult. 

• Monitors in Java present the priority inversion problem [21], and there is no guarantee about the 

policy of waiting queues 

• The resource management abilities need to be extended to cover four aspects: the ability to track 

usage (resource accounting), the ability to reclaim the resources of an activity when it 

terminates (resource reclamation), the ability to reassign resources to an activity (resource 

reassignment), and the ability to change the resources assigned to activities (resource 

negotiation). 

• From a real-time perspective, asynchronous even handling present’s problems in Java, as a 

thread can be asynchronously interrupted by another. 

• Java’s garbage collector runs as a separate thread that, once started, cannot be stopped, making 

the entire system non-deterministic.  

Many real-time systems are developed in C, and increasingly in C++. Yet developers have increasingly 

started to consider Java as a potential platform for implementation of real-time systems. Java is certainly 

the modern computing language that possesses all the elements required for well engineered reliable 

code. Indeed [12] has shown that there is a one to one matching between features of Java and those of 

ADA 95 [7], a language which is often considered to be particularly suited to real-time systems. 

2.2.3 Java’s Real-time Obstacles 

2.2.3.1 Garbage Collection 

The biggest obstacle to predictable performance in Java is the garbage collector. This is a process which 

runs within its own low priority thread under three situations: 

• Whenever the processor is free 
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• Memory needs to be reclaimed 

• The user indicates that garbage collection is required 

The problem is that the garbage collector effectively makes the program non-deterministic. In addition it 

is no possible to specify exactly when it will occur. The JVM will decide when and if the garbage 

collection process will execute, using a programmer’s request for garbage collection as an indicator 

rather than an absolute request. The result of this is that it could execute some time later during a time 

critical operation which may result in failure to meet the specified time constraint.  

2.2.3.2 Dynamic Class Loading and Initialisation 

Dynamic class loading is a significant impediment to real-time behaviour. Java incorporates the concept 

of late binding. In all Java programs, the JVM may postpone the actual loading of a class file until it is 

actually referenced. This is an effort to speed up the execution of a Java program. However this 

introduces a degree of non-determinism that is problematic for the real-time domain. Even if it were 

possible to introduce determinism to class loading, class initialisation is always performed at he time of 

first active use. This requirement is imposed by the Java language Specification [22]. Thus this too will 

be non-deterministic, as the initialisation of a class triggers a sequence of class initialisation methods that 

is inherently unpredictable.  

2.2.3.3 Object Construction and Initialisation 

Similar to the issues of class initialisation, where a class instance (i.e. object) is created, it triggers a 

recursive sequence of constructor invocations. The time required for this will depend on the depth of the 

class hierarchy and the nature of the constructors themselves, introducing a non deterministic property 

that may not be suitable for real-time development. 

2.2.3.4 Dynamic Method Binding 

Dynamic binding is a method that uses inheritance to achieve polymorphism can impose performance 

penalties if poorly implemented. In such a case, the JVM must determine which actual method to invoke 

when given an abstract function, and this incurs some performance or time penalty. Again an 

unpredictable aspect is introduced, making real-time development unsuitable. 

2.2.3.5 Exception Handling 

Exception handling too imposes a significant performance penalty. It is not possible to predict the 

amount of time that elapses between when an exception was first raised and when it reaches the handler. 
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2.2.3.6 Distributed Systems 

The ability to easily implement a distributed system is one of the promises of Java. Yet maintaining a 

meaningful temporal relationship amongst distributed nodes is a challenge. 

2.2.3.7 JVM Execution Speed 

Java as a language which compiles byte codes which are then interpreted is inherently slower than its 

alternatives [17]. JVM’s are said to be 10 to 20 times slower than C code [15]. There have however been 

many attempts to increase the speed of Java. Examples include the development of both native and Just 

In Time compilers [12, 15]. 

2.2.4 Benefits of Java for Real-time Systems Development 

Java has proven itself as an excellent vehicle for the development of portable, robust, object-oriented 

software. Recent efforts have tried to make Java more palatable to real-time system developers.  Corsaro 

and Schmidt state in [19] that Java has become an attractive choice for developing real-time systems for 

the following reasons: 

• It has a large and rapidly growing programmer base and is taught in many universities 

• It has a virtual machine architecture - the Java Virtual Machine (JVM) - that allows Java 

applications to run on any platform that supports a JVM 

• It has a powerful, portable standard library that can reduce programming time and costs 

• It offloads many tedious and error-prone programming details, particularly memory 

management, from developers into the language runtime system 

• It has desirable language features, such as strong typing, dynamic class loading, and 

reflection/introspection 

• It defines portable support fro concurrency and synchronization 

In [23], the Requirements Group for Real-time Extensions to the Java Platform mentions the following 

additional reasons as motivation for the use of Java by the real-time community: 

• It has a higher level of abstraction that allows for increased programmer productivity 

• It is relatively simpler than C++ 

• It is relatively secure, keeping software components (including the JVM itself) protected from 

one another 

• It is designed to support component integration and reuse 
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2.2.5 Real-time Java development forces 

Encouraged by the benefits Java could bring to real-time systems development, there are several groups 

of industrial and academic organisations conducting ongoing work for transforming Java into a suitable 

real-time programming language. These are described below: 

2.2.5.1 Real-time Java Experts Group 

The Real-time Java Experts Group (RTJEG) is divided into a core team of consisting of expert 

developers, of which are actively involved in the process of creating the Java technology from the start 

and an advisory team. Chartered by the Java Community Process (JCP) [24], RTJEG released the Real-

time Specification for Java (RTSJ) in 2000. RTJEG are undoubtedly the most influential group involved. 

2.2.5.2 Requirements Group for Real-time Extensions to the Java Platform 

The National Institute of Standards and Technology (NIST) [25] sponsor the Requirements group which 

consists of representatives from the computing industry and academia. During a series of workshops, the 

group produced a basic requirements document for RTJava. Much of the further development work is 

based on this document. 

2.2.5.3 J-Consortium 

The J-Consortium [24] has tried to offer the community an alternative to the dominance of the RTJEG. J-

Consortium have been unsatisfied with RTSJ, has provided criticism and proposed to create a 

specification of their own. Currently the J-Consortium has come up with several ideas, but few of these 

have been realized. 

2.2.6 Real-time specifications for Java 

As stated above, conventional Java implementations are unsuitable for developing real-time systems. To 

address these problems the RTJEG has defined the Real-time specifications for Java (RTSJ) [8]. [8, 19, 

26] all document some of the capabilities introduced by the RTSJ which enable real-time system 

development: 

• New memory management models that can be used in lieu of garbage collection. 

• Access to raw physical memory 

• A higher resolution time granularity suitable for real-time systems 

• Stronger guarantees on thread semantics when compared to conventional Java 
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In general, the RTSJ is a specification that aims to improve Java language’s capabilities towards meeting 

the requirements set by the real-time domain. RTSJ extends the Java API and refines semantics of certain 

constructs to support the development of real-time systems.  

In order to make Java into an acceptable real-time system programming language, the Java constructs 

that may result in any inherent determinism needed to be addressed. Consequently, to address the non-

deterministic nature of conventional Java, the RTSJ extended the current Java Application Programming 

Interface (API), in seven main areas [8, 21, 27]. It is the enhancements and introduction of new 

constructs in these areas that introduce level of determinism that makes it acceptable for real-time 

systems development. Java, with the addition of these real-time constructs as specified by the RTSJ is 

known as Real-time Java (RTJava). These seven areas specified by the RTSJ are described below: 

1. Thread scheduling and dispatching – adds real-time threads that have scheduling attributes that 

are more carefully defined than the scheduling for ordinary Java threads. 

2. Memory management – adds tools and mechanisms that help programmers write Java code that 

does not need garbage collection. 

3. Synchronization and resource sharing – adds synchronization properties suitable for real-time 

threads. 

4. Asynchronous event handling – adds asynchronous event handler class and mechanisms that 

associates asynchronous events with happenings outside the JVM. 

5. Asynchronous transfer of control – adds a mechanism that lets a thread change control flow in 

another thread. It is essentially a carefully controlled way for one thread to throw an exception 

into another thread. 

6. Asynchronous thread termination – adds mechanisms that lets threads terminate in a safe and 

controlled manner. 

7. Physical memory access – adds mechanisms that let the programmer control where objects will 

be allocated in memory and to access memory at particular addresses. 

2.2.7 Seven Enhanced Real-time Java Areas 

The seven areas are discussed in approximate order of their relevance to real-time programming. 

However, the semantics and mechanisms of each of the areas are all crucial to the acceptance of the 

RTSJ as a viable real-time development platform. 
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2.2.7.1 Thread Scheduling and Dispatching 

The RTSJ adds real-time threads that have scheduling attributes that are more carefully defined than that 

for ordinary Java threads. Regardless of the scheduling type used (priority scheduling, periodic 

scheduling, or deadline scheduling), the way tasks are scheduled on the processor is central to real-time 

system development.  Non real-time environments are casual about the details of scheduling, but real-

time environments must be much more precise. With temporal constraints required in real-time systems, 

stronger semantics for scheduling are necessary. One of the concerns of real-time programming is to 

ensure the timely or predictable execution of sequences of machine instructions.  

Real-time threads introduced by the RTSJ can be used where a traditional thread is required. The two are 

similar but many features of the RTSJ are only available from real-time threads including: extended 

priorities, scoped memory, asynchronously interrupted exceptions, and periodic scheduling.  

To support these additional features, RTSJ introduces the concept of a schedulable object via the 

Scheduler interface. The RTSJ includes three additional classes that are schedulable objects; 

RealtimeThread, NoHeapRealtimeThread and AsyncEventHandler [8]. The 

RealtimeThread class can be used to create threads that can be interrupted by garbage collection 

activities at any time and for unpredictable lengths of time. NoHeapRealtimeThread can be used 

for time critical tasks. This form of thread cannot access the heap, and therefore cannot be interrupted by 

the garbage collector. They execute asynchronously with the garbage collector. In fact they may execute 

with or suspend the garbage collector at any time. 

 

Thread
<Interface> 
Schedulable

NoHeapRealtimeThread

RealtimeThread

 

FIGURE 2: RTSJ REAL-TIME THREAD CLASS HIERARCHY 

 

It is important to note that in the real-time domain, there must be a timely execution of threads [8, 17]. 

This means that the programmer can determine, by analysis and/or testing of the program, whether 

(particular) threads will always complete execution before a given timeliness constraint. This in effect is 
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the essence of real-time programming; the addition of temporal constraints to the correctness conditions 

for computation [14]. The additional threads introduced to the Java API under this area enable this timely 

execution. 

2.2.7.2 Memory Management 

One of the most valuable benefits of Java is its automatic memory management. However automatic 

garbage collection can pose a serious problem in real-time programming, because this process could 

cause unpredictable latencies. Thus the RTSJ have added tools and mechanisms that help programmers 

write Java code that does not need the garbage collection. 

To provide Java with the determinism that is required for real-time programming, the RTSJ introduces 

the concept of memory areas. A memory area represents an area of memory that may be used for the 

allocation of objects. When a thread creates a new object, it is allocated in the default memory area 

unless the thread explicitly specifies that the object should be allocated in another memory area. There 

are four types of memory areas; physical memory, immortal memory, scoped memory, and heap memory 

[8]. 

Physical memory allows objects to be created within a specific range of physical addresses that have 

particular important characteristics, such as memory that has substantially faster access. Objects created 

in immortal memory persist until the JVM terminates. Immortal memory is commonly used on hard real-

time systems, as they are never subject to garbage collection or movement. Scoped memory areas 

associate memory with an execution scope. A memory scope is used to give bounds to the lifetime of any 

objects allocated to it. Objects in scoped memory are not garbage collected, but are destroyed 

immediately when a particular code region comes to an end. The primary issue with scoped memory is to 

ensure that their use does not create dangling references (references to objects allocated in scoped 

memory that have been de-allocated) [28]. Multiple threads can share a scoped memory area, and the 

area will remain active until the run method of all threads return. After the thread exits the scope, it can 

no longer access objects allocated there and the JVM is free to recover memory used there. Scopes can 

also be nested. Both immortal and scoped memory areas can be assigned to physical memory address 

ranges. Heap memory represents an area of memory that is the heap. The RTSJ does not affect objects 

that are in heap memory.  
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MemoryArea

ImmortalMemory ScopedMemory ImmortalPhysicalMemory HeapMemory

VTMemory LTMemory LTPhysicalMemory VTPhysicalMemory

 

FIGURE 3: RTSJ MEMORY MODEL CLASS HIERARCHY 

 

With the extension of the Java API to include these memory classes, the programmer can allocate objects 

to non garbage collected areas. This allows program logic to allocate objects in a Java like style, ignore 

the reclamation of those objects, and not incur the latency of any implemented garbage collection 

algorithm which may be critical to real-time constraints. 

2.2.7.3 Synchronization and Resource Sharing 

In real-time systems, the timely execution of threads is an essential concept. With precise temporal 

constraints associated with real-time systems, blocking of thread execution caused by synchronization 

will pose problems, as the blocking period may produce unpredictable timing measures. Thus the RTSJ 

provides mechanisms in synchronization in order to retain the timeliness property (Obviously if real-time 

systems do not use sharing of resource, then the synchronization is not of relevance).  

In RTSJ, the concept of highest priority thread mostly indicates what the next thread to be chosen by the 

dispatcher for execution should be [17].  In the case where threads waiting to access a resource have 

equal priority, they are queued using the first-in, first-out (FIFO) principle. 

In addition to the synchronization construct, the RTSJ introduces synchronization without the need for 

locking. This is done through the concept of wait-free queues. The idea with such queues is to allow 

wait-free communication between real-time threads and normal Java threads. The problem is that 

synchronization access objects shared between real-time threads and threads might cause the real-time 

threads to incur delays due to the execution of the garbage collector. Wait-free queues enables that at 

least one end of the queue will never cause a thread using it to wait for garbage collection. These queues 

can be either classified as wait-free write queues or wait-free read queues. 
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2.2.7.4 Asynchronous Event Handling 

Many real-time systems are event drive. They typically interact closely with the (asynchronous) real 

world where things happen and the system responds to. Therefore a meaningful real-time system must be 

able to interact with asynchronous events in a timely and predictable manner. The time between an event 

and the service of the event is overhead on real-time responsiveness. Thus RTJava includes efficient 

mechanisms for accommodating this inherent asynchrony. Asynchronous event handlers are the solution 

to utilise the benefits of creating threads to service events without taking a performance penalty. 

To handle such happenings (external events), the RTSJ provides the AsyncEvent class to represent 

each unexpected asynchronous event. Each AsyncEvent object is associated with an arbitrary number 

of AsyncEventHandler objects. Theses are schedulable objects (similar to threads) that include 

parameters for controlling scheduling and memory. When an asynchronous event occurs, the associated 

AsyncEvent is fired (with AsyncEvent.fire() command), which in turn starts the associated 

AsyncEventHandler object(s). 

<Interface> 
Schedulable

AsyncEvent AsyncEventHandler

BoundAsyncEventHandler

RealtimeThread

 

FIGURE 4: RTSJ ASYNCHRONOUS EVENT CLASS HIERARCHY 

2.2.7.5 Asynchronous Transfer of Control 

In the real-time domain there may be instances where it is necessary or logical to immediately and 

efficiently transfer the current point of execution to another location. Consequently the RTSJ includes a 

mechanism, which allows programs to programmatically change the focus of control to another Java 

thread. It enables a thread throw an exception into another thread. Standard Java includes a similar 

mechanism, thread.interrupt(), but this is weak for real-time requirements. Thus RTJava 

defines an AsynchronouslyInterruptedException class, for asynchronous exceptions. This 

class has special rules that make the exceptions safe for use, allowing threads to be interrupted in a 

controlled manner. 
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2.2.7.6 Asynchronous Thread Termination 

RTSJ also includes functionality to handle asynchronous termination of threads that may occur due to 

unexpected conditions or events. Earlier versions of Java provided mechanisms such as stop() (that 

has been deprecated) and destroy() in class Thread. However these are unsuitable for the real-time 

domain due to their inconsistent results and susceptibility to deadlock. 

The RTSJ avoids the dangers of stop() and destroy() through a combination of the interrupt 

method on real-time thread objects and the asynchronous transfer of control techniques. These can be 

used to notify a thread to terminate itself safely and within real-time constraints. 

2.2.7.7 Physical Memory Access 

Special types of memory are closely related to performance such as slow memory, cached memory, etc. 

Whereas performance is not a real-time issue, predictable performance is and some memory attributes 

have a large impact on the predictability of code that uses the memory. An application can get improved 

performance by putting the most used data in fast memory. For these reasons, the RTSJ includes the 

physical memory classes. Theses let it store objects in the right kind of memory. 

RTSJ defines classes that allow programmers byte-level access to physical memory and construction of 

objects in physical memory from code. Physical memory objects are ScopedPhysicalMemory 

(which consists of VTPhysicalMemory and LTPhysicalMemory), 

ImmortalPhysicalMemory, RawMemoryAccess, and RawMemoryFloatAccess. Some of 

these memory classes are depicted in the RTSJ Memory Model Class Hierarchy in figure 3. The 

introduction of these classes provides pointer-like objects and direct access to physical memory that 

greatly increases the usefulness of Java for the real-time community. 

2.2.8 Current RTSJ Implementations 

Until recently there were no implementations of the RTSJ, which hampered the adoption of Java in real-

time systems. It also hampered the analysis and evaluation of the benefits and drawbacks of the RTSJ 

programming model. Several implementations of the RTSJ are now available. 

2.2.8.1 TimeSys RTSJ Reference Implementation 

TimeSys has developed the official RTSJ Reference Implementation (RI) [10], which is a fully compliant 

implementation of Java that implements all mandatory features of RTSJ. The RI provides a provides a 

proof of implementation of the RTSJ along with a virtual machine required to test a Java-technology 

based application against the real-time specification. The RI runs on all Linux platforms, but the 

synchronization control mechanisms are available to the RI only when running under TimeSys 

Linux/RT. The figure below shows the architecture of the TimeSys platform. The real-time Java 
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application contains the bytecode that is interpreted by the JVM, which in turn was written for a given 

host system.  

Note that the implementation carried out in this dissertation uses the TimeSys Linux/RT platform and the 

TimeSys RTSJ RI available at [11]. 

RT-JVM

Host
(x86, PPC, ARMS)

RT-Java Application

 

FIGURE 5: TIMESYS REAL-TIME JVM ARCHITECTURE  

2.2.8.2 jRate 

jRate is an open-source RTSJ-based extension of the GNU Java Compiler (GCJ) runtime systems that 

were developed at the University of California. jRate adds support for most of the features required by 

the RTSJ. The jRate project is discussed in greater detail in the Related Work section (section 2.5) of this 

chapter. 

