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Summary 

Speech is the most important form of human communication. For people affected 

by disabling hearing loss, speech information may become unavailable causing social 

isolation and cognitive decline. People with mild to profound sensorineural hearing loss 

may benefit from cochlear implantation which can bypass the impaired auditory pathway 

and may restore functional hearing through direct electrical stimulation. The fitting 

process, which refers to the continuous adjustment of software parameters of the cochlear 

implant (CI) after implantation, is an important part of the success of clinical 

rehabilitation procedures. Current fitting approaches are strongly reliant on subjective 

feedback, which can be unreliable, e.g. in individuals with test anxiety, or missing in 

cohorts such as infants and people with cognitive impairments. For children who are born 

profoundly deaf, it is imperative that they receive a CI as early as possible in life to 

achieve optimal rehabilitation outcomes, which has led to a large increase of cochlear 

implantation at a young age. Therefore, there is an urgent clinical need for objective 

methods to assess auditory processing abilities after implantation. Such objective metrics 

can not only guide the clinical fitting procedures, but also provide additional information 

to aid expectation management particularly for parents of infants who receive a CI.  

In the literature, potential objective metrics have been evaluated for spectral as 

well as temporal auditory processing. Both, temporal and spectral acoustic cues, 

contribute to the intelligibility and recognisability of sounds and particularly of speech. 

A multitude of research studies has assessed objective metrics of spectral resolution, 

however, fewer research studies have investigated objective metrics of temporal auditory 

processing, which is of particular importance for speech perception. In this thesis, 

objective neurophysiological measures representative of auditory discrimination abilities 

were explored for two different aspects of temporal auditory processing, and their 

applicability in a clinical cohort was investigated. The temporal features under 
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investigation were amplitude modulation (AM) detection abilities (Chapter 3 – 

Chapter 5) and discrimination abilities based on temporal fine structure (TFS) cues 

(Chapter 6), both of which play an important role in speech recognition.  

The first study focused on the methodology of how to derive individual neural 

thresholds of auditory discrimination abilities from electroencephalography (EEG) data. 

Consecutively, the relationship between these neural thresholds and corresponding 

behavioural thresholds was analysed by means of correlation analysis to assess the 

informational value of the neural threshold estimates. Successful neural threshold 

estimation and significant correlations with behavioural thresholds provided support for 

the expansion to a clinical cohort in Study 2. This study addressed another important 

research question regarding the applicability of the novel approach in a clinical CI user 

cohort. Moreover, signal processing methods were proposed to automatically (Case 

Study) or manually (Study 2) reduce the electrical artefact in EEG data which arises from 

CI stimulation. Significant correlations between behavioural and neural thresholds 

obtained in Study 2 corroborate findings from Study 1 and provide evidence for the 

feasibility of employing such an objective metric in a clinical CI user cohort. 

The third study as well as multiple accompanying pilot studies have explored tone 

discrimination based on two types of TFS cues and whether cortical neural change 

detection measures reflect behavioural discrimination abilities. Findings showed that 

change detection based on TFS cues is encoded in cortical neural measures, if tones can 

be confidently distinguished. However, measured amplitudes were low in comparison to 

studies which employ acoustic change features based on spectral or intensity cues. 

Moreover, for one of the two types of assessed TFS cues, precise stimulus replication 

based on information in the literature was unsuccessful despite further correspondence 

with authors, highlighting the need for more thorough descriptions of employed methods 

in Journal publications. 

In conclusion, the original contribution of this thesis to the literature has multiple 

facets and includes the novel application of widely researched neurophysiological 

measures of auditory change detection to acoustic features that have previously not been 

assessed with this approach, such as TFS processing and AM detection for varying AM 

depths. Furthermore, novel signal processing methodologies have been proposed to 

enhance neural signal analysis on an individual level. This included the development of 

a new methodology to quantify neurophysiological change responses, to aid the 

estimation of individual neural discrimination thresholds. These thresholds showed 
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significant correlations with behavioural discrimination thresholds in a normal-hearing 

cohort as well as in a clinical CI cohort, and thus, may enhance the objective assessment 

of auditory processing abilities in clinical environments in the future. 
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 Introduction 

1.1 Motivation 
Speech is the most important form of human communication. However, speech 

recognition and functional hearing may be severely impacted by disabling hearing loss. 

Disabling hearing loss is associated with social isolation, depression, loss of 

independence, cognitive decline and overall decreased quality of life (Ciorba et al., 2012; 

Davis et al., 2016; Tseng et al., 2016). In 2015, almost seven percent of the global 

population suffered from a disabling hearing loss and this trend is increasing (Wilson et 

al., 2017). In Ireland, one in six adults suffers from some degree of hearing loss and every 

second person over the age of 75 years has a disabling hearing loss (HSE, 2011). In 

today’s ageing demographic this constitutes an important social, medical and economical 

challenge that needs to be addressed.  

Hearing loss is mostly seen as sensory deprivation. However, hearing loss has a 

far greater reach and can lead to re-organization of brain connectivity, and thus, 

alterations of brain processes (Kral & O'Donoghue, 2010; Peelle et al., 2011; Sharma & 

Glick, 2016; Glick & Sharma, 2017). Young children below the age of three years are 

particularly affected (Kral & O'Donoghue, 2010). Disabling hearing loss in infants may 

lead to developmental delays and limited communication and educational attainments 

(Schroeder et al., 2006; Marschark et al., 2015). Hearing aids can amplify sounds and 

restore functional hearing for mild to moderate hearing losses. However, for severe to 

profound hearing losses, sound amplification may not be sufficient. Such a diagnosis may 

qualify a patient for cochlear implantation if the underlying cause is sensorineural hearing 

loss. 

Cochlear implants (CIs) are the current gold-standard rehabilitation approach to 

partially restore hearing in deaf individuals. However, treatment outcomes vary widely 
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and many challenges remain. The CI enables sound transmission from the environment 

through the ear to the brain and takes over the conversion from environmental acoustic to 

neural electric information, and thus, repairs the gate-way for sound to reach the brain. In 

people suffering from sensorineural hearing loss, this transformation process is impaired 

due to dead hair cells in the cochlea, disrupting the pathway of sound to the brain. 

However, to successfully restore hearing, the brain needs to integrate the auditory input 

it receives, which is a learning process enabled by the brain’s plasticity. In particular, 

speech is a complex signal and speech recognition is a very cognitively demanding task 

for the brain. After device activation in the so-called switch-on appointment, patients’ 

performance in speech recognition tests reportedly improves throughout the first year of 

implant use (Oh et al., 2003; Ruffin et al., 2007; Drennan et al., 2015), emphasizing the 

fact that the brain has to adapt to the new input it receives from the CI. After the 

implantation, CI users attend numerous clinical fitting appointments in which the device 

parameters are adjusted to the individual to maximize device performance, and in turn to 

optimize speech recognition performance. This process is very time consuming and, to 

date, it heavily relies on patient feedback. The new-born hearing screening programme 

(HSE, 2013), which was rolled-out nationwide in Ireland in 2013, enables early 

intervention to improve auditory abilities as the child’s brain is more adaptive to sounds. 

CIs are implanted in infants from the age of one year or in the time-sensitive case of 

meningitis as young as six months. However, behavioural feedback for the clinical fitting 

process may be lacking or highly unreliable in infants. This can also be an issue in people 

with cognitive impairments. Thus, there is a need for objective measures of auditory 

discrimination abilities to aid clinical rehabilitation procedures (Hall & Swanepoel, 

2010). 

Neuroimaging offers such objective assessment tools for neural function to 

clinicians and researchers that range from invasive to non-invasive methods. The different 

functional neuroimaging methods have trade-offs between temporal and spatial 

resolution, availability and cost-efficiency. Non-invasive methods comprise of functional 

Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG), functional 

Near-Infrared Spectroscopy (fNIRS), Positron Emission Tomography (PET), and 

Electroencephalography (EEG). When good spatial resolution is required, fMRI is the 
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most popular neuroimaging method1. However, the temporal resolution is poor in the 

order of seconds, as the measured neural response is based on the haemodynamic 

response. Also based on the haemodynamic response is fNIRS, which provides a more 

cost-efficient and portable alternative to fMRI. Compared to fMRI, fNIRS offers poorer 

spatial resolution and the low penetration depth of the light emitter limits the 

measurement depth to outer cortical areas. MEG offers good spatial and temporal 

resolution, but this technology is not readily available in most clinics and research 

facilities. PET scans provide very poor temporal resolution and require radioactively 

labelled chemical agents, but offer a very useful tool to study specific neurotransmitters 

and neuroreceptors. EEG provides a readily-available, cost-efficient tool with very good 

temporal resolution in the order of milliseconds, thus, making it the ideal tool to 

investigate the rapid neural processes underlying auditory perception.  

The perception of a sound relies on its acoustic features as well as the sound 

environment. The acoustic features can be divided into the spectral properties (e.g. the 

fundamental frequency) and the temporal properties. Temporal properties include the 

temporal fine structure (TFS), which refers to the faster oscillations of the sound’s 

waveform, and the sound’s envelope. Envelope fluctuations may be simplified as low-

rate amplitude modulation (AM) of a carrier signal. Therefore, envelope processing may 

be assessed by means of AM detection tasks with a low AM rate.  

Speech recognition constitutes the ultimate goal of CI rehabilitation. Given the 

importance of these temporal features for speech recognition, it is of interest to develop 

objective metrics of sound discrimination for each of these acoustic features to be able to 

assess the individual aspects of auditory processing required for functional hearing. 

Section 2.4 and Section 2.5 provide a more detailed description of the role of envelope 

and TFS cues for speech recognition, respectively, and summarise the recent literature 

with a particular focus on potential objective assessment approaches. The importance of 

these temporal features in electric hearing is discussed in Section 2.2. 

 

                                                 
1 It should be noted that CI users are commonly not eligible for MRI scans due to the magnetic 

restrictions of the implanted device. An Australian team of researchers has engineered the first MEG system 
that is compatible with CIs Johnson, B.W., Tesan, G., Meng, D. & Crain, S. (2013) A custom-engineered 
MEG system for use with cochlear implant recipients. Front. Hum. Neurosci. Conference Abstract: ACNS-
2013 Australasian Cognitive Neuroscience Society Conference.. PET, EEG and fNIRS are also compatible 
with CIs. 
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1.2 Research goals and collaborations 
The principal goal of this research is to determine neurophysiological measures to 

objectively assess temporal auditory processing abilities. In order to improve hearing 

rehabilitation, it is necessary to understand how sounds are processed neurally when the 

auditory pathway is intact, and how neural activity in people with hearing impairments 

may be altered. Experimental paradigms were therefore evaluated for a NH cohort prior 

to expanding to a clinical cohort. The present research involved several studies 

investigating two different aspects of temporal auditory processing: temporal envelope 

processing and TFS processing. These studies complement research which has focused 

on finding objective measures of spectral discrimination abilities. This research combined 

theoretical basic auditory research with clinical applicability of potential objective 

measures. Expertise was drawn from a multi-professional network of researchers and 

clinicians from Trinity Centre for Bioengineering and the National Cochlear Implant 

Programme in Beaumont Hospital.  

 

1.3 Thesis outline 
This thesis is divided into multiple studies. Chapter 2 provides background 

information and a review of the relevant literature. In this chapter the neural anatomy of 

auditory processing is described with a focus on sensorineural hearing impairment. 

Furthermore, this chapter discusses hearing restoration with CIs and their engineering 

principles. This is followed by an overview of neurophysiological measures employed in 

the assessment of auditory processing. The role of temporal acoustic features for 

functional hearing is discussed and the literature on objective neurophysiological 

measures of temporal auditory processing is reviewed. This chapter concludes with the 

research questions that are addressed in the subsequent research studies. 

In Chapter 3, the first study investigated an EEG-based neurophysiological 

measure as an objective assessment tool for temporal envelope processing. This study 

was conducted in a NH cohort. As part of the study, a novel signal processing procedure 

is proposed to improve quantification of individual neurophysiological data. Neural 

thresholds of auditory discrimination abilities are estimated from quantified 

neurophysiological data, and their relationship with corresponding behavioural thresholds 

is investigated. 
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Chapter 4 describes a case study with a CI user, which explores the challenge of 

minimising the electrical artefact in EEG data, which is introduced from CI stimulation. 

An automated EEG post-processing pipeline for CI artefact reduction is proposed. Its 

efficacy and the influence of the physical stimulus envelope and the presentation mode 

on the recorded CI artefact is discussed.  

The study presented in Chapter 5 builds on the gained insights from studies 

presented in Chapter 3 and Chapter 4. This study investigates the clinical applicability 

of the neurophysiological measure introduced in Chapter 3 by employing the 

experiments in a CI user cohort. Two alternative EEG post-processing pipelines are 

discussed with regards to CI artefact rejection. Neural thresholds of discrimination 

performance are estimated and their relationship with behavioural AM detection 

thresholds is assessed. 

Chapter 6 aims to complement the work on objective measures of envelope 

fluctuations outlined in Chapters 3 – 5, by investigating the acoustic temporal feature 

relating to the TFS of sounds. Behavioural and neurophysiological data of acoustic 

change detection are presented for two different types of TFS tone pairs. 

Finally, Chapter 7 discusses the main findings of this research and proposes 

future studies.  
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 Fundamentals 

This chapter provides an overview of the relevant literature and is divided into six 

sections. The first section provides an introduction to both the healthy and impaired 

auditory system and is divided into the peripheral and central auditory system. 

Furthermore, this section elaborates on the potential mechanisms involved in pitch 

perception, which are of importance for TFS processing. The second section describes 

the engineering principles of a CI and discusses the clinical rehabilitation procedures in 

cochlear implantation. The third section provides an overview of EEG-based 

methodologies to assess auditory processing with a focus on CAEPs in the larger 

framework of auditory evoked potentials. The fourth section provides an overview of the 

literature concerning the relationship between temporal envelope processing, as indicated 

by AM detection abilities, and speech perception abilities in NH and CI user cohorts, as 

well as potential neurophysiological measures of AM detection. The fifth section transfers 

from envelope processing to the other important temporal feature in auditory processing, 

namely TFS processing, and its role in auditory perception. The last section presents the 

research questions and their hypotheses. 

 

2.1 The auditory system 

2.1.1 The healthy auditory pathway 

The peripheral auditory system 

Sound refers to mechanical vibrations travelling as pressure waves through a 

medium such as air. When pressure waves reach a listener’s ear, the sound energy travels 

through the outer ear to the eardrum, from where it is transmitted along the bones of the 

ossicular chain of the middle ear to the cochlea of the inner ear (see Figure 2.1, top). In 
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the cochlea, the mechanical signal is converted into the electrical signal, also referred to 

as action potential, which ascends the neural auditory pathway via the auditory nerve. 

The healthy human auditory system is sensitive to frequencies between 20 Hz and 20 kHz 

and pressure levels between 0 dB and 140 dB sound pressure level (SPL), making the 

cochlea’s task to faithfully transduce rapid changes of a wide range of amplitudes and 

frequencies very complex.  

 
Figure 2.1: Overview of the peripheral auditory system and its components.  
Anatomic drawings of the outer, middle, and inner ear (top), cross-section through the 
cochlea (bottom-left), and close-up of the organ of Corti (bottom-right). Courtesy of the 
American Academy of Audiology. 

Along the length of the spiral-shaped cochlea runs the organ of Corti with its 

basilar membrane, which acts as a spectral analyser due to its geometry (Figure 2.1, 

bottom). High frequency sounds are transduced at the narrow and stiff basal end whereas 

the wider and more flexible apical end responds to lower frequencies. Sound that reaches 

the cochlea proceeds as a travelling wave via the basilar membrane, resulting in tonotopic 
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displacement of the basilar membrane, which is connected to the inner hair cells of the 

organ of Corti. This displacement creates sheer forces, causing displacement of the 

stereocilia at the tips of the inner hair cells which act as mechanoreceptors, resulting in 

the opening of ion channels in the spiral ganglion neuron’s membrane. The following 

depolarization of the membrane potential may create action potentials once a threshold 

level is reached. These action potentials carry neural information along the auditory nerve 

ascending the neural auditory pathway towards the central auditory system.  

 

The central auditory system 

Auditory information as extracted in and transmitted by the peripheral auditory 

system is relayed to the brainstem via the auditory nerve and the cochlear nucleus. The 

following summary of the core structures of the central auditory system focuses on the 

afferent (ascending) pathways as depicted in Figure 2.2. The efferent (descending) 

pathways from the auditory cortex to the hair cells are disregarded, but have important 

influence on the adaptability of the hearing system and attentional selection in dynamic 

environments (Clark, 2003). 

The central auditory system is a highly complex system, which extracts 

information patterns of growing complexity when ascending the neural pathway from 

brainstem to primary auditory cortex. The auditory fibres of the central auditory pathway 

are frequency selective and have a characteristic frequency. In this manner, frequency 

information as extracted by the cochlea with its tonotopic nature is passed on through all 

stages of the central auditory system. Neurons’ firing profiles become more specialized 

when ascending the central auditory pathway, i.e. neurons may fire in response to inter-

aural level differences, frequency modulation or AM (Fastl & Zwicker, 2007). For spatial 

sound localisation it is necessary that information from both ears is exchanged, even at 

low-level neural structures where temporal information is more accurately presented, to 

extract and compare patterns, latencies and intensities between ears. The first bilateral 

sound presentation takes place in the superior olivary nuclei, where inter-aural level 

differences and time delays are determined (Clark, 2003). Afferent connections of the 

superior olivary nuclei lead to the inferior colliculi, which form a spatial representation 

of sounds (Purves et al., 2004). From the inferior colliculi, information is relayed to the 

primary auditory cortex via the medial geniculate nuclei. Higher-order processing of 

complex sounds takes place in the auditory cortex, which is located in Heschl’s gyrus in 

the temporal lobes and consists of the core (primary) and belt areas (secondary). The 
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primary auditory cortex (A1) receives frequency mapped input from the tonotopically 

organized medial geniculate nuclei, whereas the belt areas receive more diffuse input 

from the medial geniculate nuclei (Purves et al., 2004). The auditory cortex projects 

across hemispheres, which is of particular importance for lateralized processing such as 

speech in the dominant and music in the non-dominant hemisphere (Clark, 2003), as well 

as to association cortices. 

 

Figure 2.2: Simplified schematic of the ascending central auditory pathway. 
This schematic shows a very basic diagram of the ascending neural connections from the 
hair cell in the Cochlea to the primary auditory cortex. Connections are shown originating 
from one ear for simplification purposes. Adapted from Purves et al. (2004). 
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Pitch perception 

In the following, a brief history of the underlying theories of pitch perception is 

provided with a particular focus on the pitch of harmonic complex tones with unresolved 

harmonics. This background information will facilitate a better understanding of the 

challenges encountered when investigating TFS processing, which is briefly introduced 

in Section 2.5 and later investigated in studies presented in Chapter 6.  

Pitch refers to the rather vague “attribute of auditory sensation in terms of which 

sounds may be ordered on a scale extending from low to high” (ANSI, 1994). Pitch is a 

percept, and not a physical property of a sound, and thus, is dependent on an individual’s 

perception. Pitch perception is the key factor for melody perception in music. 

Furthermore, it is used to convey meaning in speech by changing melody, to segregate a 

voice in a cocktail-party environment, and to discriminate male from female voices and 

adult voices from children’s voices. The key predictor of pitch is a sound’s periodicity, 

which for a pure tone equates to its frequency and for a harmonic complex tone it relates 

to the fundamental frequency F0. The precise mechanisms underlying pitch perception, 

however, are still widely debated among researchers (Walker et al., 2011; Oxenham, 

2012), but heavily rely on the spectral composition of the presented sound. For an in-

depth review of the current knowledge on the neural mechanisms underlying pitch 

perception the reader is referred to Schnupp et al. (2011) and Plack and Oxenham (2005).  

Three main theories have been proposed as an explanation for pitch perception: 

Helmholtz’s place theory, Schouten’s timing theory and Goldstein’s pattern recognition 

theory which are briefly outlined in the following: 

A. Place theory (Von Helmholtz, 1895): The location of maximum excitation 

along the basilar membrane determines a tone’s pitch. This may hold true for 

the perception of pure tones, however, the place theory is unable to account 

for the “missing fundamental” effect, which explains the phenomenon of a 

complex tone without spectral content at F0 being perceived as pitch at F0 

(Schouten, 1938; Licklider, 1956). 

B. Timing theory (Schouten, 1940): According to the timing theory, the pitch of 

a sound depends on the timing of neuronal activity based on phase locking of 

neurons to the frequency of the incoming sound stimulus. Thus, frequency 

perception is believed to originate from differences in time intervals of 

neuronal activity. However, neuronal phase locking is only possible for sound 

frequencies below approximately 4 kHz. 
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C. Pattern theory (Goldstein, 1973): Goldstein’s pattern theory suggests that 

perceived pitch is determined by the harmonic series that best fits the pattern 

of frequencies in a sound. 

None of these theories can fully explain all phenomena of pitch perception. 

However, a combination may be possible and modern theories propose the integration of 

place and timing models (de Cheveigne, 2005), where timing mechanisms refer to the 

temporal pattern of phase locking in the auditory nerve.  

A common assumption states that pitch perception of pure tones mainly relies on 

neural timing cues for low and medium frequencies, but with increasing frequencies the 

phase locking ability of neurons weakens (Rose et al., 1967). Therefore, it is believed that 

the place mechanism dominates pitch perception for high frequencies. The value of the 

approximate transition frequency is not yet determined. Musical pitch perception suggests 

a transition around 5 kHz, which is the area where musical pitch “breaks down” (Plack & 

Oxenham, 2005), but frequency discrimination results suggest a higher transition 

frequency around 8 kHz (Ernst & Moore, 2013).  

 

Pitch of harmonic complex tones and the role of unresolved harmonics 

The underlying mechanisms for pitch perception of a complex tone are still 

debated and models vary with the harmonic rank of its components. Generally speaking, 

the pitch of a harmonic complex tone, also commonly referred to as periodicity pitch, is 

determined according to the greatest-common-divisor model: A harmonic complex tone 

with components from 200 Hz to 600 Hz in steps of 100 Hz has a pitch of 100 Hz, whereas 

a tone with a sub-set of only the even components (e.g. 200, 400 and 600 Hz) has a pitch 

of 200 Hz. This is a simple rule of thumb and there are exceptions to the rule. One 

exception concerns high-order harmonics (> 15th), for which a combination tone with 

components at 2100, 2200 and 2300 Hz would have a pitch of roughly 2200 Hz. This is 

in line with the theory that pitch perception relies on place cues for harmonic complex 

tones with a small number of high-order (> 15th) harmonics (Schnupp et al., 2011). 

Harmonic complex tones with components below the fifth harmonic are considered as 

resolved and harmonic complex tones with components above the 10th harmonic are 

considered as unresolved, with a grey area in between where resolvability transitions 

depend on the F0. For low numbered harmonics (≈ 2nd to 8th) it is believed that pitch is 

extracted based on a combination of timing and place cues: Individual harmonics are 

(partially) resolved, meaning harmonics fall into different auditory filters creating ripples 
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in the excitation pattern of the basilar membrane (see Figure 2.3). This effect provides 

place cues and similar to pure tone pitch perception, pitch may then be extracted from a 

combination of place cues and cues originating from the neural representation of TFS on 

the basilar membrane, which are subsequently labelled TFSn cues. Note that precise 

neural mechanisms underlying pitch perception are still a topic of debate. For harmonic 

complex tones with unresolved components (> 8th), no place cues (also referred to as 

excitation pattern cues) of the individual components are available and components 

interact on the basilar membrane (Moore & Sek, 2011; Jackson & Moore, 2014). Pitch 

percepts of harmonic complex tones with unresolved components are less salient than for 

resolved components (Shackleton & Carlyon, 1994), which may be attributed to the 

dominance region of pitch perception, which lies below the sixth harmonic, but differs 

with F0.  

 
Figure 2.3: Schematic of auditory processing of a complex harmonic tone. 
An equal-amplitude harmonic complex tone with a fundamental frequency of 100 Hz is 
passed through the auditory filter bank and the resulting basilar membrane excitation pattern 
is depicted with its resolved and unresolved parts. Examples of basilar membrane vibration 
for different auditory filters are shown below. Adapted from Plack and Oxenham (2005). 
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Figure 2.4: Power spectra of a harmonic and inharmonic complex tone with unresolved 
components and threshold-equalizing noise (TEN).  
Both, harmonic and inharmonic complex tone have a fundamental frequency F0 of 250 Hz. 
The bandpass filter has a width of 5*F0 and is centred at the 11th component with a roll-off 
of approximately 30 dB/octave. The TEN level in dB/ERBN is approximately 16.6 dB below 
the level of the harmonic/inharmonic sound. Adapted from Marmel et al. (2015). 

 

 
Figure 2.5: Simulated waveforms of harmonic and inharmonic stimuli after passing 
through an auditory filter. 
The auditory filter was centred at 1 kHz, the fundamental frequency was 100 Hz and the 
bandpass filter was centred at 1.1 kHz. The left panel shows the harmonic tone and the right 
panel shows the inharmonic tone, shifted by 50 Hz. The envelope varies due to randomised 
starting phases of the components, but envelope cues are not used for discrimination 
performance. The repetition rate of the envelopes is equal, but the time between envelope 
maxima differs as indicated. Adapted from Moore and Sek (2009). 

To assess the mechanisms involved in pitch perception for harmonic complex 

tones with unresolved harmonics, Moore and colleagues have carried out numerous 

behavioural studies (Moore & Moore, 2003; Hopkins & Moore, 2007; Moore, 2008; 

Moore et al., 2009; Moore & Sek, 2009; Hopkins & Moore, 2011; Moore & Sek, 2011; 

Moore et al., 2012; Sek & Moore, 2012). Variations of the same task, which is usually 
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referred to as the TFS1 test, have been employed in these studies. Tone pairs were 

generated to contain a harmonic complex tone with unresolved components and an 

inharmonic complex tone with unresolved components, subsequently labelled HCU and 

ICU, respectively. Each component of the ICU tone was frequency-shifted upwards 

compared to the HCU tone by a frequency shift Δf (see Figure 2.4). This frequency shift 

resulted in small variations of the TFS without affecting the repetition rate of the envelope 

(Figure 2.5), which relates to the unchanged F0. Threshold-equalizing noise (TEN) was 

added to the tones to mask unwanted cues. Successful pitch discrimination between HCU 

and ICU tones provides evidence for the use of TFSn cues for pitch perception in contrast 

to solely envelope cues. The test can be adapted to employ different fundamental 

frequencies and to include different harmonic ranks of the components.  
Early studies by Moore and colleagues suggested lacking discrimination abilities 

if the harmonic complex tone only contains components above the 14th harmonic, 

suggesting the use of envelope cues rather than TFSn cues for higher order harmonics 

(Moore & Moore, 2003; Hopkins & Moore, 2007). Although Moore et al. (2009) reported 

above-chance performance when components were centred on the 15th harmonic. For 

harmonics in a range of the 9th to the 14th component approximately, NH participants are 

generally able to discriminate HCU and ICU tones for a range of fundamental frequencies 

(Hopkins & Moore, 2011; Moore et al., 2012; Füllgrabe et al., 2014; Jackson & Moore, 

2014; Marmel et al., 2015; Innes-Brown et al., 2016; Mathew et al., 2016). These findings 

suggest that pitch is extracted from timing cues derived from the TFSn, and not from 

envelope cues, even for very high frequencies up to 8 kHz with an F0 of 800 Hz (Moore 

& Sek, 2011). This supports evidence by Ernst and Moore (2013) for the use of phase 

locking cues beyond 5 kHz. A cause of concern is the potential use of excitation pattern 

cues to discriminate HCU and ICU tones in the TFS1 test. Moore and Sek (2011) 

addressed this concern by varying the presentation level. If excitation pattern cues were 

used, discrimination performance would deteriorate at higher presentation levels caused 

by the widening of auditory filters with increasing level (Oxenham & Simonson, 2006). 

This was not reported to be the case (Moore & Sek, 2011). While most NH individuals 

are able to perform the TFS1 test, most individuals with hearing loss are unable to 

discriminate harmonic and inharmonic tones based on TFS cues (Hopkins & Moore, 

2011). The next section provides an overview of the different types of hearing loss. 
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2.1.2 Types of hearing loss 

Hearing loss is characterised by its laterality (unilateral or bilateral), its severity 

(i.e. mild to profound) and its type (dependent on the anatomical location of the 

impairment in the auditory pathway). Hearing loss can be caused by issues at any stage 

in the auditory pathway. When the source of the hearing loss is located in the outer or 

middle ear, it is referred to as conductive hearing loss, which may often be reversible 

(Schnupp et al., 2011). Possible causes are ear wax build-up in the ear canal, a burst ear 

drum, trauma to the ossicles, fluid in the middle ear due to inflammation and many more. 

If the source of the hearing loss stems from the inner ear it is referred to as sensorineural 

hearing loss. A typical case of sensorineural hearing loss is the degeneration or loss of 

hair cells. In mammals, the hair cells in the organ of Corti are not regenerated, resulting 

in irreversible loss of acoustic hearing (Groves, 2010). A less prevalent type of hearing 

loss is neural hearing loss, which derives from absence or damage to the auditory nerve, 

which mostly results in profound and irreversible hearing loss. 

 

2.2 Cochlear implants 
As mentioned in Chapter 1, the gold-standard treatment to restore hearing in the 

case of sensorineural hearing loss is cochlear implantation. In the following, the 

engineering principles of a CI are outlined and the clinical rehabilitation procedures are 

briefly discussed. 

2.2.1 Engineering principles 

CI devices can be divided into the internal and external parts (see Figure 2.6). The 

internal parts consist of an electrode array, which is inserted into the cochlea, and the 

receiver-stimulator. The external part comprises of the microphone, the speech processor, 

which is usually worn behind the ear, the transmitter coil and the battery. The microphone 

picks up sounds such as speech, which the speech processor converts into stimulation 

patterns containing temporal and spatial information. The information stored in the 

stimulation patterns are transmitted to the internal receiver-stimulator via magnetic 

induction from the transmitter coil. In addition to the stimulation patterns, the receiver-

stimulator also receives power to send electrical pulses to the electrode array according 

to the stimulation patterns, inducing action potentials in the auditory nerve.  
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Figure 2.6: Components and position of a cochlear implant. 
The speech processor with the microphone and battery is worn behind the ear, the transmitter 
coil is held in place by a magnet to ensure a stable connection with the internal receiver-
stimulator, which is placed subcutaneously. From there signals are passed to the electrode 
array, which is inserted into the Scala tympani of the cochlea. Adapted from Kral and 
O'Donoghue (2010). 

The design of the speech processing strategy varies between manufacturers and 

versions. Most current speech processing strategies are based on envelope processing 

such as the continuous interleaved sampling (CIS), the advanced combination encoder 

(ACE), the spectral peak (SPEAK), and the “n-of-m” strategies (Wilson & Dorman, 

2009). The SPEAK strategy is shown as an example in Figure 2.7. The sound signal is 

passed through a filter bank similar in design to the auditory filters to extract frequency 

bands according to the number of available electrode channels. The envelope is extracted 

from each channel, which usually involves rectification and low-pass filtering of the 

signal. Subsequently, the signal is compressed to map the wide range of envelope 

amplitudes to the small dynamic range in electric hearing. Biphasic pulse trains are 

modulated with the extracted envelopes to stimulate the electrodes. This highlights the 

central role of the sound envelope for sound perception in CI users, motivating the 

investigation of objective measures of temporal auditory processing with a particular 

focus on slow modulation sensitivity in this research. 
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Figure 2.7: Overview of an envelope based speech processing strategy. 
Main aspects of the spectral peak (SPEAK) processing strategy. Sound is bandpass filtered 
with a filter bank, and the envelope is detected in each channel. Prior to electrode 
stimulation, between one and ten channels are selected based on their amplitude and spectral 
composition. The selected channels are stimulated in the order from base to apex. Adapted 
from Patrick et al. (1997). 

Most envelope-based processing strategies disregard the acoustic cues conveyed 

in the TFS of the sounds and stimulation timing carries no additional acoustic 

information. This is in spite of the fact that TFS information is of critical importance for 

speech-in-noise recognition and music appreciation. The technological hurdles to 

improve spectral and TFS cues in CI users include the limitation of current spread and 

improving the conveyed phase-locked information in the neural spiking pattern by means 
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of new stimulation approaches (Shamma & Lorenzi, 2013). New approaches address this 

challenge with current-steering methods and adaptations of the filter-bank (i.e. bell-

shaped bandpass filters). Other approaches attempt to convey more TFS information by 

using higher stimulation pulse rates or by new speech processing strategies such as the 

fine structure processing strategy (Müller et al., 2012). For a detailed review of speech 

processing strategies and their development refer to Wilson and Dorman (2009). The 

efforts by researchers and manufacturers towards improving TFS processing in CI users 

motivated the investigation of potential objective measures of TFS discrimination 

abilities presented in Chapter 6. It should be noted that current state-of-the-art CI 

technology is unable to accurately convey the subtle TFS cues on which stimulus 

discrimination is based in the carried out tests. However, it was of interest to carry out 

these investigations in a normal-hearing cohort as a primary feasibility study with an eye 

toward the future. 

2.2.2 Rehabilitation procedure 

CIs are the most implanted neuroprosthesis worldwide (Ziat & Bensmaia, 2015). 

Despite its success story, rehabilitation outcomes vary widely and cannot be reliably 

predicted prior to implantation (Cooper, 2006). This prevents adequate expectation 

management of patients and family members. Speech perception performance with a CI 

can span from 0% to 100% recognition with the same device type (Wilson & Dorman, 

2009). 

With increasing duration of hearing loss, the structures of the central auditory 

pathway deteriorate as evidenced by neuron degeneration (Moore et al., 1994; Moore et 

al., 1997). Severe degeneration of the central auditory system is believed to limit 

rehabilitation success through cochlear implantation (Geier et al., 1999; Leake & 

Rebscher, 2013). Therefore, it is recommended to minimise the time window between 

onset of deafness and cochlear implantation. Of course there are numerous other 

influencing factors such as the condition of the cochlea, the electrode-neural interface, 

age at implantation (mostly relevant for young children), use of hearing aids, and 

aetiology among others (Wilson, 2004; Cooper, 2006). 

New-borns with a severe to profound hearing loss may receive a CI as early as six 

months (Graham, 2006). The cochlea is fully grown at birth making replacements of the 

implanted part of a CI in adolescence unnecessary. Since the introduction of the 
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nationwide new-born hearing screening in Ireland in 2013, new-borns who fail the 

hearing screening are referred to specialists to initiate appropriate intervention procedures 

as early as possible. Since the introduction of the National Cochlear Implant Programme 

in 1995 in Beaumont Hospital, cochlear implantation is one of the options available to 

infants from the age of one year or even earlier should time urgency arise from potential 

ossification of the cochlea due to meningitis (Axon et al., 1998). 

In children, the age at implantation has a great influence on later speech 

performance outcomes. Studies have shown that children who are implanted before the 

age of two have superior language development compared with children who are 

implanted after the age of two. Children who are implanted in the first 16 months of their 

life are more likely to achieve language development similar to NH peers (Manrique et 

al., 2004; McConkey Robbins et al., 2004; Nicholas & Geers, 2007; Houston & 

Miyamoto, 2010). Although overall language development is highly affected by the age 

at implantation, speech perception outcomes are not as closely linked to the age at 

implantation (Houston & Miyamoto, 2010).  

Cochlear implantation is followed by a life-long rehabilitation procedure. Regular 

fitting appointments are necessary to tune the parameters of the speech processor to 

continuously adapt parameters and improve performance. This optimization process 

heavily relies on patient feedback, which can be unreliable or lacking for certain patient 

cohorts. Current gold-standards for the assessment of rehabilitation performance are 

consonant, vowel, word and speech recognition tests. Test results can be skewed by 

subjective factors such as test anxiety, concentration level, mood and fatigue among 

others. Therefore, objective neurophysiological performance measures are of particular 

interest in order to clinically assess patients’ rehabilitation success (Ponton & Don, 1995; 

Visram et al., 2015; Hoppe et al., 2016). The development of such objective measures 

can help clinical teams with rehabilitation procedures and patients’ expectation 

management (Hughes, 2012). For a detailed explanation of the fitting process refer to 

Cooper (2006). 

