
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Reconfigurable Software Radio Systems

A thesis submitted for the degree o f

Doctor o f Philosophy

Philip Mackenzie

Department o f Electronic and Electrical Engineering
University o f Dublin, Trinity College

October 2004

(^TR IN ITY C O LLE G E ^

0 8 NOV 2004

l ib r a r y DUBLIN

D e c l a r a t io n

1 declare that the work described in this thesis has not been submitted as an exercise for a degree at

this or any other University and that, unless otherwise stated, the work is entirely my own.

I agree that Trinity College Library may lend or copy this thesis upon request.

Philip Mackenzie

October 2004

S u m m a r y

Software radio has been heralded as a significant evolutionary' step for wireless technology as it

allows dedicated analogue radio hardware to be replaced with flexible digital signal processing.

Due to current technological limitations, today’s software-based radios only scratch the surface in

fully exploiting the potential o f this new technology. Current approaches are limited by the

available hardware with software underutilised to its full capacity in most designs. The concept o f

reconfigurability goes a step further, placing new demands on the canonical software radio and

requiring more sophisticated software designs.

This thesis explores the concept o f reconfigurability in the context o f software radio systems and

proposes that a software-oriented component-based approach to software radio design can yield

highly reconfigurable radio devices. To substantiate this claim, reconfigurability is broken down

into three categories; application, structural and parametric. These categories can be used to assess

the reconfigurability o f a radio system and provide guidelines for their design. The design,

implementation and analysis o f a component-based reconfigurable radio system for general-

purpose processors is presented. This system called IRIS (Implementing Radio In Software)

dem onstrates the concepts o f reconfigurability in practice and provides insight into developing

software for reconfigurable radio systems. A series o f case studies are presented that demonstrate

how the IRIS system and the concept o f reconfigurability developed as part o f this work are

applicable to relevant problems in wireless communications.

The following publications directly relate to this thesis:

[M ackenzie2003] M ackenzie, P., Doyle, L. E., Nolan, K. E., Flood, D., “ IRIS - A System for
Developing Reconfigurable Radios”, In Proceedings o f the lEE Colloquium on DSP-enabled
Radio, Septem ber 2003

[Doyle2003] Doyle, Linda., M ackenzie, Philip., “ Exploring Reconfigurability: Towards a Future
o f Spectrum Rental” , In Proceedings o f 2003 Software Defined Radio Forum Technical
Conference (SD R ’03), N ovem ber 2003

[M ackenzie2002b] M ackenzie P., Doyle L., Nolan K.E., O'Mahony D., "An Architecture for the
Development o f Software Radios on General Purpose Processors", In Proceedings o f the Irish
Signals and Systems Conference, pp275-280, 2002

[M ackenzie2002a] M ackenzie, P., Doyle, L., Nolan, Keith., O ’Mahony, D., “Selecting Appropriate
Flardware for Software Radio System s”, In Proceedings o f 2002 Software Defined Radio Forum
Technical Conference (SDR ’02), November 2002

[M ackenzie2001] M ackenzie P., Doyle L., O ’M ahony D., Nolan K., “Software Radio on General-
Purpose Processors”, In Proceedings o f the First Joint lEl/IEE Symposium on Telecommunications
Systems Research, Novem ber 2001

A c k n o w l e d g e m e n t s

Firstly, my deepest gratitude goes to my supervisor Linda Doyle who not only gave me the

opportunity to work on such interesting projects, but whose relentless encouragement, enthusiasm

and positive attitude made my time in Trinity so enjoyable.

1 would like to thank Donal O ’Mahony and the members o f the NTRG who all made working in

this group both inspiring and enjoyable.

I really enjoyed working in the Electronics department and I would like to thank all the staff and

students for making it such a pleasant place to work.

1 would like to thank my fellow postgraduate students, in particular Keith and Declan for their help

in all matters software radio related. A special thanks goes to Tim for all his help.

I thank all my family and friends in particular Mary, Bryan, Roz, Barbara, Gran, Ada, Frank,

Aidan, Gavin and Keith for all their support.

I would like to dedicate this thesis to my parents Colin and Patricia and sister Jennifer who have

always provided endless support and encouragement.

Finally, my deepest thanks go to Audrey for her constant support and patience and who without

this would not have been possible.

T a b l e o f Co n t e n t s

1 In t r o d u c t io n- ..1

1.1 O v e rv ie w .. 1

1.2 The Basic Concept o f Softw are R a d io ... 2

1.3 Beyond Software R ad io 5

1.4 The G eneral Purpose P rocessor.................... 8

1.5 C ontribution S um m ary ...10

1.6 D issertation O verv iew .. 12

2 S o f t w a r e R a d i o ... 1 3

2.1 In tro d u c tio n ... 13

2.2 H isto ry ... 13

2.3 Term s and D efin itions..18

2.4 H ard w are ..23

2 .4 .1 The Ideal Software Radio... 23
2.4.2 Practical [.imitations...24
2.4.3 Front-End Technologies..27
2.4.4 Digital Conversion..29
2.4.5 Digital Signal Processing Devices...30

2.5 Related W ork .. 33

2 .5 .1 SPECtRA and Variants.................................... 33
2.5.2 Software Communications Architecture...35
2.5.3 DSP Design Tools..37
2.5.4 Other Approaches...38

2.6 S u m m a ry ... 40

3 S o f t w a r e E n g i n e e r i n g .. 4 1

3.1 in tro d u c tio n ...41

3.2 O bject-O riented Softw are...42

3.2.1 Overview... 42
3.2.2 Object-Orientation for Software R euse... 44

3.3 The Principles o f Softw are C om p o n en ts...46

3 .3 .1 Defining the Software Component... 46
3.3.2 Objects vs. Components...48
3.3.3 Constructing Components..49

3.4 Com ponent C om position ..51

3 .4 .1 The Component Framework...5 1
3.4.2 The Component Architecture.. 52

3.5 Existing C om ponent T echnologies..53

3.5.1 Java Based Components... 53
3.5.2 CORBA Based Component Technologies...56
3.5.3 Microsoft Component Standards...58

3.6 S u m m a ry ..60

4 R e c o n f i g u r a b l e R a d i o .. 6 3

4.1 In tro d u c tio n .. 63

4.2 R econfigurab ility ...63

4.2.1 Reconfigurability From Hardware to Software.. 63
4.2.2 Reconfigurability Defined.. 66
4.2.3 The Benefits of a Reconfigurable Radio.. 67

4.3 Softw are fo r Softw are R ad io ... 69

4.3.1 R euse.. 69
4.3.2 Abstractions...73
4.3.3 Adaptability and Flexibility..73
4.3.4 Com plexity..74
4.3.5 Security...75
4.3.6 Portability.. 76
4.3.7 Real-Time Behaviour.. 77
4.3.8 Upgrading and Versioning.. 77

4.4 D eveloping a R econfigurable R ad io ... 78

4.4.1 System Design Considerations.. 78
4.4.2 Enabling Reconfiguration..80

4.5 S u m m a ry ..82

5 T h e I R I S R e c o n f i g u r a b l e R a d i o ... 8 3

5.1 In tro d u ctio n ...83

5.2 IRIS O verv iew .. 83

5.3 IRIS A rchitecture ... 85

5.4 Radio C o m p o n en ts ..86
5.4.1 Component Granularity and Component T ypes...87
5.4.2 Component Interfaces.. 88
5.4.3 Component Lifecycle.. 91
5.4.4 Discussion.. 95

5.5 C om ponent F ram ew ork .. 98

5.5.1 Radio Engine... 101
5.5.2 Basic XML Configurations... 102
5.5.3 More Complex Radio Configurations... 103
5.5.4 Internal Radio Representation..109
5.5.5 IRIS A P I...110

5.6 Control L o g ic .. 11 1

5.7 W orked E xam ple ... 114

5.7.1 An FSK Transceiver...114
5.7.2 Partitioning the System.. 115
5.7.3 Structures..117
5.7.4 Control Logic...120
5.7.5 Reconfiguration...122

5.8 S u m m a ry ..124

6 I m p l e m e n t a t i o n a n d A n a l y s i s ... 1 2 5

6.1 In tro d u c tio n ...125

6.2 Im plem enting R adio C o m p o n en ts ...125

6.2.1 Choice of Operating System...125
6.2.2 Radio Components on W indows...126
6.2.3 Programming Radio Components.. 127
6.2.4 Dealing with Signals...129

6.2.5 Block Size and Sample Rate... 131
6.2.6 Implementing ProcessO....................................... *^4

6.3 R adio C om ponent E x am p les ...135

6.3.1 Worked Example...135
6.3.2 Signal Processing Components... 139
6.3.3 10 Components.. 140
6.3.4 Testing Components... 141
6.3.5 Visualisation Components... 141

6.4 U sing the C om ponent F ram ew ork ... 142

6.4.1 IRIS A PI..142
6.4.2 T ools..146

6.5 E xternal H ardw are.. 148

6.6 A n a ly s is .. 150

6.6.1 Scalability... 150
6.6.2 Memory Consumption.. 153

6.7 S u m m a ry ... 158

7 C a s e S t u d i e s1 5 9

7.1 In tro d u c tio n ...159

7.2 O ver the Air R econfigura tion ... 159

7.2.1 Overview o f Over the Air Reconfiguration.. 159
7.2.2 Applying [RIS to OTAR...160
7.2.3 Conclusions... 164

7.3 W ireless N etw o rk in g ..164

7.3.1 Overview o f Wireless Networking using DAW N... 164
7.3.2 Applying IRIS to Wireless Networking...166
7.3.3 Conclusions..169

7.4 Spectrum M anagem ent.. 169

7.4.1 Overview o f Spectrum Management..169
7.4.2 Applying IRIS to Spectrum M anagement...170
7.4.3 Conclusions..173

7.5 S u m m a ry ... I 73

8 C o n c l u s i o n s1 7 4

8.1 In tro d u ctio n ...174

8.2 Sum m ary o f C o n trib u tio n s...174

8.3 Future W o rk 175

8.3.1 Hardware... 176
8.3.2 Software........................ 176
8.3.3 Security.. 177
8.3.4 Spectrum Management... 178

8.4 C onclusion ...179

9 B i b l i o g r a p h y ... 1 8 0

1 0 A p p e n d i x ... 1 9 0

10.1 M ethods Exposed by a Radio C o m p o n en t...................... ...190

10.2 C ode G enerator C o m m an d s.. 192

T a b l e o f F i g u r e s

Figure 1.1 - Typical Receiver Using Traditional Analogue H ardw are.. 3

Figure 1.2 - Typical Receiver Using the Software Radio A pproach ..3

Figure 1.3 - Software Radio Phase Space Diagram [M itola99a]...8

Figure 2.1 - European Funded Projects Relating to Software R ad io ..17

Figure 2.2 - The Ideal Software Radio..24

Figure 2.3 - A More Practical Software Radio Solution..25

Figure 2.4 - Research and Development in Software R adio...27

Figure 2.5 - SPECtRA In-Band and Out-of-Band Paths [B ose99b]...34

Figure 2.6 - Software Structure o f the SCA [JTR S2002]... 36

Figure 3 .1 - Summary o f Software Engineering P rinciples.. 60

Figure 4.1 - Level o f Reconfigurability for Various Signal Processing Devices.................................. 64

Figure 4.2 - A Tightly Coupled Software Com ponent..71

Figure 4.3 - Different Approaches to Reconflgurable Radio System D esign.. 79

Figure 5.1 - Receiver and Transm itter Exam ple.. 84

Figure 5.2 - A Reconfigurable Radio System ... 85

Figure 5.3 - A Reconfigurable Radio with User Interaction... 85

Figure 5.4 - The IRIS Radio Architecture.. 86

Figure 5.5 - Relationship o f Component T ypes..88

Figure 5.6 — External View o f a Radio C om ponen t...88

Figure 5.7 - Lifecycle In terface ..89

Figure 5.8 - Parameter In terface...89

Figure 5.9 - Event In terface... 89

Figure 5 .1 0 - P o r t Interface.. 90

Figure 5.1 1 - Command Interface.. 90

Figure 5.12 - Reflection In terfaces.. 90

Figure 5.13 -C o m p o n en t Information Interface.. 91

Figure 5.14 - Abstract RadioComponent c la s s ...91

Figure 5 .1 5 - Sequence Diagrams o f DSP and lO Com ponent L ifecycles...94

Figure 5.16 - Sequence Diagram o f Standalone Com ponent L ifecycle...95

Figure 5 .1 7 - Radio Component Showing Interfaces Implemented by Code G eneration...................96

Figure 5 .1 8 - RadioCom ponent... 97

Figure 5 .1 9 - T h e IRIS Radio Architecture.. 99

Figure 5.20 - Flow Diagram for Creating a Reconfigurable R ad io .. 100

Figure 5.21 - Interaction o f Radio Engine, Radio Com ponents and Control L o g ic101

Figure 5.22 - Basic Series o f C om ponents..102

Figure 5.23 - A Duplicated Signal P a th ...104

Figure 5 .2 4 - Synchronisation in IR IS ...105

Figure 5.25 - Multiple Synchronous Signal P a th s ..106

Figure 5.26 - Multiple Asynchronous Structures.. 106

Figure 5.27 - An Embedded S tructure...107

Figure 5.28 - Signal Routing...108

Figure 5 .2 9 - A Component with 2 Input C hannels... 108

Figure 5.30 - Synchronisation o f Processing... 109

Figure 5.31 - Internal Representation o f Radio System ...110

Figure 5.32 - Interface o f the IRIS A P I ... 110

Figure 5.33 - Component D ependency.. 111

Figure 5.34 - Using Control Logic to Eliminate Component D ependencies..................................... 1 11

Figure 5.35 - Interface Control Logic uses to Control R ad io .. 112

Figure 5.36 - Controller Interface... 112

Figure 5.37 - Lifecycle o f Control Logic...113

Figure 5.38 - FSK Transceiver D esign .. 115

Figure 5.39 - FSK W aveform .. 116

Figure 5.40 - Partitioning o f FSK Transceiver into Software Com ponents..117

Figure 5.41 - Multithreading A pproaches..118

Figure 5.42 - XML Configuration for FSK Transceiver..119

Figure 5.43 - FSK Transceiver Using Control Logic... 121

Figure 5.44 - Sample Control Logic Source C ode..122

Figure 5.45 - Code for Replacing a Component at Runtime.. 123

Figure 6.1 - Exporting a Component from a D L L .. 127

Figure 6.2 - Header File o f a Signal Strength Com ponent..128

Figure 6.3 - Data Types Supported by IRIS..129

Figure 6.4 - Sequential Layout o f Samples and Channels in M em ory ..131

Figure 6.5 - Automatic Calculations Performed by the Fram ew ork.. 133

Figure 6.6 - Struct Definition used by Process()... 134

Figure 6.7 - Example Process() M ethod..134

Figure 6.8 - Signal Format Struct...134

Figure 6.9 - Properties o f FSK C om ponent..135

Figure 6.10 - C++ Header File Definition o f FSK Modulator C om ponent... 136

Figure 6.11 - XML Generated to Describe the FSK M odulator Com ponent.......................................137

Figure 6.12 - Code to Implement Data Received P ort...138

Figure 6.13 - FSK W aveform .. 138

Figure 6.14 - XML for Configuring an FSK M odulator C om ponent.. 139

Figure 6.15 - IRIS Screenshot o f Received FM Signal..142

Figure 6.16 - Code to Create a Reconfigurabie R adio...143

Figure 6.17 -A pp lica tion Specified Control L o g ic ... 144

Figure 6.18 - Sample Code for Creating Application-Defined Control Logic.....................................145

Figure 6.19 - Screenshot o f Parameter C ontro ller..146

Figure 6 .2 0 - Radio Designer User Interface Screenshot.. 147

Figure 6.21 - Receiver Hardware Setup...148

Figure 6.22 ~ IRIS Test Hardware... 149

Figure 6.23 - Scalability Test Scenario..151

Figure 6.24 - IRIS Scalability Test Results...152

Figure 6.25 - Difference between IRIS and Native Im plem entation... 153

Figure 6.26 - Memory Allocation Technique.. 155

Figure 6.27 - Memory Allocation for Multiple FIR F ilte rs ..155

Figure 6.28 - Memory Test for Down Sampler Scenario.. 156

Figure 6.29 - Memory Consumption for Multiple Down Samplers... 156

Figure 6.30 - Memory Test for Up Sampler S cenario ...157

Figure 6.31 - Memory Consumption for Multiple Up Sam plers.. 157

Figure 7.1 - Items for Download with O TA R.. 161

Figure 7.2 - Software Download with Control L ogic.. 162

Figure 7.3 - Software Download Using the IRIS A P I ...163

Figure 7.4 - Typical DAWN Topology.. 165

Figure 7.5 — A Typical DAWN S tack .. 166

Figure 7.6 — IRIS Incorporated into D A W N ...167

Figure 7.7 - FSK Transceiver with Interference Temperature D etector... 171

Figure 7.8 - Spectrum Monitoring System.. 172

A c r o n y m s

ADC A nalogue to Digital C onverter lO Input/O utput

AM A m plitude M odulation IRIS Im plem enting Radio In Software

A M PS A dvanced M obile Phone System ISI Inter-Sym bol Interference

ASIC A pplication Specific Integrated C ircuit JAR Java Archive

API A pplication Program m ing Interface JPO Joint Program Office

ASIO A udio Stream ing Input Output JTRS Joint Tactical Radio System

ATM A synchronous Transfer M ode JVM Java V irtual M achine

BER Bit Error Rate LAN Local Area Network

BPSK Binary Phase Shift Keying MAC M edium A ccess Control

CCM C O R B A C om ponent M odel M Hz M egahertz

CF C ore Fram ew ork (R elating to SCA) M M ITS M odular M ultifunction Inform ation T ransfer System

CLR C om m on Language Runtim e NCO N um erically C ontrolled O scillator

COM C om ponent O bject M odel OFDM O rthogonal Frequency Division M ultiplexing

C ORBA C om m on O bject R equest B roker A rchitecture OO O bject Oriented

COTS C om m ercial O ff The Shelf OOD O bject O riented Design

CPU C entral Processing Unit OO P O bject O riented Program m ing

DAC Digital to Analogue C onverter ORB O bject Request Broker

DAW N D ublin Ad hoc W ireless N etwork O l'A R O ver Lhe A ir Reconfiguration

DC Direct C urrent PCI Peripheral C om ponent Interconnect

DCOM D istributed C om ponent O bject Model PCS Personal C om m unications Services

DCS Digital C ellular System PDA Personal Digital A ssistant

DDR Double D ata Rate POSIX Portable O perating System Interface

DECT Digital Enhanced C ordless Telecom m unications QPSK Q uadrature Phase Shirt Keying

DER D SP-enabled Radio RAM Random Access M emory

DEE Dynam ic Link lib ra ry RCP R econfigurable C om m unications Processor

DSP Digital Signal Processing RCF Radio C om ponent Fram ew ork

EJB Enterprise JavaBeans RDL Radio Description Language

I-'CC Federal C om m unications Com m ission RDS Radio Data System

FIR Finite Im pulse R esponse RISC Reduced Instruction Set Com puter

F F i Fast Fourier fransform RI- Radio Frequency

FM Frequency M odulation SCA Software Com m unications A rchitecture

FPAA F ield Program m able A nalogue Array SDR Software Defined Radio

FPGA Field Program m able Gate Array SFDR Spurious Free Dynam ic Range

FSK Frequency Shift Keying SNR Signal to N oise Ratio

GHz G igahertz TDM A Tim e Division M ultiple Access

GPP General Purpose Processor UHF Ultra High Frequency

GM SK G aussian M inim um Shift Keying UML Unified M odeling Language

GSM Global System for M obile C om m unications UM TS Universal M obile Telecom m unications System

I and Q In-Phase and Q uadrature WDL W aveform Description Language

IDE Interface D efinition Language XM L ex ten sib le M arkup Language

HOP Inter-ORB Interoperability Protocol

IF Interm ediate Frequency

1 Introduction

1.1 Overview

This dissertation shows that a sofitware-oriented component-based approach to software radio

design can yield highly reconfigurable radio devices.

A software radio or software-defined radio is a wireless communications device that can be

reprogrammed to allow it to communicate using different modulation schemes and frequencies

without altering or replacing hardware [M itola92]. The software radio uses a generic piece o f

hardware and digital signal processing (DSP) to manipulate radio signals. This allows the core o f

the communications system to be developed in software rather than analogue hardware

components. The software approach results in flexible radio devices that can be easily

reprogrammed allowing the functionality o f the device to be changed. It also means that the

communications techniques themselves can become flexible and adaptable. These advantages have

brought about a decade o f research and development in an effort to make the technology a reality.

However, software radio is still in its infancy. Due to technological limitations, current software

radios only scratch the surface in fully exploiting the potential o f this new technology. This thesis

focuses on recognising and developing the potential o f the technology by demonstrating how

highly reconfigurable radio systems can be created.

It is important to discuss what the term ‘reconfigurable’ means in relation to the research presented

in the thesis. In the context o f wireless communications the term ‘reconfigurable’ suggests a type o f

radio device that offers flexibility in the functions it provides, perhaps being capable o f receiving at

multiple frequencies or transm itting using multiple modulation schemes. However many different

types o f radio systems offer these functions and it can become difficult to determine whether one

radio system is more reconfigurable than another. This raises a fundamental question; how can

reconfigurability be measured? In this thesis reconfigurability is defined via three categories

namely, application, structural and parametric reconfigurability. Defining such categories allows

the level o f reconfigurability o f a device to be assessed. The more ways in which a device exhibits

traits o f each category, the more reconfigurable the device becomes.

Reconfigurability is a desirable property in a radio system as it enables a whole host o f new

capabilities. It allows many parameters, that have traditionally been fixed (such as frequency.

I

modulation scheme, power, bit rate, etc), to become variable. This allows truly flexible devices to

be created and in turn facilitates the development o f new applications. The three types o f

reconfigurability and a general discussion o f reconfigurability itself are presented in Chapter 4.

This thesis uses a software-oriented methodology in tackling the problem o f developing software

for radio systems. It is therefore necessary to discuss explicitly the ‘software’ o f ‘softAvare radio

system s’ in order to differentiate this research from other approaches. Current research and

development in this field is driven (and also limited by) the capabilities and availability o f

hardware. The focus has been on developing fast, inexpensive hardware and therefore research into

the software aspects o f software radio have received less attention. It is argued in this thesis that a

software-oriented approach to radio system design is essential in achieving reconfigurability. A

central part o f this software-oriented approach is the use o f software components and a component

framework, both o f which are discussed in detail in Chapter 3. The research presented in the thesis

shows how software components and com ponent frameworks can be used to deliver better

reconfigurability in radio devices. These concepts are discussed theoretically and also practically

through a real-life implementation. Chapters 5 and 6 demonstrate the design, implementation and

analysis o f a software system called IRIS (Implem enting Radio In Software) that was developed as

part o f this research. IRIS is a com ponent framework that facilitates the development o f highly

reconfigurable software radio systems.

I he remainder o f this chapter provides an overview o f the key ideas o f this thesis. Section 1.2

introduces the basic concept o f software radio. Section 1.3 discusses reconfigurability, how it is

different from the canonical software radio, and briefly describes the differences between this

research and other work in the field. Section 1.4 discusses the motivation for using the general-

purpose processor as the target platform in this work. The contributions made by this thesis are

summarised in Section 1.5. Finally, Section 1.6 describes the layout o f this dissertation.

1.2 The Basic Concept of Software Radio

In a traditional analogue radio transceiver, signals are received and transmitted using analogue

hardware components. The radio’s hardware design is determined by its end-application, for

example a two-way radio, an FM audio receiver or a BPSK data-transm itter will each have

different requirements in operating frequency, modulation scheme bandwidth and power.

Consequently, if for example a QPSK data transceiver is required for operation at 500M Hz, then

the analogue circuitiy will be built to implement this design and this design only. In this case the

hardware used is dedicated to the particular application and the operating parameters cannot be

changed, modified or upgraded w ithout altering the hardware design.

Chapter 1 — Introduction T he Basic C oncept o f Software R adio | 2

Figure 1.1 illustrates a traditional analogue radio receiver. The signal o f interest is tuned and

amplified at the reception frequency before being down-converted to an Intermediate Frequency

(IF) using the superheterodyne approach [Armstrong24] (IFs and the superheterodyne approach

are discussed in more detail in Chapter 2). At the IF, the signal is further amplified and filtered

before the original signal is recovered. This approach to radio design has dominated since the early

1930s.

Original
Signal

Dem odulationRF/IF
Conversion

Tuning &
Amplification

Figure 1.1 - Typical Receiver Using Traditional Analogue Hardware

In a software radio, dedicated analogue hardware is replaced with a combination o f a minimal RF-

front end, a digital converter and digital signal processing hardware. The functionality o f the device

is defined via software programming, therefore the operating characteristics o f the radio can be

reprogrammed and changed without altering any hardware. In contrast to the hardware radio o f

Figure 1.1, Figure 1.2 shows a diagram o f a software radio-based receiver. In this scheme the IF

signal is converted to a digital signal using an analogue to digital converter. Digitisation results in a

stream o f numeric samples that are processed mathematically using digital signal processing

(D SP ') to recover the original signal. Likewise, the same approach can be used in transm itters. In

this case DSP is used to synthesise signals digitally before being converted to an analogue signal

for transmission.

OFDM R eceive
Software

FM R eceive
Softw are

QPSK R eceive
Softw are

V
Original
Signal

Digital Signal
Processing

Tuning &
Amplification

RF/IF
Conversion

A/D
Converter

Figure 1.2 - Typical Receiver Using the Software Radio Approach

Two things make this type o f design distinctly different to the analogue approach. Firstly, the radio

signal is processed digitally, which makes it possible to process signals using methods that are

difficult to implement with analogue electronics. Secondly, the signal processing algorithms can be

upgraded, replaced and reprogrammed through software, which allows one piece o f generic

‘ The term ‘DSP (Digital Signal Processing)’ should not be confused with the term ‘Digital Signal

Processor’. The latter will be referred to as a ‘DSP Processor’ to differentiate these terms.

Chapter I — Introduction The Basic C oncept o f Software Radio | 3

hardware to act as many different radio devices. This approach to radio design, i.e. the ability to

replace dedicated analogue radio hardware with a combination o f digital hardware and varying

software implementations, forms the basis o f software radio [Mitola95].

Central to the software radio concept is the use o f DSP for m anipulating radio signals. In a software

radio, DSP replaces the functionality previously implemented using analogue components and

moves radio signals into the digital domain. For example, using DSP, a device such as an analogue

low-pass filter can be implemented by a digital algorithm that achieves an equivalent result. Such a

paradigm shift raises the question as to what exactly are the advantages o f moving to DSP. Just as

with many other engineering applications, however, it is well recognised that DSP techniques have

many advantages over analogue signal processing.

Lapsley [Lapsley97] describes three ways in which DSP differs from analogue signal processing.

Firstly, DSP systems exhibit insensitivity to their operating environment. In an analogue circuit

operating conditions are dependent on com ponent tolerances and tem perature, whereas a working

DSP system always produces consistent results. This fact means that DSP systems can, in the

majority o f cases, offer more predictable behaviour than an analogue design whose characteristics

can be influenced by a variety o f external factors. Secondly, DSP systems have the advantage o f

being insensitive to component characteristics. Physical characteristics such as size and component

packaging can often influence the decision to use a particular analogue component. Also, economic

factors such as component cost and availability can influence design decisions. DSP systems do not

suffer from these limitations because designs are specified via mathematical procedures and not

components. Finally, DSP has become a less expensive and overall m ore popular approach than

analogue design because analogue electronic design tends to be much more difficult.

However, even though these advantages exist for DSP, it is always possible to develop an analogue

device that outperforms even the most powerful DSP device. This raises another question as to

what the fundamental difference is between these two approaches. The answer is that unlike

analogue hardware, a DSP system can be reprogrammed to do many different things. A DSP

algorithm can exist as a set o f instructions, which can be changed and manipulated without altering

hardware. This ultimately means that software can be used to implement DSP algorithms allowing

generic programmable radio devices to be created. This cannot be done with a traditional analogue

hardware-oriented approach to radio system design.

Technology has advanced to such a stage that it is now possible to design, implement and test a

radio system in software rather than designing, building and physically prototyping analogue radio

circuitry. Using software, instantaneous changes to a radio system can be made that previously

Chapter 1 — Introduction The Basic C oncept o f Software Radio | 4

required a com plete redesign. Software thus brings a significant change in how radio systems can

be designed, built, tested and viewed.

1.3 Beyond Software Radio

It is possible today to build reprogrammable radio devices that are software-defined. The next step

in the software radio space is a move towards reconfigurability [Pereira99, Drew2001,

Dillinger2003]. The term reconfigurability has emerged over the past few years to demonstrate a

shift in thinking in the software radio space. The reconfigurability concept is about making the

software radio do more, applying the technology beyond the radio domain and ensuring its impact

throughout the com m unications system [Pereira2000].

W hereas the software-defm ed radio approach can be used to define the air interface o f a

communications system, this definition is typically created only once. In practice the software

defined radio concept has come to mean software upgrades, bug fixes and new features, rather than

fully exploiting the capability o f the technology. Reconfigurability on the other hand recognises

that the software o f a radio system does not have to be defined once, but can be changed and

augmented any number o f times to serve a greater purpose throughout the communications

network.

I'his overall concept is best demonstrated by an example. Governments must regulate the use o f

spectrum to particular frequencies and modes o f operation to ensure interference-free

communication. However most o f the time radio devices are completely underutilising the

available spectrum. 7’he user is limited to a particular frequency and bandwidth even though

massive amounts o f bandwidth exist across the entire RF band. These restrictions are often

imposed across an entire country or regional area even though they are used exclusively in

particular locations.

In a reconfigurable radio every parameter o f the radio system is potentially variable and

implemented in software. This means that a device can dynamically reconfigure itself to make

better use o f the available spectrum. A reconfigurable radio may increase its operating bandwidth

to use additional spectrum when operating in a remote location. It may alter its power to avoid

interference when in a crowded office block. It may negotiate with another node in the network to

agree on a particular modulation scheme to suit its location. This type o f capability is not possible

with dedicated hardware solutions as they are not reconfigurable in the same way. It is also not

possible with the canonical software defined radio as it typically signifies reprogramming o f

hardware to upgrade or fix bugs in software, rather than having built-in dynamic behaviour. In

contrast the reconfigurable radio can change any operating parameter, instantaneously change the

C hapter I — Introduction Beyond Software Radio | 5

structure o f the radio system or automatically download new software to enable new features; the

overall aim being to improve communication. The term ‘reconfigurable radio’ is therefore used in

this thesis to describe devices that are more dynamic than the canonical software radio.

The approach in this thesis is quite different to other software radio research and no other previous

work in the field has taken the particular approach presented here. This work is unique as it

concentrates on reconfigurability and how to deliver this using component-based software.

However, some other systems, although not focusing directly on reconfigurability, have similarities

to this work either through their involvement in software radio or through their approach to DSP.

The following discussion highlights work by others in the field o f software radio. It concentrates on

work that has elements in common with this thesis. A more thorough examination o f these and

other systems is presented later in Section 2.5.

SPECtRA is a programming library for softw'are radio and was the first project to demonstrate

working software radio implementations on GPPs [Bose99a]. The focus o f that project was to

dem onstrate the feasibility o f software radio on general-purpose processors (GPPs). The IRIS

system developed as part o f this work is also developed using the GPP as a platform, however the

work in this thesis is distinctly different. Firstly, while a GPP has been used for this research, this

thesis does not attempt to propose that the GPP is the best platform for building radio systems.

Instead, it recognises that the GPP is the most convenient solution within current technical

capability for demonstrating the concept o f reconfigurability. In time as technology improves there

may be other better platforms for developing radio systems, but the concepts o f reconfigurability

discussed in this thesis will still be applicable.

Secondly, SPECtRA is a C++ based programming library for developing software radio systems. In

contrast, the IRIS system o f this work is a component framework. This com ponent framework

formalises an approach to building radio systems and applies software engineering principles to

their development. Finally, the SPECtRA system was not focused on reconfigurability. W hile it

may be possible to use SPECtRA to develop a reconfigurable radio, the system itself has not been

designed with this as a focus. In contrast, the IRIS system is built from the ground up to facilitate

reconfigurability. It allows dynamic loading/unloading o f software components and formalises the

reconfiguration process. Further technical details o f SPECtRA and other variations o f this system

are discussed in Chapter 2 , Section 2.5.1.

The SCA (Software Communications Architecture) [JTRS2001] o f the U.S. JTRS (Joint Tactical

Radio System) project is a standard for military software radio systems. This SCA has its roots in

one o f the first ever software radio projects called SPEAKeasy [Lackey95] (SPEAKeasy is

discussed later in Chapter 2, Section 2.2). The JTRS is a large com prehensive standard for defining

C hapter 1 — Introduction Beyond Software Radio | 6

radio systems and concentrates on partitioning the system and defining interfaces between elements

o f a radio system. The SCA is very different to the IRIS system developed as part o f this thesis.

The SCA concentrates on military interests, in reducing the cost o f their radio systems and

introducing interoperability into their systems. The SCA does allow for limited reconfigurability

within individual elements o f the radio system, however the system as a whole is quite rigid. It is

focused on aspects o f communications that are not so relevant to this research such as developing

tam per-proof radio systems. It also does not mandate a software approach; instead the interfaces

defined can be implemented in hardware. For these reasons the SCA is unsuitable for exploring

reconfigurability. The SCA is discussed in more detail in Chapter 2, Section 2.5.2.

I’here are also some generic signal processing environments that can be discussed in the context o f

this research. Among those is Ptolemy, a software project from Berkley MIT that provides an

environm ent for modelling, simulation and design o f signal processing algorithms [Buck94].

Central to Ptolemy is the concept o f models o f computation, a facility that provides a highly

expressive environment for representing different types o f signal-based systems. Although Ptolemy

could be used to model and simulate specific algorithms for software radio it is distinctly different

to the work o f this thesis. Firstly, Ptolemy is a tool for modelling and simulation. IRIS is not a tool

but a component framework for developing real software systems. Although Ptolemy can

potentially generate source code for a variety o f platforms the way in which it views its targets is

quite different to IRIS. IRIS reuses blocks o f signal processing logic as software components,

whereas the blocks existing in Ptolemy exist at design-time only. These blocks are eventually

collapsed down to an implementation that is fixed in function. In contrast, the IRIS system is

designed so that the actual system developed can constantly reconfigure. While Ptolemy is a useful

tool for developing signal-processing systems, it is not a suitable platform for exploring

reconfigurability as its focus is developing and merging models o f computation, a completely

different paradigm that does not address the needs o f reconfigurable radio systems. Other tools that

fall into this category are Matlab and Simulink [M athworks], and SPW (Signal Processing

Worksystem) [Cadence2002J which are discussed in Chapter 2, Section 2.5.

In summary, the work presented in this thesis is different from other approaches to software radio

as it focuses on reconfigurability. Reconfigurability is achieved through a software-based approach.

Reconfigurability is necessary to deliver flexible radio systems capable o f meeting the demands o f

future applications such as dynamic spectrum management. The reconfigurability concept is

demonstrated in this thesis through the IRIS system, a component framework developed for GPPs.

The next section discusses why the GPP has been chosen as the basis for this work.

Chapter I — Introduction B eyond Softw are Radio | 7

1.4 The General Purpose Processor

The IRIS system developed as part o f this work is designed to run on GPPs such as the Intel

Pentium and the implementation presented in this thesis runs on the Windows platform. The GPP

has been chosen as it provides the best platform for dem onstrating the concepts o f

reconfigurability, which are the main focus o f this research. This section discusses the motivation

for this choice.

Mitola summarises the differences in platforms for software radio in the phase space diagram

reproduced here in Figure 1.3 [Mitola99a]. This diagram plots various radio communication

applications and how they are typically implemented according to bandwidth and hardware device.

Mitola draws a tangent across the plane o f radio applications and indicates a shift towards what he

consideres the ideal software radio as technology improves over time. For example, ‘B’ shows how

COTS (Commercial O ff The Shelf) handsets typically process baseband signals using ASIC or

FPGA technology. Likewise, ‘X ’ indicates the ideal software radio (discussed in detail in Chapter

2, Section 2.4.1) and shows this to be a device implemented using general-purpose processors and

operating with a digital access bandwidth in the GHz range. The plane cutting diagonally across the

diagram indicates the current state o f the art in technology and as the ‘Technology’ arrow indicates,

increases in technological capability bring us closer to the ideal software radio.

t h i n u i t . \ i c r \ i ,

I (;ily

I I K I M I I /

10 \ /

I Ml /

hihliiiU N t k l /

III k i J /

I k ll/

R f '

Sfillxfiin

©

fkru'bonti
Q

H f

I I

H a svh u iu l

ASK u '<;a

I 'u in 't io i i K iiiH 'tiiH i

p e r ciii2 [X.T n ii2
DefUi-iitL-cJ

Silicim Silk 'iin

l»sf

FiiiK tinn
[KT i m2

I S \ +
\ U n io n

r/V H!\i
FiiiK iioii
piT t-in l
M tn ittn

H f S IH A U l

S U K O J m u :
u M t A K o i n U
\ M l I V m i i l R * J ' . '

1 k 'l l R i . lu i

Figure 1.3 - Software Radio Phase Space Diagram [Mitola99a|

If the work o f this thesis were to be mapped onto M itola’s phase space diagram it would sit towards

the ‘X ’ region. This is because this work uses the GPP as a platform for dem onstrating

C hapter I — Introduction The General Purpose Processor | 8

reconfigurability, and also, this work is more focused on the idealistic software radio rather than a

hardware oriented approach.

It is worth discussing why the GPP is a suitable platform for demonstrating reconfigurability, as it

is not typically chosen as a platform for real-time signal processing applications. Unlike most other

work in the software radio space, this thesis is not concerned with developing the most efficient,

low-power, low-cost device. Instead, its primary concern is demonstrating the fundamentals of

reconfigurability. Although the GPP is limited in processing power and is unsuitable for embedded

or low-power applications, the flexibility of the platform makes it an ideal candidate for

demonstrating the concepts o f reconfigurability. The GPP has the following advantages over more

traditional embedded devices:

• Readily Available Hardware: Embedded systems require custom hardware to be designed and

built which is a very costly and time consuming process. While any embedded system could

potentially contain any combination o f RAM, persistent storage or I/O peripherals, the system

has to be designed specifically for these hardware components. Also, hardware and software

interfaces (i.e. drivers) have to be developed to interface these components on the embedded

target. In contrast, GPPs come in the form of readily available PCs. This hardware is relatively

inexpensive (compared to the cost o f designing an embedded system from scratch), requires no

custom hardware design, and even the most basic PC contains large amounts o f RAM and

persistent storage as standard. RAM is useful for software radio as the high sample rates

involved in radio systems result in large amounts o f sampled data. This data can be buffered in

memory. Persistent storage is also important as a software radio can use this space to store

large files of waveform data and potentially any number of different radio configurations.

• Advanced Languages and Tools: The GPP computer is a pervasive technology thus many

different languages and development tools exist for developing GPP software. By developing

software radio on this platform engineers can take advantage o f these advanced tools and

languages. Unlike other platforms that require output to a target platform for testing, testing on

a GPP environment is much easier as it can be performed alongside development.

• Operating System: The GPP uses an operating system that provides services such as memory

management, concurrency and file systems which make it much easier to develop applications.

These services relieve the programmer o f having to deal with hardware specific memory

layouts, etc which are common on embedded platforms.

• M oore’s Law: Moore’s Law, a popular observation on semiconductor technology, states that

the processing power o f semiconductors doubles roughly every 18-24 months [Moore65]. This

means that an automatic increase in processing power becomes available every 18-24 months.

This is significant as an embedded design typically requires a full redesign to increase its

capability to this degree.

Chapter I — Introduction The General Purpose Processor 9

There are two particular limitations to using the CPF platform which are worth discussing; power

consumption and real-time behaviour. The powe* consumption o f a GPP is much higher than a

DSP processor or an FPGA, therefore the GPP is unsuitable for low-power m obile applications.

However, as discussed, this thesis is not conceTied with developing the most power-efficient

device, rather its focus is on demonstrating the concept o f reconfigurability. With further research

and with a focus on reconfigurability, a GPP processor could be developed that meets the needs o f

the reconfigurable radio with low-power design.

Real-time behaviour is also a concern for many, as oaerating systems such as W indows and Linux

are pre-emptive and thus inherently non real-time. In these systems the kernel has full control over

scheduling o f processes on the com puter and there is nothing to stop a radio application from being

pre-empted by any other process running on the system. Ultimately this means that the system may

not be able to meet its stringent timing requirements and thus would be defective as a

com m unications system. There are two reasons v/h} this concern is o f lesser importance in the

context o f this work. Firstly, this thesis proposes that reconfigurability can make improvements

over traditional radio system design, and perhaps it is possible to develop radio systems that are not

so dependent on real-time constraints. Data transmissions for example are often transm itted in

bursts, are irregular and can tolerate occasional errors. New types o f radio systems developed with

inherent reconfigurability could be designed to treat radio signals in the same way as data

transm issions, therefore there would be a lesser need for stringent real-time behaviour. Secondly,

while mainstream GPP operating systems do not support real-time operation, many commercial

products exist either as add-ons, or separate operat ng systems, that provide real-time operation on

a GPP (for example, VenturCom provide a real-time extension to W indows XP called RTX

[VenturCom]). Future work could look at implementing a reconfigurable radio system on one o f

these real-time operating systems. Thus, for the ptrposes o f this work the advantages o f the GPP

greatly outweigh the disadvantages and therefore it has been chosen as a platform for this research.

1.5 Contribution Summary

As stated in Section 1.1 this work shows that that i software-oriented component-based approach

to software radio yields highly reconfigurable racio devices. That thesis is proven through the

following five contributions:

A comprehensive overview o f software radio technology

A com prehensive overview o f software radio is provided in the thesis. It does this by analysing the

history o f the field, contrasting different terms and definitions, exam ining the technologies

involved, and looking at previous work in the field. This is an important contribution because it

looks at software radio from various perspectives and does not focus on specific applications such

C hapter 1 — Introduction C ontribution Sum m ary | 10

as mobile telephony. This should serve as a useful guide to others carrying out research in this

field.

Categories for assessing reconfigurability in radio systems

Three categories o f reconfigurability, namely; application, structural and parametric

reconfigurability are defined in the thesis. These categories allow the level o f reconfigurability o f a

radio device to be assessed. This is an important contribution to the field o f radio system design as

it gives others the means to contrast and compare different radio systems in terms o f their

reconfigurable capability. This also serves as a means to defining the software requirements o f the

reconfigurable radio system.

Analysis of software design for radio systems

To analyse software design for radio systems this thesis looks at eight software engineering

principles, namely reuse, abstractions, adaptability and flexibility, complexity, security, portability,

real-time behaviour and finally upgrading and versioning. This unique perspective on software

design for radio systems provides a valuable contribution as it highlights the differences between

developing software for a software radio system and developing mainstream software. This is

useful as it shows that in many cases the best practices in mainstream software are not necessarily

applicable when developing radio systems. This contribution also demonstrates that component-

based software is an effective way to achieve reconfigurability.

Design, implementation and analysis of a reconfigurable radio system

The design, implementation and analysis o f IRIS provides a valuable contribution as it presents

practical information that will help others to build reconfigurable systems. It demonstrates how the

reconfigurability concepts presented in this thesis can be applied in practice. It is also important

that IRIS has been developed on GPPs as this shows that this is a suitable platform for developing

and experim enting with radio system concepts.

Case studies that apply the reconfigurable radio approach

Three case studies, that demonstrate how the IRIS system and hence the reconfigurable radio

approach can provide unique capabilities that facilitate new and emerging types o f radio systems,

are presented. This is an important contribution as it brings together reconfigurability and practical

problems in wireless design to prove that the software-based component-oriented approach taken in

this work is a practical and effective way o f developing highly reconfigurable radio devices.

C h a p te r 1 — In troduction C o n tr ibu t ion S u m m a ry i I I

1.6 Dissertation Overview

Chapter 2 presents the history o f software radio, contrasts terms and definitions, describes the

technical issues and discusses related work in this field. The software-oriented component-based

approach presented in this thesis requires background knowledge in software engineering; this is

presented in Chapter 3. Chapter 4 is the most important chapter in this dissertation as it presents the

unique approach and key concepts that differentiate this work. That chapter defines the three

categories o f reconfigurability; application, structural and param etric that can be used to assess the

overall reconfigurability o f a radio device. This chapter then goes on to discuss all the issues

involved in realising such a device by analysing the role o f software in radio systems. Chapters 5

and 6 demonstrate how these concepts have been used to develop a real-life reconfigurable radio

system called IRIS. IRIS is highly reconfigurable radio system that runs on normal PCs providing

an ideal experimental platform for demonstrating the concept o f reconfigurability. Chapter 7 shows

how both the concepts o f reconfigurability and the IRIS system itself are applicable to emerging

wireless technologies. Chapter 8 summarises conclusions from this work and suggests areas for

future investigation.

C h a p te r I - In tro d u c tio n r^ isserta tion O v erv iew | 12

2 Soivare Radio

2.1 Introduction

The p u rp o se o f this chapter is to give a com prehensiv e o v e rv e w o f >ft>are radio technology aid

to dem onstra te w hy the approach taken in this thesis is d ifftren to th r w ork in this field. Ihe

chap ter is broken dow n as follow s:

Section 2 .2 describes the history and evolution o f so ftw are 'ado. iis;ection first d iscusses an

early so ftw are radio system called ‘S P E A K easy’ and then p lo s tie (vebpment o f the technolcgy

th rough to the present day. Section 2.3 con trasts the \ arious tfrm; ai delnitions used to descrbe

the so ftw are radio concept and arrives at a defin ition su itab le h r he orkin th is thesis. Section '..4

d iscusses the role o f hardw are in softw are radio. It starts by ciscissg te ‘ ideal Softw are R ad o ’

and looks at the practical lim itations involved in deve lop iig i s tw re radio system . It aso

describes the various hardw are techno log ies involved in cna tn g sctw are radio system aid

d iscusses relevant prior research re la ting to this thesis. Section 1.5 scuses w ork related to tlis

thesis and dem onstrates the need for a reconfigurab le approacl toso l/ar radio.

2.2 History

M itola co in ed the phrase ‘Softw are R ad io ’ in 1991 and in 1991 h tw re te first publication on tie

topic [M ito la92]. T his publication exp lained som e o f the b ases if sitwre radio d iscussing A ,0

and D /A conversion , sam pling rates and hardw are, but even mere m ptanly predicted a decade)f

change from hardw are to softw are-based rad io system s.

M ito la’ s con tribu tion in the early 90s w as not tha t he invented o fian rad io itself, but that le

m arked a shift in th inking by in troducing th is new term . In ac t thsotw are radio concept hid

been ev 'o lv ing for m any years w ith d ig ital-signal processing b in .inceasingly used in m aiy

aspects o f electronic design. The term ‘softw are rad io ’ rrarkd e rrival o f digital signil

p ro cessin g into the field o f radio system design.

At the tim e softw are radio w as seen as an ideal technology fo m ta r applications. It w oud

provide flex ib ility and interoperability to organ isations that reied ea ily on com m unicatiors

13

infrastructure. In 1991 the U.S. Department o f Defence began a project called SPEAKeasy

[Lackey95, Bonser98]. The aim o f SPEAKeasy was to develop a common communications device

allowing inter-communication among military allies. The basic problem it addressed was that

multiple radio standards and implementations existed, with no interoperability between devices and

no common hardware platform. A software-based signal-processing solution was seen as a way to

overcome this problem. By manipulating radio signals digitally, they would be able to have one

common hardware platform with various radio standards supported via different software

programmes.

SPEAKeasy took place in two phases. Phase I proved the basic concept o f software radio by

dem onstrating a reprogrammable piece o f hardware capable o f processing RF signals digitally.

This hardware used four Texas Instruments TM S320C40 DSP processors as a signal-processing

engine with RF signals digitised at the IF. Software was developed for the radio in the Ada

language with some temporal and security sensitive elements programmed in assembly language.

Phase II o f the project expanded the programme and shifted the processing o f RF signals from DSP

processors to FPGAs. This gave more processing power for dealing with higher bandwidth radio

signals, however the time required in re-programming the FPGAs was seen as a limiting factor o f

the design. Software implementations were also expanded to include fifteen different operating

modes, allowing communication with a wide range o f military waveforms.

While the technical aspects o f SPEAKeasy were important in proving the basic concept o f software

radio, a more significant result o f this work for the space as a whole was that it helped to

consolidate many o f the concepts being discussed at the time. The period from 1991 to 1995 saw

the subject mature resulting in a better understanding o f the capabilities, limitations and

possibilities o f the technology. This is apparent in the May 1995 IEEE Com munications M agazine

which contains a special issue on software radio. In this publication M itola [Mitola95J discusses

the ‘Software Radio A rchitecture’, which gave a high-level breakdown o f the software radio

system and how signal processing can be applied at each stage o f the device.

An important aspect o f M itola’s work on the software radio architecture (also discussed in more

detail in [M itola2000]) is that it addresses some o f the key concepts that differentiate a software

radio from its close relative, the programmable digital radio. A software radio places the A/D/A

conversion as close as possible to the antenna allowing total programmability o f RF bands, channel

access modes, and channel modulation. However, these are often confused with software-

controlled digital radios that allow the functions o f the radio to be controlled via software. The two

differ as a software-controlled digital radio although somewhat variable, is fixed in function,

whereas a software radio can be redefined to do something entirely different.

C hapter 2 — Software Radio H istory | 14

In the mid-nineties, in particular in the U.S., interest in software radio began to emerge in

commercial applications. This is seen in the 1995 issue o f IEEE Communications Magazine in

which most o f the discussion is on applying software radio to mobile cellular communications, in

particular PCS (PCS or Personal Communications Services is a term used in the U.S. to describe

the family o f mobile communications technologies including IS-54/IS-136 and IS-95). This is also

reflected in other publications in the same magazine as Wepman [W epman95] discusses A/D

converter theory and Baines [Baines95] discusses the practicalities o f developing real-time signal

processing systems using available processors at the time. Again the focus o f their work was

largely on applying the software radio concept to mobile communications. It should be noted that

most o f the work at this time did not recommend well-defined practices, techniques or specific

designs for software radio systems, instead much o f this work presented discussions on existing

communications theory and how it could be applied to the digital domain using software radio.

