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Sum m ary

This thesis addresses four distinct, but related, problems. All four involve large deviation 
theory.

The first problem is to relate the logarithmic asymptotics of the single server queue length 
distribution to the long time-scale large deviations of the stochastic driving force. Sufficient 
conditions are presented under which this relationship has a simple form, even in the presence 
of nonlinear scales. Under the hypothesis that the service rate is constant, the logarithmic 
asymptotics of the queue length distribution are related to the logarithmic asymptotics 
of the waiting time distribution. Statistical multiplexing is investigated in the presence 
of nonlinear scales, and many-scale behavior is demonstrated: the scale on which large 
deviations are observed depends upon the size of the deviation.

The second problem relates the logarithmic asymptotics of the probability of exhaustion 
of a resource to the large deviations of a growing number of sources using the resource. 
We consider only a finite time interval: this enables us to tackle sources which are non- 
stationary. Nonlinear scales are covered in this treatm ent and, again, many-scale behavior 
is demonstrated.

The third problem deals with constructing a stochastic model which exhibits long range 
dependence. The proposals in the literature involve Gaussian processes. A class of two 
state processes exhibiting long range dependence is constructed. A relationship is presented 
between the large deviations of their sojourn times and the large deviations of the sources 
themselves. An explicit form of the rate-function is found in the case where the sojourn 
times have a semi-exponential distribution.

The fourth problem is to construct distribution-free confidence intervals for measurement 
of effective bandwidths. This treatm ent includes use of a first order auto-regressive filter to 
cope with non-stationarity.
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Preface

The bulk of the material presented here is my own work and is, to the best of my knowledge, 
novel. I have, of course, presented some background material by way of introduction and 
in general I use standard terminology and notation. In order to distinguish my own work 
from the background material, I have used the convention that, unless I specify otherwise, 
any definitions, lemmas, theorems and proofs that are formally presented are original. In 
a few cases, I have given my own proof of a standard result or have modified an existing 
proof to suit my needs; I have clearly identified those cases where they occur in the text.

This thesis is for Ken and Mary.



Chapter 1

Introduction

Tempus Omnia Revelat.



1.1. O N  THIS THESIS  

1.1 On This Thesis

3

This thesis tackles four problems using large deviation theory, and probabilistic estimates in 

general. Although the problems are related, they differ in many ways. Hence it is natural to 

present each problem on its own, in its own chapter. This is what we have done. Chapters 

two and three use an example whose construction can be found in chapter four. We provide a 

general introduction, and motivation, to the subject m atter of this thesis; Queueing Theory 

and Risk Theory.

The work in chapter two was done in collaboration with J. T. Lewis (DIAS) and W. Sullivan 

(UCD and DIAS), and is to be submitted for publication in the near future. The work in 

chapter three was done in collaboration with F. Toomey (DIAS), and has been submitted 

to the Journal of Applied Probability. The work in chapter four was done on my own, 

and is to be subm itted for publication in the near future. The work in chapter five was 

done in collaboration with L. Gyorfi (Technical University of Budapest), J. T. Lewis, A. 

Racz (Technical University of Budapest) and F. Toomey, and is to appear in the Journal of 

Applied Probability 37:1 (2000).

We shall discuss the subject m atter of this thesis in terms of its interpretation in Queueing 

Theory; in the section on Risk Theory, we shall point out the relation between questions 

about queueing behavior and questions about the Cramer-Lundberg model of Risk Theory.

1.2 Queueing Theory 

1.2.1 An H istorical Perspective

Queueing theory has been of interest to mathematicians and engineers since the turn  of the 

twentieth century. Up until the middle of the last century, the focus of work had primarily
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been on application rather than theory. This all changed in 1952 when Lindley published 

his general treatm ent of the single server queue [46].

Lindley was the first to publish the recursion relation governing the evolution of the waiting 

times seen by customers at a single server queue. Let cr„ be the time taken to serve customer 

n, and let be the inter-arrival time between customer n  and n +  1. Then Wn, the time 

customer n  spends waiting in the queue, evolves according to

pendent, i.i.d, inter-arrival times, and proved that a necessary and sufficient condition for 

the waiting time distribution to have a non-degenerate limit is that either E[ai — 6i\ < 0, 

or Un = On for all n  > 0.

In 1962 Loynes investigated Lindley’s equation (1.1) under very general hypotheses. He 

assumed the stochastic driving forces, cr„ and to be stationary, almost surely finite se

quences and proved two remarkable theorems. The first concerns the existence of a minimal 

solution to the Lindley’s recursion (which happens to be stationary) and gives a form for the 

stationary distribution; the second concerns the stability of the queue and the importance 

of the stationary solution found in Theorem 1.1. Proofs of Theorems 1.1 and 1.2 can be 

found in Appendix A.

T heorem  1.1 //{cr„ — is a stationary sequence, then there exists a stationary sequence 

of random variables, T „, which satisfy Lindley’s equation (1.1). Each T„ is equal in distri

bution to the random variable 0 , defined by

=  { W n  +  O n  -  O n ) y  ^ for 71 > 0, ( 1 . 1 )

where a V 6 is the maxinmm of a and b. Lindley considered i.i.d. service times and inde-

( 1 .2 )
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T h e o re m  1.2 I f  the stability condition,

5

liinsup I ~ 1 < oo
n->oo \  j =  1 , (1.3)

holds, then every solution of Lindley’s equation (1.1) couples to the one defined in Theorem 

1.1, after an almost surely finite time.

The Loynes stabihty condition (1.3) ensures that, no m atter what the starting condition 

may be, the waiting time becomes zero after an almost surely finite number of customers 

have passed through the queue. If two solutions of Lindley’s recursion have different starting 

conditions, then coupling occurs once the greater of the two solutions is zero. Hence, under 

the Loynes hypotheses, this will happen after an almost surely finite number of customers 

have passed. Loynes noted that if, along with his stationarity assumptions, cxj —9i is ergodic, 

then the queue is stable if E[cri — 9i] < 0. This has the following interpretation: under the 

assumptions of stationarity and ergodicity, the queue is stable if, on average, customers 

arrive at longer intervals than the time it takes them to be served.

There have been several attem pts to justify (1.2) as the solution to the evolution of a single 

server queue where the parameter space is M'*' rather than Z~*~. For a general reference, see 

the book of Harrison [34], and for an older reference see the paper of Kingman [39].

These days, most work in queueing theory revolves around the queue length rather than 

waiting times. Clearly the evolution of the queue length at a single server queue, in discrete 

time, can be defined in an identical fashion to that of the waiting times. Let St be the 

number of customers the queue can serve at time t, and let At be the number of customers 

which arrive at time t. Then qt, the queue length at time t, evolves according to

qt+i = {qt + At -  St) V 0 for t > 0.

W ith the workload process Wt defined by

- 1

Wt ^  [Ai -  Si) for t > 1,
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and Wq := 0, the Loynes solution of Lindley’s equation is equal in distribution to the random 

variable Q defined by

Q := s u p l^ ( . (1.4)
t>o

1.2.2 Long Tim e-Scale A sym ptotic

A question tha t has become increasingly important with the introduction of high speed 

communication networks is the behavior of the tail of the distribution of Q. If the tail of Q 

is large, then buffers in the network will overflow and quality of service cannot be guaran

teed. Connection admission control is a system whereby quality of service is guaranteed by 

restricting admission to the network.

The most successful approach, to date, has been the use of Large Deviation Theory to 

calculate the exponential rate of decay of the probability of the event {Q > q} as q becomes 

large. In Glyrm and W hitt’s pioneering paper [28], they showed that if a technical set of 

conditions, including the Gartner-Ellis conditions [11], are satisfied, then

F[Q > 9] X

and 6 can be calculated from the large deviation rate-function of the stochastic driving force 

At — St- [We use the suggestive notation

P[Q > g] X (1.5)

as shorthand for the statement that the limit

lim -  log P[Q > q]q-^oo q

exists and is equal to —5; it captures the notion of asymptotically exponential decay.]

We have the following heuristic for Glynn and W hitt’s result; assume that Zt := At — St 

is stationary and ergodic, and E[Zj] < 0 so that the Loynes stability condition is satisfied. 

Furthermore, assume that Wt satisfies a large deviation principle. [Roughly speaking this
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means tha t there exists a non-negative function, the rate-function, /(■) : M —>■ [0, oo], such 

tha t for all x  > E[Zt],

¥\Wt > xt] X exp {—t l { x ) ) .] (1-6)

Prom the definition (1.4) of Q we have that

{Q > q} = {sup W t >  q} = {sup Wcq > ?} =  M  {Wcg > q} ■ (1-7)
t>0 o o  ^>0

At time zero, Q > q if and only if for some cq the workload Wcq, produced between time

—cq and time zero, exceeds q.

Consider fixed c > 0; what can we say about the probability that Wcq is greater than q? As 

c > 0 and E[Zj] < 0, equation (1.6) tells us that

> q ]  = W c q  >  CQ { - exp ( 1.8)

Part of the special character of Large Deviation Theory is the principle of the largest term 

(see Lemma 2.3 of [43]); this principle says that the large deviations rate of decay of the 

probability of a finite union of not necessarily disjoint sets, is the smallest rate of decay of 

each of the individual sets. If we could justify using the principle of the largest term for a 

countable union of sets, then equation (1.8) would yield

(c)) ■o o  '  V /  /

Using equations (1.7) and (1.9), we have Glynn and W hitt’s result,

P[Q > g] X exp inf c / . (1-10)

The biggest gap in turning this heuristic into a proof is the justification of use of the principle 

of the largest term  in equation (1.9). The principle of the largest term applies only to finite 

unions; the following argument explains how we can use (1.8) to get (1.10).
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Let c* be the c at which in fo o c / ( i)  is attained, is the most hkely scaled time in the 

past at which the queue was last empty. Given 0 < c < c* < c < oo, as {sup^>o Wt > q} = 

> q},

{Q>Q}  = { J { W t > q } ^ [ j { W t > q }  U  { W t > q } \ J { W t > q } .  (1.11)
t > 0  t < c q  c q > t > c q  t > c q

The principle of the largest term tells us that the asymptotic rate of decay of P[Q > q] 

equals the minimum rate of decay of the probability of

\ J  { Wt >q }  , U  > q}, and \ J  > q}.
t < c q  c q > t > c q  t > c q

( 1 .12 )

It will be shown in Chapter 2 that for any 0 < c < c < oo the rate of decay of the probability 

of the middle term in (1.12) is governed by the large deviation principle,

U =  P U >  9}
q c > t > c q c > c > c

exp —q inf cl  -
' OO V c

It will also be shown in Chapter 2 that there exists a 0 < c < oo such that the rate of 

dccay of the final term, ^  least as great as that of the middle term:

^[U c>c>c{^c9 >  q}]- To get Glynn and W hitt’s result, we must impose conditions that 

ensure that the contribution from the first term does not dominate. The first and third 

terms in (1.12) have physical interpretations. Define the random variables

Ti {q)  := inf{f \ W t >  q) and T2 {q) := sup{/ : Wt  > q}\ (1.13)

Ti{q) is the first time in the past at which the workload amounted to a level greater than 

q and T2{q) is the last time in the past at which the workload amounted to a level greater 

than q.  Note that, given c and c,

{ n { q ) < c q } =  y  { Wt >q} ,  and [T2{q) > cq] = \ ^  {Wt > q)■ (1.14)
Q < t < c q  t>cQ

Thus equation (1.11) is equal to

{<5 >  9} =  {t i (q) < qc} [ J  {Wcq >  g} U  {T2{q) >  qc}-
c > c > c

Hence the first term fails to dominate if the probability that the workload is greater than q 

does not grow too quickly.
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I M

Figure 1-1: Rate-function transformation when the queue is unstable.

Hx]

Figure 1-2: Rate-function transformation when the queue is stable.

If the queue is not stable, that is E[Zi] > 0, then c l  ( i )  =  0 when c =  l/E [Z i]. Hence, if 

the queue is not stable, the tail of the queue length distribution does not decay. See figure 

1-1 for a graphical representation of this rate-function transformation.

If the queue is stable, that is E[Zi] < 0, and I{x)  is strictly convex (which the Gartner-Ellis 

conditions ensure), then, as I{x)  =  0 for x = E[Zi], cl  is positive for all c > 0. Thus 

the rate of decay of F[Q > q] is positive. Moreover, as I{x)  is convex, c /  (^) is convex for 

c > 0. See figure 1-2 for a graphical representation of this transformation.
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1.2.3 Large Space-Scale asym ptotic

Another question which has become increasingly important to queueing theorists, since the 

introduction of large capacity networks, is statistical multiplexing. This is where superpo

sitions of bursty traffic streams lead to a smoother, less bursty, multiplex. As the multiplex 

is smoother it is less likely to cause a large deviation when queued in a single server queue, 

hence there are economies of scale. Calculating the exponential rate at which this smooth

ness occurs in the queue length, as the number of sources and service rate tend to infinity, 

is the subject m atter of the large number of lines asymptotic.

This asymptotic was suggested independently by Botvich and Duffield [4], and Courcoubetis 

and Weber [8], who consider homogeneous and heterogeneous superpositions of sources using 

a single server queue whose service-rate is growing at the rate at which sources are added. 

A large deviation principle is assumed, with linear scaling, for the multiplex as the number 

of sourccs increases and the sourccs themselves are assumed to have linear long time-scale 

asymptotics. This connects their work to the earlier work of Glynn and W hitt.

They prove, in the case where there is fixed service rate per source, that

lim y  logP[Q^ > Lq] = -J{q) ,
L-><x> L

where is the stationary queue length distribution associated to L  sources, where J{q) is a 

function which can be evaluated if one knows the finite time cumulant generating functions 

of the input traffic.

Duffield [13] then extended this work to include sources which obey long time-scale large 

deviation principles with power-law scaling functions. In particular, he found in this case 

tha t the economies of scale can be much greater than in the linear scaling case.
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1.2.4 Long R ange D ependent M odels
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In queueing networks service rates at switches are often fixed. Most of the modehng effort 

focuses on developing stochastic models which exhibit phenomena found in data-sets. One 

such phenomena is long range dependence, this is where correlations within a traffic source 

decay in time, t, more slowly than exp(-iC '), for some positive constant C. Long range 

dependence has been of interest to teletraffic engineers since claims have been made that it 

is found in certain data-sets (see Leland et. al [42], Crovella and Bestavros [9], and Beran et 

al. [2]), leading to the suggestion of fractional Brownian motion, which exhibits long range 

dependence, as a model for Internet traffic. Fractional Brownian motion suffers from two 

drawbacks as a model of Internet data, it is unbounded, and it takes negative values. This 

is unrealistic given hardware constrains traffic to be bounded, and negative arrivals are as 

physically unsatisfying as the existence of tachyons.

This motivated the work found in chapter four of this thesis, where two state sources are 

constructed which exhibit long range dependence. The basic construction involves describing 

a two state source by the sojourn times it spends in either state. If these sojourn times are 

distributed via a heavy tail, namely a distribution that decays slower than exponentially, 

then the source will exhibit long range dependence.

Using results of Russell, which can be found in [62], we relate the large deviations of the 

sojourn times to the large deviations of the source itself.

1.2.5 Effective Bandw idths

Large deviation rate-functions are notoriously difficult to calculate, even for simple models. 

If a rate-function is convex then an alternative representation which contains the same 

information is its Legendre-Fenchel transform, the scaled cumulant generating function, 

which is almost always easier to calculate.
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FYom Glynn and W hitt’s result, we know how the tail of the queue length decays in terms 

of the workload rate-function, but how would we use this knowledge in practice? We could 

watch the traffic going through a switch, fit a stochastic model to the measured traffic, cal

culate the models rate-function, and hence evaluate ^ found in equation (1.5). This process 

could be acceptable for off-line investigation but is too time-consuming and inaccurate to 

do ‘on-the-fly’. If one wished to do connection admission control one needs to be able to 

calculate ‘on-the-fly’.

In a radical departure from existing suggestions, Duffield et al. [15] proposed taking a cue 

from chemical engineers and measuring the scaled cumulant generating fimction directly. 

They suggested a simple estimator which is sufficiently computational efficient that it can 

be calculated in real-time, on the switch. The work found in chapter five of this thesis is the 

calculation of distribution-free confidence intervals for the estimator that they proposed.

1.3 R isk Theory

The subject m atter of Risk Theory is the stochastic modeling of insurance companies. See 

the book by Grandell for an introduction [29]. The basic model, and the one that receives 

the most attention, is called the Cramer-Lundberg model. This is where we model an 

insurance company to have initial capital u, have income s per unit time, and for the value 

of claims at time t to be governed by the stochastic process {X(}. An im portant issue is the 

calculation of the probability of bankruptcy. Bankruptcy, or ruin, occurs if total claims at 

any time, t, exceed the initial capital plus the income earned up to time t. The ruin event 

is, ^

sup < -  s) > > .
*>0 U = o  J

Identifying s = St, and Xt  =  At,  this event is mathematically identical to the event {Q > u}. 

