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ABSTRACT 

When fabricating nanowires in a doubly-clamped beam configuration it is possible for a 

residual axial stress to be generated. Here, we show that material characterisation of metal and 

semiconductor nanowires subjected to residual axial stress can be problematic. Benchmark 

measurements of the Young’s modulus of nanowires are performed by sectioning a doubly-

clamped nanowire into two cantilevered wires, eliminating residual axial stress. Use of models 

for doubly-clamped beams that incorporate the effects of residual stress are found to lead to 

ambiguity in the extracted Young’s modulus as a function of displacement fit range, even for 

nanowires with no residual stress. This is due to coupling of bending and axial stress effects at 

small displacements, and the limited displacement range of force curves prior to fracture or 

plastic deformation. This study highlights the importance of fabricating metal and 

semiconductor nanowires that exhibit little or no residual axial stress for materials 

characterisation. 

TEXT 

Nanowires (NWs) have attracted considerable interest for their potential use as the active 

components of mechanical and electromechanical devices. In order for nanowires to be 

incorporated into devices it is imperative that their mechanical properties are fully understood. 

The characterisation of nanomechanical properties is challenging in the first instance simply 

due to the required handling and controlled mechanical manipulation that this involves. 

Secondly, the small sizes and large surface areas make nanomaterials susceptible to external 

environmental factors that may influence measured properties. For example, the interaction 

with a supporting substrate may lead to the incorporation of residual stresses into these 

materials. If these stresses are not accounted for in the mechanical characterisation of these 

wires, there is significant potential to report erroneous results. It is well established that 
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mechanical properties of nanowires can be vastly different to that of their bulk counterparts1,2,3,4 

therefore, great care is required in the recording and analysis of nanomechanical measurements.    

Different techniques have been employed to measure the mechanical properties of 

nanomaterials. Electron microscopy based techniques have been used to examine the resonance 

response of piezomechanically driven 1-d nanowire materials5,6 in addition to in-situ tensile 

testing using a force measurement strain stage.7,8 Atomic Force Microscopy (AFM) based 

techniques include nanoindentation methods9,10 and the exploitation of both normal11 and 

lateral12,1,13 deflection to measure the mechanical response of nanowires. The AFM approach 

has the advantage that it can be used to simultaneously measure the mechanical and electrical 

properties of nanowires, which in turn enables determination of the material’s Poisson’s ratio.14 

AFM nanomechanical measurements are typically performed in a doubly-clamped freely-

suspended-beam configuration. Accordingly, it is important that the adhesion between the 

nanowire and the substrate is sufficient to provide mechanical clamping. In instances where 

the natural adhesion is weak it is necessary to mechanically clamp the wires to define a pinning 

length, which can be accomplished using EBL patterned metal contacts or by local FIB-based 

metal deposition. The free-suspension of the nanowire between the clamps is insured by 

placing the pinned length of the wire over a hole15 or a trench in the substrate or by conducting 

the experiment in a liquid medium.16 For accurate mechanical measurements, it is important to 

know or account for the intrinsic (residual) stress state of the material. This is particularly 

important for nanomaterials since surface adhesion and/or clamping which are necessary for 

mechanical measurement may also potentially impact the mechanical response of the material 

itself.    

Here we show that in many instances the deposition and clamping techniques currently in use 

can lead to the incorporation of unintended residual stresses. We demonstrate this by 
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performing mechanical measurements on doubly-clamped wires and show that the mechanical 

response cannot be accounted for by the standard model developed previously for nanowires 

by Heidelberg et al.12  In the presence of residual stress, the force-displacement (F-d) behaviour 

can be poorly described by the model preventing the determination of the materials mechanical 

properties. We demonstrate that residual stress can be naturally present in such wires. This is 

accomplished by using a focussed ion beam to section the suspended wire into two single-

clamped cantilevers, each of which are well described by conventional Euler-Bernoulli beam 

mechanics and yield Young’s moduli that are very close to the expected bulk values. 

