LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Reconfigurable Software Radio Systems

A thesis submitted for the degree of
Doctor of Philosophy

Philip Mackenzie

Department of Electronic and Electrical Engineering
University of Dublin, Trinity College

October 2004

TRINITY COLLEGE
0 8 NOV 2004

[r————

LIBRARY DUBLIN

DECLARATION

[declare that the work described in this thesis has not been submitted as an exercise for a degree at

this or any other University and that, unless otherwise stated, the work is entirely my own.

[agree that Trinity College Library may lend or copy this thesis upon request.

J%/';’ o fren 2
Philip Mackenzie
October 2004

SUMMARY

Software radio has been heralded as a significant evolutionary step for wireless technology as it
allows dedicated analogue radio hardware to be replaced with flexible digital signal processing.
Due to current technological limitations, today’s software-based radios only scratch the surface in
fully exploiting the potential of this new technology. Current approaches are limited by the
available hardware with software underutilised to its full capacity in most designs. The concept of
reconfigurability goes a step further, placing new demands on the canonical software radio and

requiring more sophisticated software designs.

This thesis explores the concept of reconfigurability in the context of software radio systems and
proposes that a software-oriented component-based approach to software radio design can yield
highly reconfigurable radio devices. To substantiate this claim, reconfigurability is broken down
into three categories; application, structural and parametric. These categories can be used to assess
the reconfigurability of a radio system and provide guidelines for their design. The design,
implementation and analysis of a component-based reconfigurable radio system for general-
purpose processors is presented. This system called IRIS (Implementing Radio In Software)
demonstrates the concepts of reconfigurability in practice and provides insight into developing
software for reconfigurable radio systems. A series of case studies are presented that demonstrate
how the IRIS system and the concept of reconfigurability developed as part of this work are

applicable to relevant problems in wireless communications.

The following publications directly relate to this thesis:

[Mackenzie2003] Mackenzie, P., Doyle, L. E., Nolan, K. E., Flood, D., “IRIS — A System for
Developing Reconfigurable Radios”, In Proceedings of the IEE Colloquium on DSP-enabled
Radio, September 2003

[Doyle2003] Doyle, Linda., Mackenzie, Philip., “Exploring Reconfigurability: Towards a Future
of Spectrum Rental”, In Proceedings of 2003 Software Defined Radio Forum Technical
Conference (SDR’03), November 2003

[Mackenzie2002b] Mackenzie P., Doyle L., Nolan K.E., O'Mahony D., "An Architecture for the
Development of Software Radios on General Purpose Processors"”, In Proceedings of the Irish
Signals and Systems Conference, pp275-280, 2002

[Mackenzie2002a] Mackenzie, P., Doyle, L., Nolan, Keith., O’Mahony, D., “Selecting Appropriate
Hardware for Software Radio Systems”, In Proceedings of 2002 Software Defined Radio Forum
Technical Conference (SDR ’02), November 2002

[Mackenzie2001] Mackenzie P., Doyle L., O’Mahony D., Nolan K., “Software Radio on General-
Purpose Processors”, In Proceedings of the First Joint IEI/IEE Symposium on Telecommunications
Systems Research, November 2001

ACKNOWLEDGEMENTS

Firstly, my deepest gratitude goes to my supervisor Linda Doyle who not only gave me the
opportunity to work on such interesting projects, but whose relentless encouragement, enthusiasm

and positive attitude made my time in Trinity so enjoyable.

[would like to thank Donal O’Mahony and the members of the NTRG who all made working in

this group both inspiring and enjoyable.

[really enjoyed working in the Electronics department and I would like to thank all the staff and

students for making it such a pleasant place to work.

[would like to thank my fellow postgraduate students, in particular Keith and Declan for their help

in all matters software radio related. A special thanks goes to Tim for all his help.

[thank all my family and friends in particular Mary, Bryan, Roz, Barbara, Gran, Ada, Frank,
Aidan, Gavin and Keith for all their support.

I would like to dedicate this thesis to my parents Colin and Patricia and sister Jennifer who have

always provided endless support and encouragement.

Finally, my deepest thanks go to Audrey for her constant support and patience and who without

this would not have been possible.

TABLE OF CONTENTS

1 INTRODUCTION 0000000000000000000000(000 1

1.1 3715 7 Ty, RS RS LG e SO 1
122 The Basic Conotpt of BOlwWars BaID cousssisson s st s oo s nassisssam s 2
1.3 BeVond STIIWIE RATIG. ..o cumunssnssmmmmsmmmesss s s s s s o o s RS s 5
1.4 The General PurpoSe PrOCESSOR . ., iuveisconuzsseassanse oscssasnioussassnmsanssnionsssssonsisssnsvuinnsass iarsnsins 8
L5 Contribution SUMIMALY .- ovsesvssemestismenssvmmmsesssvasseesses s i i 35w a80 S era o EsTA T T 10
1.6 DiSSEITAtION OVETVICW vz vussszessitiussmssassemmssinssnssnsensss Sitnstionssnt essasss Simsaiinbiesiosacsossrtassesassarsanssnsn 12

2 BOETWARE RAIND corcsisivismisissninsnimmasssiokisasssnpmmssossmpissssmviiissss L

2.1 | 3700, 0 L1 e 1 (07 1 O PP 13
2.2 FIASEOLY couceresssosusinioniens ssumesssssssummtsmmnin simis srsns sl ohas s oo 8 Se R TS5 e sV EE Ao SO SRV R s a5y 13
2.3 Terms AN DETINTHIONSocucrassanososssssrenenssssssio ssassssssssssasssnss snsssssssssssnssvssssrssrasanaasasaasasosasnnns 18
2.4 HAEAWALE ;.o soonseioansasssinnisaeis sostoss seanssssasesmisiuns ssws s sasnisnasinnsissnrunbsn sesamsssems tonmmss s i is s Ao ssoa st 23
24,1 The Idcal SORWAIE RAGI0: o vcoccinssassisainisnsnsasssssssssissmnsseassansississssessisss sosinsasmassaaiosssssssvassintosy 23
242 Practical DIt ONS, - usrovssinssiasias sisssacs mesivniandatssesssesisnsaissvss s iR T IS es s so TR So o SRR R SR s T oass 24
2:4.3 FrontEnd TechNOIOSIES. .« xwsussssissssssssssssssisnsssnessssssdsassasisss 5ot assaesss s asssssnss sasssssnsss spiseibainssapossuss 27
2i4:d DIgHal CONVETSION iosssasinisosessesivssisesostessism saessmma sy Soh e T8 T AR B S B e SRS B e o ¥a 29
2.45 Digital Sional ProCesSING IIOVICES . vxxvsuususssicesssussussssssnssssessonsesss snsssssibniess s ismsaisessishssnssisiaissesecanss 30
25 Rl At T W OTK. ctosumtomssn s sumesierasseh st sooh s iaes ssei s s s Ao o7 s s 4 s s o S s iR e b S mn B e 3 WA G5 33
22501 SPECIRA anA/VATIANLS 2. o 2t e san e s rsessr ks es st s saRans s ses aase s na dast s Ansa i A s i m rni 33
259 Software CommUNICALIONS ATCRITECIUTE...........cccveeresssssssssesssosssssrssssssssssnssssnnsasasssssonsessssannsonssnsassss 35
s I D S0 D T 1 o T 37
2.54 Other Approaches . . rmswmms sorearinissassss S S R TS RS SRR SR R SRR S0s SRR S R SA R TRRRS 38
2.6 311111171721 5 O RO TSR S R LR WP 40

3 SOFTWARE ENGINEER]NG 000 41

3.1 11 g0 L1 8 o) 1 R 41
32 Object-Oriented SOMWATE........ .o rmsssessmsmrsnsssisssssassasssismssssssnisssssssssssrrssexesassessasnasnssasss 42
LDl (DVETVICW susssnssnssaunmosssssssssannssssnsessssossms soies S2ass 044 RS 8 Faw e S oo ST ST 4RSS bSO M TS oAb RSN ES R EeR 5 42
322 Object-0Orientation 10r SOMWATE REUSE c.crivussccssnssumssisssmsssssnsssinasssssssmsss B aitess s uas i sessilosesssssaesssss 44
3.3 The Principles oS oftWare COmMPOMETILS .cutecuwmtesrmsnssnsives sunsnsfizssns srtorsishisavensiusvsssimntsss sesti 46
3.3.1 Defining the Software COMPONENL.......cccoisissesissisnoseisisisimisisiomsassisissassssessiossssossistonssnssnssmenssnnss 46
332 Objects VS COMPONETILS. srozesassmansenssssis ioitsmsssssssetisssssste atsss seme Fissssisssssssousues s S oeuer st e mammsus 48
3.3:3. Constructing COMPONENTS|. ... s st et st s heasostssss srssa i us exsiimsasns 49
3.4 Component COMPOSIHION e o ssssasisssrvsmvssrssnismsss renssiismrssas it ot fo s reasmmrs s 51
34.1 The:Component FrameWOTKice ioesumsmnimmisassssssssisnmssneiansme sisssiasnsaivsssmsde v edisss s nnisosasssasss 51
3421 The/Component ATCRItECIUTR oseevions o vniinksinisssnsasstananscasssst inesissssoaiosism s sisssia s smes e sasatssm ssAes 52
3.5 Existing Component TechnologIes. ... st oot sy 53
3.5.1 Java Based ComMPOMENTS suiorismvovnismsssminssmisessssssamsss s iiesns s sonsisnssis ot ssmis s s ris it sssss BAassss 53
852 CORBA Based Component TechnolOGIES sy :wonrsssssrsuammmmsmisisiasissssssssssrsiniisss oo isasnmasno 56
3.5.3 Microsoft Component STanAants: . umsssssssnomnsune e smsss snessossmnssssamsrissiamissis o shenssns 8755555 58

3.6 S UTIATIIATY 555 ¢5-vs w5 e oo 288 5 o P P 3 S e T e o S e SR SR e eSS o iy TR e ms e 60

4

4.1
42

42.1
422
423

43

4.3.1
432
433
434
435
43.6
4.3.7
438

4.4

4.4.1
442

4.5

-

5.1
52
53
54

5.4.1
54.2
543
544

55

5:5.1
552
553
554
5.5:5

5.6
57

5.7.1
5.7.2
5.7.3
5.7.4
S5

5.8

6

6.1
6.2

6.2.1
6.2.2
6.2.3
6.2.4

RECONF]GURABLE RAD]O 900 63

111 €00 LETS1 15 1 L O S e e AN e U 63
ReCONTIGNIABIIILY ... vonsesessrisrssssiesmmissivin s sasmsmmemnssmsasisansassensssponeeasssssnssnssssoassnessssssasssassn 63
Reconfigurability From Hardware t0 SOftWATEc.cccocereeseesesesusasansnsansnsnnsssassssssonsassassensassassnsasosss 63
Reconfigurability Demed e sowessvmmsssminsmmsnmsitootanssmstsssssssossoamsaatosss wessivmsesniasnsinschiasiismsis 66
The Benefits of a Reconfigurable Radio..........c..cocceueiiuiiiiniiiniiiniiiiiicceee e 67
Softwarc ToriSOIIWATE IRATIO & s onvcs svissibssseseesnassnsissisnarasinss cossesis Fopiae s eI AR e s wHasaa TR R 69
REUISE 2 uscievassagsuss ssnes virosshonesins Sngms e fom o e S5 SThs Ao o ek B SEe fenb s S whes d Gasmme s mas AR AR AN AR AT s 69
A DSTACTIOTHS v cssavesvanes o mies 5o imT oo SouBe s STathus ot o e e e e - S T e eoa R va et smasiswhs s s Fogaa S s e e SRS 13
Adaptability:and EleXibility. .o conecent st mrtatevminesiunsmsesssisssasasommesnsansassissiatassadissgsasivsisassassesss 73
COMPLEXILY, oszmncinenoonsnonashossiamtemsnsains sowat Srims e sam s ey e i pies vt siesaems s 45 LR35V R S5 A EA IR 74
e D 75
P OTtADTIIEY I cinvrassnssstosims soash s e mssivs aeb s saiwoa rens s bin s ey s TS AR A3 A s s A AR e et 76
REa1-TAME B EN VIO s st o2 emve 5 s ressonseniteiereom s tsrmseas s ars s ras s e as ShnsaTsss s usxn 8w 9s 44 s SamR e 77
Upgrading and VErSIONINE:.. ... s e wiseisissonssosssssssmnsussnass vassnssresasssasaassasanssssiesesssssnssasissasssssssasvos U7
Developing & ReconfIguralile RAMID.comsrewarmisssmmmissimmvimminrmams s e amsmss s 78
System: Design ConSiAETationS «suscs:ss:ssumsmsresssssiommmsstsr e iR s Frvssirssessomsssestss 78
Enabling ReCONTIZUNALION . .vcxvessensosssmosisssss cinsstss ississes somsssesssssssuss s sussosiassmssms eagavseo s shassasansivsns 80
S1LTLTL (3 N e SN O e i W B DR 82

THE IRIS RECONFIGURABLE RADIO aeeeeveeeeeecesseccssseccssessesssossossscs O3

O A UCTION. 5vy55: 3550 iwos asvse iasisnssssseisunmsistns soniomsssassA i oW RS S 4 sB e S s ESO R SR SR A DA 00 s W s 83
TRTS ©OVEIVIEW. o uums s svmasmansasssusessisassamnaseiassdusnsais Sssssasnmsass syadssssssnoss ssdt Seiath soisassmassmaubussnt 83
[RIS ATCRITEOIUNR .ovs orsossnasanssssnsessmsssisentonassasnsisssonsshindsitn s Sonse s Ross 48853 FoRs SR AP ARG SRR ST 85
RAQI0 € OMIPDOMEITS st memmsssimmtensonssss ssessssasse s s s i s s34 8 o0 s mesin STENES e s STRHEN ST e en e Piiowis 86
Component Granularity and COmpONent TYPES::«:ssuesssssssssississssnssssississsunsssssns sopnamosspsensnsssnss 87
COMPONENEINTETIACES .o ccueerovsinsissasamsesinss o ssosmanss s atabuits SR B baidh s avsesesssansonasosnpsisasssrensies 88
COMPONENELATECYCIE .- oo on et Snimir s e en Ss vt s e o e iy o8 Moo tob s spmreauiumsoma sVt oo sn sy en sSF T un 91
D) IS OUISSAON o oot oseeosansnssos s us on e d o ST St oo St o b 4T3 S N S M P2 T e o b e e Bt P e e s 95
CompONENt FramMEWOTK : iz et ohamsissesiuimeiestsiismonssisssssas e sssse st monass s s asRia A des s s Fass st amsiees 98
T o 20 111 N 101
Basic XL/ Conti GUIAtIONS: caesmissssesscmnsasnmsssnsssssassi s s smacsnsisessassiupsvaississsss sstvess dhissiHesmsassn 102
More Coniplex Radio ConfiSUTATIONS. .. :xstssssssssssisstasssisssrsosssissstsnssisiosssionsssassossssssaissnssassssss 103
Internal Radio RepreSentation ... ;s umsemssisesnessstesssssssssusnnssssnsissassss sisss camsessnisss iaknssmas ssvassansas 109
TRIS APL....ccomsisstnnnsmssstinsssiissus sassssinsssaissssssssuns sosssdsassass o5 SEemsss s FURUEeuess s s eonss vsabosodes GosyEssss STaassn 110
(&0 1 L100) B B o e T A 111
Worked EXAMPIE ooussnmsnsvenicasisnmininmm ssnimamisssssssssmsaniossmims s v soss s asssaessmasnsass 114
AN S K T T aNSCOIV T oo s roinwisn ianssp sainssss st evsastoen s s et somnAne R s AdE S SR T TR e e SR SRS 114
Partitiomngithe SYSIeI. oo orce s o woversronmromt ot i dbsusesnios ssssase nesSonsaneenFansen s SoRr Sk SERR SRR A SRS 115
e L T T L1
e 1o o T 120
RECON T OULAEION i ousnsissaesssesssmm o iliesansasyshsssmemissss ssisssinkonsss sbasnesies SR ST e R aR e S OSSR SRS 122
ST 111151 i AR S S S S I S L UL COE O W et 124

INAEOAUGCTION s ssmesns eumumonssumanssssussansssisas smnsnmasisse ssen s sHFass o5 S5 S SR U TR RSN A SRS S SF e RS 125
Implementing Radio/COMPONENTS...couscsusasssinssmsssasssssnsssnssssasesssmrsssinmsssnsssissssnnsnssssssosess 125
Choice of OpETating; SYSOM s :cisususesssevssssvonvsnsssssasnssissssssssssutsmsssssssessassissus b sonnssoasssbraisresismasnes 125
Radio:Components on WINAOWS swsusssisssemisemmssmses sosnimins sosss sssaeeseassnmsssesssassorssis e seranspessa 126
Programming Rad10/ COMPONENLS . cuussems: ssssesnssmnsssnas cresse o s sasiasaes a5 oass e sstes sevversos svs sisnres 127

Dealing With SIENAIS..usmusmnmmmnntosss sy svismiss e i s ess s s Pk SR e R SRTo% 129

6.2.5
6.2.6

6.3

6.3:1
6.3:2
6.3.3
6.3.4
6.3.5

6.4

6.4.1
6.4.2

6.5
6.6

6.6.1
6.6.2

6.7

7

1
12

7:2:1
7.2.2
72:3

7S

7.3.1
7:3:2
7:3:3

7.4

7.4.1
7.4.2
743

7.5

8

8.1
8.2
83

83.1
83.2
8.3.3
834

8.4
9

10

10.1
10.2

Block Size and SAMPLE RALE........c..sussusscssossesmossssessssisssss sonmssimasonssassaisassassasssssborsassssssssssassssssnsans 131
Implementing Process()cccccceoveevcrenennnn. S e R e AT R e e R e AR 134
ST LT R e en L L SR a5 R ———————— 135
WOTKCA ERATNDNE -.cvcsvivesusronesssaessemes i ot Sinsasssyis s ias s hss R AT 5 A SR SRS S VTSR A 135
Signal ProcesSiNg: COMPOMENTS::xessscresssrsessmesnssssnisss e sHevssarosssns s tos iR sass BSOS Tunae 139
IO COMPONENLS: . useusiussesmmmsssesssmmmsemmmariss A R RS S T e SRS A S e 140
TeSND: COMPONENES sisusimresussssssinsvsssotes fosimsimmes sas e nsn s s st ssess e s ST S TS S EAT S 538 RV SRR TR SR (65935 141
N iSualiSatioN COMPONEIILS cvvesrisessosimssinssss aseumpssssoumsssesstsnsssedssssss s s se i e SR eSS S A 141
Using the Component Framework............cccciiiiiiiiiiiiiiccecc s 142
1 . O T W S 142
e L T e N 146
BXternaliEATOWATE o cis. o covse s ottaesss tonumsns s o ss 3SRV iR S S e P e A5 S S E S SR AR 45 S5 148
AATVANISTS e nsisuonsissnsssniosassssssasasisnesnos v A aasahes o s s by s ¥R S e £ S AR S SN S 5 150
S OAIADIIIEY o sstsssssisnnsssnnensussssnssas oseiosiasm smss wessasuEns 4 sesssanss sesiias s ¥aRs s R en seaiss oSSR RSO 150
M EM O C OB STUIMPEION 2 o saevi ons b nsssaasions SossSEe TFFE AE IS SRS B S TS SN AR BB 5 £ SF SR SO SRR e EE55 153
SUMMATY .0 comvroste: e vsossessonsiiss s Soasss s e SR SARTS s Tesmie S S5 B Yyoaie S5 s o5 em Sy s e v s e U s oty 158

A TUDIES s s insiis i S A RSN iri k R i sienis AR

F111¢070 11 (01 110) 1 (AN s S R PO S 159
Over the Air RECONTIGUIATIONc..iiiiiiiiii et et et nees 159
Overview oL Over the Air RECONTIGUTAION i s essssssmssionmnmmimisuessinisnins s iaisamsn s iiasasssas 159
APPIYINE IRISHOIOTAR i csosesvsmsamssssssmussisimmssessns s seses st s sy asss a5 55s S eRe N Ao AR oS 160
CONCIUSIONS ...ttt e e et et et et e s e e et e e e e s e eseeeesaeenseeesseensaeeneeseensneenns 164
WTClE S S N W OTKIN G 2o 55 enes onsas 5 astnsiodn IEAT ST s wteshoS o n B AR A o mmns om oSS Hen s 164
Overview of Wireless Networking using DAWN ... 164
Applying IRIS to Wireless NetWOrKing...........cccooeimiiiis it 166
C ONCIUSIONS i eusim s s s oS H s eeh o sy e e TS AT S SR SR o e S AL e f e amee e ams Snansos 169
Spectrumy Managemient... .. .c....c a5t s iiinmsnnsisssssnoiosnnishabonissiessastiiststonsdassesssssssssss ponsanss 169
Overview of Spectrum Management............... e s spame PSR Lo L et S e b 169
Applying IRIS to Spectrum Managementccociiiiiiii it e 170
071 (o] [E 6T 1) 11 L e e e R SIS S e N e SR S e W RSN 173
T)00 E2 gy 173

CONCLUSIONS 00000000000000000000000000001000000000100000000000000000000000000000000000 1 74

E1 1410070 L8 1614 0] o SR LU SR 174
STTEN 11 E T2 e) B(B10) 111 7161111 10] ARSI 174
FULUTE WOTK oo e e et e e e e e e e e eeaan 175
8 BT K02 (SRR 176
SOTEWATE .ttt e e e e e e e et e e e e e e e e e e e e e ae et ee e e ee e e s e ssaaeaeeeeeeeeennesnnnenan 176
Lo T=Te18] 51, LR L RSO S 177
Spectrum ManABEICHE. ... osemsimessmusssssissnssaissssssnsns tostessasss s s Es S5 Hs o sa SNSRI aR Y3 178
O T S IO e e e e e e e b el e e e B e s e PP ts S e 179

BIBLIOGRAPHY .ceevvecerseccesecsssssssesesssssesisssssmssssssssssssssssssssssssssscs | SU

APPENDIX «eveeeessersseccsssecssssosssssssssssssessssisssssmsssssosssssssssssssssssssasce 1 90

Methods Exposed by a Radio COMPONENtccccoiiiiiiiint i 190

Code Generator COMMANAS .. co sy mmamscoivisssmnsmem s & s meaiams s r s i s teimhines 192

TABLE OF FIGURES

Figure 1.1 — Typical Receiver Using Traditional Analogue Hardware ... 2!
Figure 1.2 — Typical Receiver Using the Software Radio Approach ... 3
Figure 1.3 — Software Radio Phase Space Diagram [Mitola99a]cccceriniininnininninnnninns 8
Figure 2.1 — European Funded Projects Relating to Software Radiocoooiiiinnnn 17
Figure 2.2 — The Ideal SoRWAe RAGI0. ... cccosusssssssismsmssmmmmavisossonssssarsenpnscsssssssnesssinsessmssstisssassss 24
Figure 2.3 — A More Practical Software Radio SOIution ..o 25
Figure 2.4 — Research and Development in Software Radio...........coooininiininnin, 27
Figure 2.5 — SPECtRA In-Band and Out-of-Band Paths [Bose99b]c.cooevieiniiinininniincncns 34
Figure 2.6 — Software Structure of the SCA [JTRS2002]c.cccccnvisrssnsissensasssssassassusssssnsonssasssesss 36
Figure 3.1 — Summary of Software Engineering PrinCiplesoceevvevioriniiicisnssiicicsiniansnnesanas 60
Figure 4.1 — Level of Reconfigurability for Various Signal Processing Devices...........cccooovrennen. 64
Figure 4.2 — A Tightly Coupled Software: COMPONENtuiucssosmsissiesinssssssesressnrasnesuassssssssssasusssaansaass 71
Figure 4.3 — Different Approaches to Reconfigurable Radio System Design.............cccooeiiinan. 79
Figure 5.1 — Receiver and Transmitter EXampleccccccooiiiiiiiiiii 84
Figure 5.2 — A Reconfigurable Radio SYStEIc.c.ccomeirsreincuissiissnsssssassunsissssssassnsssvssssssasssnsnnesiss 85
Figure 5.3 — A Reconfigurable Radio with: User INtEractioncccccuram sssssmssssssssresans smsuonaossaumasssnse 85
Figure 5.4 = The IRTS Radio ATCRItECHITe. . vuumveissvasserisssmassesasssssvssesssastsssmsmsesssanisasssvasem sonvesssansssn 86
Figure 5.5 — Relationship of Component Types.........ccccceeviiiviiiiiiiiiiiiiiiiniiecene e 88
Figure 5.6 — External View of a Radio COMPONEIHEcocussecusissseesssssimssiosinsissnsaisnssseisssssaisssssassamisass 88
Figiire 5.7 = Lif€CYCIE INTETTACE wvosvcivansissvissnimsmsusmussenssssasmsssnssisss seussnsesssssasios possosss svsssmmnsnissabserstusss 89
Figure 5.8 — Parameter INTETTACE ..o wosseconnisesssnmssianssmsminssansssmsssnng sssesssumisiusssebnsnss sosesssssssansnssssesssasarss 89
Eiguire '5:9=EVent INTETHACE ...corseruenwssssssissssssssns ciunstsnmessnassmsss onbuosss sassesss eiishaetventsonnassaue it s sdoseavie 89
Bignre:5:10:—Port/INtErIACE «mimns cmmm e mas i sy showinms st snpsense o son SSeae et SR meNasaab s R e ia S48 90
Figure 5:11 = Commantd INtEraCE .u.cuzv cnssmumismsmasnsesssssanmessnes somsrnsscsanssssnraiss oo 5 6535 45507 T353R A3 90
Bigure 5.12 — Reflection INtErTACES! - . ss uumimusssssusronsessssivnnionnssssnssasisssnsisssssiisissnss uessiasssnasiassssansssass 90
Figure 5.13 — Component Information Interface.ccommismcamrossmsiiniesemmsmmmsssssvsonsssussssessssssss s 91
Figure 5.14— Abstract RadioCoOmMPOTIEIt SIS ...cuwssssascmsssmmsaummm st 91
Figure 5.15 — Sequence Diagrams of DSP and IO Component Lifecycles...........ccccoeeurninininnnnen. 94
Figure 5.16 — Sequence Diagram of Standalone Component Lifecycle...........ccccooviiiiiiiinn. 95
Figure 5.17 — Radio Component Showing Interfaces Implemented by Code Generation................ 96
Eigure 5.8 —Rad1ioComMpPoNent . c. i cicritrimmnri oo cocumasassnrsnsmmmnsan ssass saesinn Hash s o gaiies 97
Figure 5.19 — The TRIS Radi0 ATCHILECTUTE.c..wcunressesssesmonsrsensosssnsnaiansontsapive dFssps s siavissssssmissasonss 99
Figure 5.20 — Flow Diagram for Creating a Reconfigurable Radiocccoovevviniininnnnnne. 100
Figure 5.21 — Interaction of Radio Engine, Radio Components and Control Logic 101