With the commercial industry mostly focused on applying software radio to mobile

communications in an effort to reduce cost, some academics began to look at the software radio

concept itself, with a view to exploring the new capabilities this technology provides. In particular

the SpectrumW are group at MIT took a unique approach to the software radio concept

[Tennenhouse95]. Instead o f concentrating on hardware, they looked at the radio from the software

perspective. They built radio systems using standard workstations (i.e. PCs containing GPPs) and

o ff the shelf components. W hile their prototype system was quite limited in signal processing

power and highly power inefficient, the advantage o f their system was its flexibility [Bose99a].

They recognised that unlike other signal-processing approaches involving FPGAs and DSPs, the

capabilities o f their device would scale with M oore’s l.aw.

M oore’s Law [Moore65], a popular observation on sem iconductor technology, states that the

processing power o f sem iconductors doubles roughly every 18-24 months. The SpectrumW are

team recognised that given time, M oore’s law would improve hardware capabilities, therefore the

major focus on system design should be software. (In June 2003 Vanu Inc., a commercialisation o f

the SpectrumW are group, carried out field trials o f a GSM base station built using commodity PC

servers powered by dual Xeon 2.8 GHz processors [Steinheider2003].) Others also started to look

at the challenges involved in re-implementing existing radio standards in software. For example,

Akos describes a software-based GPS receiver using GPPs [Akos97]. Although this system was

incapable o f processing these signals in real-time, it was only a m atter o f time before better

processors emerged allowing real-time signal-processing o f radio signals to take place.

Throughout academia, commercial and m ilitary interests there have been different opinions as to

how to apply software radio technology or what the wide reaching implications o f it are

[Pereira2000, Tuttlebee99a]. In the U.S. the migration from analogue to digital communications

C hapter 2 — Software Radio Histor> I 15

took place from 1996 and resulted in the deployment o f multiple competing digital standards for

PCS. This resulted in numerous incompatible networks across North America each providing

different services. Software radio was seen as an important enabling technology for creating a

terminal that allowed users to interoperate among these networks. In the U.S. software radio

development has been concentrated on the mobile terminal (the user’s mobile phone). The aim here

has been to develop reprogrammable radio devices that can interoperate among the various U.S.

standards. This emphasis on the terminal makes it difficult to take full advantage o f software radio.

Mobile terminals have stringent requirements on power and cost that limit the opportunities to

maximise the use o f software radio technology. In contrast, Europe adopted one standard, GSM

(Global System for M obile Communications), which has been in use since 1991. Europeans are

therefore able to roam seamlessly throughout much o f Europe and elsewhere. This has meant that

there has been less urgency for software radio technology in Europe’s 2G networks [Tuttlebee98,

Tuttlebee99b].

These trends are also reflected in the organisations that promote software radio. The MMITS

(M odular M ultifunction Information Transfer System) Forum was established in the US in 1996 to

promote multi-mode term inals capable o f interoperating with AMPS and multiple PCS standards.

In 1998 it changed its name to the ‘SDR Forum’ [SDRForum] to symbolise a widening o f scope,

yet its focus is still on delivering a solution to a lack o f interoperability in the US. In Europe,

without such an interoperability problem, the wider implications o f software radio have been o f

more interest. I his has elevated software radio research from a purely RF/hardware technique to an

all-encompassing technology that impacts the whole network [Pereira2000]. Pereira [Pereira99,

Pereira2001] suggests that software radio has implications across the whole networking

environment. Drew [Drew2001] discusses similar arguments.

The interest in software radio in Europe prompted the European Commission to fund research into

many aspects o f this technology. Several research and development programmes funded projects in

software radio, in particular ACTS (Advanced Communication Technologies and Services), Esprit,

and 1ST (Information Society Technologies). The table below lists some o f the most relevant

projects carried out in Europe with a brief description. The breadth o f scope in these projects

demonstrates the impact software radio has had on the communications industry.

C h a p te r 2 — S o ftw a re R adio H isto ry I 16

CAST___________Configurable radio with Advanced Software Technology

Concentrated on adaptive radio access including a demonstration o f key functional blocks in a
software radio.

DRIVE_________ Dynamic Radio for IP-services in Vehicular Environments

Interoperability o f standards such as GSM, GPRS, UM TS, DAB, DVB-T with em phasis on multi-
m edia delivery to vehicular applications.

FIRST_________ Flexible Integrated Radio Systems Technology

Demonstrated the feasibility o f multi-mode term inals for 2"** and 3"̂ generation mobile systems.

MOBIVAS Mobile Value Added Services

Looked at using software defined radio for delivering new value added services.

PASTORAL Platform and Software for Terminals: Operational Re-configurable

Using FPGAs to deliver a re-configurable, real-time platform for third generation mobile terminals.

SLATS Software Libraries for Advanced Terminal Solutions

Developing software libraries for GSM and W -CDM A on a DSP platform.

SODERA_______ Reconfigurable Radio for SDR for 3rd Generation Mobile Terminals

A feasibility study into the best RF architecture suited for reconfigurable radio.

SORT__________ Software Radio Technology

Looked at the basic hardware building blocks required to realise a software radio with a focus on
GSM and W-CDMA.

TRUST________ Transparently Reconfigurable Ubiquitous Terminal

A wide-encompassing project primarily focused on the user’s terminal but incorporating many
investigations into system architecture and reconfigurability for multi-standard devices.

WIND-FLEX Wireless Indoor Flexible High Bitrate Modem Architecture

Investigated the development o f a high bit rate radio system for indoor applications.

Further information on these projects can be found at [Cordis],

Figure 2.1 - European Funded Projects Relating to Software Radio

Looking to the future there are also many other untapped applications o f the technology both

within mobile communications and the wider space o f telecomm unications in general. Starting with

m obile communications, software radio has only been fully considered for 2G and 3G applications.

There will however at some stage in the future be options other than these systems with 4G (fourth

generation) possibly changing the common ways networks operate [0 ’M ahony2002], The general

perception for future generation systems being based on more intelligent flexible networks

[Ribeiro2001]. There are differing viewpoints on what form such networks will take, but the

general consensus is that devices will be capable o f seamless, high-bandwidth networking

anyw here in the world [Gazis2002]. While this type o f capability is currently provided by cellular-

based connectivity consisting o f base stations and m obile terminals, newer research into areas such

as ad hoc networking suggests that networks could form without such fixed infrastructure

C hapter 2 — Softvsare Radio Histor>' I 17

[Johnson96, Perkins99, 0 ’M ahony200l, Doyle2002c], This concept originates from the efforts

demonstrated by DARPA’s PRNET [Jub87], except that today the focus is on mobility using low-

cost lightweight radios. Research and development in this field is currently concentrated on

developing more efficient protocols for larger and more mobile populations. W hatever form these

networks take, it is evident that software radio will have an important role to play in providing

flexible radio communication.

Outside o f personal mobile communications and military applications, software radio has received

less attention. Applications that use radio communication are only beginning to see the benefits o f

this technology (e.g. aeronautical applications [Cummings99a]). There are various reasons for this

slow adoption. Firstly, the mobile communications industry has dominated research and

developm ent in radio technology since the inception o f the first analogue cellular systems. Those

with most to gain from the adoption o f software radio have naturally pushed the development o f the

technology. Secondly, no universal or open platform exists for the development o f software radio at

present, only some proprietary offerings mainly targeted at mobile communications. In time as

software radio matures and costs decrease, other industries will be able to employ software radio at

a reasonable cost. Examples o f these are emergency services, aeronautical, maritime, public safety,

security, location-based services, broadcasting and transportation.

In general though, current research in the software radio space is still mostly concerned with

delivering the hardware platforms that will power software radio systems o f the future. This is

where existing research and the work o f this thesis start to differ. This thesis takes a similar

approach to the SpectrumW are group in that it takes a more software-centric view to the

developm ent o f software radio systems, but a unique approach in that it concentrates on

reconfigurability and component-based software.

2.3 Terms and Definitions

With differing perspectives on software radio, no clear definition has emerged that satisfies all uses

o f the technology. Software radio will be employed in a variety o f applications from 2G, 3G and

4G, and also to a host o f other wireless applications. A consequence o f these various approaches is

a multitude o f terms used to describe the technology. To the casual observer terms like software

radio, software-defined radio, digital radio, reconfigurable radio and cognitive radio are

interchangeable. However, while they do refer to the same underlying technology, each o f these

terms represents a different viewpoint when examined in the literature. This section discusses the

meaning o f these terms, discusses the definition o f software radio and arrives at a term and

definition suitable for this thesis.

C hapter 2 — Softw are Radio Term s and D efinitions | 18

In the majority o f software radio literature analysed, no one has distinctly made a comparison

between the terms ‘Software Radio’ and ‘Software-Defined Radio (SD R)’. A cursory look through

the literature suggests they are interchangeable, however taking the literature as a whole they are

quite different. The word ‘Defined’ in SDR suggests that the software for a radio is defined once, a

typical example being a radio system implemented in software using programmable ASICs, FPGAs

and to a lesser extent DSP processors. While such a device would be reprogrammable, its end

application is usually the same, for example a GSM base station, a D-AMPS mobile terminal or a

DAB (Digital Audio Broadcasting) receiver. The use o f SDR technology means these devices can

be reprogrammed to correct bugs or perform m inor upgrades, however the radio will not typically

perform any function outside the original specification. The ‘Software Radio’ however tends to be

a more general term covering a type o f device that can be reprogrammed to perform many different

types o f applications. An example o f this is the work by SpectrumW are; they used the term

‘Software Radio’ as their system allowed the creation o f any number o f applications using generic

hardware [Bose99b]. Consequently the purity o f software radios is also often referred to

[Tuttlebee99b], with a ‘Pure Software Radio’ meaning a software radio approaching the

capabilities o f the ‘Ideal Software Radio’ [M itola99e].

The term ‘Digital Radio’ has been used but it is a broad term and can be confusing in the context o f

software radio. Earlier radio designs often featured aspects o f digital signal processing in the form

o f audio processing, filtering or by virtue o f their use o f digital modulation [Fines95]. The term

becomes am biguous however in the light o f software-based radio systems, as SDRs and digital

radios are built using the same fundamental technologies, i.e. ASICs and FPGAs. The difference

lies in the viewpoint o f those who design, build and sell these devices. The digital radio designer

perceives the radio device as a completely digital hardware based device, designed and optimised

for a particular application. The SDR-based designer views the radio system somewhat similarly in

term s o f hardware, but with a strong focus on reprogramming the software implementation.

The term ‘Reconfigurable Radio’ has emerged recently to emphasise the reconfigurable nature o f

software radio technology. The viewpoint here is that software radio should impact not ju st at the

physical layer but should provide opportunities for new applications and services higher up in the

protocol stack [Pereira99]. Similarly Ikonomou [lkonomou99] addresses the issue by stating that

software radio concepts now extend well beyond the simple reconfiguration o f air interface

parameters but extend through the network into service creation and application development.

Chapter 4 discusses reconfigurability in more detail as the concept o f the reconfigurable radio will

be expanded on and used extensively in this thesis.

Finally, the concept o f the ‘Cognitive Radio’ was introduced by M itola [M itola2000, Mitola99b].

The cognitive radio is similar to the reconfigurable radio concept but broader in scope as it referrs

Chapter 2 — Software Radio Tcnns and Definitions | 19

to a more futuristic radio device. The cognitive radio is seen as an intelligent software radio device

in that it can make informed decisions about its environment, perhaps in which modulation scheme

or frequency allocation it uses. The cognitive radio augments the software radio through Radio

Knowledge Representation Language and can manipulate the protocol stack to make better

decisions about radio use. The cognitive radio concept was first developed with military

applications in mind and is particularly suited for introducing advanced levels o f security and

associated military interests into software radio. Recently cognitive radio has started to emerge in

discussions about new policies for spectrum m anagement in the U.S. [FCC2002].

In addition to ambiguous terms, software radio also suffers from a multitude o f contrasting

perceptions about the exact definition o f software radio. M itola defines the software radio as

follows:

‘A software radio is a radio whose channel modulation waveforms are defined

in software. That is, waveforms are generated as sampled digital signals,

converted from digital to analog via a wideband DAC and then possibly

upconverted from IF to RF. The receiver, similarly, employs a wideband

Analog to Digital Converter (ADC) that captures all o f the channels o f the

software radio node. The receiver then extracts, downconverts and

demodulates the channel waveform using software on a general purpose

processor. ’ [Mitola]

Buracchini discusses the software radio concept and identifies the need for a common definition.

He suggests that software radio should be defined as follows:

'Software radio is an emerging technology thought to build flexible radio

systems, multiservice, multistandard, multihand, reconfigurable and

reprogrammable by software ’ [Buracchini2000J

Buracchini’s definition is perhaps too simplistic to fully describe the software radio. The overall

problem encountered throughout the literature is that the software radio concept brings a particular

approach to building radio systems rather than a concrete system design. The viewpoint on the

technology can thus be different depending on how someone wants to apply the software radio

approach. Instead o f one all-encompassing definition, the SDR Forum have classified radio systems

into the following five tiers [SDRForum2]:

Chapter 2 — Software Radio Terms and Definitions | 20

T ier 0 - H ardw are Radio

‘The radio is implemented using hardware components only and cannot he

modified except through physical intervention. ’

T ier I - Softw are C ontrolled Radio (SC R)

‘Only the control functions o f an SCR are implemented in software - thus only

limited functions are changeable using software. Typically this extends to inter­

connects, power levels etc. hut not to frequency hands and/or modulation types

etc. ’

T ier 2 - Softw are D efined Radio (SD R)

‘SDRs provide software control o f a variety o f modulation techniques, wide-hand

or narrow-hand operation, communications security functions (such as hopping),

and waveform requirements o f current and evolving standards over a hroad

frequency range. The frequency hands covered may still he constrained at the

front-end requiring a switch in the antenna system. ’

T ier 3 - Ideal Softw are Radio (ISR)

‘ISRs provide dramatic improvement over an SDR hy eliminating the analog

amplification or heterodyne mixing prior to digital-analog conversion.

Programmability extends to the entire system with analog conversion only at the

antenna, speaker and microphones. ’

T ier 4 - U ltim ate Softw are Radio (U SR)

‘USRs are defined fo r comparison purposes only. It accepts fully programmable

traffic and control information and supports a broad range o f frequencies, air-

interfaces & applications software. It can switch from one air interface format to

another in milliseconds, use GPS to track the users location, store money using

smartcard technology, or provide video so that the user can watch a local

broadcast station or receive a satellite transmission. ’

W hile the categorisation o f radio system s into d iffe ren t tiers is a good w ay o f d istingu ish ing

d ifferen t types o f radio system s, the actual defin itions o f each type are not that useful. For exam ple

the ir defin ition o f the SDR does not m ention digital signal p rocessing and describes ‘softw are

co n tro l’, c learly this is in d isagreem ent w ith the general consensus that SD R s im plem ent all radio

functionality using DSP. A lso, the ir descrip tion o f the ‘U ltim ate Softw are R ad io ’ is quite narrow in

focus as it seem s to concentrate on the capabilities o f a users term inal. Specific app lications such as

G PS are m entioned when in fact the ideal and ultim ate softw are radios should be capab le o f

C hapter 2 — Software Radio Term s and D efinitions | 21

com m unicating with any other radio system regardless o f frequency, modulation scheme or

communications standard (the ideal software radio is discussed in more detail in Section 2.4.1.)

Lehr also recognises the confusion over software radio terms and suggests a more technical

definition in that the term ‘software radio’ (as opposed to software-defined radio) should be

reserved for systems that digitise the signal at the IF stage or further towards the antenna

[Lehr2002]. This approach differentiates the software radio from radio systems that use software in

their design but not for the processing o f radio signals directly. While this is not a definitive

statem ent it does raise an important issue as to where digital conversion should take place

suggesting that this may be a way o f categorising different types o f radio systems.

W ithout concentrating on specific technologies or applications the U.S. Federal Communications

Commission (FCC) define software radio as:

‘A software defined radio is a radio that includes a transmitter in which the

operating parameters o f the transmitter, including the frequency range,

modulation type or maximum radiated or conducted output power can he

altered by making a change in software without making any hardware

changes. ’ [FCC2001]

The FCC definition represents the regulatory view o f the software radio and this is demonstrated by

its concentration on the transmitter, the goal o f the regulator being to avoid interference. It is thus

an incomplete and unsuitable definition for this discussion.

From these different perspectives it is clear that it is difficult to arrive at an exact definition that

satisfies every viewpoint. To address the lack o f clarity about software radio systems this thesis

proposes the following definition that better defines the software radio concept:

‘A software radio is a device that digitally converts radio signals in order

to processes them using a software programme. Digitisation must occur

close enough to the antenna to allow any function o f the radio to be

altered dynamically at runtime. ’

This definition is distinct from others for the following reasons:

• rh is definition requires that a software programme is used to process signals digitally.

This differentiates it from other hardware-defined approaches.

• This definition requires digitisation as close as possible to the antenna to allow

variability in all radio functions. This is included to ensure that the soflware radio

Chapter 2 — Software Radio lerm s and Definitions | 22

defin ition does not extend to devices that process radio signals d ig itally yet do not

o ffer variab litiy in th is function. It is th is variability that m akes the softw are radio

concept unique.

• Finally , th is defin ition uses the term ‘run tim e’. R untim e is a softw are concept m aking

it c lea r that all functionality m ust be im plem ented in softw are ra ther than softw are-

con tro lled hardw are.

in d iscussing the m ore reconfigurable softw are radio. C hap ter 4 also defines a defin ition o f the

‘R econfigurable R ad io ’.

2.4 Hardware

Section 2.2 d iscussed the history o f softw are rad io w ithout dw elling on specific technical principals

or exam ples. T h is section presents all the technological know ledge required to understand the

softw are radio concept. This section starts by looking at the ‘Ideal Softw are R ad io ’, often seen as

the ultim ate goal in radio system developm ent. T his is fo llow ed by a look at som e practical

lim itations exp la in ing why the ideal softw are radio is not possib le at present. T he rem ainder o f the

section looks at the various hardw are technologies required to realise a softw are radio.

2.4.1 The Meal Software Radio

Before rev iew ing specific technologies and techn iques for softw are radio, it is useful to look at

w hat m ost perceive as the u ltim ate goal in softw are radio technology, often term ed the ‘Ideal

Softw are R ad io ’ [M itola92]. Figure 2.2 show s a diagram o f the ideal softw are radio. C entral to the

ideal device is tha t the signal is d ig itally converted as close as possible to the an tenna with all radio

functionality im plem ented using DSP, w ith only a m inim al essential am ount o f analogue hardw are

used.

In this schem e the radio w ould be ab le to transm it and receive extrem ely large bandw idths. In the

receiver scenario th is would allow the radio to d ig itise the entire RF band w ith DSP used for all

receiver functionality including tuning, filtering and dem odulation. In such a radio device it w ould

be possible to receive on m ultiple frequencies sim ultaneously w ith each individual signal possibly

using d ifferen t bandw id ths and m odulation schem es.

Likew ise, in the transm itter scenario , DSP softw are w ould be used to generate a w ideband signal

capable o f transm itting anyw here in the RF band. It w ould be possib le to sim ultaneously m odulate

m ultiple signals using different frequencies, bandw idths and m odulation schem es. E ffectively the

analogue R F-front end o f the ideal softw are rad io w ould act as a physical gatew ay to the

electrom agnetic spectrum w ith all radio functionality im plem ented by DSP softw are.

Chapter 2 — Software Radio } lard ware | 23

The ideal software radio is a long-term goal. Although this goal may never be reached or warrant

the investment to reach it, it does underpin the direction o f software radio, i.e. moving DSP as close

as possible to the antenna. Any developments in analogue electronics, DSP or radio engineering

that bring us closer to that objective will deliver great opportunities for new types o f wireless

devices and hence new applications and services.

Receive Path

Receiving
Antenna \W Low Noise

Amplifier Filter

A/D
Converter

Digital Signal
P rocessing

Transmitting

D/A
C onverter

Digital Signal
P rocessing

Low Noise
Amplifier Filter

Transmit Path

Figure 2.2 - The Ideal Software Radio

2.4.2 Practical Limitations

While there may be some existing technologies capable o f bringing us closer to the ideal software

radio (for example superconductors have been suggested for use in software radios [Semenov99,

Brock2001, Brock.2002, Fujim aki200l]) these are typically not feasible in cost or complexity and

are not suitable replacements for existing radio hardware. To achieve the practical software radio

with today’s technology the designer must use conventional analogue techniques in combination

with newer DSP hardware. The challenge is to strike a balance between analogue circuitry, digital

conversion and DSP. The amount o f each technology used will be dependent on the particular

application but also on the capability and cost o f the devices available. The most common approach

taken today is to employ conventional analogue radio electronics for m anipulation o f higher

frequencies with digitisation and digital signal processing occurring at lower frequencies

[Hentschell99].

Figure 2.3 shows a more practical architecture for the software radio. In the receiver branch the

signal o f interest is mixed with a local oscillator that down converts the signal to a lower frequency.

The signal is then digitised at this lower frequency. Likewise in the transm itter the signal is

modulated via DSP and mixed with a local oscillator to up convert the signal to the transmit

frequency. This design ensures that the demands on analogue to digital converters (ADCs) and

C hapter 2 — Software Radio H ardw are j 24

digital to analogue converters (DACs) are much less at these lower frequencies. Also, the DSP

hardware can process data at a reasonable sample rate, much lower than the actual operating

frequency o f the radio.

Receive Path
R ece iv in g
A n te n n a \ / Low N o ise

A m plifier M ixer FilterFilter

Digital S ig n a l
P ro c e s s in g

L ocal
) O sc illa to r

\ L ocal
) O sc illa to rT ran sm ittin g

A n te n n a \

Low N o ise
A m plifier Filter M ixer Filter

Transmit Path

D/A
C o n v e rte r

A/D
C o n v e rte r

D igital S ig n a l
P ro c e s s in g

Traditional Analogue Digital Interface
Superhetrodyne Approach

Figure 2.3 - A More Practical Software Radio Solution

In Figure 2.3 the left side o f the diagram represents the analogue portion o f the radio and this

configuration is a typical superheterodyne architecture [Armstrong24J. In the receive path o f this

architecture the signal o f interest is tuned, amplified and then down converted to a common

frequency called the Intermediate Frequency (IF). The use o f an IF allows a receiver to maintain

selectivity and sensitivity across multiple receive frequencies. Selectivity refers to the receiver’s

ability to reject all frequencies except the frequency o f interest. This will determ ine how well a

receiver can receive a signal in the presence o f other signals and noise. Sensitivity refers to how

well a receiver can receive weak signals. Due to the physical nature o f analogue com ponents it is

difficult to build a receiver that maintains selectivity and sensitivity across m ultiple frequencies and

this difficulty increases with frequency. Converting a signal to the IF goes some way to solving

these problems. The IF is a common frequency enabling analogue circuitry to be optimised for

selectivity and sensitivity at this one frequency, ultimately reducing the amount o f unwanted noise.

In addition this frequency is usually lower than the actual receive frequency thereby simplifying

analogue design.

A few IFs have become standard allowing manufacturers to produce com ponents optimised for

these frequencies, examples o f which are 455kHz, 10.7MHz, 70Mhz, 140MHz. IFs are chosen

C hapter 2 — Sortw are Radio I lard ware | 25

primarily to suit the bandwidth o f the intended application but may also be influenced by factors

such as component specifications and noise performance.

In the transm itter a similar approach is used. Signals can be modulated and then up-converted to a

common IF frequency. This IF can then be translated and amplified for transmission at the required

frequency. Many variations can be made on this architecture; some approaches use multiple mixing

stages especially in high frequency applications. Also, different types o f filtering can be used

depending on the demands o f the application. In summary, the central idea behind the

superhetrodyne approach is the use o f mixing and filtering stages to translate signals to more

m anageable frequencies and this approach can be applied to a vast number o f applications in radio

design.

The wide acceptance o f the superheterodyne architecture has meant that it has become a popular

choice in the migration towards software radio. In both receivers and transmitters, the approach has

been to introduce digitisation at the IF frequency. As Figure 2.3 illustrates, this hybrid approach

uses analogue circuitry for high frequency operations with DSP performed at lower frequencies.

M oreover this strikes a balance that makes software radio more realisable and affordable using

current technology.

Another architecture gaining more recognition in software radio applications is direct conversion,

also known as Zero-IF. Its architecture is much the same as Figure 2.3 except for the frequencies

used by the local oscillator. In the receiver this scheme means that the signal o f interest is down

converted directly to baseband bypassing any use o f an IF frequency. Likewise in the transm itter a

baseband signal is directly up-converted to the signal o f interest. (Gu discusses Zero-IF in the

context o f software radio tGu2002]). While this may seem advantageous, there are various

problems associated with this technique, in fact these problems are the reason the superheterodyne

approach dominates most designs. In particular, direct conversion results in a large DC offset in the

signal which can make it difficult to recover the original signal. This DC offset is caused by a

mismatch between analogue circuits which is temperature and time dependent introducing a

variable error into the signal. Also, oscillator leakage, self-mixing, flicker noise and other

inconsistencies can result in a corrupted signal [Patel2000]. This technique is however gaining

popularity over the superheterodyne approach as it has better immunity to adjacent channel

interference and is quite tolerant to variations in input power [Haruyama2001 J.

This discussion demonstrates that there is no single or best way to develop the hardware o f the

software radio system. Many areas o f expertise from RF-hardware design to DSP processing

devices must undergo significant development to meet the demands o f the software radio and to

move it towards the ideal software radio. For this reason there has been a variety o f research and

Chapter 2 — Software Radio Hardware | 26

development on tackling this problem. The software radio hardware research space can be divided

into three areas o f research split according to their function as shown in Figure 2.4; these are the

RF front-end and antenna, digital conversion and DSP hardware. The following three sections

discuss these important aspects o f software radio and highlight relevant research in each one.

RF Front End
& Antenna

Digital
Conversion

Digital Signal
Processing
Hardware

Figure 2.4 - Research and Development in Software Radio

2.4.3 Front-End Technologies

Even from the early days o f software radio, developing the RF front-end has been recognised as a

significant challenge [Mitola95]. The aim in software radio is to build a general-purpose front-end

that acts as an interface between the antenna and DSP hardware. This is a significant change to

existing RF front-ends. For example, existing multi-standard mobile phones (tri-band phones)

contain three separate receiver chains for each standard [Tsurumi99], Using the software radio

approach these separate devices would be replaced by a single generic architecture.

The ideal device would allow the reception and transmission o f arbitrary frequencies and

bandwidths, but in practice hardware limitations mean that these parameters have to be constrained

to a particular application. An example o f this is the differing dynamic range requirements o f GSM

and W-CDMA systems. GSM has stringent requirements on signal to noise ratios (SNR) but the

spread spectrum nature o f W-CDMA means the SNR can be relaxed. Providing a common RF-

front end for a device that can operate within both these standards would thus present a significant

challenge with today’s technology.

1 he requirement to digitise as close as possible to the antenna is not possible with current digital

converter technology nor by the speed o f current DSP processors or FPGAs. Cummings discusses

this, pointing out that even if digital converters enabled digitisation at high frequencies such as 2

GHz for example, a DSP processor would have to operate at 2500GHz to process these signals

[Cummings2002b]. This is clearly outside the capabilities o f today’s devices so currently practical

RF front-ends must be customised for a particular application.

Chapter 2 — Softw are [<adio Hardware j 27

Hentschel [Hentschel99] discusses the tradeoffs associated with front-end design. Lii<.e most

approaches he suggests that a limited band be selected out o f the full band by means o f analogue

conversion and IF filtering. Beach [Beach2002] addresses the same issue and discusses the

requirements and specifications o f RF front-ends for software radio applications such as GSM 900,

DCS 1800, DECT, UMTS, Bluetooth and FIyperlan/2. He discusses the tradeoffs associated with

using different architectures concentrating on direct conversion and multiple conversion types. He

suggests that with the current capabilities o f technology a practical front-end for software radio is

best achieved using a multiple conversion architecture (or superhetrodyne approach) as direct

conversion can cause problems with wide bandwidth signals. Once conversion is completed,

sample rate conversion can also be an issue [Abu2003, Hentschel2000].

in working towards more advanced front-ends a variety o f research has presented designs and

techniques for improving them. The challenge is to deal with problems such as linearity, image

rejection, efficiency and power. As examples, MacLeod [MacLeod2001] recognises the importance

o f image filtering and am plifier linearity in front-end design. In similar discussions Kenington

[Kenington2002] describes linearised transmitters and Morris [Morris98] describes the use o f

polynomial pre-distortion for improving am plifier linearity across a wide band o f frequencies.

Brinegar [Brinegar98] discusses the use o f a flexible filter for a software radio application and for

higher frequencies Streifinger [Streifinger2003] discusses front-end developm ent at microwave

frequencies above lOGHz. Some test beds have also been proposed and Schacherbauer

[Schacherbauer2001] presents a wideband front-end capable o f receiving a 5M Hz bandwidth from

800M Hz to 2200MHz. M obile applications in particular pose significant challenges for front-ends.

Kenington [Kenington2000J highlights the issue o f power consumption in A/D converters for

mobile software radio terminals. Cummings [Cummings2002] recognises that a ‘sweet spot’ must

be found in front-end development for software radio so that power consumption, size and cost can

be optimised. Further discussion on these issues can be found in [W iesler2002, Cummings2002b,

Salkintzis99].

Antennas are often overlooked when considering the RF front-end and in the area o f software radio

in general. Smart antennas represent the forefront o f antenna research. Using digital beam forming,

a smart antenna uses an array o f antennas to increase the carrier-to-interference ratio in a wireless

link [Razavilar99]. Smart antennas have become important in cellular applications in that they

allow cell capacity to be increased by allowing the polar pattern o f an antenna to be modified

dynamically. Using these techniques two transmitters can transmit to the same receiver on the same

frequency, with the receiver adjusting its polar pattern to match the incoming signal. Smart

antennas and software radio are complementary technologies having the potential to greatly

increase the flexibility o f radio systems. Research combining these technologies includes

Chapter 2 — Software Radio Hardware | 28

applications in direction finding [Kennedy95], evaluation test beds [Green2002] and their use in

base stations for mobile communications [Perez2001],

2.4.4 Digital Conversion

Digital converters, i.e. analogue to digital converters (ADCs) and digital to analogue converters

(DACs) are very important aspects o f any software radio as they form the boundary between the

analogue and digital domain. Digital converter technology is being pushed to its limits by the

requirements o f software radio. Software radio requires converters that can not only sample at very

high frequencies but can also offer a suitable dynamic range (i.e. bit-depth or word size) for

representing signals [Wepman95].

The converter must provide an adequate signal-to-noise ratio (SNR), something that can be difficult

to achieve with linearity problems and quantisation noise. Another important param eter is Spurious

Free Dynamic Range (SFDR) that specifies the ratio in dB between the output o f a converter and

the peak spurious signal, an important parameter in judging whether a weak signal can be received

in the presence o f a strong one.

Providing a suitable SNR and SFDR exist, a converter’s sample rate is the next important

parameter. This ultimately determines the frequencies and bandwidths o f signals that can be used

by the system. Direct sampling can be performed by using a sampling rate at double the signal o f

interest. However, by exploiting the Nyquist theorem the sampling rate can be significantly

reduced [Nyquist24]. The Nyquist theorem states that the sampling rate must be double the

bandwidth o f the signal, allowing converters to operate at a lower rate. This can also serve as a

mechanism for down-conversion by simultaneously converting the IF frequency to baseband. It

should be noted though that it is not ju st sufficient to lower the sample rate. The converter must

have sufficient analogue input bandwidth and sample and hold circuitry to track and thus sample

the higher frequency signal. The main point to note here is that the sampling rate, SNR and other

parameters, and consequently the converter used, has an impact on the overall design o f the

software radio. According to the needs o f the intended application the converter and overall

architecture can be designed in creative ways meaning many different types o f software radio

architectures are possible.

Brannon [Brannon2002] gives a comprehensive overview o f digital conversion for software radio.

Concentrating on mobile communications he notes that the state o f the art in digital converters lies

at sampling rates in excess o f lOOMFlz with typically a 14-bit word size, but that 16-bit devices

sampling at 120MHz are in increasing demand. Devices with higher dynamic range are constantly

being required to allow the recovery o f weak transmitted signals in the presence o f strong ones.

Chapter 2 — Softw are Radio Hardware I 29

Brannon also discusses the emerging technology o f Sigma-Delta converters. These can be used to

create highly optimised integrated circuits combining many RF/IF functions into one device.

Further discussion on these topics can be found in [M itola99d, Fettweis2002, Abeysekera2002].

2.4.5 Digital Signal Processing Devices

Following digital conversion at the required frequency, radio signals exist in the digital domain.

Depending on where digital conversion occurs in the radio and what the bandwidth o f the signal is,

the amount o f data produced will vary. Some designs will digitise the signal at baseband thus the

DSP will perform modulation and demodulation. O ther designs will digitise close to the antenna

requiring functions such as channelisation or direct down conversion to be performed in the digital

domain. There are almost no limitations as to which radio functions can be implemented in the

digital domain, but obviously the necessaiy processing power must be available and this becomes

the limiting factor.

To perform DSP some form o f semiconductor is required. A variety o f devices have emerged to fill

this role, in particular these devices have become the mainstream technologies o f choice when

implementing DSP systems: the ASIC (Application Specific Integrated Circuit), FPGA (Field

Programmable Gate Array), DSP processor and more recently a range o f reconfigurable processors.

ASIC: The ASIC (Application Specific Integrated Circuit) is a sem iconductor device specially

designed for a particular application [Smith97]. The ASIC cannot be reprogrammed and

implements a one-off design that is often mass-produced. Because they are application specific,

ASICs can be highly optimised for power and performance thus these devices are often used in

applications requiring the best performance for example in graphics calculations or high-speed

networking. They can also be more cost effective on a large scale as silicon area can be optimised.

In conjunction with an A/D or D/A converter, an ASIC device can manipulate digitised signals and

this combination is used in many existing applications in digital audio, graphics and control

systems.

FPGA: Unlike the ASIC the FPGA (Field Programmable Gate Array) offers the advantage o f re­

programmability. The FPGA can be reprogrammed many times allowing the functionality o f the

device to be changed as required. An FPGA consists o f general-purpose logic cells that can be

reprogrammed and interconnected to form a particular application. Hardware description languages

such as VHDL [IEEE2000] and Verilog [IEEE2001] are used to programme the FPGA although

some newer languages such as System-C [System-C] and Handel-C [Chappell2002] offer more

high-level programming constructs. The reprogrammable nature o f these devices means they can

be readily tested and also reprogrammed in the field to correct errors. Due to these advantages the

Chapter 2 — Softw are Radio Hardware | 30

FPGA has become the device o f choice where low-level digital hardware in conjunction with

reprogrammable control is required. Although the FPGA in conjunction with design tools allow

optimisation to take place, the FPGA cannot achieve the same performance or power efficiency of

the ASIC. When used in conjunction with the A/D and D/A converters the FPGA can act as a

general purpose device and has become a platform for many applications in such diverse areas as

video manipulation, networking and telecommunications.

Also in the FPGA family is the FPAA (Field Programmable Analogue Array). Instead of

interconnecting logic cells, the FPAA offers inter-connectable analogue blocks that can be used to

create reprogrammable analogue circuits. This is useful in applications such as high-end filter

design as in some cases it can be more cost efficient to implement such an algorithm using

analogue components rather than using DSP.

Finally, another approach in the FPGA family is the hybrid FPGA-CPIJ. This is a device that

contains both a CPU and an FPGA. The CPU can reprogram the FPGA thus it is possible to offload

processing from the CPU to the FPGA for performance critical applications. Examples of hybrid

FPGA-CPU systems are Virtex II Pro platform from Xilinx [Xilinx] and the Excalibur platform

from Altera [Altera]. In the short term it is possible that type o f device that will be useful for

software radio systems, as this solution is quite cost effective and offers a good price versus

performance ratio for commercial applications.

DSP Processor: A DSP processor is a processor specifically designed for signal processing

applications [Lapsley97], The DSP processor has emerged to fill a gap in the market for a device

that offers a good price versus performance trade-off, and allows for the efficient, low-power

implementation of signal-processing algorithms. DSP processors offer intrinsic support for

multiply-accumulate and fixed point calculations which are common requirements for signal

processing algorithms, but which are more difficult to implement using ASICs and FPGAs.

Software for DSP processors has typically been developed using proprietary assembly languages

and these are often different for each device family. More recently higher-level compilers for

languages such as C and C++ have emerged from DSP processor vendors thus greatly simplifying

development. DSP processors have become a mainstream popular choice for DSP applications but

still lack the processing power o f the FPGA and the ASIC.

Reconfigurable Processors: At the signal processing stage o f the software radio the trend has been

to move from ASIC designs to more reconfigurable devices such as the FPGA and DSP processor.

There are however some new types o f processors emerging specifically targeted at communications

applications. These devices have emerged to address limitations o f the FPGA and DSP processor,

but are also specifically targeted at the requirements o f 3G standards. The limitations they address

C hapter 2 — Software Radio Hardware | 31

are the reconfigurable nature o f FPGAs and DSPs. Although reconfigurable, they usually have to

be taken offline to be reprogrammed. Newer chips such as the Chameleon Reconfigurable

Communications Processor (RCP) offer a general-purpose architecture that can be reconfigured on

the clock cycle introducing rapid reconfigurability [Bums2003]. The RCP is aimed at high capacity

3G base station applications. Another example is that o f the Adaptive Computing Machine from

Q uicksilver [W atson2002, M aster2002]. Like the RCP this device allows rapid reconfiguration but

at a lower rate and is more suited to handset applications. This device allows the creation o f custom

data paths and uses specific techniques for improving the performance o f multiplication and

additions enabling DSP algorithms to be implemented more efficiently. A final example is the

Sandblaster SB9600 Processor from Sandbridge Technologies [Glossner2003], another high-speed

reprogrammable device catering for the needs o f baseband processing for applications such as GPS,

Bluetooth and WLAN. This device again demonstrates a move towards more high-level

programming languages as it allows high-speed low-level programming to be achieved in C++ and

Java.

From this discussion it is evident that there are many devices available for signal processing. For

commercial applications, the one chosen will depend on the intended application and the cost o f the

device. In terms o f software radio research the FPGA is quite popular and has served as a platform

for a great deal o f research into signal processing for software radio. As examples. Rice [Rice2001]

shows how maximum likelihood phase synchronisation can be implemented with an FPGA. Seskar

[Seskar99b] discusses FPGA-based architectures for interference cancellation in software radio.

Ahlquist [Ahlquist99] discusses an FPGA approach to implementing error coding techniques.

Abeysekera [Abeysekera2002] uses an FPGA to implement a sigma-delta architecture and Honda

[Honda2001] discusses a technique for reducing the BER (Bit Error Rate) for software download

using an FPGA. All these examples demonstrate existing techniques from radio technology

migrating to the digital domain, with a focus on development with high speed FPGAs.

The ASIC offers full custom design for low-cost, high volume applications and thus has seen less

interest in the software radio space as most research is o f an experimental nature. The trend has

been to use FPGAs and DSPs which both offer tools that make system design much easier. Many

test beds have been based around the use o f DSP processors, examples can be found in

[Ellingson98, Patti99, Reichhart99, Dixon2001]. Power has been a particular concern for mobile

applications and Gunn [Gunn99] addresses this issue discussing a low-power DSP subsystem.

O ther approaches are also evident and Kokozinski [Kokozinski2002] suggests that analogue and

digital designs should be integrated on the same chip, something that may be possible with

technologies such as the FPAA.

Chapter 2 — Softw are Radio Hardware | 32

As discussed in Chapter I the work in this thesis is based on using GPPs. While other platforms

have been considered, the GPP offers the best environment for demonstrating the concepts of

reconfigurability. The next section discusses related work to this thesis and in particular highlights

other work that has used the GPP as a platform.

2.5 Related Work

There has been limited work done on developing software radio systems on GPPs. As discussed in

the previous section, most efforts have been concentrated on the development o f FPGA and DSP

designs. The work outlined in the following sections is a summary o f related work that has either

directly involves software radio on GPPs or closely related work that offers further insight into the

topic.

2.5.1 SPECtRA and Variants

As briefly outlined in Chapter 1, the Spectrum Ware group at M.l.T. was the first group to

investigate the use o f GPPs for software radio [Bose99a]. As part o f this work the SpectrumWare

group demonstrated SPECtRA (Signal-Processing Environment for Continuous Real-Time

Applications), the first software architecture specifically designed for the development o f software

radio systems on GPPs using Linux as the operating system [Bose99b]. After some initial work

SPECtRA was redesigned as PSpectra (Parallel SPECtRA), a system designed to achieve higher

performance via multi-threading [Vasconcellos2000]. While somewhat internally different, the

main objectives and characteristics of the SPECtRA and PSpectra environments are the same.

Central to both designs was the aim o f developing a toolkit for writing signal processing

applications. The main characteristics of the Spectra designs was the use o f a modular

programming environment, infinite streams and the separation between in and out of band paths.

• Modular Programming Environment - Signal processing algorithms such as demodulators and

encoders are coded into reusable modules by implementing C++ classes. Modules can be either

sources for producing data, sinks for consuming data or processing modules for performing

signal processing. Each module can have a different set o f inputs and outputs. By connecting

together modules it is possible to construct signal processing applications.

• Infinite Streams - Data flow between modules is accomplished via infinite streams. Each

module ‘sees’ an infinite stream of data which means that a module can request the arbitrary

number o f samples it requires to perform processing. A data-pull model is used to move data

through the system. Using this technique a sink starts the data flow by issuing a request for a

number of samples. This request propagates through the system with each module calling on its

downstream neighbour to produce the desired number of samples. This technique has a benefit

Chapter 2 — Softw are Radio Related Work | 33

in allowing unnecessary samples to be discarded thereby reducing required processing power.

The technique works by lazy evaluation in that samples are only generated when absolutely

needed.

• In-band and out-of-band paths - The Spectra environments differentiate between code for

performing signal processing functionality and code for controlling the general operation o f the

system (see Figure 2.5). In-band code consists o f the modules themselves and connectors.

Connectors provide the infinite stream abstraction and act as the binding between modules. A

simple set o f rules governs the connection o f modules via connectors which are also C++

classes. Out-of-band code concerns the maintenance o f the system and involves code for

creating and modifying the topology o f the system, communication among modules that does

not involve signals (e.g. setting a sample rate), handling user interaction and monitoring system

performance.

It should be noted that PSpectra contains extra functionality for creating more complex

multithreaded designs. It also allows the building o f meta-modules which encapsulate multiple

modules into single modules.

Configuration & control
Script

in-band

SinkSource Prod Proc2

Figure 2.5 - SPECtRA In-Band and Out-of-Band Paths (Bose99b|

Using the Spectra libraries SpectrumW are demonstrated various software radio implementations

including some analogue schemes, digital modulation and television receivers. Another

contribution o f the Spectrum W are group was their approach to algorithm development. With

software radio systems built using commodity PCs with different resources available to an

embedded system, a different approach could be used in developing many traditional

com m unications algorithms. For example, W elbom discusses a technique for waveform synthesis

for software radio, a technique particularly suited to GPP based radio systems which have access to

large amounts o f RAM (Random Access M emoiy) for storing pre-computed values [W elborn99a].

Following this work others have built on the PSpectra environment. The GNURadio project is an

effort to build open-source software for software radio [GNU] that also runs on Linux. This group

has used the PSpectra library as a basis for their project and have implemented a digital television

Chapter 2 — Softw are Radio Related Work | 34

receiver among other schemes. EPSpectra [Kim2001a, Kim200l b] is another extension to PSpectra

that uses the language Esterel to improve the real-time capabilities o f PSpectra.

Following on from the work o f SpectrumW are at MIT, Vanu Inc are a commercial venture working

on the development o f software for software radio systems [Chapin2002]. Vanu Inc. have

successfully used GPPs to implement existing cellular standards such as GSM , thus demonstrating

that GPPs are a practical hardware platform for software radio [Steinheider2003]. Their approach

too has been built on the work o f SpectrumW are but beyond sim ilarities with SpectrumW are

(SPECtRA, PSpectra, etc), only limited details are available on the specifics o f how their systems

work. One aspect that is documented is a language called Radio Description Language (RDL)

[Chapin2001], a Java-based language for building software radio systems. This language allows

high level programming and control o f signal processing functions and forms the basis o f their

GSM implementation.

The difference between this thesis and the variety o f work discussed in this section is that neither

SPECtRA, PSpectra, GNlJRadio nor EPSpectra were built with reconfigurability as a focus, rather

as systems to demonstrate concepts o f software radio. In contrast, the IRIS system presented in this

thesis is designed specifically for demonstrating and allowing experimentation with the concept o f

reconfigurability.

2.5.2 Software Communications Architecture

The U.S. military have been active in software radio research and developm ent since the early days

o f the SPEAKeasy project as discussed in Section 2.2. Currently this effort is being led by the U.S.

defence’s Joint Program Office (JPO) under the Joint Tactical Radio System (JTRS) programme. A

result o f this work has been the development o f an open standard for the developm ent o f software-

based communications systems called the SCA (Software Communications Architecture)

[JTRS2001, J7'RS2002, Melby2002]. By creating an open standard that addresses both military and

commercial applications the JPO hope that the development o f SCA com pliant commercial

technologies will lead to reduced costs, increased interoperability and upgradeability.

Due to the diverse requirements across military and commercial applications, an open standard

targeting one particular hardware platform would never be successful. Instead the SCA is an

implementation independent standard that specifies a set o f rules that constrain the design o f

com munications systems. The SCA has been structured to [JTRS2001];

• Provide for portability o f applications software between different SCA implementations.

• Leverage commercial standards to reduce development cost.

• Reduce development time o f new waveforms through the ability to reuse design modules.

• Build on evolving commercial frameworks and architectures.

C hapter 2 — Software Radio Related W ork I 35

The software structure o f the SCA is based around an ‘Operating Environment’ which consists o f a

Core Framework (CF), CORBA middleware and a POSIX (Portable Operating System Interface)

based operating system. The CF is an architecture that defines software interfaces that provide for

the deployment, management, interconnection and intercommunication o f software elements. The

SCA inherently supports distributed computing be it in the form o f inter-chip communication or

across a network. CORBA (see Section 3.5.2) is used throughout the specification as an

interoperability mechanism. CORBA acts as a ‘logical software bus’ allowing interconnection

among the modules o f the system. There has been some debate over the use o f CORBA in such

systems due to performance problems, however these problems have been shown to be tolerable in

some circum stances [Bertrand2002]. The SCA relies on the use o f a real-time POSIX-based

operating system for providing base services such as multi-threading and memory management.

The SCA is a very comprehensive standard. It dictates interface definitions for every aspect o f a

com munications system. W hereas software radio is usually concerned with the physical layer o f the

communications stack, the SCA is a broader specification as it specifies interfaces for physical, link

and network layers o f the communications stack. The software structure o f the SCA is shown in

Figure 2.6. M oving from left to right the diagram shows how an SCA com pliant system is

partitioned from the physical layer RF stage right to I/O applications. Each section o f the system is

viewed as a software component. CORBA is used for all interaction among com ponents but some

devices, for example FPGAs or DSPs, may not be capable o f CORBA communication. For this

reason ‘A dapters’ are specified which allow non-CORBA components to interact within the

system. The logical software bus is shown which allows intercommunication among modules and

the base services o f operating system and hardware elements are shown at the bottom o f the

diagram. .V pp lications
C orf K nm cwork (O ')

CommiTci«l OfT-thc-Shcir
________ (CO I S)________

*p i -

Non-(ORBA
Modem

Compoofnts

Ph>McaI
MM

Non-< ORBA
Security

(omptmcnts

Non-(ORBA
1/0

Component?*.

-̂-----.IL 3 .------ V----------------------------,JL j£ ----- M---------------- , l L i ----- -----------------------------.U------- 1

M(Mtem
(omp<ment?

Modem
.Adapter

Link. Network
Components

Security
Adapter

Securitv
Compiinenfs

Secnrit>
Ada|Ker

Link. Network
Components

1/0
\daptci

lA)
C omponents >

Core Framework 11)1.

CORBA ORB&
Servkcs

(M iddkware)

(^LtiKical Software Bus** via (O R B A)

CF
Serv'icck &

Applicati(»n»

Operating Sy<item

Network Stacks & Serial Interface Ser^ ice«

Board Sopport Package (Bu! ̂I^yer)

CORBA ORB &
Ser%ice%

(Middleware)

C F
Serv ices &

Applications

Operatinj: System

Board Support Package (Bus La>er)

Network Stacks & Serial Interface Services

Black llard\%are Bus Red llardM iiri- Bu^

Figure 2.6 - Software Structure of the SCA |JTRS2002|

Chapter 2 — Softw are Radio Related Work | 36

Communications applications built using the SCA are based around the use o f ‘Resources’. A

resource is a single abstraction for many of the software components in the system. Examples

include a LinkResource for components involving link layer processing and devices such as

ModemDevice, I/ODevice and SecurityDevice all o f which can be used in the same way. The

internal implementation o f resources is application dependent and hidden, thus Resources provide a

black box abstraction for reuse.

Although not specifically designed for reconfigurability, the SCA is of interest in this thesis as it

uses an object-oriented and component-based approach to the problem of developing software for

software radio. The SCA could be viewed as a component framework with each of its resources

defined as a different software component. Beyond this analogy though the system features limited

reconfigurability. The SCA is a good example o f a ‘Software Defined Radio’ as opposed to

‘Software Radio’ (as per the discussion in Section 2.3). Once a radio standard is implemented on

this platform it is rigidly fixed and only limited reconfigurability can take place within the sub­

elements o f the system. The system as a whole cannot be reconfigured to do something completely

different. For this reason it is unsuitable for demonstrating the concepts o f reconfigurability

presented in this thesis.

