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Summary

This thesis is divided into three parts. In Part I the concept of holography in the con­

text of the M aldacena conjecture and the three-dimensional black hole of Bafiados, 

Teitelboim and Zanelli (BTZ) is studied. In particular, it is shown how a theo­

rem of Sullivan provides a precise mathematical statem ent of a three-dimensional 

kinematic holographic principle, tha t is, the hyperbohc structure of a geometrically 

finite Kleinian manifold is completely determined in terms of the corresponding Te- 

ichmliller space of the boundary. It is shown that the Euclidean BTZ black hole is a 

geometrically hnite Kleinian manifold and some consequences of the theorem for this 

space-time are explored.

In Part II string theory and D-branes in the context of Ashoke Sen’s work on 

tachyon condensation in type II brane-antibrane systems are studied. A calcula­

tion of various tree-level scattering amphtudes on the upper half-plane describing 

the interaction of closed string R-R fields and open string tachyons is performed. 

The calculations lead to a proposal for the generalisation of the Wess-Zumino term  

to  brane-antibrane systems. The proposal is w ritten cleanly in term s of Quillen’s 

super connect ion.

The final part of the thesis is concerned with generahsed Kaluza-Klein theory 

in the form of the Randall-Sundrum models and cosmological extensions such as 

the Binetruy, Deffayet and Langlois model. A single-brane cosmological scenario in 

which five-dimensional gravity is coupled to a scalar field sigma-model with indefinite 

metric and m atter on the brane is induced by a bulk a priori anisotropic fluid is 

also considered. A range of solutions for which the induced metric on the brane is of 

Friedmann-Robertson-W alker (FRW) type and for which the fifth radius is non-static 

is found provided th a t the fluid is isotropic and stiff. Other FRW -type solutions with



a static fifth radius are also found. In all cases it is found possible to achieve standard 

cosmology, that is, the Hubble parameter on the brane is proportional to the square 

root of the density of the fluid on the brane. Einstein’s equations are linearised for the 

isotropic, stiff fluid case and a stability analysis of the transverse, traceless Kaluza- 

Klein modes is carried out. The analysis suggests that those solutions where the scale 

factor on the brane goes like ~  i(2-9)/6  ̂ — l < < 2 and that of the fifth dimension

goes like ~  (where t is the comoving time in the Jordan frame) are stable since 

the normahsable perturbations die away to zero ast ^  oc. It is also found that these 

solutions have finite four-dimensional Planck mass and do not violate the null energy 

condition on the brane in the case that the brane has positive tension, despite the 

assumption of an indefinite sigma-model metric. It is suggested that these solutions 

might be capable of localising gravity to four dimensions.
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General Introduction

This thesis is based on four papers done in collaboration with other researchers 

and is divided into three parts, each dealing with one of the major current issues in 

m odern theoretical particle physics. Each part begins with a discussion of the relevant 

background material and concludes with a presentation of the results contained in 

the paper(s) pertaining to th a t part.

In P art I we consider the concept of holography as applied to the three-dimensional 

black hole discovered by Bahados, Teitelboim and Zanelli (BTZ). We start in Chap­

ter 1 w ith a review of the BTZ black hole, discussing both the Lorentzian and the 

Euclidean cases. We focus in particular on the global geometry and how the black 

hole can be obtained via a quotienting construction from three-dimensional anti-de 

Sitter space.

The holographic principle and the Maldacena conjecture are the subject of Chap­

ter 2. We are all familiar with the notion of a hologram in which three-dimensional 

information is stored on a two-dimensional surface. Likewise, there is such a con­

cept w ithin string theory. It has its roots in the famous Bekenstein-Hawking (BH) 

entropy-area law which states th a t the entropy of a (3 -|- l)-dimensional black hole, 

an inherently three-dimensional quantity, is proportional to the surface area of the 

event horizon. This law is in fact the hmiting case of the more general statem ent 

th a t the entropy within a three-dimensional closed region containing gravity cannot 

exceed the surface area of the boundary of th a t region. This bound is known as the 

Bekenstein bound and is discussed in section 2.1. ’t Hooft and Susskind interpreted 

this as meaning tha t it must be possible to describe all phenomena within the region 

by a set of degrees of freedom living on the boundary. This is essentially the content



of the Maldacena conjecture which we outhne in section 2.2. The conjecture states 

that type IIB string theory on a certain space-time is mathematically equivalent to a 

supersymmetric Yang-Mills theory living on the boundary, given certain conditions^ 

Central to the conjecture is the fact that the isometry group of the space-time acts 

as the conformal group on the boundary. A concrete realisation of these ideas is pre­

sented in section 2.3. This is Strominger’s derivation of the BTZ entropy using the 

Cardy formula. The Cardy formula relates the entropy, as measured by the logarithm 

of the number of states, to the central charge of a conformal field theory. Conformal 

field theory arises in the context of the BTZ black hole because the asymptotic sym­

metry group of the BTZ metric is just the conformal group in 1 -h 1 dimensions. Two 

copies of the Virasoro algebra appear and the central charge can be calculated. This 

allows a value to be placed on the entropy which can be compared with the value 

obtained using the BH formula — the two are found to agree.

In Chapter 3, we discuss how an analogous concept of a kinematic holographic 

principle as embodied in a theorem of Sullivan exists within three-dimensional hy­

perbolic space. The theorem states that the hyperbolic structure of a certain class of 

three-dimensional manifolds is completely determined in terms of the corresponding 

Teichmiiller space of the boundary. This result is a deep theorem and necessitates 

that we develop various aspects of hyperbolic geometry in some detail. This is most 

elegantly achieved through the use of Hamilton’s quaternions and involves the quo- 

tienting construction introduced in the first chapter. We also explain the notion of 

geometrical finiteness, which is a necessary condition for Sullivan’s theorem to apply. 

As Chapter 3 is rather abstract, we illustrate the ideas throughout using the Eu­

clidean BTZ black hole. In particular, we prove that it is geometrically finite. This is 

the main result of Part I and allows us to deduce several consequences of the theorem 

for the BTZ black hole, one of which is to lend support to Strominger’s derivation of 

the entropy.

Part II of the thesis is concerned with various topics in string theory. For the

^To properly understand the Maldacena conjecture a knowledge of string theory and D-branes is 

required. However, our aim in Chapter 2 is to stress the holographic principle behind the conjecture 

— we do not discuss string theory and D-branes in depth until Chapter 4.



sake of completeness, we begin in Chapter 4 with a review of the elements of string 

theory and D-branes th a t we require. We introduce the bosonic closed and open 

string in section 4.1.1. Bosonic string theory was born in the late 1960s out of an 

a ttem pt to explain experimental observations in strong interaction physics through 

dual resonance models [1,2], a role now filled by quantum  chromodynamics. It was 

subsequently reahsed [3] th a t the spectrum  of states of the closed string contains 

a massless spin-2 particle, which is just the right amount of degrees of freedom for 

describing the graviton, the particle conjectured to mediate gravitational interactions. 

This provided an alternative use for string theory as a theory of quantum  gravity.

Unfortunately, the bosonic string cannot accommodate fermions and also contains 

a tachyon, a particle of negative mass-squared which makes the theory unstable. 

These problems are circumvented by supersymmetrising the string and by performing 

a projection (the GSO projection) on the resulting spectrum  of physical states. The 

superstring and the GSO projection are the subject of section 4.1.3. Several consistent 

supersymmetric string theories exist and we focus mainly on two of these — type IIA 

and type IIB theory, both of which live in ten space-time dimensions^. The type II 

theories are closed string theories and the GSO projection is such th a t they consist 

of four sectors: NS-NS, R-R, R-NS and NS-R, where NS stands for “Neveu-Schwarz” 

and R for “Ramond.” In particular, the R-R sector contains massless /c-form held 

strengths =  dCi^^i corresponding to potentials C k - i ,  where k  is even for type IIA 

and odd for type IIB. For both the bosonic string and the superstring, we concentrate 

on the conformal field theory of the worldsheet and in section 4.1.6 we describe 

how to calculate tree-level scattering amplitudes in the case of interacting strings. 

Section 4.1.7 then deals with the low-energy effective actions th a t can be deduced 

from knowledge of these amplitudes.

In section 4.2 we introduce Dp-branes in more depth, having first met them  in 

the context of the Maldacena conjecture. A Dj!?-brane is a (p-|- l)-dimensional hyper­

plane in space-time on which open strings can end and which is positively charged 

under the R-R (p-t- l)-form potential Cp+i. Such objects play a crucial role in much

^Another consistent theory, which we do not actually discuss, is heterotic string theory with 

gauge group Eg x Es- It also lives in ten space-time dimensions.
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of modern-day string theory. We describe how the low-energy effective action on 

several coincident branes is composed of two parts — the Born-Infeld action and the 

Wess-Zumino (or Chern-Simons) term. The Wess-Zumino term  is essential for the 

consistency of D-branes and contains a coupling of the R-R potentials to the ordinary 

non-abelian gauge field th a t arises from open strings stretched between the coinci­

dent branes. We conclude the chapter with a short discussion of the phenomenon of 

T -duality in section 4.3. T-duality is a symmetry of string theory which relates type 

IIA to  type IIB causing Dp-branes in one theory to become D(p ±  l)-branes in the 

other.

C hapter 5 deals with R-R couplings on brane-antibrane systems. An antibrane, 

or Dp-brane, is simply a brane negatively charged under the potential Cp+\. W hen 

a brane and antibrane are coincident, the system as a whole preserves no supersym­

m etry and two open string tachyons exist in the spectrum. The system is therefore 

unstable and can decay to branes of lower dimension by tachyon condensation. Such 

systems were the subject of an im portant series of papers by Ashoke Sen in his 

a ttem pts to provide evidence for various duality conjectures tha t relate one string 

theory to another. The power of T-duality proved to be a useful tool in his analyses. 

After first introducing brane-antibrane systems in section 5.1.1 and 5.1.2, we go on 

to describe Sen’s work in section 5.1.3. It was subsequently realised by W itten  th a t 

Sen’s work could be reinterpreted in the language of K-theory and he was the first to 

mention Quillen’s superconnection in the context of Sen’s work. We discuss K-theory 

and the superconnection (which has its origin in the theory of superbundles) in sec­

tion 5.1.4. The main result of Part II is contained in section 5.2. Here, we use the 

string theory developed in Chapter 4 to calculate some tree-level open-closed scat­

tering amplitudes on the upper half-plane describing the interaction of tachyons with 

R-R fields on the worldvolume of the brane-antibrane system. From knowledge of 

these amplitudes we are able to infer the low-energy effective action for the dynamics. 

This allows us to conjecture a generalised form for the Wess-Zumino term  to Dp-Dp 

systems. The proposed form is cleanly written in terms of the superconnection.

The final part of the thesis deals with what may be termed generalised Kaluza-

xiv



Klein theory. A brief review of standard Kaluza-Klein theory is contained in Chap­

te r 6. The original theory envisaged by Kaluza [4] and developed by Klein [5] was 

an a ttem pt to unify Einstein’s gravitation with Maxwell’s electromagnetism. The 

basic idea of the theory was th a t space-time was a five-dimensional manifold with 

the extra spacelike dimension forming a circle of very small radius Tq. The action of 

the theory was taken as the Einstein-Hilbert action in five dimensions. Both four- 

dimensional gravity and gauge theory were treated on a similar footing in th a t both 

were described as parts of the five-dimensional metric tensor. One then performed 

a dimensional reduction of the action down to four dimensions. In the process, one 

obtained the four dimesional action of gravity plus abelian gauge theory and a spec­

trum  of massive modes which could however be neglected since the states had large 

masses ~  1/ro and so were beyond experimental reach.

Unfortunately, this approach proved to be inconsistent in general, as we now ex­

plain. Klein set the component of the five-dimensional metric in the extra direction 

(^4 4 , say) to be a constant before performing the dimensional reduction. This was 

because if this component were non-constant, it would give rise to an additional field, 

a scalar field (p = to which no suitable interpretation could be attached. How­

ever, as was first pointed out by Jordan [6] and Thiry [7] by retaining the scalar 

field throughout the dimensional reduction process and setting it to a constant after­

wards^, <p =  constant is only consistent provided the gauge field strength satisfies the 

condition FijF^^ = 0. (Here, i is a four-dimensional index.) For historical reasons, 

the scalar field (j) is known as the Brans-Dicke scalar [8].

Despite the drawback, the Kaluza-Klein concept is one of the most beautiful in all 

of theoretical physics and still finds application today. Indeed, if superstring theory 

is to  realistically describe our world one must reduce the ten-dimensional superstring 

action down to  four dimensions by compactifying on T® or a Calabi-Yau manifold in 

much the same way as the original Kaluza-Klein theory was compactified on a circle. 

Consistency of the process results in the generation of many scalar fields (known as 

dilatons) which are analogous to  the Brans-Dicke scalar. For further details of the 

^This was some twenty years after Klein’s paper!
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application to string theory and supergravity the reader should consult the reviews 

by Duff [9] and by Duff et al [10].

We encounter the Randall-Sundrum (RS) models in Chapter 7. These are models 

in which we, and therefore the Standard Model, are conjectured to live on a four­

dimensional hypersurface in a five-dimensional space-time. In brane language, we are 

conjectured to live on a three-brane. In addition, there exists in the five-dimensional 

space-time a second three-brane (the “hidden” brane) at either a finite or an infinite 

distance away from our “visible” brane. The models, while not directly related to 

string theory, are definitely string-inspired. Indeed, the RS set-up is very reminiscent 

of the Hofava-W itten solution [11] for the strongly-coupled Eg x Eg heterotic string 

where each Eg Hves on a ten-dimensional boundary of an eleven-dimensional space­

tim e — one £ ’g can be considered to belong to the visible sector and to provide the 

S tandard Model^, whilst the other belongs to the hidden sector. The first RS model, 

discussed in sections 7.1 to 7.3, is an attem pt to solve the age-old hierarchy problem 

th a t exists within particle physics — namely, how to explain the huge difference 

between the electroweak scale and the Planck scale. The second model, which we 

describe in sections 7.4 and 7.5, shows how one can localise a theory of gravity 

w ith five non-compact dimensions to four dimensions. Since the extra dimension 

is no longer very small the massive Kaluza-Klein modes may no longer be beyond 

experimental reach. An analysis of the Kaluza-Klein spectrum is therefore necessary 

to check th a t the massive modes do not significantly alter the inverse-square force 

law of four-dimensional gravitation.

The RS models are static — the induced metric on the visible three-brane is 

just th a t of Minkowski space-time. It is natural to generalise the models to allow 

Friedmann-Robertson-W alker (FRW) cosmologies on the brane. Such generalisations 

are the subject of our final chapter. Chapter 8. We begin with a discussion of the 

Binetruy, Deffayet and Langlois (BDL) model in section 8.1. Unfortunately, this 

model results in non-standard cosmology in th a t the Hubble param eter is found to 

be proportional to the density of m atter on the brane (in the form of a perfect fluid)

is connected through a series of subgroups to groups such as SU{5) and 50(10) that contain 

the Standard Model gauge group SU{3) x SU{2) x 17(1) and appear in grand unification schemes.
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rather than to its square root, as in conventional big bang cosmology.

In the BDL model, the matter is assumed to lie entirely within the brane, despite 

the absence of a well-defined non-gravitational mechanism to confine it. It might 

therefore be of interest to consider what happens in the case of a bulk fluid. We 

investigate this in sections 8.3 and 8.4, which form the main components of the 

chapter. Specifically, we consider a single-brane scenario in which hve-dimensional 

gravity is coupled to a bulk scalar field sigma-model with indefinite metric and m atter 

on the brane is induced via a bulk a priori anisotropic fluid. We find a range of FRW- 

type solutions with flat spatial sections for which the scale factor on the brane goes 

like ~  or ~  and that of the fifth dimension goes like ~  and ^

respectively. Here, t is the comoving time in the Jordan frame and 7 and q are 

arbitrary non-zero constants. We also obtain standard cosmology provided certain 

conditions are satisfied, one of which is that the fluid must be isotropic and stiff'. A  

stiff fluid is one for which the pressure is equal to the density, implying that the speed 

of sound in the fluid is equal to the velocity of light. Other FRW-type solutions also 

obeying conventional cosmology are obtained when the radius of the fifth dimension 

is assumed to be static. In sections 8.3.3 and 8.3.4 we perform a perturbation analysis 

of the solutions in the case of an isotropic, stiff fluid and examine the stability of the 

transverse, traceless Kaluza-Klein modes. The analysis suggests that the power law 

solutions with —4 < q < 2  are stable since the normalisable perturbations die away 

to zero as t oc. We also find that the effective four-dimensional Planck mass is 

finite for these solutions, given certain conditions. In section 8.4 we examine the 

null energy condition on the brane. Since a sigma-model with indefinite metric has 

“wrongly-signed” kinetic terms for some of the scalars, the scenario might be expected 

to violate various energy conditions, the weakest of which is the null condition. These 

energy conditions are required to be conserved if the scenario is not to have serious 

repercussions for physics. We find that the null condition on a brane of positive 

tension is not violated if —1 < q < 2. Interestingly, this is precisely the range of 

q that would have been obtained had we started with a standard positive-definite 

sigma-model metric. We conclude that for this range of q gravity might be localised

xvii



in our scenario, thus providing a generahsation of the second RS model to a non-static 

metric.
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Part I

Geom etrical Finiteness, 

Holography and the  

Bafiados-Teitelboim -Zanelli 

Black Hole



Chapter 1

The BTZ Black Hole

In this chapter we review the three-dimensional “BTZ” black hole discovered by 

Banados, Teitelboim and Zanelli [12]. We shall make extensive use of the work of 

Carlip [13,14], Banados et al [15], Carlip and Teitelboim [16] and Satoh [17].

The rotating BTZ black hole in Schwarzchild coordinates is described in units 8G =  1 

by the stationary, axially-symmetric metric

and — oo <  t < oo is the time coordinate, 0 <  r  <  oo is a radial distance and cf) 

an angle of period 27t. The param eters M  and J  are identified with the standard 

ADM mass and angular momentum associated with the Killing vectors dt (which is 

asymptotically timelike) and d^. It is easily verified th a t this metric is a solution of 

E instein’s equations with negative cosmological constant:

1.1 The Lorentzian BTZ Black Hole

ds^ — +  +  r ‘̂{d(j) +  N'^{r)dtY  ,Hry ( 1 .1 )

where the lapse and shift functions are given by

(1.3)

where A =  — 1//^.
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The locations of the horizons of the black hole are given by the zeros of the lapse 

function; there is both an inner and an outer horizon:

o  MP
T o -  =

J 2  \ l / 2
:i-4)

from which we determine

=  (1.5)P ’ ' ' I 
Note that the areas of the horizons are given by

Jr±
=  27rr± . (1-6)

Like the Kerr solution in (3 +  l)-dimensions, the BTZ black hole possesses an 

ergosphere — this is the boundary of the region in which dt is spacelike and its 

location is given by the zero of the gtt component of the metric. If a particle decays 

in this region it is possible to extract energy from the hole via the Penrose process [18]. 

We find

' e r g

Therefore, the ergosphere lies beyond the outer horizon r+.

If we change to ingoing Eddington-Finkelstein-type coordinates via

dv "
dv = d t+  , d<i> = d(t)— T T w d r  , ( 1.8)f{rr fi r̂

the metric (1.1) is transformed to

ds^ —/ { r^dv^  + 2 d v d r r “̂{ d ^ N ^ ( r ) d v ) ‘̂ . (1-9)

From this form of the metric it is easy to see that the normal to the hypersurface 

S{x) = r = constant is given by =  d^S{x) = or, equivalently,

n(r) =  g^^^n^d, =  d , +  f ( r f d r  -  N ‘t>{r)d^ . (1.10)

Hence, the horizons are null since n(r)^|r± =  g^^\r± = /(^±)^ =  0. Furthermore, 

n(^±) = dv — N^{r±)dtj, is a Killing vector on r  =  r±, so the horizons are also Killing 

horizons with surface gravities determined by

, ( 1 . 1 1 )



where it is understood th a t n (r) is evaluated on r = r± before differentiating. There­

fore, we obtain

,2

Pr (L12)

To dem onstrate tha t the BTZ metric describes a genuine black hole we show th a t 

the outer horizon is an apparent horizon. The interior of a black hole generally 

contains trapped surfaces. These are surfaces for which both sets of ingoing and out­

going null geodesics are everywhere converging. In the absence of naked singularities, 

their presence is a sutficient (but not a necessary) condition for the existence of a 

black hole [19]. The apparent horizon is the outer boundary of a region of trapped 

surfaces for which the null geodesics have zero convergence [20]. Under certain con­

ditions, the apparent horizon coincides with the event horizon for a stationary black 

hole [19]. The convergence of the geodesics is characterised by the optical expansion 

scalar 0 defined by

(1.13)

which we find vanishes on r_L.

T h e  P e n ro s e  D ia g ra m

In the non-extremal case \J\ 7  ̂ M l  (that is, r ^ ^  rJ)  with both J  and M  non-zero, 

a Kruskal-like coordinate patch can be defined around each of the horizons. To do 

so, define the transformation

U = p (r)e““‘ , V  = p(r)e^^ , ( 1,14)

where

dp ap
( 1. 15)

dr f { r y

and where the constant a can be different in each patch. Integrating (1.15) we obtain

1/2

p(r) =

+1 r-i-6 r -f r_ r_6

r +  r+ r — r_
(1.16)
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where b = aV'/{r\ — r t) .  

We find that

dUdV = 0 ? dt^ + , (1-17)

and therefore choosing i)? =  we can rewrite (1.1) in the form

= i fd U d V  +  r ‘̂{d(j)'̂  +  N ‘̂ {r)d tf  . (1.18)

where r and t are functions of U and V .

In the patch around r+ there are two regions: < r < r+ and r_|_ < r  < oo.

We choose a+ =  and, therefore,

\ r  +  r_ y

In the patch K_  around r_ there are two regions: 0 < r < r_ and r_ <  r  < r+. 

We choose a_ =  and, therefore, obtain

■

From the above forms of it is clear that the singularities at r  =  r± in

the original form of the metric (1.1) are merely coordinate singularities. The real 

singularity is at r  =  0, as we will show in the next section. However, unlike the 

Schwarzchild or Kerr solutions in four dimensions, the singularity is not a curvature 

one — one can easily check that the curvature tensor of the metric (1.1) is everywhere 

regular and given by

Rf^upa  ̂ {dfipQua 9î p9ticr) i (1-21)

and hence the blowing up of the curvature scalars R, and Rfj,ypaR^^'”̂  at r  =  0

which one usually associates with black hole singularities does not occur. Therefore, 

the BTZ space-time is a space of constant negative curvature and as such is locally 

isomorphic to the universal covering space AdSz  of three-dimensional anti-de Sitter 

space. We will return to this point in the next section.
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An infinite number of Kruskal patches may be joined together to form a maximal 

solution. The Penrose diagram is obtained from the coordinate transform ation

=  =  . ( 1.22)

where — |  < p,q  < Using (1.16), it is clear tha t in patch the horizon r+ maps

to p =  while r  =  oo maps to p =  ± | .  Similarly, in patch r_ maps to p — ±q

while r  =  0 maps to p =  ± | .  The diagram is given in figure 1.1 below.

I  I

r = 0 r = 0III III

r  = r -

r = 0 r = 0III III

I

Figure 1.1: The Penrose diagram for |J | ^  M l  with both J  

and M  non-zero. Region I is the region <  r <  oo , region 

II corresponds to r_  <  r <  r-j. and region III is the region 

0 <  r <  )■_. (Courtesy of Y. Satoh, taken from [17].)

Similar Penrose diagrams can be drawn for the cases: a) J  =  0 and M  7  ̂ 0; b) 

J  =  M  =  0; and c) | J | =  M l  7  ̂ 0. The reader is referred to [15] for details.

1.2 Global G eom etry

In the last section we mentioned th a t the BTZ space-time was locally isomorphic to 

AdS^.  Indeed, in this section we show how the BTZ black hole can be represented as
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a quotient space of AdSz- We shall restrict our attention to the case \J\ ^  M l  with 

b o th  J  and M  non-zero. A discussion of the other cases may be found in [15]. 

Lorentzian AdSz  is the three-dimensional hyperboloid

to go to  the universal covering space AdSs  by decompactifying the timeiike direction.

Evidently, the isometry group of (1.23) is 5 0 (2 , 2). Alternatively, we can combine 

{x0 , x i , x 2 ,xz)  into the 51/(2,R) matrix

1 / x ^ - \ -  X q  X \  - \ -  X 2  \
X  =  M   ̂ M  , de tX  =  1 . (1.25)

‘ y Xi -  2̂ X s -  X q J
The isometries are then represented by the group (5Z /(2,IR )x5L(2,R ))/Z2 ~  5 0 (2 ,2 )  

— the two copies of 5L(2,]R) act on X  via X  —> with the Z2 symmetry

{ Pl , P r ) ~  { - P l , - P r )-

Let us consider the three regions of the above Penrose diagram along with the 

param etrisations

I. (r_|_ < r <  00)

(1.23)

embedded in flat with the metric

ds^ =  dx^ -\- dx\  — dx\ — dx\  , (1.24)

It can be shown shown th a t AdSz  contains closed timeiike curves^ and so it is common

X q =  / v ^ s i n h  { ^ 4 >  -  

X3  = ly/a cosh

x q  =  /v ^ s in h  ( ^ ~ 4> -  

xs = l^/a  cosh ( -i</) —

^See section 2.3 in this regard.
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III. (0 < r  <  r_)

(T* T ' \  /  IT y*
- ^ 0 — , X i  =  — l \ / \  —  Qfsinh  ^

(T" T* \  /  'V T'
- ^ 0 — , X2 = —W l  — a  cosh y - ^ t— ^

(1.26)

where

f  ~ r^_\
~  ^  ^ (~oo> cxd)>  ̂ £ (—C)0 , oo) . (1-27)

Then, in each region we find that the metric (1.24) transforms into the BTZ metric 

(1.1,1.2), albeit with the angle <p having infinite range. To make it into a true angular 

variable we must identify 0 with (f) +  2n7r, n  G Z. These identifications are actually 

isometrics of AdS 2, (they are boosts in the Xq — Xz and Xi —X2 planes) and correspond 

to the (5'L(2,E) x 5L(2,R))/Z2 elements {{p̂ i, \  p ĵi)\'n € Z} with

(grv7r(r+-r_)/ /  0 \  I 0 \

, =  • ( 1-28) 
0  g - n 7 r ( r + - r - ) / ;  I I 0  -̂n-K{r++r-)/l J

Thus, the BTZ black hole may be viewed as the quotient AdS^/{{p'l\ p''^)), where 

{{Pl \ P r )) is the group generated by (p i’,p^O-

However, as shown in [15], there is a subtlety involved which determines the 

location of the singularity in the coordinates It would seem from the

pararnetrisations (1.26,1.27) that the metric could be extended in region III to nega­

tive values of r^. This is indeed possible. However, the identification process makes 

the curves joining two distinct points of AdS^ that are on the same orbit closed in the 

quotient space. In order that the quotient space have a proper causal structure we 

must require that these closed curves not be timelike or null. A necessary condition 

for the absence of closed timelike curves is that the Killing vector ^ associated with 

the isometry (1.28) be spacelike, that is, we must excise the regions where ^ ^ < 0. 

The singularity is located at the boundary, = 0, and is therefore causal in nature^.

^We stress that the singularity is not a conical curvature singularity of the type discussed in [21]. 

As mentioned in the text surrounding (1.21), the BTZ space-time is smooth (that is, Hausdorff) 

provided J  ^  0. However, in [15] it was shown that the geometry becomes non-Hausdorff at =  0

when J  =  0; the singularity then resembles that of a Taub-NUT space.
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According to [15], the Killing vector is

 ̂=  y(xo5x3 +  2̂ 3̂ ®o) -  y(a;i5i2 +X2dxi)  =  d<t> ■ (1-29)

and the norm is (using (1.24))

+  , (1.30)

or, using (1.23), (1.26) and (1.27),

=  (1.31)

in all three regions, showing that the singularity is indeed located at r =  0.

Renicirk. It is interesting to clarify the physical significance of the quotient space 

representation. To do this, we appeal to the Chern-Simons formulation of (2 +  1)- 

dimensional gravity with a negative cosmological constant [22,23]. In this formula­

tion, the Einstein-Hilbert action may be re-expressed as

5£;h =  5c5[^'^’] - 5 cs[^'-'] , (1-32)

where Scs  is the Chern-Simons action

Scs[A] =  ^  j  l : v { A^dA +  l A ^ A ^ A )  , (1.33)
47T 7^3 3

where k\sa,  constant depending on normalisation conventions and are SL{2,W)  

gauge fields given by

= (u;“ ±  j e “)T, . (1.34)

In (1.34), the matrices T„ satisfy the SL{2,M)  Lie algebra

[Ta, n ] =  e J T ,  , Tr (T.T )̂ =  , (1.35)

where rjab =  diag( —1,1,1) and =  1. Additionally, we identify e“ =  e“c?x“ and 

as the one-forms associated with the dreibein =  e“ê ?7Qb) and 

the spin-connection (obtained from Cartan’s structure equations de“+e“j,̂ a;̂ Ae'̂  =  0).
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W ith these conventions, the constant k  is equal to I/AG.  Note tha t the equations of 

m otion resulting from the Chern-Simons action are just

F  = d A ^ A ^ A  = Q,  (1.36)

(so the gauge fields are flat) and these imply the structure equations for the spin 

connection.

We begin to  see the significance of the identifications (1.28) when we examine the 

holonomies in the Chern-Simons formulation. Any connection is completely deter­

mined by its holonomies, th a t is, by the Wilson loops

/ / [ 7 ] =  P e x p  a |  , (1-37)

around closed curves 7 , where V  denotes path ordering. The Wilson loops are not 

gauge-invariant; however, it can be shown tha t a gauge transform ation

M , (1.38)

is equivalent to  conjugation of H  by the associated SL{2,  M)-valued gauge parameter:

H  ^  = i r ^ A n  . (1.39)

The trace of H  is therefore the gauge-invariant physical observable characterising the 

geometry. Now, up to a gauge transformation, it can be shown th a t the gauge fields 

corresponding to the BTZ geometry are

It is also known th a t for a flat connection the holonomies depend only on the homo- 

topy class of 7 . Therefore, given the homotopically non-trivial closed curves

7„ : 0(s) =  27ms , s G [0,1] , (1-41)

where n  € Z, it is straightforward to read off th a t the holonomies up to  conjugation 

are given by

H '* 'b n \  =  p T  , =  p T '  ■ ( 1 '12)

Thus, the same SL{2,  R) group elements tha t determine the Chern-Simons connection 

also give the identiflcations th a t fix the BTZ geometry.
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1.3 T he Euclidean BTZ Black Hole

In this section we discuss the Euchdean BTZ black hole which will be of more rele­

vance in the sequel than  its Lorentzian counterpart.

The Euchdean black hole is obtained from (1.1) by the Riemannian continuation

in region I of the Lorentzian space-time (that is, the region r_|_ <  r  <  oo), yielding;

and the restriction \Je \ ^  M l  is no longer necessary. The coordinate (f) is again an 

angle of period 27t. The lapse function now has roots at

with |r_ | =  2r_ . Furthermore, grr vanishes at =  M P  <  r \ .  Hence, the restriction 

of the continuation to region I of the Lorentzian space-time is necessary to ensure 

th a t the metric (1.44) is of Euclidean signature and everywhere regular except at 

r  =  7-+ where it becomes singular.

Like its Lorentzian version, the metric (1.44) is of constant negative curvature and 

as such is locally isomorphic to hyperbolic three-space H^, the Euchdean analogue 

of AdS-i It is known that any geodesically complete three-dimensional space of 

Euclidean signature and constant negative curvature can be expressed as a quotient of 

by a discrete subgroup of its isonietry group [24,25]. Therefore, we should expect 

the Euclidean black hole to be obtainable from by a quotienting construction in 

much the same way as the Lorentzian version is obtainable from AdSs  To see how 

^We shall consider the geometry of in more detail in Chapter 3.
^Note however that it is perhaps surprising that such a quotienting procedure works in the 

Lorentzian case because, unlike the Euclidean case, there is no clear-cut theorem which guarantees 

the success of the construction. That said, for Lorentzian signature Mess [26] has proven the 

existence of the construction in certain cases.

t  =  iTE , J  =  —iJe ) (1.43)

=  f e i r f d r l  +  +  r^{dip +  N'^(r)dTEf  , (1.44)

where the lapse and shift functions are now given by

(1.45)

(1.46)
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the quotienting construction works, perform the coordinate transformation

^ =  ( r 2 - r [ )

to bring (1.44) to the form

ds^ = —̂ {dx^-\-dy^ + dz^) , (1-48)

with z > 0. The metric (1.48) is the so-called upper half-space representation for the

metric on Note that mider the transformation (1.47) the horizon r = maps

to the positive 2 -axis and r = oc maps to ^ =  0.

It is straightforward to verify that the periodicity in the Schwarzchild coordinate 

~  0 +  2n7T, n G Z is implemented via the identihcations

{x,y, z) ^  e^"'  ̂{xcos2nO — ys in2nG,xs in2nO + ycos2ni3, z) , (1-49)

where

E =  =  (1.50)

Therefore, the orbits have a helical-like ( “whirlwind” ) structure in the upper half­

space. Equation (1.49) is the Euclidean analogue of the identihcations {{p l ,Pr )) of 

section 1.2.

It is instructive to change to spherical polar coordinates in the upper half-space 

via the transformation

{ x , y , z )  = { Rc os 9co sx , Rs in9 co sx , Rs inx )  , (1-51)

where x G [0 , 7t / 2 ]. The line element (1.48) is then written as

U R?2

ds'̂  = — ^  i —  + dx̂  + cos'  ̂XdÔ  ) , (1-52)sm^ X \ R ^  J
and the identifications (1.49) become

{ R . e , x ) ^ [ e ^ ^ ^ R , 0  + 2 n e , x ) -  (1-53)
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Figure 1.2: A sketch of a fundamental region for the Euclidean 

BTZ black hole in the coordinates (R, 9, x) -  Points on the 

inner and outer hemispheres are identified along lines such as 

L. (Courtesy of S. Carlip, taken from [13].)

A fundamental region is the space between the hemispheres R =  \ and R  =  

with the inner and outer boundaries identified along a radial line, followed by a 

2 0  rotation about the 2-axis (see figure 1.2 above). Topologically, the resulting 

manifold is a solid torus [14,16]. For x 7̂  7!"/2, each shce of fixed x is ^ 2-torus, 

with circumferences parametrised by the periodic coordinates Ini? and 6, while the 

degenerate surface x =  tt/2 (which corresponds to the horizon r =  r+) is a circle at 

the core of the torus®.

This concludes our review of the BTZ black hole. We shall however return to the 

quotienting construction of the Euclidean version in Chapter 3.

®We remind the reader that “In” denotes the natural logarithm (to base e).
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Chapter 2 

Holography and the Maldacena 

Conjecture

In this chapter we review the concept of holography in quantum  field theory. This 

concept will play a fundamental role in the application of a theorem of Sullivan to 

the Euclidean BTZ black hole in the next chapter. VVe ftrst discuss the notion of 

holography in a general sense and then go on to examine a realisation of it in the 

form of the Maldacena conjecture [27]. Our treatm ent of the conjecture will be brief 

as it is not directly relevant to the sequel. For a more thorough account, the reader 

is referred to the vast amount of literature on the conjecture^ and to the numerous 

review articles [28-35] from which we shall borrow heavily. Finally, we review an 

old result concerning the asymptotic symmetry group at spatial inhnity of (2 +  1)- 

dimensional gravity coupled to a negative cosmological constant and show how it 

naturally fits in with the notion of holography and the Maldacena conjecture.

2.1 The Holographic Principle

The holographic principle, as originally formulated b y ’t Hooft [36] and Susskind [37]

and relying on the work of Bekenstein [38], is about the comiting of quantum  states

^At the time of writing, Maldacena’s paper has received in excess of 1700 citations according 

to the Spires database at SLAC, making it one of the most highly-cited theoretical articles since 

records began.
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of a system. It asserts that the number of possible states of a closed region of space 

containing gravity is the same as that of a system of binary degrees of freedom 

distributed on the boundary of the region. Furthermore, the number of such degrees 

of freedom is not indefinitely large but is bounded by the area of the region in Planck 

units. Since the entropy of a system measures the number of degrees of freedom, the 

principle effectively relates entropy, which is a bulk quantity, to area which is of one 

dimension less.

We shall present the Bekenstein/’t Hooft/Susskind argument momentarily but 

first we need to review the laws of black hole mechanics.

2.1.1 Black Hole Mechanics

Under certain conditions, black holes in 3+1 dimensions satisfy the following laws 

[18,39,40]:

0. The surface gravity k is constant over the event horizon of the black hole;

1. In physical processes the changes of physical properties, in units h = c = 1, obey

the relation

5M = ^ S A  + Hh5J +  ^ h 5Q , (2.1)
ottG

where G is Newton’s constant, A  is the area of the event horizon and J  and Q 

are the angular momentum and charge of the black hole, respectively. Hh is the 

angular velocity and the corotating electric potential of the event horizon;

2. The area of the event horizon never decreases, 5A > 0;

3. It is impossible to achieve k =  0 by any “physical process” .

The analogy with the ordinary laws of thermodynamics should be apparent. The 

first law shows that there is a formal correspondence M  ^  E  (energy), an ^  T  

(temperature) and A/{^-kGq)  S  (entropy), where a  is some (as yet) undetermined 

constant. It is thus conservation of energy, with Hh and J  playing the roles of pressure 

and volume and $ // and Q the roles of chemical potential and particle number,
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respectively. The zeroth law then resembles the zeroth law of thermodynamics which 

states that temperature is constant in thermodynamic equilibrium. Similarly, the 

second law is analogous to the second law of thermodynamics, that is, SS > 0 in 

any process. The third law is less well understood^. It should be noted however that 

it is not analogous to the Planck-Nernst form of the third law of thermodynamics 

which states that S' 0 (or a constant) as T —> 0 since there exist “extremal” black 

holes with k = 0 but with non-vanishing A  (the BTZ black hole with | J | =  Ml  ^  0, 

that is, r+ =  r_ ^  0 being the prime example of current interest in three dimensions 

(cf. equations (1.6) and (1.12)). Further discussion of the third law may be found 

in [18,41].

Classically, the analogy is only formal since the temperature of a black hole is 

absolute zero since it is a perfect absorber and does not emit anything. However, in 

his famous paper on quantum particle creation effects in the vicinity of a black hole 

[42], Hawking showed that a black hole emits blackbody radiation at a temperature 

T  =  Ac/27r. This fixes the constant a  =  1/27T and, in particular, gives the celebrated 

Bekenstein-Hawking (BH) entropy-area law:

2.1.2 The B ek en stein /’t H ooft/Susskind Argument

The following argument is taken almost verbatim from [34] and [37].

In 3-f-l dimensions let us consider a large, closed three-dimensional spacelike 

surface F of volume V , with boundary 5F of area A.  For simplicity we shall take 5F 

to have topology. Let us further suppose that F is a discrete lattice of spin-|-like 

degrees of freedom with lattice-spacing the Planck length Ip. This reflects the belief 

that a small distance cut-off, such as the Planck length, is needed in order to make 

sense of quantum gravity. Now consider the space of states that describe arbitrary 

systems that can fit into F such that the region outside F is empty space. The number 

of distinct orthogonal quantum states in F is

N{V)  = 2''"/'' , (2.3)

^The obvious problem is to clearly define what is meant by a “physical process” .
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where V/l^ is the number of lattice sites in F. Ignoring gravity for the moment, the 

logarithm of N{V)  is the maximum possible entropy in F and satisfies

\nN{V)  = ^ \ n 2 ,  (2.4)
p

and is therefore proportional to the volume of F.

Suppose now that we include gravity and that we have a thermodynamic system 

with entropy S  that is entirely contained within F. For the states of the system to 

be observable to the outside world, the total mass of the system cannot exceed the 

mass of a Schwarzchild black hole which just fills the region (that is, the black hole 

event horizon area is A  and the mass is tubh = (^/IGtt)^/^). Otherwise a black 

hole of size larger than the region F would form; the states would then lie inside the 

Schwarzchild radius and so be unobservable. Now let us throw just the right amount 

of extra massive matter into the region so that together with the original mass it 

forms a black hole which just fills the region. The black hole has entropy equal to 

Af4G.  If S  were larger than A/4G  then the second law of thermodynamics would be 

violated. Hence, we conclude that S  < AjAG.

This bound on the entropy^ is due to Bekenstein and is known as the “Bekenstein 

bound” . It is clearly saturated by black holes, ’t Hooft [36] and later Susskind [37], 

interpreted Bekenstein’s result as meaning that it must be possible to describe all 

phenomena within F by a set of degrees of freedom which reside on the boundary 9F. 

The number of degrees of freedom should be no larger than that of a two-dimensional 

lattice with approximately one binary degree of freedom per Planck area^.

Although the laws of black hole mechanics and the Bekenstein bound were 

originally formulated in 3+1 dimensions, they are universal and, therefore, are also 

valid in an arbitrary number of space-time dimensions. Thus, they relate S, a 

c?-dimensional quantity to A, a {d — l)-dimensional quantity, where d is the 

number of spatial dimensions of the space-time. Taking the ’t Hooft and Susskind 

interpretation to its logical conclusion, it might be thought possible to represent a 

®See [43] for a recent review.
^In {d + 1 )-dimensions, Newton’s constant G is proportional to where Ip is the

{d + l)-dimensional Planck length.
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{d + l)-dimensional bulk gravitational theory on some manifold with boundary by a 

different, dual d-dimensional theory without gravity living on the boundary. This is 

precisely the content of the Maldacena conjecture, to which we now turn.

2.2 The Maldacena Conjecture

This section will be brief because it is the general spirit of the holographic principle 

that is relevant to the sequel and not the specific technical details of the conjecture 

itself.

The Maldacena conjecture [27], also known as the ‘̂ AdS/CFT  correspondence” , 

is an explicit realisation^ of the holographic principle. It suggests that the degrees 

of freedom of a quantum field theory with gravity in the universal cover® AdSd+i 

of {d +  l)-dimensional Lorentzian anti-de Sitter space can be completely identified 

with the degrees of freedom of a conformal quantum field theory without gravity 

in the universal cover of Md, the conformal completion^ of Minkowski space of one 

dimension less. Central to the conjecture are the facts: (a) that Md is the boundary 

at spatial infinity of AdSd+i and (b) that the isometry group of AdSd+i, which is 

SO{2,d), acts as the conformal group on M^. The conjecture was first formulated 

for =  4 and soon after was placed on a firmer footing by W itten [46] and Gubser 

et al [47].

Maldacena arrived at his conjecture by considering the space-time geometry in

the vicinity of a rmmber N of coincident, extremal, electrically-charged D3-branes

lying along a (3 +  l)-dimensional plane in the ten-dimensional space-time of type

IIB superstring theory®. The bulk metric for the configuration can be obtained by

solving the equations of motion which result from the bosonic part of the type IIB

supergravity action (which is the low-energy effective action for the theory). We shall

^The conjecture has not yet been proven, but see [44,45] in this regard.
®One goes to the universal cover to avoid the existence of closed timelike curves.
^The conformal completion of d-dimensional Minkowski space is Minkowski space with some

“points at infinity” added. Its universal cover is topologically the cylinder K x where R is the

timelike direction. The reader should consult W itten [46] on these points.
®We discuss string theory and D-branes in more depth in Chapter 4.
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simply quote the result and refer the reader to the excellent reviews [30,48-52] for 

an explicit derivation (which is straightforward but lengthy). The metric is

(2.5)

where xy denotes the four coordinates along the worldvolume of the three-brane, r  is

sphere. The characteristic length p is given by =  At̂ QsNII,  where Qs is the closed 

string coupling and Ig the string length^. The space-time geometry described by the

field strength with N  units of flux on the sphere. The low-energy approximation is a 

good description provided tha t p ^  Ig, which requires

or, using S-duality^^, N/gg ^  1 . In other words, we need large (but fixed) N . 

To study the near-horizon geometry, Maldacena took the limit

^Throughout this section we use the norm alisation of Polchinski [53].
^°S-duality is an 5 L (2 ,Z )  sym m etry of type IIB supergravity. In particular it im plies that the  

weakly-coupled theory w ith  <  1 is equivalent to  the sam e theory in the strongly-coupled regime 

w ith Qs >  I- See, for exam ple, Sen [55] in this regard. In writing equation (2.6) we have im plicitly  

assum ed <  1.

the radial coordinate in the transverse direction and is the metric on the unit five-

metric (2.5) has a horizon at the location of the branes at r  =  0 and is completely 

non-singular [54]. The background also has a constant dilaton and a self-dual 5-form

9 s N : ^ 1  , ( 2 .6 )

(2.7)
' S

In this limit the 1 can be neglected in the harmonic function /  of (2.5) and the metric 

becomes

(2 ,8)

where P =  \ / in g s N .  The change of variables u =  f  / U  transforms the metric into

(2.9)
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which is the metric of the product space AdSs x S^, where both factors have radius I in 

units of the string length. As a ' —> 0 the metric naively tends to zero also. However, 

the type IIB action in the Einstein frame is S' =  f  d}^x\/—G{R  H- • • •) (where

Gio =  is the ten-dimensional Newton constant), so that we can cancel the

factor of a' in the metric and the Newton constant, leaving a five-dimensional theory 

(after dimensional reduction over the sphere) with finite Planck length in the limit. 

The isometry group of AdS^ x is S'0(2,4) x 50 (6 ) 5/7(2,2) x S't/(4); in the

presence of supersymmetry this is extended to SU{2, 2|4).

Now, according to Polchinski [56], D3-branes can be equivalently thought of in 

terms of open strings with end points on the branes. Since we are dealing with IIB 

string theory, which is a theory of oriented strings, and there are N  different branes 

on which the strings can end, these open strings are equipped with U{N)  Chan- 

Paton labels. The low-energy effective-action for the dynamics on the D-branes was 

first derived (in the case of a single, bosonic brane) by Leigh [57]. He showed that 

the equations of motion are those of the Bom-Infeld action}^. After allowing for 

more than one brane^^ and supersymmetrising [58], it is found that the low-energy 

limit ct' —> 0 of the Born-Infeld action is precisely the dimensional reduction to 4- 

dimensional Minkowski space of 10-dimensional Af = 1 super Yang-Mills theory with 

gauge group U{N)  and gauge coupling constant Oym  ~  27t^s. The reduced theory 

is conformally invariant and possesses N  = A supersymmetry in four dimensions. 

Furthermore, the group 5t/(2,2 |4) acts as the superconformal group of the gauge 

theory.

The conjecture is, therefore, that type IIB superstring theory on (the universal 

cover of) AdS^ times is mathematically equivalent, that is, dual to the large N  

limit of A/" =  4, d =  4 super Yang-Mills theory with gauge group U{N).  This is the 

weakest form of the conjecture. A stronger form is that the two theories are exactly 

the same for all values of Qs and N . Note that the duality is of strong-weak type. We 

have stated that the supergravity description is valid provided QsN  ~  A ^  1, where

'^^More explicit details of the Born-Infeld action are given later in section 4.2.3.
'^^The non-abelian generalisation of the original U{ \ )  action of Leigh is not straightforward. See

section 4.2.4 for more details.
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A =  Oy m ^  is t h e ’t Hooft coupling relevant to large N  Yang-Mills theory. However, 

perturbation analysis in the gauge theory is valid provided A 1. Hence, the gauge 

theory is strongly coupled.