We begin by describing the ideal (zero-residual tension) doubly-clamped free-suspended wire 

configuration first considered by Heidelberg et al.,12  

 𝐹௖௘௡௧௘௥ ൌ
192𝐸𝐼

𝐿ଷ 𝑓ሺ𝛼ሻ∆𝑧௖௘௡௧௘௥, (1) 

where Fcenter is the force applied perpendicular to the NW axis at its central point, E is the 

Young’s modulus of the wire, I is the areal moment of inertia for a cylindrical wire and L is the 

pinned length. The function 𝑓ሺ𝛼ሻ is defined  

 
𝑓ሺ𝛼ሻ ൌ

𝛼

48 െ
192tanhሺ√𝛼/4ሻ

√𝛼

, 
(2) 

where α is related to the displacement Δzcenter of the wire by  

                                          α ൌ ଺஫ሺଵସ଴ା஫ሻ

ଷହ଴ାଷ஫
,                  ϵ ൌ ሺଶ∆୸ౙ౛౤౪౛౨

ୖ
ሻଶ,                                 (3) 

This model assumes the wire is not subjected to a residual axial stress. The 𝑓ሺ𝛼ሻ function may 

be approximated so that the force Fcentre comprises two terms: (i) a bending term that is linear 

in the displacement Δzcenter and (ii) a tensile term that is cubic in the displacement Δzcenter.12
 We 

note that residual stress in the wire will enhance the contribution of the first term but not the 
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second. As such, it will affect the transition from the linear to the cubic dependence on Δzcenter 

in Eq. (1).  

To test for the presence of residual stress we repeat the experiment outlined by Heidelberg et 

al.12 to determine if the F–d response of our wires fits the model described in Eq. (1). Silver 

nanowires (AgNWs) pre-dispersed in isopropanol are dropcast onto a SiO2 surface with pre-

fabricated trenches. Due to the volatile nature of the solvent it evaporates leaving the AgNWs 

deposited on the surface. Wires that are suspended perpendicularly over trenches are identified 

for mechanical measurements. Trenches are 250 nm deep and have widths of approximately 2 

µm, giving a ratio of trench width to nanowire diameter of ~30 times. This is the optimal ratio 

for these measurements because it eliminates wire droop due to gravity and minimises the role 

of the clamps during the doubly-clamped beam AFM measurements.2 In order to define the 

pinning length, L, the nanowires are pinned using Pt-electron beam induced metal deposition 

as shown in the inset of Figure 1b. The pinning points are deposited as close to the trench edges 

as possible to eliminate wire/substrate friction affects during the doubly-clamped beam AFM 

measurements. 

For the doubly-clamped beam experiments 75 kHz Budget Sensor AFM cantilevers with 

nominal spring constants of 3 N/m are used. The calibration procedure for these cantilevers is 

described elsewhere.17 An Asylum MFP-3D AFM equipped with lateral lithography suite and 

closed x-y loop is used to elastically load the NWs in ambient conditions at room temperature. 

Prior to manipulation the NW long axis is aligned parallel to the cantilever axis to avoid 

slippage between the NW and AFM cantilever tip during mechanical deformation. Figure 1a 

shows the loading/unloading behaviour of an individual AgNW. Prior to loading there is no 

lateral force experienced by the tip indicating that the tip is not in contact with the bottom of 

the trench. The tip then loads the wire resulting in an increasing force response. At a 

displacement of approximately 100 nm the tip reverses direction and unloads the wire. The tip 
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then separates from the wire where the force on the tip returns to its preload value. This is 

repeated twice more with each loading curve being the same as the one previous as can be 

observed in Figure 1a. Additional mechanical properties such as yield point and yield strength 

can be obtained2,18,17 by plastically deforming the wire, however this is not the purpose of the 

present study. For these measurements, it is critical that the wire is only loaded elastically. 

Elastic loading can be identified by the symmetry of the loading/unloading response curves.  

To extract mechanical properties, the loading curves in Figure 1a are fit to the model in Eq. 