2.5.3 DSP Design Tools

While not built directly for software radio, it is useful to contrast the work in this thesis against

some DSP design tools.

Ptolemy is a software project from Berkley MIT that provides an environment for modelling,

simulation and design o f signal processing algorithms [Buck94]. Central to Ptolemy is the concept

o f models o f computation, a facility that provides a highly expressive environment for representing

different types of signal-based systems. The reason Ptolemy is somewhat related to this work is that

the system presented in this thesis also provides an environment for developing signal-based

systems. However, there are some distinct differences between Ptolemy and the work in this thesis.

Firstly, Ptolemy is a tool for modelling and simulation. IRIS is not a design tool but a component

framework for developing real reconfigurable radio systems. Although Ptolemy can potentially

generate source code for a variety of platforms the way in which it views its targets is quite

different to IRIS. IRIS reuses blocks of signal processing logic as software components, whereas

the blocks existing in Ptolemy exist at design-time only. These blocks are eventually collapsed

down to an implementation that is fixed in function. In contrast, the IRIS system is designed so that

the actual system developed can constantly reconfigure. At its core IRIS supports application.

Chapter 2 — Software Radio Related Work | 37

structural and parametric reconfiguration, concepts that do not enter into the Ptolemy design

paradigm.

SPW (Signal Processing W orksystem) from Cadence for example is a tool for capturing, simulating

and verifying DSP designs for FPGAs. This tool provides the full tool flow for developing SoC

(System on Chip) and FPGA designs. It provides a visual block-based user interface for

constructing any type o f FPGA design. This type o f tool is extremely different in function to the

IRIS system. As with Ptolemy, SPW is primarily a design tool with integrated simulation and

testing, whereas IRIS is a component framework for building real reconfigurable radio systems.

The IRIS component framework hosts radio applications much in the same way an operating

system hosts a user’s application. For this reason the tool flow approach o f SPW is quite different.

O ther tools that fall into this category are Matlab and Simulink [Mathworks], M atlab and Simulink

are simulation tools for modelling, simulation and development o f signal processing algorithms.

Both o f these are different to the work presented in this thesis as they are design tools whereas the

IRIS system is a component framework for implementing real reconfigurable radio systems. These

systems have not been built specifically for developing reconflgurable radio systems. These tools

and other approaches are discussed further in Section 2.5.

2.5.4 Other Approaches

Using a somewhat different approach to SPECtRA and the SCA is the work o f Srikanteswara

[Srikanteswara2000a, Srikanteswara2000b]. Srikanteswara presents a software radio architecture

designed for reconfigurability using FPGAs. The system uses an FPGA which can be

reprogrammed at runtime. Signal processing functionality is implemented in processing modules

that can be swapped and reconfigured at runtime to dynamically change the functionality o f the

radio. Functionality is divided into layers and processing o f data occurs in a similar way to a

communication stack. Data propagates through the system using stream-based processing which

uses a common bus for transferring data and control information. Self-steering streams weave

through layers, each o f which performs processing on the data. Data is thus transferred as

packetised data and can contain either control information or signal data. The packet can contain

configuration information on how the data should be processed via ‘embedded variables’. Other

‘non-embedded variables’ can provide variability independently o f the data stream.

Although completely hardware based, this system again demonstrates the common approach and

advantage o f using separate processing modules for implementing radio systems. Just like the

PSpectra approach, this system allows different radio configurations to be created by

interconnecting generic processing modules. Also, modules can be swapped and reconfigured at

C hapter 2 — Software Radio Related W ork | 38

runtime allowing the system to dynamically adapt. It should be noted that beyond the conceptual

view, this type o f system works in a completely different way to a GPP based system. GPPs have a

different architecture in that programmes are loaded from RAM and executed sequentially via an

instruction set. On the other hand the interconnections within an FPGA are physically re-adjusted

each time a new configuration is reprogrammed. Thus, an FPGA cannot achieve the same levels o f

reconfigurability possible with the GPP as each new iteration in configuration would require a

change in physical hardware. It should be noted that if the reprogrammable features o f the FPGA

are not used and it is programmed once to act as a GPP, it too would feature the same levels o f

reconfigurability. However, this would be a more costly process than using readily available

hardware as discussed in Section 1.4.

In the evolution towards software radio it is not surprising to find a wide body o f research based on

m igrating existing radio techniques into the digital domain. Many existing techniques from the

analogue domain require a new approach for digital implementation. As examples, Ikemoto

[Ikemoto2002] discusses the use o f adaptive channel coding schemes using finite state machines,

these being a concept from the digital domain. Similarly Harris [Harris2001] discusses the

development o f multi-rate digital filters for symbol tim ing and Zhao [Zhao2002] discusses the use

o f an existing scheme, GM SK (Gaussian Minimal Shift Keying), in a receiver implementation.

Also Yang [Yang2002] describes techniques for implementing broadband frequency hopping

multi-carrier systems in the context o f software radio and Thara [Thara2002] discusses the use o f

Turbo coding. All these cases demonstrate existing radio techniques being migrated to more

software radio orientated, DSP-based applications.

A significant focus for software radio has been its capability in allowing software download or

OTAR (Over The Air Reconfiguration). The basic idea here is that a software radio can reconfigure

itself by downloading new software from a remote location. There are various issues associated

with this including security [M ehta2001, Michael2002] and mode switching [Cummings99c].

Chapter 7 (Section 7.2) will discuss OTAR in more detail through a case study.

An emerging area o f research is the concept o f waveform description languages (W DL), languages

capable o f providing a portable mechanism for describing software-defined waveforms. Willink

[W illink2002] discusses the composition o f such languages and discusses the design o f such a

language for describing waveforms in a platform independent way. The main aim o f this approach

is to provide a language that facilitates the expression o f software radio concepts without the

overhead associated with other general-purpose functional or descriptive languages. Chapin also

discusses a similar approach with RDL (Radio Description Language) [Chapin2001]. This

language is Java based and operates on general-purpose processors allowing the control o f signal

processing functions and higher protocol level functionality.

C hapter 2 — Software Radio Related W ork | 39

2.6 Summary

This chapter has presented a comprehensive overview o f software radio technology. The history o f

software radio and the discussion o f terms and definitions demonstrate that the scope o f the

technology is large and that it impacts radio system design in many different ways. The discussion

o f hardware demonstrated both the ideal and practical software radio, and presented an overview o f

the hardware required to realise a practical software radio system within today’s technological

capability. The final section narrowed the focus towards the work in this thesis by discussing

relevant research relating to this thesis. From this discussion it is evident that research into software

for software radio systems is varied. The work discussed dem onstrates a variety o f approaches and

it is clear that more work is required to consolidate many o f the ideas being discussed. In

addressing such needs, this thesis makes its contribution to this area by now focusing on the

development o f software for reconfigurable radio systems.

Chapter 2 — Software Radio Summary | 40

3 Software Engineering

3.1 Introduction

This chapter presents an overview o f software engineering and provides background information

on a range o f principles and techniques for developing good quality software systems. Later

chapters will use these principles in discussing the developm ent o f highly reconfigurable radio

systems.

Software engineering has evolved as a standalone discipline o f engineering as software needs to be

properly engineered to produce reliable software systems. The problem o f complexity was widely

recognised in the early days o f software technology. In the late 1960s attempts to develop large-

scale software systems resulted in seriously flawed systems that often contained errors that were

difficult to fix. Frequently these systems did not effectively solve the problem being addressed.

These issues became known as the ‘software crisis’ [Dijkstra72].

At the time, the popular belief was that software problems are intrinsically complex (such as

mathematical calculations), but this observation was incorrect and in reality most software systems

are complex due to the vast number o f details that must be dealt with. It is the systematic

management and abstraction o f these details that forms the basis o f software engineering. Three

decades later there is a better understanding o f why software can be complex and significant work

has been carried out on developing methodologies, principles and techniques for developing large

robust software systems.

The practices o f software engineering are not typically applied to software radio. Most o f the time

software development for a software radio system is done using hardware description languages for

FPGAs, or C implementations for DSP processors. In this environment the application o f software

engineering techniques is sacrificed in favour o f optimisation, i.e. performance (faster execution

speed) and smaller code size. Faster performance translates to cheaper processors, as more efficient

code requires less processing power. Smaller code size translates to cheaper devices, as less storage

memory or RAM is required. Optimisation usually means breaking encapsulation, reducing code

reuse and reducing the m aintainability o f the code, thus abandoning many o f the principles that

underline modem software construction. However, to meet the demands o f increasingly complex

radio standards more and more code is being written. W ithout proper use o f software engineering

4 1

techniques, software radio has the potential to fall foul to its own ‘software crisis’, ultimately

resulting in unstable and unreliable radio systems.

For this reason it is important to apply the principles of software engineering in software radio and

this has been a major focus of this thesis. While modem software engineering dictates practices in

everything from managing people to project coordination, it is the technical practices o f software

engineering that are more relevant in this work. Object-oriented techniques and component-based

software are the techniques used in tackling the problems of complex software development. By

applying these techniques to software radio, software can move from being complex and error-

prone to being manageable, reliable and stable.

In addition, another advantage o f using software engineering techniques is that software can

become better structured. Using these techniques software can be built that is reusable, flexible and

adaptable. A reusable piece o f software is constructed in such a way that it can be easily reused by

others thus eliminating re-implementation. A flexible piece of software offers variability in how it

performs its function and provides a simple mechanism for doing so. An adaptable piece of

software can be used in scenarios that were unforeseen at design time. This work attempts to build

software for software radio that exhibits these traits.

The remainder o f this chapter presents an overview of software engineering techniques. It begins

by briefly discussing object-oriented software but moves on to concentrate on component-based

software. Existing component technologies are discussed, as the system presented later in this

thesis is a component-based software system for software radio. The overall purpose o f this chapter

is to provide background information on the software approach employed in this thesis. The reader

familiar with software principles may wish to skip to Section 3.6, which summarises the main

points of this chapter.

3.2 Object-Oriented Software

3.2.1 Overview

Before object orientation, the dominating approach to programming was the functional

decomposition approach o f procedural languages such as C and Fortran. Using functional

decomposition a problem is approached from the top-down with each problem broken down into

sub-problems. Functions consisting of algorithms are written to solve each problem and a hierarchy

o f these functions form the resulting solution. While functional decomposition is a fundamental

technique o f software design, when developing a software system of considerable scale this

structured approach can run into difficulty. Programmes can become difficult to maintain and

extend, overall reducing the quality o f software produced.

Chapter 3 — Software Engineering Object-Oriented Software | 42

The object-oriented approach works differently to functional decomposition. Instead of breaking

down problems into functions and algorithms, a problem is addressed by identifying objects that

play a role in the system. The system is built by defining a set of objects and defining relationships

between them. Object-oriented programming has its roots in the languages SimuIa-67 [Dahl70] and

Smalltalk-80 [Goldberg83]. These languages were the among the first to use the concept o f an

object. In its purest sense an object is something that has state and behaviour. Objects communicate

with each other through message passing which may alter the state o f the object. The behaviour an

object provides is defined by its interface or set o f commands it provides. Object-oriented

languages allow a system to be built around concepts and constructs o f the real world as opposed to

concepts intrinsic to computers such as algorithms and hardware. Object-orientation is thus a way

o f modelling and viewing software systems with the term object-oriented design (OOD) used to

describe the design process required to develop such software.

In the practice o f OOD, two design techniques are o f particular importance; UML and design

patterns. In designing the object-oriented system some method of describing object-oriented

designs is required. UML (Unified Modelling Language) has emerged to fill this role [OMG2002].

UML is a graphical language used for defining the relationships between objects and use-cases o f a

software design. UML will be used later in this thesis to help explain software designs. Design

patterns are used in object-oriented programming to capture the solutions of recurring problems

[Gamma95J. Each pattern describes the solution to a problem that reoccurs frequently. By

recognising reoccurring problems and applying the appropriate patterns, a software designer can

apply tried and trusted principles to a design thereby creating more robust software. These

techniques provide the designer with mechanisms for communicating software designs.

Closely related and often confused, object-oriented programming (OOP) is a different practice to

OOD. Whereas OOD is about modelling and viewing a software system, OOP is about how to

actually implement an object-oriented design in software. The two practices are distinct because

each programming language implements object-orientation in different ways. While an exhaustive

discussion of object-oriented languages will not be presented here, the main concepts o f OOP exist

through encapsulation, inheritance, interfaces and polymorphism.

Encapsulation provides modularisation in a software system. An object uses encapsulation to

shield its internal data from modification by another object. Instead each object exposes an

interface by which other objects access its data or request it to perform some operation. Using this

mechanism the internal implementation o f behaviour and the data itself are essentially hidden.

Inheritance allows one object to inherit the characteristics of another object. By doing so an object

can reuse the functionality o f another, thus it is possible to create hierarchies o f objects. While the

Chapter 3 — Software E ngineering O bject-O riented Softw are | 43

concept of inheritance itself is simple, the implementation and use o f inheritance is a subject of

much debate. Problems such as the fragile base class or diamond dependencies can occur if

inheritance is not used with care.

An interface defines the interaction o f objects. An interface specifies the operations an object will

support and thus offers a way to express the functionality o f an object independently o f an

implementation. The interface is thus an important tool during both OOD and OOP. In OOD it

allows designers to express the functionality o f a software object without having to w on^ about

how it should be implemented. During OOP interfaces can be used to enforce a design, as code will

fail to compile unless the implementation adheres to a set o f interfaces.

Polymorphism is the ability o f an object to appear in multiple forms, depending on context. For

objects to be polymorphic they must inherit from the same base class and implement the same

functionality. A typical scenario involves the use o f an abstract base class to represent some entity,

for example a ‘Vehicle’. Other classes can inherit from this base class to create different types of

objects, e.g. ‘Aeroplane’ or ’Car’. A polymorphic language allows the programmer to interact with

any sub-classed ‘Vehicle’ object without knowing whether it is an ‘Aeroplane’ or ‘Car’. When

used in conjunction with interfaces, polymorphism can offer a powerful construct for hiding the

implementation o f an object. Using polymorphism many different objects may expose the same

interface with the details o f each object hidden in the implementation.

Objects are commonly defined via the class construct. The class is a construct that allows the

specification o f an object via the data it stores and the methods it exposes. Central to the class is

encapsulation, or data hiding. The class offers a set o f access modifiers that allow access to data

and methods to be restricted. Using these modifiers unnecessary internals o f a class can be hidden

from external clients. Whereas a class defines the blueprint for an object, an instance is a

manifestation o f that object. Thus from one class definition, multiple instances o f an object can be

created. A class is said to be abstract if it does not implement all the methods specified in its class

definition.

3.2.2 Object-Orientation fo r Software Reuse

Object-orientation inherently supports software reuse. OOP allows the construction o f software

objects that can be reused by others to solve similar problems. The advantages o f software reuse in

OOP are not often apparent in small software systems. Often, it can seem unnecessary to use

classes, especially when programming a small system in which it is known that classes will never

be reused. Effective reuse only becomes apparent in large software systems. Most large systems

rely on the definition o f basic objects that are reused extensively throughout the system. Software

Chapter 3 — Software Engineering Object-Oriented Software | 44

construction at this scale can leverage object reuse to great effect in reducing the amount o f code

used, and also increasing the simplicity and thus m aintainability o f the system.

For software to be effectively reused it is not sufficient to just place code into a class, there are

many other factors that determine how reusable an object really is. W hile some o f these factors

may be loosely defined by elements o f taste or aesthetics, others are well-recognised principles and

have been formalised in the literature. O f the latter we consider here the concepts o f granularity,

coupling and cohesion.

Granularity

There is an inverse relationship between software granularity and software reuse. Objects are

designed to represent and solve problems for a particular domain (or application). The larger a

software object is, the more domain-specific the object will become. A software object is not likely

to be reused if it caters too specifically to a particular domain or application. Conversely, a fine­

grained object can potentially be reused more because it provides limited functionality and is not so

domain-specific. Choosing the correct context and granularity for a software object will thus

determine how often the software can be reused.

The effect o f granularity is evident in the class libraries available for programming with languages

such as Java. The Java class library offers a wide range o f classes ranging from domain-

independent to domain-specific. Fine-grained classes representing primitive types such as strings

and integers are used extensively throughout the whole class framework, whereas larger more

domain-specific classes can only be reused in that dom ain’s context, for example graphics or

networking classes.

Cohesion

Cohesion is the measure o f the level o f logical relationships in a piece o f software. Balen

[Balen2000] defines cohesion to be ‘a measure o f the level o f logical relationships between

methods o f a class and also a measure o f logical relationships among sub-system s’. Yourdon

[Yourdon79] has defined cohesion using various terms, namely coincidental, logical, temporal,

procedural, com m unicational, sequential and functional. These definitions identify the

characteristics o f cohesive software modules at various levels o f cohesion from weak to strong.

In general it is advantageous to strive for highly cohesive software objects. In a highly cohesive

software object (or functionally cohesive module according to Yourdon and Constantine) the

elements the object expose will be related in that they all contribute to solve a common problem.

An object with weak cohesion haphazardly associates elements that share no common purpose.

While the obvious approach to software construction always suggests using cohesive elements, the

practicalities o f design make this difficult to achieve. A cohesive object is more likely to be reused

Chapter 3 — Software Engineering Object-Oriented Software | 45

than an object with weak cohesion, as the cohesive object will be logically structured as a unit that

addresses a particular problem.

Coupling

W hereas cohesion is a measure o f the relationship between software elements, coupling measures

the dependencies among elements. VanVliet [VanVliet2000] defines coupling to be ‘a measure o f

the strength o f the inter-module connections’. Similar to cohesion, various terms have been used to

define various levels o f coupling, namely content, common, external, control, stamp and data

ranging from tightest to loosest. Tightly coupled objects are objects that require a lot o f

dependencies on other objects to function. A loosely coupled object has weak dependencies in that

it can function independently o f other objects.

In general loosely coupled objects are preferred over tightly coupled ones. A loosely coupled object

can offer better software reuse, as it can be adapted for use in many different scenarios without

having to maintain inter-object dependencies. In practice creating loosely coupled objects is

difficult because functionality is gained by bringing together objects to form new objects. By

bringing together objects new dependencies are formed which tightens coupling. One common

solution is to re-implement the functionality o f other objects to avoid dependencies but this goes

against software reuse and can increase the level o f cohesion.

3.3 The Principles of Software Components

Following on from object-oriented techniques, the software component is a more comprehensive

unit o f abstraction that also attempts to address the problems o f complexity and reuse in software

systems. This section defines software components, their difference to objects and how they can be

constructed.

J.3.1 Defining the Software Component

W hereas object-orientation is well understood as a methodology for designing and programming

software, the concept o f the software component is a new er concept and thus has various meanings

throughout the literature. Various definitions have been proposed;

‘A software component is a unit o f composition with contractually specified

interfaces and explicit context dependencies only. A software component

can he deployed independently and is subject to composition by third

parties ’ [Szyperski2002J

'A software component is a static abstraction with plugs ’ [Nierstrasz95]

C hapter 3 — Software Engineering The Principles o f Software C om ponents I 46

Reusable software components are self-contained, clearly identifiable

pieces that describe and/or perform specific functions, have clear

interfaces, appropriate documentation and a defined reuse status. ’

[Sametinger9 7]

‘A reusable software component is a logically cohesive, loosely coupled

module that denotes a single abstraction ’ [Booch87]

While definitions vary in scope, the essence o f the software component is that o f a reusable piece

o f software with well-defined functionality that exposes well-defined contractual interfaces. It is

interesting to note that Sametinger includes documentation in the definition o f the software

component and that Szyperski includes reference to use o f components by third parties. This

suggests a higher-level construct than the object, in that a software component is not simply a

software implementation but addresses a wider range o f issues in how its functionality is described

and how the component is used and made available.

In Szyperski’s comprehensive text on component software [Szyperski2002] he identifies the

software component via the following characteristic properties;

1. A component is a unit o f independent deployment

For a component to be independently deployable, the component must be self-contained. It

must be packaged into an independent unit and must be well separated from its environment

and from other components.

2. A component is a unit o f third-party composition

Components are primarily designed, implemented, tested, and subsequently used by people

who do not have the desire or expertise to write the software for themselves. For these reasons,

people who use the component should not be (or should not have to be) aware of any of the

construction details o f the component.

3. A component has no externally observable state

Components often represent heavyweight pieces o f functionality in a system. Often there will

only be one instance o f a component in a process. A component should have no persistent state,

i.e. the component should be identical to copies o f itself This is in contrast to a software

object, in which its identity is defined by its state.

Again, these properties suggest that the software component is a very different construct to the

object. For example, Szyperski suggests that there should be only one instance o f a component

whereas objects are specifically designed so that they can be instantiated multiple times. Overall,

Chapter 3 — Software [engineering rhe Principles o f Software Components | 47

object-orientation is a technique for building the internals o f a piece o f software. Component

software is about how this implementation is packaged and deployed for use by others.

3.3.2 Objects vs. Components

Objects and components are often confused. This section discusses the difference between objects

and components, and how they facilitate different methods o f reusing software.

The differences between objects and components can be summarised as follows:

• In OOP, every object is constructed in a different way and specific knowledge o f the object is

required to avail o f its functionality. In contrast, in component technology components that

implement completely different functionality often use the same interface. In this way

components are much more standardised ways o f exposing functionality.

• Objects are often language and platform specific making binary interoperation difficult. Many

component standards are built specifically for language and platform independence allowing

many different types o f components to interact.

• In objects, dependencies may have to be sourced so that the component will function. A

component usually contains everything it requires to function reducing the amount o f

dependencies it requires.

• In object-oriented languages an object is often statically linked into an application requiring the

application to be rebuilt if significant changes are made to the object. In component-based

programming components are mostly dynamically linked and interchangeable allowing

different components to be used without recompilation. This approach can be used for software

maintenance and upgrading, or as a technique to enforce a contract between different pieces o f

software.

The component concept embodies a particular viewpoint on how software should be reused. In

other contexts reuse can be as simple as the copying o f source code or using a set o f library

routines. In OOP, objects are reused via instantiation or inheritance. Even though these facilities do

work, OOP and other methods often fail in achieving effective reuse o f code.

For example, objects are often seen as bad elements o f reuse. While a software component can be

built using an object-orientated language, object-orientation itself says nothing about how to

package the software into a reusable unit. Also, it says nothing about how the com ponent’s

interface will be exposed to the outside world, or how it interacts with other types o f components.

The concept o f the software component goes some way in solving the problems o f reuse. Software

components satisfy the need in software engineering to be able to package and subsequently reuse a

piece o f software.

Chapter 3 — Software Engineering The Principles o f Software Components j 48

A useful characteristic in discussing reuse is the level o f visibility exposed by software. Visibility

in this context is the visibility a programmer has o f the internals o f a piece o f software. This

visibility is often referred to in terms o f ‘white box’ or ‘black box’ abstractions. In a black box

abstraction, the programmer using the software only has knowledge o f an interface and its

specification. All other details are hidden. A white box abstraction may still enforce the

encapsulation (hiding) o f functionality but will allow the functionality to be extended or modified

via mechanisms such as inheritance. Other terms are also used to refer to levels o f visibility that lie

between white and black abstractions, for example a ‘glass box’ abstraction allows the internals o f

a piece o f software to be viewed without allowing modification o f functionality.

Software components are seen as black box units o f abstraction whereas objects can be viewed as

white box abstractions. Components do not reveal their internal functionality and operate via their

interface only. Objects on the other hand are white box because they allow their functionality to be

changed via inheritance. W hite box abstractions and thus objects in general are seen as bad

elements o f reuse. The problem lies in O O P’s use o f inheritance for software reuse. Inheritance

allows changes to be made to the internals o f an object and this introduces the possibility that

programmers might reinterpret or simply break an object. For this reason software components are

designed to be black box units in that they do not typically allow extensibility though inheritance.

Another important issue when considering reuse is granularity. Granularity for software

components is similar to the concept o f granularity for objects (see Section 3.2.2). Whereas objects

are seen as finer grained elements reused in the construction o f software, components are larger

entities that enable software reuse at a much larger granularity, perhaps reuse o f a complete

software system.

3.3.3 Constructing Components

A component is constructed and hence defined via:

• The interface it exposes.

• The dependencies it requires to operate.

• The meta-data it exposes.

• How it is deployed.

Each o f these is discussed in the following sections.

Interfaces

An important characteristic o f a software component is how it defines its interfaces. The interface

in the context o f the component is quite different to the interface defined by OOP. In OOP the

interface is defined as part o f the programming language. W hereas the interface in OOP defines its

Chapter 3 — Softw are Engineering The Principles o f Softw are C om ponents j 49

relation to other objects within the context o f a particular language, the interface o f the component

defines its interaction with other components that may be implemented in different languages and

may even exist across networks on different platforms. Therefore in the context o f components,

interfaces define a com ponent’s interaction with the outside world.

The interface is often seen as a contract, the analogy being that breaking the contract, or the way in

which components interact, is equivalent to breaking the software. Thus, all components must use a

well-defined interface. Interfaces have an important role to play in quality, as overall software

quality can depend on how well interfaces are defined and how well both clients and providers

adhere to these interfaces.

Dependencies

In OOP new objects are created by bringing together existing ones. A dependency identifies the

relationship between objects brought together in this way. If object A is constructed by combining

objects B and C, then object A has a natural dependency on B and C; in other words, object A

cannot exist without B and C. It follows that to reuse a piece o f object-oriented software,

knowledge o f its dependencies are required and these dependencies must be present for the

software to work. Dependencies are difficult to avoid, but one o f the aims o f component-based

software is to shield programmers from having to deal with the particular dependencies o f a

component. This is reiterated by Szyperski’s definition o f the component being ‘a unit o f

independent deploym ent’. Thus, a self-contained unit should contain all dependencies necessary for

its correct function.

Meta-Data

M eta-data is information about information. In terms o f component technology meta-data is an

important facility for self-description. Using meta-data a component can export any information

about the services it offers, the interfaces it exports, what its dependencies are, etc. Information

about a component can by dynamically queried and this can be done programmatically without

human intervention.

M eta-data is a useful facility in loosening the coupling between software elements. Instead o f

having to statically link pieces o f code together during development, meta-data can allow dynamic

discovery and the use o f new components that become available at runtime. This allows a system to

be extensible in that it can load new functionality without recompilation.

Object-oriented languages such as Java and C# support meta-data via reflection. Reflection allows

an external client to query all information about a compiled class. C# has more advanced support

for meta-data in that it supports attributes. Attributes allow arbitrary pieces o f meta-data to be

Chapter 3 — Software Engineering The Principles o f Software Components | 50

included alongside compiled code. Components may support their own methods for exposing meta­

data or they can use specific language facilities such as reflection.

Deployment

An important aspect of a component technology is to define how a component is deployed, as this

will ultimately determine how the component is made available and used. Deployment in this

context refers to how the component is integrated into new systems and the mechanisms involved

in availing o f a component’s functionality. There are various techniques for deploying a

component. Firstly, there are binary compatibility standards. These types o f components can be

constructed in any language, but to expose functionality it must expose its functionality using a

particular binary format. Secondly, some approaches are language specific and require the

component to expose its functionality via the constructs o f a particular language. Finally, there are

distributed components that are made available via communications networks. In this case the

component is accessed via a communications protocol and this can be useful in allowing

intercommunication among components across languages and platforms.

Whatever the deployment option the component technology must have well-defined mechanisms

for ensuring that providers know how to construct components in a proper way and that clients of

these components know how to access and use them.

3.4 Component Composition

Components are only of use if they can be combined with other components to form useful

applications. How components are assembled together is called component composition.

3.4.1 The Component Framework

Szyperski provides the following definition o f the component framework:

'A component framework is a dedicated and focused architecture, usually

around a few key mechanisms, and a fixed set ofpolicies fo r mechanisms at

the component level’ [Szyperski2002]

A component framework (sometimes called a container) addresses the need to be able to plug

components together to form useful applications. A standardised framework eliminates the need to

handwrite code to combine components together. A framework will usually provide a mechanism

for interconnecting components allowing them to be combined in a generic way.

C hapter 3 — Software Engineering C om ponent C om position | 51

There are two ways in which components can interact in a framework, either through wiring

(connection oriented programming) or through contextual frameworks. In a connection oriented

framework the ‘plugs’ of components are connected together and information flows directly from

one component to another. In a contextual framework communication is achieved via services. In

this case components communicate via services specifically designed to manage communication

between them.

Components and frameworks are often confused. Lumpe argues that components cannot exist

without frameworks and that a component by itself is meaningless without the context of a

framework [Lumpe99J. An example is user interface components. On its own a user interface

control is useless but when combined with other controls and placed on a window, useful

applications can be created. It is true that even if a concrete component framework exists it is

pointless to construct a component without knowing how it will interact with other components to

form a useful system. I.umpe therefore provides the simplistic definition that ‘a software

component is an element o f a component fi-amework. ’

A common analogy used to describe component frameworks is a stereo system. A stereo system

can be supplied in various components (CD, tape, tuner, etc), which are then wired together to form

a system. The audio interconnections among components adhere to specific electrical standards.

Likewise the electricity supplied to each component is standardised. These standards, the electrical

connectors and the components themselves have to adhere to a ‘framework’ so that they can

interoperate effectively.

To allow interoperation among components the component framework should be able to interact

with and control components. A framework has to be built to accommodate a particular component

standard or possibly multiple standards. In fact, realistically the framework will be built first with

subsequent components implemented and tested against the component framework to ensure they

are functioning correctly. A component framework may also include mechanisms for automating

component composition. This may involve some type o f either scripting language, programming

language or glue [Schneider99]. The particular facility available for component composition will

be dependent on whether the framework allows composition o f components at compile time or

runtime.

3.4.2 The Component Architecture

The component architecture is a particular set o f rules governing the use o f components and a

component framework. [Szyperski2002] provides the following definition of the component

architecture:

Chapter 3 — Software Engineering Component Composition | 52

‘A component system architecture consists o f a set ofplatform decisions, a

set o f component frameworks, and an interoperation design for the

component frameworks. '

Whereas a component framework allows com ponent composition, the component architecture

dictates the overall system-wide policies concerning the use o f components. The component

architecture is concerned with defining the overall principles o f a software system and this

architecture will dictate policies on functionality, performance, reliability and security. As such, a

system may include multiple component frameworks all conforming to the same architecture. The

component framework may itself be a component; in this case the component architecture may

dictate the interconnection among multiple com ponent frameworks.

3.5 Existing Component Technologies

Later in this thesis the concepts o f component-based software will be used to build a component

framework for software radio. To gain more insight into how these techniques can be put to use,

this section examines three existing component technologies, namely: Java components, CORBA

components and M icrosoft based components.

3.5.1 Java Based Components

I he Java language [Gosling96J is one o f the most popular languages in use today. It is an object-

oriented language that allows cross-platform operation using a virtual machine. The Java Virtual

Machine (JVM) executes byte-code produced by the Java compiler. Various platform vendors can

thus support Java by implementing a suitable JVM . Java has become a popular language and is in

widespread use throughout desktop, server-side, internet and mobile applications.

Java is a very suitable language for developing software components. Java inherently supports

features such as reflection and advanced networking capabilities which provide a rich infrastructure

for developing software components. Thus, various com ponent technologies have emerged for the

Java platform. O f these two are o f particular interest in this discussion, JavaBeans and Enterprise

JavaBeans (EJB).

JavaBeans

A Java bean is a Java software component [Sun97]. A Java bean encapsulates functionality into a

unit called a bean. JavaBeans address the need in Java to have some way o f packaging functionality

and resources into a module that can be repeatedly reused. A bean is primarily used for packaging

graphical controls, but it is also suitable for creating general-purpose Java components. What

differentiates a Java Bean (or Java component) from a standard Java class are the standardised

facilities a bean uses to expose its functionality. Every bean must contain:

Chapter 3 — Softw are Engineering E xisting C om ponent T e ch n o log ies j 53

• Properties; A bean can expose properties that can be used to configure an instance o f a

bean. These properties are configured using set and get methods for each property.

• Events: A bean can provide or consume events. Events allow a Java bean to

asynchronously react to or control other external users o f the bean.

• Methods: A bean exposes all other functionality through standard Java methods (or

functions)

In addition, JavaBeans relies on some features o f the Java language to facilitate component

constructs:

• Reflection (meta-data): The Java language supports reflection that allows external clients

to quei7 information about a bean. Using reflection it is possible to find out

programmatically what properties, events and methods a bean exposes.

• Packaging: A Java bean can be programmed via a number o f Java classes. In addition,

resources such as graphics may be required. JavaBeans allows all code and resources to be

packaged into a Java archive (JAR) file.

The JavaBeans standard applies many o f the concepts o f software com ponents discussed in

previous sections. In particular:

• Interfaces: The Java bean exports a well-defined standardised interface consisting o f

events, properties and methods.

• Unit o f deployment: The Java bean is packaged as an independent unit (a JAR file)

incorporating all the code and resources required for its operation.

• Meta-data: The Java bean supports reflection which allows users o f the bean to query

information about the bean programmatically. This allows an external client to dynamically

query the capabilities o f a bean.

• Black box: A Java bean represents a black box abstraction, in that knowledge o f its internal

operation is not required to make use o f it as a component. Although it may be technically

possible to inherit from a Java bean class, this is not normally done and the problems o f

white box reuse are thus avoided.

The JavaBeans standard does not however dictate a particular framework for composition o f

components. It is a connection-oriented com ponent model and communication between beans

requires connecting events mechanisms together. This usually requires a custom container to be

built for each application. The JavaBeans standard is a minimal standard and so it faces other

limitations. In particular there is no support for distributing Java beans via a network which makes

it unsuitable for large enterprise scale applications. For this reason the Enterprise JavaBeans

standard was created.

Chapter 3 — Softw are Engineering E xisting C om ponent T ech n o log ies | 54

Enterprise JavaBeans

Despite similar names, JavaBeans and Enterprise JavaBeans (EJB) [Sun2001] work very

differently as component technologies. Fundamentally they address different types of applications.

JavaBeans defines lightweight usually graphical components whereas EJB defines a whole

infrastructure for developing distributed transaction-oriented applications [Monson2001]. Thus the

EJB component model deals with issues such as security, persistence, transaction management and

distributed computing. The EJB standard defines three different types of components namely:

entity, session and message-driven components. These component types are specifically designed

for use in building data centric business applications.

O f particular interest in the context o f this thesis is how EJB components are constructed and

composed together to make useful applications. EJBs are programmed against a set o f interfaces

and base classes that define the functionality a bean should provide. These classes and interfaces

are designed is such a way that the developer can concentrate on business logic without having to

wort7 about the specifics of transaction processing or networking. The EJB standard defines an

infrastructure that factors out these difficult aspects of programming into generic services that are

used among all components. This approach o f factoring out common functionality is closely related

to aspect-oriented programming [Kiczales97].

Like JavaBeans, an EJB is packaged into a JAR file as its unit o f deployment. This JAR file

contains all the required code and resources the EJB requires to operate. EJB uses a deployment

descriptor which defines what components should be included in the application and all the

configuration required for these components to work together. The deployment descriptor is

defined using XML (extensible Markup Language). EJBs are deployed via a container, a type of

component framework (see Section 3.4.1) that allows component composition. The container is

responsible for hosting the EJBs, providing the infrastructure that allows component functionality

to be exposed to the outside world and allowing intercommunication among components. EJB

containers are standardised via the EJB specification and various EJB containers (also known as

application servers) are provided by different vendors. Standardisation ensures that EJB

components are guaranteed to work within any container.

In terms o f component technologies, JavaBeans are similar to EJB in how they are packaged (JAR

files) and in their use o f black box abstractions. They do however differ in the following ways:

• Interfaces: Whereas JavaBeans provides one type o f interface consisting of events,

properties and methods, EJB defines three different kinds o f components each of which

defines its own interface.

• Meta-data: EJB defines an interface that allows a container to query information about the

capabilities of a component via meta-data

Chapter 3 — Software Engineering Existing Component Technologies | 55

• Deployment: EJB uses an XML deployment descriptor file to dictate how components are

assembled to form applications.

• Framework: EJB defines a standardised framework for component composition based on

an EJB container.

• Distributed: EJB supports the distribution o f components across a network.

3.5.2 CORBA Based Component Technologies

CORBA (Common Object Request Broker Architecture) is a standard maintained by the OMG

(Object M anagement Group) that allows software from different environments and platforms to

interact. CORBA was introduced in 1991 to address the growing lack o f interoperability among

languages, implementations and platforms. CORBA is an open standard for the production o f

distributed object systems. CORBA provides a mechanism whereby objects can communicate with

each other regardless o f where they are located, be it in the same programme, different programmes

on the same machine or on separate machines [Balen2000],

Central to CORBA is an IDL (interface Definition Language) and the ORB (Object Request

Broker). IDL is a language for the specification o f interfaces allowing the developer to specify

what functionality an object will expose. CORBA defines mappings from IDL to many languages

therefore interoperation across language boundaries is possible. The ORB is the system that

performs the communication among CORBA objects. The ORB uses HOP (Inter-ORB

Interoperability Protocol) for communication am ong ORBs and thus allows the various objects to

communicate. CORBA incorporates several services that are used in combination with the ORB to

facilitate distributed object architectures.

When CORBA is used to expose the functionality o f an object, this object can be viewed as a

software component in terms of:

• Reuse: Once a CORBA object has been exposed (either locally or across a network) it can

be reused by multiple clients.

• Interfaces: CORBA does not specify a particular common interface for CORBA objects as

each object is allowed to expose its own interface. However, in CORBA an object’s

interface is translated to a common format so that objects written in different languages can

interoperate. Although not strictly a well-defined interface in the com ponent sense, this

common format can be viewed as a type o f well-defined interface in its own right. CORBA

also supports events via an events service which allows asynchronous messaging between

objects.

• Meta-data: Meta-data (or meta-information as it is often called in the context o f CORBA)

allows dynamic discovery o f objects.

C hapter 3 — Software Engineering Existing C om ponent T echnologies j 56

• Black box: A CORBA object provides a black box abstraction o f sorts. Using a CORBA

object only requires information about its interface and thus the internal operation o f the

object are hidden.

While CORBA objects can be viewed as software components, CORBA was not strictly designed

as a component model and thus has many limitations. For this reason the CORBA Component

Model (CCM) specification was created by the OMG.

CORBA Component Model

While CORBA itself provides an infrastructure for wiring objects together, the CCM goes a step

further in providing an infrastructure for deploying components. The CCM is aimed at the same

types o f applications as EJB, and in fact EJB components can be used in conjunction with CCM

components within the CCM standard. Like EJB, the CCM defines different types o f components

that represent the building blocks o f enterprise applications namely: service, session, entity and

process components. It also defines a container model, a packaging and deployment model and

support for transactions and persistence. Again, these elements o f enterprise data centric

applications are o f lesser interest in the context o f this thesis, but a lot can be learned from looking

at how CCM components are constructed and how they are composed into applications.

The following features o f a CCM component are o f most interest [Gschwind2002]:

• Facets: A facet is the interface that a com ponent exposes. A CCM component can contain

multiple facets.

• Receptacle: A receptacle is a way to specify what interfaces a component requires from other

components. Alternatively, a receptacle o f a component specifies what facets o f another

component it will use.

• Events: CCM components can both provide (publish) and consume (subscribe to) events. This

provides an asynchronous way to pass information between components.

• Attributes and configuration: A CCM com ponent can be configured via attributes which are

identified using named values.

A CCM component is packaged into a single redistributable file called a CCM assembly. Like EJB

the CCM uses an XML configuration document to describe these components and how they should

be deployed.

To host CCM components the CCM defines a container (i.e. a com ponent framework). This is

similar to an EJB container. The container provides interfaces for providing transaction, security,

persistence and notification services. The facets, receptacles, event sources and sinks allow

components to be connected together to form the application.

Chapter 3 — Softw are Fingineering E xisting C om ponent T ech n o log ies | 57

3.5.3 Microsoft Component Standards

M icrosoft have produced a variety o f standards for creating software components. These standards

address both standard application development and distributed enterprise applications.

COM

COM (Component Object Model) is a standard by M icrosoft for creating reusable software

components. COM and its predecessor OLE (Object Linking and Embedding) are language

independent standards. Unlike the Java approach which uses a common virtual machine, the COM

approach is to use a set binary standard. COM com ponents can be implemented in any language,

but must conform to the binary format set out by Microsoft.

A COM object enforces a black box abstraction by exposing its functionality through a simple

interface mechanism. Every COM object must implement the same well-defined interface called

IUnknown. This interface allows the user o f a COM object to programmatically acquire the

information required to use the COM component. IUnknown must always supply the three

methods; Querylnterface () , AddRef () and Release (). Using Querylnterface () a client

wishing to use the component can query a table to obtain references to the interfaces supported by

the component. Using the reference a client can make use o f the component. The AddRef () and

Release 0 methods are used to implement reference counting which allows the component to

keep track o f instances o f the component.

COM is a simple standard used primarily for application development. Other com ponent standards

such as ActiveX build on COM by exposing different interfaces [Chappell96]. The COM standard

itself does not dictate any particular framework for combining COM components and this is usually

left to the application developer. Although simple, COM demonstrates the use o f some

fundamental concepts o f component software:

• Reuse; COM components support black box reuse o f software.

• Interfaces; COM supports a well defined interface structure. The binary standard used by

COM can be more efficient than HOP used by CORBA or the use o f a virtual machine

which can introduce performance overheads.

• Meta-Data; A COM type library can be supplied that allows a client to dynamically

discover information about the interfaces a COM com ponent exposes.

DCOM (Distributed Component Object Model), an extension to COM, allows COM components to

be used over a network and facilitates the creation o f distributed component based applications.

Chapter 3 — Softw are E ngineering pAisting C om ponent T e ch n o log ies | 58

COM+

COM + was the first technology to combine support for transaction monitors and ORBs (Object

Request Brokers). A transaction monitoring system forms a type o f operating environment for

applications in which it automatically manages transactions, resource management and fault

tolerance. An ORB permits objects to be used across a network allowing the application to be

distributed. COM + combined these principles facilitating the use o f COM objects in this

environment, which was particularly important for enterprise business applications. COM is

analogous to JavaBeans, and COM+ is analogous to EJB.

COM + applications can still be built individually today but the services o f COM + have been

integrated into the new .NET platform. O f particular interest is a reoccurring paradigm among

component models and component containers. EJB, CCM and COM + all factor out common

services from component implementations. This sim plifies component development by making

these services universal to the architecture o f the com ponent system.

.NET

The .NET framework was introduced by M icrosoft as a general purpose framework for creating

applications. The core o f the .NET framework is the CLR (Common Language Runtime). Similar

to the Java Virtual Machine, the runtime allows the execution o f a platform independent binary

code called MSIL (M icrosoft Intermediate Language). W hereas the Java Virtual Machine has

typically only been used to execute Java programs, the .NET CLR is specifically designed to

provide enough facilities so that compilers can be easily written for any languages.

The .NET framework itself does not dictate a particular component model as it encompasses a

broad technology base for developing many different types o f applications [L6wy2003]. .NET

itself can be used to build different types o f com ponent models and inherently supports many

features that make this easier. O f these the following are o f interest;

• Language independence: .NET allows multiple languages to interoperate through the CLR

allowing components implemented in different languages to interoperate at a binary level

• Packaging: .NET allows code and resources to be packaged into a unit called an assembly

• Interfaces: .NET is built on object-oriented principles therefore it supports the

infrastructure required to develop components with well defined interfaces

• Attributes and reflection: .NET has inherent support for meta-data via attributes and allows

reading o f this data through its reflection APIs. This provides powerful support for

allowing dynamic use o f components at runtime.

• Remoting: .NET supports distributed objects which are useful in building distributed

component-based applications

Chapter 3 — Software Engineering Existing Component Technologies | 59

3.6 Summary

This chapter has provided an overview o f software engineering, in particular the principles o f

component-based software. It has shown that software engineering provides principles and

techniques for dealing with software complexity, and for developing software that is adaptable,

flexible and reusable. The main principles covered in this chapter can be summarised as follows:

Principles Description

Object-oriented analysis Object-orientation prom otes the building o f quality, robust software
UML UML provides an effective tool for graphically modelling an object-

oriented design
Design Patterns Ensure that tried and tested paradigms are used throughout the

design
Classes, Inheritance,
Interfaces and
Polymorphism

The basis o f object-oriented programming

Granularity, Cohesion and
Coupling

Useful metrics for designing good quality objects, i.e. objects that
help to reinforce the quality and stability o f software

Component-Based
Software

Component-based software promotes the packaging and reuse of
software

Black box Software components feature black box abstractions which hide the
client from the internal implementation o f a com ponent

Granularity Component granularity is important in that it affects the reusability
o f a component

Interfaces A component must expose a well-defined interface
Dependencies An individual component should have minimal dependencies but

components may sometimes be interdependent
M eta-Data M eta-data and reflection are important facilities in allowing the

dynamic discovery and use o f a component
Deployment A component model should specify how a com ponent is packaged

and deployed
Architecture The architecture o f a com ponent technology should specify the rules

associated with building applications for the domain the architecture
addresses

Frameworks Components are pointless without frameworks. A component
technology should provide a framework that allows components to
be connected together to form useful applications.

Figure 3.1 - Summary of Software Engineering Principles

The reason for discussing software engineering in this chapter has been to assemble techniques and

practices for tackling the problem o f developing software for software radio. This approach has

been taken because software engineering practices are not typically applied to software radio and as

explained in Section 3.1, history has shown that ignoring these principles in favour o f optimisation

can lead to un-maintainable, complex and expensive software.

Chapter 3 — Software ['.ngineering Summar>' | 60

By looking at these principles and seeing them in use in technologies like EJB, COM +, .NET and

CCM much can be learned about how to build quality software. For example, all these technologies

share a common characteristic in that they support base services. The function o f these services is

to factor out common functionality required by many components. Instead o f each component

having to re-implement this functionality they can reuse these base services, thus greatly

simplifying the implementation o f components. A good example o f a base service is

synchronisation. The basic problem may be that multiple components require serialised access to a

resource. Instead o f each component requiring knowledge o f how to negotiate, acquire and release

the common resource, a ‘synchronisation’ service built into the fabric o f the com ponent framework

automates the process. This makes it seamless and trivial to gain access to shared resources.

Services are useful as they demonstrate how the concept o f a component framework can be used to

simplify the development o f complex systems, while allowing software to be reusable, flexible and

adaptable.

Another common trait from the component frameworks analysed is their use o f well-defined

mechanisms for performing operations such as firing an event, calling a method or deploying a

final system. Each system as part o f its architecture and framework defines a set o f principles, each

o f which must be adhered to if software is to function correctly. This effectively enforces a set o f

rules both on the programmers that write components and those that write the framework. For

example, if an event is fired by creating a block o f data and placing it in a queue then this should be

the one and only way this is possible. A component framework will not allow any circumvention o f

this rule. This approach results in less ambiguity and ultimately more robust software.

A conscious decision has been made during this work to not reuse an existing component

technology such as COM, EJfJ or .NET. Some component frameworks although useful in

demonstrating the principles o f com ponent software would be completely unsuitable for

developing radio systems. For example, EJB has been specifically designed for developing multi­

tier business applications that are based around databases, business processes and content delivery

to users. This is clearly a completely different type o f end-application to radio and so the EJB

semantics would make this pointless. EJB is also a Java based language and although the approach

presented in this thesis is not particularly concerned with code performance, in the current state o f

the art Java itself is rarely used for high data rate signal processing on GPPs.

In general component models such as COM +, CCM and even the support provided by .NET have

been designed to accommodate the needs o f developers building mainstream information-based

business applications, everything from banking systems to user applications. Thus, the base

services they provide do not meet the needs o f radio applications. These models have not been

designed with signal processing in mind. They have no built-in semantics for representing a signal.

C hapter 3 — Software Ivngineering Summar)-' | 61

performing a mathematical routine or interfacing with hardware. This thesis presents a system that

fills this void.

Another compelling reason not to use these component models is that to fully explore the use o f a

component-based approach to software radio requires a fresh look at both software development

and component models in the context o f radio. To use a component model designed for building a

type o f software unrelated to radio systems would make it difficult to fully explore this space.

Instead o f trying to fit a radio system into a com ponent model not designed for this purpose, the

approach taken has been to develop a component model completely suited to radio systems.

In summary, software engineering techniques such as services, the mechanisms o f events, etc and

component models are not currently used in radio systems, although as discussed, it is this type o f

software that is increasingly required. The remainder o f this thesis demonstrates how this can be

done. Chapter 4 discusses the particular type o f radio system being built, namely the reconfigurable

radio. The reconfigurable radio concept is com pletely dependent on the software engineering

principles presented in this chapter. Many o f the principles o f the reconfigurable radio are built on

the premise o f the component-based approach and the reconfigurable radio is only fully realisable

using these techniques.

Chapter 3 — Softw are Engineering Sum m ar\ | 62

4 Reconfigurable Radio

4.1 Introduction

This chapter presents a discussion o f reconfigurability in software radio systems, which is the core

concept o f this thesis. Section 4.2 discusses reconfigurability in detail and defines the three

categories o f reconfigurability; application, structural and parametric. Section 4.3 provides a

detailed discussion on all the issues surrounding the development o f software for radio systems.

Section 4.4 discusses the possible architectures for developing a system that is highly

reconfigurable.

4.2 Reconfigurability

The term ‘reconfigurability’ is used extensively throughout the literature and refers to many

different facets o f software radio reconfiguration in both the hardware and software domains. For

this reason, the following discussion is presented in order to precisely characterise what is meant by

reconfigurability in this thesis.

4.2.1 Reconfigurability From Hardware to Software

Figure 4.1 depicts a graph that has been created to illustrate the level o f reconfigurability o f the

various software radio hardware solutions which were introduced in Chapter 2. On the graph two

types o f reconfigurability are considered. A device can be considered to be reconfigurable if its

functionality can be changed (blue line). A device can also be considered to be reconfigurable if the

way in which the functionality is performed can be altered (red line). Using these definitions the

devices listed on the graph have varying degrees o f reconfigurability.