Hence work done on the asymptotic tail of the queue length distribution is automatically 

true for the Cramer-Lundberg model. Use of large deviation theory, in a seminal form, to 

calculate asymptotics for the ruin event was proposed in 1986 by Martin-L6f [53].



Chapter 2

Logarithm ic A sym ptotics for a 

Stable Single Server Queue and 

A pplications to Statistical 

M ultiplexing

“E ven  the R oya l M ail  can’t deliver us from  what w e ’ve got in to .”

G om ez
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2.1 Introduction

CHAPTER 2. THE SINGLE SERVER QUEUE

Let be a stochastic process. Define Q supoQ Wt- Under the assumption tha t Wt 

satisfies a large deviation principle on regularly varying scales, we deduce tail asymptotics 

for P[Q > q] a,s q becomes large. We discuss the problem viewing Q as the stationary queue 

length distribution at a single server queue. While this interpretation helps our physical 

intuition, clearly it is not necessary.

In [17] Duffield and O ’Connell study the tail of the distribution of Q. The basic aim of [17] 

is to compute

lim ; ^ l o g P [ Q  > g], (2.1)q^oo h(q)

where h{q) is an appropriately chosen scaling function. Glynn and W hitt [28] treat the case 

where h{q) =  q which is appropriate when a large deviation principle (LDP) is satisfied by 

the pair Duffield and O’Connell generalise to the case in which one has a LDP

with a different scaling: [Wt/a{t),v{t)),  where a{t) and v{t) are non-decreasing. Yet a third 

scaling function is employed for (2.1).

Fundamental to the discussion in [17] is the existence of a function h{t) such that the limit 

g{c) defined by
/ N I- v{a~^it/c) ) _

exists for all c > 0. When such an h exists, one can define h := v o a~^. Then

l i mS ^ = 9 ( l ) .
h{t)

The use of h instead of h affects the asymptotic properties of (2.1) only by the multiplicative 

constant g(l), so there is no loss in defining

h{t) := u^a“ ^(<)^.

Then the limit (2.2) becomes
Ht/c) , ,.'-is.-Sir
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which, if a{t)  and v{t )  are non-decreasing, suffices for h to be regularly varying (see Bingham  

et al. [3]). In this work we restrict to the case where both a{t)  and v{t )  are regularly varying.  

Specifically this means that there exists F  >  0, and ^  >  0, such that

li„ . a id  =  (2.3)
t->oo v( t )  t^co a\ t )

for all c >  0. We shall assume that both V  and A  are greater than zero and that a(t )  is both  

continuous and strictly  increasing. Note that, assuming a(t)  is continuous and increasing,

lini in f —— \  log F[Q >  q] =  lim inf log P[Q >  a{q)] (2.4)
9 ->oo v[a  ^(q)) q->oo v(q)

and

lin isu p  —— \  logP[Q  >  q] =  hm sup logP[Q  > a(q')]. (2-5)
9 ->oo v[a '■{q}) g^oo v(q)

T his suggests that we are running the logarithmic asym ptotics of Q  on the same scales as 

Wt,  which is essentially the case.

As G lynn and W hitt did, Duffield and O ’Connell employ the Gartner-Ellis conditions to 

ensure that an LDP is satisfied w ith a convex rate-function; they employ m ethods based on  

the scaled cumulant generating function. These conditions are unnecessarily restrictive and  

hinder intuition.

Our approach makes evident a lacuna in Theorem 2.2 of [17]; their equation (34) is not 

valid in general. We assume that an LDP is satisfied by the pair { Wt / a { t ) , v { t ) ) ,  but do 

not make assum ptions about how it has been deduced. We place our estim ates directly on 

the probabilities, making clear their interpretation, and we provide a sim ple form for the 

resulting asym ptotic rate of decay.

W ith  these assum ptions in mind it is not difficult to prove the lower bound (details are 

presented in Proposition 2.1),

V mi m{ — ^^— l o g F [ Q > q ]  >  -  inf I  ( .  (2.6)
<7 ^ 0 0  v{a-^{q) )  o o  /

More care, however, must be taken with the corresponding upper bound. T his begins by 

sp litting the set { Q  >  q}  into the union of three, not necessarily disjoint, subsets,

{ Q  > q}  =  { sup W t >  q ) ' ^ {  sup W t >  q ] i J {  sup Wt  >  q},  (2-7)
t : a { t ) < q c  t : qc < a { t ) < q c  t :a { t ) > q c
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where 0 < c < c < oo. The principle of the largest term ensures that the rate of decay of 

the probability of {Q > q} is less than or equal to the slowest rate of decay of these three 

sets. It will be shown in Proposition 2.3 that the rate of decay of the probability of the 

middle term in (2.7), for any 0 < c < c < cx3, is bounded above by the rate found in the 

lower bound (2.6). It is shown in Proposition 2.2 that there exists a c < oo such tha t the 

rate of decay of the probability of the final term in (2.7) is bounded above by the rate found 

in the lower bound (2.6).

The LDP hypothesis refers to limiting behavior of logP[H^( > ca{t)\, not values for specific 

t. The asymptotics of a single Wt could dominate those of logP[Q > >̂]. We need to impose 

an additional condition which excludes this possibility, ensuring that there exists a c > 0 

such tha t the rate of decay of the probability of the first term in (2.7) is as quick as the rate 

found in the lower bound (2.6). We then have that

lim —— ^  logP[Q ></] =  -  iiif c' I  { ■  (2.8)q^oo v{a-^{q))  ̂ o o  \ c ' ^ )

In section 2.2 we set up our basic fornmlation and assumptions, stating the main result 

and providing sufficient conditions for it to hold. In section 2.3 we present examples to 

illustrate these results. In section 2.4 we relate the rate of decay of the stationary queue 

length distribution to the stationary waiting time distribution. In section 2.5 we discuss 

statistical multiplexing (which is of key interest to teletraffic engineers) in the presence of 

non-linear scales. In section 2.6 we present some examples of statistical multiplexing on 

non-linear scales. We illustrate how many-scale behavior can occur: the scale on which 

large deviations are observed depends upon the size of the deviation.

2.2 Main Results

We consider a family of random variables {Wt '■ t ^  T )  where T  is an unbounded subset 

of K_)_. In this work we shall be primarily interested in T =  Z+ but provide an additional 

hypothesis under which the work extends to T =  M_|_. We define Q := sup^>o Wt-
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S ca lin g  h y p o th es is :  The function a : M_|. —>■ R f is continuous and strictly increasing, and 

the function : M4. —> is non-decreasing with limj^oo v{t) =  lim(_>oo =  00. For each

c > 0

and =  (2.9)
i-)-oo a(t) t- ôo v{t)

where >1 >  0 and F  > 0 are constants.

By Theorem 1.10.2 of [3] a{t) and v{t) are regularly varying.

Note that in Loynes original work [47], where the distribution Q := supj>o VFj was first 

defined, [V/t : t  € Z+} is defined to be a partial sums process associated w'ith a stationary 

process { Z t } ,  that is Wt := arrivals less service at time t.

In this setting, the individual ergodic theorem (see page 18 of Halmos [33]) proves that

1  ̂ T/T/

lim -  Z - i  =  lim —- =  E[Zi t^oo t ^  t-yoo t  ̂ i I J’
i=l

where T  is the invariant cr—algebra. Hence, in this situation, it seems likely that a(t) would 

be set to be i; if a'{t) is any other scale such that \ ima'{ t ) / t  G {0, oo}, then the information 

about the mean behavior of the arrivals less service is lost on the scale a'{t).

If a(t) is regularly varying with constant A, then Theorem 1.5.12 of [3] proves that a~^{t) 

is regularly varying with constant I/A.

D efin itio n  2 .1  We define the queue scaling function h : M_|_ by

h{q) := v (a ~ \q ) ) .  (2.10)

Prom chapter 1 of [3], in particular Theorems 1.4.1 and 1.5.6, we deduce the following:

L em m a 2.1 Under the scaling hypothesis the function h defined by (2.10) satisfies for each
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As t —> oo the ratio h{ct)/h{t) converges to uniformly as a function of c on compact 

subsets o/M_|_. Similarly, the ratios v{ct)/v{t)  and a{ct)/ a{t) converge uniformly to and 

as functions of c on compact subsets of M_|_. For each (5 > 0 and C  > 1 there exists bg^c 

so that q , t  > bj^c implies

h{t)/h{q) < C

Similarly fo r  v{t)/v{q) and a{t)/a{q).

For each x G R, define [x] to be the least integer greater than x  and \_x\ to be the greatest 

integer which is smaller th an  x.

L e m m a  2.2 Under the scaling hypothesis, fo r  all c >  Q,

ii,„ = .v/A
t^oc v{a (t))

PROOF By definition of the ceiling function, [x],

a~^{ct) < [a“ ^(ci)] < a~^{ct) + 1.

As, by Theorem  1.5.12 of [3], is regularly varying w ith constant l / A  and, by assum p

tion, is increasing,

=  li,„  <  i i „  [ 2 : ^  <  i i „  ( +  1 )  =
«->oo a t-^oo a ^{t) < - > 0 0  y a ^{t) a J

Hence, given 0 <  e <  c, there exists Ng such th a t

v((c — £)^/^a“ ^(i)) u([a“ ^(ci)]) w((c-f

for all t  > Ng.  Hence, as v{t)  is regularly varying,

<(, + ,) VVÂ
< - > 0 0  v[a ‘̂ (t))

for all 0 < e < c; hence the result.
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Lem m a 2.3 Under the scaling hypothesis, for each 7  > 0,
-  00

lim -------   log y  = 1. (2.11)
n->-oo —'yv(n) k—Ti

PROOF We need only show that the left has side in (2.11) is not less than 1. Fix a 

satisfying Q < a < V . By Lemma 2.1, for C > 1 there exists be so that for n > be 

v{k) > v{n){k/n) ‘̂ /C  when k > n. By considering Riemann sums we deduce

jv{n){k/n)°' f°°  7 u(n)a;“^  l v {n){k /nYy exp—7v(A;) < ^  exp--------- —-------  < n  exp—
k = n + \  k = n + \  ^

For all sufficiently large n, 'yv{n)/C > 1, so

 ̂ /  POO \  7 ^(77.)
2 2  —̂ ^{k) < exp -'yv{n) +  exp —(x“ -  1) dx j  exp  ——

Since (logn)/w(n) —> 0, the desired inequality follows by taking C i  1.

LDP hypothesis: {Wt/a(t),v{t)) satisfies a large deviation principle with rate-function 

I{x). That is, there exists a lower semi-continuous function /  : M —>• [0, 00] such that for all 

F  closed

lim sup —̂  log P
t-4oo  V(t )

Wi

and for all G  open
1

lim inf
t^ c o  v { t )

logP

_a{t)

'Wt
a{t) G G

< -  inf I{x),
x^F

> — inf I(x). 
~  x e G

We do not assume that I{x) has compact level sets (ie. is a good rate-function), as some 

authors do, as they are not necessary for this part of the treatment. We will, however, need 

compact level sets in the section on statistical multiplexing. Section 2.5, in order to use the 

simplest form of the contraction principle.

Stability and Continuity hypothesis: I{x) is non-decreasing for x > 0, 7(0) > 0 and 

there is some x > 0 such that I{x) < oc. Moreover, I{x) is assumed to be continuous on 

the interior of the set upon which it is finite, which we denote I .
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We say that a set A is a concentration set, with respect to the rate-function I{x),  if

inf I{x) = 0.
xeA

That is, is a concentration set if the probability of A  does not decay exponentially with 

respect to the scales upon which I{x)  is defined.

If I(x) = 0 for some x > 0, then the queue will be unstable: having more arrivals than service 

will be concentration set. If I{x) = oo for all a; > 0, then P[Q > q] will be asymptotically 

zero with rate oo.

Not(! that under the LDP, stability and continuity hypotheses, for all c > 0,

= A1

< lim inft^,oo ^  log P

1 
1 

A

< l im s u p j^ ^  ^ l o g P _ a (0  ^  C

< l im s u p t^ ^  ^ l o g P - ^  >  C _a{t) ^  C

< -  i n f i > c / ( a : )

Lem m a 2.4 Under the LDP, stability and continuity hypotheses

 ̂ Wtlim —^  log IP 
t^oo v(t) a(t)

> c =  I ( c )

converges uniformly as a function of c on compact intervals contained in, X, the interior of 

the set upon which I{x) is finite.

PROOF For each t E T,

is a non-decreasing function of c. Fix a compact interval [c, c] C I  and let e > 0 be given. 

As 1 (c) is finite and continuous on I ,  we can select c = xq < xi  < ■ ■ ■ < Xm = Q such that 

I(xi)  — I{x i - \ )  < £ for i =  As It{x) converges pointwise to I{x),  we can find

such that \It[xi) — I{xi)\ < e for all t > and all i G { 0 ,... ,m} .  Then, as It(c) is 

non-decreasing, for any c G [c, c] and all t > N e ,  \ I t { c ) - I { c ) \ <2 e .

h{c) - ^ l o g P  
v(t)



2.2. M A IN  RESULTS  21

The LDP hypothesis refers to limiting behavior of logP[W^t > ca{t)], not values for specific 

t. The asymptotics of a single Wt could dominate those of logP[(5 > &]• The condition 

below excludes this possibility.

U niform  individual decay rate hypothesis: There exist constants F  > V/A,  K  > 0 so 

that for all t and all c > K ,

logP[M/’i > ca{t)] < - c ^ .  (2.12)

Note tha t if a{t) =  t, then a sufficient condition for the uniform individual decay rate 

hypothesis to be satisfied is for the arrival rate to be almost surely bounded by a fixed K.

E xten sion  hypothesis:

l og¥[ supk<t <k+l  Wt  >  q] ,. logP[W^fc >  q]hm sup -------------- r-=---------------- =  hm sup   .
H q )  ri(q)

This hypothesis is trivially satisfied when T  =  For T  =  K_|. additional information 

about {Wt}  is needed to assure that the supremum over k < t < k + I does not differ 

significantly from Wk+\. Though this hypothesis may be difficult to prove for specific 

models, in actual queues it should be quite clear whether there is a significant difference 

between the maximum over all t and the maximum over t 6 Z+. A sufficient condition is 

tha t the service rate be almost surely bounded above by a fixed K,

sup Wt < Wk+] +  K,  
t e T : k < t < k + l

for all k  € Z+.

The asymptotic lower bound for queue length probability is a direct consequence of the LDP 

and scaling hypotheses for {Wt/a{t).,v{t)).

P rop osition  2.1 Under the scaling and LDP hypotheses
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PROOF Fix c > 0, as <5 =  sup^>Q we know that

1 , 1
^ l o g P [ Q  >q ] >  > q].

Using equation (2.10) we have that the right hand side of (2.14) is equal to 

v{ \a-^cq)] )  1
v{a 1(g)) v{\a 1(cq)1)

By Lemma 2.2,
v{\a Hcq)]) ^  

9 ->oo v{a~^{q))

Let b = a~^{cq), then q =  a{h)/c. So that.

1
v { \ a - ^ c q ) ^ )  L' |a-nc<7)| -  vj

As a{t) is increasing, we know that a([fe]) > a(6), thus

logP
a{h)'

>

The LDP hypothesis ensures that

a{b) > > a(f6])

^ i o g p [ » ' m  >«(r6i)/c] = - / ( ! )   ̂

Thus using (2.14), (2.15), (2.16), and (2.17),

l f e l - > o o  w ( | 6 | )

lini i n f — log P[Q > d  > ( -  ] .Q->oo h[q) \ c J

As this is true for all c > 0,

lim inf —̂  logPfQ > g] > — inf ( -<7 ^ 0 0  h{q) o o  \ c

Substituting c' =  in for c, we get the result (2.13).

(2.14)

(2.15)

(2.16)

(2.17)

The upper bound is treated by splitting the event {Q > q} into three parts, each of which 

is dealt with separately.

T heorem  2.5 For all c >  c >  0,

lim sup log P[Q > q] 
h[q)

' T^)^Og¥[supt:a{t)<gcWt > q] 

m  log^[^^Pt:a(t)>9C W t >  q].

(2.18)
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PROOF Using (2.7), a direct application of the principle of the largest term (see Lemma 

2.3 of Lewis and Pfister [43]) suffices.

First we treat the last term in equation (2.18).

Proposition 2.2 Under the scaling, LDP, stability and continuity hypotheses, there exists 

0 < c < oo such that

lim sup — — log P[ sup Wt > q]
9—>-00 h [ Q )  t :a{ t )>qc

< -  m ic^ I
c>0

(2.19)

PROOF For c > 0 we have

1P[ sup W k > q ] = F [  U  W k > q ] <  ^  F[Wk > q]-
k : a{ k ) >q c k : a{ k ) >q c k : a{ k ) >q c

The LDP and stability hypotheses imply

Select 7 , 0 < 7  <  1(0). Then for all sufficiently large k

F[Wk > q ] <  F[Wk > 0] <

and for all sufficiently large q,

^~'rv{k)

k- .a{k)>qc k : a{ k) >q c

By Lemma 2.3, there exists (5 > 0 so that
00

— log e > S-yv{n)
k = n

for all sufficiently large n. Then, letting n — a ^{qc),

lim sup log
q-^oo

k:a[K);>qc

Since -> 00  as c 0 0 , we may choose c > 0 so that
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Now for the middle term in equation (2.18).