2.2.8.3 Real-time Java for Flex 

The Program Analysis and Compilation group at MIT created the Flex Java Compiler infrastructure, 

along with the real-time Java for Flex [29].  This implementation differs from the TimeSys RI in a 

number of aspects; the primary one being the use of an Earliest Deadline First scheduling algorithm 

instead of the priority based pre-emptive scheduler.  

2.3 Aspect-oriented Software Development 

Aspect-oriented Software Development (AOSD) has recently been proposed as a new paradigm for the 

separation of concerns in software development. Separation of concerns is considered important to 

manage complexity and increase adaptability in a program and has become a vital software engineering 

principle [1].  Researchers in AOSD are largely driven by this fundamental goal and the techniques 

offered by AOSD make it possible to modularise crosscutting concerns within a software system. 

Currently object-oriented programming (OOP) serves as the methodology of choice for most new 

software development projects. However, while many of the OOP techniques are useful, they are 

inherently unable to modularise all concerns in a complex system [2]. A typical system consists of 

several concerns. The limitation of the OOP approach is its inability to localise concerns that do not 
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naturally fit into a single program module, or even several closely related modules. Such concerns are 

defined crosscutting concerns as they cross-cut or span multiple (often unrelated) implementation 

modules [30].  

OOP code suffers from two phenomena’s (resulting from misalignment between requirements and code); 

tangling and scattering [2, 3]. Tangling occurs when multiple concerns are addressed in a single module 

(or class), making the module harder to understand and maintain. Scattering results when the 

implementation of a concern is spread over multiple modules, leading to the risk of inconsistencies at 

each point of use. [3, 30] both describe in detail how code tangling and scattering can adversely effect 

software development. 

AOSD puts a greater focus on crosscutting concerns that that of OOP and other language paradigms. It 

provides language mechanisms that explicitly capture crosscutting concerns in a modular way and thus 

achieving the benefits that results from improved modularity; code that is easier to design, implement, 

maintain, reuse and evolve. AOSD introduces the notion of an aspect, a well-modularised crosscutting 

concern, and shows how we can take crosscutting concerns out of modules and place them in a 

centralised location [31]. In most cases, aspects tend to be implementations of non-functional properties 

that are absent from the initial requirements document [6]. Common examples are security, 

synchronisation, and tracing. 

There are currently several approaches to AOSD that have been adopted for dealing with crosscutting 

concerns. To date, the most widely used approach is the Aspect approach or aspect-oriented 

programming (AOP) [2, 30]. 

2.3.1 The Aspect Approach 

The Aspect approach known more commonly as aspect-oriented programming (AOP) was first 

introduced in [2]. The problem that AOP aims to provides mechanisms that all programmers to handle 

concerns which cannot be constrained easily into modular form. Such mechanisms allows for each 

concern to be addresses separately with minimal coupling, and thus facilitating the programmer in 

achieving the separation of concerns goal with less duplicated code that is easier to understand and 

maintain and more reusable.  AOP involves three different development stages: 

• Aspectual decomposition decomposes the requirements to identify crosscutting concerns 

• Concern implementation implements each concern separately 

• Aspectual recomposition specifies the recomposition rules and uses this information to compose 

the final system 
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AOP introduces two new elements to the set of standards tools used in the development of a software 

system; aspect language and aspect weaver. The aspect language is the language used solely used to 

program the aspects and differs from the component language which programs the components. The 

function of the aspect weaver is to weave the aspects and the component code together. The output is a 

combination of the two languages which is the executable program. At present AspectJ is the most 

predominant language supporting the AOP approach to AOSD. 

2.3.1.1 AspectJ 

AspectJ is an aspect-oriented extension to Java. Its language specification defines various constructs and 

their semantics that support aspect-oriented concepts [32]. The constructs introduced by AspectJ enable 

the support for modular implementations of crosscutting concerns. Because AspectJ is an extension of 

Java, every valid Java program is also a valid Aspect program. The AspectJ compiler produces class files 

that comply with Java byte code specification, enabling any compliant JVM to interpret the produces 

class files. Figure 6 taken from [30] shows the process outlined above. 

 

FIGURE 6: ASPECT WEAVER 

 

[31] documents two kinds of crosscutting implementations that AspectJ supports; dynamic crosscutting 

and static crosscutting. The first allows the definition of additional implementation to run at certain well-

defined points in the execution of the program, while the second defines new operations on existing 

types. 

AspectJ Language Constructs 

AspectJ adds a number of additional concepts to the Java language; joinpoints, pointcuts, advices and 

aspects.  

A critical element of AspectJ is the joinpoint model. The joinpoint model provides a common frame of 

reference that makes it possible to define the dynamic structure of crosscutting concerns. Joinpoints are 
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well-defined points in the execution of the program such as method calls, a conditional check or and 

assignment. They are predefined and also have a context associated with them, meaning that it is 

necessary to specify what joinpoint is to take action when defining pointcuts.  

Pointcuts (or pointcut designators) define arbitrarily large sets of points in the execution of a program. 

Essentially they are a predicate defined on a set of joinpoints. They let you refer a joinpoint (collection) 

and certain values at those joinpoints. [3] identifies a number of different types of pointcuts. They are 

field access pointcuts, exception handler pointcuts, class initialization pointcuts, control flow based 

pointcuts , self argument type pointcuts, conditional test pointcuts, and named and anonymous pointcuts. 

Advice is code, that implements additional behaviour, which executes when a joinpoint is reached. 

AspectJ provides three different advices; before advice, after advice, and around advice. Before and after 

advices execute before and after method(s) specified in a pointcut, while around advice executes in place 

of the method(s) specified in a pointcut (i.e. the implementation in the around advice replaces that of the 

specified method). 

The final additional construct is the aspect. Aspects are AspectJ’s units of modularisation with 

crosscutting implementation provided in terms of joinpoints, pointcuts, and advices. The definition of an 

aspect is very similar to the definition for a class. They act as AspectJ’s unit of modularisation. In 

addition to all the features that a class can possess (data, operations, be instantiated and inherited from 

etc.), aspects also have the ability to enhance the behaviour of other classes through weaving. So while 

classes contain variable and methods, aspects contain variables, methods and weaves.  

Currently AspectJ offers good integration with popular IDEs (Integrated Development Environment) 

such as Eclipse, Forte, JBuilder, Emacs, and NetBeans [33]. 

AspectJ Critique 

[6] outlines some critique of AspectJ. The areas are dynamic weaving, protection mechanisms, abstract 

methods, exception handling, and orthogonality. The documented reason that for these issues is that 

AspectJ is a relatively new language, and that these criticisms have only arisen because developers have 

been given more power and to let the user community experiment and discover what is right. 

Dynamic weaving is a powerful mechanism that some feel resemble self-modifying code. This follows 

from the property that method calls in AspectJ includes advice that is associated with a method call. If a 

program can change its advice patterns and executing a method with this tailored advice, then it would 

seem that the program has succeeded in modifying and subsequently executing this altered code. 

However, in reality, this is not the case. AspectJ’s dynamic weaving does not actually involve modifying 

code. Instead it results from dynamic decisions regarding where to place code for execution. 

Protection mechanisms are an issue that is raised because aspects cut across classes. And because of this, 

the part of the class that cross cuts a class can be considered as part of the class itself. This gives rise to 
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the problem that if it is part of the class, then the aspect should have full access to all the class data 

members. This in affect violates information hiding and encapsulation. 

At present in AspectJ either a subclass, or an aspect that advices a subclass may handle an abstract 

method defined in a superclass. Therefore, if an abstract method is handled by an aspect, then the class 

will become dependant on that aspect. In practice, an aspect should by its nature have no dependant 

classes, meaning that abstract methods should always be implemented by a subclass.  

Exception handling is a vital part of any programming paradigm, and often creates many issues in 

programming language design due to their high coupling with other language features. Yet, there is very 

little documented about AspectJ in relation to exception handling. 

The functions provided by aspects and classes is said to violate the principle of orthogonality [6]. Using 

AspectJ, a programmer can create an aspect that has identical behaviour to that of a class. What results is 

overlapping between constructs and reduced performance. 

2.3.1.2 Other Aspect Languages and Tools 

This section outlines some of the other languages and tools that are available for the AOP approach to 

AOSD. 

Aspect Languages 

The table below details the aspect languages that are currently available in addition to Java and AspectJ 

as detailed in [4]. 

Aspect Language Definition  

AspectC++/C AO extension of C++ and C respectively 

AspectC# AO extension of C# (of Microsoft.Net Framework) 

Aspect.pm Set of Perl libraries for AOP 

AspectR AO concepts for Ruby 

AspectS AO extension of Squeak/Smalltalk 

Pythius AO construct for  Python 

Caesar AOP language focused on multi-view decomposition and aspect reusability 

Apostle AspectJ like extension to Smalltalk 

ArchJava AO extension of Java with explicit software architecture constructs 

EAOP AOP for Java with expressive crosscuts, explicit aspect composition, and 

dynamic aspect management 

 

Table 1: Aspect Languages 
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Aspect Tools 

The table below details the aspects tools that are currently available as described in [4]. 

Tool Functions 

JAC (Java Aspect 

Components) 

Java framework for distributed for developing AOP focusing mainly on 

developing and AO middleware layer 

JMangler A framework that allows for load-time transformation of Java programs 

JMunger A tool that makes it possible to insert Java code into existing classes at load 

time 

PROSE (Programmable 

Service Extensions) 

AOP platform based on the Java Virtual Machine that allows dynamic 

weaving and un-weaving 

UMLAUT 
A framework for building application specific weavers to weave multi-

dimensional high-level UML design models into detailed design models 

suitable for implementation, simulation or validation 
Aspect Browser A graphical software tool that uses the map metaphor to assist finding, 

exploring, and manipulating crosscutting concerns in software 

Aspect Mining Tool 

(AMT) 

A tool that facilitates the identification and exploration of concerns in a 

software system 

Noah A tool for AOP based on software interaction based on ISL (Interaction 

Specification Language) 

FEAT (Feature Analysis 

and Exploration Tool) 

A tool similar to AMT. It is developed as an Eclipse IDE plug-in and is used 

for locating, describing, and analysing implementations of concerns in Java. 

Concern Graphs A tool that provides a representation of concerns in system code that can be 

extracted from an existing codebase 

Weave.NET This tool aims to provide a language independent mechanism for supporting 

AOP that is also consistent with the .NET Framework component model 

 

Table 2: Aspect Tools 

2.3.2 Other AOSD Approaches 

This section details some alternative approaches that currently exist for AOSD.  

2.3.2.1 Hyperspaces 

Hyperspaces were designed to enable multi dimensional separation of concerns (MDSOC) [34]. MDSOC 

is defined as refer to flexible and incremental separation, modularization, and integration of software 

artefacts based on any number of concerns [1]. With this AOSD approach, concerns are grouped into 
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dimensions which represent a set of disjoints (i.e. concerns that have no units in common). Such 

dimensions enable the explicit identification of any concerns and management of relationships among 

concerns. The main advantage of hyperspaces is that they are designed to be utilised in all phases of the 

software lifecycle, thus promoting traceability between phases, and limiting the impact of change 

throughout. HyperJ is the tool that implements hyperspaces [34]. 

2.3.2.2 Compositional Filters 

The Compositional Filters (CF) approach to AOSD first detailed in [35], extends the conventional OO 

model in a modular way. The CF model provides mechanisms for adding an open-ended range of 

concerns to the object model with violating their basic mechanism. This is achieved through the 

manipulation of incoming and outgoing messages. The most significant components are the input filters 

(for received messages) and output filters (for sent messages). A single filter specifies a particular 

manipulation of messages. A combination of filters will therefore compose the behaviour of an object. 

Each filter consists of a pattern definition. Messages are matched against this pattern, and the filter 

subsequently determines the action to be performed depending on the acceptance or rejection of this 

message in the filter. ComposeJ [36] and ConcernJ [37] are two existing tools that support the CF 

approach to AOSD.  

2.3.3 Concern Manipulation Environment 

The Concern Manipulation Environment (CME) is currently being developed by IBM is a flexible, 

extensible, interoperable environment for AOSD [38]. CME consists of a suite of tools that enable the 

creating, manipulating, and evolving AO software, across the full software lifecycle. It has been designed 

to replace the hyperspace approach and provide added support to the MDSOC.  

2.4 Evaluation Metrics 

Currently no metrics have been proposed or devised for the evaluation of AO system [39]. This section 

describes some of the OO metrics that may be applied for evaluating AO software.  

2.4.1 The Chidamber and Kemerer (C&K) Metrics Suite 

The C&K metrics suite is an OO metrics suite that is designed to measure the key elements of OO 

software: encapsulation, abstraction, and inheritance [40]. This metrics suite was the first to be based on 

sound measurement theory, and has been empirically validated. For this reason, the C&K suite has been 

chosen for the evaluation in this dissertation. The suite is described in more detail in the Evaluation 

Metrics chapter (chapter 5) of the dissertation.   
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2.4.2 The MOOD (Metrics for Object Oriented Design) Metrics 

The MOOD metrics set [41] includes the following metrics; (1) Method Hiding Factor (MHF); (2) 

Attribute Hiding Factor (AHF); (3) Method Inheritance Factor (MIF); (4) Attribute Inheritance Factor 

(AIF); (5) Polymorphism Factor (PF); (6) Coupling Factor (CF). Each of those metrics refer to a basic 

structural mechanism of the object-oriented paradigm such as encapsulation (MHF and AHF), 

inheritance (MIF and AIF), polymorphism (PF) , message passing (CF) and are expressed as quotients. 

The exact definition of each is documented in [41].  

The mood metrics have not been chosen for the evaluation carried. [41] documents some problems 

regarding the mood set. The main drawbacks being its imprecise definitions and unlike C&K metrics 

suite, the mood set have yet to be validated empirically.  

2.4.3 Morris 

In his Master’s thesis [42], Morris proposed a set of metrics for productivity measurement. The metrics 

included;  (1) Methods per class; (2) Inheritance Dependencies; (3) Degree of Coupling between Objects; 

(4) Degree of Cohesion of Objects; (5) Object Library Effectiveness; (6) Factoring Effectiveness; (7) 

Degree of Reuse of Inheritance Methods; (8) Average Method Complexity; (9) Application Granularity. 

The exact definitions of each are detailed in [42]. 

Although some of the metrics are similarly named to those of the C&K suite, their definitions differ 

slightly.  The focus of the Morris metrics is on productivity only and ignores other attributes such as 

maintainability and testability which are important elements required in my evaluation. As with the 

MOOD metrics, those proposed by Morris have not been empirically validated.  

2.5 Related Research/Work 

This section documents some of the ongoing work that is related to the adoption AOSD in the real-time 

domain using RTJava. Also described are several real-time applications that under development using 

AOSD. 

2.5.1 Translation of Java to Real-time Java Using Aspects 

Memory management and scoped memory was one of the areas introduced by the RTSJ which allows 

programmers to allocate memory to objects that will not be garbage collected. [43] documents the use of 

aspects and AspectJ to transform a Java program to a RTJava program that satisfies real-time constraints. 

The research focuses on the area of memory management and the use of aspects for dealing with scoped 

memory. 
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The main goal of the research is to define an automatic way for translating Java code into scope aware 

RTJava code (i.e. automating the creation of RTSJ memory scopes). To achieve this, the concept of 

probing aspects is introduced. A reference-probing aspect is used to determine thee legal RTSJ 

ScopedMemory assignments. It builds a doesReference graph to track which objects refer to other 

objects, with object instantiations and assignments used as join points. In turn a liveness-probing aspect 

is defined to determine the points at which objects are dead or unreachable and thus flushed from 

memory. 

This study showed that by using AOP techniques for dealing with the scoped memory area addressed by 

RTSJ, many benefits associated with AOP are gained, including more modular code, lower development 

costs, and code that is easier to understand and maintain. From a real-time perspective, two additional 

benefits are attained; having aspect code in the target program will introduce real-time predictability; and 

user source files are unchanged as separate aspect source code will describe any real-time modifications. 

Thus this study provided a good basis for the work when implementing the memory management area in 

the Simulator. It also indicated that aspects were likely to have some impact (whether good or bad) when 

used in the development of the RTJava areas. 

2.5.2 On Aspect-Orientation in Distributed Real-time Dependable Systems 

The design and implementation of real-time systems usually involves the consideration for many non-

functional properties. [44] documents how AOP can be used to address these non-functional issues and 

what the benefits are. The main issues addressed are distribution, real-time, and fault tolerance, with 

aspects for each developed using AspectC++. 

The research introduces a real-time aspect to handle temporal constraints posed by the real-time domain. 

The idea of a watchdog (per-thread watchdog timer) is proposed to monitor and regulate the execution of 

component code, ensuring that it is processed within the required time boundaries. 

An interesting finding of this study indicated that aspects could be useful in improving real-time systems 

performance predictability. Without AOP, the watchdog code would have to be inserted manually into 

the component code wherever necessary. In addition to code scattering, this may introduce an 

unnecessary overhead if the component is reused outside the real-time domain. This problem is 

exasperated if the component is only subject to time constraints when called from specific locations in 

the application. 

2.5.3 jRate 

jRate is currently under development at the University of California, Irvine (UCI). jRate is an open 

source a-head-of-time compiled implementation of the RTSJ that is developed using AOSD techniques. 
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[19] describes its design and performance evaluation as compared to other RTJava implementations that 

were developed using traditional programming approaches, mainly OO. 

GCJ Runtime

RT-Java
Application jRate

Host
(x86, PPC, ARMS)

 

FIGURE 7: JRATE ARCHITECTURE 

  

The goal of the project was to make jRate a generative RTSJ implementations, thus adopting AspectJ and 

AspectC++ during development. The advantage of this according to Corsaro and Schmidt was that these 

aspect languages will be better capable of dealing with static and dynamic crosscutting properties of the 

implementation. Within the implementation, aspect-oriented constructs are used for the implementation 

of several RTSJ areas such as memory areas, real-time threads and scheduling, and asynchrony. 

The performance evaluation presented in the paper is based on the RTJPerf benchmarking suite 

developed by Corsaro and Schmidt for RTSJ [19]. The results show that jRate is both more efficient and 

predictable than the RTSJ reference implementation. The main problem with jRate is that at present it 

does not implement many core RTSJ features. Future work associated with jRate is to complete the RTSJ 

implementation, with the long term goal to create a set of components that allow users to generate 

custom RTJava implementations tailored for particular requirements and environments. And according to 

the authors this will most likely be done using the AOSD approach. Due to these limitations, this 

dissertation did not adopt the jRate implementation of the RTSJ, but instead used the TimeSys RI 

(described above).  