As an example consider an ASIC. It performs one particular dedicated function which cannot be

changed. However, the ASIC does allow the parameters o f the function it performs to altered. For

example, a GSM baseband processor ASIC cannot be used to process the baseband signals o f any

other radio standard but it will offer variability in how this function is performed, perhaps by

allowing the output power to be changed. However, such changes require dedicated hardware such

as a m icrocontroller to be used therefore giving it a ‘Low to M oderate’ score in how it allows the

altering o f functionality (red line).

63

O Reconfiguration of functionalitY

□ Reconfiguration by altering functionality

CH Window of curren t in terest

High _

Reconfigurability

L o w ----------

Analogue
Electronics

ASICs Program m able
Logic, FPGAs

DSPs

 1 ►
G eneral Purpose

Processors

Figure 4.1 - Level of Reconfigurability for Various Signal Processing Devices

The FPG A is another exam ple, a device that can both change its functionality and o ffer variability

in how this functionality is perform ed. W hile it scores m oderately high in term s o f altering

functionality , it scores low in its ability to change its functionality . A lthough som e FPG A s allow

full or partial dynam ic reprogram m ing, in practice FPG A developm ent is a longer and m ore

com plex process than say DSP or G PP softw are developm ent. This is because FPGA designs are

highly bound to the t>'pe o f FPGA being used and require decisions on rou ting and placing o f

functionality on the physical device. D ynam ic reprogram m ing m akes th is task m ore d ifficu lt as

som e o f the reconfiguration scenarios m ay be unknow n at design tim e m aking it d ifficu lt to

a llocate resources on the FPGA. In contrast a device such as the G PP does not require m ore silicon

real estate to im plem ent new functionality , only additional softw are program s. A lso,

reconfiguration o f an FPGA can have an im pact on the o ther circuitry surrounding an FPG A , so

special considerations and thus lim itations in reconfigurab ility are com m on.

The shaded w indow surrounding FPGA and D SP techno logy represents the curren t state o f the art,

i.e. these hardw are devices are the m ain focus for develop ing softw are radio so lu tions today. W hile

these technologies o ffer the perform ance and real-tim e behaviour required by to d ay ’s radio

standards, the trade-o ff that results in using these dev ices is a lim it in reconfigurability .

In term s o f th is d iscussion it is im portant to expand on the role o f softw are in reconfigurabie

devices. Not all o f the devices in Figure 4.1 run softw are in the conventional sense. For exam ple,

FPG A s require the use o f a hardw are descrip tion language such as V H D L or V erilog. Som e other

Chapter 4 — R econfigurabie Radio R econfigurability | 64

languages exist also including System-C [System-C] and Handel-C [Chappell2002] that offer more

software-like semantics for expressing FPGA functionality. Beyond these semantics though, these

languages simply offer higher level constructs for expressing hardware functionality. They are

hardware specific and there is limited abstraction between language and hardware. Thus FPGAs

cannot be reconfigured to the same degree as a purely software-based device. For example, the

FPGA cannot reorder the way in which it processes two signals without reprogramming hardware.

Software used in DSP processors is more similar to software running on a GPP rather than the

FPGA. As in the case o f the FPGA, the conventional method o f programming DSP processors has

moved from assembler languages to more high-level languages such as C. The difference however

is that DSP processors execute instructions whereas FPGAs take a reprogrammable logic approach.

DSP processors are therefore better suited for reconfigurable tasks. Flowever they still have

features that limit the levels o f reconfigurability possible.

DSP processor designs are highly bound to the particulars o f the processor and the surrounding

hardware. This is required to achieve constraints in real-time behaviour and to optimise power and

performance. 1 his however limits the devices ability to reconfigure. For example, a maximum level

o f reconfigurability would allow a software radio device to change its own functionality by

applying new algorithms and loading new code as required. In the DSP processor this would be

difficult to achieve as any change to code could affect the hardware-oriented aspects o f the design

such as real-time behaviour and performance. Also, since DSP code is highly bound to hardware,

most DSP implementations maximise the use o f hardware by manipulating low-level aspects o f the

system such as bus access and caches. Thus, it can be difficult to allow any aspect o f the system to

change dynamically without breaking or disrupting another.

From this discussion it is evident that devices can be reconfigurable to varying degrees, yet the

term reconfigurable loosely applies to them all. The purpose o f this work is to make advances

towards the creation o f a more ideal software radio. Chapter I discussed the choice o f platform for

this research, the GPP. This choice also has major implications for the level o f reconfigurability

that can be achieved in a software radio. Using the GPP provides a flexible environment and allows

the development o f software radio systems with exceptional levels o f reconfigurability. The GPP

shields software development from the particulars o f hardware with many hardware specific

functions such as virtual memory and m ulti-threading handled by the operating system. This

simplifies software development and allows many different software implementations and hence

software configurations to be used interchangeably. RAM and persistent storage are also important

factors in that they allow vast amounts o f different configurations and code to be stored for

reconfigurable purposes. In this context reconfigurability is thus software-based, and although there

Chapter 4 — R econfigurable Radio R econfigurability | 65

may still be some hardware aspects involved such as control over an RF front-end, the majority of

radio functionality is implemented in software.

4.2.2 Reconfigurability Defined

Following on from the previous discussion it is useful to strictly define reconfiguration using three

distinct categories, namely, application, structural and parametric reconfiguration.

• Application Reconfiguration - At this level the whole radio can be reconfigured by replacing

the software o f the software radio. This type o f reconfiguration can allow a radio to completely

change the application it performs. For example this might involve the same hardware being

reconfigured from being a two-channel analogue FM transceiver to being a 10 channel digital

BPSK transceiver.

• Structural Reconfiguration - Structural reconfiguration allows components to be added,

replaced or reorganised while the radio is operating. For example we may decide to change the

way in which a signal is processed, perhaps introducing two stages of filtering instead of one.

In this case the radio will still perform the same function but reconfiguration may have benefits

in improving signal quality, power consumption or performance.

• Parametric Reconfiguration - Software allows the individual parameters o f signal processing

functionality to be changed dynamically. For example we may want to change the coefficients

used by a filter or change a particular frequency setting. This level o f functionality will allow

individual elements o f the radio system to be exposed for reconfiguration during the operation

of the radio.

Just as important as each degree o f reconfigurability is the time each one takes. For example, one

system may support application reconfiguration in that it can be sent to a factory to be

reprogrammed, another may perform the same reconfiguration seamlessly without any loss of

communication. In reconfigurable radio these changes should occur at runtime and reconfiguration

should occur as fast as possible without any loss o f communication.

The degrees o f reconfigurability discussed here are somewhat different to those in current

mainstream or commercial approaches to software radio as discussed in Chapter 2. Those

approaches base their reconfigurability solely on the capabilities of hardware whereas

reconfiguration in this discussion is based entirely on reconfiguration in software. For this reason

the term ‘Reconfigurabie Radio’ is used for the remainder o f this thesis to differentiate the existing

disparate variety o f approaches to sofitware radio from the more software-centric, GPP-based

approach taken in this thesis. Thus for the purposes o f this work the reconfigurable radio is defined

as follows:

Chapter 4 — R econfigurabie Radio R econfigurability | 66

‘The reconfigurable radio is a software radio with a minimal-hardware RF

front-end with the remainder o f processing performed using general-

purpose processors. The software o f a reconfigurable radio allows

application, structural and parametric reconfiguration. ’

4.2.3 The Benefits o f a Reconfigurable Radio

The prim ary benefit o f reconfigurable radio is that it a llow s trad itionally fixed operating param eters

to becom e variable. This allow s radio system s to becom e m ore flexible in how they com m unicate.

F lexibility has been constrained in the past due to the characteristics o f the com m unications

channel, an environm ent that is noisy, lossy and corruptive to the transm itted signal. To achieve

com m unication in this m edium stric t standards fo r operation have been required. These standards

often lim it radio system s in realising the full potential o f the m edium . For th is reason m ost w ireless

standards are fixed in m odulation schem e, bandw idth , frequency allocation and pow er. W ith

reconfigurable radio, these constra in ts can be som ew hat relaxed, as it is possib le to build flexible

term inals that constantly reconfigure them selves to suit the ir environm ent. R econfigurable radio

o ffers an unprecedented opportun ity to create devices that can o ffer better, m ore reliable

com m unications. C onsequently m any operating param eters w hich are usually rigidly fixed, can

now becom e adaptable, for exam ple:

• Propagation: C hannel characteristics such as m ulti-path fading require additional p rocessing by

a radio. U sing reconfiguration the radio can dynam ically change how it deals w ith these issues.

• Power: The radio can dynam ically a lter its R F-pow er ou tput to suit its operating environm ent.

• Location: A ccording to its location the radio can dynam ically change m any param eters that

may im prove its ability to com m unicate.

• M odulation schem e/bandw idth: the radio can dynam ically change the m odulation schem es and

hence the bandw idth it uses to com m unicate. This can be varied to d ifferen t degrees from one

o ff changes to dynam ic m odulation changes even during transm ission.

• Frequency: W ith a general-purpose term inal capab le o f operating on a large range o f signals,

term inals w ill be able to dynam ically change they frequency used to com m unicate.

• A lgorithm s: The radio can dynam ically reconfigure itse lf to use d ifferent a lgorithm s to process

signals. This w ill allow it to change its operation to su it m any d ifferen t scenarios.

• Pow er consum ption: By dynam ically chang ing the w ay in w hich a radio processes signals it

will be possib le to vary the pow er used by the rad io device w hich is im portant for battery

pow ered m obile equipm ent.

C h a p te r 4 — R e co n flg u rab le R adio R e co n fig u rab ility I 67

Also there are intrinsic technical advantages and opportunities possible using the reconfigurable

radio approach, for example visibility and rapid development.

Visibility: To test or calibrate an analogue radio system typically requires probing a circuit with an

oscilloscope or spectrum analyser. The signal has to be isolated in a particular part o f the circuitry

and then interpreted via the general-purpose tools available. Often, due to the use o f analogue

integrated circuits and prefabricated modules, the signal o f interest is not available as an output

because a module implements several stages o f the radio design. For example, a baseband

processor chip may amplify an IF signal, down convert it to baseband and perform demodulation.

All this functionality occurs internally within the chip and often the signal o f interest cannot be

isolated.

Within a software radio all signals exist digitally and are available at runtime. This is useful for two

reasons. Firstly, the radio system can have built-in validation. As all signals are accessible the

system itself can perform verification of signal integrity at various stages in the radio. This can be

done both during development and after the radio is deployed. Secondly, using graphical tools

these signals can be directly accessed. Not only can these signals be viewed in the traditional way

(for example using oscilloscope traces and spectrum analysis), but also new ways o f graphing and

interpreting these signals are possible without building new hardware. This can be useful for either

exploring how existing radio technologies work or as a tool for creating new types of radio

systems. Thus, as these two examples demonstrate, the software radio brings an increased level of

visibility to radio system internals.

Rapid Development: Speed of development is often overlooked when discussing software radio.

Speed in this context refers to how long it takes to design, implement, test and deploy a radio

system. Analogue radio systems have to be physically built before they can be properly tested.

Simulation can go some way in reducing the need for a physical prototype, but nevertheless at

some stage in the design an analogue prototype must be constructed. In software radio, beyond the

RF front-end there is no need to build a physical prototype at every stage in the design. The

fundamental paradigm shift here is that the prototype is the software under development. Instead of

incremental physical prototypes that can take months to design and build, the radio system is tested

during the development process, rapidly increasing the entire development process.

This fundamentally changes the radio system development process. In this environment the

complexity o f a radio system is now contained in its software programs rather than its hardware.

Increasing demands on functionality require additional software development rather than additional

hardware design. The process can be made even quicker through software reuse. Designers can add

Chapter 4 — Recontlgurable Radio Reconfigurability | 68

on new features to the radio system by reusing third party software components. This eliminates the

need for them to re-implement functionality themselves, thus rapidly reducing development time.

4.3 Software for Software Radio

The following topics are o f major concern when designing a piece of software;

1. Reuse.

2. Abstractions.

3. Adaptability and Flexibility.

4. Complexity.

5. Security.

6. Portability.

7. Real-time Behaviour.

8. Upgrading and Versioning.

It is important to discuss each of these topics in the context of designing a reconfigurable radio.

4.3.1 Reuse

Software reuse will become just as important in radio systems as it has become in mainstream

software. In the DSP of radio systems many signal processing algorithms and functional algorithms

occur frequently throughout different radio designs and standards. For example, BPSK (Binary

Phase Shift Keying) modulation occurs frequently throughout many types of communication and

thus a properly constructed piece of software implementing BPSK can be reused in multiple

applications without re-implementation. This raises the question as to what is the best way to reuse

elements of software radios. To address this issue, the role o f software granularity, cohesion and

coupling must be analysed (as discussed in Section 3.2.2).

The granularity chosen in a software radio design will be a determining factor in how well

software objects can be reused. Using a fine granularity, DSP software would be broken down into

fundamental units that represent the building blocks o f DSP systems. For example, one approach

could be to break down DSP algorithms into adders, multipliers, or multiply-accumulate elements.

However, this approach does not leverage effective reuse as the objects are too small and generic

and do not contain enough domain specific functionality to be labelled as software radio

components. The user of these components would have to introduce too much ‘glue code’ and thus

reuse would be lost.

A larger granularity is also possible, for example on the system scale where components

encapsulate systems such as two-way radios or GSM base stations. Although these are suitable as

C hapter 4 — Reconfigurablc Radio Software for Software R adio I 69

methods for distributing or replicating a complete system, they are not suitable elements of reuse

for building the software o f software radio systems. This type o f object is too big and thus only

reusable in completely domain specific applications.

The granularity balance for software radio can be struck by viewing the system as reusable radio

parts, each implemented in software. These parts each implement a different aspect o f common

radio functionality such as the QPSK modulator, low-pass filter or speech-encoder. A component

with this granularity holds enough functionality to warrant reuse but is not application specific

enough to limit its usefulness and thus it can be applied in a wide range o f different scenarios.

Cohesion is important in software radio in that the reusable pieces of software that make up a

software radio system should be logically related in such a way that they enable effective building

o f quality radio systems. In an individual component, the functionality or methods it exposes

should be logically related and contribute towards the same problem. This is a problem in

mainstream software as diverse functionality' can be implemented by building objects in similar

ways, thus bad cohesion is a result o f exposing functionality haphazardly. Software radio on the

other hand is domain specific, thus most objects in the software radio system will be DSP

algorithms and thus common cohesive DSP interfaces can be used to expose the functionality o f an

object.

Cohesion also plays a role in larger scales. The sub-systems and elements that make up a software

radio system should be cohesive in that they all relate to the problem of software radio in the same

way. For example, using elements of different granularity throughout the system would result in

bad cohesion, as it may be difficult to combine fine and coarsely grained elements to form the radio

system. Objects should be logically designed employing the particular style o f the software system

being used.

Coupling is a veiy important aspect o f developing reusable software for software radio. As

discussed in Section 3.2.2, the level o f coupling will dictate how dependent a software element is

on other elements. In software radio, coupling is especially significant as it has an important

consequence to DSP software that does not typically appear in mainstream software. When

designed well, mainstream software is easily tested. In the majority o f software, the correctness of

software is typically boolean in that the software either performs its function correctly or it does

not, examples being, ‘the numbers were added correctly’, ‘the e-mail was sent’, ‘the disk access

failed’.

However in DSP software errors are not so apparent. A piece o f software can be functioning

perfectly, but in reality it is not producing the correct result. Thus, DSP software typically requires

Chapter 4 — Reconfigurable Radio Software for Software Radio | 70

additional testing from the DSP domain to determine whether the software is functioning correctly,

for example, testing the signal to noise ratio or performing frequency analysis. Dependencies and

hence coupling add to this problem, as traditional approaches to ensuring correct functionality

across dependency boundaries are boolean-based logic rather than DSP-aware constructs. For this

reason software-based DSP systems can suffer more from dependency problems than other

software in that changes to reusable elements can have unnoticed or undefined effects across a

software radio system. Also, DSP algorithms themselves are not standardised in any way so

algorithms such as filters implemented by two different programmers may not produce the same

result.

To illustrate this problem consider the tightly coupled software element shown in Figure 4.2. This

software element is a simple channel extraction implementation using the three stages o f mixing,

filtering and decimation to extract a signal o f interest from a wideband source. The common

approach o f object-oriented design would be to delegate operations such as filtering to other

objects, as filtering is reused in many scenarios throughout radio design. The difficulty arises when

some aspect o f a reusable element is changed, for example, the programmer notices a bug in the

filter windowing function and fixes it. In this case there is a risk that the expected behaviour o f the

channel extractor and other elements that depend on this filter will be altered.

Reusable C om ponents

Work delegj :ed to other a m ponents

Mixer

input output

Filter Decimator

NCO

Figure 4.2 - A Tightly Coupled Software Component

C hapter 4 — Rcconfigurable Radio Software for Software R adio | 71

In the channelisation example this may result in an altered frequency response, ultimately having a

knock on effect throughout the system. The underlying reason this can occur is because the original

implementer o f the channelisation algorithm would have based their design on a filter that they

assumed would always produce the same values. Thus changing the characteristics o f this filter can

lead to unexpected results in any component that reuses this element. The main point to note here is

that even though a piece o f software works correctly and consumes and produces valid data, this

does not mean the data is correct when analysed and interpreted using DSP.

The channel extractor is a very simple example, but there are more subtle cases where this type o f

dependency-caused error can take place. For example, consider the following hypothetical example

o f a decim ator algorithm. A programmer decides to improve the performance o f a reusable

decim ator algorithm by changing the number o f decimation stages used in the algorithm. While the

decimator still performs its function within specification and the code still exposes the same

interface, the programmer has inadvertently introduced noise into the system by introducing

multiple stages o f processing. This has a knock on effect throughout the system in multiple places

making the source o f the problem difficult to find. Another interesting angle on this problem, but

with the same negative result occurs if the programmer actually improves the noise performance o f

an algorithm in some way. Again, this can also have a knock on effect as other elements in the

system are designed and tested against the noisier decimator, and thus a new decimator producing

different signals could result in undesired functionality such as glitches.

To combat these types o f problems, again a balance has to be struck, this time between coupling

and quality. If a complex algorithm is subject to change and interpretation then it should be

encapsulated into a reusable object and not delegated out to external objects. Although some

reusability is lost, this approach will yield better results overall for such applications. If extensive

delegation is to take place then strict practices must be adhered to ensure the integrity o f the

software. This may involve documentation procedures or if possible the software environment and

hence the mechanism for reusing elem ents should be DSP-aware in that inconsistencies can be

easily detected.

Finally, aside from technical issues, it should be noted that reuse and hence properties such as

granularity, coupling and cohesion also have an economic consequence. W hile many organisations

will practice reuse for internal development, reuse is also important on a larger scale as it fosters a

market for buying and selling software. Take granularity for example; too small a granularity and

elements will not contain enough functionality to warrant their sale. Too big a granularity and

elements will be too application specific therefore reducing their market potential. Thus for

economic and technical reasons, software for software radio systems should ensure that objects are

properly designed for reuse to ensure their overall success.

Chapter 4 — Recontlgurable Radio Software for Software Radio | 72

4.3.2 Abstractions

How software for radio systems is viewed plays an important role in ensuring its success and

contributes towards an effective level o f reuse. As discussed in Section 3.2.2, visibility is an

important aspect o f partitioning software into reusable elements such as objects or components.

Visibility specifies how much the internal workings o f a software object are exposed to the users of

that object. ‘Black box’ abstractions shield the user o f the object from the internals of that object.

Likewise, ‘white box’ abstractions allow the internals of the object to be extended through

mechanisms such as inheritance.

it is important to consider what type o f abstractions will be used in the construction o f software for

software radio. Black box abstractions offer the potential to allow the development o f software

radio systems without requiring specific knowledge o f how the system works. This could occur in

various ways. For example, the whole software radio system itself could be treated as a black box

software component. The developer would use a well-defined interface to create new software

radios. In this case the developer would be shielded from the operation o f the software radio system

thereby protecting the internal workings from disruption.

Another way of applying the black box abstraction is to view the various reusable objects o f a

software radio system as black box components. In this way these components are combined

together to form various software radio solutions. The developer who combines these components

does not require knowledge of how these various reusable elements work, just how to make them

work together.

While the advantages of black box reuse are evident, there are some problems with black box reuse

when developing software for software radio. Performance is always a primary concern and the

overhead o f maintaining strict interfaces through black box abstractions could hinder the

performance o f the radio system. In this case white box abstractions may be more appropriate in

that the reusable elements become more flexible and can be altered to improve performance.

Overall in designing software for software radio we must strive to use black box abstraction as

much as possible and only break this abstraction when the specifics of software radio pose no other

alternative.

4.3.3 Adaptability and Flexibility

Adaptability will enable a piece of software to be reused beyond its original design. In a software

radio this corresponds to developing signal processing algorithms that can be adapted for use in

new applications. A prime example o f an adaptable element is an FIR filter. FIR filters are used

Chapter 4 — Reconfigurable Radio Software for Software Radio | 73

extensively throughout many DSP systems. For an element such as an FIR filter to be adaptable it

must facilitate its use in many different scenarios. For example the filter should be able to work

with different sources of signals, possibly represented using different data types or supporting

various methods for processing data. If a software radio is created out o f adaptable elements then

the level of adaptability will determine how often this element and hence code can be reused in

other applications.

Flexibility allows a soflrware radio to offer variability in how it performs its function. Whereas

adaptability facilitates reuse o f an element in different scenarios, it is mostly concerned with the

technical issues o f how an element exposes its functionality. Flexibility on the other hand concerns

the actual functionality the element provides. Flexibility in the case of the FIR filter will ensure that

the FIR filter provides enough control over the FIR algorithm itself. A suitable level o f flexibility

will allow us to change the window o f the filter or specify our own windowing function. Flexibility

will allow us to specify a range of increments for changing the cut-off frequency o f the filter.

Flexibility may even offer us the functionality o f designing the filter coefficients for us. Flexibility

and adaptability go hand in hand in creating reusable software for software radio.

4.3.4 Complexity

Complexity is a problem that faces any large software system. As radio technology continues to

move towards more software-based implementations the amount of software required to build a

radio system will continue to increase. Without proper management complexity will start to emerge

in software radio systems in the form of bad quality and difficult to maintain software.

This problem can manifest itself in many ways. As demand increases for new wireless applications

and increased capability, new and more complex DSP algorithms will be developed to meet the

needs of these applications. Whether implemented on reprogrammable hardware or high-level

software, the amount o f software being implemented for software radio systems will continue to

increase. As well as increasing DSP code, there will also be an increase in code enabling new

capabilities such as software download and interoperability. If the current approaches being used

for FPGA and DSP processor development are carried forward into these future systems, (as

discussed in Section 3.1) a ‘software crisis’ o f sorts could emerge in the domain of software radio.

These approaches based on functional decomposition and hardware-bound languages do not

encourage the building of quality software for large systems.

To deal with the problems o f complexity in software radio the methodologies o f software

engineering must be brought to bear on the problem. A combination of object-oriented and

component-based software approaches should be used. However, most o f these techniques are

Chapter 4 — Reconfigurable Radio Software for Software Radio | 74

tailored for building software that values stability, robustness and m aintainability over performance

whereas performance is often a critical issue in software radio applications. Although a piece o f

software may be well built and highly reliable it may not be feasible to use the software if it

requires an impractical amount o f processing power.

A balance must be struck between achieving the required code performance while also managing

the complexity o f the software. Complexity ultimately increases the cost o f a device as the more

com plex it becomes the more costly it is to maintain. Thus, some designers may decide to invest in

more powerful hardware allowing them to reduce complexity by using software engineering

methodologies. This may prove more cost efficient in the long term, as the cost o f more expensive

hardware may be less than that o f m aintaining a complex product over many years.

4.3.5 Security

Security is an important topic that has always surrounded telecommunications. W ireless

communication is prone to eavesdropping and hence security o f communications over the wireless

channel is particularly relevant. Cryptography is therefore often employed to secure wireless

communications. Physical modulation techniques are also used to prevent denial o f service

attacks an example being spread spectrum technology, which can be used to prevent radio

jam m ing. As well as the existing threats o f eavesdropping and denial o f service, software radio

introduces a new unique challenge to securing wireless communications. This challenge is radio

viruses.

It could be possible to build a ‘radio virus’ or ‘radio w orm ’ similar to the viruses and worms

written to infect computers on the Internet. Attackers could exploit weaknesses in the

implementation o f a software radio to gain control o f the device. A similar type o f attack occurs

today on the Internet by viruses and worms that exploit buffer overruns. A buffer overrun is caused

by a bug in a program allowing an attacker to overwrite a buffer in com puter’s memory. This can

be exploited by writing a malicious program into the computers memory giving the attacker full

control over the device. The first buffer overrun attack occurred in 1998 with the Morris worm

[Eichin89J. A survey o f buffer overrun techniques can be found in [Cowan2000].

In the case o f the software radio, bugs in signal processing software, or the underlying operating

system as in the case o f a GPP, could permit an attacker to send signals that manipulate a buffer

overflow in the radio device. For example, a digital communications standard such as GSM expects

fixed sized frames o f data with a standardised fram e structure. Any receiver that does not check the

values in the received frame structure correctly could be open to attack. Attackers could send

malicious frames containing non-standard values thus exploiting weaknesses in the system and

Chapter 4 — F^econfigurable Radio Software for Software Radio [75

giving them full control o f the terminal. A denial o f service attack could pit radio terminals against

each other or against base stations to disrupt communication by flooding the spectrum with

unnecessary transmissions. The attacker may not even have to manipulate a particular buffer

overflow weakness; a specially crafted transmission may be enough to ‘confuse’ the radio system

and render it useless.

Although radio systems do not face this threat today, it could become a serious threat if software

radio terminals become more standardised and ubiquitous. If software radio systems become

commonplace and are used for a variety o f applications then there will be an abundance o f

terminals and hence more potential and incentive for an attacker to find weaknesses in a device. To

prevent these types o f attacks software radio systems must be designed to incorporate secure,

formally validated techniques to prevent denial o f service attacks, unauthorised modification o f

software and to maintain communications privacy. Software downloading to radio terminals must

also be secure and thus code for software radio systems needs to be distributed securely. It must be

digitally signed [RSA78J to ensure that code loaded remotely is from the correct author.

Many different approaches can be used to secure software radio systems in the future. The best

deterrent will be good software designs that inherently support security and practices that leverage

good quality software, as bad quality results in flaws that can be exploited. Other complementary

procedures may have to be introduced such as code validation and rigorous testing procedures.

Overall, a secure software radio system will require vigilance and recognition o f possible threats.

4.3.6 Portability

Portability enables software to work on multiple platforms. With current software radio technology

portability is difficult. The variety o f hardware platforms and software techniques means that it is

difficult to build a single piece o f software that will run on many platforms. Portability is still a

problem in general-purpose computing where there is standardisation amongst computer

manufacturers and languages enabling elements o f cross-platform and source-level portability.

Signal processing hardware however has not yet reached this level o f standardisation and code for

DSP processors and FPGAs, etc are mostly m anufacturer specific. While it is possible to

programme some o f these devices using either C or variants o f the C language, a practical

implementation typically requires hardware specific instructions and hence proprietary

development languages.

Portability will continue to be an ongoing challenge in both general-purpose computing and

software radio. Improving portability for software radio systems will reduce the cost o f developing,

maintaining software thus allowing for better quality software.

Chapter 4 — Reconllgurable Radio Software for Software Radio | 76

4.3.7 Real- Time Behaviour

Many radio standards dictate tiie use o f strict timing and latency requirements for communication.

The software o f a software radio system must be able to facilitate the real-time nature o f whatever

scheme is being implemented. This has been a primary driving factor for the DSP processor in that

this device facilitates the development o f real-time code and allows the developer to be

deterministic in how long operations will take. In the GPP however, this poses a significant

challenge. Typical GPP systems are based around the use o f general purpose operating systems that

typically do not meet the latency requirements o f existing radio standards. For example, the GSM

standard requires timing o f TDMA (Time Division Multiple Access) frames in the order of

microseconds whereas the thread scheduler o f Linux and Windows offers only tens o f milliseconds

accuracy.

There are however some approaches in alleviating these problems (as discussed in Section 1.4). A

real-time operating system can be used to allow microsecond-level timing on GPPs. Even without

such an operating system more accurate timing can be aided by the generic front-end, and by

specific implementations o f drivers which facilitate the type o f accuracy required by these

applications. A different approach altogether would be to relax the need for such stringent timing

and to leverage the flexibility o f a software-based radio system in meeting the demands o f the

application. For example, in a data communications system the requirements on timing may not be

as stringent as they are in a voice system. In this case algorithms could be used to introduce

functionality that compensates for inaccurate timing through signal processing or buffering

techniques.

4.3.8 Upgrading and Versioning

A primary motivating factor for software radio has been the promise o f general-purpose radio

devices that allow functionality to be upgraded. There are however practical challenges to making

this type o f upgrading a reality. Specifically, the possibility that multiple versions o f the same air

interface exist poses a significant problem in that it could hinder effective communications.

There are two ways in which this problem can manifest itself Firstly, incompatible versions of

software can cause the system to fail. For example, a radio device that is partially upgraded may

download a new speech encoder or modulator algorithm. This new software is however

incompatible with the remainder o f the system and thus crashes. The problem is further

complicated if a system consistently upgrades its software by downloading new pieces o f software.

Without proper management each device could contain different combinations o f software in

configurations unforeseen by the manufacturer. This type of problem has plagued mainstream

Chapter 4 — R econfigurable Radio Softw are for Softw are Radio | 77

operating systems for some time and software radio systems need proper management to avoid this

type o f problem.

The second type o f upgrading problem is more subtle in that although the software may be

functioning properly, the use o f multiple software versions may make communication error prone

or impossible. This type o f error usually happens when an initial release o f software is followed by

an upgrade. For example, consider the case o f a mobile phone that implements a common standard

such as GSM. After deploying the handset the m anufacturer realises that some aspect o f the

software is not fully standards compliant and taking advantage o f the software radio capability

posts new software for download which the handsets automatically retrieve. It is inevitable that

software upgrades cannot propagate instantaneously to all handsets due to bandwidth and the high

probability that some handsets will be powered off. Consequently, the radio system must have a

mechanism to deal with handsets having different versions o f components o f the software radio

system in order to ensure that the operation o f the network is not comprised.

One way to overcome these problems is to employ a versioning system especially designed to

maximise communication. This type o f system would force terminals to upgrade software when

appropriate. It could also manage compatibility issues in providing information about which

components are valid combinations. Component sets could be validated for com patibility by

checking their versions. Also, security could be involved in that communication is only allowed if

the terminal uses particular software versions.

Although rapid reconfiguration has obvious advantages, these examples discussed illustrate that if

software versioning and upgrading are required then an infrastructure needs to be in place to avoid

these errors. This has been acknowledged in the literature, particularly in the development o f

software download for mobile phones [Bucknell2002]. These systems have more control over the

software a terminal uses for communication in that the terminal is constantly connected to a base

station which can trigger various forms o f software download. This does not however deal with

more distributed approaches in applications such as ad hoc networking where there is no central

infrastructure. Chapter 7 addresses these issues in more detail by discussing case studies in both

software download and wireless networking.

4.4 Developing a Reconfigurable Radio

4.4.1 System Design Considerations

There are various ways that the development o f a reconfigurable radio system can be approached.

Software radio implementations such as the C++ based PSpectra system are based around the use

o f a class library that offers common signal processing classes that can be reused to form a

Chapter 4 — Reconfigurable Radio Developing a Reconfigurable Radio | 78

software radio application. This results in separate executable programs, one for each radio

implementation. Although this approach works well there are certain lim itations, in particular when

considering reconfiguration. W hile these libraries support constructs for binding together reusable

classes to form radio implementations, they have not specifically included support for

reconfiguration. Whereas application reconfiguration is accomplished via separate standalone

executables, both structural and parametric reconfiguration requires the programmer to implement

separate code for each application. Thus, each standalone executable is implemented in a different

way to form the software radio.

An alternative approach that supports reconfiguration better is to factor out as many domain-

specific operations as possible into a software framework. This removes the need for each

programmer to re-implement the same constructs fo r each software radio application (see Figure

4.3). Using this approach the radio is not a standalone executable that interacts w ith the operating

system but a radio configuration used to configure a component framework. This design contains

all the information required to build the radio system including signal processing parameters,

structural designs and any additional code not covered by this domain-specific framework. By

inherently supporting application, structural and parametric reconfiguration in the component

framework itself, it becomes much simpler to develop a reconfigurable radio.

This approach is quite different to say a DSP processor platform. The DSP processor provides an

efficient processor for executing signal processing algorithms, however it does not dictate any

particular constructs or style for the structure o f the software. Developers are free to manipulate the

capabilities o f the device in any way they see fit. Also, software is typ ica lly developed in assembly

language and C, but these languages themselves do not dictate any type o f software design. The

difference w ith the framework approach is that it exp lic itly dictates how the software should be

constructed w ith the aim o f improving the quality o f the system as a whole.

Component Framework Approach
I

■ I
I

Radio Configuration i
I

' I
I

- — - I I
I

Connponent Framework 1

Operating System

Hardware

Figure 4.3 - Different Approaches to Reconfigurable Radio System Design

Class Library Approach

Radio Executable

Operating System

Hardware

Chapter 4 — Reconfigurable Radio Developing a Reconfigurable Radio I 79

In terms o f the signal processing capability o f the reconfigurable radio, the framework must be

extensible in that it allows any type o f signal processing functionality to be used in the system. This

signal processing functionality should be incorporated in such a way that allows it to be easily used

by different radio configurations. The framework should also be extensible in that it allows new

signal processing functionality to be added easily, but also allows radio configurations to include

additional code that can interact with signal processing algorithms. Thus, the framework needs

interfaces and constructs that allow this type o f integration to occur easily.

4.4.2 Enabling Reconfiguration

As discussed in Section 4.2.2, the core requirement o f the reconfigurable radio is the ability to

enable application, structural and parametric reconfiguration. These facets o f the reconfigurable

radio are the enabling techniques to a whole host o f new software radio applications. Enabling

these applications requires the framework to both inherently support each type o f reconfiguration

and to enable monitoring and control. The following sections discuss how this can be achieved.

Enabling Application Reconfiguration

Application reconfiguration will allow the framework to change the type o f radio system it

implements (for example QPSK transceiver, GPS receiver, TV transmitter, etc). Using the

component framework approach, each radio application is differentiated by the configuration

passed to the framework. This configuration must specify all the details required to implement the

radio design. The following elements are required in the configuration:

• Signal Processing - The configuration must specify which signal processing algorithms

should be used to implement the design.

• Structure - The configuration must specify how the signal processing algorithms should be

combined together to form the reconfigurable radio.

• Parameters - The configuration should include the parameters that configure the operation

o f signal processing algorithms, for example frequency settings or filter taps.

• Code - The configuration should include any code required to implement specific

operations for the radio application.

• Packaging - The configuration should be packaged into a unit which can be easily

deployed to reconfigurable radio devices.

• Information - The configuration should include informational data about itself and its

purpose, possibly allowing a user or other software agent to decide whether to use the

application.

Chapter 4 — R econllgurable Radio D evelop in g a R econfigurable Radio | 80

Enabling Structural Reconfiguration

In enab ling structural reconfiguration the infrastructure needs to be im plem ented in a flexible way

tha t a llow s the structure o f the radio to be changed. For structural reconfiguration to be feasib le the

softw are o f the reconfigurable radio has to be inherently built w ith th is feature in m ind. A lso, the

adap tab ility and flexible nature o f signal processing algorithm s should facilitate this.

S tructural reconfiguration can be im plem ented in various w ays. A sim ple approach is to use offline

reconfiguration in that the softw are radio infrastructure supports the creation o f d ifferen t types o f

structures. For exam ple, i f a softw are radio im plem entation consists o f filters, m ixers and

m odulators then the softw are radio in frastructure should facilita te the com bination o f these

elem ents in any order.

O f m ore in terest in this thesis is dynam ic reconfiguration w hich is structural reconfiguration

occu rring w hile the device is operational. E nabling this type o f reconfiguration requires a m ore

sophisticated approach. Specifically the infrastructure has to m aintain the in tegrity o f the radio

app lication during the reconfiguration process. The system m ust ensure that new configurations are

valid and do not cause the system to becom e unstable. A lso, w here possib le the system should

a ttem pt to continue operation during the reconfiguration process. This will only be possib le in

cases w here reconfiguration does not d rastically change the functionality o f the radio.

In chang ing the structure o f the radio, the infrastructure should inherently support softw are

dow nload. This w ill allow new functionality to be dow nloaded and integrated into the structure o f

the radio w ithout having to alter, recom pile or stop the radio system .

To fac ilita te the changing o f the rad io ’s structure, the infrastructure should expose an API

(A pplication Program m ing Interface) that allow s program m ers to w rite code that can a lter the

structure. This should include m ethods to edit the configuration via adding, rem oving or changing

the o rder o f signal processing algorithm s.

Enabling Parametric Reconfiguration

Param etric reconfiguration w ill prim arily be concerned w ith allow ing the param eters o f signal

p rocessing algorithm s to be changed thus enabling reconfiguration . T his requires an infrastructure

that fac ilita tes the exposure o f param eters. Thus, each signal p rocessing algorithm w ill use d ifferent

param eters, exposed in a consisten t w ay via a standardised param eter interface. T his in terface

should provide all the functionality to a llow any type o f param eter to be read or changed. A lso, the

s tructure o f the algorithm s them selves m ust be able to cope w ith changing param eters, for exam ple

C hapter 4 — R econflgurable Radio D eveloping a Reconfigurable Radio I 81

if a frequency setting is changed a lookup table may have to be recalculated. The infrastructure

should inherently support mechanisms for enabling all o f these tasks.

Monitoring and Control o f Reconfigurability

The three types o f reconfiguration discussed offer extremely flexible radio systems, however they

are useless without some way to control and m onitor their use. As discussed in the previous section

a framework is required that hosts the radio system, provide explicit design rules and allow control

o f the radio system as a whole. This framework can provide information about the radio system by

allowing the monitoring o f system functionality such as viewing signals. It can also provide

external control functions by exposing a control interface. This can be used by other software

systems that use a reconfigurable radio as a sub-system.

4.5 Summary

This chapter has analysed all the issues surrounding the development o f software for software radio

systems. The term ‘reconfigurable radio’ has been defined to differentiate the approach taken in

this thesis from others. Reconfigurability has been analysed and broken down into the three

categories o f reconfigurability; application, structural and parametric. These categories allow the

level o f reconfigurability o f a device to be assessed and provide useful guidelines for determining

the requirements o f a reconfigurable radio system. The next chapter presents the design o f a

reconflgurable radio system that is built using component-based software and features the three

categories o f reconfigurability.

Chapter 4 — R econfigurable Radio Summar\' | 82

The IRIS Reconfigurable Radio

5.1 Introduction

This chapter describes the design o f IRIS (Implementing Radio In Software) [Mackenzie2002b,

Doyle2002a, Mackenzie2003]. Sections 5.2 and 5.3 provide a high level overview o f the IRIS

system. Section 5.4 discusses the component-based approach taken in designing radio components

and how they can be defined in software. Section 5.5 discusses the component framework used to

compose these components together to form a reconfigurable radio system. Section 5.6 discusses

control logic, a mechanism provided by the IRIS architecture for defining the inter-relationships

between components. Finally to demonstrate how components, the component-framework and

control logic fit together, Section 5.7 provides a worked example o f developing an FSK transceiver

using IRIS.

5.2 IRIS Overview

IRIS has been built to demonstrate the concepts o f reconfigurability as discussed in the previous

chapter. The purpose o f IRIS is to both demonstrate this through a practical example and from this

to gain insight into the problem o f developing software for reconfigurable radio systems.

IRIS is a component framework designed to run on GPPs. Signal processing components are

written in C++ and each component implements a generic signal processing algorithm or

encapsulates some other sub-system such as a hardware device. Radio systems are created by both

instructing the component framework to assemble components in a particular way, and by defining

the interrelationships between instances o f components. The IRIS system is highly structured and

the mechanisms for building radio systems are well defined within the IRIS architecture. Basic

radio systems can be built by com bining existing components. More complex designs can be

addressed by writing new components and writing control logic, essentially application-specific

code that defines the interaction among a particular set o f components in the radio system. The

IRIS system uses XML as a configuration mechanism and control logic can be written in either

C++ or Java.

83

Figures 5.1 to 5.3 give an indication o f what is possible w ith IRIS. The diagram in Figure 5.1

demonstrates how both transmitter and receiver architectures are specified via the same generic

configuration mechanism. IRIS uses the same type o f configuration mechanism to realise every

type o f radio system. For instance, it does not constrain radio system design via entities such as

receiver, transmitter, transceiver, etc; each radio system is made from generic components. This

approach is quite different to other approaches such as the JTRS SC A which defines concrete

interfaces for every element o f the radio system (see Chapter 2, Section 2.5.2).

These two examples demonstrate the level at which IRIS addresses the development o f radio

systems, the DSP level. The development o f an air interface can often be intertwined w ith other

aspects o f the system in particular other elements o f the protocol stack. Often (as in the JTRS) the

DSP o f the radio system is closely coupled to networking features such as the M AC (Medium

Access Control) or Data L ink layers o f the protocol stack. W hile IRIS can be used in this context

also (and this w 'ill be demonstrated in Chapter 7), its primary function is to facilitate the

construction o f the DSP systems o f a reconfigurable radio.

FIR Filter Decimation IQ Mixer

Configuration

A/D Q o 1
Converter ▼

101100110Symbol
De-mapping

Receiver

Mixer FIR Filter

Configuration

1010110110

NCO
Transmitter

D/A
Converter

OPSK
Symbol

Figure 5.1 - Receiver and Transm itter Example

W hile the examples in Figure 5.1 illustrate more typical software radio applications, the example in

Figure 5.2 demonstrates how the IRIS system goes further. In this example, a sim ilar configuration

is used to create a radio but it also includes functionality for dynamically reconfiguring both

parameters and the structure o f the radio. This allows the creation o f tru ly dynamic designs in

which the radio can change its functionality at runtime as desired. The uniqueness o f this approach

is that support fo r application, structural and parametric reconfigurability is inherently bu ilt into the

system and handled by the IRIS Component Framework.

Chapter 5 — The IRIS Reconfigurable Radio IRIS Overview | 84

Reconfigure
Structure

' .cf-'

O e,

Configuration

 r

FIR
Filter >

?jN

, 100110100

Local Osdllator (''~ V ^

BPSK
AO

Converter Scale

Reconfigure
Parameters

Figure 5.2 - A Reconfigurable Radio System

The final example in Figure 5.3 demonstrates how the IRIS system can facilitate an environment

for experimentation and rapid development o f radio systems. In this exam.ple a radio configuration

is used to create a test scenario for experimenting w ith the effects o f adding noise to a FSK

(Frequency Shift Keying) signal. The configuration not only specifies the structure o f the radio

architecture but a user interface that allows dynamic user interaction w ith the system. The IRIS

architecture inherently supports this type o f functionality .

Configuration

FSK
Modulator

NoiseData

Compare

Frequency
Analysis

Frequency
Analysts

Level of Additive Noise

Figure 5.3 - A Keconflgurabie Radio with User Interaction

5.3 IRIS Architecture

Following a large amount o f experimentation w ith software architectures and software design, an

architecture fo r IRIS was created. (The term architecture in this context refers to the definition

discussed in Section 3.4.2; an architecture being a superset o f principles prevailing a system

design.) Figure 5.4 illustrates the IRIS architecture and introduces all the main entities involved in

Chapter 5 — The IRIS Reconfigurable Radio IRIS Architecture | 85

its design. In addition to defining the general paradigms o f the system, the IRIS architecture

consists o f a Component Framework, a com ponent model and rules for creating control logic and

radio configurations.

Radio Configuration

XML Control Logic

Host Application

t X
IRIS API

OJ * t +
3
tj0)
4 -'

Icu

XML Parser 1 Control Logic
I Manager

Reusable
■; Radio
c Components

i_
<
o
ro

CL.

LO Component
Manager K

Component Framework

Operating System

Figure 5.4 - The IRIS Radio Architecture

Each o f the entities in the IRIS architecture has been designed to address the reconfigurability

issues as addressed in Chapter 4. The following sections describe each o f the entities in detail.

Note: In the remainder o f the thesis capital letters will be used to denote the entities o f the IRIS

system, e.g. Radio Component, Component Framework and Control Logic

5.4 Radio Components

The fundamental unit for building reconfigurable radios in the IRIS Radio Architecture is the Radio

Component. A user o f IRIS creates a radio from existing Radio Components or by creating new

components when necessary. The Component Framework (discussed in the next section) is used to

chain Radio Components together to create the actual reconflgurable radio.

There were a number o f challenges in designing the Radio Component. It was necessary to design

the Radio Components to encapsulate radio functionality in a way that would facilitate their reuse

among many applications. It was also necessary to develop a design that allowed ultimate

flexibility throughout the system. Overall, it was necessary to create Radio Components that could

C h ap ter 5 — T lie IR IS R e co n flg u ra b le R adio R a d io C o m p o n en ts I 8 6

facilitate application, structural and parametric reconfiguration as discussed in the previous chapter.

The resulting component design is described in the following sections.

5.4.1 Component Granularity and Component Types

Before looking at the actual structure o f a Radio Component it is useful to describe component

granularities and component types.

The granularity o f Radio Components has been designed as discussed in Section 4.3.1; for

example, each Radio Component implements operations at the granularity o f FM modulators,

QPSK symbol detectors and FIR Filters, i.e. the functional ‘parts’ o f a radio system. It should be

noted that although this is the approach taken in this work, the system itself does not constrain the

user to a particular granularity. The designer is free to implement components in smaller or larger

granularities if required; however, this thesis argues that these granularities are unsuitable for

reconfigurable radio. This is because radio systems are inherently built in sub-sections that are

easily identifiable. For example, the common Viterbi decoder is a reusable algorithm and therefore

an ideal candidate for a single component. A Viterbi decoder is also made up o f many adders and

multipliers, yet it would not make sense to package these elements into individual components. If

adder and multiplier components were built and subsequently connected together to form a Viterbi

decoder, the algorithm would no longer be encapsulated in a component but would exist in the

interconnection between these components. This approach would contradicy the component

principles discussed in Chapter 3, Section 3.3 that require a component to be a self-contained

independent unit o f deployment.

Another important aspect o f the Radio Component is visibility o f its internal implementation. The

Radio Component has been designed to use a black box abstraction. This means that all the

internals o f how the component works are hidden from the user o f the component. The only way

the component can be used is via the standardised interfaces it provides.

IRIS must support a multitude o f different radio configurations. The majority o f functions

performed in a reconfigurable radio are DSP related, however there is other functionality that needs

to be addressed such as how to input or output data, and how to interface and control hardware. In

the IRIS architecture different radio functions are categorised by the following three types:

1. DSP components

2. Input/Output (lO) components

3. Standalone components

DSP components allow signal processing functionality to be encapsulated into a component. lO

components are identical to DSP components but have extra constructs for supporting the input and

Chapter 5 — The IRIS R econt’igurable Radio Radio C om ponents | 87

output o f data into the signal processing chain. Standalone components satisfy the need to have

additional functionality that is required by the radio, but separate from the signal processing chain;

for example, controlling external hardware or implementing timers. The three basic types are

formed by inheriting from the abstract class ‘RadioComponent’ (see

Figure 5.5).

RadioComponent

SlandaloneComponent
+P rocess(in signallnO ut)
+P rocess(in signalln, in signalO ut)

DSPComponent
+Start()
+ P rocess(in signallnO rO ut)
+Stop{)

lOComponent

Figure 5.5 - Relationship of Component Types

5.4.2 Component Interfaces

An external view o f the Radio Component helps to illustrate how the component is used in creating

a reconfigurable radio. Externally a Radio Component can be viewed as shown in Figure 5.6. The

Radio Component exposes a set o f well-defined interfaces, which allow other entities in the IRIS

architecture (such as the Radio Component Framework) to interact with each component using the

same standardised pattern.

XML Interface

?
Parameter Interface O—

Event Interface o —

Port Interface o —

Command Interface o —

Radio
Connponent

—O Lifecycle Interface

—O Signal Processing Interface

Reflection Interface

Figure 5.6 - External View of a Radio Component

Each Radio Component implements a set o f interfaces each addressing a different requirement.

Separate interfaces ensure that suitable cohesion is enforced in the component. The Radio

Component interfaces have been carefully chosen to address the various ways in which

components can be composed together in a component framework.

C hapter 5 — The IRIS Reconfigurabic Radio Radio C om ponents | 88

The basic interface supported by DSP and lO components is the signal processing interface. Figure

5.5 shows the P r o c e s s () method that components must implement to consume and produce

digital signals. The P r o c e s s () method is discussed is detail w ith relevant examples in the next

Chapter, Section 6.2.6. In addition to a signal processing interface, the Radio Component supports

the seven different interfaces which the Component Framework uses to control and interact w ith

the Radio Component, namely; Lifecycle Interface, Parameter Interface, Event Interface, Port

Interface, Command Interface, Reflection Interface and Component Information Interface.

Lifecycle Interface (Figure 5.7): This interface exposes all the functionality fo r controlling the

lifecycle o f a Radio Component and its function is to a llow for initialisation and cleanup o f a

component. W hile these methods represent the basic lifecycle o f a component, d ifferent component

types add additional steps to the lifecycle o f a component.

((interface*
LifeCycle

+GetDetails()
+CalculateOutputSignalFormat(in inputformat)
+lnit()
+Destroy()

Figure 5.7 - Lifecycle Interface

Parameter Interface (Figure 5.H): The parameter interface allows the user o f a component to

configure and reconfigure the operation o f the component throughout its lifecycle. Each component

exposes a set o f parameters that define its behaviour and parameters can have any data type. The

parameter interface allows access to these parameters in a generic way.