 

Objective measures in CI rehabilitation 

Neural measures of auditory processing in CI users have been widely investigated 

over the last three decades. Findings from the neural measures have greatly improved the 

understanding of the central auditory system and its plasticity in CI users. Unfortunately, 

the application of neural measures in clinical procedures is limited. To date, neural 
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measures are mainly implemented pre-implantation to assess the integrity of the auditory 

nerve and post-implantation to set loudness levels in infants (Abbas & Miller, 2004; 

Abbas & Brown, 2006) with low-level brain responses such as the electrically evoked 

auditory brainstem response (EABR) and the electrically evoked compound action 

potential (ECAP).  

Although the EABR has certain advantages over the ECAP, such as better artefact 

reduction and measurement of AEPs higher up in the auditory pathway, ECAPs are 

preferred in clinical settings. This is due to their time-efficient acquisition with reverse 

telemetry from intra-cochlear electrodes. ECAPs are measured for each electrode, and 

speech processor maps’ threshold and comfort levels (T and C-levels, respectively) may 

be scaled according to the measured profiles (Botros & Psarros, 2010). ECAPs provide 

an objective fitting approach for cohorts where feedback is lacking, however, ECAP 

profiles are only moderately correlated with behavioural profiles obtained in adults and 

large inter-subject variability limits their applicability (Brown et al., 2000; Potts et al., 

2007; Miller et al., 2008). Most importantly, these measures have not shown correlations 

with speech performance (Firszt et al., 2002). To assess hearing ability rather than 

audibility, higher-level auditory processing, as is required in speech recognition, should 

be assessed. Low-level neural markers are elicited with simplistic sounds such as 

individual pulses or pulse trains. Cortical auditory evoked potentials (CAEPs) may also 

be elicited by more complex and naturalistic sounds as encountered in every-day life. For 

a detailed review of electrically evoked auditory potentials and their applications in 

clinical practice refer to Abbas and Brown (2006). 

Research studies have investigated change-related CAEPs, such as the acoustic 

change complex (ACC) and the mismatch negativity (MMN) in CI users with regards to 

spectral resolution (Stoody et al., 2011; Lonka et al., 2013; Lopez Valdes et al., 2015), 

pitch perception (Zhang et al., 2013b; Liang et al., 2014; Wagner et al., 2017), intensity 

perception (Brown et al., 2008; Dinces et al., 2009; Kim et al., 2009; Sandmann et al., 

2010), electrode discrimination (Wable et al., 2000; Hoppe et al., 2010; He et al., 2014; 

Mathew et al., 2017), TFS perception (Leijsen et al., 2015), musical feature perception 

(Rahne et al., 2011; Zhang et al., 2013a; Timm et al., 2014; Petersen et al., 2015) and 

speech sound discrimination (Kraus et al., 1993b; Lonka et al., 2004; Friesen & 

Tremblay, 2006; Rahne et al., 2010; Ortmann et al., 2013; Turgeon et al., 2014; Moberly 

et al., 2015), and their correlations with behavioural measures as well as their relationship 

to speech recognition (Hoppe et al., 2010; Won et al., 2011a; He et al., 2014; Leijsen et 
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al., 2015; Lopez Valdes et al., 2015). The successful measurement of CAEPs in electrical 

hearing requires the consideration of the artefact from electrical stimulation in the 

experimental design. Additional artefact reduction methods are required to reduce the 

artefact during post-processing. For an overview of post-processing methods refer to the 

introduction of Chapter 5. 

Additionally to CAEPs, the electrically evoked auditory steady-state response 

(EASSR) has been evaluated as a measure of temporal modulation sensitivity and 

stimulation thresholds (Hofmann & Wouters, 2010; 2012; Deprez et al., 2014; Luke et 

al., 2015; Gransier et al., 2016; Luke et al., 2016). 

 

2.3 Electrophysiology in auditory processing 
This section introduces objective measures of auditory processing, referred to as 

auditory evoked potentials (AEPs), with a particular focus on the late occurring CAEPs 

and their applicability as a change detection measure in neural responses. 

2.3.1 Auditory evoked potentials 

EEG recordings provide a non-invasive and readily available tool to obtain AEPs. 

As shown in Figure 2.8, human AEPs may be classified as transient, sustained or 

following responses (Picton, 2013). Transient responses are evoked by sudden stimulus 

changes (e.g. silence to sound or sound A to sound B), whereas sustained responses are 

elicited continuously throughout the stimulus duration. Following responses share 

characteristics with both, transient and sustained responses: They track stimulus 

properties in a continuous stimulus and respond to changes such as amplitude variations 

(envelope following response, EFR) or frequency variations (frequency following 

response, FFR). The auditory steady-state response (ASSR) constitutes a special case of 

the following responses, which is evoked if the changes within the stimulus are periodic, 

e.g. amplitude fluctuations with a constant AM rate (Dimitrijevic et al., 2016). Neural 

responses elicited by varying AM rates have different neural generators, i.e. AM rates 

below 70 Hz originate predominantly from the cortex, whereas AM rates above 70 Hz 

are associated with generators in the brainstem (Dimitrijevic & Ross, 2008). 
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Figure 2.8: Overview of auditory evoked potential (AEP) classifications (A) and 
latencies (B).  
(A) Indicated by the box are the late cortical auditory evoked potentials (CAEPs), which are 
the focus of this thesis. (B) Latencies of AEPs are shown on a logarithmic scale to capture 
the wide range. Abbreviations and acronyms: CAEPs – Cortical auditory evoked potentials, 
EFR – Envelope following response, FFR – Frequency following response, ABR – Auditory 
brainstem response, ACC – Acoustic change complex, MMN – Mismatch negativity. 

 
Figure 2.9: Waveforms of transient and following auditory evoked potentials (AEP). 
Depicted transient responses (top) were elicited by audible clicks with a repetition rate of 
one click per second. The following responses (bottom) were elicited by amplitude modulated 
noise stimuli with low amplitude modulation (AM) rates on the right and increasing AM rates 
towards the left. Adapted from Picton (2013). 
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Transient AEPs are commonly distinguished by their latency with fast/early, 

middle and slow/late latency AEPs. Examples are depicted in Figure 2.9. Early AEPs, i.e. 

the auditory brainstem response (ABR) towards click-stimuli, originate from the cochlea 

and brainstem; middle latency responses are recorded from early activation of the 

auditory cortex; late AEPs derive from auditory cortex and association cortices (Picton, 

2013), and thus, are labelled CAEPs.  

2.3.2 Late cortical auditory evoked potentials 

Slow transient CAEPs refer to AEPs elicited later than 50 ms post-stimulus onset 

(Pryse-Phillips, 2009). Numerous studies have provided evidence for the scope of cortical 

auditory evoked potentials (CAEPs) to objectively assess the perception of acoustic 

features including low-level features such as gap detection (Bertoli et al., 2001; Todd et 

al., 2011; He et al., 2013), intensity discrimination (Martin & Boothroyd, 2000; Näätänen 

et al., 2004; Dimitrijevic et al., 2009) and spectral discrimination (Martin & Boothroyd, 

2000; Dimitrijevic et al., 2008), as well as based on complex higher-order features such 

as regularity (Tervaniemi et al., 1994; Vuust et al., 2005) and spatial localisation 

(Paavilainen et al., 1989; Deouell et al., 2006).  

CAEPs elicited by sound onset/offset mainly comprise the P1, N1, and P2 

components (Figure 2.9, top right). The amplitude and latency of these components 

depends on stimulus characteristics, and thus, they are considered to be exogenous 

responses (Näätänen et al., 2007). Sound onset/offset can be regarded as the change from 

silence to sound and vice versa. Other change responses classified as slow CAEPs, which 

rely on changes in stimulus properties, are the P3 component, the ACC and the MMN. 

Stimulus changes in the auditory domain may arise from spectral, temporal, intensity, 

durational or spatial stimulus properties among others (Näätänen et al., 2007; Bartha-

Doering et al., 2015; Kim, 2015). Cortical measures of change detection are briefly 

outlined in the following and for more in-depth information refer to Picton (2011). 

 

Acoustic Change Complex 

The ACC is an unattended secondary P1-N1-P2 complex elicited by an acoustic 

change in an on-going sound indicating change detection on the auditory cortex level. 

Examples for low-level acoustic changes are intensity or pitch differences without a 

change in a different acoustic domain (e.g. onset responses always include intensity 
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variations in addition to the acoustic features of the tone) or higher-level changes such as 

timbre or speech sounds (e.g. /ui/). The ACC can be recorded in a continuous paradigm, 

where stimuli repeatedly change between tones without silent intervals, or in an 

intermittent paradigm. In the continuous paradigm, the stimulus can change between two 

tones (A to B and B to A) or the stimulus can change between multiple tones (e.g. A to B 

to C to D). In the intermittent paradigm, concatenated tone pairs are interleaved with silent 

periods, providing primary and secondary (ACC) N1-P2 complexes (Figure 2.10).  

 
Figure 2.10: P1-N1-P2 complex followed by the acoustic change complex (ACC). 
The primary P1-N1-P2 complex was elicited at sound onset of the vowel-vowel stimulus /ui/ 
and the secondary P1-N1-P2 complex, referred to as ACC, was elicited following the 
acoustic change at 400 ms. Adapted from Burkard et al. (2007). 

 

Auditory mismatch negativity 

The MMN is commonly obtained from neurophysiological data acquired with an 

oddball paradigm. It may also be acquired with multiple-deviant paradigms. The MMN 

may be elicited in various sensory modalities, however, for continuing with the theme of 

research here the MMN refers to the auditory MMN. CAEPs elicited by a frequent 

standard stimulus (e.g. occurrence probability 90%) are subtracted from the CAEPs 

towards an infrequent deviant stimulus (e.g. occurrence probability 10%). The difference 

waveform as shown in Figure 2.11 demonstrates a late negative component usually 

observed with peak latencies between 100 ms and 250 ms (Garrido et al., 2009b), namely 

the MMN. The MMN is elicited independent of the participant’s arousal or attentional 
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state (Näätänen et al., 1978; Näätänen, 1990). Its amplitude increases, whereas its latency 

decreases with increasing acoustic change saliency (Näätänen et al., 1989; Tiitinen et al., 

1994). The MMN can be elicited across all age groups (Cheour et al., 1998; Kushnerenko 

et al., 2002; Morr et al., 2002) and even new-borns and infants have a reliable mismatch 

response, albeit sometimes with a different morphology (Kushnerenko et al., 2002; He et 

al., 2007; Cheng et al., 2015). Source localization studies have revealed a mix of 

generators in the temporal lobes consistent with the auditory cortex (Lappe et al., 2013) 

and inferior frontal lobes, which is likely associated with attention switching following 

deviant presentation (Alho, 1995). 

The physiological processes underlying the MMN are unknown and different 

models have been proposed to explain the generation of the change-related negativity. 

The two most popular MMN-mechanism models are the memory-trace model, which 

suggests that the MMN is the result of perceptual change detection in stimulus sequences 

based on stimulus deviations from sensory memory traces (Näätänen, 1990; Näätänen et 

al., 2007; Fishman, 2014); and the more recent regularity-violation or prediction model, 

which claims that the MMN is elicited due to a mismatch between the incoming auditory 

information of the deviant and predictions formed based on patterns of recent incoming 

information (Winkler, 2007; Näätänen et al., 2011; Paavilainen, 2013). 

 
Figure 2.11: Example of the mismatch negativity (MMN). 
Cortical auditory evoked potentials (CAEPs) are shown for a central electrode location (Cz) 
in response to the standard and deviant stimulus. Their respective difference waveform shows 
the mismatch negativity (MMN) with the characteristic negative deflection at around 170 ms 
(generally seen between 100 ms and 250 ms). Adapted from Garrido et al. (2009a). 
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Similar to the ACC, the acoustic change feature can be a low-level (e.g. frequency, 

intensity or location difference) or a higher-level change such as timbre or in speech 

sounds (e.g. /ui/). Furthermore, the MMN can be elicited by temporal pattern violations, 

e.g. varying inter-stimulus intervals (Kujala et al., 2001; Brannon et al., 2008), varying 

stimulus duration (Baldeweg et al., 2004), directional changes in pitch sweeps (Saarinen 

et al., 1992; Tervaniemi et al., 1994; Haigh Sarah et al., 2017), musical rhythm 

irregularities (Vuust et al., 2005)  or omission of stimuli (Salisbury, 2012). One limitation 

of the MMN is the long acquisition time with oddball paradigms, as deviants are only 

presented with a low probability (e.g. 10%) and sufficient stimulus repetitions are 

required to obtain robust CAEPs for the deviant. Picton (2011) claims that 200 – 1000 

deviant repetitions are required per condition, however, most published MMN studies 

average between 50 and 200 deviants due to time constraints. The number of required 

deviants is highly reliant on the stimulus type and saliency of the acoustic change as well 

as on the subject. 

The MMN can be elicited with the classical single-deviant (oddball) paradigm, 

where only one type of deviant, e.g. one acoustic change type, is presented in a block, but 

also with multi-deviant paradigms (Näätänen et al., 2004; Petermann et al., 2009; 

Sandmann et al., 2010; Fisher et al., 2011; Hay et al., 2015). Multi-deviant paradigms 

have included up to six different deviants (Näätänen et al., 2004; Fisher et al., 2011; 

Petersen et al., 2015), where each standard S is followed by a different deviant D (e.g. S, 

D1, S, D2, S, D3, S, D4, […]) resulting in greatly improved efficiency with regards to 

data acquisition time. This is of high importance for clinical settings and addressing one 

major drawback of the MMN. Each standard presentation enforces its memory trace with 

an overall occurrence probability around 50%, and deviants elicit the MMN despite the 

predictability of a deviant occurrence with individual deviant probabilities of about 10%. 

However, one important limitation of this multi-deviant paradigm is the fact that deviant 

types also have to differ in an acoustic feature from each other, not solely from the 

deviant, as otherwise their occurrence probability would not be perceived as 10% for 

each, but as 50%. As a result, the multi-deviant MMN cannot be used to determine neural 

thresholds for a specified acoustic property. An example for a multi-deviant paradigm 

would be a standard pure tone of 500 Hz, and deviant changes based on pitch (e.g. a 

1000 Hz pure tone), presentation level, duration, spectral complexity/timbre or location.  
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P3a/P3b/P300 

In an active oddball paradigm, the participant has to respond to the deviant sound 

presentation (the target) by means of a button click or by counting the number of 

presented deviants. Target detection results in a CAEP referred to as the P3b/P300 

component, visible as a positive deflection in the target CAEPs with a broad latency range 

of 250 ms to 500 ms depending on the modality and task details (Polich, 2007). The P3b 

is related to decision making, and thus, is considered to be an endogenous response. The 

introduction of another infrequent, but task-unrelated, distractor stimulus to the active 

oddball paradigm may evoke a novelty response referred to as the P3a component (Polich, 

2007). The active auditory oddball paradigm may defeat the purpose of finding a non-

feedback based assessment tool, but nonetheless, it may prove valuable in the process of 

understanding neural processes underlying change detection and decision making.  

2.3.3 CAEPs in CI users 

Given the applicability of CAEPs to investigate central auditory function, CAEPs 

have been implemented to assess auditory function throughout CI rehabilitation 

procedures, as well as to monitor brain maturation in paediatric cohorts (Ponton et al., 

1996b; Eggermont et al., 1997; Ponton et al., 2000; Sharma et al., 2005), and to identify 

neural plasticity as indicated by cortical re-organization due to altered sensory input 

(Ponton et al., 1996a; Sharma et al., 2007). 

However, measuring CAEPs in CI users is hindered by the artefact which is 

induced by the electrical stimulation. This artefact is time-locked to the stimulus 

presentation like the neural response that is associated with the CAEP, and the artefact is 

commonly an order of magnitude higher than the neural response of interest (Gilley et 

al., 2006; Sandmann et al., 2009; Friesen & Picton, 2010; Mc Laughlin et al., 2013).  

An example of a CI artefact in CAEP measurements is presented in Figure 2.12. 

The artefact shows the typical “pedestal effect” at sound onset and offset, as well as the 

continuous artefact for the duration of the stimulus, which resembles the stimulus 

envelope for recording electrodes near the stimulation electrodes of the CI. The CI 

artefact is highly variable across and within participants (Gilley et al., 2006). Within-

participant variation is mostly related to stimulus properties such as presentation level 

and stimulus envelope. Across-participant variability arises from differences in the 

position of the stimulation electrodes, the electrode neuron interface, as well as from 
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stimulation parameters and speech processing strategies (Sandmann et al., 2009). The CI 

artefact is substantially larger when stimulation is applied in monopolar mode compared 

to bipolar stimulation (Gilley et al., 2006; Li et al., 2010) and most current commercial 

CI devices employ monopolar stimulation. Furthermore, the artefact severity increases 

with the pulse width duration and stimulation levels (Li et al., 2010; Wagner et al., 2018). 

Wagner et al. (2018) proposed an artificial brain setup to evaluate the influence of 

stimulation parameters such as patient map and stimulation current magnitude on the 

electrical CI artefact, which may provide a valuable tool to assess the artefact for novel 

complex stimuli prior to the experiments for future studies. 

 

Figure 2.12: Example of the electrical artefact elicited by cochlear imlant (CI) 
stimulation and its reduction with independent component analysis (ICA). 
Topographical plots, butterfly plots, and single-trial imaging of cortical auditory evoked 
potentials (CAEPs) before (left) and after (right) ICA-based artefact reduction. Depicted 
CAEPs were elicited by target stimuli in a P3b-paradigm. Images (E) & (F) show the CAEP 
for electrode Cz located at the vertex. Note the different scaling of CAEP amplitudes across 
images. Adapted from Sandmann et al. (2009). 

With specially designed research platforms (e.g. the NIC from Cochlear Ltd.), the 

stimulation settings can be closely controlled, however, a different research platform is 

required for each manufacturer, and in most clinical settings these platforms are 

unavailable. In the research presented here, CI user research studies utilize the clinical 

processors for sound presentation, which limits the opportunities with regards to control 

over stimulation settings, but makes the research more clinically friendly, and thus, more 

applicable. 
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Studies investigating EEG responses in CI users proposed artefact rejection 

algorithms based on beam formers (Wong & Gordon, 2009), polynomial fitting (Mc 

Laughlin et al., 2013), “blanking” (Hofmann & Wouters, 2010; 2012) and independent 

component analysis (ICA) (Gilley et al., 2006; Viola et al., 2012; Miller & Zhang, 2014) 

among others. Each of these approaches has its own limitations: ICA is often subjective, 

time-consuming and computationally expensive. “Blanking”, which is a popular method 

for EASSR recordings, requires stimulation of a single electrode via a research interface, 

high sampling rates, low to intermediate stimulation rates (≤ 500 pulses per second for 

monopolar stimulation mode), and it can only reliably reduce the CI artefact at 

contralateral electrodes with respect to the implanted ear (Gransier et al., 2016). 

Polynomial fitting requires a sampling rate which is sufficient to resolve the individual 

pulses, similar to the blanking method, and relies on flat envelopes of the acoustic signal 

to fit the polynomial to the CI artefact2.  

 

2.4 Envelope processing and amplitude modulation 
detection 

Speech processing in humans is a complex process based on the integration of 

spectral and temporal information, where temporal information can be divided into the 

slow amplitude fluctuations in the envelope and the faster temporal changes conveyed in 

the TFS (Figure 2.13).  

The temporal envelope is considered as one of the most important features for 

speech intelligibility (Drullman, 1995; Shannon et al., 1995). Specifically, envelope 

fluctuations with rates below 16 Hz are crucial for phoneme recognition (Drullman et al., 

1994; Xu et al., 2005). Simplified, speech envelope fluctuations can be regarded as low-

rate AM of a carrier signal. The significance of slow envelope fluctuations for speech 

recognition has prompted wide-spread investigations of brain activity in response to 

sounds with low-rate AM in the last decade (Edwards & Chang, 2013). In this context, 

low-rate AM refers to AM rates in the fluctuation range, in which the human ear can 

follow the modulations (~ 1 – 20 Hz). In contrast, the human ear cannot follow the 

                                                 
2 Flat envelopes of the acoustic stimulus are necessary to constrain the fit of the polynomial to the 

artefact and not to the neural response. For detailed information refer to Mc Laughlin, M., Lopez Valdes, 
A., Reilly, R.B. & Zeng, F.G. (2013) Cochlear implant artifact attenuation in late auditory evoked 
potentials: a single channel approach. Hearing research, 302, 84-95. 
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amplitude variation of sounds with higher AM rates. AM sounds with rates above the 

fluctuation range may be perceived as roughness or periodicity pitch, depending on the 

AM rate and the carrier frequency (Fastl & Zwicker, 2007).  

 
Figure 2.13: Temporal envelope and temporal fine structure of a complex signal. 
(http://research.meei.harvard.edu/chimera/motivation.html, last accessed on 09.08.2018) 

A literature review by Edwards and Chang (2013) highlighted the tuning of the 

human auditory system to fluctuations between 1 Hz and 10 Hz and its implications for 

speech processing. Behavioural research studies in CI users have reported positive 

correlations between speech measures (i.e. vowel, consonant, phoneme, syllable, and 

sentence detection) and low-rate (fm < 20 Hz) AM detection abilities (Gnansia et al., 2014; 

De Ruiter et al., 2015) as well as high-rate (fm ≥ 20 Hz) AM detection abilities (Cazals et 

al., 1994; Fu, 2002; Luo et al., 2008; Won et al., 2011b; De Ruiter et al., 2015), 

emphasizing the particular importance of AM sensitivity for electrical hearing. Across 

groups of younger and older NH and CI participants, Jin et al. (2014) found significant 

correlations between AM detection thresholds (2 Hz & 4 Hz) and speech-in-noise 

recognition with a modulated noise masker, but not for 8 Hz AM detection. However, no 

within-group correlations were reported.  

Due to its significance for speech recognition, recent research efforts have focused 

on the underlying mechanisms of slow AM processing in the brain. Neuroimaging studies 

have explored the brain’s source activity towards AM sounds and underlined its relevance 

for speech recognition. Giraud et al. (2000) found that AM sounds are processed 
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according to their AM rate, with slow fluctuations (< 32 Hz) in the cortex, medium AM 

rates (32 Hz to 64 Hz) in the inferior colliculus and fast AM rates (> 64 Hz) in the cochlear 

nucleus (brainstem). Furthermore, Giraud et al. (2000) found that the brain regions 

Heschl’s gyrus, superior temporal gyrus (STG), superior temporal sulcus (STS) and 

supramarginal gyrus are more activated for AM stimuli compared to unmodulated stimuli. 

This finding is supported by Scott et al. (2006), who showed that the superior temporal 

sulcus and superior temporal gyrus activity increases from silence to noise, from noise to 

AM noise, and from AM noise to speech. The overlap in involved brain regions for AM 

processing and speech processing, particularly for the slow AM rates, is further evidence 

for the importance of AM for speech processing (Giraud et al., 2000; Scott et al., 2006).  

2.4.1 Objective measures of AM detection 

Previous attempts in determining an objective, neural measure of AM detection 

abilities have investigated transient CAEPs in form of the ACC (Han & Dimitrijevic, 

2015) as well as following neural responses such as the ASSR (Manju et al., 2014; Luke 

et al., 2015) and the EFR (Purcell et al., 2004). The reader is referred to Picton (2013) for 

an in-depth review on evoked potentials representing temporal processing abilities.  

 
Figure 2.14: Example measurements of auditory steady state (ASSR) signals and 
measurement noise at different amplitude modulation (AM) rates. 
Due to increased neural activity in lower frequency bands (< 10 Hz), the signal-to-noise 
ratio of ASSRs is considerably poorer at those AM rates compared to the ASSRs elicited by 
AM rates of i.e. 40 Hz. Adapted from Picton et al. (2003). 
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Investigation of the EFR and the ASSR in NH cohorts for differing AM rates 

above 20 Hz and with constant AMDs showed significant correlations between neural 

response amplitudes and behavioural AM detection thresholds (Purcell et al., 2004; 

Manju et al., 2014). A similar study by Luke et al. (2015) explored the EASSR in CI 

users for AM rates of 4 Hz and 40 Hz and found significant correlations between EASSRs 

at 40 Hz and behavioural AM detection thresholds at 20 Hz. Although the EFR and 

(e)ASSR are commonly employed to assess neural sensitivity towards AM stimuli, there 

are also clear disadvantages associated with these methods: ASSRs have low amplitudes 

in the 50 – 200 nV range (Picton et al., 2003) compared to late cortical potentials which 

are commonly in the range of several µV; ASSRs can be readily measured for higher AM 

rates such as 40 Hz, however, for AM rates below 10 Hz the neural ‘background noise’ 

is greatly increased (Picton et al., 2003; Goossens et al., 2016) as depicted in Figure 2.14, 

resulting in poor signal-to-noise ratios (SNRs); last but not least, EASSRs have not been 

successfully obtained from CI users with clinical device settings (monopolar stimulation 

mode and stimulation rate of equal to or above 900 pulses per second) as the artefact 

cannot be reliably reduced.  

To date, artefact reduction of EASSRs relies on stimulus presentation through 

research interfaces, in contrast to every-day speech processors, in bipolar stimulation 

mode (Hofmann & Wouters, 2010; 2012) or monopolar stimulation mode with 

stimulation rates below 500 pulses per second (Gransier et al., 2016). Dimitrijevic et al. 

(2016) presented the first study comparing neural thresholds derived from EFRs towards 

AMD sweeps with behavioural AM detection thresholds for 41 Hz AM and reported 

significant correlations. However, no studies are known to the author investigating the 

relationship between AM detection abilities and EFRs elicited for differing AMDs for 

low AM rates.  

Han and Dimitrijevic (2015) have investigated the influence of AMDs on AM 

detection as measured with ACCs for differing AM rates including low-rate AM of 4 Hz. 

They showed a fast decline in ACC amplitude for decreasing AMDs above behavioural 

AM detection thresholds. No studies are known to the author that investigate the MMN 

as an objective measure of AM detection. 

The temporal response function (TRF) (Lalor et al., 2009; O'Sullivan et al., 2015; 

Crosse et al., 2016; Wong et al., 2018) offers an alternative approach to assess cortical 

processing of the sound envelope. Rather than measuring the neural response to 

repetitions of a discrete stimulus, the TRF is also able to calculate the auditory system’s 
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response to ongoing stimuli, such as natural speech. Based on this approach, one can 

investigate how stimulus features are encoded in the measured neural response. 

 

2.5 Temporal fine structure processing 
As mentioned in Section 2.4, temporal acoustic features can be divided into the 

slow temporal envelope and more rapid oscillations (Figure 2.13) which are referred to 

as the TFS (Moore, 2014). TFS processing is of particular importance for the perception 

of pitch, music appreciation and spatial localisation (Moore, 2008) as well as speech 

perception (Xu et al., 2017). Furthermore, there is evidence that TFS cues can enhance 

speech recognition in adverse listening conditions due to dip listening (Hopkins & Moore, 

2009; 2010b). TFS processing and its role in auditory perception has been the topic of 

great interest over the last decade and is still hotly debated among linguists, 

psychoacousticians and neurophysiologists. People suffering from hearing impairments 

show poor use of TFS cues (Moore, 2008), which may be an important detrimental factor 

in the difficulty with speech-in-noise perception (Lorenzi et al., 2006; Hopkins et al., 

2008; Hopkins & Moore, 2011). Similarly, CI users show poorer performance compared 

to NH controls in tasks reliant on TFS processing (Drennan et al., 2008; Zirn et al., 2016; 

Dincer D'Alessandro et al., 2017). This can partly be attributed to the fact that the most 

common CI speech processing strategies concentrate on conveying temporal envelope 

information, and often neglect TFS processing (Wilson, 2000; Heng et al., 2011). 

However, research efforts have been addressing this shortcoming particularly with the 

aim of improving speech-in-noise recognition, spatial localisation and musical perception 

in CI users (Wilson, 2000; Hochmair et al., 2006; Arnoldner et al., 2007; Müller et al., 

2012; Li et al., 2013; Churchill et al., 2014; Apoux et al., 2015). Future advancements in 

speech processing algorithms may improve TFS cues in electric hearing, further 

increasing the clinical need for objective measures of TFS processing. It has to be noted 

that the term TFS is used inconsistently throughout literature. Moore (2014) suggested to 

distinguish the terms TFSp, TFSBM and TFSn, referring to the TFS of the physical 

stimulus, the basilar membrane excitation at a specified auditory filter and the neural 

firing, respectively. 
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2.5.1 Assessment of TFS sensitivity 

The TFS of a sound is closely linked to its spectral content. For example, the TFS 

of a 500 Hz pure tone is different to a pure tone of 1000 Hz. However, their discrimination 

would be based on a combination of place and timing codes. In order to assess “pure” 

TFS processing, tone pairs void of identifiable spectral cues have to be designed, which 

poses challenges in the experimental design.  

Different tests have been proposed to assess TFS sensitivity which can be divided 

into monaural and binaural tests. Binaural tests commonly assess inter-aural phase 

difference (IPD) discrimination, such as the TFS-LF test (Hopkins & Moore, 2010a; Sek 

& Moore, 2012) and the TFS-AF test (Füllgrabe et al., 2017).  

The research carried out within the framework of this thesis concentrated on 

monaural TFS processing abilities. This decision was motivated by the idea that potential 

objective measures of TFS processing should be applicable in CI users once technology 

has advanced sufficiently to provide high-quality TFS information, and to date a large 

proportion of CI users have received only unilateral CIs. Monaural TFS discrimination 

abilities may be assessed with the TFS1 test (Moore & Sek, 2009) which was introduced 

on pp. 13-14, and further details on stimulus creation are provided in Chapter 6. A 

drawback of the TFS1 test is that it can only be reliably administered for fundamental 

frequencies above 75 Hz, which relates to harmonics above 750 Hz (Moore & Sek, 2009; 

Jackson & Moore, 2014). In contrast, the binaural tests can also be employed at low 

frequencies (Hopkins & Moore, 2010a; Füllgrabe et al., 2017).  

An alternative approach to assessing monaural TFS processing abilities is based 

on the discrimination of Schroeder-phase harmonic complex tone pairs, which were first 

described by Schroeder (1970). Schroeder-phase complex tone pairs consist of the so 

called positive and negative Schroeder-phase harmonic complex tone, which have equal 

frequency spectra and envelopes, but the two stimuli differ in their fine temporal 

dynamics resulting from phase effects. More in-depth details of the stimulus creation are 

provided in Section 6.2.1. 

2.5.2 Objective measures of TFS sensitivity 

Studies exploring potential objective measures of TFS processing have 

investigated cortical and brainstem responses for monaural and binaural TFS processing 

in NH cohorts (Innes-Brown et al., 2016; Mathew et al., 2016; McAlpine et al., 2016), 
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participants with sensorineural hearing loss (Mathew et al., 2016) and CI users (Leijsen 

et al., 2015) and they are discussed in the following. 

McAlpine et al. (2016) have successfully elicited neural following responses 

corresponding to the detection of inter-aural phase modulation (IPM) changes for low-

frequency tones in a NH cohort. A cleverly laid out experimental design showed that 

neural responses exhibited a spectral peak in the FFT at the rate of IPM changes. IPM 

was changed several times a second by switching the ear with the leading phase without 

changing the overall magnitude of the inter-aural phase difference, each time resulting in 

a neural response. It should be mentioned, that significant responses have been recorded 

on a group mean level, however, it remains to be seen whether IPM detection can be 

reliably distinguished on an individual level (Figure 2.15). 

 
Figure 2.15: Grand average (black) and individual (grey) inter-aural phase modulation 
(IPM) following responses.  
The left column shows the temporal representation of the neural response and the right 
column shows its FFT. The three rows relate to the IPM rate, e.g. 3.4 IPM changes per 
second. Adapted from McAlpine et al. (2016). 

Innes-Brown et al. (2016) have explored the relationships between speech-in-

noise recognition, behavioural TFS1 scores and EFRs elicited by a resolved harmonic 

complex tone and an AM tone modulated at 110 Hz. However, the use of the term TFS 

sensitivity in relationship to the neural EFR is somewhat misleading, as the neural 

response is most likely elicited by envelope cues related to the periodicity. I believe the 
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authors refer to TFS sensitivity because the periodicity of the stimuli has a rate above 

100 Hz, which according to some definitions relates to the TFS of the physical stimulus, 

not its envelope. However, on a neural level, the EFR is a measure of envelope cues on 

the basilar membrane and the reader should be aware of this discrimination. EFRs were 

successfully measured on a group mean level (Figure 2.16), and individual correlations 

between EFR and stimulus envelope provided a measure of encoding accuracy. TFS1 

scores were correlated with neural encoding accuracy for the harmonic complex tone 

(p = 0.04). However, the lack of correction for multiple comparisons has to be considered 

when interpreting the results. 

 
Figure 2.16: Grand average envelope following response (EFR) and stimulus Hilbert 
transforms of the acoustic stimuli.  
The complex harmonic tone with resolved components had a fundamental frequency of 
180 Hz and the modulated tone had a pure tone carrier of 4 kHz and a modulation rate of 
110 Hz. Adapted from Innes-Brown et al. (2016). 

The ACC was assessed as an objective version of the TFS1 test by measuring 

neural change detection in response to the acoustic change between HCU and ICU tones 

when presented monaurally (Mathew et al., 2016). ACCs were recorded in response to 

harmonic-inharmonic tone combinations for resolved and unresolved components, and 

for NH and sensorineural hearing loss cohorts. As expected, ACCs had larger amplitudes 

in the presence of place cues, i.e. resolved harmonics, which provide greater pitch change 

saliency (Figure 2.17). However, results have to be regarded with caution as (1) the grand 

average ACC was very small in amplitude relative to the surrounding neural activity; (2) 

no individual ACC traces are provided to judge SNRs; (3) the ACC in the control 
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condition with 0 Hz shift did not look different in morphology to the 30 Hz and 50 Hz 

shift. 

 
Figure 2.17: Grand average N1-P2 and acoustic change complex (ACC) waveforms.  
Stimuli are time-locked to the stimulus onset at 0 ms. Stimuli had an “ABA”-pattern, with the 
acoustic changes occurring at 200 ms and 400 ms, and sound offset was at 600 ms. Boxes 
indicate the expected time range of ACCs. The N6 condition refers to the condition with 
resolved harmonics and N12 refers to the condition where harmonics are considered to be 
unresolved. Adapted from Mathew et al. (2016). 

A study by Leijsen et al. (2015) investigated the mismatch waveform (MMW), 

which consists of the MMN followed by a positive component associated with the P3a 

component, as a potential objective measure of TFS processing based on Schroeder-phase 

harmonic complex pairs in a cohort of six CI users. The electrical artefact was 

successfully reduced and clear standard and deviant CAEPs were elicited by stimulus 

pairs. Different fundamental frequencies F0 were assessed, where task difficulty 

increased with higher F0s. The grand average MMW showed no significant MMW, 

which was defined as area-under-the-curve (AUC) exceeding a bootstrapped noise floor 

at any of the tested F0s, despite of evident behavioural discrimination abilities at lower 

F0s. However, the number of deviant repetitions per condition was small (n = 54). A 

follow-up study in NH participants with increased repetition numbers of the deviant may 

address, whether an MMW can be elicited with Schroeder-phase harmonic complex 

tones. 

 

2.6 Research questions 
The research aims to complement findings from the literature by investigating 

CAEPs as a potential objective measure of temporal auditory processing abilities with 

regards to two different temporal features: low-rate AM detection and TFS processing. 
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Studies in NH cohorts will determine whether sound discrimination of the acoustic feature 

of interest is encoded in the CAEP-based change detection metrics. The chosen CAEP-

based neural metrics of interest are the MMW and the ACC. Findings may increase our 

understanding of the neural mechanisms underlying auditory processing in the healthy 

auditory system. Studies with CI users address the applicability of such neural measures 

in electrical hearing, and their potential impact on clinical procedures will be discussed. 

Outlined in the following are the research questions which have not yet been 

answered in the literature. The studies presented in Chapter 3 – Chapter 6 aimed to 

address these research questions to increase our understanding of neurophysiological 

measures of temporal auditory processing. Table 2.1 provides a brief overview of the 

main study characteristics. 