2.5.4 AIRES 

The AIRES (Aspects in Real-time Embedded Systems) project being carried out by BBN Technologies 

[45]. A major finding of this project is the identification of some of the areas where AOSD were limited 

in its support for developing distributed real-time embedded (DRE) systems. One reason for this is the 

immaturity of AOSD, while others are due to the specific characteristics of DRE applications. 

The aim of the AIRES project is to advance the state of the art of AOSD by addressing the above 

limitations. To achieve this, certain parts of the AOSD technology will be investigated and developed. At 
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present, the project is at the stage of developing Aspect Suites for Embedded Systems with several 

innovative features. Such features include; a unified approach to AOSD that will address both functional 

and systemic aspects; investigation of the composition, and conflicts between aspects in regard to real-

time facets, in particular timing and synchronisation; and research development of DRE application 

using AOSD, including static analysis and design of composed aspects and more advance weavers for 

dealing with temporal constraints.  

2.5.5 FACET 

FACET or Framework for Aspect Composition for an Event Channel [46] is a project aimed at 

investigating the development of customisable middleware using AOSD. The main focus of the project 

has been the development of a real-time event channel in Java using AspectJ. The purpose and benefits 

derived from using aspects is to weave in features, namely real-time specific features, required for the 

target application. The advantages given are those that are resulting from AOSD, including better 

modularisation and separation of concerns, code that is easier to understand and maintain, and simpler 

and more flexible feature addition. 

Currently FACET has developed a based implementation that allows features to be added to target 

applications by weaving aspects. Although not developed using RTJava, the real-time event features 

have been developed using AspectJ, highlighting the benefits of using AOSD for real-time system 

development. 

2.5.6 Real-time Filters 

In real-time environments, at least some of the classes in the system impose temporal constraints upon 

the execution of methods. When such classes are reused in other applications, change to either the 

application requirements or to the real-time constraint specifications in subclasses may result in 

excessive redefinitions of superclasses whereas this would be intuitively unnecessary. [47] refers to this 

as a real-time specification anomaly, which arises when real-time specifications are mixed with 

application code or when independently define but related specifications are composed together. As a 

solution to these anomalies, the Compositional Filters approach to AOSD is used. With it, the concept of 

a real-time composition filter is introduced. Such filters can be used to affect real-time characteristics of 

messages that are received or sent by an object. Proper configuration of these filters allows real-time 

constraints to be specified and reused, resulting in decoupling that ensure that the aforementioned 

anomalies will not occur. Unlike this dissertation, this study does not adopt the aspect approach, but it 

further highlights a growing interest in real-time systems development using AOSD. 
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2.5.7  An Initial Assessment of Aspect-Oriented Programming 

[48] documents a number of experiments that were carried out to assess the capabilities of AOP. In the 

experiments, participants were divided into two groups, one working with AspectJ, the other working 

with an object-oriented control language. The performance and experiences of the participants were then 

compared while carrying out two common programming tasks; debugging and change.  

The first experiment, debugging, highlights that the AspectJ participants were able to finish the tasks 

faster that the participants using Java. The second experiment, change, contrasts the first with the 

AspectJ participants requiring more time to complete tasks than the participants using the non-aspect 

oriented control language Emerald. 

The research raises two interesting insights into AOP. Firstly, programmers may be better able to 

understand an aspect-oriented program when the effect of the aspect code has a well defined scope. 

Secondly the strategies programmers use to address tasks perceived to be related to aspect code may be 

altered due the presence of that aspect code. The first insight supports the findings that were established 

during the evaluation of the Simulator. Although there were cases in which aspects eased system 

understandability, there were also instances where the understanding of the application was more 

difficult due to a wider scope that was caused as a result of aspect code. These findings are discussed in 

more detail in the Evaluation chapter of the dissertation (chapter 6). 

2.5.8 Challenges of Aspect-Oriented Technology 

Alexander et al. in [49] describe the research they conducted into the costs and benefits associated with 

AOSD in terms of its impact on software engineering. The research aims to understand both the strengths 

and limitations of AOSD and to raise awareness of the potential negative side effects of its use. Some of 

the criteria used for this analysis are; understandability, emergent properties and fault resolution, implicit 

changes in syntactic structure and semantics, and effects on cognitive burden. Thus this research 

highlights a number of important points that need to be considered when developing application using 

AOSD. 
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3 Object-oriented Design and Implementation 

This chapter describes the design and implementation of the Sentient Traffic Simulator both prior to any 

alterations to include RTJava or AOP related constructs and also inclusive of RTJava modifications. In 

the case of the latter, each of the seven enhanced areas are detailed along with the affects that they have 

on the original implementation. 

3.1 Background 

The original design and implementation of the Simulator, prior to any alterations to include Real-time 

Java or AOP related constructs, had three distinct goals related to sentience and intelligence [9].These 

goals are: 

• To design an accurate as accurate a model for a vehicle as possible 

• To accurately reflect the sentient properties of a vehicle and the data obtained from sensors 

• To accurately reflect the communication between vehicles through the use of sensors 

 However, despite the hard real-time properties of the Simulator, real-time compliance was not a goal of 

the original implementation.   

The Simulator itself consisted of a number of vehicles, either normal cars or emergency vehicles, driving 

on a four lane road. The objective for each vehicle is to reach its predefined desired speed (which differs 

for each).  In order for each vehicle to reach its desired speed, sensor information is sent and read by all 

vehicles in the network. Through the interpretation of this data, vehicles can paint an accurate picture of 

the entire road network and all its components. Thus a particular vehicle can “sense” the speed and 

locations of other vehicles and hence react to its surroundings. For example a vehicle must reduce its 

speed if it senses a slower vehicle ahead in order to avoid collisions. Another example is if a car senses 

an emergency vehicle approaching, it must change lanes to let it easily pass by.  

The original design of the Simulator is shown in figure 8. The implementation (without any real-time 

functionality) consisted of eight classes:  

• Vehicle.java – implements the properties and mechanics of real-world vehicles (such as the 

car length and width, its maximum speed etc.), sentience (enabling it to react intelligently 

to its surroundings), and  communication (consisting of reading and sending of sensor 

information between vehicles) 

• Car.java – subclass of Vehicle with specific protocols. These protocols specify the rules 

relating to how a car is to be operated within the sentient environment. Sample rules 
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include changing lanes if a slower car is in front of them, to maintain the safety margin 

between cars, and changing lane if an emergency vehicle is behind. 

• EmergencyVehicle,java – subclass of Vehicle with specific protocols (as compared to Car) 

• ViewableCar.java – contains the specific properties visible to all vehicles through sensors 

• ListOfCars.java – representation of all the vehicles in the network 

• Road.java – representation of the road network 

• RoadPanel.java – graphical output of the program 

• Simulation.java – main class 

Of the eight classes, RoadPanel.java is the only class responsible for graphical functions. The remaining 

seven classes implement the core functionalities of the simulation such as object sentience and context 

based behaviour. It is these remaining seven classes that exhibit the need for real-time behaviour. Such 

constraints are introduced to ensure that certain functions (in these classes) meet critical temporal 

constraints of the real-world as ignored from the original implementation. 

VehicleViewableCar

CarEmergencyVehicle

ListOfCars

Simulation

RoadPanelRoad

 
 

FIGURE 8: SENTIENT TRAFFIC SIMULATOR CLASS STRUCTURE 

 

[9] gives a detailed description of the original design and implementation of the Simulator. 

In contrast, figure 9 illustrates the class structure of the Simulator inclusive of RTJava constructs.  
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FIGURE 9: SENTIENT TRAFFIC SIMULATOR CLASS STRUCTURE WITH RTJAVA CONSTRUCTS 

 

There are only minor changes made to the original design to enable the inclusion of the seven enhanced 

RTJava areas. Firstly there are the additions of a number of handler classes that are required for the 

handling of the different types of asynchronous events that are thrown by the Simulator in the real-time 

implementation). Secondly there is the use of an RTUtil class, which provide utility functions related 

RTJava constructs.  And thirdly two RealtimeThread subclasses were implemented which provide 

specific real-time threading behaviour required for the Simulator. 

The identification of real-time concerns was performed in two manners. Firstly existing constructs in the 

Simulator which require alteration to satisfy real-time constraints were determined. Functionality 

implemented with using threading, object creation, and synchronization is the main examples of this. 

Thus existing threads in the system which were originally programmed using conventional Java threads 

were, in the real-time version, altered to real-time threads. Similarly for objects that are created in the 

Simulator. The original implementation assigned all objects to the heap meaning it was possible for these 

objects to incur unpredictable time delays due to garbage collection activities. This of course is 

unacceptable in a real-time environment. Therefore objects, in the real-time version of the 

implementation need to be allocated to memory that is not affected by any unpredictable behaviour.  

The second method for identifying real-time concerns was less trivial and required a far deeper 

understanding of the original implementation and its execution flow. An examination of the codebase 

was performed to determine which points in the program’s execution required RTJava constructs. For 

example asynchronous event handling was used to replace previous implementation dealing with certain 

events. For example, when a vehicle senses that there is a slower vehicle ahead, then an event is fired to 

notify it to slow down and avoid collision. This previously consisted of another method call to handle 
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this operation. Thus RTJava constructs are used instead as they provide a more real-time correct way of 

dealing with such functionality. Also certain functionality were grouped together in the original 

implementation and thus executed in a single thread manner. This may be problematic in a real-time 

context with each operation incurring time delays. In the original implementation of the Simulator, the 

thread responsible for providing the driving operations of a vehicle was also responsible for the 

interpreting of sensor information of other vehicles, updating its own sensor information, and also the 

driving manoeuvres of the vehicle itself (i.e. change lanes, accelerate, decelerate). Thus it was necessary 

to introduce a single interruptible thread to handle each task above. These were the two main tasks 

carried out to identify where real-time behaviour and RTJava constructs were necessary to enable the 

Simulator to satisfy real-time constraints, with examples of each case described.  

The table below shows the three main requirements as set out for the original implementation, and the 

RTJava alterations that are required for each to transform the Simulator into a system that is compliant 

with the real-time property of predictability performance.  

Requirement RTJava Constructs Required 

Accurate Vehicle 

Model 

Thread scheduling & dispatching, Memory management, Asynchronous event 

handling, Asynchronous transfer of control, Asynchronous thread termination, 

Physical memory access 

Sentience Memory management, Synchronization and resource sharing,            

Asynchronous event handling, Physical memory access. 

Communication Thread scheduling & dispatching, Memory management, Synchronization and 

resource sharing, Asynchronous event handling, Asynchronous transfer of 

control, Asynchronous thread termination, Physical memory access 

 

Table 3: Simulator Requirements and RTJava Constructs Relationship 

 

3.2 Thread Scheduling and Dispatching 

Real-time threads differ from conventional Java threads as they possess scheduling attributes that are 

more carefully defined. Real-time threads differ in that they are created with a set of parameters 

specifying real-time attributes. The parameters are: 

• Scheduling parameters – specifies the scheduler to be used and the priority given to the thread 

• Release parameters – waiting period for a thread when waitForNextPeriod method is used 

• Memory parameters – sets limits on the amount of memory a thread can use 
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• Memory area parameter – the memory pool used by the thread (either heap, immortal, or 

scoped) 

• Processing group parameter – specifies the particular processing group that a thread is in. The 

consequence of this is the resource consumption activities of all the threads in a group cannot 

exceed the allocated amount for that group 

• Logic parameter – refers to an instance of a class that implements the Runnable interface 

The constructor of the RealtimeThread, with the six parameters, is as follows: 

public RealtimeThread (SchedulingParameters scheduling, 

 ReleaseParameters release,  MemoryParameters memory, 

 MemoryArea area, ProcessingGroupParameters group,

 java.lang.Runnable logic) 

On creation of a real-time thread, all the above parameters need to be specified reflecting the particular 

characteristics that the new thread is required to have. If a null value is given for any of the parameters, 

then the default value (as specified in the RSTJ) is used.  

The Simulator requires the use of a number of threads throughout its execution flow. Threading was used 

in the following instances: 

• To start the simulator – this is done in addition to the main thread (i.e. the main thread starts 

another thread) 

• Each Vehicle object is run in a separate thread – this thread was responsible for a number of 

operations such as driving, detecting collisions, updating vehicle attributes, reading sensor 

information, and performing manoeuvres (turn right, turn left, slow down). 

Thus in the OO real-time version of the Simulator, the above threads were transformed to real-time 

threads. In addition, the second thread specified above was separated into numerous threads, one for each 

operation.  

Figure 10 highlights the classes that implemented thread scheduling and dispatching functionality.  (The 

prominent coloured classes are those that contain the functionality) 



 36

ViewableCar Vehicle

CarEmergencyVehicle

ListOfCars

Simulation

Road

CollosionEvent
Handler

RightTurnEvent
Handler

LeftTurnEventH
andler

FaultTriggeredEvent
Handler

MoveBlockersEvent
Hnadler

VehicleAttributeEvent
Handler

FasterCarEvent
Handler

RoadPanel

RTUtil

SimulationRT
Thread

SimulationPeriodic
Thread

 

FIGURE 10: CLASSES CONTAINING THREAD SCHEDULING AND DISPATCHING FUNCTIONALITY  

 

Two types of real-time threads were implemented in the Simulator (by specifying different constructor 

parameters). The first type reflects the behaviour of a normal thread, executing operations specified in its 

run method on the calling of the start method. The second type, known as a periodic thread, differs 

slightly. The distinguishing factor is that these type of thread repeats its operations (implemented in run) 

in iterations of a specified time. Thus calling start the thread will call its run method, wait for the 

specified time interval and then perform its run again.  

Implementation of the above threads is done in two ways in the Simulator. The first techniques utilises 

subclassing of the RealtimeThread class. The approach is beneficial when a several real-time 

threads in the system require the same real-time behaviour (i.e. have the same RealtimeThread 

instantiation arguments). This would therefore enable each of threads to be more easily created. This is 

because the programmer will not need to create and initialise all RealtimeThread arguments each 

time a new thread is created, but instead simply call the constructor of the RealtimeThread subclass. 

The second technique differs and involves the creation and initialisation of RealtimeThread 

arguments at each point of thread instantiation. This is the problem that the subclassing technique aimed 

to solve.  However this technique is beneficial when each real-time thread in a system requires a 

variation in their real-time behaviour (i.e. different values for any of the RealtimeThread constructor 

arguments). Subclassing in this instance would be of little benefit. 
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The first technique used subclassing for implementing real-time threads. This was possible as numerous 

real-time threads in the Simulator had identical behaviour (i.e. the same constructor parameters). As a 

result it was possible to specify the behaviour of these two different types of real-time threads used in the 

Simulator as subclasses of RealtimeThread. Creation of these threads could be done with a no 

argument constructor eliminating the need for all the thread parameters to be constructed and specified at 

the point of thread creation.  

Two subclasses of RealtimeThread are implemented in the Simulator to reflect the two types of real-

time threads used. The code for the two RealtimeThread subclasses, SimulationRTThread and 

SimulationPeriodicThread, in the Simulator are shown below: 

public class SimulationRTThread extends RealtimeThread { 
    public SimulationRTThread() { 
     super((SchedulingParameters)  
      (new PriorityParameters( 
       PriorityScheduler.MIN_PRIORITY + 30)), 

         (ReleaseParameters) (new AperiodicParameters( 
          null, null, null, null)),  
            new MemoryParameters(MemoryParameters.NO_MAX, 0), 
            (MemoryArea) (ImmortalMemory.instance()), null, null); 
    } 

} 

public class SimulationPeriodicThread extends RealtimeThread { 
    public SimulationRTThread() { 
     super((SchedulingParameters) (new PriorityParameters( 
   PriorityScheduler.MIN_PRIORITY + 20)), 

         (ReleaseParameters) (new PeriodicParameters( 
              new RelativeTime(), new RelativeTime(50, 0), 
                 null, new RelativeTime(5000, 0), 
                 null,null)),  
            new MemoryParameters(MemoryParameters.NO_MAX, 0), 
            (MemoryArea) (ImmortalMemory.instance()), null, null); 
    } 

} 
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As shown, the two classes extend the RealtimeThread superclass and differ only in the parameters 

passed to a call to super. These parameter differences are significant as they indicate the real-time 

behaviour of thread execution. 

It is important to note that if additional variations of real-time threads (different to those above) are used 

in the system, more subclasses need to be added to reflect the differences in behaviour. 

The second implementation version of real-time threads in the Simulator does not utilise subclassing. 

Instead all parameters are specified at the point of thread creation. Thus the six parameters need to be 

constructed and passes wherever a new real-time thread is instantiated. The code for this is specified 

below: 

SchedulingParameters scheduling = new PriorityParameters( 
 PriorityScheduler.MIN_PRIORITY + 20); 

ReleaseParameters release = new AperiodicParameters(null, null, null, null); 
MemoryParameters memory = new MemoryParameters( 
 MemoryParameters.NO_MAX, 0); 

MemoryArea area = ImmortalMemory.instance(); 

ProcessingGroupParameters group = null; 
        

drivingRT = new RealtimeThread(scheduling, release, memory, area,  group, 
null) 
...  

This method gives programmers the freedom to specify specific parameters each time to reflect the 

different behaviour that each real-time thread may require. Thus if each real-time thread created is 

slightly different to others, this is the programming practice that would be followed. It must be noted that 

although this method provides the flexibility of creating contrasting thread behaviour for each real-time 

thread, this was not done in the Simulator. Each real-time thread used the thread properties identical to 

those described for the subclasses above. That is threads are either periodic or not.  

Moreover the creation of real-time threads, threads in RTJava also differ to conventional threads in 

relation to a feasibility check that needs to be performed before they can be started. This feasibility check 

(using the isFeasible method) is carried out on all real-time threads to ensure that the scheduler has 

enough resources to satisfy the resource requirements in the thread’s scheduling parameters, release 

parameters, memory parameters, and processing group parameters. If the scheduler cannot allocate the 

necessary resources, the isFeasible method returns false, and does not execute the thread. Thus the 

code for checking this feasibility and starting a real-time thread in the Simulator is shown below: 
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RealtimeThread rt; 

... 

if (!rt.getScheduler().isFeasible()) { 
 throw new Exception("Problem starting real-time thread"); 
} else { 
 rt.start(); 

} 

The code illustrates that the particular RealtimeThread object that is to be started needs to retrieve 

its assigned scheduler object. Once this is complete, it is determined if this scheduler has the necessary 

resources required for running the thread. An exception is thrown if insufficient resources are available; 

otherwise a call to start is made. In the Simulator, this function is implemented as a separate 

startRTThread static method which can be shared among all real-time threads.  