((interface*
Parameter

+GetParameterValue(in id)
+SetParameterValue(ln id, in value)

Figure 5.8 - Parameter Interface

Event Interface (Figure 5.9): Components can fire events to asynchronously inform external clients

o f occurrences during the lifecycle o f the component. A component can support any number o f

events and various types o f data can be passed w ith events. The event interface allows external

clients to subscribe to any event that the component publishes.

((interface*
Event

+AddEventListener(in eventid, in callbackType, in userDefinedValue, in callback)
+RemoveEventListener(in eventid, in callback)

Figure 5.9 - Event Interface

Chapter 5 — I he IR IS Rcconfigurable Radio Raciio Components | 89

Port Interface (Figure 5.10): Ports are inputs into a component. This interface allows external

clients to asynchronously pass data to a component for processing. Ports are provided to

differentiate the processing o f data from that o f digital signals.

«interface»
Port

+ProcessPortData(in id, in data, in length)

Figure 5.10 - Port Interface

Command Interface (Figure 5.11): Commands allow external clients to issue asynchronous

commands to a component. This provides a generic mechanism for exposing common DSP

functionality, examples being: ‘ reset synchroniser’ , ‘ recalculate lookup table’ or ‘ cease carrier’ .

While parameters could be used to implement this type o f functionality, commands provide a

useful way to separate out more numerically based parameters from function-based operations.

«interface»
Command

+TriggerCommand(in id)

Figure 5.11 - Command Interface

Reflection Interfaces (Figure 5.12): The reflection interface allows external clients to query

information about a component programmatically. External clients can query any information

about the type o f component, the parameters, events, ports and commands it supports and general-

purpose information about the component such as author, version, etc.

«interface»
EventReflection

+GetNumEvents()
*GetEventName(in id)
+GetEventDescription(in id)
+GetEventDataType()

«interface»
CommandReflection

+GetNumCommands()
+GetCommandName(in id)
+GetCommandDescription(in id)

Figure 5.12 - Reflection Interfaces

Component Information Interface (Figure 5.13): This information provides information about the

component itse lf and can be used for dynamic and automatic discovery o f details about

components. In addition to information such as name, author, version, etc, the component

information exposes two methods offering X M L descriptions o f the component. The firs t method is

«interface»
PortReflection

+GetNumPorts()
+GetPortName(in id)
+GetPortDescription(in id)

«interface»
ParameterReflection

+GetNumParameters()
+GetParameterName(in id)
+GetParameterDataType(in id)
+GetParameterDefaultValue(in id)
+GetParameterDescription(in id)
+lsParameterDynamic(in id)

Chapter 5 — the IRIS Recontlgurable Radio Radio Components j 90

an X M L interface which exposes an example configuration. This provides a sample o f X M L to a

client w ishing to know how the component can be configured. The second method provides X M L

indicating the capabilities o f the component including all the information supported by the

reflection information. This X M L fac ility is o f use both during system-design and during automatic

reconfiguration in that systems can be built that can automatically use a component w ithout user

intervention.

«interface»
Componentlnformation

+GetComponentName()
+GetComponentType()
+GetComponent VersionQ
+GetComponentAuthor()
+GetComponentDescription()
+GetComponentXMLDefaultConfiguration()
+GetComponentXMLSelfDescription()

Figure 5.13 - Component Information Interface

Once a class implements all these interfaces, it can be used as a black box Radio Component w ith in

the Component Framework (see Figure 5.14).

«interface»
Parameter

«interface»
EventReflection

((interface;
Event

{(interface))
ParameterReflection

((interface))
Command Reflection

Interface;
Port

((interface))
Command

((interface))
PortReflection

((interface))
Componentlnformation

RadioComponent

Figure 5.14 - Abstract RadioComponent class

5.4. J Component Lifecycle

An important aspect o f the Radio Component is its lifecycle, i.e. the pattern by which the

component is used. The challenge in designing the lifecycle is to support enough functionality so

that any aspect o f a reconfigurable radio can be developed but exposed in a generic way. A suitable

lifecycle has been designed for Radio Components and it consists o f seven stages;

1. Loading

2. Initialisation

3. Starting

4. Processing

Chapter 5 — I'he IRIS Reconflgurable Radio Radio Components | 91

5. Stopping

6. Cleanup

7. Unloading

Loading: During this stage the component is loaded for use. This will include any retrieval of

components and any instantiation o f classes. Once this stage has completed the component must be

available and ready for use.

Initialisation: During this stage the component is primed with all the information required for

operation. The first step tells the component what parameters it should use and this is performed by

repeated calls to SetParameterValue () . In the assembly of components into a working radio

system, many different types o f signal will be used so it is important that the framework can work

out if a configuration is valid. The GetDetails() call provides the framework with the details

required to work out if a component is suitable for inclusion in a radio design. Next, a call to

CalculateOutputSignalFormat () tells the Radio Component what type o f input signal it will

be receiving and thus the component can work out what output signal it will produce for the given

input. The final step in initialisation is a call to Init (). This allows the component to perform all

other initialisation such as allocating memory, etc and also give the component an opportunity to

reject the configuration it has been initialised with if it detects an error. For example, if the

component does not support a particular data type or has been initialised with incorrect data the

initialisation method can return false to indicate this error.

(I() only) Starting: Indicates to an lO component that input should commence.

(DSP and I() only) Processing: In this stage the framework repeatedly calls the Process ()
method causing the Radio Component to perform its actual processing. This can be any operation

that the Radio Component supports but mostly DSP components will perform signal processing,

and lO components will perform output/input data to/from hardware. During the process stage the

component can fire events that occur in the course o f processing. During this phase the component

will also receive asynchronous method calls from the framework when values have been

reconfigured, when commands have been issued and when data ports have received data. The

developer o f the component can decide how best to react to these asynchronous methods according

to the context o f a particular component.

(lO only) Stopping: Indicates to an lO component that input should cease.

Cleanup: At this stage Destroy () is called which allows the component to free resources.

C hapter 5 — The IRIS Reconfigurable Radio Radio C om ponents | 92

Unloading: This stage involves the deletion o f the component instance and unloading of

component code.

Figure 5.15 shows a UML sequence diagram depicting the lifecycles of a DSP and an lO

component. The differences between the two lifecycles can be seen in this diagram. lO components

offer a Start () and StopO method in addition to a Process () method. The Start {) and

Stop () methods tell a component to cease input or output. These are required as lO components

usually have a great impact on the flow of signals between components. All signals are ultimately

input and output via 10 components therefore these methods allow the flow o f signals to be

controlled in the radio. The Process () method allows an lO component to either input or output

data.

Unlike 10 components, a DSP component has two Process () methods. The two methods differ in

the way signals are processed by the component. One method is for processing signals in place, in

that both the input and output of the component are read and written to the same memory location.

The second type uses separate memory locations for both input and output. Memory conservation

is an important factor in software radio design so the in-place method was designed to allow the

developer to conserve the amount of memory used in the system. In some circumstances it can also

reduce the amount o f memory copying required in a component. The not-in-place method is

provided so that memory copying can be reduced, as sometimes the in-place method requires data

to be copied to a temporary location before processing. By providing separate inputs and outputs it

is possible to avoid this copying. Overall these methods provide enough flexibility for the

programmer to write efficient and simplified Radio Components.

The sequence diagram for the lifecycle o f a standalone component is shown in Figure 5.16.

Standalone components do not interact with signals and thus have less functionality. While all

other components are processing signals, the standalone component can perform other functionality

in response to changing parameters, commands or ports. Like all components, standalone

components can fire events.

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 93

RadioEnaine DSPComoonent RadioEnaine lOComoonent

Loading |

Initialisation ^

Processing^

Cleanup.

Unloading |

Load and Create Instance

[all params] SetParameterValue

GetDetails

CalculateOutputSlgnalFormat

Init

[while radio running] Process

ValueHasChanged

TriggerCommand

Events Fired

e - -

Process Complete

Destroy

Delete Instance and Unload

Loading I

Initialisation <

Starting |

Processing <

Stopping |

Cleanup-

Unloading I

Load and Create Instance

[all params] SetParameterValue

GetDetails

CalculateOutputSlgnalFormat

Init

Start

[while radio running] ProcessO

ValueHasChanged

T riggerCommand

Events Fired

Process Complete

Stop

Destroy

Delete Instance and Unload

T
Figure 5.15 - Sequence Diagrams of DSP and lO Component Lifecycles

Standalone components do not offer any new lifecycle methods to the standard component and thus

are the most basic type o f component. Standalone components operate through the use o f

parameters, events, ports and commands.

Chapter 5 — I he IR IS Reconflgurable Radio Radio Components | 94

RadioEnQine

Initialisation ^

S tanda lone

Loading |

C om ponent Active

Cleanup |

Unloading |

Load and C rea te Instance

[all param s] S e tP aram ete rV a lu e

G etD etails

Init

V alueH asC hanged

T rlggerC om m and

E ven ts Fired

D estroy

D elete In s tance and Unload

Figure 5.16 - Sequence Diagram of Standalone Component Lifecycle

5.4.4 Discussion

From the list o f interfaces discussed in the previous section it becomes apparent that a significant

amount o f code must be written to implement each interface. The reason so many interfaces are

required is to make up for the lack o f reflection in some programming languages, in this case C++.

As discussed in Section 3.3.3, reflection allows code to query the capabilities o f other compiled

code dynamically and facilitates meta-data. Languages like Java and C# inherently support

reflection and thus a binary executable from these languages can be queried to find out what

methods and member variables is exposed by the code. C# (and M icrosoft’s .NET platform in

general) goes a step further than Java in that it inherently supports attributes (also known as

declarative constructs), pieces o f data that can be included within a programme itself

[Liberty2001]. Using reflection a C# programme can read its own attributes.

Reflection information is required by the IRIS system because components have to be loaded

dynamically and used at runtime. This reflection information allows the framework to query the

component as to its capabilities, the data types it supports and provides access to additional meta-

Chapter 5 — The IRIS Reconfigurable Radio Radio Components [95

data such as the com ponent’s name, version, description and documentation. For this to happen the

framewori<^ has to be able to query information dynamically about the component, from simple

information such as the com ponent’s name to more complicated information such as the parameters

and events that a component supports. The latter is important when considering graphical

applications and visualisation o f radio systems. Using reflection a user interface can query

information about all components in a generic away allowing the details o f a component to be

displayed. This allows a user to graphically build radio systems without having to write code.

To overcome this problem the process o f writing most o f these interface methods has been

automated via a scripting language. This language will be covered in the next chapter (Section

6.2.3), but the overall effect o f using this technique is that the programmer only has to implement a

minimal amount o f code to programme a Radio Component. This is illustrated in Figure 5.17. By

using the scripting language the only interfaces the programmer has to implement are the lifecycle

and signal processing interfaces. The remainder o f the interfaces are automatically generated.

XML Interface 1
Parameter Interface O

Event Interface o

Port Interface O—

Command Interface o

'Radio '''■
Component

I
Reflection Interfaces

-O Lifecycle Interface

-O Signal Processing Interface

Programmer Implementation

Automatically Generated

Figure 5.17 - Radio Component Showing Interfaces Implemented by Code Generation

In addition to implementing various interfaces, the abstract RadioComponent class provides

several methods that allow the component implementation to interact generically with external

users o f the component (see Figure 5.18). For example, by overriding the ValueChanged ()
method, the programmer can be notified when a param eter has been changed externally. Likewise

CommandWasTriggered () indicates to a component that external control logic issued a command

to the component and ProcessPortData () indicates that data was received into a port o f the

component. These facilities maintain the black box abstraction that allows Radio Components to be

used generically.

C hapter 5 — I he IRIS Reconllgurable Radio Radio C om ponents | 96

RadioComponent
#V alueH asC h an g ed (in p aram eterld)
#C om m andW asT riggered (in com m andld)
#A ctivateEvent(in even tid , in d a ta)
P ro c essP o rtD a ta (in portid, in d a ta , in length)
#Loglnfo(in text)
#LogError()
#LogW arning(in text)
F ata lS top ()
+G etO utpu tS ignalForm at()
+ G etlnpu tS ignalF orm at()

Figure 5.18 - RadioComponent

For firing events the RadioComponent class offers the method ActivateEvent () which allows

a component to generically notiiy any number o f external subscribers during processing. The

scripting language automatically generates generic code that allows the Component Framework to

interact with the Radio Component in this way. RadioComponent also supports a variety o f

support methods for logging information and errors, and for querying information about the signals

it will be receiving from the Component Framework.

Implementing DSP and lO components requires the programmer to write signal processing code

and this is written in the Process () method. The engine repeatedly calls a com ponent’s

Process 0 method providing it with memory locations for reading and writing samples. This

technique decouples components as each component does not require knowledge o f the other

components in the reconfigurable radio. Components are thus passive, only performing processing

when called on to do so.

The other methods left for implementation by the programmer are mostly to satisfy the lifecycle o f

a particular component type. The programmer must implement GetDetailsO and

CalculateOutputSignalFormat () to allow external clients to query information about how a

component plans to process data. The GetDetails () method allows a component to specify the

data types it can accept and whether or not it processes data in-place.

CalculateOutputSignalFormat () allows an external client to figure out what block size and

sampling rate it can expect as an output from the component for a given input. The programmer can

use the calls from lnit() and Destroy () to perform pre and post steps to processing. 10

components can avail o f calls to Start () and Stop () to control the input and output o f data.

C hapter 5 — T he IRIS Reconllgurable Radio Radio C om ponents | 97

5.5 Component Framework

The IRIS Radio Component Framework is an infrastructure that allows Radio Components to be

composed together to form a reconfigurable radio. The diagram of the IRIS architecture is

reproduced here in Figure 5.19. This diagram shows the role o f the Component Framework in the

architecture. The framework is the core o f the architecture consisting o f the sub-systems required to

build a reconfigurable radio. It consists o f the Radio Engine, Component Manager, Control Logic

Manager, XML parser and the IRIS API:

• Radio Engine: The Radio Engine implements different radio configurations and is the core of

the Component Framework. The Radio Engine brings together Radio Components and Control

Logic to implement the radio design and controls their interaction.

• XML Parser: The XML parser reads XML radio configurations, verifies their content and

converts them to an internal representation o f a radio design that can be implemented by the

Radio Engine.

• Component Manager: The Component Manager is responsible for loading and unloading

Radio Components from the framework. The component manager can load components from a

variety of locations (e.g. local file system or internet) and present them in a generic form for

use by the Radio Engine.

• Control Logic Manager: The Control Logic Manager loads and unloads various types of

Control Logic for use by the Radio Engine. Control logic can be implemented in potentially

any language (currently C++ and Java are supported) so the manager must present each of

these control logic types in a generic way for use by the engine.

• IRIS API: The IRIS API is provided to allow the Component Framework to be integrated into

other applications. The API abstracts the particulars o f the Component Framework,

components and control logic from the user of the API providing a simple interface for the

construction o f reconfigurable radios

C hapter 5 — The IRIS Reconfigurable Radio C om ponent Fram ew ork | 98

Radio Configuration

XML Control Logic

Mr
Host Application

IRIS API

Control Logic
Manager

XML Parser

^ Reusable
Radio

'■ Components

U

Ra d io En g in e

Component
Manager

CO

Component Framework

Operating System

Figure 5.19 - The IR IS Radio Architecture

The operation o f the Component Framework is illustrated by the flow diagram shown in Figure

5.20. This diagram shows that there are three main stages a radio system goes through;

initialisation, running and cleanup. In the initialisation stage the X M L configuration is read,

verified and converted to an internal structure. The Radio Engine uses the internal structure in

conjunction w ith the Component Manager and Control Logic Manager to build the radio system.

During the running stage the engine controls the movement o f signals through the components o f

the radio system. Also, Control Logic can respond to events from the components and reconfigure

any aspect o f the system. Finally, at the cleanup stage all the resources used by the system are

released.

Chapter 5 — I he IRIS Reconflgurable Radio Component Framework | 99

Figure
5.20

-
Flow

Diagram

for
Creating

a
R

econfigurable
R

adio

"5

XML parser is used to read and
verify the syntax of an XML

► configuration. The
configuration is translated into

an internal representation

The radio engine reads
internal radio configuration
and verifies that the radio

structure is valid

The radio engine uses the
component manager to find,

load and instantiate the
components required to

implement the radio design

Initialisation

The engine traverses the tree
of Radio Components to verify
structure, allocate resources

and initialise each component

If specified, the engine uses
the Control Logic Manager to
load, find and initialise control

logic

START

The engine continually
calls upon components to

process signals, routing
outputs to inputs

Control Logic controls and
reconfigures the radio via
the control logic interface

Radio
Running

The engine is stopped.
I t cleans up by using

managers to unload all
components and

control logic

Cleanup

5.5.7 Radio Engine

The Radio Engine is the core o f the Radio Component Framework. The engine is responsible for

assembling a reeonfigurable radio from a set o f Radio Components. To achieve this it must be

possible to define a radio configuration that shows how Radio Components can be fitted together

X M L to define the radio configuration as it allows the representation o f hierarchical data and thus

was suitable fo r defining the structure o f a radio system.

The X M L file defines three things:

1. Components: The list o f components required in the radio system along w ith values for

configuring each component in a particular way.

2. Control Logic: Details about control logic. Control Logic is additional code written by the

radio designer to control components and to provide a generic way to a llow interaction

among components. Control Logic is application specific in that each type o f radio system

w ill have a different Control Logic implementation. Control Logic is discussed in detail in

Section 5.6.

3. Documentation: Details about the radio system being created, i.e. radio system name,

description and version.

The interaction o f components, X M L configuration and Control Logic are illustrated in Figure

thus allow ing the Radio Engine to translate this into a working radio system. It was decided to use

5.21.
Reconfigurable Radio Configuration Reusable Radio Components

XML CONTROL
LOGIC

Radio Engine

CONTROL
LOGIC

Working Radio System

Figure 5.21 - Interaction of Radio Engine, Radio Components and Control Logic

Chapter 5 — I he IR IS Reconfigurabic Radio I 101

5.5.2 Basic XML Configurations

The IRIS architecture defines its own XML configuration that allows a radio configuration to be

described. The following example demonstrates how a basic configuration can be used to combine

two Radio Components. In this example an FIR filter and a Decimator are being connected. A third

component (i.e. a signal generator component) is included in the example as a means o f supplying

input to the two components o f interest.

<radio>
<structure name="FilterAndDecimate">

<component type="SignalGenerator">
<parameters>

<signal>noise</signal>
<sampleRate>44100</sampleRate>
<blockSize>512</blockSize>

</parameters>
</component>
<component type="LowPassFIRFilter">

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</parameters>
</component>
<component type="Decimator">

<parameters>
<factor>8</factor>

</parameters>
</component>

</structure>
</radio>

S ignal G en e ra to r FIR Filter D ecim ation

Figure 5.22 — Basic Series of Components

Configurations are built via structures, specified via the < s t r u c t u r e > X M L tag. Structures

represent sequences o f components and can be combined to form almost any radio configuration.

Within a structure components are specified for inclusion via the <component> tag. The

<parameters> tag within this allows the individual parameters for a com ponent instance to be

specified. From the simple example shown above, the engine will use the component manager to

source and instantiate the ‘SignalGenerator’, ‘LowPassFIRFilter’ and ‘Decimator’
components. Following initialisation and start-up, the Radio Engine will continually call

Process () in each component passing outputs into inputs. All radio systems are constructed in

this way.

There are a few points that should be noted from the example above. Firstly, the order o f

components as they appear in the < s t r u c t u r e > XML tag is the same order the signal takes as it

passes through the components. (The only exception to this is when parallel components are used.

In this case the signal may be transferred to two structures or components, which appear one after

another in the configuration.) This approach simplifies the configuration mechanism without the

need for specialised structural languages.

Chapter 5 — The IRIS Reeonfigurable Radio i 102

Secondly, the S i g n a l G e n e r a t o r component demonstrates the automatic handling o f sample rates

and block sizes. The exact handling o f sample rates and block sizes is discussed in detail in the next

Chapter, Section 6.2.5. The S i g n a l G e n e r a t o r is the first component in the signal chain and thus

this component determines the sample rate and block sizes used in the chain. In the initialisation

phase the Radio Engine reads this signal format from the S i g n a l G e n e r a t o r and calls

C a l c u l a t e O u t p u t S i g n a l F o r m a t () on each subsequent component thereby working out

automatically the sample rates and block sizes to use between components.

Thirdly, the designer o f the radio system is abstracted from the details o f the platform, operating

system and implementation languages o f components. The engine maintains this abstraction and

also automates other facilities such as memory allocation.

5.5.3 More Complex Radio Configurations

Not all radio configurations are linear. IRIS was therefore designed to facilitate more complex

radio structures. Virtually any desired hierarchy o f components can be created by combining the

< p a r a l l e l > tag in XML with any o f the multiple structures available. The following discussion

describes the IRIS structures and details how they are realised in IRIS.

Duplicated Signal Path

It is often necessary to pass a signal to two or more processing algorithms (see Figure 5.23). For

example a design may require the filtering o f two signals with a comparison o f their result. IRIS

supports the automatic duplication o f signals. Figure 5.23 shows how the output o f a sine wave

generator can be passed to two FIR filters in parallel. The two filters are defined within one

embedded structure, within the overall structure. IRIS recognises the embedded structure and will

construct a signal path and include automatic duplication o f the signal to both filter components.

In this case the two components in parallel must be configured to accept a signal o f the same

sample rate as the same signal from the signal generator is copied and passed to both components.

During initialisation the Radio Engine will detect such inconsistencies, indicate an error and exit.

C hapter 5 — The IRIS R econfigurable Radio I 103

<radio>
<structure name="duplicated">

<component type="signalgenerator">
<parameters>

<frequency>440</frequency>
<samplerate>44100</samplerate>
<numsamples>1024</numsamples>
<waveforra>sin</waveform>

</parameters>
</component>
<parallel name="fliters"

exc1usive="false" selected="0">
<coraponent type="LowPassFIRFllter">

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</parameters>
</component>
<component Lype="LowPassFIRFilter">

<parameters>
<numtaps>32</numtaps>
<cutoff>O.OK/cutoff>

</parameters>
</component>

</parallel>
</structure>

S ig n a l G e n e r a to r

F IR Filter

FIR Filter

Figure 5.23 - A Duplicated Signal Path

For large amounts o f data the duplication o f signals can sometimes hinder performance, as a copy

o f the signal has to be created. For this reason IRIS only performs memory copying when

absolutely necessary. This is achieved by analysing the component layout. Signal copying is

avoided if IRIS detects that a particular component configuration will not corrupt a signal, thus

allowing the same signal to act as an input to multiple components.

Synchronous and Asynchronous Signal Paths

DSP designs often require multiple signals to be processed simultaneously. This accommodates

designs that use multiple input or output channels, or applications that require asynchronous

processing as is the case in a transceiver which requires both a transm itter and receiver path. IRIS

is capable o f processing multiple signal paths as it supports the expression o f multiple structures in

XML. IRIS supports two types o f signal paths, synchronous and asynchronous.

A synchronous signal path synchronises signals at particular points in the radio system. This

facility is required in designs that process one signal through multiple paths, each path containing

different numbers o f components. The general problem is illustrated in Figure 5.24. One signal

enters the system at X. This signal is copied, one copy applied to A, the other applied to D. The

result that appears at Y must be the result o f processing through A, B and C. Likewise the output at

Z must be the result o f the same signal processed by D and E. The order and technique used to

process signals is essential in ensuring that the output receives the processed blocks o f data at the

C hapter 5 — The IRIS R econflgurable Radio 104

same time even though they have taken different paths through the system. Without

synchronisation there would be a delay between the outputs o f these multiple paths.

B C
Y

Output

D E
Z

Figure 5.24 - Synchronisation in IRIS

Synchronisation is achieved in the IRIS system by grouping sets o f components into a structure.

Each structure is treated as a single component thus in the example in Figure 5.24, A, B and C

would be grouped for processing as would D and E. A single thread is used for processing which

eliminates the need for radio-wide synchronisation o f memory. In the example discussed. A, B and

C would be processed first with the result stored in memory, followed by copying the signal for

processing by D and E. Only then are the two resulting blocks passed to the output.

In contrast, asynchronous structures are executed in different threads in the operating system. In the

example above asynchronous operation would mean that (A, B, C) and (D, E) would be processed

by different threads. To simplify memory synchronisation the blocks o f memory used for

communication between these components is allocated from different pools o f memory, thus no

OS-level synchronisation such as mutexes are required. This type o f radio layout is more suitable

when completely separate structures o f components are required, an example being a transceiver. A

transceiver requires both transmit and a receive paths thus it makes sense to separate these out into

asynchronously. An advantage o f this technique is that the use o f multiple threads can also improve

performance in implementations that use a lot o f hardware I/O. A disadvantage o f this technique is

that memory cannot be shared between multiple paths therefore more memory may be required.

Figure 5.25 is an example o f where synchronous parallel paths are created. The < p a r a l l e l > tag in

XML is used to indicate to IRIS that two synchronous parallel structures are to be created. Figure

5.26 is an example o f where two independent asynchronous paths are created. The overall radio

configuration contains two base structures, both operating independently o f each other.

C hapter 5 — 1 he IRIS R econfigurable Radio I 1 0 5

<radio>
<structure name="FilterAndDecimate">

<parallel name="first" exclusive="false">
<component type="SignalGenerator">

<parameters>
<signal>noise</signal>
<sampleRate>44100</sampIeRate>
<blockSize>512</blockSize>

</parameters>
</component>
<component type="BandPassFIRFilter">

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</parameters>
</component>

</parallel>
<parallel name="second" exclusive="false">

<component type="SignalGenerator">
<parameters>

<signal>noise</signal>
<sampleRate>44100</sampleRate>
<blockSize>512</blockSize>

</parameters>
</component>
<component type="BandPassFIRFilter">

<pararaeters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</parameters>
</component>

</parallel>
</structure>

</radio>

S ig n a l G e n e r a to r F IR F ilter

S ig n a l G e n e r a to r F IR F ilter

Figure 5.25 - Multiple Synchronous Signal Paths

<radio>
<structure naint— "FilterAndDecimatel">

<component ̂yp^-'"SignalGenerator">
<paratneters>

<signal>noise‘/sLgnal>
<sampleRate>4 4100-. /sampleRate>
<blockSize>512</blockSize>

</parameters>
</component>
<component r ype="LowPassFIRFilter">

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</pararaeters>
</component>
<component t ype="Decimator">

<parameters>
<factor>8</factor>

</parameters>
</component>

</structure>
<structure name="FilterAndDecimate2">

<component i ype="SignalGenerator">
<parameters>

<signal>noise</signal>
<sampleRate>4 4100</sampleRate>
<blockSize>512</blockSize>

</parameters>
</component>
<component i yp''-''BandPassFIRFilter">

<parameters>
<numtaps>32</numtaps>
<cutoffLow>0.10</cutoffLow>
<cutoffHigh>0.20</cutoffHigh>

</parameters>
</component>

</structure>
</radio>

S ignal G en e ra to r FIR Filter D ecim ation

S ignal G en e ra to r FIR Filter

□ □ □
□ □

Figure 5.26 - Multiple Asynchronous Structures

C hapter 5 — The IRIS R econflgurable Radio j 106

Embedded Structure

At any point in the signal path IRIS supports embedded structures. This means that a group o f

components can be encapsulated to appear as ju s t one component. In the example in Figure 5.27

one o f the parallel paths contains an embedded structure.

<radio>
<structure -^"Fi 1 terAndDecimatel">

<component yp ’ "SiqnalGenerator">
<parameters>

<s igndl>noise</signal>
<sampleRate>4 4100</sampleRate>
<blockSize>512'-/blockSi ze>

</parameters>
</component>
<pdrallel nami- "branch" --.'v.-1 i v(^-"f alse">

<structure n.in-;; ="Fi 1 t.erAndDecimate2">
<component •yp= "Decimdtor">

<parameters>
<factor>8</factor>

</parameters>
</component>
<component t yP' ="BandPassFIRFilter">

<parameters>
<numtaps>32</numtaps>
<cutoffLow>0.15</cutoffLow>
<cutof fH igh>0.30</cutof fHigh>

</parameters>
</component>

< / s t r u c t u r e >
iromponent r y r "LowPd.ssFIRKi i t e r " >

< p a r a m e t c : G : '
<numt.api;>32' /riumtaps>
- c u t o f f > 0 . 0 5 ' i ' - i t ' j f f >

/ p d r a m e i f"l
‘ / (- o m p c j r i c ' r ; !

/para 1 '
' - / i L i UCi l u r e >

FIR F ilter

S ig n a l G e n e r a to r

FIR F ilter

Figure 5.27 - An Embedded Structure

Signal Routing

IRIS supports signal routing in that it allows a signal to be optionally routed to a particular

component. For example in Figure 5.28 the signal can be routed to one component or the other. The

route that a signal takes can be adjusted at runtime thus allowing dynamic designs to be

implemented. For example a modulation detection/classification component could cause the signal

to be routed to the appropriate demodulation component. The XML description file allows for this

by using the ‘selected’ and ‘exclusive’ options o f the <structure> tag. The

‘exclusive=true’ statement means that all routes are mutually exclusive thus only one route can

be chosen. The ‘selected="0"’ statement tells the engine which route to take and this value can

be changed at runtime.

M ultiple Inputs

Finally, IRIS allows signals from multiple com ponents to be passed to one component. This is

achieved via channels. Two signals from different components are combined as a multi-channel

signal for input to another component (Figure 5.29). Inputs can also come from embedded

structures. By combining all these constructs alm ost any DSP system can be achieved by the

engine.

C h a p te r 5 — The IRIS Rcconfigu rab le Radio 107

<radio>
<structure name="TwoFilters">

<component type="SignalGenerator">
<parameters>

<signal>noise</signal>
<sampleRate>44100</sampleRate>
<blockSize>512</blockSize>

</parameters>
</component>

<parallel name="branch" exclusive="true" selected="0">
<component type="LowPassFIRFilter">

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</pararaeters>
</component>

<component type="LowPassFIRFilter">
<parameters>

<numtaps>64</numtaps>
<cutoff>0.15</cutoff>

</parameters>
</component>

</parallel>
</structui:e>

</radio>

FIR Filter

Signal Generator

FIR Filter

Figure 5.28 - Signal Routing

<radio>
<structure n,;:;.. ■-"dupl icated">

<parallel "f ilters" - .i-s ;'./e="false"

<component ‘ yr-:”"signalgenerator">
<parameters>

<frequency>19000</frequency>
<samplerate>60000</samplerate>
<numsamples>4096</numsamples>
<waveform>sin</waveform>

</parameters>
</component>
<component ‘yp-: "signalgenerator">

<parameters>
<frequency>19500</frequency>
<samplerate>60000</samplerate>
<numsamples>4096</numsamples>
<waveform>sin</waveform>

</parameters>
</coraponent>

</parallel>
<component t yp;i-"costas">

<parameters>
</parameters>

</component>
</structure>

</radio>

Costas Loop

Signal Generator

Signal Generator

Figure 5.29 - A Component with 2 Input Channels

Chapter 5 — I'he IR IS Reeonfigurable Radio I 108

5.5.4 Internal Radio Representation

The XML parser must verify and convert the XM L configuration into an internal representation for

realisation by the Radio Engine. In early basic prototypes radio systems were built from series o f

components, in this case the only information that had to be stored internally was a list o f

components and their sequential order. However, as the design progressed it was recognised that a

more hierarchical design was required to facilitate all o f the constructs discussed in the previous

section. A model was designed that allows com ponents to be specified in a hierarchical order whilst

simultaneously catering for the needs o f signal processing.

The main problem that has to be addressed by the internal structure is synchronisation. The

embedded structures discussed in the previous section introduce a problem in that they allow

multiple components to be viewed as a single component. When single components are used in

parallel with embedded components the engine must ensure that all processing has completed

before the results are used. Figure 5.30 dem onstrates this by showing synchronisation points. All

processing o f components must be completed before passing beyond this point.

Synchronisation points

Embedded Structure
containing another

embedded structure

Figure 5.30 - Synchronisation o f Processing

Internally the radio system is represented as shown in Figure 5.31. To take account o f

synchronisation in the internal representation o f the radio, components and structures are stored in

entities called Units. Each Unit can contain either a com ponent or a structure, a structure being the

equivalent o f the embedded structure discussed above. M ultiple units are stored in a Parallel, the

C hapter 5 — The IRIS Reconligurable Radio 109

parallel being synchronised. Thus, during processing the Radio Engine goes through the hierarchy

o f the radio structure, processing each parallel in turn.

-IsMutuallyExclusive
-whichSelected
-collectionUnits

Parallel

-type
-instanceName
-parameters

RadioComponent

-radioComponent
-collectionStructures: Structure

Unit

-name
-isBaseStructure
-collectionParallels : Parallel
-collectionStructures : Structure

Structure

Figure 5.31 - Internal Representation of Radio System

5.5.5 IR IS A P I

As shown in the IRIS Radio Architecture diagram (see Figure 5.4), the architecture provides an

API (Application Programming Interface) called the IRIS API. This API encapsulates all the

functionality o f the Component Framework into one API that can be used by other applications to

create reconfigurable radio systems. The interface provided by the API is shown in Figure 5.32. In

the next chapter. Section 6.4 w ill demonstrate how this interface can be used in practice.

IRIS API

+IRISInitSystem()
+IRISGetVersion()
+IRISRedirectLogOutput(in whichEngine, in callback)
+IRISCreateEngine()
+IRISDestroyEnglne(in whichEngine)
+IRISSetComponentsDir(in whichEngine, in directory)
+IRISGetComponentsDir(in whichEngine)
+IRISSetJVM(in whichEngine, in javaVirtualMachineDirectory)
+IRISGetJ\/M(in whichEngine)
+IRISLoadRadio(in whichEngine, in pathXMLRadioConfiguration)
+IRISUnloadRadio(in whichEngine)
+IRISIsRadioLoaded(in whichEngine)
+IRISSetControlLogic(in whichEngine, in controlLogicinterface)
+IRISStartRadio(in whichEngine)
+IRISStopRadio(in whichEngine)
+!RISIsRadioStarted(in whichEngine)
+IRISGetError(in whichEngine)
+IRISGetXMLStructure(in whichEngine)

Figure 5.32 - Interface of the IRIS API

Chapter 5 — The IRIS Reconfigurable Radio I 110

5.6 Control Logic

Although components allow functionality to be abstracted and encapsulated into reusable units,

when com ponents are combined together dependencies naturally occur (coupling and dependencies

were discussed in Section 3.2.2). If for example (see Figure 5.33) a particular radio configuration

requires that component A is dependent on symbol timing information provided by component B,

then it follows that component A cannot operate without component B. If at a later date we want to

reconfigure to a new radio implementation which uses a different source o f symbol timing, then A

will have to be changed to accommodate this new dependency.

Dependency between A and B

Figure 5.33 - Component Dependency

IRIS allows components to remain independent and decoupled by introducing the concept o f

Control Logic which allows component interaction to be specified by an implementation that exists

outside the components themselves (see Figure 5.34). In addition. Control Logic is also abstracted

from the overall structure o f the radio implementation. This means that even if additional

components are added into a structure (such as inserting a new component between A and B) the

control logic will still function.

Control Logic

Figure 5.34 - Using Control Logic to Eliminate Component Dependencies

The Control Logic for IRIS can be implemented in either C++ or Java and is isolated from the

particulars o f components. Java in particular allows radio implementations to take advantage o f

Java’s vast class library. A simple API is provided in both C++ and Java to allow the Control Logic

to query and manipulate the radio through interaction with the Radio Engine. The interface

definition o f this API is shown in Figure 5.35. By making calls to this API the Control Logic can

manipulate the components o f a radio system.

C h a p te r 5 — The IR IS R e co n llg u rab le R adio C o n tro l L.ogic

«interfaces
Radio

+GetNumComponents()
+GetAIIComponents(inout array, inout size)
+FindComponent(in name)
+FindComponent(in name, in instanceName)
+FindParameter(in componentid, in name)
+SetParameterValue(in componentid, in parameterld, in value)
+GetParameterValue(in componentid, in parameterld, out value)
+FindEvent(in componentid, in name)
+SubscribeToEvent(in componentid, in eventid, in callback)
+UnsubscribeFromEvent(in componentid, in eventid, in callback)
+FindPort(in componentid, in name)
+SendDataToPort(in componentid, in portid, in data, in length)
+FindCommand(in componentid, in name)
+TriggerCommand(in componentid. in commandid)
+lnstantiateComponent(in type, in instanceName)
+ReplaceComponent(in existingComponentld, in newComponentId)
+lnsertComponentBefore(in componentldBefore, in componentldNew)
+lnsertComponentAfter(in componentldAfter, in componentldNew)
+RemoveComponent(in componentid)
+FindParallel(in name)
+ParallelSetSelected(in parallelld, in selected)
+ParallelGetSelected(in parallelld, out selected)
+ParallelSetExclusive(in parallelld, in exclusive)
+ParallelGetExclusive(in parallelld, out exclusive)

Figure 5.35 - Interface Control Logic uses to Control Radio

Lii<.e Radio Components, the Control Logic has a well-defined lifecycle and each controller must

implement the same interface for use by the Component Framework. Figure 5.36 shows the

interface definition for Control Logic. Three methods must be implemented;

Load(): This method is called by the Radio Engine to initialise the Control Logic. It provides a

reference to the Radio interface (Figure 5.35), a llow ing the Control Logic to interact and

reconfigure the radio system.

AttachToComponentsO: This method is called to a llow Control Logic to perform any initialisation

o f its own prior to the running o f the radio.

Unload(): This method is called by the Radio Engine to unload the Control Logic a llow ing it to

free its resources.

The lifecycle o f the Control Logic is depicted in U M L sequence diagram shown in Figure 5.37.

«interface»
ControlLogic

+Load(in radiointerface)
+AttachToComponentsO
+Unload()

Figure 5.36 - Controller Interface

Chapter 5 — The IRIS Reeonfigurable Radio Control Logic | 112

RadioEnglne ControlLoaic

1
t
1
1
I
1

Load Code and Create Instance i
^ 1

LoadO

Attach! oComponentsO

SubscribeT oEvents

AttachToComponents Complete
^--

Event Fired
N

TriggerCommand

SetParameterValue
\

SendDataToPort
\

UnloadO

Delete Instance and Unload

1
t
1
I
1
1

Figure 5.37 - Lifecycle of Control Logic

Chapter 5 — The IRIS Reconllgurable Radio Control Logic | 113

5.7 Worked Example

The overall operation o f the IRIS framework is best illustrated by an example. While the IRIS

system could be used for building many devices such as receivers, transmitters, test equipment and

signal analysis tools, the transceiver is the best example to illustrate its many features. A

transceiver incorporates both a receiver and transmitter and so is a good choice for demonstrating

how multiple sub-systems can co-exist and interoperate within the Component Framework. For this

example a digital FSK (Frequency Shift Keying) transceiver is considered.

5.7. 1 An FSK Transceiver

The FSK transceiver considered will allow digital data to be transmitted and received using the

IRIS system. This functionality could be used in many scenarios for example in communicating

digital speech or any form o f data. This raises the question as to what the operating parameters of

the device might be, e.g. frequency, data rate, bandwidth, etc. Usually in traditional radio design

these specifications determine the structure, hardware and capabilities o f the final device. For

example the data rates required to facilitate transmission o f speech and video are very different and

so will usually result in completely different hardware being used. Changing this rate if at all

possible usually requires a significant change in hardware forcing changes from clock frequencies

to firmware.

In the IRIS system however, all the specification o f the application is independent of low-level

hardware details. At this higher abstraction, system specifications are more decoupled from

hardware, for example the hardware architecture is never changed in response to a change in

transmission data rate. The one parameter that the system is dependent on is the overall processing

power of the architecture and once the GPP system provides enough processing capability many

radio types using different specifications can be implemented. This type of capability radically

changes the radio design paradigm affecting how radio systems can be viewed and constructed.

Instead of creating an FSK modulator for voice and another for data, one generic FSK software

component is created and by changing the parameters of this component many different types of

information can be accommodated.

With this approach in mind, designing the FSK transceiver becomes less about choosing operating

parameters and more concerned with functional partitioning o f the system via software

components. Once the appropriate generic components have been built, the radio system can be

configured via parameters to deliver the required specification.

C hapter 5 — The IRIS Reconflgurable Radio W orked Exam ple i 114

5.7.2 Partitioning the System

In approaching the problem o f building the FSK transceiver, the functional partitioning via

components is thus first considered. A basic design for an FSK transceiver is shown in Figure 5.38.

In the transm itter path a binary signal is modulated as an FSK signal using two local oscillators.

Each oscillator generates a signal corresponding to a binary ‘ 1’ or ‘0 ’ producing a waveform as

shown in Figure 5.39. This signal is then up converted, filtered and then converted to an analogue

signal. Likewise in the receiver branch the received signal is digitised, down converted and filtered.

The baseband signal is then demodulated by mixing it with two local oscillators at the same

frequencies as those in the transmitter. Following filtering, the transmitted data is recovered via an

‘integrate and dum p’ stage which outputs the stream o f received bits. (For simplicity a non­

coherent receiver is shown).

The actual air interface o f the radio system is facilitated by an RF front end. This device is

responsible for down-converting a signal o f interest for demodulation and for up-converting the

transm itting signal for transmission. As discussed in Section 2.4.3 up and down conversion can

work in various ways either through an IF or by using direct conversion (zero-IF). This example

assumes that an RF front-end exists that allows transmission and reception on a large range o f

frequencies with a suitable signal to noise ratio.

R e c e iv e r P a th
 ►

M ixer FIR F ilter

M ixer FIR F ilter
O sc illa to r

C o m p a re

FIR F ilter

O sc illa to r

M ixer

A/D
C o n v e rte rR e c e iv e d

S ig n a l

R F F ro n t
E nd

O sc illa to r

M ixerFIR F ilter
T ra n sm itte r

S ig n a l

O sc illa to r

FSKD/A
C o n v e rte r

O sc illa to r

i — ------------ ----------

Figure 5.38 - FSK Transceiver Design

C hapter 5 — The IRIS R econllgurable Radio W orked Exam ple | 115

Carrier 0 1 0 1 1 0 0 1m ■ II ■■
Figure 5.39 - FSK Waveform

There are various goals that must be addressed in partitioning such a system into components.

Firstly, there is the goal o f reuse. The aim here is to create components that can be reused in other

applications. This requires an effective com ponent granularity to be chosen. Secondly,

reconfigurability is an issue. The boundary o f components should facilitate structural

reconfiguration so that components can be replaced or inserted at runtime. For this to happen the

partitioning o f the system should be related to function, for example it makes more sense to replace

a reusable channel extraction component then it does to alter individual multipliers in a filter.

Thirdly, the structure o f components used should facilitate the operation o f the radio. Components

should be suitably identified as DSP, lO or Standalone components. Also, their composition should

occur logically, for example separating out the signal paths for transm itter and receiver.

Figure 5.40 shows how such a design can be partitioned into software components using the IRIS

system. There are many ways this partitioning can take place and various tradeoffs associated with

its implementation. For example, consider the channel extraction component. This component takes

a wideband signal, mixes it with a local oscillator, filters and then decimates the signal to a lower

sample rate. While this component could be built from separate mixer, filter and down sampler

components, it is sometimes better to encapsulate all this functionality into one component. Doing

so can offer opportunities to optimise the perform ance o f the component and is suited to radio

functions such as channel extraction that are particularly data intensive. For example, Welborn

[W elbom99bJ describes a technique for implementing narrow band channel extraction from

wideband receivers, a technique that reduces the processing requirement for channel extraction by

combining and reordering stages o f channel extraction.

On the other hand there are cases where optimisation may not be possible or required. The

transm itter o f the FSK transceiver is an example. Here separate components are used to implement

the up conversion, up sampling and filtering o f the signal before transmission. At this point the data

rates may not be so intensive and reducing the ability to optimise may be an acceptable loss in the

face o f gaining more reusable components.

Another example is the FSK dem odulator component. This contains a great deal o f functionality

that could be reused in other applications such as integrators, etc. However, the overall design must

Chapter 5 — I he IRIS Reconllgurable Radio Worked Example | 116

be considered and implementing this and larger structures via hierarchies o f com ponents can over

complicate a design making the radio design error prone and difficult to maintain. Also, if we want

to later replace the FSK demodulator with another demodulator it is much easier to replace one

component rather than a complex structure o f interconnected components. For this reason the best

approach is to partition the system via function, e.g. FSK modulator, down sampler, channel

extractor.

P ath

D ata Input
C om ponent

C hannel Extractor
C om ponent C om ponent

hXH5HI]
Oscillator ^

C om pare

Down
S am plerFIR Fitter

Bit Buffer
C onverter

O scillator

R eceived
Signal Oscillator

RF Front End
R F Front End Controller

C om ponent

D ata Output
C om ponent

FIR Filter
Compor>ent

FIR Filter

Up C onverter
Com porw nt

Up S am pler
C om ponent

FSK Modulator
Compor>ent

Lookup Table

C onverter
T ransm ttted

Signal

T ransm itter Path

Figure 5.40 - Partitioning of FSK Transceiver into Software Components

5 .7.3 Structures

With an appropriate component composition decided, an XML configuration can be written to

describe the design. This XML configuration is used by the Component Framework to create the

radio system. As discussed in Section 5.5.2 an XML file is used to define a set o f structures, a

structure being a set o f components. Internally the Radio Engine uses these structures to identify

how it should pass signals between components. Considering the FSK transceiver example, it

contains three sub-systems, the receiver, the transmitter and the RF front-end controller. To

separate out these sub-systems each is specified in a separate structure. Internally, the Radio Engine

assigns one thread to each structure and this thread controls all the interaction among components.

The use o f a thread for structures and hence multi-threading in general is an important

consideration for the Radio Engine. In general multi-threading offers advantages in that it can

improve performance and is a useful technique in partitioning code into separate functional units.

C hapter 5 — I he IRIS Reconfigurabie Radio W orked Exam ple | 117

However it can also introduce problems such as increased code complexity. M ulti-threaded code

often requires synchronisation by the use o f m utexes and semaphores, which can be difficult to

debug and maintain.

In terms o f the IRIS system there were various ways m ultithreading could have been used in the

processing o f signals. One option was to assign a thread to each component; in this way

components would be autonomous in their processing o f signals (see Figure 5.41). Using this

approach however, introduces some problems. Firstly synchronisation is required to pass signals

between components and secondly, this synchronisation must occur independently o f the radio

structure. It is difficult to have a system that uses threads for each component and at the same time

allow components to be developed without knowledge o f their place in the radio system. One aim

o f the system was to reduce the burden on the program mer and to make the system easy to use.

Therefore this approach was not used as overall it makes the radio system more complex.

Instead the approach used has been to use a single thread for each structure which has control over

the whole radio system. This greatly simplifies the com plexity o f Radio Components. In terms o f

the FSK transceiver example, this approach results in the engine using three threads; one for each

structure, the receiver, transm itter and RF front-end controller.

Single Thread Per Component Single Thread Per Structure

Figure 5.41 - Multithreading Approaches

The XML configuration to achieve this design is shown in Figure 5.42. This configuration shows

how the various parameters for the transceiver can be set.

C hapter 5 — 1 he IRIS R econfigurable Radio W orked Exam ple | 118

<?xml version="l.0" encoding="utf-8" ?>
<radio>

<description>
<name>FSK Transceiver</name> <comment>FSK Transceiver Example</comment>

</description>
<structure name="RFFrontEnd">

<component type="HardwareController">
<parameters>

<serialport>COMl</serialport>
<transmitfrequencY>100000000</transmitfrequency>
<receivefrequency>l00000000</receivefrequency>

</parameters>
</component>

</structure>
<structure name="Receiver">

<component type="a2dpci4020" instance="DataInput">
<parameters>

<samplingRate>4000000</samplingRate>
<outputBlockSize>524288</outputBlockSize>
<channel>K/channel>
<useExternalClock>off</useExternalClock>
<voltage>5</voltage>

</parameters>
</component>
<component type="ChannelExtractor">

<parameters>
<MixerFrequency>26947 00</MixerFrequency>
<NumberTaps>8</NumberTaps>
<FilterCutoff>0.07</FilterCutoff>
<Decimation>16</Decimation>

</pararaeters>
</component>
<component ype= "FSKDemodulator" ">

<parameters>
<BlockSize>4 0960</BlockSize>
<SampleRate>250000</SampleRate>
<SignalFrequencyl>10000</SignalFrequency1>
<SignalFrequency2>30000</SignalFrequency2>
<CarrierFrequency>20000</CarrierFrequency>
<SymbolLength>30</SymbolLength>

</parameters>
</component>

</structure>
<structure namf="Transmitter">

<component r ypf-="FSKModulator"">
<parameters>

<BlockSize>40960</BlockSize>
<SampleRate>250000</SampleRate>
<CarrierFrequency>20000</CarrierFrequency>
<SignalFrequencyl>10000</SignalFrequency1>
<SignalFrequency2>30000</SignalFrequency2>
<SymbolLength>30</SymbolLength>

</parameters>
</component>
<component type="UpSampler">

<parameters>
<ratio>4</ratio>

</parameters>
</component>
<component type="UpConverter">

<^parameters>
<MixerFrequency>190000</MixerFrequency>

</parameters>
</component>
<component type="FIRFilter">

<parameters>
<NumberTaps>32</NumberTaps>
<CutoffFrequency>0.05</CutoffFrequency>

</parameters>
</component>
<component ■; ype="DataOutput">

<parameters>
<0utputchannel>0</0utputchannel>
<ScaieFactor>2.0</ScaleFactor>

</pararaeters>
</component>

</structure>
</radio>

Figure 5.42 - XML Configuration for FSK Transceiver

C h a p te r 5 — 1 he IRIS R econfigu rab le Radio W o rk ed E x a m p le | 119

5.7.4 Control Logic

The last aspect of the system that needs to be addressed in how data can be input and output from a

device like an FSK transceiver. As introduced in Section 5.6, control logic is a general-purpose

mechanism for providing this type o f functionality. Control Logic provides a generic way to

perform interaction with components without requiring specific knowledge of the internal workings

o f a component or o f the structure of the radio itself.