Table 2.1: Overview of the main studies.Abbreviations and acronyms: ACC – Acoustic 
change complex, AM – Amplitude modulation, AMD – Amplitude modulation depth, CI – 
Cochlear implant, MMW – Mismatch waveform, NH – Normal-hearing, TFS – Temporal fine 
structure. 

Chapter Study Cohort EEG system Neural 

measure 

Acoustic change 

feature 

Chapter 3 Study 1 NH 1-channel MMW AM (AMD) 

Chapter 4 Case Study CI 128-channel ACC AM (AMD) 

Chapter 5 Study 2 CI+NH 128-channel MMW AM (AMD) 

Chapter 6 Study 3 + pilot 

studies 

NH 1-channel  

or 2-channel 

MMW (+ACC) TFS 

2.6.1 Study 1 

• Q1.1: Can the neurophysiological MMW be obtained when the acoustic 

change constitutes AM of a noise sound with a low AM rate? 

• Q1.2: Do MMWs change when parametrically manipulating the deviant 

stimuli with regards to the AMD? 

• Q1.3: Can “meaningful” neural thresholds be estimated from MMWs elicited 

by different AMDs? 

• Q1.4: Are neural thresholds significantly correlated with behavioural 

thresholds of AM detection? 

• Q1.5: Are behavioural AM detection abilities correlated with speech-in-noise 

recognition in a NH cohort? 
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2.6.2 CI Case Study (CS) 

• Q-CS.2: Can the ACC be elicited in CI users when the acoustic change 

constitutes AM with a low AM rate? 

• Q-CS.1: Can the electrical artefact from CI stimulation be sufficiently reduced 

in a discrete and/or continuous paradigm when stimuli have fluctuating 

envelopes and how does the presentation mode influence artefacts? 

2.6.3 Study 2 

• Q2.1: Can individual MMWs be obtained that are visually identifiable/have 

the distinct MMW morphology for the different AMDs? 

• Q2.2: Can the electrical artefact, which is introduced from CI stimulation, be 

sufficiently reduced to obtain the MMW when stimulus envelopes differ 

between standard and deviant stimuli?  

• Q2.3: Can the introduction of an “AM-standard” stimulus aid the artefact 

reduction procedure? Here, the “AM-standard” means presentation of the 

deviant sound (with AM) additionally presented as the standard sound, and 

thus, the neural response has the characteristics of a standard response with 

the artefact of the deviants. 

• Q2.4: Can individual neural thresholds be estimated from MMW data at 

varying AMDs? 

• Q2.5: Are neural thresholds correlated with behavioural AM detection 

thresholds? 

• Q2.6: Does speech performance correlate with AM detection thresholds in CI 

users? 

• Q2.7: Are MMWs elicited when potential loudness cues are removed by 

subjective loudness balancing? 

2.6.4 Study 3 

• Q3.1: Can neurophysiological MMWs and/or ACCs be recorded when the 

stimulus change characteristics relate to subtle TFS properties as conveyed in 

the stimuli of the TFS1 test or the Schroeder-phase stimuli? 
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 Depth matters – towards finding 
an objective neurophysiological measure of 
behavioural amplitude modulation detection 

Given the importance of slow envelope fluctuations for sound perception and 

particularly for speech processing, this study explored human auditory brain responses to 

modulated sounds with a low AM rate and examined their applicability as an objective 

measure. Such an objective measure may provide a valuable tool for clinical hearing 

assessment without relying on subjective feedback (Hall & Swanepoel, 2010), addressing 

the clinical demand for objective measures of auditory processing due to increasing 

numbers undergoing intervention against hearing impairment at a young age (Rajan et 

al., 2017). Experiments were conducted for a NH cohort to verify the feasibility of a 

neurophysiological approach based on neural change detection. Paradigms were designed 

in a way that allows future replication of the same test battery in a CI user cohort. 

As detailed by Picton (2013), neural responses elicited by temporal auditory 

features can be employed to assess various aspects of temporal auditory processing. 

Previous studies have assessed the relationship between behavioural AM detection 

abilities and corresponding neural measures (Purcell et al., 2004; Manju et al., 2014; Han 

& Dimitrijevic, 2015; Luke et al., 2015; Dimitrijevic et al., 2016). The main objective of 

this study was to build on this research by estimating individual neural thresholds (NTs) 

from CAEPs for low-rate AM detection. These NTs were derived from CAEP data 

elicited by various AMDs, and compared to behavioural AM detection thresholds for an 

AM rate of 8 Hz. It was hypothesized that NTs would be significantly correlated with 

behavioural AM detection thresholds of the same AM rate.  

This study explored a transient neurophysiological response referred to as the 

MMW (Lopez Valdes et al., 2014). The MMW was obtained using an auditory oddball 
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paradigm by subtracting the standard CAEP from the deviant CAEP. This difference 

waveform showed two distinct components: a negative component corresponding to the 

widely studied MMN, which is the result of perceptual change detection in stimulus 

sequences (Näätänen et al., 2007; Fishman, 2014), followed by a positive component 

which is associated with cognitive processes and may be a result of involuntary attention 

directed towards the deviant stimulus, similar to the P3a response (He et al., 2009). 

Previous studies have shown that both components are positively correlated with the 

magnitude of stimulus change (Katayama & Polich, 1998; He et al., 2009). Thus, both 

components were investigated as part of the MMW, similar to work by Lopez Valdes et 

al. (2014), who have demonstrated positive correlations between MMW-based 

neurophysiological thresholds and psychoacoustic thresholds for spectral ripple 

discrimination. This study aimed to expand on those findings, transitioning from spectral 

processing to temporal processing with the overall goal of designing a combined test 

battery to assess spectro-temporal auditory processing abilities.  

While not the main focus of this study, the relationship between the ability to 

detect low-rate AM with AMDs near threshold and speech recognition scores was also 

addressed. Although the literature suggests a lack of correlations between psychoacoustic 

measures (e.g. pitch discrimination, intensity discrimination and modulation detection) 

and speech recognition measures within NH cohorts (Strouse et al., 1998; Watson & 

Kidd, 2002; Goldsworthy et al., 2013), the calculation of correlations was implemented 

in order to have a fully translatable experimental battery for replication in CI users. Across 

groups of younger and older NH and CI participants, Jin et al. (2014) found significant 

correlations between AM detection thresholds (at 2 Hz and 4 Hz AM rates) and speech-

in-noise recognition with a modulated noise masker, but no within-group correlations 

were reported. Experiments with CI user cohorts have shown significant correlations 

between speech measures (i.e. vowel, consonant, phoneme, syllable, and sentence 

recognition) and low-rate (AM rate fm < 20 Hz) (Gnansia et al., 2014; De Ruiter et al., 

2015) as well as high-rate (fm ≥ 20 Hz) AM detection abilities (Cazals et al., 1994; Fu, 

2002; Luo et al., 2008; Won et al., 2011b; De Ruiter et al., 2015). These reported 

correlations in CI user cohorts provide support for the importance of AM sensitivity in 

electrical hearing and encourage the investigation of an objective measure of AM 

sensitivity. Results from this research were published in the journal Hearing Research. 
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3.1 Methods 

3.1.1 Participants 

15 young adults (9 female, 6 male; 19 – 28 years, mean: 23.2 ± 2.5 years) with no 

known hearing impairment participated in this study. Three participants were not native 

English speakers and their data were excluded from analysis relating to the speech test, 

but their results from electrophysiological and AM detection paradigms were included. 

Informed written consent was obtained from all participants prior to participation and all 

experimental procedures were approved by the Ethics (Medical Research) Committee at 

Beaumont Hospital, Beaumont, Dublin and the Research Ethics Committee at Trinity 

College Dublin.  

Participants were seated in a quiet room and auditory stimuli were presented 

monaurally to the left ear via headphones (Sennheiser HD 205) for all experimental 

paradigms. The presentation level of 70 dB SPL was verified with a KEMAR mannequin 

(45 BC) with pinna simulator (KB 0091), pre-amplifier (26CS) and pre-polarized pressure 

microphone (40A0) (all from G.R.A.S. Sound & Vibration). All stimuli were energy 

matched by adjusting the root mean square (RMS) amplitude.  

3.1.2 AM Stimuli 

Stimuli were created in MATLAB (Release 2013b, The MathWorks, Inc., Natick, 

Massachusetts, United States) with a sampling rate of 44100 Hz. A low modulation rate 

of 8 Hz was chosen for several reasons: from a motivational aspect it was chosen due to 

its importance for speech intelligibility (Drullman, 1995; Edwards & Chang, 2013; 

Gnansia et al., 2014) and from a practical aspect it provides four full AM cycles for the 

chosen stimulus duration of 500 ms3 (Figure 3.1). An alternative popular AM rate for 

behavioural AM detection studies is 4 Hz, however, this would only result in two AM 

cycles for a 500 ms stimulus duration. The noise carrier was created by filtering a 500 ms 

white Gaussian noise stimulus with a long-term average speech spectrum (LTASS) filter 

(Byrne et al., 1994). The AM signal, s(t), was created by multiplying the noise carrier, 

c(t), with a sinusoidal signal according to Equation 3.1: 

                                                 
3 The stimulus duration of 500 ms was chosen based on the desire to replicate the study in a clinical 

CI user cohort. The electrical CI artefact related to the stimulus offset should not fall into the time range of 
interest of the mismatch waveform (100 ms to 450 ms) to avoid unnecessary contamination of the measured 
neural response. 
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𝑠𝑠(𝑡𝑡) = [1 + 𝑚𝑚 ∙ sin(2 ∙ 𝜋𝜋 ∙ 𝑓𝑓𝑚𝑚 ∙ 𝑡𝑡 + Ф)] ∙ 𝑐𝑐(𝑡𝑡), 

Equation 3.1 

where t denotes time, fm is the AM rate (8 Hz), Ф is the starting phase (-π/2) and m is the 

AMD with values between zero and one. The psychoacoustics literature commonly 

reports the AMD in dB expressed as 20log10(m), but m may also be reported in percentage, 

in line with the literature investigating neurophysiological measures of AM processing 

(Purcell et al., 2004; Han & Dimitrijevic, 2015; Dimitrijevic et al., 2016). For the 

neurophysiological paradigm, AMDs were chosen on a linear scale with a constant step 

size of 25% (100%, 75%, 50% and 25%). Thus, the AMD m in this study is reported in 

percentage, unless noted otherwise. The chosen starting phase Ф resulted in a minimum 

amplitude of the noise signal at stimulus onset. To avoid loudness cues resulting from 

changes in AMD, the unmodulated and modulated stimuli were energy matched by 

adjusting the RMS amplitude to a constant value. Additionally, level roving was applied 

in the psychoacoustic paradigm with a range of ± 3 dB to reduce the usefulness of any 

potentially remaining loudness cues.  

 
Figure 3.1: Examples of amplitude modulated (AM) noise stimuli. 
Visualisations of the instantaneous amplitude (left) and spectro-temporal stimulus 
characteristics of stimuli with differing AM depths (AMD); 0% AMD equates to unmodulated 
noise. 

3.1.3 Psychoacoustics 

Behavioural AM detection was evaluated with two paradigms: One paradigm 

estimated the behavioural threshold (BT) for AM detection with an adaptive procedure, 
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and the second paradigm yielded the percentage of correct discrimination for a set of 

specific AMDs, providing an estimate of the overall psychometric function. 

BTs were determined with a three-alternative forced choice (3AFC), two-

down/one-up paradigm yielding an estimate of the 70.7% correct point on the 

psychometric function (Levitt, 1971). The inter-stimulus interval (ISI) for each trial of 

three consecutive stimuli was set to 100 ms. Participants were provided with visual 

feedback, with the selected button lighting up green or red for a correct or incorrect 

response, respectively (Figure 3.2). The starting AMD was 0 dB, expressed as 20log10(m). 

The step size was 4 dB for the first four reversals and 2 dB thereafter. A run was 

completed after 12 reversals and the BT was taken as the arithmetic mean of the 

20log10(m) values at the last eight reversals. Data were acquired for four runs and the final 

BTs were calculated as the mean across runs. The AMD m representing the BTs are 

reported, both in percentage and in dB (20log10(m)), to facilitate easy comparison with 

neural thresholds (NTs) and BTs reported in the literature, respectively. 

 
Figure 3.2: Graphical User Interface (GUI) to obtain amplitude modulation (AM) 
detection thresholds and visualisation of the presented stimuli. 
Three stimuli were presented, with two stimuli being unmodulated noise and one randomly 
chosen stimulus consisted of modulated noise. The AM depth varied according to the adaptive 
two-down/one-up procedure. 

To obtain an estimate of the psychometric function, unmodulated and modulated 

stimuli with a duration of 500 ms were presented in a single interval yes/no task with 

blocked AMDs (i.e. 10%, 12.5%, 25%, 50%, 75%, and 100%). The participant had a 2 s 

time window following stimulus presentation to decide whether the stimulus was 

modulated or unmodulated by clicking the corresponding button. No feedback was 

provided. Modulated and unmodulated stimuli had equal probability of presentation. 
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Stimulus presentations were divided into three runs for each AMD with a total of 120 

stimulus presentations for each AMD. To avoid fatigue, data for this paradigm were 

acquired in a separate session to the other tests. The percentage of correct responses was 

calculated for each AMD as the sum of hits and correct rejections divided by the total 

number of trials, where hits refers to the number of trials in which modulated stimuli were 

correctly identified as modulated and correct rejections refers to the number of trials in 

which unmodulated stimuli were correctly identified as unmodulated. Additionally, the 

sensitivity index, d’ (d-prime), is reported. In the case of extreme values of zero and one 

for the hit rate or false alarm rate, a correction was applied by adjusting zero to 0.5N and 

one to (1 - 0.5N), where N is the number of possible hits or false alarms, respectively 

(Macmillan & Kaplan, 1985).  

3.1.4 Speech-in-noise test 

The AzBio speech test (Spahr et al., 2012) was employed. Recorded sentences 

were presented with male and female speakers with an American English accent and 

masked with a ten-talker babble noise. Three SNRs (10 dB, 5 dB and 0 dB) were used for 

one sentence list each. Speech recognition scores for a NH cohort were expected to show 

ceiling effects for SNRs of 10 dB and 5 dB, but were included in the test battery to 

facilitate study replication in a CI user cohort, in which speech-in-noise recognition is 

known to be poorer (Oxenham & Kreft, 2014). Every sentence list included 20 sentences 

with four to seven words per sentence. The number of correctly identified words was 

counted and the speech recognition score was calculated as the percentage of correctly 

identified words. All presented words were considered for each sentence’s recognition 

score. The speech signal was presented at a constant level and the noise signal was 

adjusted according to the SNR. 

3.1.5 Electrophysiology 

Data acquisition  

Single-channel EEG data were acquired through a custom-built, single-channel, 

high sampling rate EEG setup, previously designed and validated to acquire EEG data 

from CI recipients and which includes an electrical artefact reduction algorithm (Mc 

Laughlin et al., 2013). In this setup, the recording electrode is positioned at the vertex and 

referenced to the right mastoid; the right collar bone is used as the system ground. As the 
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long term goal is to use the protocol with CI users, data were sampled at a high rate of 

125 kHz for artefact reduction purposes (Mc Laughlin et al., 2013). Such a high sampling 

rate is unnecessary for EEG signals from NH participants and uneconomical for further 

post-processing. Hence, data were down-sampled offline by a factor of 100. The 

amplifier’s high-pass filter was set to 0.03 Hz and the low-pass filter was set to 100 Hz 

and data were amplified with a gain of 2000. Electrode impedances were measured 

before, during and after the electrophysiological recordings. Impedances were kept below 

5 kΩ for all electrode combinations.  

Cortical responses were elicited using an unattended, auditory oddball paradigm 

in which modulated (deviant) and unmodulated (standard) noise sounds were presented 

for deviants with AMDs of 100%, 75%, 50%, and 25%. Each stimulus had a duration of 

500 ms and an ISI of 1 s. Each condition was presented in separate blocks of 160 stimulus 

repetitions each with a total of four blocks per condition. Each block contained 20 initial 

presentations of the standard, followed by 140 mixed presentations of the standard (90% 

occurrence probability) and deviant (10% occurrence probability), resulting in 56 deviant 

and 584 standard presentations in total for each AMD. The order of AMD blocks was 

pseudo-randomized for each participant.  

Participants were seated in a quiet room, watching a silent, captioned movie of 

their choice and were instructed to keep body movements to a minimum. As a measure 

of signal quality, an additional brief block of pure tone stimuli was added at the start and 

end of the EEG recording to elicit the robust N1-P2 complex (500 Hz, 500 ms duration, 

1 s ISI). All participants exhibited visible N1-P2 complexes, so no participant’s data were 

excluded from further analysis.  

 

Data processing  

Offline post-processing of the down-sampled data included zero-phase bandpass 

filtering between 1 Hz and 15 Hz with a 4th order Butterworth filter, gain removal, 

epoching (-300 ms pre-stimulus to 700 ms post-stimulus), linear de-trending, baseline 

correction, and separation into standard and deviant epochs. Epochs were marked for 

rejection if their activity exceeded a threshold value, which was very conservatively 

calculated by multiplying each epochs’ standard deviation by five and averaging across 

epochs. Standard and deviant epochs were averaged to form the respective CAEPs and 

the MMW was obtained by subtracting the standard from the deviant CAEP.  
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Morphology weighting: The MMW was evaluated in terms of AUC in the region 

of 110 ms to 310 ms post-stimulus onset (Figure 3.5A). Random non-task related 

fluctuations in the EEG data may result in spurious AUC measurements. For this reason, 

a morphology weighting approach was developed (Figure 3.3). Morphology weighting 

was achieved by assessing the Pearson’s correlation between MMWs at differing AMDs 

and a participant-specific template. These correlation coefficients were associated with 

weights according to a weighting function (binary or exponential weighting, Figure 3.5C). 

Multiplication of the AUC values with the assigned weights for each AMD and each 

participant provided the morphology weighted AUC curves. The application of weights 

to AUC values based on similarity of the MMW with the participant-specific template 

reduced the influence of random fluctuations on AUC values.  

 
Figure 3.3: Pseudocode of data processing steps to obtain morphology weighted area-
under-the curve (AUC) values of mismatch waveforms (MMWs). 
For each participant and each amplitude modulation depth (AMD), (1) the AUC is calculated 
between 110 ms and 310 ms post-stimulus onset. (2) Separately for the negative and the 
positive peaks, the MMWs were aligned (Figure 3.2) by shifting the waveforms. The 
correlation coefficients between the template (MMW100) and MMWs for lower AMDs are 
calculated. Based on the correlation coefficient, a weight is assigned (binary or exponential 
weighting function). The overall weight is the average of the obtained values for negative 
and positive peak alignment. (3) The morphology weighted AUC values are obtained by 
multiplying the determined weights with their respective AUC values. 

Morphology weights calculation: Each participant showed a clear MMW for the 

100% AMD, i.e. a negative component followed by a positive component in the time 

region of interest. Thus, the individual MMW at 100% AMD served as a participant-

specific template for the morphology weighting approach and is referred to as the 
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‘template’ in the following. Subsequently, correlation coefficients between the individual 

MMWs at lower AMDs (MMW75, MMW50 and MMW25) and this template were 

calculated.  

It has been reported that increasing task difficulty may result in increased MMW 

latencies (Tiitinen et al., 1994; Kimura & Takeda, 2013). MMW latency shifts may lead 

to lower correlation coefficients despite overall similar morphology. To compensate for 

such latency shifts, MMW75, MMW50 and MMW25 were aligned with the template prior 

to the correlation calculation (Figure 3.4). To determine the latency shift required for the 

alignment, the peaks of the template were determined in the corresponding time range of 

interest and a time window of -5 ms to +40 ms around these peak latencies served as the 

search window for peak detection of the remaining MMWs. The search window was 

chosen to be asymmetrical, as latencies were not expected to decrease for lower AMDs. 

MMWs were aligned separately, by positive peak and by negative peak, providing two 

sets of correlation coefficients. Correlation coefficients were calculated after the MMWs 

were aligned. Each correlation coefficient was assigned a weight and to obtain the final 

weight for each AUC value, the weights derived from negative and positive peak 

alignments were averaged. The morphology weighted AUC values (Figure 3.5D) were 

obtained by multiplying the unweighted AUC values (Figure 3.5B) with the obtained 

weights.  

 
Figure 3.4: Mismatch waveform (MMW) alignment for example participant.  
Alignment prior to correlation coefficient calculation allows for MMW latency shifts between 
differing amplitude modulation depths (AMDs); MMWs for 75%, 50% and 25% AMD were 
aligned with the template (100% AMD) with regard to the negative peak (B) and the positive 
peak (C) of the MMW. 

Weighting functions: Weight assignment was based on two weighting approaches, 

binary and exponential weighting. The binary weighting represents an “all-or-nothing” 

approach in which a weight of one was assigned to all MMWs with correlation 

coefficients of 0.85 or above and a weight of zero was assigned otherwise (Figure 3.5C). 

The threshold of 0.85 was determined empirically and preserves MMWs that show the 

characteristic waveform with little variation, but suppresses MMWs that do not show high 
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similarity to the template. For the less stringent exponential weighting, correlation 

coefficients were assigned into bins of 0.1 width. The first bin with correlation 

coefficients between one and 0.9 was assigned a weight of one, and with each bin the 

weight was halved (i.e. 0.5, 0.25, 0.12) (Figure 3.5C). All correlation coefficients below 

0.6 were assigned a weight of zero. Each weighting type was applied individually 

throughout the data analysis to obtain morphology weighted AUC curves (Figure 3.5D) 

and final correlations between BTs and NTs were compared to assess the influence of the 

weighting approach.  

Neural threshold calculation: The NT was taken as the interpolated AMD at 

which the individual’s weighted AUC curve dropped below a derived intersection value 

(IV, Figure 3.5E). A range of different IVs was investigated. 

 
Figure 3.5: Visualisation of data processing steps involved in neural threshold  (NT) 
estimation. 
(A) Example area-under-the-curve (AUC) between 110 ms and 310 ms for an individual 
participant's mismatch waveform (MMW) for the 100% amplitude modulation depth (AMD); 
(B) unprocessed AUC curves derived from individual MMWs for all participants; (C) 
exponential and binary weighting function assigning weights to AUC scores depending on 
correlation coefficients between the associated MMW and the participant's template; (D) 
weighted AUC curves obtained by multiplying assigned weights with unweighted AUC values 
for all participants' weighted AUC curves; results displayed for binary weighting function; 
(E) neural thresholds determined as the intersection point between weighted AUC curves and 
the chosen intersection value (IV); the NT represents the highest, interpolated AMD at which 
the AUC curve drops below the IV. 

Correlation analysis between BTs and NTs: The relationship between BTs and 

NTs was assessed with Pearson’s linear correlation coefficient as well as Spearman’s 

rank-order correlation coefficient rs, which is equivalent to Pearson’s linear correlation 

coefficient, but applied to ranked data. Pearson’s correlation coefficient assesses the 

linear relationship between two variables, whereas Spearman’s correlation coefficient 

assesses their monotonic relationship. Correlation analysis was carried out for a range of 

potential IVs with both weighting functions. For this analysis, all standard epochs were 

averaged for each AMD. To verify the validity of the novel methodology, the entire 

analysis was carried out for 300 permutations of different sub-sets of 56 standards for an 

example IV of 0.35 and both weighting functions.  
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3.2 Results 

3.2.1 Psychoacoustics 

The individual mean BTs were between 8.1% (-21.8 dB) and 16.7% (-15.5 dB) 

AMD. The group mean threshold was 12.1% (-18.3 dB) with a standard deviation of 2.4% 

(1.74 dB). Behavioural AM detection scores in the psychometric function showed 

expected ceiling effects at the group level for AMDs of 25% and above, while detection 

accuracy decreased significantly below 25% AMD (Figure 3.6A).  

 
Figure 3.6: Behavioural results and their correlation analysis results. 
Individual scores, arithmetic means (black line) and standard deviations (shaded grey boxes) 
for (A) the psychometric function of amplitude modulation (AM) detection at varying AM 
depths (AMD) for all participants (n = 15), and (B) the speech-in-noise scores for three 
signal-to-noise ratios (SNRs) for the native speakers (n = 12). Indicated by the two grey 
boxes are the conditions underlying the correlation analysis shown in (C). Both levels 
represent the tested level at which participants showed poorer task performance and 
increased performance variability. 

 

Table 3.1: Group mean and standard deviation (SD) data of the psychometric function 
for different amplitude modulation depths (AMD). 
Group mean results of the psychometric function reporting the total percentage of correct 
responses (hits and correct rejections), the corresponding SD, hit rates, false alarm rates 
and the sensitivity index d’ (d-prime) for six AMDs m which are reported in percentage, or 
in dB, expressed as 20log10(m).  

AMD [%] AMD [dB] Total correct [%] SD Hit rate False alarm rate d’ 

100 0 98.8 1.2 0.985 0.016 4.44 

75 -2.5 98.7 1.2 0.983 0.018 4.41 

50 -6.0 98.8 1.4 0.990 0.024 4.46 

25 -12.0 97.9 2.2 0.973 0.024 4.20 

12.5 -18.0 84.9 10.3 0.831 0.131 2.41 

10 -20 66.7 9.8 0.494 0.170 1.01 

 

Table 3.1 summarizes the group mean percentage of correct responses and their 

standard deviations for the various AMDs. Additionally, the group mean hit rates, false 

alarm rates and the sensitivity index d’ are reported. A non-parametric Friedman test 
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revealed a statistically significant difference in task performance between differing 

AMDs (Χ2(5) = 55.03, p < 0.001). Post-hoc analysis with Wilcoxon signed-rank tests was 

conducted with Bonferroni correction to adjust for multiple comparisons with an adjusted 

significance level of 0.003 for 15 comparisons. There were significant differences 

between 12.5% and all other AMDs (Z ≤ -3.24, p ≤ 0.001) and between 10% and all other 

AMDs (Z ≤ -3.24, p ≤ 0.001). 

3.2.2 Speech-in-noise test 

Speech-in-noise recognition scores for the native English speakers revealed 

ceiling effects at the 10 dB SNR and close to ceiling effects at the 5 dB SNR, but for 0 dB 

SNR a decline in speech recognition and increased variation among participants occurred 

(Figure 3.6B, Table 3.2). A non-parametric Friedman test revealed significant differences 

between SNRs (Χ2(2) = 24.00, p < 0.001). Post-hoc analysis with Wilcoxon signed-rank 

tests was conducted with Bonferroni correction to adjust for multiple comparisons with 

an adjusted significance level of 0.017 for three comparisons. Significant differences 

were observed between all three conditions (10 dB vs. 5 dB: Z = -3.06, p = 0.002; 10 dB 

vs. 0 dB: Z = -5.06, p = 0.002; 5 dB vs. 0 dB: Z = -3.06, p = 0.002). Non-native speakers 

showed large variations in their performance as well as overall poorer performance for 

lower SNRs and were therefore excluded from data analysis relating to speech recognition 

scores. 

Table 3.2: Speech-in-noise recognition group mean data and their standard deviations 
(SDs) for native speakers for the three tested signal-to-noise ratios (SNRs). 

SNR Mean SD 

10 dB 98.2 1.65 

5 dB 94.0 1.67 

0 dB 67.8 7.54 

3.2.3 Correlations speech vs. psychoacoustics 

Only conditions without evident floor or ceiling effects in the group mean scores 

were included in the correlation analysis, namely the 0 dB condition of the speech test 

which was compared to the AM detection scores of the psychometric function at 10% and 

12.5% AMD, and the BTs. Potential linear relationships between experimental measures 

were investigated with Pearson’s correlation coefficients. No significant correlations 

were found between speech scores at 0 dB SNR and BTs (rp = -0.15, p = 0.638) and AM 
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detection at 10% AMD (rp = 0.24, p = 0.461). Comparison of the speech scores at 0 dB 

SNR and the behavioural AM detection scores for the 12.5% AMD (Figure 3.6C) 

suggested a moderately strong linear relationship between the two measures (rp = 0.65, 

p = 0.021), but the correlation did not remain significant after adjusting the significance 

level to 0.017 with the conservative Bonferroni correction for multiple comparisons.  

3.2.4 Electrophysiology 

The group mean MMWs revealed a clear morphology for 100% and 75% AMD, 

whereas the waveforms for 50% and 25% AMD only showed random fluctuations 

(Figure 3.7 and Figure 3.8A). A strong decline in the individual morphology weighted 

AUC values was noted from 100% to 75% and from 75% to 50% AMD, but then the 

AUC values remained constant at a low (mostly zero) level for 50% and 25% AMD 

(Figure 3.5D and Figure 3.8B). Statistical analysis by means of a non-parametric 

Friedman test revealed a significant effect of AMD for the binary weighted MMW AUC 

values (Χ2(3) = 37.08, p < 0.001). Post-hoc analysis was carried out with Wilcoxon 

signed-rank tests, and Bonferroni correction provided an adjusted significance level of 

0.008 for six comparisons. Weighted MMW AUC values for 100% AMD differed 

significantly from those for all other AMDs (100% vs. 25%: Z = -3.41, p = 0.001, 100% 

vs. 50%: Z = -3.41, p = 0.001, 100% vs. 75%: Z = -3.35, p = 0.001) and 75% AMD scores 

differed significantly from those for 25% AMD (Z = -2.80, p-value = 0.005), but not 50% 

AMD (Z = -2.58, p = 0.010). No significant difference was found between scores for 25% 

and 50% AMD (Z = -0.54, p = 0.593).  

For binary weighting, five out of the 15 MMW75 values were assigned a weight 

of zero, suggesting that five participants only exhibited a clear MMW response for the 

MMW100. For the MMW50 and MMW25 only two non-zero weights were observed for 

each set of 15 MMWs (Figure 3.8B). Closer analysis of the MMWs associated with non-

zero weights at 25% and 50% AMD showed that participant ‘NH2’ demonstrated clearer 

MMWs than other participants and AUC values different from zero for all AMDs. Further 

inspection of the data suggested that non-zero AUC values for participant ‘NH4’ at 50% 

AMD and for ‘NH16’ at 25% AMD were unexpected based on the observed waveform 

since the MMW did not resemble the template. However, minimal random fluctuations 

with the shape of the template in the region of interest led to high correlation values, 

therefore, assigning greater weights to these AUC values.  
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Figure 3.7: Individual and grand average cortical auditory evoked potentials (CAEPs). 
CAEPs are shown for the four amplitude modulation depth conditions (left to right) and for 
standard (STD, first row) and deviant (DEV, second row) CAEPs as well as their respective 
difference waveform with the expected mismatch waveform (MMW, bottom row). 

 
Figure 3.8: Grand average mismatch waveforms and area-under-the-curve data.  
(A) Group mean mismatch waveform (MMW) data for the four tested amplitude modulation 
depths (AMDs) with the indicated region of interest (110 ms – 310 ms); (B) Boxplots 
visualizing variation in group data for weighted area-under-the-curve (AUC) values (shown 
for binary weighting) across AMDs with outliers indicated by the red plus signs. 

 
Figure 3.9: Examples of the correlation analysis between behavioural thresholds (BTs) 
and neural thresholds (NTs). 
Correlation results are presented for data obtained with binary weighting (‘o’, blue) and 
with exponential weighting (‘+’, red). NTs were calculated with an intersection value of 0.35 
and all standard epochs were averaged to obtain the difference wave. Correlation results are 
pictured for Pearson’s correlation coefficient rp as well as for Spearman’s correlation 
coefficient rs for data from both, binary and exponential, weighting approaches. 
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3.2.5 Correlations between BTs vs. NTs  

Analysis based on all standard epochs 

Individuals’ BTs and NTs for AM detection showed statistically significant 

correlations for a range of tested IVs when all standard epochs were included in the 

analysis (Table 3.3). For IVs of 0.25 or below and 0.5 and above, NT calculation failed 

for one or more participants. Results for a chosen IV of 0.35 are also illustrated in 

Figure 3.9. 

Table 3.3: Overview of correlation results with data based on all standard epochs. 
Correlation results are reported for Pearson’s and Spearman’s correlation coefficients for 
correlations between neural thresholds (NTs) and behavioural thresholds for binary and 
exponential morphology weighting. The NTs included in this analysis were estimated based 
on the reported intersection values (IVs). For high (≥ 0.5) and low (≤ 0.2) IVs, NT calculation 
failed for some participants. The IV 0.35 (bold) indicates the IV for which the correlation 
analysis was additionally carried out for 300 permutations of randomly chosen subsets of 
standard epochs (see Figure 3.10). 

Spearman’s correlation analysis 

Binary Exponential 

IV rs p no NT IV rs p no NT 

0.10 0.716 0.006 1 0.10 0.63 0.018 1 

0.15 0.71 0.006 1 0.15 0.66 0.013 1 

0.20 0.71 0.006 1 0.20 0.66 0.013 1 

0.25 0.75 0.002 0 0.25 0.73 0.003 0 

0.30 0.76 0.002 0 0.30 0.74 0.002 0 

0.325 0.76 0.002 0 0.325 0.73 0.003 0 

0.35 0.76 0.002 0 0.35 0.73 0.003 0 

0.40 0.39 0.157 0 0.40 0.36 0.192 0 

0.45 0.61 0.017 0 0.45 0.61 0.017 0 

0.50 0.54 0.048 1 0.50 0.53 0.057 1 

Pearson’s correlation analysis 

Binary Exponential 

IV rp p no NT IV rp p no NT 

0.10 0.59 0.026 1 0.10 0.56 0.037 1 

0.15 0.62 0.019 1 0.15 0.58 0.030 1 

0.20 0.64 0.015 1 0.20 0.61 0.021 1 

0.25 0.59 0.021 0 0.25 0.56 0.031 0 

0.30 0.61 0.015 0 0.30 0.58 0.024 0 

0.325 0.63 0.013 0 0.325 0.59 0.020 0 

0.35 0.64 0.010 0 0.35 0.61 0.017 0 

0.40 0.39 0.156 0 0.40 0.34 0.216 0 

0.45 0.65 0.009 0 0.45 0.61 0.016 0 

0.50 0.65 0.012 1 0.50 0.60 0.023 1 
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Permutation analysis based on sub-sets of the standard epochs 

To validate the applied procedure, the correlation analysis was carried out for 300 

permutations of different sub-sets of 56 standards and for an example IV of 0.35. The 

distributions of correlation coefficients and their respective p-values across 300 

permutations are shown in Figure 3.10.  

 

Figure 3.10: Permutation distributions of correlation analysed with randomised sets of 
standard epochs. 
Depicted are the distributions of Spearman’s linear correlation coefficient rp (top) and 
Pearson's linear rank correlation coefficient rs (bottom) between behavioural and neural 
thresholds of amplitude modulation detection and their respective p-values based on binary 
and exponential weighting functions for the morphology weighting. NTs were estimated 
based on an intersection value of 0.35. Distributions were based on 300 permutations of 
randomly chosen sub-sets of 56 standard epochs for the calculation of the mismatch 
waveform. The median of each distribution is indicated by the circle. 
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The central tendency of the skewed distributions of the correlation coefficients 

and p-values obtained with the permutation analysis can be expressed by the median. For 

the specified IV of 0.35 and based on Spearman’s linear rank correlation coefficients, 

median correlation coefficients of rs = 0.675 (p = 0.008) and rs = 0.629 (p = 0.015) were 

obtained for the linear relationship between BTs and NTs based on binary and exponential 

weighting, respectively (Figure 3.10). For the specified IV of 0.35 and based on Pearson’s 

correlation analysis, median correlation coefficients of rp = 0.603 (p = 0.018) and 

rp = 0.559 (p = 0.033) were obtained for the linear relationship between BTs and NTs 

based on binary and exponential weighting, respectively (Figure 3.10). The non-

parametric Mann-Whitney test showed that the distributions of Pearson’s as well as 

Spearman’s correlation coefficients between BTs and NTs across 300 permutations were 

statistically significantly different for the binary and exponential morphology weighting 

with p < 0.001 for both tests. 

 
 

3.3 Discussion 
There were five main findings: (1) MMWs can be elicited by change detection 

from unmodulated to modulated noises. (2) The MMW amplitude decreases with 

decreasing AMD. (3) Morphology weighting of MMWs allows the objective estimation 

of NTs. (4) NTs are significantly correlated with BTs. (5) No significant correlations were 

observed between AM detection and speech scores at 0 dB SNR. 