(1). An example of a loading curve fit can be seen in Figure 1b and it is immediately evident 

that the mechanical response of this wire is not well described by the above-described zero-

residual stress model, Eq. (1). Moreover, the F-d response is strongly linear with the cubic 

dependence on displacement, Δzcenter, being less than that predicted by the model. The 

measured displacement (100 nm) is greater than 3 times the radius of the wire (32 nm) and 

should be well in the cubic stretching regime according to Eq. (1); see supplemental Figure S1. 

The increased linear response is consistent with the wire being subjected to a residual tensile 

stress. This residual tensile stress results in enhanced stiffening of the beam. From Figure 1b it 

can be observed that a larger force is required to push the wire by a given displacement when 

compared to that predicted by Eq. (1). 

Intuitively, one possible cause for this residual stress is the mechanical clamping process. This 

can be investigated directly for those wires where adhesion to the substrate surface is sufficient 

to pin a nanowire in place. This is the case for the AgNWs used in these measurements. The 

mechanical clamps do provide additional mechanical stability and they also clearly define the 

pinning length, L. Without clamps the pinning length is not well defined. Even so, it is 

important to emphasise that the chosen pinning length only affects the magnitude of Young’s 

modulus obtained from the fit (see supplemental Figure S2) it does not affect the overall fit of 

the model.  The inset of Figure 1d shows an AFM image of a 64 nm diameter AgNW suspended 
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over a trench without Pt mechanical clamps. The F-d response of this nanowire is shown in 

Figure 1c along with the subsequent fit to the doubly-clamped beam model in Figure 1d. From 

the repeatable F-d response it is clear that the wire is pinned to the substrate. However, based 

on the poor fit it is evident that the wire is still subjected to a residual axial stress (tension).    

The observed residual stress may be a result of the solvent process for depositing nanowires. 

This type of residual stress has been observed before by Hudson et al.,19 where the Heidelberg 

model12 was adapted to describe spider silk that was subjected to an initial residual stress.19 

The modification to the Heidelberg model involves adding a pretension term 𝛼଴ to account for 

this residual stress. The 𝑓ሺ𝛼ሻ term is modified so that;20 

                                                    𝛼 ൌ  𝛼଴ ൅ ଺ఢሺଵସ଴ାఢሻ

ଷହ଴ାଷఢ
,                                                (4a) 

where                                                          𝛼଴ ൌ ்௅మ

ாூ
,                                                             (4b) 

which represents the ratio of residual axial stress to the stress generated by bending. T is the 

residual tension in the wire. The residual stress can occur in the form of tension (positive 𝛼଴) 

or compression (negative 𝛼଴). The additional 𝛼଴ term in Eq. (4a) affects the F-d response of 

the beam in the small (linear) displacement range, as described previously. When a beam 

exhibits a residual axial stress, the first term in Eq. (4a), that describes the residual stress, is fit 

to our measured data, we observe excellent agreement, see Figure 1d. However, the extracted 

Young’s modulus of 34 GPa from this fit is much lower than the expected bulk value of 83 

GPa for silver. The likely reason for this anomaly is that the Young’s modulus, E, and tension, 

T, both affect the linear response of the F-d curve at small displacements, Δzcenter. As such, 

their effects cannot be de-coupled easily in the absence of data at large displacements (where 

the cubic term dominates). True cubic behaviour of the F-d curve is rarely observed for the 

metal wires studied here. Indeed for many such wires, including semiconductor wires, large 
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displacements may result in failure or plastic deformation.12 This inability to separate the 

effects of Young’s modulus and residual tension is found in many other wires that we studied 

(data not shown), and presents a significant bottleneck to the characterisation of these wires in 

the presence of residual tension. 

Therefore, it is clear that a different approach is required to (i) demonstrate the presence of 

residual stress and (ii) to unequivocally measure the Young’s modulus of the wire. We start 

with the unclamped beam in Figure 2a and adopt an approach described by Wong et al.16 

Namely, we section the AgNW into two single-clamped cantilevers. Since each wire section is 

pinned at one end only ensures that they cannot be subjected to an axial residual stress - any 

potential axial stress is released at the free end. This measurement differs in important ways 

from the doubly-clamped beam method. Rather than loading the nanowire at the same centre-

point position, the NW is loaded at multiple positions along its length as depicted in Figure 2d. 