Pigure '5.20 = Basic Series 0l COMPONCIITS. . susconsssmamsasmsssnsss isistsssisssssnsassaessussmssasssesensssssatsstns 102

Figure 5.23 — A Duplicated Signal Path..........counmmmsmsmnmosonissessmmunesmisssassnssnssassstsss bssusussassss 104

Figure 5.24 — Synchronisation I IRIS ... seis s sy ssoss 105
Figure 5.25 — Multiple Synchronous Signal Pathscccccceriennssnsssssssossessesnssesassasssossanssnsasssnes 106
Figure 5.26 —Multiple Asynchronous SUCIUIBE. ... cmwemmsomsmesissmomisansnsssmmsssmosssansssosss 106
Figure 5.27 — An Embedded SIrUCHITEccumcersninmormmmivsmonennssssnsstagsssmsassnsssssrssissssnssvansmsasisss 107
Figure 5.28 — Sipnal BOGHNE......cocoiomsosmsmiss siammermsmsemmansninsssaessessssstvessgr s vasiasssssnssesssssisssssosin 108
Figure 5.29 — A Component with 2 Input ChanNEISoveommmmmimarsmemssssmivssesossmmsssssessssmsssss 108
Figure 5.30 — Synchronisation Of PYOCESSINR -..ciomrsumsnismommmimsvssmsmsnensisisssssssusesmmmssssnssspsessniusssisss 109
Figure 5.31 — Internal Representation of Radio SYSIE ...ouuevmscssisacssessmasassmmsusssenssnsssasinasssssnsnes 110
Figure 5 .37 ~ Interfuce 0f e BRID AP . camaimsuapenosummimssonmmsisetos s s s sssassss 110
Figare 5.33 ~ Compuniont DEPRIARIICT ... sumsmsssinsmssssthoss g s siss g v seeesiyainmvin 111
Figure 5.34 — Using Control Logic to Eliminate Component Dependencies..............cccccooviiiiininnes 111
Figure 5.35 — Interface Control Logic uses to Control Radioc.cccocoviiiiiiiiiiiin. 112
Figure 5.36 — CONTOIIErINIETIATEoc . sontevis ot s sut che s vstssnssasses sonssiavssains sassensnasongm saszsnnsnasminies 112
Fipure 5.37 — Lilbeyele O CONIIOE LORIC .o omussmumenisimsmnssssassmmmssnsnsssmvssasamssns cxorams imemsissinians 113
Bigure:5.38 — ESK TransceiVer IDESITT - ..t anroivnonesinss sisusasssss siss sessssssss Susdisuossinss svasasassanssmssssiasusanss 115
Fioe 539 = T AE WAVEBIOMIL icscnosrsreassomirssmiisiss s i s simmssss s i s oss e s 116
Figure 5.40 — Partitioning of FSK Transceiver into Software Components...............cccccocoeieinn. 117
Figure 5.41 — Multithreading Approaches............ccccccceceriiiiiiiniiniineniinciccics e 118
Figure 5.42 — XML Configuration for FSK Transceiver............ccoccoviiiiiniiniiniiniiniciiiiciccneae 119
Figure 5.43 — FSK Transceiver Using Control LiOZIC ... ccowisesimssissssmsmosnissssmsssssssssesanosisssesions 121
Figute 5.44 — Sample Control Liog16' SOUTCe COAE ..o auss sisssssvasssssmoss mssssssssnsvossiiassissiassinsisass 122
Figure 5.45 — Code for Replacing a Component at RUNtiMe............ccooviiiiiiiiiiiiiiiiiiciiceceee 123
Figure 6.1 — Exporting'a:Component fromia DILLcc.cvvivoinmiasinsommsisnmsndeenssinssssessissssinssiason 127
Figure 6.2 = Header File of a Signal Strength Component. ... s.smesssismsssmmmsissssssssions issisessnsines 128
Figure 6.3 — Data Types Supported by IRIS...c....cccuomimniammm s ansnsmsnossssisssnsesnsssamsssssnss 129
Figure 6.4 — Sequential Layout of Samples and Channels in Memorycccccoeiiiiniiiinnnnnne. 131
Figure 6.5 — Automatic Calculations Performed by the Frameworkccccooiiin. 133
Figure 6.6 — Struct Definition used by Process().........ccoceriimiiniirienniiieeceeeeeeeeee e 134
Eigure:6.7'— Example Process()IMethod . .cus. e cntonsinisun ot saimesimesessnassratisiosfisisncamvsmasasess 134
Figure 6:8 — SignallFormat SITUCE oo v scmmammsinms s aosmrvmsussissmsmtaes bssasasssisess shsshopsnase Hosn 134
Eigure 6:9 — Propertiesof ESK (COMPONEAT s st imsminme i sies sersossesisssoinps sisnssmssisssaiss saissessissmssn 135
Figure 6.10 — C++ Header File Definition of FSK Modulator Componentccccocoeciiiiinnnnns 136
Figure 6.11 — XML Generated to Describe the FSK Modulator Component.............cccccccveennnen. 137
Figure 6.12 — Code to Implement Data Received Port............ccooiiiiiiiiiiiiiiceiccce, 138
Figure 6.13 — FSK WaVE Occoccecuesnessossmnssusssasonnonsasasssonssssssossutsssssns sisassssssonsessssissssssessnssssbessess 138
Figure 6.14 — XML for Configuring an FSK Modulator Componentccccccoeviiiiiiiiiiennnn. 139

Figure 6.15 — IRIS Screenshot of Received FM Signal...........ccccccooiiiiiiiiiniininininiiiiiis 142

Figure 6.16 — Code to Create a Reconfigurable Radio..........ccccuvueineienemncnnnciciiscisccscsnnncas 143

Figure 6.17 — Application Specified Control LOBICcmsuisassversnsonsossassssossessanrasassssassssssnsussase 144
Figure 6.18 — Sample Code for Creating Application-Defined Control LOgicC..........cccocoeeiirinnnne 145
Figure 6.19 — Screenshot of Parameter Controllercvommunismeismmnsssissonsisissassssssssesssssssasns 146
Figure 6.20 — Radio Designer User Interface Screenshot...............couevimmmeiininniiicniniiccns 147
Figure 6.21 — Receiver HArdware SellP. ... wsimsmsssssmsassiasseressesssssssmsnmnsssssssssosssiosiasassvsssssnsssnss 148
100 AR 1 LR T 2 FT i b SO IR ———————————— 149
Figare 6.23 — Scalability Test BERAIID ... rsessssssmmnmmromonmsmisssmasmmnsmsmmss it bssiinmss 151
Figure 6.24 — IRIS Scalability Test ReSUMS.occmmssssissmnsemessossmmmmsssssmnsommsasssmnssassmrossasssassivsn 152
Figure 6.25 — Difference between IRIS and Native Implementationccocovieininneniennenen. 153
Fignire 6.26 — Memory Allocation TEERIIGUEousssemsassmsnvsmonsmmnsssssupessisssissnnsssussssassiomsversssss 155
Figure 6.27 — Memory Allocation for Multiple FIR FIREIScccumsmsnssmmassissonssussssssnsansnsossasssnssns 155
Figure 6.28 — Memory Test for Down Sampler Scenario..............cooeeieieiniiiiniiiniecnec 156
Figure 6.29 — Memory Consumption for Multiple Down Samplers..............cccooooiiiniiiininnnnns 156
Figure 6.30— Memory Test for Up Sampler SCEnBII0 usmmsusmmsssessnmassnssissssnssmonssssnssrsnnss 157
Figure 6.31 — Memory Consumption for Multiple Up Samplersccccoiiiiiiniiniininn 157
Figure 7.1 ~lems for Download Wil OEAR....camswsommimmommimisssmsimmb sy 161
Figinie 7.2 — Software Download with Comtrol LOBIC «..covmsemmmmmsssavisominsssssssissmonsesssion ssnspsnsenss 162
Figure 7.3 — Software Download Using the IRIS API ... 163
Eigure 7.:4-= Typical DAWN TopOlogyi:. «cumrrimsirntotsrsronnnrmsiin asaisessegeindsssmesssmieiissres 165
Figure 7.5 —A Typical DAWN STACK :-c::ccininieicsmimansommisiassnon sosnnnsnsns s rimisanssssssansassnssvissassssss 166
Figiite 7.6 — IRIS Incorpotated into DAWN ...ccouincimmeomesmmmmmmmnssmmssnssssisesdvinssismsssasssasssrssssssnse 167
Figure 7.7 — FSK Transceiver with Interference Temperature Detectorc.occoooeiienn. 171

Figure 7.8~ Spectrum Moniforing SYSteML .- . -vuiiuavis i o sasnsrsss savssstarss fossssnssissnssmssnmos iossiosess 172

ADC
AM
AMPS
ASIC
API
ASIO
ATM
BER
BPSK
CCM
CFE
CLR
COM
CORBA
COTS
CPU
DAC
DAWN
DC
DCOM
DCS
DDR
DECT
DER
DLL
DSP
EJB
BCC
FIR
EFT
FM
FPAA
FPGA
FSK
GHz
GPP
GMSK
GSM
Iand Q
IDL
[IOP
IF

Analogue to Digital Converter
Amplitude Modulation

Advanced Mobile Phone System
Application Specific Integrated Circuit
Application Programming Interface
Audio Streaming Input Output
Asynchronous Transfer Mode

Bit Error Rate

Binary Phase Shift Keying
CORBA Component Model

Core Framework (Relating to SCA)
Common Language Runtime

Component Object Model

Common Object Request Broker Architecture

Commercial Off The Shelf

Central Processing Unit

Digital to Analogue Converter
Dublin Ad hoc Wireless Network
Direct Current

Distributed Component Object Model
Digital Cellular System

Double Data Rate

Digital Enhanced Cordless Telecommunications

DSP-enabled Radio

Dynamic Link Library

Digital Signal Processing

Enterprise JavaBeans

Federal Communications Commission
Finite Impulse Response

Fast Fourier Transform

Frequency Modulation

Field Programmable Analogue Array
Field Programmable Gate Array
Frequency Shift Keying

Gigahertz

General Purpose Processor

Gaussian Minimum Shift Keying
Global System for Mobile Communications
In-Phase and Quadrature

Interface Definition Language
Inter-ORB Interoperability Protocol

Intermediate Frequency

ACRONYMS

10
IRIS
ISI
JAR
JPO
JTRS
JVM
LAN
MAC
MHz
MMITS
NCO
OFDM
00
00D
oop
ORB
OTAR
PCI
PCS
PDA
POSIX
QPSK
RAM
RCP
RCF
RDL
RDS
RISC
RF
SCA
SDR
SFDR
SNR
TDMA
UHF
UML
UMTS
WDL
XML

Input/Output

Implementing Radio In Software
Inter-Symbol Interference

Java Archive

Joint Program Office

Joint Tactical Radio System

Java Virtual Machine

Local Area Network

Medium Access Control

Megahertz

Modular Multifunction Information Transfer System
Numerically Controlled Oscillator
Orthogonal Frequency Division Multiplexing
Object Oriented

Object Oriented Design

Object Oriented Programming

Object Request Broker

Over The Air Reconfiguration

Peripheral Component Interconnect
Personal Communications Services
Personal Digital Assistant

Portable Operating System Interface
Quadrature Phase Shift Keying

Random Access Memory

Reconfigurable Communications Processor
Radio Component Framework

Radio Description Language

Radio Data System

Reduced Instruction Set Computer

Radio Frequency

Software Communications Architecture
Software Defined Radio

Spurious Free Dynamic Range

Signal to Noise Ratio

Time Division Multiple Access

Ultra High Frequency

Unified Modeling Language

Universal Mobile Telecommunications System
Waveform Description Language

eXtensible Markup Language

Introduction

1.1 Overview

This dissertation shows that a software-oriented component-based approach to software radio

design can yield highly reconfigurable radio devices.

A software radio or software-defined radio is a wireless communications device that can be
reprogrammed to allow it to communicate using different modulation schemes and frequencies
without altering or replacing hardware [Mitola92]. The software radio uses a generic piece of
hardware and digital signal processing (DSP) to manipulate radio signals. This allows the core of
the communications system to be developed in software rather than analogue hardware
components. The software approach results in flexible radio devices that can be easily
reprogrammed allowing the functionality of the device to be changed. It also means that the
communications techniques themselves can become flexible and adaptable. These advantages have
brought about a decade of research and development in an effort to make the technology a reality.
However, software radio is still in its infancy. Due to technological limitations, current software
radios only scratch the surface in fully exploiting the potential of this new technology. This thesis
focuses on recognising and developing the potential of the technology by demonstrating how

highly reconfigurable radio systems can be created.

It is important to discuss what the term ‘reconfigurable” means in relation to the research presented
in the thesis. In the context of wireless communications the term ‘reconfigurable’ suggests a type of
radio device that offers flexibility in the functions it provides, perhaps being capable of receiving at
multiple frequencies or transmitting using multiple modulation schemes. However many different
types of radio systems offer these functions and it can become difficult to determine whether one
radio system is more reconfigurable than another. This raises a fundamental question; how can
reconfigurability be measured? In this thesis reconfigurability is defined via three categories
namely, application, structural and parametric reconfigurability. Defining such categories allows
the level of reconfigurability of a device to be assessed. The more ways in which a device exhibits

traits of each category, the more reconfigurable the device becomes.

Reconfigurability is a desirable property in a radio system as it enables a whole host of new

capabilities. It allows many parameters, that have traditionally been fixed (such as frequency,

1

modulation scheme, power, bit rate, etc), to become variable. This allows truly flexible devices to
be created and in turn facilitates the development of new applications. The three types of

reconfigurability and a general discussion of reconfigurability itself are presented in Chapter 4.

This thesis uses a software-oriented methodology in tackling the problem of developing software
for radio systems. It is therefore necessary to discuss explicitly the ‘software’ of ‘software radio
systems’ in order to differentiate this research from other approaches. Current research and
development in this field is driven (and also limited by) the capabilities and availability of
hardware. The focus has been on developing fast, inexpensive hardware and therefore research into
the software aspects of software radio have received less attention. It is argued in this thesis that a
software-oriented approach to radio system design is essential in achieving reconfigurability. A
central part of this software-oriented approach is the use of software components and a component
framework, both of which are discussed in detail in Chapter 3. The research presented in the thesis
shows how software components and component frameworks can be used to deliver better
reconfigurability in radio devices. These concepts are discussed theoretically and also practically
through a real-life implementation. Chapters 5 and 6 demonstrate the design, implementation and
analysis of a software system called IRIS (Implementing Radio In Software) that was developed as
part of this research. IRIS is a component framework that facilitates the development of highly

reconfigurable software radio systems.

The remainder of this chapter provides an overview of the key ideas of this thesis. Section 1.2
introduces the basic concept of software radio. Section 1.3 discusses reconfigurability, how it is
different from the canonical software radio, and briefly describes the differences between this
research and other work in the field. Section 1.4 discusses the motivation for using the general-
purpose processor as the target platform in this work. The contributions made by this thesis are

summarised in Section 1.5. Finally, Section 1.6 describes the layout of this dissertation.

1.2 The Basic Concept of Software Radio

In a traditional analogue radio transceiver, signals are received and transmitted using analogue
hardware components. The radio’s hardware design is determined by its end-application, for
example a two-way radio, an FM audio receiver or a BPSK data-transmitter will each have
different requirements in operating frequency, modulation scheme bandwidth and power.
Consequently, if for example a QPSK data transceiver is required for operation at S00MHz, then
the analogue circuitry will be built to implement this design and this design only. In this case the
hardware used is dedicated to the particular application and the operating parameters cannot be

changed, modified or upgraded without altering the hardware design.

Chapter 1 — Introduction The Basic Concept of Software Radio | 2

Figure 1.1 illustrates a traditional analogue radio receiver. The signal of interest is tuned and
amplified at the reception frequency before being down-converted to an Intermediate Frequency
(IF) using the superheterodyne approach [Armstrong24] (IFs and the superheterodyne approach
are discussed in more detail in Chapter 2). At the IF, the signal is further amplified and filtered

before the original signal is recovered. This approach to radio design has dominated since the early

1930s.

Original
Signal

T”'?‘“g & L IF. Demodulation ——p
Amplification Conversion

Figure 1.1 — Typical Receiver Using Traditional Analogue Hardware

In a software radio, dedicated analogue hardware is replaced with a combination of a minimal RF-
front end, a digital converter and digital signal processing hardware. The functionality of the device
is defined via software programming, therefore the operating characteristics of the radio can be
reprogrammed and changed without altering any hardware. In contrast to the hardware radio of
Figure 1.1, Figure 1.2 shows a diagram of a software radio-based receiver. In this scheme the IF
signal is converted to a digital signal using an analogue to digital converter. Digitisation results in a
stream of numeric samples that are processed mathematically using digital signal processing
(DSP') to recover the original signal. Likewise, the same approach can be used in transmitters. In
this case DSP is used to synthesise signals digitally before being converted to an analogue signal

for transmission.

OFDM Receive
Software
FM Receive QPSK Receive

Software Software

\4 / Original

Signal

Tuning & RF/IF A/D Digital Signal >

Amplification Conversion Converter Processing

Figure 1.2 — Typical Receiver Using the Software Radio Approach

Two things make this type of design distinctly different to the analogue approach. Firstly, the radio
signal is processed digitally, which makes it possible to process signals using methods that are
difficult to implement with analogue electronics. Secondly, the signal processing algorithms can be

upgraded, replaced and reprogrammed through software, which allows one piece of generic

' The term ‘DSP (Digital Signal Processing)’ should not be confused with the term ‘Digital Signal

Processor’. The latter will be referred to as a ‘DSP Processor’ to differentiate these terms.

Chapter 1 — Introduction I'he Basic Concept of Software Radio | 3

hardware to act as many different radio devices. This approach to radio design, i.e. the ability to
replace dedicated analogue radio hardware with a combination of digital hardware and varying

software implementations, forms the basis of software radio [Mitola95].

Central to the software radio concept is the use of DSP for manipulating radio signals. In a software
radio, DSP replaces the functionality previously implemented using analogue components and
moves radio signals into the digital domain. For example, using DSP, a device such as an analogue
low-pass filter can be implemented by a digital algorithm that achieves an equivalent result. Such a
paradigm shift raises the question as to what exactly are the advantages of moving to DSP. Just as
with many other engineering applications, however, it is well recognised that DSP techniques have

many advantages over analogue signal processing.

Lapsley [Lapsley97] describes three ways in which DSP differs from analogue signal processing.
Firstly, DSP systems exhibit insensitivity to their operating environment. In an analogue circuit
operating conditions are dependent on component tolerances and temperature, whereas a working
DSP system always produces consistent results. This fact means that DSP systems can, in the
majority of cases, offer more predictable behaviour than an analogue design whose characteristics
can be influenced by a variety of external factors. Secondly, DSP systems have the advantage of
being insensitive to component characteristics. Physical characteristics such as size and component
packaging can often influence the decision to use a particular analogue component. Also, economic
factors such as component cost and availability can influence design decisions. DSP systems do not
suffer from these limitations because designs are specified via mathematical procedures and not
components. Finally, DSP has become a less expensive and overall more popular approach than

analogue design because analogue electronic design tends to be much more difficult.

However, even though these advantages exist for DSP, it is always possible to develop an analogue
device that outperforms even the most powerful DSP device. This raises another question as to
what the fundamental difference is between these two approaches. The answer is that unlike
analogue hardware, a DSP system can be reprogrammed to do many different things. A DSP
algorithm can exist as a set of instructions, which can be changed and manipulated without altering
hardware. This ultimately means that software can be used to implement DSP algorithms allowing
generic programmable radio devices to be created. This cannot be done with a traditional analogue

hardware-oriented approach to radio system design.

Technology has advanced to such a stage that it is now possible to design, implement and test a
radio system in software rather than designing, building and physically prototyping analogue radio

circuitry. Using software, instantaneous changes to a radio system can be made that previously

Chapter 1 — Introduction The Basic Concept of Software Radio | 4

required a complete redesign. Software thus brings a significant change in how radio systems can

be designed, built, tested and viewed.

1.3 Beyond Software Radio

It is possible today to build reprogrammable radio devices that are software-defined. The next step
in the software radio space is a move towards reconfigurability [Pereira99, Drew2001,
Dillinger2003]. The term reconfigurability has emerged over the past few years to demonstrate a
shift in thinking in the software radio space. The reconfigurability concept is about making the
software radio do more, applying the technology beyond the radio domain and ensuring its impact

throughout the communications system [Pereira2000].

Whereas the software-defined radio approach can be used to define the air interface of a
communications system, this definition is typically created only once. In practice the software
defined radio concept has come to mean software upgrades, bug fixes and new features, rather than
fully exploiting the capability of the technology. Reconfigurability on the other hand recognises
that the software of a radio system does not have to be defined once, but can be changed and
augmented any number of times to serve a greater purpose throughout the communications

network.

This overall concept is best demonstrated by an example. Governments must regulate the use of
spectrum to particular frequencies and modes of operation to ensure interference-free
communication. However most of the time radio devices are completely underutilising the
available spectrum. The user is limited to a particular frequency and bandwidth even though
massive amounts of bandwidth exist across the entire RF band. These restrictions are often
imposed across an entire country or regional area even though they are used exclusively in

particular locations.

In a reconfigurable radio every parameter of the radio system is potentially variable and
implemented in software. This means that a device can dynamically reconfigure itself to make
better use of the available spectrum. A reconfigurable radio may increase its operating bandwidth
to use additional spectrum when operating in a remote location. It may alter its power to avoid
interference when in a crowded office block. It may negotiate with another node in the network to
agree on a particular modulation scheme to suit its location. This type of capability is not possible
with dedicated hardware solutions as they are not reconfigurable in the same way. It is also not
possible with the canonical software defined radio as it typically signifies reprogramming of
hardware to upgrade or fix bugs in software, rather than having built-in dynamic behaviour. In

contrast the reconfigurable radio can change any operating parameter, instantaneously change the

Chapter 1 — Introduction Beyond Software Radio | 5

structure of the radio system or automatically download new software to enable new features; the
overall aim being to improve communication. The term ‘reconfigurable radio’ is therefore used in

this thesis to describe devices that are more dynamic than the canonical software radio.

The approach in this thesis is quite different to other software radio research and no other previous
work in the field has taken the particular approach presented here. This work is unique as it
concentrates on reconfigurability and how to deliver this using component-based software.
However, some other systems, although not focusing directly on reconfigurability, have similarities
to this work either through their involvement in software radio or through their approach to DSP.
The following discussion highlights work by others in the field of software radio. It concentrates on
work that has elements in common with this thesis. A more thorough examination of these and

other systems is presented later in Section 2.5.

SPECtRA is a programming library for software radio and was the first project to demonstrate
working software radio implementations on GPPs [Bose99a]. The focus of that project was to
demonstrate the feasibility of software radio on general-purpose processors (GPPs). The IRIS
system developed as part of this work is also developed using the GPP as a platform, however the
work in this thesis is distinctly different. Firstly, while a GPP has been used for this research, this
thesis does not attempt to propose that the GPP is the best platform for building radio systems.
Instead, it recognises that the GPP is the most convenient solution within current technical
capability for demonstrating the concept of reconfigurability. In time as technology improves there
may be other better platforms for developing radio systems, but the concepts of reconfigurability

discussed in this thesis will still be applicable.

Secondly, SPECtRA is a C++ based programming library for developing software radio systems. In
contrast, the IRIS system of this work is a component framework. This component framework
formalises an approach to building radio systems and applies software engineering principles to
their development. Finally, the SPECtRA system was not focused on reconfigurability. While it
may be possible to use SPECtRA to develop a reconfigurable radio, the system itself has not been
designed with this as a focus. In contrast, the IRIS system is built from the ground up to facilitate
reconfigurability. It allows dynamic loading/unloading of software components and formalises the
reconfiguration process. Further technical details of SPECtRA and other variations of this system

are discussed in Chapter 2, Section 2.5.1.