3.3.1 Objective measure 

Mismatch waveforms 

To my knowledge, this is the first application of the MMW to evaluate the 

perception of acoustic changes related to AM detection. Previous studies have assessed 

the MMW as a measure of auditory temporal resolution via gap detection (Desjardins et 

al., 1999; Trainor et al., 2001; Uther et al., 2003). Overall, the successful elicitation of 

neural responses provides evidence for the feasibility of the application of the MMW for 

this type of acoustic change. 

The morphology weighting approach reduced AUC values for the lower AMDs 

(Figure 3.5B and Figure 3.5D), showing that MMWs at lower AMDs do not strongly 

resemble the template, which is in line with observations of random fluctuations of the 
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individual MMWs at 25% and 50% AMD. Figure 3.11 shows a comparison of the 

psychometric function of behavioural AM detection and the weighted AUCs of neural 

responses at the corresponding AMDs, highlighting the difference in response 

development with decreasing AMD. AUC values declined at much higher AMDs 

compared to behavioural responses. The psychometric function showed ceiling effects 

for AMDs of 25% and above, and deteriorating performance for AMDs below 25%, 

which  agrees with the literature concerning 4 Hz AM detection (Han & Dimitrijevic, 

2015). In contrast, the MMW amplitudes decreased from 100% to 75% AMD, and for an 

AMD of 50% no clear MMW was detectable in the group mean data. Similarly, Han and 

Dimitrijevic (2015) reported declines in ACC amplitudes between 100% and 50% AMD, 

and only a weakly discernible ACC for 25% AMD for an AM rate of 4 Hz.  

 
Figure 3.11: Comparison of neural and behavioural AM detection for varying AMDs.  
Group mean scores of the psychometric function (dashed line, left y-axis) contrasted with 
group mean weighted area-under-the-curve (AUC) values obtained from the 
neurophysiological data (solid line, right axis) at different amplitude modulation depths 
(AMDs). 

MMWs have been elicited when acoustic changes were only just perceptible 

(Kraus et al., 1993a) or even consciously imperceptible (Allen et al., 2000). In light of 

this, the disappearance of the MMW for AMDs at which behavioural performance 

showed ceiling effects raises questions about the underlying mechanisms that result in 

MMW elicitation for this acoustic change type. Auditory information may have to be 

accumulated for a longer time period to result in AM detection for low AMDs than for 

high AMDs. Increasing reaction times with decreasing AMD support this interpretation 

(Han & Dimitrijevic, 2015). In the case of the MMW, prolonged temporal integration of 

stimulus information for low AMDs may result in temporally jittered neural change 

detection, preventing a clear MMW.  
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Neural thresholds 

The morphology weighting approach reduced AUC values at low AMDs based 

on dissimilarities with the individual MMW template. This allowed objective NT 

calculation, where the NT was determined as the AMD at which the weighted AUC curve 

dropped below a specified IV. Correlation analyses revealed significant correlations 

between BTs and NTs for both types of correlation analysis (Spearman’s and Pearson’s), 

for both weighting methods (binary and exponential weighting), and for a range of IVs 

(Table 3.3). The IV of 0.4 constituted an exception with non-significant correlation 

results. Closer inspection of the data revealed that this is due to an outlier with a very low 

NT (participant ‘NH2’). In an alternative implementation of the analysis procedure with 

stricter epoch rejection criteria, the IV of 0.4 achieved comparable results to the other 

IVs. However the stricter epoch rejection resulted in very low deviant epoch numbers for 

some participants and a more liberal epoch rejection procedure was preferred. The ‘best’ 

IV of 0.35 was selected to further validate the analysis procedure by repeating the analysis 

with 300 permutations of randomly chosen sub-sets of 56 standards. The resulting 

distributions of correlation coefficients and p-values showed that results were repeatable 

and did not strongly rely on the choice of standard epochs. Spearman’s linear rank 

correlation coefficients were greater than Pearson’s correlation coefficients for most IVs, 

which may be due to the superior robustness against outliers of the Spearman’s algorithm 

(de Winter et al., 2016) or it may indicate that the relationship between BTs and NTs is 

monotonous, but not strictly linear. Based on the skewed BT and NT data, non-parametric 

correlation analysis with Spearman’s linear rank correlation coefficient is preferable, but 

both analysis methods were presented to present a more detailed analysis in this 

exploratory study. 

Non-parametric statistical analysis of the distributions showed that the 

distributions of correlation results were significantly different for binary and exponential 

weighting procedures, with binary weighting yielding higher correlations than 

exponential weighting, which is likely a result of the more stringent rejection of MMWs 

with poor resemblance to the template. 

 

Intersection value 

As stated in Section 3.2.5, the statistical significance of the correlation between 

BTs and NTs was not strongly dependent on the IV. To objectively determine a specific 

IV for data analysis, different approaches may be applied. Unless a thresholding paradigm 
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is employed, task difficulty levels in psychoacoustic paradigms are commonly selected 

with the goal of deriving a measure of performance between floor and ceiling. Such 

difficulty levels provide a means of comparing task performance across participants and 

a means for performing correlation analysis across paradigms. The 75% AMD fulfils 

these requirements for NTs: Some participants exhibited clear waveforms for the 75% 

AMD condition while in others MMW morphologies were poorer. At the 50% AMD 

level, no clear MMWs were recognizable. Given the suitability of the 75% AMD level 

for correlation analysis, one could determine the IV as the group mean AUC value at this 

level. This would provide a value of 0.325 (binary weighting) or 0.323 (exponential 

weighting), which lies in the range of the IVs with the highest correlations (see Table 3.3). 

 

AM loudness cues 

The challenge of loudness balancing AM stimuli is usually overcome by energy 

adjustment and/or level roving for behavioural testing (Viemeister, 1979; Bacon & 

Viemeister, 1985; Shen & Richards, 2013; Shen, 2014). Unfortunately, level roving 

cannot be employed in MMW paradigms as it may result in MMWs being elicited purely 

through intensity change detection (von Wedel, 1982; Martin & Boothroyd, 2000; Harris 

et al., 2007). The loudness may change with the overall presentation level, the AM rate 

(Zhang & Zeng, 1997; Moore et al., 1999) and the AMD (Moore et al., 1999). Despite 

energy adjustment of AM stimuli, subjective perception of loudness differences cannot 

be prevented without individual behavioural loudness balancing, which would be 

required for each tested AMD.  

Moore et al. (1999) reported an average difference of approximately 1.5 dB in the 

RMS level required to achieve equal loudness for unmodulated and modulated speech-

shaped noise at an AM rate of 8 Hz and with 100% AMD. For 50% AMD, the RMS-level 

difference decreased to less than 0.5 dB. Neurophysiological studies have reported ACC 

responses elicited by intensity changes of 2 dB in a vowel change stimulus (Martin & 

Boothroyd, 2000) and for pure tone intensity increments (Harris et al., 2007). These 

findings do not support the interpretation that unwanted overall loudness cues between 

modulated and unmodulated stimuli had a strong influence on the MMW, but some 

influence cannot be ruled out. 
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Limitations 

Some limitations of this study should be acknowledged. The use of only 56 

deviant presentations for each condition may be a confounding factor in NT estimation. 

Kraus et al. (1993a) averaged neural responses for 200 deviant presentations to show 

neural change detection near the perception threshold. Increasing the number of deviant 

trials would likely have a positive impact on the SNR of the acquired neural responses. 

However, this study included four acoustic change conditions (four AMDs), which 

required a fine balance between the number of deviant presentations and participant 

fatigue. In comparison, Kraus et al. (1993a) only employed one acoustic change type 

when they recorded MMNs near perception threshold which enabled more deviant 

repetitions. 

The low number of recording channels can be an advantage or a limitation. The 

chosen single-channel setup is clinically friendly, which is important for future extension 

to clinical cohorts. However, it also introduces the possibility of slight misplacement of 

the recording electrode, resulting in altered MMW amplitudes across participants, but not 

influencing recordings within participants. 

The discrepancy between the magnitudes of BTs and NTs, despite significant 

correlations, needs to be explained and may be due to several factors: (1) the difference 

in the experimental paradigm may in part account for a threshold difference as 3AFC-

discrimination is easier than single-interval discrimination. (2) MMW amplitudes are 

known to decrease with increasing task difficulty, and therefore, for the 50% and 25% 

AMD conditions the MMW may exist but is not distinguishable from the noise floor. The 

SNR of the EEG data can be improved by increasing the number of deviant repetitions, 

potentially resulting in distinguishable MMWs at low AMDs, which would in turn lead 

to lower NTs and decrease the gap between BTs and NTs. Future research has to identify 

where the large discrepancy between BTs and NTs originates from.  

3.3.2 Psychoacoustics 

The AM detection thresholds found in this study were higher than those 

commonly reported in the literature, although similar AM detection thresholds were 

presented for 4 Hz AM, with an average threshold of 13% for a stimulus duration of 1 s 

(Han & Dimitrijevic, 2015), equating to 4 AM cycles, as in this study. AM rates below 

10 Hz yield constant AM thresholds, provided that the stimulus duration is chosen 
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sufficiently long with regard to the number of AM cycles at a given AM rate (Viemeister, 

1979; Bacon & Viemeister, 1985; Sheft & Yost, 1990). Previous studies investigating 

AM detection thresholds for an 8 Hz AM rate and broadband noise carriers for young NH 

cohorts reported mean thresholds of approximately 8% (Jin et al., 2014) and 5% – 6% 

(Viemeister, 1979; Bacon & Viemeister, 1985; Takahashi & Bacon, 1992). In all reported 

studies broadband noise stimuli, with and without AM, and with a duration of 500 ms 

were presented monaurally via headphones and reported thresholds provide an estimate 

of the AMD required for 70.7% correct identification. Presentation levels differed across 

studies, but do not significantly affect AM detection thresholds unless presentation levels 

are very low (Viemeister, 1979). A potential cause for the higher thresholds reported here, 

is the carrier bandwidth. A reduced carrier bandwidth is associated with poorer AM 

detection thresholds (Bacon & Viemeister, 1985; Bacon & Gleitman, 1992; Strickland & 

Viemeister, 1997). The speech-shaped noise carrier in this study emphasized frequencies 

below 1 kHz while higher frequency content was lower in level. Similar to band-limited 

carriers, this speech-shaped noise carrier may result in poorer AM detection thresholds 

than for broadband noise carriers. Higher average AM detection thresholds may also be 

caused by the level roving (± 3 dB), as the loudness changes may distract from the task 

at hand, particularly at low AMDs (Chatterjee & Oberzut, 2011).  

3.3.3 Speech-in-noise recognition vs. AM detection 

The lack of significant correlations between speech-in-noise recognition and 

behavioural AM detection abilities is not surprising and in line with the literature. 

Previous studies in NH cohorts have already demonstrated the difficulty in teasing out 

relationships between speech measures and various psychoacoustic measures (Strouse et 

al., 1998; Watson & Kidd, 2002; Goldsworthy et al., 2013). Watson and Kidd (2002) 

proposed that speech-in-noise recognition in NH cohorts largely depends on a 

combination of pattern recognition abilities and the ability to infer the meaning of 

degraded speech from splinters of information. In contrast to this, deficits in spectral and 

temporal auditory processing caused by hearing impairment may negatively impact 

speech processing, which is supported by significant correlations between psychoacoustic 

and speech measures (Dreschler & Plomp, 1980; Festen & Plomp, 1983; Dreschler & 

Plomp, 1985; Glasberg & Moore, 1989). Moreover, various studies for CI cohorts have 

shown significant correlations between speech measures and AM detection (Cazals et al., 



  

62 
 

1994; Fu, 2002; Luo et al., 2008; Won et al., 2011b; Gnansia et al., 2014; De Ruiter et 

al., 2015), upholding the hypothesis that AM detection may play a role in speech 

processing in the case of electric hearing. As stated previously, the aim of the test battery 

design presented in this study was its future implementation in a CI user cohort, thus, the 

inclusion of the speech measure was deemed justified. 

3.3.4 Clinical applications 

In this study, data was acquired from NH participants. However, all data 

acquisition was planned in a manner that allows future study replication with CI users. 

These additional considerations mainly impacted the sampling rate and additional lower 

difficulty levels in behavioural testing.  

The findings support the hypothesis that NTs obtained from MMWs towards 

differing AMDs correlate with behavioural AM detection thresholds. This supports the 

MMW as a potential objective measure of temporal processing. Although correlations 

between behavioural AM detection thresholds and speech-in-noise recognition did not 

reach significance after (conservatively) adjusting for multiple comparisons, a 

relationship should not be ruled out. Correlation results may have been impeded by 

commonly small observed differences in performance for NH cohorts. Larger 

performance variability in CI users may strengthen the correlation results. The 

applicability of neural measures of AM detection for auditory performance assessment 

should be further investigated as they may provide “speech-relevant non-speech 

measures”, which would be beneficial in pre-lingual cohorts in order to estimate the 

benefit of aided hearing.  

Based on the presented findings it seems feasible to extend this study to clinical 

cohorts to explore whether relationships persist. However, challenges have to be 

anticipated. In order to apply the presented data processing method based on morphology 

weighting to EEG data, it is crucial to obtain a clear MMW template for the 100% AMD 

condition. EEG data acquired from CI users is contaminated by the stimulation artefact 

and even with efficient artefact removal techniques, the data quality is often poorer than 

for NH participants. Without a clear template, the morphology weighting procedure may 

not be feasible. Regarding the psychometric function, it may be challenging to determine 

a specific AMD level which provides responses above chance level and below ceiling 

effect for all participants in hearing impaired cohorts due to large variations in 
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performance. For NH participants, these conditions were met by the 12.5% AMD level. 

If these conditions are not met, correlation analysis with other metrics is not feasible. 

Threshold paradigms should be considered for speech-in-noise recognition and AM 

detection assessment. 

 

 
 

Key Points 

• The study presented in this chapter addressed the research questions Q1.1 – 

Q1.5. 

• MMWs were successfully elicited by AM stimulus pairs (Q1.1) and their area-

under-the-curve values changed in line with acoustic change saliency (Q1.2). 

• Findings support the estimation of NTs from MMW data (Q1.3), and showed 

significant correlations with BTs (Q1.4), which encourage further research 

into the application of the MMW as an objective measure of low-rate AM 

detection. 

• The morphology weighting procedure had a positive impact on AUC values 

at lower AMDs, and may provide a useful analysis tool in CAEP research at 

the individual level. 

• Correlations were observed between speech-in-noise scores and BTs of AM 

detection, however, they did not reach significance after adjusting the 

significance level for multiple comparisons (Q1.5). 

• Future work should address the discrepancy between the magnitudes of BTs 

and NTs. 

• These findings, or parts thereof, were presented at the Speech in Noise 

Workshop, Groeningen 2016; the ARO MidWinter Meeting, San Diego 2016. 

• The study presented in this chapter was published as “Depth matters – 

Towards finding an objective neurophysiological measure of behavioral 

amplitude modulation detection based on neural threshold determination” 

Hearing Research, 359, 13-22. 
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 Case study: Exploring CI 
artefact reduction for the acoustic change 
complex paradigm 

Following Study 1, which was outlined in the previous chapter, and numerous 

pilot studies which are summarised in Appendix B, this chapter presents a case study 

carried out with a CI user, to address the challenge of CI artefact reduction in multi-

channel EEG data elicited by stimuli with fluctuation envelopes.  

Despite the promising correlations between BTs and NTs in Study 1, this case 

study investigated the ACC instead of the MMW as a potential objective measure of AM 

detection in CI users. For future clinical studies it was of interest to determine whether 

the ACC could be a suitable paradigm to assess neural change detection towards low-rate 

AM stimuli as it would be preferable to an auditory oddball paradigm due to its improved 

time efficiency with regards to data acquisition (Martin & Boothroyd, 1999). 

Furthermore, the ACC paradigm offered the opportunity to assess the influence of 

stimulus presentation mode on the electrical artefact, specifically how the artefact differs 

between continuous stimulus presentation and intermittent stimulus presentation.  

The ACC pilot studies summarised in Appendix B were carried out with NH 

participants following the completion of Study 1 to determine if the choice of any one 

stimulus parameter had a noticeable effect on the amplitude of the neural measure 

especially for the conditions with low AMDs. These pilot studies investigated the 

influence of stimulus duration, of different AM rates (e.g. 0 Hz vs. 4 Hz, 8 Hz and 40 Hz), 

of the AM onset phase (0.5π, π, 1.5π and 2π), of AM rate discrimination (6 Hz vs. 15 Hz), 

of stimulus carrier type (pure tone, noise), of acoustic change type (AM, intensity 

decrement), of stimulus presentation mode (monaural, binaural, continuous, intermittent) 
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and of attentional state (passive, active) on the measured ACC. The experience gained 

from those pilot studies aided in the experimental design of the subsequent studies. 

To date, no study investigating CAEPs as a potential objective measure of AM 

detection in CI users has been reported in the literature. The main question to be addressed 

was whether the CI artefact could be reliably minimised to assess the neural response of 

interest, and how CI artefact reduction is influenced by the stimulus presentation mode 

(intermittent or continuous stimulation), and the stimulus envelope (flat or fluctuating). 

For AM stimuli with the desired low AM rates, which are important for speech, the 

continuous artefact falls into the same frequency region as the CAEPs, and thus, cannot 

be filtered out. Furthermore, an active condition was included to assess whether the SNR 

of the measured response is greatly influenced by the attentional state of the participant. 

 

4.1 Materials and Methods 

4.1.1 Participant information 

One male CI user, aged 44 years, participated in this case study. The participant 

had five years of device experience with a Cochlear Nucleus CP810 (N5 speech 

processor) implanted in the right ear. The device employed the ACE speech processing 

strategy with a stimulation rate of 1800 pulses per second in MP1+2 stimulation mode. 

With a clinical British Bamford-Kowal-Bench (BKB) test score in quiet of 55.7% correct 

at nine months post-implantation4, this CI user was considered to be a “moderately good 

performer”. Behavioural AM detection thresholds measured in line with the procedures 

outlined in Section 3.1.3 provided relatively poor thresholds of 47% AMD (4 Hz AM 

rate) and 48% (40 Hz AM rate). 

4.1.2 Experimental design 

The participant was seated in a dark, quiet room. Stimuli were presented 

monaurally through an Otocube® (Otoconsult NV, Belgium), which is a portable sound-

attenuated suitcase in which the participant’s CI can be placed to approximate free-field 

conditions in a controlled environment. The speech processor is placed inside the Otocube 

                                                 
4 No updated clinical BKB scores were available, but the participant was able to communicate 

with the CI only and BKB scores in quiet are assumed to be improved. 
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(see Figure 4.1). Stimuli were presented with the in-built loudspeakers inside the 

Otocube, picked up by the CI’s microphone and processed in line with every-day settings. 

The CI sound processor is connected to the CI coil via a long CI cable which was specially 

purchased for the different compatible CI devices. The participants’ own speech 

processors were used with their most commonly used map. The Otocube contains a built-

in monitor and calibration tool, which utilises the in-built microphone to enable efficient 

stimulus calibration.  

The participant in this case study was implanted in the right ear. Therefore, the 

EEG recording cap was modified. EEG electrodes and holders D24, D25 and D26 of the 

128-channel Biosemi Active Two system (Biosemi B. V., Amsterdam, Netherlands) were 

located in close proximity of this participant’s CI coil, and thus, were removed to ensure 

participant comfort during the EEG recording. 

 
Figure 4.1: Placement of a cochlear implant (CI) in an Otocube® (Otoconsult NV, 
Belgium). 
The pictures show the placement of a CI in front of the in-built loudspeaker. The Otocube 
contains its own soundcard which is controlled from a PC via USB. The sound is picked up 
by the CI microphone in free-field conditions with everyday speech processor settings and 
the stimulation information is transmitted to the CI coil via a long CI cable. 

Four experimental conditions were tested: (1) one control condition which 

assessed a pure tone change, and three AM conditions with the differing presentation 

modes (2) passive intermittent, (3) passive continuous and (4) active continuous. AM 
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stimuli were created according to the procedure outlined in Section 3.1.2, but with an AM 

rate of 4 Hz and a constant AMD of 80% for the modulated noise segment. 

The intermittent (2) and continuous (3 + 4) presentation modes were included to 

analyse the effects of the presentation mode on the recorded CI artefact. In the passive 

intermittent presentation mode, the acoustic stimulus varied from unmodulated noise (0% 

AMD) to modulated noise (80% AMD) to silence, whereas in the continuous presentation 

modes, the stimulus varied continuously between unmodulated noise and modulated 

noise without silent periods. In the continuous modes, the duration of the unmodulated 

noise was randomised between 1.5 s and 2.5 s to allow for the behavioural response 

following AM onset in the active condition. For the continuous modes, 210 repetitions 

were recorded for the acoustic change from unmodulated to modulated noise, and for the 

intermittent mode 300 repetitions were recorded. Data acquisition was divided into three 

recording blocks for each condition. Ideally, epoch numbers should be similar between 

conditions, however, for the active condition data acquisition time had to be limited to 

allow sustained attention throughout the recording blocks and it was decided to increase 

the number of epochs for the intermittent paradigm to potentially improve the SNR. While 

disparities are strongly discouraged between conditions, it was deemed acceptable for the 

purposes of this exploratory case study.  

The pure tone control condition was included, as pure tone changes or in the case 

of electric hearing also changes in the stimulation electrode, are known to elicit a clear 

ACC of large magnitude (Brown et al., 2008; He et al., 2014; Mathew et al., 2017), and 

the stimulus envelope is flat for both segments of the acoustic change stimulus. The 

condition alternated from a 500 Hz pure tone, to a 1000 Hz pure tone, to a silent inter-

stimulus interval with each segment having a duration of 1 s. CI artefacts were expected 

particularly at sound onset and offset, but no strong DC artefact was expected at the 

acoustic change from 500 Hz to 1000 Hz.  

To enable the recording of neural responses towards changes in on-going stimuli 

such as the ACC, alterations had to be made to the EEG measurement software and 

hardware. Multi-channel data was acquired with a 128-channel Active Two BioSemi 

acquisition system in combination with ActiView software (both BioSemi B. V., 

Amsterdam, Netherlands). Stimuli were presented with Presentation® software (Version 

18.1, Neurobehavioural Systems, Inc., Berkeley, CA), and triggers sent by Presentation® 

indicate the latencies of stimulus onset in the EEG. However, in the case of stimulus 

changes in an on-going sound with randomized durations, Presentation® software’s in-
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built triggers at sound onset were not inefficient. The measurement system was 

augmented with an Arduino Uno microcontroller, which sent a trigger when a threshold 

was exceeded in the trigger channel. This trigger signal was conveyed in an otherwise 

unused audio channel of the Otocube sound card. This arrangement required some 

hardware adjustments to the sound card. The trigger signal consisted of a 4 kHz pure tone 

for the duration of each AM stimulus segment. The Arduino accurately detected the onset 

of this trigger signal and sent a compatible trigger code, which was fed into the existing 

pathway for Presentation® software triggers via a parallel port. A schematic with the 

overview of the hardware connections in this set-up is pictured in Figure C.6 in 

Appendix C. 

4.1.3 Post-processing of EEG data 

Data post-processing was carried out with custom-written scripts (Figure 4.2) 

based on EEGLAB functions in MATLAB (Release 2016a, The MathWorks, Inc., Natick, 

Massachusetts, United States). Continuous data of the individual recordings were merged 

for each condition (pop_mergeset.m) and down-sampled to 512 Hz (pop_resample.m) to 

reduce processing time. Continuous data was bandpass-filtered between 1 and 15 Hz 

(pop_eegfiltnew.m). The low cut-off frequency of 1 Hz was necessary as slow signal 

drifts can negatively affect the success of ICA. Data was epoched (pop_epoch.m) 

with -200 ms pre-stimulus presentation and 1400 ms (ACC) post-stimulus presentation. 

EEG artefact rejection included bad channel interpolation in the channel-space and ICA 

component rejection in the component space. Bad channels were determined based on 

high correlation coefficients (|rp| ≥ 0.6) with an individual CI artefact template for each 

condition (Figure 4.3). Cut-off values for correlation coefficient thresholds were 

determined iteratively and may vary for a larger cohort. The CI artefact is greatly 

dependent on the stimulus envelope and the presentation method. Intermittent stimulus 

presentation introduced onset and offset artefacts to the CAEPs and fluctuating stimulus 

envelopes such as for the AM stimuli added additional CI artefact fluctuations. “Bad” 

recording channels and channels which were disconnected due to the CI coil location 

were removed from analysis, temporarily reducing the number of available channels. 

Data was average referenced (pop_reref.m) and the baseline was corrected for a 200 ms 

pre-stimulus window (pop_rmbase.m). Independent components (ICs) were calculated 

with ICA (pop_runica.m) and the number of available ICs depended on the number of 
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remaining good channels in each condition. Interpolation of bad channels prior to ICA 

should be avoided. Typical EEG artefacts such as eye movement, eye blinks and generic 

discontinuities were removed with the fully automated ADJUST algorithm (Mognon et 

al., 2011), which screens ICs for pre-determined spatial and temporal features that are 

associated with such artefacts. ADJUST is a plug-in of the MATLAB based EEGLAB 

software (Delorme & Makeig, 2004). A limitation of the ADJUST algorithm is the lack 

of heart beat detection within ICs. Furthermore, bad ICs originating from CI artefacts 

were identified with a correlation approach: For the AM conditions, the temporal 

activation of each independent component (IC) within the time window corresponding to 

the presentation of the AM sound was correlated with a 4 Hz sinusoid. ICs with 

correlation coefficients exceeding |rp| ≥ 0.6 were marked as bad components and rejected. 

 
Figure 4.2: Data processing pipeline for the acoustic change complex paradigm in 
cochlear implant (CI) users.  
The processing pipeline includes automatic bad channel detection and bad independent 
component (IC) detection arising from CI stimulation. Abbreviations and acronyms: IC – 
Independent component, ICA – Independent component analysis. 

CAEPs were extracted and visually assessed for two electrode clusters in a fronto-

central ROI and an occipital ROI (see Figure 4.5 for exact electrodes), where the ACC 

was maximal, albeit with reversed polarities. Furthermore, topographical plots of the 

potential distribution across the entire scalp were generated for the time points where 

activation was maximal in the ROIs (Figure 4.4). Global field power (GFP) was 

calculated as the standard deviation of activity across all channels and presents a channel-

independent measure of overall activation across time (Figure 4.4 and Figure 4.6). As a 
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final step, data was re-referenced to the occipital ROI to maximise the ACC amplitudes 

for a fronto-central ROI (Figure 4.6). The SNRs were calculated for a time window that 

surrounded the ACC (90 ms – 350 ms) and for an equal-length time window after the 

ACC potentials (600 ms – 860 ms). The SNRs were calculated as  

𝑆𝑆𝑆𝑆𝑆𝑆 =  20 ∙ log 10 � 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

�, 

Equation 4.1 

where Asignal refers to the RMS-potentials of the desired time window (ACC or post-ACC) 

and Abaseline refers to the RMS-potential of the baseline window (-200 ms – 0 ms). 

 

4.2 Results 
As indicated by Figure 4.3, the different conditions produced very distinct CI 

artefacts in the recorded CAEPs, which reflected the stimuli’s envelopes and the 

presentation mode, i.e. whether there were any transitions from sound to silence. Filtering 

of CAEPs caused temporally smeared artefacts, in particular for the artefact elicited by 

CI power-up and power-down. The continuous AM condition (Figure 4.3, middle) 

produced a CI artefact that closely resembled a 4 Hz sinusoid, whereas the intermittent 

AM condition (Figure 4.3, left) created the typical pedestal artefact at sound offset at 

1000 ms and a distorted 4 Hz sinusoid throughout the duration of the AM noise (0 ms to 

1000 ms). The intermittent pure tone condition resulted in strong pedestal artefacts at the 

acoustic change (0 ms) and sound offset (1000 ms). When comparing the first row with 

the last row of Figure 4.3 it is evident that channels which were severely affected by CI 

artefact were successfully removed. Additional IC rejection followed by re-referencing 

to average reference provided the CAEPs shown in Figure 4.4 and Figure 4.5. 
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Figure 4.3: Examples of the correlation-based bad channel rejection to reduce cochlear implant (CI) artefact prior to independent component analysis. 
Pictured are cortical auditory evoked potentials with the differing CI artefacts for three example conditions: amplitude modulation depth (AMD) change 
intermittent (left), AMD change continuous (middle) and pure tone change intermittent (right). Note that channels are not re-referenced to average reference and 
scales differ between plots.
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Figure 4.4: Topographical, butterfly and global field power (GFP) plots of the four ACC 
conditions.  
Topographical plots (left) show the scalp potentials’ distribution for chosen time points. 
Butterfly plots (right, grey) provide an overview of the cortical auditory evoked potentials at 
all channel locations and their global field power (GFP) is plotted in red. Note the different 
colour scales on the topographical plots for each condition (row). Abbreviations and 
acronyms: PT – Pure tone, AMD – Amplitude modulation depth, int. – Intermittent, cont. – 
Continuous. 

Small CI artefacts at the acoustic changes (0 ms and 1000 ms) were still noticeable 

in the bottom row of Figure 4.3, however, topographical plots, butterfly plots and global 

field power (GFP) plots in Figure 4.4 suggest that the ACC, occurring between 100 ms 

and 350 ms post-stimulus, was not notably influenced by the remaining artefact. If this 

were the case, topographical plots would show strong local activation at the site of the 

implant. All three AM conditions showed the distinct N1 topography following the 

acoustic change at 0 ms, but only the (passive) continuous AM condition showed the P2 

topography in addition (Figure 4.4, left). It should be noted that contrary to the pure tone 

condition, the CAEPs following the acoustic change at 1000 ms were greatly diminished 

or not identifiable at all in the AM conditions (Figure 4.4, left). 

Figure 4.5 provides an overview of the CAEPs for the two ROIs as well as the 

detailed electrodes contained in each ROI. Overall, CAEPs showed the anticipated 

reversed polarities for the two ROIs. For the pure tone control condition, a clearly 

distinguishable ACC was observed following the acoustic change at 0 ms, followed by a 

very prominent offset response after 1000 ms, despite minimal CI artefact rejection 

procedures for this condition. All three AM conditions displayed distinguishable ACCs, 

although the intermittent AM condition showed additional peaks in rhythmic intervals 
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with peaks at 460 ms and 730 ms, which may either reflect remaining CI artefact or 

CAEPs elicited by the troughs of the AM noise. The artefact template channel from 

Figure 4.3 (second row) contained peaks at 505 ms and 750 ms for the AMD intermittent 

condition, which were not coinciding with the peaks observed in the CAEPs in the ROI. 

Therefore, it seemed reasonable to assume that these peaks arose from neural activity in 

response to the trough of the AM noise, but it cannot be proven. However, the artefact 

reduction procedure has optimisation potential for the intermittent AM condition, as the 

correlation template for bad IC determination was a pure 4 Hz sinusoid, which seemed 

appropriate for the continuous AM condition according to Figure 4.3, while for the 

intermittent AM condition a different template should be chosen for correlation analysis 

with ICs in future studies. 

 
Figure 4.5: Overview of the electrode clusters and neural responses.  
The electrodes included in each region of interest (ROI) are indicated on the left, and the 
neural responses for each ROI are indicated on the right for the three conditions. Pictured 
above the neural responses are the corresponding acoustic stimuli. An amplitude modulation 
depth (AMD) of 0% represents unmodulated noise. 
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Figure 4.6: Re-referenced cortical auditory evoked potentials (CAEPs) and their global 
field power (GFP).  
At 0 ms each condition contained the acoustic change from tone A to tone B, eliciting the 
acoustic change complex. At 1000 ms tone B changed to silence (PT & AMD intermittent 
conditions) or to tone A (AMD continuous & AMD cont. active conditions). The time ranges 
of the change responses/offset responses are highlighted in grey. CAEPs (top) are shown for 
the fronto-central electrode cluster, re-referenced to the occipital electrode cluster 
(Figure 4.5). The GFP (bottom) was calculated as the standard deviation of all electrodes 
across time. Abbreviations and acronyms: PT – Pure tone, AMD – Amplitude modulation 
depth, cont. – Continuous. 

 

Table 4.1: Acoustic change complex (ACC) amplitudes.  
Peak amplitudes were measured for the fronto-central electrode cluster pictured in 
Figure 4.6 (top). Peak amplitudes were measured separately for the negative and positive 
and additionally the peak-to-peak amplitude is provided. 

Condition ACCn [µV] ACCp [µV] ACC p-p [µV] 

Pure tone -5.1 3.5 8.6 

AMD int. -3.3 0.3 3.6 

AMD cont. -2.8 2.1 4.9 

AMD cont. active -4.4 0.8 5.2 

 

Table 4.2: Signal-to-noise ratios (SNRs) for two time windows of interest. 
SNRACC represents the SNR of the ACC window (90 ms – 350 ms) with respect to baseline 
(-200 ms – 0 ms) and SNRpost-ACC represents a control condition, for which the SNR was 
calculated for an equal-length time window beyond ACC activity (600 ms – 860 ms).  

Condition SNRACC [dB] SNRpost-ACC [dB] 

Pure tone 15.7 -9.9 

AMD int. 6.6 4.5 

AMD cont. 8.6 1.9 

AMD cont. active 14.1 9.7 
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In order to maximise the SNR of the ACCs, data was re-referenced to the occipital 

ROI and averaged across the fronto-central ROI as depicted in Figure 4.6 (top). Figure 4.6 

provides a direct comparison of CAEPs across conditions, as well as a channel-

independent visualisation by means of the global field power (GFP), which represents the 

standard deviation of scalp potentials across all channels (bottom plot). Peak amplitudes 

as well as peak-to-peak amplitudes were measured for CAEPs depicted in Figure 4.6 (top) 

and are displayed in Table 4.1. Overall, the SNR of the pure tone and active AM 

conditions (Table 4.2) were similar despite differing peak-to-peak amplitudes. The 

intermittent AM condition had the lowest peak-to-peak amplitude and the lowest 

SNRACC, which was similar to the magnitude of the SNRpost-ACC of the control window 

(Table 4.2). The pure tone control condition had the largest peak-to-peak amplitude and 

SNR, as well as the lowest SNRpost-ACC, indicating very low on-going stimulus-locked 

neural activity throughout the duration of the change-pure-tone beyond the ACC. No 

statistical analysis was carried out, as this was an exploratory case study. 

 

4.3 Discussion 
This case study explored the feasibility of measuring ACCs in response to AM 

stimuli in a CI user. ACCs were successfully extracted based on an automatic processing 

pipeline, which provided an objective and less time-expensive alternative approach to the 

common visual assessment of channels and ICs for artefact rejection purposes. It should 

be noted that the CI artefact can vary greatly across participants as the artefact is 

dependent on a number of factors such as the stimulation rate, stimulation mode and pulse 

width (Hofmann & Wouters, 2010; Li et al., 2010). The efficacy of this proposed 

processing pipeline should be validated with further datasets. As was shown in this case 

study, the CI artefact can vary in its morphology even within a participant, depending on 

the presentation mode (continuous or intermittent), and the stimulus envelope.  

The preferred AM condition for future CI studies would be the passive continuous 

AM condition, as the continuous presentation mode eliminates the onset and offset 

pedestal artefacts associated with the power-up and power-down of the device. In this 

study, a clear ACC was recorded for this condition, which exceeded the intermittent AM 

condition, but fell below the active AMD continuous condition in terms of its ACC peak-

to-peak amplitude. The active continuous condition does however not present a viable 
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alternative to the passive conditions, as active participant engagement defeats the purpose 

of developing an objective measure that is independent of participant feedback. 

In ACC studies the existence of the ACC often relies on visual determination 

(Mathew et al., 2016; Brown et al., 2017; Small et al., 2017). This is highly subjective. 