3.3 Memory Management 

As stated before, the problem with Java for real-time systems is that its garbage collector introduces 

unpredictability. Memory management in RTJava enables the creation of objects that are not subject to 

garbage collection and will therefore not experience delays caused by its unpredictable execution.  

RTJava provides a number of different memory types that are not subject to garbage collection: physical 

memory, immortal memory, and scoped memory. 

The memory types of physical memory and scoped memory are not implemented in the Simulator.  

Physical memory could not be implemented due to hardware constraints while non garbage collectable 

objects in the Simulator were not associated with any execution scope.  In contrast, objects (that were not 

garbage collectable) were required to persist until the JVM terminates. Consequently the immortal 

memory type was implemented for objects (not subject to garbage collection) in the Simulator.  

Figure 11 shows the classes that implemented memory management functionality.  
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FIGURE 11: CLASSES CONTAINING MEMORY MANAGEMENT FUNCTIONALITY  

 

RTJava provides a number of mechanisms for creating immortal objects. Some of these are associated 

with threading (where threads are assigned to different memory types as specified by the memory area 

constructor parameter). The remaining mechanisms are used for the creation of immortal objects. 

Creation of immortal objects can be classified into two categories – objects with no argument 

constructors and objects with argument constructors. 

As the original implementation ignored any real-time necessities, all objects were allocated to the heap, 

meaning that they are all subject to garbage collection (and will therefore incur delays when it is 

executed). This unpredictability is not satisfactory in a real-time environment, thus objects (in the real-

time version) of the Simulator should be assigned to memory that is not subject to garbage collection 

activities.  

Of the objects in the Simulator the following were to be created in immortal memory: 

• Car.java – argument constructor 

• EmergencyVehicle – argument constructor 

• ViewableCar – argument constructor 

• ListOfCars – no argument constructor 

• Road – no argument constructor 
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These objects are central to the operation of the Simulator and are subject to real-time constraints. 

Therefore the operation of these objects should not be unpredictably delayed by the garbage collector. 

Consequently they are chosen to be assigned to immortal memory and will persist until the JVM 

terminates.  

The creations of immortal objects (for both arguments and no argument constructors) cannot be done 

using the traditional new operator on the constructor. Instead immortal object allocation involves a more 

verbose codebase.  

Examples of the code used in the Simulator for the creation of objects with non argument constructors 

(ListOfCars and Road) are illustrated below:  

roadNetwork = (Road) ImmortalMemory.instance(). 

 newInstance(Road.class); 

listOfCars = (ListOfCars) ImmortalMemory.instance(). 

 newInstance(ListOfCars.class); 

The combination of the newInstance method and Java’s reflection mechanism enables objects with 

non argument constructors to be allocated to immortal memory.  

The code for objects with argument constructors differs quite significantly and involves a number of 

additional steps. Also argument constructors require additional methods which provide the specific 

operations required for immortal memory. Thus in order to create immortal objects, a call one of these 

methods is required. The codebase for the ViewableCar object with argument constructor to be 

allocated to immortal memory are shown below: 

public static ViewableCar createViewableCar(String name, boolean isVeh) { 
 ViewableCar vcar = null; 
       try { 
           Class[] paramTypes = new Class[2]; 
            Object[] params = new Object[2];                  
            paramTypes[0] = Class.forName("java.lang.String"); 

            paramTypes[1] = Class.forName("java.lang.Boolean"); 

            params[0] = name; 

            params[1] = new Boolean(isVeh); 
            Class classType = Class.forName("ViewableCar"); 

   Constructor constructor =      
      classType.getConstructor(paramTypes); 

             vcar = (ViewableCar) ImmortalMemory.instance(). 
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              newInstance(constructor, params);  

        } catch (IllegalAccessException iae) { 
             System.out.println("Illegal Access Exception in creating  
   immortal viewable car object"); 

        } catch (InstantiationException ie) { 
            System.out.println("Instantiation Exception in creating  
   immortal viewable car object"); 

        } catch (ClassNotFoundException cnfe) { 
            System.out.println("ClassNotFound Exception in creating  
   immortal viewable car object"); 

        } catch (NoSuchMethodException nsme) { 
            System.out.println("NoSuchMethod Exception in creating  
   immortal viewable car object"); 

        } 

        return vcar; 
    } 

Creating the above object and others with argument constructors is clearly more verbose than both 

normal Java objects and immortal objects with non argument constructors. Additional steps relating to 

building parameter using Class and Object arrays as well as a Constructor object are necessary. 

Also creation of these objects is done through calling the above createViewableCar method as 

opposed to either the new operator (for normal Java objects) or newInstance (on 

ImmortalMemory as described for non argument constructor objects).  

3.4 Synchronization and Resource Sharing 

The concept of synchronization in RTJava is the same as that for normal Java systems. From a design 

and coding perspective, what programmers view is essentially identical. Only the implementation details 

of the specification (Java vs. RTJava) differ. RTJava strengthens the semantics of Java synchronization 

for real-time systems.  

Consequently the design and implementation of the synchronization properties of the Simulator remain 

unchanged. On examination of the codebase, real-time compliant synchronization was required wherever 

synchronization was previously implemented. In addition it was also determined (through examining the 

implementation) that there were no other points in the programs execution that required synchronization 

properties (i.e. making the Simulator real-time compliant did not necessitate any additional 

synchronization of objects). 

Figure 12 shows the classes that implemented synchronization and resource sharing functionality.  
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FIGURE 12: CLASSES CONTAINING SYNCHRONIZATION AND RESOURCE SHARING FUNCTIONALITY  

 

In the Simulator, locking of the ListOfCars object was required.  This object is accessed by all 

vehicles in the network for gathering data about other vehicles. Real-time access is essential as vehicles 

require this information in order to paint a global picture of the road network (i.e. where other cars are 

located in relation to itself, the velocity they are travelling at etc.). Therefore this concurrent access needs 

to be controlled in a real-time manner.  (Obviously a single object containing all details about the 

network that all vehicles read and write to is insufficient in the real-world. However for illustration 

purposes, the Simulator uses a single shared object for such purposes). 

The RTJava synchronization code is shown below:  

public synchronized void clearPoll(String name) { 

 while (updated == false) { 

  try { 
         wait(); 

        } catch (InterruptedException e) { 
         throw new Exception("Synchronization Problem"); 
        } 

  updated = false; 
  pollValue = -1; 
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  linkedCar = new String(""); 
  parameter = 0; 

  updated = true; 
  notify(); 

 } 

} 

As evident, this code does not differ significantly from that of traditional Java synchronization. The 

clearPoll method is synchronized, and the accessing thread is forced to wait if the updated 

variable equals false. Also a call to notify is made when the executing thread is finished the operations 

described within.  

The concept of wait-free queues is also implemented in the Simulator. However these queues were not 

implemented as part of the core functionality, but simply for illustration purposes. The reason for this is 

that core classes which contain the functional behaviour did not require any thread and real-time thread 

interaction (All threads in the Simulator are real-time threads). 

The code shown below is based on test implementations in the Simulator (and is not part of the final 

implementation). It represents the periodic threads in the Simulator that accept new period values from a 

wait-free write queue. This was done in the Simulator to decrease the time between consecutive sensor 

polls that are executed by each vehicle. 

public static void readPeriod() { 
 RelativeTime newPeriod; 

 WaitFreeReadQueue queue; 

 RealtimeThread rt = currentRealtimeThread();   

 while(true) { 
  newPeriod = (RelativeTime)queue.read(); 

  // update period in thread if possible 

  if(newPeriod != null) { 
   PeriodicParameters oldParam; 

   oldParam = (PeriodicParameters)     
  rt.getReleaseParameters(); 

   oldParam.setPeriod(newPeriod); 

  } 

  rt.waitForNextPeriod();  

 } 

} 
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The accessing thread (i.e. the current thread above) is allowed to read the queue without waiting. This is 

one of the principles of WaitFreeReadQueue objects (but WaitFreeWriteQueue require 

synchronized access). The time period is read by the thread and the old waiting period is set with the new 

period read previously. The real-time thread then waits for the specified period before repeating the 

above steps.  

3.5 Asynchronous Event Handling 

Asynchronous event handling enables a system to handle events that may occur asynchronously outside 

of the JVM (These external events are known as happenings in RTJava). Asynchronous event handling is 

based on the same concept as traditional event handling in Java – binding events to triggers and handlers 

and firing the event.  

In the case asynchronous event handling, AsyncEventHandler classes are used for happenings. An 

asynchronous event causes the run method in the AsyncEventHandler class to execute. The run 

method calls the handleAsyncEvent method once for each time the event is fired.  

In the Simulator, asynchronous events are thrown when a vehicle needs to carry out a particular action 

depending on sensor data received from other vehicles. For example if a car sensed an emergency vehicle 

was behind, then it should change lanes. In such a case, an asynchronous event is fired to notify the car 

that it should change lanes. Thus asynchronous events are adopted in the following contexts: 

• Emergency vehicle behind – change lane (left or right) 

• Slower car ahead – change lane (left or right) 

• Slower car ahead and not possible to change lanes – slow down 

• Received new sensor data – update vehicle attributes  

Asynchronous events are also thrown in the system when faults (exceptions) occur in the Simulator. 

Thus whenever an exception is raised, it is handled by an AsyncEventHandler subclass 

(FaultTriggeredEventHandler) which performs the necessary operations to handle such faults.  

Figure 13 shows the classes that implemented asynchronous event handling functionality.  
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FIGURE 13: CLASSES CONTAINING ASYNCHRONOUS EVENT HANDLING FUNCTIONALITY  

 

The introduction of asynchronous event handling into the Simulator not only required the alteration of 

core classes (for firing asynchronous events), but also a set of asynchronous event handler classes used 

for performing the necessary operations when a particular asynchronous event is fired. Seven 

asynchronous event handler classes have been added to the Simulator in total. These are: 

CollisionEventHandler, FasterCarEventHandler, FaultTriggeredEventHandler, 

LeftTureEventHandler, RightTurnEventHandler, MoveBlockersEventHandler, 

and VehicleAttributeEventHandler. All these classes extend the AsyncEventHandler 

class. 

The code below illustrate the binding of events to a particular event name and the adding of handlers to 

these events.  

public static void bindAsyncEvent(Class eventClass, String bindName) { 

 AsyncEvent event = null; 
 AsyncEventHandler handler = null; 
 MemoryArea immortal = ImmortalMemory.instance(); 

 try { 
  handler = (AsyncEventHandler)      
  immortal.newInstance(eventClass); 
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       event = (AsyncEvent) 

   immortal.newInstance(AsyncEvent.class); 
 } catch (InstantiationException e) { 
  System.out.println("Instantiation Exception"); 

 } catch (IllegalAccessException ie) { 
       System.out.println("Illegal Access Exception"); 

 } 

 event.addHandler(handler); 

 event.bindTo(bindName); 

... 

The method accepts a Class and String object which represent the class of asynchronous event and the 

name the event is to be bound respectively. An asynchronous event and an asynchronous event handler 

objects are created in immortal memory (to avoid garbage collection activities). The asynchronous event 

handler is reference to the particular event (represented by the argument passed).  Finally the 

asynchronous event is bound to both the handler and the name as shown.  

The call event.fire() illustrates the actual firing of asynchronous events when required. These 

calls are scattered throughout the application and called when necessary.  

Also shown is the code for the LeftTurnEventHandler asynchronous event handler classes. This 

class like all other asynchronous event handler classes provide concrete implementation for the abstract 

handleAsyncEvent method declared in the AsyncEventHandler parent class. 

public class LeftTurnEventHandler extends AsyncEventHandler{ 
    public void handleAsyncEvent() { 
       // code that is executed when this 

       // particular async event is fired 

        Vehicle.shiftLaneLeft(); 

    } 

} 

Each of the asynchronous event handler classes inherit from the AsyncEventHandler class and thus 

are required to implement the abstract handleAsyncEvent() method. This method is automatically 

called when an event of the asynchronous event handler class type is fired. Thus operations implemented 

in the handleAsyncEvent() method are those that are executed for handling a specific 

asynchronous event.  



 48

3.6 Asynchronous Transfer of Control 

Asynchronous transfer of control (ATC) is a mechanism that lets one thread throw an exception into 

another thread. RTJava provide two mechanisms for the implementation of ATC – the fire method and 

Java’s exception handling mechanism. 

The fire method for ATC is a combination of the fire method on 

AsynchronouslyInterruptedException (AIE), together with the AIE object’s 

doInterruptible method. This mechanism allows asynchronous interrupts to be directed at 

particular methods. The advantage of this is that AIE can be associated with a doInterruptible 

method and thus execute the required operations when such an exception is thrown. 

The exception handling mechanism for ATC differs slightly in that it is adopted when AIE’s are not 

related with any specific doInterruptible methods. Such exceptions are known as generic AIE. 

Thus handling of these generic AIE’s are done using conventional exception handling techniques with 

the catch block catching the thrown AIE. This case differs from the fire method as it allows AIE’s to 

be propagated through multiple catch clauses until it reaches the threads runnable method. 

In the Simulator, there are two instances that require ATC. The first instance relates to the updating of 

Vehicle attributes which are visible by other vehicles in the network (i.e. its ViewableCar object). If 

more recent sensor data arrives before the previous update is complete, then the real-time thread still 

performing the previous update needs to be interrupted. A newer thread which is executed to update the 

attributes with the more recent data causes the interruption. The second case is similar and relates to 

vehicles reading data about other vehicles. If this more up to date sensor information is available about 

other vehicles before this operation is complete, then it is interrupted. A newer thread which is started to 

read the more recent data causes the interruption of the previous thread. 

The above ATC cases are implemented in the Simulator in two versions, one using the fire method and 

the other using the exception handling mechanism. This is done in order to illustrate both mechanisms 

which programmers may choose when implementing ATC. 

Figure 14 highlights the classes that implemented asynchronous transfer of control functionality.  
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FIGURE 14: CLASSES CONTAINING ASYNCHRONOUS TRANSFER OF CONTROL FUNCTIONALITY  

 

The code shown below shows the Simulator’s implementation of ATC with the fire method.  

AsynchronouslyInterruptedException locAie; 

... 

locAie = new AsynchronouslyInterruptedException(); 
locAie.doInterruptible(new Interruptible() {  

 // called by JVM when a real-time thread is interrupted 

 public void interruptAction(AsynchronouslyInterruptedException ie) { 
        System.out.println("Thread interrupted"); 

  // operations to execute if real-time thread is interrupted               

 } 

 public void run(AsynchronouslyInterruptedException aie) throws  
  AsynchronouslyInterruptedException { 

  // interruptible code goes here 

 } 

}); 

The interruptible code is called with the doInterruptible method. Code with this method is 

designed to expect to be interrupted by a thrown AIE. As shown the interruptible code is placed in the 
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run method which throws an AsynchronouslyInterruptedException. The 

interruptAction method is provided in cases where the code needs to know it has been interrupted 

and take some action, such as clean up or logging of errors.  

The AIE is fired using the fire method of AsynchronouslyInterruptedException.  

ListOfCars.locAie.fire(); 

The exception handling mechanisms differs from this quite significantly. Interruptible code is simply 

placed in the try block with the subsequent catch statement, catching the 

AsynchronouslyInterruptedException that is fired when the code is interrupted. The code 

for this method, as implemented in the Simulator is shown below: 

try { 
 // interruptible code goes here 

} catch (AsynchronouslyInterruptedException aie) { 
 // operations that are called when an AIE is fired 

} 

It is clear that the above has the same structure as normal exception handling code. The operations that 

are to be executed when an AIE is fired are placed in the catch block (equivalent to that of the 

interruptAction method for the fire method of ATC). The interruptible code is placed in the try 

block. 

The AIE is fired in the same way as the fire method. 

ListOfCars.locAie.fire(); 

3.7 Asynchronous Thread Termination 

Calling the interrupt method on a real-time thread provides a common way for terminating threads. 

However it is not a reliable general purpose way to kill threads as other parts of the system affected by 

the terminated thread may be left in an inconsistent state. Thus the common way to handle thread 

termination is to use ATC techniques (in conjunction with the interrupt methods) as it allows for 

clean up (restoring inconsistent data). This is made possible as the call to interrupt throws an AIE. 

When this occurs, the thrown exception which will propagate through all previously visited catch 

clauses and interruptAction methods until it reaches the thread’s runnable method. Therefore it 

is possible for operations to be implemented in the clauses and methods that will perform any clean up 

that is necessary.  

The Simulator implements thread termination in two instances. They are identical described above for 

ATC – the fire method and the exception handling mechanisms of Java. 
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Figure 15 shows the classes that implemented asynchronous thread termination functionality.  
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FIGURE 15: CLASSES CONTAINING ASYNCHRONOUS THREAD TERMINATION FUNCTIONALITY 

 

The code below illustrates the implementation of the asynchronous thread termination area as done using 

the fire method (for ATC):  

AsynchronouslyInterruptedException locAie; 

RealtimeThread rt; 

... 

locAie = new AsynchronouslyInterruptedException(); 
locAie.doInterruptible(new Interruptible() {  

 public void interruptAction(AsynchronouslyInterruptedException ie) { 
        System.out.println("Thread interrupted"); 

  rt.interrupt(); 

  // perform clean up operations 

 } 

 public void run(AsynchronouslyInterruptedException aie) throws  
  AsynchronouslyInterruptedException { 

  // interruptible code goes here 

 } 

});  
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It is clearly visible that this code is almost identical to that as for ATC.  The only difference is the call to 

the interrupt method at the start of the interruptAction method which is used to terminate the 

thread. The operations that are performed after this call enable clean up meaning that the thread is 

terminated safely.  

The code for the exception handling method is shown below: 

RealtimeThread rt; 

try { 
 // interruptible code goes here 

} catch (AsynchronouslyInterruptedException aie) { 
 // operations that are called when an AIE is fired 

 rt.interrupt(); 

 // perform clean up operations  

} 

A similar concept applies here. The call to interrupt to terminate the thread again can be safely 

performed with the clean up operations carried out after.  

3.8 Physical Memory Access 

RTJava defines classes for programmers to directly access physical memory from code. This can be done 

in two ways described below. 

Raw Memory Access (RawMemoryAccess class) defines methods that allow the programmer to 

construct an object that represents a range of physical addresses. A set of set and get methods allow the 

contents of the physical memory to be accessed through offsets which are interpreted as byte, short, int, 

long, float, or double values.  

Physical memory areas differ from raw memory access in that a raw memory access object cannot 

contain objects or references to objects. Physical memory areas, in contrast, do provide this capability.  