Generic interaction with components is provided by the control facilities all components provide,

namely, properties, events, ports and commands. Properties allow control logic to change a value in

a component, for example a frequency setting. A piece o f Control Logic can use a component’s

events by providing callback functions that are triggered when a component fires an event. Ports

allow Control Logic to send data to a component and commands allow the logic to trigger the

running o f routines in a component. By using combinations o f these, control logic can control any

aspect of the radio system.

Control Logic mimics the type o f control functionality that might be found in the microprocessor of

a software-defined radio system or in the infrastructure of the J I RS SCA discussed in Section

2.5.2. Its similarities being that it controls and monitors the overall operation o f the device.

However, apart from this. Control Logic in the IRIS system is distinctly different. Unlike these

other systems the IRIS control logic is only loosely coupled to the components o f the radio system.

It has been specifically designed this way for reconfigurability. Components can be added,

removed and replaced from the radio system and the Control Logic will still function. This loose

coupling is maintained by the Radio Engine which abstracts the control logic from the engine and

by the APIs it provides. Instead o f providing direct access to components the Radio Engine acts as

a proxy to all control logic/component interaction, effectively maintaining separation between

control logic and components. Instead o f manipulating the parameters o f a component directly it

uses the standard facilities for component interaction provided by the framework (as demonstrated

in Section 5.6). By using calls such as SetParameter () and ReplaceComponent () the

radio system can be manipulated to achieve parametric and structural reconfiguration.

Returning to the FSK transceiver example, the requirement here is straightforward; the control

logic must be able to send data to the FSK modulator component for transmission and be able to

receive data from the FSK demodulator component following reception. This is illustrated in

Figure 5.43. For transmission the control logic accesses the ‘SendData’ port o f the FSK modulator

component it can then use the controller API to send data to the component. Internally the

component implements a handler function that allows it to react to the instruction to send data. For

reception the control logic subscribes to the ‘DataReceived’ event that the FSK demodulator

component provides. Every time data is received the Radio Engine calls a method in the Control

C hapter 5 — The IRIS R econllgurable Radio W orked Exam ple | 120

Logic thereby transferring the data from the com ponent through the proxy o f the engine and into

the controller.

R eceiv er Path

FSK Dem odulator
C om ponent

Mixer f i r Filter

C hannel Extractor
C om ponent

D ata Input
C om ponent

Mixer S am pler

A/D Bit BufferC om pare

O scillator

FIR Filter

D ata
R eceived

) O scillatorSignal

C hange
F requencyS tandalone

RF Front End Controller
C om ponent

CONTROL LOGICController

Up C onverter
C om ponen t

Mixer

D ata Output
C om ponent

Up S am pler
C om ponent C om ponent

Lookup T able

Bit Shifter
C onverter

T ransm itted
Signal

T ransm itter Path

Figure 5.43 - FSK Transceiver Using Control Logic

Figure 5.44 shows example control logic for the FSK transceiver (error reporting code has been

removed for brevity). This controller continuously listens for a signal on a specified frequency.

Once a signal is received it transmits ‘Flello’ and moves to the next frequency. During the calls to

Load {) and AttachToComponents () the control logic finds all the references it requires to the

components o f the radio system. It finds the ‘SendData’ port for transmission and subscribes to

the ‘DataReceived’ event from the demodulator component. When a signal is received the

frequency is incremented and the RF-Front End is instructed to move to a new frequency.

C hapter 5 — The IRIS R econllgurable Radio W orked Exam ple | 121

void Controller::Load(Enginelnterface *enginelnstance)
{

engine = enginelnstance;

bool Controller::AttachToComponents()
{

//Find the FSK modulator component
hComponentModulator = engine->FindComponent("FSKModulator");

//Find the ModulateData port of the FSK modulator
hPortModulate = engine->FindPort(hComponentModulator, "ModulateData"),

//Find the FSK Demodulator component
hComponentDemodulator = engine->FindComponent("FSKDemodulator");

//Subscribe to the SignalReceived event of the demodulator
engine->SubscribeToComponentEvent{hComponentDemodulator,

"SignalReceived",
(int)this,
SignalReceived);

//Find the FrontEnd component
hComponentFrontEnd = engine->FindComponent{"FrontEnd");

'/Find the parameter for setting the frequency
hParameterFrequency = engine->FindParameter(hComponentFrontEnd, "Frequency");

//Set the frequency to an initial value
currentFrequency = 100000000;
engine->SetParameterValue(hParameterFrequency, currentFrequency);

return true;

void Controller::Unload()
{
}

void Controller::SignalReceived(int identifier, void* data, unsigned int length)
{

Controller ‘instance = (Controller*)identifier;

/ 'Modulate/rrdnsm.:. 'he message 'Helif'
char ‘message = "Hello";
instance->engine->SendToPort(instance->hComponentModulator,

instance->hPortModulate,
(unsigned char*)message,
strlen(message)+1);

■■Change the operatLng rrequency of the RF Front End
currentFrequency += 1000000;
engine->SetParameterValue(hParameterFrequency, currentFrequency);

Figure 5.44 - Sample Control Logic Source Code

5.7.5 Reconfiguration

Section 4.2 discussed reconfigurability and how this can be broken down into parametric, structural

and application reconfiguration. This section demonstrates how the IRIS system achieves

reconfigurability in the context o f the FSK transceiver example.

The example o f the FSK transceiver already features parametric reconfiguration. When changing

the frequency o f the RF Front-End the control logic is changing a parameter o f the radio system

C hapter 5 — I he IRIS R econfigurable Radio W orked Exam ple | 122

and thus reconfiguring its functionality. Any param eter o f a component in the radio can be changed

in this way thus allowing any aspect o f the system to be reconfigured dynamically at runtime.

Internally inside components, the component must react to a parameter change. Each component

can optionally implement the ValueChanged () method and thus perform any recalculation or

reconfiguration required to react to a param eter change. For example, the FSK modulator

component may have to recalculate its lookup table to respond to a change in operating

frequencies.

Structural reconfiguration allows Control Logic to manipulate the structure o f the radio system by

adding, removing or replacing components at runtime. Also, when components are in parallel

signals can be routed to one or other components. To demonstrate how this works in the context o f

the FSK transceiver. Figure 5.45 shows how the FSK modulator component o f the transceiver can

be replaced at runtime.

void Controller::SignalReceived(int identifier, void* data, unsigned int length)
{

Controller ‘instance = (Controller*)identifier;

//Extract "he name c: "he modulator
char newModulationScheme = (char*)data;

•'■■'Create a new f-omponent-
HANDLE_COMPONENT hComponentNewModulator =

engine->InstantiateComponent(newModulationScheme) ;
it(hComponentNewModulator == INVALID_HANDLE_VALUE)
{

printf ("Un)cnown modulation scheme or component %s\n", newModulationScheme) ;
return;

)

i-'ep'-.ace \ht ex^; : ng du-.a* >r with the new jne
if(engine->ReplaceComponent(hComponentFSKModulator, hComponentNewModulator) == false)
(

p r i n t f ("Error replacing component, incompatible with this configuration");
return;

}

/■'Re ■ease ..hi existing modu/ator
engine->DestroyComponent(hComponentFSKModulator);

Figure 5.45 - Code for Replacing a Component at Runtime

In this example the data o f the received signal contains the name o f the new component that should

replace the existing modulator. Using this name the new component is instantiated and used to

replace the existing component with a call to ReplaceComponent {). This example demonstrates

that functionality o f the radio can be replaced at runtime. This shows that it is possible for radio

systems to alter their structure based on information received from other systems. This facility also

allows the FSK transceiver to become a general-purpose generic transceiver requiring only changes

in modulators and demodulators to enable new modulation schemes. (Chapter 7 will demonstrate

case studies showing how this type o f reconfiguration can be used in other scenarios).

C hapter 5 — The IRIS R econfigurable Radio W orked Exam ple | 123

The final type o f reconfiguration considered is application reconfiguration. This would require the

IRIS system to be reconfigured at runtime to implement a system using a different set o f

components, parameters and control logic, thus in the focused context o f the FSK transceiver this

facility holds less consequence. However, instead o f changing the radio application completely,

application reconfiguration can be used as a means to upgrade the software o f a reconfigurable

radio. With new components, parameters and control logic, a working radio system can be

reconfigured to a newer version possibly fixing bugs or enabling new capabilities. For example, in

the FSK transceiver example this could be used to upgrade the device by introducing a new

configuration with a new set o f parameters that allow for better data throughput. Application

reconfiguration can be programmed via the IRIS API which is discussed in the next chapter.

5.8 Summary

The focus o f this chapter has been the basic design and capabilities o f IRIS, a means o f building a

reconfigurable radio system using a component framework. The approach taken makes it extremely

simple to express the structure o f a reconfigurable radio system. Part o f this approach has been to

factor out as many common radio functions as possible into the framework so that radio system

design is simple and straightforward. This allows the system developer to concentrate on the design

o f radio systems without having to deal with recurring problems and issues surrounding platforms

and hardware. As demonstrated in the worked example, the system features application, structural

and parametric reconfigurability through a cohesive API. IRIS is thus a system that allows the

development o f highly reconfigurable radio systems.

C hapter 5 — The IRIS R econfigurable Fiadio Sum m ary | 124

Implementation and Analysis

6.1 Introduction

This chapter provides further insight into the reconfigurable radio concept by discussing the

practical implementation o f a real-life reconfigurable radio system. The IRIS Architecture

described in the previous chapter has been implemented as a fully functioning system and runs on

Windows 2000/XP. Implementation issues surrounding the Radio Component, the fundamental

unit for building reconfigurable radios in IRIS, are discussed in Section 6.2 and are followed by

practical examples in Section 6.3. Section 6.4 provides details o f the IRIS API and supporting

tools. The use o f external hardware is discussed in Section 6.5 with results o f scalability and

memory analysis o f the system presented in Section 6.6.

6.2 Implementing Radio Components

This section gives insight into the development o f Radio Components on W indows. It starts by

discussing some operating system issues o f relevance when considering component-based

reconfigurability. It then goes on to provide detailed technical information on how Radio

Components deal with different sampling rates and data types, how they carry out signal

processing, and how the Component Framework combines components together to create a radio

system.

6.2.1 Choice o f Operating System

There were no specific requirements o f the IRIS system that demanded a particular operating

system. All modem operating systems provide basic system services such as virtual memory,

multi-threading, networking and therefore any o f them would have been suitable for building the

core IRIS system. However, integrating the IRIS system with hardware posed a significant

challenge. During the course o f this research it was difficult to source A/D/A converters o f

appropriate specification and most o f them suitable for the task required W indows to operate

therefore Windows was a natural choice. Also, using W indows offered the opportunity to integrate

the IRIS system into the DAWN networking system, also a W indows-based system, the result o f

which is presented in Chapter 7.

125

6.2.2 Radio Components on Windows

The IRIS system was targeted for development in an object-oriented language such as C++, but the

C++ language itself does not have direct support for creating software components. In practice, it is

the operating system that dictates how code can be encapsulated and reused in this way. To

implement IRIS Radio Components for practical use the following questions had to be addressed

for the windows operating system:

• What form would a component take?

• How would components be loaded, unloaded and instances created o f a component at runtime?

• How would components expose their functionality?

The unit o f code reuse inherent to the W indows operating system is the DLL (Dynamic Link

Library). DLLs are libraries o f executable code that can be dynamically loaded from disk by

applications. It should be noted that while it would be possible to develop a completely proprietaiy

method for encapsulating code in the same way as a DLL, the DLL approach has a distinct

advantage. DLLs are highly integrated into the W indows operating system as it uses DLLs to

improve system performance. For example, if m ultiple threads on the same W indows computer use

the same DLL, only one copy o f the Dl.L code will be loaded and shared seamlessly between the

threads. This optimisation provides better overall system performance and is particularly important

for a software radio system that re-uses multiple components in a radio design. DLLs thus provide

an efficient mechanism for reuse.

DLLs make their functionality available or expressed in software terms, ‘expose their functionality’

through an export table. This table describes the functions that the DLL contains, functions that

other applications can make use o f by loading the DLL. Most windows development tools allow

the creation o f DLLs and functions written in languages such as C and C++ can be exported in this

way.

IRIS Radio Components have been realised using DLLs and each component is written as a

separate DLL. Each Radio Component DLL exposes two functions that the IRIS Component

Framework can use to create and destroy instances o f a component, CreateRadioComponent ()
and ReleaseRadioComponent() .

Figure 6.1 shows how these functions are exported from the DLL for a Radio Component. The

component in the example is the SignalGenerator component. As detailed in the previous

chapter, this component is used to generate a signal that can be fed to other components. When

CreateRadioComponent () is called an instance o f the specified component is created. Likewise

Chapter 6 — Im plem entation and A nalysis Im plem enting Radio C om ponents | 126

a call to ReleaseRadioComponent () deletes the instance o f the component. It should be noted

that while C++ has been used for this work, any language that supports the exporting o f code in this

way (i.e. virtual function pointer tables) could be used to build components.

e x t e r n "C" d e c l s p e c (d l l e x p o r t) Component* C r e a t e R a d i o C o m p o n e n t ()
{

r e t u r n new S i g n a l G e n e r a t o r C o m p o n e n t () ;
}

e x t e r n "C" d e c l s p e c (d l l e x p o r t) v o i d R e l e a s e R a d i o C o m p o n e n t { C o m p o n e n t * comp)
{

i f (comp != NULL) d e l e t e comp; I*

Figure 6.1 - Exporting a Component from a DLL

DLLs meet all the requirements o f the Radio Component, and are particularity suitable because

they contain native code. DLLs can be dynamically loaded and unloaded from the system using

calls to the Windows platform API functions LoadLibrary () and FreeLibrary () . Once

loaded, any number o f instances o f a component can be created using calls to

CreateRadioComponent 0 . These com ponent instances can then be used by the Component

Framework to realise the radio design. The overhead o f doing this is negligible as DLLs are an

integral and thus highly optimised aspect o f the W indows operating system.

6.2.3 Programming Radio Components

As shown in the previous section, the functions exported by the DLL is straightforward requiring

only two functions, however the actual implementation o f a Radio Component itself is more

involved. As shown in Chapter 5, Section 5.4, IRIS Radio Components are rich in functionality and

as a result require the implementation o f many interfaces. While the IRIS system was designed to

facilitate rapid development and experimentation o f radio systems, having to implement numerous

interfaces to create a component can be tedious. To solve this problem a scripting language and

code generator has been developed to automate the process.

The scripting language is written as part o f the C++ header file o f a component. The programmer

writes attributes alongside C++ code. These attributes expose information about the component and

identify the properties o f the component. (A ttributes are hidden in C++ comments to avoid

com piler errors). Properties include parameters, events, ports and commands as discussed in the

previous chapter. Before compilation a Java-based parser reads these attributes and generates

seventy methods offering all the functionality required by the Component Framework. The reason

so many methods are required is to facilitate function overloading so components can support

C ha p te r 6 — Im plementa tion and A nalysis Im ple m e n ting R ad io C o m p o n e n ts | 127

multiple data types for parameters and events. A full list o f these methods are included in Appendix

1 0 . 1 .

Figure 6.2 shows the C++ header file o f a SignalStrength component. This simple component

has been designed to tire events indicating whether the signal received is above or below a

threshold value.

--
//@component analyses the signal strength of the incoming block
//@version 1.1
//Sauthor Philip Mackenzie
//@event SignalAboveThreshold float fired when the signal level is greater than threshold
//@event SignalBelowThreshold float fired when the signal is less or equal than threshold
class SignalStrengthCoraponent : public DSPComponent
{
private:

//Sparam the threshold in dB at which a signal exists
//©default -144
//@dynamic
int threshold;

public:
virtual void GetDetails(ComponentDetails ‘details);
virtual void CalculateOutputSignalFormat();
virtual bool InitO;
virtual void Process(Signal signal);
virtual void Destroy();

) ;

Figure 6.2 - Header File o f a Signal Strength Component

Each line starting with ‘/ / 0 ’ indicates an element o f the scripting language. For example, the line;

//0event SignalAboveThreshold float fired when the signal level is greater than threshold

indicates that this component exposes an event called ‘SignalAboveThreshold’ and every time

this event is tired it supplies a floating point value. The remainder o f the line allows the

programmer to provide information about the event.

The declaration:

//@param the threshold in dB at which a signal exists
//@default -144
//@dynamic
int threshold;

exposes one o f the member variables o f the class as a parameter o f the component. The

V / 0 p a r a m ’ Statement must be included and indicates that t h r e s h o l d will be exposed as a

parameter, ‘/ / © d e f a u l t ’ provides a default value for the threshold. The engine automatically uses

this value if none is supplied, ' / / © d y n a m i c ’ indicates that this component can be changed

dynamically at runtime and the engine will inform the component when this value has changed

C h a p te r 6 — Im plem en ta t ion and A nalys is Im ple m e n ting R ad io C o m p o n e n ts | 128

through the ValueHasChanged () method. A full list o f the commands supported is included in

Appendix 10.2.

Overall, the code generator automates the process o f creating a Radio Component allowing the

programmer to concentrate on the implementation o f radio functionality. This greatly reduces the

time required to build and test components.

6.2.4 Dealing with Signals

An important issue when designing the Radio Component was how it would deal with signals,

more specifically:

• How should numeric samples be stored?

• How should signals (multiple samples) be manipulated by components?

Samples must be stored using a data type that suits the particular application. The data type used to

store samples must offer enough dynamic range to allow the full range o f digital sample values to

be represented in the radio system. Dynamic range is the ratio between the largest and smallest

numbers that can be represented. For example, 16-bit integers offer the ability to represent numbers

from -32768 to 32767 which corresponds to a dynamic range o f approximately 96 dB. Devices

such as DSPs and in particular FPGAs can be limited in the number o f data types available.

However the flexibility o f the GPP offers a variety o f data types, ranging from both signed and

unsigned integers to floating point representations (see Figure 6.3).

Name Bits Range Dynamic Range
Signed Integers 8 -128 to 127 48.1dB

16 -32768 to 32767 96.3dB
32 - 2147483648 to 2147483647 192.7dB

Unsigned Integers 8 0 to 255 48.1dB
16 0 to 65535 96.3dB
32 0 to 4294967295 l92.7dB

Floating Point (Single Precision) 32 1.4 X 1 0 " '^ to 3 .4 x 10^* 1668dB
Floating Point (Double Precision) 64 4.9 X 10-’ '̂* to 1.8 X lO’®* 12630dB
And also complex number combinations o f each, for example two 16-bit signed integers could be

used to represent a complex number, thus resulting in 32-bits being used.

Figure 6.3 - Data Types Supported by IRIS

The choice o f data type influences the implementation o f the overall application. For example,

choice o f data type can have a dramatic effect on the amount o f memory used in the system with a

move from 8-bit to 32-bit representation causing a quadrupling in memory requirements. Data

types can also affect performance with differences occurring between calculations performed using

Chapter 6 — Im plem entation and Analysis Im plem enting Radio C om ponents | 129

integer and floating point arithmetic. The perform ance hit may be due to capabilities o f the

underlying processor or to the fact that increased am ounts o f data need to be transferred to and

from RAM.

IRIS components can support multiple data types, meaning that they can consum e and produce

signals o f any o f the supported data types. Internally, no restrictions are placed on the use o f data

types. Programmers are free to use techniques such as tem plates to develop generic algorithms that

work with many different data types. However, care should be taken when doing this as moving

between data types can introduce subtle errors caused by loss o f precision. For example, if an

algorithm is implemented using a double precision floating point number then moving to a signal

precision floating point or even an integer data type will change the precision o f the calculation.

This can change the accuracy o f the calculation and have an overall effect on the output o f the

algorithm.

For the IRIS system, a primary aim was flexibility and thus it was necessary to be able to

inherently support multiple data types in the system. This raises problems however as the desire is

to create components that are highly compatible, yet incompatible data types can break a system.

To overcome this problem the IRIS components were designed so that they can accept and produce

multiple data types but in a well defined way. A component exports a method called

GetDetailsO which the Component Framework uses to obtain information about the signal

formats a component can produce and consume. The framework uses this information to verify the

validity o f a radio design by checking that the input and outputs between components are

compatible.

Another flexibility issue is how signals or blocks o f multiple samples are handled by the system.

IRIS uses the common signal processing approach o f treating signals as blocks o f data. Blocks are

stored in memory as a series o f sequential samples. For DSP applications it is also useful to be able

to represent signals using complex numbers. Complex numbers require the use o f two numbers to

correspond to the real and imaginary values o f a com plex number. IRIS inherently supports the

data types and their corresponding complex combination o f all the data types shown in Figure 6.3.

Another concern is multiple signals, as it is common for signal processing algorithms to produce or

consume multiple signals. The problem is that IRIS must allow multiple signals to be represented

and at the same time be able to ensure the validity o f a radio configuration. For simple cases this is

not a problem, for example an I (In-phase) and Q (Quadrature) signal is often represented as a

complex signal therefore a complex data type can be used. But for implementations requiring

multiple arbitraiy/ channels, this method is not suitable. For example, a narrow-band channel

extraction component may output eight channels o f data from only one input.

C hapter 6 — Im plem entation and Analysis Im plem enting Radio C om ponents | 130

O ne possib le solution to support this is to use bigger block sizes (o r a larger da ta type) to allow

m ultip le signals to be com bined together. H ow ever, th is requires the program m er to im plem ent

code to com bine and extract the m ultiple signals upon input o r output, som eth ing that causes

additional processing overhead and can lead to error-prone code. For th is reason IRIS inherently

supports channels. C hannels allow a com ponent to input or output m ultip le sim ultaneous channels

o f data. In m em ory IRIS stores sam ples and channels sequentially as depicted in Figure 6.4. By

inherently supporting channels in the arch itectu re , the program m er does not have to resort to a

personal m eans o f passing m ultip le signals betw een com ponents.

Start of Memory Block

i
I Channel 0 I Channel 1

I I I
Figure 6.4 - Sequential Layout of Samples and Channels in Memory

6.2.5 Block Size and Sample Rate

The term ‘block s ize’ refers to the size o f data used to transfer a portion o f a signal betw een

com ponents. From early prototypes it becam e ev ident that m ultip le block sizes w ere required for

the IRIS system for various reasons. Firstly, a fixed block size lim its the ab ility to reuse a

com ponent in d ifferen t scenarios, as it is d ifficu lt to com bine code that requires d ifferen t block

sizes in a generic way. For exam ple, an algorithm requiring a fixed block size o f 200 sam ples will

require alteration to deal w ith a block size o f 201 sam ples. Secondly, block size is directly

proportional to the latency o f the system . Block size can be an im portant param eter in tun ing the

system to both application and perform ance requirem ents. F inally, som e hardw are devices (or their

device driver im plem entations) can often specify a set range o f block size values. By

accom m odating a varying block size it is possib le to w ork w ith various d ifferen t types o f hardw are

input/output devices w ithout having to a lter com ponents. For th is reason, all IRIS com ponents

support variable input and output block sizes.

D eveloping algorithm s to be variable in block size can com e as quite a change to ex isting DSP

developers. In m any ex isting applications block sizes are fixed, especially in app lica tions w here the

sam ple rate o f the signal being processed does not change. For exam ple, m any audio DSP

im plem entations alw ays use the sam e sam ple rate o f 44.1kH z, therefore static block sizes and

C hapter 6 — Im plem entation and Analysis Im plem enting Radio C om ponents | 131

hjnce static latencies are common. DSP processor implementations mostly use fixed block sizes

aid the code implementations are fixed to a particular block size/latency.

Ir software-based radio applications however, the block size can change throughout the signal

p ocessing chain. This is because the sample rate o f the signal often changes many times as it

n^akes its way through the path o f the receiver or transmitter. The receiver example in Chapter 5,

F gure 5.3 (Section 5.8) was an example o f a radio system in which the sample rate changes. In that

Cise the signal o f interest was down-converted and then down-sampled to a lower frequency.

Cown-sampling reduces the sample rate o f the signal. Down-sampling (and up-sampling) occur

oiten in radio applications as high sample rates require large amounts o f data to represent a signal.

Manipulating the sampling rate o f the signal path can have a dramatic effect on the performance o f

the system reducing the processing requirements by many orders o f magnitude. In general, in the

rtceiver the aim is to reduce the sample rate as soon as possible after reception. In the transm itter

the aim is to increase the sample rate as late as possible before transmission. Each different radio

scheme will have different signal characteristics and therefore there is no generic way to dictate

how the sample rate can be manipulated. To address the problem o f multiple sample rates and

hence varying block sizes, the IRIS architecture inherently supports variability o f these parameters.

Where possible IRIS components are built to work at any sample rate, with any block size and with

a variety o f data types.

The Component Framework automatically handles all calculations involving block sizes, sampling

ra:es and data types. This is illustrated in Figure 6.5. This diagram shows a sequence o f

components that produce and consume different numbers o f samples. The blue boxes in the middle

describe the function o f each component and what it is configured to do. The green and yellow

bcxes on the right show how the data type, sample rate and number o f samples are used in

calculating the memory required to store the output o f a com ponent for a given input. For example,

the Down Sampler component is configured to decim ate the incoming signal by a factor o f eight.

Thus, the signal entering this component with a sample rate o f 160kHz (160,000 samples per

second) and a block size o f 3200 samples will require a memory block o f 6400 bytes. After

decimation the output block size required is reduced, as the number o f samples produced is 400

requiring a block size o f 800 bytes. Similarly the ‘Scale and Convert’ component causes a different

block size to be output as it changes the data type o f the input signal from a 16-bit integer to a 32-

bit floating point number.

These calculations are carried out in the initialisation phase o f each radio system. I ’he IRIS system

starts at the beginning o f the signal processing chain by looking at the output produced by the first

component. Each component is given the sample rate, number o f samples and data type it will be

C h ap te r 6 — Im plem en ta tion and A naly s is Im p le m e n tin g R ad io C o m p o n en ts | 132

rceiving. A component must then calculate the output it will produce for that given input. This

nians that the person designing the radio system only has to specify the sample rate and data type

fr the first component. The engine autom atically calculates the values required for the rest o f the

sstem based on this first component. If any mismatch occurs during this operation the IRIS system

idicates an error and exits. This can occur when the data type produced by one com ponent is not

soported by the next. Another example is when a hardware device requires a fixed block size and

a:omponent either produces too many or too few samples. In this case a buffering component can

b used or the designer can change the sample rate o f the first component so that the correct block

S’.e is produced where required.

Signal
3enerator

FIR
Filter

Down
Sam pler

Convert and

Up
Sam pler

Signal Generator

Output: Noise
Sample Rate: 160kHz
Block Time: 20ms
Block Length: 3200 Samples
Data Type; 16bit(2bytes)
Block Size: 6400 bytes

HR Filter

Low Pass Filters the
signal with a cutoff
frequency of 5kHz

Down Sampler

Decimates the signal by a
factor of 8

Scale and Convert

Converts the data type to
single precision floating
point and scales it to
values from -1.0 to 1.0

Up Sampler

Upsamples the signal by a
factor of 4

Down Sampler Output

3200 / 8 = 400 samples
No. Samples: 400
Sample Rate: 20kHz
Output: 800 bytes

________ FIR Filter Output
No. Samples: 3200
Sample Rate: 160kHz
Output: 6400 bytes

Signal Generator Output

No. Samples: 3200
Sample Rate: 160kHz
16bit=2 bytes per sample
3200 * 2 = 6400 bytes
Output: 6400 bytes

Up Sampler

400 * 4 = 1600 samples
No. Samples: 3200
Sample Rate: 160kHz
Output: 6400 bytes

Scaler and Converter Output
sizeof (float) - 4 bytes
400 * 4 = 1600
No. Samples: 400
Sample Rate: 20kHz
Output: 1600 bytes

Figure 6.5 — Automatic Calculations Performed by the Framework

C h o le r 6 — Im plem en ta t ion and A nalys is Im ple m e n ting R ad io C o m p o n e n t s | 133

6.2.6 Implementing ProcessQ

By im plem enting the Process () m ethod a com ponent m akes availab le o r exposes its

functionality . T w o types o f Process () calls are available, in-place and not in-place. Signals are

passed to a com ponent via a data structure that contains pointers to m em ory that can be used to

input or ou tput data (see Figure 6.6). T his data structure also provides access to the various

input/output channels o f the com ponent and to num eric values w hich indicate tim estam ps and

sam ple counts. T hese values can be used to im plem ent specific tim ing logic in com ponents.

struct Signal
{

void *data;
void *channel[MAX_NUM_CHANNELS];
long timestamp;
long samplestamp;

};

Figure 6.6 - Struct Definition used by Process()

To dem onstrate a typical scenario, Figure 6.7 show s an sim ple Process {) m ethod o f an in-place

com ponent that doubles the am plitude o f the incom ing signal.

void MyComponent::Process(Signal inout)
{

float *sig = (float*)inout.data;
for(int i=0; i<SignalFormatInput.blockSize; i++)
(

sig *= 2.Of;
}

}

Figure 6.7 - Example Process() Method

D uring the in itialisation phase o f the rad io each com ponent is configured w ith a particu lar signal

form at w hich can be accessed by the SignalFormat data structure as show n in Figure 6.8. This

data structure provides the developer w ith essential configuration inform ation about block sizes,

sam ple rates, channel inform ation and da ta types. T his inform ation is used continuously by a

com ponent in its calculations.

struct SignalFormat
{

int blockSize;
int numChannels;
int samplingRate;
DataType dataType;

Figure 6.8 - Signal Format Struct

C h a p te r 6 — Im plem enta t ion and A nalys is Im p le m e n tin g Radio C o m p o n e n ts j 134

6.3 Radio Component Examples

6.3.1 Worked Example

To demonstrate how a practical Radio Component is created, the design o f an FSK (Frequency

Shift Keying) modulator is considered. The function o f this Radio Component is to take data and to

generate an FSK signal for further transmission by other components. This example demonstrates

how the component can use the facilities available in the IRIS architecture to expose the

functionality o f a component in a generic way.

As discussed, each Radio Component in IRIS is defined via its parameters, events, ports and

commands. Figure 6.9 below shows the properties that can be used to define an FSK component.

Property Type Description
Parameters
SampleRate
BlockSize
CarrierFrequency
SignalFrequencyl
SignalFrequency2
SymbolLength

Events

The sample rate o f the output FSK signal
The number o f samples to output fi-om the component
The frequency o f the carrier signal
The frequency o f the first signal
The frequency o f the second signal
The length in samples for one symbol

DataModulated

Ports

Fired when the data has been modulated

ModuiateData

Commands

When data is sent to this port it is modulated using FSK

Reset Resets the modulator aborting all transmissions

Figure 6.9 - Properties o f FSK Component

To expose this information from the component the code in Figure 6.10 is written. From the header

file in the figure, the code generator generates the XM L definition o f the component as shown in

Figure 6.11. The code generator can then use this XML description to generate all the code

required for the component to be used by the Com ponent Framework (as discussed in Section

6.2.3).

C hapter 6 — Im plem entation and Analysis Radio C om ponent Exam ples [135

//©component modulates data using Frequency Shift Keying
//©version 1.1
//©author Philip Mackenzie
//©port ModulateData modulates the data sent through the port
//©event DataModulated int fired when the data has been modulated
//©command Reset resets the modulator
class FSKModulatorComponent : public lOComponent
(
private:

//©param whether to output debugging information
//©default false
bool debug;

//©param what block size to produce
//©default 2048
int BlockSize;

//©param the sampling rate in samples per second
//©default 44100
int SamplingRate;

//©param the first frequency in Hz
//©default 600
//©dynamic
int SignalFrequencyl;

//©param the second frequency in Hz
//©default i200
//©dynamic
int SignalFrequency2;

//©param the symbol length of a bit in Hz
//©default 300
//©dynamic
int SymbolLength;

//©param the frequency of the training carrier in Hz
//©default 900
//©dynamic
int CarrierFrequency;

. . . . Truncated

Figure 6.10 - C++ Header File Definition of FSK Modulator Component

To implement the actual signal processing code o f the FSK component the developer must

implement the lifecycle o f the component as discussed in Section 5.4.3 and the methods to receive

data. For example. Figure 6 .12 shows the code used to respond to data sent to its port. When data is

received the component allocates memory for the data and copies it to this location. It then signals

an event to indicate that modulation should occur and waits for this to com plete. This is required as

information can arrive into ports asynchronously and thus this code has to wait until calls to

Process () have occurred to modulate the data. When completed it fires an event using

ActivateEvent () to notify externally subscribed code that processing has completed.

C hapter 6 — Im plem entation and Analysis Radio C om ponent Exam ples | 136

<component type="fskmodulator">
<description>

<name>FSKModulator</name>
<author>Philip Mackenzie</author>
<version>l.l</version>
<information>modulates data using Frequency Shift Keying</information>

</description>
<parameters>

<parameter name="BlockSize" type="int" id="VALUE_BLOCKSIZE">
<description>what block size to produce</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>2048</default>

</parameter>
<parameter name="SamplingRate" type="int" id="VALOE_SAMPLINGRATE">

<description>the sampling rate in samples per second</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>44100</default>

</parameter>
<parameter name=”SignalFrequencyl" type="int" id="VALUE_SIGNALFREQUENCYl">

<description>the first frequency in Hz</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>600</default>

</parameter>
<parameter name="SignalFrequency2" type="int" id="VALUE_SIGNALFREQUENCY2">

<desciiption>the second frequency in Hz</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>1200</default>

</parameter>
<parameter name="SymbolLength" type="int" id=”VALUE_SYMBOLLENGTH">

<description>the symbol length of a bit in Hz</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>300</default>

</pararaeter>
<parameter name="CarrierFrequency" ‘ype="int" Ld="VALUE_CARRIERFREQUENCY">

<description>the frequency of the training carrier in Hz</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>900</default>

</parameter>
</parameters>

<events>
<event name="DataModulated" type="int" id="EVENT_DATAMODULATED">

< id>EVENT_DATAMODULATED</id>
<description -fired when the data has been modulated</description>

</event>
</events>

<ports>
<port name="ModulateData" id="PORT_MODULATEDATA">

< i d> PORT_MGDULATEDATA</id>
<description>modulates the data sent through the port</description>

</port>
</ports>

<commands>
<command name="Reset" id="COMMAND_RESET">

<id>COMMAND_RESET</id>
<description>resets the modulator</description>

</command>

</commands>

</component>

Figure 6.11 - XML Generated to Describe the FSK Modulator Component

C hapter 6 — Im plem entation and Analysis Radio C om ponent Exam ples | 137

bool FSKModulatorComponent::ProcessPortData(int portid, unsigned char* data, int length)

//Allocate memory and copy in received data
dataToTransmit = new unsigned char(length];
dataToTransmitLength = length;
memcpy(dataToTransmit, data, length);

//Signal that the data should be modulated and wait
//unti ; It has been completed
SignalObjectAndWait(hEventWait, hEventComplete, INFINITE, FALSE);

//Deallocate memory
delete [] dataToTransmit;
dataToTransmit = NULL;
dataToTransmitLength = 0;

//Fire event to indicate to external subscribers that
//the data has been modulated
ActivateEvent(EVENT_DATAMODULATED, length);

return true;

if(portid == PORT_MODULATEDATA)

return false;

Figure 6.12 - Code to Implement Data Received Port

When Process () is called it must generate an FSK waveform as shown in Figure 6.13. This may

require multiple calls to Process {) as the signal may span multiple blocks o f data. The

com ponent can make use o f the lifecycle o f the com ponent to prepare itse lf for processing. For

example, a com ponent can use the Init () method to pre-calculate lookup tables which can be

used to generate the waveform, i'his reduces the am ount o f processing required in the Process {)
method to generate the FSK waveform.

Carrier 0 1 0 1 1 0 0 1

■III Time

I
Figure 6.13 - FSK Waveform

Once the FSK com ponent has been compiled as a DLL it can be used in any radio configuration

using the X M L shown in Figure 6.14.

C hapter 6 — Im plem entation and Analysis Radio C om ponent Exam ples | 138

<component type="FSKModulator" instance=''MyModulator">
<parameters>

<BlockSize>40960</BlockSize>
<SampleRate>250000</SampleRate>
<SignalFrequencyl>10000</SignalFrequencyl>
<SignalFrequency2>30000</SignalFrequency2>
<CarrierFrequency>20000</CarrierFrequency>
<SymbolLength>30</SymbolLength>

</parameters>
</component>

—— — T H a — ■ ' * " ■*-

Figure 6.14 - XML for Configuring an FSK Modulator Component

This example has demonstrated the development o f a single component, however over fifty

components have been developed for use in the IRIS system for use in this and other related

research. The next sections briefly outline some o f the more interesting o f these that provide insight

into the reconfigurable radio concept.

6.3.2 Signal Processing Components

A variety o f components have been written implementing the standard functions required in radio

systems. Examples being;

ChannelExtractor; This component extracts a channel o f interest from a wideband source

FIRFilter: Filters a signal using an FIR filter

DownSampler: Down samples (decimates) a signal to a lower sample rate

UpSampler: Up samples a signal to a higher sample rate

SignalScaler: Scales (amplifies or attenuates) a signal by a specified amount

SignalDetector: Detects when a signal is present

These components can be used as fundamental building blocks when designing many radio

systems.

Modulation and demodulation are also catered for with a variety o f analogue and digital schemes.

The simplest o f these allow operation with AM and FM analogue signals, a variety o f digital

schemes such as the FSK example presented, but also other researchers have concentrated on using

IRIS for more complex modulation schemes such as OFDM (Orthogonal Frequency Division

M ultiplexing) [Nolan2003a, Nolan2003b, Nolan2003c, Nolan2003d]. This work has produced

promising results demonstrating that a generic OFDM component can be written which can be

reconfigured to work with a variety o f operating parameters.

Also in related research to this work, techniques for performing automatic modulation detection

have been developed. These allow a radio system to reconfigure itself dynamically according to the

detected modulation scheme o f the incoming signal. The IRIS system has been used as the basis for

C hap ter 6 — Implementation and Analysis Radio C om ponent Exam ples | 139

this work and further information can be found in [Nolan2001, Nolan2002a, Nolan2002b,

Nolan2002c].

Specific applications have been catered for too; for example components have been built to handle

specific 2-way radio systems and another allows decoding o f a proprietary data communications

module. Another researcher has used IRIS to build an RDS (Radio Data Signal) [Flood2003]. This

receiver reuses some o f the standard signal processing components mentioned above in addition to

a ‘Costas Loop’ component and ‘RDS Decoder’ component.

6.J.J lO Components

A variety o f components have been written to allow both the input and output o f signals using

external hardware. Section 6.5 will discuss the use o f IRIS with hardware in more detail, but in

terms o f the components involved there are a new points worth noting.

lO components specifically cater for the input and output o f signals. The idea is that any signal

source or signal output can be encapsulated as a standard component. This means that lO

components can be used interchangeably in a system to process signals in different ways. While

most radio systems will be built for one particular piece o f input^output hardware (or RF front-end),

during the testing phase it is advantageous to be able to route signals to different hardware. This

can be achieved in the IRIS system by replacing the lO component to route the signal to another

piece o f hardware to even to write it to a file.

The components currently written for the IRIS system allow the input and output o f signals to a

variety o f PC hardware. Examples are:

A2DPCI4 020; A component allowing input from a 20M Hz PCI A/D Converter

DAC0412HS: A component allowing output to a 250kHz D/A Converter

WaveOut: Allows audio output using W indows audio API

Wavein: Allows audio input using W indows audio API

DirectxOut: Allows audio output using DirectX API

Directxin; Allows audio input using DirectX API

ASlOOut: Low latency audio output using the ASIO standard

ASIOIn: Low latency audio input using the ASIO standard

In addition to higher frequency DAC and ADC converters, this list shows that components have

been written to accommodate a variety o f audio standards. Although this type o f hardware does not

allow operation at RF frequencies, they are useful in testing the basic functions o f the system.

ASIO (Audio Streaming Input Output) has been particularly useful [Steinberg99]. ASIO is a

Chapter 6 — Im plem entation and Analysis Radio C om ponent Exam ples | 140

standard for low latency audio allowing deterministic input and output o f digitised audio signals in

real-time. This provided a valuable test environment for verifying the functionality o f the IRIS

sjstem as its low latency operation better mimics an RF front-end even though it operates at a

lower sampling frequency. A practical radio system using RF frequencies is discussed in Section

6 .5 .

6.3.4 Testing Components

A series o f components have been developed for testing purposes. Some o f these are particularity

interesting, as they do not have counterparts in the analogue world. For example, o f great

importance has been the ability to write and read digitised RF waveforms directly to/from the hard

disk. This effectively allows the recording o f RF signals that can be processed later offline by re­

reading in the waveform from a file. This makes it very easy to test the implementation o f Radio

Components and complete systems as a receiver can be tested against real test signals offline

without having to use external RF test equipment. For example, the ADC card allows the

digitisation o f a large bandwidth up to lOMHz, and using a FileWriter component this signal

can be written to a file. In this raw state the signal o f interest can be analysed later to assess its

frequency content and to perform tuning in software by extracting different signals from the

wideband source. This changes the radio design paradigm in that radio signals become much more

accessible and facilitates the development o f new types o f radio systems in creative ways.

Testing components include:

FileReader:

FileWriter:

NumericAnalyser:

SignalGenerator:

SignalAboveThreshold:

Delay:

SystemStatistics:

Reads a waveform from the hard disk

Writes a waveform to the hard disk

Performs analysis on the numerical content o f signals

Allows the output o f a variety o f signals at any frequency

Fires events when a signal is above a threshold

Introduces a delay between blocks

Provides information about the CPU time being used by a radio

6.3.5 Visualisation Components

Visualisation components have been written allowing the signal to be viewed and analysed at any

point in the radio system. By simply moving the com ponent through the radio structure (or by

using multiple visualisation components), the user can inspect the signal at any point in the radio.

As an example. Figure 6 .15 shows the output o f a spectrum analyser component plotting the power

spectrum o f an FM signal after demodulation. This diagram clearly shows the constituent parts o f a

Chapter 6 — Im plem entation and Analysis Radio C om ponent Exam ples | 141

broadcast FM signal, namely the 19kHz pilot tone and 38kHz DSB-SC (D ouble Side Band-

Suppressed Carrier) stereo signal.

S pectrum Display

P o w e r S p e c tru m o f D e m o d u la te d FM

Audio
19 kHz Pilot Tone

38 kHz DSB-SC
(Stereo Left-Right Signal)

l | l l l l l l l l j l l l l III! I

125.00

F re q u e n c y in kH z

Figure 6.15 - IRIS Screenshot o f Received FM Signal

Visualisation com ponents include:

SpectrumDisplay: Performs an FFT displaying the pow er spectrum o f a signal in real-time

Oscilliscope: Traces the waveform o f a signal in real-time

PeakMeter: Displays the amplitude and peak value o f a signal in real-time

6.4 Using the Component Framework

6.4.1 IRIS API

While the C om ponent Framework could have been implemented as a standalone entity, it is o f

better use when combined with other software. For exam ple, it may be necessary to integrate a

reconfigurable radio into another system that requires wireless communication. The IRIS system

caters for this through the IRIS API. As introduced in Chapter 5, Section 5.5.5, the IRIS API

abstracts the program m er from all the details o f the underly ing system effectively encapsulating the

C h a p te r 6 — Im p lem en ta tio n and Analy.sis U sin g the C o m p o n en t F ram ew o rk j 142

framework into a reusable sub-system. This allows someone to use IRIS without requiring specific

knowledge o f radio technology.

Figure 6.16 shows sample code for creating a new reconfigurable radio using the IRIS API. This

example shows how to configure the framework, for example setting the components directory. A

call to IRISLoad () loads the radio configuration into the framework. At this point the framework

verifies the radio design and brings together the Radio Components and Control Logic to form the

system. A subsequent call to IRISStartRadio {) starts flow o f signals through the radio system.

At this high level no knowledge o f radio systems is required as the description o f the radio and

associated Control Logic is contained within the radio configuration.

bool CreateReconfigurableRadioExample() |
(I

//Initialise the IRIS sub-system
IRISInitSystemO ;

^Create a radio engine
HANDLE_IRIS_ENGINE hRadio = IRISCreateEngine();

■ 'Redirect the log output to receive logging messages
IRISRedirectLogOutput(hRadio, IRISLogOutput);

//Tel the fraiwî work where the components are
IRISSetCoraponentsDir(hRadio, "c:\IRIS\components");

/'Load ‘he radic
if(IRISLoadRadio(hRadio, "MyRadio.xml") == false)
(

char ‘error = IRISGetError(hRadio);
printfC'An error occured loading the radio: %s\n", error);
return false;

)

■ irt 'he ra ! ‘
if(IRISStartRadio(hRadio) == false)
{

char *error = IRISGetError(hRadio);
printfC'An error occured starting the radio: %s\n", error),
return false;

return true;

Figure 6.16 - Code to Create a Reconfigurable Radio

While the IRIS API allows implementations to be abstracted from the underlying system, there are

occasions when an application using IRIS as a sub-system may require full interaction with

particular components in the radio system. For example, when used in a communications stack an

application may need to transfer packets to and from the radio system. As another example a

graphical-based radio system may need to control a component to change a frequency setting or

alter the properties o f a filter.

C hapter 6 — Im plem entation and Analysis Using the Com ponent Fram ew ork | 143

To facilitate this an application that uses the IRIS sub-system may create its own control logic in

addition to the control logic o f the radio system itself. Figure 6.17 illustrates this. The diagram on

the left shows an application that uses the IRIS sub-system, fully abstracted from the internal

operation o f the radio. The diagram on the right shows how additional control logic can be

specified by an application allowing it to control components and receive information from the

radio system.

APPUCATION USING IRIS AS SUB-SYSTEM

IR IS API

CONTROL LOGIC

Fully Abstracted Radio

IR IS API

APPLICATION'S
CONTROL LOGIC

CONTROL LOGIC

APPLICATION USING IRIS AS SUB-SYSTEM

Interaction with Radio

Figure 6.17 - Application Specified Control Logic

Additional control logic can be attached to a radio system simply by using the IRIS API. Figure

6.18 shows a code sample o f a control logic controller and how the IRIS API can be used to attach

this control logic to a radio system. This technique is very useful for graphical applications as it

allows the internals o f a radio system to be viewed and changed dynamically at runtime.

Figure 6.19 shows a screenshot o f an application that uses this facility to expose the parameters o f a

radio system, in this case displaying the parameters exposed from an FM receiver. This application

creates additional control logic as described above and attaches it to the receiver. It then uses the

reflection interface o f each component (see Section 5.4.2) to query information about its

parameters. Using this information it constructs a user interface and creates separate graphical

controls for each parameter o f the radio. This allows the user to dynamically change any parameter

o f the radio, a useful tool for experimentation and development.

C hapter 6 — Im plem entation and Analysis Using the C om ponent Fram ework | 144

//Application specified control logic
class ApplicationController : public Controllerlnterface
{
private:

Enginelnterface ‘engine;
public:

//Called when the radio is being loaded
virtual void Load(Enginelnterface *eng)
{

engine = eng;
1
//Called to initialise control logic
virtual bool AttachToComponents ()
{

//Find the channel extraction component and
//set its frequency to 2MHz
HANDLE_COMPONENT hComponent = engine->FindComponent("ChannelExtractor");
HANDLE_PARAMETER hParameter = engine->FindParameter("MixerFrequency");
engine->SetParameterValue(hComponent, hParameter, 2000000);

//Called during unload
virtual void UnloadO
{
}

. . . Truncated

'/Create instance of controller
ApplicationController ‘controller = new ApplicationController (),

'Apply the control logic C;; t.he current radio configuration
IRISSetControlLogic(hRadio, controller);

Figure 6.18 - Sample Code for Creating Application-Defined Control Logic

C hapter 6 — Im p lem en ta tio n and A n a ly s is U sin g th e C o m p o n en t F ram ew ork I 145

iiiiiiiim im
Rte Reader

cxipulBk>ckSze 524288

sanpirtgRefte 400000G

nun BtecksTo Read 0

filename 100MHz pern

debug jon

normafaseMukipier 1 000000

do RoatConvefson |cfl
conbnuous |oR “ 3
delay 0 0.01 j — - 100

fleFomat short16

source Swich Jon

Channel Bttractor

debug |on n
dedmdion 1B

mDcerFrequency 2S80000.DO 0 - 4000000

oumberTaps 8

nterCutoR 0070000

ohaseOffsel 0 000000

FMDemodulaior

deviabon 0 250000

LiSwPassFIRFfter

FAerCUoff 013 0.01 — j — - 0.5

numberTaps 128 1 00 — J — - 512

Down Sampler

5 6689S4

/udioOutpul

debug |on

stereo |on

volume 200 10.00 -----J— - 255

Figure 6.19 - Screenshot of Parameter Controller

6.4.2 Tools

Using the IRIS API two tools have been written which automate many o f the procedures in loading

and running a radio system. The launcher is a standalone executable that encapsulates the

Component Framework. This command line application uses the IRIS API to load and control

radio systems. This tool provides various facilities fo r debugging and testing individual Radio

Components and complete radio systems.

One o f the advantages o f using GPPs is the ab ility to have rich graphical user interfaces allow ing

interaction w ith the internals o f the radio system. To demonstrate this the IRIS Radio Designer was

written, a graphical user interface built also w ith the IRIS API that allows users to design and test

radio systems interactively. Screenshots o f the system are shown in Figure 6.20. The screenshots

show various functions o f the radio designer and how it can be used to edit radio configurations.

Chapter 6 — Implementation and Analysis Using the Component Framework | 146

graphically visualise signals in real-time and view various graphical representations o f a working

radio system.