The SCA (Software Communications Architecture) [JTRS2001] of the U.S. JTRS (Joint Tactical
Radio System) project is a standard for military software radio systems. This SCA has its roots in
one of the first ever software radio projects called SPEAKeasy [Lackey95] (SPEAKeasy is

discussed later in Chapter 2, Section 2.2). The JTRS is a large comprehensive standard for defining

Chapter 1 — Introduction Beyond Software Radio | 6

radio systems and concentrates on partitioning the system and defining interfaces between elements
of a radio system. The SCA is very different to the IRIS system developed as part of this thesis.
The SCA concentrates on military interests, in reducing the cost of their radio systems and
introducing interoperability into their systems. The SCA does allow for limited reconfigurability
within individual elements of the radio system, however the system as a whole is quite rigid. It is
focused on aspects of communications that are not so relevant to this research such as developing
tamper-proof radio systems. It also does not mandate a software approach; instead the interfaces
defined can be implemented in hardware. For these reasons the SCA is unsuitable for exploring

reconfigurability. The SCA is discussed in more detail in Chapter 2, Section 2.5.2.

There are also some generic signal processing environments that can be discussed in the context of
this research. Among those is Ptolemy, a software project from Berkley MIT that provides an
environment for modelling, simulation and design of signal processing algorithms [Buck94].
Central to Ptolemy is the concept of models of computation, a facility that provides a highly
expressive environment for representing different types of signal-based systems. Although Ptolemy
could be used to model and simulate specific algorithms for software radio it is distinctly different
to the work of this thesis. Firstly, Ptolemy is a tool for modelling and simulation. IRIS is not a tool
but a component framework for developing real software systems. Although Ptolemy can
potentially generate source code for a variety of platforms the way in which it views its targets is
quite different to IRIS. IRIS reuses blocks of signal processing logic as software components,
whereas the blocks existing in Ptolemy exist at design-time only. These blocks are eventually
collapsed down to an implementation that is fixed in function. In contrast, the IRIS system is
designed so that the actual system developed can constantly reconfigure. While Ptolemy is a useful
tool for developing signal-processing systems, it is not a suitable platform for exploring
reconfigurability as its focus is developing and merging models of computation, a completely
different paradigm that does not address the needs of reconfigurable radio systems. Other tools that
fall into this category are Matlab and Simulink [Mathworks], and SPW (Signal Processing
Worksystem) [Cadence2002] which are discussed in Chapter 2, Section 2.5.

In summary, the work presented in this thesis is different from other approaches to software radio
as it focuses on reconfigurability. Reconfigurability is achieved through a software-based approach.
Reconfigurability is necessary to deliver flexible radio systems capable of meeting the demands of
future applications such as dynamic spectrum management. The reconfigurability concept is
demonstrated in this thesis through the IRIS system, a component framework developed for GPPs.

The next section discusses why the GPP has been chosen as the basis for this work.

Chapter 1 — Introduction Beyond Software Radio | 7

1.4 The General Purpose Processor

The IRIS system developed as part of this work is designed to run on GPPs such as the Intel
Pentium and the implementation presented in this thesis runs on the Windows platform. The GPP
has been chosen as it provides the best platform for demonstrating the concepts of
reconfigurability, which are the main focus of this research. This section discusses the motivation

for this choice.

Mitola summarises the differences in platforms for software radio in the phase space diagram
reproduced here in Figure 1.3 [Mitola99a]. This diagram plots various radio communication
applications and how they are typically implemented according to bandwidth and hardware device.
Mitola draws a tangent across the plane of radio applications and indicates a shift towards what he
consideres the ideal software radio as technology improves over time. For example, ‘B’ shows how
COTS (Commercial Off The Shelf) handsets typically process baseband signals using ASIC or
FPGA technology. Likewise, ‘X’ indicates the ideal software radio (discussed in detail in Chapter
2, Section 2.4.1) and shows this to be a device implemented using general-purpose processors and
operating with a digital access bandwidth in the GHz range. The plane cutting diagonally across the
diagram indicates the current state of the art in technology and as the ‘Technology” arrow indicates,

increases in technological capability bring us closer to the ideal software radio.

Ihgizal Access Bandwidth

10 GHz & | ‘L
| Irgiued R - J
. o= , . (xp RF
1 GHz : Sofhare
o L.
100 VI __— Radias
P e Diginl IF "~} JF
10 M bt ® -
IMH, Digital |
0kH, Rudion #
T e e + Baseband
10 kHz ‘E N Ihzual Baseband 7
1k, : —
ASIC FPGA DSP General [s stw
Purpose | & COTS Hunber
o CIse RISC gele
Function Function Function Function v
per cm2 per em2 per cm2 per cm2 ’
Dedicated Malleable ISA + Memory
Silicon Silicon Memory

Figure 1.3 — Software Radio Phase Space Diagram [Mitola99a]

If the work of this thesis were to be mapped onto Mitola’s phase space diagram it would sit towards

the ‘X’ region. This is because this work uses the GPP as a platform for demonstrating

Chapter 1 — Introduction The General Purpose Processor | 8

reconfigurability, and also, this work is more focused on the idealistic software radio rather than a

hardware oriented approach.

It is worth discussing why the GPP is a suitable platform for demonstrating reconfigurability, as it
is not typically chosen as a platform for real-time signal processing applications. Unlike most other
work in the software radio space, this thesis is not concerned with developing the most efficient,
low-power, low-cost device. Instead, its primary concern is demonstrating the fundamentals of
reconfigurability. Although the GPP is limited in processing power and is unsuitable for embedded
or low-power applications, the flexibility of the platform makes it an ideal candidate for
demonstrating the concepts of reconfigurability. The GPP has the following advantages over more
traditional embedded devices:

e Readily Available Hardware: Embedded systems require custom hardware to be designed and
built which is a very costly and time consuming process. While any embedded system could
potentially contain any combination of RAM, persistent storage or 1/O peripherals, the system
has to be designed specifically for these hardware components. Also, hardware and software
interfaces (i.e. drivers) have to be developed to interface these components on the embedded
target. In contrast, GPPs come in the form of readily available PCs. This hardware is relatively
inexpensive (compared to the cost of designing an embedded system from scratch), requires no
custom hardware design, and even the most basic PC contains large amounts of RAM and
persistent storage as standard. RAM is useful for software radio as the high sample rates
involved in radio systems result in large amounts of sampled data. This data can be buffered in
memory. Persistent storage is also important as a software radio can use this space to store
large files of waveform data and potentially any number of different radio configurations.

o Advanced Languages and Tools: The GPP computer is a pervasive technology thus many
different languages and development tools exist for developing GPP software. By developing
software radio on this platform engineers can take advantage of these advanced tools and
languages. Unlike other platforms that require output to a target platform for testing, testing on
a GPP environment is much easier as it can be performed alongside development.

e Operating System: The GPP uses an operating system that provides services such as memory
management, concurrency and file systems which make it much easier to develop applications.
These services relieve the programmer of having to deal with hardware specific memory
layouts, etc which are common on embedded platforms.

e Moore’s Law: Moore’s Law, a popular observation on semiconductor technology, states that
the processing power of semiconductors doubles roughly every 18-24 months [Moore65]. This
means that an automatic increase in processing power becomes available every 18-24 months.
This is significant as an embedded design typically requires a full redesign to increase its

capability to this degree.

Chapter 1 — Introduction The General Purpose Processor | 9

There are two particular limitations to using the GPP platform which are worth discussing; power
consumption and real-time behaviour. The powe: consumption of a GPP is much higher than a
DSP processor or an FPGA, therefore the GPP is uasuitable for low-power mobile applications.
However, as discussed, this thesis is not concemned with developing the most power-efficient
device, rather its focus is on demonstrating the concept of reconfigurability. With further research
and with a focus on reconfigurability, a GPP processor could be developed that meets the needs of

the reconfigurable radio with low-power design.

Real-time behaviour is also a concern for many, as operating systems such as Windows and Linux
are pre-emptive and thus inherently non real-time. In these systems the kernel has full control over
scheduling of processes on the computer and there is nothing to stop a radio application from being
pre-empted by any other process running on the system. Ultimately this means that the system may
not be able to meet its stringent timing requirements and thus would be defective as a
communications system. There are two reasons why this concern is of lesser importance in the
context of this work. Firstly, this thesis proposes that reconfigurability can make improvements
over traditional radio system design, and perhaps it is possible to develop radio systems that are not
so dependent on real-time constraints. Data transmissions for example are often transmitted in
bursts, are irregular and can tolerate occasional errors. New types of radio systems developed with
inherent reconfigurability could be designed to treat radio signals in the same way as data
transmissions, therefore there would be a lesser need for stringent real-time behaviour. Secondly,
while mainstream GPP operating systems do not support real-time operation, many commercial
products exist either as add-ons, or separate operatng systems, that provide real-time operation on
a GPP (for example, VenturCom provide a real-time extension to Windows XP called RTX
[VenturCom]). Future work could look at implementing a reconfigurable radio system on one of
these real-time operating systems. Thus, for the purposes of this work the advantages of the GPP

greatly outweigh the disadvantages and therefore it has been chosen as a platform for this research.

1.5 Contribution Summary

As stated in Section 1.1 this work shows that that a software-oriented component-based approach
to software radio yields highly reconfigurable racio devices. That thesis is proven through the

following five contributions:

A comprehensive overview of software radio technology

A comprehensive overview of software radio is provided in the thesis. It does this by analysing the
history of the field, contrasting different terms and definitions, examining the technologies
involved, and looking at previous work in the field. This is an important contribution because it

looks at software radio from various perspectives and does not focus on specific applications such

Chapter 1 — Introduction Contribution Summary | 10

as mobile telephony. This should serve as a useful guide to others carrying out research in this

field.

Categories for assessing reconfigurability in radio systems

Three categories of reconfigurability, namely; application, structural and parametric
reconfigurability are defined in the thesis. These categories allow the level of reconfigurability of a
radio device to be assessed. This is an important contribution to the field of radio system design as
it gives others the means to contrast and compare different radio systems in terms of their
reconfigurable capability. This also serves as a means to defining the software requirements of the

reconfigurable radio system.

Analysis of software design for radio systems

To analyse software design for radio systems this thesis looks at eight software engineering
principles, namely reuse, abstractions, adaptability and flexibility, complexity, security, portability,
real-time behaviour and finally upgrading and versioning. This unique perspective on software
design for radio systems provides a valuable contribution as it highlights the differences between
developing software for a software radio system and developing mainstream software. This is
useful as it shows that in many cases the best practices in mainstream software are not necessarily
applicable when developing radio systems. This contribution also demonstrates that component-

based software is an effective way to achieve reconfigurability.

Design, implementation and analysis of a reconfigurable radio system

The design, implementation and analysis of IRIS provides a valuable contribution as it presents
practical information that will help others to build reconfigurable systems. It demonstrates how the
reconfigurability concepts presented in this thesis can be applied in practice. It is also important
that IRIS has been developed on GPPs as this shows that this is a suitable platform for developing

and experimenting with radio system concepts.

Case studies that apply the reconfigurable radio approach

Three case studies, that demonstrate how the IRIS system and hence the reconfigurable radio
approach can provide unique capabilities that facilitate new and emerging types of radio systems,
are presented. This is an important contribution as it brings together reconfigurability and practical
problems in wireless design to prove that the software-based component-oriented approach taken in

this work is a practical and effective way of developing highly reconfigurable radio devices.

Chapter 1 — Introduction Contribution Summary | 11

1.6 Dissertation Overview

Chapter 2 presents the history of software radio, contrasts terms and definitions, describes the
technical issues and discusses related work in this field. The software-oriented component-based
approach presented in this thesis requires background knowledge in software engineering; this is
presented in Chapter 3. Chapter 4 is the most important chapter in this dissertation as it presents the
unique approach and key concepts that differentiate this work. That chapter defines the three
categories of reconfigurability; application, structural and parametric that can be used to assess the
overall reconfigurability of a radio device. This chapter then goes on to discuss all the issues
involved in realising such a device by analysing the role of software in radio systems. Chapters 5
and 6 demonstrate how these concepts have been used to develop a real-life reconfigurable radio
system called IRIS. IRIS is highly reconfigurable radio system that runs on normal PCs providing
an ideal experimental platform for demonstrating the concept of reconfigurability. Chapter 7 shows
how both the concepts of reconfigurability and the IRIS system itself are applicable to emerging
wireless technologies. Chapter 8 summarises conclusions from this work and suggests areas for

future investigation.

Chapter 1 — Introduction Dissertation Overview | 12

Sofware Radio

2.1 Introduction

The purpose of this chapter is to give a comprehensive overvewof)ftare radio technology ad
to demonstrate why the approach taken in this thesis is different tothr work in this field. The

chapter is broken down as follows:

Section 2.2 describes the history and evolution of software :ado. “is;ection first discussesan
early software radio system called ‘SPEAKeasy’ and then plos tie vebpment of the technolazy
through to the present day. Section 2.3 contrasts the various tirms ai d¢initions used to descrbe
the software radio concept and arrives at a definition suitable br e orkin this thesis. Section .4
discusses the role of hardware in software radio. It starts by dscissg te ‘Ideal Software Rado’
and looks at the practical limitations involved in developirg i stwre radio system. It aso
describes the various hardware technologies involved in cr:atng sctware radio system aid
discusses relevant prior research relating to this thesis. Section .5 scsses work related to this

thesis and demonstrates the need for a reconfigurable approaci tosotvar radio.

2.2 History

Mitola coined the phrase ‘Software Radio” in 1991 and in 1997 hewre te first publication on tie
topic [Mitola92]. This publication explained some of the bascs \f stwre radio discussing AD
and D/A conversion, sampling rates and hardware, but even mare mptarly predicted a decade >f

change from hardware to software-based radio systems.

Mitola’s contribution in the early 90s was not that he inventd .ofiarcradio itself, but that ie
marked a shift in thinking by introducing this new term. In act thsotware radio concept h:d
been evolving for many years with digital-signal processing biniinceasingly used in mary
aspects of electronic design. The term ‘software radio’ markd e rrival of digital sigml

processing into the field of radio system design.

At the time software radio was seen as an ideal technology fo mtar applications. It woud

provide flexibility and interoperability to organisations that reled eaily on communicatiors

infrastructure. In 1991 the U.S. Department of Defence began a project called SPEAKeasy
[Lackey95, Bonser98]. The aim of SPEAKeasy was to develop a common communications device
allowing inter-communication among military allies. The basic problem it addressed was that
multiple radio standards and implementations existed, with no interoperability between devices and
no common hardware platform. A software-based signal-processing solution was seen as a way to
overcome this problem. By manipulating radio signals digitally, they would be able to have one
common hardware platform with various radio standards supported via different software

programmes.

SPEAKeasy took place in two phases. Phase I proved the basic concept of software radio by
demonstrating a reprogrammable piece of hardware capable of processing RF signals digitally.
This hardware used four Texas Instruments TMS320C40 DSP processors as a signal-processing
engine with RF signals digitised at the IF. Software was developed for the radio in the Ada
language with some temporal and security sensitive elements programmed in assembly language.
Phase II of the project expanded the programme and shifted the processing of RF signals from DSP
processors to FPGAs. This gave more processing power for dealing with higher bandwidth radio
signals, however the time required in re-programming the FPGAs was seen as a limiting factor of
the design. Software implementations were also expanded to include fifteen different operating

modes, allowing communication with a wide range of military waveforms.

While the technical aspects of SPEAKeasy were important in proving the basic concept of software
radio, a more significant result of this work for the space as a whole was that it helped to
consolidate many of the concepts being discussed at the time. The period from 1991 to 1995 saw
the subject mature resulting in a better understanding of the capabilities, limitations and
possibilities of the technology. This is apparent in the May 1995 IEEE Communications Magazine
which contains a special issue on software radio. In this publication Mitola [Mitola95] discusses
the ‘Software Radio Architecture’, which gave a high-level breakdown of the software radio

system and how signal processing can be applied at each stage of the device.

An important aspect of Mitola’s work on the software radio architecture (also discussed in more
detail in [Mitola2000]) is that it addresses some of the key concepts that differentiate a software
radio from its close relative, the programmable digital radio. A software radio places the A/D/A
conversion as close as possible to the antenna allowing total programmability of RF bands, channel
access modes, and channel modulation. However, these are often confused with software-
controlled digital radios that allow the functions of the radio to be controlled via software. The two
differ as a software-controlled digital radio although somewhat variable, is fixed in function,

whereas a software radio can be redefined to do something entirely different.

Chapter 2 — Software Radio History | 14

In the mid-nineties, in particular in the U.S., interest in software radio began to emerge in
commercial applications. This is seen in the 1995 issue of IEEE Communications Magazine in
which most of the discussion is on applying software radio to mobile cellular communications, in
particular PCS (PCS or Personal Communications Services is a term used in the U.S. to describe
the family of mobile communications technologies including IS-54/IS-136 and IS-95). This is also
reflected in other publications in the same magazine as Wepman [Wepman95] discusses A/D
converter theory and Baines [Baines95] discusses the practicalities of developing real-time signal
processing systems using available processors at the time. Again the focus of their work was
largely on applying the software radio concept to mobile communications. It should be noted that
most of the work at this time did not recommend well-defined practices, techniques or specific
designs for software radio systems, instead much of this work presented discussions on existing

communications theory and how it could be applied to the digital domain using software radio.

With the commercial industry mostly focused on applying software radio to mobile
communications in an effort to reduce cost, some academics began to look at the software radio
concept itself, with a view to exploring the new capabilities this technology provides. In particular
the SpectrumWare group at MIT took a unique approach to the software radio concept
[Tennenhouse95]. Instead of concentrating on hardware, they looked at the radio from the software
perspective. They built radio systems using standard workstations (i.e. PCs containing GPPs) and
off the shelf components. While their prototype system was quite limited in signal processing
power and highly power inefficient, the advantage of their system was its flexibility [Bose99a].
They recognised that unlike other signal-processing approaches involving FPGAs and DSPs, the

capabilities of their device would scale with Moore’s Law.

Moore’s Law [Moore65], a popular observation on semiconductor technology, states that the
processing power of semiconductors doubles roughly every 18-24 months. The SpectrumWare
team recognised that given time, Moore’s law would improve hardware capabilities, therefore the
major focus on system design should be software. (In June 2003 Vanu Inc., a commercialisation of
the SpectrumWare group, carried out field trials of a GSM base station built using commodity PC
servers powered by dual Xeon 2.8 GHz processors [Steinheider2003].) Others also started to look
at the challenges involved in re-implementing existing radio standards in software. For example,
Akos describes a software-based GPS receiver using GPPs [Akos97]. Although this system was
incapable of processing these signals in real-time, it was only a matter of time before better

processors emerged allowing real-time signal-processing of radio signals to take place.

Throughout academia, commercial and military interests there have been different opinions as to
how to apply software radio technology or what the wide reaching implications of it are

[Pereira2000, Tuttlebee99a]. In the U.S. the migration from analogue to digital communications

Chapter 2 — Software Radio History | 15

took place from 1996 and resulted in the deployment of multiple competing digital standards for
PCS. This resulted in numerous incompatible networks across North America each providing
different services. Software radio was seen as an important enabling technology for creating a
terminal that allowed users to interoperate among these networks. In the U.S. software radio
development has been concentrated on the mobile terminal (the user’s mobile phone). The aim here
has been to develop reprogrammable radio devices that can interoperate among the various U.S.
standards. This emphasis on the terminal makes it difficult to take full advantage of software radio.
Mobile terminals have stringent requirements on power and cost that limit the opportunities to
maximise the use of software radio technology. In contrast, Europe adopted one standard, GSM
(Global System for Mobile Communications), which has been in use since 1991. Europeans are
therefore able to roam seamlessly throughout much of Europe and elsewhere. This has meant that
there has been less urgency for software radio technology in Europe’s 2G networks [Tuttlebee98,

Tuttlebee99b].

These trends are also reflected in the organisations that promote software radio. The MMITS
(Modular Multifunction Information Transfer System) Forum was established in the US in 1996 to
promote multi-mode terminals capable of interoperating with AMPS and multiple PCS standards.
In 1998 it changed its name to the ‘SDR Forum’ [SDRForum] to symbolise a widening of scope,
yet its focus is still on delivering a solution to a lack of interoperability in the US. In Europe,
without such an interoperability problem, the wider implications of software radio have been of
more interest. This has elevated software radio research from a purely RF/hardware technique to an
all-encompassing technology that impacts the whole network [Pereira2000]. Pereira [Pereira99,
Pereira2001] suggests that software radio has implications across the whole networking

environment. Drew [Drew2001] discusses similar arguments.

The interest in software radio in Europe prompted the European Commission to fund research into
many aspects of this technology. Several research and development programmes funded projects in
software radio, in particular ACTS (Advanced Communication Technologies and Services), Esprit,
and IST (Information Society Technologies). The table below lists some of the most relevant
projects carried out in Europe with a brief description. The breadth of scope in these projects

demonstrates the impact software radio has had on the communications industry.

Chapter 2 — Software Radio History | 16

CAST | Configurable radio with Advanced Software Technology

Concentrated on adaptive radio access including a demonstration of key functional blocks in a
software radio.

DRIVE | Dynamic Radio for IP-services in Vehicular Environments

Interoperability of standards such as GSM, GPRS, UMTS, DAB, DVB-T with emphasis on multi-
media delivery to vehicular applications.

FIRST | Flexible Integrated Radio Systems Technology

Demonstrated the feasibility of multi-mode terminals for 2" and 3 generation mobile systems.

MOBIVAS | Mobile Value Added Services

Looked at using software defined radio for delivering new value added services.

PASTORAL | Platform and Software for Terminals: Operational Re-configurable

Using FPGAs to deliver a re-configurable, real-time platform for third generation mobile terminals.

SLATS | Software Libraries for Advanced Terminal Solutions

Developing software libraries for GSM and W-CDMA on a DSP platform.

SODERA | Reconfigurable Radio for SDR for 3rd Generation Mobile Terminals

A feasibility study into the best RF architecture suited for reconfigurable radio.

SORT | Software Radio Technology

Looked at the basic hardware building blocks required to realise a software radio with a focus on
GSM and W-CDMA.

TRUST | Transparently Reconfigurable Ubiquitous Terminal

A wide-encompassing project primarily focused on the user’s terminal but incorporating many
investigations into system architecture and reconfigurability for multi-standard devices.

WIND-FLEX | Wireless Indoor Flexible High Bitrate Modem Architecture

Investigated the development of a high bit rate radio system for indoor applications.

Further information on these projects can be found at [Cordis].

Figure 2.1 — European Funded Projects Relating to Software Radio

Looking to the future there are also many other untapped applications of the technology both
within mobile communications and the wider space of telecommunications in general. Starting with
mobile communications, software radio has only been fully considered for 2G and 3G applications.
There will however at some stage in the future be options other than these systems with 4G (fourth
generation) possibly changing the common ways networks operate [O’Mahony2002]. The general
perception for future generation systems being based on more intelligent flexible networks
[Ribeiro2001]. There are differing viewpoints on what form such networks will take, but the
general consensus is that devices will be capable of seamless, high-bandwidth networking
anywhere in the world [Gazis2002]. While this type of capability is currently provided by cellular-
based connectivity consisting of base stations and mobile terminals, newer research into areas such

as ad hoc networking suggests that networks could form without such fixed infrastructure

Chapter 2 — Software Radio History | 17

[Johnson96, Perkins99, O’Mahony2001, Doyle2002c]. This concept originates from the efforts
demonstrated by DARPA’s PRNET [Jub87], except that today the focus is on mobility using low-
cost lightweight radios. Research and development in this field is currently concentrated on
developing more efficient protocols for larger and more mobile populations. Whatever form these
networks take, it is evident that software radio will have an important role to play in providing

flexible radio communication.

Outside of personal mobile communications and military applications, software radio has received
less attention. Applications that use radio communication are only beginning to see the benefits of
this technology (e.g. aeronautical applications [Cummings99al). There are various reasons for this
slow adoption. Firstly, the mobile communications industry has dominated research and
development in radio technology since the inception of the first analogue cellular systems. Those
with most to gain from the adoption of software radio have naturally pushed the development of the
technology. Secondly, no universal or open platform exists for the development of software radio at
present, only some proprietary offerings mainly targeted at mobile communications. In time as
software radio matures and costs decrease, other industries will be able to employ software radio at
a reasonable cost. Examples of these are emergency services, aeronautical, maritime, public safety,

security, location-based services, broadcasting and transportation.

In general though, current research in the software radio space is still mostly concerned with
delivering the hardware platforms that will power software radio systems of the future. This is
where existing research and the work of this thesis start to differ. This thesis takes a similar
approach to the SpectrumWare group in that it takes a more software-centric view to the
development of software radio systems, but a unique approach in that it concentrates on

reconfigurability and component-based software.

2.3 Terms and Definitions

With differing perspectives on software radio, no clear definition has emerged that satisfies all uses
of the technology. Software radio will be employed in a variety of applications from 2G, 3G and
4G, and also to a host of other wireless applications. A consequence of these various approaches is
a multitude of terms used to describe the technology. To the casual observer terms like software
radio, software-defined radio, digital radio, reconfigurable radio and cognitive radio are
interchangeable. However, while they do refer to the same underlying technology, each of these
terms represents a different viewpoint when examined in the literature. This section discusses the
meaning of these terms, discusses the definition of software radio and arrives at a term and

definition suitable for this thesis.