Maldacena did not give a precise dictionary for the correspondence between the 

two theories. This was furnished by Witten [46] and, independently, by Gubser 

et al [47] who gave an explicit prescription for relating correlation functions of the 

Euclideanised conformal field theory to the bulk theory path integral for specified 

boundary behaviour of the bulk fields. More precisely, the proposal is that

9 k=l

=  Zstr =  M  , (2 .10)

where the first line is the generator of connected Green’s functions in the conformal 

field theory and the second line is the full string theory partition function with the 

boundary condition that at the boundary of the AdS  space the bulk held 0 approaches 

the given function 0o- When stringy a' corrections and loop corrections (which are 

governed by the gravitational coupling k ~  QsOt''̂ ) can be ignored Zgtr can be replaced 

by where Is  is the classical supergravity action. The correspondence is valid

in general, for any field 4>.

To illustrate how formula (2.10) supports the conjecture, we quote the result 

of W itten and Gubser et al for the two point function of a massless scalar field in 

the (Euclidean) AdS^+i theory^^. Similar calculations have been performed in the 

massive case and in the case of a massless abelian gauge field. The reader is referred 

to the original papers [46] and [47] and to the review by Petersen [30] for explicit 

details.

The action for the scalar field is

J(0) =  i f  . (2.11)
^ JAdSa+i

mentioned earlier in section 1.3, we shall consider some geometrical aspects of Euclidean 

AdSd+i (for the case d =  2) in the next chapter. For now, simply note that the boundary of this 

space, in the upper-half space representation akin to (1.48), is plus a point at infinity and is thus 

topologically S' .̂
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By calculating the Green’s function of Laplace’s equation with appropriate boundary 

conditions they show th a t the action can be reexpressed as

(2,2)
where x, x'  G and c is a normahsation constant for the Green’s function. Therefore, 

upon using (2.10) in the classical (super)gravity limit, we obtain

iO{2)0(x ') )  ~  , (2.13)

which is the expected result for a field O  of conformal dimension d.

There is by now overwhelming support for the conjecture (for example, a descrip­

tion of the matching of the spectra of both sides of the correspondence can be found 

in the review by Aharony et al [31]) and, by extension, for the holographic principle 

as envisaged by ’t Hooft and Susskind. In the next section we specialise to ci =  2 and 

present another argument in favour of the A d S / C F T  correspondence.

2.3 AdSi/CFTi

In this section we briefly review an old result of Brown and Henneaux [59] concerning 

the asymptotic symmetry group at spatial infinity of (2 +  l)-dimensional gravity 

coupled to a negative cosmological constant. We shall show how it naturally fits 

into our discussion of the holographic principle and the Maldacena conjecture when 

applied to the determ ination of the BTZ black hole entropy.

Firstly, recall from chapter 1 tha t the BTZ metric (1.1) is a solution to the (2 +  1)- 

dimensional Einstein equations with negative cosmological constant. If we formally 

set J  =  0 and M  =  — 1 (for which the horizons and singularity disappear) the metric 

becomes

+  1^ dr^ +  r ‘̂d4>'̂  , (2.14)

which is another representation of the metric on Lorentzian AdS^-  To see this, 

perform the transformation

Xq = r COS0, xi = rsincf), X2 = + P cos j  , Xz = Vr'^ + P sin j  , (2.15)
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to bring the metric (1.24) to the above form^^. The BTZ metric for general J  and 

M > 0 is “asymptotically anti-de Sitter” in the sense that the metric components of 

both (1.1) and (2.14) satisfy the fall-off conditions

9tt — --j2  +  0 (1) ’ (2.16)

9t^ = 0{1) , (2.17)

= 0 (  — ) , (2.18)

1
(2.19)

Qr4, = (9 ( — ) , (2.20)

9<t>4> ~  +  0(1) , (2.21)

as r  —> oo. This ensures that the BTZ metric has at least 50(2,2) as an asymptotic

symmetry group since this group is the exact symmetry group of AdS^.

Secondly, using (1.6), we find that the Bekenstein-Hawking entropy (2.2) of the 

BTZ black hole is

S  =  47rr+ , (2.22)

in units with 8G =  1.

The asymptotic symmetries of asymptotically anti-de Sitter metrics are described 

by vector fields which leave invariant the boundary conditions (2.16)-(2.21). By 

analysing the Lie transformation equations of these boundary conditions. Brown and 

Henneaux showed that the asymptotic symmetry group is actually the conformal 

group in 1-1-1 dimensions. The Lie algebra of the conformal group consists, after 

canonical quantisation, of two copies of the Virasoro algebra

[ L m i  L n ]  —  ( ^  ^ ) - ^ 'm + n  l ) ^ m , —n  i

— — — c
[-^m i -^'n] ~  ( ^  ^ ) - ^ m + n  “1“ n  i

[Lm.Ln] = 0 ,  (2.23)

t is identified with period 2nl then the space-time is AdS^ and closed timelike curves exist; if 

t  is not identified then the space-time is the universal cover AdS^.
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where m ,n  G Z. The 50(2,2) isometries correspond to m ,n  = 0, ±1. Brown and 

Henneaux further showed that the central charge is given by

The constants in (2.25) are somewhat arbitrary and are chosen so that the “zero-mass 

black hole” — the space-time given by the M —> 0 limit of the BTZ space-time — has 

Lq = Lq = ^ ,  whilst Lorentzian AdS^ (with M = — 1 and J  = 0) has Lq = Lq = 0. 

This is consistent with the supersymmetry argument of Coussaert and Henneaux [60] 

who showed by an analysis of the Killing spinor equations associated with the metric 

(1.1, 1.2) that the zero-mass black hole may be viewed as ground state of the Ramond 

sector of (1, l)-AdS  supergravity. Similarly, Lorentzian AdS^ may be viewed as the 

ground state of the Neveu-Schwarz sector.

Very shortly after Maldacena’s conjecture first appeared, Strominger [61], inspired 

by the work of Brown and Henneaux and so in a different setting to Maldacena’s 

work, calculated the entropy of the BTZ black hole using conformal field theory 

techniques^®. To do so he used the Cardy formula [63,64] for the asymptotic growth 

of the number of states of a conformal field theory with central charge c:

where we have used (1.5). This is in exact agreement with the BH result (2.22). Note 

that use of the Cardy formula implies that the black hole is large.

We are thus lead to the conjecture that quantum gravity on an asymptotically 

AdS^ space-time is equivalent to a conformal field theory of central charge c =  ^

^^See also [62].

(2.24)

and that the conserved charges associated with dt and are given by

M  — { L q + Lq — — )/l , J  — Lq — Lq . (2.25)

(2.26)

where n(n) is the eigenvalue of L q { L q).  Using (2.25), we ftnd

~  47rr+ , (2.27)
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living on the {t, (p) cylinder on the boundary at spatial infinity. Strominger’s deriva­

tion of the BH entropy is independent support for t h e ’t Hooft/Susskind holographic 

principle and for the (generaUsed) Maldacena conjecture. Indeed, the support is even 

stronger if the BTZ black hole is embedded within type IIB string theory. To do 

this one starts  with a system of D5-branes wrapped on where is ei­

ther or K3, giving a string in six dimensions and Q\  D l-branes parallel to the 

string [65]. All the branes are coincident in the transverse dimensions. The config­

uration is a black string whose near-horizon limit, as a ' 0, in the string frame 

is locally AdS^ x  x  [66,67]. In units of the string length, both the anti-de 

Sitter factor and the sphere factor have radius I =  (where V

is the volume of in the near-horizon geometry) and the three-dimensional Newton 

constant is / {n lgy/^).  The near-horizon limit is taken with

the ratio fixed. If the string direction is periodically identihed, with period

2nl, the AdSs  part of the metric is precisely the BTZ black hole^®.

Strominger’s argument raises the question of where the relevant degrees of free­

dom th a t contribute to the entropy are located. This question becomes even more 

significant if we also consider Carlip’s derivation of the BTZ entropy [71]. Carlip used 

the Chern-Simons formulation of (2 -|- l)-dimensional gravity with a negative cosmo­

logical constant (see the remark on page 9) and the fact th a t a Chern-Simons theory 

on a manifold with boundary induces a dynamical Wess-Zumino-Witten (WZW) the­

ory on the boundary [72,73]. Now, the event horizon of a black hole is not a true 

boundary but it can often be treated as such. Taking the la tter approach, Carlip 

found th a t the theory at the horizon is described by a S 0 { 2 , 1) x S 0 { 2 , 1) W ZW  

model whose associated Virasoro algebra, for large black holes, has central charge 

c ~  6 and n ~  (^ )^ -  The conformal field theory is not the same as the one at

^®In his original paper [27], M aldacena also considered the D 1-D 5 system  (and several other D- 

brane and M -brane system s) and put forward the supersym m etrised version of the above conjecture, 

which relates an =  (4 ,4 )  (1 +  1 )-dimens;ional SC FT with central charge c =  6 (Q iQ 5 +  1) «  

^QiQb =  ^  (see, for exam ple, [31,68] for ex:plicit details of this theory) to  type IIB string theory  

on AdSs X 5^ X M'* (see [69,70]) in the larg(e (but fixed) Qi limit. However, in the last section  we 

chose to stick to  the D3-brane case for simplitcity.
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spatial infinity since the central charge is different^^. Calculation of the entropy via 

the Cardy formula again results in agreement with the BH entropy.

In the next chapter, we present a kinematical view of holography (in contrast to 

the dynamical one of Maldacena) for AdS3/CFT2, in the form of Sullivan’s theorem, 

which suggests that the entropy is determined in terms of the boundary data at 

spatial infinity as advocated by Strominger.

^^The connection between the two conformal field theories has been studied in [74].
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Chapter 3 

Geometrical Finiteness, Sullivan’s 

Theorem and the BTZ Black Hole

In the last chapter we saw an explicit realisation of the holographic principle in the 

form of the Maldacena conjecture which posits a dynamical correspondence between 

string theory on anti-de Sitter backgrounds and conformal field theory on the bound­

ary of anti-de Sitter space. In particular, we saw how this correspondence specialised 

to Lorentzian AdS  ̂ was used to calculate, a la Strominger, the entropy of the BTZ 

black hole. In this chapter, we show that for hyperbolic space the Euclidean ana­

logue of AdSs, there is a precise notion of holography in the kinematical sensed This 

depends on a theorem of Sullivan [75], see also [76], which states that the inequivalent 

hyperbolic structures of a three-dimensional geometrically finite Kleinian manifold 

are parametrised by the Teichmiiller space of the boundary. In order to understand 

this last sentence we must first study in more detail the geometry of We then go 

on to explore the consequences of the theorem in the context of the Euclidean BTZ 

black hole.
Ît should be obvious that since there are no closed timelike curves in a Euclidean signature 

space-time, the Euclidean analogues of both Lorentzian AdS  ̂ and its universal cover are one and 

the same.
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3.1 Three M odels o f

Following [25,46], we briefly describe three equivalent models of hyperbolic space 

with radius I. Depending on the context, one model may be more suitable than  the 

others for calculations.

3.1.1 The Ball Model

Consider Euclidean space with coordinates ?/o,?/i, | / 2  and let be the open ball, 

|yp =  Y^i=QVl <  The space together with the Riemannian line element

( / 2 - | y | 2 ) 2  ’

is the ball model of

We can compactify B^ to get the closed ball B^, defined hy \y\‘̂ < P. Its boundary 

is the sphere 5^, defined by |?/p =  and is the Euclidean version of the conformal 

compactification of Minkowski space. The metric (3.1) is not defined on the boundary 

because it is singular there. To get a metric which extends over the full B^, one picks 

a function /  with a first order zero on the boundary (for example, f  = P — \y\‘̂) and 

replaces ds^ by ds"̂  =  p d s ^ .  Since there is no natural choice of / ,  the metric ds^ is 

only well-defined up to the conformal transform ation /  —> e*" , ds^ where

w is any real function on B^. Therefore, S'  ̂ has only a conformal structure.

3.1.2 The (Upper) Hyperboloid M odel

We have already encountered the hyperboloid model of Lorentzian AdSz in sec­

tion 1.2. The Euchdean analogue is defined by the hypersurface

2

X I  - ^ 1  = { x z > l > Q i )  , (3.2)
i= 0

embedded in with coordinates xq, Xi, X2 , X3 and metric

2

ds^ =  X  dx\ — dx\  . (3.3)
1 = 0
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This can, in fact, be seen from the Riemannian continuation of region I of the Penrose 

diagram, as described in sections 1.2 and 1.3. Using (1.26), it is easy to see that the 

effect of the continuation (1.43) is to take x\ — xl to xj + xl  and thus (1.23) and 

(1.24) to (3.2) and (3.3), respectively.

By means of the parametrisation

Xq = I sinh X cos 0, X\ = I sinh x sin B cos 0 , X2 =  / sinh x  sin 6̂ sin 0 ,

xz = I coshx , (3.4)

with 0 < X < metric (3.3) can be rewritten in the more usual form

ds^ = l^{dx^ +  sinh^ X(ii2 )̂ , (3.5)

where di}"̂  is the metric on the unit sphere. In this representation, the boundary is 

the sphere at x — oo-

The hyperboloid projects stereographically from the point (0, 0, 0, —I) onto the 

open ball, as can be seen from the transformation

r  -  2 /2  Vi .  _  f  + \y\̂  (o
\ y \ 2  ’ ^ 3  -  _  | y | 2  •

The transformation of the boundary is obtained via the limit of this mapping, from 

which it is easily seen that x = oo maps to |yp = f .

3.1.3 The Upper Half-Space M odel

The upper half-space model of was introduced in section 1.3. It is the space 

Ti. := {(x, y, z)\x, y G M, 2: > 0} equipped with the Riemannian metric

ds^ = — {dx‘̂ + dy^ + dz^) . (3-7)

We shall take the coordinates x, y, z to be dimensionless. In this representation, the 

boundary consists of the x — y plane at z = 0 together with a single point^ P  at ^ = c x d

^As noted in [46], there is only a single point at infinity because the m etric (3.7) vanishes in the  

X,  y  directions as 2 —> 00.
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and is thus topologically 5^. It is equivalent to the Riemann sphere Coo =  C U {oo}. 

The closure of Ji  is then H = 'HU Coo-

The transformation between this representation and the ball model is most suc­

cinctly written using the language of quaternions [77,78]. A quaternion is an element 

of a four-dimensional real vector space and can be expressed as

q = X  + yi + z j  + ak , (3.8)

where x, y , z , a  G M. Quaternions may be added in an abelian manner similarly

to complex numbers but multiplication is non-commutative (but distributive) and 

subject to the rules

f  — i j k  = —1 . (3.9)

Using these rules, (3.8) can be reexpressed as

q = w + uj  (3.10)

where w = x + iy and u = z + ia are both in C. Note that j u  = uj  for arbitrary 

complex u and hence

i w +  u j ) [ w — uj )  =  - t -  I w pj j y  j y  I I I I

{w + uj)~^ = {w — u j ) / {\w\‘̂ + \u\' )̂ .

We can now write the point {x, y, z) of H  as the quaternion

q = w + z j ,  (3.12)

where w = x + iy £ C and 2: G M+. It is easily verified that the mapping to the ball

model is given by

q ^ q '  = '̂ >(9 ) = { q -  j ) i - j q  + 1)”  ̂ , (3.i3)

where q' = 7 (2/0 +  2/i* +  Vij)- Equivalently,

2x

'  x^+y^+(z+l)^ 

x'-^+y^+{z+l)^
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The transformation of the boundary is again obtained in the limit. For example, the 

point P at z = oo, which we define to be equivalent to q = oo, maps to the North 

Pole of whilst the origin maps to the South Pole. The rest of the positive ^-axis 

maps to the diameter joining the two poles and the point q = j  maps to the centre 

of the ball.

3.2 The Isometries of

The 2 x 2  complex matrix

I a h \
(3.15)

with determinant detM  = ad —he ^  0 induces the orientation-preserving conformal 

homeomorphism

w ^  w* = M{w) — — — — , (3.16)
cw +  d

of Coo onto itself^. Such maps are called Mobius transformations. Note that the

matrices M, M /y /d e tM  and —M  all induce the same transformation M{w).  Hence, 

the Mobius group M ob is isomorphic to PSL{2,  C) =  SL{2, C )/Z 2- It can be shown 

that these transformations are the unique orientation-preserving bijections C o o  

C o o .

The action of Mob can be extended from Coo to TL. The extension is given by

q ^  q* = M{q) — [aq + b){cq + d)~^ {ad — be = 1) , (3-17)

where q is the quaternion (3.12). More explicitly, we find

{aw + b){cw + d) + acz^
^  I I ^ 1 2  I I 1 2  2  ’ ( ^ O . l o j\cw +  a\^ +  \c\^z^

z* =  J , „ „ . (3.19)
\cw + d\^ + \c\^z^

M  is singular, it is easily seen that M{ w)  is not invertible. If M  is non-singular, the map M{ w)  

is a bijection provided we define M { —d/c) =  oo and M (oo) =  a / c  for c non-zero or M (oo) =  oo for 

c =  0.
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We recover (3.16) in the limits z ^  0 and 2  (or q) —> 00. Quaternions q defined in 

Ti are termed proper, while those defined on the boundary Cqq are termed improper.

It is straightforward to show that that the metric (3.7) is PSL{2, C)-invariant. 

Furthermore, it is shown in [78] how a notion of orientability can be defined in Ti. and 

this is used to show that PSL{2, C) is the group of orientation-preserving motions 

IS0~^{7{) of the upper half-space. The proof is not relevant for the sequel. The 

map (3.13) shows that PSL{2,C)  is also the group Indeed, M  is an

isometry of Ti if and only if is an isometry of B^. On the other hand,

from equations (3.2) and (3.3), it is clear that the group of orientation-preserving 

motions of the hyperboloid model is S '0 '^(l,3), the connected component of the 

identity in 50 (1 , 3). The equivalence of all three models follows from the exceptional 

isomorphism PSL{2,C)  ~  50"'‘(1,3). The reader is referred to [25] for a proof of 

this isomorphism.

3.2.1 Classification of Isometries

We are interested in the the conjugacy classes of Mob. In PSL{2, C) there is 

essentially only one conjugate-invariant function, the square of the trace, that is, 

tr'^M  =  (a +  d)'  ̂ for a matrix M  of the form (3.15). We shall denote the identity of 

P 5L (2 ,C ) by / .  We have the following classification (see, for example, [25,79,80]):

D efinition. Let M  (7  ̂I) be any Mobius transformation. Then

(i) M  is parabolic if and only if it has it has a unique fixed point in Cjx,;

(ii) M  is elliptic if and only if it has two fixed points in Coo and if the points on the

geodesic in H joining these two points are also left fixed;

(iii) M  is hyperbolic if and only if it has two fixed points in Coo and if any circle in 

Coo together with its interior is left invariant. The line in Ti joining these two 

points is then left invariant, but M  has no fixed points in Ti\

(iv) M  is loxodromic in all other cases. M  then has two fixed points in C qo and 

no fixed points in Ti. The geodesic joining the two fixed points is the only
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geodesic in Ji which is left invariant. M  may leave the circles joining the two 

fixed points invariant, but it then interchanges interior and exterior.

Let us introduce the following standard forms for a Mobius transform ation (3.17) 

acting on Tl:

M,{q) =  q + 1 ,  (3.20)

Mfe(g) =  kw +  \k\zj {k 1) , (3.21)

for non-zero k ^ C. Then, we find tr"̂  Mk =  fc +  1/fc +  2 for all k. Note th a t M\ fixes 

the point P  at g =  oo and fixes the origin and P  if |fc| ^  1 or the whole of the

z-axis (including the origin and P ) if |A:| =  l , k  ^  1.

We say th a t two elements A/, N  G M ob  are conjugate (M  ~  N )  if N  =  LML~^

for some other transform ation L G M ob. Note tha t tr'  ̂M  =  tr'  ̂ N  for conjugate M

and N . Then, we have the following theorem:

T h e o re m . Let M  I) be any Mobius transformation. Then

(i) M  is parabolic if  and only if  M  ~  M\ {equivalently, tr"^M =  4);

(ii) M  is elliptic if  and only if M  ^  M^, with |A;| =  1,A; ^  1 {equivalently, tr"^M G

[0,4));

(iii) M  is hyperbolic if  and only if  M  ~  Mk, with k >  0 ,k  ^  1 {equivalently, 

tr"^M G (4, +oo));

(iv) M  is loxodromic if and only if  M  M^, with |A;| 1 and tr'  ̂M  ̂  [0, +oo).

P ro o f . The reader is referred to Beardon [79] or Maskit [80]. |

E x a m p le . Recall from (1.49) tha t for the Euclidean BTZ black hole periodicity in 

the Schwarzchild angle 0 ~  0 +  2n7r, n G Z requires the following identifications in 

H :

{x, y, z) ~  {x cos 2 n 0  — y  sin 2n0 , x sin 2 n 0  +  y  cos 2n0 , z) ,
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where

These identifications can be written alternatively as

yj , 2: ~  . (3.22)

Using (3.17), it is easy to verify that these identifications are associated with the 

PSL{2,  C) matrices

hole, according to (1.46)) Mk„ is loxodromic with hxed points at the origin and P  

for all n ^  0. In the special (spinless) case |r_ | =  0, Mk^ is hyperbolic, again with 

fixed points at the origin and F  for all n ^  0. Furthermore, it is easily seen that 

the collection of all such Mk^ (including the identity with n =  0) forms an infinite 

abelian cychc group generated by the single element Mfcj, with |A:i| =  > 1. This

group, which shall henceforth be denoted by FbtZ i is a subgroup of PSL{2,  C) and 

will play a pivotal role in what follows. Clearly, it is isomorphic to Z.

3.3 G eom etrical Finiteness and Sullivan’s 

Theorem

This section consists mainly of a sequence of definitions and theorems from hyperbolic 

geometry culminating in the definition of geometrical finiteness and a statement of 

Sullivan’s Theorem. As such, it is rather abstract in nature and so we have illustrated 

the concepts in the case of the BTZ black hole. We follow [24,80-82].

■^Recall tha t the black hole exists for M  >  0, which implies r+ > 0 by (1.46).

(3.23)

corresponding to the standard form (3.21) with It follows from the

theorem that in the generic case^ |r_| 7̂  0 (which corresponds to the spinning black

34



Definition. Let X  be any topological space and Ad a group of homeomorphisms of 

X  onto itself. We say that M  acts (properly) discontinuously on X  if and only if for 

every compact subset K  of X ,

M{K)  n /^ =  0 , (3.24)

except for a finite number of distinct M  m M..

Example. Take X  — li. with the usual topology and M. C PSL{2, C). Then J\/l acts 

discontinuously on H  if and only if for arbitrary q G H , M{q)r\q is nonempty only for 

finitely many distinct M  E M .  In particular, take M  — Vb t z - Since the non-trivial 

elements of Fb t z  are either all loxodromic or all hyperbolic and therefore have no

fixed points in H  then M{q)  fl g 0 only for M  = I. So Fbtz  acts discontinuously

on H.

Definition. A subgroup of PSL{2, C) acting discontinuously on H  is called discrete. 

We denote such a group by F in what follows. We shall denote the identity of the 

group by I.

Definition. The F -orbit of any quaternion q e H  under the action of F is the set

F, := {M{q) e K \ M  e  F} . (3.25)

A point p G Coo is an accumulation point of Fg if there exists a sequence {Mi} 

of distinct elements of F such that \im Mi{q) p. The set Fg together with its 

accumulation points is the closure of F,, denoted F,.

We define the limit set Lr of F as the set

L r : = F , n C o o ,  (3.26)

that is, the set of accumulation points of some F-orbit in H. One can show that the 

limit set is independent of the choice of q. Furthermore, it can be shown that the 

limit set coincides with the closure of the set Fix{T)  of fixed points of all but the 

elliptic elements of F.
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Example. Consider T = Tb t z - It is straightforward to see that the origin and the 

point P  at q — oo are accumulation points of for any q E H. For example, taking 

the sequence {M ^|m  G Z, n G Z — {0} fixed} we find

MTM) =  = K r M  =  ^  ^  (3 ,27)
I  oo m —>  + 00,

for every q and n. Indeed, these two points are the only accumulation points in Coo 

and so form the set . Furthermore, since the non-trivial elements of Fb t z  are 

either all loxodromic or all hyperbolic and of standard form, the limit set coincides 

with the closure of Fix{T b t z )-

Definition. The domain of discontinuity 1](F) of F is defined as the complement of 

the hmit set Lp in Coo- It is F-invariant. It is possible for it to be empty.

Example. For F =  T b t z -, it is clear that 12(Fb t z )  is the punctured plane C — {0}.

Remark. Even if F acts discontinuously on TL̂  it is clear that F does not act dis­

continuously on L y - For example, since Fb t z  is infinite there are an infinite number 

of transformations M  6 Fb t z  such that M{q) fl q 7̂  0 for g the origin or the point P. 

On the other hand, it can be shown that F does act discontinuously on 12(F) (hence 

its name). This is enough to ensure that the quotient space J2(F)/F is Hausdorfl' 

(whereas Cqo/F is non-Hausdorff). Indeed, it is a well-known theorem that 12(F)/F 

is a (not necessarily connected) Riemann surface. For the BTZ black hole, we find 

^ K ^ b t z ) / ^ b t z  ~  (C — {0})/Z. The obvious fundamental domain is the annulus 

{ly G C| 1 <  |ii;| < |A;i| =  with points on the two sides identified with a twist

of argfci =  2n\r-\/l  about the origin. Thus, it is topologically a torus. This is in 

agreement with our discussion in section 1.3.

Definition. We can now form the Kleinian manifold Nc{T) =  (7i U S2(F))/F which 

has interior N{r)  — Ti/F and boundary dN{F) = i2(F)/F. Note that A^c(F) is 

actually an orbifold unless F acts freely.

Example. It should now be obvious that for F =  T b t z -, N c { T b t z ) is just the Eu­

clidean BTZ black hole.
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D efinition. Suppose we are given two points and qg in H. Let g(r) =  w { t )  + 

z { r ) j , a  < T < P he a continuous and piecewise continuously differentiable curve 

a in H  parametrised by r  G R and with endpoints q{a) =  qa and (/(/?) =  qg. The 

hyperbolic length between qa and qg along a is defined as

r  ( I q

da{qa,q0) = J  - ^ d r  , (3.28)

where ds is the (square root of the) Riemannian line element (3.7).

We define the hyperbolic distance between q^ and qg as

d{qa,qg) = mid^iqc^qg) , (3.29)
a

the infimum being taken over all continuous and piecewise continuously differentiable 

curves joining qa and qg. The invariance of ds under PSL{2,  C) transformations 

implies that the metric d is point-pair invariant:

d{qa, qp) =  d{M{qa), M{qg)) , (3.30)

for all qâ  qg E H, M  E PSL{2,  C).

Proposition . In H, the geodesic (that is, the curve of shortest hyperbolic length) 

joining the two points aj and bj {b > a > 0) is simply the segment of the z-axis 

joining them.

Proof. The proof is straightforward. Let g(r) =  w{r) z { T ) j a  < r  < he any 

continuous and piecewise continuously differentiable curve a  in 7̂  parametrised by 

T G M and with endpoints q{a) = aj and q{P) = bj. Then, we have

The second integral in this expression is the hyperbolic length of the segment of the 

2-axis joining aj to bj. Equality in the above holds only if dx/dr  =  0 =  dy/dr,

that is, only if a is this segment. We conclude that for general b > a > 0, there is a

unique geodesic in Ti. between aj  and bj; it is simply the segment of the z-axis joining 

them. I
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Example. Geodesics in Ti. can join two proper points, two improper points or one 

proper and one improper point. By taking the limit a —> 0, h oo, the proposition 

shows that the positive 2:-axis is the unique geodesic in H joining the origin and the 

point P  at infinity.

Proposition. The group PSL{2, C) acts in the following sense doubly transitively on 

H: For all p,p*, q,q* e V .  such that d{p,p*) = d{q, q*) there exists an M  e PSL{2, C) 

such that M{p) = p* and M{q) = q*.

Proof. See [25]. |

Proposition. The hyperbolic distance between any two points q = w + z j  and q* = 

w* +  z*j in Ji is given by

cosh , (3.32)

where S is defined by

\w -  w*\‘̂ + z'  ̂+ z*‘̂5{q, q ) := --------------- -̂---------  . (3.33)

Proof. Firstly, by using the second integral in (3.31) with a =  1, it is clear that 

the result (3.32) is true in the special case q = j,q* = b j , {b > 1). Secondly, by 

the previous proposition, there exists for all q,q* E H  an M  € PSL{2, C) such that 

•̂ (̂<?) =  ̂ The result follows when one notes that 5 is

actually point-pair invariant:

cosh =  cosh bj) = S(M(q), M ( q ' ) )  = H i ,  d") ■ I

Definition. A non-empty subset X  of 7i is convex if for any two (proper or improper) 

points of X  the geodesic in 7i joining these points^ is contained in X .  Clearly, the 

intersection of convex sets is again convex.

^This assumes that there is a unique geodesic in H joining any two points in H.  This is in fact 

true and was used earher in the classification of isometries in section 3.2.1. We have shown this 

explicitly for the origin and the point P  at infinity and this is all that will be needed in what follows.
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D efinition. The convex hull H{Lr)  of the hmit set Lp of F is defined to be the 

intersection of all convex sets X  in H  whose closures X  in H  contain Lp- It is thus 

the smallest convex set in H  whose closure in H  contains Lp. The convex core C(F) 

is defined to be the quotient H{Ly)/T.

Exam ple. Consider V = Tb t z - We have seen that I/Pbtz consists of precisely two 

points — the origin and the point P  at infinity — and that the positive z-axis is the 

unique geodesic in H  joining these two points. By the very definition of convexity, a 

geodesic is itself convex. Hence, the convex hull is just the positive z-axis.

The convex core C { T b t z ) is then the quotient of the positive /:-axis by T b t z  ~  

Thus, it is R_)_/Z which is a circle. The fundamental domain of the core can be taken 

to be q{a) = a j , \ < a < \ki \ — The hyperbohc length of this segment is

d{j,\ki\j) = l I —  = 27ir+. (3.34)
J \  ^

This is in accord with section 1.3, where we noted that the horizon of the Euclidean 

BTZ black hole at r  =  r+ maps to the z-axis under the transformation (1.47).

Theorem  (M argulis Lemma). Given q e 7i and e > 0, denote by T^{q) the sub­

group of T generated by all elements M G F such that d{q,M{q)) < le. Then there 

exists a universal constant e(3) > 0, (called the Margulis constant), such that F̂ ( ẑ){q) 

has an abelian subgroup of finite index.

Proof. See [83]. |

D efinition. Given e > 0, define the set

T£(F) ;= {q G 7i\d{q, M{q)) < le for some M  G Free(F)} , (3.35)

where Free(F) := { M  G F|Af” /  I for any n ^  0} is the set of infinite order elements 

of F. It is possible for Te(F) to be empty.

We now define the thin part of A^(F) as thin^(A^(F)) =  Te(F)/F C A^(F). The 

thick part of A^(F), denoted thickg(A^(F)), is defined as the closure of the complement 

of thin£.(A^(F)) in the Kleinian manifold Nc{T).  This is the “alternative” definition
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of Thurston’s thick-thin decomposition, as described in [81,84]. (The more usual 

definition of T’e(r) is as the set T '̂(r) := {q E 7i\rs:{q) is infinite}, where is as 

defined in the Marguhs Lemma. In general, we have 71(r) C T^{r). However, as we 

shall see momentarily, both definitions turn out to be equivalent for F =  Fb t z -)

Definition (Geometrical Finiteness). As shown in [81], there are five different 

definitions of geometrical finiteness. They are all equivalent when applied to but 

some have a more natural generalisation than others when one goes to more than 

three dimensions. For our purposes, we shall use definition GF4 in the nomenclature

A discrete subgroup F of PSL{2, C) is geometrically finite if for some positive

is compact. The Kleinian manifold Nc{T) is called geometrically finite if the quotient 

group F generating it is geometrically finite.

Theorem. Fb t z  i s  g e o m e t r i c a l l y  f in i t e .

Proof. Firstly, we show that the set ^^(Fb t z )  defined by (3.35) is empty for suitably 

chosen e > 0. Since Fb t z  — { ^ k i  ^ clear that Free{Tb t z )  = Tb t z  \  {I}-

We now use (3.27), (3.32) and (3.33) to find

for a\\ q = w + z j  E 7i,n  E Z. Thus, for the point q to be in the set Te(Fb t z ) we 

require

of [81]:

e < e(3)

C'(F)nthick,(A^(F))

\w\
= cosh 2nE H — (cosh 2nT, — cos 2n0) , (3.36)

cosh 2nE + (3.37)

for some n 0. We can rewrite (3.37) alternatively as

w I ̂  cosh e — cosh 2nS
< -------------------------

z'̂  cosh 2nE — cos 2nO
(3.38)
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where the denominator on the right side of this expression is always positive. If we 

choose £ < min(e:(3), 2E) then no such q exists and hence T^iTeTz) is empty. (Fur­

thermore, for e in this range, we have re((7) =  {/} for all q E H  and hence T^{Tb t z )  

is also empty.) Moreover, since T^iXb t z )  is empty, thine(iV(rBxz)) is empty and so 

thick£(A^(rB7’2 )) =  N c{Tbtz)- By the definition of geometrical finiteness, we see 

that r b t z  is geometrically finite if the convex core C{Tb t z ) is compact. But in the 

last example we showed that C ( r b t z )  is a circle and so is compact. |

Theorem  (Sullivan). Let M  denote a topological 3-manifold with boundary dM  

and let GF{M)  denote the space of geometrically finite Kleinian 3-manifolds Nc{T) 

which are homeomorphic to M . Then, as long as M  admits at least one hyperbolic 

realisation, there is a 1 — 1 correspondence between hyperbolic structures on M  and 

conformal structures on dM , that is,

GF{M)  ^  Teich(aM) , (3.39)

where Teich(5Af) is the Teichmiiller space of dM .

Proof. See [75] and also [76]. |

Remark. Let M  be a solid torus. Then M  has at least one hyperbolic realisation by 

a geometrically finite Kleinian manifold, namely N ci^BTz) for given parameters r+ 

and |r_ |. So Sullivan’s theorem applies. We explore the consequences of this theorem 

for the BTZ black hole in the next section.

3.4 Implications of Sullivan’s Theorem for the  

BTZ Black Hole

The following are consequences of Sullivan’s Theorem for the BTZ black hole:

• The theorem allows us to declare that the Euclidean BTZ manifold is a holo­

graphic manifold such that the three-dimensional hyperbolic structures are in 

1-1 correspondence with the Teichmiiller parameters of the two-dimensional 

genus-one toroidal boundary.
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•  Since the Teichmiiller space of the torus is parametrised by two real param e­

ters, the theorem states th a t we have a ‘No Hair’ theorem; namely, the BTZ 

black hole can be parametrised by at most two parameters, thus excluding 

the construction of a charged, rotating generalisation as a geometrically finite  

Kleinian manifold. It should be noted, however, th a t such generalisations do 

exist (see [13] for a brief review).

•  As the Bekenstein-Hawking entropy formula (2.2) is a geometrical quantity 

it is determined once the hyperbolic structure is fixed. Hence, the Bekenstein- 

Hawking entropy is determined by the Teichmiiller space of the boimdary. This 

is in agreement with Strominger’s derivation in section 2.3 of the BTZ entropy 

based on the asymptotic symmetry algebra of anti-de Sitter space.

•  In [67] (see also [85-87]), the actions for the BTZ black hole and therm al 

were written in terms of the complex Teichmiiller param eter r  =  z7t/(E +  i0 )  

of the boundary 2-torus. Thermal is simply Euclidean anti-de Sitter space 

with the angle (p and Euclidean time te identified with periods

-h |r_ p
2nrj^P 

+ Ir­

respectively. Formally, it is obtained by putting M  =  — 1, == 0 in the BTZ

black hole metric (1.44,1.45) (or by the Riemannian continuation t — iT£ of 

(2.14)) and then making the above identifications®. By transforming to the 

upper half-space model via

.2 \  1/2 

\ 1/2

we see th a t the identifications become

^  =  1 _.o . ,9 I  e x p | y - i ( / ) |  , (3.42)

^  =  1 9  , ,' 9  ) e x p

^  ^  g2n7rV(E+ie)^  ̂  ̂ _  g2n ^ 2 E /|E + i9 |2 ^   ̂ (3 4 4 ^

^ x i c i c ,  v c i i u c o  K j i  ( I ' — I t i i c  o a i i i '

substitute M  =  —1, Je  =  0 into (1.46) to obtain |r_| =  0

Here, the values of r+ and |r_| are the same as those of the BTZ black hole. One does not
,2 
+
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for n  ^  Tj. These identifications are similar to the BTZ identifications (3.22) 

except th a t k\  =  has been replaced by k[  =  e 27r2 / ( E + i e )  other

words, S +  i0 has been replaced by 7t̂ /(S + z0) or, equivalently, r  by — 1/ t .  

It was found th a t the resulting actions also transformed into each other under 

S  : T  H - > —\ j r .  This then suggested the existence of a PS L { 2 , Z)  family of 

solutions whose boundary da ta  r  is related by the associated modular trans­

formations. We see tha t the above theorem does indeed establish the existence 

of this class of hyperbolic geometries. Two such geometries whose Teichmiiller 

param eters are related by a modular transform ation are then equivalent as 

hyperbolic structiu:es. Furthermore, it was noted in [67] th a t there is a corre­

spondence between the PSL{2,  C) isometry used to construct the BTZ black 

hole and the PSL{2,  C) element used in the boundary conformal field theory. 

This correspondence finds a precise explanation in the theorem of Sullivan.

3.5 Conclusions and Further Work

In this chapter we have used machinery from three-dimensional hyperbolic geometry 

to show how Sullivan’s theorem provides a precise notion of holography in the kine- 

matical sense. We have used the theorem to obtain a clearer understanding of the 

underlying m athem atical structure of the Euclidean BTZ black hole.

The observation tha t the Euclidean BTZ black hole is a geometrically finite 

Kleinian manifold with genus one boundary suggests tha t one might try  to construct 

more general objects which have higher genus boundary. There is a well-known tech­

nique for doing this. One generalises the group F b t z  to a classical Schottky group, F. 

This is a discrete, free, purely loxodromic^ group on 5' >  1 generators [80]. The quo­

tient i2(F )/F  is then a handlebody of genus g.  Since the Kleinian manifold generated 

by F is geometrically finite [80, 88] the theorem of Sullivan again applies. There­

fore, N c { r )  is parametrised by (3g — 3) complex Teichmiiller parameters. W hether 

black holes are amongst these objects or not remains an open question. Work in this 

purely loxodromic group is one which has only loxodromic or hyperbolic elements.
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direction has recently appeared in [89].

Finally, one could study the AdS/CFT  correspondence within the context of 

hyperbolic geometry. It is not clear how to quantise classical conformal fields on 

a non-Hausdorff space. This suggests that when one tries to associate a quantised 

“boundary theory” to a (semi)-classical bulk theory the n-dimensional Kleinian man­

ifold (H” U n ( r ) ) / r  is naturally involved*. Work along these lines has appeared 

in [90,91].

*The 3-dimensional formalism presented in this chapter can be generalised relatively straightfor­

wardly to n >  3 dimensions. See, for example, Maskit [80] for a general discussion and Bowditch [81] 

for geometrical finiteness.
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Part II

Ramond-Ramond Couplings on 

Brane-Antibrane Systems



Chapter 4 

String Theory and D-Branes

In this chapter we provide some background on strings and D-branes. This chapter is 

not intended to be comprehensive review; the reader is referred to the standard  text 

of Polchinski [53] and to the older one of Green, Schwarz and W itten [92] for a more 

thorough treatm ent. Other useful texts can be found in [93,94] and there are numer­

ous excellent introductory lecture notes available [95]. Of these references the book 

by Liist and Thiesen, Friedan’s lectures and those of Ginsparg are particularly useful 

for understanding the conformal field theory contained in this chapter. Furthermore, 

this part of the thesis has significant overlap with tha t of Craps [96] and so much of 

the m aterial in this chapter (and the next) can also be found in th a t reference.

4.1 String Theory

4.1.1 The Free Bosonic String

In this section we examine the first-quantised picture of a non-interacting string; 

string interactions will be considered in section 4.1.6.

The Polyakov action for a bosonic string with Lorentzian-signature worldsheet 

(S, g)  moving in a D-dimensional Minkowski space-time (A4,r/) is

s  = f  d ^ a ( ~ g ( a ) f l ^ g ' ^ { a ) d ^ X ‘ ‘ ( o ) d t X ' ' ( a ) n , ^  , (4 .1)
J  s

In this formula, the worldsheet has coordinates cr“,a  = 1 , 2  and metric Qabio'), whilst
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the ambient Minkowski space-time (the “target space”) has coordinates =

0, 1 , . . . ,  D — 1 and metric r]̂ .̂ We use the “mostly-plus” convention for 7]̂ .̂ The 

functions X^{a)  then provide the embedding of S into A4. The constant Ig = is 

the string length.

The action (4.1) has the following symmetries:

1. D-dimensional Poincare invariance:

The equations of motion resulting from (4.1), subject to appropriate boundary 

conditions to be discussed momentarily, are

(4.2)

where e  *S'0(1, D — \) and is a constant D-dimensional vector.

2. Diffeomorphism invariance of the worldsheet:

X'^((j') =  X^{a)  ,

(4.3)

for new coordinates cr'“ =  a '“(<j).

3. Two-dimensional Weyl invariance:

X'^{a) =  X^(a) ,

(4.4)

(4.6)

(4.6)

where Tab is the stress-energy tensor of the string and □ is the D’Alembertian of the 

metric Qab- Note that Tab is traceless and conserved on shell.

47



As remarked above, the vahdity of (4.6) depends on the vanishing of the surface 

terms upon variation of the action (4.1) with respect to X ^ .  This variation gives

j  dT (-g t,^y /H X > ‘d„X ,  , (4.7)

where r  parametrises the boundary and =  n°'da is the normal derivative to the 

boundary. There are three simple ways of setting this to zero:

a. Periodic boundary conditions (see below).

b. Neumann  boundary conditions: =  0.

c. Dirichlet boundary conditions: =  0.

Mode Expansion and Canonical Quantisation

Now, as is well-known, any two-dimensional surface E is conformally flat so tha t 

after a coordinate transform ation cr“ —> cr'“(cr) the metric gab{(^) can be w ritten as 

where g'^{(r') =  and where rĵ d =  d ia g ( - l ,  1). The classical

symmetries (4.3) and (4.4) then allow us to replace gab{<y) by rjab and the coordinates 

cr“ by cr'“ in the equations of motion (4.5,4.6). This is the so-called conformal gauge. 

Quantum  mechanically, however, this procedure is valid only locally unless Z) =  26. 

For now we will ignore such technicalities. Equation (4.6) then becomes (we drop the 

primes on the coordinates (j'“)

{ - d l  + d l ) X ^  = Q , (4.8)

with the solution

X ^(a) =  X^(c7-) +  X ^(a+) , (4.9)

where ±  are light-cone coordinates. Equations (4.5) in conformal gauge

are then imposed as constraints on the space of physical states of the quantum  theory 

(that is, they are zero when acting on physical states but are not identically zero). 

They take the form

Til =  T22 =  ^ ( a i X ^ a i X ^  -f d^x^d^x,) = o , (4.10)

Ti2 = T^i = - , { d iX ^ d 2 X ,)  = 0 .  (4.11)
a

48



These can be expressed alternatively as

T++ =  i{T „ + T1 2 ) =  -fi^X“d+X, = 0 , (4.12)
Z  (X

T -  = \ { T n  -  Tn )  =  =  0 , (4.13)
2 a '

where d± = ^ { d i ±  8 2 ).

We have not, as yet, specified the topology of the worldsheet. We take the time­

like coordinate to have range —00 <  cr̂  <  00. Strings can be closed or open. For

closed strings we compactify the spacelike coordinate cr̂  and identify it periodically

with period 27t so th a t topologically the worldsheet is an infinite cylinder; for open 

strings we take 0 <  cr̂  <  tt so th a t the worldsheet is an infinite strip.

Closed Strings

The solution (4.9) of (4.8) can now be mode-expanded as

n€Z\{0}

nez\{0}

where

, Pr  = P^ . (4.16)

. Pl = . (4-17)

with the centre-of-mass position of the string and its centre-of-mass momentum 

at cr̂  =  0 and and al^ are its right-moving and left-moving non-zero oscillator 

modes, respectively. It proves convenient to define Qq — \[^P ^r > ^ 0  ~  \ f ^ P L -  

These expansions imply th a t X^{a )  satisfies periodic boundary conditions:

X ^ { a \  0) =  X^^{a\ 2tt) , d2 X>^{a\ 0) =  d2 X ^ { a \  27t) , (4.18)

and hence (4.7) is zero^ The reality of X ^  implies

=  « ) *  , (4.19)

Ît is assumed that 5X^ =  0 at =  ± 00.
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and similarly for a!^.

Additionally, we can use invariance of the action under (4.2) to derive, via the 

Noether theorem, the energy-momentum current associated with translations:

K  =  , (4.20) ̂ 5daX>  ̂ 2na'^ y; y 6 m  ̂ , v ;

(in conformal gauge).

We can now canonically quantise in the standard fashion (Poisson brackets ^  

commutators):

[ X ^ { a \ a ^ ) , X ‘' (a\a' ^) ]  = [ P^ ^ { a \ a %  = 0 ,

and thus we obtain the commutation relations

=  [^m ^^n]= ^^m + n ,O V ^‘' , (4-22)

[a^ ,a^ ] =  0 .

In addition, the conjugation relation (4.19) becomes herm itian conjugation rather 

than  complex conjugation.

Note th a t due to the fact th a t they share common zero modes, X^{cr~) and

X^{a~^) are not truly independent. For this reason, it is usual to replace them  with

independent fields of exactly the same form as (4.14) and (4.15) but with the modified 

commutation relations:

[x r P̂r] =  K ^ P l] =  V̂'"‘' , ^̂ 23)
[^RiPl] ~  [^Li Pr ] ~ ^  ■

This modification has the effect of making X^{a~)  and X^{a~^) truly independent 

while at the same time not affecting the commutation relations (4.21) of the sum 

X>^{a\ (j2) =  X ^ (a - )  +  Xf^{a+).

Open Strings

Open strings present more varied possibilities for solutions of the equations of motion 

than  closed ones. In particular, it is possible to impose either Neumann or Dirichlet
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boundary conditions independently for each ^  and for each endpoint =  0, tt of the 

string.

The mode expansion for strings with Neumann boundary conditions at both ends 

(N-N) in all D directions is

nez\{0} nez\{0}

There is only one set of independent oscillators in this case, al  ̂getting linked to by

the boundary conditions. Canonical quantisation leads to the commutation relations

, (4.25)

= mSm+n,oV^‘' , (4.26)

with a tn  =  (o;( )̂  ̂ It proves convenient to define =

We will discuss Dirichlet boundary conditions in more detail in section 4.2. Until 

then whenever we refer to open string theory in the following we mean the conven­

tional theory with all directions N-N.

Fock Space and Virasoro Algebra

Let us consider the closed string. The relations (4.22) show that we can regard the 

negative modes n < 0 and the positive modes n > 0 as the creation and annihilation 

operators respectively in a Fock space. The Fock vacuum |0,0;A:) is annihilated by 

all positive modes and is an eigenstate of with eigenvalue k^. A generic (non­

normalised) state in the Fock space descended from this vacuum is then
D —l oo 

11=0 m=l
and is also an eigenstate of with eigenvalue k^. The full Hilbert space is the 

collection of all such states for all momenta k^.