P ro p o sitio n  2.3 Under the scaling, LDP, stability and continuity hypotheses, for  all 0 <  

c < c <  oo,

limsup logP[ sup Wt > q] < -  inf I  f V (2.20)
9 ^ 0 0  h{q)  f . q c < a { t ) < q c  J

PROOF We have that

'[ sup Wk > g] < a ^{qc) _niax >  q] ■ (2.21)
/c:gc<a(fc)<q'c k:qcCa{k)-^qc

As 1/ >  0

lim sup — — log a  ̂(qc) =  0.
(?—>oo hyq)

Thus, using equation (2.21) and the fact that log is order-preserving, we have that the left 

hand side of equation (2.20) is less than or equal to

l in isu p  m ax log P \ \ \ \  >  q ] . (2.22)
q - ^ Q O  k : q c < a { k ) < q c  h[q)

Let

,2.23)
v{k)

Select e >  0, £ < 1/c. If /(1 /c )  <  oo, let c* l ie .  Otherwise select c* so that I{c*) <  oo, 

c* +  e <  1 /c and I{c* +  e) =  +oo. Now limfe/^(c) =  /(c ) for each c G [1/c,c*] by the LDP 

hypothesis. By Lemma 2.4 we have uniform convergence on [1/c,c*]. Note 7(c) >  7(0) > 0 

for c > 0. Then there exists so that n >  implies

7„(c) > 7(c)(l -  e) for c G [1/c, c*] and 7„(c* +  e) > -  if 7 ( l/c )  =  +oo. (2.24)

Note that 7„(c) > I n { c * )  for c G [c*,c* +  e] and 7„(c) >  7„(c* +  e) for c 6 [c* +  e, 1/c]. For 

q > a{N^c) define Cfc for each k, a~^{q/c) < k < a~^{q/c). by Ck := q/a{k)  so that we have 

v{k) — h{q/ck)  and from (2.23) and (2.24),

-  log P[Wk > q ] >

h(qlck)I{ck){l  -  e) if 1/c < c  ̂ <  c*

h[q/ck)I{c*){\  -  e) if c* < Ck < c* +  e (2.25)

h{q/ck)/£  if c* +  e <Ck < 1/c.
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T he value of k  a t which the m ax in (2.22) occurs corresponds to the m inim al term  in (2.25). 

For sufficiently small e the m inim um  does not occur a t the h{q /ck)/e  term . Then this 

m inim al term  divided by h{q) is not less than

inf - 77^ - (̂c -  e )( l -  e) > inf ^ j ^ ^ / ( c  -  e )( l  -  e).
ce[i/c,i/c] h{q) ' 0 0  h{q)

Taking g —>■ 00 and then  the Umit e —̂ 0, and substitu ting  c' =  yields (2.20).

Finally, the  first term  in equation (2.18).

P r o p o s i t io n  2 .4  Let the sequence {W t} satisfy the scaling, LDP, stability and continuity

hypotheses, and the uniform individual decay rate hypothesis, then there exists c >  0 such

that

lim sup 7- ^  log P[ sup VF*; >  g] <  inf 7 f  ^  V  (2.26)
g—>00 h [ q )  k :a {k ) < q c  V*' /

PROOF Note th a t

and, as F  >  0 ,

Therefore

'[ sup Wk > q] < a ^{qc) m ax _P[iyA: > g],
k-.a{k)<qc k:a{k)<qc

lim sup 7- ^  log a ^(gc) =  0 . 
g—>00 h[q)

lim sup  —̂  logP[ sup Wk  >  g] =  lim sup m ax ^logP[l4^fc >  q]. (2.27)
q—̂co k:a{k)<qc q—̂oo k:a{k)<Cqc h \q)

Define Ck for each integer k,  0 < k  < a~^{qc),  by Ck '■= q / a { k ) ,  so th a t we have v { k )  =  

h { q / c k )  and from (2.12) for each > K ,

Take C  > I and 6, 0 < 5 < F  — V / A .  Letting t  =  a{k) ,  by Lemma 2.1 there exists b s ^ c  so 

th a t for q > t  > bx c ,

h i t )  ^  ^
H q) C  \ q j
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and, by (2.28), for := q/a{k)  >  max{iir, 1} and a{k)  >  bs ĉ^

1 1 /  1 \
logP[Wfc > Cka{k)] < - 7 ;  ( — ) 4,F

h[q) -  C  \ c k

Choose 1 /c  >  m axjii', 1} so that

Then for each q >  bs^c any k which satisfies bĝ c <  < qc we have

logP[ty*: >  Cka(k)]  <  -  in fc ' /  ( ■  (2.29)
h{q)  ® '■ c>b V ^ ' ^ /

Inequahty (2.28) imphes that for each fixed k,  logP[W^/t >  (''kO-{k)]/h(q) —>■ —00 as q ^  00. 

Since there are only finitely many k with a(k) <  bi^Ci (2.27) and (2.29) together imply 

(2.26).

From Proposition 2.1, Theorem. 2.5 and Propositions 2.2, 2.3, 2.4, we deduce the following:

T h e o r e m  2 .6  If the sequence { Wt }  satisfies the scaling, LDP, stability and continuity hy

potheses, the uniform individual decay rate hypothesis and the extension hypothesis, then

lim ^  logP[Q  > q ]  =  -  inf c ' 7  (  • (2.30)
q^oo  n { q )  0 0  \ C  J

2.2.1 The Scaled Cumulant Generating Function

The Cumulant Generating Function (sCGF) of Wt,  scaled by (a{ t ) , v{ t ) ) ,  is defined by

Aj(e) :=  ^  logE [exp  ( 9 v { t ) Wt / a { t ) ) ] . (2.31)

The analysis in [28] and [17] is based on the sCGF. The hypotheses stated  so far have 

sim ple expressions in terms of the sCGF, when it exists. The conditions we specify here for 

the sCG F case are intended for easy applicability, rather than m aximum generality. Under 

these assum ptions, the large deviation rate-function is convex. The sCG F technique is not 

applicable to m odels which have non-convex rate-functions.
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L D P H y p oth esis , sC G F case: For all 0 G M and all t the scaled cumulant generating 

function given by (2.31) exists as a finite real value. For each 0 G M the following finite limit 

exists and defines X{6):

X(9) := lim A<(0).
t—>oo

Furthermore \{0)  is assumed to be continuously differentiable. These assumptions imply 

the following (see [11]).

P rop osition  2.5 Under the above assumptions the pair (Wt/a{t),v{t))  satisfies a large 

deviation principle with rate-function I[x) given by the Legendre-Fenchel transform of X{9),

/(x ) := sup{0z — A(0)}. (2.32)
9

This implies tha t I{x)  is a convex function and continuous on the interior of the set where 

it is finite.

S tab ility  H yp oth esis , sC G F case: There exists 0 > 0 so that X(0) < 0.

The above implies tha t /(O) > —X{9).

The uniform individual decay rate hypothesis can be readily expressed in terms of the sCGF.

P rop osition  2.6 I f  there exists constants F ' , M  such that F' > m ax{F/A, 1} and

X t { 0 )  <

for all 9 > 0 and all t, then for each F, max{F/A, 1} < F  < F ' , there exists K p  so that for  

all c > K p  and all t,

^  logP[VFf > ca{t)] < - c ^  

and the uniform individual decay rate hypothesis is satisfied.
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PROOF An elementary consequence of (2.31) is Chernoff’s inequality,

logP[VFt > ca(i)] < -v{ t)  (^c6 -  ■

It then follows that

logP[VFj > ca(f)] < -v{ t)  (^c9 -  M 6 ^  .

Choosing 9 =  {c{F' — 1)/{MF'))^ '~^  we have

logIP[Pl"( > ca{t)] < -v{ t)c^ '  . (2.33)

Since M  and F'  are constants, for each F, F' > F  > max{F/A, 1}, there exists such 

that, for all c > Kp,  the right hand side of (2.33) will be less than - v { t ) c ^ .

2.3 Decay R ate Examples

We present two sets of examples, one set is based on Gaussian processes and the other 

on heavy tailed processes. Fractional Brownian motion (which is covered in the Gaussian 

processes section) has been proposed by Leland et al. [42] as a model for multiplexes of 

Ethernet data. Heavy tailed distributions are often studied in risk theory (see Mikosch and 

Nagaev [54] and references therein) and more recently in queueing theory (see Asmussen 

and Collamore [1]). For these models it is possible to get much more information than is 

available on a logarithmic scale. Interesting features are still displayed even after taking 

logs.

2.3.1 A pplication to  Gaussian Processes

Perhaps the simplest examples to which the theory can be applied are those in which

Wt := Xt -
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where jj, > 0 is constant and {A’j} are mean zero Gaussian random variables with covariance 

function

Define

a{t) := t and v{t) =  h{t) := lo \ .

Xt{6) is given, by

for all  ̂ > 0. Thus, using (2.32),

I{x) = +

Note tha t I{x)  is continuous and that it is non-decreasing for a; > 0. Thus it suffices to 

assume that, for all c > 0,

cr.2 r{ct,ct) _  s
lim ~  = lim " ^ 7 ’ "7 =  i 0 < S' < 2. t^oo af  t-¥oo T{t,t)

Then v{t) is regularly varying with

r  T/ o chm — =  c , V  = 2 — S.t->oo v{t)

inf c ^ I  ( - ] =  . (2.34)

Thus

c>o~ '  \ c j  F  -  2 V ^  ,
In particular, fractional Brownian motion has

2T{s, t) = - \ s -

where Q < H  < 1. Here a{t) := t, v{t) h{t) := . Note that the condition in Proposition

2.6 is satisfied with F' = 2 and M =  1. Thus (2.34) gives the exponential rate of decay of 

the tail of the stationary queue length distribution:

1 1 ( V  —
> q] = fim —  logP[Q > g] =  - — -  I —^  )

9 -)-oo h{q) <7 ->oo v(q) V  -  2 \  V  J

a

Similarly, the Ornstein-Uhlenbeck position process has

, 2

where /i and v  are positive constants. Clearly is regularly varying with 5  =  1. See [17] 

for details.
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2.3.2 A pplication to H eavy Tailed Processes

In [62] Russell lays down a prescription to calculate the large deviations rate-function for 

the partial sums of a two state source which can be described in terms of the sojourn tim es 

it spends in the ‘on’ and ‘off’ states. In [19] Duffy uses this prescription to calculate the  

large deviations rate-function for a two state source whose sojourn tim es are distributed  

using a heavy tailed heavy distribution H,

F[H > x ]  =  d{ x ) e ~<^ \

where d{x)  is slowly varying (see Bingham et al. [3]), and v{x)  is regularly varying w ith  

constant 0 <  F  < 1 .

We define {Yt }  to be a stationary sequence of two state random variables taking values in 

{0 ,1 }  whose sojourn times spent in the 0 and 1 states are distributed by an i.i.d. sequence

w ith distribution H.  Note that the mean of Yt is 1/2 as its sojourn tim es spent in the ‘on ’

and ‘off" states liave finite, and equal, expectation. Define

Zt := Yt -  n,

where /i €  (1 /2 ,1 ) so that the stability hypothesis will be satisfied. Define the workload 

process by

Wt  :=  f  Zs ds.
Jo

It is shown in [19] that { Wt / t , v { t ) )  satisfies a large deviation principle w ith rate-function, 

I{x) ,  given by

{1 -  2{x +  if a; e  [ - / i ,  1/2 - /i]

I {x)  =  < (2(x +  n) -  1)'" if X G [1/2 -  /i, 1 -  /i]

+ 0 0  otherwise.

For exam ple, w ith :=  3 /4 , d(.x) ;= 1 and V  ;=  1/2, see figure 2-1 for a graph of I (x) .  It 

is not surprising that the Gartner-Ellis conditions do not hold as I(x)  is not convex. N ote  

that I {x)  is non-decreasing for a: >  0; moreover, I{x)  is continuous where it is finite. We
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H eavy tailed  sojourn rate  function

0.2

0.6

0.6

0.4

■0.6 -0 .4 -0.2 0.2

Figure 2-1: I{x) vs. x  for heavy tailed sojourn times.

and

infc'^7
V

(2.35)
c> 0

As Zt is bounded above by 1 - / i ,  Proposition 2.4 applies. Hence (2.35) gives the exponential 

rate of decay of the tail of the stationary queue-length distribution:

2.4 Adjoint Processes and Queues with Fixed-Service Rate

We restrict to the case of a single server queue w îth fixed service-rate per unit time. We 

assume tha t the queue can serve a cell every 1 /5  clock ticks, and hence S  cells can be served 

per clock tick. Note that the Extension Hypothesis is satisfied.

Although the results so far have been described in terms of the steady state queue length 

distribution, the original works of Lindley [46] and Loynes [47] were stated in terms of 

waiting times seen at the queue. Let Un be the inter-arrival time between cell n — 1 and n 

at the queue, and define T„ := J7i +  • • ■ to be the time of arrival of cell n. The waiting 

time Wji of cell n at the queue evolves via Lindley’s recursion,

logP[Q >(?] =  24-log P[Q > q] = hm

Wn = {wn-i 4- 1 /5  -  Un) V 0 for n > 0. (2.36)
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If Un is stationary then Lemma 1 of [47] proves that minimal solution to (2.36) is stationary,

and that each element of this stationary solution is equal in distribution to the random

variable W  defined by

W  := sup {n /S  - T n ) .  (2.37)
n>0

All results from the previous section for Q hold for W.  It is natural to ask whether there 

is a simple relationship between Q and W.  In order to answer that question one needs the 

notion of inversely related processes.

The process which is inversely related to T„ is defined by Nt := sup{n ■ Tn < t}. Nt  is the 

number of cells that have arrived to the queue by time t. Tn and Nt satisfy the relation

{Tn < t }  = {Nt > n).  (2.38)

The steady state queue length distribution Q is given in this case by

g  := sup(7Vf -  5 i). (2.39)
J>0

The first attem pts to relate the large deviations of a counting process and its inverse were 

made by Glynn and W hitt [27], and by Russell [61], on the scales v{t) := a[t) := t. Glynn 

and W hitt then used this relation in [28] in order to characterise the decay rate of the tail 

of the queue length in terms of the rate of decay of the waiting times.

In [18], Duffield and W hitt extended these results to encompass scaling functions tha t are 

regularly varying. As an application they consider a single server queue with fixed service- 

rate under the hypotheses of Duffield and O’Connell in [17], and relate the rate of decay of 

the tail of Q to the rate of decay of the tail of W .

The following theorem proves a simple relationship for Q and W , and shows how the rate 

of decay of their tails are related.

T heorem  2 .7  Q is equal in distribution to S W , where W  is defined in (2.37). Furthermore

> q] =  l i n i  7 7 - T  logP[It^ >  -w], q->oo h(q) w^oo h{w)
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if the limits exist.
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PROOF To prove the first part it suffices to show that {W  > w} == {Q > Sw},  for all w > 0.

From (2.37) and (2.38), and as {T„ < 0} =  0,

{ W > W }  =  U n > o { ^ n < | - ^ }

U n > 5 u ;  <  f  “  t i ’}

“  Un>Si(; { ^ ( n / S - w )  ^  •

Let t = n / S  — w. Hence n =  S{t  +  w). n > w S  implies that t > 0, hence

U„>5«; { ^ n / S  -w > n}  = U >0 ~ S t  > Sw}

=  { Q > S w } .

Therefore, in distribution, Q =  51^. The second part requires only simple manipulation 

and the use of the scaling hypothesis. As Q = S W  in distribution

Q
(?->oo h{q)

Multiplying by 1 we have that

g->oo f i ( q )

lim log P[Q > q] = lim —̂  log P
9->oo h(q)

= V 1
h{q) h (^ )

W  >

1
log] VF > -I logP w > l

Thus, using the scaling hypothesis, we have

h ( ^ )  1
lim - r ^ T j ^ l o g P  g^oo h{q) h w > l lim logP

Hence, setting w = q /S ,  we get the result.

2.5 Statistical Multiplexing

Statistical multiplexing gain is of key interest to teletraffic engineers. This is where input 

processes are multiplexed before being fed through a single server queue. Economies of scale 

are then observed as the number of input processes is increased. For a general reference see 

Kelly [37].
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One way to approach this issue is via the large number of lines asymptotic (see [8, 4, 13]). 

Here one considers homogeneous and heterogeneous superpositions of input processes which 

display long time-scale large deviation behavior. The service-rate, and buffer space, per 

input line are kept constant and the limit is taken as the number of inputs grows to infinity.

We shall consider statistical multiplexing with a finite number of lines. This allows us to 

consider sources which obey large deviation principles on different external scales and still 

deduce large deviation results.

Fix L € N and consider a finite collection of sources

{ z i - . i e { i , . . . , L } , t e T } ,

where Zl  is the arrivals less service from source i at time t. For each i € , L} ,  and

each t e T ,  we define the workload from source i up to time t to be

W t  : =  Z],
3 = -t

We also define the total workload up to time t to be
L

Wt-.= Y,Wl

It is essential to this work that each source satisfies a LDP with the same internal scaling 

a{t). If this is not the case, then it is not be possible to relate the large deviations of the 

multiplex to the large deviations of each of the sources.