The ScopedPhysicalMemory and ImmortalPhysicalMemory classes allow for the flexibility 

of allocating objects to particular memory addresses that represent a certain type of memory. For 

example Java objects that are used frequently may be placed in the physical memory addresses of fast 

RAM in order to optimise performance.  

The physical memory access was not implemented in the Simulator due to constraints in the hardware 

available (i.e. laptop) and the limitations that they had in accessing physical memory locations. The 

remaining descriptions on design and evaluation in this area are based on test and sample code used 

during the course of the dissertation.  
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On examination of the Simulator, there were a number of areas that required the creation and access of 

physical memory addresses. Vehicles (Vehicle, Car and EmergencyVehicle objects) all require 

physical memory access. Attributes in these objects such as velocity and position coordinates are 

regularly accessed and modified and would therefore benefit from being allocated to fast physical 

memory.  

Figure 16 shows the classes that the physical memory access functionality was designed for.  
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FIGURE 16: CLASSES CONTAINING PHYSICAL MEMORY ACCESS FUNCTIONALITY 

 

The code below shows both the raw memory accesses to physical memory areas as designed for the 

Simulator. 

public static void setValuesPhysicalMemoryAccess() {  
 try {   

  String[] type = new String[3]; 
  type[0] = new String("velocity"); 
  type[1] = new String("X pos"); 
  type[2] = new String("no cache"); 
  RawMemoryAccess rma = new RawMemoryAccess(type, 512);   

  int pos1 = rma.getInt(100); 
  int pos2 = rma.getInt(50); 
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  rma.setInt(100, 0); 

  rma.setInt(50, 32);    

  //getShort, getByte, setShort, setByte etc...   
  

 } catch (SecurityException sec) { 
  System.out.println("SecurityException in Physical Memory  
   Access"); 

 } catch (OffsetOutOfBoundsException offset) { 
  System.out.println("OffsetOutOfBoundsException in Physical  
   Memory Access"); 

 } catch (SizeOutOfBoundsException size) { 
  System.out.println("SizeOutOfBoundsException in Physical Memory 
   Access"); 

 } catch (UnsupportedPhysicalMemoryException unsup) {   
  System.out.println("UnsupportedPhysicalMemoryException in  
   Physical Memory Access"); 

 } catch (MemoryTypeConflictException mem) {    
  System.out.println("MemoryTypeConflictException in Physical 
   Memory Access"); 

 }   

}   

The String array is used to specify the specifics of the physical memory being accessed. The constructor 

for RawMemoryAccess has asked for 512 bytes of memory that maps the above velocity and X pos for 

non cached access. The series of set and get methods enable the accessing of raw memory through the 

RawMemoryAccess object.  
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4 Aspect-oriented Design and Implementation 

This chapter describes the design and implementation of the aspect-oriented version of the Sentient 

Traffic Simulator. The seven areas of RTJava are individually addressed and details of the impact aspects 

have in each are given. 

4.1 Thread Scheduling and Dispatching 

The AOP version of the Simulator in this area aims to identify and eliminate any scattered or tangled 

implementation related to thread scheduling and dispatching. AOP improvements in this area have been 

directed at thread creation and the starting of real-time threads. 

The first case relates to the design of the Simulator which includes the RealtimeThread subclasses. 

As stated previously, these classes were introduced to specify specific threading behaviour that is shared 

between numerous threads in the system. In the OO implementation, each subclass is required to 

instantiate each RealtimeThread parameter separately. Thus the introduction of an aspect classes can 

remove this crosscutting behaviour from each RealtimeThread subclass, placing this functionality in 

a single modular unit.  Figure 17 shows the capturing of this crosscutting functionality and the 

subsequent classes that are affected. 

RTThreadAspect

SimulationPeriodicThread SimulationRTThread

RTThreadAspect

SimulationPeriodicThread SimulationRTThread

 

FIGURE 17: ASPECT FOR REAL-TIME THREAD SUBCLASSING 

 

The AO version of the Simulator creates an RTThreadAspect aspect class for crosscutting thread 

functionality. The code below shows the how the AOP is utilised for the creation of one of the thread 

types (SimulationRTThread) in the system: 

pointcut createRTThread():execution(* SimulationRTThread.new()); 
 

RealtimeThread around():creatRTThread()  { 

 SchedulingParameters scheduling = new PriorityParameters( 
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  PriorityScheduler.MIN_PRIORITY + 20); 

 ReleaseParameters release = new AperiodicParameters(null, null,  
 null, null); 
 MemoryParameters memory = new MemoryParameters( 
  MemoryParameters.NO_MAX, 0);   

 MemoryArea area area = ImmortalMemory.instance(); 

 ProcessingGroupParameters group = null; 
 Logic logic = null; 
 return new RealtimeThread(scheduling, release, memory, area,  
 group, logic); 

} 

The pointcut captures all calls to the SimulationRTThread constructor. When this constructor is 

called, the implementation detailed in the around advice is executed in place of the constructor 

implementation. It is here that all the parameter creation and initialisation takes place in addition to the 

actual instantiation of the real-time thread.  

Chapter 3 describes an alternative method to subclassing when creating real-time threads. This method 

removes the need for subclassing completely and instead initialises all RealtimeThread parameters 

prior to thread creation in aspects. As stated previously this is a common practice adopted by 

programmers when each thread requires slightly different properties, such as scheduling, memory or 

processing group. Thus if aspects were to be adopted here, then each point where a thread is created 

would be need to be identified and a separate pointcut declaration and advice implementation (specifying 

the RealtimeThread parameters) would need to be provided for each thread. And although an 

different aspect would be required for each variation of the RealtimeThread object,  the overall 

modularity would be improved, with crosscutting thread initialisation code now placed in a single 

modular unit and not scattered and tangled throughout the codebase.  

Yet the difficulty previously described is reduced somewhat if particular classes used a single type pf 

thread. For example, all threads in the Vehicle class used the parameters originally used in the 

SimulationRTThread subclass. If this were the case, a single aspect could be adopted to capture this 

initialisation behaviour that may occur in several occasions in the Vehicle class. The code below 

illustrates this point.  

pointcut createVehicleRTThread() 

:execution(* Vehicle.RealtimeThread.new()); 
 

RealtimeThread around():createVehicleRTThread()  { 

 SchedulingParameters scheduling = new PriorityParameters( 
  PriorityScheduler.MIN_PRIORITY + 20); 
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 ReleaseParameters release = new AperiodicParameters(null, null,  
 null, null); 
 MemoryParameters memory = new MemoryParameters( 
  MemoryParameters.NO_MAX, 0); 

 MemoryArea area area = ImmortalMemory.instance(); 

 ProcessingGroupParameters group = null; 
 Logic logic = null; 
 return new RealtimeThread(scheduling, release, memory, area,  
 group, logic); 

} 

The pointcut captures all RealtimeThread constructor calls occurring in the Vehicle class. Thus the 

aspect eliminates the need for the thread parameters to be created in the Vehicle class. Instead the aspect 

provides this functionality. The around advice again provides the initialisation arguments required for 

and the actual thread creation. Consequently all that is required in the vehicle class is: 

RealtimeThread rt = new RealtimeThread(); 

A similar case applied at a higher level of granularity. If the package structure of the system reflected the 

types of threads in the each package. Aspects have the ability to specify points in the program related to 

different packages. This is done using the within AOP construct. Therefore if all threads in a particular 

package had identical real-time behaviour, then the initialisation parameters for these could be 

encompassed in a single modular unit. The code below illustrates this ability:  

pointcut createNonperiodicPackRTThread() 

:execution(* .RealtimeThread.new()) && within(nonperiodic); 
 

RealtimeThread around():createNonperiodicPackageRTThread()  { 

 SchedulingParameters scheduling = new PriorityParameters( 
  PriorityScheduler.MIN_PRIORITY + 20); 

 ReleaseParameters release = new AperiodicParameters(null, null,  
 null, null); 
 MemoryParameters memory = new MemoryParameters( 
  MemoryParameters.NO_MAX, 0); 

 MemoryArea area area = ImmortalMemory.instance(); 

 ProcessingGroupParameters group = null; 
 Logic logic = null; 
 return new RealtimeThread(scheduling, release, memory, area,  
 group, logic); 

} 
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In this case the pointcut is implemented to capture any RealtimeThread constructor calls that occur 

in the nonperiodic package. The remainder of the implementation is the same as described above 

with the around advice providing the real-time thread instantiation behaviour. The implementation for 

the periodic package of the Simulator is similar differing only on the argument of within and the 

parameters given for instantiating the RealtimeThread.  

The two cases described above for using aspects to specify threading behaviour in either specific classes 

or packages has a significant consequence. It eliminates the need for subclassing RealtimeThread, 

altogether as is the case for the OO implementation. Aspects could be used in place of subclasses for 

specifying the threading properties of each real-time thread. However, it is noted that this practice (of 

organising particular types of threads in this class or package way) is not commonly practiced and is only 

done here to illustrate the ability of AOP in this area. 

Finally, in this area, aspects can also be applied for the starting of real-time threads. As stated previously, 

a feasibility check is performed before the starting each real-time thread. This provides a clear case of 

code scattering and tangling that is evident throughout the Simulator. Figure 18 shows this capturing of 

crosscutting code and its affected classes.  
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SimulationListOfCarsViewableCar

Vehicle EmergencyVehicle Car
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FIGURE 18: ASPECT FOR STARTING REAL-TIME THREADS 

 

The code illustrated below shows how the previously scattered and tangling code can be eliminated. 

pointcut executeRTThread():call(* *.RealtimeThread.new(..)); 
 

after() : executeRTThread() { 

 RealtimeThread rt = (RealtimeThread) thisJoinPoint; 

 if (!rt.getScheduler().isFeasible()) { 
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  RTUtil.fireFaultEvent(); 

 } else { 
  rt.start(); 

 } 

} 

The pointcut declaration captures all the points in the programs execution where real-time threads are to 

be started. In this instance they are started immediately after creation. The code in the after advice 

captures the real-time thread executing at this join point. A feasibility check is then performed for this 

thread and if sufficient resources are available a call to start is made. Otherwise an asynchronous is 

fired indicating a problem has occurred. 

4.2 Memory Management 

As described in the previous chapter, the creation of objects in immortal memory is not as trivial as that 

for objects allocated to the heap. Using the new operator is no longer possible, with additional calls 

required for immortal memory allocation. These additional steps that are needed for immortal object 

creation are a good example of code scattering that could be better modularised through AOP.  

The first case refers to objects with no argument constructors. As described earlier, this involves a call to 

ImmortalMemory’s newInstance method.  

listOfCars = (ListOfCars) ImmortalMemory.instance(). 

 newInstance(ListOfCars.class); 

The use of aspects can be beneficial here with this reference to ImmortalMemory eliminated from 

wherever such object instantiation occurs. Aspects can weave this immortal memory related code to 

wherever necessary and provide the setup calls before the call to create the new object is made. Figure 19 

illustrates the classes affected by the use of aspects in this instance. 
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FIGURE 19: ASPECT FOR ALLOCATING IMMORTAL MEMORY TO A NO ARGUMENT CONSTRUCTOR OBJECT 
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In effect aspects allow objects to be allocated into immortal memory using the conventional new 

operator. The code below shows the code of the aspect. 

pointcut createListOfCarsMemory():call(simulation.ListOfCars.new()); 
  

ListOfCars around():createListOfCarsMemory() { 

 ListOfCars loc;  

 try { 
  loc = (ListOfCars) ImmortalMemory.instance(). 

   newInstance(ListOfCars.class);    

 } catch (IllegalAccessException iae) { 
  System.out.println("Illegal Access Exception in creating  
  ListOfCars memory"); 

 } catch (InstantiationException ie) { 
  System.out.println("Instantiation Exception in creating  
  ListOfCars memory"); 

 } 

 return loc; 
} 

The pointcut captures all instances where the ListOfCars constructor is called. The related around 

advice specifies the implementation that will replace that of the constructor. Thus the aspect now 

provides the functionality for creating the ListOfCars object, hiding the real-time related constructs 

from the core classes. 

Similarly is the case for immortal objects with argument constructors. Aspects can be adopted to perform 

all the steps required for building and initialising parameters. The overall effect is the same as that for no 

argument constructors. Objects (with argument constructors) can also be instantiated with the new 

operator when aspects are used. The aspect class provides the immortal memory and constructor related 

functionality. Figure 20 shows the classes affected by the above. 
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FIGURE 20: ASPECT FOR ALLOCATING IMMORTAL MEMORY TO A ARGUMENT CONSTRUCTOR OBJECT 
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Shown below are the code of the aspect class for argument constructor objects and the resultant code 

from the core classes where these objects were created.  

pointcut createViewableCarMemory(String thread, boolean isVeh) : 
call(simulation.ViewableCar.new(String, boolean)) && args (thread,  
 isVeh); 

 

ViewableCar around(String thread, boolean isVeh) : 
createViewableCarMemory(thread, isVeh) { 

 ViewableCar vcar = null; 
       try { 
        Class[] paramTypes = new Class[2]; 
             Object[] params = new Object[2];          
             paramTypes[0] = Class.forName("java.lang.String"); 

             paramTypes[1] = Class.forName("java.lang.Boolean"); 

             params[0] = thread; 

             params[1] = new Boolean(isVeh); 
             Class classType = Class.forName("ViewableCar"); 

             Constructor constructor =       
   classType.getConstructor(paramTypes); 

             vcar = (ViewableCar) immortalMemory.instance().newInstance( 

   constructor, params) 

        } catch (IllegalAccessException iae) { 
            System.out.println("Illegal Access Exception in creating  
   viewableCar memory"); 

        } catch (InstantiationException ie) { 
            System.out.println("Instantiation Exception in creating  
   viewableCar memory"); 

        } catch (ClassNotFoundException cnfe) { 
            System.out.println("ClassNotFound Exception in creating  
   viewableCar memory"); 

        } catch (NoSuchMethodException nsme) { 
            System.out.println("NoSuchMethod Exception in creating  
   viewableCar memory"); 

        } 

        return vcar; 
 } 
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The above is an example of an aspect used for argument constructor objects. The pointcut captures all of 

the ViewableCar constructor calls in the Simulator, as in the case of argument constructor objects, 

replaces the constructors implementation with that specified in the around advice block. 

The main issue with aspects in this case is that a separate pointcut and advice are required for each object 

that is to be allocated to immortal memory. However, the opposing argument is that this functionality, 

which was originally scattered throughout the codebase, is now in a single modular unit (which is the 

main aim of AOP). Also object instantiation has been made easier as the new operator can now be used 

as opposed to the more verbose method originally required. 

There is the argument that the use of aspects in this case somewhat resembles that of the Factory Method 

design pattern [50]. This will be discussed in more detail in the Evaluation chapter of the dissertation. 

Although aspects allow for objects, even in immortal memory, to be created using the new operator, 

there remains the argument that this is not beneficial. This is because a more verbose and long-winded 

mechanism for allocating immortal objects makes it perfectly clear that a particular allocation is from 

immortal memory. Therefore the possibility of confusion related to the memory area of objects would be 

non existent which is not the case in the AOP approach. This will be discussed further in the Evaluation 

chapter of the dissertation. 

4.3 Synchronization and Resource Sharing 

Previous studies have shown how AOP can provide better modularisation of synchronization code [3, 

51]. As the implementation of the synchronization area of RTJava is the same as that for traditional Java, 

RTJava can also gain such modularisation benefits through the use of AOP enhancements.  

Aspect enable improved modularisation as it eliminates the need wait() and notify() constructs 

when accessing shared resources. Such calls, which maybe scattered and tangled throughout the 

codebase, are removed from core code and placed in a single modular unit. Figure 21 shows the classes 

affected by the introduction of the SynchronizationAspect. 
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FIGURE 21: ASPECT FOR SYNCHRONIZATION AND RESOURCE SHARING 
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The code below shows the code contained in the SynchronizationAspect of the Simulator and the 

changes to the original code that contained the synchronization constructs. 

pointcut updateAction():execution(* ViewableCar.*Poll(..)); 

before():updateAction(){ 

 synchronized(ViewableCar.linkedCar) { 
  while(ViewableCar.updated == false) { 
   try { 
    ViewableCar.linkedCar.wait(); 

   } catch (InterruptedException ie){ 
   ... 

after():updateAction() { 

 ViewableCar.linkedCar.notify(); 

} 

The pointcut above captures the point in program execution when methods ending in Poll are executed. 

The reason being all methods ending in Poll are to be synchronized.  The before advice specifies the 

operations to be carried out before the capture method (e.g. clearPoll) is executed. This is where 

access to the resource is requested. If not, then the accessing thread is forced to wait. The after advice 

performs the notification after the operations in the capture method have been executed.  

public void clearPoll(String name) { 

 updated = false; 
 pollValue = -1; 

 linkedCar = new String(""); 
 parameter = 0; 

 updated = true; 
} 

The above shows the resulting code in the core class with the inclusion of the 

SynchronizationAspect. The synchronized constructs are removed as the wait and notify 

calls are no longer required.  

RTJava also introduces the notion of wait-free queues, which provide synchronization without the need 

for locking. However it was determined that these queues cannot be constructed as aspects due to the 

specifics of their implementation. 
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4.4 Asynchronous Event Handling 

Asynchronous event handling may be classified into a number of categories in relation to the examining 

of aspectual behaviour – the binding of events to event names and handlers, firing of asynchronous 

events and the actual handling of the fired event. 

The code for the binding of a particular asynchronous event to names and handlers is described above. 

The use of aspects in this case allows this code to be removed from core classes and placed in a single 

aspect class. The resultant code for this is shown below: 

pointcut bindEvent(Class eventClass, String bindName)  

:call(* *.bindAsyncEvent(Class, String)) && args (eventClass, bindName); 

 

void around(Class eventClass, String bindName)  
: bindEvent(eventClass, bindName) {     

 AsyncEvent event = null; 
 AsyncEventHandler handler = null; 
 MemoryArea immortal = ImmortalMemory.instance(); 

 try { 
  handler = (AsyncEventHandler) immortal.newInstance(eventClass); 

  event = (AsyncEvent)immortal.newInstance(AsyncEvent.class); 
 } catch (InstantiationException e) { 
  System.out.println("Instantiation Exception in binding async 
   event"); 

 } catch (IllegalAccessException ie) { 
  System.out.println("Illegal Access Exception in binding async 
   event"); 

 } 

 event.addHandler(handler); 

 event.bindTo(bindName);   

} 

The pointcut captures all calls to the bindAsyncEvent method which take arguments of Class and 

String types. Again the around advice includes the implementations that is executed in place of those 

in the bindAsyncEvent method. Thus all constructs related to asynchronous event handling are 

contained in the aspect and not the classes containing the core functionality. Figure 22 illustrates the 

affect classes on the above aspect on the Simulator. 
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FIGURE 22: ASPECT FOR BINDING ASYNCHRONOUS EVENTS 

 

The functionality specified in the around advice block replaces the implementation of the 

bindAsyncEvent method. Consequently any implementation in the replaced method becomes 

unused. Thus when a call to this method is made, the operations in the around advice are executed in 

place of the bindAsyncEvent method. The only consequence of placing this asynchronous event 

binding code into an aspect is that this code is extracted into a separate modular unit, thus improving the 

overall modularity of the Simulator.  