Classically, the Virasoro generators are just the Fourier modes of the stress-energy 

tensor at =  0 and so are are defined by
2 t t

2 Am < j= —  I T__ , (4.28)

L̂ m ^  . (4.29)
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Alternatively,

T -  =  ^  e -™ -  . (4.30)
m  m

It is easy to show th a t they are given in terms of the oscillators by

2 ^  V ^m —n ' > (4-31)
n

=  2 X I  ’ (4.32)
n

where the denotes contraction of the target space indices with the metric rj^y. The 

zero-mode oscillators aQ, Qq are included in the summations. Classically, therefore, 

the constraints (4.12,4.13) become

=  0 for all m  e  Z , (4.33)

and so impose relations among the oscillator modes.

Q uantum  mechanically, however, we face an operator ordering problem since the 

oscillator modes no longer commute. As is usual in field theory, we pick a normal 

ordering prescription for the operators. For the left-movers, it is given by

f  n >  0 ,
: «  ’ (4.34)

( n < 0  ,

and puts all positive frequency modes to the right of the negative frequency modes^. 

It is also conventional to include amongst the positive modes and amongst 

the negative modes. A similar prescription applies to the right-moving modes. For 

m  7  ̂ 0, the quantum  Virasoro operators on the cylinder are then defined as the 

normal-ordered classical ones:

: L̂ rn ' ) ^rn = ■ ' ■ (4.35)

In this case, it turns out th a t the normal ordering prescription has no effect so tha t 

Lm = L ^ ,  etc. However, for the zero modes we find

L̂ o = Lo + b , (4.36)

^In addition, for two anticommuting modes an extra minus sign appears when the modes are in­

terchanged and for one commuting and one anticommuting mode no sign appears under interchange. 

These facts will be needed when we consider the superstring in section 4.1.3
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where
^  OO

L q = : L q \ = -a o  • «o +  Q;_„ • a„  , (4.37)
n = l

n
b =  (4-38)

n —1

Note th a t the constant 6 is a formally infinite c-number. Using zeta-function regu- 

larisation it can be evaluated as =  —-D/24. Therefore, we define the quantum  

Virasoro operator on the cylinder as L q = L q + b̂ eg- We shall see in the next section 

th a t L q is actually the zero-mode Virasoro operator on the p lan^ .  We also find

i-™  =  L l  . (4.39)

Similar considerations apply to the right-movers with the same constant breg- (For 

the open string the right-niovers are, of course, absent and the Virasoro operators 

Lm are exactly as those above for the closed string, save for the modified definition 

of a^.)

The Virasoro algebra can now be calculated. It is conventional to formulate the 

quantum  theory in terms of L q rather than L'q . W ith great care (because of the 

normal ordering), one finds

Q

[Lrrij -̂ n] ~  ^)-^m+n "1” ^ 2 ^ ^ ^  f )^m+n,0 j (4.40)

where c = D is the central charge"^. The right-movers satisfy the same algebra 

(with the same central charge^) and, of course, the left and right Virasoro operators 

commute.

As remarked earlier, the classical constraints (4.33) do not hold as operator identi­

ties a t the quantum  level but are satisfied when acting on physical states. Therefore,

^As we shall see in the next section, the non-zero mode Virasoro operators on the cylinder and 

on the plane turn out to be equal. Therefore, we do not distinguish between primed and unprimed 

operators in this case.
^If we had used Lq rather than L q the term linear in m  in the central charge term would be 

absent.
^It can be shown that diffeomorphism invariance of the worldsheet implies that the central charge 

of the right-movers is the same as that of the left-movers. One could take the central charges to be 

different but this leads to an inconsistent theory containing a diffor gravitational anomaly.
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we might naively assume th a t a state |phys) of the Hilbert space is physical if it 

satisfies

L^lphys) =  0 (m ^  0) , (4.41)

(L o -a )lp h y s ) =  0 ,  (4.42)

and similarly for the right-movers. The constant a  is included because of the nor­

mal ordering ambiguity and is determined by requiring consistency of the quantum  

theory®. Unfortunately, this naive assumption fails. Equation (4.41) can be imposed 

for a phj^sical state  only for m >  0; it cannot be imposed for m <  0 as well. There 

is a standard argument for illustrating this. Suppose we could impose (4.41) for all

m ^  0. Then we would conclude (phys|[Lm, L_^]|phys) =  0 for m >  0. However, the

Virasoro algebra (4.40), which is an operator identity, yields

(phys|[L^, L_^]|phys) =  2 m(phys|Lo|phys) +  -  l)(phys|phys)

=  2 m a + ^ m ( m ^  —1) (4.43)

7  ̂ 0  (in general) ,

where we have assumed th a t |phys) is normalised to unity. Hence, there is a contra­

diction. Therefore, at the quantum level, physical states satisfy

^m>o|phys) =  0 , (Lo -  a)|phys) =  0 , (4.44)

and similarly for the right-movers. Equations (4.44) are consistent with the classical 

constraints in the sense th a t (phys'|L,„|phys) =  0 for all m  7  ̂ 0 by virtue of (4.39). 

Note th a t this situation is very similar to the one tha t occurs in the Gupta-Bleuler 

quantisation of electromagnetism. There, only the positive frequency part of the 

Lorentz gauge condition 5 • A =  0 is imposed on physical states which suffices to get 

(phys'ia • ^Iphys) =  0.

Of course, there are other states in the Hilbert space which do not satisfy the 

constraints (4.44). There are even negative-norm states (or “ghosts” ) and null phys­

ical states due to the indefinite metric 77̂  ̂ appearing in the commutation relations

®Note that the normal ordering constant is the same in both the left and right sector and so the 

level-matching condition (Lo — io)|phys) is automatic. However, as we shall see in section 4.1.3, it 

is possible for the normal ordering constant in the left and right sector to be different.
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(4.22). A detailed analysis shows that the space of physical states modulo the space 

of null physical states is ghost-free and the degrees of freedom transverse in nature 

provided a = 1 and D = 26.

Finally, we note that the classical Hamiltonian for the closed string in conformal 

gauge is given by

da^id iX  ■ -  C)

= ^ C d a ^ ( d ^ X . d ^ X  + d_X-d_X)

= L q + Lq .

(4.45)

Therefore, the quantum Hamiltonian on the cyhnder is given by

H' = L', + V, = L o + Lo - ^  . (4.46)

Physical Spectrum

The relevant (normal-ordered) number operator for the left-movers is defined as

OO

=  , (4.47)
n ~ l

and acting on the Fock state (4.27) it gives

D —l  OO

TV; k) = iV ; k) , =  EE mN^,rn ■ (4-48)
11=0 m = l

The right-moving number operator 7Vi“’ is similarly defined and the eigenvalue of the
D —l OO

Fock space state (4.27) is =  EE
fj,=0 m = l

The mass operator is given by

=  - i ( P L - p L + P H - p « )

~  “ ^ ( ^ 0  ■ Q f o  +  < 5 q  • « o )  •

Using (4.27), (4.37) and (4.44) we find that physical states have =  iV'“  ̂ and are 

eigenstates of with eigenvalues



We see from this that the Fock vacuum |0, 0;fc) with k'  ̂ = Aa/a' is physical and 

tachyonic (since a =  1). The first level, =  1, has zero mass and consists

of linear combinations of states of the form \aY'' =  0; k) where k^ is null.

All other states are massive and not observable at low energies since 1 /a ' ~  A/p, 

where Mp is the Planck mass.

Let us now classify the different types of massless particle. To do so we multiply 

the state by a polarisation tensor to form the state |o!;C)- Thus, there

are D ‘̂ independent polarisations initially. We can then work through the physical 

state conditions to find that they reduce to =  C^vk^ — 0, with k^ null. These

conditions eliminate 2 x D degrees of freedom. However, the states |q)^'^ and 

kfib^\a)^'' are physical but null. Therefore, C/ji/ — Cixu+o-tik^^+k^b ,̂ with k-a =  b-k — 0. 

These latter conditions eliminate a further 2 x (D — 2) degrees of freedom. Therefore, 

in total there are (D —2)^ independent polarisations, which is just the right amount of 

degrees of freedom to characterise a tensor of SO{D — 2). Since k^ is null, we can take 

the momentum to lie along the light-cone parametrised by the 0,1 directions in the 

target space. The group SO{D — 2) is then the “Httle group” of 50 (1 , D — 1), where

the D — 2 refers to the directions transverse to the light-cone. Thus, we find that the

massless particles in D dimensions are classified by their SO{D — 2) representation: 

a) the symmetric, traceless part (graviton, b) the antisymmetric part (Kalb-

Ramond field, and c) the trace part (dilaton, 4>).

For open strings the right-movers are absent. The Hamiltonian on the strip is 

Lq — ^  and the mass operator is given by

= - p - p  = - ^ a o  • oo , (4.51)

and, therefore, the masses of the physical states are

=  - P  =  — -  a) . (4.52)
a!

Again, we see that the Fock vacuum |0; k) with =  a / a ' , a =  1 is physical and a 

tachyon.
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4.1.2 Conformal Field Theory

In what follows we will work on the (extended) complex plane so it is useful to 

recall some conformal field theory techniques. Furthermore, conformal field theory is 

relevant to string theory because the choice of conformal gauge does not fix the gauge 

completely; the string action in conformal gauge is still invariant under conformal 

transformations of (or after a Wick rotation, as described below). Conformal 

transformations are those diffeomorphisms that leave rjab invariant up to a Weyl 

rescaling. Such transformations are of the form

=  /(<7+) , a~ o'~ =  g[o~) , (4.53)

for arbitrary real functions /  and g and are generated by the Virasoro generators, as 

we show below.

W ick R o ta tio n  of W orldsheet

To proceed further, we Wick rotate the string worldsheet from Lorentzian to Eu­

clidean signature via cr̂  —> . We then define complex coordinates on the

string worldsheet by

- ^ w  = a^-\- , ia~ w = , (4.54)

where we have dropped the tilde over . The transformations /  and g of (4.53) 

become holomorphic and antiholomorphic transformations of w, respectively. We 

can now perform the conformal transformation

z = = X -\-iy  ̂ z = e'  ̂ = x — iy , (4.55)

in which the closed string’s cylinder maps to the full complex plane, while the open

string’s strip maps to the upper half complex plane. In what follows we denote d = dz

and B = dz- Note that

5+ —> idyj =  izd  , d-  —> idyj =  izd . (4.56)

The Wick rotated form of the action (4.1) in conformal gauge is

=  d h d X - B X  , (4.57)
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where ( f z  =  2dxdy. The closed and open string mode expansions (4.14), (4.15) and 

(4.24) respectively become:

X̂ (̂z) =  - i W ^ a ^ l n z  +  zŴ ^
nez\{o}

, (4.59)
n el\{0}

+ J 2  +  > (4-60)
nez\{0}

These, of course, solve the equation of motion ddX^^ = 0 and boundary conditions 

resulting from (4.57).

Correlation Functions and the Propagator

Up until now we have quantised the string using canonical quantisation. However, 

the path integral provides another, equivalent means of quantisation. Within the 

path integral formalism a natural way to define correlation functions on a worldsheet 

of given topology is via

( . . . )  =  J  D X . . . e ~ ^ ^  . (4.61)

While this is essentially correct, there are various subtleties such as the possible exis­

tence of a conformal anomaly and the question of how one treats different topologies 

(which correspond to different numbers of loops in field theory). Such technicalities 

are discussed when we consider the path integral in more detail in section 4.1.6.

For now, we proceed in a cavalier manner using the definition (4.61) and complete 

the square in the generating functional

Z{J]  =  j  D X e x p ( ^ - ^ ,  j  i P z d X - d X  + j  ( f z j  ■ X

=  j  D X e x p ( - ^ J { X - A - J ) i ‘A ; i ( X - A j r ' ^  , (4 .62)

where =  —rj^^dd/'Ka'. Thus, we provide a heuristic calculation of the propagator:
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= -^a'r]>^‘' ln \ z '  -  z f  ~ ^ a 'D i^ ‘' ln \ z '  -  z f ,  (4.63)

where we have used the representation of the delta-function:

d d  In |z|2 = d -  =  B - =  27tS^(z , z ) = TTS(a^)S(a^) . (4.64)
2: z

The harmonic part of the propagator involving D ^‘' = D ‘'^ is included so th a t 

satisfies the same boundary conditions as the fields X^ .

For closed strings on the complex plane we can take =  0. Treating holomor- 

phic and antiholomorphic components independently allows us to split (4.63) into 

two:

{X^^iz ')X‘'{z)) = - ^ a ' r j ^ ' ^ ln i z ' -  z) , (4.65)

{ X ^ { z ' )X ‘'{z)) = - ^ a Y - ' l n i z ' - z )  , (4.66)

For open strings on the upper half-plane, N-N directions satisfy {d — d)X'^j^ =  0 

on the real axis, as can be read off from (4.60). Hence we require

on the real axis, z = z. Hence, D^'' =

j jn u  j j t i y
= 0 , (4.67)

D oubling Trick

At this point we introduce the doubling trick for open strings. We may write

X^^^{z,z)  = X>^{z) + X>^{z) , (4.68)

where the mode is split evenly between X ^  and X ^ .  In particular,

X “{z) =  L ' ‘ - i j | a ; i n z  +  * y |  ^  ( « 9 )
nez\{0}

X “(z) = I x ^ - i y J ^ a S l n - z  + i ^  Y .
nez\{0}

59



Due to the fact tha t is non-zero we find cross-correlations between and X ^ .  

Indeed, using (4.63) we find

{X>‘i z ' ) X ‘'{z)) = , (4.71)

(X>‘(z')X''{z)} = - iQ V > -ln (2 ' - 2 ) , (4.72)

(X '‘(z ')X' '(z)} = - ^ a ' D “''\n{z' - z )  , (4.73)

{X'‘{z ' )X ‘’(z)) = -^ Q 'D '“'ln ( 2 ' - 2 ) . (4.74)

However, note th a t ^ ^ (-)  and X^{-)  are defined for their argument on the upper and 

lower half of the complex plane, respectively. So we extend X^{z )  to the whole plane 

by defining

X>^{z) D^X^'iz)  = X>^{z) , (4.75)

for Im z <  0. We can then replace the four correlators (4.71-4.74) by the single 

correlator (4.71) defined in term s of the extended field provided the condition

= vi: = K   ̂ (4.76)

holds. This condition is trivially met since We will use this doubling trick

at various stages in what follows. (In particular, our motivation for working in terms 

of the m atrix D ^'’' rather than  rj '̂  ̂ will become clearer when we consider D-branes in 

section 4.2.)

Radial Ordering

Surfaces of equal time on the cylinder (strip) become circles (semi-circles) of equal 

radius on the complex plane. This means th a t the infinite past (a^ =  —oo) gets 

mapped to the origin of the plane (^ =  0) and the infinite future becomes 2; =  oo. 

This leads naturally to the concept of radial ordering, in analogy with time ordering 

of ordinary quantum  field theory:



where F  is +1 for two bosonic fields and —1 for two fermionic fields. The equal radius 

(anti-)commutator is then defined by

BW] = lim {(^ (z')B(z))|.,h .|+, -  (-1)"

Primary Fields

The basic objects of conformal field theory are the p r i m a r y  f ields ( j ){z,z).  These 

transform under a conformal transformation z  ^  z'  =  f { z ) ,  z  ^  z'  =  f { z )  as 

tensors:

(!){z,z)  ̂  4 ) \ z , z )  =  (f>{z'{z) , z' {z))  , (4.79)

where the pair {h, h)  is the conformal weight of the field. The quantity h + h is  called

the scal ing d i me n s i o n  oi the field. Infinitesimally, we have z'  = ^-|-^(^), ^  =  z  + ̂ {z )  

and (4.79) becomes

Z) =  (f)'{z, z )  -  (t){z, Z)

= [ {hd^ +  ^d)  +  { h d (  +  0 ) ] < P { z , z ) .  (4.80)

Equation (4.79) implies that under the transformation (4.55) primary fields on 

the plane and cylinder (strip) are related according to:

(p{z , z )  = z~^z~^( t ) ' {w{z ) , w{z ) )  , (4.81)

where (f)' {w,w)  is defined on the cylinder (strip) and w  = \ n z .  Consequently, the

field 4>{z, z )  can be mode expanded as the Laurent series

(l>{z, z )  = J 2  , (4.82)
m,n

where IS the mode expansion on the cylinder (strip).

Finally, by considering how correlators of primary fields transform under the 

resricted conformal group Mob, consisting of the transformations of the form (3.16), 

it can be shown that two-point correlators for fields of the same conformal weight



OS z' ^  z, where C \2 is some constant. Furthermore, three-point correlators for 

holomorphic fields have the form

{(t>l{zi)(f)2{z2)(j)z{zz)) =  h„+h-,-h, h,+ht-ho ’ (4.84)h i + h 2 - h 3  h - 2 + h 3 - h \  h i + h z — h i  ’ 

^12 ^23 -2̂ 13

where Zij = Zi — Zj.

The Operator Product Expansion and Energy-Momentum Tensor

An alternative, but equivalent, definition of a primary field is in terms of the 

(anti-)com m utator and operator product expansion (OPE). The basic idea of an 

operator product expansion is th a t if {Oi} is a complete set of local operators with 

definite scaling dimensions, then the product of two operators can be expanded as
/  7z ^  z

O i ( z ' ) O j ( z )  = J ^ Q j k i z '  -  , (4.85)
k

where Cjjfc are constants and hi are the scahng dimensions of the fields which are not 

necessarily primary. This is an operator statem ent and, as such, should always be 

thought of as inserted into correlation functions. Note tha t (4.85) generally contains 

singular pole terms. For example, taking the derivative of the propagator (4.63) or 

(4.65) for the closed string we obtain the OPE

ffX'^(z')dX-(z)  =   ̂ (4.86)

Comparing with (4.83) suggests th a t dX^{z )  is a primary field of weight (1,0). We 

will verify this below. It is conventional in writing OPEs to keep only the most 

singular terms and to disregard terms th a t are finite as z' z. The “= ” sign 

appearing in the OPEs below should therefore be interpreted in this light.

Now, conformal invariance manifests itself in the tracelessness T “ =  0 of the en­

ergy momentum tensor. In addition, diff'eomorphism invariance implies conservation, 

d^Tab- In complex coordinates these conditions translate into T{z)  = T^ziz, z) being 

a holomorphic function of z and T{z)  = Tzz{z, z) being an antiholomorphic function.

^For illustrative purposes we consider holomorphic fields only.
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with T2 2  =  0. We define a conserved Noether charge

^  , (4.87)

where the contour integral is performed in the counterclockwise sense around some 

circle of fixed radius enclosing the origin. Clearly, T{z)  and T{z)  should be defined 

on the whole of the complex plane for the contour integral to make sense. We can 

now define the transformation of a primary field by

=  2 ^  £  (dz'a!:')R(T(z')4>(i:, z)) -  dz ' ( ( z ' )R( f ( z ' )Mz,  z)))  . (4.88)

where the contour integral is taken anticlockwise about z. In writing the integral in 

the above form we have performed a deformation of the original contours involved 

in the definition of the commutator (4.78). The first contour encircles the origin and 

has \z'\ > \z\. The second encircles the origin and has \z'\ < \z\. Subtracting the 

second from the first gives the contour C^. Using the Cauchy-Riemann formula

/ I2m [z' — n!

and its complex conjugate, we see that (4.88) agrees with (4.80) provided T  and T  

have the following short-distance singularities with 0:

R{T{z')(j){z,z)) = - -^ ■■-( j ) {z , z ) ^^^d( t ) {z , z )  + --- , (4.90)
y Z  Z  ] Z  Z

R{f{z')(f){z,z)) =  ^ (/){z,z) + ^^^d( f>{z , z)  + ■ ■ ■ . (4.91)
[z' — Z)^ z' — z

These operator product expansions serve as the alternative definition of a primary 

field of conformal weight (h,h).  As is conventional, we omit the R  symbol and 

consider the OPE to be already radially ordered.

By considering the commutation properties of infinitesimal conformal transforma­

tions it is straightforward to show that, classically, T{z)  is a primary field of weight

(2,0) while T{z)  is a primary field of weight (0,2). That is, we have

63



and similarly for T{z). Quantum mechanically, however, it is possible to add the 

further term

to right side of the OPE (4.92), where c is the c-number central charge. This is the so- 

called conformal anomaly. Its form, although not the value of c itself, is determined 

by analyticity, Bose symmetry and scale invariance (see Ginsparg’s lectures). Indeed, 

scale invariance and the fact that T  has scaling dimension 2 show that we cannot have 

a higher-order pole ~  A{z)f{z' — z)'^, n > 4 because the operator A  would have to 

have negative scahng dimension. Such negative dimension operators are not allowed 

in a unitary conformal field theory. Now consider a cubic term A{z)j{z' — z)^. The 

operator A  would now have a scaling dimension of one and conformal dimension (1,0). 

However, Bose symmetry requires the OPE to be symmetric under the interchange 

z' ^  z, so the only possible choice is = 0.

Using the above OPE we can derive how the energy-momentum tensor® transforms 

under infinitesimal conformal transformations:

= h k  (4.94)
= (2d( + (d)T(z) + .

This shows that, quantum mechanically, the stress tensor is quasi-primary, that is, 

it transforms as in (4.80) under those infinitesimal conformal transformations that

are quadratic in nature, d^^{z) = 0. Such transformations are just the restricted

conformal transformations Mob generated by Lq,L±i. Equation (4.94) can be “ex­

ponentiated” to give the finite transformation

r { z ) = ( ^ ^ j T ( z ' ( z ) )  + ^ { A z ) . z }  , (496 )

where

dz'd^z' -  -(d ‘̂ z'V
, (4.96)

^Henceforth, we consider only the holomorphic component of the energy-momentum tensor. A 

discussion similar to what follows applies to the antiholomorphic component.
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is the Schwarzian derivative. Using (4.55) we find the relation between the energy- 

momentum tensors defined on the plane and on the cylinder (strip):

T{z) = z - \ T \ w { z ) )  + ^ )  , (4.97)

where T'{w) is defined on the cylinder (strip) and w = \nz.

The Virasoro Algebra

The OPE (4.92,4.93) is equivalent to the Virasoro algebra (4.40). This can be seen 

from the mode expansion

“  E  ■ (4.98)

Then we have

'C o  ‘ JC:

=  (m -  n)Lm^n +  -^rnirri^ -  l)(5^+„,o • (4.99)

Equation (4.97) also allows us to determine the relation

= L'^ +  ^^m,0 , (4.100)

between the Virasoro operators defined on the plane and the corresponding op­

erators defined on the cylinder (strip).

Conformal Normal Ordering

Now, as far as the bosonic string action (4.57) is concerned, the energy-momentum 

tensor on the plane is (classically) given by

T{z) = ~ - d X  ■ dx , f i z )  =  - —dx ■ Bx . (4.101)
a' a'

This can be inferred from the Wick rotation (4.56) and the transformation (4.97)

(ignoring the central charge term) applied to (4.12) and (4.13).

Quantum mechanically, however, the product of two operators at the same point

is ill-defined so we adopt the conformal normal ordering prescription

l A { z ) B { z ) l =  lim ((A(z')5(z))|2/|=|2|+6 -  poles) , (4.102)
0 — ►O

65



where the pole terms to be subtracted are those arising from the operator product 

expansion of A(z ' )B{z) .  In general, this form of normal ordering is not  the same as 

the creation-annihilation normal ordering we introduced in section 4.1.1. However, 

for the bosonic string it leads to the same results, as we explicitly verify below. The 

quantum  energy-momentum tensor is then defined as the conformally normal ordered 

form of (4.101).

Example: The Closed Bosonic String

For the closed string, it is straightforward to calculate

- - . f f x i z ' . z ' ) . ax{z,  J) = i  E  E
m eZ  n eZ

1 OO

= - ~ : d ' X { z ' ) - d X ( z ) :  + -{ z ' z ) - '  E  "  ( ? )  -<'‘• '“3)

where

(~ \l T T ' / Z X  i~\ ^  \  1 V ■' /  X / __ m  - l—t r t ___1  ' n ___ ,

(^m—n '

(4.104)

■.d'X{z ' ) -dX{z)  : =  ^ E m e z (E „ > o ^ '

+  E n < 0  • a m - n )  •

For \z'\ > \z\, the second term  in (4.103) converges to

D
2{z' -  z)2 ’

which is a pole as z' z. It is consistent with the OPE (4.86) in this limit. Fur­

thermore, it is clear tha t the first term  in (4.103) contains no pole as ^  2: and

hence

\ i n i - - : & X { z ' ) - d X i z )  : = - - I d X  ■ d X  I = T{z)  (4.105)
z '^ z  a ' a '

= E ; ^ .  ( 1̂06)
m&,

where the operators are given by (4.35) for m ^  0 and (4.37) for m =  0.

As to be expected, if one calculates

T{z ' )Ti z )  = \ l & X - f f X l l d X - d X l  , (4.107)
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using Wick’s theorem, one finds a pole term ~{z'  — z) showing that the central 

charge is c = D. In addition, one can compute

T{z ' )dX^ = +  - ^ d ^ x > ^  , (4.108)
[z' — z y  z ~ z

showing that d X ^  is a primary field of conformal weight (1,0).

At this point we also introduce the operator o % . This field is primary with

conformal weight {a'k“̂/ as is easily verified by expanding the exponential and

Wick contracting with T{z).  It will play a prominent role in the sequel.

A similar discussion applies for the antiholomorphic component T{z)  and gives

the right-moving operators Lm with the same central charge and the field BX^{z)  to

be primary of conformal weight (0,1).

For the case of the open string, the doubling trick is used to extend the domain

of X{z)  and hence T{z)  from the upper half-plane to the full plane in order that the

contour integrals be well-defined. Similar results to those above for the holomorphic

sector of the closed string are obtained.

4.1.3 Free Superstrings

The bosonic string has many drawbacks, the two most important being that the 

spectrum contains a tachyon and that the theory does not possess space-time su­

persymmetry since there are no space-time fermions. Both of these drawbacks are 

overcome by adding D free fermions to the action (4.57) in order to make the world- 

sheet theory supersymmetric. Note that space-time supersymmetry is not manifest 

in this so-called RNS formahsm, but it is achievable, as we shall see later. The intro­

duction of space-time supersymmetry also removes the tachyon from the spectrum 

and reduces the value of D from 26 to 10.

The fermionic action is taken to be

S^ = ^  j  + Ip ■ dip  ̂ , (4.109)

where the fields 'tp̂  and 'ip̂  are the anticommuting components of the two-dimensional
[  iP>̂ \

Majorana spinor =  defined on the cylinder (strip).\ r  J
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The action above is written in superconformal gauge. Before gauge fixing and Wick 

rotation, it is necessary to also include the zweibein defined by

{a)rjai3 = gab{cr) and its superpartner, the gravitino. The full m atter action 

Sm — S x  + then possesses on-shell local (1,1) worldsheet supersymmetry which 

can be extended off-shell by the inclusion of auxiliary fields. The full action is also 

diffeomorphism-invariant and possesses two-dimensional Weyl and super-Weyl invari­

ance as well as D-dimensional Poincare invariance. Superconformal gauge is obtained 

by eliminating the auxiliary fields via their equations of motion and by using the sym­

metries to  replace e^“ (cr) by 5^ and to set the gravitino to zero. Finally, the fermions 

are rescaled, a Wick rotation is performed and the cylinder (strip) is exploded onto 

the complex plane (upper half-plane) for closed (open) strings. In analogy with the 

bosonic case, quantum  mechanically the procedure is valid only locally unless D = 10. 

Details of the procedure may be found in [93].

The equations of motion resulting from (4.109) are

d'ip^{z,z) = 0 , d'ip^{z,z) = 0 ,  (4.110)

subject to boundary conditions to be considered below. Thus, is holomorphic 

and antiholomorphic. The equations of motion and boundary conditions are 

unaltered from those of the bosonic case.

The gauge fixing of the zweibein leads to the classical constraints

T{z)  =  T, ,  = - - ^ d X - d X - l t P - d i ;  = 0 (4.111)
a  2

f { z )  = T, ,  = - - d X - d X - U - d i >  = 0 , (4.112)
a  z

after imposition of the equations of motion (4.110) to remove the Tzz component of 

the energy-momentum tensor. We see tha t the energy-momentum tensor is again 

conserved and traceless. Additionally, the gauge fixing of the gravitino leads to the 

(classical) vanishing of the supercurrents:

Tf {z ) = TFz = i \ —, i ’{ z ) - d X { z , z )  (4.113)
V Oi

Tf {z ) = TFz = i ] J ^ , i ’{ z ) - d X { z , z ) .  (4.114)
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Furthermore, the supercurrent is conserved and traceless in the sense th a t p°‘Tpa =  0, 

where p°‘ are the Dirac matrices of two-dimensional Euclidean space.

Using the partition function technique described earlier but adapted to  take ac­

count of the Grassmanian variables, we find th a t the inverse fermionic propagators 

are given by

d d
■ (4.115)

Hence, the propagators up to boundary conditions (and therefore OPEs, which are 

independent of boundary conditions) are

m^)r{z)) = ^ , (4.n6)
z — z z — z

where we have used (4.64).

The full action in superconformal gauge is still invariant under conformal transfor­

m ations generated by the stress tensor and under the superconformal transformations 

whose infinitesimal form is

6r^^fiX^{z,z) = )J~^{r]{z)ilj^{z)+ fj{z)'tp>̂ {z)) , (4-117)

= - \ l ^ v i z ) d X ' ^ { z , z )  , (4.118)
V a

=  - ] j ^ v { z ) d X f ^ { z , z )  , (4.119)

where the param eter 7]{z) is anticommuting. T hat these transform ations are sym­

m etries of the gauge-fixed action follows from the fact th a t the supercurrents are 

(anti)holomorphic. They can be derived by first defining conserved charges analo­

gous to (4.87) (without the factor i) and then using (4.88), the { d X ) X  OPEs obtained 

from (4.63) and the OPEs (4.116).

T he SuperVirasoro Algebra

Analogously to the bosonic case, the quantum  energy-momentum tensor and super- 

curents are given by conformally normal ordering their classical counterparts®.

®The normal ordering has no effect on the supercurrents.
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Using W ick’s theorem and the {d'ip)'ip OPE calculated from (4.116) it is straight­

forward to calculate:

- i  s v>(z') ■ I r(z) = , , j  . (4120)
^ { Z Z j  z  z

This shows th a t is a prim ary field of weight ( | ,  0). Similarly, 'tp^{z) is a primary 

field of weight (0, |) .

It is also straightforward to obtain the OPEs

+ ( « 21)

T(z')Tr(z) =  . (4 .122)( r  — z ) ‘‘ z' — z

=  3 ( i ^  +
where c =  3D /2  is the central charge. Since the bosonic sector involving the X ^’s 

is unchanged and has central charge D, we see tha t each fermion ■0̂  weighs in with 

central charge In addition, (4.122) shows th a t Tf {z ) is a prim ary held of weight 

( | ,0 ) .  Similar considerations apply for the antiholomorphic modes.

Boundary Conditions, Mode Expansions and Commutation Relations

Firstly, the boundary conditions and mode expansions of the X'^’s are as for the 

bosonic string.

For the fermions, the appropriate boundary conditions are^°

(tl) ■ S'ip — ijj ■ 5ip){a^,0) =  {%i) ■ Si) —-ip ■ 5ip){a^,27t) , (4.124)

for closed strings and

• 5'4> — xp • 6ip =  0 (4.125)

at each end of an open string. These follow from (4.109) by first transforming from

the 2  to  the w  coordinate and then varying the action.

^°For fermions, it is clearest to first consider the boundary conditions on the cylinder (strip) and 

then to transform to the plane. One also assumes 6'ip^ =  0 =  at =  ±oo.
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Closed Strings

The independence of the holomorphic and antiholomorphic spinors imphes that 

(4.124) applies separately to each of and '0^. Thus we can have the following 

boundary conditions:

Ramond (R) : ,0) = +ip^{a^ ,2n) , (4.126)

Neveu-Schwarz (NS) : ,0) = ,27t) , (4.127)

and similarly for Therefore, there are four different sectors in the Hilbert space 

of the theory: NS-NS, R-R, NS-R, R-NS, where the first factor corresponds to the 

boundary condition on the holomorphic field

The mode expansions on the cylinder are taken to be

r { w )  =  , r { w )  = , (4.128)
r  r

where =  iptj. and where r  ranges over the integers (including zero) for R boundary 

conditions and over Z + 1  for NS boundary conditions. Using the fact that and ip  ̂

are primary fields of weights ( | ,  0) and (0, ^), respectively, we obtain the expansions 

on the plane:

V { z )  = ^  , ^^{z) = ^  , (4.129)
reZ+fc" reZ+i>

where v, v are zero in the Ramond sector and 1/2 in the Neveu-Schwarz sector. Note 

that there is a branch cut in the R sector. We can also expand the energy-momentum 

tensor and supercurrents as

nz )  = E  . T(-z) = E  130)
m eZ

= E  = E  i l f e   ̂ ('‘■131)
r e Z + v  reZ+i>

In terms of oscillators, these expansions are

Lm 2 ^  y • ^ra—n ' ^   ̂ (2r TTl) . 'Ip̂n—r ' ■ ”l“̂ (^ )̂^m,0 i (4.132)
n e Z  reZ + i/

Gr = Y ^a n - ' lp r -n ,  (4.133)
ne Z
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where d{0) = c/24  =  D /16 and d{^) = (c — 3D /2)/24  =  0. Similar considerations 

apply to the antiholomorphic modes with the same values of d.

The expansions (4.129) can now be inserted into the OPEs (4.116) to yield the 

com m utation relations

C }  =  W ,  = V^''Sr+s,o , (4.134)

which, of course, are consistent with those obtained using canonical quantisation. It 

is again easy to see th a t the oscillators with positive mode numbers are annihilation 

operators whereas oscillators with negative mode numbers are creation operators. 

We shall see below how the zero mode operators tpQ, ipQ are to be interpreted.

The expansions (4.130) and (4.131) can be inserted into the OPEs (4.121-4.123) 

and yield, after the usual contour integration, the algebra:

[ Lm,  Ln]  =  { m -  n ) L m + n  +  “  l ) < ^ m + n , 0  , (4.135)

{Gr,Gg} =  2Lr+s +  — (4r^ — l)(5r+s,o ) (4.136)

[ L m , G r ]  = ^{rn -2r)G m + r  ■ (4.137)

Open Strings

For the open string, the boundary condition (4.125) allows the possibilities

i/;^ (a \0 ) =  , ^ ^ ( a \  tt) =  tt) , (4.138)

where u' and u are, independently, either 0 or 1/2. However, the redefinition 

allows us to set v' = 0 without loss of generality. Therefore, there 

are two possibilities, namely the R sector {u = 0) and the NS sector — 1/2), with 

the mode expansions on the plane:

V,M(̂ ) =   ̂ ^  . (4.139)
reZ+[/ r&X+u

As for the bosonic string, the previous conformal held theory analysis is not 

strictly valid for the open string since ip^{z) is defined only on the upper half complex 

plane rather than  the full plane (and, therefore, is defined on the lower half­

plane). However, by use of the the doubhng trick:

, —a'^) := {a^, a'^) = 'tp^{a^, a'^), {0 < a'  ̂ < n ) , (4.140)

72



i!^{z) := (z) = 'tp' {̂z) , (Im^ < 0 , arg/; ^  —7t) , (4.141)

we can extend ip^{z) to be holomorphic over the full plane, —tt < arg^ < tt. The 

boundary condition =  0 at <7̂  =  0 is automatic, whereas R and NS boundary 

conditions at — n become, respectively, periodic and antiperiodic conditions on 

the extended field:

-7t) := D y ' ' { a \  tt) =  {a \  n) = tt) , (4.142)

Quantisation is then as for the holomorphic sector of the closed string above, leading 

to the anticommutation relations

=  , (4.143)

and the single correlator

(r(z')V’''W> = z — z

in terms of the extended field. The function f{z' ,  z) is 1 for NS boundary conditions 

and \ { y j z ' j z  +  \ J z j z ' ) in the R sector. Note that f {z ' , z )  I as z' z and so 

(4.144) is consistent with the OPEs (4.116).

Fock Space, GSO Conditions and Physical Spectrum

In this section we consider the Fock space and spectrum generated by a single set of 

NS or R modes, corresponding to the open string.

Fermionic Fock Space

It is clear that the full Hilbert space is simply the tensor product of the bosonic Hilbert 

space times the fermionic Hilbert space. Therefore, in this section we consider only 

the fermionic Hilbert space.

The NS sector is simple. Since there are no fermionic zero modes, we take the 

Fock vacuum to be annihilated by all r  > 0 modes:

n m N s - O ,  r > 0 .  (4.145)

A generic (non-normalised) state in the Fock space is then
D — l  oo 

^ = 0  r> 0
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where is either 0 or 1. Such a state is an eigenstate of the number operator

OO

^  , (4.147)
r>0

£>—1 00

with eigenvalue = EE rNf^r- From the space-time point of view all such
fj,=0 r> 0

states are bosonic.

The R sector is more involved. Firstly, one should note that zero modes are 

present and that they satisfy the 5 0 (1 ,9 ) Dirac algebra:

, {r^, r } =  . (4.148)

The Fock space is built from the Fock vacuum as in (4.146) and the number operator 

is defined as in (4.147). Note, however, that since [F^, =  0 states of the same

eigenvalue of N ^ ’’ are taken into each other under the action of F^. Therefore, 

the states should span a representation space for this gamma matrix algebra and 

so are space-time spinors. In particular, the Fock vacuum, which is annihilated by 

all positive modes, forms a 32-component spinor. The 32 is reducible to two Weyl 

representations 16+ 16', distinguished by their eigenvalue (±1) under F =  F'^F  ̂ • • • F®. 

We shall denote the vacuum by |0;q:)r, where a  is a spinor index which shall often 

be omitted.

GSO Conditions

The classical constraints that the energy-momentum tensor and supercurrents vanish 

are implemented quantum mechanically by the constraints

(Lo -  a(i/))|phys) =  0 ,  (4.149)

L^lphys) =  0 , (m > 0) , (4.150)

G^lphys) =  0 , (r > 0) , (4.151)

on physical states built from the a^rn oscillators. In (4.149), we have ab­

sorbed the c-number d{i') that is present in Lq into the constant a(i'). Analogously 

to the bosonic string, it can be shown that the space of physical states modulo the 

space of null physical states is ghost-free and the degrees of freedom transverse in
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nature provided D  =  10, a(0) =  0 and a ( |)  =  Note that the Gq condition in the 

R sector implies the Lq condition with a(0) =  0 since (4.136) gives Gl = Lq — For 

the closed string, similar conditions hold for the right-movers with the same values 

of the normal ordering constant a.

To proceed further, we need to define the operator G, which is essentially the 

worldsheet fermion number. It is defined only mod 2 and counts whether states of 

the form (4.146) possess an even or or odd number of fermionic oscillators ipt,.. G 

therefore anticommutes with the oscillators. In the NS sector the vacuum |0);vs is 

assigned the value G = — 1 and so we can take

00

G = . - ( - l f  , F =  . (4.152)
r = l / 2

Hence, all states with an even number of oscillators have G = —1 and those with an 

odd number have G =  +1. In the R sector G is taken to act as F on the vacuum 

|0)h. Therefore, we take

OO

G =  F ( - l ) ^  , F = • A  • (4.153)
r = l

We can now introduce the GSO conditions. These are projections on the space 

of physical states as defined by the constraints (4.149-4.151). Specifically, they are

G|phys) =  +|phys) , (NS)  , (4.154)

G|phys) =  ±|phys) , {R) , (4.155)

where we choose one sign for all physical states in the R sector. Note that these 

conditions project out the NS vacuum and either the 16 or the 16 '  from the physical 

spectrum^

Physical Spectrum

The GSO conditions make the projected physical spectrum tachyon-free and space­

time supersymmetric. We shall not prove this last statement in all generality but 

show it to be true at the massless level.
Which sign is chosen and hence which projection occurs in the R sector is of no consequence. 

The spectrum built from the 16 is isomorphic to that built from the 16'.
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Firstly, the mass-shell condition (4.149) leads to physical states having masses

We see that the vacuum |Â S';A:) =  |0;A:) <S> |0);vs with — l/2a '  is physical and a 

tachyon. However, it is projected out by the GSO conditions since it has G =  — 1. For 

any other value of k'  ̂ such a state is not physical. Furthermore, since a(0) =  0, the 

lowest mass in the R sector is zero. Therefore, the projected spectrum is tachyon-free.

Secondly, the vacuum \R',k) =  |0;A;) 0  |0);, with k^ null is massless. The GSO 

conditions remove half the states, leaving the 16, say. Now recall from our dis­

cussion of the bosonic string that massless particles in D space-time dimensions 

are classified by their representations under the little group SO{D — 2). Under 

5 0 (1 ,9 ) ^  <50(1,1) X 50(8), the 16 decomposes into 8  ̂ -h 8c, where 8  ̂ and 8c are 

the two spinor representations of 50 (8 ) of opposite chirality. The conditions (4.151) 

reduce to the Gq condition, which is just the Dirac equation. This removes one of the 

8 ’s, leaving the 8  ̂ say^^, with G =  +1. A Majorana condition can still be imposed 

to leave 8 real fermionic degrees of freedom^^. The only other massless states are 

those of the form \il;Y =  S',k) with k^ null. They are not projected out

by the GSO conditions since they have G = +\.  Furthermore, they transform as a 

vector (in the 8„ representation) of 50(8 ), giving 8 real bosonic degrees of freedom. 

Therefore, we see that the massless states fill the vector multiplet 8„ +  85 of D — 10, 

M  = \ space-time supersymmetry.

Note that the GSO condition (4.154) ensures that the eigenvalues of the 

number operator (4.147) are half-odd-integers for projected states in the NS sector. 

Combined with the facts that: (a) a ( |)  =  (b) is an integer in the R sector

and (c) a(0) =  0, this implies that the masses of the projected open string states are

-  a{u)) .
a

(4.156)

0 n
m =  — , n =  0,1, . . .  .

r\i'a ‘

(4.157)

^"This implies that if one were to choose the opposite sign for the GSO projection in the R sector,

the 8c of the 16' would remain instead. We shall use this fact below when we consider closed strings. 
^^Majorana and Weyl conditions can be imposed simultaneously on spinors of SO{p, q)  if and

only if p — 9 =  0 mod 8.
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Finally, it is important to note that as they have been presented the GSO con­

ditions seem very ad hoc. However, they are really derived conditions which are 

sufficient to ensure the modular invariance of the one-loop partition function. Mod­

ular transformations are “large” diffeomorphisms of the worldsheet, that is, trans­

formations which are not continuously connected to the identity. Since the action is 

diffeomorphism-invariant then for consistency so too should be all path integrals with 

or without operator insertions. Modular transformations generically mix up different 

fermionic sectors of the theory. For example, for closed strings one-loop corresponds 

to a worldsheet with the topology of a torus and there are four sectors for each side 

(left and right): {NS, G) and {R, G) where G =  ±1. The total partition function for 

each side is given by the sum over the partition functions for each sector. Requiring 

modular invariance of the sum restricts the number of allowable combinations. One 

such allowed combination results in (4.154) and (4.155). Other allowed combinations 

result in such undesirable features as tachyons or the absence of space-time fermions.

Closed Superstrings: Type II

For the closed string, similar GSO projections are imposed for the right-movers in­

dependently of the left-movers. In this case, one can choose the projection in the 

right-moving R sector to be opposite to or the same as that in the left-moving R 

sector. This leads to two distinct theories. Type IIA and Type IIB, respectively. 

Both theories are again tachyon-free. The masses of physical states are given by

=  -k'^ = -(iV<“> +  -  a{v)) = — (7V‘“> +  -  aiv)) , (4.158)
a' a!

The S0{8)  content of the massless states is

Type IIA: (8^-H 8^) 0  (8„-h
(4.159)

Type IIB: (8^ -(- 8 J  0  (8,, -h S j  .

The NS-NS sector for both theories is as for the bosonic string:

8j; 0  8i, =  1 -|- 28 -|- 35 =  $  -|- + Ĝ ,̂ , (4.160)

that is, a scalar (dilaton), an antisymmetric 2-form (Kalb-Ramond field), and a 

symmetric, tracefree second-rank tensor (graviton).
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In the R-R sector we have

TypellA : 8, 0  8  ̂=  [1] +  [3] =  8„ +  56^ ,
(4.161)

Type IIB; 8  ̂<S> 8  ̂ =  [0] +  [2] +  [4]_|_ =  1 +  28 +  35_|_ .

Here [n] denotes the n-times antisymmetrised representation of 50(8 ) and the sub­

script +  indicates self-duahty. Note that the representations [n] and [8 — n] are 

equivalent by Hodge duality^'*. Hence, HA contains a 1-form and a 3-form antisym­

metric tensor potential, whilst HB contains a scalar, a 2-form potential and a 4-form 

potential with self-dual field strength. Therefore, these states are space-time bosons, 

as are all states in the R-R sector.

In the R-NS and NS-R sectors are the products:

8„ ® 8c = 8̂  + 56c ,
8^ (g) 8 s  =  8c -I- 56g  .

These correspond to two spinors of opposite (same) chirality and two vector-spinors 

(gravitini) of opposite (same) chirality for IIA (IIB). Since there are two gravitini

there are also two supercharges. All states in these two sectors are space-time

fermions.

Open Superstrings: Type I

The string theories we have been discussing are oriented theories. However, the type 

IIB closed theory, with the same chiralities in both the left and right sector, possesses 

the worldsheet parity symmetry : cr̂  27T — xmder which the left-movers and 

right-movers are interchanged. We can gauge this symmetry by projecting out from 

the physical spectrum all states not invariant under i} [97]. In the NS-NS sector, the 

antisymmetric tensor is eliminated. Only the linear combination R-NS©NS-R of the 

two fermionic sectors survives the projection. As a result, only one gravitino (and 

hence one supercharge) remains. Finally, in the R-R sector the [2] is invariant since 

the 1 © 35_|_ is in the symmetric product of 8g 0  8g, the 28 in the antisymmetric 

product and there is an extra minus sign in the exchange of the two fermions. The
14 This duality will be shown in section 4.1.6.
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projection results in a theory called type I  closed unoriented theory which, however, 

tu rns out to be inconsistent unless open strings are added in a very precise fashion.

In order to  add these open strings it is necessary to  generalise the oriented open 

string theory discussed above. The endpoints of an open string are distinguished 

points at which non-dynamical Chan-Paton degrees of freedom can reside. These 

degrees of freedom manifest themselves as group theory factors tacked onto the string 

states:

N

i,j=l

where A“ are a basis of hermitian N  x N  matrices for the group and i and j  label the 

two endpoints. For the open string, worldsheet parity ir — a ‘̂ interchanges

the two ends of the string. In the absence of Chan-Paton factors, the vector 

would not survive the projection. However, when Chan-Paton factors are present it 

can be shown th a t U can have an action on the matrices A more complicated than  

the naive A —> A^. This action leads to the gauge group SO{ N)  or USp{N)  if the 

vector is not to be eliminated by the projection. The superpartner of the vector is 

the gaugino and transforms in the 8g representation of 5 0 (8 ) . The two together form 

the massless states of the unoriented open string.

The above unoriented open theory can now be added to the type I closed un­

oriented theory. It can be shown th a t the inconsistencies of the closed sector are 

removed only if the gauge group is 5 0 (32 ). The resulting theory is called type I  open 

plus closed string theory.

4.1.4 Ghosts and Superghosts

Our presentation of string theory so far has been rather ad hoc, especially our dis­

cussion of the gauge fixing procedure and the determ ination of the normal ordering 

constants d and a. A more thorough treatm ent of the gauge fixing leads, in the usual 

fashion^^, to an additional sector, the ghost sector, in the worldsheet theory. This 

*^Some details are given in section 4.1.6.