ACC quantification is commonly limited to the peak amplitude and peak latencies (Han 

& Dimitrijevic, 2015; Kirby & Brown, 2015; Mathew et al., 2016; Brown et al., 2017) or 

the RMS  amplitude (He et al., 2015). For MMW studies, however, more complex 

objective statistical methods can be employed such as permutation analysis (Files et al., 

2013; Lappe et al., 2013; Stothart & Kazanina, 2013). Furthermore, the MMW may not 

only be quantified in terms of peak measures, but quantification may also be achieved by 

calculating a bootstrapped noise floor and the AUC exceeding the noise floor (Lopez 

Valdes et al., 2014) which reduces the influence of noise on quantification measures.  

A major limitation of employing the ACC paradigm in a CI user cohort is posed 

by the lack of control over stimulation parameters. Unless stimuli are presented with 

specialized research processors, unwanted cues at the acoustic change such as gaps and 

electrode changes may be introduced. In the following Chapter 5, a study is presented 

investigating the MMW rather than the ACC as an objective measure of AM detection in 

a clinical CI user cohort. The choice of the MMW paradigm has some advantages, 

including better control over artefact rejection procedures and determination of the 

existence of neural change detection responses in the MMW paradigm. CAEPs elicited 

by the AM stimulus in this case study suggested the potential existence of not only the 

ACC components, but elicitation of N1-P2-complex-like CAEPs with each trough of the 

AM cycle (in some conditions). In an ACC paradigm it is difficult to disentangle neural 

responses from random noise, and only increasing the number of stimulus repetitions 

would allow differentiation of fluctuations as due to noise or synchronized neural activity. 

This issue can be avoided with the MMW paradigm, by calculating the difference 

waveform between the standard and deviant CAEPs elicited by the same physical 

stimulus. Presentation of the same physical stimulus as the deviant and separately in a 

deviant-alone condition eliminates stimulus specific neural processing and extracts 

components related to the neural change detection when calculating the difference 

waveform. Furthermore, in an ACC paradigm the acoustic difference is sudden and rather 

limited to the time point of the acoustic change. However, in an MMW paradigm the 

change response can be elicited by higher order acoustic changes such as pattern 

differences (for detailed examples and references refer to Section 2.3.2), which may 
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indicate that a wider temporal portion of the deviant sound contributes to the acoustic 

change.  

 

 

Key Points 

• The study presented in this chapter addressed the research questions Q-CS.1 and 

Q-CS.2. 

• The CI artefact depends on the stimulus presentation mode with cleaner artefact 

responses for continuous presentation of stimuli due to the elimination of the 

onset and offset pedestals. 

• The ACC was elicited in all stimulus conditions, but with reduced amplitudes 

and SNRs in the AM change conditions compared to the pure tone change 

condition. 

• The CI artefact was successfully reduced, if not fully eliminated, with the 

proposed automated processing script.  

• For the pure tone change condition, neural activity returned to baseline after the 

ACC, whereas for AM stimuli, on-going CAEPs were observed, making data 

difficult to interpret due to noise. 
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 Investigation of the MMW as an 
objective measure of low-rate AM detection 
in CI users 

This study is built on the foundations of Study 1 (Chapter 3), expanding it from 

a NH cohort to a clinical CI user cohort. Positive, statistically significant correlations 

between behavioural and neural thresholds in Study 1 provided evidence for the 

feasibility of exploring the MMW as a potential objective measure of AM-detection. 

However, data acquisition from a CI user cohort introduced new challenges. Listening 

performance varies greatly in CI users (Zeng et al., 2013) and behavioural paradigms had 

to be adjusted to allow for large variability in the data. The speech-in-noise test from 

Study 1 (Chapter 3) was altered to an adaptive speech reception threshold (SRT) 

test   allow for large variation in performance without resulting in ceiling or floor effects. 

The adaptive SRT test may also improve comparability to behavioural AM detection 

thresholds. Furthermore, electrical artefacts resulting from the electrical stimulation of 

the CI commonly exceed the neural activity of interest. As with CAEPs, CI artefacts are 

time-locked to the presentation of the stimulus. Therefore, it is important to address the 

need for CI artefact reduction in the experimental design to minimise the confounding 

influence of the artefact on the neurophysiological response. In addition, post-processing 

protocols must be defined to further reduce the CI artefact. 

In the study described in this chapter, the widely employed auditory oddball 

paradigm was extended with the goal of simplifying CI artefact reduction to investigate 

the MMW in CI users. Given the envelope difference between the standard (flat envelope) 

and deviant (fluctuating envelope) stimuli, subtraction of the corresponding CAEPs 

would not result in reliable artefact reduction as in other MMW studies with flat stimulus 
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envelopes (Wable et al., 2000; Kelly et al., 2005; Lopez Valdes et al., 2014; Leijsen et 

al., 2015).  

By presenting the same physical tone as the standard and deviant stimulus in 

separate segments, subtracting their respective CAEPs can be argued to result in a 

difference wave free of stimulus-related differences (Picton et al., 2000). This approach 

has been successfully implemented for CI artefact reduction purposes (Friesen & Picton, 

2010; Ortmann et al., 2013; Ortmann et al., 2017). Additionally, it is critical to design the 

experiment in such a way, that the neurophysiological response of interest does not 

overlap with the CI artefact (Presacco et al., 2017). In the case of the MMW paradigm 

this implies that the stimulus duration should exceed the time window of interest for the 

MMW (≈ 100 ms until 400 ms). For the purpose of this study a stimulus duration of 

500 ms was chosen. 

 

5.1 Materials and methods 

5.1.1 Clinical recruitment process 

In line with the recruitment process outlined in Figure 5.1, the database of the Irish 

National Cochlear Implant Programme was searched for CI users with ages between 

20 and 65 years with more than one year of experience with their CI. A clinical 

audiologist screened the list of participants meeting the age criterion and excluded non-

native English speakers as well as any individuals with neurological conditions, serious 

health impairments, speech perception in quiet below 40%, or a home address that was 

not in commuting distance from Dublin. Furthermore, CI users who have previously 

participated in the longitudinal study carried out by our research group were excluded, as 

well as any participants that did not have a speech processor that is compatible with the 

Otocube®5. Following this pre-screening process, recruitment letters were sent out to 

82 individuals in four recruitment phases with information leaflets, consent forms and 

stamped return envelopes. As a result of the recruitment process, 14 CI users participated 

                                                 
5 For compatibility with the Otocube, a long additional coil cable is required, which is only 

available for Cochlear’s Nucleus Freedom, Nucleus CP9 and CP8 series (N5 and N6) processors, AB’s 
Naida and Harmony processors, MED-EL’s Opus 2 processor, and Oticon Medical’s (Neurelec) Digisonic 
processor. 
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in the experiments. The first two participants were pilot participants and assisted in tuning 

the paradigm.  

 
Figure 5.1: Clinical recruitment process for the research study.  
From 14 recruited participants, 12 participated in the final study. Two CI users generously 
offered their time for a pilot study which provided guidance for the final study design, but 
their data is not further mentioned in this study. 

 
Table 5.1: Demographics and CI-related characteristics.  
Speech scores represent the most recent Bamford-Kowal-Bench (BKB) test scores in quiet. 
Abbreviations and acronyms: CI – Cochlear implant, n. a. – Not available. 
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5.1.2 Participants 

Twelve post-lingually deafened CI users and ten controls without reported hearing 

impairment participated in this study6. Participants were native English speakers between 

the ages of 20 and 65 years old. CI users were recruited through the National Cochlear 

Implant Programme in Beaumont Hospital, Dublin. Detailed information on duration of 

hearing loss, device experience, device types, and stimulation settings are displayed in 

Table 5.1. This study focused on the CI user cohort and unless explicitly stated, study 

descriptions and results refer to the CI user cohort. NH participants were recruited to 

obtain EEG data without CI artefacts for visual comparison. Furthermore, the influence 

of loudness balancing was investigated for a sub-set of NH participants. No statistical 

comparisons were made between cohorts, and thus, groups were not matched. 

Informed written consent was obtained from all participants prior to study 

participation and all experimental procedures were approved by the Ethics (Medical 

Research) Committee at Beaumont Hospital, Dublin, and the Ethical Review Board at 

Trinity College Dublin. Participants were asked to spend a maximum of four hours in the 

research facilities at Trinity College Dublin. 

5.1.3 Study design 

The experimental protocol consisted of active behavioural tests (≈ 45 minutes) 

and passive neurophysiological tests (≈ 50 minutes set-up, ≈ 80 minutes data acquisition). 

Behavioural tests comprised of an adaptive speech-in-noise recognition test, an AM 

detection threshold test and a loudness matching task. The neurophysiological paradigm 

consisted of an auditory oddball paradigm to elicit the MMW. 

Participants were seated in a quiet room and auditory stimuli were presented 

monaurally for all experimental paradigms. For CI users, sounds were presented through 

the Otocube® (Otoconsult NV, Belgium). Stimuli were presented through the 

participant’s speech processor with their most commonly used map. The presentation 

level was calibrated using the Monitor Tool of the A§E® software (Otoconsult NV, 

Belgium) with the unmodulated noise stimulus to yield 60 dB SPL. The presentation level 

was decreased compared to Study 1 (Chapter 3) to avoid potential clipping effects of the 

stimuli in CI users, which can occur for higher presentation levels. Clipping refers to the 

                                                 
6 Two CI users (CI1 & CI2) and two NH participants (NH1 & NH2) assisted in tuning the 

experimental paradigms. Their data was excluded from final analysis due to parameter changes. 
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distortion of the signal envelope when the acoustic signal’s envelope does not lie within 

the dynamic range of the individual CI user (Zeng et al., 2013). NH participants were 

presented with the sounds to the left ear via headphones (Sennheiser HD 205). All stimuli 

were energy matched by adjusting the RMS amplitude.  

 
Figure 5.2: Custom-designed graphical user interface (GUI) of the speech-reception-
threshold test. 
The GUI tracks the performance and provides feedback to the researcher during data 
acquisition; the GUI is custom written in MATLAB (Release 2016a, The MathWorks, Inc., 
Natick, Massachusetts, United States). 

 

Speech recognition 

Speech recognition in background noise was tested with an adaptive procedure 

which estimated the SNR at which participants correctly identified 50% of the keywords 

(Schoof et al., 2013; Schoof & Rosen, 2015). This provided an estimate of the SRT. The 

test was custom-designed and inspired by the commercially available BKB-SINTM test 

(Niquette et al., 2003; Etymotic Research, 2005). Sentence lists were taken from the BKB 

sentence corpus (Bench et al., 1979). Each sentence list contained 16 sentences with three 
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or four keywords. Only two sentences contained four keywords, which were removed, 

decreasing the number of sentences per list to 14. Each sentence was spoken by the same 

male speaker with a standard Southern British accent and the background noise consisted 

of random samples of ten-talker babble noise. The presentation level of the target sentence 

was fixed, the noise presentation level was adjusted as specified by the adaptive SNR, 

and thus, the overall presentation level may have varied. If at least two out of the three 

keywords were identified correctly, the SNR was decreased, but if only one or no 

keyword was correctly identified, the SNR was increased (see bottom plot in Figure 5.2).  

The initial SNRs were 20 dB and 5 dB for CI users and NH participants, 

respectively, and the step size was 4 dB until the first reversal and 2 dB in the subsequent 

stimulus presentations. The SRT for each sentence list was calculated as the arithmetic 

mean of the SNRs at each reversal point from the second reversal onwards. The overall 

SRT was calculated as the average of the SRTs of the three sentence lists.  

 
Figure 5.3: Visualization of acoustic and electrical amplitude modulated stimuli.  
(A) Acoustic noise stimuli with 100% AMD (left) and 50% AMD (right); (B) Spectrogram 
showing the spectro-temporal distribution of the acoustic stimuli with linear axes; (C) & (D) 
show alternative visualisations of the electrodogram, which were both created with 
Cochlear’s “Nucleus MATLAB® Toolbox” based on the ACE speech processing strategy. 
(C) shows the pulse intensities height-scaled for each electrode over time, whereas (D) shows 
the pulse intensity colour-coded and the y-axis represents each electrodes’ centre frequency. 

 

Behavioural AM detection threshold 

The experimental procedure for the AM detection threshold aligns with the 

procedure described in Section 3.1.3, but in a slightly abbreviated form as the test was 

terminated after eight reversals and the threshold was calculated as the geometric mean 

of the last six reversals. The AM stimuli were created as described in Section 3.1.2 with 

an AM rate of 8 Hz and 500 ms duration. The electrodogram in Figure 5.3 visualizes the 
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100% AM stimulus after it was processed by a Cochlear Nucleus® speech processor as 

simulated in the Nucleus MATLAB toolbox with the ACE strategy. An electrodogram 

shows a representation of the pulse intensity per electrode over time for a given stimulus. 

The electrodogram shown in Figure 5.3 is based on the n-of-m principle, which means 

only n of the available m active electrodes are stimulated, where m is 22 and n is nine for 

the given example. 

 

Behavioural loudness balancing 

The perceived loudness of modulated and unmodulated stimuli may vary between 

participants despite objective RMS-matching of the stimuli. To investigate the extent of 

potential loudness cues and to assess whether loudness cues may elicit the MMW in the 

auditory oddball paradigm, an additional behavioural loudness balancing test was 

included. The perceived difference between modulated and unmodulated stimuli would 

be maximal for an AMD of 100%, and therefore, loudness balancing was carried out for 

this AMD. Participants were presented with the unmodulated stimulus, fixed at a 

specified presentation level, followed by the modulated stimulus. The participants were 

required to adjust the loudness of the modulated stimulus with a slider in a graphical user 

interface (GUI, Figure 5.4) so as to match the perceived loudness of the unmodulated 

stimulus. The slider represented a dB scale, where the position of the slider indicated the 

value of the desired change value 𝑓𝑓𝑑𝑑𝑑𝑑 in dB, which in turn determined the factor by which 

the RMS-balanced AM-noise srms was adjusted to yield the adjusted AM-noise sadj: 

𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 ∙  �10
𝑓𝑓𝑑𝑑𝑑𝑑
20 �. 

Equation 5.1 

The middle of the slider in the GUI (Figure 5.4) represented the RMS-balanced 

condition with 𝑓𝑓𝑑𝑑𝑑𝑑 = 0. The 0 dB ratio (middle position of slider) represented the level at 

which sounds were RMS-balanced. Negative outcome-SNRs indicate that the AM 

stimulus had to be decreased in level and positive outcome-SNRs indicate that the AM 

stimulus had to be increased to satisfy the participant’s perception of equal loudness. 

Participants were encouraged to explore the entire range available with the slider and to 

approach their final position from both sides. Once participants were satisfied that both 

stimuli were loudness matched, the SNR was saved. This procedure was repeated three 

times in total and the final SNR was the arithmetic mean of the three SNRs. 
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Figure 5.4: Graphical User Interface (GUI) to execute subjective loudness balancing.  
The unmodulated noise was presented at a fixed presentation level followed by the 
presentation of the amplitude modulated noise, of which the presentation level was adjusted 
with the slider. 

 

Neurophysiological paradigm 

To enable CI artefact rejection based on ICA, EEG data was acquired with a 128-

channel Biosemi ActiveTwo System (BioSemi B. V., Amsterdam, Netherlands), in 

contrast to the single-channel set-up employed in the study presented in Chapter 3. The 

electrode holders above the participants’ CI coils were removed from the EEG cap to 

avoid uncomfortable pressure. The commonly employed auditory oddball paradigm was 

enhanced to allow artefact reduction stemming from the electrical stimulation in CI users: 

the auditory oddball paradigm generally contains a number of repetitions of the standard 

stimulus (unmodulated stimuli) to create a strong neural representation of the standard 

stimulus. This was followed by the oddball part in which deviants (here AM noise) are 

presented with e.g. 10% probability and standards otherwise. The new paradigm 

introduced a block of 20 repetitions of the AM stimulus, referred to as the “AM- 

standard”, prior to the common oddball paradigm (see Figure 5.5). This had a two-fold 

implication for the study: (1) Neural standard and deviant responses were obtained from 

the same acoustic stimulus, and thus, deflections in the difference waveform should 

therefore represent change detection and not differing neural processing of acoustic 

features (Allen et al., 2000; Picton et al., 2000; Sharma et al., 2004; Alexandrov et al., 

2011; Robson et al., 2014); (2) The presentation of the AM stimulus at the beginning of 
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each block resulted in neurophysiological data with the characteristics of a standard 

response, but with the electrical artefact of the deviant. In theory, subtraction of the 

AM-standard from the deviant responses should provide the MMW devoid of electrical 

CI artefact. The additional presentation of AM-standards at the start of each block added 

acquisition time to an already lengthy paradigm, but the potential benefit of objective CI 

artefact reduction outweighed this challenge.  

 
Figure 5.5: Stimulus overview of the new mismatch waveform paradigm. 
Each condition was split into four blocks with 20 initial presentations of the amplitude 
modulated (AM) deviant (DEV) noise as a “standard”, which is labelled the AM-standard 
(AM-STD) stimulus. This was followed by 20 repetitions of the unmodulated noise standard 
stimulus to prime the brain and then the AM deviant was presented with a probability of 10%, 
totalling 14 deviant presentations per block. 

Stimulus conditions were in line with those described in Chapter 3, namely four 

deviant conditions with varying AMDs of 100%, 75%, 50% and 25% (0 dB, 2.5 dB, 6 dB, 

and 12 dB, respectively) and standard stimuli were unmodulated (0% AMD) speech-

shaped noise. For each condition 68 deviant stimuli, and 760 standard stimuli (680 in 

oddball segments, 80 in initial “priming” segments) were presented, divided into four 

blocks. Stimuli had a duration of 500 ms and the ISI was randomised between 0.75 s and 

1 s. This jitter resulted in noticeable differences in the ISI. The ISI was jittered for all 

stimulus types, and thus, not affecting the calculation of the MMW. Quantitatively, the 

jitter was less than in previous studies by Ortmann et al. (2013) and Ortmann et al. (2017) 

who presented stimuli with ISIs that were jittered by ± 200 ms. 

For two NH participants, an additional subjectively loudness balanced condition 

was added with 100% AMD, totalling five deviant conditions for the EEG paradigm, and 

for a further two NH participants, the 25% AMD condition was replaced with the 

subjectively loudness balanced version of the 100% AMD condition. This provided four 

datasets to evaluate the influence of any remaining loudness cues on the MMW by 

comparing MMWs elicited with objectively and subjectively loudness matched stimulus 

pairs. 
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5.1.4 EEG post-processing CI users 

Two alternative artefact reduction processing pipelines were employed. Both are 

outlined below. Figure 5.6 provides an overview of the processing steps. The first pipeline 

relied on ICA for artefact reduction purposes, which made it computationally costly, and 

therefore, not very time-efficient. Furthermore, ICs associated with artefacts were 

rejected after visual inspection which introduced a subjective bias, and rejection of 

components may remove neural activity related to the stimulus presentation. The second 

pipeline was subtraction-based and relied on artefact reduction by means of subtraction 

of standard and deviant CAEPs, and thus, required the newly introduced AM-standard 

(Figure 5.5), which had the same artefact characteristics as the standard stimulus. 

 
Figure 5.6: Data processing pipelines for Electroencephalography (EEG) data recorded 
from the cochlear implant (CI) user cohort. 
Overview of post-processing pipelines for EEG data with two different artefact reduction 
approaches (subtraction-based and ICA-based). Quantification of mismatch waveform 
(MMW) data was negatively impacted by remaining CI artefacts in the standard cortical 
auditory evoked potentials (CAEPs) for the subtraction-based artefact reduction, which 
resulted in high bootstrapped noise floors. Therefore, MMW quantification and neural 
threshold estimation were reported based on MMW1s from the ICA-based processing 
pipeline. Abbreviations and acronyms: STD – Standard, DEV – Deviant, AM-STD – 
Amplitude-modulated standard, ICA – Independent component analysis, PCA – Principal 
component analysis, IC – Independent component, ROI – Region of interest, AUC – Area-
under-the-curve, TOI – Time window of interest, AMD – Amplitude modulation depth. 
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ICA-based processing pipeline 

Post-processing of EEG data was carried out with custom-written scripts based on 

the MATLAB EEGLAB toolbox (Delorme & Makeig, 2004). The order of processing 

steps was inspired by procedures reported in (Viola et al., 2012) and (Sandmann et al., 

2014). Continuous EEG data files were merged (pop_mergeset.m) for all conditions and 

trials, to create one combined EEG data set for each participant to decrease processing 

time. Processing time was further reduced by down-sampling data to 256 Hz 

(pop_resample.m). Data was bandpass filtered with a windowed sinc finite impulse 

response (FIR) filter with cut-off frequencies of 1 Hz to 30 Hz (pop_firws.m). Channels 

with detached electrodes due to the position of the CI coil as well as channels with signals 

exceeding the activity probability limit of five standard deviations were rejected 

(pop_rejchan.m). Additional ‘bad channel’ rejection was implemented based on visual 

inspection. ICA was carried out on the continuous data (pop_runica.m) based on the 

Infomax algorithm. ICs associated with eye-blinks, horizontal eye movement and heart 

beat were rejected after visual inspection of topographic plots (pop_selectcomps.m) and 

component activity (pop_eegplot.m). Data was epoched to a time window of -500 ms pre-

stimulus and 1000 ms post-stimulus presentation. Prior removal of ICs related to 

biological artefacts reduced the dimensionality of the data. In order to run ICA a second 

time on the epoched data for CI artefact rejection purposes, as was suggested by 

Sandmann et al. (2014) and Schierholz et al. (2017), the dimensionality had to be reduced 

to the number of remaining components by implementing principal component analysis 

(PCA)7. Component activity was again visually assessed with topographic plots and 

average component activity (pop_plotdata.m). ICs were removed (pop_subcomp.m) if 

they resembled typical CI artefact activity, such as (1) peaks at the time of sound onset 

and offset, (2) topographical plots that presented a centroid of activity at the site of the 

implant, or (3) continuous activity for the duration of the stimulus (Gilley et al., 2006). 

The next processing step further assessed epoch quality, and ‘bad epochs’ were 

determined based on a thresholding approach (pop_eegthresh.m), in which epochs were 

removed if activity exceeded ± 100 µV, and based on a joint-probability approach 

(pop_jointprob.m) with a five standard deviations criterion. Finally, removed channels 

were interpolated (pop_interp.m) and data was re-referenced to the average reference of 

                                                 
7 The second implementation of ICA with reduced dimensionality was achieved with the command 

‘EEG = pop_runica(EEG, 'icatype', 'runica', 'pca', number_of_components)’ from the MATLAB EEGLAB 
toolbox. 
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all electrode channels (pop_reref.m). From the cleaned data the standard, deviant, and 

AM-standard epochs were extracted for time windows of -200 ms to 700 ms post-stimulus 

presentation followed by baseline correction. CAEPs were generated by averaging across 

all epochs for each stimulus type and condition. The ‘classic’ MMW was generated by 

subtracting the standard CAEP from the deviant CAEP and is labelled MMW1 in the 

following, whereas the “new” MMW was calculated as the difference waveform between 

AM-standard CAEP and deviant CAEP and is labelled MMW2 in the following. 

 

Subtraction-based processing pipeline 

Similar to the ICA-based processing pipeline, data was merged across conditions 

and blocks, down sampled to 512 Hz, and filtered between 1 and 30 Hz. Missing channels 

due to the CI coil placement and bad channels as determined by visual inspection were 

removed. Continuous data was epoched separately for each condition and stimulus type, 

and data was corrected for a pre-stimulus baseline of -100 ms to 0 ms. CAEPs were 

calculated by averaging across epochs for each stimulus type. Finally, MMWs were 

calculated by subtracting the average CAEPs. Previously removed channels were 

interpolated. MMWs were subsequently re-referenced to average reference followed by 

baseline correction.  

5.1.5 EEG post-processing NH cohort 

EEG data from the NH cohort was processed with a semi-automated ICA-based 

processing pipeline, which is summarised in the following. EEG files were merged for all 

blocks and conditions and down-sampled to 256 Hz to speed up ICA. The continuous 

merged data was bandpass filtered with a windowed sinc FIR-filter (cutoff: 1 – 30 Hz, 

Hann window). Bad channels were determined and rejected based on visual inspection, 

and based on a joint probability criterion (pop_rejchan.m) with a threshold of three 

standard deviations. ICA was carried out on the continuous data of the remaining 

electrodes. Components associated with eye movement, eye blinks and generic 

discontinuities were removed with the ADJUST algorithm (Mognon et al., 2011), which 

was introduced in Chapter 4. A shortcoming of this automated IC removal is the lack of 

ECG identification. Data was epoched (-200 ms until 700 ms) according to stimulus type 

and deviant condition. For each stimulus type and deviant condition, bad epochs were 

determined based on a conservative thresholding approach (pop_eegthresh.m) with 
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thresholds of ± 100 µV and the joint probability algorithm (pop_jointprob.m) with a 

threshold criterion of five standard deviations. This very conservative approach was 

chosen to preserve as many epochs as possible, due to the already low number of deviant 

repetitions of 68. Following epoch rejection, previously removed channels were 

interpolated (pop_interp.m). Epochs were re-referenced to average reference. Baseline 

correction was applied and CAEPs were calculated by averaging across epochs. Finally, 

the difference waveforms MMW1 and MMW2 were calculated. 

5.1.6 Quantification of the MMW 

The correlation analysis between behavioural and neural AM detection thresholds 

required a quantification of neural change detection responses which also takes into 

account the influence of noise inherent in CAEP recordings. In theory, the subtraction of 

the standard and deviant CAEPs should result in a flat difference wave if no acoustic 

change was detected. However, in practice CAEP recordings are very susceptible to noise, 

and random fluctuations in the CAEPs result in deviations of the difference waveform. 

Therefore, it is necessary to quantify the noise as well as the change related neural 

response. Based on the quantified MMW data, an objective procedure was developed to 

estimate neural thresholds from the MMWs at varying AMDs. 

 

Noise floor calculation 

Inherent noise was quantified for each participant by calculating a noise floor with 

a bootstrap procedure (Lopez Valdes et al., 2014). Standard CAEPs were randomly 

divided into bootstrap-standards (90%) and bootstrap-deviants (10%). Following this 

step, their respective difference waves were calculated and this procedure was repeated 

100 times. The noise floor was determined as ± 1 standard deviation of these difference 

waves. Due to the required artefact-free standard CAEPs for noise floor calculation, this 

quantification approach was not employed for the subtraction-based processing pipeline. 

For this reason, quantification of MMWs and consequently NT estimation and correlation 

analysis with BTs was only carried out for the ICA-based processing pipeline. 

 

Area-under-the-curve calculation 

 The objective quantification of MMWs required minimisation of any noise 

influence, and thus, MMWs were filtered from 1 – 15 Hz to remove any higher-frequency 
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noise. The MMW was quantified as the AUC exceeding the noise floor in the time 

windows of interest and for two electrode ROIs. The AUC was calculated for a fronto-

central cluster of electrodes in which the change-related negativity of the MMN is 

commonly observed to be maximal (Sams et al., 1985), as well as for an occipital-parietal 

cluster of electrodes, in which the polarities of the MMN and P3a are commonly reversed 

(Trainor et al., 2014). The MMN was assessed for a time range of 190 ms to 300 ms and 

the P3a component was assessed for a time window of 300 ms to 410 ms for the 100% 

AMD condition. For each 25%-step decrement of the AMD, the time windows were 

shifted by +5 ms to allow for latency increases of the responses with increasing task 

difficulty. AUC values were added for the two time regions of interest and averaged over 

the two ROIs.  

 

Neural threshold estimation  

Despite having employed the bootstrapped noise floor procedure, some difference 

waves may randomly exceed the noise floor. Thus, the AMD at which an individual’s 

AUC values reach zero would not provide a reliable NT estimate. Alternatively, in order 

to disregard small AUCs arising from random fluctuations, a NT of AM detection can be 

estimated as the interpolated AMD at which the AUC first drops below a pre-determined 

threshold level as indicated by the intersection value. Sets of NTs were estimated from 

normalised AUCs, where AUCs were normalised to individual AUC values of the 100% 

AMD condition, and for a range of intersection values to assess the dependence of 

findings on the specified intersection value. These NTs were then correlated with BTs to 

investigate their linear relationship based on Pearson’s correlation coefficient. 

 

5.2 Results 

5.2.1 Behavioural results 

Behavioural results comprising of SRTs, AM detection thresholds, and loudness 

matching results are presented in Figure 5.7 and results are described in the following 

paragraphs. Descriptive statistics include the median and the standard deviation of group 

data. Additionally, Figure 5.7 provides the arithmetic mean of the group data indicated 

by the black horizontal lines. Note that the arithmetic mean is biased by outlier data points 
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and the median provides a more accurate representation especially in the case of skewed 

distributions. 

 

Speech reception thresholds 

SRTs showed an even distribution between 4 dB and 22 dB for the CI user cohort 

(Figure 5.7, left) with a median SRT of 10.0 dB (standard deviation = ± 5.7 dB). All NH 

participants outperformed the CI users, and variation in performance was smaller with a 

standard deviation of ± 1.2 dB and a median score of -1.4 dB.  

 

AM detection thresholds 

Median behavioural thresholds lay at -17.8 dB (standard deviation = ± 5.3 dB) for 

CI users and -22.1 dB (standard deviation = ± 2.0 dB) for NH participants. Five CI users 

had behavioural AM detection thresholds in line with the poorer performing NH peers, 

but others showed poorer performance indicated by the higher thresholds (Figure 5.7, 

middle). One CI user showed no AM detection abilities. The task was repeatedly 

explained and the participant seemingly understood the task. This participant was 

excluded from further analysis that included behavioural AM detection, as it is assumed 

that the participant used loudness cues arising from the level roving, despite clear 

instructions to ignore any loudness cues.  

 
Figure 5.7: Behavioural results for cochlear implant (CI) users and normal-hearing 
(NH) participants. 
Individual results and group statistics are shown for speech reception thresholds (SRTs, left), 
amplitude modulation (AM) detection thresholds (middle) and loudness matching results 
(right). SRTs vary greatly between cohorts, whereas AM detection thresholds and loudness 
matching results show smaller differences between cohorts. Descriptive statistics include the 
arithmetic means (black line) and standard deviations (shaded grey boxes). Note that 
loudness matching data of participant CI3 is missing due to time constraints. Abbreviations 
and acronyms: SNR – signal-to-noise ratio. 
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Loudness matching results 

Loudness matching results were comparable between the two cohorts except for 

two outliers in the NH data (Figure 5.7, right). The median SRTs were calculated to 

be -0.1 dB (standard deviation = ± 0.6 dB) and -1.3 dB (standard deviation = ± 1.5 dB) 

for CI users and NH participants, respectively. Two NH participants matched the 

unmodulated stimulus with the AM noise stimulus for an SNR around -3 dB. This means 

the objectively energy-matched AM noise was decreased in level by 3 dB to match the 

perceived level of the unmodulated noise.  

 

Correlations between BTs and SRTs 

The relationship between behavioural AM detection thresholds and speech-in-

noise recognition as measured with SRTs was assessed by means of Pearson’s correlation 

coefficient rp and Spearman’s linear rank correlation coefficient rs. SRTs showed no 

significant correlations with BTs of AM detection for neither the CI cohort, nor the NH 

cohort independent of the correlation measure (Figure 5.8). 

 
Figure 5.8: Relationship between speech reception thresholds (SRTs) and behavioural 
thresholds (BTs) of amplitude modulation (AM) detection.  
Correlations results for Pearson’s linear correlation coefficient rp and Spearman’s rank 
correlation coefficient rs are shown on the right. The grey arrow indicates the combined 
direction of good performance for x- and y-axis. Note: CI1, CI2, NH1 and NH2 participated 
in a pilot study, but were not included in this final study due to experimental changes. 

5.2.2 EEG acquired from CI cohort 

CI artefact in the subtraction-based processing pipeline  

CI artefacts varied greatly between participants. Figure 5.9 illustrates two 

examples of artefacts for users of a Cochlear device (CI13) and an Advanced Bionics 

device (CI7): Data from participant CI13 (Figure 5.9, left) shows CI artefacts that are 
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quite similar for the two stimulus types (unmodulated and AM noise), except at the sound 

onset. Therefore, subtraction of standard and deviant CAEPs to calculate MMW1 reduced 

the artefact considerably except at the sound onset. The calculation of MMW2 provided 

better artefact reduction at sound onset due to greater similarity of the artefact in deviant 

and AM-standard CAEPs. 

 
Figure 5.9: Examples of cortical auditory evoked potentials (CAEPs) and mismatch 
waveforms (MMWs) after subtraction-based artefact reduction. 
Individual examples are depicted for participants CI13 (left, Cochlear device) and CI7 (right, 
Advanced Bionics device). The standard, deviant and AM-standard CAEPs are depicted 
before and the mismatch waveforms (MMW) after the removal of bad channels and epochs. 
MMW data is average referenced.  

Data from participant CI7 showed a different artefact type, clearly demonstrating 

the AM of the modulated noise stimuli. Due to the difference between the artefacts of the 

two physical stimulus types, subtraction of standard and deviant CAEPs did not reduce 

the artefact sufficiently (Figure 5.9, right). However, subtraction of the deviant and AM-

standard CAEPs generated successful CI artefact reduction for MMW2s (Figure 5.9, 

bottom right). 
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CI artefact in the ICA-based processing pipeline  

Many of the ICs calculated by means of ICA were dominated by CI artefact. Every 

participant showed ICs where the spatial distribution and temporal activation resembled 

the typical CI artefact activation patterns as pictured in the two examples in Figure 5.10. 

However, not all ICs that were affected by CI artefact were as easily identified. Some 

showed a peak at sound onset or offset, but the spatial distribution did not suggest a main 

source at the site of the implant. Particularly for participants for whom the artefact was 

widespread across a number of electrodes that were not close to the site of the implant, 

the spatial distribution of the ICs was not a reliable indicator. Each IC was visually 

investigated and a judgment call had to be made whether it should be removed or kept for 

further analysis, introducing a subjective bias to the procedure. 

 
Figure 5.10: Examples of independent components (ICs) associated with cochlear 
implant (CI) artefact.  
(A) and (B) show examples of two typical ICs associated with the electrical artefact from CI 
stimulation. For each IC, plots include the spatial distribution of activity across the scalp 
(left), trial-by-trial activity (top right), and the average activation across time and trials 
(bottom right). 

 

Determination of the electrode clusters in the regions of interest 

The choice of the two electrode ROIs was based on literature, and the electrodes 

within each cluster were determined with a data-driven approach. Figure 5.11 shows the 

difference waveforms for specified electrodes according to the 10-20-system (note: 

Modified Combinatorial Nomenclature). In Figure 5.11, the individual data as indicated 

by grey lines represents single-channel CAEPs, and therefore, data looks noisier than for 

electrode cluster averages. In line with the literature, MMWs were found to be maximal 

for the area around Fz and Cz, and reversed in polarity for the temporal-occipital 

electrodes (Figure 5.11). Figure 5.12A shows the chosen individual electrodes contained 

in each ROI. Figure 5.12B depicts the individual and grand average MMW1s for the two 

ROIs for the maximum AMD of 100%. 
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Figure 5.11: Topographical overview of individual and grand average mismatch 
waveforms (MMW) for the CI group. 
The depicted MMW1s were derived from the deviant condition with 100% amplitude 
modulation depth. Individual MMW1s are depicted as thin grey lines and the grand average 
MMW1s are overlaid in bold. Data is filtered from 1 – 30 Hz. 

 
Figure 5.12: Overview of the electrode clusters in the regions of interest (ROI) and their 
mismatch waveforms (MMWs). 
(A) Overview of the electrode clusters in the two ROIs. (B) Individual MMWs (grey) and 
group mean MMWs (bold) for the two ROIs for an amplitude modulation depth of 100%. 
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Group mean MMWs with subtraction-based processing 

The subtraction-based artefact reduction was investigated as a potential time-

efficient alternative to the common ICA-based processing pipeline for CI artefact 

reduction. Figure 5.13 shows the effect of introducing the AM-standard (MMW2) on 

artefact reduction for the subtraction-based artefact rejection procedure: The “classical” 

MMW1 showed remaining effects from differences in CI artefact between standard and 

deviant CAEPs as indicated by the arrows in Figure 5.13, whereas the MMW2 showed 

no visible signs of CI artefacts in comparison. In some individual data sets, the CI artefact 

was very pronounced in the MMW1, particularly before averaging across the electrode 

clusters, whereas in other participants it was not visible. Also depicted in Figure 5.13 are 

the MMW2s after secondary filtering. This more aggressively filtered data was quantified 

on an individual level, but due to comparatively poorer data quality (in comparison to 

data processed with ICA) neural threshold estimation was confounded by random 

fluctuations. It was decided to focus quantification and correlation analysis on the data 

with the highest quality, which was the data processed with ICA due to more extensive 

artefact rejection. The following section provides quantitative analysis based on this 

processed data. 