J S i i J
F4e vew ftacto Canvonene Hec

g M ^ ^ No R«fo Loaded tUtetTme-. 000 |
E 5 |C \swiad»'JRIS'>««r()l9s\FMRecejvei\fMfleee»ve(wri % Kemd Tine: 0.00 |

Man Log ^ L Corrfiguaan | Memal Reoretendnn | Ratfo Sbudure | Memory SiructM | H Conponent* j

< T x it l « e r s io f i“ " 1 e n c o d i n g - " U T F - e ‘*?> —

< ra d io >

< d e s c r ip t io n >
< n a a e > fle c e iu e r< /n a M e >
< coH M pnt>Sanples a t i iM lz < /c o M ie n t>

< /d e s c r ip t io n >

<debug>
< d is p la y c o n t r o l l e r > o n < /d is p la y c o n t r o l l e r >

< /d eb u g >

< s t r u c t u r e n a n e * " a 2 ilte s f* >

< conponent ty p e ~ “ a 2 d p c i^ t 2 t * ‘ >
< p a r a w t e r s >

< s a M p l in g R a te > % 0 tS te t< /S 3 n p lin g f t a t r >
< o u tp u tB lo c k S iz e > 5 2 ii2 8 8 < /o u tp u tS lo c k S iz e >
< d a ta ty p e > F lo a t3 2 < /d a ta ty p e >
< b oa rd H u nb e r> 1< /b o ard N u R b pr>
< c h a n n e l> K /c t ia n n e l>
< u s e E x t r r n a lC lo c k > o f f < /u s e E x t e r n a lC lo c k >
<debug>on</d»bug>
< v o lta g p > S < /u o lta g e >

< /p a ra M e te rs >
|< /c a iip o ne n t>

< conponent t |;p e *“ c h a n n e lp x t r a c t o r ” >
< p a r a w t e r s >

< a ix e rF re q u e n c y > 2 6 9 % 7 0 9 < /iiix e rF re q u p n c j(>
< d e c lM a t io n > 1 6 < /d e c ii ia t io n >

J
1

Radio Designer Showing XML Configuration

internal Memory Structure Internal Memory Structure
(,1 .0

fR cader) 3 -.\ud io O u ip u iX-S498-I736

3 Lo w P issF IR F ik rf) J D ow n S an ipk t2 FM Dm xH hibfoi

X I6 7 0 6 WX57I4742-I
FNIDt

Displaying Real-time Spectrum Viewing Internal Memory Structure

n
Iming

r p«-«n*I •
: foi^onent:
r c arslle l -
: Ccî iDnefit:

: Coivonefit:

I 3

I----------3
I----------3
C21 Oti

r------3

I 3

24-TOXOO <CCffi»0 •

Reconfiguring Parameters in Realtime Viewing Structure of Radio System

Figure 6 .2 0 - Radio Designer User Interface Screenshot

D o\M iSa inp lc i dovviisaniplrr

Lo w P a ssFIR F illfr IcvvvpassCkt'Dtcr

Chapter 6 — Implementation and Analysis Using the Component Framework | 147

6.5 External Hardware

The IRIS system as implemented provides the software infrastructure for building radio systems,

however to effectively test and experiment with real signals it was necessary to integrate the system

with a real RF front-end. Various hardware setups and associated Radio Components have been

developed enabling the input and output o f RF and audio signals.

Radio Components have been developed allowing signals to be input from hardware and output to

hardware. For example, a data acquisition com ponent allows the input o f digitised signals from an

ADC (Analogue to Digital Converter) PCI (Peripheral Component Interconnect) card. This

com ponent is implemented as an IRIS lO com ponent with parameters used to control variables

such as the sampling rate o f the converter and input voltage settings. Each type o f hardware

com ponent encapsulates the hardware interface through the standard IRIS configuration

mechanism (as discussed in Section 5.5). For example, the XML configuration file may be used to

indicate the sample rate o f an ADC. The component uses the value received from the framework to

initialise the hardware using the programming library provided by the original m anufacturer o f the

board. The advantage o f encapsulating this functionality into an IRIS component is that it can be

re-used in many different designs.

In the experimental prototype developed for this work, a hardware setup allowing the reception o f

RF signals has been developed (see Figure 6.21) and this forms a basic RF front-end. A

commercial wideband receiver is used to tune to a frequency o f interest. The 10.7MHz IF signal is

available from the receiver and this signal is amplified, digitised, filtered and fed to the input o f the

ADC card. Using band pass sampling at the appropriate rate (typically a 4M Hz sampling rate), the

IF signal is digitised allowing the remainder o f receiver functionality to be implemented in

software.

W ideband
C om m unications

R eceiver

IF Amplifier
an d Filtering

PC with 20MHz
AID C onverter

Figure 6.21 - Receiver Hardware Setup

To demonstrate how the hardware works. Figure 6.22 shows a photograph o f the hardware

consisting o f the wideband receiver, IF am plifier and ADC PCI card. Superimposed on this figure

is the component structure for typical receiver architecture. This picture illustrates how IRIS forms

the infrastructure between hardware, software and also the user o f the software.

In terms o f performance, for example using a 2GHz Pentium IV processor, the IRIS system can

digitise a signal at 4M Hz using band pass sampling, extract a channel o f interest, and perform FM

C hapter 6 — Im plem entation and Analysis External Hardware | 148

IR
IS

So
ft

w
ar

e

demodulation and audio playback. Using un-optimised code within components this consumes

approximately 60% o f processor time. Performance and related issues are discussed in the next

section.

CONTROL LOGIC

Figure 6.22 - IRIS Test Hardware

C h a p te r 6 — Im p lem en ta tio n and A nalysis E x te rnal H ardw are | 149

V
lid

eb
an

d
R

ec
ei

ve
r

6.6 Analysis

The purpose o f the IRIS system has been to dem onstrate the concepts o f reconfigurability through

the use o f the IRIS Component Framework. Performance o f individual signal processing

algorithms has not been a primary concern as the onus is on developers to write high-performance

Radio Components. (Performance in this context refers to how efficiently code executes on a

processor). W hile IRIS does not specifically dictate policies for writing highly efficient DSP code,

as a framework it should not hinder the overall performance o f a radio system. Highly efficient

components are o f no use without an efficient and scalable technology for combining these

components together.

To address this issue the IRIS implementation was developed in such a way that it does not hinder

the performance o f the overall system and attempts to keep the overhead o f the framework to a

minimum. The following sections analyse various aspects o f the framework with respect to

performance and scalability.

6.6.1 Scalability

Scalability is the measure o f how well a system perform s as it grows in size or as more demand is

placed on the system. The aim is to create systems that scale linearly so that as system size or load

increases the processing power required increases linearly. A system that features bad scalability

will thus have an exponential or even unpredictable response to increasing demand. For example,

for a web server, scalability is measured by load, i.e. the number o f requests being received for web

pages. As more users request web pages the processing time required to deal with these requests

must increase linearly. Also, as more processing power (e.g. additional CPUs) is added to a server

its load capacity should increase linearly.

In implementing the IRIS architecture it was important that scalability was considered. The aim

was to ensure that as more increasingly com plex radio systems are developed, involving the use o f

more Radio Components, the processing time o f the system should not hinder the overall

performance o f the system. In the IRIS architecture it is the Radio Engine that has the potential to

hinder scalability as it provides the interconnection between components. The engine naturally

introduces a processing overhead and thus as radio systems grow more interconnections are

required between components. It was thus important to implement the engine in such a way that

this overhead is kept to a minimum and where possible to make this overhead scale linearly.

In the IRIS system basic configurations o f com ponents scale linearly. This is achieved by storing

the structure and interconnection between components in a highly efficient and scalable data

Chapter 6 — Im plem entation and Analysis A nalysis | 150

structure. In the object-orientated approach of storing the radio structure (see Section 5.5.4) the

structure o f the radio is stored in a high-level representation that can represent a complex hierarchy

of components. In this form the radio layout is stored in memory just as it appears in the X M L file.

C++ classes are used to represent each entity, examples being the <structure>,
<component> and <parallel> tags. In this form finding a particular component and its

interconnections takes a non-deterministic amount o f time. The hierarchy must be searched to

determine interconnections between components. It is not scalable to require such a search each

time a component produces an output.

Instead, the Radio Engine pre-processes and converts the object-oriented structure into a highly

efficient linked list data structure and in the process pre-determines the interconnection among

components. When this process is complete the engine has a linked list in memory, the nodes of

which correspond to the path of the signals rather than the visual hierarchy o f the radio. This means

that when passing signals between components the engine only has to walk a basic linked list rather

than having to perform un-deterministic searches o f data. The advantage o f this technique is that

more interconnections can be added between components without hindering scalability, as the

process o f traversing the linked list is always linearly scalable. The disadvantage is the increased

code and complexity required to implement this scheme.

A practical experiment was carried out to test the scalability o f the IRIS implementation. The aim

of the experiment was to plot the CPU processing time required to implement radio systems of

various sizes to determine if the processing time scales linearly. A simple DSP configuration was

constructed using a signal generator followed by multiple FIR filter components (Figure 6.23). The

FIR filter component was used, as filtering is the most commonly used signal processing algorithm.

Each separate test involved the generation of a 40kHz sine wave (sampled at 250000 samples per

second) that was passed through multiple FIR filters. Five FIR filters were added at a time to the

X M L configuration until the full processing power o f the CPU was reached. The percentage CPU

time was measured using calls to the Win32 method GetProcessTimes () . In this test CPU

percentage refers to the percentage of user mode CPU processing time spent processing 254952

samples during a one second interval. The test was performed on a 2.8GHz Pentium 4, 266MHz

DDR 1GB SDRAM running Windows XP. All tests involved code that was compiled with full

optimisations with the Microsoft Visual Studio .NET C++ compiler.

Signal G enerator F IR Filter Multiple F IR Filters F IR Filter

Figure 6.23 - Scalability Test Scenario

Chapter 6 — Implementation and Analysis Analysis | 151

T’heesults o f the scalability test are shown in Figure 6.24. The red line indicates the percentage o f

C PI time required to process increasing numbers o f FIR filters. The linearity o f the red line

inidiates that the IRIS system achieves linear scalability for this basic set o f components.

IRIS Scalability Test

10

9

8

7 %CPU Time Native

% CPU Time IRIS6

5

4'

11

0 50 100 150 200 250

N umber of RR RIters

Figure 6.24 - IRIS Scalability Test Results

To iivestigate the overhead associated with using the Radio Engine a second scalability test was

perftrmed. The aim o f this test was to quantify the overhead o f using a Component Framework as

oppced to implementing code as native executables. For this test the code o f the signal generator

and TR filter were extracted from the components and implemented as a standalone native

execitable. Functionally the two systems produced identical results but one was built using the

geneal-purpose Component Framework and the other was a purpose built executable. In the native

impl;mentation there is no overhead associated with decoupling components as there is in the IRIS

systen and the result o f this can be seen by the blue line in Figure 6.24. The difference in CPU

time between these two approaches in graphed in Figure 6.25. This graph demonstrates that the

priceof using IRIS is a processing overhead that increases linearly as more sequential components

are aided to the configuration.

Alth(ugh the difference plot shown in Figure 6.25 demonstrates a 10 to 12% CPU overhead for

200 :omponents or more, in reality most radio implementations will require much less and will

rare!’ go beyond 20 or 30 components. The graph indicates that up to 50 components the overhead

associated with using IRIS is on the order o f 0 to 2% for the test system used, a figure which is

mininal and in the vast majority o f cases an acceptable price to pay for the facilities the

archiecture provides.

C hapte 6 — Im plementation and Analysis A nalysis | 152

Difference in % CPU Time between IRIS and Native Implementations

14 ,

3
CL
O

o
0 c
0)

1
i5

12

10

8

6

4

2

0

2
25050 100 150 2000

N um ber of FIR Filters

Figure 6.25 - Difference between IRIS and Native Implementation

1 hese tests have analysed only sequential chains o f components for scalability. It should be noted

that more com plex exam ples involving signal duplication and branching would not necessarily

demonstrate linear scalability, as these features would require further processing overhead between

components. A s scalability in itse lf is not a focus o f this thesis, these basic exam ples should serve

as a basis for future work into analyzing more com plex sets o f components.

6.6.2 Memory Consumption

An important consideration for IRIS was the mem oi^ consumption o f the system . The use o f

memory in a software radio can have a direct impact on the performance o f the radio system. In the

IRIS design the allocation and designation o f memory for use by components is controlled by the

Radio Engine, therefore it was important to implement a memory policy that worked w ell across

multiple types o f radio applications.

The considerations for memory were twofold, firstly to reduce memory copying and secondly to

reduce the amount o f memory used. The copying o f memory can be expensive in processing time

due to the large amounts o f data inherent to software radio. Since IRIS allow s the use o f any

number o f com ponents in a variety o f hierarchies and structures, it was important the IRIS system

did not rely on copying o f signals between com ponents during operation. The amount o f memory

used had to be kept to a minimum. In a GPP-based operating system virtual memory is used to

increase the amount o f memory available to applications. This works by swapping data from RAM

to disk when memory is low. When the swapped memory is requested by an application it must be

transferred back into memory making the overall time to access memory much slower. With

excessive amounts o f memory typically used by software radio applications it w as important to

develop a radio infrastructure that used memory in an efficient way.

Chapter 6 — Im plem entation and Analysis Analysis | 153

The basic approach developed in managing memory for the implementation o f IRIS was to allocate

memory in such a way that the output o f one com ponent is written directly to the input o f another

component. For simple radio configurations this approach is simplistic, however the problem can

become more complex for the following reasons:

• Size: Components in a radio can consume and produce different block sizes therefore different

sized memory blocks are required throughout the radio.

• M ultiple Signals: The hierarchical approach used for expressing radio systems allows multiple

signals to exist simultaneously in the radio system, therefore the radio system must facilitate

the use o f multiple memory allocations.

In addition IRIS allows complex hierarchies o f com ponents to be implemented and thus the output

o f one com ponent must be mapped to the input o f one or more other components while trying to

make best use o f memory.

To address these issues a specific memory algorithm was developed within the Radio Engine. This

algorithm attempts to efficiently reuse memory throughout a hierarchy o f components while

keeping memory copying to a minimum. The algorithm works by predetermining the path o f

signals through a component hierarchy before radio operation begins. With this knowledge the

engine can allocate the same memory block to multiple components without having to worry about

signals being overwritten. To achieve this the engine contains a memory manager, a sub-system

that allows memory to be allocated, locked and released. During the construction phase o f the

radio, the engine traverses the structure o f the radio locking memory where needed and

subsequently unlocking it when it identifies that it is no longer required by a component. Internally,

the memory manager maintains a pool o f memory, which is reused according to the current

lock/release status o f the memory it maintains. Using this technique only the minimum amount o f

memory required by a radio is used.

The basic concept o f this approach is illustrated in Figure 6.26. In this simple example only two

memory blocks are required to allow a signal to be passed through seven components as blocks get

reused. The result o f using this technique for a practical scenario is shown in Figure 6.27. Here the

memory required is analysed for the signal generator, FIR filter example o f the previous section

(Figure 6.23). The blue line shows the total am ount o f memory the engine requests from the

memory manager and the red line shows the am ount o f memory that is actually used. In simple

scenarios like this the engine can reduce the am ount o f memory required to a constant amount for

any number o f Radio Components.

Chapter 6 — Im plem entation and Analysis A nalysis | 154

I I Memory Block 1

I I Memory Block 2

Figure 6.26 - M emory Allocation Technique

Memory Allocation for Multiple FIR Filters

„ 20000
*o c
<0
tf)

o 16000

18000

14000

12000

10000

8000

6000

4000

2000

200 40 60 80 100

• Memory Requested
■ Memory Allocated

Number of FIR Filters

Figure 6.27 - Memory Allocation for M ultiple FIR Filters

The reason the previous exam ple can allocate so little m em oiy is because the structure is sim ple.

There is only one signal in the path, block sizes are fixed and thus m axim um reuse can take place.

However, in a practical softw are radio system , block sizes vary due to d iffering sam pling rates and

data types used in the system . For exam ple, a transm itter will up convert a signal resu lting in m uch

more m em ory being required at the end o f the signal processing chain than the beginning. In this

scenario although the m em ory m anager may contain m em ory blocks to service the needs o f the

engine, these blocks may not be big enough and thus additional m em ory has to be allocated .

To analyse the effectiveness o f the m em ory m anager in the face o f grow ing and shrink ing block

sizes, tw o test scenarios w ere developed. In the first scenario , a high data rate signal is consisten tly

down sam pled by h a lf using m ultip le ‘DownSampler’ com ponents (see F igure 6.28). This

effectively reduces the sam pling rate and the block size by h a lf w ith each ex tra com ponent.

C hap te r 6 — Im plem en ta tio n and A nalysis A n a ly s is | 155

Signal
Generator

(S>
Down

Sampler
Multiple

Down Samplers
 1 r "

Down
Sampler

I

Figure 6.28 - Memory Test for Down Sampler Scenario

The results o f this test are graphed in Figure 6.29. The test involved analysing the memory

requirements for down sampling a lOOMSPS (M illion Samplers Per Second) signal split into block

sizes o f 23592960 samples (90MB). This graph shows that the memory required for a system

involving a constantly decreasing block size can becomes constant, i.e. after a few stages o f down

sampling enough memory has been allocated overall to service the needs o f the full system. The

reason this happens is that larger memory blocks are allocated first (for higher sample rates) and

these can be reused to service the needs o f components requiring smaller memory blocks.

Memory Consumption for Multiple Down Samplers

>.ffl
c
01
N

V)
£>
o
E0>

„ 300000
■o c re «
3
O
.c
H

200000

250000

150000

100000

50000

200 10 155

Memory Requested

■ Memory Used

Number of Down Samplers

Figure 6.29 - Memory Consumption for Multiple Down Samplers

Figure 6.30 shows the second scenario in which a signal is up sampled by two, effectively doubling

the sample rate and hence memory requirements for each additional component. The results o f this

test are shown in Figure 6.31. This graph demonstrates that although the memory manager can

reduce the amount o f memory used in the up sampler scenario, memory usage cannot converge to a

set memory amount as block sizes constantly increase.

Chapter 6 — Implementation and Analysis Analysis | 156

Signal
Generator

Up
Sampler

Multiple
Up Samplers

Up
Sampler

Figure 6.30 - Memory Test for Up Sampler Scenario

Memory Consumption for Multiple Up Samplers
450000

i; 400000

350000in«
4-* 300000>.
OQ
c

250000o>
N

CO

S 'o
E
0)
S

200000

150000

100000

50000

5 10 200 15

- Memory Requested

■ Memory Used

Number of Up Samplers

Figure 6.31 — Memory Consumption for Multiple Up Samplers

I'he three memory tests presented here have demonstrated that it is possible to constantly reduce

the amount o f memory required by the system in a generic way. By observing memory use the

engine can reduce the overall memory requirement o f a radio by reusing memory among

components. The down and up sampler scenarios have tested these lim its to extremes. In reality

less sample rate changes w ill probably take place meaning more memory reuse can occur.

These tests also highlight the dominance o f large mem oi^ allocations in memory consumption. For

example, the down sampler test showed memory usage convergence at 202.5MB (53.08 m illion

samples). The reason this memory requirement is so high is due to the firs t few stages o f down

sampling which require the representation o f a lOOMSPS signal w ith 90M B block sizes whereas

subsequent stages require much less memory. Thus, analysing the sampling rate and memory

requirements o f a radio application can be an important tool in identifying the requirements o f the

overall system.

Chapter 6 — Implementation and Analysis Analysis | 157

6.7 Summary

This chapter had demonstrated the implementation o f IRIS providing a practical insight into the

development o f reconfigurable radio systems. Through a series o f examples this chapter has

demonstrated how the IRIS system is flexible enough to handle the requirements o f almost any

radio system and to allow the specification and construction o f these systems in a generic way. The

results o f analysis show that IRIS can be implemented in a scalable and memory efficient way.

C hapter 6 — Im plem entation and Analysis Sum m ary | 158

7 Case Studies

71 Introduction

Tie two previous chapters discussed the IRIS system and how it can be used to develop common

radio systems such as receivers, transmitters and transceivers. However, although IRIS facilitates

th; development o f these devices, its reconfigurable nature enables much more. To demonstrate the

fijxibility o f IRIS, this chapter shows how it can be applied to some newer emerging wireless

technologies. This is shown by way o f three case studies.

‘C'ver the Air Reconfiguration’ is presented first. This case study shows how the IRIS system, in

pjrticular its support for reconfigurability, facilitates the development o f radio systems that can be

reconfigured remotely by downloading new software. The next study discusses Wireless

Networking and how the IRIS system can work as the physical layer in a communications stack,

brnging enhanced reconfigurability to ad hoc wireless communications. The final study discusses

thj growing need for spectrum management technology and describes how IRIS can be used to

biild systems to address this need.

11 Over the Air Reconfiguration

7.1.1 Overview o f Over the Air Reconfiguration

C tapter 2 (Section 2.5) touched on the topic o f software download or Over-the-Air

Reconfiguration (OTAR). OTAR allows a mobile wireless terminal (such as a mobile phone) to be

reconfigured by downloading new software to the terminal over the wireless connection [Noblet98,

Cimm ings99c, Bucknell2002]. This software can be used to reconfigure the wireless terminal thus

changing the capabilities o f the radio device.

Fcr the mobile communications industry, OTAR has moved from being an ancillary aspect o f

so:^ware radio to become a primary motivating factor driving the adoption o f software radio. In this

field manufacturers have long recognised the advantages o f being able to use software to perform

upgrades, fix bugs or add new features to a mobile phone. Software download occurred first with

the ability to upgrade the firmware (essentially the operating system) o f a mobile phone. This gave

manufacturers the ability to correct errors or add new features. Subsequently with more data

connectivity appearing in handsets, the download paradigm has extended into downloading over-

159

the-air and the downloading o f Java applications and games to phones has become commonplace.

Many believe the next stage in this evolution is that the radio system o f the mobile phone will be

upgradeable over-the-air, facilitated by software radio.

There are wider implications o f this technology that could change the economics and usage models

for wireless devices. Just as software download has become ubiquitous on the Internet, this type o f

download scenario could in time begin to emerge in wireless devices. Instead o f radio devices

being sold with fixed operating parameters, software download could allow devices to be sold as

general-purpose units that are later configured for a particular application, much in the same way

computers are sold today. For example, when someone owning a general-purpose communications

device enters a new city, their mobile wireless terminal could automatically download the local

popular communications standard. This would consist o f the software required to configure the

radio system, possibly including information such as local frequency plans, modulation schemes,

etc. This type o f reconfiguration could allow the general-purpose radio terminal to cut across the

standards boundaries o f today offering true ubiquitous connectivity.

Technically, OTAR allows two capabilities. Firstly, OTAR allows a terminal to download new

software that changes the capabilities o f the device, possibly introducing new features or changing

the standards by which the radio device communicates. For example, a mobile phone could

download a wireless standard such as GSM and reconfigure itself to work with this new standard.

Secondly, OTAR facilitates the upgrading o f software. Using OTAR, a mobile device can

download new software that possibly fixes bugs, adds new features or improves the performance o f

the device. For example, a terminal could download a more CPU efficient filtering algorithm thus

improving its battery performance. The technical capabilities and potential advantages o f OTAR

are evident, but there is no consistent methodology for enabling OTAR in radio systems. The next

section shows how the IRIS system can address this need.

7.2.2 Applying IRIS to OTAR

To enable OTAR, two main issues must be addressed; how to download software and how to

reconfigure a device once the download has completed. In terms o f the work in this thesis, the latter

is facilitated by reconfigurability. The built-in reconfigurability o f the IRIS system allows a radio

to be reconfigured once a software download has been completed. To actually download software,

the main issue that has to be addressed is what actually gets downloaded, as different degrees o f

reconfiguration will require different types o f downloads. By looking at the degrees o f

reconfigurability discussed in this thesis, we can identify what needs to be downloaded via OTAR

to enable reconfiguration.

Chapter 7 — Case Studies O ver the A ir Reconfiguration | 160

Parametric reconfiguration allows the parameters of signal processing or any radio functionality to

be altered. In terms o f software download, parametric reconfiguration would involve the transfer of

a new parameter or set of parameters that change the configuration o f components in the radio

system. This could be as simple as transferring the new operating frequency o f the radio system to

more complex configurations that redefine the signals in components by changing sample rates,

data types, etc. Downloaded parameters could be transferred via XML thus providing a

standardised method for OTAR at this level.

Structural reconfiguration allows the actual structure o f components in the radio system to be

changed, altered or replaced. Structural reconfiguration could be very important for software

download, especially as it facilitates the replacement o f components. A new software component

could be downloaded and used to upgrade an existing component (the issues surrounding software

upgrading for software radio were discussed in Section 4.3.8). For example, a new speech encoder

component could be downloaded possibly offering improved speech quality. The software

component and associated structural information can therefore be another downloadable item.

Application reconfiguration allows the whole radio to be changed, consequently altering the

complete function o f a radio system. Application reconfiguration is the most comprehensive form

of software download, as by downloading a new configuration, a radio should reconfigure itself to

work as a completely different device. This could involve the download o f new components or be

achieved by reusing existing ones. For application reconfiguration to occur with OTAR,

components, XML configurations and control logic would have to be downloaded.

These types o f reconfiguration are summarised in the table shown here in Figure 7 .1:

Reconflguration Type Items Required for Download

Parametric Parameters

Examples: Frequency settings, sample rates, filter characteristics,

modulation settings.

Structural Components and Parameters

Examples: OMSK modulator, FIR Filter, Speech Encoder.

Application Components, Parameters and Control Logic

Examples: GSM transceiver, QPSK transceiver, GPS receiver, location

transmitter.

Figure 7.1 - Items for Download with OTAR

While these types o f reconfiguration directly dictate the type o f downloads that should take place, a

method is still required to perform the actual download. A set protocol or procedure is required to

C hapter 7 — Case Studies O ver the A ir Reconfiguration | 161

initiate aid perform the actual reconfiguration. There are various forms such a protocol can take

but this vill largely depend on the final application, and who has control over the radio terminal.

For m obie telephony the network operator may want to have the ability to remotely reconfigure

the m obie phones using its network. This would allow the operator to ensure the stability and

reliabilit} o f the network by controlling the communications standards used. In this scenario the

operator nay ‘push’ new software to mobile phones. This would have an impact on roaming

allowing people to use their phone in any country. Network operators could push a download to a

users phoie that provides the software required to operate in that network.

On the ether hand in some situations it may be the owner o f the terminal who initiates a

reconfigu ation. For example, in an emergency, police officers may want to reconfigure their 2-way

radios to illow communication with other emergency services. In this scenario the police officer’s

radio devce would initiate the reconfiguration by ‘pulling’ new software. W hatever form OTAR

takes, the software radio system must provide sufficient functionality to facilitate these processes.

In terms o f the IRIS system there are two ways in which software download is catered for,

depending on the levels o f reconfiguration required. Figure 7.2 shows how software download

could be Dcrformed using the control logic o f a reconfigurable radio. In this scenario the control

logic would use a protocol for sending and receiving data through the radio system. This protocol

could be Lsed to initiate software download between two radio systems. As described in Figure 7.1,

the actual information received could be XML data for parametric reconfiguration or the actual

binary code o f a component with associated parameters for structural reconfiguration.

CONTROL LOGIC

Softw are Download Protocol

I ■7 : I

Figure 7.2 - Software Download with Control Logic

While control logic facilitates the reconfiguration o f parameters and structure, application

reconfiguration is the full upgrade o f a whole radio system possibly including the control logic

itself In this scenario the software download mechanism must exist outside the radio system itself

Chapter 7 — C ase Studies Over the Air R econfiguration | 162

tha t las to be replaced. T h is is facilitated using the IRIS API (see Section 6.4.1). Figure 7.3 show s

a diagram o f how this w ould work.

M obile IRIS
R ad io D evice

F ixed S ta tion
In ternal View

CONTROL LOGICCONTROL LOGIC

Softw are Download ProtocolSoftw are Download Protocol
cn

IRIS API IRIS API

 ̂ r

CONTROL LOGICCONTROL LOGIC

Figure 7.3 - Software Download Using the IRIS API

In th s scenario extra control logic is w ritten at the level o f the IRIS API (as discussed in Section

6.4.1 . This control logic can im plem ent the dow nload protocol for receiv ing the softw are, but it is

also ieparated from the particu lar radio itse lf in such a w ay that it can undo the ex isting radio

systen and reconfigure it to the new dow nloaded specification .

There are several form s the actual protocol used for softw are dow nload could take. R eliable

com nunication is required to reconfigure the radio system itself. R econfiguration at th is low level

is oft;n beneath the logic that im plem ents error correction and reliability protocols. For this reason

C hap tc 7 — Case Studies Over the A ir R econfiguration | 163

protocols implemented for software download may require their own protocol stacks to ensure

reliable transfer o f data.

There are other problems that have been addressed in the literature which deserve consideration in

the context o f the IRIS system. Security is a common concern as the adverse reconfiguration o f a

terminal could have dire consequences in a radio network as discussed in Section 4.3.5. Michael

[Michael2002] and Bucknell [BucknelI2000] have both suggested schemes for secure download for

software radio systems. The consensus is that security incorporating suitable encryption needs to be

built into the download protocol itself. In the IRIS system, either a control logic or IRIS API level

protocol can be written to enable this, the specifics o f which will depend on the final application.

The last problem to discuss is software versioning. As mentioned in Chapter 4, Section 4.3.8,

conflicts in the versioning o f software can lead to a malfunctioning system or even result in more

subtle communications errors due to an unexpected configuration. This problem can be further

complicated by the fact that a radio system may not be able to re-establish com munications to fix

the problem. For this reason, when performing software download, the radio system must be able to

validate a particular radio configuration. IRIS supports two methods for validating configurations.

Firstly, the IRIS system automatically verifies the structure o f a radio design by checking its

configuration. This checks the validity o f the XML itself and also the semantics o f the radio design.

As discussed in Section Chapter 6, 6.2.5, invalid block sizes or sample rates cause an error to be

raised. I'his error checking ensures that incompatible component combinations and parameter

values are avoided. Secondly, IRIS inherently supports versioning o f components. Each component

has versioning information associated with it. Using this information the control logic o f a radio

system can predetermine whether particular components will work together.

7.2.3 Conclusions

This case study has discussed OTAR and how it is possible using the IRIS system. This review has

shown that the degrees o f reconfiguration supported by the IRIS system can be directly mapped

onto the software elements that are downloaded by an OTAR-capable reconfigurable radio. The

inherent reconfigurability o f the IRIS framework ensures a suitable platform for developing OTAR

radio devices.

7.3 Wireless Networking

7.3.1 Overview o f Wireless Networking using DA WN

In related research to this work, the NTRG (Networks and Telecommunications Research Group)

in Trinity College has developed a test bed for developing wireless networking applications called

DAWN (Dublin Ad hoc W ireless Network) [0 ’Mahony2002]. This test bed is a software-based

environm ent for dynamically creating network communication stacks and it allows for

C hapter 7 — Case Studies W ireless N etw orking | 164

experimentation with a wide range o f networking technologies. DAWN has been a host to a variety

o f research related to wireless networking [0 ’Mahony2002b, Doyle2002b, Doyle2002c,

DoylelOOl, Forde2000],

DAW N is a useful test bed for developing wireless applications. Figure 7.4 illustrates a typical

DAWN network topology, in such a topology many devices can participate in the network

including fixed computers with wireless connections and mobile devices for example PDAs

(Personal Digital Assistants) and laptops. Each device hosts a DAWN stack that provides all the

communications infrastructure required to enable communications with multiple devices.

Internally, the core o f the DAWN test bed is a ‘generic layer’ interface that allows the dynamic

assembly o f a network communication stack. Individual layers are written to address the various

functional requirements o f networking, for example security, routing and medium access control

(MAC). Infomiation is passed through the stack using messages, each containing a data payload

and additional descriptive information. This descriptive information can be used to transfer

inforrnation between layers in a stack.

Fixed
Network

Laptop

□
UHF Radio

W ireless
Connectivity

Laptop I

PDA

UHF Radio

Fixed
Network

Internet

PDA

Figure 7.4 - Typical D A W N Topology

A typical DAWN stack is shown in Figure 7.5. A t the top o f the stack sit various applications

which have been developed for use in a DAWN network including a messaging application, a real­

time phone and standard testing facilities such as pinging. Below this level sit the layers which

make up the communications stack. A variety o f layers exist including layers dealing with

Chapter 7 — Case Studies Wireless Networking | 165

netw orking functions such as routing, security , reliability and m edium access control. By

com bining layers in d ifferent w ays, m any types o f stacks can be created.

UHF 802 .11b

Ad Hoc Routing

Medium Access

Chat Ping Phone

Security

Figure 7.5 - A Typical DAWN Stack

In addition to protocol layers and research-based netw orking layers, various physical layers have

been developed allow ing com m unication over U H F transceivers and W ireless LAN (802.11b)

[G ast2002]. The UHF m odule allow s for low bit rate data transfers at around 30kbps and are used

in experim ental work for large populations o f ad hoc netw orking nodes. U sing W ireless LAN

equipm ent speeds o f up to 1 1M bps can be achieved. The ultim ate goal is that the physical layer

m oves from being a hardw are dependent device (as it is w ith UH F radio and 802.1 lb) to an ideal

softw are radio approach, in that any radio schem e can be im plem ented as part o f the D A W N stack.

7.3.2 Applying IRIS to Wireless Networking

To investigate the role o f softw are radio in the netw orking environm ent, the IRIS system has been

used in conjunction with the DA W N stack. U sing the IRIS API, a layer has been w ritten that

allow s the IRIS system to act as a physical layer in the DA W N com m unication stack (see Figure

7.6). T h is layer acts as a bridge betw een the layer construct and the IRIS API. By in teracting with

the IRIS API and control logic, the generic physical layer can send data to an IRIS radio for

transm ission and likew ise receive data. U sing th is approach , new physical layers can be created by

using a different radio configuration w ith this generic layer.

Chapter 7 — Case Studie.s W ireless Networi^ing I 166

Chat Ping Phone

Security

Ad Hoc Routing

Medium Access

Physical Laver

IRIS

Layer In terface

Physical Layer
IRIS API

___________________ o
CONTROL LOGIC

A

RF Front
End

DAWN as
Com m unications Stacl< Physical Layer in DAWN

Figure 7.6 — IRIS Incorporated into DAWN

Even though current technology lim its the ability for IRIS to replace CPU intensive schem es such

as 802.1 lb , the integration o f IRIS into DAW N has provided valuable insight into how softw are

radio and in particu lar reconfigurability w ill play a role in the future o f w ireless netw orks.

Incorporating IRIS into the stack has provided insight into how softw are radio can enhance the

capabilities o f a w ireless netw ork through reconfiguration . The m ain benefit o f th is has been to see

how other layers in the com m unications stack such as m edium access control and ad hoc routing

can benefit from the reconfigurable nature o f IRIS. T his can m anifest itse lf in various w ays.

In m ost com m unication stacks the physical layer or com m unications m edium in general is not

subject to change. The physical layer is usually rig id ly fixed in function. For exam ple, the only

param eters that are user changeable in the 802.11b standard are concerned w ith protocol

procedures. It is not possible to a lter the w ay in w hich the device com m unicates its rad io signals.

A better physical layer w ould allow any aspect o f physical layer com m unications to be changed

dynam ically , facilita ting new possib ilities and types o f com m unication. IRIS facilita tes th is in the

DA W N stack. Through reconfiguration IRIS can allow upper layers in the stack to change aspects

o f the physical layer. For exam ple, the M AC layer could a lter the physical layer to better enable

collision detection or the cryptography layer could interact w ith IRIS to instigate low er level

C hapter 7 — Case Studies W ireless Networicing | 167

cryptography thus securing com m unication throughou t the stack. T his approach provides the

flexibility needed to address the needs o f future applications.

In addition to upper layers contro lling the physical layer, inform ation and control can occu r in the

opposite direction. C urrent physical layer standards provide only lim ited inform ation about signals

being received. In 802.1 lb for exam ple, som e vendors allow the incom ing signal strength to be

m easured, but in practice th is inform ation is not used in the actual com m unications procedure. In

contrast, the IRIS physical layer can provide additional inform ation to upper layers about

com m unications. Any inform ation or occurrence in the physical layer can be relayed to upper

layers, possibly allow ing them to m ake b etter decisions therefore enabling m ore effective

com m unications overall. For exam ple, the IRIS system can provide a routing layer w ith details

about the signal strength o f received signals thus p rovid ing inform ation that could be used to m ake

an informed decision about w hich route to take. T his is an em erging area o f research in ad hoc

netw orking and the need for such devices is d iscussed in the contex t o f fu ture w ork in C hap ter 8.

A s another exam ple, the IRIS physical layer could calcu late the conditions o f m ulti-path fading

experienced at the receiver. U sing this inform ation an upper layer could m ake an inform ed decision

about the environm ent it is operating in, possib ly chang ing the protocols to suit that context. Again,

th is type o f inform ation and control facilita tes new types o f in telligent applications.

Intelligence how ever does not have to be in tegrated th roughout the com m unication stack, in

particular the physical layer should be flexible in that it can be integrated w ith a num ber o f existing

standards w ithout requiring alteration. In this scenario it w ould be advantageous that the physical

layer w orks intelligently to allow better com m unications. O ne possib ility is that the IRIS physical

layer could m onitor the traffic sent and received by upper layers. U sing th is inform ation it would

m ake intelligent decisions about the type o f com m unications to use. For instance, when

experiencing a low volum e o f traffic the IRIS system could m ove to a m ore pow er efficient

m odulation schem e to save battery pow er. As ano ther exam ple (and th is tim e considering the

ex istence o f an ideal front-end) the physical layer in detecting an increase in th roughpu t could

dynam ically create new transceivers in softw are thus increasing the capacity o f the radio link.

W hile som e o f these exam ples are not possib le at present, im provem ents in technology can only

bring us nearer to this type o f capability .

O verall, w ireless netw orking has m uch to gain from reconfigurab le radio. Instead o f the physical

layer being a statically configured device serving the low est com m on denom inator, it can becom e a

dynam ic intelligent device serving the d iverse needs o f a variety o f applications.

C hapter 7 — Case Studies W ireless N etw orking | 168

7.3.3 Conclusions

This case study has shown how IRIS can be used as the physical layer in a communications stack

without modification. It demonstrates how the reconfigurable framework o f IRIS can enable new

and improved capabilities in wireless networking. W hile some o f these techniques may not be

applicable today, new emerging technologies such as ad hoc networking are built with more

flexibility in mind. These networks are highly reconfigurable as they have no fixed infrastructure

and each node in the network is autonomous, acting both as host and router [Broch98]. In this type

o f environment the reconfigurability discussed can facilitate better communications enabling new

types o f applications.

7.4 Spectrum Management

7.4.1 Overview o f Spectrum Management

The growth o f wireless communications over the past two decades has generated an increasing

demand for spectrum allocation. In response to these demands the communications regulators o f

many governments around the world have been taking a fresh look at how spectrum is allocated

and managed with a view to improving spectrum capacity. (Existing methods for spectrum

management are discussed in [W ithers91]). One organisation making considerable progress in this

field is the U.S. Federal Communications Commission (FCC). In their Spectrum Policy Task Force

report [FCC2002] they outline bold new strategies for spectrum reform by introducing fundamental

changes into spectrum management.

The main point emerging from the FCC report is that the current methods used to regulate spectrum

are outdated and do not reflect current technological capabilities. In essence, the technological

needs o f today were unforeseen when these regulations were put in place. One example is the way

mobile communications has changed the use o f spectrum. Previously, use o f the spectrum was

largely via a broadcasting model whereby a small num ber o f transmitters served a large number o f

receivers. This model was used throughout television and radio broadcasting, and for information

devices such as pagers. W hereas the broadcast model required only a small number o f frequencies

to serve sometimes millions o f users, the mobile phone requires both a downlink and an uplink

channel for each individual user o f the system. Consequently spectrum usage increases for each

additional user o f the system.

Current allocation policy results in even more demand due to the dimensions used for allocation.

Allocation is performed mostly by frequency, yet other dimensions such as space, time and power

also exist and offer great potential to increase capacity. Increased allocation by space would allow

organisations in different regions to use the same frequencies. In time the granularity o f space

Chapter 7 — Case Studies Spectrum Management | 169

could be reduced and in the extreme possibly allowing users to use the same frequencies in much

sm aller vicinities, for example in different floors o f a building. Allocation by time would allow

users access to underutilised spectrum, effectively filling the unused gaps o f available spectrum

time. Transmit power, although partly regulated today, could be made a more effective means o f

allocation and would go hand in hand with regulation by space. Overall, there are many new ways

to allocate spectrum but until now the technology has not existed to allow its implementation.

The FCC and other bodies have recognised that software radio is an enabling technology in

achieving more effective spectrum regulation. Software radio can offer the flexibility required to

deliver devices that are dynamic in their use o f frequency, power and time, thus reconfigurability

has a significant role to play. The next section describes how the IRIS system can be used to build

two types o f systems that enable dynamic spectrum use.

7.4.2 Applying IRIS to Spectrum Management

This section shows how the IRIS system can be used to address two issues in dynamic spectrum

use, namely interference temperature and spectrum monitoring.

One o f the fundamental reasons spectrum is regulated is to ensure interference free communication.

Therefore, in exploring new ways o f allocating spectrum it has been important to address how

interference will be managed in this new dynamic environment. The FCC have proposed the use o f

an ‘Interference Temperature’, a metric that measures the RF power available at the receiving

antenna [FCC2003]. The idea is that spectrum aware devices can dynamically calculate the current

temperature to determine whether it is permissible to communicate or whether the device should try

a new frequency. The FCC has proposed that the metric be defined as ‘the RF power generated by

undesired emitters plus noise sources that are present in a receiver system per unit o f bandw idth’ .

Regulators can assign different threshold levels for each band, effectively allowing them to control

the noise floor. This requires a device that can measure the interference tem perature and react

accordingly.

An interference temperature device requires reconfigurability in that the device must be able to

adjust its operation in relation to its environment. Using IRIS this type o f system can be developed

by employing control logic and parametric reconfiguration. Figure 7.7 shows a diagram o f how the

FSK transceiver example from Chapter 6 could be modified to react to Interference Temperature.

Chapter 7 — Case Studies Spectrum Management | 170

Receiver Path

Data Input
Conrtponer^t

Interference Tem perature
Com ponent Com ponent

Mixer FIR Filter Sam pler

Tempi rature
C ha iged I Local OscillatorSignal C hanged

C hange
FrequencyStancalone

R F F ront Eid Controller
Com fonent

RF Front End CONTROL LOGIC

Up Converter
Com ponent

Up Sam pler
C om ponentCom ponent Com ponent

Lookup Table

Bit Shifter

Signal

Transm itter Path

Figure 7.7 - FSK Transceiver with Interference Temperature Detector

In th is design the radio m onitors the tem perature via an In terference Tem perature com ponent. This

calcu lates the noise per unit bandw idth on the curren tly tuned frequency. This can be done in

several ways. If a periodic transm ission o f a know n sequence is taking place the com ponent can

com pare the known transm ission w ith the received signal. A s the noise increases over tim e w ith the

introduction o f new transm itters into the band it can track the noise difference. W ithout a fixed

periodic transm ission to correla te against, the com ponent could m easure the overall pow er o f the

noise floor over time.

U sing control logic the consequence o f this tem perature can be com puted possibly chang ing the

operating frequency o f the radio system by con tro lling the RF front-end. The tem peratu re could

also change other aspects o f the radio system perhaps changing the m odulation schem e or data rate

o f the radio to reduce the in terference it causes.

B ecause the IRIS system exists prim arily in softw are, enabling in terference tem perature is

straightforw ard, only requiring the inclusion o f a new com ponent and som e additional control

logic. T he fact it is written in G PP-based softw are also m eans that the com ponent can be reused in

m any o ther designs requiring th is functionality . T h is reiterates a point from C hap ter 3 about

softw are com ponents; they allow encapsulation and reuse o f softw are and are a su itable m ethod o f

deploym ent. For exam ple, instead o f regulating the requirem ents o f individual radio devices

regulatory bodies such as the FCC could regulate and approve particu lar softw are com ponents for

Chapter 7 — Case Studies Spectrum M anagem ent | 171

use in Interference Temperature calculations. However, the actual method for doing this requires

further research and is discussed in Section 8.3.

Besides the actual terminals that communicate, there are other types o f devices that will be required

in a dynamic spectrum environment, one such example being a device for monitoring spectrum

usage. Many regulators already m onitor spectrum on a regular basis but in a more demanding and

dynamic environment communications will have to be more closely monitored to ensure that the

policies in place are effective. This will require monitoring stations that can detect the Interference

Temperature but possibly also analysing individual transmissions. This could be o f use in enforcing

regulations by tracking misuse o f spectrum or by producing statistics and feedback information

regarding the types o f transm issions occurring in the medium.

The IRIS system can be used to develop such a m onitoring device. Figure 7.8 shows the design o f a

spectrum monitoring system. This system sweeps any band o f interest and continually analyses the

signals received for any communications occurring in that band. This can be done by basic pattern

matching in looking for strong signals and any signal o f interest can be down converted to

baseband where it enters a signal buffer. The buffer makes use o f the large amounts o f RAM

available with a GPP design to store the most recently received radio signals. The control logic on

receiving a particular signal o f interest can retrieve a previous occurring signal and possibly record

it to disk for later analysis. A signal database is also included and this could be used to store

statistical information resulting from the analysis.

S ig n a l D a ta b a s e

S to re
S ig n a l

Info rm ation

S to re
S igna l

In form ation

T e m p e ra tu re
C a lc u la te d

R F T e m p e ra tu re
D e te c to r

R e p la y
Buffer

Buffer
R e c e iv e d

C h a n g e
F re q u e n c y

S ta rt /S to p

M ixer FIR Filter

R F F ro n t E nd
C o n tro lle r

A/D
C o n v e rte r W a v efo rm R e c o rd e r

S ig n a l B uffer

R e c o rd W a v efo rm
to Disk

C h a n g e F re q u e n c y

L oca l O sc ilta to r

(J D

CONTROL LOGIC

Figure 7.8 - Spectrum Monitoring System

Chapter 7 — Case Studies Spectrum Management | 172

7.4.3 Conclusions

This section has discussed the emerging area o f spectrum management and how the IRIS system

can address the technological needs o f devices operating in this environment. The interference

temperature device demonstrates how tem perature calculations can be encapsulated in a Radio

Component and subsequently used to reconfigure other parts o f the radio system. This type o f

system can be built easily using the IRIS com ponent framework. W hile this discussion has only

provided a brief overview o f the topic, spectrum management is an important and growing area o f

research. For this reason Chapter 8, Section 8.3.4 suggests future directions for research in this

field.

7.5 Summary

These case studies have demonstrated that the approach to reconfigurability in this thesis and the

IRIS system in general are applicable to emerging techniques and technologies in communications.

OTAR showed how IRIS and its support for reconfigurability deliver the functionality required for

software download, an important technique in the software radio space. Wireless networking

demonstrated how IRIS can act as the physical layer in a communications stack and also offers new

capabilities to wireless networking devices by introducing elements o f physical layer

reconfigurability to the communications stack. Spectrum Management showed how IRIS can assist

the development o f a new emerging technology, enabling a fundamental change in the way

communications take place. Overall these case studies demonstrate that the IRIS system and the

concepts o f reconfigurability are important contributions as they show that a software-oriented

component-based approach to software radio design yields highly reconfigurable radio devices.

Chapter 7 — Case Studies Sum m ary | 173

8 Conclusions

8.1 Introduction

T his chapter draw s conclusions from this thesis. Section 8.2 revisits the specific contribu tions

identified in the in troductory chapter and show s how they w ere achieved. Section 8.3 highlights

fu ture w ork that can follow from th is body o f research and Section 8.4 concludes.

8.2 Summary of Contributions

The purpose o f th is w ork has been to show tha t a softw are-orien ted com ponent-based approach to

softw are radio design yields highly reconfigurable radio devices. The fo llow ing discussion review s

the contribu tions that have been presented to substan tia te th is claim .

A comprehensive overview of software radio technology

The thesis as a w hole provided insight into softw are radio technology, the main discussion o f

w hich w as presented in C hapter 2. That chapter presented a com prehensive review o f the history

and evolution o f softw are radio, focusing both on the technology involved and the w ider

consequences o f softw are radio itself. This chap ter gave a unique perspective on the subject,

show ing how it is a w ide and diverse field, bringing together various technologies to in troducing a

new paradigm in radio system design. The v iew poin t taken in exp lain ing softw are technology w as

unique because unlike m ost o ther research it did not concentrate on one particu lar application such

as m obile telephony, w ireless LAN or digital telev ision . Instead this discussion w as presented from

a general perspective and thus provides a unique p icture o f the softw are radio space as a w hole.

T his discussion also provided the background know ledge necessary to approach the problem o f

reconfigurab ility in radio system s. Thus, the softw are-orien ted solution presented is generic and

can be applied to m any d ifferent applications including m obile telephony, etc.

Categories for assessing reconfigurability in radio systems

A s the aim o f the thesis w as to develop highly reconfigurab le devices, it w as thus necessary to have

a m etric in assessing the level o f reconfigurability . T h is need has resulted in the m ost im portant

contribu tion o f th is w ork, w hich is the analysis, defin ition and categorisation o f reconfigurability .

T his is a unique contribution as no prior w ork in th is field has looked at the concept o f

174

reconfigurability in this way. The three categories, application, structural and parametric

reconfiguration, can now be used by others in assessing the reconfigurability o f radio systems.

These categories have also served as basic requirem ents for the IRIS system.

Analysis of software design for radio systems

Chapter 4 analysed eight topics in software developm ent and how they apply in the field o f

software radio. These topics: - reuse, abstractions, adaptability and flexibility, complexity, security,

portability, real-time behaviour and fmally upgrading and versioning - have been the result o f

extensive research. That research demonstrates the need for component-based software in

delivering reconfigurable radio systems and thus is an important contribution.

Design, implementation and analysis of a reconfigurable radio system

The IRIS system demonstrates some fundamental properties o f the reconfigurable radio concept.

Firstly, it shows that it is possible to develop a reconflgurable radio system that exhibits

application, structural and parametric reconfigurability. Secondly, it demonstrates that component-

based software can be used to develop highly reconfigurable radio systems and that it is possible to

encapsulate signal processing algorithms into such a com ponent without compromising its level o f

reconfigurability. Finally, it provides useful information to others who may consider following on

from this research in developing either reconfigurable radio systems or other signal processing

systems on GPPs. For these three reasons this is an important contribution to the field o f software

radio.