Asynchronous event handling also involves firing of the asynchronous event depending on environment 

conditions. Although the firing of events is scattered throughout the codebase, capturing this crosscutting 

behaviour as an aspect is not possible. The reason for this is that AspectJ does not support the identifying 

of execution points inside method boundaries (where events are fired). Consequently, specifying exact 

points in the execution of the program where asynchronous events are fired cannot be encapsulated in 

aspects pointcut declaration. Therefore the Simulator does not implement any aspects related to the firing 

of asynchronous events.  

The final case for asynchronous event handling is the actual handler classes which provide the operations 

that occur when a particular event is fired. Because the actual functionality specified in the 

handleAsyncEvent method is specific for different events, they cannot be encapsulated into an 

aspect. However all asynchronous event handler classes must extend the AsyncEventHandler class 

(and provide concrete implementation for the handleAsyncEvent method). This declaration is a 

prime example of crosscutting code which can be modularised into an aspect. Figure 23 illustrates the 

classes affect by the use of such an aspect. 
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FIGURE 23: ASPECT FOR EXTENDING ASYNCEVENTHANDLER 

 

The code for this as implemented in the aspect is shown below: 

declare parents: eventHandler.*EventHandler extends AsyncEventHandler; 

The declare parents declaration is known as an inter-type declaration. This case specifies that all 

classes ending in EventHandler and in the eventHandler package are to extend the 

AsyncEventHandler class. The consequence of this is that each asynchronous event handler class no 

longer needs to provide this inheritance declaration.  

public class LeftTurnEventHandler { 
    public void handleAsyncEvent() { 
     // code that is executed when this 

     // particular async event is fired 

       Vehicle.shiftLaneLeft(); 

    } 

} 

The above AsyncEventHandler subclass, as a result of using aspects,  longer have to provide the 

code indicating their inheritance to the AsyncEventHandler class. This is the case for all 

AsyncEventHandler subclass. 

4.5 Asynchronous Transfer of Control 

As described previous chapter, ATC area of RTJava can be implemented using either the fire method or 

using traditional exception handling mechanisms. AOP enhancements can be adopted in both instances 

in an attempt of improving the modularisation of ATC code. 

In relation to the first methods, the fire method, this does exhibit some aspectual behaviour. Firstly the 

interruptible code block is required to throw an AsynchronouslyInterruptedException. And 
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this is the case wherever the fire method is used for ATC. Consequently, a single aspect can be used to 

capture this crosscutting behaviour. The code for the aspect which carries out this function is shown 

below:  

declare soft : AsynchronouslyInterruptedException :  

    execution(* *.run(AsynchronouslyInterruptedException))  

     && within(simulation); 

 

The declare soft indicates that all run methods which takes an 

AsynchronouslyInterruptedException argument throws an 

AsynchronouslyInterruptedException. This aspect applies to all classes in the 

simulation package as indicated by the within construct. Figure 24 illustrates the above. 
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FIGURE 24: ASPECT FOR ASYNCHRONOUS TRANSFER OF CONTROL 

 

In addition, it may be possible to provide the implementation of the interruptAction method in an 

aspect. Note that however, this is only possible if the operations performed by this method are identical 

in every instance. This is the case in the Simulator, thus enabling the implementation for this method to 

be specified in an aspect class. The code below illustrates the above: 

pointcut weaveInterruptAction() : call(* *.interruptAction()); 

 

void around() : weaveInterruptAction() { 
 System.out.println("Thread interrupted"); 

 // operations to execute if real-time thread is interrupted               

} 
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However, it is important to note that this is only possible when the implementation for every 

interruptAction method is identical. This is of course unacceptable for most systems and is only 

done as illustration purposes for this dissertation.  

Aspects can also capture crosscutting behaviour when using exception handling for ATC. There are two 

important points to note with using aspects for exception handling. Firstly AspectJ does not support for 

capturing the catching of exceptions inside method boundaries. The work-around for this limitation 

consisted of wrapping exception catching in methods.  This is again, not common or acceptable for 

system development, but is done for the illustration purposes of this dissertation. Secondly, the degree in 

which aspects are effective in exception handling is based on the number of reaction types of certain 

exceptions. Thus if the number of reaction types to exceptions is much smaller than the number of places 

where the particular exception is caught, then the more meaningful aspects become. 

In the Simulator’s case of ATC, the operations that are performed when an AIE is thrown are identical in 

each case. Therefore there is sufficient redundancy in the system to demonstrate the potential of aspects. 

This is, as above, not common practice and is unacceptable but for the purpose of the dissertation. The 

code below reflects the points described above: 

pointcut catchAIE() : call (* *.interrupted*(..))  

 & within(simulation);  

  

after() : catchAIE() { 

 catch (AsynchronousInterruptedException AIE) { 
  System.out.println("AIE Thrown, RTThread interrupted");  

 } 

} 

If it were the case that different operations were required for each specific case for the catching of AIE, 

then a separate aspect would be needed for each. The code below shows the resultant impact on the 

aspect class: 

pointcut catchAIE() : call (* *.interruptableUpdateViewableCar(..))  

 && within(simulation);  

  

after() : catchAIE() { 

 catch (AsynchronousInterruptedException AIE) { 
  // perform specific operations when an AIE is thrown for   
  //in this case  

 }   

} 
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pointcut catchAIE() : call (* *.interruptibleUpdateLOC(..))  

 && within(simulation);   

after() : catchAIE() { 

 catch (AsynchronousInterruptedException AIE) { 
  // perform specific operations when an AIE is thrown for  
  // in this case  

 }   

} 

The aspect now includes the addition of a new pointcut and related advice blocks. The classes affected 

by this ATC technique are the same as that for the fire technique shown in figure 24. 

It is argued that aspects may instil bad programming practices for the handling of exceptions whereby 

programmers become lazy in their implementation in handling exceptions. Aspects may give such 

programmers an easy alternative by allowing them to delegate exception handling responsibilities to the 

aspect and encouraging the same reaction for exceptions. This argument is further discussed in the 

Evaluation chapter of the dissertation.  

4.6 Asynchronous Thread Termination 

As the OO version of asynchronous thread termination is somewhat identical to that of ATC, (differing 

only in a call to interrupt), the same applied for the AO versions of the two areas. Thus the same 

principles apply here as they did above for ATC.  

Thus aspects can be adopted in this area as with ATC. These are the modularisation of the throwing of an 

AsynchronouslyInterruptedException, the implementation of the interruptAction 

method (where possible) or the capturing of the exception handling code when adopting this method for 

ATC.  

Yet it must be also noted that the limitations of where the above modularisation of aspectual behaviour is 

possible still persist for this area, as with ATC.  

4.7 Physical Memory Access  

Due to the specifics of physical memory access, the exhibition of aspectual functionality in this area is 

quite limited. Because each physical memory access may be read or written to different memory 

addresses indicated by different position variable, this makes capturing of this behaviour in a meaningful 

aspect very difficult, if not impossible. Yet although the accessing of physical memory is unique in each 

case, each access shares a common characteristic whereby a number of physical memory access 

exceptions are thrown and thus need to be handled. This is illustrated in the code described in the OO 

implementation for this area. 
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Aspects can therefore be used to modularise this exception catching code which occurs at every point of 

physical memory access. The code below shows the aspect for this case and the impact on the original 

physical memory access implementation. 

pointcut catchPhysicalMemoryException()  

: call (* *.PhysicalMemoryAccess(..)) && within(simulation); 

   

after() : catchPhysicalMemoryException() { 

 catch (SecurityException sec) { 
 } catch (OffsetOutOfBoundsException offset) { 
 } catch (SizeOutOfBoundsException size) { 
 } catch (UnsupportedPhysicalMemoryException unsup) { 
 } catch (MemoryTypeConflictException mem) {}   

} 

Similar to the exception catching aspect implemented for ATC, the pointcut captures all methods in the 

simulation package ending with PhysicalMemoryAccess. The after advice provides the 

implementation for the catching of the different exceptions that are thrown during access of physical 

memory addresses. The classes affected by the above are shown in figure 25. 

PhysicalMemoryAccessAspect

Car Vehicle EmergencyVehicle

PhysicalMemoryAccessAspect

Car Vehicle EmergencyVehicle

 

FIGURE 25: ASPECT FOR PHYSICAL MEMORY ACCESS 

 

The same principles apply here as for the earlier cases for exception handling described for ATC and 

asynchronous thread termination areas. The wrapping of exception catching in methods is required for 

AspectJ. Also aspects are only significantly useful if the number of reaction types is much smaller than 

the number of places where exceptions are caught. If a number of reaction types exist, then a different 

aspect is required for each reaction type. Moreover, the same argument related to aspects instilling a bad 

exception handling practice in programmers applies here as it did for the exception handling cases above. 

This will be discussed further in the Evaluation chapter (chapter 6) of the dissertation. 
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5 Evaluation Metrics 

This chapter provides a more detailed description of the Chidamber and Kemerer (C&K) metrics suite 

that is used in the evaluation of the Simulator. Each of the C&K metrics are addressed, describing their 

implications for system attributes and the affects of aspect-orientation on these metrics. 

5.1 Background 

Software metrics are a way of qualifying software design. Several metrics suites have been proposed for 

evaluating the design of object-oriented systems. Such metrics differ from traditional measures such as 

lines of code and comment percentage and instead are designed to focus on the combination of function 

and data as an integrated object [52]. 

As of yet, no metrics have been proposed for aspect-oriented systems [39]. Yet because AOP builds on 

existing object-oriented concepts, the metrics used for evaluating object-oriented systems are can be 

applied for aspect-oriented systems. However further research is required into this are as the effects and 

accuracy of applying OO metrics to evaluate AO software still remains an open issue. 

Some of the important attributes evaluated by OO metrics are: 

• Understandability 

• Maintainability 

• Reusability 

• Testability 

Therefore the metrics applied for evaluation of a system must be effective in measuring one or more of 

the above attributes. The C&K metric suite described below consist of a series of metric which highlight 

the affects of OO design and implementation on the attributes above.  

5.2 The Chidamber and Kemerer Metrics (C&K) Suite  

The Chidamber and Kemerer Metrics (C&K) Suite is a suite of metrics designed for evaluating object-

oriented designs and is detailed in [40]. The metric suite itself is based on sound measurement theory and 

has been empirically as well as theoretically validated. Its purpose is to measure the key elements of 

object-oriented software such as encapsulation, abstraction, and inheritance. The suite has been adopted 

by many for evaluating object-oriented systems including the Software Assurance Technology Centre 

(SATC) at NASA Goddard Space Flight Centre [52].  
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The suite itself contains six metrics and are identified as; (1) Weighted Methods per Class; (2) Depth of 

Inheritance Tree; (3) Number of Children; (4) Coupling Between Objects; (5) Response For a Class; (6) 

Lack of Cohesion in Methods. 

The remaining sections of the chapter describe the metrics of the C&K metric suite. The details of how 

aspect-orientation can impact on each metric are taken from [39] and are also described below.  
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FIGURE 26: OBJECT-ORIENTED APPLICATION 

 

5.2.1 Weighted Methods per Class (WMC) 

5.2.1.1 Background 

WMC is a measure of the number of methods implemented within a class. It is calculated by counting the 

number of methods in each class. Referring to figure 26 above WMC for Clothing = 1 and WMC for 

Electronic = 4. WMC is designed to measure understandability, maintainability, and reusability [39, 40] 

as follows: 

• The number of methods in a class reflects the time and effort required to develop and maintain 

the class.  

• The potential impact on children will be greater if there are a larger number of methods in a 

class since children inherit all the methods of its parent class.  

• Classes with large numbers of methods are likely to be more application specific, limiting the 

possibility of reuse. 

5.2.1.2 Impact of AOP 

AOP may impact the WMC metric as aspects may help reduce the number of methods implemented 

within a class. Aspects combine cross-cutting functionality into modular units, thus eliminating code that 
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may be tangled in a core class. Applying aspects will extract aspectual functions. This will therefore 

reduce the number of tangled methods in a class and in turn reduce the WMC. Aspects may also reduce 

the WMC in the case where a sub-class overrides its parent’s functionality with its own aspectual 

behaviour. Exception handling may be such an example, where a sub-class may have to replace a super 

class function with its own method for handling certain exceptions. Thus if the handling of the exception 

was implemented as an aspect, this would eliminate the need for the subclass to add a new function its 

own exception handling and therefore reduce the WMC measure. 

5.2.2 Depth of Inheritance Tree (DIT) 

5.2.2.1 Background 

DIT is the maximum number of steps from the class node to the root of the tree and is measured by the 

number of ancestor classes. Thus the root will have a DIT of 0 while a direct child of the root will have a 

DIT of 1. In figure 26, class Department is the root and has a DIT of 0 while class Clothing has DIT of 

1. From the viewpoint described in [40], DIT measures understandability, reusability, and testability as 

follows: 

• The deeper a class is within the hierarchy, the number of methods it is likely to inherit will be 

greater making it more complex to predict its behaviour.  

• Since more methods and classes are involved, deeper trees also constitute greater design 

complexity.  

• Deeper inheritance trees give a greater potential for reuse of inherited methods. 

5.2.2.2 Impact of AOP 

AOP may have an impact on DIT measure by reducing the depth of the inheritance tree. This will occur 

in the case where subclasses are defined only for the purpose of applying their own implementation of 

aspectual behaviour. Aspects can be used to replace the aspectual behaviour of such subclasses and thus 

eliminating their need and thus reducing the depth of the inheritance tree. 

5.2.3 Number of Children (NOC) 

5.2.3.1 Background 

NOC is a count of the number of immediate subclasses of a class in the hierarchy. This measure is an 

indicator of the potential influence a class can have on the design and on the system. From figure 26 

class Department has a NOC of 2, while a leaf class such as Electronic has a NOC of 0. NOC measures 

efficiency, reusability, and testability as follows: 
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• The greater number of children, the greater the likelihood of improper abstraction of the parent 

class and may be a case of misuse of subclassing.  

• Since inheritance is a form of reuse, the greater the number of children, the greater the reuse. 

• If a class has a large number of children, testing time will increase as the class may require more 

testing of the methods in the class. 

5.2.3.2 Impact of AOP 

The impact AOP on the NOC measure is the same as that of the DIT measure described in Section 

5.2.2.2. 

5.2.4 Coupling Between Objects (CBO) 

5.2.4.1 Background 

CBO is a count of the number of other classes to which a class is coupled. It is measured by counting the 

number of distinct non-inheritance related classes on which a class depends. Thus two classes are 

coupled are when methods declared in one class use methods or instance variable of the other class [40]. 

CBO aims to measure reusability, maintainability, testability, and understandability. Excessive coupling 

hinders modular design and prevents reuse. The more independent a class is, the easier it is to reuse. 

Higher coupling also results in maintenance difficulties as the system is more sensitive to changes. The 

measure of coupling is useful to determine how complex the testing of various parts of the system is 

likely to be. The higher the inter-object class coupling, the more rigorous the testing needs to be. 

Moreover, strong coupling complicates a system since a class is harder to understand if it is interrelated 

with other classes. The complexity of a system can be reduced by designing systems with the weakest 

possible coupling between classes.  

5.2.4.2 Impact of AOP 

The presence of aspects is likely to decrease the coupling between core classes, but increase the coupling 

between core classes and aspect classes. This is because aspects are new entities on which core classes 

depend. Core classes are more likely to be reused than aspects therefore increasing the coupling between 

aspects and core classes and in effect decreasing the coupling between core classes themselves will be 

beneficial. As stated before, a lower level of coupling between core classes is likely to foster more 

modular design and increase reuse.  
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5.2.5 Response For a Class (RFC) 

5.2.5.1 Background 

RFC is defined as the number of methods in the set of all methods that can be invoked in response to a 

message to an object of the class or by some method in the class. This includes all methods accessible 

within the class hierarchy. The RFC for Department in figure 26 above is the number of methods that 

can be invoked in response to a message by itself, by Clothing, and by Electronic. Thus the RFC for 

Department = 3 [(self) + 1 (Clothing) + 4 (Electronic) = 8]. The aim of RFC is to measure the amount 

of communication with other classes. RFC is designed for measuring understandability, maintainability, 

and testability as follows: 

• The larger the RFC, the greater the complexity of the class.  

• Testing and debugging also becomes more complicated if a large number of methods can be 

invoked in response to a message, thus requiring a greater level of understanding on the part of 

the developer.  

5.2.5.2 Impact of AOP 

AOP has an impact on RFC as the presence of aspects is likely to increase the RFC of a system. This is 

because in addition to communicating with other classes, classes also have to communicate with aspects. 

However the advantage of aspects in this instance is that they can be designed in a way that encapsulates 

logic and the objects with which a class communicates in a modular way.  

5.2.6 Lack of Cohesion in Methods (LCOM) 

5.2.6.1 Background 

LCOM is the degree to which methods within a class relate to one another. LCOM counts the number of 

different methods within a class that reference a given instance variable.  This metric evaluates efficiency 

and reusability. High cohesion indicates good class subdivision. Low cohesion increases complexity, 

thereby increasing the likelihood of errors during development. Also lack of cohesion implies that classes 

should be split into two or more subclasses with increased cohesion. 

5.2.6.2 Impact of AOP 

Functionality that crosscuts modules in a system reduces the cohesion of a class. Thus aspects have a 

noticeable affect on LCOM as aspects increase cohesion by extracting crosscutting behaviour. 
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5.2.7 Interpretation of C&K Suite 

[52] have proposed a set of guidelines as to how to interpret the metrics in the C&K suite.  Table 4 below 

summarises the objective for the values of the metrics. 

METRIC OBJECTIVE 

Weighted Metric per Class Low 

Coupling Between Objects Low 

Response For a Class Low 

Lack of Cohesion of Methods Low 

Depth of Inheritance Tree Low (trade-off) 

Number of Children Low (trade-off) 

 

Table 4: C&K Metric Suite Interpretation Guidelines 

 

However, as indicated in the last two metrics, there is a trade-off with some of the metrics. A high DIT 

will increase maintainability complexity but also shows increased reuse. Similarly a high NOC will 

increase the testing effort but will also increase the extent of reuse efficiency. Thus developers must be 

aware of the relationship between the metrics as altering the size of one can impact areas such as testing, 

understandability, maintainability, development effort and reuse as shown in Table 5 below. X indicates 

that a metric has an impact on one of the systems attributes. 