In Euler-Bernoulli beam mechanics, the deflection, d, at the free end of a cantilever is,21 

                                                                            𝑑 ൌ ி௅య

ଷாூ
 .                                                      (5) 

Rearranging this equation, gives 

             𝐹ିభ
య ൌ ሺ3𝐸𝐼𝑑ሻିభ

య. ሺ𝐿௖ ൅ ∆𝐿ሻ,                                                  (6) 

where 𝐿௖ ൅ ∆𝐿 is the length of the NW from its pinned end to its free end; Lc is the nominal 

wire length from its pinned end to the load point, and ∆𝐿 is the required adjustment to give the 

true length. The latter length, ∆𝐿, is fixed for any given wire because wire pinning is not 

adjusted as the load point is varied. This formula can be used to assess the accuracy of the 

length, L, used in the doubly-clamped beam experiments. The wire is loaded and unloaded so 

as to test for and avoid plastic deformation. The F-d response as the nanowire is loaded at 

different positions along its length is shown in Figure 3a. The initial F-d response is linear in 

accordance with Eq. (5). As the wire is loaded closer to its pinning point the force experienced 
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by the tip increases. For each of the F-d curves the slope of the linear section of the loading 

curve is obtained, as shown in Figure 3b. At larger displacements, the slopes become non-

linear, presumably as the tip starts to slip over the wire length. For this reason, these non-linear 

sections of the F-d curve are not used in the analysis. From the instantaneous slope at any given 

displacement, d, the force can be calculated according to Eq. (6) and a plot of 𝐹ିభ
య vs 𝐿௖ 

generated, see Figure 3c. The Young’s modulus can be extracted from the slope of this plot. 

An important advantage of this technique is that the exact pinning point of the nanowire is not 

required – Young’s modulus determination depends only on the slope of the resulting straight 

line. Even so, the intercept of this line with the x-axis allows the true pinning length to be 

determined, 𝐿௖ ൅ ∆𝐿. This represents a significant advantage over the doubly-clamped beam 

method where an uncertain pinning length can lead to large uncertainty in the extracted 

Young’s modulus. 

For the 64 nm AgNW in Figure 3 the Young’s modulus obtained from the doubly-clamped 

beam experiment is 64 GPa, using the (zero-residual stress) Heidelberg model, Eq. (1),12 is 

close to the bulk value of 83 GPa  ̶  but, fit of the model to the measured F-d curve is poor. In 

contrast, the Hudson model, Eq. (4a),19 yields an excellent fit but an unreasonably low Young’s 

modulus of 34 GPa. When the wire is sectioned using FIB and the measured F-d curve is 

analysed using Eq. (6), the fit is excellent and the Young’s modulus is found to be 75 GPa. 

From the plot intercept in Figure 3c it was determined that the pinning length is 𝐿௖ ൅ ∆𝐿 ൌ

1362 nm. The length, 𝐿௖, from the edge of the trench to the unpinned end of the cantilever wire 

is 1100 nm. The difference between the two values indicates that the wire is pinned a distance 

262 nm greater than the edge of the trench  ̶  this only accounts for one side of the doubly-

clamped beam, from the cantilevered wire measurement. There is also inaccuracy in the 

estimated length of the doubly-clamped beam on the other side of the wire.  
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Even so, this comparison between the sectioned wire (cantilever) and doubly-clamped wire 

measurements demonstrates that significant uncertainty can result in the estimation of the true 

pinned length of the wire. This indicates that for doubly-clamped wire measurements, it is 

critical that the pinning position be well-defined  ̶  this is achieved by depositing Pt clamps on 

the wire at the edge of the trench, so that the trench width can be used as the true pinning length. 