Chapter 2 — Software Radio Terms and Definitions | 18

In the majority of software radio literature analysed, no one has distinctly made a comparison
between the terms ‘Software Radio’ and ‘Software-Defined Radio (SDR)’. A cursory look through
the literature suggests they are interchangeable, however taking the literature as a whole they are
quite different. The word ‘Defined” in SDR suggests that the software for a radio is defined once, a
typical example being a radio system implemented in software using programmable ASICs, FPGAs
and to a lesser extent DSP processors. While such a device would be reprogrammable, its end
application is usually the same, for example a GSM base station, a D-AMPS mobile terminal or a
DAB (Digital Audio Broadcasting) receiver. The use of SDR technology means these devices can
be reprogrammed to correct bugs or perform minor upgrades, however the radio will not typically
perform any function outside the original specification. The ‘Software Radio’ however tends to be
a more general term covering a type of device that can be reprogrammed to perform many different
types of applications. An example of this is the work by SpectrumWare; they used the term
‘Software Radio’ as their system allowed the creation of any number of applications using generic
hardware [Bose99b]. Consequently the purity of software radios is also often referred to
[Tuttlebee99b], with a ‘Pure Software Radio’ meaning a software radio approaching the

capabilities of the ‘Ideal Software Radio” [Mitola99e].

The term ‘Digital Radio’ has been used but it is a broad term and can be confusing in the context of
software radio. Earlier radio designs often featured aspects of digital signal processing in the form
of audio processing, filtering or by virtue of their use of digital modulation [Fines95]. The term
becomes ambiguous however in the light of software-based radio systems, as SDRs and digital
radios are built using the same fundamental technologies, i.e. ASICs and FPGAs. The difference
lies in the viewpoint of those who design, build and sell these devices. The digital radio designer
perceives the radio device as a completely digital hardware based device, designed and optimised
for a particular application. The SDR-based designer views the radio system somewhat similarly in

terms of hardware, but with a strong focus on reprogramming the software implementation.

The term ‘Reconfigurable Radio’ has emerged recently to emphasise the reconfigurable nature of
software radio technology. The viewpoint here is that software radio should impact not just at the
physical layer but should provide opportunities for new applications and services higher up in the
protocol stack [Pereira99]. Similarly Ikonomou [lkonomou99]| addresses the issue by stating that
software radio concepts now extend well beyond the simple reconfiguration of air interface
parameters but extend through the network into service creation and application development.
Chapter 4 discusses reconfigurability in more detail as the concept of the reconfigurable radio will

be expanded on and used extensively in this thesis.

Finally, the concept of the ‘Cognitive Radio’ was introduced by Mitola [Mitola2000, Mitola99b].

The cognitive radio is similar to the reconfigurable radio concept but broader in scope as it referrs

Chapter 2 — Software Radio Terms and Definitions | 19

to a more futuristic radio device. The cognitive radio is seen as an intelligent software radio device
in that it can make informed decisions about its environment, perhaps in which modulation scheme
or frequency allocation it uses. The cognitive radio augments the software radio through Radio
Knowledge Representation Language and can manipulate the protocol stack to make better
decisions about radio use. The cognitive radio concept was first developed with military
applications in mind and is particularly suited for introducing advanced levels of security and
associated military interests into software radio. Recently cognitive radio has started to emerge in

discussions about new policies for spectrum management in the U.S. [FCC2002].

In addition to ambiguous terms, software radio also suffers from a multitude of contrasting
perceptions about the exact definition of software radio. Mitola defines the software radio as

follows:

‘A software radio is a radio whose channel modulation waveforms are defined
in software. That is, waveforms are generated as sampled digital signals,
converted from digital to analog via a wideband DAC and then possibly
upconverted from IF to RF. The receiver, similarly, employs a wideband
Analog to Digital Converter (ADC) that captures all of the channels of the
software radio node. The receiver then extracts, downconverts and
demodulates the channel waveform using software on a general purpose

processor.” [Mitola]

Buracchini discusses the software radio concept and identifies the need for a common definition.

He suggests that software radio should be defined as follows:

‘Software radio is an emerging technology thought to build flexible radio
systems, multiservice, multistandard, multiband, reconfigurable and

reprogrammable by software’ [Buracchini2000]

Buracchini’s definition is perhaps too simplistic to fully describe the software radio. The overall
problem encountered throughout the literature is that the software radio concept brings a particular
approach to building radio systems rather than a concrete system design. The viewpoint on the
technology can thus be different depending on how someone wants to apply the software radio
approach. Instead of one all-encompassing definition, the SDR Forum have classified radio systems

into the following five tiers [SDRForum?2]:

Chapter 2 — Software Radio Terms and Definitions | 20

Tier 0 — Hardware Radio
‘The radio is implemented using hardware components only and cannot be

modified except through physical intervention.’

Tier 1 — Software Controlled Radio (SCR)

‘Only the control functions of an SCR are implemented in software - thus only
limited functions are changeable using software. Typically this extends to inter-
connects, power levels etc. but not to frequency bands and/or modulation types

’

ere.

Tier 2 — Software Defined Radio (SDR)

‘SDRs provide software control of a variety of modulation techniques, wide-band
or narrow-band operation, communications security functions (such as hopping),
and waveform requirements of current and evolving standards over a broad
frequency range. The frequency bands covered may still be consirained at the

front-end requiring a switch in the antenna system.’

Tier 3 — Ideal Software Radio (ISR)

‘ISRs provide dramatic improvement over an SDR by eliminating the analog
amplification or heterodyne mixing prior to digital-analog conversion.
Programmability extends to the entire system with analog conversion only at the

antenna, speaker and microphones.’

Tier 4 — Ultimate Software Radio (USR)

‘USRs are defined for comparison purposes only. It accepts fully programmable
traffic and control information and supports a broad range of frequencies, air-
interfaces & applications software. It can switch from one air interface format to
another in milliseconds, use GPS to track the users location, store money using
smartcard technology, or provide video so that the user can watch a local

broadcast station or receive a satellite transmission.”’

While the categorisation of radio systems into different tiers is a good way of distinguishing
different types of radio systems, the actual definitions of each type are not that useful. For example
their definition of the SDR does not mention digital signal processing and describes ‘software
control’, clearly this is in disagreement with the general consensus that SDRs implement all radio
functionality using DSP. Also, their description of the ‘Ultimate Software Radio’ is quite narrow in
focus as it seems to concentrate on the capabilities of a users terminal. Specific applications such as

GPS are mentioned when in fact the ideal and ultimate software radios should be capable of

Chapter 2 — Software Radio Terms and Definitions | 21

communicating with any other radio system regardless of frequency, modulation scheme or

communications standard (the ideal software radio is discussed in more detail in Section 2.4.1.)

Lehr also recognises the confusion over software radio terms and suggests a more technical
definition in that the term ‘software radio’ (as opposed to software-defined radio) should be
reserved for systems that digitise the signal at the IF stage or further towards the antenna
[Lehr2002]. This approach differentiates the software radio from radio systems that use software in
their design but not for the processing of radio signals directly. While this is not a definitive
statement it does raise an important issue as to where digital conversion should take place

suggesting that this may be a way of categorising different types of radio systems.

Without concentrating on specific technologies or applications the U.S. Federal Communications

Commission (FCC) define software radio as:

‘A software defined radio is a radio that includes a transmiiter in which the
operating parameters of the transmitter, including the frequency range,
modulation type or maximum radiated or conducted output power can be
altered by making a change in software without making any hardware

changes.” [FCC2001]

The FCC definition represents the regulatory view of the software radio and this is demonstrated by
its concentration on the transmitter, the goal of the regulator being to avoid interference. It is thus

an incomplete and unsuitable definition for this discussion.

From these different perspectives it is clear that it is difficult to arrive at an exact definition that
satisfies every viewpoint. To address the lack of clarity about software radio systems this thesis

proposes the following definition that better defines the software radio concept:

‘A software radio is a device that digitally converts radio signals in order
to processes them using a software programme. Digitisation must occur
close enough to the antenna to allow any function of the radio to be

altered dynamically at runtime.’

This definition is distinct from others for the following reasons:
e This definition requires that a software programme is used to process signals digitally.
This differentiates it from other hardware-defined approaches.
e This definition requires digitisation as close as possible to the antenna to allow

variability in all radio functions. This is included to ensure that the software radio

Chapter 2 — Software Radio Terms and Definitions | 22

definition does not extend to devices that process radio signals digitally yet do not
offer variablitiy in this function. It is this variability that makes the software radio
concept unique.

¢ Finally, this definition uses the term ‘runtime’. Runtime is a software concept making
it clear that all functionality must be implemented in software rather than software-

controlled hardware.

In discussing the more reconfigurable software radio, Chapter 4 also defines a definition of the

‘Reconfigurable Radio’.

2.4 Hardware

Section 2.2 discussed the history of software radio without dwelling on specific technical principals
or examples. This section presents all the technological knowledge required to understand the
software radio concept. This section starts by looking at the ‘Ideal Software Radio’, often seen as
the ultimate goal in radio system development. This is followed by a look at some practical
limitations explaining why the ideal software radio is not possible at present. The remainder of the

section looks at the various hardware technologies required to realise a software radio.

2.4.1 The Ideal Software Radio

Before reviewing specific technologies and techniques for software radio, it is useful to look at
what most perceive as the ultimate goal in software radio technology, often termed the ‘Ideal
Software Radio” [Mitola92]. Figure 2.2 shows a diagram of the ideal software radio. Central to the
ideal device is that the signal is digitally converted as close as possible to the antenna with all radio
functionality implemented using DSP, with only a minimal essential amount of analogue hardware

used.

In this scheme the radio would be able to transmit and receive extremely large bandwidths. In the
receiver scenario this would allow the radio to digitise the entire RF band with DSP used for all
receiver functionality including tuning, filtering and demodulation. In such a radio device it would
be possible to receive on multiple frequencies simultaneously with each individual signal possibly

using different bandwidths and modulation schemes.

Likewise, in the transmitter scenario, DSP software would be used to generate a wideband signal
capable of transmitting anywhere in the RF band. It would be possible to simultaneously modulate
multiple signals using different frequencies, bandwidths and modulation schemes. Effectively the
analogue RF-front end of the ideal software radio would act as a physical gateway to the

electromagnetic spectrum with all radio functionality implemented by DSP software.

Chapter 2 — Software Radio Hardware | 23

The ideal software radio is a long-term goal. Although this goal may never be reached or warrant
the investment to reach it, it does underpin the direction of software radio, i.e. moving DSP as close
as possible to the antenna. Any developments in analogue electronics, DSP or radio engineering
that bring us closer to that objective will deliver great opportunities for new types of wireless

devices and hence new applications and services.

Receive Path
b
Receiving
Antenna \|/ Low Noise .
Amplifier Filter

'/D\BJ AD | Digital Signal

[’\/ Converter Processing
Transmitting

Antenna \ |/
\/ . ;3\k/ D/A ”7*4(Digital Signal ‘
~ Converter Processing

Low Noise
Amplifier Filter

— — = - - S —

Transmit Path

Figure 2.2 — The Ideal Software Radio

2.4.2 Practical Limitations

While there may be some existing technologies capable of bringing us closer to the ideal software
radio (for example superconductors have been suggested for use in software radios [Semenov99,
Brock2001, Brock2002, Fujimaki2001]) these are typically not feasible in cost or complexity and
are not suitable replacements for existing radio hardware. To achieve the practical software radio
with today’s technology the designer must use conventional analogue techniques in combination
with newer DSP hardware. The challenge is to strike a balance between analogue circuitry, digital
conversion and DSP. The amount of each technology used will be dependent on the particular
application but also on the capability and cost of the devices available. The most common approach
taken today is to employ conventional analogue radio electronics for manipulation of higher
frequencies with digitisation and digital signal processing occurring at lower frequencies

[Hentschell99].

Figure 2.3 shows a more practical architecture for the software radio. In the receiver branch the
signal of interest is mixed with a local oscillator that down converts the signal to a lower frequency.
The signal is then digitised at this lower frequency. Likewise in the transmitter the signal is
modulated via DSP and mixed with a local oscillator to up convert the signal to the transmit

frequency. This design ensures that the demands on analogue to digital converters (ADCs) and

Chapter 2 — Software Radio Hardware | 24

digital to analogue converters (DACs) are much less at these lower frequencies. Also, the DSP
hardware can process data at a reasonable sample rate, much lower than the actual operating

frequency of the radio.

1 1 1
1 Il 1 1
- ; L |
! Receive Path Ly o
1 T v 1
| Receiving ' : :
\ Antenna \|/ Low Noise)) ‘ - :
: Amplifier Filter Mixer Filter : i - ;
: | pe o . s !
i i Xep ! AD Digital Signal !
! | % % i | Converter Processing .
: o :
1 1 | 1
1 1 | 1
i Local L i
1
i "\) Oscillator ' : -
| ! z
1 = 1
1 Local i U
: Transmitting @u Oscillator : : :
i\ Antenna ! H i
1 I 1 1
i i X =% 5| bt D/A Digital Signal | i
: e \]7 — X o /\j 4:?(Converter | Processing I :
: Low Noise o o - : : - _— :
1 Amplifier Filter Mixer Filter 1! :
1
) —————— S .- .
R v |
E Transmit Path ¥ !
1
e e eI e L1 1
Traditional Analogue Digital Interface
Superhetrodyne Approach

Figure 2.3 — A More Practical Software Radio Solution

In Figure 2.3 the left side of the diagram represents the analogue portion of the radio and this
configuration is a typical superheterodyne architecture [Armstrong24]. In the receive path of this
architecture the signal of interest is tuned, amplified and then down converted to a common
frequency called the Intermediate Frequency (IF). The use of an IF allows a receiver to maintain
selectivity and sensitivity across multiple receive frequencies. Selectivity refers to the receiver’s
ability to reject all frequencies except the frequency of interest. This will determine how well a
receiver can receive a signal in the presence of other signals and noise. Sensitivity refers to how
well a receiver can receive weak signals. Due to the physical nature of analogue components it is
difficult to build a receiver that maintains selectivity and sensitivity across multiple frequencies and
this difficulty increases with frequency. Converting a signal to the IF goes some way to solving
these problems. The IF is a common frequency enabling analogue circuitry to be optimised for
selectivity and sensitivity at this one frequency, ultimately reducing the amount of unwanted noise.
In addition this frequency is usually lower than the actual receive frequency thereby simplifying

analogue design.

A few IFs have become standard allowing manufacturers to produce components optimised for

these frequencies, examples of which are 455kHz, 10.7MHz, 70Mhz, 140MHz. IFs are chosen

Chapter 2 — Software Radio Hardware | 25

primarily to suit the bandwidth of the intended application but may also be influenced by factors

such as component specifications and noise performance.

In the transmitter a similar approach is used. Signals can be modulated and then up-converted to a
common IF frequency. This IF can then be translated and amplified for transmission at the required
frequency. Many variations can be made on this architecture; some approaches use multiple mixing
stages especially in high frequency applications. Also, different types of filtering can be used
depending on the demands of the application. In summary, the central idea behind the
superhetrodyne approach is the use of mixing and filtering stages to translate signals to more
manageable frequencies and this approach can be applied to a vast number of applications in radio

design.

The wide acceptance of the superheterodyne architecture has meant that it has become a popular
choice in the migration towards software radio. In both receivers and transmitters, the approach has
been to introduce digitisation at the IF frequency. As Figure 2.3 illustrates, this hybrid approach
uses analogue circuitry for high frequency operations with DSP performed at lower frequencies.
Moreover this strikes a balance that makes software radio more realisable and affordable using

current technology.

Another architecture gaining more recognition in software radio applications is direct conversion,
also known as Zero-IF. Its architecture is much the same as Figure 2.3 except for the frequencies
used by the local oscillator. In the receiver this scheme means that the signal of interest is down
converted directly to baseband bypassing any use of an IF frequency. Likewise in the transmitter a
baseband signal is directly up-converted to the signal of interest. (Gu discusses Zero-IF in the
context of software radio [Gu2002]). While this may seem advantageous, there are various
problems associated with this technique, in fact these problems are the reason the superheterodyne
approach dominates most designs. In particular, direct conversion results in a large DC offset in the
signal which can make it difficult to recover the original signal. This DC offset is caused by a
mismatch between analogue circuits which is temperature and time dependent introducing a
variable error into the signal. Also, oscillator leakage, self-mixing, flicker noise and other
inconsistencies can result in a corrupted signal [Patel2000]. This technique is however gaining
popularity over the superheterodyne approach as it has better immunity to adjacent channel

interference and is quite tolerant to variations in input power [Haruyama2001].

This discussion demonstrates that there is no single or best way to develop the hardware of the
software radio system. Many areas of expertise from RF-hardware design to DSP processing
devices must undergo significant development to meet the demands of the software radio and to

move it towards the ideal software radio. For this reason there has been a variety of research and

Chapter 2 — Software Radio Hardware | 26

development on tackling this problem. The software radio hardware research space can be divided
into three areas of research split according to their function as shown in Figure 2.4; these are the
RF front-end and antenna, digital conversion and DSP hardware. The following three sections

discuss these important aspects of software radio and highlight relevant research in each one.

i —p »
S Digital Signal
RF Front End Digital P?'ocess%g
& Antenna Conversion Hardware
= <4+— <

Figure 2.4 — Research and Development in Software Radio

2.4.3 Front-End Technologies

Even from the early days of software radio, developing the RF front-end has been recognised as a
significant challenge [Mitola95]. The aim in software radio is to build a general-purpose front-end
that acts as an interface between the antenna and DSP hardware. This is a significant change to
existing RF front-ends. For example, existing multi-standard mobile phones (tri-band phones)
contain three separate receiver chains for each standard [Tsurumi99]. Using the software radio

approach these separate devices would be replaced by a single generic architecture.

The ideal device would allow the reception and transmission of arbitrary frequencies and
bandwidths, but in practice hardware limitations mean that these parameters have to be constrained
to a particular application. An example of this is the differing dynamic range requirements of GSM
and W-CDMA systems. GSM has stringent requirements on signal to noise ratios (SNR) but the
spread spectrum nature of W-CDMA means the SNR can be relaxed. Providing a common RF-
front end for a device that can operate within both these standards would thus present a significant

challenge with today’s technology.

The requirement to digitise as close as possible to the antenna is not possible with current digital
converter technology nor by the speed of current DSP processors or FPGAs. Cummings discusses
this, pointing out that even if digital converters enabled digitisation at high frequencies such as 2
GHz for example, a DSP processor would have to operate at 2500GHz to process these signals
[Cummings2002b]. This is clearly outside the capabilities of today’s devices so currently practical

RF front-ends must be customised for a particular application.

Chapter 2 — Software Radio Hardware | 27

Hentschel [Hentschel99] discusses the tradeoffs associated with front-end design. Like most
approaches he suggests that a limited band be selected out of the full band by means of analogue
conversion and IF filtering. Beach [Beach2002] addresses the same issue and discusses the
requirements and specifications of RF front-ends for software radio applications such as GSM 900,
DCS 1800, DECT, UMTS, Bluetooth and Hyperlan/2. He discusses the tradeoffs associated with
using different architectures concentrating on direct conversion and multiple conversion types. He
suggests that with the current capabilities of technology a practical front-end for software radio is
best achieved using a multiple conversion architecture (or superhetrodyne approach) as direct
conversion can cause problems with wide bandwidth signals. Once conversion is completed,

sample rate conversion can also be an issue [Abu2003, Hentschel2000].

In working towards more advanced front-ends a variety of research has presented designs and
techniques for improving them. The challenge is to deal with problems such as linearity, image
rejection, efficiency and power. As examples, MaclLeod [MacLeod2001] recognises the importance
of image filtering and amplifier linearity in front-end design. In similar discussions Kenington
[Kenington2002] describes linearised transmitters and Morris [Morris98] describes the use of
polynomial pre-distortion for improving amplifier linearity across a wide band of frequencies.
Brinegar [Brinegar98] discusses the use of a flexible filter for a software radio application and for
higher frequencies Streifinger [Streifinger2003] discusses front-end development at microwave
frequencies above 10GHz. Some test beds have also been proposed and Schacherbauer
[Schacherbauer2001] presents a wideband front-end capable of receiving a SMHz bandwidth from
800MHz to 2200MHz. Mobile applications in particular pose significant challenges for front-ends.
Kenington [Kenington2000] highlights the issue of power consumption in A/D converters for
mobile software radio terminals. Cummings [Cummings2002] recognises that a ‘sweet spot’ must
be found in front-end development for software radio so that power consumption, size and cost can
be optimised. Further discussion on these issues can be found in [Wiesler2002, Cummings2002b,

Salkintzis99].

Antennas are often overlooked when considering the RF front-end and in the area of software radio
in general. Smart antennas represent the forefront of antenna research. Using digital beam forming,
a smart antenna uses an array of antennas to increase the carrier-to-interference ratio in a wireless
link [Razavilar99]. Smart antennas have become important in cellular applications in that they
allow cell capacity to be increased by allowing the polar pattern of an antenna to be modified
dynamically. Using these techniques two transmitters can transmit to the same receiver on the same
frequency, with the receiver adjusting its polar pattern to match the incoming signal. Smart
antennas and software radio are complementary technologies having the potential to greatly

increase the flexibility of radio systems. Research combining these technologies includes

Chapter 2 — Software Radio Hardware | 28

applications in direction finding [Kennedy95], evaluation test beds [Green2002] and their use in

base stations for mobile communications [Pérez2001].

2.4.4 Digital Conversion

Digital converters, i.e. analogue to digital converters (ADCs) and digital to analogue converters
(DACs) are very important aspects of any software radio as they form the boundary between the
analogue and digital domain. Digital converter technology is being pushed to its limits by the
requirements of software radio. Software radio requires converters that can not only sample at very
high frequencies but can also offer a suitable dynamic range (i.e. bit-depth or word size) for

representing signals [Wepman95].

The converter must provide an adequate signal-to-noise ratio (SNR), something that can be difficult
to achieve with linearity problems and quantisation noise. Another important parameter is Spurious
Free Dynamic Range (SFDR) that specifies the ratio in dB between the output of a converter and
the peak spurious signal, an important parameter in judging whether a weak signal can be received

in the presence of a strong one.

Providing a suitable SNR and SFDR exist, a converter’s sample rate is the next important
parameter. This ultimately determines the frequencies and bandwidths of signals that can be used
by the system. Direct sampling can be performed by using a sampling rate at double the signal of
interest. However, by exploiting the Nyquist theorem the sampling rate can be significantly
reduced [Nyquist24]. The Nyquist theorem states that the sampling rate must be double the
bandwidth of the signal, allowing converters to operate at a lower rate. This can also serve as a
mechanism for down-conversion by simultaneously converting the IF frequency to baseband. It
should be noted though that it is not just sufficient to lower the sample rate. The converter must
have sufficient analogue input bandwidth and sample and hold circuitry to track and thus sample
the higher frequency signal. The main point to note here is that the sampling rate, SNR and other
parameters, and consequently the converter used, has an impact on the overall design of the
software radio. According to the needs of the intended application the converter and overall
architecture can be designed in creative ways meaning many different types of software radio

architectures are possible.

Brannon [Brannon2002] gives a comprehensive overview of digital conversion for software radio.
Concentrating on mobile communications he notes that the state of the art in digital converters lies
at sampling rates in excess of 100MHz with typically a 14-bit word size, but that 16-bit devices
sampling at 120MHz are in increasing demand. Devices with higher dynamic range are constantly

being required to allow the recovery of weak transmitted signals in the presence of strong ones.

Chapter 2 — Software Radio Hardware | 29

Brannon also discusses the emerging technology of Sigma-Delta converters. These can be used to
create highly optimised integrated circuits combining many RF/IF functions into one device.

Further discussion on these topics can be found in [Mitola99d, Fettweis2002, Abeysekera2002].

2.4.5 Digital Signal Processing Devices

Following digital conversion at the required frequency, radio signals exist in the digital domain.
Depending on where digital conversion occurs in the radio and what the bandwidth of the signal is,
the amount of data produced will vary. Some designs will digitise the signal at baseband thus the
DSP will perform modulation and demodulation. Other designs will digitise close to the antenna
requiring functions such as channelisation or direct down conversion to be performed in the digital
domain. There are almost no limitations as to which radio functions can be implemented in the
digital domain, but obviously the necessary processing power must be available and this becomes

the limiting factor.

To perform DSP some form of semiconductor is required. A variety of devices have emerged to fill
this role, in particular these devices have become the mainstream technologies of choice when
implementing DSP systems: the ASIC (Application Specific Integrated Circuit), FPGA (Field

Programmable Gate Array), DSP processor and more recently a range of reconfigurable processors.

ASIC: The ASIC (Application Specific Integrated Circuit) is a semiconductor device specially
designed for a particular application [Smith97]. The ASIC cannot be reprogrammed and
implements a one-off design that is often mass-produced. Because they are application specific,
ASICs can be highly optimised for power and performance thus these devices are often used in
applications requiring the best performance for example in graphics calculations or high-speed
networking. They can also be more cost effective on a large scale as silicon area can be optimised.
In conjunction with an A/D or D/A converter, an ASIC device can manipulate digitised signals and
this combination is used in many existing applications in digital audio, graphics and control

systems.

FPGA: Unlike the ASIC the FPGA (Field Programmable Gate Array) offers the advantage of re-
programmability. The FPGA can be reprogrammed many times allowing the functionality of the
device to be changed as required. An FPGA consists of general-purpose logic cells that can be
reprogrammed and interconnected to form a particular application. Hardware description languages
such as VHDL [IEEE2000] and Verilog [IEEE2001] are used to programme the FPGA although
some newer languages such as System-C [System-C] and Handel-C [Chappell2002] offer more
high-level programming constructs. The reprogrammable nature of these devices means they can

be readily tested and also reprogrammed in the field to correct errors. Due to these advantages the

Chapter 2 — Software Radio Hardware | 30

FPGA has become the device of choice where low-level digital hardware in conjunction with
reprogrammable control is required. Although the FPGA in conjunction with design tools allow
optimisation to take place, the FPGA cannot achieve the same performance or power efficiency of
the ASIC. When used in conjunction with the A/D and D/A converters the FPGA can act as a
general purpose device and has become a platform for many applications in such diverse areas as

video manipulation, networking and telecommunications.