79



sector is described in superconformal gauge by the action

=  —  y* (fz{bdc + bdc +  pB j  + , (4.164)

and should be added to the matter action Sm to form the full gauge-fixed action. In 

the above, b and c are the Faddeev-Popov ghosts (anticommuting worldsheet scalars) 

and are primary fields of conformal weights (2,0) and (—1,0), respectively. The

superghosts P and 7 are their superpartners (commuting worldsheet spinors) and

are primary fields of weights ( |,0 )  and (—1,0), respectively. Similar remarks apply 

to the tilded fields, which turn out to be antiholomorphic as a consequence of the 

equations of motion:

db = dc = d ^  = d'y =  0 ,  (4.165)

db = dc = dp = =  0 . (4.166)

In the discussion below we concentrate on the holomorphic sector of the closed string.

O P E s, M ode E xpansions, and  S uperV iraso ro  A lgebra

The partition function technique gives the OPEs

b{z')c{z) = , c{z')b{z) =  , (4.167)
z — z z — z

P i z 'h i z )  =  — , ^iz')P{z) = . (4.168)
z' — z z' — z

The OPEs bb, etc. are non-singular. The mode expansions

h{z) = ’
m eZ

(4.169)

c{z) (4.170)

r eZ + i/

(4.171)

'y(z) (4.172)

where is 0 in the Ramond sector and 1/2 in the Neveu-Schwarz sector, and subject 

to the hermiticity conditions

bin = b-m  , 4^ = C^m , PI = ~ (i-r  , = 7-r , (4.173)
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yield the (anti-)comm utation relations

{t>rm Cji} — ^m+n,0 ) — <̂ r+s,0 • (4.174)

when inserted into the OPEs.

Additionally, the stress tensor and supercurrent

T^{z) = o {db)c -  2d{bc) + (dp)^  -  |a ( /? 7 ) ° , (4.175)

n( z )  = s - ^ ( a / 3) c + ^ a ( / 3c ) - 2f r r : , (4.176)

form a superconformal algebra of the form (4.121-4.123) with central charge c® =  —15 

and have mode expansions on the plane

=  E (  Tfl ~\~ vCj . b f Y i — f i C f i  . 4“ ^   ̂ 2 r )  . (5'ffi—r'^r • (^)^m,07 (4-177)

G? = - E

2neZ rsZ+i/

~ (2 r  +  “h 2 , b n ^ r - (4.178)

where rf (̂O) =  — |  and d^{^) =  — The normal ordering is as before except tha t 

bo and Po are included among the positive modes and Cq and 7 0  among the negative 

modes. These generators should be added to the m atter generators given in (4.132) 

and (4.133) to give the full generators of the theory. Note th a t 0{z) and 7 (z) have 

the same moding as '0^(^). The full generators then form a superconformal algebra 

with central charge Ctot =  \ D  — 15 and normal ordering constant dtoti^) =  ,

dtot ( 2 ) 2 ■

One can now see why D =  10 for the superstring. Demanding th a t the full 

quantum  theory is not conformally anomalous requires Ctot = 0 or, equivalently, 

D  =  10. (A similar argument gives D = 2Q for the bosonic string since the b, c system 

contributes —26 to c® and —1 to dP{v).) In this case, the full Virasoro generators on 

the plane are also the generators on the cylinder (strip), as a consequence of (4.100).

Fock Space

The canonical Fock space of the ghost sector is built up from the vacuum in the usual 

way. For the holomorphic sector, the vacuum may be w ritten as |0®) ,̂s =  | | )  0  | — 1)
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in the NS sector and as |0®)/e =  | i)  ® | > in the R sector, where

V l i )  =  0 , m > 0  , CrnU) =  0 , m > 1 , (4.179)

P r \ - l )  = 0  , r  > ^ , 7 r |  -  1) =  0  , (4.180)

/?r| -  ^) =  0 , r  >  0 , 7 r |  -  ^) =  0 , r  >  1 . (4.181)

Consequently, the vacua satisfy

, L ^ | 0 ^ ) «  =  d ® ( 0 ) 5 „ , o | 0 ^ ) « , (4.182)

G f | 0 " ) ; v 5  =  0  , G ^ | 0 ^ ) «  =  0 (4.183)

for m, r  >  0.

We can now better understand the physical state conditions (4.149-4.151) as

^m(lphys) 0  1 ghost))

o
'

A
l

0II (4.184)

G^(lphys) <g) Ighost)) =  0  , (r >  0 )  , (4.185)

where and G{. are given by the sum of (4.132) and (4.177) and of (4.133) and 

(4.178), respectively. Only the m atter part, |phys), of any physical state is non­

trivial — the ghosts are in their ground states — and so a{u) = The GSO

projections can be similarly reinterpreted.

The discussion also appHes to the antiholomorphic sector of the closed string. For 

the open superstring the doubling trick

b{z):=b{z)  ( l m z < 0 ) ,  (4.186)

and similarly for c, P, 7 leads to the same results.

4.1.5 Spin Fields, Bosonisation, g-vacua and Inner Products

We have seen that the Ramond vacuum |0);{ transforms as a space-time spinor under 

50 (1 , 9). It is appealing to find a primary field S{z)  of weight {h, 0) that creates the 

Ramond vacuum from the Neveu-Schwarz vacuum 10) ,̂5, that is.



where the hermitian conjugate field is defined as the field S  transformed under

the conformal transformation ^ = I / 2 , up to a phase factor. The value of h is

determined below. Clearly, S{z) should be a 32-component spinor constructed from 

the NS variables of the theory. Such an operator is called a spin field.

Construction of the Spin Field: Bosonisation

The construction involves the technique of bosonisation. Firstly, consider the OPE 

associated with the propagator (4.65)

for the holomorphic part of the embedding fields X^{z,z).  Let us introduce five 

holomorphic scalar fields H°'{z) , a — 0, . . .  ,A that have mode expansions as in (4.58). 

In addition, their zero modes are subject to the modified commutation relations 

(4.23). The fields i f “(^) are taken to have OPEs similar to the spacelike components 

of (4.188), that is,

(4.188)

(4.189)

Note that the indices a, b are “internal” indices as distinct from the Lorentz indices

Consider now exponentials of the form e^v where the denotes contrac­

tion of indices with the internal metric 5ab- Using the relation

(4.190)

we find

valid for \z'\ > \z\, and the associated OPE

+ (z' -  2)̂ i*=2+i l i  ki- S , (4.192)
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obtained from a Taylor expansion inside the normal ordering. Note th a t ° °

is a prim ary field of conformal weight (y ,  0).

Let us focus on one specific internal direction, say a =  1, and consider {ki)a = ±5^ 

and ^2  =  ± ^ 1 - The conformal weight of the normal-ordered exponential is then 

( | ,0 ) .  For k\ — k2 it is clear from the above relations th a t o ) ° and

o ° anticommute and have non-singular OPEs, while for ki = —k^ they

also anticommute but have the OPE

. oo ^ - i ^ k x H ^ z )  o ^  _ (4.193)
[z' -  z)

Now we form the complex combinations

“  # ^ (^ ))  . (4.194)

of the worldsheet spinors. The index on ^  is again an internal index while those on tp

are Lorentz indices. Note tha t the central charge for this system is 2 x  ̂ =  1. Using

(4.116) we find the OPE

^ ^ ( / ) ^ i ( 2 )  =  , (4.195)

w ith the and 'i''!' OPEs non-singular. Comparing with (4.193), we are led to the

tentative identifications^®

^ i \ z )  , ^ \ z )  ^  S S , (4.196)

S^^^(2 )'I^Vz) S ^  ii - d H \ z )  , (4.197)
V a'

where the “= ” is interpreted as equality within correlators. In this way we have 

bosonised the two fermions to a single scalar

Taking 0,1 as light-cone directions in the target space, this procedure is readily 

extended to the other transverse directions:

'I'“(z) =  ^  ^  S C+ , (4.198)
v 2

^ “(^) =  ^  o S C "  , (4.199)
V2

^®Note that the conformal weights of the fermions and normal-ordered exponentials match. Both 

systems also have the same central charge.
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for a = 1 , . . .  ,4. The reason for the additional cocycle factors, C ^, is explained in 

the next paragraph. For the light-cone, we define

+ ^  °o I c+  , (4.200)
V2

+  =  o S Cq-  . (4.201)
V2

For consistency, we need to check tha t the right hand sides of the above identifi­

cations have the same anticommutation relations as the left hand sides. It is for this 

reason th a t the cocycle factors are included. W ithout them  the identifications are 

inconsistent because we find, upon using (4.191), th a t ° '> ° commutes with

? for a  7  ̂ b, whereas anticommutes with 'I'*’. As is easily verified 

and shown in [98,99], the proper cocycle factors are

Cq = l  , =  exp [ ± 7Ti , a
V b<a /

=  1 , . . . , 4 ,  (4.202)

where is the zero-mode momentum of H°‘. Cocycle factors are usually not explicitly 

w ritten (but are understood) in bosonisation formulae.

The spin field is now defined as

S^{z) = Sexp I , (4.203)

where a  =  (sq, . . . ,  S4) is an index with each Sq being ± | ,  giving 2  ̂ =  32 components. 

T hat such a field does represent a spinor can be deduced from the fact a  lies in one 

of the two spinorial conjugacy classes of the weight lattice of the =  so(lO) Lie 

algebra. (One normally Wick rotates the direction so th a t the Lorentz group is 

5 0 (1 0 ) and therefore ^^{z)  —> —itjj^{z).) The 16 corresponds to those a  which have 

an even number of “ - I - ”  signs (the S conjugacy class) and the 16' to those a  which 

have an odd number of “ - I - ”  signs (the C class).

Som e Correlators and O PEs of the Spin Field

Note tha t Sa{z)  is a  primary field of conformal weight ( | ,0 ) .  This can also be 

seen from the 1 — 1 correspondence between primary fields (p{z) of weight (/i, 0 ) and 

highest weight states \h) = <;!!)(0)|0)̂ ,s with eigenvalue L q = h and the fact tha t
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■f'olO)/? =  ^ |0 )h =  ||0 ),j in 10 dimensions. In addition, the OPE of a primary field 

with its conjugate includes the identity (as for any primary field in a unitary theory). 

Taking into account (4.83), we must have

{ S “ ( / ) S M z ) )  =  5 , ) 5 / 4  . =  ( 7 3 ^  +  ■ • ■ ' (4 -204 )

where spinor indices are raised and lowered with the charge conjugation matrix^^. 

Note that taking ^  oo, ^ ^  0 implies that the Ramond vacuum should be nor­

malised as

„(0 ;al0 -J)^  =  C,^ . (4.205)

We also need to consider the correlator

^1. ^) • (4-206)

Equation (4.84) determines F  to be of the form

( F n ^ i z ' ^ z u z )  =  (/X)“s ( /  -  z , ) - ' l \ z ,  -  z ) - ' l ^ (z '  -  zY^I* . (4.207)

The coefficient is determined by again taking > cx), 2: —> 0. Using (4.187), we 

obtain

lim z'^i'{F>'rg(^,z,,z) = ,{o|tA'‘(2i)io), = ( « ) v r ‘'" = 45(r‘‘)“s^r‘̂ '- (4-208)
2 ' — 00, v / 2
2 —*0

Therefore, ( /^ )“^ =  ;^ ( r ^ ) “^. By taking the limit of (4.206) as Zi ^  z  and compar­

ing with (4.204) we deduce the OPE

r(z')Sf(z) =  (z' -  z)-'l^^^(V“)\S^{z) +  - - - . (4 .209)

D oubling o f the Spin Field

In order to extend the above analysis to the open string one should double the spin 

field. After doubling the fermionic fields ip^{z) according to (4.141) we find the scalars 

H°' are doubled thus: H^{z) = H°‘{z) -I- \/2a''Rtf', (n“ G Z) for Im^ <  0. Therefore,

we find that the spin field is doubled as follows:

Sa{z) := ( - 1 ) ^ “=°®®’̂ 5a(z) , Im 2  < 0 . (4.210)

Spinor conventions are listed in appendix A.
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The phase on the right side of this equation is just ±1. An alternative but equivalent 

way to see this is to suppose that the doubling is via

Sa(z) ;= {M)^^Sp{z) , (Im z < 0) , (4.211)

for some matrix M.  Making this replacement and the substitution =  in

(4.209) and comparing with corresponding antiholomorphic OPE yields the relation

(M r^) =  D>^{rM)  , (4.212)

where we have used relation (4.76). Consistency with (4.204) and its antiholomorphic 

counterpart imposes the fiu-ther restriction

= Ĉ /3 , (4.213)

that is, = C~^. For condition (4.212) and Schur’s Lemma hx

M  to be bl, where /  is the identity matrix. Condition (4.213) then fixes 6 =  ±1 but 

it is conventional to choose 6 = 1 .  When we consider D-branes in section 4.2 we will 

see that the doubling matrix M  assumes a more complicated form.

Bosonisation of Ghosts

The ghost fields can be bosonised by using scalar fields in the presence of a back­

ground charge vector, The background charge modifies the stress tensor T{z)  

(cf. equation (4.101)) of D scalar fields by a term Consequently, as is

easily verified by taking the derivative of (4.65), the central charge of the system is 

also modified to the value D +  3Q^Q^.  Fixing the size of appropriately allows 

one to obtain a central charge of —26 or +11 which can be matched with the b, c or 

/?, 7 theory, respectively.

Bosonisation of the b, c system is given in terms of a single “timelike” scalar field

by

b{z) ^  I I , c{z) ^  °o o , (4.214)

H{z')H{z) = -o;'ln(^ ' — z) +  ■ 
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The correct OPEs (4.167) are easily verified. In addition, it can be shown th a t 

o  o is a prim ary field of conformal weight {^qiq +  Q ),0). Hence, Q —  —3

if the conformal dimensions of the fields on both  sides of the identification are to 

match. Furthermore, the central charge of the scalar system is c =  1 — 3Q^ = —26.

On the other hand, bosonisation of the /3, 7  system is via a single “spacelike” 

scalar field;

(j{z) ^  I I , 7 (2 ) ^  I , (4.216)

(f){z')(f){z) = - - a ' l n { z ' — z) + ■ ■ ■ . (4.217)

In these formulae r) and ^ are holomorphic fermions of weights (1,0) and (0,0), 

respectively. They form a system of b, c type with the OPEs t]{z ')^{z ) — ^(z')r]{z) = 

{z' — z)~^ +  • • •. Their introduction is necessary in order to accommodate Bose 

statistics. Again, the OPEs (4.168) are easily verified. Analogously to the b, c case, it 

can be shown th a t o ° is a prim ary field of conformal weight { — ̂ q(q + Q), 0).

The central charge of the scalar system is c =  1 +  3Q^ and th a t of the rj, ^ system 

is —2. This then requires Q = 2 for the identifications to be consistent. The 

system can be bosonised in a similar fashion to the b, c system with background 

charge Q = —1.

The above bosonisation was for the holomorphic sector of the closed string but, 

as usual, it also applies for the open string after doubling of the fields / / ,  0 , 77, ^ as in 

(4.186).

Finally, it is im portant to note th a t the background charge can be related to the 

Riemann-Roch theorem. For the /3,7  system one finds th a t there are no (3 and Q — 2 

7  zero modes on the sphere. On the other hand, for the b, c system one finds tha t 

there are no b and —Q =  3 c zero modes, as is well known. Likewise, there are no 

Tj zero modes and —Q =  1 zero mode. Consequently, the path  integral over 4>, 77, ^ 

on the sphere (or extended complex plane) vanishes due to the Grassmann integral 

over the zero mode ^0 unless there is an insertion of ^(^) at some point (the specific 

point does not m atter). However, (4.216) involves rather than  the zero mode ^0 

never appears in the (3,7  algebra. Therefore, it is possible to restrict to  the “small”
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algebra with om itted and not integrated over in the path  integral. An insertion is 

then not required. Similar remarks apply to the b, c system when integrating over cq 

(although there is no reduced algebra in this case). Three insertions of c{z) are then 

required in the path  integral on the sphere. We return to this point in section 4.1.6.

G h o s t 9 -v acu a  a n d  In n e r  P r o d u c ts

In order to  calculate scattering amphtudes and to give correlation functions computed 

from the path  integral an interpretation as expectation values in a Hilbert space, we 

have to  define an inner product on th a t space. The inner product in terms of bras 

and kets in the m atter sector is the usual one (apart from the normalisation of the 

Ramond vacuum as given in (4.205)) but in the ghost sector the story is a bit more 

subtle. For example, according to (4.179) the Siegel vacuum | [) is annihilated by bo. 

But then so too is the adjoint (J. | since bl = be,. This implies tha t

( i U ) =  ( i | { ^ 0 , col l i )  =  0 ,  (4.218)

which gives vanishing amplitudes if the inner product is naively defined in this way. 

The situation is remedied by the introduction of the ghost g-vacua.

In order to treat the ghosts and superghosts at the same time, we consider the 

first order system

S  = ^  [  dhbdc  , (4.219)
2n J

where b[z) and c{z) have conformal weights (A, 0) and (1 — A, 0), respectively. If A =  2 

then this action corresponds to the holomorphic part of the 6, c system, whereas if 

A =  3/2 then it corresponds to the holomorphic part of the (3,^ system.

The action (4.219) is invariant under the symmetry 6b = —irjb.Sc =  ir]C which 

defines the current

j{z)  = -  °o b{z)c{z) S =  e o c{z)b{z) ° =  , (4.220)

where e is +1 for A =  2 and —1 for A =  3/2. The modes are given by

jm ~  ^   ̂ • ^nCm—n ■ > (4.221)
n
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where the normal ordering constant a is +1 for the b, c system and —1 (—1/ 2) in the 

NS (R) sector of the /?, 7 system. In addition, the stress tensor can be written as

T^{z) =  S {db)c -  \d{bc) I . (4.222)

This is consistent with (4.175). Therefore, we find the following OPEs:

+ -r y-— + -T ^d j{ z )  [z' — z y  [z' — z y  z' — z
(4.223)

, (4-224)

j (z ' )b(z)  =  - y ^ b { z )  , (4 .225)
z — z

j{z')c{z) = - y ^ c ( z )  , (4.226)
z' — z

where Q = e{l — 2A) has the same value as the background charge of the equivalent 

bosonised theory. The Q-dependent term in (4.223) means that j{z)  is not a true 

conformal field of weight (1,0) as defined by (4.90). (Furthermore, the OPE

gives a central charge of c =  e(l — 3Q^), that is, —26 for A = 2 and 11 for A =  3/2.) 

These OPEs translate into the commutation relations

[-̂ mj Jrj] — ^Jm+n “1“ — T n i r f l  +  1)(5,tj-)-jj_o i (4.227)

[jmjjn] — ^ ' ^ ^ m + n , 0  > (4.228)

[ j m , b n ]  =  - b m + n  , (4.229)

[jmi Cn] =  C jn + n  i (4.230)

The zero mode jo is called the ghost number operator and counts —1 for b and +1 for 

c.

Using the hermiticity properties (4.173), we find that =  —j-m  for all m ^  0. 

The case m =  0 is delicate because of normal ordering ambiguities. One finds

=  - [L i, j_i] =  - J o  -  Q . (4.231)

We now introduce the g-vacua defined by the annihilation relations

bm\q) = 0, m > e q - \ ,  (4.232)

Cmk) =  0, m >  —eq + \  . (4.233)
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where q is an integer for the the b, c system and the NS sector of the /3, 7  system and 

in Z  +  I for the Ramond sector. Using the expansions (4.177) and (4.221), it is easy 

to show^® th a t |g) is an eigenstate of both jo and L q

jo\Q)=Q\Q) , ^o k ) =  ^eg(g +  Q)|g) , (4.234)

and is annihilated by jm and Lm for m >  0. It is easy to check th a t the b, c Siegel 

vacuum | J.) defined in (4.179) corresponds to g =  1, while for the /3, 7  system the 

NS and R vacua | — 1 ) and | — |) ,  defined in (4.180) and (4.181), correspond to 

q = ~1  and q = respectively (which evidently explains the notation). The 

vacuum \q =  0) (which v/e shall denote simply by |0)) is the unique P S L {2 ,R ) -  

invariant vacuum because the relations (4.232,4.233) imply th a t it is annihilated by 

the P 5 L (2 ,E )  generators Lo,L±i.  Note tha t for the case A =  2, it is possible to 

go from one vacuum to another by the application of a finite number of creation or 

annihilation operators. For instance,

l i )  =  ci|0) =  c ( 0 ) | 0 ) « | 0 )  =  6 _ i | i )  , (4.235)

IT) =  \q = 2 ) =  col i)  . (4.236)

However, this is not possible with the Bose statistics of the fi, 7  system.

Now, using (4.231), we find tha t if Op is an operator with ghost charge p, tha t is, 

bo, Op] =pO p then p{q^\Op\q) = {q'\\jo,Op]\q) =  ~{q' + q + Q){q'\Op\q). This implies 

th a t {q'\Op\q) is zero unless q' + p + q = —Q. In particular, taking Op with p =  0 to 

be the identity operator we find th a t the q-vacua are normalised as follows

Wk)  = . (4^237)

which explains the result (4.218). (Similar remarks apply to  the rj,^ system if one 

includes the zero mode ^o- However, if one restricts to the reduced algebra and does 

not include ^0  it is not necessary to neutralise the background charge Q = —\.  In th a t

^*One must remember to split the normal ordering constant d^{i^) defined in (4.177) into its

different components: —1 from the b ,c  system and 1/2  (3 /8) from the NS (R) sector of the /?, 7 

system.

91



case, one can take (0|0) =  1.) Equation (4.237) implies th a t the correlator receives a 

finite correction from the vacuum charge:

{c{z')b{z))g = { - q  -  Q\c{z')b{z)\q) = . (4.238)

This is consistent with the OPEs (4.167) and (4.168).

The g-vacua for non-zero q are identical to the states |<7) =  t o |0), where

x{z)  is either the scalar H{z)  or (j){z) as appropriate. This can be seen by bosonising 

the current:

j{ z )  = , (4.239)

and calculating the O PE/com m utation relation

j ( z ' )  I S o I
z' — z

=> bo,° o] =  g S S . (4.240)

Alternatively, consider, for example, the case A =  3/2. Then

hm\q) =  ^ J c ^ d z z ^ ^ ^ - ^ h { z ) \ q )

=  ^  dzz^+^-^ I 11 S |0) (4.241)

=  ^  dzz^+^+‘>-  ̂ I o 10)  ,

where we have used (4.190) and (4.217) in going from the second to the third line. 

Equation (4.232) now follows from regularity of the normal ordered product at the 

origin. We also see th a t when acting with an operator in the NS sector (m +  A =  

integer) on a state  with g G Z +  |  we get a branch cut. Hence, such states belong 

to the R sector and the superghost spin field is therefore

Eg(2) ^  o , q e Z  + ^  . (4.242)

Note th a t E _ i /2 has conformal weight ( |,0 ) .

4.1.6 Vertex Operators and Scattering Am plitudes

The notion of a vertex operator is one of the major ingredients in string theory 

and is needed in order to calculate the on-shell scattering amplitudes tha t describe
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physical processes. In conventional quantum field theory, there is on the one hand 

the space of states of the theory and on the other hand the set of local operators. In 

the text surrounding equation (4.204) we have already alluded to the state-operator 

correspondence which states that in a conformal field theory the set of states and the 

set of local operators are isomorphic. Let us consider this in more detail following [53].

Scattering amplitudes between in and out single-particle states are due to world- 

sheets with incoming and outgoing legs that are semi-infinite cylinders for the closed 

string or strips for the open string (see figure 4.1). Consider, for example, the sim-

o
/ / / /  /

(a)

Figure 4.1: Typical amplitudes in string theory. Conformal transfor­

mations of the worldsheet map asymptotic states to finite points: (a) 

an open string tree amplitude in which the worldsheet is mapped onto 

the disc or upper half-plane with external states appearing as points 

on the boundary denoted by ffi, (b) a one-loop closed string amplitude 

is mapped to the punctured torus.

plest case of a worldsheet with only one incoming and one outgoing closed string. It
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is described by the cyhnder

w = +i(r‘̂ , ~  (7̂  +  27t , —cx) < cr̂  < oo , (4.243)

and can be mapped onto the plane by the conformal transformation z = . To define

the path integral in the w coordinate one must specify the boundary conditions on 

the fields as Re-u; —>■ ±cx). In the ^-coordinate this is equivalent to specifying the 

behaviour of the fields at the origin and at infinity. In effect, this defines local 

operators at the origin and at infinity associated with the incoming and outgoing 

states. Such operators are vertex operators. Note that the transformation to the 

plane is exactly Penrose’s idea of conformal infinity. The metric on a cylinder of unit 

radius is ds^ = = ^ds'^, where dP = dr'  ̂+  r^d{a^Y is the metric on

the plane with r  = \z\ = e'^\ The conformal rescaling ds^ ds^ = 

then brings in the point = —oo to the finite point r =  0. One can also bring 

in the point z =  +00 to hnite distance by modifying the conformal factor . To 

do this one maps to the sphere rather than the plane by defining = 21n(tan|(^), 

0 < 6̂ < 7T. The points — —00 and = +00 now map to the north and south 

poles, respectively. The conformal factor is now = sin^ 0. Going in the other 

direction, the path integral on the sphere with vertex operator insertions A  and B 

at the north and south pole maps to the path integral on the cylinder with specified 

initial and final state |^ ) and \B). For more comphcated diagrams with more external 

legs (such as those in figure 4.1) the important point is that each leg L can be mapped 

to a finite point because it is only the asymptotic behaviour of far out on L that 

is relevant and this behaviour can be chosen independently for each L.

In conclusion, to determine a scattering amplitude between specified incoming 

and outgoing states, one calculates the path integral on a compact worldsheet (that 

is, a Riemann surface) of appropriate topology (eg., a torus for one-loop closed strings 

as in figure 4.1(b)) with appropriate local vertex operator insertions representing the 

states, that is, one calculates a correlator.
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Form of the Correlator

We are interested in calculating tree amplitudes for closed or open strings. In the 

discussion below we concentrate first on bosonic closed strings for which the world- 

sheet has the topology of a sphere. We then move on to bosonic open strings and 

finally superstrings.

Bosonic Closed Strings

For the correlator of a product of vertex operators, the naive expression (4.61) is 

more precisely

In this formula, M. is the space of all metrics on the sphere and the factor 

Vol(Diff) Vol(Weyl) takes care of the infinite overcounting due to the gauge sym­

metry: if {X^ ,g)  and {X'^,g' )  are related by a Diff x Weyl transform ation they 

represent the same physical configiiration. In writing (4.244), we have om itted a 

topological weight factor where x  =  2 — 2^ — 6 — c is  the Euler number of the 

closed or open string worldsheet depending on its genus (p), its number of boundaries 

{h) and number of cross-caps (c). This weight factor is relevant when summing over 

different topologies (for the sphere g = h = c = Q) but will not be relevant to us^^. 

The idea is now to use the Diff x Weyl symmetry to transform to conformal gauge, 

as outlined in the text preceding equation (4.8). In effect, this maps the sphere to 

the (extended) complex plane. As a result of this transformation, it can be shown 

th a t the path  integral (4.244) reduces to

D X D g ■5x[A:,g] (4.244)
Vol(Diff) Vol(Weyl)

<n I".)= /
i ■’

DXD'{cc)D[bb)
Vol(CKG)

(4.245)

fact, we see that higher topologies, which have larger |x |, are analogous to a higher number 

of loops in a field theory loop expansion. Increasing g by one adds a handle to the original Riemann 

surface and increases the amplitude by a factor Since adding a handle corresponds to emitting 

and reabsorbing a closed string, we see that the closed string coupling constant gs is proportional to 

e^. Similarly, increasing b by one increases the amplitude by a factor and corresponds to emitting 

and reabsorbing an open string. The open string coupling constant is therefore given by go ~
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where S x  is given by (4.57), Sg is the ghost part of the action (4.164) and the prime 

in the measure indicates that ghost zero modes are omitted.

We briefly reason why this reduction should hold^°. It comes about because 

under combined diffeomorphisms and Weyl rescalings metric deformations consist of 

two pieces: the Lie derivative part from the diffeomorphisms and the conformal part 

from the Weyl rescahngs. These two parts can be split orthogonally (with respect 

to a certain inner product) into the symmetric traceless part and the trace part. 

Since on the sphere there are no metric deformations that cannot be absorbed by 

diffeomorphisms and Weyl rescalings (that is, there are no moduli), one trades in 

the integration over D X  and Dg for one over DX^ the conformal factor and globally 

defined vector fields V  that are taken into symmetric traceless tensors under the 

action of the operator P  defined by

[ p v u  =  -  (v ,y ^ )p ,^  . (4.246)

The Jacobian of this trade-in consists of two factors. The first factor is the Faddeev- 

Popov determinant which is “exponentiated” to give the path integral over the ghosts 

in (4.245). The second factor is due to the Weyl anomaly. It stems from the fact 

that the measure D X D g  is not invariant under Weyl rescalings but involves the 

conformal field p. However, this second factor depends on the total central charge 

( ^  -\- =  D — 26 and is unity in the critical dimension, that is, when D =  26.

Therefore, we ignore this factor. The integrand is then independent of the conformal 

field and hence this field may be integrated over to cancel the Vol(Weyl) factor. 

Next, we note that P  has zero modes on the sphere. These zero modes constitiite the 

conformal Killing group (CKG) and are just the Mobius transformations (3.16) that 

we mentioned earlier. The group is thus PSL{2,  C) and is generated by the three 

vectors d, zd, z^d with complex coefficients. One can see this by solving {PV) — 0, 

noting that the resulting vectors must be globally defined and that such vectors 

generate the infinitesimal form of the Mobius transformations. The existence of a

^°The technical analysis behind this reasoning is detailed and subtle. The reader is probably best 

referred to the literature for further details. See, for example, [93] or the original papers of Polyakov 

on the transformation properties of the path integral measure [100].
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non-trivial CKG implies that diffeomorphisms orthogonally decompose as Dili' =  

Diff"̂  0  CKG. Hence, Vol(Diff) =  Vol(Diff'^) Vol(CKG). The path integral over the 

vectors V  is therefore over the non-zero modes Diff"*". However, the integrand does 

not depend on V; the integral may be performed to yield a factor Vol(Diff"'') and so 

we obtain (4.245).

Equation (4.245) is not yet in its final form. In the reduction we implicitly assumed 

that the vertex operators were (Diff x Weyl)-invariant, in particular they should be 

conformally invariant on the complex plane. Diff-invariance is obtained by integrating 

the vertex operators over the worldsheet, that is, we have

Vi =  2 y  , (4.247)

where V{ is built from the but is independent of the ghosts. In conformal gauge 

this becomes

JdhiVi{zi,Zi)  , (4.248)

and since d?z transforms as a ( - 1 , - 1 )  tensor under conformal transformations we 

find that Vj should be a primary field of conformal weight (1,1). is thus interpreted 

as the insertion of the vertex operator Vi at the point Zi summed over all possible 

insertion points. Assuming the correlator contains at least three vertex operators, we 

can trade in the integrations over Zj, i =  1, 2, 3 for an integration over the conformal 

Killing group. This is possible because given any two triplets of distinct points 

zi,z^ G Coo there is a unique element C € PSL{2,C)  such C(-2̂z°) =  order to

calculate the Jacobian of the transformation, we write the (infinitesimal) conformal 

Killing vectors as

Vq =  V q 8 ,  Vq =  Q;o +  CniZ +  0:2Z^ .

Then Zi = ((zf )  = e^°z° ==> dzi =

(4.249)

2 = 1

det 2̂2 Z3
. 2  ..2 - 2\  1̂ 2̂ 3̂ /

US
a~0

CXn

= \Zi2Z23ZnfYld‘̂ aa ,

(4.250)

(4.251)
a=0
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where Zij = Z i~  Zj. Integration over then cancels the Vol(CKG) factor in (4.245). 

The points Zi, i = 1, 2, 3 are now fixed but arbitrary. We also note th a t in a Hilbert

space interpretation the correlator up to overall normalisation is just the vacuum

expectation value:

( n V i )  =  ( 0 | f l ( n - H ; ) | 0 )  , (4.252)
i i

where |0) is the bosonic PSL{2,  C)-invariant vacuum (see below) and R  denotes radial 

ordering. We can use this correspondence to write the factor \zi2 Z2 3 Zis\‘̂ equivalently 

as a  ghost insertion in the correlator/path  integral;

{c{zi)c{zi)c{z2)c{z2)c{zs)c{z3)) = {()\c{Zi)c{Zi)c{z2)c{z2)c{zz)c{z^)\Ql) ,

=  I(0 |c(^i)c(z2)c(2:3)|0) |2 ,

=  |'2l2'2̂ 23'2̂ 13p ) (4.253)

where we have assumed \z\\ > |^2 | >  and used the explicit mode expansions

(4.170). Therefore, we arrive at our final (standard) form for the correlator of n >  3 

closed string vertex operators:

n «

(ccVi(^i, Z i ) c c V 2 { z 2 ,  Z 2 )C C V 3 { Z 3 ,  Z3)  /  d ‘̂ Z i V i ( Z i ,  Z i ) )

i= 4

=  j  DXD{cc)D{bb) ccVi{zi,Zi)ccV2 (z2 ,h )c c V 3 {z3 ,Z3 )

n p

^ I I  ■ (4.254)
1=4

The im portant point is th a t (4.254) is now just a correlator in a free field theory 

and can be evaluated in the standard fashion a la (4.62) and (4.63) or by using the 

correspondence (4.252). The correlator vanishes if n  <  3 because we cannot com­

pletely cancel the infinite factor Vol(CKG) from (4.245). The physical interpretations 

of these vanishing amplitudes are th a t the tree-level vacuum energy is zero (n =  0), 

there are no tree-level tadpoles (n =  1) and there are no mass corrections at tree-level 

{n =  2).

Bosonic Open Strings

For open bosonic strings the situation is similar. The worldsheet has the topology of
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a (unit) disc at tree level and can be mapped to the upper half-plane (figure 4.1(a))

via the map z = i{\ + v ) / { \  — v), v = Diffeomorphism invariance is limited to 

changes th a t take the boundary of the worldsheet into itself. For the upper half-plane 

the boundary is z  = z  and so the conformal Killing group is P S L {2 ,R ) ,  th a t is, the 

group generated by the vectors (4.249) with «„ =  There are no moduli. Vertex 

operators are inserted on the boundary so are of the form

where 2:j G K and Vi is a prim ary field of conformal weight (1,0) th a t is independent of 

the ghosts. As for the closed string, three vertex operators may be fixed at arbitrary 

points with corresponding c-ghost insertions. The rest are integrated over. PSL{2,  M) 

does not, however, change the cyclic ordering of the operators on the boundary so 

in calculating amplitudes one suras over all cyclic orderings of the vertex operators. 

If Chan-Paton matrices are involved we assign to each vertex operator one of the 

matrices. However, since Chan-Paton factors are non-dynamical, the right-hand end 

of string 1 must be in the same state  as the left-hand end of string 2, etc. The result 

is a trace over the corresponding cyclic ordering of the matrices.

We should note th a t the discussion in this section is of course consistent with our 

remarks in section 4.1.5 concerning the relationship of the background charge to the 

Riemann-Roch theorem and with our discussion around (4.237). This is because the 

Riemann-Roch theorem is also related to the degeneracy of the ghost zero modes; 

the number of (complex) moduli equals the number of b zero modes and the number 

of (complex) conformal Killing vectors equals the number of c zero modes on any 

Riemann surface. (Note th a t for open strings {c{zi)c{z2 )c{z3 )) is non-zero because 

of the doubling involved. This means th a t it is the total ghost number over both 

holomorphic and antiholomorphic sectors tha t should equal the background charge 

in order to get a non-vanishing amplitude. This contrasts with the closed string case 

where the ghost number in each sector should separately add up to —Q.) 

Superstrings

The ghosts are treated in the same way as in the bosonic string above but we now 

also have to contend with the superghosts.

(4.255)
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For dosed strings the Riemann-Roch theorem tells us th a t there are no super­

moduli (no P zero modes) and two conformal Killing spinors (two 7  zero modes) on 

the sphere. It is usual to  work with the bosonised versions of the superghosts, th a t 

is, with the fields We will not consider the path  integral here (see [101], for

example, for further details) but simply quote the end result. The vertex operators 

Vi can now depend on the superghost fields. In particular, in the examples given 

below they depend on (in the holomorphic sector) and so have definite su­

perghost number Therefore, in an obvious notation, the vertex operators are 

denoted and are said to be in the picture ql^^)■ It is not necessary

to have but the vertex operator should have weight (1,1). To soak up

the superghost number anomaly we must arrange to have ql^^ =  —Q<t> = “ 2 and 

similarly in the antiholomorphic sector. One works in the small algebra w ith the 

zero modes excluded and not integrated over in the path integral. In this case, 

all vertex operators are independent of these zero modes and it is not necessary to 

neutralise the background charge =  —1 by an insertion of ^(2 )^(2 ). Amplitudes 

are then calculated in a similar fashion to the bosonic case. For open strings the 

situation is also similar after doubling.

Finally, it can be shown th a t the correlation functions are independent of how 

the to ta l charge of —2 is distributed among the individual vertex operators. The 

proof involves passing back and forth between the small and the large algebra (in 

which ^0 is included) by inserting the identity Jd^o^o =  1 into the path  integral. In 

the process (the precise details are not relevant) one comes across the (holomorphic) 

picture changing operator

P+i(2) =  I

which acts on a vertex operator as

y ( ,.,; ,+ i)(^ ) =  ° ° . (4 .257)

Note th a t the operator P+\{z) has conformal weight zero and so and

have the same weight.
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Physical Vertex Operators

The modern (and rigorous) way to derive vertex operators is to use BRST methods 

[53]. However, for our purposes this machinery is not required and so we shall take 

a more simple approach.

It can be shown that the P6'L(2, M)-invariant vacuum^^

\NS;  F  =  0) (g) \qgh =  0) 0  \qsgh =  0) , (4.258)

is associated with the unit operator, that is, to doing the path integral with no 

operator insertions. For the closed string, this vacuum represents only the holomor- 

phic side and so should be tensored with that of the antiholomorphic side to give 

a PSL{2,M)  X PSL{2,'R) = P5L(2, C)-invariant vacuum. We denote these vacua 

collectively by |0), as in the previous section.

Since |0) is associated with the unit operator, it follows that the state |V) associ­

ated with the insertion of the vertex operator V at the origin is given by

|V) =  V (0 ) |0 ) .  (4.259)

Therefore, for physical vertex operators |V) should be a physical state. Since physical 

states are in the | J.) =  c(0)|0) ghost vacuum^^, this means that such operators are in 

fixed form, that is, they include the ghost c, c insertions. To get the integrated form 

one simply drops these terms.

Type II  R-R Vertex Operator

Equation (4.259) implies that the spin fields Sa{z) and Sg(z) of the last section are 

examples of vertex operators (although the states they create are not by themselves 

physical). Another example is the field o oo o for the closed string

(treating holomorphic and antiholomorphic components independently), the reason 

being that the bosonic vacuum |0, 0; A:) =  |0; /;:) 0  |0; A:) is given by

\ 0,b-k)  = 0  S S S |0 ,0; P  =  0) =  |o, 0; F  =  0) , (4.260)

Recall that \NS; k) =  |0; k) (gi |0)ws-
Read | jj.) =  c(0)c(0)|0) for the closed string.
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and has momentum Pl = Pr  =  Now, since the Ramond vacuum of one side

of the closed superstring is of the form |0, A;) (g) |0 ;a)/j (S> | ],) 0  Iq̂ gh =  —| )  and is 

created from |0) by the operator

=  I cW E_i/2W S„(z)e‘“ W S , (4.261)

then the massless RR antisymmetric tensor fields of the type II string (cf. equation 

(4.161)) are created by the vertex operator

z ;k) =  k) , (4.262)

where =  0 and is a polarisation bispinor encoding the physical state  conditions 

and the GSO projections. Note tha t excluding the ghost fields k) has

conformal weight (1,1).

Let us now determine the form of V°‘̂ . The antisymmetrised products =

r[A»i p/ifc] of the gamma matrices^^ along with the identity I  form a complete basis 

in which any bispinor can be expanded:

10

V j  =  { H o ) l J  +  T |(ff*)„...„{r'‘' ■"*)/ . (4.263)
fc=l

Let us consider one specific value of k  in the sum (4.263). Ignoring the ghost sectors, 

the non-trivial physical state conditions Gq ~  Q;o • ipo and (5o ~  So • (cf. equations 

(4.133) and (4.151)) amount to two Dirac equations, one acting on the left-movers 

and the other on the right-movers:

(*: • r)<.’ (//,)„ . .,,(r '‘' ■«)■>'> =  (//»)„. „ .(r «  ■«)“'’(); • V); =  O . (4.264)

These translate into

=  o , (4.265)

after Fourier transformation. By use of the identities

define antisymmetrisation with the factorial factor included.
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we find that equations (4.265) are equivalent to

dHk = d * Hk = 0 (4.268)

These are just the Bianchi identity and field equation for an abelian A;-form field 

strength^^. Since = 0, we can write at least locally Hk — dCk-i where Ck~\ is the 

{k — l)-form potential.

At this point we have not taken into account the GSO conditions which, according 

to (4.161), result in field strengths of rank 2 and 4 for type IIA and of rank 1,3 and 5 

for type IIB, with the 5-form being self-dual. Firstly, for the left-movers, since TS  = S  

then

= (4.269)

We now use the identity

( 1 0 -  /c)!

in (4.269) to find that k > 5 are related to Hk, k < 5 hy Hodge duality:

^  H,o-k , (4.271)

and so are not independent fields. In particular, we find that is self-dual. 

Therefore, we modify (4.263) to

'<>'’ =  ’ (‘‘ 272)
fc=l

where P_ is the projection matrix |(1  — F) and accounts for the GSO projection of 

the right-movers. It is easy to show that

V-'I^SJe  =  Y 1  ^ ( H 0 «  .(..(r" ' '“ )“‘’5„(^ |1  -  ( - l ) ‘ r l5 )s  , (4,273)
fc=l ■

and so odd forms get projected out if F5 = —S  (type IIA) and even forms are

projected out if F5 =  + S  (type IIB). Equation (4.273) makes it clear that the

equations (4.268) are not modified by the introduction of P_.

^■^Conventions for differential forms are given in appendix B.
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Open String Tachyon Vertex Operator

The open superstring tachyon is given by | k )® \  j )  ® =  ^1 ) with k'  ̂ = \ !2 a '

and so is created from |0) by the vertex operator

z-,k) = I S , (Im ^ =  0) . (4.274)

After doubling this becomes

V'r^>(z;fc) =  S , (lm ^ =  0 ) ,  (4.275)

Excluding the ghost, this operator has conformal weight (1,0). After applying the 

picture changing operator (4.256) to (4.275), we find the vertex operator in the q̂gŷ  =  

0 picture:

V f(z ;  k) = \ f2 ^ '  I c{z)k ■ I , (Im ^ =  0) . (4.276)

This creates the state  |T) =  \ /2a 'k  ■ ip_i/2 \NS', k) (8) | | )  <S) \qsgh =  0). To see that 

this state  is another representation of the tachyon one notes tha t the normal ordering 

constant a{u) =  —d^a,{u) in the mass formula (4.156) is modihed when the superghost 

vacuum is changed. In the NS sector we now have the mass formula

m ' =  - e  = ^(iV<“> +  -  1 -  \q.g,{q^,, +  2)) , (4.277)
O' 2,

where the ghost contribution of —1 and tha t of the superghosts are a result of (4.184) 

and (4.234). Clearly, therefore, \T) has mass =  — l/2o;'.

4.1.7 Strings in Background Fields and Low-Energy Effec­

tive Actions

So far we have described the propagation of strings in either a D = 26- or a 10- 

dimensional Minkowski target space with metric We would like however to be 

able to describe low-energy string physics when the massless fields have non-trivial 

VEVs but the massive modes are not excited^^.

Recall that the massive modes have energies 1 / V a '  ~  M p .
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Let us consider the NS-NS sector of the closed superstring in which the massless 

fields are the graviton, Kalb-Ramond field and dilaton. A natural generalisation of 

the Polyakov action (4.1) is to simply make the replacement —>■ Gf^u{X) in order 

to  describe a string propagating in an arbitrary curved target space with general 

metric Thus, we replace (4.1) by

■SxlG] =  /  d^a{-g) ' l^g‘‘% X > ‘abX‘'G„,(X)  , (4.278)
»/ s

From the worldsheet point of view this still looks hke a model of D  bosonic fields 

X ^ ,  but with field dependent couplings given by the non-trivial metric

One might question whether this procedure is consistent with the way in which 

strings in Minkowski space-time generate the graviton. To see the relation between 

the two approaches, consider the background metric to be close to flat:

G^.,{X) =  -  V ( ^ )  , (4.279)

where is symmetric, traceless and small. One can then perturbatively expand 

the factor in the Euclidean path  integral as

g-5x[G] _  g-SxW ^  ^  J d h h ^ , { X ) d X f ^ B X ' ^  +  ■ • , (4.280)

where is given by (4.57). If we take

V W  «  , (4.281)

where is a symmetric, traceless polarisation tensor and term

of order h in (4.280) is, up to an appropriate normalisation, just the bosonic part 

of the integrated graviton vertex operator in the (0, 0) picture (or the full integrated 

vertex operator in the case of the bosonic string):

V  = J  + ■ ■ ■ . (4.282)

Indeed, for the bosonic string we find

;C „°a.^ '‘(0 )M "(0 )e“ -̂ <»’»>l|0,0;*:) =  C“ a " i a " i |0 ,6 ; t )  , (4.283)

which reproduces the graviton state tha t was discussed in the text below equation 

(4.50). Therefore, we see th a t the insertion of the full Gfj,„{X) can be thought of
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as inserting an exponential of the graviton vertex operator, which is another way of 

saying th a t the curved background is a coherent state of gravitons. One may then 

go beyond this perturbation theory framework and assume th a t the gravitons form 

a non-trivial condensate in which the string propagates. In this case, G^^{X)  is a 

more general metric tha t does not necessarily have the above weak-field expansion.

The above argument can be generalised to include a non-trivial Kalb-Ramond 

field and dilaton ($) with the result th a t to the action (4.278) we add

S  =  T ^  /  , (4.284)
J  s

where =  ge°-̂  is totally antisymmetric with =  1 and is the Ricci scalar

of the worldsheet manifold (S ,5 ). This is for a Lorentzian signature worldsheet; for 

Euclidean signature the minus sign in front of the first term  becomes +i after Wick 

rotation of the worldsheet. Note th a t for a constant dilaton field $ ( ^ )  =  <̂ >0 the 

Euclidean path  integral contains a factor

, X =  ^  /  , (4.285)
« / S

where x  is the Euler number of the worldsheet. This means th a t the constant A in­

troduced just after (4.244) can be shifted by choosing a different vacuum expectation 

value for the dilaton. Since A determines the closed string coiipling constant, we see 

th a t the string coupling is not a free param eter in the theory — different values of A 

correspond not to different theories but to different backgrounds of the same theory.