LDP multiplexing hypothesis: There exists a scale v{t) such that the sources satisfy a joint 

large deviation principle with good rate-function J{x).  That is, there exists a lower semi- 

continuous function J  : -> [0, oo], whose level sets are compact, such that for all F  closed

in

limsup ——-
v{t)

and for all G open in

1
lim inf
t^oo v{t)

logP

logP

a{t)

a{t)
G G

< — inf J(x ), 
x € F

> — inf J(x).See
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T heorem  2.8 Under the LDP multiplexing hypothesis, (Wt/a{t),v{t)) satisfies a large de

viation principle with good rate-function, I{x), given by

I{x)  =  inf { J (x i , .. ., x l ) : xi H \- x l  = x]

PROOF The function (/> : -> M defined by

is continuous as, for all G open in E,

(f)~^{G) : =  { ( x i , . . . , x l ) : xi  + --- + X L  e G }

is open in Therefore we can apply the contraction principle (see Theorem 6.4 of [43]), 

and the result follows immediately.

We shall investigate the case where the lines are independent, proving that they satisfy a 

joint large deviation principle and giving a form for the rate-function.

Source LDP hypothesis: For each i G { 1 ,. . . ,  L}, u® ; M_|. ^  Rj^ is a non-decreasing function 

with Um^^oo =  cxD- satisfies a large deviation principle with rate-

function Ii{x),  whose level sets are compact.

We now dem onstrate what happens to rate-function for W l  when the external scale is 

changed from to

Lem m a 2.9 Let i ^  j ,  if

lim . =: a
t-*oo V^{ t )

exists, then {WUa{t),v^ (t)) satisfies a large deviation principle with rate-function ali{x).
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PROOF Under the Source L D P  hypothesis, { W } / a { t ) , v ’'{t)) satisfies a large deviation prin

ciple. Hence for all F closed

1
— Ino* P

_a{t)
lim sup ,

t—>oo
logP < -  inf Ii{x).  

xeF

Therefore, m ultiplying by 1, 

1
lim sup

t^oo v^{t)
logP

_a{t)
1 , ™=  l™  sup - r j ~  log P

a{t)
e F

Thus, using the existence of a  and the assumed LDP,

1
lim sup

t^ o o  v^t) logP e F
a{t)

< -  inf a lA x ) .
x^F

Sim ilarly for all G  open. a l i { x )  is lower semi-continuous as Ii{x)  is, and a l i [ x )  has com pact 

level sets as Ii{x)  does.

The following Lemma gives a form for the rate-function for ( W t / a { t ) , v ^ t ) ) .

L e m m a  2 .1 0  Under the source L D P  hypothesis, let { Wf }  and { W D  be independent for  all 

i j .  I f fo r  some j  G {1, 2 ,..., M } ,  and for  all i G { 1 , 2 , . . . ,  M} ,  we have that

r  Ihm —T—  :=  a  , 
t-yoo v  ̂{t)

then [W t /a { t ) ,v ^ { t ) )  satisfies a large deviation principle with good rate-function, I (x) ,  given  

by

I{x)  =  inf {a^ /i(a ;i) H h a ^ I i i x i )  : x i H +  x i  =  x }  .

PROOF B y Lemma 2.9, {Wf /a{ t ) ,v^  {t)) satisfies a large deviation principle with good rate- 

function a*/j(x).

As { W D  and {W ^ }  are independent for all i ^  j  it follows that . . . ,  W{")la{ t ) ,v^{ t ) )

satisfies a joint large deviation principle with good rate-function, J{x) ,  given by

J { x i , . . . , x i )  =  Q^h{ xi )  H +  a ^ I i {x L ) .

The result follows applying Theorem 2.8.
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2.6.1 M any-Scale Behavior

Consider the m ultiplex of two independent sources

{ Z l  : i G {1, 2}, i 6 Z } .

Define Z }  to be the heavy tailed sojourn sequence Zt found in section 2.3.2. {Wl/ t ,b{ t ) t '^)  

satisfies a large deviation principle w ith rate-function, I \ {x) ,  given by

h { x )

{1 -  2{ x +  f i ) Y  if X G [ - / / ,  1 /2  - //]  

(2(x +  At) -  1)'' if a; G [1/2 -  /z, 1 -  /y] 

+00 otherwise.

Define to be Bernoulli random variables taking the values { 0 ,5 }  with ¥\Y^ =  B] =  p  

and ¥\Y ^  =  0] =  1 — />. Let v  G [Bp, B ] , and define Z^ by

z ‘t  •■=

Using the sCGF it is straight forward to show that ( W f / t , t )  satisfies a large deviation  

principle w ith rate-function, h i x ) ,  given by

I , { x ) = l  +  i f y G [ - z . , i ? - i . ]

I oo otherwise.

See figure 2-2 for a graph of hix) w ith i? =  10, =  5, p =  1/2.

We now dem onstrate how many-scale behavior can occur. The scale on which large devia

tions o f the m ultiplex are observed depends upon the size of the deviation.

On the scale v{t )  =  b(t)V,  by Lemma 2.10, we have that { Wt / t , b { t ) f )  satisfies a large 

deviation principle with rate-function, / ( x ) ,  given by

I{x)  =  inf -f- 00/ 2(3:2) '. x \  +  X2 =  x }  .
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Figure 2-2: h i x )  vs. x  for Bernoulli random variables.

Thus as h i B p  —  ly) =  0, and with oo.O := 0, we see that

I{x) = I i{x -  {Bp -  u)).

Bernoulli rate  function

-2-4 0 2 4

However, on the scale v{t) = t,  by Lemma 2.10, we have that {Wi/ t , t )  satisfies a large 

deviation principle with rate-function, I{x),  given by

I(x) =  inf {0./i(a;i) - I -  I2{x2) : x\  +  X2 =  x} .

Thus we see that

I{x) =  <

l2{x + fi) X £ [-ly -  11,-fj]

0 if a; G [—/U, 1 -

l 2 { x  — { I  — f i ) )  i f  X  E  [ I  — 1.1, B — ly — iJ,]

oc otherwise.

Hence, on the scale v{t) = t,  introduces a fiat piece from -/u to 1 — /i into the middle 

of h i x ) .

Thus if the deviation is in [—/i, 1 — /i] the scale on which large deviations are observed is 

v{t)  =  b{t) f .  If the deviation is outside this interval, the scale on which large deviations 

are observed is v{t) = t.
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Figure 2-3; I{x)  vs. x  for the multiplex of heavy tailed sojourn sources.

2.6.2 C oncavity vs. C onvexity

Consider L  independent copies of Zj  as defined in the previous section. By Lemma 2.10, 

on the scale v{t) =

I{x) = inf { /i(x i) H 1- h { x i )  : -I-------h xl  = x} ■

Due to the concave nature of I\  the way this infimum occurs is for one source to contribute 

as much as it can to the deviation. A second source contributes to the deviation only if the 

first source cannot create the entire deviation. For example, with b{t) = 1, r — 1/2, and 

L  =  5, see figure 2-3 for a graph of I{x)  vs. x.

This is in stark contrast to the case where the rate-functions of the individual sources are 

convex. For example, if we have L independent copies of Zf  as defined in the previous 

section then, by Lemma 2.10,

/ ( X )  =  LI, ( I )  .

Each of the sources contributes, in part, to cause the deviation.
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3.1 Introduction

Large deviation asymptotics have been appHed in many areas to calculate probabilities of 

exhaustion of a system resource as the size of the system becomes large. This body of work 

includes large buffer asymptotics in queueing theory with linear scalings such as Glynn and 

W hitt [27], and with nonlinear scalings such as Duffield and O ’Connell [17]; large initial 

capital asymptotics in risk theory such as Martin-Lof [53] and Nyrhinen [57] and references 

therein; and also large number of lines asymptotics in queueing theory with linear number 

of lines/linear time scaling such as Botvitch and Dufiield [4], Courcoubetis and Weber [8] 

and with nonlinear time scalings in Duffield [13].

The work on large number of lines asymptotics aims to capture the effect of statistical 

multiplexing, see Kelly [37] for a general reference. This is where superpositions of bursty 

traffic lead to a smoother, less bursty, multiplex and hence to economies of scale. The 

approach taken by other authors in their work on large number of lines asymptotics is to work 

with homogeneous and heterogeneous superpositions of traffic whose workload processes 

display long time-scale large deviations behavior. This connects their work with the work 

on large buffer asymptotics. Specifically Duffield [13] finds that in the case where the large 

deviation behavior of the underlying sources is on a nonlinear time scale, economies of scale 

can be much greater than in the linear case.

We will not approach the problem in this manner. We assume large deviation behavior on 

nonlinear scalings in the number of lines and consider only compact time intervals. This 

allows us to consider processes which are highly non-stationary in time and still deduce 

large deviation results. We have two applications in mind, one is the single server queue 

with many sources each of whom has an associated arrival and service process; the resource 

in question being the buffer space at the queue. The other application is to a version of 

the Cramer-Lundberg model in risk theory (for a general introduction to risk theory see 

Grandell [29]), here the resource is an insurance companies capital and the sources are the 

clients who make claims and pay premiums.
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In section 3.2 we introduce the setup under which the results will be developed. In section 3.3 

the main results are presented. In section 3.4 the notion of stability which was introduced in 

the early queueing literature (see Loynes [47]) is revisited in the current setting. In section 

3.5 the results are considered in the presence of convex structure and a connection is made 

with work on effective bandwidths (see Kelly [37]). In section 3.6 references to the literature 

are given to conditions under which the main assumption of this work is true. In section 

3.7 we present a range of examples to highlight the features of the approach adopted in this 

paper.

The first example illustrates how even in a simple i.i.d. setting the appropriate large devi

ation scale may be nonlinear. The second example displays many-scale behavior; the scale 

on which the large deviations are seen depend upon the size of the deviation. The third 

example is designed to show how the asymptotics of the two models, the single server queue 

and the Cramer-Lundberg model, can differ. It too displays many-scale behavior.

3.2 Setup

We consider L  sources using a resource in the discrete time interval [1,T] where T  is finite. 

Ultimately we will take the limit as the rmmber of sources using the resource becomes large. 

Each source i has an associated vector X{i )  in which is almost surely finite. Xt{i)  

describes the input imparted to the resource at time t by source i. We define the vector 

Z{L)  := X (l)  -I- • • • + X{ L)  e K^. Zt{L)  is the total input imparted to the resource at time 

t from the first L  sources. We consider two cases.

(I) The resource cannot grow with time. This is the case with queues where Xt{i)  represents 

the arrivals less service from source i at time t and the resource is the buffer space at the 

queue.

(II) The resource can grow with time. This is the case with the Cramer-Lundberg model of
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risk theory where Xt(i)  represents the claims made less premium received from customer i 

by an insurance company at time t. Here the resource is the company’s capital which acts 

as a buffer to bankruptcy.

We define a scale to be a non-decreasing sequence of real numbers diverging to infinity.

We assume that the size of the resource, {B{L)},  grows as the number of sources attached 

to the resource grows. That is, there exists a scale a{L) such that the size of the resource is 

given for 6 > 0 by B{L) — a{L)b. We keep b free as we shall be interested in what effect 6, 

the resource space-scale, plays in the multiplexing.

We only consider discrete time although it is possible to deal with continuous time if a 

growth condition is placed on Xt{-) as a function of t such that for any compact interval 

[1, T] it is sufficient to know the processes at some finite number of times within the interval, 

this sort of approach is taken by Duffield and O’Connell in [17] for large buffer asymptotics.

In case (I) the resource experiences overflow in the interval [1, T] if the total arrivals less total 

service imparted to the resource by the sources exceeds a{L)b in any interval [r, s] C [1,T]. 

T hat is if
S

max Zt(L) > a(L)b.
\ < r < s < T ^

t=r

We define the maximum queue length operator
5

Q(y) := max V y j ,  (3.1)
l < r < 5 < 7  

—  —  —

for y =  (y i , . . . ,  yy) G M^, so that overflow occurs if and only if

In case (II) the resource is exhausted in the interval [1,T] if the total claims less total 

premium imparted to the resource by the sources exceeds a{L)b in any interval [1, s] C [1, T]. 

That is if
s

max Zt{L) > a(L)b.
K s < T  ^



44 CHAPTER 3. T R A N SIE N T  MULTIPLEXING A T  A BUFFERED RESOURCE  

We define the worst negative bank balance operator

5

C{y)
 t = i

for y =  (y i, . . .  ,yT)  6 so that bankruptcy occurs if and only if

We will calculate large deviation probabilities for these events in terms of an assumed 

underlying large deviations principle for {Z{L)}  as the number of sources using the resource 

tends towards infinity.

3.3 Main Results

The proofs for the results for cases (I) and (II) are almost identical so, although the results 

are stated in terms of both, they are only proved in case (I).

A ssu m p tio n  3.1 {Z{L)/a{L)}  satisfies a large deviation principle on the exterior scale 

{V(L)}  with good rate-function /(•). That is, there exists a lower semi-continuous function  

I  : [0, cx)], whose level sets are compact, such that far all F  closed in

l i m s u p - —
L ^ oo  ^

logP

and for all G open in

1
lim inf
L-^oo V {L)

logP

Z{L)
_a(L)

Z{L)
a{L)

e G

< -  inf I{x),

> — inf I{x).  
xeG

References to the literature giving sufficient conditions for this assumption to hold shall be 

presented in a later section. For a superb review of large deviation theory see Lewis and 

Pfister [43].
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L e m m a  3 .1  For each pair  [r,s] such that 1 <  r  <  s <  T  the sequence { S r , s { L ) / a { L ) } ,  

with Sr,s{L) := satisfies a large deviation principle in R on the exterior scale

{ V { L ) }  with good rate-function, Jr,s{y)> defined by

-̂ 7-,s(y) :=  inf | / ( x )  : =  y |  . (3.2)

PROOF As the function (/){xr, . . .  ,Xg) =  Xr +  ■ ■ ■ +  Xg is continuous it follows directly from 

the contraction principle (see Theorem 6.4 o f Lewis and Pfister[43]), and assum ption 3.1,

that the image measures M'^[5] :=  P G 4> ^[B) SrAL)
a{L) e B satisfy a large

deviation principle in R on the external scale V { L )  w ith good rate-function

Jr,s{y) ■= in f < I{x)  : Y ^ x t  =  y y
t = r

T h e o r e m  3 .2  { Q ( Z { L ) / a { L ) ) }  and { C { Z { L ) / a { L ) ) }  satisfy large deviation principles in 

R on the exterior scale { F (L )}  with good rate-functions I q i y )  and I c { y ) ,  respectively, which 

are defined by

I q { x )  : =  i n f { I ( y )  : Q{y) =  X ,  y  e R ^ }

Ic{x)  : =  M { I { y )  : C{y)  =  X ,  y e R ^ } .

Moreover,

in f /n f x )  =  in f min Jr s i v )  o.'fid in f / ( 7 (x) =  inf min Ji s i y ) -
x > b  ’ y > b  { \ < t < s < T }  x > b  ’ y > b  { 1 < S < T }  ^

PROOF The map y  -> Q (y), defined in equation (3.1), is continuous. Hence we can apply  

the contraction principle (Theorem 6.4 of [43]) directly. Thus, { Q { Z { L ) l a { L ) ) }  satisfies an 

LDP w ith  the rate function, I q {x ) ,  given in equation (3.3). For the second part, note that

infj;>b/Q(x) =  i ni { I { y )  : Q{y)  >  b }

=  in f{ /(y )  : m ax i< r< s< rE t= ry<  >

=  min{i<r<,<-T} in f{ /(y )  : T^LrVt >  b}

=  min{i<r<s<T} iiifj;>6 Jr,s[y)

=  infyyb min{i<r<s<T} Jr,s{y),  

where Jr,s{y) is defined in equation (3.2).
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Corollary 3.3 I f  Iq(-) is continuous, the rate of decay of the probability of overflow satis

fies,
1

V(L)
logF =  -  m U Q i x ) .

x>b

I f  Ic[' ) is continuous, the rate of decay of the probability of bankruptcy satisfies,

1
V{L)

logP =  -  inf Ic{x).
x>b

PROOF Using the large deviation principle and the fact that for all a, 

P[Q(y) > fj] < lP[Q(y) > a], we have that

infi>b/Q(x) < hm mf7,^00 v Id  ^ q (
' Z { L ) \

a { L ) ) > b

< hmsupi,^oo logP Q
( z { i y
\  a ( L ) ^

) > 6

< hmsupT^^oo logP Q
/ Z ( L ) '
\ a { L ) , ) > 6

< -  inf^>(,/Q(a;)

=  -  inf2;>i,7g(x),

where the last line uses the continuity of I q (-).  Hence

1
V{L)

log] =  -  inf ^q (x).
x>b

3.4 Stability

Traditionally with time stationary results for queues (see Loynes [47]) a queue is said to be 

stable if the mean arrival rate is less than the mean service rate. In this case there exists a 

minimum stationary sequence of random variables that satisfy the queueing recursion (Lind- 

ley’s equation) and under a regularity condition every other solution of Lindley’s equation 

couples to the stationary one in almost surely finite time.