Also in the FPGA family is the FPAA (Field Programmable Analogue Array). Instead of
interconnecting logic cells, the FPAA offers inter-connectable analogue blocks that can be used to
create reprogrammable analogue circuits. This is useful in applications such as high-end filter
design as in some cases it can be more cost efficient to implement such an algorithm using

analogue components rather than using DSP.

Finally, another approach in the FPGA family is the hybrid FPGA-CPU. This is a device that
contains both a CPU and an FPGA. The CPU can reprogram the FPGA thus it is possible to offload
processing from the CPU to the FPGA for performance critical applications. Examples of hybrid
FPGA-CPU systems are Virtex Il Pro platform from Xilinx [Xilinx] and the Excalibur platform
from Altera [Altera]. In the short term it is possible that type of device that will be useful for
software radio systems, as this solution is quite cost effective and offers a good price versus

performance ratio for commercial applications.

DSP Processor: A DSP processor is a processor specifically designed for signal processing
applications [Lapsley97]. The DSP processor has emerged to fill a gap in the market for a device
that offers a good price versus performance trade-off, and allows for the efficient, low-power
implementation of signal-processing algorithms. DSP processors offer intrinsic support for
multiply-accumulate and fixed point calculations which are common requirements for signal
processing algorithms, but which are more difficult to implement using ASICs and FPGAs.
Software for DSP processors has typically been developed using proprietary assembly languages
and these are often different for each device family. More recently higher-level compilers for
languages such as C and C++ have emerged from DSP processor vendors thus greatly simplifying
development. DSP processors have become a mainstream popular choice for DSP applications but

still lack the processing power of the FPGA and the ASIC.

Reconfigurable Processors: At the signal processing stage of the software radio the trend has been
to move from ASIC designs to more reconfigurable devices such as the FPGA and DSP processor.
There are however some new types of processors emerging specifically targeted at communications
applications. These devices have emerged to address limitations of the FPGA and DSP processor,

but are also specifically targeted at the requirements of 3G standards. The limitations they address

Chapter 2 — Software Radio Hardware | 31

are the reconfigurable nature of FPGAs and DSPs. Although reconfigurable, they usually have to
be taken offline to be reprogrammed. Newer chips such as the Chameleon Reconfigurable
Communications Processor (RCP) offer a general-purpose architecture that can be reconfigured on
the clock cycle introducing rapid reconfigurability [Burns2003]. The RCP is aimed at high capacity
3G base station applications. Another example is that of the Adaptive Computing Machine from
QuickSilver [Watson2002, Master2002]. Like the RCP this device allows rapid reconfiguration but
at a lower rate and is more suited to handset applications. This device allows the creation of custom
data paths and uses specific techniques for improving the performance of multiplication and
additions enabling DSP algorithms to be implemented more efficiently. A final example is the
Sandblaster SB9600 Processor from Sandbridge Technologies [Glossner2003], another high-speed
reprogrammable device catering for the needs of baseband processing for applications such as GPS,
Bluetooth and WLAN. This device again demonstrates a move towards more high-level
programming languages as it allows high-speed low-level programming to be achieved in C++ and

Java.

From this discussion it is evident that there are many devices available for signal processing. For
commercial applications, the one chosen will depend on the intended application and the cost of the
device. In terms of software radio research the FPGA is quite popular and has served as a platform
for a great deal of research into signal processing for software radio. As examples, Rice [Rice2001]
shows how maximum likelihood phase synchronisation can be implemented with an FPGA. Seskar
[Seskar99b] discusses FPGA-based architectures for interference cancellation in software radio.
Ahlquist [Ahlquist99] discusses an FPGA approach to implementing error coding techniques.
Abeysekera [Abeysekera2002] uses an FPGA to implement a sigma-delta architecture and Honda
[Honda2001] discusses a technique for reducing the BER (Bit Error Rate) for software download
using an FPGA. All these examples demonstrate existing techniques from radio technology

migrating to the digital domain, with a focus on development with high speed FPGAs.

The ASIC offers full custom design for low-cost, high volume applications and thus has seen less
interest in the software radio space as most research is of an experimental nature. The trend has
been to use FPGAs and DSPs which both offer tools that make system design much easier. Many
test beds have been based around the use of DSP processors, examples can be found in
[Ellingson98, Patti99, Reichhart99, Dixon2001]. Power has been a particular concern for mobile
applications and Gunn [Gunn99] addresses this issue discussing a low-power DSP subsystem.
Other approaches are also evident and Kokozinski [Kokozinski2002] suggests that analogue and
digital designs should be integrated on the same chip, something that may be possible with

technologies such as the FPAA.

Chapter 2 — Software Radio Hardware | 32

As discussed in Chapter 1 the work in this thesis is based on using GPPs. While other platforms
have been considered, the GPP offers the best environment for demonstrating the concepts of
reconfigurability. The next section discusses related work to this thesis and in particular highlights

other work that has used the GPP as a platform.

2.5 Related Work

There has been limited work done on developing software radio systems on GPPs. As discussed in
the previous section, most efforts have been concentrated on the development of FPGA and DSP
designs. The work outlined in the following sections is a summary of related work that has either
directly involves software radio on GPPs or closely related work that offers further insight into the

topic.

2.5.1 SPECtRA and Variants

As briefly outlined in Chapter 1, the SpectrumWare group at M.LT. was the first group to
investigate the use of GPPs for software radio [Bose99a]. As part of this work the SpectrumWare
group demonstrated SPECtRA (Signal-Processing Environment for Continuous Real-Time
Applications), the first software architecture specifically designed for the development of software
radio systems on GPPs using Linux as the operating system [Bose99b]|. After some initial work
SPECtRA was redesigned as PSpectra (Parallel SPECtRA), a system designed to achieve higher
performance via multi-threading [Vasconcellos2000]. While somewhat internally different, the
main objectives and characteristics of the SPECtRA and PSpectra environments are the same.
Central to both designs was the aim of developing a toolkit for writing signal processing
applications. The main characteristics of the Spectra designs was the use of a modular

programming environment, infinite streams and the separation between in and out of band paths.

e Modular Programming Environment — Signal processing algorithms such as demodulators and
encoders are coded into reusable modules by implementing C++ classes. Modules can be either
sources for producing data, sinks for consuming data or processing modules for performing
signal processing. Each module can have a different set of inputs and outputs. By connecting
together modules it is possible to construct signal processing applications.

e Infinite Streams — Data flow between modules is accomplished via infinite streams. Each
module ‘sees’ an infinite stream of data which means that a module can request the arbitrary
number of samples it requires to perform processing. A data-pull model is used to move data
through the system. Using this technique a sink starts the data flow by issuing a request for a
number of samples. This request propagates through the system with each module calling on its

downstream neighbour to produce the desired number of samples. This technique has a benefit

Chapter 2 — Software Radio Related Work | 33

in allowing unnecessary samples to be discarded thereby reducing required processing power.
The technique works by lazy evaluation in that samples are only generated when absolutely
needed.

e In-band and out-of-band paths — The Spectra environments differentiate between code for
performing signal processing functionality and code for controlling the general operation of the
system (see Figure 2.5). In-band code consists of the modules themselves and connectors.
Connectors provide the infinite stream abstraction and act as the binding between modules. A
simple set of rules governs the connection of modules via connectors which are also C++
classes. Out-of-band code concerns the maintenance of the system and involves code for
creating and modifying the topology of the system, communication among modules that does
not involve signals (e.g. setting a sample rate), handling user interaction and monitoring system

performance.

It should be noted that PSpectra contains extra functionality for creating more complex
multithreaded designs. It also allows the building of meta-modules which encapsuiate multiple

modules into single modules.

Configuration & control

ocut-of-band

in-band

connector

Figure 2.5 — SPECtRA In-Band and Out-of-Band Paths [Bose99b]

Using the Spectra libraries SpectrumWare demonstrated various software radio implementations
including some analogue schemes, digital modulation and television receivers. Another
contribution of the SpectrumWare group was their approach to algorithm development. With
software radio systems built using commodity PCs with different resources available to an
embedded system, a different approach could be used in developing many traditional
communications algorithms. For example, Welborn discusses a technique for waveform synthesis
for software radio, a technique particularly suited to GPP based radio systems which have access to

large amounts of RAM (Random Access Memory) for storing pre-computed values [Welborn99a].

Following this work others have built on the PSpectra environment. The GNURadio project is an
effort to build open-source software for software radio [GNU] that also runs on Linux. This group

has used the PSpectra library as a basis for their project and have implemented a digital television

Chapter 2 — Software Radio Related Work | 34

receiver among other schemes. EPSpectra [Kim2001a, Kim2001b] is another extension to PSpectra

that uses the language Esterel to improve the real-time capabilities of PSpectra.

Following on from the work of SpectrumWare at MIT, Vanu Inc are a commercial venture working
on the development of software for software radio systems [Chapin2002]. Vanu Inc. have
successfully used GPPs to implement existing cellular standards such as GSM, thus demonstrating
that GPPs are a practical hardware platform for software radio [Steinheider2003]. Their approach
too has been built on the work of SpectrumWare but beyond similarities with SpectrumWare
(SPECtRA, PSpectra, etc), only limited details are available on the specifics of how their systems
work. One aspect that is documented is a language called Radio Description Language (RDL)
[Chapin2001], a Java-based language for building software radio systems. This language allows
high level programming and control of signal processing functions and forms the basis of their

GSM implementation.

The difference between this thesis and the variety of work discussed in this section is that neither
SPECtRA, PSpectra, GNURadio nor EPSpectra were built with reconfigurability as a focus, rather
as systems to demonstrate concepts of software radio. In contrast, the IRIS system presented in this
thesis is designed specifically for demonstrating and allowing experimentation with the concept of

reconfigurability.

2.5.2 Software Communications Architecture

The U.S. military have been active in software radio research and development since the early days
of the SPEAKeasy project as discussed in Section 2.2. Currently this effort is being led by the U.S.
defence’s Joint Program Office (JPO) under the Joint Tactical Radio System (JTRS) programme. A
result of this work has been the development of an open standard for the development of software-
based communications systems called the SCA (Software Communications Architecture)
[JTRS2001, JTRS2002, Melby2002]. By creating an open standard that addresses both military and
commercial applications the JPO hope that the development of SCA compliant commercial

technologies will lead to reduced costs, increased interoperability and upgradeability.

Due to the diverse requirements across military and commercial applications, an open standard
targeting one particular hardware platform would never be successful. Instead the SCA is an
implementation independent standard that specifies a set of rules that constrain the design of
communications systems. The SCA has been structured to [JTRS2001]:

e Provide for portability of applications software between different SCA implementations.

e [everage commercial standards to reduce development cost.

e Reduce development time of new waveforms through the ability to reuse design modules.

e Build on evolving commercial frameworks and architectures.

Chapter 2 — Software Radio Related Work | 35

The software structure of the SCA is based around an ‘Operating Environment” which consists of a
Core Framework (CF), CORBA middleware and a POSIX (Portable Operating System Interface)
based operating system. The CF is an architecture that defines software interfaces that provide for
the deployment, management, interconnection and intercommunication of software elements. The
SCA inherently supports distributed computing be it in the form of inter-chip communication or
across a network. CORBA (see Section 3.5.2) is used throughout the specification as an
interoperability mechanism. CORBA acts as a ‘logical software bus’ allowing interconnection
among the modules of the system. There has been some debate over the use of CORBA in such
systems due to performance problems, however these problems have been shown to be tolerable in
some circumstances [Bertrand2002]. The SCA relies on the use of a real-time POSIX-based

operating system for providing base services such as multi-threading and memory management.

The SCA is a very comprehensive standard. It dictates interface definitions for every aspect of a
communications system. Whereas software radio is usually concerned with the physical layer of the
communications stack, the SCA is a broader specification as it specifies interfaces for physical, link
and network layers of the communications stack. The software structure of the SCA is shown in
Figure 2.6. Moving from left to right the diagram shows how an SCA compliant system is
partitioned from the physical layer RF stage right to 1/O applications. Each section of the system is
viewed as a software component. CORBA is used for all interaction among components but some
devices, for example FPGAs or DSPs, may not be capable of CORBA communication. For this
reason “Adapters’ are specified which allow non-CORBA components to interact within the
system. The logical software bus is shown which allows intercommunication among modules and

the base services of operating system and hardware elements are shown at the bottom of the

dlagram A Applications
OF

Commercial Off-the-Shelf
(COTS)

Non-CORBA]J
10
Components)

Non-CORBA|
Modem
C t

Non-CORBA|
Security
Components

/

1L 11 [1 | — g 0 s
L XL i
Modem Link, Network Security Security || Security] Link, Network 110 1o
) Ad |Comp Adapter]| Components Adapted | Components

Ad
p

C P apter]
MAC API III.L(‘I.\ctworkAI'I lrsecun't_\ AP Il.L('/\cmnrk:\l’l Il().»\PlII

Core Framework IDL I~ (“Logical Software Bus™ via CORBA)]
] ~—F
dl I L 1 T 1
CORBA ORB & CF CORBA ORB & CF

Services Services & Services Services &

(Middleware) Applications (Middleware) Applications
Operating System Operating System
Network Stacks & Serial Interface Services Network Stacks & Serial Interface Services

Board Support Package (Bus Layer) Board Support Package (Bus Layer)

Black Hardware Bus Red Hardware Bu

Figure 2.6 — Software Structure of the SCA [JTRS2002]

Chapter 2 — Software Radio Related Work | 36

Communications applications built using the SCA are based around the use of ‘Resources’. A
resource is a single abstraction for many of the software components in the system. Examples
include a LinkResource for components involving link layer processing and devices such as
ModemDevice, I/ODevice and SecurityDevice all of which can be used in the same way. The
internal implementation of resources is application dependent and hidden, thus Resources provide a

black box abstraction for reuse.

Although not specifically designed for reconfigurability, the SCA is of interest in this thesis as it
uses an object-oriented and component-based approach to the problem of developing software for
software radio. The SCA could be viewed as a component framework with each of its resources
defined as a different software component. Beyond this analogy though the system features limited
reconfigurability. The SCA is a good example of a ‘Software Defined Radio’ as opposed to
‘Software Radio’ (as per the discussion in Section 2.3). Once a radio standard is implemented on
this platform it is rigidly fixed and only limited reconfigurability can take place within the sub-
elements of the system. The system as a whole cannot be reconfigured to do something completely
different. For this reason it is unsuitable for demonstrating the concepts of reconfigurability

presented in this thesis.

2.5.3 DSP Design Tools

While not built directly for software radio, it is useful to contrast the work in this thesis against

some DSP design tools.

Ptolemy is a software project from Berkley MIT that provides an environment for modelling,
simulation and design of signal processing algorithms [Buck94]. Central to Ptolemy is the concept
of models of computation, a facility that provides a highly expressive environment for representing
different types of signal-based systems. The reason Ptolemy is somewhat related to this work is that
the system presented in this thesis also provides an environment for developing signal-based

systems. However, there are some distinct differences between Ptolemy and the work in this thesis.

Firstly, Ptolemy is a tool for modelling and simulation. IRIS is not a design tool but a component
framework for developing real reconfigurable radio systems. Although Ptolemy can potentially
generate source code for a variety of platforms the way in which it views its targets is quite
different to IRIS. IRIS reuses blocks of signal processing logic as software components, whereas
the blocks existing in Ptolemy exist at design-time only. These blocks are eventually collapsed
down to an implementation that is fixed in function. In contrast, the IRIS system is designed so that

the actual system developed can constantly reconfigure. At its core IRIS supports application,

Chapter 2 — Software Radio Related Work | 37

structural and parametric reconfiguration, concepts that do not enter into the Ptolemy design

paradigm.

SPW (Signal Processing Worksystem) from Cadence for example is a tool for capturing, simulating
and verifying DSP designs for FPGAs. This tool provides the full tool flow for developing SoC
(System on Chip) and FPGA designs. It provides a visual block-based user interface for
constructing any type of FPGA design. This type of tool is extremely different in function to the
IRIS system. As with Ptolemy, SPW is primarily a design tool with integrated simulation and
testing, whereas IRIS is a component framework for building real reconfigurable radio systems.
The IRIS component framework hosts radio applications much in the same way an operating

system hosts a user’s application. For this reason the tool flow approach of SPW is quite different.

Other tools that fall into this category are Matlab and Simulink [Mathworks]. Matlab and Simulink
are simulation tools for modelling, simulation and development of signal processing algorithms.
Both of these are different to the work presented in this thesis as they are design tools whereas the
IRIS system is a component framework for implementing real reconfigurable radio systems. These
systems have not been built specifically for developing reconfigurable radio systems. These tools

and other approaches are discussed further in Section 2.5.

2.5.4 Other Approaches

Using a somewhat different approach to SPECtRA and the SCA is the work of Srikanteswara
[Srikanteswara2000a, Srikanteswara2000b]. Srikanteswara presents a software radio architecture
designed for reconfigurability using FPGAs. The system uses an FPGA which can be
reprogrammed at runtime. Signal processing functionality is implemented in processing modules
that can be swapped and reconfigured at runtime to dynamically change the functionality of the
radio. Functionality is divided into layers and processing of data occurs in a similar way to a
communication stack. Data propagates through the system using stream-based processing which
uses a common bus for transferring data and control information. Self-steering streams weave
through layers, each of which performs processing on the data. Data is thus transferred as
packetised data and can contain either control information or signal data. The packet can contain
configuration information on how the data should be processed via ‘embedded variables’. Other

‘non-embedded variables’ can provide variability independently of the data stream.

Although completely hardware based, this system again demonstrates the common approach and
advantage of using separate processing modules for implementing radio systems. Just like the
PSpectra approach, this system allows different radio configurations to be created by

interconnecting generic processing modules. Also, modules can be swapped and reconfigured at

Chapter 2 — Software Radio Related Work | 38

runtime allowing the system to dynamically adapt. It should be noted that beyond the conceptual
view, this type of system works in a completely different way to a GPP based system. GPPs have a
different architecture in that programmes are loaded from RAM and executed sequentially via an
instruction set. On the other hand the interconnections within an FPGA are physically re-adjusted
each time a new configuration is reprogrammed. Thus, an FPGA cannot achieve the same levels of
reconfigurability possible with the GPP as each new iteration in configuration would require a
change in physical hardware. It should be noted that if the reprogrammable features of the FPGA
are not used and it is programmed once to act as a GPP, it too would feature the same levels of
reconfigurability. However, this would be a more costly process than using readily available

hardware as discussed in Section 1.4.

In the evolution towards software radio it is not surprising to find a wide body of research based on
migrating existing radio techniques into the digital domain. Many existing techniques from the
analogue domain require a new approach for digital implementation. As examples, lkemoto
[Ikemoto2002] discusses the use of adaptive channel coding schemes using finite state machines,
these being a concept from the digital domain. Similarly Harris [Harris2001] discusses the
development of multi-rate digital filters for symbol timing and Zhao [Zhao2002] discusses the use
of an existing scheme, GMSK (Gaussian Minimal Shift Keying), in a receiver implementation.
Also Yang [Yang2002] describes techniques for implementing broadband frequency hopping
multi-carrier systems in the context of software radio and Thara [Thara2002] discusses the use of
Turbo coding. All these cases demonstrate existing radio techniques being migrated to more

software radio orientated, DSP-based applications.

A significant focus for software radio has been its capability in allowing software download or
OTAR (Over The Air Reconfiguration). The basic idea here is that a software radio can reconfigure
itself by downloading new software from a remote location. There are various issues associated
with this including security [Mehta2001, Michael2002] and mode switching [Cummings99c].
Chapter 7 (Section 7.2) will discuss OTAR in more detail through a case study.

An emerging area of research is the concept of waveform description languages (WDL), languages
capable of providing a portable mechanism for describing software-defined waveforms. Willink
[Willink2002] discusses the composition of such languages and discusses the design of such a
language for describing waveforms in a platform independent way. The main aim of this approach
is to provide a language that facilitates the expression of software radio concepts without the
overhead associated with other general-purpose functional or descriptive languages. Chapin also
discusses a similar approach with RDL (Radio Description Language) [Chapin2001]. This
language is Java based and operates on general-purpose processors allowing the control of signal

processing functions and higher protocol level functionality.

Chapter 2 — Software Radio Related Work | 39

2.6 Summary

This chapter has presented a comprehensive overview of software radio technology. The history of
software radio and the discussion of terms and definitions demonstrate that the scope of the
technology is large and that it impacts radio system design in many different ways. The discussion
of hardware demonstrated both the ideal and practical software radio, and presented an overview of
the hardware required to realise a practical software radio system within today’s technological
capability. The final section narrowed the focus towards the work in this thesis by discussing
relevant research relating to this thesis. From this discussion it is evident that research into software
for software radio systems is varied. The work discussed demonstrates a variety of approaches and
it is clear that more work is required to consolidate many of the ideas being discussed. In
addressing such needs, this thesis makes its contribution to this area by now focusing on the

development of software for reconfigurable radio systems.

Chapter 2 — Software Radio Summary | 40

Software Engineering

3.1 Introduction

This chapter presents an overview of software engineering and provides background information
on a range of principles and techniques for developing good quality software systems. Later
chapters will use these principles in discussing the development of highly reconfigurable radio

systems.

Software engineering has evolved as a standalone discipline of engineering as software needs to be
properly engineered to produce reliable software systems. The problem of complexity was widely
recognised in the early days of software technology. In the late 1960s attempts to develop large-
scale software systems resulted in seriously flawed systems that often contained errors that were
difficult to fix. Frequently these systems did not effectively solve the problem being addressed.

These issues became known as the “software crisis’ [Dijkstra72].

At the time, the popular belief was that software problems are intrinsically complex (such as
mathematical calculations), but this observation was incorrect and in reality most software systems
are complex due to the vast number of details that must be dealt with. It is the systematic
management and abstraction of these details that forms the basis of software engineering. Three
decades later there is a better understanding of why software can be complex and significant work
has been carried out on developing methodologies, principles and techniques for developing large

robust software systems.

The practices of software engineering are not typically applied to software radio. Most of the time
software development for a software radio system is done using hardware description languages for
FPGAs, or C implementations for DSP processors. In this environment the application of software
engineering techniques is sacrificed in favour of optimisation, i.e. performance (faster execution
speed) and smaller code size. Faster performance translates to cheaper processors, as more efficient
code requires less processing power. Smaller code size translates to cheaper devices, as less storage
memory or RAM is required. Optimisation usually means breaking encapsulation, reducing code
reuse and reducing the maintainability of the code, thus abandoning many of the principles that
underline modern software construction. However, to meet the demands of increasingly complex

radio standards more and more code is being written. Without proper use of software engineering

41

techniques, software radio has the potential to fall foul to its own ‘software crisis’, ultimately

resulting in unstable and unreliable radio systems.

For this reason it is important to apply the principles of software engineering in software radio and
this has been a major focus of this thesis. While modern software engineering dictates practices in
everything from managing people to project coordination, it is the technical practices of software
engineering that are more relevant in this work. Object-oriented techniques and component-based
software are the techniques used in tackling the problems of complex software development. By
applying these techniques to software radio, software can move from being complex and error-

prone to being manageable, reliable and stable.

In addition, another advantage of using software engineering techniques is that software can
become better structured. Using these techniques software can be built that is reusable, flexible and
adaptable. A reusable piece of software is constructed in such a way that it can be easily reused by
others thus eliminating re-implementation. A flexible piece of software offers variability in how it
performs its function and provides a simple mechanism for doing so. An adaptable piece of
software can be used in scenarios that were unforeseen at design time. This work attempts to build

software for software radio that exhibits these traits.

The remainder of this chapter presents an overview of software engineering techniques. It begins
by briefly discussing object-oriented software but moves on to concentrate on component-based
software. Existing component technologies are discussed, as the system presented later in this
thesis is a component-based software system for software radio. The overall purpose of this chapter
is to provide background information on the software approach employed in this thesis. The reader
familiar with software principles may wish to skip to Section 3.6, which summarises the main

points of this chapter.

3.2 Object-Oriented Software

3.2.1 Overview

Before object orientation, the dominating approach to programming was the functional
decomposition approach of procedural languages such as C and Fortran. Using functional
decomposition a problem is approached from the top-down with each problem broken down into
sub-problems. Functions consisting of algorithms are written to solve each problem and a hierarchy
of these functions form the resulting solution. While functional decomposition is a fundamental
technique of software design, when developing a software system of considerable scale this
structured approach can run into difficulty. Programmes can become difficult to maintain and

extend, overall reducing the quality of software produced.

Chapter 3 — Software Engineering Object-Oriented Software | 42

The object-oriented approach works differently to functional decomposition. Instead of breaking
down problems into functions and algorithms, a problem is addressed by identifying objects that
play a role in the system. The system is built by defining a set of objects and defining relationships
between them. Object-oriented programming has its roots in the languages Simula-67 [Dahl70] and
Smalltalk-80 [Goldberg83]. These languages were the among the first to use the concept of an
object. In its purest sense an object is something that has state and behaviour. Objects communicate
with each other through message passing which may alter the state of the object. The behaviour an
object provides is defined by its interface or set of commands it provides. Object-oriented
languages allow a system to be built around concepts and constructs of the real world as opposed to
concepts intrinsic to computers such as algorithms and hardware. Object-orientation is thus a way
of modelling and viewing software systems with the term object-oriented design (OOD) used to

describe the design process required to develop such software.