The next step is to check th a t the modified sigma-model action (4.278,4.284) 

does not spoil Weyl invariance at the quantum  level, th a t is, the trace of the energy 

momentum tensor should vanish. On dimensional and symmetry grounds it can be 

shown^® th a t this trace (on a Euclidean signature worldsheet) can, in the critical 

dimension, be expanded as

(T> =  . (4 286)

with

= a ' +  2 V ^V ,$  -  +  0{a'^)  ,

^®See D’Hoker’s lectures [95] and references therein and also [102-104].
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C  = + +0(a '^ )  ,

a* = a'  ^ V ,$ V '‘4> - V H - - ^ R +  + 0(a'^)  , (4.287)

and where =  8^3,,^ + is the Ricci tensor constructed from

R  the Ricci scalar and is the covariant derivative compatible with The 

functions (5 are called Weyl anomaly coefficients^^ and they should vanish if Weyl 

invariance is not to be broken.

A key feature of the equations =  Ẑ'*’ =  0 is that they can be derived

from the low-energy effective action}^:

(4.288)

Note that the dilaton dependence is as expected for a closed string tree-level action 

on the sphere with Euler number x ~ ‘̂- This action is written in the so-called string 

frame. However, by use of the redefinitions

, a; =  ~ ^ <1 , 5 ^ . =  V 2 kdB,,, , (4.289)

and the relation

R = e~^^ ( ^ R - 2 { D - l ) V ^ L j ~ { D - l ) i D - 2 ) V ^ L j W u ^  , (4.290)

we can rewrite the action in the Einstein frame in which the Einstein-Hilbert and 

dilaton kinetic terms are canonically normahsed:

5 = / d^X{-GY^^ . (4.291)

the literature they are often called beta functions but the reader should be aware tha t they

are different from, although closely related to, the familiar renormalisation group beta functions.
^®The action is “low energy” for the following reason. The Weyl anomaly coefficients are ex­

pansions in powers of a'. In a target space with characteristic length ~  1/i? the dimensionless 

expansion param eter is a '/l^ .  Expanding to first order in a '  implies -C 1 which means that

the characteristic energy scale of the target space is small compared to the string scale \ j \ f a ' .  This 

is consistent with ignoring the internal structure of the string and giving only the massless modes 

GHU, BHI, and $  a non-trivial VEV.
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In this action indices are raised and lowered using the Einstein metric Equation 

(4.291) can also be deduced from an explicit calculation of various scattering ampli­

tudes involving the graviton, Kalb-Ramond field and dilaton vertex operators^®. It 

is precisely this fact that justifies our heretofore implicit identification of the spin-2 

string mode (that is, (4.283) in the case of the bosonic string) as the graviton. Rather 

than review this derivation^*^, we shall illustrate later in section 5.2.3 how one can 

infer an effective action from a direct evaluation of string scattering amplitudes.

This discussion can be generalised to the other sectors of the closed superstring 

with the result that the the low-energy effective action for type IIA/B theory is just 

the type IIA/B supergravity action^^

The discussion is also generalised to the open string. We have seen that open 

string vertex operators are integrated along the boundary of the worldsheet, so we 

expect open string fields to appear as boundary terms in the sigma model action. 

Indeed, the massless vector in the NS sector gives rise to the term

-  f  A , (4.292)
JdT.

(in differential form notation) in the sigma model action. Again, this is written for a 

Lorentzian signature worldsheet; for Euclidean signature the minus sign becomes +i.

4.2 D -B ranes

In section 4.1.1, we mentioned that open strings could satisfy Dirichlet boundary

conditions as well as Neumann ones. Some consequences of this alternative choice

will now be discussed. We follow [53,96,105-110].

^®The Kalb-Ramond field vertex operator is similar to the graviton vertex operator (4.282), the 

only difference being that the polarisation tensor is antisymmetric. A similar remark applies to 

the dilaton vertex operator with transverse diagonal. In addition, fixing the relative normalisa­

tion between the field theory and the string theory results in the relation 2kjo =  (27t)^q:'̂ .
^°For example, see [53,92,93] or any other standard textbook in this regard.

There is a problem in the IIB case because the 5-form R-R field strength is self-dual and so no

simple covariant action exists. This is overcome by writing down an action with self-duality imposed 

as an added constraint on the solutions to the equations of motion.
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4.2.1 Bosonic Strings

Dirichlet boundary conditions at an endpoint of an open string imply that is fixed 

at that endpoint. Let us suppose that there are Dirichlet boundary conditions at both 

endpoints (D-D) for D — {p+l)  directions X “(cr\ 0) =  x^, X “(cr\ tt) =  j/“ for a = 

p + l , . . . ,  D — l, with N-N boundary conditions for each of the other (p + 1) directions 

X^{a), i  = 0 , . . . , p .  Geometrically, this implies that in the target space manifold 

the string endpoints are each constrained to a flat (p +  l)-dimensional hyperplane 

parametrised by X*(cr\(7^), =  0 , 7t  (see figure 4.2). Such hyperplanes are called

Dp-brane^^. Clearly, Poincare invariance is broken in the directions transverse to 

the branes (the D-D directions).

X '

,v

Figure 4.2: An open string stretched between two infinite, flat, parallel 

D-branes of the same dimension. It is possible for open strings to 

sta rt and end on the same brane. It is also possible for two or more 

branes to  be coincident with indistinguishable worldvolumes. In type 

II superstring theory closed strings propagate in the bulk in the region 

between the branes.

The mode expansion for a D-D direction is

K d ( o )  =  +  ^ < 7 ^  -iMT, . (4-293)

^^Note that our notation impHcitly assumes 0 <  p  <  D  — 1. However, it is also possible to have 

p =  —1, in which case the directions are D-D for all 0 <  /.t <  — 1. This case is also called the

D-instanton  because the open string endpoints are localised in the timelike direction X^.
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where A“ =  In this case canonical quantisation yields^^

[x\p>] = irf^ , = ■ (4.294)

We shall define ctg =  (-\/2a'p*, in this case. One can now rework section 4.1.1

and find that the analysis is unmodified (in particular D = 26 and a =  1), save for 

the definition of and a modified definition of the mass:

,

m 2 1
+  _(AT(“) - a ) .  (4.295)

r \ ! ^a'

The =  A“Aa term above represents the tension of the open string stretched 

between the two Dp-branes.

The cases of a Neumann boundary condition at cr̂  =  0 and a Dirichlet one at 

cr̂  =  7T (N-D) or vice versa (D-N) are referred to as mixed boundary conditions. 

The N-D mode expansion is similar to (4.24) except that the term is absent and 

n e  Z +  1/2. The D-N expansion is likewise half-integrally moded and is similar to 

(4.293) without the term. These cases would arise, for example, if an open string 

ended on D-branes of different dimensions. They will not play a role in this thesis.

4.2.2 Doubling, Superstrings and M ixed Open-Closed  

Type II Am plitudes

In terms of the z coordinate we may rewrite (4.293) as

X ^ ^ ( z , z )  = X ‘̂ (z) + X^(z)  , (4.296)

where

z~^ , (4.297)
neZ\{0}

„2-» . (4.298)
n€Z\{0} "

^^Henceforth, indices a , 6 , . . .  denote D-D directions, indices denote N-N directions and

indices . .  denote either case.
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As for N-N directions, X^{-)  and X “(-) are defined for their argument on the upper 

and lower half of the complex plane, respectively. Note th a t the boundary of the 

upper half-plane, Im 2  =  0, corresponds to the locations of the D-branes. Doubling 

is via

X “(z) :=  -  X^{z)  , (4.299)

dX^( z )  := D l d X \ z )  = - d X ^ { z )  , (4.300)

for Im ^ <  0. It is conventional to choose =  0 which just amounts to choosing the 

origin in the target space to lie on one of branes. We can now rework (4.67) through 

(4.76). We find th a t the doubling m atrix is modified to

( s i  0 \
D t = \  ’ K  (4.301)

V  °  /
Note th a t this m atrix satisfies the conditions (4.76) and so in terms of the extended 

field we have the single correlator

{Xf^{z' )X%z)) = - ^ a V n n ( z ' -  ^) . (4.302)

For superstrings, preservation of worldsheet supersymmetry requires th a t the 

fermions be doubled according to

?A^(z) := D y ' ^ i z )  , ( l m ^ <  0 ) .  (4.303)

The ghosts and superghosts are doubled as before but the m atrix M  th a t we en­

countered (cf. equation (4.211)) in the doubling of the spin field Sa{z) is modified. 

Relations (4.212) and (4.213) still hold but due to (4.301) we now find [111]:

± r °  . . .  , (p even) ,

M = (  ± r ° . . . T P r ,  ( p ^ - l o d d ) ,  (4.304)

± i r  , (p =  - 1 )  .

The overall sign is not physically relevant and is conventionally chosen as plus pro­

vided there is only one brane. However, in the presence of many branes the sign

becomes significant. This is discussed in section 5.1.1.

I l l



The presence of D-branes naturally leads to a modification of type II closed su­

perstring theory; closed strings propagate in the bulk while open strings are attached 

to the branes. There can be interaction between the two on the surface of a brane 

(see figure 4.3). For example, two open strings can join to form a closed string or 

the endpoints of a single open string can come together and form a closed string 

which is then emitted from the brane. The closed string fields are also subjected

open string 
state

closed string 
state

open string 
state

D -B rane

Figure 4.3: Two open strings and one closed string interacting on the 

surface of a D-brane. This diagram corresponds to an inelastic process 

where a closed string is absorbed by a D-brane, exciting its internal 

state by creating a pair of open strings or to the reverse process of 

spontaneous emission of a closed string by the brane. The amplitude 

for such a process is a disc (or upper half-plane) amplitude in which 

the open string vertex operators are located on the boundary and the 

closed string vertex operator in the interior.

to the doubling. More precisely, in order to calculate amplitudes corresponding to 

closed and open strings interacting on a D-brane one has to calculate a correlator on 

the unit disc consisting of a mixture of closed and open string vertex operators. To 

perform this calculation we invoke the following rules [111-117]:

(i) Map the disc to the upper half-plane.
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(ii) For open strings use standard open string vertex operators living on the real 

axis.

(iii) Closed string vertex operators factorise into left and right components:

z; k) =  k ) V { M z y ,  k) , (4.305)

where 4>ci is a generic closed string field with 4>ci{z) and ^d{z)  its holomorphic 

and antiholomorphic parts containing tilded and untilded oscillators, respec­

tively. One then replaces the closed string tilded (untilded) fields by their open 

string tilded (untilded) counterparts. For example, in (4.262) one would replace 

(4.58) and (4.59) by (4.69) and (4.70), respectively. The untilded fields live on 

the interior of the upper half-plane and the tilded fields on the lower half.

(iv) Double all tilded fields as described above in order to write all vertex operators 

in terms of the extended untilded fields.

(v) The ghost number anomaly of —3 is taken care of by fixing the insertion points

of one of the closed string and one of the open string vertex operators^^; the 

others are in integrated form. Additionally, the sum of the superghost charges 

over all vertex operators should be —2.

According to this prescription, for the closed string we find

f  -M F 5 (0 )  , {p even) ,
F5(0) := { V ; > {4.306)

[ M F5(0) , (p odd) .

Since the GSO projections have F5(0) =  -I-S'(O), we must have F5(0) =  —5(0) for p 

even and F5(0) =  +S{0)  for p odd. Consequently, Dp-branes with p even are associ­

ated with type IIA theory and those with p odd are associated with type JIB theory. 

This means th a t with the exception of the D9-brane and the 0-form field strength 

(and before Hodge dualising), the Dp-branes are in one-to-one correspondence with 

the R-R {p-\- 2)-form field strengths (equivalently, the {p-\- l)-form  potentials Cp+i)

®^The amplitudes considered in this thesis will always have at least one closed string and one 

open string vertex operator.
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of type II string theory. This correspondence suggests that the 0-form field strength 

should be associated with a (—2)-brane but it is not clear how to interpret this. The 

D9-brane case is also pathological. The corresponding field strength would have to be 

of rank eleven and therefore would vanish in ten dimensions. However, the D9-brane 

does couple to a non-trivial ten-form potential. In type I theory, the closed string 

worldsheet parity projection of implies that (4.211) should be symmetric under the 

interchange Sa ^  Sa. This leads to the extra condition =  1 when p is odd. This 

is true only for p =  1,5 and 9.

To summarise, type IIA theory has Dp-branes for p = 0 ,2 ,4 ,6 ,8 ; type IIB has 

Dp-branes for p =  —1,1,3,5, 7,9 and type I theory has Dp-branes for p =  1,5, 9.

4.2.3 A ction for a Single D-brane

In section 2.2 we mentioned that Leigh [57] derived that the low-energy dynamics on 

a single D-brane in bosonic string theory was governed by the Bom-Infeld action. 

We now give some explicit details of this action^^. We also introduce the so-called 

Wess-Zumino term, present in the superstring case but not the bosonic string case, 

which will be of more importance to us in the sequel.

The massless open string (bosonic) fields on a Dp-brane are a t/( l)  vector Ai and 

9 — p scalars coming from decomposition of the 10-dimensional vector A^. The 

scalars (which should not be confused with the dilaton denoted $) are interpreted 

as collective coordinates for fluctuations of the brane worldvolume in the transverse 

directions, that is, a D-brane is a dynamical object. These fields interact on the brane 

with the closed string massless (bosonic) fields, namely the graviton, Kalb-Ramond 

field and dilaton of the NS-NS sector and the antisymmetric tensor fields of the R-R 

sector.

do not however consider the original derivation of Leigh which involved the calculation of 

the Weyl anomaly coefficients for the open string. Furthermore, we describe the bosonic sector of 

the supersymmetrised theory in D =  10 dimensions.
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The Born-Infeld Action

Let us introduce coordinates z =  0, . . .  ,p on tlie brane. In what follows, we define 

the pull-back 0 of any target space tensor 0 as:

*’ * ) (4.307)

where the fields / “(O =  27ro;'$“(^) provide the embedding of the brane world- 

volume Ep+i into the target space A4.

The effective action for coupling to NS-NS fields is the Born-Infeld action:

S b i = -T p  f  +  2Tva'F,,) ,
J^p+i

(4.308)

where =  diAj — djAi is the gauge field strength. The brane tension is given by

T 1 1
Tp =  ^  = ---- ^ ^  , (4.309)

9s g s V ^  { 2 n \ ^ ) P

where = e^° is the closed string coupling and $o the constant part of $ . Note 

that the dilaton dependence is as expected for an open string tree-level action. The 

self-interactions of open string helds and their couplings to closed string fields arise 

first from the disc which has Euler number x  =

If we assume the backgroimd space-time is flat and the brane almost flat then we 

can go to so-called static gauge:

f  =  C  , $  =  $ 0  , G i j  ~  Vi j  +  d i P d j f a  , B^^ =  0  . (4.310)

If we further assume that 2na'Fij and 5 j /“ are small and of the same order, the 

determinant in (4.308) can be expanded to quadratic order in the field strength:

S b i  =  -T pV p -  (4.311)

where Vp is the (infinite) brane worldvolume and the Yang-Mills coupling is given by

2 .. -  _ ^ (2 7 tV ^ ) p-2 , (4.312)9y m  —  , ,vet'
The second term in (4.311) is essentially just the action for a U{1) theory in {p+  1)- 

dimensions with 9 — p scalar fields. In fact, after supersymmetrising [58], one finds
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that the action (4.311) is precisely the dimensional reduction to p+1 dimensions of the 

10-dimensional M  = \ super Yang-Mills action with gauge group U{1) and coupling 

constant given by (4.312). This fills in some of the details omitted in section 2.2 in 

the case of D3-branes.

T he W ess-Zum ino (or Chern-Simons) Term

Coupling of the D-brane to the antisymmetric tensor fields of the R-R sector of the 

closed superstring is via the Wess-Zumino term:

S w z = T , j   ̂ (4,313)

This formula deserves some explanation:

1. C = J2q is the formal sum of pullbacks of all R-R potentials of the theory in

question. For example, g =  0, 2,4,6, 8,10 for type IIB.

2. We have defined T  = B  + 2na'F. Note that this combination of B  and F  also

appears in the Born-Infeld action (4.308). The reason for the appearance of 

this combination is gauge invariance. The closed string Kalb-Ramond field B  

and the open string vector field A  appear in the string worldsheet action (cf. 

(4.284) and (4.292)) as

1

' E  J d i :
[  A , (4.314)

JdT,

where the hat denotes the pull-back to S. Associated with each field is a 

space-time gauge invariance which must be preserved for the consistency of the 

space-time theory. The ordinary gauge transformation 5\A  =  dA, where A is a 

scalar, is an invariance of (4.314), the boundary term changing by the integral 

of a total derivative. The antisymmetric tensor variation 5 \B  = dA, where A 

is a 1-form, gives rise to the surface term

1
0 , , A , (4.315)
27TQ:

which can only be cancelled if A  transforms as S^A = —k/2'na'. Therefore, we 

have 5\F  = d?X =  0 =  S\B  and S \F  = —dA/27ra' and so we conclude that
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only the combination T  = B  + 2'Ka'F is gauge invariant and so appears in the 

action.

3. R t  and are the curvatures of the tangent and normal bundles to the brane,

respectively.

4. A{R)  is the the so-called “A-roof genus” or “Dirac genus” whose square root is

given in terms of the Pontrjagin classes by

(B) +  • • • , (4.316)

where p\{R) =  — ̂ t r A  R.

5. The notation {.. .}p+i instructs us to expand the exponential and Dirac genera

and then to extract the (p+  l)-form part which can then be integrated over the 

brane worldvolume.

5. Strictly speaking, the R-R potentials cannot be globally defined in the presence 

of D-branes. So one should use the fact that — 1 +  e'^ A yjA{Rt ) /A{Rn ) is an 

exact form to integrate by parts and express all terms in (4.313) except

Tp f  Cp+i , (4.317)
« / £ p - | - i

in terms of the R-R field strengths. The term (4.317) just means that Djt>-branes 

are charged under the (p +  l)-potential in the same way that a point particle 

(0-brane) is charged under a vector field [56].

The Wess-Zumino term is essential for the consistency of D-branes, in particular 

for the consistency of intersections of more than one brane^®. Its inclusion can be 

justified by anomaly inflow arguments. Briefly, the theory on the brane (or on the 

intersection if more than one) can be anomalous due to the presence of chiral fermionic 

degrees of freedom. In order for the theory to be selfconsistent the anomaly must be 

cancelled by an equal and opposite contribution from the 10-dimensional bidk, that

is, the gauge variation of the low-energy effective action on the brane is cancelled by

discuss the multiple brane case below.
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a bulk term whose gauge variation is localised on the brane. A topological argument 

then constrains the form of the bulk term to be the push-forward of (4.313). Hence, 

the different terms involved in (4.313) are often called anomalous couplings. The 

reader is referred to the literature [118-121] for more complete details. Equation 

(4.313) can also be deduced from a direct string calculation (see [96] and references 

therein) using the boundary state formalism  (see [113,122-128] and, for a recent 

comprehensive review, [129]).

4.2.4 M ultiple Type II D-Branes

Multiple D-branes have a natural interpretation in terms of Chan-Paton factors. Let 

us consider N  non-coincident, parallel type II Dp-branes living in fiat space. We label 

them by an index i running from 1 to N. There are massless gauge fields living on 

each D-brane worldvolume corresponding to a gauge theory with a total gauge group 

U{1)^ . In addition, we expect massive gauge fields to arise corresponding to strings 

stretching between each pair of branes. As well as standard Lorentz indices, these 

fields now carry a pair of Chan-Paton indices i , j  indicating which branes are at the 

endpoints of the strings. Because the strings are oriented, there are N ‘̂ — N  such fields 

(counting a vector = (Aj, $„) as a single field). The mass of a field corresponding 

to a string connecting branes i and j  is proportional to the distance between these 

branes (cf. equation (4.295)). W itten [130] showed that as the D-branes approach 

each other and the stretched strings become massless, the fields arrange themselves 

precisely into the gauge field components and adjoint scalars of a supersymmetric 

U{N)  gauge theory in p-M  dimensions^^. Generally, such a super Yang-Mills theory 

is described by the reduction to p +  1 dimensions of a 10-dimensional non-abelian 

Yang-Mills theory where all fields are in the adjoint representation of U{N).

The non-abelian extensions of (4.308) and (4.313) are highly non-trivial. The 

leading terms in the Born-Infeld action should correspond to the above SYM theory.

^^Note that the gauge group is U{N)  here because we are dealing with the oriented strings of 

type II theory. For unoriented strings, U{N)  is reduced to SO{ N)  or USp{N)  as discussed in 

section 4.1.3. The 32 of type I 50(32) theory is therefore associated with 32 D9-branes.
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Therefore, as a first approximation one simply includes a trace over the fundamental 

representation of the gauge group in (4.308). The same is true for the Wess-Zumino 

term . This procedure is not completely satisfactory, however. For example, due to the 

ordering ambiguities in the expansion of (4.308) introduced by the noncommutativity, 

the trace is ill-defined for the NNLO terms in a ' . Unfortunately, the problem remains 

unsolved and the reader is referred to [131-136] (particularly the recent, concise 

review by Schwarz) and references therein for further discussion. For our purposes, 

we shall be content with the first approximation.

4.3 T -D uality

In this section we briefly introduce T-duality, an im portant concept which we shall 

use in section 5.1.3. The reader is referred to the comprehensive review [137] for more 

complete details.

4.3.1 T-Duality for Closed Strings

Let us first consider closed superstrings in a Minkowski background; =

0, $  =  $ 0 - Recall from (4.58) and (4.59) tha t the mode expansions for the embedding 

of the string into the target space are given by z) =  X^{z)  +  X^{z),  where

X^{z) =  x^L-i^p1\nz  +  i ^  ’ (4.318)
nez\{0}

X “ { z )  = + ^
nez\{0}

with Pl =  Pr =  continuous. Now let us compactify one of the spacelike directions, 

X^ say, on a circle of radius R. The strings can now wind around this circle so tha t 

X^ is subjected to the modified periodicity condition

X ^ a \  2n) =  X ^ { a \  0) +  2nRw  , w G Z , (4.320)

rather than  the original condition (4.18). The integer w  is called the winding number. 

In addition, requiring vertex operators (which contain to be single-valued
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results in momenta along the direction being quantised in integer units of 1/R.  

Consequently, the mode expansion for is now modified thus:

P l  =

n wR
~R^ a'

P r  =
n wR
R ~ a'

(4.321)

(4.322)

with n e  Z. This modified expansion also results in a changed definition for the 

spectrum of the string masses. Instead of (4.50) we now have

m
2 „

^l=Q

2 ~

= ^  +  — ^  -  a{u) -  a{D)) . (4.323)

T-duality stems from the observation that the mass spectrum is invariant under

the simultaneous transformations

n w , R. . (4.324)
li

We note that these transformations take and to and —p̂ ,̂ respectively. 

Therefore, we extend this action to the non-zero modes and define a T-dual trans­

formation by X^{z) —> X^{z) and X^{z) —X^{z). Note that the mass formula is

still invariant under this extended action. Furthermore, it is clear that if we define 

the T-dual coordinate by X^{z,z) — X^{z) — X^{z) then (4.324) is implemented by 

everywhere replacing X^(z,z)  by X^{z,z).  X^[z,z)  is therefore compactified on a 

circle of radius R  = a ' /R  and has winding n.

Within the bosonic sector of type II theory the energy-momentum tensor, OPE

and correlation functions do not change when we replace by X'^ because signs 

always enter in pairs. In the fermionic sector we must have

^ \ z )  - ^ \ z )  , (4.325)

in order to preserve worldsheet supersymmetry. This has the the very important 

consequence that in the Ramond sector the zero mode i}Jq changes sign and so the GSO 

projection (4.155) in this sector also flips sign. Thus, type IIA theory compactified
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on a circle of radius R  has the same mass spectrum as type I IB theory compactified 

on a circle of radius R  and vice versa. In fact, this equivalence also extends to the 

fully interacting case [138].

Since type IIA and IIB theories have different R-R fields, T-duality must transform 

one set into the other. The action on the spin fields is of the form

Sa{z) Sa{z) , Sa{z) ^  P^S^iz) , (4.326)

for some matrix Pg. To be consistent with (4.325) and the antiholomorphic equiva­

lents of the OPEs (4.204) and (4.206), we find that Pg is given by the matrix M  of 

(4.304) with p =  8. Thus, Pg =  up to a sign. Since the spin fields are of definite 

chirality the action of F just adds a sign. We can therefore consider the action of F  ̂

on the bispinor (4.263). We find that the dual bispinor is related to the original one 

via

V j  = ±{VT^)^^ .  (4.327)

Use of the gamma matrix identity (4.267) then gives the relation between the A:-forms 

of the original theory and the {k ±  l)-forms of the dual theory. The effect is to add 

a 9-index if it is absent and to remove it if it is present. The same effect occurs for 

the potentials. Thus, for example, the Cg component of the vector potential of type 

IIA theory maps to the IIB scalar C, whilst the other components ^  9 map to 

the components of the 2-form potential.

It is important to note that T-duality acts non-trivially on the given background 

fields according to the well-known Buscher rules [139]:

where Ggg differs from Ggg =  r̂ gg =  1 by a rescaling by R'^/a'. Clearly, the expression

for G'gg is consistent with the dual direction being compactified on a circle of radius

R. In addition, since the closed string coupling is given by gs =  e^°, we find

9s =  9 s ^  ■ (4.329)
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Finally, this discussion trivially generalises to the compactification of d space-time 

dimensions on a torus with radii R \ , . . . ,  Rd- In particular, for d = 2 we can relate 

type IIA theory to itself and type IIB theory to itself with

cussion implies that T-duality should transform even-p D-branes of type IIA into 

odd-p D-branes of type IIB and vice versa. This requires that Neumann directions 

should transform into Dirichlet directions and vice versa under T-duality. To see that 

this is actually the case, recall from (4.69) and (4.70) that the mode expansion for a 

Neumann direction is z) = X^(z) -|- X^(z),  where

Note that we can always add an arbitrary c-number to and subtract it from

which is formally similar to the D-D mode expansion (4.296-4.298) under the iden­

tifications c* X*, p* /2'na'. Therefore, we see that if the zth direction is the 

same as the one we are T-dualising then a Dp-brane extended along this direction is 

turned into a D(p — l)-brane which is localised in this direction. Conversely, if the 

zth direction is originally Dirichlet then it becomes Neumann under T-duality and so 

a Dp-brane becomes a D(p-|- l)-brane.

This concludes our discussion of strings and branes. In the next chapter, we shall 

use the concepts we have introduced to explain Ashoke Sen’s work on unstable type

(4.330)

4.3.2 T-Duality for Open Strings

Since D-branes are charged under R-R potentials, consistency with the above dis-

nez\{0}
(4.331)

n ez \{ 0 }

(4.332)

X* without altering X]^j^. Therefore, let us define the dual coordinate Xlfj^f{z,z) 

(X*(z) + |c*) — (X'^{z) — |c*). The coordinate Xlfj^{z,z)  has the mode expansion

neZ \{0}

(4.333)
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II D-branes and to infer a Wess-Zumino-like term for such a configuration from an 

evaluation of tachyon-R-R field scattering amplitudes calculated using the tachyon 

and R-R vertex operators introduced in section 4.1.6. We will also come across 

D(p — 2fc)-branes embedded within Dp-branes. By the above discussion, a T-duality 

transformation on each of the 2k relative transverse directions should transform these 

two branes (and their associated R-R charges) into one another.
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Chapter 5 

Unstable D-branes and R-R  

Couplings on 'Dp-Dp Systems

In this chapter, we briefly discuss part of A. Sen’s work on unstable brane-antibrane 

systems in type II theory and then, in section 5.2, go on to derive a Wess-Zumino-like 

action for such systems. This action is inferred from a direct com putation of certain 

open-closed string scattering amplitudes on the upper half-plane, for which much of 

the technical material of the last chapter is required. By now, several reviews of Sen’s 

work have appeared in the literature [96,140-142] and we shall follow them  closely. 

Section 5.2 is based on work done in collaboration with A. Wilkins [143].

5.1 Type II Brane-A ntibrane System s

5.1.1 Branes, Antibranes and Space-tim e Supersym m etry

As discussed in the last chapter, the dehning property of a Dp-brane is th a t it is 

a (p -h l)-dimensional dynamical hyperplane in 10-dimensional space-time on which 

open strings can end and which acts as source for a R-R gauge field Cp+i w ith -f-1 

unit of the corresponding R-R charge. An anti-Dp-brane, or Dp-brane, is simply a 

Djo-brane with R-R charge —1. The fact th a t a brane and an antibrane have opposite 

R-R charge plays a crucial role in what follows. One such consequence is th a t a Dp- 

Dp system breaks all space-time supersymmetries. Let us examine this more closely
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following [111] and the lectures of Bachas.

On a closed type II worldsheet we can construct the space-time supercharges:

=  e - /  . (5-1)

where the integrands are simply the fermionic vertex operators at zero momentum (cf. 

equation (4.261)) and e and e are independent Majorana-Weyl polarisation spinors. 

Hence, there are 32 (real) supersymmetries since a Majorana-Weyl spinor in 10 di­

mensions has 16 real components. When D-branes are present we also need to define 

the action of the unbroken supercharges on the open strings. Suppose we have a 

single brane^ The corresponding integrals of the supersymmetry currents at fixed 

radial time run over a semi-circle as in figure 5.1 below. Moving the integration

Im z

Re z

Figure 5.1: A semicircle in the upper half-plane represents an open 

string at a  fixed radial time cr' =  In \z\. A supercharge is conserved 

when its tim e variation can be expressed as a holomorphic plus anti- 

holomorphic contour integral around the shaded region. For this to 

hold, we demand th a t the contributions of the linear segments on the 

worldsheet boundary vanish. (Sketch courtesy of C. Bachas [95].)

to a later time is equivalent to conservation of the supercharges. However, this defor­

mation is allowed only if the contributions of the worldsheet boimdary vanish. This

^As remarked just after (4.298), this brane is located at Im z  =  0. Recall from (4.54) and (4.55) 

that 2  is defined hy z  =  where <t̂  is the W ick rotated tim elike coordinate on the open string

worldsheet and 0 <  <  t t  is the spacelike coordinate.
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is the case for the hnear combination

+ + + j  -  e ^ S , )  , (5.2)

(where we have explicitly doubled the superghost field) provided we set

e“ ( M ) /  =  f  , (5.3)

which follows upon using the doubling relation (4.211). Equation (5.3) implies th a t a 

single D-brane preserves only half of the 32 independent space-time supersymmetries.

Now let us suppose th a t within type II theory we have a single Dp-brane coincident 

with a single Dp-brane such th a t their worldvolumes are indistinguishable^. This type 

of Dp-Dp system will be the focus of much of the rest of this chapter and is introduced 

in more detail below. It is shown in [111] (see also the lectures of Bachas) th a t the 

difference in sign of the R-R charge of the brane relative to the antibrane corresponds 

to the ambiguity in the sign of the doubling m atrix M  — for a brane we take the 

sign as plus while for an antibrane we take the sign as minus. As a result, the 

combined brane-antibrane system breaks all space-time supersymmetries because it 

is impossible to simultaneously satisfy (5.3) for the brane and the similar condition 

—e“ (M )^^ =  for the antibrane. This breaking of supersymmetry implies tha t 

the spectrum  of open strings on the branes contains a tachyon and so the system is 

unstable as we shall show later in the chapter.

5.1.2 The Type II Up-D p  System

Let us discuss the properties of the above-mentioned Dp-Dp system (see figure 5.2);

•  The dynamics of the system is described by four kinds of open string beginning 

and ending on one or other of the branes. The four sectors are distinguished 

by their Chan-Paton (CP) factors:

, 0 0 \  /  1 0
(a) : (A“).j =  , (fe) : (A“),, =

0 1 /  l o o

^Throughout this chapter we assume tha t the Kalb-Ramond field and dilaton are trivial, th a t is, 

B  =  $  =  0.
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D-brane
\ /

(c)>y (d) _
— i--------------------nD-brane

(a)
Figure 5.2: The four types of open string on a Dp-Dp system. The 

branes are shown to be separated for the sake of clarity but they are 

in fact coincident. The strings can either start and end on the same 

(anti)brane or start on a brane (antibrane) and end on an antibrane 

(brane). (Sketch courtesy of A. Sen, taken from [140].)

(c): ( A % , (d) : (A“)y (5.4)

• The GSO projection^ in each of the sectors (a) and (b) is the standard one 

with G =  +1. In each sector, the bosonic fields of lowest mass are are the 

C/(l) vector Ai and scalars <J>a resulting from the dimensional reduction of the 

10-dimensional vector A^.

• The GSO projection in each of the sectors (c) and (d) is of the “wrong” sign with 

G = —1. It was argued that this should be so by Banks and Susskind [144] 

using the open-closed string duality result of Polchinski [56] (see figure 5.3). 

The amplitude for the closed string exchange between two (parallel) Dp-branes 

depicted in figure 5.3 consists of the sum of two contributions, one from the 

R-R sector and one from the NS-NS sector. After a modular transformation, 

the R-R part of the amplitude corresponds to a contribution from states in 

each of the NS and R sectors of the open string with the worldsheet fermion 

number operator, G, inserted. On the other hand, the NS-NS part corresponds 

to the same open string contributions but without the insertion of G. Thus, 

the amplitude only contains contributions from those open string states with

^The GSO projection acts trivially on CP factors in each sector.



G = +1, that is, from the standard GSO-projected states^ . Polchinski showed 

that the total amplitude vanishes as a consequence of the famous “abstruse 

identity” of Jacobi. By contrast, Banks and Susskind considered a Dp-brane 

and a Dp-brane. Since a brane and antibrane have opposite R-R charges, the 

sign of the R-R contribution to the closed string channel flips and the total 

amplitude no longer vanishes. More importantly, this means that the equivalent 

open string contributions now have an insertion of —G rather than +G. Since 

the NS-NS sector is not affected, this implies that the GSO projection for open 

strings stretching between a brane-antibrane is G = —1 and so is opposite to 

that of the brane-brane and antibrane-antibrane cases.

Figure 5.3; Two parallel branes interacting through the exchange of 

a closed string with worldsheet time running from one brane to the 

other. By a modular transformation, one can equivalently regard the 

diagram as an open string vacuum loop (the annulus diagram) in 

which worldsheet tim e runs around the the loop and the open string 

is stretched between the two branes. This equivalence was used in 

Polchinski’s seminal result [56] concerning the force between two Dp- 

branes.

'’This is precisely the situation in sectors (a) and (b).
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• Since G =  — 1 in each of sectors (c) and (d), the tachyon |A^5; k ) , P  = l /2 a ' 

survives in each sector.

The bosonic open string fields of lowest mass on the shared worldvolume can be 

conveniently described by the generalised gauge field:

. (  A f  \
A = \  . (5.5)

\ T  A' J

Here, A  is the U{1) gauge field associated with the Dp-brane and, likewise, Al is the 

U{1) gauge field associated with the Dp-brane. T  and T  are the tachyons arising 

from sector (c) and (d), respectively. These tachyons are charged oppositely under 

both gauge fields due to the opposite orientation of the strings in sector (c) relative 

to (d). Equation (5.5) arises naturally via the CP factors (5.4).

There is a natural generalisation of the discussion to the multiple-brane case. 

Suppose we have N  Dp-branes and an equal number of Dp-branes^. Then A  and 

A! are U{N)  gauge fields whilst T and T  are N  x N  matrices transforming in the 

bifundamental representations ( N, N)  and ( N, N)  of U{N)  x U{N),  respectively. 

Thus, T  is complex with T  (also called the antitachyon) its complex conjugate. We 

shall make use of A  in the discussion below.

5.1 .3  T he W ork o f A shoke Sen

The brane-antibrane system discussed above, as well as other configurations of im-

stable and non-supersymmetric D-branes in type II theory and in various type II

orbifolds and orientifolds (such as type I theory), were studied in an important series

of papers by Ashoke Sen [145-149].

^It is also possible to have unequal numbers of branes and antibranes but we shall not consider 

this case.
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M otivation

Sen’s main motivation for these works was the testing of various duality conjectures 

relating one string theory to  another®. For example, suppose theory A a t weak 

string coupling is conjectured to be related to theory B at strong coupling. This 

is the case for type I theory and the 50(32) heterotic theory (which we have not 

discussed in this thesis). A partial understanding of this duality can be obtained 

by studying BPS objects. These objects have the property tha t their masses are 

fully determined by their charge. They have the further im portant property th a t 

supersym m etry ensures th a t they are stable and protected from quantum  radiative 

corrections. One can therefore study their properties perturbatively in theory A at 

weak coupling, extrapolate these properties to strong coupling and reinterpret them 

in term s of non-perturbative objects in theory B. An example of such a BPS object 

is a single type II Dp-brane or Dp-brane, with p even for type IIA and odd for type 

IIB. Because of the role played by supersymmetry in the extrapolation of results from 

weak to  strong coupling, it is not entirely clear whether or not the duality conjecture 

relating theories A and B holds beyond the BPS level. It is therefore of interest to 

study objects which are both  non-BPS and stable and which carry certain conserved 

quantum  numbers. Non-BPS objects are opposite to BPS objects — their mass is 

not fully determined by their charge, they break supersymmetry and they are not 

protected from quantum  corrections so one cannot extrapolate their properties from 

weak to  strong coupling with any degree of confidence. Nevertheless, if such theory-A 

objects are also stable and so unable to decay, they should have an interpretation 

in term s of similar stable non-BPS objects in theory B with the same conserved 

quantum  numbers if the duality relation is correct. Identifying such objects in both 

theories A and B and thereby strengthening the conjecture relating the two theories 

was the topic of Sen’s research.

®The relation of IIA theory to IIB theory through T-duality (see section 4.3) is one such conjec­

ture. Explicit details of other conjectures will not be discussed here; see [55] for further details.
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Tachyon Condensation on the Brane-Antibrane System

The combined Dp-Dp system of section 5.1.2 is non-BPS but it is not stable. Nev­

ertheless, such a system was a key ingredient in much of Sen’s work. One of the

potential was equivalent to pure vacuum. We briefly discuss his reasoning follow­

ing [107,142,147].

Let us consider the N  — 1 D2-D2 system of type IIA theory and compactify the 

two spatial directions of the brane-ant ibrane worldvolume on a rectangular torus with 

radii R \ and R^. The Wess-Zumino term  of the D2-brane contains the coupling

where F  is the U{1) field strength and we have used the relation (4.309). This shows 

th a t the magnetic flux through the torus

is a source of C\ charge (cf. equation (4.317)). T hat is, a D2-brane with magnetic

where V  = (27r/?i)(27ri?2) is the volume of the torus. In the limit Ri ^  oc, the 

magnetic field strength disappears and we recover the physics of the original brane- 

antibrane system.

To study the limit > 0, we make the T-duality transform ation (see section 4.3)

limit Ri —> oo. From (4.330), we know tha t the relation between the string coupling 

of the T-dual theory to th a t of the original theory is

things he argued was th a t a Dp-Dp system with the tachyon at the minimum of its

(5.6)

(5.7)

flux carries DO-brane charge. Similar considerations apply to the D2-brane but with 

an ex tra  minus sign to account for the opposite 2-brane charge.

Suppose th a t the brane and anti-brane each have -|-1 unit of DO-brane charge and 

the field strengths are constant:

(5.8)

Ri ^  Ri = a '/ Ri to the T-dual torus with radii R\ and R 2 and then study the



Now, since T-duality interchanges Neumann and Dirichlet directions, we find th a t 

0-branes and 2-branes (and their charges) get interchanged. The +1 fluxes th a t gave 

DO-brane charge in the original theory imply tha t the dual theory has two D2-branes 

(th a t is, both have charge +1) wrapped on T^. The original D2 and D2, with charges 

+1 and —1 respectively, give rise to a DO and a DO respectively in the dual theory. 

W hen R i and R 2 are large, the dual system is described by a supersymmetric U (2) 

gauge theory [130] with magnetic field strength

27t / 1 0 \
" - 7 ( 0  - i j ^  ,5 .0 )

The original brane-antibrane system had a complex tachyon, signalling instability. 

In the dual system, this instability is reflected in the structure of the field strength 

(5.10) which gives rise to positive energy density on the D2-branes. The minimum 

energy configuration is given by F u  =  0, corresponding to  annihilation of the DO 

and DO. Sen’s non-trivial result, however, is tha t (5.10) is connected to F 12 =  0 via 

a gauge transformation. Therefore, we are left with a BPS system of two D2-branes 

and no flux. In the original picture this corresponds to the tachyon condensing by 

rolling to  a minimum of its potential.

Now, the mass of a D2-brane in the dual system is the brane’s tension times its 

spatial volume:

M 2 =  X (27T^i)(27r^2) =  —  =  To , (5.11)
9s 9s

with T2 and tq given by (4.309). Thus, the total mass of the dual system after DO-DO 

annihilation is just

M  =  2 X M 2 =  2 r o  . (5.12)

Since the dual system after 0-brane annihilation is BPS, we expect th a t the mass of 

the dual system to be unchanged when we continuously vary the radii Ri. In particu­

lar, we can study the small limit of Ri, equivalently the large Ri limit. Furthermore, 

a  T-duality transform ation does not change the mass, being just a new description 

of the same state. Therefore, the mass in the original system is M  =  M  and so the
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mass density M /V  vanishes in the hmit Ri cxo. But in this hmit we should recover 

the physics of the D2-D2 system without flux. The mass density of this configuration 

comes from the brane tensions and the energy density of the tachyonic condensate. 

Hence, we conclude

2T2 +  Kni„ =  0 ,  (5.13)

where Vmin is the minimum of the tachyon potential V(T)  in the low-energy effective 

action.

This reasoning is easily generalised to Dp-Dp systems for p 7̂  2. Therefore, we 

conclude that tachyon condensation on a brane-antibrane system gives a configuration 

of vanishing total energy density and thus is equivalent to pure vacuum.

V ortex Solutions

Let us again consider the above =  1 D2-D2 system in Since the tachyon

transforms in the (1 ,1) representation of U{1) x ?7(1) this implies the gauge trans­

formations:

T ^ h T g - ^  , f ^ g f h - ^  , (5.14)

for g, h  E U{i)  and hence T T  is gauge invariant. Since the tachyon potential is gauge 

invariant it can only depend on \T\. Although it is not known to all orders in |T |, the 

potential is known to assume a Mexican hat shape for weak fields [144,150,151], as 

shown in figure 5.4. Such a shape is well-known in quantum field theory for admitting 

vortex solutions — the shape is just that of the Higgs potential. The tachyon is thus 

likened to a Higgs field. It is assumed that the higher order terms do not change this 

basic Mexican hat shape and so we assume that the minimum of the potential occurs 

at T  =  with 0 arbitrary.

Now, the tachyon kinetic term in the low energy effective is of the form (see [151]) 

D^TD{T, where

DiT = diT  +  i A j '  -  iTA i , 

D{T = diT  -h iA iT  — iTA[ . 
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V(T)

Figure 5.4: The tachyon potential for weak fields assumes a Mexican 

hat shape: V{T)  =  ~ ^ T f +  with T,  > 0. The min­

imum of the potential is VVntn =  —T?/2 and occurs for T =  T.e*®, 

where 6 is arbitrary.

Working in polar coordinates (r, 0) on the 2-branes, we take a static configuration 

whose asymptotic form as r  ^  oo is

T  -  , A e - A ' , ^ -  , A, ~  A; -  0 . (5.17)
or r “ r

This ensures that

dT D,T = - -  i{A, -  A!^)T ^  0 ,

DeT = -  t{Ae -  A ’,) T  ^  0 ,

V{T) ^  , (5.18)

as r ^  oc and so the energy density cancels for large r leaving a soliton in the small 

r region. Continuity requires that T  —> 0 as r —> 0.

If we integrate the gauge fields over the circle Cqq at infinity and use Stoke’s 

theorem we find

/  { A - A ' ) - d i =  j (Fi2 -  /  { A e -  A'^ydO =  27t , (5.19)
J C qq Coo
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where label the spatial directions of the D2-D2 world volume. Hence, the vortex 

configuration has one unit of magnetic flux and so represents a DO-brane.

This result extends trivially to larger p\ the D{p — 2)-brane of type IIA/B string 

theory can be represented as a vortex solution on the Dp-Dp system of type IIA/B 

theory. Our discussion in section 5.2 provides further evidence of this result.

5.1.4 N ote on K-Theory and the Superconnection

In this section we briefly mention W itten’s work on K-theory [152] in the absence of 

a 5-field^. Although we shall not be using K-theory in the sequel, we introduce it 

because of its importance in the context of Sen’s work. Of more importance for the 

next section is the superconnection, an object that we also introduce.

Firstly, we need to transcribe the brane-antibrane system of section 5.1.2 into fibre 

bundle language. We consider N  flat Dp-branes coincident with an equal number of 

flat Dp branes in a ten-dimensional Minkowski target space-time M .  We Wick rotate 

the timelike direction of A4 so that A4 =  We can then decompose A4 as follows

=  E p + i  X , (5.20)

where the first factor, Ep+i =  lR^+\ corresponds to the brane-antibrane worldvolume 

and the second factor to the transverse space. Recall from (5.5) that we can assemble 

the gauge fields and tachyon into the generalised gauge field

(5.21)

which is an 2N  x 2N  matrix. Relative to (5.5), a factor i has been introduced in 

the off-diagonal blocks of (5.21) for later convenience. The fields A  and A' can be 

regarded as connections on U(N) complex vector bundles E  and F , respectively. The 

tachyon T  is then a section of the tensor product bundle E* <Si F  and T  of E  0  F*. 

The worldvolume Sp+i is the base space of the bundles.

iT  A'

^W itten also showed how to incorporate the B-field but we shall not discuss this case as it would 

require a more detailed exposition of K-theory than that presented here.
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K-Theory

We have seen that D-branes carry conserved charges that are sources for R-R gauge 

fields. Since the gauge fields are differential forms, it is natural to interpret the 

charges as cohomology classes — measured by integrating the differential forms over 

suitable cycles of the target space manifold. Minasian and Moore [153] showed that 

while this interpretation is approximately correct, one should regard the charges more 

precisely as elements of K-theory groups.

Briefly, K-theory is a sort of generalised cohomology theory. The word generalised 

refers to the fact that K-theory satisfies some but not all of the axioms of a cohomolgy 

theory (see [154] and references therein). Let us denote by Vect(X) the set of all 

complex vector bundles over compact X . The K-group K{ X)  is the set of equivalence 

classes of pairs of elements of Vect(X), where we regard the pairs {E, F)  and {G, H)  

as being equivalent if for some J  £ Vect(X) the Whitney sum bundles E ® H  ® J  

and F  © G 0  J  are isomorphic®. This equivalence relation thus allows us to consider 

the formal difference E  — F  of two vector bundles and thus to complete Vect(X) into 

the abelian group K{X) .  We can define another equivalence relation as follows. Two 

vector bundles E  and F  are eqinvalent if the addition of a trivial complex vector 

bundle I  to E  and I ' to F  renders them isomorphic [154-156]. Such bundles are 

called stably equivalent. The set of all stable equivalence classes of Vect(X) forms the 

reduced K-group K{X) .  If X  is non-compact we define K{ X)  = K{X) ,  where X  is 

the compactification of X  by adding a point at infinity. For compact X  we define the 

higher reduced K-group K~^{X)  by K{S^  A X)  where 5^ A X  is the smash product

®We remind the reader of the definition of the W hitney sum bundle and of bundle isomorphism. 

Suppose we have two fibre bundles E  =  (M , tt, E) and E' =  {M',  tt', E), where tt and tt' are surjective 

maps (the projections) from the total spaces M  and M '  into a common base space E. For each 

p €  E the pre-images ■K~ {̂p) =  Fp and 7r'“ ^(p) =  are called the fibres at p. Firstly, the W hitney 

sum E  ® E' is the triple (M  0  where M  © M'  is the subspace of all [u,u') £ M  x M '

with 7r(u) =  7t'(u ) and cf{u , u') =  tt{u ) =  ir'{u). The fibre cr~^{p) is simply Fp x C M  x M'.  