 WMC DIT NOC CBO RFC LCOM 

Understandability X X  X X  

Maintainability X   X X  

Reusability X X X X  X 

Testability  X X X X  

 

Table 5: Effect of Metrics on Object/Aspect Oriented System 
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6 Evaluation 

This chapter provides evaluation of the use of AOP techniques for the development of Java-based real-

time systems.  The two version of the implementation, AO and OO, are analysed with data relating to the 

seven enhanced areas of RTJava, as developed in each paradigm, gathered. The C&K metric has been 

applied to each of the areas in both the OO and the AO versions. Conclusions are then drawn from the 

analysed will either support or dispute the research question posed. The remaining sections in the chapter 

provide both a quantitative and qualitative analysis of the effectiveness of AOP when applied to the 

seven enhanced areas of RTJava with regards to better separation of concerns.  

6.1 Metric Results 

The following section details the values gathered for each of the C&K metrics when applied to the seven 

enhanced areas of RTJava. Note that a more detailed description of each of the metrics is available in 

Evaluation Metrics chapter (chapter 5) of the dissertation. The values of each of the metrics are given as 

a reduction or increase representing the change that is incurred to the particular metric as a direct 

consequence of using aspects (i.e. the difference in the metric values between the OO and AO versions of 

the Simulator’s implementation). 

6.1.1 Weighted Methods per Class 

Weighted Methods per Class (WMC) is a measure of the number of methods implemented within a class. 

Table 6 shows the results for this metric as gathered for the implementation of the seven RTJava areas in 

the Simulator. 

7 Enhanced RTJava Areas Difference 

Thread Scheduling & Dispatching 0 

Memory Management +2 

Synchronization & Resource Sharing +2 

Asynchronous Event Handling +1 

Asynchronous Transfer of Control +6 

Asynchronous Thread Termination +6 

Physical Memory Access +4 

 

Table 6: Weighted Methods per Class Results 

 

As documented in chapter 5, aspects may help reduce the number of methods in a class. However the 

opposite has occurred with the results depicting an increase in WMC for the majority of the RTJava 
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areas. It is interesting to note that the WMC was not reduced by the use of aspects in any of the seven 

areas.  There are several reasons for this increase. Firstly, aspects themselves have methods (or advice 

such as around, before, and after) that provide the implementation that is to be weaved to the 

specified joinpoints declared in the aspect. Consequently, any reduction in methods that aspects do 

provide (through modularising crosscutting concerns) are somewhat countered by the methods present in 

the aspect itself. For example, this applies for the memory management area where a separate method is 

required when allocating argument constructor objects to immortal memory. The function of this method 

is described in chapter 3 of the dissertation. Aspects in this case enable this method to be removed (as 

discussed in chapter 4), thus reducing the WMC. Yet the aspect itself subsequently introduces a method 

to provide equivalent functionality of the removed method, hence cancelling out the original reduction.  

Secondly, the increase in WMC may be caused when aspects capture crosscutting behaviour but does not 

eliminate the methods in which this behaviour was contained. This is the case for the synchronization 

and resource sharing area. Aspects capture the wait and notify constructs but do not remove the 

method. Yet additional methods are present in the system due to the methods in the aspects that have to 

be accounted for. Thirdly, an increase in WMC may be a result of a limitation of AspectJ. As discussed 

in chapter 4, it does not support the catching of exceptions inside method boundaries. The work-around 

for this consisted of wrapping exception catching in methods. Thus in addition to the increase in methods 

caused by aspect methods, there was a further increase due to the wrapping of code that throws 

exceptions. This is the case in the RTJava areas of asynchronous transfer of control, asynchronous event 

handling, and physical memory access. Without this limitation, the increase in these areas may not have 

been as high, but further investigation is required to support this. 

6.1.2 Depth of Inheritance Tree 

Depth of Inheritance Tree (DIT) is the maximum length from a class node to the root of the tree. Table 7 

shows the results for this metric as gathered for the Simulator’s implementation of the RTJava areas. 

7 Enhanced RTJava Areas Difference 

Thread Scheduling & Dispatching -1 

Memory Management - 

Synchronization & Resource Sharing - 

Asynchronous Event Handling - 

Asynchronous Transfer of Control - 

Asynchronous Thread Termination - 

Physical Memory Access - 

 

Table 7: Depth of Inheritance Tree Results 
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AOP, as stated in chapter 5, may reduce the DIT in cases where subclasses are defined only for the 

purpose of applying their own aspectual behaviour. Thread scheduling and dispatching, as implemented 

in the Simulator, is the only area that is applicable for this metric. Other RTJava areas do no utilise 

subclassing for this reason and therefore do not alter the value of the DIT metric. In relation to the 

threading area, aspects remove the need to subclass when providing specific real-time thread behaviour. 

Aspects enabled the capturing of initialisation arguments that are the contrasting factor in the two 

threading subclasses in the Simulator – SimulationRTThread and 

SimulationPeriodicThread. Thus by encapsulating this behaviour in an aspect, the need for 

these subclasses is removed, reducing the DIT by one. 

6.1.3 Number of Children 

Number of Children (NOC) is the number of immediate subclasses of a class in the hierarchy. The table 

below (table 8) shows the results for this metric as gathered for the implementation of the seven RTJava 

areas in the Simulator. 

7 Enhanced RTJava Areas Difference 

Thread Scheduling & Dispatching -2 

Memory Management - 

Synchronization & Resource Sharing - 

Asynchronous Event Handling - 

Asynchronous Transfer of Control - 

Asynchronous Thread Termination - 

Physical Memory Access - 

 

Table 8: Number of Children Results 

 

The NOC metric provides a similar result to that of the DIT metric. In this instance the NOC count for 

the RealtimeThread class (of the javax.realtime package) is decreased by two (the number of 

RealtimeThread subclasses that exist in the Simulator). This is a consequence of aspects removing 

the need for the RealtimeThread subclasses as described for the DIT metric in this chapter. 

6.1.4 Coupling Between Objects 

Coupling between Objects (CBO) is a count of the number of other classes to which a class is coupled. 

The table below (table 9) shows the results for this metric as gathered for the implementation of the 

seven RTJava areas in the Simulator. 
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7 Enhanced RTJava Areas Difference 

Thread Scheduling & Dispatching 0 

Memory Management -2 

Synchronization & Resource Sharing +2 

Asynchronous Event Handling -2 

Asynchronous Transfer of Control +3 

Asynchronous Thread Termination +3 

Physical Memory Access -12 

 

Table 9: Coupling between Objects Results 

 

Chapter 5 describes how AOP is likely to decrease the coupling between core classes, yet increase the 

coupling between core classes and aspects. This is deemed beneficial as core classes are more likely to 

be reused. The CBO metric shows the most varying results of all the metrics of the C&K suite with both 

reductions and increases caused by the use of aspects. The variation of these values is related to the 

number of different objects each RTJava area requires to reference in its implementation and the number 

of different classes each area is implemented in. For example, classes which provide physical memory 

access code are coupled to five separate exception objects that may be thrown during physical memory 

access. Aspects remove the need to reference these exceptions in the core classes (as described in chapter 

4), therefore eliminating the coupling between these core classes and each of the five exceptions thrown. 

Each of these classes is now coupled with an aspect, which in turn is coupled to these five exceptions (as 

the aspect provides the exception handling code). In the Simulator, physical memory access occurs in 

three separate classes. Although these classes are coupled to the aspect, the net result is a reduction in 

CBO. This reduction would further increase if physical memory access code was present in more classes. 

The synchronization and resource sharing area in contrast shows an increase in CBO. As the wait and 

notify constructs are part of an Objects behaviour, modularising this behaviour does not reduce coupling. 

Yet classes containing synchronization code (two classes in the Simulator) are, in the AO version, also 

coupled to the aspect (SynchronizationAspect). This therefore increases the CBO metric in 

proportion to the number of different core classes that implement the synchronization functionality. Thus 

these two cases indicate that CBO does increase coupling between aspects and core classes, while the 

degree to which they reduce coupling between core classes is dependant on the number of different 

objects required for the implementation of each RTJava area. 
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6.1.5 Response For a Class 

Response For a Class (RFC) is the number of all methods that can be invoked in response to a message 

to an object of the class or by some method in the class. Table 10 shows the results for this metric as 

gathered for the implementation of the seven RTJava areas in the Simulator. 

7 Enhanced RTJava Areas Difference 

Thread Scheduling & Dispatching +2 

Memory Management +14 

Synchronization & Resource Sharing +4 

Asynchronous Event Handling +7 

Asynchronous Transfer of Control +6/+3 

Asynchronous Thread Termination +6/+3 

Physical Memory Access +6 

 

Table 10: Response For a Class Results 

 

Chapter 5 documents how the RFC metric is likely to increase in the presence of aspects. Although this 

by RFC’s definition leads to greater complexity, the positive point is that aspects can encapsulate the 

logic and the objects with which a class communicates in a modular way. As is evident from table 10 

above, the RFC of all seven areas are increased in the AO version of the implementation. This is a direct 

consequence of the reason stated in chapter 5 (RFC increases because also have to communicate with 

aspects which did not occur in the OO version of the implementation). The variation of the RFC 

increases in each area is related to the number of additional methods that aspects introduce in that area. 

This is because as the number of methods in a class increases (WMC), then the number of responses for 

a class (RFC) is likely to increase also.  

6.1.6 Lack of Cohesion in Methods 

Lack of Cohesion of Methods (LCOM) is the degree to which methods within a class are related to one 

another. The table below (table 11) shows the results for this metric as gathered for the implementation 

of the seven RTJava areas in the Simulator. 
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7 Enhanced RTJava Areas Difference 

Thread Scheduling & Dispatching - 

Memory Management - 

Synchronization & Resource Sharing -2 

Asynchronous Event Handling - 

Asynchronous Transfer of Control - 

Asynchronous Thread Termination - 

Physical Memory Access - 

 

Table 11: Lack of Cohesion of Methods Results 

 

As evident from table 11 above, the LCOM metric is only applicable in the synchronization and resource 

sharing area. This is the only area that requires the sharing of an instance variable between different 

methods within a class (which is what the LCOM metric measures). The updated boolean variable 

used for synchronization is referenced by two methods in the Simulator. Aspects enable this updated 

variable to be extracted from the core class, and it is therefore no longer shared among methods within 

the synchronization code. This in turn reduces the LCOM value for the Simulator. 

6.2 Summary of Metric Results 

This section provides a summary of the figures gathered above giving a good indication of the 

comparative impact of each of the seven areas on the attributes of the system. Table 12 summarises the 

metric results of the evaluation. The affects of AOP on each RTJava area are shown as an increase or 

decrease in each of the C&K metric values. The changes in metric values, which are a direct cause of 

using AOP, provides a good indication of the comparative impact that AOP has on the attributes of each 

area as implemented in the Simulator. The next section describes the affect of AOP on the system 

attributes in greater detail. 

 WMC DIT NOC CBO RFC LCOM 
Thread Scheduling & Dispatching 0 -1 -2 0 +2 - 
Memory Management +2 - - -2 +14 - 
Synchronization & Resource Sharing +2 - - +2 +4 -2 
Asynchronous Event Handling +1 - - -2 +7 - 
Asynchronous Transfer of Control +6 - - +3 +6/+3 - 
Asynchronous Thread Termination +6 - - +3 +6/+3 - 
Physical Memory Access +4 - - -12 +6 - 

 

Table 12: Summary of Metric Results 
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6.3 Affect of AOP on System Attributes 

This section gives a description the affects AOP techniques have on the specific system attributes in 

terms of the seven enhanced RTJava areas: understandability, maintainability, reusability, and testability.  

6.3.1 Understandability 

The Evaluation chapter of this dissertation (chapter 6) describes how the C&K metrics suite measure the 

understandability attribute of a software system. WMC, DIT, CBO, and RFC are given as the metrics 

which measure understandability. The figure below illustrates the effects of AOP on the seven RTJava 

areas in terms of this attribute as evaluated for the Simulator. The metric values again are shown as an 

increase or decrease to those gathered for the OO version implementation. These changes in metric 

values are a direct result of using of AOP constructs in the implementation. 
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FIGURE 27: EFFECT OF AOP ON UNDERSTANDABILITY 

 

It is evident from figure 27 above that, in most cases, the metrics for evaluating understandability have 

increased, thus indicating that AOP has an adverse affect in terms of the Simulator’s understandability. 

The level of increase is slightly different for each area, showing that AOP has varying affects on the 

understandability of each area. It is interesting that in some cases, there are both increases and reductions 

to metrics. This illustrate that AOP may improve the understandability of an area in one aspect but 

reduce it in another. This is clearly evident in physical memory access area. The CBO is substantially 

decreased due to the elimination of coupling between core classes and exception classes, while the RFC 
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metric is increased due to additional methods present in the system that are contained in the aspect. A 

similar case applies for the memory management area. In addition, these two memory real-time memory 

related areas either contain a substantial increase (i.e. for memory management), or decrease (i.e. for 

physical memory access) in one of the metrics. This may indicate that the overriding affect on 

understandability in each area will be consistent with the metric value that has altered the most (i.e. in the 

memory management understandability will become more difficult as illustrated by the increase in RFC). 

The areas related to asynchrony show similar results for understandability which may indicate that 

asynchronous functionality is more difficult to understand when implemented using aspects. The 

remaining areas, thread scheduling and dispatching and synchronization and resource sharing, are less 

affected in terms of understandability than the other areas when implemented using AOP. However they 

still show an increase in complexity due to an increase of responses for a class and in the case of 

synchronization and resource sharing and increase in the number of methods within classes that are also 

more tightly coupled. Overall, the figures indicate the AOP increases the complexity of the Simulator, 

and therefore adversely affecting its understandability. 

6.3.2 Maintainability 

The Evaluation chapter (chapter 6) documents how the C&K metrics suite measure the maintainability 

attribute of a software system. WMC, CBO, and RFC are given as the metrics which measure 

maintainability. The figure (figure 28) below illustrates the effects of AOP on the seven RTJava areas in 

terms of this attribute as evaluated for the Simulator.  
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FIGURE 28: EFFECT OF AOP ON MAINTAINABILITY 
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The results for maintainability, like understandability, indicate that the Simulator is more difficult to 

maintain with the presence of aspects. A similar insight to the understandability attribute is evident here 

in that the maintainability of an area may be improved in one way but made more difficult in another. 

The areas of memory management and physical memory access illustrate this. In addition these two areas 

again show a substantial increase or decrease in one of the metrics which may be the overriding factor 

for the maintainability for that area. The areas of asynchrony again show similar results indicating a 

slight increase in the difficulty in maintaining the Simulator. The remaining areas, thread scheduling and 

dispatching and synchronization and resource sharing, like understandability, are less affected by AOP 

but still indicate a more complex system that is more difficult to maintain. Overall the metrics illustrate 

that AOP adversely affects the maintainability of the Simulator in some manner. 

6.3.3 Reusability 

The Evaluation chapter (chapter 6) also describes how the C&K metrics suite measure the reusability 

attribute of a software system. WMC, DIT, NOC, CBO, and LCOM are given as the metrics which 

measure reusability. The figure below (figure 29) illustrates the effects of AOP on the seven RTJava 

areas in terms of this attribute as evaluated for the Simulator.  
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FIGURE 29: EFFECT OF AOP ON REUSABILITY 

 

The results for reusability are more dispersed than those described for the previous two areas. The 

asynchrony areas in this instance have a greater contrast in results. The areas of asynchronous transfer of 

control and asynchronous thread termination are less likely to be reusable due to increases in the number 
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of methods and in the coupling between classes. Asynchronous event handling differs with a decrease in 

coupling, indicating greater reusability. The thread scheduling and dispatching area also improves this 

attribute through the use of aspects. Synchronization and resource sharing implemented with aspects 

results in improvements to reusability in one area while greater difficulty in the two others. The results of 

the remaining areas, memory management and physical memory access, show an increase in WMC and a 

decrease to CBO. This raises an interesting point regarding AOP and reusability. In these two areas the 

increase in WMC is a direct result of methods that are implemented the aspect (, which by C&K’s 

definition make the aspects themselves harder to reuse). The opposite is the case for the core classes. The 

decrease in coupling is a direct result of core classes being less coupled to other core classes and more 

tightly coupled to aspects. Also methods in these classes have been removed (and replaced by those in 

the aspect). Consequently the core classes have become more reusable (due to this reduction in methods 

and coupling). And since core classes are more likely to be reused [39], the use of AOP in these areas 

seems to have a positive affect on the Simulator in terms to reusability. 

6.3.4 Testability 

The Evaluation chapter (chapter 6) also describes how the C&K metrics suite measure the testability 

attribute of a software system. DIT, NOC, CBO, and RFC are given as the metrics which measure 

testability. The figure below (figure 30) illustrates the effects of AOP on the seven RTJava areas in terms 

of this attribute as evaluated for the Simulator.  
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FIGURE 30: EFFECT OF AOP ON TESTABILITY 

 



 87

In terms of testability, the C&K metrics suite does not provide any reference to test suites adopted in 

their study to measure testability. Instead the suite measures testability based on the view that an increase 

in metric values described increases the overall complexity, which will therefore in turn increase the 

testability of a system. The figures depicted for the testability of the Simulator shows contrasting results 

in three of the areas. In all cases it has been determined that the increase in RFC is directly related to an 

increase in methods, brought about by using aspects. Where reduced, the coupling is a result of more 

loosely coupled core classes while where it is increased, coupling not only exists between core classes, 

but also between these classes an aspects. In these three areas (synchronization and resource sharing, 

asynchronous transfer of control and asynchronous thread termination), RFC and CBO are both 

increased. This may suggest that the overall testability of the Simulator is more difficult. This is because, 

in addition to the core classes, the aspects and their relationship with classes also have to be tested. In the 

thread scheduling and dispatching area, testing is eased due to a reduction in the number of subclasses. 

However testing classes containing threading behaviour may now be more difficult because they, in the 

AO version, need to communicate with aspects. The remaining areas (memory management, 

asynchronous transfer of control, asynchronous thread termination, and physical memory management) 

show contrasting values when measuring testability. The reduction in coupling in each case may indicate 

that the degree of coupling between core classes is reduced, therefore easing the testing of these classes. 

However, the increase in RFC may suggest that the testing of behaviour that relates aspects and core 

classes is more difficult. 