In the practice of OOD, two design techniques are of particular importance; UML and design
patterns. In designing the object-oriented system some method of describing object-oriented
designs is required. UML (Unified Modelling Language) has emerged to fill this role [OMG2002].
UML is a graphical language used for defining the relationships between objects and use-cases of a
software design. UML will be used later in this thesis to help explain software designs. Design
patterns are used in object-oriented programming to capture the solutions of recurring problems
[Gamma95]. Each pattern describes the solution to a problem that reoccurs frequently. By
recognising reoccurring problems and applying the appropriate patterns, a software designer can
apply tried and trusted principles to a design thereby creating more robust software. These

techniques provide the designer with mechanisms for communicating software designs.

Closely related and often confused, object-oriented programming (OOP) is a different practice to
OOD. Whereas OOD is about modelling and viewing a software system, OOP is about how to
actually implement an object-oriented design in software. The two practices are distinct because
each programming language implements object-orientation in different ways. While an exhaustive
discussion of object-oriented languages will not be presented here, the main concepts of OOP exist

through encapsulation, inheritance, interfaces and polymorphism.

Encapsulation provides modularisation in a software system. An object uses encapsulation to
shield its internal data from modification by another object. Instead each object exposes an
interface by which other objects access its data or request it to perform some operation. Using this

mechanism the internal implementation of behaviour and the data itself are essentially hidden.

Inheritance allows one object to inherit the characteristics of another object. By doing so an object

can reuse the functionality of another, thus it is possible to create hierarchies of objects. While the

Chapter 3 — Software Engineering Object-Oriented Software | 43

concept of inheritance itself is simple, the implementation and use of inheritance is a subject of
much debate. Problems such as the fragile base class or diamond dependencies can occur if

inheritance is not used with care.

An interface defines the interaction of objects. An interface specifies the operations an object will
support and thus offers a way to express the functionality of an object independently of an
implementation. The interface is thus an important tool during both OOD and OOP. In OOD it
allows designers to express the functionality of a software object without having to worry about
how it should be implemented. During OOP interfaces can be used to enforce a design, as code will

fail to compile unless the implementation adheres to a set of interfaces.

Polymorphism is the ability of an object to appear in multiple forms, depending on context. For
objects to be polymorphic they must inherit from the same base class and implement the same
functionality. A typical scenario involves the use of an abstract base class to represent some entity,
for example a “Vehicle’. Other classes can inherit from this base class to create different types of
objects, e.g. “Aeroplane’ or Car’. A polymorphic language allows the programmer to interact with
any sub-classed ‘Vehicle’ object without knowing whether it is an “Aeroplane’ or ‘Car’. When
used in conjunction with interfaces, polymorphism can offer a powerful construct for hiding the
implementation of an object. Using polymorphism many different objects may expose the same

interface with the details of each object hidden in the implementation.

Objects are commonly defined via the class construct. The class is a construct that allows the
specification of an object via the data it stores and the methods it exposes. Central to the class is
encapsulation, or data hiding. The class offers a set of access modifiers that allow access to data
and methods to be restricted. Using these modifiers unnecessary internals of a class can be hidden
from external clients. Whereas a class defines the blueprint for an object, an instance is a
manifestation of that object. Thus from one class definition, multiple instances of an object can be
created. A class is said to be abstract if it does not implement all the methods specified in its class

definition.

3.2.2 Object-Orientation for Software Reuse

Object-orientation inherently supports software reuse. OOP allows the construction of software
objects that can be reused by others to solve similar problems. The advantages of software reuse in
OOP are not often apparent in small software systems. Often, it can seem unnecessary to use
classes, especially when programming a small system in which it is known that classes will never
be reused. Effective reuse only becomes apparent in large software systems. Most large systems

rely on the definition of basic objects that are reused extensively throughout the system. Software

Chapter 3 — Software Engineering Object-Oriented Software | 44

construction at this scale can leverage object reuse to great effect in reducing the amount of code

used, and also increasing the simplicity and thus maintainability of the system.

For software to be effectively reused it is not sufficient to just place code into a class, there are
many other factors that determine how reusable an object really is. While some of these factors
may be loosely defined by elements of taste or aesthetics, others are well-recognised principles and
have been formalised in the literature. Of the latter we consider here the concepts of granularity,

coupling and cohesion.

Granularity

There is an inverse relationship between software granularity and software reuse. Objects are
designed to represent and solve problems for a particular domain (or application). The larger a
software object is, the more domain-specific the object will become. A software object is not likely
to be reused if it caters too specifically to a particular domain or application. Conversely, a fine-
grained object can potentially be reused more because it provides limited functionality and is not so
domain-specific. Choosing the correct context and granularity for a software object will thus

determine how often the software can be reused.

The effect of granularity is evident in the class libraries available for programming with languages
such as Java. The Java class library offers a wide range of classes ranging from domain-
independent to domain-specific. Fine-grained classes representing primitive types such as strings
and integers are used extensively throughout the whole class framework, whereas larger more
domain-specific classes can only be reused in that domain’s context, for example graphics or

networking classes.

Cohesion

Cohesion is the measure of the level of logical relationships in a piece of software. Balen
[Balen2000] defines cohesion to be ‘a measure of the level of logical relationships between
methods of a class and also a measure of logical relationships among sub-systems’. Yourdon
[Yourdon79] has defined cohesion using various terms, namely coincidental, logical, temporal,
procedural, communicational, sequential and functional. These definitions identify the

characteristics of cohesive software modules at various levels of cohesion from weak to strong.

In general it is advantageous to strive for highly cohesive software objects. In a highly cohesive
software object (or functionally cohesive module according to Yourdon and Constantine) the
elements the object expose will be related in that they all contribute to solve a common problem.
An object with weak cohesion haphazardly associates elements that share no common purpose.
While the obvious approach to software construction always suggests using cohesive elements, the

practicalities of design make this difficult to achieve. A cohesive object is more likely to be reused

Chapter 3 — Software Engineering Object-Oriented Software | 45

than an object with weak cohesion, as the cohesive object will be logically structured as a unit that

addresses a particular problem.

Coupling

Whereas cohesion is a measure of the relationship between software elements, coupling measures
the dependencies among elements. VanVliet [VanV1iet2000] defines coupling to be ‘a measure of
the strength of the inter-module connections’. Similar to cohesion, various terms have been used to
define various levels of coupling, namely content, common, external, control, stamp and data
ranging from tightest to loosest. Tightly coupled objects are objects that require a lot of
dependencies on other objects to function. A loosely coupled object has weak dependencies in that

it can function independently of other objects.

In general loosely coupled objects are preferred over tightly coupled ones. A loosely coupled object
can offer better software reuse, as it can be adapted for use in many different scenarios without
having to maintain inter-object dependencies. In practice creating loosely coupled objects is
difficult because functionality is gained by bringing together objects to form new objects. By
bringing together objects new dependencies are formed which tightens coupling. One common
solution is to re-implement the functionality of other objects to avoid dependencies but this goes

against software reuse and can increase the level of cohesion.

3.3 The Principles of Software Components

Following on from object-oriented techniques, the software component is a more comprehensive
unit of abstraction that also attempts to address the problems of complexity and reuse in software
systems. This section defines software components, their difference to objects and how they can be

constructed.

3.3.1 Defining the Software Component

Whereas object-orientation is well understood as a methodology for designing and programming
software, the concept of the software component is a newer concept and thus has various meanings

throughout the literature. Various definitions have been proposed:

‘A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third
parties’ [Szyperski2002]

‘A software component is a static abstraction with plugs’ [Nierstrasz95]

Chapter 3 — Software Engineering The Principles of Software Components | 46

‘Reusable software components are self-contained, clearly identifiable
pieces that describe and/or perform specific functions, have clear
interfaces, appropriate documentation and a defined reuse status.’

[Sametinger97]

‘A reusable software component is a logically cohesive, loosely coupled

module that denotes a single abstraction’ [Booch87]

While definitions vary in scope, the essence of the software component is that of a reusable piece
of software with well-defined functionality that exposes well-defined contractual interfaces. It is
interesting to note that Sametinger includes documentation in the definition of the software
component and that Szyperski includes reference to use of components by third parties. This
suggests a higher-level construct than the object, in that a software component is not simply a
software implementation but addresses a wider range of issues in how its functionality is described

and how the component is used and made available.

In Szyperski’s comprehensive text on component software [Szyperski2002] he identifies the

software component via the following characteristic properties:

1. A component is a unit of independent deployment
For a component to be independently deployable, the component must be self-contained. It
must be packaged into an independent unit and must be well separated from its environment
and from other components.

2. A component is a unit of third-party composition
Components are primarily designed, implemented, tested, and subsequently used by people
who do not have the desire or expertise to write the software for themselves. For these reasons,
people who use the component should not be (or should not have to be) aware of any of the
construction details of the component.

3. A component has no externally observable state
Components often represent heavyweight pieces of functionality in a system. Often there will
only be one instance of a component in a process. A component should have no persistent state,
i.e. the component should be identical to copies of itself. This is in contrast to a software

object, in which its identity is defined by its state.

Again, these properties suggest that the software component is a very different construct to the
object. For example, Szyperski suggests that there should be only one instance of a component

whereas objects are specifically designed so that they can be instantiated multiple times. Overall,

Chapter 3 — Software Engineering The Principles of Software Components | 47

object-orientation is a technique for building the internals of a piece of software. Component

software is about how this implementation is packaged and deployed for use by others.

3.3.2 Objects vs. Components

Objects and components are often confused. This section discusses the difference between objects

and components, and how they facilitate different methods of reusing software.

The differences between objects and components can be summarised as follows:

e In OOP, every object is constructed in a different way and specific knowledge of the object is
required to avail of its functionality. In contrast, in component technology components that
implement completely different functionality often use the same interface. In this way
components are much more standardised ways of exposing functionality.

e Objects are often language and platform specific making binary interoperation difficult. Many
component standards are built specifically for language and platform independence allowing
many different types of components to interact.

e In objects, dependencies may have to be sourced so that the component will function. A
component usually contains everything it requires to function reducing the amount of
dependencies it requires.

¢ In object-oriented languages an object is often statically linked into an application requiring the
application to be rebuilt if significant changes are made to the object. In component-based
programming components are mostly dynamically linked and interchangeable allowing
different components to be used without recompilation. This approach can be used for software
maintenance and upgrading, or as a technique to enforce a contract between different pieces of

software.

The component concept embodies a particular viewpoint on how software should be reused. In
other contexts reuse can be as simple as the copying of source code or using a set of library
routines. In OOP, objects are reused via instantiation or inheritance. Even though these facilities do

work, OOP and other methods often fail in achieving effective reuse of code.

For example, objects are often seen as bad elements of reuse. While a software component can be
built using an object-orientated language, object-orientation itself says nothing about how to
package the software into a reusable unit. Also, it says nothing about how the component’s
interface will be exposed to the outside world, or how it interacts with other types of components.
The concept of the software component goes some way in solving the problems of reuse. Software
components satisfy the need in software engineering to be able to package and subsequently reuse a

piece of software.

Chapter 3 — Software Engineering The Principles of Software Components | 48

A useful characteristic in discussing reuse is the level of visibility exposed by software. Visibility
in this context is the visibility a programmer has of the internals of a piece of software. This
visibility is often referred to in terms of ‘white box’ or ‘black box’ abstractions. In a black box
abstraction, the programmer using the software only has knowledge of an interface and its
specification. All other details are hidden. A white box abstraction may still enforce the
encapsulation (hiding) of functionality but will allow the functionality to be extended or modified
via mechanisms such as inheritance. Other terms are also used to refer to levels of visibility that lie
between white and black abstractions, for example a ‘glass box” abstraction allows the internals of

a piece of software to be viewed without allowing modification of functionality.

Software components are seen as black box units of abstraction whereas objects can be viewed as
white box abstractions. Components do not reveal their internal functionality and operate via their
interface only. Objects on the other hand are white box because they allow their functionality to be
changed via inheritance. White box abstractions and thus objects in general are seen as bad
elements of reuse. The problem lies in OOP’s use of inheritance for software reuse. Inheritance
allows changes to be made to the internals of an object and this introduces the possibility that
programmers might reinterpret or simply break an object. For this reason software components are

designed to be black box units in that they do not typically allow extensibility though inheritance.

Another important issue when considering reuse is granularity. Granularity for software
components is similar to the concept of granularity for objects (see Section 3.2.2). Whereas objects
are seen as finer grained elements reused in the construction of software, components are larger
entities that enable software reuse at a much larger granularity, perhaps reuse of a complete

software system.

3.3.3 Constructing Components

A component is constructed and hence defined via:
e The interface it exposes.
e The dependencies it requires to operate.
e The meta-data it exposes.
e How it is deployed.

Each of these is discussed in the following sections.

Interfaces
An important characteristic of a software component is how it defines its interfaces. The interface
in the context of the component is quite different to the interface defined by OOP. In OOP the

interface is defined as part of the programming language. Whereas the interface in OOP defines its

Chapter 3 — Software Engineering The Principles of Software Components | 49

relation to other objects within the context of a particular language, the interface of the component
defines its interaction with other components that may be implemented in different languages and
may even exist across networks on different platforms. Therefore in the context of components,

interfaces define a component’s interaction with the outside world.

The interface is often seen as a contract, the analogy being that breaking the contract, or the way in
which components interact, is equivalent to breaking the software. Thus, all components must use a
well-defined interface. Interfaces have an important role to play in quality, as overall software
quality can depend on how well interfaces are defined and how well both clients and providers

adhere to these interfaces.

Dependencies

In OOP new objects are created by bringing together existing ones. A dependency identifies the
relationship between objects brought together in this way. If object A is constructed by combining
objects B and C, then object A has a natural dependency on B and C; in other words, object A
cannot exist without B and C. It follows that to reuse a piece of object-oriented software,
knowledge of its dependencies are required and these dependencies must be present for the
software to work. Dependencies are difficult to avoid, but one of the aims of component-based
software is to shield programmers from having to deal with the particular dependencies of a
component. This is reiterated by Szyperski’s definition of the component being ‘a unit of
independent deployment’. Thus, a self-contained unit should contain all dependencies necessary for

its correct function.

Meta-Data

Meta-data is information about information. In terms of component technology meta-data is an
important facility for self-description. Using meta-data a component can export any information
about the services it offers, the interfaces it exports, what its dependencies are, etc. Information
about a component can by dynamically queried and this can be done programmatically without

human intervention.

Meta-data is a useful facility in loosening the coupling between software elements. Instead of
having to statically link pieces of code together during development, meta-data can allow dynamic
discovery and the use of new components that become available at runtime. This allows a system to

be extensible in that it can load new functionality without recompilation.

Object-oriented languages such as Java and C# support meta-data via reflection. Reflection allows
an external client to query all information about a compiled class. C# has more advanced support

for meta-data in that it supports attributes. Attributes allow arbitrary pieces of meta-data to be

Chapter 3 — Software Engineering The Principles of Software Components | 50

included alongside compiled code. Components may support their own methods for exposing meta-

data or they can use specific language facilities such as reflection.

Deployment

An important aspect of a component technology is to define how a component is deployed, as this
will ultimately determine how the component is made available and used. Deployment in this
context refers to how the component is integrated into new systems and the mechanisms involved
in availing of a component’s functionality. There are various techniques for deploying a
component. Firstly, there are binary compatibility standards. These types of components can be
constructed in any language, but to expose functionality it must expose its functionality using a
particular binary format. Secondly, some approaches are language specific and require the
component to expose its functionality via the constructs of a particular language. Finally, there are
distributed components that are made available via communications networks. In this case the
component is accessed via a communications protocol and this can be useful in allowing

intercommunication among components across languages and platforms.

Whatever the deployment option the component technology must have well-defined mechanisms
for ensuring that providers know how to construct components in a proper way and that clients of

these components know how to access and use them.

3.4 Component Composition

Components are only of use if they can be combined with other components to form useful

applications. How components are assembled together is called component composition.

3.4.1 The Component Framework

Szyperski provides the following definition of the component framework:

‘A component framework is a dedicated and focused architecture, usually
around a few key mechanisms, and a fixed set of policies for mechanisms at

the component level’ [Szyperski2002]

A component framework (sometimes called a container) addresses the need to be able to plug
components together to form useful applications. A standardised framework eliminates the need to
handwrite code to combine components together. A framework will usually provide a mechanism

for interconnecting components allowing them to be combined in a generic way.

Chapter 3 — Software Engineering Component Composition | 51

There are two ways in which components can interact in a framework, either through wiring
(connection oriented programming) or through contextual frameworks. In a connection oriented
framework the ‘plugs’ of components are connected together and information flows directly from
one component to another. In a contextual framework communication is achieved via services. In
this case components communicate via services specifically designed to manage communication

between them.

Components and frameworks are often confused. Lumpe argues that components cannot exist
without frameworks and that a component by itself is meaningless without the context of a
framework [Lumpe99]. An example is user interface components. On its own a user interface
control is useless but when combined with other controls and placed on a window, useful
applications can be created. It is true that even if a concrete component framework exists it is
pointless to construct a component without knowing how it will interact with other components to
form a useful system. Lumpe therefore provides the simplistic definition that ‘a software

component is an element of a component framework.’

A common analogy used to describe component frameworks is a stereo system. A stereo system
can be supplied in various components (CD, tape, tuner, etc), which are then wired together to form
a system. The audio interconnections among components adhere to specific electrical standards.
Likewise the electricity supplied to each component is standardised. These standards, the electrical
connectors and the components themselves have to adhere to a ‘framework’ so that they can

interoperate effectively.

To allow interoperation among components the component framework should be able to interact
with and control components. A framework has to be built to accommodate a particular component
standard or possibly multiple standards. In fact, realistically the framework will be built first with
subsequent components implemented and tested against the component framework to ensure they
are functioning correctly. A component framework may also include mechanisms for automating
component composition. This may involve some type of either scripting language, programming
language or glue [Schneider99]. The particular facility available for component composition will
be dependent on whether the framework allows composition of components at compile time or

runtime.

3.4.2 The Component Architecture
The component architecture is a particular set of rules governing the use of components and a
component framework. [Szyperski2002] provides the following definition of the component

architecture:

Chapter 3 — Software Engineering Component Composition | 52

‘A component system architecture consists of a set of platform decisions, a
set of component frameworks, and an interoperation design for the

component frameworks.’

Whereas a component framework allows component composition, the component architecture
dictates the overall system-wide policies concerning the use of components. The component
architecture is concerned with defining the overall principles of a software system and this
architecture will dictate policies on functionality, performance, reliability and security. As such, a
system may include multiple component frameworks all conforming to the same architecture. The
component framework may itself be a component; in this case the component architecture may

dictate the interconnection among multiple component frameworks.

3.5 Existing Component Technologies

Later in this thesis the concepts of component-based software will be used to build a component
framework for software radio. To gain more insight into how these techniques can be put to use,
this section examines three existing component technologies, namely: Java components, CORBA

components and Microsoft based components.

3.5.1 Java Based Components

The Java language [Gosling96] is one of the most popular languages in use today. It is an object-
oriented language that allows cross-platform operation using a virtual machine. The Java Virtual
Machine (JVM) executes byte-code produced by the Java compiler. Various platform vendors can
thus support Java by implementing a suitable JVM. Java has become a popular language and is in

widespread use throughout desktop, server-side, internet and mobile applications.

Java is a very suitable language for developing software components. Java inherently supports
features such as reflection and advanced networking capabilities which provide a rich infrastructure
for developing software components. Thus, various component technologies have emerged for the
Java platform. Of these two are of particular interest in this discussion, JavaBeans and Enterprise

JavaBeans (EJB).

JavaBeans

A Java bean is a Java software component [Sun97]. A Java bean encapsulates functionality into a
unit called a bean. JavaBeans address the need in Java to have some way of packaging functionality
and resources into a module that can be repeatedly reused. A bean is primarily used for packaging
graphical controls, but it is also suitable for creating general-purpose Java components. What
differentiates a Java Bean (or Java component) from a standard Java class are the standardised

facilities a bean uses to expose its functionality. Every bean must contain:

Chapter 3 — Software Engineering Existing Component Technologies | 53

e Properties: A bean can expose properties that can be used to configure an instance of a
bean. These properties are configured using set and get methods for each property.

e Events: A bean can provide or consume events. Events allow a Java bean to
asynchronously react to or control other external users of the bean.

e Methods: A bean exposes all other functionality through standard Java methods (or

functions)

In addition, JavaBeans relies on some features of the Java language to facilitate component
constructs:

e Reflection (meta-data): The Java language supports reflection that allows external clients
to query information about a bean. Using reflection it is possible to find out
programmatically what properties, events and methods a bean exposes.

e Packaging: A Java bean can be programmed via a number of Java classes. In addition,
resources such as graphics may be required. JavaBeans allows all code and resources to be

packaged into a Java archive (JAR) file.

The JavaBeans standard applies many of the concepts of software components discussed in
previous sections. In particular:

e Interfaces: The Java bean exports a well-defined standardised interface consisting of
events, properties and methods.

e Unit of deployment: The Java bean is packaged as an independent unit (a JAR file)
incorporating all the code and resources required for its operation.

e Meta-data: The Java bean supports reflection which allows users of the bean to query
information about the bean programmatically. This allows an external client to dynamically
query the capabilities of a bean.

e Black box: A Java bean represents a black box abstraction, in that knowledge of its internal
operation is not required to make use of it as a component. Although it may be technically
possible to inherit from a Java bean class, this is not normally done and the problems of

white box reuse are thus avoided.

The JavaBeans standard does not however dictate a particular framework for composition of
components. It is a connection-oriented component model and communication between beans
requires connecting events mechanisms together. This usually requires a custom container to be
built for each application. The JavaBeans standard is a minimal standard and so it faces other
limitations. In particular there is no support for distributing Java beans via a network which makes
it unsuitable for large enterprise scale applications. For this reason the Enterprise JavaBeans

standard was created.

Chapter 3 — Software Engineering Existing Component Technologies | 54

Enterprise JavaBeans

Despite similar names, JavaBeans and Enterprise JavaBeans (EJB) [Sun2001] work very
differently as component technologies. Fundamentally they address different types of applications.
JavaBeans defines lightweight usually graphical components whereas EJB defines a whole
infrastructure for developing distributed transaction-oriented applications [Monson2001]. Thus the
EJB component model deals with issues such as security, persistence, transaction management and
distributed computing. The EJB standard defines three different types of components namely:
entity, session and message-driven components. These component types are specifically designed

for use in building data centric business applications.

Of particular interest in the context of this thesis is how EJB components are constructed and
composed together to make useful applications. EJBs are programmed against a set of interfaces
and base classes that define the functionality a bean should provide. These classes and interfaces
are designed is such a way that the developer can concentrate on business logic without having to
worry about the specifics of transaction processing or networking. The EJB standard defines an
infrastructure that factors out these difficult aspects of programming into generic services that are
used among all components. This approach of factoring out common functionality is closely related

to aspect-oriented programming [Kiczales97].

Like JavaBeans, an EJB is packaged into a JAR file as its unit of deployment. This JAR file
contains all the required code and resources the EJB requires to operate. EJB uses a deployment
descriptor which defines what components should be included in the application and all the
configuration required for these components to work together. The deployment descriptor is
defined using XML (eXtensible Markup Language). EJBs are deployed via a container, a type of
component framework (see Section 3.4.1) that allows component composition. The container is
responsible for hosting the EJBs, providing the infrastructure that allows component functionality
to be exposed to the outside world and allowing intercommunication among components. EJB
containers are standardised via the EJB specification and various EJB containers (also known as
application servers) are provided by different vendors. Standardisation ensures that EJB

components are guaranteed to work within any container.

In terms of component technologies, JavaBeans are similar to EJB in how they are packaged (JAR
files) and in their use of black box abstractions. They do however differ in the following ways:

e Interfaces: Whereas JavaBeans provides one type of interface consisting of events,
properties and methods, EJB defines three different kinds of components each of which
defines its own interface.

e Meta-data: EJB defines an interface that allows a container to query information about the

capabilities of a component via meta-data

Chapter 3 — Software Engineering Existing Component Technologies | 55

e Deployment: EJB uses an XML deployment descriptor file to dictate how components are
assembled to form applications.

e Framework: EJB defines a standardised framework for component composition based on
an EJB container.

e Distributed: EJB supports the distribution of components across a network.

3.5.2 CORBA Based Component Technologies
CORBA (Common Object Request Broker Architecture) is a standard maintained by the OMG

(Object Management Group) that allows software from different environments and platforms to
interact. CORBA was introduced in 1991 to address the growing lack of interoperability among
languages, implementations and platforms. CORBA is an open standard for the production of
distributed object systems. CORBA provides a mechanism whereby objects can communicate with
each other regardless of where they are located, be it in the same programme, different programmes

on the same machine or on separate machines [Balen2000].

Central to CORBA is an IDL (Interface Definition Language) and the ORB (Object Request
Broker). IDL is a language for the specification of interfaces allowing the developer to specify
what functionality an object will expose. CORBA defines mappings from IDL to many languages
therefore interoperation across language boundaries is possible. The ORB is the system that
performs the communication among CORBA objects. The ORB uses I[IOP (Inter-ORB
Interoperability Protocol) for communication among ORBs and thus allows the various objects to
communicate. CORBA incorporates several services that are used in combination with the ORB to

facilitate distributed object architectures.

When CORBA is used to expose the functionality of an object, this object can be viewed as a
software component in terms of’

e Reuse: Once a CORBA object has been exposed (either locally or across a network) it can
be reused by multiple clients.

e Interfaces: CORBA does not specify a particular common interface for CORBA objects as
each object is allowed to expose its own interface. However, in CORBA an object’s
interface is translated to a common format so that objects written in different languages can
interoperate. Although not strictly a well-defined interface in the component sense, this
common format can be viewed as a type of well-defined interface in its own right. CORBA
also supports events via an events service which allows asynchronous messaging between
objects.

e Meta-data: Meta-data (or meta-information as it is often called in the context of CORBA)

allows dynamic discovery of objects.