 
Figure 5.13: Group mean difference waveforms obtained with the subtraction-based 
processing pipeline.  
Mismatch waveforms (MMWs) are shown for MMW1 (left) and MMW2 (right), for the fronto-
central (top) and occipital-temporal (bottom) electrode clusters and for the four amplitude 
modulation depths. Arrows indicate the remaining artefact in the MMW1 and an unusual 
component preceding the MMN before 200 ms in the MMW2. 
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Group mean MMWs with ICA-based processing 

No typical CI artefacts remained visible after artefact rejection with ICA. MMWs 

demonstrated clearly distinguishable MMN and P3a components for both ROIs and all 

AMD conditions except the 25% AMD (Figure 5.14). Visual comparison of MMW1s and 

MMW2s for each AMD, as depicted in Figure 5.14, illustrates their similarity in 

morphology with the exception of a time window preceding the MMN component around 

150 ms. The MMW2 showed an additional positive deflection in fronto-central 

electrodes. This difference between MMW1 and MMW2 was also reflected in the 

topographical plots depicted in Figure 5.16 for the time stamp of 170 ms. 

 
Figure 5.14: Comparison of mismatch waveforms (MMWs) for MMW1s and MMW2s 
for each amplitude modulation depth (AMD). 
MMWs were averaged across all 12 cochlear implant users. Data was plotted together for 
MMW1s and MMW2s, showing a consistent difference across AMDs for the component 
preceding the MMN (≈ 150 ms). The composition of the electrode clusters is shown in 
Figure 5.12. Data was processed with the ICA-based processing pipeline and filtered from 
1 – 30 Hz. 

 
Figure 5.15: Comparison of mismatch waveforms (MMWs) across amplitude 
modulation depths (AMDs). 
MMW1s are shown for the fronto-central (left) and occipital-temporal (right) electrode 
clusters for differing AMDs from 100% to 25%. Data was filtered from 1 – 15 Hz (secondary 
filtering) and averaged across all 12 cochlear implant users. The underlying individual data 
sets of this group mean data were used for quantification analysis for which results are 
reported in Section 5.2.3. 
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Figure 5.16: Butterfly plots and topographical plots of the mismatch waveforms 
(MMWs).  
Plots show the MMW1 (left) and MMW2 (right) elicited in the 100% amplitude modulation 
depth condition. Pictured MMWs were calculated with the ICA-based processing pipeline 
and averaged over all 12 cochlear implant users. Data was filtered from between 1 – 15 Hz. 

For quantification analysis of individual data sets, a secondary more aggressive 

bandpass filter was applied (1 – 15 Hz) to reduce the influence of higher-frequency noise. 

The influence of secondary filtering on group mean MMW1s can be seen by comparing 

Figure 5.14 to Figure 5.15. Figure 5.15 provides the direct comparison of MMW1s across 

AMDs for the two ROIs. Visual assessment of the MMW1s suggested that MMW 

amplitudes decreased and MMW latencies increased with decreasing AMDs 

(Figure 5.15), but no statistical analysis was carried out.  

5.2.3 Quantification of individual EEG data from CI users 

For quantification of MMW data, the individual MMW1s processed with the ICA-

based pipeline and secondary filtering were chosen. This data had the highest data quality 

according to visual assessment, as a result of the more comprehensive artefact rejection 

combined with a higher number of available standard epochs in the MMW1 calculation 

compared to MMW2 calculation. Individual MMW1 data showed the expected 

morphology with the MMN and P3a components, which was crucial for meaningful 

objective MMW quantification. Figure 5.17 shows an example dataset from participant 

CI8, for whom the MMN and P3a components greatly exceeded the bootstrapped noise 

floor for the 100%, 75% and 50% AMD conditions. For the 25% AMD condition, the 

MMN and P3a components barely exceeded the noise floor in the time windows of 

interest, resulting in AUC values close to zero.  
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Figure 5.17: Example mismatch waveforms (MMWs) for individual participant CI8.  
Individual mismatch waveforms (MMWs) are shown for both regions of interest (ROI) for all 
four amplitude modulation depths (AMDs) from 100% to 25%. The individual bootstrapped 
noise floors are indicated by the horizontal grey lines. The shifting time windows of interest 
for the calculation of the area-under-the-curve (AUC) are indicated by the vertical grey lines. 

Overall, participants’ AUC values converged toward zero with decreasing AMD 

(Figure 5.18). Normalisation of AUCs resulted in more uniform AUC curves (with the 

exception of participant CI10), which benefited objective NT estimation. For participant 

CI10 the MMW for 100% AMD barely exceeded the noise floor, but the 75% MMW 

greatly exceeded the noise floor, resulting in an inflated normalised AUC score for the 

75% AMD. However, this had only very limited influence on the final estimate of the 

NT. 

 
Figure 5.18: Neural threshold estimates from the individual area-under-the-curve 
(AUC) values. 
Absolute (left) and normalised (right) AUC values for individual participants at varying 
amplitude modulation depths (AMDs) between 25% and 100%. The right plot shows 
examples of neural threshold estimates for an example intersection value (IV) of 0.5. 
*Participant CI8 was removed due to non-performance in the behavioural AM detection task. 
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Figure 5.19: Overview of correlation results between behavioural thresholds (BTs) and 
neural thresholds (NTs) of amplitude modulation (AM) detection.  
Correlation analysis was carried out for a range of intersection values (IVs) based on the 
normalised area-under-the-curve (AUC) values with Pearson’s linear correlation coefficient 
rp and Spearman’s rank correlation coefficient rs. AUCs were normalised to the individuals’ 
AUC at 100% AM depth.  

5.2.4 Correlations between BTs and NTs in CI users 

Correlation analysis based on NTs obtained from normalised AUCs provided very 

uniform correlation coefficients rp between 0.65 and 0.68 (p ≤ 0.031) and rs of 0.61 

(p = 0.048), if the IV was set at 0.3 or above (Figure 5.19). The correlation coefficient for 

the IV of 0.2 was negatively impacted by the NT estimate of participant ‘CI4’. 

5.2.5 EEG acquired from NH cohort 

In the original study design for the NH cohort, the 25% AMD condition was 

replaced by a subjectively loudness balanced 100% AMD condition, as it was believed 

that the MMW would disappear for an AMD of 50% according to findings from the study 

presented in Chapter 3. However, after having acquired data for participants NH3 and 

NH4, it was evident that based on the new experimental parameters and with the multi-

channel EEG, MMWs were measurable for the 50% AMD. Under these circumstances it 

was decided to include a 25% AMD condition for further participants in place of the 

loudness balanced condition. Table 5.2 provides an overview of the data sets for each 

condition and individual. 
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Table 5.2: Overview of the employed paradigms in the individual normal-hearing 
participants.  
The last column indicates how many participants’ data sets n were available for each 
condition. Participants NH1 and NH2 only participated in a pilot study and were not 
included in the analysis of this study due to experimental changes. Abbreviations and 
acronyms: AMD – Amplitude modulation depth, NH – Normal-hearing, LB – Loudness 
balanced. 

AMD NH3 NH4 NH5 NH6 NH7 NH8 NH9 NH10 NH11 NH12 n 

100% X X X X X X X X X X 12 

75% X X X X X X X X X X 12 

50% X X X X X X X X X X 12 

25% - - X X X X X X X X 8 

100% LB X X - - - - - X X - 6 

 

EEG data from the NH cohort showed MMW amplitudes that decreased with 

decreasing AMDs (Figure 5.20). The MMN component was distinctly visible for AMDs 

as low as 50% (Figure 5.20). The P3a component was clearly distinguishable for the 

100% and 75% AMD condition. For the 50% AMD, only a small and delayed P3a 

component was observed. For an AMD of 25% no MMN or P3a could be observed in 

either of the two ROIs (Figure 5.20).  

 

Figure 5.20: Overview of difference waves from the normal-hearing cohort across the 
four tested amplitude modulation depths.  
Grand average data (n = 8, NH5 – NH12) is shown for the fronto-central and occipital-
parietal region of interest. Difference waveforms show the mismatch waveforms (MMW) 
MMW1 and MMW2. Data was filtered from 1 – 30 Hz. Note: For participants NH3 & NH4 
the 25% AMD condition was replaced with a loudness balanced condition, and therefore, 
data for these participants was excluded from the grand average in this figure. 

The AUC values for MMW1s were calculated in line with the procedures outlined 

for the CI user cohort. The AUC values depicted in Figure 5.21 were of comparable 

magnitude to the CI user cohort (Figure 5.18). The exception was participant NH9, who 

showed very large MMW1s. Overall, AUCs decreased with the AMDs. In the study 
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outlined in Chapter 3, AUCs were found to increase for the 25% AMD for numerous 

participants due to random fluctuations. Thus, morphology weighting was implemented 

to reduce the influence of MMWs that did not resemble the expected waveform. In this 

study, random fluctuations posed less of an issue as reflected by the decreasing AUCs 

without morphology weighting. The increase of the number of deviant repetitions 

combined with the measurement of multi-channel EEG, and thus, the possibility to 

average across multiple channels in this study, had the benefit of decreasing the influence 

of random fluctuations on the AUC values.  

 
Figure 5.21: Individual absolute and normalised area-under-the-curve (AUC) values 
for the normal-hearing (NH) cohort.  
AUC values are depicted for the four tested amplitude modulation depths (AMDs). AUCs 
were normalised to each individuals’ AUC at 100% AMD. Participants NH3 and NH4 were 
excluded due to the missing data for the 25% AMD condition. 

 
Figure 5.22: Overview of difference waves with and without subjective loudness 
balancing (LB). 
Group mean data (n = 4) is shown for the fronto-central region of interest. Difference 
waveforms show the mismatch waveforms (MMWs) MMW1 and MMW2. Data was filtered 
from 1 – 30 Hz. 

Figure 5.22 shows the MMW1s and MMW2s for the subjectively and objectively 

RMS-matched condition with an AMD of 100%. It was evident that subjective loudness 



  

104 
 

balancing did not eliminate the MMW, which provides evidence against the concern that 

MMWs may have been elicited as a result of loudness cues.  

 

5.3 Discussion 

5.3.1 Behavioural tests 

In line with the literature, speech-in-noise recognition abilities varied greatly 

between cohorts, with all CI users demonstrating worse performance than all NH 

participants. Reported SRTs ranged between 4 dB and 22 dB for CI users and -4 dB to 0 

dB for NH participants. In the commercially available BKB-SIN test, NH participants 

reportedly require an average SNR of -2.5 dB to perceive 50% of keywords correctly 

(Etymotic Research, 2005). This is in line with reported results. Wouters and Vanden 

Berghe (2001) reported SRTs between 3 dB and 15 dB for four CI users when measured 

at 60 dB SPL with the specially designed ICRA noise8 (ICRA, 1997). Poissant et al. 

(2014) reported SRTs between 10 dB and 22 dB for CI users measured with the Quick-

SIN test (Etymotic Research, 2001) in four-talker babble noise, which is an alternative 

adaptive procedure to calculate SRTs. Overall, speech recognition abilities are known to 

vary greatly depending on the sound environment (Hazrati & Loizou, 2012; Gnansia et 

al., 2014), individual parameters of the CI device (De Ceulaer et al., 2015), hearing 

aetiology and history (Kraaijenga et al., 2016), and daily fluctuations such as fatigue. 

AM detection thresholds were higher on average for the CI user cohort, but 

numerous CI users presented thresholds in line with the NH participants demonstrating 

poor performance. AM detection thresholds lay between -11 dB to -20 dB (excluding the 

participant who showed non-performance) and -19 dB to -25 dB for CI users and NH 

participants, respectively. Gnansia et al. (2014) have reported thresholds ranging between 

-1 dB and -22 dB for AM detection in CI users with most experimental parameters being 

in line with the present study (500 ms stimulus duration, 8 Hz AM rate, level roving). The 

existence of poorer thresholds reported by Gnansia et al. (2014) may be due to the 

                                                 
8 The ICRA noise has been created by the Hearing Aid Clinical Test Environment standardisation 

work group for the International Collegium for Rehabilitative Audiology (ICRA) for application in hearing 
aid evaluation. The collection of noise signals has well defined spectral and temporal characteristics that 
are designed after real life speech and multi-talker speech signals. 
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recruitment criteria. For the present study only good to fair performers as indicated by 

BKB scores were included. 

Loudness adjustments lay between -1.4 dB and 0.7 dB for CI users and -3.3 dB 

and 0.7 dB for NH participants. According to the literature, it is common that the AM 

sound is perceived as louder than the unmodulated equivalent at equal RMS-levels (Fraser 

& McKay, 2012). Despite this fact, an adjustment of ≈ -3 dB was considered to be 

extreme. It is possible that these two participants (see Figure 5.7) matched the peak level, 

rather than the overall loudness level. 

5.3.2 Findings from CI users 

CI artefact reduction 

Subtraction-based artefact rejection was deemed successful for the grand average 

MMWs, however, individual data indicated remaining artefacts. This is in line with 

findings reported by Friesen and Picton (2010) who reported successful artefact 

reduction, although in some participants remaining artefact was visible. Friesen and 

Picton (2010) presented stimuli with direct input, stimulating only one electrode and 

bypassing the patient processor. Current pulses sent to the CI electrodes may vary from 

stimulus to stimulus when sounds are presented in sound field. Variation may arise from 

the automatic gain control, varying background noise levels, and the finite time window 

that the CI processing uses to sample sounds (Friesen & Picton, 2010). Relative timing 

differences between stimulus presentations will influence the information available in a 

sampled time window. In the present study, the influence of background noise and 

automatic gain control was limited given the advantages of controlling the sound-field 

with the Otocube. However, the influence of the sampling time window could not be 

controlled for. Ortmann et al. (2013) and Ortmann et al. (2017) presented stimuli with 

fluctuating envelopes (e.g. /bu/ vs. /ba/) in free-field and reported successful artefact 

reduction in the grand average CAEPs, although small influences of the artefact remained 

visible even in the grand average. 

Another potential source for CI artefact variability may originate from the use of 

active electrodes. It is unknown how the pre-amplification of the active electrodes such 

as those from the Biosemi ActiveTwo system (BioSemi B. V., Amsterdam, Netherlands) 

employed in this study may affect the CI artefact. Overall, the data which had undergone 

ICA-based artefact rejection had greater SNRs on an individual level. This was most 



  

106 
 

likely due to the more comprehensive artefact reduction including biological artefacts and 

other discontinuities.  

Correlation between NTs and BTs 

The presented findings support the hypothesis that NTs estimated from MMW 

data provide a valuable alternative approach to assess CI users’ low-rate AM sensitivity 

when behavioural AM detection thresholds are unreliable. Estimating NTs from 

normalised AUCs, rather than from absolute AUCs, eliminated the influence of naturally 

differing CAEP amplitudes across participants on NT estimates and focused on the intra-

subject variability across AMDs. Numerous sets of NTs for varying IVs have been 

included in the correlation analysis to underscore that correlation results do not rely on 

the specific choice of the IV, and thus, no correction for multiple comparisons was 

applied. Overall, correlation coefficients between BTs and NTs were similar to findings 

from the NH cohort in the study reported in Chapter 3. That study showed correlation 

coefficients in the order of rp = 0.6. In that study, morphology weighting of MMWs was 

employed, which weighted the AUCs depending on the similarity of the corresponding 

MMW to the individual participant’s MMW at 100% AMD. This additional processing 

step was implemented to reduce the influence of random fluctuations on AUCs at low 

AMDs. However, in the present study an increased number of deviant repetitions and 

averaging across multiple recording channels reduced random fluctuations, and thus, no 

morphology weighting was required.  

 

Speech recognition and low-rate AM sensitivity 

The lack of correlations between BTs and speech-in-noise measures, as indicated 

by the SRTs, are at odds with the hypothesis. While it is widely believed that AM 

sensitivity plays an important role for speech recognition in electrical hearing (Cazals et 

al., 1994; Fu, 2002; Luo et al., 2008; Won et al., 2011b; Gnansia et al., 2014; De Ruiter 

et al., 2015; Erb et al., 2018), this is not the first time that a lack of correlation between 

AM detection thresholds and speech feature recognition in noise has been reported. 

Gnansia et al. (2014) also reported a lack of significant correlations between 8 Hz AM 

detection thresholds and vowel (in steady-state and fluctuating noise) as well as consonant 

(in fluctuating noise) recognition, despite significant correlations with vowel (in quiet and 

in steady-state noise) as well as consonant (in quiet) recognition abilities. These findings 

suggest that low-rate AM sensitivity may reflect CI users’ abilities to extract cues from 

the slow envelope fluctuations of clear speech, but when the envelope cues are distorted 
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due to background noise, AM sensitivity does not provide a reliable predictor for speech 

recognition. Other features such as TFS processing abilities (Drennan et al., 2007; 

Drennan et al., 2008) and spectral resolution as assessed by spectral ripple discrimination 

abilities (Won et al., 2007) may play a more defining role for speech-in-noise recognition. 

Additional support for the importance of low-rate AM sensitivity for speech recognition 

emerges from recently published findings by Erb et al. (2018), who reported that AM rate 

discrimination is a reliable predictor of sentence in quiet recognition. In contrast, Won et 

al. (2011b) showed significant correlations between average BTs across a range of AM 

rates and SRTs in noise as well as with CNC scores. This may point to the fact that AM 

detection at a fixed low rate (e.g. 8 Hz) may not provide sufficient information in relation 

to speech-in-noise recognition as opposed to a compound AM detection metric at a range 

of different modulation rates (as in Won et al. 2011). Overall, literature provides 

contradicting information regarding the relationship between AM sensitivity and speech 

recognition for varying parameter combinations and further research is required. 

 

Clinical applications 

The inclusion criteria for this study were limited to CI users with fair to good 

speech recognition outcomes. For potential future clinical applications, it should be 

investigated how the relationship between BTs and NTs evolves for CI users with limited 

rehabilitation success and also how neuronal maturation affects the MMWs and NTs. The 

present neurophysiological test procedure is very time consuming and may not be feasible 

for standardised clinical testing. Data acquisition time may be reduced by optimising the 

procedure, e.g. by reducing the number of recording channels, and thus, shortening the 

preparation time or by testing fewer AMDs such as 25%, 50% and 75%. The proposed 

method may offer an objective approach when subjective psychoacoustic tests are not 

feasible. 

5.3.3 Findings from NH data 

Although EEG data obtained from NH participants had a higher SNR on an 

individual level compared to data from CI users, MMWs were comparable in morphology 

as were AUC values as shown in Figure 5.18 and Figure 5.21. The additional positive 

component in the MMW2 preceding the MMN was observed in both cohorts. However, 

the underlying generator remains unknown. Given the fact that the MMW2 was calculated 
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by subtracting neural responses elicited by the same underlying physical stimulus, the 

existence of an additional early component prior to the MMN suggests that neural change 

detection may already take place prior to the MMN. To the author’s knowledge, this 

additional component has not been reported in the literature. 

Grand average MMWs were observed in both cohorts for AMDs of 50% and 

above. This finding lies in contrast to the obtained results in the single-channel NH study 

presented in Chapter 3. The single-channel data presented in Chapter 3 showed no grand 

average MMW at the 50% AMD. The difference between the two studies was likely a 

result of the improved spatial distribution of recording channels. The possibility to 

average across multiple recording channels reduced the noise influence of individual 

channels, and also enabled biological artefact reduction based on ICA. The increased 

number of available deviant epochs from 56 deviant epochs to 68 deviant epochs also had 

a positive impact. 

Findings from MMWs elicited by subjectively and objectively RMS-balanced 

stimuli eliminated the concern that the MMW may be based on potential loudness cues. 

Future work should determine if the MMW amplitude is significantly influenced by 

potential loudness cues as the current data-set for the loudness balanced condition is too 

small (n = 4) to make inferences on this research question. 

5.3.4 Limitations 

The subtraction-based processing pipeline currently has the limitation of lacking 

biological artefact reduction. Furthermore, this approach does not provide standard 

epochs free from CI artefacts to calculate the bootstrapped noise floor for quantification 

analysis. It may be feasible to employ the CI artefact reduction based on polynomial 

fitting reported by Mc Laughlin et al. (2013) to reduce the CI artefact for standard epochs, 

as neural standard responses were elicited by stimuli with approximately flat envelopes, 

which is required for this approach. This additional step may enable quantification 

analysis of MMW2s with the bootstrapped noise floor. 

Employing a multi-channel system for EEG measurements has advantages and 

disadvantages. High-density EEG data enables artefact rejection based on ICA. 

Furthermore, it is possible to average across electrodes in a wider ROI, and thus, neural 

responses will not be missed due to the placement of electrodes. However, for future 

clinical applications time constraints may pose a greater challenge and would have to be 
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addressed by shortening the duration of data acquisition or by employing less EEG-

channels to decrease set-up times. 

Despite the small sample size of the clinical cohort in this study, which may have 

an influence on the reported effect size of the correlation analyses carried out for the CI 

user cohort, findings are encouraging, and justify further enquiry. Future study 

replications should increase the sample size to strengthen the statistical inferences drawn 

from the correlations, which will allow a more accurate assessment of the predictive value 

of NTs for BTs as well as speech recognition outcomes in CI rehabilitation. 

 

 
 

Key Points 

• The study presented in this chapter addressed the research questions Q2.1 – 

Q2.8. 

• The MMW can be elicited in CI users with AM stimuli and the electrical 

artefact can be sufficiently reduced (Q2.1 – Q2.3).  

• Findings support the hypothesis that NTs estimated from MMW data are 

correlated with behavioural thresholds of AM detection (Q2.4 – Q2.5).  

• Speech-in-noise performance did not correlate with AM detection thresholds 

(Q2.6). 

• MMWs were elicited for subjectively and objectively RMS-balanced stimulus 

pairs in the NH cohort (Q2.7). 

• These findings were presented at the Speech in Noise Workshop, Oldenburg 

2017; the IERASG symposium, Warsaw 2017; the AESOP symposium, 

Leuven 2018; and the 8th MMN conference, Helsinki 2018. 

• Parts of the findings presented in this chapter were submitted to the 

international Journal Trends in Hearing (July 2018, TIH-18-0147) in the 

manuscript entitled “A neural correlate of low-rate amplitude modulation 

detection in cochlear implant users based on the mismatch waveform”.  
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 Objective measure of auditory 
temporal fine structure processing 

As described in Chapter 2, TFS refers to the fast temporal variation in a sound in 

contrast to the slow amplitude variations which constitute the envelope. Monaural TFS 

sensitivity is important for pitch perception and sound segregation in noisy environments, 

whereas binaural TFS sensitivity plays an important role in sound localisation (Moore, 

2016). Both monaural and binaural TFS processing are severely degraded in hearing 

impaired cohorts (Hopkins & Moore, 2011; Mathew et al., 2016; Moore, 2016) and CI 

listeners (Drennan et al., 2008; Heng et al., 2011; Dincer D'Alessandro et al., 2017). 

Füllgrabe et al. (2014) have shown that TFS processing is impaired in elderly listeners 

with normal audiometric thresholds. This indicates that TFS processing is affected by 

ageing beyond normal audiometric hearing loss, suggesting that neural function may be 

the determining factor in TFS processing rather than peripheral cochlear function. This is 

in line with findings reported by Harris and Dubno (2017) and Harris et al. (2014), who 

showed that neuronal phase locking abilities decrease with age even though audiometric 

thresholds are normal. Impaired TFS processing may contribute to the difficulties 

experienced with speech-in-noise perception by hearing impaired as well as elderly 

individuals. Therefore, it is of interest to develop psychoacoustic and neuroimaging tests 

to assess various aspects of TFS processing, as outcomes may provide non-redundant 

information about the function of the auditory system beyond audiometric thresholds. 

Based on the observed adverse effects of ageing and hearing loss on TFS 

processing, there has been great research interest in determining psychoacoustic tests to 

assess TFS processing abilities. In contrast, literature on objective measures of TFS 

processing is lacking, as outlined in Section 2.5.2. Studies investigating CAEPs elicited 

by acoustic tone pairs with TFS differences were reported by Mathew et al. (2016), who 

investigated the ACC in response to TFS1 stimuli in a NH cohort, and by Leijsen et al. 
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(2015), who investigated the MMW as a potential objective measure of Schroeder-phase 

harmonic complex tone discrimination in CI users. Both studies had limitations and their 

results were inconclusive with regards to the applicability of CAEPs as an objective 

measure of TFS processing, as no consistent change responses were identifiable. Leijsen 

et al. (2015) employed a low number of deviant repetitions, which may have confounded 

the results. Furthermore, this study was carried out in a cohort of CI users and findings 

cannot address the question whether CAEPs can be elicited based on stimulus pairs that 

differ in their TFS in a NH cohort. Mathew et al. (2016) claimed that ACC responses 

were elicited in response to the TFS1 stimuli (i.e. a harmonic and frequency-shifted 

inharmonic stimulus pair), however, no statistical analysis was carried out, no clearly 

distinguishable ACCs were shown in included figures, and the alleged ACC response was 

also elicited in the control condition with a frequency shift of 0 Hz between the harmonic 

and inharmonic stimulus, and thus, findings have to be questioned. 

The research study presented in this chapter aimed to more thoroughly investigate 

the applicability of CAEPs for objective auditory change detection based on TFS cues. 

Research studies presented in this chapter concentrated on monaural TFS processing, 

namely auditory discrimination between Schroeder-phase harmonic complex tone pairs 

and discrimination of HCU-ICU tone pairs adapted from the TFS1 test stimuli.  

 
Figure 6.1: Schematic with a condensed overview of the four phases in Chapter 6. 
Abbreviations and acronyms: ACC – Acoustic change complex, MMW – Mismatch 
waveform, HCU-ICU – refers to the experimental condition with a harmonic-inharmonic 
complex tone pair, AM – refers to the amplitude modulated tone pair introduced in 
Chapter 3. 

This chapter is divided into four different phases (Figure 6.1), with the main study 

described in Phase 3. Each phase has investigated behavioural and/or neurophysiological 

measures of TFS change detection with differences in experimental paradigms, stimulus 

types and details of stimulus creation. All four phases contained a condition in which 

harmonic complex stimuli had to be discriminated from their frequency-shifted 

inharmonic counterparts. This condition is referred to as the HCU-ICU condition 
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throughout this chapter and its stimuli were designed to closely match the TFS1 stimuli 

by Moore and Sek (2009) with minor adjustments to suit the neurophysiological 

paradigm. 

 

6.1 Phase 1 – Explorative pilot experiments 

6.1.1 Methods 

Pilot data was obtained with behavioural and neurophysiological paradigms, in 

which discrimination abilities of HCU-ICU tone pairs were assessed for varying 

frequency shifts. The objective was to assess the effect of change saliency on the 

neurophysiological responses, as it is known that discrimination abilities deteriorate with 

decreasing frequency shifts between HCU and ICU tones (Moore et al., 2009). 

Neurophysiological data was obtained with an ACC and an MMW paradigm separately 

for different participants. Neurophysiological paradigms employed pre-determined 

frequency shifts Δf, whereas behavioural discrimination performance was assessed with 

an adaptive 1-up/2-down 3AFC procedure, which provided an estimate of the frequency 

shift Δf for which discrimination accuracy was approximately 70.7%.  

It was hypothesized that the amplitude and latency of neurophysiological change 

responses (ACC and MMW) depend on the saliency of the acoustic change. Furthermore, 

it was hypothesized that participants with good behavioural thresholds show 

neurophysiological change detection responses for lower frequency shifts Δf than 

performers with poor behavioural thresholds. 

 

Participants 

Participants were young adults (mean = 23.2 years, standard deviation = 1.6 years) 

with no known hearing impairments. Prior to participation, participants signed their 

informed consent. The ACC paradigm was employed in four pilot participants, the MMW 

paradigm was employed in seven pilot participants, and behavioural thresholds were 

measured for all eleven pilot participants. 

 

HCU-ICU stimulus design 

HCU and ICU stimuli had a constant fundamental frequency F0 of 100 Hz. The 

HCU stimulus was created by adding harmonics of F0 from the second to the 20th 
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component. The summed signal was then bandpass-filtered with a 6th order infinite-

impulse response (IIR) filter (roll-off of 30 dB/octave), which had a band-pass width of 

5F0, centred at the 12th component. As the filter was applied forwards and backwards 

with the function ‘filtfilt.m’, the effective filter roll-off was twice as sharp with 

60 dB/octave. The ICU stimuli were generated by shifting all harmonics upwards by Δf, 

where Δf lies between 0 Hz and 0.5F0. Moore and Sek (2009) employed TEN to mask 

potentially remaining excitation pattern cues from resolved components below the 8th 

component, and thus, components were believed to be unresolved (Moore et al., 2006). 

In the present study, a broadband white Gaussian noise was added for masking purposes 

to yield an SNR of 15 dB. The overall presentation level was calibrated to 65 dBA. HCU 

and ICU stimuli were RMS-balanced and sounds were ramped on and off with 10 ms 

cosine ramps. All stimuli were presented monaurally to the left ear via headphones 

(Sennheiser HD 280 pro). 

 

Neurophysiological paradigms 

In the literature, stimuli in the TFS1 test and TFS2 test are presented as 

concatenated segments of HCU and ICU stimuli according to the pattern HHHH or HIHI, 

where H and I are HCU and ICU stimuli, respectively. The background TEN is presented 

before, throughout and after the presentation of the concatenated stimuli (Moore & Sek, 

2009). Concatenation of stimuli with brief inter-stimulus intervals, where only TEN was 

audible, was not feasible for neurophysiological recordings, as each onset and offset of a 

sound may elicit an N1-P2 response. Therefore, the presentation mode had to be altered. 

Stimuli were presented individually (HCU or ICU) with background noise added for the 

duration of the complex tone. In the ACC paradigm, HCU and ICU tone segments were 

concatenated, each with a stimulus duration of 500 ms. Each concatenated sound was 

interleaved with a silent period of 1 s. In the MMW paradigm, standard tones (HCU) were 

presented with 90% occurrence probability and deviant tones (ICU) were presented with 

10% occurrence probability. In total, 60 deviant stimuli were presented for each 

experimental condition. Stimuli presented in the oddball paradigm had a duration of 

250 ms and the inter-stimulus interval was 1 s.  

The ACC paradigm included five frequency shifts ∆f (0 Hz, 5 Hz, 20 Hz, 35 Hz 

and 50 Hz) and due to time constraints, the MMW paradigm was reduced to four 

frequency shifts ∆f (5 Hz, 20 Hz, 35 Hz and 50 Hz). A spectrally-rippled tone pair was 

included as a control condition, as it is known to elicit reliable neurophysiological change 
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responses (Lopez Valdes et al., 2014). This provision enabled the assessment of the 

overall data quality in each data set. In the case of inconclusive neurophysiological data 

in the TFS conditions, data from the control condition would provide additional 

information on whether lacking responses were due to poor connectivity or if TFS cues 

were too subtle to reliably measure neural change detection. 

6.1.2 Results and discussion 

The measured behavioural discrimination thresholds (Figure 6.2A) were in line 

with those reported in the literature, e.g. thresholds reported by Moore and Sek (2009), 

which were reprinted in Figure 6.2B for visual comparison. In line with the literature, 

behavioural thresholds showed a wide spread in performance across the NH cohort.  

 
Figure 6.2: Behavioural thresholds of temporal fine structure (TFS) discrimination. 
(A) Thresholds were measured for eleven participants in the pilot experiments of Phase 1. 
(B) Behavioural discrimination thresholds measured with the TFS1 task which were reported 
by Moore and Sek (2009). Figure adapted from Moore and Sek (2009). 

Neurophysiological pilot data showed clear MMW and ACC responses for the 

control condition (Figure 6.3 & Figure 6.4), which employed a spectral ripple tone pair. 

This validated the measurement set-up. Stimuli were created in line with (Lopez Valdes 

et al., 2014) by summing 250 pure tones between 250 and 5000 Hz, where each pure 

tone’s amplitude was determined by a full-wave rectified sinusoidal envelope. The 

generated spectral ripples were equally spaced on a logarithmic scale and for the control 

stimulus employed here, the ripple density was one ripple per octave (RPO). Stimuli were 

then filtered with an LTASS filter (Byrne et al., 1994). To create stimulus pairs, the phase 

of the full-wave rectified sinusoidal spectral envelope was set to either zero or π/2 radians. 
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For the HCU-ICU tone pairs, neither ACCs (Figure 6.3) nor MMWs (Figure 6.4) 

were clearly distinguishable. The 50 Hz change condition may show a change detection 

response in both paradigms, however, it was not clearly identifiable.  

 
Figure 6.3: Cortical auditory evoked potentials (CAEPs) elicited by temporal fine 
structure stimuli. 
Stimuli were elicited by concatenated harmonic (onset at 0 ms) and inharmonic stimuli (onset 
at 500 ms), where the inharmonic stimulus was created with varying frequency shifts between 
0 Hz (control) and 50 Hz (max. shift). An additional control condition consisted of a spectral 
ripple sound pair with 1 ripple per octave (RPO, Lopez Valdes et al., 2014). CAEPs are 
shown for a central region of interest centred surrounding Cz with average reference. 
Adapted from Hablani (2017). 

 
Figure 6.4: Difference waveforms elicited by temporal fine structure stimulus pairs.  
Data is shown for good performers, defined as participants with clearly identifiable standard 
and deviant CAEPs. The difference waveform was calculated by subtracting the neural 
response to standard stimuli (harmonic) from the neural response to deviant stimuli 
(inharmonic) with varying frequency shifts between 5 Hz and 50 Hz (max. shift). An 
additional control condition consisted of a spectral ripple sound pair with 1 ripple per octave 
(RPO, Lopez Valdes et al., 2014). CAEPs are shown for a central region of interest centred 
surrounding Cz with average reference. Adapted from Hablani (2017). 
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Results were considered to be inconclusive. Therefore, Phase 2 concentrated on 

the TFS1 stimulus pair with the maximum frequency shift (∆f = 0.5F0) with increased 

deviant repetitions to illuminate whether an MMW may be elicited and distinguished 

from background noise. 

 

6.2 Phase 2 – Feasibility case study 
Phase 2 presents findings from a feasibility case study. Instead of the multi-

channel EEG set-up employed in Phase 1, Phase 2 utilised the single-channel EEG set-

up for the study introduced in Chapter 3, with the aim of reducing noise influence on 

CAEPs due to better electrode-skin interface preparation possibilities through the use of 

abrasive lotion. Furthermore, employing the single-channel set-up resulted in higher 

participant comfort, shorter set-up times and the potential for longer EEG data 

acquisition. Rather than testing multiple frequency shift conditions as in Phase 1, this 

pilot study concentrated on the maximum frequency shift between the HCU-ICU tone 

pair. Furthermore, the HCU-ICU stimulus design was adapted to match the original TFS1 

stimulus design more closely (Moore & Sek, 2009). This was possible due to newly 

gained information from email correspondence with Professor Moore9, University of 

Cambridge.  

In addition to the HCU-ICU condition, four other paradigms were employed. 

Tone discrimination based on TFS cues was also assessed with a Schroeder-phase 

harmonic complex stimulus pair to explore an alternative approach in the objective 

assessment of TFS discrimination abilities.  

In an attempt to investigate underlying mechanisms of pitch extraction based on 

different acoustic cues, a pitch-change condition based on a difference in the fundamental 

frequency was added. A tone pair consisting of two harmonic stimuli was saliency-

matched to the HCU-ICU tone pair as detailed in Section 6.2.1. This test condition was 

labelled HCU-F0 in the following. Given the poor data quality in Phase 1, the Phase 2 

study also incorporated control conditions, for which it was known that MMWs are 

elicited in most NH participants: The spectral ripple control condition introduced in 

Phase 1 and an AM control condition with 100% AMD (for details see Chapter 3). These 

                                                 
9 Email correspondence on 17/10/2017, 25/10/2017, 27/10/2017, 9/3/2018, 14/3/2018 and 

24/4/2018. 
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two control conditions both provide reliable MMWs, but with differing latencies, which 

added additional information for comparisons across conditions. 