A ssum ption  3.2

in probability.

lim = Z
L—>oo a{L)
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Let Z  = ( z i , . . . , z t ) and, for all 1 < r  < s < T, define Mr,s ■= Yhl=T^t- Assumption 3.2 

implies that, for all 1 < r  <  s < T,

lim =  Mr,s 6 M,
L-^oo CL[L)

in probability. If X{i)  is stationary, then with a{L) =  L, assumption 3.2 corresponds to a 

weak law of large immbers.

Lem m a 3.4 I f  Mr^s > b for any [r, s] C [1,T], then the probability of overflow does not 

decay exponentially on the scale V{L).  I f  M\^s > h for any s 6 [1,^], then the probability of 

bankruptcy does not decay exponentially on the scale V{L).

PROOF As Mr,s > b for some [r, s] C [1,T], we have that

inf Jj- g( x̂) — Jr^s{^r,s) — 0- 
x>b

We know that

lim inf ——
L^oc V  (L)

log] > -  inf/q(o:), 
x>b

SO tha t

lim inf ■
1

logP > -  inf ( min Jr six) 
x>b \ { l < r < s < T }L^oo V{L)

Similarly for the rate of decay of the probability of bankruptcy.

=  0 .

A ssum ption  3.3 For each [r, s] C [1,T] we have that Jr,s{x) is non-decreasing to the right 

of Mr^s- Furthermore we assume there exists nir^s > ^r,a such that for all x  > rur^s we know 

that Jr,s{x) > 0. We call this the monotone property.

We note that if /(•) is strictly convex then Jr,s{') is also strictly convex and hence satisfies 

the monotone property with mr,s =  Mr^s-

If one proves the joint LDP in assumption 3.1 via the Gartner [24]-Ellis [20] theorem, 

then /(•) is automatically strictly convex. Other simple examples of where the monotone
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property holds bu t the underlying rate-function is not strictly  convex come from models 

in statistical mechanics where flat spots in the rate-function around the mean correspond 

to phase transitions. We will provide an example adapted from G antert [22] where the 

underlying rate-function is concave but still satisfies the monotone property w ith  mr,s —

^ r , s -

L e m m a  3.5  I f  ffir^s <  b for  all [r, s] C [1,T], then the probability of overflow decays at 

least exponentially on the scale V( L) .  Ifm,\^s <  b for  all s G [IjT], then the probability of  

bankruptcy decays at least exponentially on the scale V{L) .

PROOF In this case we know that, for all [r, s] C [1,T],

inf — 'Ir,s{b) ^  0*
x>b

Hence

l i ms u p — log]
L - 4 0 0  y

< — inf ( min X  «(a;) 1 <  0. 
x>b \ { l < r < s < T }  ' '

We note th a t if Xt{i )  is stationary  in both  t and then

Mr,s = { s - r  + l )E[Xi{l ) l

and hence taking r  =  1, s =  T  we see M\^t  — TEfXi (1)]. Letting T  be large we end up w ith 

the well known Loynes [47] stability condition for a stable queue to exist, E[Xi (1)] < 0; th a t 

is, th a t there are, on average, less arrivals than  service.

3.5 Convexity and Effective Bandwidths

In the  presence of convex structu re  large deviation theory becomes substantially more pow

erful. It becomes possible to deal w ith the Legendre-Fenchel transform  of the rate-function.
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the scaled cumulant generating function (sCGF) A(0),

I{x) = sup{x0 — A(0)}. 
e

For a general reference to convex functions see Rockafellar [60] (specifically on convex con

jugates section 12). A function which takes values in [—oo,+oo] is proper if it never takes 

the value —oo and is not identically +oo. Often large deviation principles are proved under 

conditions on the sCGF, the Gartner [24]-Ellis [20] conditions, which ensure that not only 

does the rate-function exist but also that it is strictly convex. There is however another way 

to use the convex structure. If we know a large deviation principle holds with a convex (but 

not necessarily strictly convex) rate-function and that the sCGF exists as a proper lower 

semi-continuous function, then we know that they are dual to each other (see Lemma 7.2 

[43]).

A ssu m p tio n  3.4 The rate-function /(•) is convex,

A 6> ;= lim
1

logE
L-.00 V{L)

exists as an extended real number for all 9 G and is a proper lower-semi continuous 

function.

By Lemma 7.2 [43] /(•) and A(-) are convex duals.

For each pair [r, s] C [1,T] define Ar,s(&) for 0 G E by

Ar,s (0) :=  lim —̂ l o g E
L —>oo V ( L )

exp f ^ O S r J L )  
\ a ( L )

L em m a 3.6 For all [r, 5 ] C [1,T], Jr,s{') o.nd Ar,s(-) are convex dual to each other. Moreover 

Iq {-) and Ic { - )  satisfy

and

i n f / q (a:) =  inf min sup{a;0 — Â  s(^)l
x>b x>b  { l < r < s < r }  0

in f/e(a :) =  inf min sup{x^ -  Ai s(0)|.
x>b x>b  { l< s < T }  0 ’
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PROOF \r,s{S) is a proper lower semi-continuous function as Sr,s{L) is a linear function of 

Z{L).  /(•) being convex implies that Jr.s(-) is convex thus, using Lemma 7.2 of [43], we see 

tha t Jr,s{') and \r,s{') convex dual to each other. Thus, for each [r,s] C [1,T],

Jr, s{x)  =  S U p { x 0  -  Ar,s(6>)}.
0

Hence I q {-) satisfies

inif/o(x) = inf min sup{x0 —
x>b  x>b { l< r< s< T }  e

Now for the connection to  Effective Bandwidths. For a thorough review of effective band

width functions see Kelly [37]. The notion of Effective Bandwidth has become widely 

accepted as a measure of the resource requirements of traffic in a queueing network. Only 

linear scalings are dealt with in this context.

Consider a queue with fixed buffer-space per source, and fixed service-rate per source, being 

driven by independent sources. The stochastic behavior of the queue length arises from 

randomness within the sources. The objective is to find a service rate per source per unit 

time which ensures tha t the probability of overflow is below some prescribed threshold.

For the rest of this section V{L) = L, a{L) =  L and Xt{i) := Yt{i) — c, where the Y.{-) are 

almost surely non-negative, and c > 0 is the capacity of the resource per source per unit 

time. For each [r, s] C [1,T], define S^g{L) :=

Lem m a 3.7 I f  in stationary in t and if, for each i ^ j ,  Y{i) and Y{j)  are mutually

independent and identically distributed, then

K , s  [0) =  lo g E  [exp (6>5i\s_r+i(l))] -  (s -  r -I- l)6»c.
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PROOF

K , s { 0) =  liiHL^oo i;logE[exp(6iS'r,5(L))]

=  limL^oo r  logE [exp {9S^^s{L))] -  {s -  r  + l)$c 

= lim L -^oorlogE [exp(05 i^^_^+ i(l))]^ - (s -  r + l)9c 

=  logE [exp -  (s -  r  +  l)Oc.

The function

a{0,s) := ^logE[exp(05i^"j(l))]

is the effective bandwidth of a source (see Kelly [37]). Then, in this setting,

K , s ( S )  =  {s -  r +  l ) 6 a { 0 ,  s — r +  I)  — {s — r +  \)9c.

Therefore in this scenario we have that the rate-functions for the probability of overflow, 

and the probability of bankruptcy, both satisfy

inf I q {x ) =  inf I c { x )  = inf min sup {6b — s6a{9, s )  +  s9c} .
x > b  x > b  x > b  l<s<T Q

For an article on measuring effective bandwidths and it’s uses see Gyorfi et al. [31] and 

references therein.

3.6 Joint Large Deviation Principles

The main underlying assumption (assumption 3.1) has been the existence of a joint large 

deviation principle for the underlying sources, that is, a large deviation principle for their 

vectors. For a general reference to large deviation techniques see Dembo and Zeitouni [11]. 

Here we will try  to illustrate the conditions under which this holds. Essentially we expect 

tha t it will hold when, for each t G [1,T], the partial sums of Xt{-) satisfy large deviation 

principles.

It is difficult to pin down a simple set of general mixing conditions for which the assumption 

is true. Ellis [20] proved a large deviation principle for random vectors under what would
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ultimately be called the Gartner-Ellis conditions. These conditions essentially amount to 

assuming the sCGF exists, is finite in a neighborhood of the origin and has steepness proper

ties. There are plenty of examples where large deviation principles hold but these conditions 

are not true; see section 2.3 of Dembo and Zeitouni [11] for ones motivated from applied 

probability. In statistical mechanics any Ising model which allows a phase transition fails 

the steepness property. In heavy tailed distributions of risk theory (see for example T. 

Mikosch and A. V. Nagaev [54]) the sCGFs are not finite in the neighborhood of the origin.

There are other general mixing conditions under which large deviation principles can be 

deduced. See Bryc and Denibo [6] for conditions motivated by mixing conditions under 

which central limit theorems are proved and Lewis et al. [44] for a condition motivated by 

Gibbs measures of statistical mechanics.

It is certainly trivially true that if, for each t G [1,T] the partial sums of Xt{-) satisfy large 

deviation principles on the scales a{-) and V̂ (-) with rate-functions and if Xr(-) and 

^s(-) are independent for all r ^  s, then the partial sums of the X{-)  satisfy a large deviation 

principle on the scales a(-) and F(-) with rate-function I{x)  +  • • • +

3.7  Examples

3.7.1 Exam ple 1: Non-Linear Scale

This example presents a simple set of independent sources consisting of i.i.d. random vari

ables which satisfy a large deviation principle on a nonlinear scale.

We consider fixed capacity (or premium) c > 0 per source per unit time and model the 

arrivals (or claims) process.
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The behavior is described by a heavy tailed i.i.d. sequence adapted from Gantert [22]. Gan- 

tert has extended these results to include dependent random variables satisfying a mixing 

condition along the lines of that found in Bryc and Dembo [6]. Heavy tailed distributions 

are often studied in risk theory (see Mikosch and Nagaev [54] and references therein) and 

more recently in queueing theory (see Asmussen and Collamore [1]). For these models it is 

possible to get much more information than is available on a logarithmic scale. Interesting 

features are still displayed even after taking logs.

For each t G [1,T] we define the sequence {Xt{L)}  to be an independently and identically 

distributed sequence of random variables each with distribution equal to tha t of Y i(l) — c, 

where,

P [^ i(l) > 2;] := d{x) exp{—E{x)x^),  

z & (0,1) and d{-) and E{-) are slowly varying, that is, for all rj € (0, cx)),

lim = lim ^  =  1,
x-^oo d{x) x->oo E{x)

(see Bingham et al. [3]). Define Mt^t '■= IE[yi(l)] — c. This example belongs to the class 

of semi-exponential distributions where all moments are finite but the cumulant generating 

function X{9) is infinite for all 0 > 0.

The sCGF for Xt{-) is not finite in a neighborhood of the origin so the Gartner-Ellis condi

tions are not satisfied. It is possible to show using a sub-additivity argument tha t a large 

deviation principle is satisfied on the internal scale a{L) =  L  and external scale V(L)  = L. 

The rate-fimction however is trivial: it is zero above it’s mean and infinite below it. The 

scales on which the rate-function is non-trivial are a{L) — L and V{L)  =  E{L)L^.  On these 

scales,

00 X < Mt,t

{x-Mt,tY x>Mt,t.
Note as 2: e  (0,1) that is concave, hence it is not surprising it fails the Gartner-Ellis

conditions. We note also that in this case defined in section 3.4 can be set equal to

Mt^f  For example, if E{L) — d{L) =  1, c =  3 and 2 =  1/2, then Mt^t = ~1- See figure 3-1 

for a graph of
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Figure 3-1: vs. y for a heavy tailed random variables on the scale V{L)  = y/L.

By the comments at the end of the last section, on the scale V(L)  =  E{L)L^  the partial 

sums of X{-)  satisfy a large deviation principle with rate-function, /(•), given by

_  I  oo if xt < Mtx for any t G [1,T]

1 -  Mt, tr  if Xt > Mt,t for all t G [l,r].
For cach [r, s] C [1,T], by Lemma 3.1, using the concavity of for a; > 0 and the fart

that = 0 when x  =  Mt^t,

Jr,s{y) =  inf {/(^) : J2t=r Xt = y}

= inf { E L r  ■ E L r  Xt = y} ,

=  Jt,t {y -  (s -  r)Mt^t) ■

Assume that Mt^t < 0. As Jt,t{y) is increasing for y > 0, Jt, t{y) < Jt,t {y ~  {s -  r )Mt , t )  for 

j/ > 0 and all 1 < r  < s < T. Hence, assuming Mt^t < 0, on the scale V{L)  =  E{L)L^,

inf Iqiy)  = inf min Jr,s(y) =  inf Jt,t{y) = (b ~
y > b  y > b  { \ < r < s < T }  y > b

for 6 > 0, and

in f /c (y )  =  inf min Ji,s(y) =  inf Ji,i(y) =  (6 -
y > b  y > b { l < s < T }  y > b

for 6 > 0.

The way the large deviations of the exhaustion of the resource occurs in this example is for 

one of the sources, at a single time, to place too great a demand on the resource. Hence
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in the queueing case, case (I), infj^>j/^(y) is independent of T  and, as Mj-^r = ^s , s  for all 

1 < r  < s < r ,  is independent of t.

In the risk theory case, case (II), mfyyh Iciv)  is independent of T, but, as Mt^t < 0, it

to occur at time 1. The rate, however, is the same rate found in the queueing case, case (I). 

3.7.2 Exam ple 2: M any-Scale Behavior

The purpose of this example is to illustrate how many-scale behavior can arise. The scale 

on which large deviations are observed depends upon the size of the deviation.

Again we consider constant service rate (or premium), c > 0, per source per unit time. The 

stochastic driving force is a sequence of almost surely non-negative random vectors Y (L) 

tha t describe the arrivals (or claims) process, that is Xt{L)  := YtiL) — c. Consider time 

stationary sources which are made up of two independent parts. A large part, Ut{L), which 

has no correlation across the sources, and a small part, Wt{L),  which is highly correlated 

across the sources. Yt{L) := Ut{L) + Wt{L).

We model Ut{L) by i.i.d. Bernoulli random variables which take the vahies {0 ,^}  with 

P [[/i(l) = A] = p and P [[/i(l) =  0] =  1 — p. The mean of Ut{L) is := Ap.  The partial 

sums of Ut{L) satisfy a large deviation principle on the scale V{L) = L  with rate-function 

"This rate-function is simple to calculate by means of the sCGF,

For example, with ^  =  10 and p =  1/2 see figure 3-2 for a graph of J “j(-)- On the scale 

V(L)  =  \ /L  the rate-function for Ut{-) is trivial:

becomes more difficult as time progresses for a deviation to occur. Hence it is most likely

oo

( l - f ) l o g ( f f f )  +  f l o g ^ - l o g A  i i y e [ 0 , A ]

otherwise.

=

0 if x =  Ap  

oo otherwise.
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Figure 3-2: Jii{y)  vs. y  for a Bernoulli random variables on the scale V{L)  = L.

We model Wt(L)  as follows. Define the discrete heavy tailed distribution H  by

F[H > m] :=

for ni t  Z"*", and define to be a stationary sequence of two state random variables

taking values in {0 ,5}, whose sojourn ‘times’ spent in the 0 and B  states are distributed 

by an i.i.d. sequence with distribution H.  On the scale V{L)  =  L the partial sums of Wt{-) 

satisfy a large deviation principle with a rate-function, which is trivial,

0 if X € [0, B] 

oo otherwise.

In [62] Russell lays down a prescription to calculate the large deviations rate-function for the 

partial sums of a two state source which can be described in terms of the sojourn times it 

spends in the ‘on’ and ‘off’ states. Under technical conditions, Russell proves tha t the large 

deviations of a randomly sampled partial sums process is a simple functional of the large 

deviations of partial sums process itself, and of the large deviations of the random sampling. 

Hence setting random sampling to occur at the end of sojourn times, one can calculate the 

rate-function for the two state process by way of a functional of the rate-function for the 

sojourn times.

Bernoulli rate  function

In [19] Duffy uses this prescription to calculate the large deviations rate-function,



3.7. E X A M P L E S 57

H eavy tailed so ioum  rate function
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Figure 3-3: K^f{y)  vs. y  for heavy tailed sojourn tim es on the scale V{ L)  =  VL.  

for the partial sum s o f {VFf(-)} on the scale V{ L)  =  VX. is defined by

B ) if 0 <  y <  B / 2

=  {  if B / 2 < y < l

+ 0 0  otherwise.

N ote that has mean :=  B / 2 ,  as it ’s sojourn tim es spent in the ‘on’ and ‘off’

states have finite and equal, expectation. For exam ple, w ith 5  =  1, see figure 3-3 for a 

graph of

On the scale V{ L)  =  L,  by the contraction principle,

Jt,t{y) =  i n f { +  Jl‘̂ tiy2 ) ■yi +  y 2 =  y  +  c}.