Chapter 3 — Software Engineering Existing Component Technologies | 56

e Black box: A CORBA object provides a black box abstraction of sorts. Using a CORBA
object only requires information about its interface and thus the internal operation of the
object are hidden.

While CORBA objects can be viewed as software components, CORBA was not strictly designed
as a component model and thus has many limitations. For this reason the CORBA Component

Model (CCM) specification was created by the OMG.

CORBA Component Model

While CORBA itself provides an infrastructure for wiring objects together, the CCM goes a step
further in providing an infrastructure for deploying components. The CCM is aimed at the same
types of applications as EJB, and in fact EJB components can be used in conjunction with CCM
components within the CCM standard. Like EJB, the CCM defines different types of components
that represent the building blocks of enterprise applications namely: service, session, entity and
process components. It also defines a container model, a packaging and deployment model and
support for transactions and persistence. Again, these elements of enterprise data centric
applications are of lesser interest in the context of this thesis, but a lot can be learned from looking

at how CCM components are constructed and how they are composed into applications.

The following features of a CCM component are of most interest [Gschwind2002]:

e Facets: A facet is the interface that a component exposes. A CCM component can contain
multiple facets.

e Receptacle: A receptacle is a way to specify what interfaces a component requires from other
components. Alternatively, a receptacle of a component specifies what facets of another
component it will use.

e Events: CCM components can both provide (publish) and consume (subscribe to) events. This
provides an asynchronous way to pass information between components.

e Attributes and configuration: A CCM component can be configured via attributes which are
identified using named values.

A CCM component is packaged into a single redistributable file called a CCM assembly. Like EJB

the CCM uses an XML configuration document to describe these components and how they should

be deployed.

To host CCM components the CCM defines a container (i.e. a component framework). This is
similar to an EJB container. The container provides interfaces for providing transaction, security,
persistence and notification services. The facets, receptacles, event sources and sinks allow

components to be connected together to form the application.

Chapter 3 — Software Engineering Existing Component Technologies | 57

3.5.3 Microsoft Component Standards

Microsoft have produced a variety of standards for creating software components. These standards

address both standard application development and distributed enterprise applications.

COM

COM (Component Object Model) is a standard by Microsoft for creating reusable software
components. COM and its predecessor OLE (Object Linking and Embedding) are language
independent standards. Unlike the Java approach which uses a common virtual machine, the COM
approach is to use a set binary standard. COM components can be implemented in any language,

but must conform to the binary format set out by Microsoft.

A COM object enforces a black box abstraction by exposing its functionality through a simple
interface mechanism. Every COM object must implement the same well-defined interface called
IUnknown. This interface allows the user of a COM object to programmatically acquire the
information required to use the COM component. [Unknown must always supply the three
methods: QueryInterface (), AddRef () and Release (). Using QueryInterface () a client
wishing to use the component can query a table to obtain references to the interfaces supported by
the component. Using the reference a client can make use of the component. The AddRef () and
Release () methods are used to implement reference counting which allows the component to

keep track of instances of the component.

COM is a simple standard used primarily for application development. Other component standards
such as ActiveX build on COM by exposing different interfaces [Chappell96]. The COM standard
itself does not dictate any particular framework for combining COM components and this is usually
left to the application developer. Although simple, COM demonstrates the use of some
fundamental concepts of component software:

e Reuse: COM components support black box reuse of software.

e Interfaces: COM supports a well defined interface structure. The binary standard used by
COM can be more efficient than IIOP used by CORBA or the use of a virtual machine
which can introduce performance overheads.

e Meta-Data: A COM type library can be supplied that allows a client to dynamically

discover information about the interfaces a COM component exposes.

DCOM (Distributed Component Object Model), an extension to COM, allows COM components to

be used over a network and facilitates the creation of distributed component based applications.

Chapter 3 — Software Engineering Existing Component Technologies | 58

COM+

COM+ was the first technology to combine support for transaction monitors and ORBs (Object
Request Brokers). A transaction monitoring system forms a type of operating environment for
applications in which it automatically manages transactions, resource management and fault
tolerance. An ORB permits objects to be used across a network allowing the application to be
distributed. COM+ combined these principles facilitating the use of COM objects in this
environment, which was particularly important for enterprise business applications. COM is

analogous to JavaBeans, and COM+ is analogous to EJB.

COM+ applications can still be built individually today but the services of COM+ have been
integrated into the new .NET platform. Of particular interest is a reoccurring paradigm among
component models and component containers. EJB, CCM and COM+ all factor out common
services from component implementations. This simplifies component development by making

these services universal to the architecture of the component system.

NET

The NET framework was introduced by Microsoft as a general purpose framework for creating
applications. The core of the NET framework is the CLR (Common Language Runtime). Similar
to the Java Virtual Machine, the runtime allows the execution of a platform independent binary
code called MSIL (Microsoft Intermediate Language). Whereas the Java Virtual Machine has
typically only been used to execute Java programs, the NET CLR is specifically designed to

provide enough facilities so that compilers can be easily written for any languages.

The NET framework itself does not dictate a particular component model as it encompasses a
broad technology base for developing many different types of applications [Lowy2003]. .NET
itself can be used to build different types of component models and inherently supports many
features that make this easier. Of these the following are of interest:
e Language independence: .NET allows multiple languages to interoperate through the CLR
allowing components implemented in different languages to interoperate at a binary level
e Packaging: .NET allows code and resources to be packaged into a unit called an assembly
e Interfaces: .NET is built on object-oriented principles therefore it supports the
infrastructure required to develop components with well defined interfaces
e Attributes and reflection: .NET has inherent support for meta-data via attributes and allows
reading of this data through its reflection APIs. This provides powerful support for
allowing dynamic use of components at runtime.
e Remoting: .NET supports distributed objects which are useful in building distributed

component-based applications

Chapter 3 — Software Engineering Existing Component Technologies | 59

3.6 Summary

This chapter has provided an overview of software engineering, in particular the principles of
component-based software. It has shown that software engineering provides principles and

techniques for dealing with software complexity, and for developing software that is adaptable,

flexible and reusable. The main principles covered in this chapter can be summarised as follows:

Principles

Description

Object-oriented analysis

Object-orientation promotes the building of quality, robust software

UML

UML provides an effective tool for graphically modelling an object-
oriented design

Design Patterns

Ensure that tried and tested paradigms are used throughout the
design

Classes, Inheritance,
Interfaces and
Polymorphism

The basis of object-oriented programming

Granularity, Cohesion and
Coupling

Useful metrics for designing good quality objects, i.e. objects that
help to reinforce the quality and stability of software

Component-Based

Component-based software promotes the packaging and reuse of

Software software

Black box Software components feature black box abstractions which hide the
client from the internal implementation of a component

Granularity Component granularity is important in that it affects the reusability
of' a component

Interfaces A component must expose a well-defined interface

Dependencies

An individual component should have minimal dependencies but
components may sometimes be interdependent

Meta-Data Meta-data and reflection are important facilities in allowing the
dynamic discovery and use of a component
Deployment A component model should specify how a component is packaged

and deployed

Architecture

The architecture of a component technology should specify the rules
associated with building applications for the domain the architecture
addresses

Frameworks

Components are pointless without frameworks. A component
technology should provide a framework that allows components to
be connected together to form useful applications.

Figure 3.1 — Summary of Software Engineering Principles

The reason for discussing software engineering in this chapter has been to assemble techniques and
practices for tackling the problem of developing software for software radio. This approach has
been taken because software engineering practices are not typically applied to software radio and as
explained in Section 3.1, history has shown that ignoring these principles in favour of optimisation

can lead to un-maintainable, complex and expensive software.

Chapter 3 — Software Engineering Summary | 60

By looking at these principles and seeing them in use in technologies like EJB, COM+, NET and
CCM much can be learned about how to build quality software. For example, all these technologies
share a common characteristic in that they support base services. The function of these services is
to factor out common functionality required by many components. Instead of each component
having to re-implement this functionality they can reuse these base services, thus greatly
simplifying the implementation of components. A good example of a base service is
synchronisation. The basic problem may be that multiple components require serialised access to a
resource. Instead of each component requiring knowledge of how to negotiate, acquire and release
the common resource, a ‘synchronisation” service built into the fabric of the component framework
automates the process. This makes it seamless and trivial to gain access to shared resources.
Services are useful as they demonstrate how the concept of a component framework can be used to
simplify the development of complex systems, while allowing software to be reusable, flexible and

adaptable.

Another common trait from the component frameworks analysed is their use of well-defined
mechanisms for performing operations such as firing an event, calling a method or deploying a
final system. Each system as part of its architecture and framework defines a set of principles, each
of which must be adhered to if software is to function correctly. This effectively enforces a set of
rules both on the programmers that write components and those that write the framework. For
example, if an event is fired by creating a block of data and placing it in a queue then this should be
the one and only way this is possible. A component framework will not allow any circumvention of

this rule. This approach results in less ambiguity and ultimately more robust software.

A conscious decision has been made during this work to not reuse an existing component
technology such as COM, EJB or NET. Some component frameworks although useful in
demonstrating the principles of component software would be completely unsuitable for
developing radio systems. For example, EJB has been specifically designed for developing multi-
tier business applications that are based around databases, business processes and content delivery
to users. This is clearly a completely different type of end-application to radio and so the EJB
semantics would make this pointless. EJB is also a Java based language and although the approach
presented in this thesis is not particularly concerned with code performance, in the current state of

the art Java itself is rarely used for high data rate signal processing on GPPs.

In general component models such as COM+, CCM and even the support provided by .NET have
been designed to accommodate the needs of developers building mainstream information-based
business applications, everything from banking systems to user applications. Thus, the base
services they provide do not meet the needs of radio applications. These models have not been

designed with signal processing in mind. They have no built-in semantics for representing a signal,

Chapter 3 — Software Engineering Summary | 61

performing a mathematical routine or interfacing with hardware. This thesis presents a system that

fills this void.

Another compelling reason not to use these component models is that to fully explore the use of a
component-based approach to software radio requires a fresh look at both software development
and component models in the context of radio. To use a component model designed for building a
type of software unrelated to radio systems would make it difficult to fully explore this space.
Instead of trying to fit a radio system into a component model not designed for this purpose, the

approach taken has been to develop a component model completely suited to radio systems.

In summary, software engineering techniques such as services, the mechanisms of events, etc and
component models are not currently used in radio systems, although as discussed, it is this type of
software that is increasingly required. The remainder of this thesis demonstrates how this can be
done. Chapter 4 discusses the particular type of radio system being built, namely the reconfigurable
radio. The reconfigurable radio concept is completely dependent on the software engineering
principles presented in this chapter. Many of the principles of the reconfigurable radio are built on
the premise of the component-based approach and the reconfigurable radio is only fully realisable

using these techniques.

Chapter 3 — Software Engineering Summary | 62

Reconfigurable Radio

4.1 Introduction

This chapter presents a discussion of reconfigurability in software radio systems, which is the core
concept of this thesis. Section 4.2 discusses reconfigurability in detail and defines the three
categories of reconfigurability; application, structural and parametric. Section 4.3 provides a
detailed discussion on all the issues surrounding the development of software for radio systems.
Section 4.4 discusses the possible architectures for developing a system that is highly

reconfigurable.

4.2 Reconfigurability

The term ‘reconfigurability’ is used extensively throughout the literature and refers to many
different facets of software radio reconfiguration in both the hardware and software domains. For
this reason, the following discussion is presented in order to precisely characterise what is meant by

reconfigurability in this thesis.

4.2.1 Reconfigurability From Hardware to Software

Figure 4.1 depicts a graph that has been created to illustrate the level of reconfigurability of the
various software radio hardware solutions which were introduced in Chapter 2. On the graph two
types of reconfigurability are considered. A device can be considered to be reconfigurable if its
functionality can be changed (blue line). A device can also be considered to be reconfigurable if the
way in which the functionality is performed can be altered (red line). Using these definitions the

devices listed on the graph have varying degrees of reconfigurability.

As an example consider an ASIC. It performs one particular dedicated function which cannot be
changed. However, the ASIC does allow the parameters of the function it performs to altered. For
example, a GSM baseband processor ASIC cannot be used to process the baseband signals of any
other radio standard but it will offer variability in how this function is performed, perhaps by
allowing the output power to be changed. However, such changes require dedicated hardware such
as a microcontroller to be used therefore giving it a “Low to Moderate’ score in how it allows the

altering of functionality (red line).

B Reconfiguration of functionality
[Reconfiguration by altering functionality

A [CJ Window of current interest

High

Reconfigurability

| — —
Analogue ASICs Programmable DSPs General Purpose
Electronics Logic, FPGAs Processors

Figure 4.1 — Level of Reconfigurability for Various Signal Processing Devices

The FPGA is another example, a device that can both change its functionality and offer variability
in how this functionality is performed. While it scores moderately high in terms of altering
functionality, it scores low in its ability to change its functionality. Although some FPGAs allow
full or partial dynamic reprogramming, in practice FPGA development is a longer and more
complex process than say DSP or GPP software development. This is because FPGA designs are
highly bound to the type of FPGA being used and require decisions on routing and placing of
functionality on the physical device. Dynamic reprogramming makes this task more difficult as
some of the reconfiguration scenarios may be unknown at design time making it difficult to
allocate resources on the FPGA. In contrast a device such as the GPP does not require more silicon
real estate to implement new functionality, only additional software programs. Also,
reconfiguration of an FPGA can have an impact on the other circuitry surrounding an FPGA, so

special considerations and thus limitations in reconfigurability are common.

The shaded window surrounding FPGA and DSP technology represents the current state of the art,
i.e. these hardware devices are the main focus for developing software radio solutions today. While
these technologies offer the performance and real-time behaviour required by today’s radio
standards, the trade-off that results in using these devices is a limit in reconfigurability.

In terms of this discussion it is important to expand on the role of software in reconfigurable
devices. Not all of the devices in Figure 4.1 run software in the conventional sense. For example,

FPGAs require the use of a hardware description language such as VHDL or Verilog. Some other

Chapter 4 — Reconfigurable Radio Reconfigurability | 64

languages exist also including System-C [System-C] and Handel-C [Chappell2002] that offer more
software-like semantics for expressing FPGA functionality. Beyond these semantics though, these
languages simply offer higher level constructs for expressing hardware functionality. They are
hardware specific and there is limited abstraction between language and hardware. Thus FPGAs
cannot be reconfigured to the same degree as a purely software-based device. For example, the

FPGA cannot reorder the way in which it processes two signals without reprogramming hardware.

Software used in DSP processors is more similar to software running on a GPP rather than the
FPGA. As in the case of the FPGA, the conventional method of programming DSP processors has
moved from assembler languages to more high-level languages such as C. The difference however
is that DSP processors execute instructions whereas FPGAs take a reprogrammable logic approach.
DSP processors are therefore better suited for reconfigurable tasks. However they still have

features that limit the levels of reconfigurability possible.

DSP processor designs are highly bound to the particulars of the processor and the surrounding
hardware. This is required to achieve constraints in real-time behaviour and to optimise power and
performance. This however limits the devices ability to reconfigure. For example, a maximum level
of reconfigurability would allow a software radio device to change its own functionality by
applying new algorithms and loading new code as required. In the DSP processor this would be
difficult to achieve as any change to code could affect the hardware-oriented aspects of the design
such as real-time behaviour and performance. Also, since DSP code is highly bound to hardware,
most DSP implementations maximise the use of hardware by manipulating low-level aspects of the
system such as bus access and caches. Thus, it can be difficult to allow any aspect of the system to

change dynamically without breaking or disrupting another.

From this discussion it is evident that devices can be reconfigurable to varying degrees, yet the
term reconfigurable loosely applies to them all. The purpose of this work is to make advances
towards the creation of a more ideal software radio. Chapter 1 discussed the choice of platform for
this research, the GPP. This choice also has major implications for the level of reconfigurability
that can be achieved in a software radio. Using the GPP provides a flexible environment and allows
the development of software radio systems with exceptional levels of reconfigurability. The GPP
shields software development from the particulars of hardware with many hardware specific
functions such as virtual memory and multi-threading handled by the operating system. This
simplifies software development and allows many different software implementations and hence
software configurations to be used interchangeably. RAM and persistent storage are also important
factors in that they allow vast amounts of different configurations and code to be stored for

reconfigurable purposes. In this context reconfigurability is thus software-based, and although there

Chapter 4 — Reconfigurable Radio Reconfigurability | 65

may still be some hardware aspects involved such as control over an RF front-end, the majority of

radio functionality is implemented in software.

4.2.2 Reconfigurability Defined

Following on from the previous discussion it is useful to strictly define reconfiguration using three

distinct categories, namely, application, structural and parametric reconfiguration.

e Application Reconfiguration - At this level the whole radio can be reconfigured by replacing
the software of the software radio. This type of reconfiguration can allow a radio to completely
change the application it performs. For example this might involve the same hardware being
reconfigured from being a two-channel analogue FM transceiver to being a 10 channel digital
BPSK transceiver.

e Structural Reconfiguration — Structural reconfiguration allows components to be added,
replaced or reorganised while the radio is operating. For example we may decide to change the
way in which a signal is processed, perhaps introducing two stages of filtering instead of one.
In this case the radio will still perform the same function but reconfiguration may have benefits
in improving signal quality, power consumption or performance.

e Parametric Reconfiguration — Software allows the individual parameters of signal processing
functionality to be changed dynamically. For example we may want to change the coefficients
used by a filter or change a particular frequency setting. This level of functionality will allow
individual elements of the radio system to be exposed for reconfiguration during the operation

of the radio.

Just as important as each degree of reconfigurability is the time each one takes. For example, one
system may support application reconfiguration in that it can be sent to a factory to be
reprogrammed, another may perform the same reconfiguration seamlessly without any loss of
communication. In reconfigurable radio these changes should occur at runtime and reconfiguration

should occur as fast as possible without any loss of communication.

The degrees of reconfigurability discussed here are somewhat different to those in current
mainstream or commercial approaches to software radio as discussed in Chapter 2. Those
approaches base their reconfigurability solely on the capabilities of hardware whereas
reconfiguration in this discussion is based entirely on reconfiguration in software. For this reason
the term ‘Reconfigurable Radio’ is used for the remainder of this thesis to differentiate the existing
disparate variety of approaches to software radio from the more software-centric, GPP-based
approach taken in this thesis. Thus for the purposes of this work the reconfigurable radio is defined

as follows:

Chapter 4 — Reconfigurable Radio Reconfigurability | 66

‘The reconfigurable radio is a software radio with a minimal-hardware RF
front-end with the remainder of processing performed using general-
purpose processors. The software of a reconfigurable radio allows

application, structural and parametric reconfiguration.’

4.2.3 The Benefits of a Reconfigurable Radio

The primary benefit of reconfigurable radio is that it allows traditionally fixed operating parameters
to become variable. This allows radio systems to become more flexible in how they communicate.
Flexibility has been constrained in the past due to the characteristics of the communications
channel, an environment that is noisy, lossy and corruptive to the transmitted signal. To achieve
communication in this medium strict standards for operation have been required. These standards
often limit radio systems in realising the full potential of the medium. For this reason most wireless
standards are fixed in modulation scheme, bandwidth, frequency allocation and power. With
reconfigurable radio, these constraints can be somewhat relaxed, as it is possible to build flexible
terminals that constantly reconfigure themselves to suit their environment. Reconfigurable radio
offers an unprecedented opportunity to create devices that can offer better, more reliable
communications. Consequently many operating parameters which are usually rigidly fixed, can

now become adaptable, for example:

e Propagation: Channel characteristics such as multi-path fading require additional processing by
a radio. Using reconfiguration the radio can dynamically change how it deals with these issues.

e Power: The radio can dynamically alter its RF-power output to suit its operating environment.

e Location: According to its location the radio can dynamically change many parameters that
may improve its ability to communicate.

e Modulation scheme/bandwidth: the radio can dynamically change the modulation schemes and
hence the bandwidth it uses to communicate. This can be varied to different degrees from one
off changes to dynamic modulation changes even during transmission.

e Frequency: With a general-purpose terminal capable of operating on a large range of signals,
terminals will be able to dynamically change they frequency used to communicate.

e Algorithms: The radio can dynamically reconfigure itself to use different algorithms to process
signals. This will allow it to change its operation to suit many different scenarios.

e Power consumption: By dynamically changing the way in which a radio processes signals it
will be possible to vary the power used by the radio device which is important for battery

powered mobile equipment.

Chapter 4 — Reconfigurable Radio Reconfigurability | 67

Also there are intrinsic technical advantages and opportunities possible using the reconfigurable

radio approach, for example visibility and rapid development.

Visibility: To test or calibrate an analogue radio system typically requires probing a circuit with an
oscilloscope or spectrum analyser. The signal has to be isolated in a particular part of the circuitry
and then interpreted via the general-purpose tools available. Often, due to the use of analogue
integrated circuits and prefabricated modules, the signal of interest is not available as an output
because a module implements several stages of the radio design. For example, a baseband
processor chip may amplify an IF signal, down convert it to baseband and perform demodulation.
All this functionality occurs internally within the chip and often the signal of interest cannot be

isolated.

Within a software radio all signals exist digitally and are available at runtime. This is useful for two
reasons. Firstly, the radio system can have built-in validation. As all signals are accessible the
system itself can perform verification of signal integrity at various stages in the radio. This can be
done both during development and after the radio is deployed. Secondly, using graphical tools
these signals can be directly accessed. Not only can these signals be viewed in the traditional way
(for example using oscilloscope traces and spectrum analysis), but also new ways of graphing and
interpreting these signals are possible without building new hardware. This can be useful for either
exploring how existing radio technologies work or as a tool for creating new types of radio
systems. Thus, as these two examples demonstrate, the software radio brings an increased level of

visibility to radio system internals.

Rapid Development: Speed of development is often overlooked when discussing software radio.
Speed in this context refers to how long it takes to design, implement, test and deploy a radio
system. Analogue radio systems have to be physically built before they can be properly tested.
Simulation can go some way in reducing the need for a physical prototype, but nevertheless at
some stage in the design an analogue prototype must be constructed. In software radio, beyond the
RF front-end there is no need to build a physical prototype at every stage in the design. The
fundamental paradigm shift here is that the prototype is the software under development. Instead of
incremental physical prototypes that can take months to design and build, the radio system is tested

during the development process, rapidly increasing the entire development process.

This fundamentally changes the radio system development process. In this environment the
complexity of a radio system is now contained in its software programs rather than its hardware.
Increasing demands on functionality require additional software development rather than additional

hardware design. The process can be made even quicker through software reuse. Designers can add

Chapter 4 — Reconfigurable Radio Reconfigurability | 68

on new features to the radio system by reusing third party software components. This eliminates the

need for them to re-implement functionality themselves, thus rapidly reducing development time.

4.3 Software for Software Radio

The following topics are of major concern when designing a piece of software:
1. Reuse.

Abstractions.

Adaptability and Flexibility.

Complexity.

Security.

Portability.

Real-time Behaviour.

I I S

Upgrading and Versioning.

It is important to discuss each of these topics in the context of designing a reconfigurable radio.

4.3.1 Reuse

Software reuse will become just as important in radio systems as it has become in mainstream
software. In the DSP of radio systems many signal processing algorithms and functional algorithms
occur frequently throughout different radio designs and standards. For example, BPSK (Binary
Phase Shift Keying) modulation occurs frequently throughout many types of communication and
thus a properly constructed piece of software implementing BPSK can be reused in multiple
applications without re-implementation. This raises the question as to what is the best way to reuse
elements of software radios. To address this issue, the role of software granularity, cohesion and

coupling must be analysed (as discussed in Section 3.2.2).

The granularity chosen in a software radio design will be a determining factor in how well
software objects can be reused. Using a fine granularity, DSP software would be broken down into
fundamental units that represent the building blocks of DSP systems. For example, one approach
could be to break down DSP algorithms into adders, multipliers, or multiply-accumulate elements.
However, this approach does not leverage effective reuse as the objects are too small and generic
and do not contain enough domain specific functionality to be labelled as software radio
components. The user of these components would have to introduce too much ‘glue code’ and thus

reuse would be lost.

A larger granularity is also possible, for example on the system scale where components

encapsulate systems such as two-way radios or GSM base stations. Although these are suitable as

Chapter 4 — Reconfigurable Radio Software for Software Radio | 69

methods for distributing or replicating a complete system, they are not suitable elements of reuse
for building the software of software radio systems. This type of object is too big and thus only

reusable in completely domain specific applications.

The granularity balance for software radio can be struck by viewing the system as reusable radio
parts, each implemented in software. These parts each implement a different aspect of common
radio functionality such as the QPSK modulator, low-pass filter or speech-encoder. A component
with this granularity holds enough functionality to warrant reuse but is not application specific

enough to limit its usefulness and thus it can be applied in a wide range of different scenarios.

Cohesion is important in software radio in that the reusable pieces of software that make up a
software radio system should be logically related in such a way that they enable effective building
of quality radio systems. In an individual component, the functionality or methods it exposes
should be logically related and contribute towards the same problem. This is a problem in
mainstream software as diverse functionality can be implemented by building objects in similar
ways, thus bad cohesion is a result of exposing functionality haphazardly. Software radio on the
other hand is domain specific, thus most objects in the software radio system will be DSP
algorithms and thus common cohesive DSP interfaces can be used to expose the functionality of an

object.

Cohesion also plays a role in larger scales. The sub-systems and elements that make up a software
radio system should be cohesive in that they all relate to the problem of software radio in the same
way. For example, using elements of different granularity throughout the system would result in
bad cohesion, as it may be difficult to combine fine and coarsely grained elements to form the radio
system. Objects should be logically designed employing the particular style of the software system

being used.