6.2.1 Methods 

This case study concentrated on the neurophysiological MMW paradigm. Data 

was acquired for five deviant conditions as outlined above, which are consecutively 

labelled (1) HCU-ICU, (2) Schroeder-phase, (3) HCU-F0, (4) AM, and (5) RPO 

(representing the spectral ripple stimuli). In line with the MMW Study presented in 

Chapter 5, the deviant tone was also presented in a deviant-alone segment at the start of 

each block, enabling the calculation of the MMW based on neural responses elicited by 

the same physical stimulus. This ensured that potential deflections in the difference 

waveform were not a result of differential neural processing of the physical stimulus 

presented as a standard. The deviant probability was set to 0.15 in the oddball segment 

and deviant CAEPs were comprised of approximately 85 deviants for each condition. The 

deviant-alone CAEPS were comprised of approximately 125 epochs.  

MMWs were calculated in line with the procedures for Study 1 reported in 

Chapter 5, meaning the MMW1 was calculated based on deviant and standard CAEPs 

and the MMW2 was calculated as the difference wave between deviant CAEPs and 

CAEPs from the deviant-alone segments. The bootstrap-procedure outlined in Chapter 5 

was employed to determine whether responses exceeded the noise floor. 

 

Participant 

The participant in this case study was a 28 year old female with no reported 

hearing impairment. Stimuli were presented monaurally to the left ear via headphones 

(Sennheiser HD 280 pro). 

 

HCU-ICU tone pair 

Harmonic complex tones were created by summing multiples of F0 = 200 Hz 

from the second to the 20th harmonic. Components were added in constant sine phase. 

Bandpass filtering of the summed signal removed undesired spectral cues from resolved 

harmonics and decreased the TFS complexity by decreasing the spectral range. The 

applied infinite impulse response (IIR) bandpass filter had a passband with a flat central 

region from the 10th to the 11th component (2 kHz to 2.2 kHz) and a flat roll-off of 
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30 dB/octave (Figure 6.5). This filter had a narrower passband compared to the filter 

designed in Phase 1. The filter was applied with MATLAB’s ‘filter.m’ function. 

To minimize the influence of potentially remaining excitation pattern cues, a TEN 

was added (Moore et al., 2000). The sound file was kindly made available by Professor 

Moore, University of Cambridge (October 2017). The level of the complex signal was 

15 dB above the level of the TEN. The level of the TEN is commonly defined for the 

equivalent rectangular bandwidth10 (ERB) at 1 kHz, and can be calculated as the sum of 

the power of the spectral magnitudes across the spectral range specified by the ERB at 

1 kHz (1000 Hz ± 0.5 * 132 Hz). In contrast, the level of the complex signal was 

calculated as the sum of the power of the spectral magnitudes across the full spectrum.  

 
Figure 6.5: Bandpass filter to create HCU-ICU stimuli.  
The IIR band pass filter had a central flat region from the 10th to the 11th component (2 kHz 
to 2.2 kHz) and a roll-off of 30 dB/octave. 

 
Schroeder-phase harmonic complex tone pair 

Schroeder-phase harmonic complex tones as illustrated in Figure 6.6 were 

generated by adding equal-amplitude harmonics of a specified F0: 

𝑆𝑆 = ∑ sin( 2 ∙ 𝜋𝜋 ∙ 𝑛𝑛 ∙ 𝐹𝐹0 ∙ 𝑡𝑡 +  Ɵ𝑛𝑛)𝑁𝑁
1 , 

Equation 6.1 

where Ɵn was the phase of the n-th harmonic defined by Equation 6.2 with a positive or 

negative phase for the positive and negative Schroeder-phase harmonic complex, 

respectively:  

                                                 
10 ERB refers to the equivalent rectangular bandwidth of the auditory filter for listeners with 

normal hearing, as specified by Glasberg, B.R. & Moore, B.C.J. (1990) Derivation of auditory filter shapes 
from notched-noise data. Hearing research, 47, 103-138.  
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Ɵ𝑛𝑛 =  ± 𝜋𝜋 ∙ 𝑛𝑛 ∙ 𝑛𝑛+1
𝑁𝑁

. 

Equation 6.2 

The time vector t was determined by the duration of the stimulus and its sampling rate, 

and N was the total number of harmonics contained within the stimulus calculated as the 

maximum frequency of 5000 Hz divided by F0. This study focused on a single F0 of 

50 Hz, which has been shown to yield better discrimination accuracy between positive 

and negative stimuli compared to higher fundamental frequencies (Drennan et al., 2008; 

Lauer et al., 2009).  

 
Figure 6.6: Positive and negative Schroeder-phase harmonic complex tones. 
The top row shows the instantaneous amplitude and the middle row shows the spectrogram 
of the positive and negative Schroeder-phase harmonic complex tones zoomed in to a 50 ms 
wide time window. The bottom row shows the spectral magnitude calculated with the fast 
Fourier transform (FFT). 

 

HCU-F0 test condition 

The HCU-F0 test condition addressed an alternative idea on how to assess 

potential differences of pitch extraction for unresolved stimuli. Contrary to the HCU-ICU 

tone pair which shares the same F0, another tone pair was created which provides the 

same perceived pitch difference as the HCU-ICU pair, but based on an F0-change. This 

was achieved by pitch matching the F0 of an HCU tone to the perceived pitch of the ICU 
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tone with a frequency shift of 0.5F0. This procedure resulted in two stimuli which share 

the same pitch, and thus, were saliency matched with regards to the HCU tone although 

they differed in the underlying acoustic cues.  

 

Alternative experimental ideas 

The harmonic-inharmonic change condition with unresolved components 

(≥ 9th component) relies on pitch change perception based on the successful use of TFS 

cues. An obvious control condition would be the same test with resolved harmonics, i.e. 

components below the 8th harmonic, which would provide a combination of spectral and 

TFS cues. A comparison of the neural change response between the resolved and 

unresolved condition would aim to address whether neural processes underlying pitch 

extraction differ when using TFS cues rather than spectral cues. It would be of interest to 

see whether the MMN is more delayed when it relies on TFS cues compared to spectral 

cues. However, deviant saliency plays a large role in MMN amplitude and latency 

(Näätänen et al., 1989; Tiitinen et al., 1994), and pitch saliency is reported to be greater 

for stimuli with resolved components (Carlyon & Shackleton, 1994). Acoustic differences 

between resolved and unresolved stimuli can be behaviourally saliency matched by 

adding noise (Butler & Trainor, 2012), but this would add many more variables. 

Furthermore, shifting the harmonic stimulus by half of F0 sometimes resulted in a 

perceived decrease in pitch for resolved stimuli, whereas for unresolved stimuli an 

increase in pitch was commonly perceived. This would introduce additional differences 

between resolved and unresolved tone pairs, and thus, this idea for an experimental design 

was abandoned. 

6.2.2 Results and discussion 

The participant in this pilot study had very good TFS and pitch discrimination 

abilities as confirmed by previous behavioural tests. The participant matched the ICU 

stimulus (F0 = 200 Hz, Δf = 100 Hz) with an HCU tone containing an F0 of 210 Hz for 

the HCU-F0 condition.  

 

MMW1s 

The MMN component of the MMW1 only just exceeded the noise floor in the 

designated time window of interest between 90 ms and 230 ms (Figure 6.7, left) for the 
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HCU-ICU and the HCU-F0 conditions, although the participant could distinguish them 

without difficulty. The observed small MMN amplitude in the HCU-F0 condition 

suggests that the small MMN amplitudes in the HCU-ICU condition were not necessarily 

an effect of complex pitch extraction, but rather due to the subtlety of the acoustic change 

for the small perceived pitch difference. It should be noted that both conditions contained 

stimuli with unresolved components, which is associated with lesser pitch salience, which 

in turn relates to smaller MMW amplitudes. Despite its comparably low amplitude, the 

morphology of a typical MMN component was visible. The AM and the spectral ripple 

control conditions exhibited MMW1s that greatly exceeded the noise floor (Figure 6.7) 

which was in line with observations from previous studies. For the Schroeder-phase 

condition, the MMN visibly exceeded the noise floor. However, it showed two negative 

peaks, rather than a single negative peak, for both the MMW1 and the MMW2.  

 
Figure 6.7: Cortical auditory evoked potentials (CAEPs) elicited by five different 
stimulus pairs for a pilot participant.  
The acoustic tone pair differed for each row and is indicated on the left. (A) In the left column 
the standard (STD) and deviant (DEV) CAEPs are shown with arrows indicating the change 
related negativity in the DEV CAEPs. Their respective difference waves show the mismatch 
waveforms (MMWs). Grey lines indicate a bootstrapped noise floor and vertical red lines 
indicate the time range of interest for the mismatch negativity (MMN). (B) Here, the STD 
CAEP for the calculation of the difference wave was obtained by presenting the DEV stimulus 
in a DEV-alone condition. Abbreviations and acronyms: HCU – Harmonic complex with 
unresolved components, ICU – Inharmonic complex with unresolved components, AM – 
Amplitude modulation. 
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MMW2s 

The deviant-alone CAEP only had 17.6% (=  15%
85%

) of the number of epochs 

available for the standard CAEPs, which resulted in a notably greater bootstrapped noise 

floor for the MMW2s (Figure 6.7, right) than for the MMW1s (Figure 6.7, left). For this 

reason, MMW2s exceeded the noise floor less than MMW1s. The lower number of 

deviant-alone epochs also affected the SNR of the MMW2s. For a fair comparison 

between MMW1s and MMW2s, the number of deviant-alone presentations should be 

equal to the number of standard presentations, which would significantly increase the data 

acquisition time. Overall, the morphology of MMW2s and MMW1s was similar, 

suggesting that deflections in the difference waveform were due to change detection 

mechanisms, rather than differential neural processing of the physical stimulus.  

 

HCU-F0 condition 

Pitch matching abilities are degraded for complex stimuli even in NH participants 

(Moore et al., 1992) and a follow-up pilot study within the lab indicated that many people 

were unable to reliably match the pitch of the ICU stimulus to an HCU stimulus with a 

different F0. With inconsistent performance across as well as within participants, a pitch-

matched paradigm would provide unreliable results in a neurophysiological paradigm. 

Therefore, this line of research was not further pursued. 

 

In conclusion, the results from this case study provided support for the feasibility 

of investigating the MMW as a potential objective measure of TFS processing. MMWs 

were of small amplitude for the HCU-ICU condition, but were successfully measured. It 

should be noted that this case study looked at individual data, and results may be more 

distinguished on a group level. 

 

6.3 Phase 3 – A study on the feasibility of neural change 
detection measures for TFS processing 

The promising findings in Phase 2 motivated the third phase of the TFS study, in 

which the MMW paradigm was employed to obtain neural change detection measures for 

three conditions: (1) the HCU-ICU stimulus pair with maximum frequency shift Δf, 

(2) the Schroeder-phase harmonic complex tone pair, and (3) the AM tone pair with 100% 
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AMD. The first two conditions probed discrimination abilities based on TFS cues, and 

the AM condition was added as a control condition. Additionally, behavioural 

discrimination abilities were measured to ascertain that participants could discriminate 

the stimuli. A questionnaire was administered to record participants’ discrimination 

confidence. 

The single-channel set-up employed in Phase 2 was extended. A second recording 

channel was added by combining two amplifiers in the set-up (see Figure C.3 in 

Appendix C). Having two recording sites reduced the risk of missing a neural response 

in the measurement, especially when the expected response had small amplitudes. The 

two recording electrodes were placed at Cz and Fz. These two electrode positions are the 

most widely reported for MMN recordings and commonly provide the largest MMN 

amplitudes. Referencing to the contralateral (with respect to the side of stimulus 

presentation) mastoid was expected to provide good signal-to-noise ratios as the MMN 

has opposite polarities between central and mastoid electrode locations. The new dual-

channel measurement set-up was validated and results are presented in Appendix A. 

6.3.1 Methods 

Participants 

Eleven healthy, young participants with no reported hearing impairments 

participated in this study. Informed written consent was obtained from all participants 

prior to participation and all experimental procedures were approved by the Ethics 

(Medical Research) Committee at Beaumont Hospital, Beaumont, Dublin and the 

Research Ethics Committee at Trinity College Dublin.  

Participants were seated in a quiet room and auditory stimuli were presented 

monaurally to the left ear via headphones (SONY MDR-XD200) for all tests. The 

presentation level of 70 dB SPL was verified with a pure tone (1 kHz) which was RMS-

balanced with the experimental stimuli. Loudness measurements were carried out with a 

KEMAR mannequin (45 BC) with pinna simulator (KB 0091), pre-amplifier (26CS) and 

pre-polarized pressure microphone (40A0) (all from G.R.A.S. Sound & Vibration). All 

stimuli were energy matched by adjusting the RMS amplitude. 
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Stimuli 

HCU-ICU stimuli and Schroeder-phase stimuli were created according to the 

descriptions in Phase 2 in Section 6.2.1. The stimulus pair for the AM control condition 

was designed as outlined in Section 3.1.2. All stimuli were RMS-balanced and contained 

10 ms on/off-ramps. Schroeder-phase harmonic complex tones had a fundamental 

frequency of 50 Hz. HCU-ICU tones had a fundamental frequency of 200 Hz, with a 

constant frequency shift of 100 Hz (0.5F0). All stimuli had a duration of 375 ms with an 

ISI of 200 ms. 

 

Behavioural paradigm 

Behavioural TFS discrimination abilities were assessed with a non-adaptive 

3AFC paradigm for two conditions: Participants had to discriminate between HCU and 

ICU tones or between positive and negative Schroeder-phase harmonic complex tones. 

For each condition, data was acquired for two blocks with 30 responses each. 

Discrimination scores were calculated as the percentage of correct discriminations. 

Performance was considered to be significantly above chance level if the discrimination 

score was above 43.3%. This value was calculated using the binomial distribution to 

determine the probability of scoring n out of 60 trials correct by chance, with a probability 

p = 0.33 to score an individual trial correct by chance. The probability of scoring 26 or 

more trials correct by chance was less than 0.05, and thus, scores equal to or greater than 

26 correct responses out of 60 (43.3%) were considered as significantly above chance 

level. A questionnaire containing four questions was administered for the two TFS 

conditions to gage discrimination ability, confidence, effort, and concentration levels 

(Figure 6.9). 

 

Neurophysiological paradigm 

EEG data was acquired with a custom-designed dual-channel system (for details 

see Figure C.3 in Appendix C). Recording electrodes were placed at Cz and Fz, both 

referenced to the right mastoid while the ground electrode was placed on the right 

collarbone. One of the amplifiers developed a fault after data acquisition for the eighth 

participant. Data for the following three participants was acquired with only one recording 

channel placed at Fz. Data analysis showed near identical results for data from Cz and Fz 

in the participants where both channels were available, and thus, analysis was reduced to 

the data recorded from Fz in the following. 
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Data was acquired divided into four blocks for each of the three conditions. Within 

each block, 18 deviant stimuli were presented at the start in a deviant-alone segment, 

followed by ten standard stimuli to “prime” the brain for the oddball segment. In the 

oddball segment, stimuli were pseudo-randomized. Deviant stimuli had an occurrence 

probability of 12% and standards were presented in the remaining 88% of cases. Each 

oddball segment contained 18 deviants, resulting in 72 deviant presentation in total per 

condition. Stimuli had a duration of 375 ms equal to the behavioural discrimination test, 

with an ISI of 800 ms. Table 6.1 provides an overview of the stimulus assignment to 

standard and deviant stimulus in each condition. 

Table 6.1: Overview of stimulus assignment in the neurophysiological paradigm. 
Abbreviations and acronyms: AM – amplitude modulation, AMD – Amplitude modulation 
depth, HCU – Harmonic complex with unresolved components, ICU – Inharmonic complex 
with unresolved components. 

 Standard (n = 568) Deviant (n = 72) Deviant-alone (n = 72) 

HCU-ICU HCU ICU ICU 

Schroeder-phase Positive complex Negative complex Negative complex 

AM Unmodulated noise AM noise, 100% AMD AM noise, 100% AMD 

 

EEG post-processing 

Continuous EEG data was filtered between 1 Hz and 15 Hz with a 4th order Butterworth 

bandpass filter. Data was epoched from -300 ms pre-stimulus until 600 ms post-stimulus 

according to the trigger type. Baseline correction was applied to standard, deviant and 

deviant-alone CAEPs for a baseline window of -100 ms – 0 ms. MMW1s and MMW2s 

were calculated in line with the procedures in Phase 2 (Section 6.1.1).  

Statistical analysis: In this study, it was of interest to determine whether a 

significant MMW was elicited for each of the tested deviant conditions. Non-parametric 

Wilcoxon signed rank tests were employed for each sample in time across participants’ 

mean difference waveforms to test the hypothesis that each sample distribution had a 

median of zero. If p-values fell below 0.05, this hypothesis could be rejected and one 

assumes that the difference waveform is significantly different from zero. However, due 

to multiple comparisons when testing the individual sample distributions in time, it was 

necessary to minimise the number of computed tests. Based on the a priori knowledge of 

the time window for the MMW, a time window for the analysis was chosen as 150 ms 

until 350 ms. Furthermore, data was down-sampled to provide one sample every 10 ms. 

This approach reduced the number of required tests for each condition to 21 comparisons. 
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The significance level was adjusted according to the false discovery rate (FDR) 

adjustment by Benjamini and Yekutieli (2001). 

6.3.2 Results and Discussion 

Behavioural results were unexpected, as most participants were unable to reliably 

discriminate the HCU-ICU tone pair (Figure 6.8). Responses from the questionnaire 

suggested that participants were very concentrated on the task, but despite such focusing 

many participants were unable to differentiate HCU and ICU stimuli. This was reflected 

in participants’ reported high level of uncertainty about task performance. For the 

Schroeder-phase condition, participants showed robust discrimination abilities resulting 

in ceiling effects. All participants were confident about their discrimination abilities and 

the task load was low, as indicated by the responses gathered with the questionnaire 

(Figure 6.9). 

 
Figure 6.8: Behavioural tone discrimination results. 
Results show ceiling effects for the Schroeder-phase harmonic complex tone pairs for all 
participants. For the harmonic-inharmonic complex tone pair, many participants showed 
performance around chance level (≈ 33%). Only four participants showed performance that 
was considered to be significantly above chance level (≥ 43.3%). Descriptive statistics 
include the arithmetic means (black line) and standard deviations (shaded grey boxes). 

The lacking discrimination abilities for the HCU-ICU condition were reflected in 

the neurophysiological responses. Figure 6.10 compares the CAEPs elicited by standard, 

deviant and deviant-alone stimuli, and shows their respective difference waveforms 

MMW1 and MMW2. Figure 6.11 shows a direct comparison of the MMW1s across 

conditions. For the HCU-ICU condition, the CAEPs were virtually identical, which 

resulted in an almost flat line for the difference waveform, which would be expected 



  

127 
 

based on the lacking behavioural discrimination. For the Schroeder-phase condition, the 

difference waveform showed two negative deflections, which is in line with observations 

from Phase 2, and no positive component associated with the P3a component. It is 

assumed that the second negative component is associated with the MMN, as its latency 

coincides with the latency of the MMN elicited by the AM control condition. However, 

the grand average MMN amplitude in the Schroeder-phase condition was measured as 

≈ 1 µV, whereas the MMN amplitude of the AM control condition was measured as 

almost 4 µV.  

 
Figure 6.9: Questionnaire responses on temporal fine structure tone discrimination. 

 

 
 Figure 6.10: Comparison of grand average cortical auditory evoked potentials 
(CAEPs) and their respective difference waveforms. 
CAEPs were elicited by standard (STD), deviant (DEV) and deviant-alone (DEV-alone) 
stimuli. The mismatch waveform (MMW) labelled MMW1 was calculated as the difference 
wave between STD and DEV CAEPs and the MMW2 was calculated as the difference 
between the DEV and the DEV-alone CAEPs. The change-related negativity in DEV CAEPs 
is indicated by the grey arrows. 
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Figure 6.11: Overview of grand average mismatch waveforms (MMWs). 
Comparison of the MMW1s for the three tested deviant conditions.  

The clear MMW in the AM condition as well as the non-existent MMW for the 

HCU-ICU condition (Figure 6.11) lent support to the data quality of the measurements. 

If excessive noise was remaining after averaging across epochs, the MMW of the HCU-

ICU condition would show random fluctuations. This supports the existence of an MMW 

in the Schroeder-phase condition, given that the difference waveform should show no 

deflections if tones were not discriminable.  

 
Figure 6.12: Detailed processing steps of the statistical analysis of the difference 
waveform with false discovery rate (FDR) adjustment. 
The difference potentials of the three assessed conditions are shown in the top row for the 
time window of interest for the existence of the mismatch waveform (MMW) between 150 ms 
and 350 ms. The four rows below show outcomes of statistical testing for each sample along 
the x-axis. The p-values (2nd row) are the results of Wilcoxon’s non-parametric two tailed 
signed-rank tests examining whether the difference waveform is significantly different from 
zero for each sample, with one sample per 10 ms. It is necessary to adjust for multiple 
comparisons across samples, which is achieved with the false discovery rate (FDR) 
adjustment by Benjamini and Yekutieli (2001). 
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Statistical analysis with Wilcoxon signed-rank tests before adjustment for 

multiple comparisons (Figure 6.12) showed that the AM condition had significant 

responses in the latency range of the MMN and the P3a, the Schroeder-phase condition 

had significant responses at the latency of the MMN and the HCU-ICU condition showed 

significant difference potentials beyond the P3a component (significance p < 0.05). It is 

crucial to adjust for multiple comparisons before interpreting the data. Results were 

adjusted with the FDR-procedure by Benjamini and Yekutieli (2001). Findings showed 

significant difference potentials only for the AM control condition, for both the MMN 

and P3a latency. It should be noted, that the Schroeder-phase condition had a corrected 

p-value of 0.051. An increased sample size may address whether this effect is significant. 

 

6.4 Phase 4 – Addressing limitations of Phase 3 with 
psychoacoustic experiments 

The lack of behavioural discrimination abilities in the HCU-ICU condition in 

Phase 3 gave rise to Phase 4, in which potential influencing factors in stimulus design 

and stimulus presentation were assessed in psychoacoustic experiments.  

 
Figure 6.13: Peak timing of harmonic and inharmonic complex stimuli with a 
fundamental frequency F0 of 200 Hz.  
Instantaneous amplitudes of the harmonic complex tone with unresolved harmonics (HCU) 
and the frequency-shifted inharmonic complex tone with unresolved harmonics (ICU) prior 
to adding threshold-equalizing noise. Depicted ICU tones were created with upwards 
frequency shifts of 100 Hz (top) and 60 Hz (bottom). The latency between the major peaks 
was consistent at 5 ms for the HCU tone, whereas for frequency-shifted ICU stimuli the peak 
timing varies, resulting in perceived pitch variations. 
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One of the potential reasons for the lacking discrimination abilities in Phase 3 

may have been related to the presentation mode of the stimuli. The perceived pitch of the 

HCU and ICU stimuli as shown in Figure 6.15 may be ambiguous. The brain may 

determine the pitch based on the timing difference between differing peaks. As illustrated 

in Figure 6.13, it is possible that the brain uses different peak timing cues with each 

stimulus presentation, e.g. peak 2 and 2’ and the next time between 2 and 3’ or 3 and 2’ 

(Moore, 1993). The resulting pitch ambiguity may negatively impact on discrimination 

performance. If this is the case, discrimination performance should be significantly 

improved when stimuli are presented in a concatenated fashion (HHHH vs. HIHI) as is 

the case for the TFS1 studies by Moore and colleagues. The objective of this follow-up 

study was to determine whether discrimination performance differs significantly between 

individual and concatenated stimulus presentation. 

6.4.1 Methods 

Thirteen young adults without known hearing impairment participated in this 

behavioural study. Each participant spent approximately 20 minutes with the researcher. 

Behavioural discrimination thresholds were estimated for two presentation modes of the 

HCU-ICU tone pair: for individual tone presentation of HCU and ICU tones (H or I) and 

concatenated tone presentation (HHHH or HIHI).  

 

Improving the HCU-ICU stimulus design 

Based on participants’ unexpected difficulties in discriminating the harmonic 

complex tones from their frequency-shifted counterparts in Phase 3, an in-depth analysis 

of stimulus creation was carried out. It was discovered that non-linear phase effects during 

filtering of the stimuli with ‘filter.m’ introduced signal distortions (Figure 6.14), which 

may have negatively impacted discrimination performance.  

 
Figure 6.14: Example of signal distortions due to non-linear phase effects.  
Stimuli are depicted prior to adding background noise. The asymmetric envelopes are 
evidence of non-linear phase effects due to filtering of the summed components with 
MATLAB’s function ‘filter.m’.  
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Figure 6.15: Harmonic and inharmonic stimuli with threshold-equalizing noise (TEN).  
Pictured are differing time windows of the harmonic complex tone with unresolved 
harmonics (HCU) and the frequency-shifted inharmonic complex tone with unresolved 
harmonics (ICU) with and without added TEN. Their fundamental frequencies F0 are 200 Hz 
and the components of the ICU are shifted upwards by 100 Hz. The first row shows the 
instantaneous amplitudes of the complex tones without TEN and their symmetric envelopes 
(red). The second row shows the influence of the TEN on the instantaneous amplitude of the 
complex tones. The third row shows the spectrogram of the overall stimulus. The fourth row 
depicts the Fast-Fourier-Transform (FFT) of a 40 ms time window11 of the stimuli. The FFT 
was calculated for a time window rather than the full stimulus duration of 375 ms, as 
calculating the spectrum for the whole stimulus duration of 375 ms would widely over-
estimate the “perceived” signal-to-noise ratio between the TEN and the complex tone. 

                                                 
11 A window duration of 40 ms was chosen as a crude estimate for the human auditory temporal 

integration window. The choice of length for the temporal integration window is widely debated and the 
temporal integration window fluctuates with stimulus and task. (Balaguer-Ballester, E., Clark, N.R., Coath, 
M., Krumbholz, K. & Denham, S.L. (2010) Understanding Pitch Perception as a Hierarchical Process with 
Top-Down Modulation. In Lopez-Poveda, E.A., Palmer, A.R., Meddis, R. (eds) The Neurophysiological 
Bases of Auditory Perception. Springer Science + Business Media, pp. 201-210.). 
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To avoid non-linear phase effects, zero-phase filtering was implemented with 

MATLAB’s ‘filtfilt.m’-function. However, ‘filtfilt.m’ applies the created filter twice, 

forwards and backwards, effectively doubling its order. In order to maintain an effective 

roll-off of 30 dB/octave, the filter’s roll-off was reduced to 15 dB/octave. The created 

stimuli no longer presented undesired signs of distortion12 (Figure 6.15). However, the 

specified flat bandpass with a width of F0 around the centre frequency could no longer 

be obtained with this approach.  

Continued email correspondence with Professor Moore13, University of 

Cambridge, revealed that stimuli were not in fact filtered with the described filter settings 

(flat pass-band around the centre frequency, 30 dB/octave roll-off), but individual 

harmonic components were adjusted in a manner that simulates these filter settings. This 

may explain the persistent discrepancies in the stimuli’s spectra when generated stimuli 

were compared to recorded stimuli from the TFS1 software14 (Moore & Sek, 2009). For 

this fourth phase of the study, stimuli were no longer filtered to limit spectral content, but 

rather, harmonic components were scaled by a weighting matrix prior to summation, and 

thus, simulating the described filter properties. 

 
Psychoacoustic paradigms 

Behavioural discrimination abilities of HCU and ICU tones were assessed with a 

3AFC test. In the individual condition, two HCU tones and one ICU tone were presented 

in randomised order. In the concatenated condition, two segments of the pattern HHHH 

and one segment of the pattern HIHI were presented, where H corresponds to the HCU 

tone and I corresponds to the ICU tone. Individual tones were presented with a duration 

of 375 ms and an ISI of 300 ms. In the concatenated condition, the individual segments 

of H or I tones were of 200 ms duration, with a 100 ms gap in between each segment. The 

ISI between two consecutive concatenated segments was 300 ms. 

Adaptive procedure: The starting frequency shift between HCU and ICU stimuli 

was 100 Hz (which equals 0.5F0). The frequency shift was adapted according to the 

2-down/1-up procedure. The frequency shift was changed in line with Füllgrabe et al. 

                                                 
12 Behavioural data obtained from lab members suggested that performance was not influenced by 

the distortion due to non-linear phase effects, as participants did not show improved performance for stimuli 
without distortions. 

13 Email correspondence from March and April 2018. 
14 The software to carry out the original TFS1 test can be obtained from the following source: 

http://hearing.psychol.cam.ac.uk/. 

http://hearing.psychol.cam.ac.uk/
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(2014) by a factor of (1.25)³ until the first reversal, by a factor of (1.25)² until the second 

reversal and by a factor of 1.25 from the third reversal onward. The block was terminated 

after the eighth reversal and the threshold was calculated as the geometric mean of the 

frequency shifts at the last six reversals. 

Non-adaptive procedure: If participants’ discrimination abilities were poor and 

the adaptive procedure returned to the maximum frequency shift of 0.5F0 after the first 

reversal, the procedure was changed from adaptive to non-adaptive. In this case, the 

frequency shift was kept constant at 0.5F0. Performance was assessed as the percentage 

of correct discriminations across 25 repetitions per block. 

 

Statistical analysis 

Data was obtained with either the adaptive or non-adaptive procedure as outlined 

in the previous section, depending on the participants’ discrimination abilities. To allow 

comparison of the data, results were converted to d’ values (Green & Swets, 1974) in line 

with procedures described by Hopkins and Moore (2007). The conversion followed the 

table by Hacker and Ratcliff (1979). The adaptive procedure tracked the 70.7% correct 

point on the psychometric function, which corresponds to an interpolated value of 1.268 

for d’ in a 3AFC, 2-down/1-up procedure. Estimates of the value which would be 

measured for a frequency shift of 0.5F0, as measured in the non-adaptive procedure, were 

calculated by dividing 1.268 by the measured threshold in the adaptive procedure and by 

multiplying this value by 0.5F0 (Hopkins & Moore, 2007). A value of d’ below 0.36 was 

considered as chance performance in line with procedures described by Hopkins and 

Moore (2011). This value was calculated using the binomial distribution to determine the 

probability of scoring n out of 50 trials correct by chance, with a probability p = 0.33 to 

score an individual trial correct by chance. The probability of scoring 22 or more trials 

correct by chance was less than 0.05, and thus, scores equal to or greater than 22 correct 

responses out of 50 (which corresponded to d’ ≥ 0.36) were considered to be significantly 

better than chance. 

6.4.2 Results and discussion 

Figure 6.16 illustrates discrimination results prior to conversion to d-prime values 

for a better understanding of the data. The left plot shows results for participants that were 

unable to reliably discriminate harmonic from inharmonic tones, and who were therefore 
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assessed on their discrimination performance for the maximum frequency shift. The right 

plot presents results of participants who were able to reliably discriminate harmonic and 

inharmonic tones for frequency shifts below the maximum frequency shift of 0.5F0. 

Results are presented as the estimate of the frequency shift at which participants achieve 

70.7% correct discrimination. 

 
Figure 6.16: Psychoacoustic results for discrimination performance between harmonic 
(H) and inharmonic (I) stimuli.  
Stimuli were presented individually (H vs. I) or in concatenated segments (HHHH vs. HIHI). 
When participants were able to reliably discriminate the ‘odd one out’ in the three-
alternative forced choice paradigm, performance is indicated as a threshold based on the 
adaptive tracking procedure (right). In the case of poor discrimination abilities, performance 
was measured as percentage correct discrimination at the maximum frequency shift of 0.5F0 
(left). 

The d’ values depicted in Figure 6.17 show that performance of six (concatenated 

presentation mode) and seven participants (individual presentation mode) was not 

significantly different from chance performance. No prominent bias towards better 

performance in one of the two presentation modes was observed (Figure 6.17, right plot). 

Most participants demonstrated no large performance differences with two exceptions: 

As indicated in Figure 6.17, participant ‘CO12’ was unable to detect the difference when 

tones were presented in concatenated segments (d’ = 0.09), but achieved a threshold of 

47.7 Hz frequency shift when tones were presented individually. In contrast, participant 

‘CO8’ was able to achieve a very low (good) threshold of 8.2 Hz frequency shift when 

tones were presented in concatenated segments, but showed very poor performance when 

tones were presented individually with 52% correct detections (d’ = 0.62), which was 

only marginally above chance performance (d’ < 0.36). The reason for such a stark 
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performance difference in two participants with the effect in opposite directions remains 

elusive.  

 
Figure 6.17: Comparison of discrimination performance between harmonic and 
inharmonic tones for two presentation modes.  
Individual mean d’ values for discrimination of harmonic (H) and frequency-shifted 
inharmonic (I) tones for the ‘concatenated’ presentation mode (HHHH vs. HIHI, left) and 
the ‘individual’ presentation mode (H vs. I, middle). A value of d’ ≤ 0.36 indicates chance 
performance. The performance difference between the two presentation modes is visualized 
in the right plot. Descriptive statistics include the arithmetic means (black lines) and 
standard deviations (shaded grey boxes) of the group data. 

Statistical analysis with a two-tailed non-parametric Wilcoxon signed rank test confirmed 

that the median difference-d’ values (Figure 6.17, right) was not significantly different 

from zero (W = 27, p = 0.367). This supports the statement that performance was not 

significantly different between the two presentation modes, and thus, the presentation of 

individual tones rather than concatenated tones was not the source for the observed lack 

in discrimination performance in many NH participants during Phase 3. 

 

6.5 Summary 
In conclusion, findings from the different phases of this study illustrated the great 

difficulties with stimulus replication of the TFS1 stimuli due to lacking information in 

the literature. In Phase 1, psychoacoustic testing employing custom-designed harmonic-

inharmonic tone pairs provided behavioural discrimination thresholds in line with those 

reported in the literature for the TFS1 test. However, neurophysiological measures of 

change detection were inconclusive. In Phase 2, stimuli were created more closely in line 
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with TFS1 stimuli and the neurophysiological paradigm concentrated on the maximum 

frequency shift between the HCU-ICU tone pair. MMWs were successfully measured for 

the pilot participant. In Phase 3, the same HCU-ICU tone pair as in Phase 2 was 

employed for a cohort of eleven NH participants. Only three participants were able to 

discriminate the ICU tone from HCU tones with performance better than chance. Flat 

difference waves indicated no significant differences in neural processing of the ICU 

tones among HCU tones. Phase 4 was concerned with the investigation of potential 

sources of the discrimination difficulties. Non-linear filter effects which had arisen during 

stimulus creation were avoided by modelling the desired filter effects and performance 

was assessed for individual stimulus presentation (in line with Phases 1 – 3) and 

concatenated stimulus presentation (in line with the TFS1 test by Moore and Sek (2009)). 

No significant difference in performance was observed for the two presentation modes, 

but overall more participants were able to discriminate HCU and ICU tones with 

approximately half of the participants performing above chance level. 

To date, it is unknown what aspect of the stimulus design resulted in the 

difficulties in discrimination performance. The author believes that the only potentially 

remaining difference lies in the SNR between background TEN and the complex tone. In 

future work, stimuli should be created in collaboration with Moore and colleagues with 

the original code to avoid any potential discrepancies in stimulus design. However, it is 

very interesting how greatly discrimination performance varied within the NH cohort for 

HCU-ICU tone discrimination.  

Further findings from Phase 2 and Phase 3 provided evidence for the elicitation 

of MMWs in response to a Schroeder-phase harmonic complex tone pair, supporting the 

feasibility of employing the MMW paradigm to objectively assess TFS processing 

abilities. However, MMW amplitudes were low and future work has to address whether 

the MMW can be successfully employed to assess Schroeder-phase discrimination for 

varying fundamental frequencies and in hearing impaired cohorts. 

At this stage it should be noted that the Schroeder-phase harmonic complex tone 

offers a more promising assessment tool for TFS processing in hearing impaired cohorts 

than the HCU-ICU tone pair: Previous studies have shown that CI users can successfully 

discriminate Schroeder-phase tone pairs (Drennan et al., 2008; Leijsen et al., 2015). 