It should be emphasised that errors in the pinning length, L, used in Eq. (1) only affects the 

magnitude of the modulus extracted – it cannot affect the quality of fit to the model. Results 

for 16 other cantilever experiments on AgNWs, are given in Figure 4. The average Young’s 

modulus obtained is 96 ± 20 GPa, which compares well to the bulk value of 83 GPa and other 

measurements made on silver nanowires.17,22,23  

Finally, we compare all three approaches: doubly-clamped beams that are fit to (i) the 

Heidelberg zero-residual stress model in Eq. (1),12 and (ii) the Hudson model19 that includes 

the effects of residual stress in Eq. (4a), and separately the sectioned cantilever beam 

measurements that are fit to Eq. (6). We use silicon nanowires (SiNWs) for this purpose. 

Previously, we showed that F-d curves of SiNWs are well described by the Heidelberg model 

and hence the effects of residual axial stress are expected to be small.12 The Hudson model19 

reverts to the Heidelberg model12 in cases of zero residual tension, i.e., 𝛼଴ ൌ 0. Results for a 

single SiNW measurement analysed in this way are given in Figure 5. From Figure 5a we 

observe an excellent fit of the Heidelberg model, showing that the SiNW is indeed not affected 

by residual stress. A Young’s modulus of 133 ± 10 GPa is obtained. The nanowire is then FIB 

sectioned and analysed using the cantilever beam experiment. The Young’s modulus obtained 

is 128 ± 13 GPa, confirming that both methods yield identical results which are in close 

agreement with the expected bulk value of 169 GPa and that measured for SiNWs.24,25 From 

Figure 5c it is clear that the Hudson model19, that incorporates residual axial stress, also 

provides an excellent fit to measurements. However, large variations in the extracted Young’s 
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modulus are obtained from the model as the displacement fit range is varied, see Figure 5d. 

The Heidelberg model gives significantly more consistent Young’s moduli as a function of fit 

range. Another example can be found in the supplemental information (Fig S3). This highlights 

the challenges in interpreting measurements using a model that includes the effects of residual 

stress  ̶  due to equivalent contributions of Young’s modulus and residual tension to the small 

displacement linear region of the F-d curve; see above. These results strongly suggest that 

doubly-clamped nanowires should be fabricated, whenever possible, to exhibit minimal 

residual axial stress and the Heidelberg model, Eq. (1), used to interpret their F-d 

measurements. 

To conclude we have shown that it is possible for nanowires that are fabricated in a doubly-

clamped beam configuration to exhibit a residual axial stress. Measurement of the F-d curve 

of such wires and its interpretation using a theoretical model that incorporates the effects of 

residual tension was found to be problematic  ̶  a strong dependence of the extracted Young’s 

modulus on displacement fit range was observed. Sectioning of the nanowires using a focused 

ion beam and conducting cantilever beam measurements enabled unequivocal extraction of the 

Young’s modulus in the absence of residual stress. This allowed robustness of (i) the zero-

residual stress model of Heidelberg et al.,12 and (ii) the model of Hudson et al.19 which includes 

residual stress, to be assessed. Our study suggests that, given the limited displacement range 

possible in metal and semiconductor nanowire measurements, material characterisation should 

only be performed for doubly-clamped nanowires that do not exhibit residual stress. Use of a 

model that incorporates residual stress can lead to ambiguity in the measurement of Young’s 

modulus as a function of displacement. 

Supporting Information Available: Supplementary information accompanies this paper. This 

material is free of charge via the Internet at http://pubs.acs.org.  
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Figures 

 

Figure 1. (a) Repeatable F-d curves for a 64 nm diameter AgNW deposited over a trench and 

clamped using Pt-EBID mechanical clamps. (b) Loading curve 3 from (a) fitted to the 

Heidelberg model described by Eq. (1). Inset shows a AgNW clamped over a trench using Pt-