Now, given any two points p,q  G T,, a bundle map f  : M  ^  M '  is a smooth map taking each fibre 

Fp onto Fq. It naturally induces a smooth map /  : E ^  E such that f {p)  =  q. Then E  and E'  

are isomorphic if there exists a bundle map /  such that /  is the identity map on E and /  is a 

diffeomorphism.
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{S^ X X)/{{S^  X xq) U (sq X X )), with (sq)2;o) a base point in x X .  In particular, 

for X  = S'^ it can be shown that 5^ A 5" =  5’”+^

Using Moore and Minasian’s observation, W itten reinterpreted much of Sen’s 

work within the context of K-theory. For example, for type IIB theory he showed 

that the stable, supersymmetric Dp-brane charges are described by the K-group of 

the transverse space X  =

n ~ n \ , P odd ,
K{R^-P) = K{S^-P) = I (5.22)

I  0 , p even ,

which agrees with the fact that p is odd.

The type IIA case is more subtle. It was conjectured by W itten and subsequently 

explained by Hofava [157] that the stable, supersymmetric Dp-brane charges are given 

by the higher reduced K-group However,

K - \ S ^ - P )  =  K(S^  A S^-P) = , (5.23)

and so we find that p is even, as expected.

The type IIB vortex construction of the last section can also be reinterpreted in a 

similar K-theoretic light. One can imagine generalising the construction as follows. A 

D(p — 2)-brane is created as a bound state of a Dp-Dp system. These can in turn each

be created as a bound state of a D(p -|- 2)-D(p -f 2) pair. Continuing in this fashion, 

we see that we can create a Dp-brane for any p starting from an equal number of 

9-branes and 9-branes. So let us consider consider N  9-branes and N  9-branes. The 

minima of the tachyon live on the vacuum manifold

V (^) .  .  UiN) . (5.24)
^v-^)diag

That the gauge group is broken to the diagonal U{N)  subgroup was pointed out 

by Witten. It results from the possibility of separating the brane-antibrane pairs 

indicating that the eigenvalues of T* are all equal. The form of T* is then preserved by 

the gauge transformation (5.14) only if h = g, giving the unbroken group t^(-^)fiiag- 

In a topological defect of dimension p-f-1 is stable provided the homotopy group

7T8-p(V) =  7,s-p{U{N)) , (5.25)
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is non-trivial. But the Bott  periodicity theorem states that

, p odd , 

0 , p even ,
(5.26)

for N  > {9 — p)/2.  Therefore, combining (5.22) and (5.26) we have the following 

result: provided N  > {9 — p)l2,  stable, supersymmetric Dp-branes can be formed as 

a bound state of N  D9-branes and N  D9-antibranes in type IIB theory. In particular, 

the result is true for =  l ,p  =  7 which agrees with our treatment of the vortex 

solution as presented in the last section.

A similar but more involved generalised vortex construction holds for type IIA 

theory in which stable, supersymmetric Dp-branes are created as odd-codimension 

defects on a system of non-supersymmeric D9-branes. These latter objects were also 

considered by Sen but since we shall have no cause to use them in the sequel, we 

refer the reader to the extensive literature on the relationship between D-branes and 

K-theory. A by no means exhaustive list of references is contained in [158].

The Superconnection

The superconnection, which will be of relevance to us in the next section, was intro­

duced by Quillen in his work on the Chern character of a K-class [159]. We briefly 

review some elements of his formalism following [160-163].

One regards the Whitney sum, W  =  E®F,  of the two U{N)  vector bundles E  and 

F  on the branes as a superbundle, that is, a bundle that carries a Z 2 -graded structure. 

The endomorphisms of W  form a superalgebra with the following Z 2 -grading:

for X  6 End{W).

When considering differential forms on the base space Ep+i there is a natural 

Z-grading corresponding to the degree of the forms. A r-form cu may be extended 

to a; ® X  and thus it is the total ^ 2 -grading, r  +  deg(X), that is relevant. These 

extended forms also form a superalgebra, defined by the following rule:

deg(X)
0 if X  : E  ^  E  or F F

l i f  X  : E F  or F  E  ,
(5.27)

{ u ^ X ) A { r ] ® Y )  = (-l)deg(X)-deg(„)(^ A r j ) ® X Y  . (5.28)
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The superconnection P  on VF is defined as an operator of odd degree satisfying 

the Leibnitz rule. Locally it is given by

A  = dl  + A ,  (5.29)

where I  is the 2N x 2N unit matrix and A  is given by (5.21). This can be broken 

down into the two components

/
V  =

d A 0 ,
(5.30)

0 d + A  '

which is an odd degree connection on W  preserving the Zs-grading and

[  0 i f  \   ̂ ^
T  = , (5.31)

[ ^ T  0 J

wliich is an odd degree endomorphism of W.  Note that since T  is odd, the tachyon T  

anti-commutes with one-forms d^\ where are coordinates on Sp+i [160,163]. This 

can also be inferred from (5.28).

The supercurvature is calculated as

, F — T T  iD T  
j r  =  ^ A ^ =  I 1 , (5.32)

iD T F  -  T T

where F = dA + A A A and F' =  dA' + A  / \A  are the standard gauge held strengths 

of the associated gauge fields and

DT  = dCD{T , DT = dCD{T , (5.33)

with DiT  and D{T given by relations (5.15) and (5.16) but without the factor i:

DiT = diT + A T - T A ,  ,

D{T = d i f  + A i f  -  TA[ . (5.34)

It is crucial that one takes T  to anticommute with d^  ̂ in order to get the correct 

covariant derivatives. Therefore, the convention is that all differentials are written 

on the left, as above.
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We can now introduce the Chern character. Let us first define the supertrace, Str, 

of matrices such as the supercurvature as the difference of the ordinary vector bundle 

traces in the fundamental representation of the upper left block and the lower right 

block. The Chern character is then defined as

ch(^) =  Str exp(^) . (5.35)

For future purposes, let us pick out the 2-forms contained in the first three terms of

the Chern character. We have

ch(J^) =  S tr( l +  J^+^JP-AJ^) +  --- . (5.36)

The first term is obviously zero. The second gives tri^  — trF '.  For the third term

we find that ^  A ^  is equal to

( F - T T )  A { F - T T )  -  D T  A D T  *

* { F ' -  T f )  A { F ' -  T f )  -  D T  a TTT

Therefore, we find

{ S t r ( l + J ^ + i j ^ A J ^ ) } 2  

=  tr ( F - F ' - i { F , T ’T} +  | { F , r T } - |D T A L T  +  i D T A D T )  (5.38) 

=  tr {F -  F' -  ^^{F, fT} + l { F ' , T f }  -  D T  A D T )  ,

where, in going from the second to the third line, we have again used the fact that 

T  anticommutes with

Finally, we note that the superconnection obeys the transgression formula 

[161, p. 47]:

dAtch(J') — ch(^o) =  c? J  Str |^^^^exp.F t) , (5.39)

where At = T> + tT  is a. differentiable one-parameter family of superconnections with 

J-t its corresponding curvature. In particular, we have

(5.40)
F  0

0 F'
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5.2 R-R Couplings on Dp-Dj9 Systems

In this section we present our proposal and calculation contained in [143].

5.2.1 The Proposal

As before, we consider N  coincident Dp-Dp. It is clear from K-theory and Sen’s vortex 

construction that we should be able to describe a supersymmetric D{p — 2A;)-brane 

as a bound state of the brane-antibrane system. To do this we trivially embed its 

worldvolume brane-antibrane worldvolume and let the tachyon

condense into a generalised vortex configuration. The precise form of T  for k > 1 

can be found in [152]. What is relevant is that the general case > 1 and A: > 1 

has the same qualitative features as the =  A: =  1 case we explicitly described in 

section 5.1.3. That is, T  approaches its vacuum expectation value everywhere except 

close to the core Ep_2fc+i where it vanishes and is such that the covariant derivative 

D T  falls off sufficiently fast far from the core.

Our proposal is that the generalisation of the Wess-Zumino term (4.313) to the 

above situation is given by

5 -  /  IC A ch(JP ')) , (5.41)

where T  is the supercurvature (5.32). We have written rather than “= ” because 

in our calculation below we will not be keeping track of overall numerical factors. We

have also suppressed the A-roof genus contributions. The calculation does not explic­

itly check for their existence but a recent anomaly inflow argument of Schwarz and 

W itten [164] shows that they are present nonetheless. Furthermore, the calculation 

assumes N  = k = \  and checks only the terms

5  ~  /  Cp_i A ( s t r ( l  +  J ^ + ^ J ^ " A J ^ ) jy 2 j 2

~  f  Cp. i a ( f - F ’ - ^ { F , f T }  + ^ { F ' , T T } - m A D T j  ,(5.42)

where we have used (5.38) and dropped the trace since N  = 1. We  then conjecture 

that (5.41) is the full result.
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Let us show that our proposal is at least plausible. If we integrate both sides 

of the transgression formula (5.39) over the 2A:-dimensional ball 5^^ of large radius 

r  surrounding the D(p — 2fc)-brane we find that the right hand side integrates to 

zero. This is because because D T  vanishes on this space when the tachyon condenses 

and so all forms on this side are of odd degree integrated over an even-dimensional 

manifold. Hence, we conclude

[  ch(J-) =  [  ch(J^o)
Js2k

-  [ t r e ^ -  f tre ^ ' . (5.43)
JB^k

That this is of the required form can be seen by taking N  = k = 1. Then upon 

letting r  —> oo we have

5  -  /  Cp_i A [  { F - F ' ) =  I Cp_i A / (5.44)

the form of which we see is consistent, up to normalisation, with the p = 2 analysis 

of section 5.1.3.

5.2.2 The Calculation

As we now show, the calculation of (5.41) (more precisely of (5.42)) involves inferring 

it from the direct computation of a two-point and a three-point string scattering 

amplitude on the upper half-plane. At this stage much of the technical material of 

the last chapter becomes relevant. In particular, the scattering process of interest 

is an inelastic one where a R-R boson annihilates onto the common worldvolume

of a coincident Dp-brane and Dp-brane to create some open strings (cf. figure 4.3).

Therefore, we will make use of section 4.1.6 and the rules given in section 4.2.2 in order 

to evaluate these mixed open-closed amplitudes. Since we are dealing with infinite, 

flat branes we work in static gauge and ignore transverse fluctuations. All amplitudes 

are therefore calculated about a Minkowski background with =  $  =  0.

For convenience, we list the vertex operators that will be needed:

Type II  R-R Vertex Operator

From (4.242), (4.261), (4.262), (4.272) and the doubling rules we obtain the doubled
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R-R vertex operators in fixed form®

z ] k) =   ̂ce- ‘̂ /‘̂ S j ^ - ^ { z )  tlce-^/^Sye^'^-^{z) t , (5.45)

where Im 2; >  0, =  D^k'" with given by (4.301) and

Vi.k) = i ( /4 )„ ,„ « r « ■■« = !{;/*)„...^r'T w  ■ ■ • r »  , (5.46)

with k = 2, A for type IIA and k = 1,3, 5 for type IIB. Hodge duality allows us to 

restrict the field strengths to A: <  5 which correspond to Dg-branes w ith q = k — 2. 

We do not include k = 0 because, as noted in section 4.2.2, the existence of (—2)- 

branes is unclear. Each ranges over the indices 0 , . . . ,  9. The m atrix M  was given 

in (4.304) and it satisfies M~^ = —(— . Note th a t the vertex operator

(5.45) has to ta l superghost number —1. Recall tha t to obtain the integrated form of

(5.45) one simply omits the c-ghost insertions.

Open String Tachyon Vertex Operator

The doubled open string tachyon vertex operators in fixed form in the —1 and 0

superghost pictures have been given exphcitly in (4.275) and (4.276). As a reminder

they are^°

V!f^ \x;p)  = o ce~'^e^*^'^(x) o , (5.47)

V ^ \ x ; p )  — 2 S cp • ■0e^* '̂^(x) o , (5.48)

where x  is on the real axis, — (p*,0), =  1/4 is the tachyon momentum and

we have suppressed the polarisation scalar. As discussed in [151], the fact th a t the 

momentum lies tangentially to the worldvolume directions is a consequence of the 

branes and antibranes all being coincident. Of course, the vertex operators for the 

antitachyon T  are the same as those above — to distinguish between T  and T  the 

CP factors (5.4) should be understood.

®We follow [111] and set a ' =  2 throughout.
^°The reader should not confuse p  and k denoting the dimensionality of the various branes and 

field strengths with the same letters denoting momentum.
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The Two-Point Amplitude

The amplitude containing one R-R field and one tachyon is

= j  Vot̂ CKG)

Note that the vertex operators are in integrated form and that their pictures have 

been chosen so that the total superghost number is —2, as we discussed section 4.2.2. 

On a similar note, we can trade in the integrations over x, z for one over the conformal 

Killing group in order to cancel the Vol(CKG) factor provided we also fix the vertex 

operators^ ̂  However, there is no need to perform any calculations here — the 

amplitude vanishes by virtue of the suppressed trace over the CP factors (5.4). An 

independent reason why the amplitude is zero is that the trace over the spinor indices 

vanishes, as outlined in appendix C.

The Three-Point Amplitude

The amplitude between one R-R field and two tachyonic particles is

= j  . (5.50)

Again, the vertex operators are in integrated form and their pictures have been 

chosen so that the total superghost number is —2. In order to cancel the Vol(CKG) 

factor we follow [116] and fix the points {x',z) = {—x,i)  and the associated vertex 

operators and V ^ \ z , z )  and trade in the integrations over x ' , z  for one

over the conformal Killing group. The amplitude therefore simplifies to
/'O O

j T , T , R R  ^  / dx{Vrj!^\x;p)V^~^\x'-,p')Vlfj^^\z,z;k))
Jo

The interchange of the tachyonic vertex operators in the second term above relative 

to the first takes into account the two cyclic orderings of these operators on the real 

line. Note that the suppressed CP factors will also be interchanged. The sign in the 

second term above is negative and not positive for the following reason. We know 

^^Recall th a t this trade-in was discussed in section 4.1.6.
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that the sign of the matrix M  contained in is ambiguous (cf. (4.304)). It is

conventional to take the sign as positive for a brane and negative for an antibrane. 

Prom (4.293) we know that the brane and antibrane are located at cr̂  =  0, tt in terms 

of the open string worldsheet coordinates (cr\cr^) on the strip. The transformation 

to the upper half-plane is given hy x - \ - i y  =  Hence, the brane lies along the

positive real axis and the antibrane along the negative real axis. Equation (5.51) 

therefore has the sign ambiguity built into it allowing us to take M  with a positive 

sign, as in (C.2).

Now, given that amplitudes are independent of how the total superghost charge 

is distributed among the individual vertex operators, we may rewrite (5.51) as
roo

j^T,T,RR ^  / dx{V^^\x-p )Vir^ \x '-p ')V^-^\z ,Z -k))
Jo

-  j  d x {V i^ \x ' \p ' )V ^ ~ ^ \x \p )V ^ j l \ z , z \k ) )  . (5.52)
J — 00

The first term is given by
roo

Jo
x(P_^(fc))“^ (M -i) /c (2 )e - ‘̂ (")/25^(f)e*^-^(")} . (5.53)

We find that the integrand factors into four independent pieces, one for each sector:

ghosts: {c{x')c{z)c{z)) , (5.54)

spin fields: {P^$^k)T'^{M~^)p"'pi{'ip\x)So,{z)S^{z)) , (5.55)

bosons: (̂ 2̂ip-x{x)^2ip'-x{x')^ikx{z)^k-x{z)^ ^

superghosts: )g-‘/>(2:)/2 g-<̂ (2 )/2  ̂ _ (5.57)

All of these are well-known correlators. Indeed, (5.54) was evaluated in (4.253)

to be

ghosts: {x̂  — z ) { x ' — z ) { z  — z)  ̂ (5.58)

whilst the ( ipSS)  correlator given in (4.206) determines (5.55) to be

spin fields: ^ (P _j^ (fc))“^(M ”^)^>i(r)a^(x -  zy^^^{x -  z)~^^^{z -  z)-^!^

(_l)p(p+i)/2^^ (P_^(fc)M r>,(a; -  z ) - ^ l \ x  -  z ) - ^ l \ z  -  z ) - ^ ' ^  ,(5.59)
V2
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where we have used the spinor conventions Usted in appendix A.

The bosonic correlator can be calculated by hand using the expansions (4.69), 

the { X X )  correlator (4.302) and the relation (4.191). It is simpler to appeal to the 

general formula (which can be found in almost any conformal field theory text, see 

for example, Di Francesco et al [94]):

q j  îkrX{z,)  ̂ ^  J I ^0|e*Eiferx/2|Q^

i yi<j J

=  I r i ( ^ . -%)*'■*'I '5 (E  • (5-60)
I i<j J i

Hence, we hnd

bosons: {x -  {x -  z f ^ \ x  -  z f ^  ' ^ x '  -  z f ^ '  \ x '  -  z f ^ ' ' ^ { z  -  z f ' ^

X 5 { p p ' { k +  k ) / 2 )  . (5.61)

We can use (5.60) and the substitutions X  —> 0, ki —> —iq\g^ and x^/2  —> 0(0) to 

determine

=  ] Y[(zi -  i  (o |e ^ ^ < '‘‘̂ (° |̂0)
i V i<j J

I i<j

Zi -  Z j y ^ ‘̂sĥ ^9h K Sq ^̂ 2 , (5.62)=  { n (
V t < ]

where =  — J2i^lgh have used the superghost norm ahsation (4.237). In

particular, we find

^-(j>{z)/2^-4>{z)/2\  ̂ _  — t y ^ l ' ^ [ z  — . (5.63)

The second term  in (5.52) is evaluated by making the substitutions x  ^  x ' , p  p'.

Using the fact th a t all momenta are on-shell: = p'^ =  1/4 and k^ =  0, then

putting everything together and after a little algebra we can express the amplitude 

as

^ rxR R ^  ^(_l)i+p(p+D /2 (P^f(t)Mr‘){p, -  p'),{5.64)
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where we have suppressed the delta-function and introduced the Mandelstam variable

t = - { p  + p ' f  = - { k ^ f  . (5.65)

Note that given the fact that all momenta are on shell, we must have t > 0. In

writing the amplitude in the form (5.64) we have used momentum conservation

2p + 2p' + k + k = 0 , (5.66)

and various other relations such as

4p ■ p' = —{1 + 2t) , —- k - k  = 2p- k  = 2p ' -k  = 2p- k  = 2p' -k  = t ,  (5.67)

and k'  ̂ = k' .̂

The integral in equation (5.64) can be expressed in the more suggestive form
poo

X /  dxx^''-\l +  (5.68)
Jo

where r = s = —t. For  ̂ < 0 this integral converges to B[—t, —t]/2, where

B[r, s] is the beta function given in terms of the gamma function by 

B[r, s] =  r[r]r[s]/r[r +  s]. Use of the well-known identities

B[r, r]B[r +  ^ + M = ^r[r] , , (5.69)

then allow us to express the integral as

7T r[-2t]
2 r [ i - i ] 2  ■ 

This may be written alternatively as

(5,70)

f r - ( 5 . n )

after using the doubling fo rm u la

T[2r]  22’ ' - ! r[r| . (5.72)
r|r +  i] 0F

This result is strictly vahd for  ̂ < 0 but can be analytically continued for t  non­

negative (see next section). Therefore, we may write the three-point amplitude as

^  J ^ ' n ( p _ ^ i i ) M r ‘) ( n - p ' )  . (5.73)

147



The trace over the spinor indices is calculated in appendix C with the result;

TV (P_^(fe)M P)(p, -  pO =  16i [SkAHkY + 5^o-kAHio-ky]{Pr ~  p[) , (5.74)

for p =  — 1 and

T r ( P _ ^ ( , ) M r O f e - p ')  , ,
(5.75)

for p 7  ̂ —1.

Since 1 <  A: <  5, only one of the two terms in (5.75) contributes to the amplitude 

depending on whether p <  5 or p >  5. W hen p =  5 the two terms contribute equally 

as a consequence of self-duality. Thus, without loss of generality we may consider 

1 <  p <  5 and express the amplitude in the form

^  i  -  P '')h . „  , (5.76)
i [ 2  t\ p.

Finally, a word concerning the suppressed trace over CP factors (5.4). Although 

we have denoted both tachyons generically by T  a non-zero result is obtained only if 

one is the complex conjugate of the other. This may be observed by multiplying the 

matrices in (5.4) together. We find (symbolically)

c x c  =  0 ,  d X d = 0 , c X d = b , d x  c = a , (5.77)

where c and d are the CP factors for the antitachyon and tachyon, respectively. This

indicates tha t if the two tachyons are of the same type then the amplitude is zero.

Comparing the order of the matrices c and d w ith the order of the vertex operators

in (5.51,5.52) implies th a t the tachyon T  has momentum p' and th a t the antitachyon

T  has momentum p. We shall see below th a t (5.76) corresponds to a D(p — 2)-brane

embedded in the Dp-Dp system via the vortex construction as described earlier

^^The amplitude vanishes for p =  0 since we have excluded k =  0 (that is, (—2)-branes) from 

consideration. In addition, the amplitude takes a different form for p =  —1 as a result of (5.74). 

This is to be expected since there are no (—3)-branes in type II theory. In the section below we 

only consider p >  1.
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5.2.3 Inferring the Wess-Zumino Term

In this section we infer the Wess-Zumino term  (5.41) from the ampHtude (5.76).

Firstly, let us examine the prefactor in (5.76). The gamma function has simple 

poles a t each non-positive integer. Therefore, the numerator has poles a t t =  n ,

n =  0 , 1 , . . . ,  whilst the denominator has poles at t = n / 2 , n  =  1 ,3 ,___  Hence, the

am plitude has a pole for t  a non-negative integer and a zero for t  a positive half­

odd-integer. In field theory, such poles correspond to resonances with mass-squared 

=  —{k^y = t = n = 2 n / a ' , n =  0 , 1 , . . . ,  (see figure 5.4) and the zeros correspond 

to non-propagating modes^^. In [116] it was shown th a t similar but reversed pole-zero 

behaviour occurs in the amplitude for one NS-NS string to decay into two massless 

open strings stuck to a D-brane.

At low energies, —t =  (A;*)̂  ~  0, we may Taylor expand the gamma functions as:

r[-(j = -ir[i -  i|
=  - H a ( l - t ? S ( l ]  +  0(i")) , (5.78)

r[i-(] = r[ii(i-(V.li] + o((^)),

where the psi-function is given by ■0[r] =  r'[r]/F [r]. Given that: F[l] =  1, F [|] =  

V ^ , V'[l] =  ~ 7 ) '0[|] =  —J — 2 In 2, where 7  is the Euler constant, we obtain the 

following form for the three-point amplitude in the low-energy regime:

^ T .T .R ! t  ^  +  21n2 +  0 ( t ) \  -  p'<)4.p . (5.79)

T h e  P o le  T e rm

The first term  in the amplitude (5.79) corresponds in field theory to  an R-R boson

decaying into the massless gauge field A  (or A )  which propagates (resulting in the

pole) and then decays into two tachyons. The Feynman diagram for this process is

shown in figure 5.5(a).

As we now show, the amplitude for this process can be derived from the low-energy

^^Note that the poles and zeros together satisfy = n/a ' , n — 0 , 1 , ,  which is precisely the 
same equation for the masses of the (GSO-projected) open string modes as was given in (4.157).
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- p

(a)

m ‘̂  =  t  
tip  kQQQSU* ►

(b)

Figure 5.4: (a) The general field theory kinematics corresponding 

to the two-tachyon—RR boson scattering process of the last sec­

tion. Note th a t since the tachyon momenta are separately zero in

tum  conservation relation (equation (5.66)) reduces to one for the 

longitudinal directions only, (b) The t-channel resonance in the 

amplitude (5.76) corresponds to  the exchange of a  particle of mass 

m? = t = 2 n /a ' ,n  =  0, 1 , . . .  with propagator ~  l/((fc ')^ +  m^).

effective Lagrangian

jC\ =  XA A Hp — XA.' A Hp +  £,jh +  jCa' — D^TDjT  , (5.80)

where £ 4  and £ a' are the canonically normalised gauge field Lagrangians supplying 

the gauge field propagators, A is some Constanta‘S, and the tachyonic covariant deriva­

tives are given by (5.34). The action is given by integrating Ci over the worldvolume 

Ep+i of the Dp-Dp  system.

The origins of the A - H  and A '-H  terms in this Lagrangian are well-known since 

^^Establishing a precise correspondence between string theory and field theory requires appropri­

ate normalisation of the vertex operators so that the string theory amplitude agrees in magnitude 

(and not just in form) with the field theory amplitude, assuming that the kinetic terms in the field 

theory are canonically normalised. We shall be content to verify that the two amplitudes have the 

same form.
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Hp +  "4, A'

(b) (c)

Figure 5.5: (a) Field theory Feynman diagram corresponding to the 

first term of three-point amplitude (5.79). This is built from the four 

vertices shown in (b) and (c) which arise from the first and second 

and last term of the Lagrangian (5.80) respectively.

they contribute to the standard Wess-Zumino term  (4.313). For example, for the 

A - H  string amplitude we note th a t the the doubled vertex operator for A in the 

— 1 superghost picture is given by A:) =  c{x)A ■ where

=  {k \0) ,k^ =  0. A i is the polarisation of the gauge field and satisfies k ■ A =  0. 

Therefore, since the amplitude has no integrations (cf. (5.49)) and the trace over the 

spinor indices is equivalent to th a t in the amplitude we deduce

~  . (5.81)

This is of the same form as the field theory amplitude coming from the A - H  term  in 

(5.80) with

as the vertex factor of the A - H  interaction (see figure 5.5(b))^^. Similarly, string

obtain the field theory vertex factor we have followed the rules in [165] where one examines 

iCi  and replaces 5* by —ip* when acting on a field with momentum p*. Note that our metric is of 

opposite signature to that in [165].



theory gives

~  , (5.83)

where the minus sign comes from the opposite sign of M  on the antibrane relative to 

the brane. This accounts for the sign of the A ' -H  term in (5.80), leading to a vertex 

opposite in sign to (5.82).

The tachyon kinetic term in (5.80) can be deduced from a calculation of 

and . Indeed, we find

~  2p • A

-  { p - p ' ) - A ,  (5.84)

where we have used relation (4.144): {ip^{x)'ip^(y)) =  rf^/{x — y), momentum conser­

vation and the on-shell condition k ■ A = 0. Similarly, interchanging the order of the 

tachyonic vertex operators and redistributing the ghost charge as in (5.52), we find

2p' ■ A ^  —{p — p') ■ A . (5.85)

Note that (5.77) implies that T T  couples to A  and T T  couples to A ' . This is consistent 

with the definition of the covariant derivative in (5.34) and of the tachyon kinetic 

term which contains

- { d ^ T A i f  -  TAi d^f )  -  {A\Td^f  -  d T T A '^  . (5.86)

The vertex factor for the A -T -T  interaction depicted in figure 5.5(c) is therefore

(p‘ -  p") , (5.8V)

where p'* corresponds to T  and where both p' and p are ingoing to the vertex. Clearly, 

equation (5.87) agrees with (5.84). Note that the A '-T -T  interaction is of opposite 

sign to (5.87) and so agrees with (5.85). There is a subtlety here in that (5.86) is 

also contained in the alternative tachyon kinetic term

-{d^T  -  TA^){dif  +  Ai f )  -  (d^T +  A'^T){dif  -  TA[) . (5.88)
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However, an examination of the CP factors reveals that we can have crossed T -A -  

T -A '-type  interactions which are reproduced by the tachyon kinetic term in (5.80) 

but not by (5.88)^®.

We are now able to combine figure 5.5(b) and figure 5.5(c). We see that the field 

theory amplitude corresponding to figme 5.5(a) is

~  (5 8̂9)
I p.

where the gauge field propagator is given by idj /{k^y (in Feynman gauge, for exam­

ple) and we have suppressed the tachyon polarisations. Therefore, we see that this 

amplitude is of the same form as the pole term in (5.79).

The C ontact Term

The second term in (5.73) is a contact term corresponding to the field theory vertex 

depicted in figure 5.6.

f  

T

Figure 5.6: Field theory Feynman diagram corresponding to the sec­

ond term of the three-point ampHtude (5.79).

This vertex has a factor

-p '* ) , (5.90)

where n  is some constant. Comparing with (5.79) and (5.89) we determine that ^  

must be of the same sign as A. After using momentum conservation and the Bianchi 

identity (4.268), we see that this vertex is reproduced by the Lagrangian

£2  =  l ^ T d T  A H p  . ( 5 .9 1 )

^®In fact, it is the alternative kinetic term  (5.88) that appears in the effective action if the brane 

and antibrane worldvolum es are considered to be distinguishable [151].
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The Wess-Zumino Term

Consider the A -H  and A'-H  terms of (5.80) together with the contact term (5.91). 

After arranging covariance of the tachyon derivative in (5.91) and integrating by 

parts, the action for these terms can be written as

5 ~  y  Cp_i A (dA -  dA' +  ^d{fDT)'^  , (5.92)

where Hp =  dCp-i and we have used the properties (B.3) concerning the commuta­

tivity of forms and the Leibnitz rule. Since A and are of the same sign, we can 

rescale the tachyon and set /i/A =  1. Since we are assuming that the gauge fields are 

abehan (that is, =  1) we have have F = dA, F' = dA' and after a httle algebra 

we can rewrite (5.92) as

/  Cp_i A ( F - F ' - i { F , f T }  + ^ { F ',T f}  + D T A D T j  . (5.93)
J^p+i \  z z y

Note that since we are in static gauge and ignoring transverse fluctuations, the pull­

back Cp-i is equal to Cp-\. Equation (5.93) is now to be compared with (5.42). At 

first sight there appears to be a discrepancy — the sign of the DT  A DT  term above 

is opposite to that in (5.42). However, there is no inconsistency. This is because 

the tachyon in (5.42) is defined so as to anticommute with the differentials But 

in (5.93) the tachyon is a standard field theory 0-form which commutes with d̂ ' .̂ 

Recalling the convention that in working with the superconnection all differentials 

are written on the left, we hnd (5.93) to be entirely consistent with (5.42).

5.3 Conclusions and Further Work

In the last section we have seen by calculating some tree-level string amplitudes that 

in a coincident brane-antibrane system there is in addition to the usual Wess-Zumino 

term (4.313) the term

Cp-i A d{TDT) , (5.94)

to order 0{TT)  in static gauge. We have seen from (5.93) and (5.42) how this 

term along with the 0{F)  terms from the usual WZ action can be written in terms
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of the curvature of the superconnection for U{1) gauge fields. Assuming th a t the 

non-abehan generahsation is given simply by including a trace over the fundamental 

representation of the gauge group as discussed in section 4.2.4, this prom pts us to 

propose th a t the full result to all orders in the tachyon is given by (5.41):

Clearly, our ‘derivation’ of the above result has been somewhat heuristic. An 

obvious avenue for further work is to try  to establish (5.95) in a more precise manner. 

Several papers along this hne [162,163,166] using the techniques of boundary string 

field theory appeared in late December 2000 and have confirmed the result. For 

a recent review of string field theory in the context of tachyon condensation see 

Ohmori [167], for example. As mentioned just below (5.41), a very recent paper 

of Schwarz and W itten [164] has confirmed the existence of the ^-roof genus terms 

using an anomaly inflow argument. Finally, tachyon condensation and other aspects 

of Ashoke Sen’s work remain topics for current research [168].
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Part III

Generalised Kaluza-Klein Theory



Chapter 6 

(Brief) Review of Standard 

Kaluza-Klein Theory

In this chapter we review some of the essential features of five-dimensional abelian 

Kaluza-Klein theory following the treatm ent presented in [169-171].

6.1 The K aluza-K lein Ansatz

Einstein’s equations in five dimensions with no five-dimensional energy momentum 

tensor or cosmological constant are

G a b  =  0  , ( 6 .1 )

or, equivalently

R ab  =  0 , (6 .2 )

where G a b  =  R a b  — R q a b /^ ^  is the Einstein tensor, R a b  and R  =  q ^ ^ R a b  are the 

five-dimensional Ricci tensor and scalar respectively and Q ab  is the five-dimensional 

metric tensor^. These equations may be obtained by varying the five-dimensional 

În this and subsequent chapters, we shall use r to denote the fifth direction; indices A, B , ... =

0, 1,2,3,4 =  r to denote five-dimensional tensor components; indices will run over 0,1,2,3

and small Latin indices a, 6,... will run over 1,2,3. We use the mostly plus convention for the metric 

and define the Riemann tensor as R \ cd  ~  ^c ^ bd  +  — {C D) and the Ricci tensor as

R a b  = R^a c b -
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Einstein-Hilbert action

S = - ^  J d'^xdr R , (6.3)

w ith  respect to the five-dimensional metric.

In order to solve (6.2) it  is assumed that the fifth  direction is compactified on a 

very small circle of radius Tq. One then chooses the following metric ansatz:

( Qi j + 2K?(j)^AiAj y/2K(p‘̂ A i \
9a b  =  I ^  , (6.4)y ^/2n(iP'Aj (jp' j

where =  SttG, w ith  G the four-dimensional Newton’s constant. Note that the 

ansatz is just a 1-1-4 decomposition of the five-dimensional space-time in which the 

“ lapse function” is the four-dimensional metric gij and the “shift vector” is the four­

dimensional electromagnetic potential Ai. As discussed in the general introduction 

(see page xv), the 44-part of the metric is the square of the Brans-Dicke scalar 4>.

One then assumes the so-called cylinder condition, which means dropping all 

derivatives w ith  respect to the fifth  coordinate. This is equivalent to expanding the 

fields in harmonics on 5^:
n=oo n=oo

9i j {x , r )  = , A i {x , r )  =  ^  A^f^ ,
n = —oo n = —oo
n=oc

0 ( x , r )  =  ^ ( n ) ^ i n r / r o   ̂ (g g)
n = —OO

(where —nro <  r  <  vrro) and neglecting all but the zero modes n =  0. This low-energy 

approximation is justified if  Tq is very small because the four-dimensional masses n/ro  

of the non-zero modes w ill then be so large as to put them beyond experimental reach. 

The smallness of the extra dimension explains why it has not been directly observed. 

W ith  the cylinder condition, equations (6.2) may be decomposed as

Gi, =  ^  [ V i ■□</)] ,

(6 .6)

where — QijF^iF^^/A is the electromagnetic energy-momentum tensor

and Fij =  V i A j  — V j A i .  Gi j  is the four-dimensional Einstein tensor calculated from
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gij, Vj is the corresponding compatible covariant derivative and □ =  VjV*. Indices 

are lowered and raised with the metric gij and its inverse, respectively. We stress that 

equations (6.6) are satisfied by the massless (n =  0) modes only; for ease of reading 

we have dropped the superscript .

These equations may also be obtained by varying the 4d action

S  = . (6.7)

It is the central result of Kaluza-Klein theory th a t this action may be obtained via 

dimensional reduction of the original 5d action (6.3). This may be seen by invoking 

the cylinder condition and ansatz (6.4) to expand R  as

R =  - ^Dcp  , (6 .8)

integrating out the fifth dimension, neglecting the to tal derivative stemming from the 

th ird  term  in (6.8) and equating

, (6.9)

where = 2nro is the volume of the fifth dimension.

If 0 =  1, then the first two of eqs. (6.6) are just Einstein’s electrovac equations 

and Maxwell’s equations respectively. However, 0  =  1 is only consistent with the 

th ird  of the equations (6.6) if FijF^^ =  0 (cf. General Introduction, page xv). The 

ground state

<  9ij >= Vij , < Ai>=^0 , < ( f ) >=l  , (6.10)

is therefore a solution of (6.6).

Consider now the effect of five-dimensional coordinate transform ations 

yiA =  yfAf^yB^^ with y^  = ( x \ r ) ,  preserving the form of the line element

=  9%dy^dy^
=  gijdx^dx  ̂+  4>̂ {dr +  V2 nAidx )̂'  ̂ , (6-H)

constructed from the massless modes. Two such transformations are of note. Firstly, 

(f){x) and Ai{x) are taken to transform as a scalar and a covariant vector field respec­

tively under four-dimensional general coordinate transformations. Hence, will
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be invariant under x* —> x'* =  x''^{x) with the r-coordinate remaining fixed. Secondly, 

the transformation

— s. ' r ' *  —  - r *Ji/ ' Ju Ju ^

r  —>■ r' — r , (6 .12)

requires the massless gauge field to transform as

A i ^  = A^- K  ̂diX , (6.13)

in order that (6.11) be invariant. In this way one sees how U{\)  local gauge invariance 

is reinterpreted as an x-dependent coordinate transformation of the extra spatial 

coordinate r.

To extend the Kaluza- Klein approach to gauge groups more complicated than U{1) 

requires more than five dimensions. Basically the idea is that the gauge group G 

obtained in D =  4 is identified with the isometry group of the n > 1 extra dimensions. 

These dimensions, in analogy with are taken to be compact and of Euclidean 

signature. For example, one could take as the internal space the homogeneous coset 

space G/ H,  where G is a compact Lie group with maximal proper subgroup H.  

However, a space-time in which the internal space is in general curved is not a solution 

to the higher-dimensional vacuum Einstein equations. In order to achieve a consistent 

compactification it is necessary to either (a) incorporate torsion [172-175], or (b) 

add higher-derivative terms (eg., W)  onto the higher-dimensional Einstein action 

[176], or (c) augment pure gravity with higher-dimensional m atter fields, as shown 

by Cremmer et al [177]. The third of these alternatives has become the standard way 

to reconcile extra dimensions with the observed four-dimensionality of space-time in 

Kaluza-Klein theory. Unfortunately, due to the presence of the higher-dimensional 

matter, it abandons Kaluza’s dream of a purely geometrical unified theory of nature. 

Such higher-dimensional KK theories, however, can only give rise to four-dimensional 

gauge bosons. If the 4d theory is to include fermions then these fields, at least, must

6.2 E xtending Beyond U(l)
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be put in by hand. This led to the advent of KK supergravity with equal numbers of 

bosonic and fermionic degrees of freedom. Supergravity began as a four-dimensional 

theory in 1976 [178,179] but was quickly extended to higher dimensions, such as 

D — l \  [180], following Nahm’s discovery [181] tha t eleven was the maximum number 

of dimensions consistent with a single spin-2 graviton and W itten’s argument [182] 

th a t eleven was the minimum number of dimensions required for a KK-theory to 

accommodate the SU{3)  x SU{2)  x U{1) gauge group of the Standard Model. In an 

im portant contribution, Freund and Rubin [183] showed tha t D  = 11 supergravity 

could be compactified to either four or seven dimensions only. Consequently, this 

supergravity became a leading candidate as the “theory of everything” . It was not 

without its problems, however. Foremost amongst these problems were the facts 

th a t quantisation led to anomalies and th a t the theory was incompatible with the 

requirement of chirality in four dimensions. These obstacles led to consideration 

of theories in D =  10 where chirality was easier to obtain and many anomalies 

disappeared and inevitably pointed towards superstrings once it was realised tha t the 

D = 10 supergravities arose as low-energy approximations to  the various superstring 

theories (recall section 4.1.7). The reader is referred to [9] for a concise historical 

overview of the development of KK-theory in more than  five dimensions and to [10, 

169-171] for calculational details.

For the purposes of the present work the key point to take from the higher­

dimensional generalisations and one to which we shall return  in the next chap­

ter, is the relationship of the four-dimensional gravitational constant to the higher­

dimensional one, namely

=  «4+„/K , (6.14)

where 14 is the volume of the internal compact space. P u t differently, since the grav­

itational constant has dimensions [ L e n g t h ] i n  4 +  n dimensions, the relationship 

between the reduced Planck scale Mpi =  =  (87rG')“ /̂  ̂ ~  2.4 x lO^^GeV and the

higher-dimensional reduced mass scale is
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The compactification scale 27t/?c =  fixed in these theories and is often

taken as the string scale so as to put the non-zero Kaluza-Klein modes beyond 

the Planck mass. Consequently, M  must then be extremely large. If it is assumed 

that the higher-dimensional theory originates from some supergravity then n <7.
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Chapter 7

The Randall-Sundrum M odels

In this chapter we build on the last and examine two exciting recent developments 

in particle physics th a t use so-called “warped” geometry (to be defined shortly) and 

might be termed “generalised Kaluza-Klein theory” . The first development, described 

in sections 7.1 to 7.3, is an attem pt to solve the age-old hierarchy problem th a t exists 

within particle physics while the second is an attem pt to localise a theory of gravity 

with five non-compact dimensions to four dimensions and is described in sections 7.4 

and 7.5.

7.1 The Hierarchy Problem

There are perhaps two fundamental energy scales in particle physics, the electroweak 

scale niEw ^  10  ̂GeV and the four-dimensional (reduced) Planck scale Mpi  ~  

10̂ ® GeV, where gravity becomes comparable in strength to gauge interactions. Ex­

plaining the smallness of the ratio m Ew/M pi  ~  10“ ^̂  and the stabiUty of the lighter 

scale from radiative corrections coming from the larger scale without fine-tuning of 

param eters is known as the “hierarchy problem” and has occupied the particle physics 

community since the earliest attem pts to go beyond the Standard Model (SM) some 

thirty-odd years ago [184-186]. There is now a widely accepted picture of the basic 

nature of physics beyond the Standard Model. At the weak scale there is an effec­

tive field theory stabilising the hierarchy. Such a theory might be a softly broken
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supersymmetric theory, since the two scales may then be built into the tree-level 

effective potential and various non-renormalisation theorems ensure that loop radia­

tive corrections do not destroy the hierarchy. However, although SUSY theories can 

accommodate the hierarchy they cannot explain its origin. At the Planck scale the 

leading candidate is string theory whilst in between the two scales a universally ac­

cepted effective theory is yet to emerge. Other important questions which are not 

answered by the SM, such as why there are three families of leptons or what is the 

origin of observed CP violation, are discussed in Wilczek’s account [187] of physics 

beyond the SM and also in [188].

In early-to-mid 1998 a series of papers by Antoniadis, Arkani-Hamed, Dimopoulos 

and Dvali (ADD) [189] proposed a new solution to the hierarchy problem in which 

gravity and gauge interactions became united at the weak scale, and the observed 

weakness of gravity at long distances was due to the existence of large compact spatial 

dimensions. In other words, M  in equation (6.15) was assumed to be of the order of 

ttT’EW ~  1 TeV, yielding the typical size of the extra dimensions to be

The stabihty of the weak scale is no longer an issue since it acts as a UV cutoff for the

scales, is ruled out by the Cavendish experiment (see section 7.4). The large size of the 

extra dimensions is not ruled out by present-day experiments since such experiments 

have only accurately probed gravitational forces down to the ~  1 cm range (see 

section 7.4) whilst, for example, n = 2 has Rc ~  100//m — 1mm [189]. However, 

the gauge forces of the Standard Model have been accurately measured at weak scale 

distances and there is no indication of the presence of extra dimensions. Therefore, 

the scenario is phenomenologically viable if the Standard Model particles and forces 

are locahsed on a four-dimensional timelike hypersurface (a “three-brane” ) within 

the higher-dimensional space-time. The non-zero Kaluza-Klein modes do not present 

a problem as they simply escape into the extra dimensions because their wavelengths 

are much smaller than Rc [189]. Other phenomenological aspects of and astrophysical 

constraints on the ADD scenario can be found in the original papers [189] and also

rriEw
(7.1)

effective theory. The case n =  1, in which Rc ~  10^  ̂cm is of the order of solar system
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in [190]. For example, the constraint that the graviton luminosity should not exceed 

the gravitational binding energy of ~  10̂  ̂ergs released during the few seconds of the 

collapse of SN1987A imposes

M  > 1 0 ^ ^  Tev , (7.2)

yielding M  >30  TeV for the minimal n = 2 case.

7.2 W arped v. Factorisable G eom etry

Definition. The warped product M  = B F oi two semi-Riemannian manifolds B  

and F  is the product manifold B x F  furnished with the metric tensor

g =  7T*(gB) +  (<̂  O 7r)V*(gF) ,

where tt and a are the projections of B x F  onto B and F  respectively and (/> > 0 is 

a smooth function on B. The manifold M  has a fibre bundle structure with B  the 

base and F  the fibre [191]. We shall say that “F  is warped by BP In the special 

case 0 =  1, M is a direct or factorisable product (or a trivial fibre bundle.)

In the standard Kaluza-Klein ansatz (6.11) in five dimensions, the space-time is the 

warped product of four-dimensional Minkowski space and the internal

with the Brans-Dicke scalar (f) as the warping function. In higher-dimensional 

generalisations the space-time is actually a direct product M'^ x with internal

compact space [169-171], In either case, there is no warping of by K"-. In

this sense, both standard Kaluza-Klein theory and the ADD scenario are based on the 

assumption of a factorisable geometry. We refer to KK-theory with warped by 

as “generalised KK-theory” and we shall explore its consequences in the remainder 

of this thesis. One immediate consequence is apparent. Relation (6.15) will be 

modified because the decomposition R = R  + • ■ ■ (cf. (6.8)) will no longer hold and 

so integrating out the extra dimensions in dimensional reduction of the EH action 

will not simply give a volume factor. We shall return to this point in section 7.3.3.
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7.3 The First Randall-Sundrum  M odel (R S I)

The ADD scenario contains a serious drawback. It does ehminate the hierarchy 

problem between the weak and the Planck scale but introduces a new one between the 

weak scale and the compactification scale Hc =  1/Rc- This was noted by Randall and 

Sundrum (RS) [192] who proposed an alternative solution to the hierarchy problem 

based on the warping of by an internal one-dimensional space. For the remainder 

of this section we follow the treatment presented in the original paper [192],

7.3.1 The Set-Up

The RS set-up consists of an internal of radius Tq together with the identification 

of the space-time points (x*,r) and { x \ —r). The internal space is thus the orb- 

ifold I'Ll with fixed points at r =  0, Trro. Located at each fixed point is a flat 

Poincare-invariant three-brane. The branes are embedded trivially in static-gauge 

in the higher-dimensional space-time, that is, if are brane coordinates and are 

coordinates in the bulk, then

y \ x )  =  ,

r{x) =  r' = const. , (7.3)

and the induced metric on the brane located at r  =  r ' is

=  9 i j { x , r ' )  . (7.4)

The visible'"' brane at r  =  0 is “our world” and supports the Standard Model (SM); 

the “hidden” brane at r =  Trro is also capable of supporting a (3 -h l)-dimensional 

field theory but is invisible to observers in our world.
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The classical action for the model is given by^:

'gravity

(7.5)

where and are the induced metrics on the visible and hidden branes, respec­

tively. In contrast to standard KK-theory, a five-dimensional cosmological constant 

A is also included. Each brane Lagrangian is split into a “vacuum energy” part V  

which parametrises the tension of the brane and a part £  containing various SM-type 

fields. The explicit form of C is not needed for determining the ground state of the 

5d metric so we shall not comment further on it. The interested reader is referred 

to [193] for details.

Einstein’s equations resulting from S  are

An ansatz for the ground-state metric respecting four-dimensional Poincare invari­

ance in the a:*-directions is

There are two main differences between this ansatz and the standard KK ground

^We work in the “upstairs” formahsm, that is, on the boundary-free full circle —7rr„ <  r <  Trr„ 

with the two three-branes at r =  0, nvo and Z2 symmetry imposed on the fields. One could 

alternatively work in the “downstairs” formalism, that is, on the half-line, 0 <  r <  nru, with

(7,6)

where there is no sum over the indices i  and j .