Hence, as =  0 for x  G [0 ,5 ] ,

+CX) if y <  —c

J l t i v  +  c) i i y  e [ - c , A p - c ]

 ̂ 0 if y € [Ap — c, B  +  Ap  —

Jt^tiy +  c -  B)  ii y  e  [B +  Ap  -  c, B  +  A  — c]

-|-oo ii  y  >  B  +  A  — c.

As is convex and the sources are time independent, Jr,s{-) is defined by

Jr , s{y)  ■■= { s - r  +  l ) J t , t (  t V  (3-4)
\ s  -  r 4- 1 /
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Note that J r , s ( " )  only depends on r and s through s — r as the sources are i.i.d. in time. 

Note also that, as Jt,t = 0 if y = Ap + B  — c,

In order to see many-scale behavior it is necessary to assume that (Ap + B — c) > 0 . Then 

the highly correlated part of the sources can cause a deviation on their own scale, despite 

any downward pull from the uncorrelated part less service rate (premium). By equation 

(3.5), assuming (Ap +  i? -  c) > 0 , is zero for y = T{Ap + S  — c), and hence takes

the value zero for a larger y than any other J r , s { v )  does. Moreover, as is convex and

For example if A =  10, p =  1/2, i? =  1, c =  5 | and T =  10, see figure 3-4 for a graph 

of infy^h lQ{y) against b on the scale V{L) = L. Note that, by equation (3.5), the rate-

J r , s { y ) = 0  if y  =  {s -  r  + l){Ap + B -  c). (3.5)

{Ap + B  -  c) > 0,

for all y > 0. Hence

Ji,T{y) < JrAv)  for all y > 0.

Thus, assuming {Ap + i? — c) > 0, on the scale V{L) = L,

inf/g(y) =  inf min JrAv) = inf Ji,r(y) =  Ji,T{b),
y > b  y > b  {l< r < s < 7 ’} y > b

for 6 > 0, and

y > b  y > b  { l< s< T }  ’ y > b
M  Ic{y)  = inf min Ji,s{y) = inf Ji,r(y) =  J\,T{b),

for b > 0.

function is zero for b below T{Ap B — c) — 2^. On this scale exhaustion of the resource 

is a concentration set if the resource space scale is below 2^.

By the contraction principle, on the scale V{L) = \/Z ,

JtAv)  =  inf{i^“t(yi) + Kft{y2)  ■yi +  y2 =  y  +  c}.

^Ut{y) is infinite except at Ap where it is zero, therefore

J u { y )  =  +
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Figure 3-4; miyyb Iqiv)  vs. b on the scale L.

Note th a t Jt,t{y) is infinite for y > {Ap + B  -  c), as is infinite for x  > B.

By the com m ents a t the  end of the last section,

JrAv) =  JiAvi) -
K i~ r  i= r )

Due to the  concave natu re  of and using the fact th a t J t ^ t {B+Ap-c)  = Jt , t{Ap—c) =  1,

we have th a t Jr,s(y +  (r — s +  l ) {Ap + ^  — c)) equals

f “  +  >̂<,4 (y  +  f  +  ~  f )  if (s -  r  +  1) ( - y ) <  y < 0

< + [ ^ \ + J t , t ( y + ^  + A p - c - [ ‘̂ \ § ^  if 0 <  y <  ( s - r  +  l ) ( f )

oo otherwise.
V

If y >  (s — r  -t- l) ( i?  +  A p  — c), then JT,s{y) =  +oo, and it is not possible for the sources to 

cause a  large deviation on this scale. As K^t i ' )  i® concave, we have the following structure: 

the m inim um  am ount of tim e is used to  cause the deviation. If it is possible for one tim e 

instance to  cause all of the deviation, then due to the concavity this has a lower ra te  than  

sharing the  deviation over time. This is in stark  contrast to the convex case where the 

deviation is shared equally over time.

On the scale V{L)  =  \ /L , assum ing {Ap + B  — c) >  0,
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Figure 3-5: m i y y i ,  Igiv)  vs. b  on the scale y / Z .

both equal

JtÂ )
1 +  Jt,t{b — {B + Ap — c))

2 + Jt,t{b -  2{B + Ap -  c))

{T -  I) + Jt,t{b -  {T -  1){B + Ap -  c)) 

oo

if € {0, B  + Ap -  c]

if h E {B + Ap — c, 2{B +  Ap — c)]

if 6 e {2{B + Ap  — c), 3{B +  Ap — c)]

if b e  {{T -  1)(B + Ap -  c ) ,T{B + Ap -  c)] 

if b > T{B  + Ap — c),

for 6 > 0.

For example, if A =  10, p =  1/2, 5  =  1, c =  5 |  and T  = 10, see figure 3-5 for a graph 

of infy>h lQ{y) vs. b on the scale V{L) = \ fL.  Note that the rate-function is infinite for b 

above T ( B  + Ap — c) = 2^. On this scale exhaustion of the resource will not happen (in 

probability) if the resource space-scale is above 2^.

Hence if {B + Ap -  c) > 0 we observe many-scale behavior. The scale on which large 

deviations are observed depends upon the size of the deviation in question.
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F'igure 3-6: Jr , r (y)  vs. y.

3.7.3 Exam ple 3: N on-Stationarity

The purpose of this example is to highhght the effect of non-stationarity. Many-scale behav

ior also appears. The rate of decay of probability of overflow and rate of decay of probability 

of bankruptcy differ on the slower scale.

We consider fixed service rate (or premium), c per source per unit time, and model the 

arrivals (or claims) process {y!(-)}, that is Xt{L)  := Yt{L) -  c. At all times bar one the 

sources are uncorrelated. At one instant they are highly correlated.

Yt{L) will take one of two values, {0,A}, for all t and all L. Fix t £ At all times

r ^  t we model YriL) by independent Bernoulli random variables taking the values {0, A} 

with F[Yr{L) = A] = p and T\Yr{L) =  0] =  1 — p. Mr^r = Ap — c. The partial sums of 

Xr(L)  satisfy a large deviation principle, with non-trivial rate-function ^^e scale

V{L) = L, where Jr , r {y)  = Jt.tiv +  is defined in the previous example. W ith

c =  3/4 and A =  1, see figure 3-6 for a graph of Jr , r {y)  vs. y. On the scale V{L)  =  \ /L  the 

rate-function is trivial, it is zero at = Ap — c and infinite elsewhere.

At time t we model the source by the heavy tailed sojourn source described in the previous 

example, setting B  := A. On the scale V{L)  =  L the rate-function for Xt{-) is trivial, it
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Figure 3-7: Jt,t{y) vs. y.

is zero in [ - c ,A  -  c] and infinite elsewhere. On the scale V{L)  = y/Z  the rate-function is 

non-trivial, +  ^), where K^i{y)  is defined in the previous example. With

c =  3/4 and B  := A = I, see figure 3-7 for a graph of Jt,t{y) vs. y.

l i  t ^  [r, s], then on the scale V{L) = L,

J r A y )  = { s - r  + l)Jr,r (  “T ) ’ \ s  -  r + 1 /

as Jr,r{') is convex and the sources are time independent.

If i G [r, s], then on the scale V{L)  =  L,

f (s -  r)Jr,r \ { y < { A p - c ) { s - r ) - c

Jr,s{y) =  < 0 if y G [{^P — c){s — r) — c, {Ap -  c)(s — r) -I- A — c]

(a -  r)Jr,r V > {^P -  c){s -  r) + A -  c,

as at i a deviation in [—c, A — c] has rate zero. Note that, whether t is in [r, s] or not, Jr , s{y)  

is infinite if y > (s — r  -I-1)(^ -  c), as it is not possible for the sources to create a deviation 

that large. Also note that Jt , t {y)  =  0 for y €  (0,^4 —  c].  If Mi^i <  0 for all i  G [1,^'], the 

minima

min Jr,s(y) and min J i ^ y )
{ l < r < s < T }  { l < s < r }

may occur at different values of [r, s] for different values of the model parameters {A^p and 

c), but can be easily evaluated once the model parameters are known.
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On the scale V{ L)  =  VT, \ i t  ^ K-^])

f  0 i f y  =  ( s - r  +  l ) ( A p - c )
Jr,s{y) — \

I + 0 0  otherwise.

If i G [r, s], then

Jr,s{y) =  Jt,t i y - { s -  r ) {A p  -  c ) ) .

Assum e that := A p  — c <  0.  As Jt,t{v) =  + oo  for y >  A — c, if {s — r) >

Jr,s{y) =  + 0 0  for all y >  0 and all r ,s.

Thus, on the scale V( L)  =  \ fL,

in f /Q (y ) =  inf min J r A v )  =  inf 
y > b  y> b  { l < r < s < T }  y> b

^  Jt,t{y) <  Jr,s{y) for y >  0 and for all r ,s .  Note that is infinite \ i  x  >  A  — c, thus

this scale is only appropriate for deviations in the range b £  (0, ^  — c].

I c { ' )  satisfies

in f / c ( y )  =  inf min J \ , s { y )  =  inf Ji,t(y) =
y> b  y> b  { l < s < T }  y> b

as J\^t{y)  < J \ , s { y )  for y >  0 and for all s. If i  — 1 is greater than {A — c ) / { Ap  — c), then  

the heavy tailed sojourn effect is not enough to cause a large deviation on this scale as it 

cannot com pensate for the downward pull of the earlier Bernoulli effects. In this case, no 

deviation is seen on the slower scale.
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4.1 Introduction

Long range dependence has been of interest to phenomenologists since H urst pubhshed 

his 1951 paper [36] on a  time-series of water levels of the Nile. His findings showed th a t 

sta tis tica l tests could imply a complicated, long range, correlation structu re  in th is time- 

series. In the late  ’sixties M andelbrot and Wallis [49, 50, 51, 52], and M andelbrot and Van 

Ness [48], proposed fractional Brownian motion, which is stationary  and exhibits long range 

dependence, as a model for H urst’s time-series. In 1971 O ’Connell [58] proposed an ARIMA 

m odel as an explanation of H urst’s phenomenon. In 1974 Klemes [40] objected strenuously 

to  long range dependence as an explanation of H urst’s findings and dem onstrated th a t non- 

s ta tionarities, which seem physically more plausible than  infinite memory, could lead to the 

observed phenom ena.

Long range dependence has been of interest to teletraffic engineers since its proposal as an 

explanation of phenom ena, sim ilar to H urst’s, found in data-sets; for example in Leland et 

al. [42], Crovella and Bestavros [9], and Beran et al. [2]. Klemes’ rem arks were reiterated  

in the teletrafRc setting  by Duffield et al. [16, 14], where again it can be dem onstrated  th a t 

non-stationarities can lead to  the observed phenomena. Fractional Brownian motion, which 

is long range dependent, has been proposed by several authors (see, for example, Norros 

[56] and Leyland et al. [42]) as a model of multiplexed Internet data.

From  a phenomenology point of view, w ithout addressing Klemes’ rem arks, fractional Brow

nian  m otion has two drawbacks: it is unbounded and it takes negative values. Boundedness 

arrives natu ra lly  in networks from bandw idth restrictions and negative arrivals have a  dubi

ous physical in terpreta tion . We present a class of stationary  two sta te  sources whose sojourn 

tim es are d istribu ted  so th a t the source exhibits long range dependence. By using the term  

long range dependent source we m ean tha t, given any C  > 0, correlations w ithin the source 

decay more slowly in tim e than  exp(—C i), for all sufficiently large t. We use techniques 

developed by Russell in [62] to relate the large deviations of the sojourn tim es to the large 

deviations of the sources themselves.
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In section 4.2 we set up our basic notation and introduce Russell’s [62] results. In section 4.3 

we construct our class of two state sources which possess long range dependence and prove 

two simple lemmas to increase the ease of application of Russell’s random time-change. In 

section 4.4 we present an example where the sojourn times spent in the ‘on’ and ‘off’ states 

are determined by an i.i.d. sequence with semi-exponential distribution. An explicit form 

is found for the source’s rate-function, on a nonlinear scale.

4.2 N otation and Background

We follow a prescription set down by Russell in [62]. Let a probability triple P) be

given. Let t G T} be a stochastic process where T  is IR-|_ or Z+. For each t £ T,  define 

the random function (the sample path) St{-) : K-i- —> R by

r t x
St[x) := /  X  d\,

J O

where A is Lebesgue measure if T  =  K-i-, and A =  6k, where 8k is Dirac measure at fc,

if T =  Z-I-. We also define the partial sums process {St : t G T} hy

S t : = S t { l )  = f  X. dX.
J o

Let {T„ : n G Z"'"} be a sequence of random times and {Nt : i € T} be its adjoint counting 

process, that is Nt := sup{n : T„ < t}. For each n G Z+ we define the sample path of T„ to 

be the function, T„(-) : > M+, defined by

T-n{x)  : =  .

Similarly for each t G T  we define the sample path of Nt to be the function, Nt{-) : M_|_ —> Z_|., 

defined by

Ntix)  := Ntâ .

Large deviation results relating {T„} and {Nt}  have been proved by Dufiield and W hitt in 

[18], by Glynn and W hitt in [27], and by Russell in [61].
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We consider large deviation principles both for sample paths (SP-LDP) and for partial sums 

(ID-LDP; one dimensional LDP). See Lewis and Pfister [43] for a review of large deviation 

theory, and Dembo and Zeitouni [11] for a general reference to large deviation techniques. 

We follow Russell in considering our SP-LDPs in the topology of pointwise convergence (see 

Kelly [38] section 3).

We define a scale, v : R+ — [0, oo], to be a non-decreasing function with limt_>oo ^ (̂i) =  oo 

and define A^(K"'', R) be the space of right-continuous functions from M+ to M endowed with 

the topology of pointwise convergence.

D efin ition  4.1 {«S't(-)} satisfies a SP-LDP on the scale v(t) with rate-function I  : A^(K_|_,] 

[0, oo] if 1 (0  is lower semi-continuous, has compact level sets,

lim —̂  log P
t->oo v(t)

for all F  closed in A (̂M_)_,M), and

1
lim t^oo v(t) log P

Sii-)

St{-)

G F

e G

<  -  inf /(C)CeF

>  -  i n f  / ( C )C6G

for all G open in A^(]R+,]

D efin ition  4.2 {St} satisfies an ID-LDP on the scale v{t) with rate-function 

[0, oo] if  I ^^ \ x )  is lower semi-continuous, has compact level sets,

1
lim
t -̂oo v\t)

log] G F

for all F  closed in M, and

1
lim log P

t->oo v{t)
G G > — inf

~  xeG

for all G open in R.

In conjunction with Lemma’s 5.2 and 5.3, Theorem 5.1 in [62] proves tha t if (5't’„ (•),T„(-)) 

satisfies a joint SP-LDP on the scale v{t) := t (with rate-function U{x,y)  which satisfies
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U{x,0)  =  oo so that, on the scale of large deviations, the probability that the sampling 

process re-samples the same point indefinitely is zero, with rate oo), then Nt{-))

satisfies a SP-LDP on the scale v{t) := t. Moreover, in Theorem 5.10 he gives a simple 

relationship between the one dimension rate-functions •) and •), for

and {St,Nt),

Ŵ ^Hx,y)=yÛ ^̂
\ y  y j

In his work he considers only scaling functions which are linear, that is v{t) := t. If we wish 

to describe a source that exhibits long range dependence we will require scaling functions 

which are nonlinear so that correlations within the source decay slower than exponentially. 

As it turns out the condition tha t we shall require is that v{t) be regularly varying (see 

Bingham et al. [3] for a general reference).

v{t) being regularly varying implies that lini(_^oo v{ct)/v{t) exists as an extended real number 

for all c > 0. As v{t) is non-decreasing and diverging to -foe this implies that there exists 

G > 0 such that
v{ct) clim — = c 

«->oo v(t)

for all c > 0.

W ith this hypothesis in mind the only alteration necessary to Russell’s work is a trivial one 

in Lemma 5.3. The rest of his proofs remain unchanged with the final relationship between 

the one dimensional contractions changing slightly to be

W ^ ^ H x , y ) = y ^ U ^ ^ U - , - ) .  (4.1)
\ y  y J

We call this transformation Russell’s random time-change. We have the following diagram 

describing the relationship between the sample path large deviation principles and the one 

dimensional large deviation principles;

Sample path: (5r„,T„) {St,Nt)

^  ii-

One dimensional: {STn,Tn)
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Figure 4-1: Construction of Xt.

If we start with a joint large deviations of the sample paths then we can deduce a relationship 

between the one dimensional large deviations of and {St,Nt).

4.3 A Class of Stationary On/OfF Sources

Let {tj} and {r]i} be two stationary sequences of random variables taking values in T. {r,} 

are the sojourn times spent by a source in the ‘on’ state and {rji} are the sojourn times 

spent by a source in the ‘off’ state. We define the source’s activity Xt  at time t E T  to be

j  0 if T l +  7/1 H \- Tk <  t <  Tl +  T]l  \ - T k + T ] k
Xt  <

[ 1  if Ti +  r?i H +  Vk <  t <  Tl +  T]l +  ■ ■ ■ +  T]k +  Tk,

see figure 4-1 for an illustration.