EBID clamps. (c) Repeatable F-d curves for a 64 nm diameter AgNW clamped over a trench 

by surface adhesion. (d) Loading curve 3 from (c) fitted to both the Heidelberg model (Red) 

and Hudson model (Green). Inset shows a AgNW deposited over a trench and adhered by 

surface adhesion only. All scale bars, 1 µm. 
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Figure 2. (a) AFM image of a AgNW suspended over a trench for the 3-point bending 

experiment. (b) Schematic of 3-point bending experiment. (c) AFM image of the same AgNW 

after being sectioned with a focused ion beam. (d) Schematic of cantilever experiment on 

single-clamped AgNW. All scale bars, 1 μm. 
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Figure 3. (a) F-d response of a single-clamped AgNW loaded/unloaded at different positions 

along its length. (b) Individual loading/unloading curve from (a) showing the linear region used 

for analysis. (c) Plot of F
-1/3

 vs L from which Young’s modulus can be deduced from the slope 

and the inaccuracies in the assumed pinning length can be extracted from the intercept. 
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Figure 4. Young’s modulus of AgNWs measured using the cantilever beam experiment. 
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Figure 5. SiNW not affected by initial residual stress analysed using doubly-clamped beam 

and cantilever beam methods and fit to different models; (a) Heidelberg model, (b) Cantilever 

beam model, (c) Hudson model, (d) Variation of Young’s modulus for Heidelberg and Hudson 

model when fit over different displacement ranges. 
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Non-Linear F-d Response of a Doubly-Clamped Beam  

When a nanowire, in a doubly-clamped beam configuration is loaded at its centrepoint, initially 

a linear F-d response is observed which accounts for elastic beam bending. However, at 

displacments greater than the radius of the wire the response becomes non-linear. An 

asymptotic cubic response at large displacements results due to tensile stresses induced along 

the length of the wire by stretching. Figure S1 shows simulated F-d curves for a nanowire of 

diameter 64 nm with a pinning length, L, of 2.2 μm at increasing displacements as a function 

of the radius. 

 

Figure S1. Simulated F-d curves for a circular cylinder showing the non-linearity for a 

maximum (a) one radius. (b) 2 radii. (c) 5 radii. 
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Effect of Incorrect Pinning Length on Heidelberg Model Fit and Young’s 

Modulus Extraction 

To correctly extract the mechanical properties from the Heidelberg model fit to the F-d 

response, certain parameters are required. One is the pinning length, L, of the NWs, which is 

normally defined using mechanical clamps generally deposited using EBID of a metal such as 

platinum. To verify whether the mechanical clamps are straining the NWs, they are not 

deposited. The AgNWs in these experiments are adhered to the surface by surface adhesion, 

however there is a greater uncertainty in the pinning length when no physical mechanical 

clamps are deposited. Figure S2 shows that when using different pinning lengths for the 

determination of Young’s modulus, it only affects the magnitude of Young’s modulus extracted. 

It does not affect the overall fit to the model so the use of an incorrect pinning length does not 

affect the residual stress apparent in the NW under investigation. 

Figure S2. Quality of the fit plus extracted Young’s modulus when the experimental data is 

fit to the Heidelberg model at different pinning lengths; (a) 2 µm, (b) 2.3 µm, (c) 2.5 µm, (d) 

2.8 µm. 
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Comparison of Doubly-Clamped and Cantilever Beam Methods 

Another example of a SiNW which is not subjected to an initial residual stress can be seen in 

Figure S3. The Young’s modulus of this wire is first obtained using the doubly-clamped beam 

method and Heidelberg model which gives a Young’s modulus of 161 ± 11 GPa. The wire is 

subsequently sectioned using FIB and analysed using the cantilever beam experiment. This 

gives a Young’s modulus of 172 ± 13 GPa, again validating the doubly-clamped beam method 

and Heidelberg model for wires under no residual stress. Again when the data is fitted to the 

Hudson model the inconsistency in the modulus over a wide range is observed. 

 

Figure S3. SiNW not affected by initial residual stress analysed using doubly-clamped and 

cantilever beam methods and fit to different models. (a) Heidelberg model, (b) Cantilever beam 

model, (c) Hudson model, (d) Variation of Young’s modulus for Heidelberg and Hudson model 

when fitted over different displacement ranges. 