7.3.2 The Solution

ds  ̂ =  rjijdx̂ dx̂  -H  dr  ̂ . (7.7)

state (6.10). Firstly and most importantly, the exponential factor represents

boundaries (the two three-branes) at either end and appropriate boundary conditions imposed on 

the fields.
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the warping of by the internal space. Secondly, the metric is required to be

invariant under the Z2 action r  ^  —r. Therefore, A{r) will be a function of |r|.

With this ansatz, equations (7.6) reduce to

6.4'^ =  -A  ,

2>A!' = - k ]  \Vyis 8{r) +  Vhid^ix -  Trro)] . (7.8)

A solution to the first of these equations consistent with the orbifold symmetry is

A{r) = |r| \ / - A /6  , (7.9)

where an overall additive constant has been omitted because it just amounts to an 

overall rescaling of the coordinates x^. One sees that the solution only makes sense

provided A < 0. It is worth noting that with this solution for A{r) the regions

0 < r  < TTfo and —Trro < r  < 0 are two regions of Lorentzian AdS^ glued together 

across the visible brane at r =  0. This is easily seen if one recalls (cf. equation (2.9)) 

that the AdS^ metric in Poincare coordinates is

, (7,10)

where k is the inverse of the AdS  radius I (given by R  =  —20//^), performs the

transformation u =  equates k = y  — A/6.

It is understood that (7.9) is defined in the range —Trro < < Trro and is extended

to the whole real line by periodicity. Therefore,

A" = 2k[S{r) — 5{r — TVTo)] , (7-H)

where we have used the relation ^ | r |  =  25{r) and the minus sign in the bracket [• • •] 

results from the periodicity and hence opposite gradient of ^  at r  =  0 and r  =  Trro. 

Comparison with the second of equations (7.8) yields

V,is = -Vhid = - Q k k ; ^  . (7.12)

The final solution for the bulk metric is then

ds^ =  r]ijdx‘̂dx  ̂ +  dr^ 
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One must bear in mind that it is an assumption of RSI that the bulk curvature is 

smaller than the five-dimensional Planck scale, that is, k < M  and that Tq is small 

(but still larger than l /k) .

7.3.3 How R SI Solves the Hierarchy Problem

In this section we derive the four-dimensional Planck scale and the mass parameters 

of four-dimensional fields in terms of the five-dimensional scales M, k, and Tq and 

show how the RSI scenario solves the hierarchy problem. We again follow [192],

It is straightforward to compute the 4d Planck scale. One starts from the metric

ds^ = 9ij{x) dx^dx^ + dr“̂ , (7-14)

performs the transformation^ ^ ~  I  to bring the metric to the conformal

form g =  g and expands R  as [18]:

R = e - ^ ^ [ R - 8 V ^ A - 1 2 { V A f ] ,  (7.15)

where V is the covariant derivative compatible with g and indices on the right side 

are raised and lowered with g. ^  ^  by virtue of (6.8). The Einstein-Hilbert term

in (7.5) can then be rewritten as

^  y  y  d z y / ^ e ^ ^ { R - \ -----) , (7.16)
5̂

from which one obtains

/Trro
. (7.17)

•Trro

Substituting (7.9) for A  yields

M il =  ^  -  1]K

_  27Tfcro  ̂ ^yA8)
k

where the approximation is valid if the exponential factor is large. This exponen­

tial factor is the modification of (6.15) alluded to in section 7.2. As we shall see 

momentarily, it allows electroweak scales to generate Planck scales.
^The transformation is defined so that z  — 0  corresponds to r =  0.
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The masses of four-dimensional fields can be obtained by considering, for example, 

a fundamental Higgs field on the visible brane

S„,. D (7.19)

where Di is a gauge-covariant derivative. Such terms occur in the Lagrangian C„is 

[193]. Using (7.4) and (7.14) one sees that Qij. After canonically nor­

malising the Higgs kinetic term on the visible brane via H  —> H  one obtains

S,is 3  j d ^ x ^  {--g^W,H^D,H -  v “̂f )  , (7.20)

and so, using (7.9),

Vphys = i) = v . (7.21)

This result is completely general: any five-dimensional mass parameter i) on a brane 

at r  =  r ' will correspond to a physical mass Vphys = v when measured with 

the metric gij, which is the metric that appears in the effective Einstein action after 

integrating out r.

It can now be deduced how RSI solves the hierarchy problem. Treating the 

electroweak scale as the fundamental scale we must have v =  Vp̂ ys ~  ttiew- As­

suming all fundamental 5d mass parameters are of the same scale, we also have 

M, k ~  rriEw ~  10  ̂TeV. Generation of the 4d reduced Planck scale Mpi ~  10̂ ® GeV 

according to equation (7.18) then requires ~  10^° or nkvo «  35. Therefore,

very large hierarchies among the fundamental parameters v, M, k and jic = I / tq are 

not required.

7.4 N ew ton ’s Force Law

Newton’s force law in 4 -f n flat space-time dimensions can be obtained by an appli­

cation of Gauss’ law to Poisson’s equation

=  , (7.22)

where tp is the gravitational potential per unit mass, p is the mass density of a m atter 

source, is the (3 -H n)-dimensional spatial Laplacian, 0^+^ is Newton’s constant
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and S 2+n = 2 n ^ / F ( ^ ^ )  =  For a point-particle source of mass M

located a t the origin, p =  MS{x) .  Integrating (7.22) over a (3 +  n)-dimensional ball 

B  of radius r enclosing the origin yields

/ [  d^+^x5{x)
J b J b

= . (7.23)

On the other hand, since d B  = Gauss’ law gives

[  = f  dS-Vip
J B Js^+’̂

= (7.24)

Equating the above two equations yields

dip _  Gj+n ^  _  <^4+n M  (7
Qj~ j.2+ n ^  ( l + n ) r ^ + ”  ’

and thus we obtain the gravitational force (per unit mass) exerted by the source,

F (r)  =  -V v . =  - % ? ^ f   ̂ (7.26)

Remark. Poisson’s equation can be derived as the Newtonian limit of the weak field

expansion g =  r; +  h to linear order in h of Einstein’s equations G =  in

the presence of a weak, static dust source with stress tensor Too =  p and all other

components negligible. The linear approximation is justified if h =  0 (^ ^ ^ )  at spatial

infinity in Cartesian coordinates. Calculational details can be found in any standard

textbook on general relativity (see, for example, [19,194,195])^. The result is tha t 
2

V? =  — ^^00 =  — ( 2 +n ) S 2 +  ’ where M  =  J  is the ADM mass. Comparing

with (7.25), we see th a t = ( f ^ )  *S'2 +n G 4 +„ is the reduced Newton’s constant.

In 1798, Henry Cavendish, in his initial determ ination of Newton’s constant of grav­

itation [196] using a torsion balance, mentioned th a t he had made a check of the 

inverse square law (meaning th a t n =  0 in (7.26) and th a t we live in four non­

compact dimensions) but gave no details. Subsequent determinations of G in the

variant of this calculation is presented in the next section.
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late 1800s did not directly check the law but the results from experiments in which 

distances between masses were different implied rough agreement with n being zero. 

Mackenzie [197], in his experiments on the attractions of crystals in 1895, placed 

masses at separations of 3.5, 5.5 and 7.4 cm and claimed that he had confirmed the 

inverse square law to 1/500 between 3.5 and 7.3 cm. Experiments of the 1970s and 

early 1980s implied that the inverse square law is followed to within 1 part in 10“  ̂

at distances of ~  10 cm. Therefore, it seems that we live in four non-compact dimen­

sions. Additional dimensions can exist provided they are compact and their size does 

not exceed the aforementioned bound. Further details of experiments to determine 

G and to check the inverse square law may be found in [198].

7.5 The Second Randall-Sundrum  M odel (RS2)

In a second influential paper [199], Randall and Sundrum (RS) argued that the state­

ment made in the preceding section regarding Newton’s inverse square law and the 

number of non-compact dimensions imphcitly assumed that the geometry was fac- 

torisable. They showed that if the geometry was warped then it was possible to have 

A + n non-compact dimensions and still have compatibility with experimental results. 

This was because the leading corrections to the effective gravitational potential on 

the brane were sufficiently suppressed due to the presence of the warp factor. Of 

course, the concept of extra non-compact dimensions was not new. Earlier work 

studied the trapping of matter fields near a four-dimensional hypersurface [200-202] 

or studied finite volume but topologically non-compact extra dimensions [203,204]. 

However, in the RS case gravity itself was trapped to be effectively four-dimensional 

and the extra-dimensional volume was infinite. We follow the original paper [199] 

and also [205-212] for the remainder of this section.

7.5.1 The Set-Up and Solution

The set-up of RS2 is the same as that of RSI as previously discussed in section 7.3.
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A second solution to equations (7.8) is

A{r) = -k\r\ , (7.27)

Vvis = -Vhid = Qkk^'^ , (7.28)

where k =  A/6. These differ from the RSI solutions (7.9) and (7.12) by a change

of sign. This sign stems from the fact that the first of equations (7.8) is quadratic in 

A{r). The four-dimensional Planck mass (given by (7.17)) is

M h  = —  [1 -  6-2̂ '=’'°] . (7.29)
ft

One then takes the Umit Tq —> oo to send the hidden brane to infinity.

In summary, there is a single (visible) brane of tension V̂ is = 6k situated at

the origin r  = 0 of the extra dimension. The four-dimensional Planck mass is

M h  = M^/k  (7.30)

and the bulk metric is

ds^ = rjijdx^dx^ -|- dr^ , (7-31)

where —oo < r < oo.

Note that RS2 does not solve the hierarchy problem. It is an assumption of both 

RSI and RS2 that M  and k are of the same order. From (7.30) it is clear that one 

must have M  k Mpi. Thus, one cannot generate Mpi from niEw as was done in 

the RSI case.

7.5.2 The Kaluza-Klein Spectrum

To demonstrate conclusively that gravity is localised in the RS2 model one must 

determine the Kaluza-Klein spectrum of general linearised tensor fluctuations about 

the ground state and show that the non-zero modes do not lead to an unacceptably 

large deviation from Newton’s inverse square law in four dimensions. As we shall show 

momentarily, it is the presence of the warp factor that leads to the corrections

to the Newtonian potential coming from the massive modes being highly suppressed 

and hence to a result not inconsistent with experiment.
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To this end, we perturb the metric (7.7) according to

ds'  ̂ =  qab d y^dy^  =  { g %  +  Ka b ) dy^dy^

=  {r)ij + hij{x,r)) dx^dx^-\-dr"^ , (7.32)

where we have defined fiAs =  e^^^’̂^h.AB and chosen the “axial gauge” constraint 

hAr =  0. The components hij are required to have even parity across the brane so 

th a t the metric remains invariant under the or bifolding r —r.

Axial gauge is not a to ta l gauge fix; it still allows for some gauge freedom. To 

see this first define, as before, the coordinate z by z  = f  so as to bring

the im perturbed metric to the conformal form 5^^(a:,z) =  .e). Then

consider the infinitesimal coordinate transformation =  y^  + e^{y) (with

=  z) leaving the metric (7.32) invariant. The fluctuations transform  as

flAB -  h'AB = hAB + V̂ a '^B +  . (7.33)

After use of the identity (see [18]):

V ^ e s - V ^ e B - - ^  \ y a 9b d ^ ^ b 9a d ~ ^ d 9a b ) ^ c , (7.34J

we can recast (7.33) as

hAB ~  ^ ab +  9a^ b +  9b (^a + ‘̂ V a b ^ ' { z )lOz , (7.35)

where =  9b c '̂" ~  (and therefore uib =  9b c ^^) have used the fact

th a t =  riAB- We see th a t the axial gauge is preserved provided

{dz + A'{z)) LOz = 0 ,

diiOz + dzLiJi — 0 . (7.36)

These are solved by

uJz{x,z) =  Q±(x)e“^̂ )̂

Ui{x,z) = Pi{x) -  dia±{x) J  e~^^'"'^dz' , (7.37)

where the subscript ‘± ’ denotes the solution in the regions ̂  > 0 and z < 0 respec­

tively and a+ (x) =  —a^{x).  Note th a t the first of these impHes e'’ =  =  o;+(x).
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Therefore, if o:± 7  ̂ 0 the brane will not stay fixed at r  =  2  =  0 under coordinate 

transform ations but will be relocated to r  =  —aj^{x). Setting =  0 leaves the 

residual Ad gauge freedom

hij{x, z) h-j(x, z) =  hij{x, z) +  diPj{x) + djPi{x) . (7.38)

In this case it is in general impossible to impose auxiliary transverse and traceless 

constraints throughout the bulk space-time. To do so would require solutions for 

(3i{x) to the equations

npi + di{d-p)  =  -d^hij ,

d-(3 = - ^ h ,  (7.39)

where h = hij and □ =  rfWidj. Since the components hij depend a priori on the

coordinate solutions to these equations only exist on one hypersurface, say, on the

brane at z  = 0.

We now expand Einstein’s equations (7.6) to linear order in hij and, after con­

siderable algebra (more explicit details are given later in section 8.3.3), the following 

equations result;

{ u ^ d l ^  2,A!{z) dz) hij -  ^  T)ij A'{z) d^h

{d^djh -  m b ';  -  d.dkh'l) = k l  Uj , (7.40)

+ A  {z) d^) h = k li^z  , (7.41)

J - d , [ d , h - d k h ^ )  = k l i i ,  . (7.42)

In the above, we have allowed for an intrinsic perturbation

Iab  = ^ iTab  — I  ĝ AS ^iTcd th a t is independent of but of the same order as the

metric fluctuations hAs^- The trace of (7.40) with respect to the metric 77̂  yields the

^The stress tensor T a b  generally depends on the metric and on various other fields inde­

pendent of this metric. To first order, the variation of the stress tensor therefore splits into a part 

S i, T a b  depending on the metric perturbations Ha b  and a second part S j T a b  due to the intrinsic 

perturbations of the other fields. The part S ^ T a b  has already been absorbed into the left side of 

the above equations. See section 8.3.3.
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additional equation

(2 □ +  +  7 A!{z) dz) h — 2d^dkh'l = —2 k \ t  , (7.43)

where t  =  rfHij. Using (7.41) we can recast this as

(□ +  3 A'{z) dz) h -  d^dkh^ = t^z) ■ (7.44)

Due to the even parity of hij (so that depends on z only through \z\) first 

derivatives (in z) will be discontinuous at zero^ and second derivatives will contain

delta functions. Integrating (7.40), (7.41) and (7.43) over the interval ^ G {—£,e) 

results in the jump conditions

where we have defined [/] =  f{0~^) — f{0~)  for any function / .  It is easily verihed 

that (7.46) and (7.47) are compatible provided 5,Tzz is continuous across the brane. 

If SjTij is of the form® 5,Sij{x) 5{z)/e^ =  SjSij{x) S{z), then the conditions (7.45) are 

equivalent to the perturbed Israel junction conditions.

In the sequel we shall consider a static dust source confined entirely within the 

brane:

(7.47)

(7.46)

(7.45)

^ i T a z  =  0 ,

5iT] = 5(z)d iag(-p(x“), 0,0,0) . (7.48)

Indices on SjTj are raised and lowered with the unperturbed metric, so we have 

5jTij = (5(2:) diag(p(a:“), 0,0,0) and hence 5jSij = diag(p(x“), 0,0,0)^.

We now proceed to solve equations (7.40)-(7.44) in the region z > 0.

^More concretely, first derivatives will be opposite in sign either side of z  =  0.

®The measure-invariant delta-function is S { z ) / \ / g f z  =  i5(z)/e'^. However, yl(0) is defined to be

zero.
^We remind the reader that x°‘ are the three spatial coordinates on the brane.
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Firstly, we find

iiz = 0 , (7.49)

iij = 5(^)p(x“)d ia g (^ ,^ ,^ ,^ )  , (7.50)

i  = i,^ = ^6{z)p{x^)  , (7.51)

and the jump conditions collapse to the Neumann boundary conditions

a^/iy(a;,0+) = -K5V(2^“)diag(^, . (7.52)

Inserting (7.49) into (7.42) we obtain

dkh!l = dih + F,{x) , (7.53)

and so (7.44) becomes

?>A'{z)dM^.z) = d^F,{x) . (7.54)

On the other hand, (7.41) is solved by

= (7.55)

Now recall that in the RS2 model A(z) = —k\r\ = — ln(l+/c|z|). So A'{z) =  —k

in the region z > Q. Hence, using (7.52) and (7.54), we obtain

G(x)  =  - ^ a - F . W  =  . (7.56)

We are interested in static solutions to the 00-component of equations (7.40).

This implies that Fi{x) and H{x)  are time-independent. Using this fact along with

(7.50), (7.52) and (7.56), we obtain

(V^ +  +  ?>A!{z) kV (^“) > 0+) =  ^ > (7-57)

where we have used (7.30) and defined (f = —|/ioo- It is evident that if we define

(/?(x“, z) = <po{x°') +  <^i(x“, z), then separation of variables leads to

V Vo =  - U ^ p { x - ) + c ,  (7.58)
D

+ dl + 3A'(z) d,) = - c  , a^(pi(x“,0+) =  ^ « 5 p(x“) , (7.59)
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where c is the separation constant. We may set c to zero because the particular 

solutions =  cr^/6 cancel when tpo and ipi are recombined^.

The solution to (7.58) is

<4)q{x°') = J ■ (7.60)

where G{x°' ,  x°’') is the Green’s function of the 3d Laplacian which vanishes at infinity. 

It was shown in section 7.4 to be

G{x\x<^') = -  ̂ . ^ (7.61) 
 ̂  ̂ 47r|a:“ - a ; “ |

Defining the Fourier transform of (pi with respect to the brane coordinates by 

^(^)(^) =  Jd^xe^^-^ipi{x ‘̂ ,z) , ipi{x‘̂ ,z) = (7.62)

we can recast (7.59) as

{dl + 3A\z )d , )  ¥ ^ \ z )  = , (7-63)

subject to the boundary condition

d , ¥ ^ \ 0 ^ )  = ~ k lp { m )  , (7.64)

where /5(m) is the Fourier transform of p and m = |m |.

For the remainder of this section we focus on the Kaluza-Klein spectrum defined

by equation (7.63). From (7.40) we see that this equation is common to all compo­

nents hij, that is, all components admit a decomposition similar to (7.62).

Firstly, notice that p(0) =  f  d^xp(x‘̂ ) — M,  where M  is the mass of the source.

Hence, the zero mode solution of (7.63) is given by

k -2 M
^(o)(^) =  _ ^ ( l  +  /c )̂4 +  c , (7.65)

where c is an arbitrary constant.

®We have defined r as the radial distance from the origin on the three-bane, r =  \x°-\. We trust

that the reader will not be confused with the previous definition of r as the fifth direction (here

denoted by the conformal coordinate z).
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Secondly, by use of the transformation =  e (z) we can recast

(7.63) into the form of a Schrodinger equation

(^-dl  + ^ A ' i z f  + I a "{z)^ > (7-66)

for the massive modes. Substituting in A{z) = — ln(fcz +  1) (in the region z > 0) this 

equation becomes

( - a j  +  , (7.67)

where a — 3/2. The general solution of this differential equation is

ijj'^^\z) =  [Amh{mu) +  BmK^imu)] . (7.68)

In the above we have defined u = z \ / k  and I 2 and K 2 are standard modified 

Bessel functions of the first and second kind respectively. The KK modes thus form 

a continuum.

By use of the recurrence relations

du{u''I^{u)) = u " ' , du{u''Ki,{u)) = -u ''Ku-i{u)  , (7.69)

one finds that the boundary condition (7.64) becomes

1 o
[Am h  {m/k) -  Bra Ki (m/k)] =  ^ p(m) • (7-70)

To extend the solution tl̂ ”̂" {̂z) to all 2: we simply replace ^ by \z\ in (7.68).

7.5.3 How RS2 Localises Gravity

In order to obtain a unique solution to (7.63) we need to impose another boundary 

condition which we take to be

1.^00 =  0 . (7.71)

Such a condition is clearly desirable if the linearisation is to be justified. Clearly, 

the zero mode does not satisfy the condition and so m  > 0. From the asymptotic 

expansions
pTTiu nz

I^{mu) , (mu)^/^A'^(mw) ~  W — 6“”̂ “ , (7.72)
V  2 7 t  V  2
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valid for large mu,  we see that the solution (7.68), taking account of (7.70), becomes

^   ̂ ’ 3 m3/2 K ,{m /k )  '  ̂ ^

Putting together (7.60) and (7.73) we obtain the solution to (7.57) in the form

ip{x‘̂ , z ) — — jG (x° ',x ° ‘ ) pix^"') d̂ x̂ "'

'  , r  d^m K2{mu)
J  (27t)3 m  K i im /k )  '  ̂ ^3

We may omit the internal space dependence on 2 since all point particles on the brane 

can be taken to have z =  0. Noting the recurrence relation K 2{u) = ^Ki{u) + Kq{u), 

we And

(p{x°‘,0 ) =  — JG{x°',x°'') p(x‘̂ ') d^x' '̂

Ilim /_ ^ e - ™ .x P ( m )  h\{mu)
3 2->o+ J  (27t)3 Ki{m/k)

3k J (27t)3 m K,{m /k)  ’ ^

where we have used (7.30) again.

We now speciahse to the case of a point source located at the origin, in which 

case /o(x“') =  M5{x°'') , p(m) =  p(0) =  M.  In the second integral of (7.75) we can 

take the limit inside the integral. Noting that

d^m
(2n)^ m? 

we obtain

=  -G '(x“,0 ) ,  (7.76)

, . M   ̂ f  d^m e Kolmu)
¥^(^“, 0 ) =  G(x“, 0 ) - ^  lim ‘ ^

2 ’ 3k 2^ 0+ J  (27r)3 m  Ki{m/k)
k? M  / I  , 2 /■”  . K„(su/r ) \

=  — - -  +   ̂ , lim / as s m s - ——77- ^  , (7.77)
47r r  \ 2  37rA:r z—0+ 7o K i( s /k r )J

where s =  mr.  We may not take the limit inside the above integral because of the

divergence for large s. The non-zero 2 acts as a regulator of the integral for large s.

In RS2 it is assumed that m <C A; or, equivalently, kr ^  1. We may then use the

asymptotic expansion

Ki{s/kr)  ~  {s/kr)~^ , (7.78)
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for small m / k  to approximate the above integral as

1
—  Um / ds ss ins  Ko(su/r) 
kr z^o+ Jo

7T
3
2

2kr \ 2kr
(7.79)

Thus, we obtain the final form for the effective 4c? gravitational potential:

(7.80)

where we have substituted = 8nG. The leading term is the usual Newtonian

potential; the KK modes generate an extremely suppressed correction term for k

are two possibilities for this motion. Firstly, we could assume that the particle is 

free to move in five dimensions, that is, that it will follow a timelike geodesic in 

five-space. As shown in [213], this case leads to an extra force being present in four 

dimensions due to a non-zero velocity component along the extra dimension. The 

second possibility, which is the one we consider, is that the particle is constrained 

to move along the brane by some as yet unknown non-gravitational mechanism. 

Potential shortcuts via the fifth dimension are then not allowed and the dynamics is 

determined by the induced metric on the brane only.

The four-dimensional geodesic equation is

taking the expected value of order the fundamental Planck scale and r  of the size 

tested with gravity (1 — 10 cm).

To show that we have localised gravity and thus have obtained Newton’s law on 

the brane we must consider the motion of a massive test particle on the brane. There

<iA2 d \  dX
(7.81)

subject to

(7.82)

where gij{x\0)  is the perturbed metric (7.32) on the brane at r  =  0 in the presence 

of the m atter source (7.48), the corresponding Christoffel symbols and A an affine 

parameter along the geodesic. Assuming that velocities dx°'/dt -C 1 are negligible 

(compared to the speed of light), equation (7.82) gives



while (7.81) becomes

(Px^  A 1

~  -rSo =  2^a/ioo(x“, 0) =  0) , (7.84)

with (p{x°',0) given by (7.80). Thus, we obtain Newton’s 1/r^ force law (cf. equation 

(7.26)) plus suppressed correction terms.

Finally, although we have concentrated exclusively on the 00-component of equa­

tions (7.40), it is of course possible to consider the other components. The details do 

not concern us here. We simply note that the equations can be solved consistently 

and refer the reader to [208,211,212] for explicit calculations.
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Chapter 8

Cosmological Generalisations of 

the RS M odels

In both of the RS models discussed in the last chapter the metrics (7.13) and (7.31) 

depend only on the coordinate r of the extra dimension and not on the brane coor­

dinates. In particular, they are static as they do not depend on the time coordinate 

t. It is a logical next step to study the cosmology of these models by allowing such 

time dependence in the metrics. The first section of this chapter details a non-static 

generalisation of the RS scenario with a static fifth dimension. We then consider a 

further generalisation with a non-static fifth dimension.

8.1 The BDL Model

Binetruy, Deffayet and Langlois (BDL) [214] considered the cosmological evolution 

of a thin four-dimensional brane-like universe embedded in ftve dimensions in which 

brane m atter was modelled as a perfect fluid source in the five-dimensional Einstein 

equations. As will be shown momentarily, the authors found that the theory exhibited 

non-conventional cosmology in that the Hubble parameter H  was proportional to 

the density p on the brane instead of the usual H  ~  \/p  of standard big bang 

cosmology. This was an important result since the successes of standard cosmology 

such as nucleosynthesis and the common understanding of subsequent evolution rely
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critically on the assumption H  ~  ^/p. Some ideas as to how the standard behaviour 

of H  could be recovered include the thickening of the brane and the cancellation 

of bulk and brane cosmological constants. These and other cosmological aspects of 

“braneworlds” have been considered in [215-224]. In the remainder of this section 

we follow BDL [214] and also [217].

8.1.1 The Set-Up

The BDL model is similar to the RSI model considered in section 7.3. We again have 

five dimensions with the fifth dimension forming an S'V^2  orbifold and a three-brane 

situated at each of the fixed points. The action is

S  — S g ra v ity  “ I "  Sbu lk  Sbj-anes  j 

r  pTrro

S gravity  ~  2^2 J  ^ ^ J  9  ^  )

/ rT r̂o
d X I  dr y j  Q ^bulk i

J —nr 0

=  j  + j  , (8 . 1)

where and are the induced metrics on the visible and hidden branes at r  =  0 

and r  =  ttto =  r', respectively.

The ansatz for the metric is

ds^ =  dABdy^dy^ = —n^{t, r)dt^ +  r)5abdx°'dx^ +  r)dr“̂ , (8.2)

and clearly contains the RS ansatz (7.7) as a special case. In addition, it assumes 

flat spatial three-sections on the brane.

The m atter on each brane is assumed to be in the form of a perfect fluid at rest 

in the above coordinate system. The total stress-tensor may then be w ritten as

T j j  =  Tg \bulk + T q  \branes i (8-3)

where

S(r) S(r — r')
T'b kanes =  d ia g (-p ,p ,p ,p ,0 )  + ----- ------diag(-p*,p*,p*,p*, 0) , (8.4)
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and p (p,) and p (p*) are the density and pressure on the visible (hidden) brane 

respectively. Note that in the RSI model one has p — —p =  Vyis and similarly 

p* =  —p* =  Vhid- The exact constitution of the bulk stress tensor, as we shall see, is 

not needed and so remains unspecified.

Einstein’s equations are then Gq = KgTg, where the Einstein tensor is that for 

the ansatz (8.2):

(8.5)
a \ a

G i =  ^ { - ( -  + 2
0 -̂ \ a \ a n

n a
+ ,n a a 0

n a a b
+ , n a a 0

a \ a

(8 .6)

(8.7)

(8.8) 

(8.9)

In the above expressions a prime stands for a derivative with respect to r  and a dot 

for a derivative with respect to t. (The other components of the Einstein tensor 

vanish identically.)

8.1.2 Non-standard Cosmology from BDL M odel

In what follows we shall concentrate on the visible brane at r  =  0. As in the last 

chapter, the metric is required to be continuous r  =  0 and to have even parity under 

r —r. Consequently, it depends on r only through |r|. Therefore, first derivatives

in r  will be opposite in sign either side of r =  0 and second derivatives will contain 

delta-functions.

We can thus derive jump conditions across the visible brane in much the same 

way as was done in section 7.5.2. It is clear that a" may be written as

d^a{t, u)
a" =

dv?
+  [o']5(r) , (8.10)

u = |r |
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where [a'] =  a'(^,0 ‘̂ ) — a'(i, 0 ) =  2a'{t,0~^), and similarly for n”. The jump condi­

tions resulting from (8.5) and (8.6) can easily be deduced by inspection:

2
3M  =

aobl bo

2 M  +  M  =  M p
aobl nobl bo

or, equivalently,

M  ^

aobo
fn'l

i p ,  (8-11)

^ ( 3 p  +  2p) ,  (8.12)
Hobo 3

where the subscript 0 indicates that the functions a, 6, n are valued at r  =  0. If we 

take the jump of either (8.7) or (8.8) across r =  0 we obtain

In'] do , [a'l bo fa''
no ao ao bo Qq 

or, upon using (8.11) and (8.12),

=  0 ,

p + 3— {p + p) = 0 .  (8.13)
ao

This is the usual four-dimensional conservation of energy condition^. Finally, taking 

the mean value across r =  0 of (8.9), using (8.11) and (8.12), and recalling that 

[a'] =  2a'{t,0'^) (similarly for [n']) we obtain the Friedmann-type equation

1 / d o  do do T lo \  Kg _ ,  _ . k^ T rr  | r=0
:i2 —  +  72 -  — —  =  - ^ p ( p  +  3p) -Uq \ao Oq oq no/  36 36g

If one defines “cosmic time” (that is, the proper time as measured by comoving 

observers on the brane) via dr = nodt, then (8.13) and the above equation respectively 

become

p + 3— {p + p) = 0 ,  (8.14)
ao

^It should be stressed that equations (8.11-8.13) are only valid provided the bulk stress-energy 

T a b  is continuous across the brane, which need not actually be the case once the global solutions 

of Einstein’s equations are found. In particular, if Tor is discontinuous across the brane then (8.13) 

will not hold.
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^0 ^6 I o ^s'^rr |r=0 /q , r\
— +  ^  =  - ^ p ( p  +  3 p )------ 7̂2—  ’ 8.15ao % 36 3%

where the dot is now differentiation with respect to r. These are the two master

equations of the BDL scenario.

There are two important features of (8.15). Firstly, it is independent of the energy

and pressure of the hidden brane. This is due to the fact that the delta function

5{r — r') does not contribute at r  =  0. Secondly, it should be contrasted with the

conventional Friedmann equation

-  +  - 2 = ^ { p - m  ■ (8.16)ao a5 6

Therefore, we see the evidence of the non-standard cosmology with (8.15) depending 

quadratically on p, whereas the usual equation, (8.16), depends only linearly on p.

A consequence of (8.15) is that it can lead to slower evolution than usual. To see 

this, suppose that the bulk pressure T^r |r=o is of the same order as the bulk energy 

density and that the condition

p ' >  ^  , (8.17)

is satisfied. Then we may neglect the last term in (8.15). In so far as this approxima­

tion is justified, it is not necessary to solve Einstein’s equations for the whole bulk 

in order to determine oq. Assuming the standard equation of state p =  up,  with u  

constant, we can integrate (8.14) to find

(8.18)

If we then look for power law solutions to (8.15) of the form

a o ( r ) ~ r ^ ,  (8.19)

we find that

1 =  ; t 7 T ^  . («'20)3(1 +  uj)

as opposed to Qstandard = 2 /(3(l +  u;)) for solutions to (8.16). Furthermore, defining 

the Hubble parameter as per usual hy H = ao/ao, we see that i /  ~  1 /r  so that

/ / - p ,  (8.21)
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in the BDL case, in contrast to ~  y/p in the standard case.

A related consequence is that cooling of the early radiation-dominated epoch 

(r < 4 X 10 °̂ sec) is slower than usual. To see this we use the usual expressions for 

the density and pressure of a dilute, weakly-interacting gas of particles of mass m, 

with g internal degrees of freedom and in thermal equihbrium at temperature T :

P =  7 ^ / A / ( p ) £ ( p ) . (8.22)

P =

where £'(p) = + ni? and /(p) is the familiar Fermi-Dirac or Bose-Einstein

distribution:

/(p) = (e x p ( (E - /x ) /T )± l) - i  , (8.24)

where ^  is the chemical potential and the plus sign is for fermions and the negative 

sign for bosons. In the relativistic limit T  ^  m, n these are evaluated to be

f (7r^/30)^r^ (Bosons) ,
p =   ̂  ̂ (8.25)

(7/8)(7t̂ /30)5'T'* (Fermions) ,
p =  p/3 . (8.26)

Thus, cu — 1/3 and p ~  T ‘̂. Using H  ~  1 /r and (8.21) we obtain T  ~  1/t^/^, as 

opposed to the conventional case T  ~  l/r^^^. Thus, the cooling is slower than that 

predicted by (8.16).

Other phenomenological consequences, such as the implications for nucleosyn­

thesis, are beyond the scope of the present work. The interested reader is referred 

to [214-224] for further discussion.

8.2 T im e-dependence of Extra D im ensions

The proper radius of the fifth dimension is defined as

= R{t) = —  / drb{t,r) . (8.27)
J —Trro

1 pTrro

R{t) = ^  j  d r ^ g
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If the internal dimensions change with time, then the four-dimensional funda­

mental constants also do [225-227]. In particular, the Fermi constant Gp will vary. 

Adapting (7.19)-(7.21) to the case when h depends only on time, we see that the 

physical four-dimensional Higgs mass is given by

Vphys = ■ (8.28)

The Fermi constant is then given by G f =  —  oc b.
^  ^ ph y s

The successful predictions of light element abundances in the standard model 

of big bang nucleosynthesis (SBBN) place stringent limits on the time variation of 

the fundamental constants and, consequently, on the time variability of the extra 

dimensions. This can be demonstrated by considering the primordial abundance 

of “̂He. The abundance is primarily determined by the neutron-to-proton ratio at 

freeze-out^, which is given by the non-relativistic equilibrium condition (see [225]):

(n/p)j  ^  exp{-Q/Tf )  (8.29)

where Tf is the freeze-out temperature and Q the neutron-proton mass difference. 

This ratio is slightly altered by free neutron decay on a time scale of 10  ̂sec betw^een

Tf  and the onset of nucleosynthesis at Tjv ~  0.1 Mev. The mass fraction of ^He is

■ ( « ■ » )1 -h {n/p)N

where it is assumed that all neutrons are incorporated into ^He and {n/p)^  is the 

neutron-proton ratio at the time synthesis finally takes place, that is, at temperature 

Tat. Now, changes in Gp will change the masses of fermions and so will alter Q. 

Therefore, we see that small changes in the Fermi constant Gp due to time variability 

will induce large changes in Yp. Conversely, observationally inferred limits on Yp for 

^He:

yp =  0.232 ±  0.008 , (8.31)

^Freeze-out occurs when the interactions of a particle species decouple, that is, when the species 

becomes very long lived compared to the age of the universe (F < H,  where F is the decay rate). For 

the reaction n p, it can be shown (see [225]) that F ~  G \ T ^  in the limit T 3> me, Q  =  rUn — mp.  

This leads to a freeze-out temperature T/ ~  0.7 — 0.8 Mev for SBBN. (The BDL scenario gives 

Tf ~ 2 — 3 Mev because of the different dependence of H  on T.  See [214] for details.)
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(see [228]), mean that by the time of primordial nucleosynthesis the size of any 

internal dimension was already very close to the size that it is today.

The above paragraph explains why both of the RS models discussed in the 

last chapter have the fifth dimension independent of time =  !)• This time- 

independence is also implicitly assumed in the BDL scenario of the last section (that 

is, h{t, r) in (8.2) is a function of r  only), although the derivation of (8.14) and (8.15) 

does not rely on this assumption.

All theories with extra dimensions must have some mechanism to keep the internal 

dimensions (almost) static, otherwise they would expand or contract too fast and so 

be at odds with observational data.

One such mechanism within the RSI framework is the Goldberger-Wise (GW) 

mechanism [229]. Recall that Tq was essentially a free parameter that was not de­

termined by the dynamics of the model. For solution of the hierarchy problem we 

required Tr/cro ~  35. The GW mechanism generates a potential for Tq so that it can 

be stabihsed at the minimum of this potential. It does this by adding to the RS 

action (7.5) the bulk scalar action

S^ = -  d^x dr . (8.32)
^ J J —Trro

In addition, the tensions V îs and Vhid gain $  dependent parts. GW choose

K i. -> Ki.(<^>) =  K i. +  , (8.33)

and similarly for Vhid- These terms on the branes cause $  to develop a r-dependent 

vacuum expectation value $ (r) which is determined classically by solving the equation 

of motion for $  in the RSI background (7.13). The mechanism thus neglects the back- 

reaction of the scalar field on the background^. After solving for $ (r), inserting the

solution back into the action and integrating over the extra dimension we obtain the

effective potential in the large , Xhid and small m /k  limit:

K //(ro) =  i k  {v,,, -  + 0(e)  , (8.34)

^Neglect of back-reaction from the scalar field is justified if and small. See [229].
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where e =  rrP/Ak^. Ignoring the Unear and higher order terms in e, this potential has 

a minimum at

(8.35)

and thus

4A:%
35 . (8.36)

\ V y i s

One might worry th a t the mechanism rehes on unnaturally large values of Xyis, Xhid- 

However, using a linearisation about the large A solution given above and considering 

the leading 1/A correction to the potential, GW showed th a t the location of the

ex tra  dimension is thus stabilised at this minimum value.

The GW  mechanism can be extended to the BDL scenario (see [230,231]), in 

which case the bulk scalar becomes dynamical.

8.3 A  Scenario w ith  a N on-static Extra D im ension

In this section we investigate cosmological solutions of five-dimensional gravity cou­

pled to a bulk scalar field sigma-model with indefinite metric in which we allow the 

scalars to depend on time as well as the fifth dimension. We also include a bulk a 

priori  anisotropic fiuid^ with energy-momentum tensor Tq {p ) =  dla.g{—p , p , p , p , P )  

and equations of state P  — up,  p  =  up.  The extra dimension is assumed to  be infi­

nite in extent and time-dependent. From the discussion in the last section regarding 

stabilisation of the extra dimension, it is clear th a t if such a scenario is ever physically 

relevant it must be at early times before nucleosynthesis. We will show th a t the fluid 

exists provided u  =  u  =  I and th a t it is possible to obtain standard cosmology on 

the brane.

“̂ In the RS and BDL naodels it is only an assumption that the fluid matter resides within the 

brane. In the absence of a well-defined non-gravitational mechanism which confines matter to the 

brane, it is of interest to consider what happens when the fluid leaks from the brane and fills the 

entire extra dimension.

minimum is relatively insensitive to the precise values of Xyis , Xhid- The radius of the
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It may appear somewhat unnatm’al to have an indefinite target space metric since 

some of the scalars then have “wrongly-signed” (that is, negative) kinetic terms, 

which can lead to a violation of the energy conditions^. However, such scalars have 

been considered before in the hterature. Within the context of c? +  1 gravity they are 

descended from vector fields after dimensional reduction along a timelike direction of 

a higher dimensional “two-time” theory [49,232], whilst in d + 0 dimensions they are 

interpreted as axions after dualisation of a (d—l)-form field strength [233-235].

This section is based on [236].

8.3.1 The Set-Up

We consider a single, thin “visible” brane at r  =  0 in (4 -(- l)-dimensions, as in the 

RS2 model. The action for the gravity and scalar part of the model is an amalgam 

of the RS2, BDL and GW actions;

~  S g r a v ity  +  Sh ran e  )

=  J  d ^ x d r  ^ / ^ R  ,

=  j  d^xdr -  [/($)) ,

=  J  d ^ x ^ f ^ s  ( -K ,.($ ) )  , (8.37)

where the tension of the brane is, as previously, parametrised by K;is($). 

is the sigma-model metric and for simplicity we shall consider two scalar fields and 

take G^^($) =  diag(l, —1). The “correctly-signed” scalar, may be interpreted as 

a “dilaton” and the “wrongly-signed” scalar, as an “axion” .

We assume a separable metric with flat spatial three-sections on the brane:

ds^  =  QABdy'^dy ’̂

=  [—dt^ + g{t)Sabdx°'dx^) + f{ t)dr ‘̂ . (8.38)

This is a natural generalisation of the 4d fiat Friedmann-Robertson-Walker (FRW)

metric to a RS context and is a special case of the BDL ansatz (8.2) with n =  , a =

e V / ^  ^
®The null energy condition is discussed later in section 8.4.
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Given the above ansatz, it is not unreasonable to assume scalars of the form

r) = 4){t) +  I f  x{r) • (8.39)

Since can be considered as coordinates on the target space-time we must require

them to be linearly independent. This imposes the condition
/  b^\

From the relation

(a • b)^ = (a ■ a)(h ■ b) + {a^b^ — a^b^Y , (8-41)

we see that the Schwarz inequality

(a • a)(b • b) < {a ■ 6)  ̂ (8.42)

follows as a corollary.

We shall also make the ansatz that both the potentials f/($) and Kjg($) are of 

Liouville type (see, for instance, [237]):

[/(<D) =  Uoe^-^ ,

V U ^ )  = , (8.43)

where Uq and V̂ îs are constants.

The stress-tensor for the scalar fields is easily computed to be

Tb = Tb \bulk + \brane , (8.44)

where

k/fc =  f i i ^ )  = • Ob ^  -  • d c ^  + [ /($ ))  , (8.45)

and

Hr) g r / 9'* S’g , (8.46)

where there is no sum over the indices i and j .

The bulk fluid has the stress-tensor

f g  (p) =  d iag (-p ,p ,p ,p , P) (8.47)

in the comoving coordinates Here p is the density and p and P  the pressures in

the three spatial directions on the brane and in fifth dimension, respectively.
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8.3 .2  T h e  Solutions

We now proceed to solve Einstein’s equations given the above ansatze.

If we take a linear combination of the 00- and 11-components of Einstein’s equa­

tions and use (8.5) and (8.6) then the following equation results:

 ̂ f  9 . 9^ .  ̂ 1 /  9 -2 12 -2 2Af 1 \ n ('o /1Ĉ
4 / ^  ?  4 /2  “  2 / (p +  p) =  0 .  (8.48)

Therefore, we see that p and p must be of the form

p{t,r) = (p{t) + F{t,r))  , (8.49)

p{t,r) = -  F{t ,r))  , (8.50)

for arbitrary F{t,r).  However, it is normal to assume the equation of state p — up,  

where u> is constant in the range —1 < u> < 1. In the generic case u  ^  —I this implies 

that F  should be zero. We shall assume this also to be so in the special case u  = —1. 

Furthermore, we shall also assume P — up.  Equation (8.48) then reduces to

 ̂ f  9 , 9^ , 1 /  '9 -2 12 - ^2^^  n
4 / 9  ?  ’

Given F  = 0, it is not unreasonable to assume separation of the 00-component of 

Einstein’s equations into

3 f  9 3 i 2 - 2  ~ n  , o  Ko\
4 / - ' ‘. P = 0 . (8-52)

^ (4A'^ + 2A") +  ̂  / 1/ +  /V2 y  s(r) =  0 , (8.53)

where we have set the separation constant to zero for simplicity.

The rr-equation (using (8.9)) also splits in two:

+ +kg Ljp = 0, (8.54)
z 9 ^

6 A ' ^ - ' ^ b - b x ' ^  + k l f U  = 0 , (8.55)

where we have again set the separation constant to zero.
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Finally, upon using (8.7) the Or-equation becomes

J  = ■ (8.56)

In addition, the equations of motion for the scalar fields

^  ̂  ̂  ̂  ̂

result in the bulk equations

=  0 .  (8.58)

( > „ ( - 4 / lY - x " ) + « , . /£ /  =  0 ,  (8.59)

along with the jump condition

= . (8.60)

Note that the scalar field equations of motion imply that V '^T^s($) =  0 (and 

conversely off the brane only). This, in turn, implies that the fluid equations of 

motion V ^ T a b {p) =  0 are automatically satisfied (because =  0 identically)

and so it is not necessary to consider them.

The Wctrp Factor

We are primarily interested in solutions with /  ^  0 and a non-trivial warp factor A. 

From (8.56) we see that this implies a • b ^  0. We shall assume that a - b is non-zero 

even in the case of constant / .  Equation (8.56) then implies that we can make the 

following choice when f  ^  0:

k^x' ir)  = ey/ l2A'{r) ,  (8.61)

where e =  ±1. The solution for is therefore

, ^  ^  In f ( t )  + €ĵ b>̂  ^  A(r)  r > 0 ,
$^( t , r )=<^ (8.63)

r < 0 ,
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where ê . and e_ are (as yet) independent. On the other hand, if /  is constant we 

have (j) constant with x ' undetermined. Clearly, however, it is not inconsistent to 

impose (8.61) in this case. Therefore, we shall assume (8.61) and (8.62) (and hence 

(8.63)) hold also in the case /  =  0.

If we now substitute (8.61) into (8.55) we obtain U in the form

U = (8.64)
J

We can also express the brane potential K j5 ($ )5 (r) as 14is($)(5(r) =

Equation (8.53) can then be recast as

A" +  4b ■ bA'^ + ^  Kis Sir) = 0 , (8.65)
o

yielding the following options for A(r) and

1. If 6 • 6 =  0, we find A{r)  =  ak\r\, where a = ±1. Then Vyis = —6<rkk~^. We 

see th a t a = +1 corresponds to the RSI solution and a = —I corresponds to  the RS2 

solution, as described in the last chapter.

2. l i  b ■ b ^  0, we find A{r) = ln(fc|r| +  1) and Kis =  ~ ^2 bb • 

served in [238] and [239], if A: < 0 there are naked singularities at |r| =  —1/k  whose 

interpretation is of some debate [240,241].

In the above we have defined A(0) =  0. The scalars should be continuous 

across the brane. This implies th a t e+ =  e_ =  e if /  ^  0. The above forms for 

[/($ )  and y ( $ )  are then consistent with the ansatz (8.43) if ^   ̂ and

do =  —6 A'^(O) (1 — b ■ b). Note th a t ^'^(0) is well-defined even though A'(0) is

not. It is now easily verified th a t (8.59) is equivalent to (8.65) in the bulk, whilst 

(8.60) yields no further information.

On the other hand, if /  is a constant ( = 1 )  continuity of does not relate e+ 

and e_. In this case we have either:

(A ) b ■ b = 1. Then we have J7($) = Uq = 0 from (8.64). From (8.60) we find

(3̂  =  _,!2ii£±^zL)A 'I'hg case e+ =  —e_ is an example of the self-tuning solution

(solution (I)) of Kachru, Schulz and Silverstein [242], whilst the case e+ =  e_ is

solution (II) of [242],
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(B ) b-b ^  1. In this case consistency requires e+ =  e_ =  e and a^,  and Uq to 

be of the same form as in the f  ^  0 case above. This is solution (III) of [242].

T h e  C o sm o lo g y

If we substitu te (8.62) into the equation of motion (8.58) we find th a t /  and g are 

actually related:

•/(̂ ) ^ . .

where ^  is a constant of dimension [Time]“ ^ Clearly, /i =  0 iff /  is constant and in

this case g is not determined by (8.66).

Adding equations (8.52) and (8.54) gives:

g^ + 2gg + j g g ^ ^ k l g ‘̂ { i : j - \ ) p  = ().  (8.67)

On the other hand, using (8.52) and (8.66) in (8.51) we obtain:

+  2 ^ 5 + y  + 2 ^ 5 / (a;  -  l ) p  =  0  . ( 8 .6 8 )

Consequently, we deduce the relation

u = \ { l  + 2Cu) . (8.69)
O

From (8.52) and (8.62), p, which is actually the density on the brane since we have 

defined >1(0) =  0, is given by

-/ \ 3 / / 5  g'  ̂ a - a  / ^ \  /o

so th a t (8.67) may be alternatively expressed as:

~ 9  ̂ , n'9 , ~ f  9 , n  a - a  p+  2 - + W - -  +  1 - w  - — j7̂ 7 ^ =  0 .  8.71
9  ̂ 9 f  9 8 ( a  • b y  P

Taken together with (8.66), equation (8.71) defines the cosmology.