Case studies that apply the reconflgurable radio approach

The case studies presented in Chapter 7 are an important part o f this work as they show that the

IRIS system and hence the software-oriented component-based approach o f this thesis is applicable

to real problems in radio system design. It shows that the operations required in applications such

as OTAR (Section 7.2) or network integration as in the case o f DAWN (Section 7.3) can be

mapped directly to the categories o f reconfigurability. For example OTAR relies on structural

reconfiguration and DAWN relies on parametric reconfiguration. This shows that the concepts

presented in this thesis are valid and that the approach taken is justified.

8.3 Future Work

At various points throughout this research, areas o f interest have been highlighted that require

further research. The following sections discuss these in turn.

C hapter 8 — Conclusions Future W ork | 175

8.3.1 Hardware

D espite its softw are-oriented approach, reconfigurab ie radio requires hardw are capab le o f

de livering the type o f platform it requires. T he fo llow ing areas in hardw are developm ent for

reconfigurab ie radio require m ore attention:

• More dynamic RF front-ends

C urren t technology cannot provide the requirem ents o f the ideal softw are radio as d iscussed in

Section 2.4.1. In the evolution tow ards the ideal softw are radio m ore dynam ic RF front-ends

are required that deliver better perform ance, larger bandw idths and can operate on m ultip le

frequencies. N ew techniques and fu rther research are required to deliver th is goal.

• Low power hardware

F urther im provem ents in low pow er hardw are need to be m ade to allow the reconfigurab ie

rad io concept to be feasible for m obile devices. A reduction in pow er consum ption w ould

a llow reconfigurabie radio devices to be em bedded into m obile term inals w hile still a llow ing

them to perform the m ajority o f signal p rocessing in softw are. T his requires fu rther research in

sem i-conductor technology'.

• Signal processing devices that inherently support reconfigurability

C hapter 4 discussed reconfigurab ility and defined application , structural and param etric

reconfiguration as m etrics for assessing reconfigurability . An in teresting area o f research

w ould be to develop a dom ain-specific piece o f signal p rocessing hardw are that inherently

supports application , structural and param etric reconfigurability . A nother in teresting area

w ould be the tools required to develop softw are for this platform . An environm ent that

supported com ponent-based softw are developm ent w ould be o f particu lar interest.

8.3.2 Software

T he d iscussion o f softw are design for radio system s and the IRIS system itse lf have dem onstrated

that com ponent-based softw are can yield highly reconfigurab ie radio devices. T here are how ever

som e areas w hich could benefit from fu rther research:

• Real-Time

T he topic o f real-tim e behaviour o f signal p rocessing algorithm s needs to be investigated in the

contex t o f reconfigurabie radio. T here are potentially tw o m ajor research areas w ith in this

topic; firstly, real-tim e constra in ts can hinder reconfigurab ility , as som e aspects o f perform ing

a reconfiguration may not be determ inistic . F urther research needs to be carried ou t to

investigate how application, structural and param etric reconfiguration can be achieved in a hard

real-tim e environm ent. Secondly, w ith the reconfigurab ie approach it may be possib le to relax

the needs o f real-tim e behaviour altogether. A radio system built from the ground up to be less

stringent on real-tim e requirem ents may be ab le to operate w ithout real-tim e constrain ts.

Chapter 8 — Conclusions Future Work | 176

Further research could investigate the developm ent o f a lgorithm s and softw are fo r supporting

th is type o f com m unication.

• IRIS Cxmponenls

O ther rjsearchers are already using the IRIS system as a basis for experim entation and

d ev e lopnen t o f new radio system s [F lood2003, N olan2003d, N olan2002c], T hese researchers

have developed com ponents for experim enting w ith m odulation schem es and algorithm ic

techniques. Research on IRIS can con tinue e ither by extending the IRIS system itse lf and

investig iting its use on o ther platform s o r by the developm ent o f m ore com ponents. The latter

could prove to be o f great interest, as by developing a host o f reusable com ponents, m any new

applications are possible.

• IRIS Framework

C hapter 6, Section 6.6 d iscussed som e basic scalab ility and m em ory experim ents carried out on

the IRIS system . Further w ork on the IRIS system could concentrate on developing the

im plem entation further, using it to develop com plete com m unications system s to a com m ercial

g rade ard reporting on the scalability and perform ance required. Further scalab ility w ork could

co n cen fa te on analysing m ore com plex sets o f com ponents for linear scalability.

• B etter integration with networking p ro toco ls

Section 7.3 touched on the subject o f ad hoc netw orking and m entioned the integration o f a

reconfigurable radio into an ad hoc node. This is an area that requires further research to

investigate how the reconfigurable radio and ad hoc routing protocols can interact and share

inform ation that may im prove overall com m unication in the m obile environm ent.

8.3.3 Security

Security has been touched on at various points th roughout th is thesis, in both the d iscussions o f

softw are radio security in Section 4.3.5 and in the d iscussion o f O T A R in Section 7.2. T his is an

im portant area for future investigation as it is im portant that as radio system s m ove into the digital

dom ain the> do not succum b to the softw are problem s experienced in m ainstream softw are. These

problem s include v iruses, w orm s and o ther m alic ious code w ritten w ith the intent o f exploiting

w eaknesses in radio system s. It still has to be proven that th is is even possible. Perhaps the reason

no such attacks have em erged as o f yet is due to the inaccessib ility o f flexible RF equipm ent. W hen

devices em erge that allow the developm ent o f flex ib le softw are radio system s, and particularly

devices th a t allow arbitrary choice o f transm it and receive frequency, th is barrier w ill d isappear.

T hese types o f devices are already beginning to appear, the G N U R adio pro ject d iscussed in Section

2.5 being an exam ple. Increased accessib ility to the RF spectrum w ill open the m edium to attackers

that will be able to w rite program s to target security w eak im plem entations o f public radio

standards.

Chapte r 8 — C on c lu s io n s Future W o rk | 177

Sev/eral areas 'or further research are thus required:

• Analysis c f the threat

An analysis o f the security threats in radio systems should be carried out to determine the

feasibility o f such attacks. O f particular focus should be to determine whether it is feasible that

viruses anJ worms can affect the software radio as they would the average PC.

• Cryptographic techniques

Air interfaces should be secured using cryptography and secure protocols. Further research

should concentrate on deciding what the best security system is for the radio environment.

• Defensive software devehpment

An analys s should be carried out on how to develop secure software for reconfigurable radio

systems. This work would ensure that the software development process itself does not

introduce exploitable weaknesses into radio systems.

8.3.4 Spectrum Management

Section 7.4 gave a brief overview o f spectrum management and how IRIS could potentially be used

to develop systems that facilitate the types o f systems required in a spectrum managed

env ironment. This is still an emerging area o f research and thus many unexplored areas exist.

T h e following topics require further investigation:

• Interference temperature

The interference temperature melric discussed in Section 7.4 requires further attention.

Although the FCC have suggested a metric based on noise per unit bandwidth, further research

is required to determine if this is in fact the best way to measure interference. Additional

schemes should be researched, proposed and investigated.

• Spectrum-ifware devices

Further research needs to be done on the whole topic o f developing spectrum-aware devices.

Research should concentrate on how they interact, manage their use o f the spectrum and

relating to security, how a dynamic device that can operate on any frequency can be trusted to

not overuse or ‘pollute’ the RF spectrum.

• Regulatory issues

The regulatory issues surrounding spectrum management need to be investigated as the new

concept o f dynamic spectrum allocation fundamentally changes the model by which spectrum

has been allocated in the past. Research needs to be carried out to determine the best way to

manage this resource and in particular how technologies such as reconfigurable radio can be

used effectively in a managed spectrum environment.

Chapter 8 — Conclusions Future Work | 178

8.41 C<nclusion

Thiis thesis represents a step forward in our understanding o f what reconfigurability means in the

conitext o f radio systems. Instead o f concentrating on delivering software radio using today’s

harrdware ttchnologies, this thesis has asked questions about how these radio systems will manifest

thermselves in the future. This research has shown that a software-oriented component-based

appjroach t(software radio design results in highly reconfigurable radio devices, something that

willl be imp)rtant in delivering the next generation o f wireless devices.

Chapiter 8 — Conclusions Conclusion | 179

9 Bibliography
[Abeysekera2002] “FPGA Implementation o f a Sigma-delta Architecture Based Digital l.F. Stage
for Software Radio” , In Proceedings o f 15* Annual IEEE International ASIC/SOC Conference,
September 2002

[Abu2003] Abu-AI-Saud, Wajih A., Stiiber, Gordon L., “M odified CIC Filter for Sample Rate
Conversion in Software Radio Systems” , IEEE Signal Processing Letters, Vol. 10, No. 5, May
2003

[Ahlquist99] Ahlquist, Gregory., Rice, Michael., Nelson, Brent., “ Error Control Coding in
Software Radios: An FPGA Approach”, IEEE Personal Com munications, August 1999

[Akos97] Akos, Denis M., “A Software Radio Approach to Global Navigation Satellite System
Receiver Design”, Ph.D. Dissertation, Ohio University, August 1997

[Altera] http://www.altera.com

[Armstrong24] Armstrong. Edwin H., “The Super-Heterodyne, its Origin, Development and Some
Recent Improvements”, In Proceedings o f IRE, Vol. 12, October 1924

[Baines95] Baines, Rupert., “The DSP Bottleneck”, IEEE Communications Magazine, No. 5, May
1995

[Balen2000] Balen, Henry., “ Distributed Object Architectures with CORBA”, Cambridge
University Press. 2000

[Beach2002] Eieach, Mark., Warr, Paul., MadLeod, John., “ Radio Frequency Translation for
Software Defined Radio”, Chapter 2, Software Defined Radio: Enabling Technologies, John Wiley
and Sons. 2002

[Bertrand2002] Bertrand, John., Cruz, John W., Majkrzak, Biyan., Rossano, Thomas., “CORBA
Delays in a Software-Defined Radio”, IEEE Communications Magazine, February 2002

[Bonser98] Bonser, Wayne., “SPEAKeasy M ilitary Software Defined Radio (presentation)”.
Symposium on Advanced Radio Technologies, 1998

[BoochST] Booch, Grady., “Software Components with Ada: Structures, Tools, and Subsystems”,
Benjamin-Cummings, 1987

[Bose99a] Bose, Vanu., Ismert, Michael., Welborn, Matt., Guttag, John., “Virtual Radios”, IEEE
Journal on Selected Areas in Communications, Vol. 17, No. 4, April 1999

[Bose99b] Bose, Vanu., “Design and Implementation o f Software Radios Using a General Purpose
Processor”, Doctoral Thesis, M assachusetts Institute o f Technology, June 1999

[Brannon2002] Brannon, Brad., et al, “ Data Conversion in Software Defined Radios”, Chapter 4,
Software Defined Radio: Enabling Technologies, John W iley and Sons, 2002

[Brinegar98] Brinegar, Cornelius., Naishadham, Krishna., “ Design o f an Integrated RF Filter for
the Direct Digitization Front End o f Dual GPS/GLONASS Software Radio Receiver”, In
Proceedings o f IEEE Radio and W ireless Conference (RAW CON), August 1998

[Broch98] Broch, Josh., et al, “A Performance Comparison o f M ulti-Hop W ireless Ad Hoc
Network Routing Protocols”, International Conference on M obile Computing and Networking
(M OBICOM), 1998

180

[Brock2001] Brock, Darren., Mukhanov, Oleg A., Rosa, Jack., “ Superconductor Digital RF
Dev elopm ent h r Software Radio”, IEEE Communications Magazine, February 2001

[Brock2002] Brock, Darren., “Superconductor M icroelectronics: A Digital RF Technology for
Softw are Radi)s”, Chapter 5, Software Defined Radio: Enabling Technologies, John Wiley and
Son:s, 2002

[Buick94] Bucv, J. T., Ha, S., Lee, H. A., M esserschmitt, D. G., “Ptolemy: A Framework for
S im ulating ard Prototyping Heterogeneous Systems”, International Journal o f Computer
Sim ulation, Spjcial Issue on Simulation o f Software Development, Volume 4, pp. 155-182, April
1994

[Bu'cknell200G| Bucknell, Paul., “Software Radio and Reconfiguration”, In Proceedings o f the
London Comn'unications Symposium, 2000

[BuckneII2002| Bucknell, Paul., Pitchers, Steve., “ Software Download for M obile Terminals”,
C hapter 11, Software Defined Radio: Enabling Technologies, John Wiley and Sons, 2002

[Buracchini2000] Buracchini, Enrico. “The Software Radio Concept”, IEEE Communications
M agazine, Sepem ber 2000

[Bum s2003] Bums, Paul., “Software Defined Radio for 3G”, M obile Communications Series,
Artech House, 2003

[Cadence2002 Cadence Ltd., “ FPGA Design With Cadence SPW ”, Published at website
http://www.cacence.com, 2002

[Chapin2001] Chapin, John., Lum, Victor., Muir, Steve., “Experiences Implementing GSM in
RDL (The Vanu Radio Description Language)”, In Proceedings o f M ilitary Communications
Conference MILCOM, Communications for Network-Centric Operations, Volume 1, October
2001

[Chapin2002J Chapin, John., “Software Engineering for Software Radios: Experiences at MIT and
Vanu. Inc.”, C iapter 10, Software Defined Radio: Enabling Technologies, John Wiley and Sons
Ltd, 2002

[Chapin2002] Chapin, John., “The Vanu Software Radio System”, Software Defined Radio Forum
Technical Conference, November 2002

[Chappell96] Chappell, David., “ Understanding ActiveX and OLE”, M icrosoft Press, 1996

[Chappell2002 Chappcl, Stephen., Sullivan, Chris., “ Handle-C for Co-Processing and Co-Design
o f Field Progranm able System on Chip”, Published at Celoxica Website, http://www.celoxica.com

[Cordis] http://www.cordis.lu

[Cowan2000] Cowan, C., Wagle, F., Calton Pu, Beattie,. W alpole, J., “ Buffer Overflows: Attacks
and Defences for the Vunerability o f the Decade”, DARPA Information Survivability Conference
and Exposition, DISCEX’ 00, 2000

[Cummings2002] Cummings, Mark., “Practical Implementation o f Commercial SDR RF Front
Ends”, In Proceedings o f 2002 Software Defined Radio Forum Technical Conference (SDR ’02),
November 2002

[Cummings2002b] Cummings, Mark., “Radio Frequency Front End Implementations for
Multimode SDRs”, Chapter 3, Software Defined Radio: Enabling Technologies, John W iley and
Sons, 2002

[Cummings99a] Cummings, Jonathan., “ Software Radio for Airborne Platforms”, IEEE Journal on
Selected Areas in Communications, Vol. 17, No. 4, April 1999

[Cummings99b] Cummings, Mark., Haruyama, Shinichiro., “FPGA in the Software Radio”, IEEE
Communications Magazine, February 1999

Chapte r 9 — Fiibliography B ib l io g rap h y | 181

[Cummimgs99c] Cummings, Mark., Heath, Steve., “Mode Switching and Software Download for
Software Define< Radio: The SDR Forum Approach”, IEEE Communications M agazine, August
1999

[Dahl70] Dahl, D. J., Nygaard, K. “Simula-67 Common Base Language”, Publications S-22,
N orw egian Comfuting Centre, Oslo 19'’0

[D ijkstra72] Dijtstra, Edsger. W., “The Humble Programmer”, Communications o f the ACM,
Volume 15, Issut 10, October 1972

[Dillinge;r2003] Dillinger, Markus., Buljore, Soodesh., “Reconfigurable Systems in a
H eterogeneous Environment”, Chapter 1 o f “Software Defined Radio: Architectures, Systems and
Functions”, John Wiley & Sons, 2003

[Dixon2C)01] Di>on, James. L., Wilkes, Joseph E., “A ‘Low-Cost’ Software Radio Test Bed”,
Vehiculair Technology Conference (VTC), 2001

[Doyle20)01] Do}le, L., Kokaram, A., O’Mahony, D., “ Error-resilience in M ultimedia Applications
over Ad Hoc Networks”, In Proceedings o f International Conference on Acoustics, Speech and
Signal Processinj^, May 2001

[Doyle20i02a] Dcyle L., Mackenzie P.. O'M ahony D., Nolan K., Flood D., "A General Purpose
Processor Component based Software Radio Engine", in Proceedings o f the Second European
Colloquium on Rjconfigurable Radio, June 2002

[Doyle20'02b] D)yle, L., Davenport, G., O ’Mahony, D., “ Mobile Context Aware Stories”, In
Proceedings o f thj IEEE Conference on Multimedia and Expo, August 2002

[Doyle20'02c] “AJ hoc Networks - A Welcome Disruption”, 1ST 2002, November 2002

[Doyle20'03] Do\le, L., Mackenzie, P., “Exploring Reconfigurability”, To Appear in Proceedings
o f 2003 Software Defined Radio Forum Technical Conference (SD R ’03), November 2003

[Drew2001] Drev, Nigel. J., Dillinger, Markus. M., “Evolution Toward Reconfigurable User
Equipm ent” , IEE5 Communications Magazine, Volume 39, Issue 2, February 2001

[Eichin89] Eichir, Mark. W., Rochlis, John. A., “With M icroscope and Tweezers: An Analysis o f
the Intermet Virus o f November 1988”, IEEE Symposium on Security and Privacy, May 2001

[Ellingsoin98] Ellngson, S. W., Fitz, M P., “A Software Radio-Based System for Experimentation
in W ireless Com nunications”, 48* IF^EH Vehicular Technology Conference, Volume 3, May 1998

[FCC2001] Federal Communications Commission, “Software Defined Radios”, Federal Register,
Vol 66, N o 2, January 2001

[FCC2002] Fede'al Communications Commission, “Spectrum Policy Task Force Report”, ET
Docket N o. 02-135, published at website http://www.fcc.gov, November 2002

[FCC2003] Federal Communications Commission, “Notice o f Inquiry and Notice o f Proposed
Rulemaking: Establishment o f an Interference Tem perature Metric to Quantify and Manage
Interference”, ET Docket No. 03-237, published at website http://www.fcc.gov, Novem ber 2003

[Fettweis2002] Fettweis, Gerhard., Hentschel, Tim., “The Digital Front End: Bridge Between RF
and Baseband Processing”, Chapter 6, Software Defined Radio: Enabling Technologies, John
Wiley and Sons, 2002

[Fines95] Fines, P., “Radio Architectures Employing DSP Techniques”, M icrowave and
M illimetre-W ave Communications - the Wireless Revolution, lEE W orkshop on, 29 November
1995

[Flcod2003] Flood, D., Doyle, L., Mackenzie, P., N olan, K., O'Mahony, D., “Exploiting The
Dynamic Flexibility O f Software Radio In FM Broadcast Receivers”, ARRL and TAPR 22nd
Digital Communications Conference, September 2003

C hap;e r 9 — B ib lio g rap h y B ib lio g rap iiy I 182

[Forde2000] Forde, T., Doyle, L. E., O ’Mahony, D., “An Evaluation System for W ireless Ad-Hoc
Network Protocols”, Irish Signals and Systems Conference (ISSC), June 2000

[Fuencisla2002] Fuencisla, Man'a., “M arket Impact o f Software Radio: Benefits and Barriers”,
M asters Thesis, Master o f Science in Technology and Policy, M assachusetts Institute o f
Technology, June 2002

[Fujimaki2001] Fijimaki, Akira., et al, “Broad Band Software-Defined Radio Receivers Based on
Superconductive Devices”, IEEE Transactions on Applied Superconductivity, Vol. I I , No. I,
March 2001

[Gamma95] Gamma, Erich., et al, “Design Patterns: Elements o f Reusable Object-Oriented
Software”, Addison-W esley, 1995

[Gast2002] Gast, Matthew S., “802.11 W ireless Networks: The Definitive Guide”, O ’Reilly, 2002

[Gazis2002] Gazis, Vangelis.,et al, “Evolving Perspectives o f 4'*’ Generation Mobile
Communication Systems”, The 13th IEEE International Symposium on Personal, Indoor and
M obile Radio Communications, Volume I, 2002

[Glossner2003] Glossner, John., et al, “M ultiple Communication Protocols for Software Defined
Radio”, In Proceedings o f the lEE Colloquium on DSP-enabled Radio, 2003

[GN U] http: //ww w. gn u .org/software/gn urad io

[Goldberg83] Goldberg, A., Robson, D., “ Smalltalk-80: The Language and its Implementation”,
Addison-W esley, Reading, MA, 1983

[Gosling96] Gosling, A., Joy, B., Steele, G., “The Java Language Specification”, Addison-W esley,
1996

[Green2002] Green, Peter J., Taylor, Desmond P., “Smart Antenna Software Radio Test System”,
Proceedings o f the First IEEE International W orkshop on Electronic Design, Test and Applications
(D ELTA ’02), 2002

[Gschwind2002] Gschwind, Thomas., “Adaption and Composition Techniques for Component-
Based Software Engineering”, PhD Dissertation, Institut fiir Informationssysteme, 2002

[Gu2002] Gu, Jian., “Zero-IF and Near-Zero-IF Quadrature Receivers for SDR”, In Proceedings o f
2002 Software Defined Radio Forum Technical Conference (SDR ’02), November 2002

[Gunn99] Gunn, James. E., “A Low-Power DSP Core-Based Software Radio Architecture”, IEEE
Journal on Selected Areas in Communications, Vol. 17, No. 4, April 1999

[Harris2001] Harris, Fredric J., Rice, Michael., “M ultirate Digital Filters for Symbol Timing
Synchronization in Software Defined Radios”, IEEE Journal on Selected Areas in
Communications, Vol. 19, No. 12, December 2001

[H aruyam a2001] Haruyama, Shinichiro., M orelos-Zaragoza, Robert., “A Software Defined Radio
Platform with Direct Conversion: SOPRANO”, 54* IEEE Vehicular Technology Conference,
Volume 3, October 2001

[Hentschell2000] Hentschell, Tim., Fettweis, Gerhard., “Sample Rate Conversion for Software
Radio”, IEEE Communications Magazine, August 2000

[Hentschell99] Tim Hentschell, et al., “The Digital Front-End o f Software Radio Terminals” , IEEE
Personal Communications, August 1999

[Honda2001] Honda, Makota., Harada, Hiroshi., Fujise, Masayuki., “ Efficient Configuration Data
Transmission Scheme for FPGA-based Downloadable Software Radio Communication Systems”,
54* IEEE Vehicular Technology Conference, Volume 3, October 2001

[IEEE2000] IEEE, “ IEEE Standard VHDL Language Reference M anual”, IEEE Std 1076-2000,
January 2000

C h a p te r 9 — liib lio g rap h v B ib lio g rap h y | 183

[1EEE2001] IEEE, “ IEEE Standard Verilog Hardware Description Language”, IEEE Std 1364-
2001,2001

[Ikemoto2002] Ikemoto, Kentaro., Kohno, Ryuji., “Adaptive Channel Coding Schemes Using
Finite State M achine for Software Defined Radio”, In Proceedings o f International Symposium on
Information Theory, 2002

[Ikonomou99] Ikonomou, Demosthenes., Pereira, Jorge. M., “ EU funded R&D on Re-configurable
Radio Systems and Networks: The story so far”, Infowin Issue on M obile Communications,
published at website http://www.cordus.lu, 1999

[Johnson96] Johnson. David. B., Maltz. David. A., “Dynamic Source Routing in Ad Hoc W ireless
Netw orks”, M obile Computing, volume 353. Kluwer Academic Publishers, 1996

[JTRS2001] Joint Tactical Radio System Joint Program Office, “Software Communications
Architecture Specification v2.2”, MSRC-5000SCA, November 2001

[JTRS2002] Joint Tactical Radio System Joint Program Office, “Joint Tactical Radio System: SCA
D eveloper’s Guide”, Document Number: Rev 1.1, June 2002

[Jung2000] Jung, M atthias., “Software Engineering Techniques for Support o f Communciation
Protocol Implementation”, PhD Dissertation, L ’Universite de Nice - Sophia Antipolis, 2000

[Jub87] Jubin, John., Tom ow, Janet D., “The DARPA Packet Radio Network Protocols”, In the
Proceedings o f the IEEE, Volume 75, Issue 1, January 1987

[Kenington2000] Kenington, Peter B., “Power Consumption o f A/D Converters for Software
Radio Applications”, IEEE Transactions on Vehicular Technology, Vol. 49, No. 2, March 2000

[Kenington2002] Kenington, Peter., “ Linearized Transmitters: An Enabling Technology for
Software Defined Radio”, IEEE Communications Magazine, February 2002

[Kennedy95] Kennedy, Joseph., Sullivan Marc C., “ Direction Finding and ‘Smart A ntennas’ Using
Software Radio Architectures”, IEEE Communications M agazine, May 1995

[Kiczales97] Kiczales, Gregor., et al, “ Aspect-Oriented Programming”, European Conference on
Object-Oriented Programming (ECOOP), June 1997

[Kim2001a] Kim, Hahnsang., Turletti, Thierry., “An Esterel-based Development Environment for
Designing Software Radio Applications”, Rapport de recherche. No. 4256, Unite de recherche
INRIA Sophia Antipolis, September 2001

[Kim2001b] Kim, Hahnsang., Turletti, Thierry., Bouali, Amar., “Epspectra: A Formal Approach to
Developing DSP Software Applications”, Rapport de recherche. No. 4293, Unite de recherche
INRIA Sophia Antipolis, October 2001

[Kokozinski2002J Kokozinski, Rainer., Greifendorf, Dieter., Stammen, Joerg., Jung, Peter., “The
Evolution o f Hardware Platforms for Mobile ‘Software Defined Radio’ Tenninals”, In Proceedings
o f 13̂ '’ IEEE International Symposium on Personal, Indoor and M obile Radio Communications
(PIM RC), September 2002

[Lackey95] Lackey, Raymond. J., Upmal, Donald. W., “ Speakeasy: The M ilitary Software Radio”,
IEEE Communications Magazine, page 56-61, May 1995

[Lapsley97] Lapsley. Phil, Bier., Jeff, Shoham. Amit, Lee. Edward A., “DSP Processor
Fundamentals”, IEEE Press, 1997

[Lehr2002] Lehr, W illiam., Merino, Fuencisla., Gillett, Sharon Eisner., “Software Radio:
Implications for W ireless Services, Industry Structure, and Public Policy”, The 30"' Research
Conference on Information, Communication, and Internet Policy, Telecom munications Policy
Research Conference (TPRC) 2002, September 2002

[Liberty2001] Liberty, Jesse., “ Programming C#”, O ’Reilly and Associates, July 2001

C h a p te r 9 — B ib lio g rap h y B ib lio g rap h y j 184

[L6wy2003] Lowy, Juval., “ Programming .NET Components”, O ’Reilly & Associates, Inc, 2003

[Lumpe99] Lumpe, Marcus., “A 7i-Calculus Based Approach for Software Com position”, PhD
Dissertation, Institut fiir Informatik und angewandte Mathematik, Universitat Bern, 1999

[M ackenzie2001] M ackenzie P., Doyle L., O ’M ahony D., Nolan K., “Software Radio on General-
Purpose Processors”, In Proceedings o f the First Joint lEI/IEE Symposium on Telecommunications
Systems Research, Dublin, November 2001

[M ackenzie2002a] Mackenzie, Philip., Doyle, Linda., Nolan, Keith., O ’Mahony, D., “Selecting
Appropriate Hardware for Software Radio Systems” , In Proceedings o f 2002 Software Defined
Radio Forum Technical Conference (SDR ’02), Novem ber 2002

[M ackenzie2002b] M ackenzie P., Doyle L., Nolan K.E., O'M ahony D., "An Architecture for the
Development o f Software Radios on General Purpose Processors", in Proceedings o f the Irish
Signals and Systems Conference, pp275-280, 2002

[M ackenzie2003] Mackenzie, Philip., Doyle, L. E., Nolan, K. E., Flood, D., “ IRIS - A System for
Developing Reconfigurable Radios”, In Proceedings o f the lEE Colloquium on DSP-enabled
Radio, September 2003

[M acLeod2001] MacLeod, J.R., Beach, M.A., Warr, P.A., Nesimoglu, T., “A Software Defined
Radio Receiver Test-bed”, In Proceedings o f IEEE Vehicular Technology Conference, Volume 3,
October 2001

[M aster2002] Master, Paul., Plunkett, Bob., “Adaptive Computing 1C Technology for 3G
Software-Defined M obile Devices”, Chapter 9, Software Defined Radio: Enabling Technologies,
John Wiley and Sons, 2002

[Mathworks] http://www.mathworks.com

[Mehta2001] Mehta, Mehul., Drew, Nigel., Niederm eier, Christoph., “ Reconfigurable Terminals:
An Overview o f Architectural Solutions”, IEEE Communications Magazine, August 2001

[Melby2002] Melby, Jason., “JTRS and the Evolution Toward Software-Defined Radio”, In
Proceedings o f IEEE Military Communications Conference (MILCOM), Volume 2, October 2002

[M ichael2002] Michael, Lachlan B., et al, “A Framework for Secure Download for Software-
Defined Radio”, IEEE Communications Magazine, July 2002

[Mitola] http://ourworld.compuserve.com/homepages/jmitola

[Mitola2000] Mitola, Joseph., “Cognitive Radio: An Integrated Agent Architecture for Software
Defined Radio”, Doctoral Dissertation, Royal Institute o f Technology, Sweden, May 2000

[Mitola2000] Mitola, Joseph., “Software radio architecture: Object-oriented Approaches to
W ireless Systems Engineering”, John Wiley and Sons, 2000

[Mitola92] Mitola, Joseph., “Software Radios: Survey, Critical Evaluation and Future D irections”,
National Telesystems Conference (NTC-92), May 1992

[Mitola95] Mitola, Joe., “The Software Radio Architecture”, IEEE Communications Magazine,
May 1995

[Mitola99a] Mitola, Joe., “Software Radio Architecture: A M athematical Perspective”, IEEE
Journal on Selected Areas in Communications, Vol. 17, No. 4, April 1999

[M itola99b] Mitola, Joseph., Maguire, Gerald Q., “Cognitive Radio: Making Software Radios
More Personal”, IEEE Personal Communications, August 1999

[Mitola99c] Mitola, Joseph., Chester, David., Haruyama, Shinichiro., Turletti, Thierry., Tuttlebee,
Walter., “Globalization o f Software Radio”, Guest Editorial, IEEE Communications Magazine,
February 1999

C h a p te r 9 — B ib l iog raphy B ib l iog raphy I 185

[M itola99d] Mitola, Joseph., “Technical Challenges in the Globalization o f Software Radio” , IEEE
Com munications Magazine, February 1999

[Mitola99e] Mitola, Joseph., Bose, Vanu., Leiner, Barry M., Turletti, Thierry., “Guest Editorial
Software Radios”, IEEE Journal on Selected Areas in Communications, Vol. 17, No. 4, April 1999

[Monson2001] M onson-Haefel, Richard., “Enterprise JavaBeans, Third Edition”, O ’Reilly &
Associates, Inc, 2001

[Moore65] Moore, Gordon. E., “Cramming More Components onto Integrated Circuits”,
Electronics, Volume 38, Num ber 8, April 19, 1965

[M orris98] Morris, Kevin., Kenington, Peter., “A Broadband Linear Power Am plifier for Software
Radio Applications”, 48'*' IEEE Vehicular Technology Conference, Volume 3, May 1998

[Nierstrasz95] Nierstrasz, O., Tsichritzis, D., “Object Oriented Software Composition”, Prentice
Hall, 1995

[Noblet98] Noblet, C., “Assessing the Over-the-Air Software Download for Reconfigurable
Term inal”, lEE Colloquium on Personal Communications in the 21®' Century (II), February 1998

[Nolan2001] Nolan, K., Doyle, L., O'Mahony, D., & Mackenzie, P., “M odulation Scheme
Recognition Techniques for Software Radio on a General Purpose Processor Platform”, In
Proceedings o f the First Joint lEI/IEE Symposium on Telecommunications Systems Research,
November 2001

[Nolan2002a] Nolan, K. E., Doyle, L., Mackenzie, P., and O'Mahony, D., “M odulation Scheme
Classification for 4G Software Radio W ireless Networks”, In Proceedings o f the lASTED
International Conference on Signal Processing, Pattern Recognition, and Applications (SPPRA
2002), June 2002

[Nolan2002b] Nolan, K. E., Doyle, L., O'Mahony, D., and Mackenzie, P., “Signal Space based
Adaptive modulation for Software Radio” In Proceedings o f the IEEE W ireless Communications
and Networking Conference (WCNC), p p 5 10-515, March 2002

[Nolan2002c] Nolan K. E, Doyle L., M ackenzie P., Ammann M. J., “Soft^vare Radio Modulation
Scheme Recognition Techniques for ISl Channels”, In Proceedings o f the Irish Signals and
Systems Conference (ISSC), June 2002

[Nolan2003a] Nolan, K. E., Mackenzie, P., Doyle, L., Flood, D., “ Implementation o f a General-
Purpose Processor Platofrm Based OFDM Software Radio System”, In Proceedings on the Irish
Signals and Systems Conference (ISSC), 2003

[Nolan2003b] Nolan, K. E., Mackenzie, P., Doyle, L., O ’Mahony, D., “OFDM /Flash-OFDM
Reconflgurable Transceivers Using General Purpose Processors”, In Proceedings o f lEE
Colloquium on DSP-enabled Radio, September 2003

[Nolan2003c] Nolan, K. E., Mackenzie, P., Doyle, L, Flood, D., “A Pattern Recognition Approach
for OFDM Frame Synchronisation Using General Purpose Processors”, In Proceedings o f the
lASTED International Conference on Signal Processing, Pattern Recognition and Applications
(SPPRA 2003), 2003

[Nolan2003d] Nolan, K. E., Mackenzie, P., Doyle, L., O ’Mahony, D., “ Flexible Architecture
Software Radio OFDM Transceiver System and Frame Synchronisation Analysis”, To Appear in
Proceedings o f IEEE Global Communications Conference, December 2003

[Nyquist24] Nyquist, Harry., “Certain Factors Affecting Telegraph Speed”, Bell System Technical
Journal, April 1924

[OMG2002] Object Management Group, “Unified M odelling Language 1.4.1”, Published at OMG
Website, http://www.omg.org, July 2002

C h a p te r 9 — B ib l iog raphy B ib l iog raphy | 186

[0 ’Mahony2001] O ’Mahony, D., Doyle, L., “Architectural Imperatives for 4'*’ Generation IP-based
M obile Networks”, In Proceedings o f the Fourth International Symposium on W ireless Personal
M ultim edia Communications, September 2001

[0 ’Mahony2002] O ’Mahony, Donal., Doyle, Linda., “Beyond 3G: 4'*' Generation IP-Based Mobile
Netw orks”, W ireless IP and Building the M obile Internet, Chapter 6, p71-86, Artech House,
November 2002

[0 ’M ahony2002b] O ’Mahony, D., Doyle, L., “An Adaptable Node Architecture for Future
W ireless Networks”, M obile Computing: Implementing Pervasive Information and
Communication Technologies, Kluwer series in Interfaces in OR/CS, Kluwer Academic
Publishers, 2002

[Patel2000] Patel, M ilan., Lane, Phil., “Comparison o f Downconversion Techniques for Software
Radio” , Proceedings o f the London Communications Symposium, 2000

[Patel2002] Patel, Milan., Darwazeh, Izzat., O ’Reilly, John. J., “Bandpass Sampling for Software
Radio Receivers, and the Effect o f Oversampling on Aperture Jitter”, IEEE Vehicular Technology
Conference, 2002

[Patti99] Patti, John J., Husnay, M., Pintar, Joseph., “A Smart Software Radio: Concept
Development and Demonstration”, IEEE Journal on Selected Areas in Communications, Vol. 17,
No. 4, April 1999

[Pereira200l] Pereira, Jorge M., “Reconfigurable Radio: the evolving perspectives o f different
players”. Proceedings o f 12th IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, Volume I, 2001

[Pereira99J Pereira, Jorge M., “Beyond Software Radio, towards Re-configurability across the
whole System and across Networks”, Proceedings o f 50* IEEE Vehicular Technology Conference,
Volume 5, pp. 19-22, September 1999

[Pereira2000] Pereira, Jorge M., “ Re-Defining Software (Defined) Radio: Re-Configurable Radio
Systems and Networks”, lEICE Transactions on Communications, Volume E83-B, No. 6, June
2000

[Perez200l] Perez-Neira, Ana., M estre, Xavier., Fonollosa, Javier Rodriguez., “Smart Antennas in
Software Radio Base Stations”, IEEE Communications Magazine, February 2001

[Perkins99] Perkins, Charles E., Royer, Elizabeth M., "Ad hoc On-Demand Distance Vector
Routing.", Proceedings o f the 2nd IEEE W orkshop on M obile Computing Systems and
Applications, pp. 90-100, February 1999

[Razavilar99] Razavilar, Javad., Rashid-Farrokhi, Farrokh., Ray Liu, K.J., “Software Radio
Architecture with Smart Antennas: A Tutorial on Algorithms and Complexity”, IEEE Journal on
Selected Areas in Communications, Vol. 17, No. 4, April 1999

[Reichhart99] Reichhart, Stephen P., Youmans, Bruce., Dygert, Roger., “The Software Radio
Development System”, IEEE Personal Communicatons, August 1999

[Ribeiro200l] Ribeiro-Justo, George R., Imre, Sandor., “ Intelligent Decision-making within 4*
Generation W ireless Networks”, International Conference on Internet Computing, Volume I, 2001

[Rice2001] Rice, M ichael., Dick, Chris., “Maximum Likelihood Carrier Phase Synchronization in
FPGA-Based Software Defined Radios”, In Proceedings o f IEEE International Conference on
Acoustics, Speech and Signal Processing, Volume 2, May 2001

[RSA78] Rivest, R. L., Shamir, A., Adleman, L., “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems”, Communications o f the ACM Archive, Volume 21, Issue 2, February
1978

[Salkintzis99] Salkintzis, Apostolis K., Nie, Hong., Mathiopoulos, P. Takis., “ADC and DSP
Challenges in the Development o f Software Radio Base Stations”, IEEE Personal
Communications, August 1999

C h a p te r 9 — B ib lio g rap h y B ib lio g rap h y | 187

[Sainetinger97] Sametinger, Johannes., “Software Engineering with Reusable Components”,
Springer-Veriag, Town, 1997

[Schacherbauer2001] Schacherbauer, W., et al, “A Flexible M ultiband Frontend for Software
Radios Using High IF and Active Interference Cancellation”, IEEE MTT-S International
Microwave Symposium Digest, Volume 2, May 2001

[Schneider99] Schneider, Jean-Guy., “Components, Scripts and Glue: A conceptual framework for
software com position”, PhD Dissertation, Institut ftir Informatik und angewandte Mathematik,
Universitat Bern, 1999

[Scourias96] Scourias, John., “Overview o f GSM: The Global System for Mobile
Communications”, M aster o f M athematics Term Paper, University o f W aterloo, Ontario, Canada,
Published at website http://ccnga.uw aterloo.ca/~jscouria, 1996

[SDRForum] http://www.sdrforum.org

[SDRForum2] Software Defined Radio Forum, “Software Defined Radio Semantics”, Published at
website http://www.sdrforum.org

[Semenov99] Semenov, Vasili K., Likharev, Konstantin K., “ RSFQ Front-end for a Software
Radio Receiver”, IEEE Transactions on Applied Superconductivity, Volume 2, Issue 2, June 1999

[Seskar99b] Seskar, Ivan., Mandayam, Narayan B., “Software-Defined Radio Architectures for
Interference Cancellation in DS-CSMA Systems”, IEEE Personal Communications, August 1999

[Smith97] Smith, Michael J. S., “Application-Specific Integrated C ircuits”, Addison-W esley, 1997

[Srikanteswara2000a] Srikanteswara, Srikathayayani., Reed, Jeffrey H., Athanas, Peter., Boyle,
Robert., “A Soft Radio Architecture for Reconfigurable Platforms”, IEEE Communications
Magazine, Volume 38, Issue 2, February 2000

[Srikanteswara2000b] Srikanteswara, Srikathayayani., Hosemann, M ichael., Reed, Jeffrey H.,
Athanas, Peter M., “ Design and Implementation o f a Completely Reconfigurable Soft Radio”,
IEEE Radio and W ireless Conference (RAW CON), September 2000

[Steinberg99] Steinberg Soft- und Hardware GmbH, “ASIO Interface Specification v 2.0:
Steinberg Audio Stream I/O API”, 1999

[Steinheider2003] Steinheider, J., Lum, V., Santos, J., “ Field Trials o f an All-Software GSM Base
Station” , 2003 Software Defined Radio Technical Conference, Orlando, November 2003

[Streifinger2003] Streifinger, M., Muller, T., Luy, J.F., Biebl, E.M., “A Software-Radio Front-End
for Microwave Applications”, In Proceedings on Topical M eeting on Silicon Monolithic Integrated
Circuits in RF Systems, April 2003

[Sun2001] Sun M icrosystems, “Enterprise JavaBeans Specification Version 2.0”, Published at
website http://java.sun.com/beans

[Sun97] Sun M icrosystems, “JavaBeans API Specification”, Published at website
http://java.sun.com/beans

[System-C] http://www.systemc.org

[Szyperski2002] Szyperski, Clemens., “Component Software: Beyond Object-Oriented
Programming, Second Edition”, Addison-W esley, 2002

[Tennenhouse95] Tennenhouse, David L., Bose, Vanu G., “SpectrumW are - A Software-Oriented
Approach to W ireless Signal Processing”, ACM Mobile Computing and Networking 95, Berkeley,
CA, November 1995

[Tennenhouse96] Tennenhouse, David L., Bose, Vanu G., “The SpectrumW are Approach to
Wireless Signal Processing”, W ireless Network Journal, Volume 2, No. 1, 1996

C h a p te r 9 — B ib l iog raphy B ib l iog raphy | 188

[Thara2002] Thara, V.B., Siddiqi, M. U., “Power Efficiency o f Software Radio Based Turbo
Codec” , In Proceedings o f IEEE Region 10 Conference on Computers, Communications, Control
and Power Engineering, Volume 2, October 2002

[Tsurumi99] Tsurumi, Hiroshi., Suzuki, Yasuo., “Broadband RF Stage Architecture for Software-
Defined Radio in Handheld Terminal Applications, IEEE Communications Magazine, February
1999

[Tuttlebee98] Tuttlebee, Walter., “Software Radio - Impacts and Implications”, IEEE 5*
International Symposium on Spread Spectrum Techniques and Applications, 1998

[Tuttlebee99a] Tuttlebee, Walter., “Software Radio Technology: A European Perspective”, IEEE
Com munications Magazine, February 1999

[Tuttlebee99b] Tuttlebee, W alter., “Software-Defined Radio: Facets o f a Developing Technology”,
IEEE Personal Communications, April 1999

[VanVliet2000] Van Vliet, Hans., “Software Engineering: Principles and Practice, Second
Edition”, John Wiley & Sons, Ltd, 2000

[Vasconcellos2000] Vasconcellos, Brett W., “ Parallel Signal-Processing for Everyone”, M asters
Thesis, M assachusetts Institute o f Technology, February 2000

[VenturCom] http://www.vci.com

[W atson2002] Watson, J., “Adaptive Computing 1C Technology Enabled SDR and
M ultifunctionality in Next-Generation W ireless Devices”, In Proceedings o f 2002 Software
Defined Radio Forum Technical Conference (SDR ’02), November 2002

[W elbom99a] Welborn, M.L., “Direct W avefonn Synthesis for Software Radios”, W ireless
Com munications and Networking Conference (W CNC), September 1999

[W elbom99b] W elbom, M.L., “Narrowband Channel Extraction for Wideband Receivers” , In
Proceedings o f international Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Volume 3, March 1999

[W epman95] Wepman, Jeffery., “Analog-To-Digital Converters and their Applications in Radio
Receivers”, IEEE Communications Magazine, No. 5, May 1995

[W iesler2002] Wiesler, Anne., Jondral, Friedrick K., “A Software Radio for Second-and Third-
Generation M obile Systems”, IEEE Transactions on Vehicular Technology, Vol. 51, No. 4, July
2002

[W illink2002] Willink, Edward., “The Waveform Description Language”, Chapter 13, Software
Defined Radio: Enabling Technologies, John Wiley and Sons, 2002

[W ithers91] W ithers, D. J., “Radio Spectrum Regulation and M anagement”, Institution o f
Electrical Engineers, Peter Peregrinus Ltd, 1991

[Xilinx] http://www.xilinx.com

[Yang2002] Yang, Lie-Liang., Hanzo, Lajos., “Software-Defined-Radio-Assisted Adaptive
Broadband Frequency Hopping M ulticarrier DS-CSMA”, IEEE Communications Magazine,
March 2002

[Yourdon79] Yourdon, Edward., Constantine, Larry L., “Structured Design”, Prentice Hall, 1979

[Zhao2002] Zhao, M injian., “A Non-coherent GMSK Receiver for Software Radio”, In
Proceedings o f 53'̂ '* IEEE Vehicular Technology Conference, Volume 3, May 2001

C h a p te r 9 — B ib lio g rap h y B ib lio g rap h y | 189

10 Appendix

10.1 Methods Exposed by a Radio Component

A Radio Component exposes the fo llow ing methods.

M ethods providing information about a Radio Component:

char * GetDefaultXML{);
char* Getlnfo();
char * GetName();
char* GetVersion();
char* GetAuthorO;
char* GetValue(char *name);

M ethods for dealing with parameters:

int GetNumParameters();
char * GetParameterName(int identifier);
char * GetParameterDefaultValue(int identifier);
char * GetParameterlnfo(int identifier);
char * GetParameterDataType(int identifier);
boo I IsParameterDynamic(int identifier);
boc. IsParameterDynamic(char *name);
boou. SetValue(cha r *name, char *value);
bool SetValue(int parameterld, bool value);
bool SetValue(int parameterld, char value);
bool SetValue(int parameterld, unsigned char value);
bool SetValue(int parameterld, short value);
bool SetValue(int parameterld, unsigned short value);
bool SetValue(int parameterld, int value);
bool SetValue(int parameterld. unsigned int value);
bool SetValue(int parameterld. int64 value);
bool SetValue(int parameterld. unsigned int64 value);
bool SetValue(int parameterld. float value);
bool SetValue(int parameterld, double value);
bool SetValue(int parameterld, char* value);
bool SetValue(int parameterld. unsigned char* value, unsigned int size);
bool GetValue(int parameterld. bool* value);
bool GetValue(i nt parameterld. char* value);
bool GetValue(int parameterld. unsigned char* value);
bool GetValue(int parameterld. short* value);
bool GetValue(Int parameterld. unsigned short* value);
bool GetValue(int parameterld. int* value);
bool GetValue(int parameterld. unsigned int* value);
bool GetValue(int parameterld. int64* value);
bool GetValue(int parameterld. unsigned int64* value);
bool GetValue(int parameterld. float* value);
bool GetValue(int parameterld. double* value)/
bool GetValue(int parameterld. char* value, unsigned int size);
bool GetValue(int parameterld. unsigned char* value, unsigned int* size);

190

M ethods for dealing with commands:

int GetNumCommands{) ;
char* GetCommandName(int identifier);
char* GetCommandlnfo{int identifier);
char* GetCommandDeclaration(int identifier);
int GetCommandDeclarationValue(int identifier);

Methods for dealing with ports:

int GetNumPorts();
char* GetPortName(int identifier);
char* GetPortInfo(int identifier);
char* GetPortDeclaration(int identifier);
int GetPortDeclarationValue(int identifier);

Methods for dealing with events:

int GetNumEvents() ;
char* GetEventName(int identifier);
char* GetEventlnfo{int identifier);
char* GetEventDataType(int identifier);
char* GetEventDeclaration(int identifier);
int GetEventDeclarationValue(int identifier);
int GetEventCallbac)cType (int identifier);
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, Lnt identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event/ int identifier
bool SubscribeToEvent(char *event. int identifier
bool SubscribeToEvent(char *event. int identifier
bool SubscribeToEvent(char *event. int identifier
bool SubscribeToEvent(char *event/ int identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, int identifier

pEventCallbackData callback);
pEventCallbackBool callback);
pEventCallbackByte callback);
pEventCallbackByteUnsigned callback);
pEventCallbacklntl6 callback);
pEventCallbackIntl6Unsigned callback);
pEventCallbackInt32 callback);
pEventCallbackInt32Unsigned callback);
pEventCallbackInt64 callback);
pEventCallbackInt64Unsigned callback);
pEventCallbackFloat callback);
pEventCallbackDouble callback);
pEventCallbackString callback);

Chapter 10 —A ppendix M ethods Exposed by a Radio C om ponent | 191

10.2 Code Generator Commands

T h e fo llo w in g c o m m an d s can be u sed w ith th e co d e g e n e ra to r d esc rib ed in S ec tion 6 .2 .3 :

D eclaration D escrip tion
//@component <description> Indicates the class declaration immediately following the declaration

is a Radio Component.

Example:
//©component GMSK Modulator

//@version <version number> Identifies the version o f the component.

Example:
//0version 1.3b

//Sauthor outhor's name> Indicates the author o f the component.

Example:
//©author Philip Mackenzie

//@event <name> <ciatatype> <info> Indicates that an event will be fired from the component.

Example:
//0event SignalReceived int signal received

//@port <name> <info> Indicates that this com ponent supports an input data port for
receiving data from external sources.

Example:
//0port ModulateData modulates received data

//@commanci <name> <info> Indicates that this com ponent exposes a command which can be fired
from external control logic.

Example:
//©command ResetFilter resets the filter

//@param <name> Indicates that the next member variable declaration will be exposed
as a param eter o f the component.

Example:
//0param frequency cutoff

//Sdefault <default value> Specifies the default value for the parameter.

Example:
//©default 3.14

//@dynamic Indicates that the param eter is dynamic

Example:
//©dynamic

Chapter 10 —Appendix Code Generator Com mands | 192