However, no studies have been reported in the literature that have investigated whether 

CI users are able to perform the TFS1 test. Based on difficulties of hearing impaired 

cohorts with the TFS1 test (Hopkins & Moore, 2007; 2011) it is unlikely that CI users 
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can successfully perform this test. It is essential to determine psychoacoustic tests that 

can be employed in participants with a wide range of hearing abilities, in order for the 

tests to be clinically applicable. Following this step, further research may establish the 

feasibility of employing the chosen TFS stimuli in neurophysiological tests to obtain 

objective measures of discrimination abilities. 

 

 
 

Key Points 

• The studies presented in this chapter addressed the research question Q3.1. 

MMWs could be observed for the Schroeder-phase harmonic complex tone pair, 

although statistical analysis provided adjusted p-values of 0.051 for the existence 

of a significant difference waveform. 

• No MMWs were observed for the HCU-ICU tone pair, which is in line with 

lacking behavioural discrimination abilities. 

• Aspects of stimulus design and presentation mode were investigated to explore 

the underlying source for discrimination difficulties, but no combination of 

parameters was found that successfully replicated TFS1-stimuli and matched 

discrimination performance reported in the literature. 

• These findings, or parts thereof, were presented at the IERASG symposium, 

Warsaw 2017, and the 8th MMN conference, Helsinki 2018. 
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 General discussion 

7.1 Thesis summary 
The presented studies investigated the feasibility and clinical applicability of 

CAEP-based neurophysiological change detection measures as objective metrics of 

temporal auditory processing abilities.  

In the first study presented in Chapter 3, MMWs were successfully measured in 

a NH cohort in response to AM cues (Q1.1). MMWs differed across AMD conditions 

according to the change saliency (Q1.2). Objective neural thresholds were successfully 

obtained (Q1.3) and showed significant correlations with behavioural AM detection 

thresholds (Q1.4). No significant correlations (after adjustment for multiple comparisons) 

were observed between speech-in-noise recognition and behavioural AM detection 

thresholds (Q1.5).  

In the case study presented in Chapter 4, ACCs were successfully measured from 

a pilot participant with a CI in response to AM changes and also for a spectral control 

condition (Q-CS.1). The spectral control condition elicited ACCs of much greater 

amplitude and SNR compared to the AM change condition, highlighting one of the 

difficulties of assessing temporal features compared to spectral features. Neural responses 

showed strong electrical artefacts from CI stimulation prior to artefact reduction 

procedures. Continuous presentation of stimuli resulted in reduced pedestal artefacts from 

electrical stimulation compared to individual stimulus presentation due to the power-up 

and power-down of the device (Q-CS.2). CI artefacts were successfully reduced with the 

proposed automated ICA-based algorithm (Q-CS.2). 

Findings from Study 2, which were outlined in Chapter 5, showed that MMWs 

could be successfully obtained from individuals with CIs in response to AM stimulus 

sound pairs (Q2.1). The CI artefact was successfully reduced with ICA despite differing 
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stimulus envelopes between standard and deviant stimuli (Q2.2). The introduction of the 

deviant-alone stimulus segment was beneficial for artefact reduction based on subtraction 

(without ICA) to calculate MMW2s, but data quality was inferior to MMW1s calculated 

with ICA-based artefact reduction (Q2.3). Individual neural thresholds could be estimated 

(Q2.4) and were significantly correlated with behavioural thresholds of AM detection 

(Q2.5). However, no significant correlations were observed between speech recognition 

in noise and behavioural AM detection thresholds (Q2.6). Data obtained from NH control 

participants showed similar morphology to the data from CI users. The additional 

subjectively loudness balanced condition confirmed that MMWs were not elicited based 

on remaining loudness cues (Q2.7). 

Pilot studies presented in Chapter 6 showed the feasibility of measuring 

behavioural (Phase 1) and neurophysiological (Phase 2) discrimination of tone pairs 

based on TFS cues (Q3.1). However, Study 3 showed that most NH participants were 

unable to discriminate the tone pair. This demonstrates the large variability in 

discrimination performance within a NH cohort. It also indicates stimulus replication 

issues of the TFS1 test stimuli. 

 

7.2 Discussion of the main findings 
The EEG-based metric provided the required temporal resolution to assess rapid 

temporal changes. EEG is non-invasive, cost-efficient and readily available, and 

therefore, it provides the optimal tool for research and clinical settings. The proposed 

methodologies such as neural threshold estimation based on CAEPs offer useful tools for 

clinical settings to aid rehabilitation procedures and diagnostics, as well as in basic 

auditory research which attempts to increase our understanding of how the brain 

processes complex tones. 

Having a CAEP-based neurophysiological measure allows the use of complex 

acoustic stimuli, which has advantages over other peripheral neurophysiological 

measures such as ECAPs and EABRs, which are commonly elicited by simplistic stimuli 

such as click trains. As CAEPs can be elicited by complex acoustic stimuli and are 

measured at the cortical level, higher-order auditory processing may be assessed. Studies 

reported in the literature have shown that metrics assessing higher-order (central) 

processing show better links to speech perception outcomes in CI rehabilitation (Groenen 
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et al., 1996; Firszt et al., 2002; Kelly et al., 2005; Groenen et al., 2009; Zhang et al., 

2011) than peripheral measures such as ECAPs and EABRs (Miller et al., 2008). The 

CAEP-based metric has advantages over previously investigated continuous measures of 

temporal auditory processing such as the (E)ASSR with regards to its applicability in a 

clinical CI user cohort: Measurements can be obtained with the patients’ clinical speech 

processors without the need for proprietary research equipment for each CI manufacturer, 

as is the case for EASSR measurements (Gransier et al., 2016). However, continuous 

measures such as the (E)ASSR provide advantages with respect to the assessment of 

temporally evolving stimuli. In theory, continuous measures may provide a more accurate 

measure of temporal processing than their time-locked counterparts due to continuous 

integration of the perceived information over longer periods of time. In the case of time-

locked change detection in CAEPs (MMW & ACC), the integration time window of 

sensory information is limited, as responses are typically observed between 100 ms and 

400 ms after the acoustic change onset. For a 4-Hz AM stimulus this constitutes less than 

2 AM cycles. The limited integration time window may reduce the sensitivity of CAEP-

based change detection measures, as difficult to discriminate stimuli may require 

prolonged integration of information as indicated by increasing reaction times with task 

difficulty. It is possible that the exact time point of neural change detection (≙ decision 

making) exhibits an increasing temporal jitter with increasing task demand, which in turn 

leads to diminished change detection responses due to averaging. Despite these caveats, 

the results of the studies presented in Chapters 3-6 show that it is possible to elicit 

meaningful change detection responses based on CAEPs. 

Study 1 defined the novel framework of neural threshold estimation from MMW 

data incorporating morphology weighting of the obtained neural data. Findings 

demonstrated that the morphology weighting reduced the influence of random 

fluctuations in neural data, and thus, has a positive influence on objective neural threshold 

estimation from noise-affected data. Numerous studies reported in the literature have 

relied on visual assessment of neural data for neural threshold estimation (Harris et al., 

2007; Martin, 2007; Brown et al., 2008; He et al., 2014). The proposed methodology in 

Study 1 provides an objective alternative to such subjective neural threshold estimation. 

Other studies have investigated relationships between behavioural measures and 

MMN/ACC amplitudes and latencies (Hoppe et al., 2010; Rahne et al., 2010; Turgeon et 

al., 2014; Brown et al., 2015). However, the amplitude and latency are susceptible to the 

influence of random noise. It is preferable to employ amplitude averages over a time range 



  

141 
 

of interest (Rahne et al., 2014) or to calculate the AUC (Lopez Valdes et al., 2014; 

Waechter et al., 2018), as the influence of noise would be reduced (assuming noise has a 

temporal average of zero). 

It was demonstrated that the proposed ACC and MMW metrics are sensitive to 

the cortical processing underlying AM detection. Pilot studies described in Chapter 4 

and Appendix B investigated the ACC as a potential neural metric of AM detection. 

However, when presenting sounds to CI users under free-field conditions, it was not 

possible to control for unwanted cues in the ACC paradigm. Free-field presentation of 

stimuli in CI users could result in electrode changes at the acoustic change, which in itself 

can elicit a neural change response. Furthermore, in the ACC paradigm the ACC may be 

elicited by the sudden change in amplitude at the acoustic change from unmodulated to 

modulated noise sound, rather than the detection of AM. For this reason and also due to 

more robust15 measurements of the neural change response in MMW paradigms (Lopez 

Valdes et al., 2015), Study 2 and Study 3 focused on the feasibility of employing the 

MMW paradigm to obtain objective neural indications of discrimination performance. 

One of the great challenges addressed in the presented research studies was the 

desire to employ EEG methodologies on an individual level. A vast majority of EEG 

research investigates group level differences. Group level analysis is very useful in 

increasing the understanding of the auditory system by comparing neural activity between 

conditions or cohorts. However, for clinical applications it is necessary to acquire 

individual information that may help in diagnosis or expectation management of 

individual rehabilitation outcomes. The neural threshold approach proposed in Study 1 

and Study 2 takes a step towards individual assessment of auditory discrimination 

abilities. With continuous advancements in technology, data quality is bound to improve 

and with it the scope for new and improved methodologies. 

The mind map in Figure 7.1 highlights the inter-dependencies of the presented 

research. Assessment methods and their applications are manifold, but each application 

brings its own requirements and challenges, e.g. psychoacoustics require participants who 

are able to provide reliable feedback. In the case of assessing the applicability of CAEPs 

in CI rehabilitation, challenges included the electrical artefact as well as the vast 

variability in the cohort demographics. CI users have complex histories with a range of 

                                                 
15 Note that data acquisition times differed between ACC and MMW paradigm. Data acquisition 

was planned independently to optimise each paradigm. 
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influencing factors such as cause of deafness, duration of deafness pre-implantation, 

implanted device type, stimulation rates among many other influencing parameters. A 

great challenge lies in the implementation of a research study with a tightly controlled CI 

cohort that is matched with regards to the previously mentioned parameters. Such an 

undertaking would require a collaboration of multiple research centres and clinics to 

gather data for a sufficiently large sample size. This and other challenges are outlined in 

the next Section. 

 
Figure 7.1: Mindmap illustrating the complexity of auditory research.  
The mind-map focuses on the research topics of interest relating to the research questions 
posed in Chapter 2, namely the investigation of objective measures, temporal auditory 
processing and their importance for cochlear implant (CI) rehabilitation. This schematic 
does not claim to provide a complete account of auditory research. 

 

7.3 Challenges of the research 
Restrictions in the data acquisition time pose the greatest challenge in designing 

research studies based on EEG. As discussed previously, increasing the number of 

stimulus repetitions per condition improves outcome SNRs. Additionally, it would be 

beneficial to assess neurophysiological change detection for additional AMDs to improve 

the accuracy of NT estimation. Furthermore, complementing the experimental paradigm 

with additional AM rates (e.g. 40 Hz and 100 Hz) would be of interest to provide a more 

complete overview of AM detection abilities in line with a temporal modulation transfer 
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function. The trade-off between the informational value of the gathered data and the data 

acquisition time is a great challenge in the experimental design and requires thorough 

deliberation in the study design phase, especially when acquiring data in clinical settings 

and from paediatric cohorts. 

Research studies with CI users present their own range of challenges from 

stimulus presentation to low cohort sizes. Stimuli may be presented in realistic, everyday 

free-field conditions with the patients’ own speech processors, which limits the control 

over internal processes of the speech processor such as automatic gain control settings. 

Alternatively, stimuli can be presented via research speech processors with direct 

stimulation, which allows full control over the conveyed stimulation. In the presented CI 

study, it was of interest to assess the relationship between individual behavioural and 

neural thresholds of AM detection, and thus, any effects of stimulus presentation mode 

are reflected in both measures. 

The challenge of low cohort sizes in studies with CI cohorts has been addressed. 

Collaborations across multiple CI centres would increase the potential cohort size. Ireland 

has one centralised National Cochlear Implant Programme, and thus, collaborations 

would have to be created internationally. CI programmes in the UK would be best suited 

to collaborate with due to the geographical and linguistic proximity. On the one hand, the 

employed speech tests already employed a British sentence corpus (BKB test), allowing 

data acquisition with the existing experimental paradigm from a UK cohort. On the other 

hand, employing British speech tests in an Irish cohort may negatively impact outcome 

scores if CI users struggle with the different accent. 

 

7.4 Clinical impact of the research 

7.4.1 Cochlear implant rehabilitation 

CIs have restored functional hearing for many individuals, but there is great 

variability in rehabilitation outcomes. The reasons for this variability are poorly 

understood. CAEPs and the proposed methodologies in the presented studies may offer a 

useful tool to increase our understanding of the neural mechanisms underlying electrical 

hearing. Advancements in speech processing strategies with regards to TFS cues will give 

rise to a demand for objective assessment tools of TFS processing abilities in CI users. 
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Further research is necessary to develop a reliable neurophysiological measure of TFS 

processing abilities to complement existing psychoacoustic tests. 

Speech perception in CI users commonly improves throughout the first year after 

switch-on. Psychoacoustic discrimination abilities based on non-linguistic, but speech-

relevant stimulus pairs provide a good indicator of speech perception outcomes later in 

the rehabilitation process (Drennan et al., 2015). Therefore, neural discrimination 

responses obtained from such stimulus pairs at switch-on may provide a good predictor 

of future rehabilitation success, which may be validated with a longitudinal study.  

Fitting procedures may be aided by assessing basic auditory discrimination 

abilities (e.g. AM detection) with the proposed objective measures. Should the obtained 

objective data suggest lacking discrimination abilities, the clinical team can initiate 

intervention procedures. Such procedures could address whether the chosen speech 

processing strategy is adequate or whether the stimulation rate is suitable for the patient. 

For example, if a patient’s speech processor uses a sophisticated new strategy that aims 

to increase the conveyed TFS information, but very basic AM sensitivity is lacking, it 

should be considered to change the strategy.  

Overall, the presented research takes a step towards an objective measure of 

central auditory processing which may assist in expectation management and fitting 

procedures during CI rehabilitation. The proposed CAEP-based objective measures may 

not inform the clinician of the exact parameter values, but they can provide a more general 

insight into whether basic auditory information can be processed appropriately, enabling 

timely intervention opportunities. 

7.4.2 Auditory neuropathy spectrum disorder 

Auditory neuropathy spectrum disorder (ANSD) is a hearing disorder associated 

with temporal processing deficits. The affected population shows great variability across 

and within patients, which makes its diagnosis very challenging (Sharma & Cardon, 

2015). In general, ANSD is associated with fluctuating hearing abilities, poor speech 

perception and particular difficulty with understanding speech in noisy conditions (Kraus 

et al., 2000). Pure tone thresholds can vary across the full audiometric spectrum and 

commonly do not match hearing abilities (Starr et al., 1996; Berlin et al., 2005). Spectral 

processing is largely unaffected in ANSD and speech perception difficulties are rooted in 

temporal processing deficits caused by dysynchronous neuronal firing (Zeng et al., 1999; 
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Michalewski et al., 2005; Zeng et al., 2005; Berlin et al., 2010). The cochlea function is 

commonly normal (or near normal) as indicated by normal otoacoustic emissions, but 

ABRs are often absent or highly abnormal (Starr et al., 1996). This indicates a disruption 

of the healthy auditory pathway between the cochlea and the brainstem. The lack of 

measurable ABRs supports the hypothesis of potential causes based on diminished 

neuronal firing or impaired neural synchrony. However, at the level of the cortex, CAEPs 

have been successfully measured (Michalewski et al., 2005; Dimitrijevic et al., 2011; He 

et al., 2013; He et al., 2015) albeit delayed and with decreased amplitudes compared to 

NH cohorts. Given the successful elicitation and measurement of CAEPs in ANSD 

cohorts, the proposed CAEP-based objective measure of temporal auditory processing 

may be applicable in the complex diagnosis of this hearing disorder. For a detailed review 

on ANSD the reader is referred to Sharma and Cardon (2015).  

 

7.5 Future research directions 
A goal for future research is to integrate the findings from this research with 

previous research by our group. This would yield a combined test battery for the objective 

assessment of spectro-temporal auditory processing, which tests the full spectrum of 

acoustic cues important for successful speech perception. The proposed objective metric 

may be employed in longitudinal research studies to objectively assess brain plasticity 

after implantation and to monitor brain maturation in implanted infants, children and 

teenagers. Tremendous advancements in stem cell research suggest that in the near future 

it may be possible to restore cochlea function with stem cell treatment (Chen et al., 2012; 

Hu & Ulfendahl, 2013; Park, 2015; Mittal et al., 2017). Such successful restoration of 

cochlea function would further increase the demand for objective metrics of auditory 

processing to assess treatment outcomes and to monitor the neural adaptation after 

prolonged hearing loss. 

The promising findings from studies presented in Chapter 3 and Chapter 5 

encourage further research into the MMW as an objective metric of AM discrimination. 

A recent study by (Erb et al., 2018) has demonstrated that temporal sensitivity, as 

measured with a behavioural AM rate discrimination paradigm after CI switch-on, is a 

reliable predictor for speech recognition outcomes at 6 months post-implantation in CI 

users. This evidence encourages the inclusion of AM rate discrimination conditions in 



  

146 
 

future research studies to complement the presented research with regards to the influence 

of the AMD on discrimination abilities. 

As stated in Section 2.4.1, the MMW/MMN can be observed across all age groups 

from new-borns to adults. Nonetheless, future research studies should validate the 

proposed paradigms which assess AM detection for varying AMDs across age groups to 

evaluate the influence of brain maturation on the obtained neural thresholds. The MMW 

morphology may vary across age groups, which would affect the objective assessment 

and quantification of data. It has to be validated whether the TOIs and ROIs are consistent 

across age groups to successfully employ the proposed objective neural threshold 

estimation procedures. It should also be noted that feasible data acquisition times vary 

between adult and paediatric cohorts and increased influence of movement artefact should 

be expected in paediatric data.  

Studies in Chapter 4 and Chapter 5 employed a multi-channel EEG set-up to 

enable CI artefact rejection based on ICA. However, the multi-channel approach is not 

clinically friendly due to its lengthy set-up time. Thus, it is of interest to determine 

whether the proposed subtraction-based artefact reduction introduced in Chapter 5 may 

provide an alternative to achieve adequate artefact reduction in the high-sampling rate 

single-channel set-up which was employed in the study presented in Chapter 3. 

Findings from studies presented in Chapter 6 did not fully demonstrate the MMW 

as a potential objective metric of TFS processing. Although TFS processing may be 

encoded in the neural processes underlying MMW elicitation, amplitudes were very low 

and many stimulus repetitions would be required to reach a satisfactory SNR. Given the 

importance of TFS processing for functional hearing and the increasing interest in 

improving the conveyed TFS cues in CI speech processing strategies (Wilson, 2000; 

Hochmair et al., 2006; Arnoldner et al., 2007; Krenmayr et al., 2011; Müller et al., 2012; 

Qi et al., 2012; Li et al., 2013; Churchill et al., 2014; Apoux et al., 2015), objective 

metrics remain a very active area of scientific research.  

 

7.6 Final conclusions 
The body of research from the studies presented provides a novel methodology to 

assess cortical processes involved in temporal auditory processing. The non-invasive 

EEG-based metric offers a promising tool to assess changes in the rapid temporal 
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dynamics of sound. Although its applicability may be limited with regards to the 

assessment of TFS processing abilities due to the subtlety of the acoustic cues, it was 

shown that the proposed methodologies provide a promising tool to assess AM detection 

abilities in both, NH and clinical CI user cohorts. The research questions posed in 

Chapter 2 were addressed during the course of multiple studies. In conclusion, the main 

findings indicate that the developed objective metric may provide a promising tool to 

assess temporal aspects of auditory processing in clinical hearing rehabilitation.  
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Appendices 

Appendix A: Supplementary Material for Chapter 6 

A.1 Validation of recording equipment 

To create two recording channels, the acquisition system outlined in Chapter 3 

was duplicated and combined. The signals from the reference and ground electrodes were 

split with a Y-connector16 which fed the electrode signals into two individual Stanford 

Research amplifiers (SR560). The recording electrodes were positioned at the vertex (Cz) 

and the left mastoid.  

To validate the measurement set-up, any potential bridging effects of recorded 

signals due to the common ground and reference electrodes had to be evaluated. In a 

validation experiment, CAEPs were recorded for three conditions, all of which were 

referenced to the right mastoid and the ground electrode was placed on the collarbone.  

(1) Amplifier-1 recording from Cz and Amplifier-2 recording from the left mastoid, (2) 

amplifiers swapped, and (3) both amplifiers receiving the input signal from Cz, which 

was split with a third Y-connector.  

The recorded data showed that both channels measured independent signals as 

indicated by Figure A.1. Both plots in Figure A.1 show the N1-P2 complex for the 

channel located at Cz, and a near flat line for the channel measuring from the contralateral 

mastoid (with respect to the reference electrode). When both channels were measured 

from the same electrode via a third Y-connector cable, the measured signals were nearly 

identical (Figure A.2) as expected.  

                                                 
16 1M2F Y-Connector (SA9315) purchased from www.nexgenergo.com/ergonomics/thought-

EEG.html 
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Figure A.1: Validation results of the dual-channel electroencephalography acquisition 
system with recordings from different electrodes. 
Plots show cortical auditory evoked potentials (CAEPs) acquired with a 500 ms pure tone 
(500 Hz). Both amplifiers were connected and were measuring from Cz and the left mastoid 
(LM). CAEPs show robust N1-P2-complexes when recorded from Cz and a near flat line 
when recorded from the LM. Abbreviations and acronyms: Amp. – Amplifier, LM – Left 
mastoid. 

 

 
Figure A.2: Validation results of the dual-channel electroencephalography acquisition 
system with recordings from the same electrode. 
Plots show cortical auditory evoked potentials (CAEPs) acquired with a 500 ms pure tone 
(500 Hz). Both amplifiers were measuring from the electrode located at Cz. CAEPs show 
virtually identical N1-P2-complexes. Abbreviations and acronyms: Amp. – Amplifier. 
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Appendix B: The influence of experimental parameters on 
the neural response – Insights from NH pilot studies 

This section aims to give an overview of numerous pilot studies that were 

conducted in the attempt to find parameters that greatly influence neural measures in the 

hope of increasing the amplitude of neural change detection measures. None of the pilot 

studies mentioned in this chapter had the statistical power to draw meaningful general 

conclusions from the findings, however, the process of thoroughly debating the influence 

of each parameter on the neural measure deepened the understanding of the topic and 

improved study designs of final studies. Hence, a small overview of these various pilot 

studies is given in the following with tentative interpretations of the results. 

Findings from Chapter 3 have provided evidence for the feasibility of measuring 

CAEPs to represent AM detection among unmodulated noise sounds. However, new 

questions arose from the observed discrepancy (offset) between behavioural and neural 

thresholds of AM detection. To investigate the influence of various stimulus and 

methodological parameters on neurophysiological responses, a set of pilot experiments 

were conducted. The aim was to illuminate the influence of the differing parameters on 

the elicited neural response as well as to find the optimum parameters for robust responses 

with time-efficient data acquisition for future studies. Pilot experiments have explored 

the ACC as a measure of neural change detection with particular focus on the following 

experimental parameters: 

A. Stimulus duration  

B. AM phase onset 

C. AM change vs. amplitude decrease 

D. AM rate 

E. Other 

a. Carrier signal 

b. Attention 

c. Binaural vs. monaural  

d. AM rate discrimination and change direction 

F. General observations 

For the various stimulus parameters under investigation, pilot data was obtained 

for one to five participants. Due to low participant numbers, no conclusions of statistical 

significance can be drawn, but the pilot studies were merely a tool to increase the 
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understanding of neural change responses towards AM stimuli prior to designing a new 

study. The maximum AMD was set to 80% in the pilot experiments to avoid gap effects, 

which may result from 100% AMD. 

B.1 Observations ACC experiments 

Influence of stimulus duration 

Neurophysiological data was acquired for a short and long stimulus duration 

paradigm from five and four participants, respectively. For the long paradigm, the 

stimulus was created with 500 ms unmodulated noise immediately followed by 500 ms 

modulated noise with an inter-stimulus interval of 1s silence. For the short paradigm, the 

stimulus consisted of 250 ms unmodulated noise and 300 ms modulated noise without a 

gap and the inter-stimulus interval was set to 1000 ms. The AM rate was set to 8 Hz. The 

AMD was varied to assess the ACC for decreasing AMDs (80%, 50%, 20%, 12.5% and 

5% AMD). Robust primary N1-P2 responses were elicited for all conditions in both, the 

short and long stimulus paradigm (examples in Figure B.1).  

 
Figure B.1: The influence of stimulus duration on the cortical auditory evoked 
potentials (CAEPs). 
Group mean CAEPs show primary N1-P2 complexes following sound onset (time = 0 ms) 
and secondary N1-P2 complexes (acoustic change complex, ACC). The acoustic change 
represents the change from unmodulated to modulated noise as indicated by the second 
vertical red line. CAEPs were calculated for an average of electrodes surrounding the vertex 
(Cz). CAEPs are presented for the long stimulus condition (left) and the short stimulus 
condition (right) for example amplitude modulation depths (AMDs) of 80% (top) and 50% 
(bottom). Examples of the acoustic stimuli are shown in the top row for an example AMD of 
50%. 
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In the short stimulus duration condition, neural activity had not returned to 

baseline at the time point of the acoustic change (250 ms), which interfered with the 

secondary N1-P2 complex (ACC). For the long stimulus duration, a clear ACC was 

observed for the 80% AMD condition, but not for lower AMDs (Figure B.1). Results for 

AMDs below 50% are not displayed, but did not show any ACCs. Shortening the stimulus 

duration to decrease the data acquisition time is not recommendable to the extent that was 

tested in the short stimulus duration condition, as neural activity had not returned to 

baseline after 250 ms post-stimulus onset.  

For data quality control purposes, an additional paradigm was added for the group 

with long stimuli, which consisted of a spectral ripple sound and its inverted version for 

one ripple per octave. For detailed information on this stimulus the reader is referred to 

Lopez Valdes et al. (2014). Very clear primary and secondary (ACC) N1-P2 complexes 

were elicited (see Figure B.2), providing evidence for an adequate measurement set-up.  

 
Figure B.2: Cortical auditory evoked potentials (CAEPs) for the spectral ripple control 
condition.  
Group mean CAEPs (#participants n = 4) show the primary and the secondary N1-P2 
complex (ACC) elicited by a spectrally-rippled sound with a ripple density of one ripple per 
octave (RPO) (Lopez Valdes et al., 2014); Sound onset (0 ms) and spectral ripple inversion 
(400 ms) are indicated by the red vertical lines. Depicted data was averaged for a central 
region of interest around the vertex. 

 
Influence of AM phase onset 

The influence of the AM’s phase onset was investigated for a pilot participant 

with a continuous ACC paradigm, meaning no silent inter-stimulus interval was present. 

A continuous sound was presented consisting of unmodulated noise interspersed with 1 s 

segments of AM noise. The onset of the AM noise was randomized. The phase onset of 

the modulated sound varied between four values (2π, 1.5π, 1π and 0.5π, see Figure B.3 

for examples). The AM rate was chosen as 4 Hz and the AMD was constant with 80%.  

Neural change detection as indicated by the ACC response showed increasing 

ACC latencies with increasing AM trough latency in the AM stimulus (see Figure B.3). 
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A phase onset of 1.5π in the AM stimulus represents a sudden change from unmodulated 

noise to the decreased amplitude in the AM trough, and resulted in the shortest ACC 

latency and highest ACC amplitude. This finding suggests that the change response may 

be mainly due to the amplitude change between peak and trough amplitude. 

 
Figure B.3: (A) Acoustic change stimuli and (B) cortical auditory evoked potentials 
(CAEPs) for varying AM phase onsets. 
(A) Time extracts of the continuous stimuli are shown for two phase onsets (1.5π and 0.5π). 
The time point of 0 ms represents the acoustic change from unmodulated to modulated 
stimulus with and amplitude modulation depth of 80%. CAEPs are shown for one pilot 
participant (P1, left) for which two phase onset conditions were tested and for two 
participants (averaged, P2 and P3, right) for which four AM phase onset conditions were 
tested. The phase onsets in the legend are ordered by observed latency of the acoustic change 
complex (ACC). CAEPs were averaged for a central region of interest around the vertex and 
electrodes were re-reference to average reference. 

 
Figure B.4: Comparison of cortical auditory evoked potentials (CAEPs) for the 
amplitude modulation (AM) change condition and the amplitude change condition.  
AM stimuli had an AM rate of 4 Hz with an amplitude modulation depth (AMD) of 80% and 
phase onset of 1.5π (green). Amplitude change stimuli were either RMS matched with the AM 
stimulus (high amplitude segment) or the amplitude was equal to the trough amplitude of the 
AM stimulus (lower amplitude segment); CAEPs were averaged for a central region of 
interest around the vertex. 

 

Comparison of AM change vs. sudden amplitude drop 

CAEPs were recorded with a continuous change paradigm and were compared 

between two conditions within one participant (Figure B.4): (1) acoustic change between 
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unmodulated noise and AM noise and (2) change between unmodulated noise stimuli of 

differing amplitudes, where the higher amplitude corresponded to the amplitude of the 

unmodulated noise in the AM change condition and the lower amplitude corresponded to 

the trough amplitude of the AM stimulus in the AM change condition. Neural responses 

showed clear ACCs with virtually identical latencies. The identical latencies lend support 

to the idea that the elicited change response in the AM change condition relies on the 

sudden change in amplitude due to the choice of AM onset, rather than the AM itself. If 

the AM elicited the ACC, the ACC latency should be increased compared to the amplitude 

change condition, as a latency increase would reflect longer integration of stimulus 

information following the acoustic change. 

 
Figure B.5: Comparison of cortical auditory evoked potentials (CAEPs) for amplitude 
modulation (AM) change conditions for two different AM rates.  
CAEPs from two continuous stimulus paradigms with different AM rates; Acoustic change 
from unmodulated to modulated (0 ms) or reversed (1000 ms); The AM depth was set to 80% 
and the phase onset to 1.5pi; Neural responses are averaged for a central region of interest 
around the vertex and average referenced. 

 

Influence of the AM rate 

CAEPs were assessed for two different AM rate conditions with a continuous 

ACC paradigm in which stimuli altered between unmodulated and modulated noise 

stimuli with AM rates of 4 Hz and 40 Hz. The phase onset was set to 1.5π (e.g. trough at 

AM onset). Data was acquired from one participant with known robust CAEPs. Obtained 

ACCs look very similar, although the 40 Hz response is slightly delayed compared to the 

4 Hz response and shows a small decrease in peak-to-peak amplitude (Figure B.5). The 

differences were very minor, but align with reported observations in literature (Han & 

Dimitrijevic, 2015). It is interesting to note that the change from modulated to 

unmodulated stimulus (1000 ms) did not result in clear ACCs. A study looking at the 

combined effects of AM rate and AM phase onset may illuminate further, which feature 

of AM elicits the neural change response. 

 



  

182 
 

Influence of other parameters 

Many parameters were assessed in pilot experiments with one or two participants. 

It was of interest to see if any one parameter results in a clearly visible improvement of 

the SNR of the CAEPs. Observations from further pilot experiments can be summarised 

as follows:  

Carrier signal: Changing the carrier signal from a broadband carrier to a pure 

tone carrier of 500 Hz did not improve the CAEP SNRs at lower AMDs.  

Attention: Changing the experimental paradigm from an ‘unattended’ to an 

‘attended’ condition did not show a clearly visible benefit in neural responses. Besides 

not being an objective measure, changing to an attended experiment would also greatly 

impact on participant comfort during the experiment. 

Binaural sound presentation: Presenting the stimulus binaurally did not result in 

a clear improvement of ACC amplitudes. Due to the planned experiment replication in a 

CI cohort, stimuli should be presented monaurally as the Irish adult CI cohort is 

unilaterally implanted. 

AM rate discrimination and change direction (modulated vs. modulated or 

unmodulated vs modulated): Previously, change detection was considered for the change 

from unmodulated to modulated sounds. In another pilot experiment, the change type was 

altered to an AM rate discrimination paradigm where both stimuli were modulated. 

Changing the AM rate from slow to fast (e.g. 6 Hz to 15 Hz) resulted in very clear ACCs 

even for an AMD of 50%, whereas a change from fast to slow AM did not show such 

clear ACC responses. Higher AM rates are associated with faster rise times of the AM, 

which may lead to improvement in the time-locking of neural responses, and thus, in 

sharper neural change detection. However, an acoustic change in terms of AM rate 

assesses a different aspect of AM detection to the change from unmodulated noise, which 

is equivalent to 0% AMD, and modulated noise. This thesis focused on the influence of 

AMD on AM detection abilities, rather than the ability to discriminate between differing 

AM rates. 

 

General observations 

Some participants did not show an ACC response even for 100% AMD for any of 

the tested paradigms, whereas other participants exhibited an ACC response for AMDs 

as low as 50% AMD. It is difficult to draw a conclusion on the sensitivity and efficiency 

of the MMW and ACC paradigms without direct comparisons in the same cohort. The 
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ACC is certainly more time-efficient in the data acquisition and more epochs can be 

acquired. However, the lack of clearly distinguishable ACC responses in some 

participants is concerning.  

 

Conclusions 

Pilot studies were carried out with the ACC paradigm due to its time efficiency 

and with the hope of running a continuous ACC study with CI users to avoid onset 

artefacts from stimulation. Following the experience with the pilot studies, the main 

concern with the ACC paradigm was that the neural response may be mostly a result of 

the sudden change in the envelope at the time point of the acoustic change (see Figure 

B.3), rather than perception of AM over time. The MMW is not as susceptible to this 

issue because stimuli are presented individually and no sudden change is present. 

Stimulus onsets of AM sounds and unmodulated sounds are quite similar due to the onset 

ramps and in itself would not elicit the MMN. Based on MMN findings relating to 

temporal pattern violation in segments of tones (Saarinen et al., 1992; Tervaniemi et al., 

1994; Vuust et al., 2005; Haigh Sarah et al., 2017), I believe that the MMN provides the 

better “temporal” measure of change detection with a longer window of information 

integration, and thus, Studies 2 and 3 (Chapter 5 and Chapter 6) employed MMW 

paradigms.  
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Appendix C: Measurement set-ups  

C.1 Single-channel set-ups  

C.1.1 Normal-hearing participants 

• Software: MATLAB Release 2014a or prior, The MathWorks, Inc., 

Natick, Massachusetts, United States (‘analogoutput.m’ not supported in 

later versions) 

• Hardware:  

o SR560 Stanford Research Systems amplifier 

o Headphones 

o National Instruments DAQ 

 
Figure C.1: Custom-designed single-channel data acquisition set-up for normal-hearing 
participants. 

 
C.1.2 CI users 

• Software: MATLAB Release 2014a or prior, The MathWorks, Inc., 

Natick, Massachusetts, United States (‘analogoutput.m’ not supported in 

later versions) 

• Hardware:  

o SR560 Stanford Research Systems amplifier 

o Otocube ® 

o National Instruments DAQ 
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Figure C.2: Custom-designed single-channel data acquisition set-up for users. 

C.2 Dual-channel set-up for normal-hearing participants 

• Software: MATLAB Release 2014a or prior, The MathWorks, Inc., 

Natick, Massachusetts, United States (‘analogoutput.m’ not supported in 

later versions) 

• Hardware:  

o 2 x SR560 Stanford Research Systems amplifier 

o Otocube ® 

o National Instruments DAQ 

 
Figure C.3: Schematic of the dual-channel set-up. 
Amp. – Amplifier, Cz – Electrode at vertex, DAQ – Data acquisition device, Fz – Electrode 
frontal from vertex, Mst. – Mastoid electrode 
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C.3 Multi-channel set-ups 

C.3.1 Normal hearing participants 

 
Figure C.4: Schematic of the data acquisition set-up for continuous sound presentation.  

 

 

Figure C.5: Schematic of the data acquisition set-up for intermittent sound 
presentation.  
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C.3.2 CI users 

 
Figure C.6: Schematic of the data acquisition set-up for continuous sound presentation.  

 

 

Figure C.7: Schematic of the data acquisition set-up for intermittent sound 
presentation.  
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