(I) /  =  0
For constant /  equations (8 .66) and (8.71) reduce to the single equation

• 2

+ (8.72)
9  ̂ 9
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w ith the solution

g  ~  ~  f^Qstandard _ (8 .73)

where qstandard =  2 /(3 (l + o ;)) and 7  is an arbitrary positive constant of dimension 

[Time]^^

Consequently, from (8.70) we see tha t the density p is positive and goes Uke l / t \  

Furthermore, the Hubble param eter / /  =  a / a ~ l / i  and so we obtain conventional 

cosmology H  ~  ^/p on the brane with evolution at the standard rate.

Of particular note is the case of a radiation-dominated fluid on the brane which 

results in vanishing pressure in the fifth direction:

T§{p) = p{t) d ia g ( - l ,  0) , (8.74)

with Qstandard ~  1/2.

The case of an isotropic fluid P  — p is also interesting. In this case the fluid is 

“stiff” (u) = 0  = 1) and qstandard =  1/3. Here, stiff reflects the fact th a t the velocity 

of sound in the fluid is equal to the velocity of light.

Our solutions contradict the claim made in [243] th a t when /  is constant the only 

solution is th a t of a stiff, isotropic fluid. This is because the authors of [243] assumed 

a 'priori th a t the fluid was isotropic in all four spatial directions.

It should be stressed tha t when /  is constant conventional cosmology is obtained 

irrespective of whether one considers an indefinite sigma-model metric or a more 

conventional positive definite metric.

(II) /  7̂  0
In this case we seek either power law, /  =  (7 t)^, or exponential, /  =  e'*'*, solutions 

of (8.71). From (8 .6 6 ) we obtain the corresponding solutions for g { t ) \  g  

and g  ~  respectively. The exponents q and 7  are non-zero and we take 7  >  0

in the power law case. The power law solutions are Kasner-like in the sense th a t the 

sum of the exponents over the four spatial directions is equal to 2. However, unlike 

the Kasner case, the sum of the squares of the exponents is not equal to 4 unless 

q = —I ov q = 2.

There are two cases to consider: u  = 1 and a) ^  1.
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(a) a) 7  ̂ 1

Solution of (8.71) leads to the following relations:

+  . (8.75)
(a • by  9 q“̂

in the power law case and,

a ■ a 16
(8.76)

(a - b y  9 ’

in the exponential case. If we now insert the above relations and the corresponding 

forms for /  and g into (8.70) we find th a t p vanishes identically. Therefore, the fluid 

docs not exist for a) ^  1.

(b) =  1

In this case we find th a t p is non-zero and hence the fluid exists and is both “stiff” 

and isotropic. The density is positive in the power law case provided < h{q) 

and in the exponential case provided Standard cosmology H  V p is

again obtained in both of these cases. Note th a t if one were to assimie a conventional 

sigma-model with a • a >  0 and a positive density p then one would exclude the 

exponential solutions and restrict q to either —l < g < 0 o r 0 < g < 2 .

8.3.3 Perturbation Analysis o f Solutions

In this section we examine the equations of linearised transverse, traceless fluctua­

tions about the backgroimds presented in the last section. This section is similar to 

section 7.5.2 and we shall give some details which were om itted there.

We will again choose axial gauge and consider metric perturbations

ds‘̂ = qab dy^dy^  = {g% + Ka b ) dy^dy^

— g2>i{r) fi^.(^x,r)) dx^dx^ + f{t)dr'^ , (8.77)

where we have defined Hab  =  and gij{t) = diag{—l,g{t) ,g{t ) ,g{t)) .  The

components hij are required to have even parity across the brane so th a t the metric 

remains invariant under the orbifolding r —> —r. Again, it will be simplest to work
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in terms of the conformal coordinate 2:, given by z =  f  e so as to bring the

unperturbed metric to the conformal form g ^ { x ,  z) = where

 ̂ ^ )  • (8-78)V 0 f(t )  J

The Unearisation is more complicated than that of section 7.5.2 because the metric 

g%(x,  z) is no longer flat.

The Einstein Tensor

The linearisation of the Einstein tensor is standard and can be found in [244], for 

example. A valuable source in which the linearisation of the Christoffel symbols, 

Riemann tensor, etc., as well as second variations of the Einstein-Hilbert action and 

higher derivative terms, are detailed is the paper by Barth and Christensen [245].

The first step is to remove the conformal factor from g and write G in terms of 

G and covariant derivatives of A with respect to g. Thus one expands G as [18,210]:

Gab — Gab +  3 -  V.4VbA + gAB (V M  + (V^)2)] , (8.79)

where indices on the right are raised with g^^. Note that ~  to

linear order, where indices on Hab are raised with the unperturbed metric .

The second step is to expand G to linear order in h. We use the expansions (to 

linear order) given in [245]:

R a b  = R Z  + I + ^ c ^ s h ^ A  ~ ^^°'"hAB ~ , (8.80)

R =   ̂ (8 81)

where we have defined h = and all indices on the right are raised with the 

unperturbed metric . The relation

V»V™Ag = V™V™Ag + , (8-82)

proves useful for commuting the covariant derivatives involved in (8.80).
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Thus, G a b  =  R a b  — \ q a b R  is given to first order in h by

G a b  =  R a b  ~  \ g % R  ~  \hABR^^^  , (8.83)

where R a b  and R  are as in (8.80) and (8.81), respectively.

The final step is to expand the covariant derivatives of A in (8.79) in terms of 

covariant derivatives with respect to the unperturbed metric and terms linear in h. 

Firstly, note th a t =  dsA — Thus,

W a A V b A  =  , (8.84)

~9ab{VA)  ̂ = g%iV^°^Af -  g%h^^V<-°^AV%^A +  /? ,a b (V '° U )2  _

Next, we expand the Christoffel symbol:

fBC =  -  h ^ ^ ' S o B c l e n  +  r ^ ^ ^ S o B c i h ]  , (8.86)

where we have defined S d b c [s ] =  \ { 9 d b ,c  +  9 dc ,b  ~ 9 b c ,d ) metric g. In turn,

this allows us to expand

V a V b A  =  +  h ^ ^ d D A S c A B l s n  -  (d^A)  *5cAB[h] , (8.87)

9abV^A =  +

+ cjZr^^^h^^dpA 5cD̂ ;[g'°>] -  ~9Z~9̂ ^̂ ^̂ {d̂ A) 5cz,£;[h]. (8.88)

All indices on the right sides of (8.85), (8.87) and (8.88) are raised with the unper­

turbed metric .

Piecing together (8.79)-(8.88) we obtain a rather lengthy expression (which we 

shall not explicitly write down) for the first variation 5G =  G  —

The Bulk Scalar Stress Tensor

The unpertiurbed bulk scalar stress tensor is given by (8.45). To first order, the 

variation of the stress tensor sphts into a part depending on the metric pertur­

bations Ka b  and a second part 5,T a b  due to the intrinsic perturbations of the scalar
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fields. The metric perturbation is easily calculated to be

(8.89)

while the intrinsic perturbation is

+  Oa ^Ob ^

-  »;,“i  ('s™ ™ 8c'i’ ■ +  e“ 4  • , (8.90)

where the perturbations are of the same order as the perturbations Ha b -

Note th a t the h-dependent bulk scalar stress tensor can be re-expressed as

= IfjcW + fAcm\h% + F̂ B

+ 4 5 K ^ .W '5 W 9 « < 5 ;. '> i . (8.91)

where

F a b  =  \ g %  d c ^  ■ 8 d ^  -  &a ^  ■ d c ^  h%  , (8.92)

T a b { ^ )  is the unperturbed brane scalar stress tensor given by (8.46) and there is a 

sum over j  but not over i .

The Brane Scalar Stress Tensor

Noting th a t we find

K T a b W  =  - ^ , V . ^ W S ( z ) { ^ - K g f ; - K ^ S \ S i ,  (8.93)

S . T a b W  =  ■ (8.94)

The Fluid

In this section before deriving the perturbations we need to examine more closely the 

kinematics and thermodynamics of the fluid [246,247].

We can write the stress-tensor (8.47) in the form [248,249]:

T a b { p )  =  (p +  p) U a U b  +  P 9 %  + {P - p )  u a U b  , (8.95)
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where =  (e“ ^, 0 ,0 ,0 ,0 ) is the tangent vector to the flow of the fluid and =  

(0, 0 ,0 , 0, in the coordinates y'^ = {x'^,z). Note th a t is timelike and nor­

malised: = —1. On the other hand, is spacelike and normalised and

orthogonal to

Equation (8.95) can be re-expressed in the more standard notation:

Ta b {p ) — p Ua Ub + p P ab  + t̂ ab  , (8.96)

where p = (3p -f P ) /4  is the mean kinetic pressure, Pab  is the projection tensor 

g %  + Ua Ub and

t̂ ab  = {P - p )  (̂ tiaUb -  \ P a b ^  , (8.97)

is the anisotropy (shear) tensor th a t satisfies = ttabU^  =  0.

We should also note th a t the fluid is assumed to satisfy the Gibbs equation

de +  pdv  =  T d S  , (8.98)

where e is the specific internal energy density of the fluid, v = 1 /^  is the specific 

volume {ji is the rest-mass density per particle as measured by an observer travelling 

with 5-velocity and is given hy /j, — p /{ l  + e)), p is the mean static pressure, T  is 

the tem perature and S  is the entropy.

Note th a t p and p  are logically distinct. However, they are related via

p = p - ^ 0  , (8.99)

where ^ is the coefficient of bulk viscosity and

0  =  =  e ~ ^  +  (8 . 100)

is the expansion rate of the flow lines. 0 is zero for the exponential solutions but 

equal to e~^ j t  for the power law solutions.

For simplicity we shall consider only isentropic fluid flow, th a t is, flow a t constant 

entropy. Equation (8.98) then imphes p =  jj?{de/dii). It is shown in [246, 247] 

th a t such flow is possible only when -kab =  0 and p = p. In turn, this implies 

p = P  = p = ^'^{de/djj) and tha t the flow is “perfect” .
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We now come to the calculation of the metric perturbations. The fluid current 

vector is defined by ^  and is conserved:

=

1 d
( V ^ / )  =  o (8.101)

This implies th a t the quantity \Z— /x is unchanged when the metric is varied 

[250]. Therefore, we calculate

de 

dfi
5f,p =  { 1 +  e-h fj.

1 
2

=  - ^ i P  +  p){e^^U'^U^hAB +  h)

and

S,U^ =  =  - i  U^U<^U‘’h co  ■fx V -pW  2

Given th a t the fluid is also stiff (that is, p = p) we finally find

ShTABip) =  —p (4/ioo +  2/i) ~  P {hoo +  h) +  p Hab

This can be re-expressed as

^hTABip) =  TAc{p)h% + H ab ,

where

^  -p{hoQ + h) - ‘̂ p K

0 - p  {hoo + h) g{t) âb

(8 .102)

(8.103)

(8.104)

(8.105)

(8.106)

H a b  =

-2 p h i  

0

\ 0 0

(8.107)

-p{hoo + h) f{t) j
Combining w ith (8.91) we find

1
f l / 2 Vvis[^)Kz)9n^\h^B-  (8.108)

The intrinsic fluid perturbations take the form [251]: 

/  x:; nx^-A^rra

^iTa b (p) —

\5p —2pe ^  8U°' —2pe 5U^

-2pe~^5U°- Spg{t)5ab 0

y - 2 p e - ^ 5 U ^  0 5pf { t )

where we have neglected the possibility of any anisotropic stress terms®.

(8.109)

®For a static, isotropic, non-stiff perturbation we would instead find SiTa b {p )' 

diag(5p, 5pg{t) Sab, Sp f{t)) .  A dust source tiien has 5p =  0 and so we reproduce (7.48).
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Transverse, Traceless Modes

We are now able to write down the equations for linearised perturbations:

5 G a b  -  G %  h% -  F a b  ~  H a s  -  K T a b { ^ )  -  9rj

=  8 , f A B m  +  S , f A B m  +  5 , f A B { p )  , (8.110)

where we have set k j = 1 for simplicity. The left side of this equation contains all 

the metric perturbations while the right side contains all the intrinsic perturbations. 

Note th a t if we were to set 51 =  /  =  1, put the scalars to zero and consider an arbitrary 

intrinsic perturbation S i T a b ( p ) ,  the above equations would exactly reproduce (7.40)- 

(7.42) of section 7.5.2.

Clearly, when combined with the perturbed scalar equations of motion (which we 

shall not derive), these equations form an extremely complicated set of coupled partial 

differential equations and it has proven impossible to solve them in all generality. 

Indeed, even in the simpler case of g — f  = 1, a. single scalar depending on ^ only 

and no fluid [207], the equations have not been solved in general.

The equations do simplify, however, if we consider the transverse, traceless compo­

nents of the metric perturbations. These components are defined with respect to the 

maximally symmetric subspace of our manifold. This subspace is just given by the 

three spatial directions x°-. Then hat can be decomposed in the following way [252]:

hab =  hab +  2d(^aEb) +  d a d ^ E  +  C5ab , (8.111)

where C  and E  are scalar perturbations, Ea is a vector perturbation and hab is a

transverse, traceless tensor perturbation: — d°‘hab = 0. Additionally, /iqo and /loa

decompose as

/loo =  ^  (8 .112)

hoa — daB + Ba (8.113)

where A  and B  are scalar perturbations and Ba is a vector perturbation. Each of the 

fifteen equations contained in (8.110) then splits separately into three: scalar, vector 

and tensor. In the sequel we shall consider only the tensor perturbations hab-
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From (8.90) and the fact that <i>̂ is independent of we see that SjTabi^) 

is proportional to Sab and will therefore not couple to hab- Likewise, SfTabi^) and 

SiTabip) are proportional to 6ab, as can be verified from (8.94) and (8.109). Therefore, 

the equations for the transverse, traceless fluctuations hab completely decouple from 

the intrinsic perturbations. Furthermore, from (8.92), Fab is proportional to Sab, as 

are Hab (cf. (8.107)) and the /i* part of Sh.Tab{ )̂ (cf. (8.93)). In addition, the final 

term on the left side of (8.110) cancels the remaining term of (5hTafc($).

Hence, we end up with the following equations for the components hab'

[<5G^-Gl"^fcf]” ’ =  0 . (8.114)

where denotes the transverse, traceless part. We have not as yet imposed the axial 

gauge constraint which is now used in order to simplify these equations even further. 

In this gauge we find that (8.114) reduces to

+ §j9,Ad,h  ̂-  = 0. (8.115)

It is easily verified by hand (or, alternatively, using Mathematical) that

RZ =   ̂ , R^^^Sab , (8.116)

and

- T (^  ■»)
It should also be noted that acting on hat is not the scalar D’Alembertian of 

the unperturbed metric (8.78). Instead, we find

^ab (8.118)
2 g  ̂ 2 y 2 f g

where is the scalar D’Alembertian of the unperturbed metric. Upon using (8.71)

with u) =  1, we arrive at the final form for the equations of transverse, traceless

fluctuations:

+  —  djlab +  ^ A A d X b  -  -~hab =  0 . (8.119)9 i  r
^My thanks to Pekka Jahunen of the Finnish Meteorological Institute for providing an invaluable 

Mathematica program for calculating the Einstein tensor [253].
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Let us now proceed to solve these equations. It has been noted in [254] that in

general this equation is non-separable and therefore must be solved perturbatively

order by order. However, since we have assumed a separable ansatz for the metric

we find that the equations are separable. Let us first note that

□(0) =  _g2 _  iZ a ,  _  +  1 a  +  i a f  . (8.120)

where A is the scalar Laplacian for the three spatial directions on the brane. There­

fore, we see that the perturbations can be decomposed into the Fourier modes:

K , = g{t) (8.121)

where tab is a transverse, traceless polarisation tensor and where ^  and T satisfy the 

following equations:

+  , (8 .122)

^  + \ -A  + r ^ ‘- — ^‘ + -2 + — -j]s '< 'SW  = 0, (8.123)
J 9 9 9 9 j j

where m  =  |m|. Note that T ^’(̂ ) ^̂ *̂’̂ (2:) tab is the transverse, traceless pertur­

bation of the metric âb- Note also that (8.122) has the same form as equation (7.63). 

Indeed, the perturbations studied in the last chapter were static with g = f  = 1- 

From (8.123) we see that this requires > 0. However, in the time-dependent

case it is also possible to have < 0.

The modes ^''’’̂ ( )̂ are subject to the boundary condition

a^^^'’̂ (0+) =  0 , (8.124)

as can be deduced from (8.119).

The Modes '̂̂ *’̂ (2)

Firstly, the zero mode of (8.122) satisfying the boundary condition (8.124) is given 

by ^̂ <°'(2 ) =  constant.

For the non-zero modes we employ the transformation

^w (^) = , (8.125)
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as in section 7.5.2, to put (8.122) into the form

( - a f  +  \ A ' ( z f  +  ./-W(z) =  - p ‘ . (8.126)

We shall concentrate on the case b-b < 0, since the case b-b = 0 was presented in 

the original RS2 paper [199] and the case b-b > 0 was discussed in a different setting 

in [238]. (Our analysis, however, is also vahd for 6 • 6 > 0.) Furthermore, we shall 

take A: >  0 so as not to have singularities in the bulk. In this case we find

^  ln{k\z\ +  1) ,

where ^  — Ab ■ b — 1 and k = k ( l  — .

Therefore, in the region z > 0 (8.126) becomes

.127)

(8.128)

where This is similar to equation (7.67). Indeed, (7.67) is obtained from

the above equation by formally setting (5 = —\ and k = k.

The boundary condition (8.124) becomes

= -a k i l j ^P \0 + )  . (8.129)

The solution to the above equation is

(pu)^/^ I -u { p u ) — "V
i to V o

(pw)^/^

1 
1

+ p2 < 0
(8.130)

where p = \ / \ p ‘̂\, u = z + 1/k  and u = a  + 1/2. These solutions assume th a t u is 

not an integer. If u is an integer we instead find

> 0 , 

p^ < 0 .
(8.131)

y;(pu) j^_,(^p/k)'

Here, and are Bessel functions of the first and second kind respectively and 

and Ki, are as defined in section 7.5.2. In verifying th a t these solutions satisfy the 

boundary condition (8.129) it is necessary to use the recurrence relations (7.69) as 

well as

du(u‘'I^i,{u)) = u'"I^^+i{u) , duiu^'J^^{u)) = -u'"J^u+i{u)  , (8.132)
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du{u''Y,{u)) = , duiu'^Mu)) = . (8.133)

To extend the solution xp̂ ”"\z) to all z, we simply replace 2 by \z\.

T h e  M odes T^^(0

In order to solve (8.123) we rescale the four-dimensional metric Qij (defined in (8.77)) 

by a factor and define a new time coordinate r  by r  =  ±  f  Then (8.123)

becomes

where g =  and the dot now denotes differentiation with respect to r.

(I) /  -  0

In this case we take /  =  1 so that t  = t  and g = g. Since we are considering the case 

of a stiff, perfect fluid then from (8.73) we find g ~  (7 t)^/^. The coordinate r  ranges 

from 0 (where there is a singularity) to 00. In this case large t obviously corresponds 

to large r.

Equation (8.134) reduces to

{r^dl +  Tdr + T^>(r) =  0 , (8.135)

where 5 =  2/3 and iv? =

For the zero modes =  0, the solutions of (8.135) are

T “ W = |  ’ (8.136)

There are no closed-form solutions to (8.135) when p^ ^  0; equation (8.135) must 

be solved numerically. However, we can study the small r  and large r  limits, where 

one of the last two terms in (8.135) dominates over the other. The small r  behaviour 

is the same as that of the zero modes while for large r  we find

’ (8.137)
K o { p t )  ,
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when >  0 and

TS'W  = I  ’ (8-138)
[ y o { p r ) ,

when < 0. In both of these cases we have defined, as before, p = \/\p^\.

(I I)  /  ^  0

(A ) Exponential Solutions:

For the exponential solutions we find

M -r =  ‘ (8.139)
4

^ ^ - 4/3   ̂ g =  I \ A Y \ 2 / 3

and therefore

4 J

Since /x is arbitrary, we choose \fi\ =  4 |7 |. Note th a t —oo < t < oo, so t  ranges 

from 0 to  oo. If the fifth dimension is expanding ( 7  >  0) then large t corresponds to 

large r . On the other hand, if the fifth dimension is contracting ( 7  < 0) then large t 

corresponds to  small r .

Equation (8.134) then becomes

{r^d^ + Tdr + -  p^T^^) V ^ { t ) = 0 , (8.141)

where 5 ~  —4/3 , rh? =  m ^ /|7 p/^ and p^ = p^/ { \ ^ \ / .

For the zero modes p^ =  0, the solutions of (8.141) are

 ̂ ’ (8.142)

Again, we find th a t there are no closed-form solutions to (8.141) when 

/  0. The small r  behaviour is

=  I  ̂ ’ (8.143)

when >  0 and

K q{ \ p t 2)

T S ' M H  (8 .144)
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when <  0. In both of these cases we have defined p — \ / \p ‘̂\- The large r  behaviour 

is th a t of the zero modes.

(B ) Power Law Solutions with q ^  —4:

For the power law solutions with o' —4 we may take

l7 C (9 )k  =  , (8.145)

where C(?) =  1 +  ?/4. Therefore, we find

, § =  ( ' l ^ ^ i y '% ^ / 3  , (8.146)

where S{q) — We can choose |/i| =  !97 /C(9)|- The coordinate t ranges from

the singularity a t 0 to cxd, as does r .  We find th a t large t corresponds to  large r  if

q > —4: and to  small r  if q' <  —4.

Equation (8.134) then becomes

{r^d^ + Tdr + T j^'(r) =  0 , (8.147)

where, as before, and we have also defined p iq ^  =

Note th a t if we take the limit g —> 0 in the above equation we recover (8.135). Alter­

natively, if we take the limit g —> 00 and simultaneously rescale 7 and m  according 

to 7 —> g~^7 and m  q~^l^m (so th a t rh remains constant) we recover (8.141).

For the zero modes p^ =  0, the solutions of (8.147) are

T » ' W = !  (8.148)
[Yoilrhry^).

For general q there are no closed-form solutions to (8.147) when p^ ^  0. However, 

when 3 (5(g) =  4/3, tha t is, q =  1/2 (which implies an isotropic five-dimensional 

universe: f  = g = we find

T ^ ) ( r ) =  '  (8-149)

when fh^ > p { \ y  and

=  7 /------------------------------------------------------------(8-150)
^ 0 ( 2 \Jw- p{2 y\'^ ) ’
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when < p{\Y .

There are also closed-form solutions in the special case 5{q) =  0, or 9 =  2:

, V = ^p(2) , (8.151)

where p{2) =  ^Jp{2y can be either real or imaginary. (If u is an integer is

replaced by Yy. In particular, this is the case for the zero modes.)

For the range —̂ < q <  1/2, for which “i5{q) > 4/3, we find that the small r

behaviour is that of the zero modes, while the large r  behaviour is

' (8.152)

when > 0 and

rSiT}  =  I  ’ (ai53)

when < 0. In both of these cases we have defined p{q) = \/\Piqy\- Outside 

the aforementioned range of q (but q ^  2), the small r  and large r  behaviours are 

interchanged.

(C) Power Law Solution with q = —4:

For the power law solution with q = —4 we find

=  7^ , ^ ~  ^ ( ------ ) • (8.154)

Again, the coordinate t ranges from 0 to 00, as does r , with large t corresponding to 

large r.

Choosing /i =  —47 , (8.134) becomes

(d^ + m ^ -  T^)(r) =  0 . (8.155)

The zero mode solutions are

T™(r) =  e^*”^̂  (8.156)

In this case closed-form solutions for ^  0 exist:

/±.(Sr) ’ p > 0 
i±.(4?) > p' < 0= ■! . Z -  . ' (8'157)

where u = 37
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8.3.4 Stability of the Transverse, Traceless M odes

In this section we discuss the stabihty of the transverse, traceless modes found in

behaviour of as t oo.

Normalisation of the Modes

According to [210], the correct measure to be used in the normalisation of the modes 

is determined by examining the expansion of the Einstein-Hilbert term to 

second order in the fluctuations fiAB- The complete expansion is given in [245]. 

However, for our purposes we need only perform the calculation symbolically. 

Firstly, we use (7.15) to remove the conformal factor from the Ricci scalar:

where ^  defined in (8.78).

The Christoff'el symbol expansion was given in (8.86) and we see that symbohcally

where we have invoked covariance to rewrite the partial derivatives as covariant ones. 

Performing a transverse, traceless projection we find

the last section by considering the norm of the fluctuations {z) and the late time

(8.158)

The Einstein-Hilbert term is then

'gravity (8.159)

(8.160)

Since ^  ~  we find

(8.161)

r
Combining the above expansion with (8.159) we find

~  J  ( f x d td z g  {dahcddahcd ^----- ) • (8.163)
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Recalling the Fourier decomposition (8.121) and the field redefinition (8.125), we find 

th a t the modes are normalised with the flat space measure dz.

We have seen in the last section that the zero mode is given by ^^“’(2:) =  

constant {= 1), or equivalently, Therefore, the zero mode is nor-

malisable provided

As far as the non-zero modes are concerned, we see from the asymptotic ex­

pansions (7.72) that the > 0 modes diverge as |z| —> cx) and are therefore non- 

normalisable. On the other hand, from the large pu expansions

/oo pc.
= /

•00 J  —>
(8.164)

which impUes 3/P < —1, or equivalently, — |  < b • b < 0. This also imphes that the 

four-dimensional Planck mass (in the Einstein frame®) is then given by

(8.165)

Note that if we formally set \(3\ =  1 and k = k we recover (7.30).

(8.166)

(8.167)

we see that the < 0 modes asymptote to plane waves as \z\ —>• 00. They are 

therefore plane-wave normalisable over a period as \z\ 00;

2 '

(8.168)

for the < 0 modes of (8.130) and

2 "

(8.169)

for the < 0 modes of (8.131).

®The four-dimensional metric =  dia.g{—l , g { t ) , g { t ) , g { t ) )  is defined in the so-called Jordan (or 

string) frame with t  the comoving time. The rescaling gij  —» f^^“̂ gij , t  ^  t  transforms the Jordan 

frame to the Einstein frame with t  the comoving time. The 4d  Planck mass is time-dependent in 

Jordan frame but time-independent in Einstein frame.
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Decay of the Modes

In this section we shall concentrate on the decay of the modes (with < 0

normalisable) as the comoving time t oo. It is these modes th a t determine, for 

instance, the amplitude of anisotropies seen in the cosmic microwave background by 

observers who live on the brane^.

dimension and a power law contracting fifth dimension with q < —4 the large t limit 

corresponds instead to the small r  limit.

case (case IIA) can be considered as the g —> 0 and q —>■ oc limits respectively of the 

general power law case. Therefore, we shall consider cases IIB and IIC only.

The Zero Modes T^>(t)

For case IIB (power law solutions with q 7  ̂ —4), using (8.148), (8.166), (8.167) and 

the small v expansions

to zero a t late times from a constant value initially. The amplitude of the Yq mode also 

decays to  zero at late times from an initially divergent value. This same behaviour 

occurs if the fifth dimension is exponentially expanding.

On the other hand, for q < —A or an exponentially contracting fifth dimension 

the am plitude of the Jq mode grows from zero initially to a constant value a t late 

®My thanks to David Wands for a discussion on this point. See also [255].

since we have just seen above th a t the ^-dependence makes the > 0 modes non-

As noted in the last section, the large t limit generically corresponds to the the 

large r  limit. In the two exceptional cases of an exponentially contracting fifth

We have seen previously how the case of /  =  0 (case I) and the /  7  ̂ 0 exponential

(8.170)

we find the amplitude:

T T  ^  0 0  (Jo, Yq)

1 r ^ O  ( Jo) ,

I n r  T ^  0  (lo) ,

(8.171)

Therefore, for power law solutions with q > —4, the amplitude of the Jo mode decays
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times, while the amplitude of the Yq mode grows from zero initially but diverges at 

late times.

For case IIC (power law solutions with q =  —4), we see from (8.156) that the 

zero modes T ^ '(r)  are just plane waves. Therefore, the modes oscillate at constant 

amplitude for all times.

The Non-Zero Modes (t) with < Q

For case IIB with —4 < g < 1/2, we find (using (8.153)) that the amphtude has the 

large r  behaviour;

^.172)

while the small r  behaviour is that of the zero modes. For this range of q we find 

35(g) > 4/3. Therefore,

7 - ^ 0 0  { Jq , Yo)  ,
1 r - > 0  (Jo),  (8.173)

In r  r ^  0 (To) ,
V

where \{q) = 35(g)/4 > 1/3. The interpretation is the same as that above for the 

zero modes with q > —4, albeit with decay at a more rapid rate.

For 1/2 < g < 2, the large r  behaviour is that of the zero modes while the small

r  behaviour is that of (8.149) or (8.153). Therefore, we find:

T ->00 (Jo, Vi) , 

r e w i - ' l  1 T ^ o  (Jo) ,  (8.174)

In r  r  ^  0 ( I q) •

The interpretation is again the same as that above for the zero modes with g >  —4, 

this time with the decay being at the same rate.

For g =  2 we obtain (using (8.151)):

r  oo (J± )̂ ,

|r2‘̂ /3| =  l T ^ O  (J.) , (8.175)

=  1 T ^  0 ( J _ ,)  ,

where u = yp(2). Hence, the modes decay from a constant amplitude initially to 

zero at late times at the same rate as the zero modes.
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For 9  <  —4 or g >  2, we must remember th a t 5{q) is negative. The large r  

behaviour is th a t of the zero modes while the small r  behaviour is th a t of the modes 

(8.153). However, because S{q) is negative we need to use the large asymptotic 

expansions (8.166) and (8.167) in the small r  hmit. Therefore, we obtain:

f T —> oo {Jo,Yo) ,
| T S > W I ~ <  (8.176)

[ rW*’)!/-* r ^ O  (Jo.Yo) .

Hence, these modes initially grow from zero, reach a peak and then decay back to 

zero at late times. This is also true of the exponential solutions (<5(oo) =  ~ 4 /3 ) 

whether the fifth dimension is expanding or contracting.

Finally, for case HC {q = —4) we find (using (8.157)):

e r —̂ oo (J-

|e37^r| ^ ^  0 (J^) , (8.177)

|e-37-T| =  1 r  ^  0 (J_^) ,

where u = Therefore, the modes decay from a constant amplitude initially to 

zero at late times 

Summary

If we characterise the stability of the space-time by a gradual decay of the normalis- 

able perturbations from early times to late times, we conclude from the above analysis 

th a t only those space-times where the fifth dimension expands or contracts according 

to the power law (7 ^)  ̂ with —4 <  g <  2  are stable.

In the next section we shall narrow down this range of q even further by requiring 

th a t the null energy condition on the brane not be violated.

8.4 Energy C onditions on the Brane

In this section we examine the null energy condition both in the bulk and on the 

brane.

The energy conditions, encoded in the evolution of the expansion scalar governed 

by Raychaudhuri’s equation [18,250], are fundamental to classical general relativity. 

They are used in the proofs of the singularity theorems (guaranteeing, under certain
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circumstances, gravitational collapse), in the positive mass theorem, in the proof of 

the zeroth law of black hole thermodynamics (the constancy of the surface gravity over 

the event horizon) and in a host of other powerful mathem atical theorems (see [256] 

and references therein). Therefore, space-times violating these conditions can have 

serious repercussions for physics. There are five such energy conditions: trace, strong, 

weak, dom inant and null [257]. The weakest of these is the null energy condition 

(NEC) and it is usually the easiest to work with and to analyse. The standard  

lore is th a t all reasonable forms of m atter should at least satisfy the NEC at least 

classically (quantum  effects can lead to violation). Visser [258] has analysed the 

energy conditions and their implications for FRW space-times. (He calls m atter 

violating the NEC “exotic” .) His analysis has recently been extended to RS-inspired 

brane-world scenarios in [259,260].

In section 8.3 we noted tha t an indefinite sigma-model metric, which gives rise to 

negative kinetic terms for some of the scalar fields, could lead to a violation of the 

energy conditions. By requiring the NEC to be satisfied on the brane, we eliminate 

the exponential solutions for the scale factors and restrict the range of g to — 1 <  g <  2 

for the power law solutions, as we now show.

The NEC is a point-wise condition which states tha t

TabC^C  ̂ >  0 , (8.178)

for arbitrary  null (that is, — 0)> where is the total energy-momentum

tensor in the background space-time. Using Einstein’s equations and the fact tha t 

is null, this condition becomes

R Z C \ ^  >  0 , (8.179)

where is the Ricci tensor for the background metric defined in (8.38). Upon 

calculating the Ricci tensor (using Mathematica) and using the equations of motion 

(8.66) and (8.71) with a) =  1, we find th a t the NEC becomes

- 3  ̂  (C')^ -  3 A"(r) i C ?  +  3 A'(r) ^  C C  > 0 ■ (8.180)
9 f

Firstly, the RSI and RS2 models both have g — f  =  1. Therefore, the NEC is

violated unless A''{r) <  0. Since RSI has A =  k\r\ and RS2 has A =  —k\r\ {k is
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positive in bo th  cases) and =  25{r) in the neighbourhood of r  =  0, it follows 

th a t the NEC is not violated in the bulk (where the delta function vanishes) in either 

model. However, for RSI it is violated on the brane at r  =  0 where the delta function 

has support. This violation of the NEC on the brane is a serious drawback of the 

RSI model whose consequences have not been fully explored in the literature to  date. 

Secondly, for b ■ b ^  0, if we use equation (8.65) we can rewrite (8.180) as

-3 ^(C ')^  +  126■ b A ! ( T f ( C f  +  k l V ^ S { r ) ( C ?  +  >  0 , ( 8 1 8 1 )

where, according to section 8.3,

1
M r )  = ^ ^ l n ( f c | r |  +  1) , • (8.182)

We are interested in the case —1 / 2 < 6 - 6 < 0  with A; > 0, so Vyis is positive. If 

we take C* =  0 it is easy to  see th a t the NEC is violated in the bulk^°. However, it 

is more im portant from the point of view of observers living on the brane th a t the 

NEC is not violated on the brane. Therefore, on the brane the condition becomes

+ klV,i,S{r)iC)^ > 0 , (8.183)

where it is legitimate to drop the other two terms in comparison to the (non­

vanishing) delta function. Since we already have Vyis > 0, we are left w ith the 

condition g < 0. This immediately rules out the exponential solutions g ~  

while for the power law solutions S' ~  (7 it restricts q to the range — 1 <  g <  2 

(including the case q = 0).

Furthermore, as we have seen in the last section, for the above range of q the 

normahsable pertiubations decay to zero at late times. In addition, if we exclude the 

two Kasner solutions g =  — 1, 2 by choosing

n ^ ^  U . )  -  16 ( 2 - ? ) ( 1  +  9) . 0  1 0 . N

then the Schwarz inequality (8.42) is automatically satisfied^^.

^°Some of the other RS-type scenarios not discussed in this thesis, for example, the Gregory-

Rubakov-Sibiryakov model [261] also violate the NEC in the bulk [262,263].
^^This choice ensures that after integrating over the fifth dimension the dimensionally reduced

sigma-model action becomes that of a single scalar field with a positive kinetic term.
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8.5 Conclusions and Further Work

We have seen in sections 8.3 and 8.4 th a t a scalar field sigma-model w ith indefinite

m etric can be coupled to gravity and a bulk perfect fluid in such a way th a t

•  the warp factor is given by

where —l / 2 < f e - 6 < 0 ,  f c>0.  It therefore decreases from a cusp on the brane 

a t r  =  0 to  zero as |r | —> oo;

•  the bulk metric is given by

ds^ = (k\r\ + 1)2/'’* { -d t^  +  , (8.186)

•  the fluid has positive density;

•  conventional cosmology is obtained — the square of the Hubble param eter on 

the brane is proportional to  the density of the fluid;

•  the null energy condition on the brane is not violated;

•  the zero mode is normahsable with flat space measure dz;

• the four-dimensional reduced Planck mass in the Einstein frame is related to 

the flve-dimensional one by

g24{r) ^  ^  ŷ/bb (8.185)

where —1 < q < 2 and 7 is an arbitrary positive constant;

•  there are no singularities in the bulk since k > Q;

3 k k ~ ^•  the tension of the brane is given by Vyis =  — posit ive;

(8.187)

where \(3\ =  4|6 • 6| -I- 1 and k =  k\P\/4\b ■ 6|;

the dimensionally-reduced sigma-model has a positive kinetic term;
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• the normahsable transverse, traceless fluctuations on the brane decay to zero 

as  ̂ > oo.

The above points seem to suggest that gravity might be localised on the brane. 

Indeed, naively, the normalisability of the zero mode wave function is equivalent to 

localisation of gravity [210,241] (at least classically — quantum effects might cause 

delocalisation; such quantum effects are a topic for future research). However, to re­

ally prove that gravity is localised we need to examine the /ioo fluctuation in much the 

same way as we did in section 7.5.2. Unfortunately, as we noted in section 8.3.3, the 

scalar perturbations couple to the intrinsic perturbations of the scalar fields and the 

fluid and, therefore, we must solve a complicated set of coupled differential equations. 

Such an investigation deserves further attention.

We have seen that other power law solutions and exponentially infiating/defiating 

solutions exist for the expansion factor g{t). However, these solutions generically 

violate the null energy condition on the brane. Such violations are often associated 

with weird physics (e.g. wormholes) and might be worthy of further investigation.

From equations (8.51)-(8.60), it is clear that under the transformation /  —̂ —/  

the potentials U and V  change sign but otherwise the analysis is unmodified. Thus, 

it is possible to make the extra dimension timelike rather than spacelike. Such a pos­

sibility was alluded to in [171,264] and its physical implications might be interesting.

Finally, it would be interesting to see if our model can be embedded in a five­

dimensional supergravity, as has recently been done for the RS models [265,266] (see 

also [267] and references therein).
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Appendix A 

Spinor Conventions

With C the charge conjugation matrix, we adopt the following conventions for raising 

and lowering spinor indices:

A“ = , A, =  = 51 , (A.l)

and for both 50(1,9) and 50(10) we have the following:

=  - c  , . (a .2 )

With these conventions, C is given by by Ca(3 and the index structure on

the gamma matrices is (r'^)^^. Therefore, is given by (r^)a^ =  Cf3^{T^)g^ =

(r^)/3a and is given by (F)“ .̂ Note also that (r'^)^^A^ = —(r'^)a/3Â . Fur­

thermore, the gamma matrices act on the Ramond vacuum of the superstring as 

(r^ )^ ^ |0 ;/3 )h -  We define F = It satisfies F^ =  1, (F)^^ =  (F)/3a and

F^ = -C F C -^
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Appendix B

Differential Forms

We give here some conventions on fc-forms in a 10-dimensional space-time of 

Lorentzian signature.

A fc-form is defined by

Hk =  A • ■ • A , (B .l)

where is a totally antisymmetric tensor and A the standard wedge product:

A =  —dx^^ A dx^^. The exterior derivative d (which satisfies d'  ̂ =  0) takes

a k form to  a (A; -|- l)-form:

(<̂ -̂ fc)i/|ii...̂ fc — (k + , (B.2)

and the following properties hold

H k A H i  = { - I f  Hi A Hk , d{Hk A Hi) =  dH^ A H i  + { - l ) ’̂ Hk A dHi . (B.3)

The Hodge dual is the (10 — A:)-form with components

-.0 -. . (B-4)

In the above formula, is the totally antisymmetric Levi-Civita symbol with

^01...9 =  1- The indices on e are raised with the inverse metric (equal to  on 

page 103) and acting on a A:-form we have ** =  (— A 5-form is selfdual if 

H^ =  and anti selfdual li H^ = — *H^.
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We define integration of a A:-form over a /c-diinensional orientable manifold M  as

[  H k =  [  d^x{Hkh...k , (B.5)
J M  J M

where . . . ,  form a right-handed coordinate system on M.  Finally, for a manifold 

with boundary we have Stoke’s theorem;

[  dHk-i =  f  Hk-i  . (B.6)
J  M  J d M
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Appendix C 

Dirac M atrix Algebra for 

Section 5.2.2

In this appendix we outline the Dirac algebra involved in calculating the amplitudes 

of section 5.2.2.

C .l Trace for the Two-Point A m plitude

We have seen that the two-point amplitude trivially vanishes because of the

trace over the CP factors (5.4). There is, in fact, a separate and independent reason

why the amplitude is zero — the trace over the spinor indices vanishes, as we now 

show^.

Explicit consideration of the two-point amplitude results in it being proportional

to

(C.l)

Let us write the matrix M  defined in (4.304) in the alternative form:

(^ eao ..,ap r“o . . . T “p , (peven) ,

M  . . .  r “̂ r  , ( p ^ - i  odd) , (c.2)
i T , { p =  - 1 )  ,

^This section is required in order to calculate a similar trace for the three-point amplitude (see 

section C.2).
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where ranges over the indices 0 , . . . , p  and eao...ap is totally antisymmetric with 

eoi...p =  1- Recall from section 4.2.2 and section 5.1.1 tha t there is an ambiguity 

in the sign of M . However, this sign is of no consequence here and w ithout loss of 

generality we have chosen it to be positive. Now, since FP_ =  —P_ =  — (1 — r ) /2 ,  

we have

Tr(P_^(fc)M )

We see th a t the trace effectively sphts into two parts. The first part is proportional 

to

TV{r«---r»)(ffO„..« , ( p = - i ) .

whilst the second is proportional to

where we have used the gamma matrix identity (4.270) and the definition of the 

Hodge dual, equation (B.4).

Step One

Since the trace of any antisymmetrised product of gamma matrices is zero, it is clear 

th a t both  parts vanish separately for p =  —1 and 1 <  A: <  5.

Step Two

Consider (C.4) for p ^  —1. Repeated use of {F^, F"̂ } =  yields

Tr (F^' • • • F' '̂^F^o • • • F“^)

=  (—l)p[2ry^i“oTr (F^^ ■ • ■ F^'^F"! • • • F“p)

( r m r “or/^2 . . .  • • • f “ ]̂ (c.6)

=  l)P[27/^i“°Tr (F^^ • • • F^'=F“'̂ • • • F“p) — 2?7̂ “̂°Tr (F^'F^® • • • F̂ '̂ F®̂  • • • F“p)

+ T t (F '^T^^r^orw  . . .  .

The first two terms in the third line above are equal due to the antisym m etry of the 

components of Hk. Continuing in this way we can return  F“° to its original position
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by commuting it with all the The overall sign is then (—1 )^+^ and must be 

negative if we are to get a non-zero result since the trace of an odd number of gamma 

m atrices is zero. The final term  can then be brought over to the left hand side and 

so we obtain

T V { r «  ■ .  . r " r “ »  • •  ■ r - . )

We now do the same with on the right hand side of (C.7) and obtain

Tr (r«... r«r«.. ■ r«.)

We keep going until all the F“' or are used up. However, since the trace of any 

antisymmetrised product of gamma matrices is zero, it is clear th a t we get a non-zero 

result only if A: =  p -f- 1 . Therefore, we end up with

T r(F ^i...F '^ '= F “o . . . F “^)(i/fc)^,..^,ea,..a,

=  3 2 (-1 )p(p+ i)/2(p +  ,

where the factor 32 results from the fact th a t the gamma matrices are of dimension 

32 X 32 in 10 space-time dimensions.

Now consider (C.5) for p 7  ̂ —1 . It is clear th a t a calculation similar to th a t above 

results in

_(_l)fc(fc+i)/2Tv (r- i • • • F-^^o-.r^o. . .

=  -32(-l)P(P+i)/2(-l)''(fc+i)/2(p+ l)!5io-fe,p+i(*//fc)“° - “̂ e„o...ap (C-10)

=  32(-1)P(^>+1)/2(p+ l)!5io_fc,p+l(//lO-fc)“° -“^eao...a, ,

where we have used the duality relation (4.271).

Why the Two-Point Amplitude Vanishes

From (C.9) and (C.IO) we see th a t the trace (C.3) vanishes unless there exists a field 

strength of degree p-|- 1. However, no such field strength exists in type H A /B theory 

for p even/odd. Therefore, we conclude tha t =  0.
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C.2 Trace for the Three-Point Am plitude

The trace over spinor indices involved in (5.73) is:

Tr(P_^(fc)M rO

\iiT r ({1 -  r)r« ■ • ■ , (p = -i).
Since i and aj both range over the indices 0 , . . . ,  p, the matrix F* will annihilate one of 

the matrices when p ^  —I. Therefore, according to our discussion of the trace in 

the case of the two-point amplitude, we should expect (C .ll)  to vanish unless k =  p  

or 10 — k =  p  whenever p ^  —1. This is in fact true, as we now show.

Step One

For p — —1, we can use the results (C.9) and (C.IO) directly by putting p =  0 and 

substituting the index i for oq. We obtain

Tr (F_^(fc)M P ) =  16i [5k,,{HkY +  6 ,o-kAH,o -kf ]  . (C.12)

Step Two

For p  7  ̂ —1, let us consider the first part of (C .ll) ,  that is, the part not containing 

F. It is proportional to

Tr (F' î . . .  F^''F“° . . .  • (C.13)

Clearly, this is non-vanishing only if A: -|- p 1 is odd. By commuting F* with each 

we obtain in much the same way as we obtained (C.6),

Tr (F^' . . .  F^-'F^o ■ • •

=  [2A:r7̂ i*Tr (F'^ .̂ . .  . . .  pap  ̂ (C.14)

+ (-l)^ T V  (F^i • • • F'^'=FT“o • • • T-^)]{Hk)^,...^,eao...ap •

We now commute F* with each F“-' until F* ends up in its original position with a 

overall sign (—1)^+p+  ̂ =  — 1. Bringing this final term over to the left hand side and 

using the antisymmetry of tao...ap we therefore find

Tr (F^i . . .  F '̂=F“o • • •

=  [A:r/̂ i*Tr (F^^. . .  pMfcpao. . .  (C.15)

+ { - l ) ^ { p  +  l)77“°'Tr (F^i . . .  p/^^p«i . . .  F“̂ )](i/fc)w.../..eao.,.ap •
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Now we use the result (C.9) in each of the two terms on the right hand side above 

to obtain

Tr ( r ^ i . . .

i^* j
+ 3 2 (-l)^ (-l)(P -lW 2 (p +

=  32(-l)P(P+l)/2[(p +  2)!4,p+2(^/fc)"°-“̂ eao...ap +  (p+l)!4,p(^fc)“' - “̂ “̂°V,„„.aJ.

The first term in the last line above is zero because i and aj both range over the 

indices 0 , . . .  ,p. Hence, we finally obtain

Tr

=  32{-iy(P+^y^{p + •

Consider now the second part of (C .ll) for p ^  —1, that is, the part containing 

r .  It is clear that a similar calculation to that above results in

- ^ T r  ( r r ^ i  • • • r ^ * = r “ °  • • •

=  (C.18)

where we have used the duality relation (4.271).

Therefore, we arrive at the final form for the trace involved in the three-point 

amplitude (5.73) for p ^  —1:

Tv(P_M(k)Mr)
 ̂  ̂ (C.19)

=  ^(-l)P(j>+l)/2 +  S,0-kAHlO-kr-‘̂ ^ea,...aX°' ‘
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