Define the processes 5^ := T„ := + SH- is the total time

spent in the ‘on’ state after n  ‘on’ periods, S„ is the total time spent in the ‘off’ state after 

n ‘off’ periods and T„ is the time after n ‘on’ and ‘off’ periods. We note that =  S^.

A ssum ption  4.1 (5 t’„(-),T„(-)) satisfies a joint SP-LDP on the regularly varying scale 

v{n).

We now prove two simple lemmas which allow us to relate the large deviations of {STn,Tn) 

and (5^,5;?).
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L em m a 4.1 (5r„(-))^n(0) satisfies a joint SP-LDP if and only if Sn{-))  satisfies: a

joint SP-LDP.

PROOF As (x, y) {x ,x  + y) and (x, y) -> {x,x  — y) are continuous functions in tie  

topology of pointwise convergence it follows directly from the contraction principle (fee 

theorem 6.4 of [43]) that (5j'n(-)?^n(')) =  ('^n('))'S'n(’) +  satisfies a joint SP-LDP if

and only if (5^(-), 5n(-)) satisfies a joint SP-LDP.

L em m a 4.2 {ST„,Tn) satisfies a joint ID-LDP with rate-function if and only if

{SJ^,Sn) satisfies a joint ID-LDP with rate-function, given by

PROOF Define /  : (x,y)  —> ( x , x  — y). As /  is continuous and {STn,Tn) satisfies a joint ID- 

LDP it follows directly from the contraction principle that (5^, Sn) satisfies a joint ID-LDP

Similarly as g : (x, y) {x, x y) is contiimous we have the converse.

Under assumption 4.1 we can apply Russell’s random time-change and see tha t (5j,.V() 

satisfies a ID-LDP on the scale v{t) with rate-function

with rate-functiori, •)> given by

I ^^ \ x , y )  = mi{U^^'>{a,b) : f{a,b) = (x,y)}

— inf{t/f^^(a,6) : (a ,a  — 6) =  (x,y)}  

= U^^^x , x  -i- y).

In order to get the large deviations for { S t }  all that is left to do is to contract out the 

effect of { N t } .  By the contraction principle { S t }  satisfies a large deviation principle with
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rate-fiiiiction given by,

71

K ^ ^ \ x )  — inf W ^ ^ \ x , y ) .
J / G I R +

Note th a t if {ri} and {?/,} are independent of each other, and if {5^} and {5n} satisfy

ID -L D P’s on the scale v(n)  w ith rate-functions 7^(-) and I^{-) respectively, then (5 ^ ,5 ^ )

satisfies a jo int large deviation principle w ith r a t e - f u n c t i o n y )  =  n { x ) + P { y ) .  Hence, 

by Lemma 4.2, is given by U ^ ^ \x , y )  =  n { x ) + P { y - x ) .  Applying Russel l’s random

time-change }orw,ula (4.1) we get

W^^Hx,y)=y^r +y^I^  '

We now have the following diagram  describing the relationship between the SP-LDPs and 

ID-LDPs;

SP-LDP: {81,81)  ^  (5 t„ ,T „) ^  [8t,Nt)

ID-LDP: {8l,8^n) ^  (5 r„ ,T „) {SuNt)  ^  (5t)

If we s ta rt w ith a joint large deviations of the sample paths (5 ^ ,5 ^ ), then we can deduce 

a  relationship between the joint one dimensional large deviations of ( S^ ,8n )  and the one 

dim ensional large deviations of {5<}.

In order to use Russel l ’s random time-change we m ust prove th a t (5^(-), 5n(-)) satisfies a 

jo in t SP-LDP. In section two of [62], Russell proves a SP-LDP on the scale v{t) := t  under 

the assum ption of a mixing condition adapted from Lewis et al. [44]. This condition does 

not move to the case of more general scalings as it relies on the use of the sub-additivity  

lemma.
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4.4 Example: Semi-Exponential Tails

Let {tj} and {rji} be independent sequences of i.i.d. random variables with

P[ti > x] := P[ryi > x] := a{x) exp{-b{x)x^),

where r  € (0,1) and, a(-) and b{-) are slowly varying (see Bingham et al. [3]), tha t is

a{cx) b{cx)
hm — —  =  hm =  1,

x-^oo a(x) i-^oo b(x)

for all c > 0. Note that all the moments of t i  are finite but the cumulant generating function 

does not exist in a neighborhood of the origin. Define M  := E[ri],

In [23] Gantert proves a SP-LDP, in the projective limit topology, for {S'^(-)} on the scale 

v{n) := b{n)rf  with a rate-function that has compact level sets. By the characterisation 

theorem. Theorem L4.1 of Bingham et al. [3], v(x) ;= b(x)x^ is a regularly varying function. 

Hence, by Lemma 4.1, (•), T„(-)) satisfies a joint SP-LDP on the scale v { t i ) .  Thus the

LDP and scaling hypotheses are satisfied and we may use Russell’s random time change.

In [22] Gantert proves that {5^} satisfies a ID-LDP on the scale v{n) with rate-function 

given by

(  (x — M Y  if X >  M  
r { x )  = P { x )  = l

I cx) if X < M.

I{x)  has compact level sets. It is possible to get more precise expansions for the tail prob

abilities of sums of these random variables, see Nagaev [55], when one is not just interested 

in logarithmic asymptotics. The exponential rate suffices for our needs. This is quite an 

unusual ID-LDP, the rate-function, /(x ), is not convex. This is as large deviations are 

caused by the tail of individual random variables rather than aggregate behavior of sums.

By Lemma 4.2, satisfies a joint ID-LDP on the scale v[n) w ith rate-function,

given by

U‘̂ \̂x,y) = r{x) + P{y  -  x),
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Figure 4-2: Rate function for (St,Nt)  on the scale v { t )  := y/i.

tha t is
oo X < M  or y — X < M

( x  — M y  +  ( y  — X — M y  otherwise.

By Russell’s random time-change (4.1), {St,Nt)  satisfies a ID-LDP on the scale v{t) with 

rate-function

W^^\x,y) =

tha t is

oo i f ^ < M o r i - ^ < M  y y y
{x -  M y Y  +  (1 -  X — M y Y  otherwise.

For a graph of W^^^x,y) ,  with a{x) — b{x) = 1 and r = 1/2, see figure 4-2.

We now wish to contract down to remove the y dependence in order to evaluate K^^ \x ) ,  

the rate-function for {St}.  As U^^\x ,y )  is concave in both its arguments, is increasing at 

its left boundary, and is decreasing at its right boundary, its minimum is attained at one or 

other of its boundaries. Hence

K^^\x) =  <

( l - 2 x ) ’' i f 0 < x < l / 2  

(2 X -1 ) '' if 1/2 < a; < 1  

oo otherwise.
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0.4

0.2

0.60 0.2 0.4 0.8 1

Figure 4-3: Rate function for {St} on the scale v(t) := ^/l.

Note that K^ ^ \ x )  is zero at x =  1/2. This is as the mean sojourn times spent in both 

the on, and off, states are finite and equal. is graphed, with a{x) =  b(x) =  1 and

r  =  1/2, in figure 4-3. We note that K^^^x)  has non-convex structure, and that this is quite 

unusual for a large deviation rate-function.
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5.1 Introduction

The notion of effective bandwidth has become widely accepted as a measure of the resource 

requirements of bursty traffic in queueing networks. Intuitively, the effective bandwidth of 

a traffic source at a given network resource determines the quantity of resource capacity 

which must be reserved for it in order to achieve a specified rate of data-loss. This quantity 

depends on the statistical properties of the traffic source, on the properties of other traffic 

which may be sharing the resource in question, and on the nature of the resource itself (for 

example, buffered or unbuffered). It has been realised, through the work of a number of 

authors, that the complex relationships between these different factors can be unravelled 

using a family of large deviation limit results for the data-loss probability. These results 

lead to the effective bandwidth function, as defined by F. Kelly [37].

The effective bandwidth a of a stationary stochastic traffic source is given by

a(s,t)  :=  llogE e^^ 'W , 
st

where X{t )  is a random variable representing the amount of data generated by the source 

during intervals of length t. The parameter s in this definition is an inverse space scale, 

that is, 1 /s may be measured in units of bits, bytes, or cells. To illustrate the significance 

of this function, imagine a buffered resource which is shared by L  stationary, independent, 

and statistically identical traffic sources. If the resource has a capacity of Lc units of data

per unit time, and a buffer to hold Lb units of data, then the steady-state rate of data-loss

R l satisfies

lim — log R l  =  sup inf (ta{s, t) — tc — b).
L —>oo L  (>o 5 > 0  \  /

Here o is the effective bandwidth function of each identical source. Results of this type, and 

generalisations to the case of non-identical sources, have been proved by A. Siinonian and 

J. Guibert [63], D. D. Botvich and N. G. Duffield [4], and C. Courcoubetis and R. Weber 

[8]. More details on the origin of effective bandwidth and its uses can be found in [37].

Given a stochastic model of a traffic source, the associated effective bandwidth function 

can be calculated more-or-less easily from the model’s parameters (see [37] for a number of
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examples and references to the literature). For many purposes, however, it may be more 

practical to determine effective bandwidths directly from traffic measurements, thereby elim

inating the need to fit a stochastic model to recorded data. N. Duffield et al. have presented 

arguments for this approach in [17]. Measurements of effective bandwidth may be useful 

both for off-line characterisation of traffic and for real-time control of multiplexing systems. 

An analysis of recorded traffic traces in terms of their measured effective bandwidths has 

been carried out by R. Gibbens in [25], while algorithms for coimection admission control 

in connection-oriented networks, based on measurements of effective bandwidth, have been 

proposed by G. de Veciana et al. [10] and J. T. Lewis et al. [45]. A measurement-based ap

proach to admission control and resource pricing, which is motivated by effective bandwidths 

but does not measure them directly, is described in [26] and [7].

In this paper we address the extent of sampling error in measured values of effective band

width. Sampling error is not a critical issue in off-line traffic characterisation, but assumes 

greater importance when measurements are used for the purpose of dynamic resource allo

cation. For example, M. Grossglauser and D. Tse [30] have studied the impact of sampling 

error on a resource operating with a measurement-based admission control system. In this 

setting, under-estimation of resource requirement causes the admission control to accept too 

many new connections, leading to violation of the data-loss target, while over-estimation 

leads to a reduction in both data-loss and utilisation. Grossglauser and Tse observe that 

the negative effects on data-loss of under-estimation exceed the positive effects of over- 

estirnation, so that on the average the effect of sampling error is to increase the data-loss 

rate. The use of a certainty-equivalent point-estimate of resource requirement can therefore 

be expected to yield an average rate of data-loss somewhat in excess of the desired target. 

[30] describes an extreme case (not based on effective bandwidths), in which a simple sys

tem using point-estimates misses its performance target by two orders of magnitude. An 

im portant consideration is the fact that the large deviation results in which the effective 

bandw idth function has its origins are intended to control the frequencies of extremely rare 

events, whose probabilities may be of the order of 10“ ® or less. At this level of likelihood even 

small sampling errors can have a significant impact; the 1 — 10“ ® quantile for an estim ator 

of effective bandwidth may be considerably larger than its mean.



78 CHAPTER 5. M EASU REM ENT OF EFFECTIVE BAND W ID TH S

Interval-estimates of bandwidth requirement are therefore desirable: if the target data-loss 

rate is 10“ ®, then a 1 — 10~® upper confidence limit for bandwidth requirement can be used 

safely as a basis for resource allocation. Approximate confidence intervals can be obtained 

from a Gaussian approximation in the usual manner, but this approach does not seem 

appropriate here due to the very low likelihood levels which are of interest. Instead we turn  

to concentration inequalities designed to provide rigorous upper bounds on the probabilities 

of rare events. Hoeffding’s inequality is particularly attractive for our problem: to use it 

we require only an upper bound on the random variables of interest, and this can obtained 

directly, without further measurement, if traffic sources declare a peak rate or other token 

bucket constraint.

T heorem  5.1 (W . HoefFding [35]) Let Z i , . . . ,  Zn be independent bounded random vari

ables such that Zk 6 [a*;, bk] with probability one. Then for  any t > 0,

n n

p ( | ^ ( Z f c - E Z f c ) |  > i )  <2exp(^-2t^/J2ib,-aify
k=l k=l

A succinct proof of theorem 5.1 is given in [12]. S. Floyd uses Hoeffding’s inequality in [21] 

to obtain an upper bound on the effective bandwidth of an aggregate of traffic sources. In 

section 5.2 we use it to compute confidence intervals for the effective bandwidth of a single 

source, based on measurements of source activity. The confidence limits can be chosen to 

converge almost surely to the true value of a as the sample size increases, assuming tha t 

the source is stationary. Alternatively they can be chosen to provide robustness against 

violations of the stationarity hypothesis. Confidence intervals for the effective bandwidth 

of aggregate traffic are obtained in section 5.3.

For our purposes, the use of Hoeffding’s inequality has two draw-backs. It requires inde

pendent observations of source behavior; and it becomes tight only at large sample sizes. In 

practice measurements of the activity of a source made at different times cannot be assumed 

completely independent, although they may be approximately so if the elapsed time between 

measurements is large. Taking widely-separated measurements will of course increase the
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time required to obtain a narrow confidence interval. The numerical results in sections 5.2 

and 5.3 show that the sample size required to obtain a useful confidence interval may be 

very large, so that the approach we describe here may not be practical for small data sets.

5.2 Effective Bandwidth of a Single Source

Throughout this section we let X{t)  be a random variable representing the amount of work 

generated by a stationary stochastic traffic source during intervals of length t. We assume 

tha t X{t )  takes values between 0 and some upper limit p{t) > 0, with probability one. 

When the peak rate P  of the source is known we may take p{t) = Pt\  more generally, if 

the source is policed by a token bucket with bucket size h and token fill rate c, then X  {t) 

cannot exceed p{t) = ct + b. In the case of multiple token bucket constraints, we set

p{t) = min(c,^ +  hi), 
i

where {hi,Ci), z =  1,2, . . . ,  are the token bucket parameters.

Our aim is to estimate the value of the effective bandwidth function

a { s , t )  : =  ^ l o g E e ^ ^ ' W ,

for given s and i, from independent observations X { t , l ) , . . .  , X{ t , n )  of X{t).  Thus each 

X{t , k ) ,  A; =  1 , . . . ,  n, is assumed to have the same distribution as X{t).  Given r  > 0, and 

setting q := r — log 2, we construct a 1 — confidence interval for a{s, t)  as follows. Let (p 

be the value of the moment generating function of X{t)  at s, and let 4>{n) be the weighted 

average
n

4>{n) := w[k,
k=\

where the weights w{k, n) satisfy 0 < w{k, n) < 1  for each k and ?w(l, n) + . . .  +  w{n,  n) =  1. 

(j){n) is then an unbiased estimate of cj). Define
1
2

e{n) :=
2 ^
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and let a(n ), /3(n) be given by

a{n) := ^  log([(?i(n) -  e(n)] V l ) , 

I3{n) := ^ lo g ( (^ (n )+  e(n)) A ^ .

P roposition  5.1 a{n) < < /3(n) with probability at least 1 -  e - Q

PROOF Since o{s,t)  takes values between 0 and p{t)/ t  we have

P^cr(s,i) < a{n) or (5{n) < a(s, t )^  = P^|(/)(n) — </>| > £{n)^.

Set Zk := w(A;, for =  1, . . . ,  n, so that 0(n) = Zi + . . .  + Zn. By assumption

the ZkS  are independent random variables satisfying

w{k, n) < Zf  ̂ < w{k, A; =  1, . . . ,  n.

Hoeffding’s inequality therefore yields
71

¥(^\4>{n)-<t>\>e{n)) =  p ( | | > e(n))
k=l

n

< 2exp(-2ff2(„)/^u;2(A;,n)(e"PW -  1)^),
k=l

and, inserting e{n), the right-hand side is just e“ .̂

If the error term e{n) tends to zero as n becomes large then so does the difference between 

the upper and lower estimates p{n) and a;(n). Since (j){n) > 1 almost surely we have for 

£(n) < 1,

 ̂ 1 . /  2e(n) \P{n) -  a{n) =  — l og ( l  +
st \ (^(n) -  e(n) I

1 /  2 -  e(n) \
< — log 1 +    —  a.s.

st \ 1 -  e(n) I

Using the inequality log(l + x) < x,

2e
Bin) -  ain)  < — ------r ^ -  a.s.,
^   ̂ -  st{l -  e{n))
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Figure 5-1: Estimated 1 — 10 ® confidence intervals for the effective bandwidth o f  traffic from a simple  

stochastic  source. T he central line is the source's true effective bandwidth.

which is of order e(n) as e{n) —> 0. The size of the error depends on the choice of the 

weights w{k ,n) ,  the optim al choice being xv{k,n) =  1 /n  for each k. In this case

and

/3(n) — a (n )  < -  1)^9
3^[\/^ —  { e ^ p W  —  l)y^]

for n  >  (e*PW -  l f q / 2 .