6.3.5 Discussion 

The metric results as evaluated for the attributes above (understandability, maintainability, reusability, 

and testability), raises some interesting issues regarding the actual benefits of AOP for these areas. 

Firstly, some of the AOP community have, in many studies, suggested that where aspects improve 

system modularity, they therefore also improve system attributes [6, 53, 54]. As shown in chapter 4, the 

modularity of the Simulator has improved through the capturing of crosscutting RTJava functionality. 

This, by some suggestions, should therefore improve the system in terms of the above attributes. 

However, the results of the metrics show otherwise, with the majority of the results showing that the use 

of AOP actually has an adverse affect in terms of system attributes. This in turn raises two interesting 

questions.  

1. The first relates to the OO metrics used and their suitability for evaluating AO software. It may 

be the case that aspects, while improving modularity, do also improve system attributes. And 

this improvement is not highlighted in the metric results simply because OO metrics are 

unsuitable as they do not consider modularity measures when measuring system attributes. Thus 

further investigation is required into the metrics that are suitable for evaluating AO applications.  
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2. The second question raised relates to the causal relationship between modularity and system 

attributes. While some of the AOP community claim that improved modularity, leads to a 

subsequent improvement in system attributes, the resulted described above raises questions 

about this causal link between modularity and system attributes. That is while aspects improve 

modularity, they may not necessarily improve understandability, maintainability, reusability or 

testability. This supports the findings of [48]. In this study Walker et all raise the question about 

the relationship between aspects and an their benefits to system attributes. The notion of an 

aspect core interface is defined as the boundary between code expressed as an aspect and the 

functionally decomposed code. Their findings indicate that in a wider interface (i.e. it is 

necessary to look at both aspect code and large sections of the core code to understand the 

aspect code), the causal link between aspects and the benefits they give in terms of system 

attributes becomes uncertain. Further investigation into these two questions raised is therefore 

required. 

Another interesting issue highlighted by the metric results, relates to the relationship between each of the 

system attributes. Because the same metrics are used in a more than one attribute evaluation, the results 

between them are relatively consistent. That is in the measure of understandability, maintainability, 

reusability, and testability, the results for asynchronous transfer of control and asynchronous thread 

termination, in each case and for all the metrics used in each measure, are always increased. The areas of 

memory management and physical access always have contrasting metric values in each attribute 

measure. The remaining cases are also relatively consistent. This suggests that if the evaluation results 

indicate that an RTJava area (or any functional concern in any system) is more easily understandable 

when using aspects, then it is likely to also be more maintainable, more reusable, and more easily tested. 

The main reason for this is that the same metrics are used in the evaluation of each system attribute. 

The final interesting point highlighted by the evaluation results is the relationship between the RTJava 

areas. For example the two memory related RTJava areas both show an decrease in CBO and an increase 

in WMC and RFC. This may provide a good indication of the precise area that AOP benefits in these 

memory related areas. Similarly, the use of AOP in the asynchrony areas always results in an increase in 

WMC and RFC, thus indicating that AOP may not be of great benefit to the overall asynchrony area. 

6.4 Scalability 

It is important to remember that the values of the metrics described above reflect the design and 

implementation of the Sentient Traffic Simulator. The OO version of the Simulator was implemented in 

16 classes, with the AO version adding to this number by 7 aspect classes, which by industry standards is 

a relatively small application. Consequently it is important to describe how the results gathered here may 

differ if the same process was carried out for a larger application. 
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It is estimated that in a larger system, the metric values will follow in the same direction (i.e. either 

increased or decreased) as they did for the Simulator. The values of metrics are estimated to be higher for 

increased values and lower for reduced values. The proportion of this increase will be dependant on the 

number of times a certain RTJava construct is used. For example in the memory management area, if one 

additional object were to be allocated to immortal memory then the metric values of WMC and RFC 

would increase by one while CBO would decrease by one. For two additional objects increase WMC and 

RFC by two and decrease CBO by two etc.  

Although these figures grow in proportion to the number of usage instances, it is estimated that the 

modularity benefits provided by aspects will increase in a larger system. The main reason for this belief 

is that larger systems, in general, exhibit a greater amount of redundant code than evident in the 

Simulator. Aspects can capture this additional redundancy without incurring any additional costs (such as 

additional methods, advices, pointcuts etc.).  

However a larger system will also increase the amount of aspects needed for capturing crosscutting 

behaviour. Take for example threading. A larger system may involve a greater variation of real-time 

threads used. Consequently additional aspects will be required one for each thread variation that exists. 

To summarise, the results documented for the Simulator should scale in proportion to the number of 

instances that RTJava constructs are used throughout. And although certain metrics values will increase 

indicating a greater level of difficulty in terms of system attributes, the modularisation benefits are also 

greater.  

6.5 Critique 

This section critiques some of the findings as noted during the evaluation of the OO and AO version of 

the Simulator implementation. 

6.5.1 Exception Handling 

The exception handling functionality in the Simulator raises some interesting issues with regards to AOP 

for Java-based real-time systems development. Firstly, the development process exposed a weakness of 

AspectJ in terms of its ability to cleanly capture exception catching code. The problem is that exceptions 

can be caught and handled in arbitrary parts of the method’s implementation and AspectJ does not 

currently provide support for capturing the catching of exceptions inside method boundaries. The work-

around for this limitation, as utilised in the AO version of the Simulator, consisted of wrapping exception 

catching in methods. This of course is not generally acceptable or practiced in normal programming 

circumstances except for the purpose of this study.  Yet it is due to this limitation that the WMC and 

RFC metric values calculated above has increased with the use of aspects, as additional methods are 
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necessary for every variation in exception catching code. Thus if AspectJ overcame this limitation, the 

aforementioned metrics would not have been so adversely affected.  

Secondly, it was common practice in the Simulator implementation to have identical exception catching 

code wherever particular exceptions were thrown. This therefore reduced the number of aspect pointcuts 

and advices that were necessary to handle exception catching behaviour. If it were the case that there was 

a greater variation of exception handling code, then the metrics evaluated above would differ noticeably. 

Different variations in exception catching code would result in the need for either separate aspects 

altogether or additional pointcut and advice in an existing aspect. A single addition of either would be 

necessary for each variation in exception handling code that exists. This will, as a result, increase the 

values of WMC and RFC.  CBO, DIT, and NOC metrics may also increase depending on whether new 

aspects are used to handle various exception handling cases.  

The final issue relates to the notion that aspects may instil laziness in programmers when implementing 

exception handling code. It is argued that if aspects exist to handle certain exceptions, programmers may 

simply delegate exception handling to it. This is of course acceptable if the aspect provides the suitable 

exception catching code. The problem arises if the opposite is true with programmers delegating 

exception catching to aspects even if the handling implementation is not as precise as is needed or is 

completely unsatisfactory. Although this temptation for such laziness is greater when using AOP, due to 

this delegation ability, I believe that this would not be a common occurrence, especially in the real-time 

domain where critical operations dependant on such exception handling activities may be present. 

6.5.2 Real-time Threading 

The evaluation of the thread scheduling and dispatching area was based on the Simulator implementation 

consisting of two types of real-time threads. These two types were sufficient in satisfying the 

requirements of the system. In addition it was somewhat coincidental that various classes used the same 

type of thread. The consequence of this was that it enabled aspects to more easily capture crosscutting 

thread behaviour, thus leading to more favourable C&K metric results in this area. If it were the case that 

a greater variation of real-time threads were used throughout the Simulator and within classes 

themselves, developing aspects would have been more difficult. Firstly a different pointcut and advice 

block would need to the implemented for each thread variation that exists. Secondly, modularising 

crosscutting thread behaviour would be significantly more difficult. All real-time threads are created with 

the same constructor call (new RealtimeThread(..)), with variations for their behaviour specified 

by the values of RealtimeThread arguments. Consequently capturing and specifying different 

variations of thread behaviour in an aspect can no longer be done using the constructor call (as described 

in chapter 4). Thus it would now be necessary to identify the context in which each variation of a real-

time thread is created and specifying each of these cases in a separate aspect pointcut. This is clearly 
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more difficult and error prone as each context in which a thread is created will have to be individually 

identified and specified and in turn implemented in the aspect. From a C&K metrics perspective the main 

changes will be in the WMC and RFC values due to the increase of advices needed to encapsulate 

additional thread variations in the aspect (RTThreadAspect). Yet metrics such as CBO will not 

change. This is because classes containing threads were all previously coupled with the 

RTThreadAspect aspect. Altering the real-time behaviour of a thread in one of these classes will not 

affect the coupling between the class and the aspect and hence the CBO. 

6.5.3 Memory Management 

Issues relating to the memory management area of RTJava have also been raised in the dissertation. The 

main discussion point here is in relation to the allocation of immortal memory. By capturing immortal 

object creation code, aspects enable all objects to be instantiated in the conventional way (using the new 

operator). This may be beneficial in terms of understandability and maintainability especially for 

developers unfamiliar with such real-time constructs. However, it is argued that the more long-winded 

approach, implemented in core classes, provides a better technique for all immortal allocation. This is 

because it makes it perfectly clear that a particular allocation is from immortal memory. Thus the two 

opposing views of the argument seem valid, which the choice of which to support dependant on the 

requirements of the system and developers involved. The second issue relating to this area is the 

argument of aspects versus the Factory Method design pattern [50] for object creation. The two 

approaches actually differ quite significantly. Creation of immortal objects using the Factory Method 

pattern would require the need to reference the class containing the factory method. Object creation 

would need to be performed by calling the factory method. This is in contrast to the aspect approach 

which does not introduce the need for interfaces and subclasses as required for the Factory Method. 

Instead immortal objects can simply be created using the new operator. Both approaches provide more 

modular ways of implementing objects creation, yet there are significant benefits to each approach. 

Design patterns provide a very efficient means of creating objects and are now widely used in OO 

applications. Developers are also becoming increasingly familiar in both how and when they should be 

adopted. Aspects can enable the encapsulating of object creation behaviour hiding implementation details 

where necessary. Objects can also be created in the conventional manner using new. Thus the choice 

really is dependant on which the developers favour and obviously any requirements of the system 

relating to this area. 
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7 Conclusions 

This final chapter documents the conclusions that have been drawn from the evaluation results as 

documented in the Evaluation chapter (chapter 6) of the dissertation.  It also presents some of the future 

work related to the dissertation that has been identified. 

7.1 Conclusions from Findings 

The original research question that the dissertation aimed to evaluate was the effectiveness of AOP 

techniques for separation of concerns in the development of the seven enhanced areas of Java-based real-

time systems development. Following the evaluation of the two versions (OOP and AOP) of the 

Simulator, a number of conclusions were derived about AOP and its effectiveness for Java-based real-

time systems development and also about the applicability of the C&K metric suite for assessing AO 

programs.  

The conclusions drawn are the following: 

• AOP enhancements can improve the modularity of real-time systems. 

• The degree of effectiveness of AOP for developing Java-based real-time systems is highly 

application specific. 

• OO metrics shows an apparent contradiction when applied to the evaluation of AO programs. 

• The benefits provided by AOP are not as compelling as previous studies. 

Firstly the use of aspects in the Simulator has greatly improved its modularity. As they are designed to 

do, aspects enable the modularisation of crosscutting concerns exhibited by the seven RTJava areas in 

the codebase, thus eliminating code scattering and code tangling. As described in the evaluation chapter, 

this can have significant consequences on the system attributes, understandability, maintainability, 

reusability, and testability. These areas benefit from this improved modularity, which may in turn 

improve the performance and productivity of development as opposed to the OO model.  

Second, as described in the Implementation and Evaluation chapter of the dissertation, the degree of 

effectiveness of AOP in achieving SOC is dependant on application specifics. This is clearly illustrated 

in the Simulator’s implementation of threading and exception handling (for ATC, asynchronous thread 

termination, and physical memory access). Only two types of real-time threads are supported in the 

Simulator, which enables the crosscutting behaviour of each to be easily captured as two aspects. 

However an increase in the number of different threads would make capturing this crosscutting 

behaviour less trivial. In such an instance a new aspect would be necessary for each different thread 

variation. A similar argument holds for that of exception handling. The Simulator’s reaction to a thrown 
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AsynchronouslyInterruptedException object is the same in each case. This however may 

not be a common practice as varying implementations may be provided for exception catching depending 

on the context that the exception is thrown. If this is the case, the variations in exception handling 

reactions would, like threading, require a separate aspect for each reaction type. This addition causes 

C&K metric values to increase, thus reducing the benefits of aspects in terms of understandability, 

maintainability, reusability, and testability. In theory, aspects are more beneficial if the number of 

variations in real-time threads or exception handling code is significantly less than the number of places 

real-time threads are created or where exceptions are caught. When this is so, it indicates that there is a 

fair amount of redundancy in the code relating to these areas. Consequently the benefits of aspects in 

terms of SOC would be greater here than if a lower level of redundancy existed due to greater variations 

in thread or exception handling code. 

Third, OO metrics may show an apparent contradiction when applied to the evaluation of AO programs. 

According to the C&K metrics suite, any increase in the metric values will adversely affect a system in 

terms of understandability, maintainability, reusability, and testability (i.e. all of these things become 

more difficult). In the majority of the RTJava areas, aspects result in an increase in these metrics, which 

as stated should adversely affect system attributes. However, by design, aspects are intended to capture 

crosscutting concerns and thus improve modularity. This intension is reflected in the Simulator with 

aspects providing better modularity in all RTJava areas. The resulting improvement in modularity should 

therefore benefit a system in terms of the aforementioned attributes as shown in previous studies  [6, 53, 

54]. Thus contrasting views in terms of the above system attributes are evident. While aspects indicate an 

improvement to systems attributes, the opposite is the case under OO metric evaluation. This raises two 

interesting questions. 

1. Firstly the view of previous studies may be taken: that by improving modularity, 

understandability, maintainability, reusability, and testability benefits follow. This indicates that 

OO metrics may be unsuitable for evaluating AO applications. Thus further investigation into 

metrics suitable for evaluating AO systems is required. In the OO metrics suits there is no 

relationship between modularity and system attributes (i.e. values for modularity are not 

considered in the formulae for understandability, maintainability, reusability, and testability). It 

may be necessary to devise new metrics that take into account modularity measures when 

evaluating the affects of AOP on system attributes. 

2. Secondly, as shown in the results, doubts have been raised about the causal link between 

modularity and the system attributes above. Thus although AOP improves modularity, 

according to these metrics, it’s failed in its claim to help with understandability, maintainability, 

reusability, and testability. As stated in the previous chapter (chapter 6), this supports the 

findings of [48], which also raises questions about the causal link between aspects and the 

system benefits that they provide. Consequently further investigation is necessary to determine 
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both the suitability of OO metrics for AO software and also to examine the causal relationship 

between modularity (aspects) and system attributes which some of the AOP community claim 

are gained for free through such improved modularity. 

Finally, it is evident from the dissertation that the results given here are far less compelling in favour of 

AOP than in previous studies. It has been highlighted here that AOP is beneficial in terms of modularity, 

however the degree of this effectiveness if highly dependant on application specifics. The evaluation of 

this dissertation is based on metrics that are used for evaluating OO designs. This is not the case for 

previous studies of AOP with evaluation typically based on traditional metrics such as lines of code 

(LOC). Thus it is difficult to compare previous studies with this dissertation due to the differences in 

evaluation criterion. However, if traditional metrics such as LOC were used in this evaluation, the AO 

version would seem better with a noticeable reduction in LOC (219 less LOC). Yet as described, it is 

evident that AOP does not turn out favourably in terms of the OO metrics. Consequently, this 

dissertation highlights that the benefits provided by AOP are less compelling than in other studies when 

evaluated using different means. 

7.2 Future Work 

This section details some future areas of work that are related to the dissertation. 

7.2.1 Contradiction Investigation 

During evaluation of the gather results, an apparent contradiction arose relating to the benefits that AOP 

brings to the system attributes understandability, maintainability, reusability, and testability. There were 

two main suggestions for the cause of this. One suggestion was that OO metrics may not be suitable for 

the evaluation of AO software and that new metrics should be devises which account for modularity 

measures when evaluating the affects of AOP on system attributes.  This area thus requires further 

investigation. The second suggestion was that the results raise questions between the causal link between 

modularity and system attributes obtained through improved modularity. Therefore this relationship 

between the two should be more closely examined. 

7.2.2 Physical Memory Access Area 

The evaluation of the physical memory access area in the dissertation is based on design and sample code 

which was not fully implemented and tested. Therefore the next immediate step to be covered would be 

to accurately implement this area into the Simulator and carry out an evaluation on this area and the 

impact of subsequent results. However it has been noted that results for this should not stray by any 

significant amount from the evaluation depicted above.  
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7.2.3 Evaluation for Application Specific Real-time System 

As previously illustrated certain areas of the Simulator provide identical implementation. This is the case 

are areas such as exception handling and threading. An interesting path for future work would be to 

apply AO techniques to existing Java-based real-time systems which may not share the same degree of 

code redundancy as the Simulator. Therefore an evaluation could be carried, that may better reflect the 

current state of the art of Java-based real-time systems.  

7.2.4 Aspects for Other Real-time System Programming Languages 

Presently most real-time systems are developed using procedural languages such as C, although the 

adoption of OO languages in this domain is increasing with the growth in popularity of C++ and Java.  

Therefore adopting the AO approach for other real-time system development languages may be 

interesting. Aspect languages such as AspectC and AspectC++ [55] could be used for re-implementation 

of current real-time systems with a subsequent evaluation carried out. The study for each individual 

analysis could then be contrasted highlighting the varying effects of aspects in each case. 

7.2.5 Non Real-time Related Aspects 

This dissertation focused solely on real-time related constructs of Java-based real-time systems. Other 

non functional areas which have been repeatedly studied in AOP research, such as tracing, logging, 

design by contract techniques, etc. have been ignored in this case. Inclusion of aspects for handling such 

crosscutting behaviour may further impact the system which current results do not accurately reflect. The 

significance of these additional aspects would provide an interesting avenue for future work.  

7.2.6 Compositional Filters Approach for Real-time Systems Development 

The current state of the art in the area shows the use of the compositional filters approach to AOSD for 

real-time system development. Thus as an alternative to the AOP, other AOSD approaches could be 

adopted and evaluated to determine their effectiveness for real-time systems development. 

Compositional filters, hyperspaces, and the growing Concern Manipulation Environment (CME). 

7.2.7 Performance Evaluation of Aspects 

The performance property is another important characteristic of real-time systems. Although aspects do 

improve the SOC in Java-based real-time systems, their impact on system performance has not been 

tested. It is estimated that they should not significantly affect performance as aspect weaving is carried 

out at compilation. However research should be conducted to test if AOP constructs result in any 

performance overheads. 
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