Figure 5-1 illustrates the type of results which can be obtained using this scheme of equal 

weight for every m easurem ent. Shown in the figure is a  1 — 10“ ® confidence interval p lo tted  

against sample size, made using traffic from a two-state Markovian source. In its ‘on’ sta te  

this source transm its a t a constant rate  of 1 unit of work (‘cell’) per unit tim e (‘slo t’), 

and in its ‘off’ sta te  transm its nothing. Sojourn times in bo th  states are geometrically 

d istribu ted , w ith a m ean on-time of 5.333 slots and a mean off-time of 16 slots. The 

effective bandw idth  estim ates in the figure are for the values s = 0.0184 per cell and t = 20 

slots; also shown is the true effective bandw idth  of the source, for these values of s and t. 

The m easurem ents of source activity used to compute the estim ates were taken from back- 

to-back blocks of length 20 slots in a single long traffic sample. They cannot therefore be 

considered independent observations, and the effect of this is to introduce a small am ount
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of bias into the estimates. Except possibly at the very largest sample sizes, this bias is more 

than offset by the conservative nature of the bounds.

Although the choice of equal weight for each observation of X{t)  minimises the value of 

e(n), it may not be appropriate in situations where the effective bandwidth of a source is to 

be monitored continuously over time. This choice is not robust against possible deviations 

from stationarity. We would like to be able to fix a timescale over which the estimated value 

of will track any changes in the true value: this can be achieved, for example, by

using the weights w{k,n)  to implement an auto-regressive filter. Each measurement X { t ,k )  

of X{t)  comes from a block of length t, let ti~ > t he the time between the end of the

/cth block and the end of its successor. To obtain a first-order autoregressive filter we set

■u;(l, 1) := 1 and, for n > 2,

w{l,n)  := ^

w{k,n) := —'Y'^k-i'j^rk+.-.+Tn-i k > 2 ,

where 7 G (0,1). Just after the end of the n th  block our estimate </>(n) of the moment

generating function of X( t )  is

n

k=2

Thus ^(1) =  and for n > 2,

4>{n) =  (1 -  - I - -  1).

Setting a =  1 — ,

4>{n) =  </)(n — 1) -I- -  4>[n — 1)),

which is a special case of the constant gain stochastic approximation applied in control and 

communication problems. Here a is typically a negative integer power of 2, so tha t the 

computation of the product on the right-hand side reduces to bit-shifting. If the sequence 

X{t ,  1), X( t , 2) ,  . . .  is i.i.d. then (p{2), . . .  is a homogeneous Markov process with limit 

distribution concentrated around for ‘small’ a [59, 32, 41].
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Assume that observations of X{t)  are made periodically, so that = t  > t for each k. 

After the n th  observation the error term e{n) in the upper and lower bounds of proposition 

5.1 is given by

and as n —>• oo, e{n) converges to the non-zero value

ffoo : =  l |m  e{n) = ~  1 ) \ / ^  (n—>•00 y Z y 1 +  ^

Thus a large value for 7 ’’ (closer to one) results in a smaller confidence interval in the limit 

n —)■ 00, but one which takes longer to converge, and longer to respond to any changes in the 

pattern of traffic from the source. The minimal value of ' f  required to achieve a confidence 

interval of given size can be determined from the above equations. By varying both 7  and 

T the size of the limiting confidence interval and the rate of convergence can be controlled 

independently to some extent, but always subject to the constraint t  >  t .  Note that if

_ ^  ^  -  1)2 -  2  

^  9(e*P(^) - 1 ) 2  +  2

then £oo < 1, and the error between the upper and lower efi'ective bandwidth estimates 0{n)  

and a{n) satisfies

lim /3(n) — a(n) < —p—— — r a.s.
^  -  s^(l -  e^ )

Applying the auto-regressive estimation procedure to a sample of Markovian traffic produces 

results such as those in figure 5-2. This plot was made using the same traffic source as that 

used to make figure 5-1. The period t  between measurements was set equal to i  =  20 slots, 

and the value of 7  was 0.999; with these parameters a reasonably narrow final confidence 

interval is achieved but the rate of convergence is slow compared to that in figure 5-1.

This estimation scheme suffers from a remaining defect, namely that the presence of pe

riodicities in the traffic may lead to bias in the estimate <p{n) of the moment generating 

function. To avoid this, it is necessary to choose the observations randomly, rather than 

periodically, from the available data. Let us suppose that the inter-block time ti~ is equal 

to i +  Tfc, where r i , r 2, . . .  are independent exponentially distributed random variables with
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Figure 5-2; Estim ated 1 -  10 ® confidence intervals for traffic from a sim ple stoch astic  source, made 

using a first-order autoregressive filter. T he central line is the source's true effective bandwidth.

m ean 1/A (this type of procedure was suggested by R. Gibbens in [25]). The bounds of 

proposition 5.1 continue to hold (w ith probability a t least 1 — e“ ^), bu t the error term  e{n) 

is now a random  variable because it depends on the inter-block times through the weighting 

fu nction  w{-, n) .

The sum  of squared weights w ^(l, n) -I- . . .  -I- w‘̂ {n, n) satisfies

^^w^{k,n) =  ^ 2 T i + . . . + 2 r n  1 -I- ŷ (l — - 1  \ 2 ^ 2 r f c +  . . . + 2 T n - 1

A : = l k=2
n — l

= w^{k,n — 1) + [1 — )^.
k = ]

Therefore the sequence {e^{n) : n  >  1} evolves through the stochastic recursive equations

(5.1)
k=l

=  a n - i e ' ^ { n  -  1) +  b n - i ,  

where {(a„,6„) : n  >  1} is the i.i.d. sequence given by

Recursive system s of this kind have been studied by W. Vervaat [64] and A. B rand t [5], who 

show th a t if

-GO < Elog |a i| < 0 and E(log |6 iI)" ''<  oo, (5.2)
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or if P(ai =  0) > 0, then there is a iinique stationary process {5(n) : n € E} satisfying 

equations (5.1), given by

00

S{n) := ^   ̂bn—k—lO'n—k ■ ■ ' 1 71 G E
k=0

(here we assume that {an} and {6„} have been extended to become integer-indexed se

quences). If {S'{n) : n  e  E} is any other solution of (5.1) then |5 '(n ) — S{n)\ tends to zero 

almost surely in 7i, and the distribution of S'{n) converges to that of 5(0).

Conditions (5.2) are easily verified for the particular case at hand, and we conclude that e{n)

converges almost surely to £oo y/S{0).  If /Xq and ij,h denote, respectively, the expected 

values of ai and 6i:

A — 2 log 7  ’f i a  ■= Eai =

2 \  A - lo g  7  A - 2  log 7  J

the Ee:(n) and E^oo satisfy

Ee(7i) <  y E e2 (n ) =  (Hh-—  
\ IJ-aJ

and ^

E £oo <  v ^ E ^ =
V 1 -  Ma /

As 7 * increases from zero to one, the right-hand side of this last inequality decreases from 

_  l) .^ g /2  to zero. Thus the limiting value of the error term can again be made as 

small as desired, at the cost of slower convergence.

5.3 Effective Bandwidth of Aggregate Traffic

We now assume that we are given separate data for each of several independent traffic sources 

which share a link, our task being to estimate the effective bandwidth of the aggregate 

link traffic. Let Xi{t) be a random variable representing the quantity of work generated



86 CHAPTER 5. MEASUREMENT OF EFFECTIVE B A N D W ID T IS

by source I = during an interval of length t, and let pi{t) be a known upjer

bound for obtained in the same manner as p{t) in section 5.2. We assume tla t

I =  are independent random variables, so that the effective bandwicth

a{s,t)  of the sum X i(i) +  . . .  +  X i i t )  satisfies

L

1=1

where

ai(s,t) := ilo g E e^ ^ 'W  
st

is the effective bandwidth of source 1.

Let (f)i be the value of the moment generating function of Xi{t) at s. Given ni independent 

observations X i { t , l ) , . . . ,  Xi{t,ni) of Xi{t), and a weighting function w{-,ni), we form ihe 

estimate

M n i )  ■■=

k=l

As before, is an unbiased estimate of 0/ so long as the weights w(-,ni)  are chofen

appropriately. Let (/ > 0 be given, and let q\, - .. , q i  be positive numbers satisfying

For each I define
n,

k=\

From the results of the last section we know that ai(ni)

and /3i{ni), defined by

ai{ni )  ^  log(^[(/)/(n,) -  e;(n,)] V l ) ,

M n i )  := ^ lo g ( [0 ,(n ; )+ e ,(n / ) ] )  A

bracket the value of ai{s,t) with probability at least 1 —
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P ro p o s itio n  5.2 Set

a := ai[ni)  + . . .  + a i ( n i ) ,

P : =  Piini) + ... + Piini)-

Then a < a{s,t) < P holds with probability at least 1 -

PROOF a{s,t) < a  OT a{s,t) > /3 holds only ifcr;(s,i) < ai{ni) or cr/(s,i) > Pi{ni) for some 

I. Therefore

P(<7(s,^) < a  or a{s,t) > /?)
L

< ^ P ( c r ; ( s , t )  < ai[ni) or cr/(s,i) > ai{ni))
1=1

L

£  E '
1=1

As an illustration let us take e = e ^/L  for each I and compare proposition 5.2 with the 

results of section 5.2. The error terms are given by

1 r

k=l

Note that the upper estimate Pi{ni) of the effective bandwidth of source I satisfies 

Mni) < ^̂ \og[4>i{ni) + ei{ni)] < ^log0;(n/)  +

and hence

s t ^  s t ^( p i { n i ) '

For large L  the sum of the error terms on the right-hand side of this inequality grows pro

portionately with Ly/\og L. For comparison, if the aggregate traffic were treated as a single 

traffic stream, the results of the previous section would yield an error term proportional to 

e*p(0 with p{t) = pi{t) + . . .  + pL{t). Thus the estimation error would grow approximately 

exponentially in the number of sources.
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Figure 5-3: Estimated 1 — 10“ ® confidence intervals for the effective bandwidth of an aggregate of 100 

sources.
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Figure 5-4: Estimated 1 — 10“ ® confidence intervals for the  effective bandwidth of an aggregate of 100 

sources, made using a first-order autoregressive filter.
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Figures 5-3 and 5-4 depict results obtained by applying this procedure to an aggregate 

of 100 Markovian sources of the type described in section 5.2. The weighting function 

w{k,n)  = 1/n  was used to make the estimates in figure 5-3, while those of figure 5-4 were 

made using an auto-regressive filter. The results are seen to be qualitively very similar 

to the corresponding single source results, indicating little or no loss of precision due to 

aggregation.

Other choices for the coefficients qi are also possible; for example, we may wish to choose 

smaller qi where n/ is small, or where pi{t) is large. Using the weighting function w{k, ni) =  

1/n/, k = \ , . . .  ,ni, the error e/(n;) is given by

.,(« ,) =

This can be made independent of I by choosing choosing

_ cni 
~  {e^PiW -  1)2

where c satisfies L
^  exp(-cn;/(e®^'^*^ -  1)) =  (5.3)
;= i

Then

ei{ni) =

for each I =  1 , . . . ,  L. Thus the error terms are equalised by allowing more latitude to 

sources with higher peak rates, or from which fewer observations have been obtained. The 

transcendental equation (5.3) must however be solved numerically.
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Appendix: The Loynes Theorems

Let a probability triple (H ,^ , P) be given. Let S  : Q Q he an invariant left shift operator 

which is stationary (that is, P[5“ ^F] = P[F] for all F  E T )  and ergodic (that is, the 

shift invariant events, B C T ,  defined by 5  6 .6 if 5 “ ^[5] =  B, have probability 1 or 0). 

Let { o n  : n  G Z } , { 0 n  : n  G Z} be two sequences of non-negative, almost surely finite, 

random variables. Define the sequence : n  G Z} by '■= (Jn ~ Sn and the sequence

{Wn : n G Z+} by Wq := 0 and Wn := ^ - i ,  for n > 1.

A ssu m p tio n  A .l  The sequence {Zn : n £ Z} is stationary with respect to S.

T h e o re m  A .l  Define the queueing recursion by w{n -I- 1) := {w{n) + ZnJ^i) V 0, where 

we define a\J b to be the maximum of a and b. Then there exists a stationary sequence 

of random variables {T„ : —oo < n < oo}, with distribution equal to Q = sup„>g 

satisfying T„_(_i := (T„ + Zn+i) V 0 such that the distribution of w{n) tends monotonically 

to that of Q as n —> oo.

90
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PROOF Define w{—N, —N) := 0 and define w{-N, n) ,  for n > - N ,  by

w ( - N ,  n +  1) := {w{—N, n) +  Zn+i) V 0.

We shall show that w{—N,n)  is monotone increasing in N  and that for each n

lim w{—N,n)  = T„,
N^OO

almost surely. Note that for t = —N  + 1

w { - N , - N  + l) = { w { - N , - N )  + Z-N+i )yO  

=  Z - N + i  V 0.

Hence for n =  —N  + 2,

w { - N , - N  +  2) =  { w { - N , ~ N  +  1) +  Z - n + 2 ) ^ 0  

=  0 V Z _ ^ + 2  V (Z_7v+2 +  ^-AT+l)-

By induction,

w { - N , n  + l) = {w{-N,n)  + Zn+i) y  0

=  0 V Zn+]  V {Zn+l  +  Zn)  V . . .  V {Zn+l  +  ' ' ' +  Z ^ N + l )  ■

Now, letting A/' —>• oo, we get that, for each n, w{—N,n)  tends monotonically to a limit T„ 

which satisfies T„_|_i := (T„ + Zn+i) V 0 and
r

Tn ■— lim w{ - N , n )  = 0 V sup Zn-i-
AT-400 r>0 ^

To show the sequence {T„} is stationary with respect to the left shift operator S  we must

show that T„+i =  We do so by induction for n > 0. From 0 to 1 we have,

5  T o  =  5  lim]v->-oo{0 V Z q V ( Z q +  Z _ i )  V . . .  V ( Z q +  .Z_i +  • • • +  Z_7v)}

=  limjv->oo{0 V Z i  V +  Zo V . . .  V { Z\  +  Z q +  Z _ i  +  • ■ • +  Z_at-)_i)}

=  ( To +  Z i ) V O  

= Ti.

Now, from n to n +  1, we have,

s  =  S  lim/v^cxaiO \/ Z n \ /  (Zn +  Z n - \ )  V . . .  V {Zn + Zji^i  + • • • +  Z „ _ jv )}

=  lim7V->.oo{0 V Zn+l  V {Zn+l  +  Zn)  V . . .  V ( Z„+i  +  Zn +  • ■ ■ +  Zn-JV+l ) }

=  ( T n  +  Z n + l )  V 0 

= T„+i.



92 APPENDIX A. APPENDIX: THE LOYNES THEOREMS

So we have shown tha t for each n > 0, and hence the sequence {T„} is

stationary with respect to the left shift operator S.

We note that, because the sequence {T„} is stationary, each T„ has the same distribution. 

For convenience, we define 0  by

0  := To := Hm w{—N,0)  =  supH^„.
N - ^ o o „>o

A ssum ption  A .2 The sequence : n £ Z} satisfies

N

i=0

almost surely.

lim sup Zj = —oo.

Note that if {Zn} is stationary, ergodic and E[Z„] := E[cr„] -  E[0„] < 0, then the Birkoff 

strong law of large numbers says that

1=1

almost surely, and thus
N

lim sup =  —oo,
i=0

almost surely. Hence assumption A.2 is satisfied if {Zn} is stationary, ergodic and E[Z„] < 0.

D efin ition  A .l  IVe say the sequence of random variables {T^ : n G Z} is coupled with the 

sequence {T„ : n G Z} if  {T„ : n G Z} is stationary and there exists an almost surely finite 

random variable, t ,  such that =  T„ for all n > t .

T heorem  A .2 I f  assumptions A . l  and A .2 are satisfied, then any solution {T^} of

w{n +  1) =  {w[n) +  Zn) V 0, for n > 0, couples to {T„}, where {T„} is defined in theorem

A .l.
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PROOF By the recursion, we have

=  0 V V [ Zn  +  Z n - l )  V . . .  V [ Zn  +  Z n - \  +  ■ ■ ■ +  Z q +  Tg)

and

Tj i  =  0  V Zn  V {Zji  +  Z n - l )  V . . .  V {Zn  +  Z n - l  +  ■ ■ ' +  Z q +  Tq ) .

By assumption A.2,
N

lim su p ^ ^ Z j =  —oo,
i=0

almost surely. Therefore there exists an almost surely finite random variable, r ,  such that 

{ Z t  +  Z i —\ +  • • • +  .Zi +  Tq) V { Z t  +  Z-J-—1 +  • • • +  Z \  +  To) < 0.

Thus we have that, for all n  >  t ,

T n  =  =  0 V V { Zn  +  Z n - l )  V . . .  V ( Z „  +  Z n - l  +  ' ' • +  Z \ ) ,

and {T^} is coupled to {T„}.
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