Coupling is a very important aspect of developing reusable software for software radio. As
discussed in Section 3.2.2, the level of coupling will dictate how dependent a software element is
on other elements. In software radio, coupling is especially significant as it has an important
consequence to DSP software that does not typically appear in mainstream software. When
designed well, mainstream software is easily tested. In the majority of software, the correctness of
software is typically boolean in that the software either performs its function correctly or it does
not, examples being, ‘the numbers were added correctly’, ‘the e-mail was sent’, ‘the disk access

failed’.

However in DSP software errors are not so apparent. A piece of software can be functioning

perfectly, but in reality it is not producing the correct result. Thus, DSP software typically requires

Chapter 4 — Reconfigurable Radio Software for Software Radio | 70

additional testing from the DSP domain to determine whether the software is functioning correctly,
for example, testing the signal to noise ratio or performing frequency analysis. Dependencies and
hence coupling add to this problem, as traditional approaches to ensuring correct functionality
across dependency boundaries are boolean-based logic rather than DSP-aware constructs. For this
reason software-based DSP systems can suffer more from dependency problems than other
software in that changes to reusable elements can have unnoticed or undefined effects across a
software radio system. Also, DSP algorithms themselves are not standardised in any way so
algorithms such as filters implemented by two different programmers may not produce the same

result.

To illustrate this problem consider the tightly coupled software element shown in Figure 4.2. This
software element is a simple channel extraction implementation using the three stages of mixing,
filtering and decimation to extract a signal of interest from a wideband source. The common
approach of object-oriented design would be to delegate operations such as filtering to other
objects, as filtering is reused in many scenarios throughout radio design. The difficulty arises when
some aspect of a reusable element is changed, for example, the programmer notices a bug in the
filter windowing function and fixes it. In this case there is a risk that the expected behaviour of the

channel extractor and other elements that depend on this filter will be altered.

=] A
INGZ:

Work deleg%ed to other cmponents

Mixer

input — % — l —»—— output
/\/

Filter Decimator

NCO

Figure 4.2 — A Tightly Coupled Software Component

Chapter 4 — Reconfigurable Radio Software for Software Radio | 71

In the channelisation example this may result in an altered frequency response, ultimately having a
knock on effect throughout the system. The underlying reason this can occur is because the original
implementer of the channelisation algorithm would have based their design on a filter that they
assumed would always produce the same values. Thus changing the characteristics of this filter can
lead to unexpected results in any component that reuses this element. The main point to note here is
that even though a piece of software works correctly and consumes and produces valid data, this

does not mean the data is correct when analysed and interpreted using DSP.

The channel extractor is a very simple example, but there are more subtle cases where this type of
dependency-caused error can take place. For example, consider the following hypothetical example
of a decimator algorithm. A programmer decides to improve the performance of a reusable
decimator algorithm by changing the number of decimation stages used in the algorithm. While the
decimator still performs its function within specification and the code still exposes the same
interface, the programmer has inadvertently introduced noise into the system by introducing
multiple stages of processing. This has a knock on effect throughout the system in multiple places
making the source of the problem difficult to find. Another interesting angle on this problem, but
with the same negative result occurs if the programmer actually improves the noise performance of
an algorithm in some way. Again, this can also have a knock on effect as other elements in the
system are designed and tested against the noisier decimator, and thus a new decimator producing

different signals could result in undesired functionality such as glitches.

To combat these types of problems, again a balance has to be struck, this time between coupling
and quality. If a complex algorithm is subject to change and interpretation then it should be
encapsulated into a reusable object and not delegated out to external objects. Although some
reusability is lost, this approach will yield better results overall for such applications. If extensive
delegation is to take place then strict practices must be adhered to ensure the integrity of the
software. This may involve documentation procedures or if possible the software environment and
hence the mechanism for reusing elements should be DSP-aware in that inconsistencies can be

easily detected.

Finally, aside from technical issues, it should be noted that reuse and hence properties such as
granularity, coupling and cohesion also have an economic consequence. While many organisations
will practice reuse for internal development, reuse is also important on a larger scale as it fosters a
market for buying and selling software. Take granularity for example; too small a granularity and
elements will not contain enough functionality to warrant their sale. Too big a granularity and
elements will be too application specific therefore reducing their market potential. Thus for
economic and technical reasons, software for software radio systems should ensure that objects are

properly designed for reuse to ensure their overall success.

Chapter 4 — Reconfigurable Radio Software for Software Radio | 72

4.3.2 Abstractions

How software for radio systems is viewed plays an important role in ensuring its success and
contributes towards an effective level of reuse. As discussed in Section 3.2.2, visibility is an
important aspect of partitioning software into reusable elements such as objects or components.
Visibility specifies how much the internal workings of a software object are exposed to the users of
that object. ‘Black box’ abstractions shield the user of the object from the internals of that object.
Likewise, ‘white box’ abstractions allow the internals of the object to be extended through

mechanisms such as inheritance.

It is important to consider what type of abstractions will be used in the construction of software for
software radio. Black box abstractions offer the potential to allow the development of software
radio systems without requiring specific knowledge of how the system works. This could occur in
various ways. For example, the whole software radio system itself could be treated as a black box
software component. The developer would use a well-defined interface to create new software
radios. In this case the developer would be shielded from the operation of the software radio system

thereby protecting the internal workings from disruption.

Another way of applying the black box abstraction is to view the various reusable objects of a
software radio system as black box components. In this way these components are combined
together to form various software radio solutions. The developer who combines these components
does not require knowledge of how these various reusable elements work, just how to make them

work together.

While the advantages of black box reuse are evident, there are some problems with black box reuse
when developing software for software radio. Performance is always a primary concern and the
overhead of maintaining strict interfaces through black box abstractions could hinder the
performance of the radio system. In this case white box abstractions may be more appropriate in

that the reusable elements become more flexible and can be altered to improve performance.

Overall in designing software for software radio we must strive to use black box abstraction as
much as possible and only break this abstraction when the specifics of software radio pose no other

alternative.

4.3.3 Adaptability and Flexibility

Adaptability will enable a piece of software to be reused beyond its original design. In a software
radio this corresponds to developing signal processing algorithms that can be adapted for use in

new applications. A prime example of an adaptable element is an FIR filter. FIR filters are used

Chapter 4 — Reconfigurable Radio Software for Software Radio | 73

extensively throughout many DSP systems. For an element such as an FIR filter to be adaptable it
must facilitate its use in many different scenarios. For example the filter should be able to work
with different sources of signals, possibly represented using different data types or supporting
various methods for processing data. If a software radio is created out of adaptable elements then
the level of adaptability will determine how often this element and hence code can be reused in

other applications.

Flexibility allows a software radio to offer variability in how it performs its function. Whereas
adaptability facilitates reuse of an element in different scenarios, it is mostly concerned with the
technical issues of how an element exposes its functionality. Flexibility on the other hand concerns
the actual functionality the element provides. Flexibility in the case of the FIR filter will ensure that
the FIR filter provides enough control over the FIR algorithm itself. A suitable level of flexibility
will allow us to change the window of the filter or specify our own windowing function. Flexibility
will allow us to specify a range of increments for changing the cut-off frequency of the filter.
Flexibility may even offer us the functionality of designing the filter coefficients for us. Flexibility

and adaptability go hand in hand in creating reusable software for software radio.

4.3.4 Complexity

Complexity is a problem that faces any large software system. As radio technology continues to
move towards more software-based implementations the amount of software required to build a
radio system will continue to increase. Without proper management complexity will start to emerge

in software radio systems in the form of bad quality and difficult to maintain software.

This problem can manifest itself in many ways. As demand increases for new wireless applications
and increased capability, new and more complex DSP algorithms will be developed to meet the
needs of these applications. Whether implemented on reprogrammable hardware or high-level
software, the amount of software being implemented for software radio systems will continue to
increase. As well as increasing DSP code, there will also be an increase in code enabling new
capabilities such as software download and interoperability. If the current approaches being used
for FPGA and DSP processor development are carried forward into these future systems, (as
discussed in Section 3.1) a “software crisis’ of sorts could emerge in the domain of software radio.
These approaches based on functional decomposition and hardware-bound languages do not

encourage the building of quality software for large systems.

To deal with the problems of complexity in software radio the methodologies of software
engineering must be brought to bear on the problem. A combination of object-oriented and

component-based software approaches should be used. However, most of these techniques are

Chapter 4 — Reconfigurable Radio Software for Software Radio | 74

tailored for building software that values stability, robustness and maintainability over performance
whereas performance is often a critical issue in software radio applications. Although a piece of
software may be well built and highly reliable it may not be feasible to use the software if it

requires an impractical amount of processing power.

A balance must be struck between achieving the required code performance while also managing
the complexity of the software. Complexity ultimately increases the cost of a device as the more
complex it becomes the more costly it is to maintain. Thus, some designers may decide to invest in
more powerful hardware allowing them to reduce complexity by using software engineering
methodologies. This may prove more cost efficient in the long term, as the cost of more expensive

hardware may be less than that of maintaining a complex product over many years.

4.3.5 Security

Security is an important topic that has always surrounded telecommunications. Wireless
communication is prone to eavesdropping and hence security of communications over the wireless
channel is particularly relevant. Cryptography is therefore often employed to secure wireless
communications. Physical modulation techniques are also used to prevent denial of service
attacks an example being spread spectrum technology, which can be used to prevent radio
jamming. As well as the existing threats of eavesdropping and denial of service, software radio
introduces a new unique challenge to securing wireless communications. This challenge is radio

viruses.

It could be possible to build a ‘radio virus® or ‘radio worm’ similar to the viruses and worms
written to infect computers on the Internet. Attackers could exploit weaknesses in the
implementation of a software radio to gain control of the device. A similar type of attack occurs
today on the Internet by viruses and worms that exploit buffer overruns. A buffer overrun is caused
by a bug in a program allowing an attacker to overwrite a buffer in computer’s memory. This can
be exploited by writing a malicious program into the computers memory giving the attacker full
control over the device. The first buffer overrun attack occurred in 1998 with the Morris worm

[Eichin89]. A survey of buffer overrun techniques can be found in [Cowan2000].

In the case of the software radio, bugs in signal processing software, or the underlying operating
system as in the case of a GPP, could permit an attacker to send signals that manipulate a buffer
overflow in the radio device. For example, a digital communications standard such as GSM expects
fixed sized frames of data with a standardised frame structure. Any receiver that does not check the
values in the received frame structure correctly could be open to attack. Attackers could send

malicious frames containing non-standard values thus exploiting weaknesses in the system and

Chapter 4 — Reconfigurable Radio Software for Software Radio | 75

giving them full control of the terminal. A denial of service attack could pit radio terminals against
each other or against base stations to disrupt communication by flooding the spectrum with
unnecessary transmissions. The attacker may not even have to manipulate a particular buffer
overflow weakness; a specially crafted transmission may be enough to ‘confuse’ the radio system

and render it useless.

Although radio systems do not face this threat today, it could become a serious threat if software
radio terminals become more standardised and ubiquitous. If software radio systems become
commonplace and are used for a variety of applications then there will be an abundance of
terminals and hence more potential and incentive for an attacker to find weaknesses in a device. To
prevent these types of attacks software radio systems must be designed to incorporate secure,
formally validated techniques to prevent denial of service attacks, unauthorised modification of
software and to maintain communications privacy. Software downloading to radio terminals must
also be secure and thus code for software radio systems needs to be distributed securely. It must be

digitally signed [RSA78] to ensure that code loaded remotely is from the correct author.

Many different approaches can be used to secure software radio systems in the future. The best
deterrent will be good software designs that inherently support security and practices that leverage
good quality software, as bad quality results in flaws that can be exploited. Other complementary
procedures may have to be introduced such as code validation and rigorous testing procedures.

Overall, a secure software radio system will require vigilance and recognition of possible threats.

4.3.6 Portability

Portability enables software to work on multiple platforms. With current software radio technology
portability is difficult. The variety of hardware platforms and software techniques means that it is
difficult to build a single piece of software that will run on many platforms. Portability is still a
problem in general-purpose computing where there is standardisation amongst computer
manufacturers and languages enabling elements of cross-platform and source-level portability.
Signal processing hardware however has not yet reached this level of standardisation and code for
DSP processors and FPGAs, etc are mostly manufacturer specific. While it is possible to
programme some of these devices using either C or variants of the C language, a practical
implementation typically requires hardware specific instructions and hence proprietary

development languages.

Portability will continue to be an ongoing challenge in both general-purpose computing and
software radio. Improving portability for software radio systems will reduce the cost of developing,

maintaining software thus allowing for better quality software.

Chapter 4 — Reconfigurable Radio Software for Software Radio | 76

4.3.7 Real-Time Behaviour

Many radio standards dictate the use of strict timing and latency requirements for communication.
The software of a software radio system must be able to facilitate the real-time nature of whatever
scheme is being implemented. This has been a primary driving factor for the DSP processor in that
this device facilitates the development of real-time code and allows the developer to be
deterministic in how long operations will take. In the GPP however, this poses a significant
challenge. Typical GPP systems are based around the use of general purpose operating systems that
typically do not meet the latency requirements of existing radio standards. For example, the GSM
standard requires timing of TDMA (Time Division Multiple Access) frames in the order of
microseconds whereas the thread scheduler of Linux and Windows offers only tens of milliseconds

accuracy.

There are however some approaches in alleviating these problems (as discussed in Section 1.4). A
real-time operating system can be used to allow microsecond-level timing on GPPs. Even without
such an operating system more accurate timing can be aided by the generic front-end, and by
specific implementations of drivers which facilitate the type of accuracy required by these
applications. A different approach altogether would be to relax the need for such stringent timing
and to leverage the flexibility of a software-based radio system in meeting the demands of the
application. For example, in a data communications system the requirements on timing may not be
as stringent as they are in a voice system. In this case algorithms could be used to introduce
functionality that compensates for inaccurate timing through signal processing or buffering

techniques.

4.3.8 Upgrading and Versioning

A primary motivating factor for software radio has been the promise of general-purpose radio
devices that allow functionality to be upgraded. There are however practical challenges to making
this type of upgrading a reality. Specifically, the possibility that multiple versions of the same air

interface exist poses a significant problem in that it could hinder effective communications.

There are two ways in which this problem can manifest itself. Firstly, incompatible versions of
software can cause the system to fail. For example, a radio device that is partially upgraded may
download a new speech encoder or modulator algorithm. This new software is however
incompatible with the remainder of the system and thus crashes. The problem is further
complicated if a system consistently upgrades its software by downloading new pieces of software.
Without proper management each device could contain different combinations of software in

configurations unforeseen by the manufacturer. This type of problem has plagued mainstream

Chapter 4 — Reconfigurable Radio Software for Software Radio | 77

operating systems for some time and software radio systems need proper management to avoid this

type of problem.

The second type of upgrading problem is more subtle in that although the software may be
functioning properly, the use of multiple software versions may make communication error prone
or impossible. This type of error usually happens when an initial release of software is followed by
an upgrade. For example, consider the case of a mobile phone that implements a common standard
such as GSM. After deploying the handset the manufacturer realises that some aspect of the
software is not fully standards compliant and taking advantage of the software radio capability
posts new software for download which the handsets automatically retrieve. It is inevitable that
software upgrades cannot propagate instantaneously to all handsets due to bandwidth and the high
probability that some handsets will be powered off. Consequently, the radio system must have a
mechanism to deal with handsets having different versions of components of the software radio

system in order to ensure that the operation of the network is not comprised.

One way to overcome these problems is to employ a versioning system especially designed to
maximise communication. This type of system would force terminals to upgrade software when
appropriate. It could also manage compatibility issues in providing information about which
components are valid combinations. Component sets could be validated for compatibility by
checking their versions. Also, security could be involved in that communication is only allowed if

the terminal uses particular software versions.

Although rapid reconfiguration has obvious advantages, these examples discussed illustrate that if
software versioning and upgrading are required then an infrastructure needs to be in place to avoid
these errors. This has been acknowledged in the literature, particularly in the development of
software download for mobile phones [Bucknell2002]. These systems have more control over the
software a terminal uses for communication in that the terminal is constantly connected to a base
station which can trigger various forms of software download. This does not however deal with
more distributed approaches in applications such as ad hoc networking where there is no central
infrastructure. Chapter 7 addresses these issues in more detail by discussing case studies in both

software download and wireless networking.

4.4 Developing a Reconfigurable Radio

4.4.1 System Design Considerations
There are various ways that the development of a reconfigurable radio system can be approached.
Software radio implementations such as the C++ based PSpectra system are based around the use

of a class library that offers common signal processing classes that can be reused to form a

Chapter 4 — Reconfigurable Radio Developing a Reconfigurable Radio | 78

software radio application. This results in separate executable programs, one for each radio
implementation. Although this approach works well there are certain limitations, in particular when
considering reconfiguration. While these libraries support constructs for binding together reusable
classes to form radio implementations, they have not specifically included support for
reconfiguration. Whereas application reconfiguration is accomplished via separate standalone
executables, both structural and parametric reconfiguration requires the programmer to implement
separate code for each application. Thus, each standalone executable is implemented in a different

way to form the software radio.

An alternative approach that supports reconfiguration better is to factor out as many domain-
specific operations as possible into a software framework. This removes the need for each
programmer to re-implement the same constructs for each software radio application (see Figure
4.3). Using this approach the radio is not a standalone executable that interacts with the operating
system but a radio configuration used to configure a component framework. This design contains
all the information required to build the radio system including signal processing parameters,
structural designs and any additional code not covered by this domain-specific framework. By
inherently supporting application, structural and parametric reconfiguration in the component

framework itself, it becomes much simpler to develop a reconfigurable radio.

This approach is quite different to say a DSP processor platform. The DSP processor provides an
efficient processor for executing signal processing algorithms, however it does not dictate any
particular constructs or style for the structure of the software. Developers are free to manipulate the
capabilities of the device in any way they see fit. Also, software is typically developed in assembly
language and C, but these languages themselves do not dictate any type of software design. The
difference with the framework approach is that it explicitly dictates how the software should be

constructed with the aim of improving the quality of the system as a whole.

Class Library Approach Component Framework Approach

Operating System Operating System

Hardware Hardware

Figure 4.3 — Different Approaches to Reconfigurable Radio System Design

Chapter 4 — Reconfigurable Radio Developing a Reconfigurable Radio | 79

S O R b i B Nl Tt N

GRS i S

In terms of the signal processing capability of the reconfigurable radio, the framework must be
extensible in that it allows any type of signal processing functionality to be used in the system. This
signal processing functionality should be incorporated in such a way that allows it to be easily used
by different radio configurations. The framework should also be extensible in that it allows new
signal processing functionality to be added easily, but also allows radio configurations to include
additional code that can interact with signal processing algorithms. Thus, the framework needs

interfaces and constructs that allow this type of integration to occur easily.

4.4.2 Enabling Reconfiguration

As discussed in Section 4.2.2, the core requirement of the reconfigurable radio is the ability to
enable application, structural and parametric reconfiguration. These facets of the reconfigurable
radio are the enabling techniques to a whole host of new software radio applications. Enabling
these applications requires the framework to both inherently support each type of reconfiguration

and to enable monitoring and control. The following sections discuss how this can be achieved.

Enabling Application Reconfiguration
Application reconfiguration will allow the framework to change the type of radio system it
implements (for example QPSK transceiver, GPS receiver, TV transmitter, etc). Using the
component framework approach, each radio application is differentiated by the configuration
passed to the framework. This configuration must specify all the details required to implement the
radio design. The following elements are required in the configuration:
e Signal Processing — The configuration must specify which signal processing algorithms
should be used to implement the design.
e Structure — The configuration must specify how the signal processing algorithms should be
combined together to form the reconfigurable radio.
e Parameters — The configuration should include the parameters that configure the operation
of signal processing algorithms, for example frequency settings or filter taps.
e Code — The configuration should include any code required to implement specific
operations for the radio application.
e Packaging — The configuration should be packaged into a unit which can be easily
deployed to reconfigurable radio devices.
e Information — The configuration should include informational data about itself and its
purpose, possibly allowing a user or other software agent to decide whether to use the

application.

Chapter 4 — Reconfigurable Radio Developing a Reconfigurable Radio | 80

Enabling Structural Reconfiguration

In enabling structural reconfiguration the infrastructure needs to be implemented in a flexible way
that allows the structure of the radio to be changed. For structural reconfiguration to be feasible the
software of the reconfigurable radio has to be inherently built with this feature in mind. Also, the

adaptability and flexible nature of signal processing algorithms should facilitate this.

Structural reconfiguration can be implemented in various ways. A simple approach is to use offline
reconfiguration in that the software radio infrastructure supports the creation of different types of
structures. For example, if a software radio implementation consists of filters, mixers and
modulators then the software radio infrastructure should facilitate the combination of these

elements in any order.

Of more interest in this thesis is dynamic reconfiguration which is structural reconfiguration
occurring while the device is operational. Enabling this type of reconfiguration requires a more
sophisticated approach. Specifically the infrastructure has to maintain the integrity of the radio
application during the reconfiguration process. The system must ensure that new configurations are
valid and do not cause the system to become unstable. Also, where possible the system should
attempt to continue operation during the reconfiguration process. This will only be possible in

cases where reconfiguration does not drastically change the functionality of the radio.

In changing the structure of the radio, the infrastructure should inherently support software
download. This will allow new functionality to be downloaded and integrated into the structure of

the radio without having to alter, recompile or stop the radio system.

To facilitate the changing of the radio’s structure, the infrastructure should expose an API
(Application Programming Interface) that allows programmers to write code that can alter the
structure. This should include methods to edit the configuration via adding, removing or changing

the order of signal processing algorithms.

Enabling Parametric Reconfiguration

Parametric reconfiguration will primarily be concerned with allowing the parameters of signal
processing algorithms to be changed thus enabling reconfiguration. This requires an infrastructure
that facilitates the exposure of parameters. Thus, each signal processing algorithm will use different
parameters, exposed in a consistent way via a standardised parameter interface. This interface
should provide all the functionality to allow any type of parameter to be read or changed. Also, the

structure of the algorithms themselves must be able to cope with changing parameters, for example

Chapter 4 — Reconfigurable Radio Developing a Reconfigurable Radio | 81

if a frequency setting is changed a lookup table may have to be recalculated. The infrastructure

should inherently support mechanisms for enabling all of these tasks.

Monitoring and Control of Reconfigurability

The three types of reconfiguration discussed offer extremely flexible radio systems, however they
are useless without some way to control and monitor their use. As discussed in the previous section
a framework is required that hosts the radio system, provide explicit design rules and allow control
of the radio system as a whole. This framework can provide information about the radio system by
allowing the monitoring of system functionality such as viewing signals. It can also provide
external control functions by exposing a control interface. This can be used by other software

systems that use a reconfigurable radio as a sub-system.

4.5 Summary

This chapter has analysed all the issues surrounding the development of software for software radio
systems. The term ‘reconfigurable radio’ has been defined to differentiate the approach taken in
this thesis from others. Reconfigurability has been analysed and broken down into the three
categories of reconfigurability; application, structural and parametric. These categories allow the
level of reconfigurability of a device to be assessed and provide useful guidelines for determining
the requirements of a reconfigurable radio system. The next chapter presents the design of a
reconfigurable radio system that is built using component-based software and features the three

categories of reconfigurability.

Chapter 4 — Reconfigurable Radio Summary | 82

The IRIS Reconfigurable Radio

5.1 Introduction

This chapter describes the design of IRIS (Implementing Radio In Software) [Mackenzie2002b,
Doyle2002a, Mackenzie2003]. Sections 5.2 and 5.3 provide a high level overview of the IRIS
system. Section 5.4 discusses the component-based approach taken in designing radio components
and how they can be defined in software. Section 5.5 discusses the component framework used to
compose these components together to form a reconfigurable radio system. Section 5.6 discusses
control logic, a mechanism provided by the IRIS architecture for defining the inter-relationships
between components. Finally to demonstrate how components, the component-framework and
control logic fit together, Section 5.7 provides a worked example of developing an FSK transceiver

using IRIS.

5.2 IRIS Overview

IRIS has been built to demonstrate the concepts of reconfigurability as discussed in the previous
chapter. The purpose of IRIS is to both demonstrate this through a practical example and from this

to gain insight into the problem of developing software for reconfigurable radio systems.

IRIS is a component framework designed to run on GPPs. Signal processing components are
written in C++ and each component implements a generic signal processing algorithm or
encapsulates some other sub-system such as a hardware device. Radio systems are created by both
instructing the component framework to assemble components in a particular way, and by defining
the interrelationships between instances of components. The IRIS system is highly structured and
the mechanisms for building radio systems are well defined within the IRIS architecture. Basic
radio systems can be built by combining existing components. More complex designs can be
addressed by writing new components and writing control logic, essentially application-specific
code that defines the interaction among a particular set of components in the radio system. The
IRIS system uses XML as a configuration mechanism and control logic can be written in either

C++ or Java.

83

Figures 5.1 to 5.3 give an indication of what is possible with IRIS. The diagram in Figure 5.1
demonstrates how both transmitter and receiver architectures are specified via the same generic
configuration mechanism. IRIS uses the same type of configuration mechanism to realise every
type of radio system. For instance, it does not constrain radio system design via entities such as
receiver, transmitter, transceiver, etc; each radio system is made from generic components. This
approach is quite different to other approaches such as the JTRS SCA which defines concrete

interfaces for every element of the radio system (see Chapter 2, Section 2.5.2).

These two examples demonstrate the level at which IRIS addresses the development of radio
systems, the DSP level. The development of an air interface can often be intertwined with other
aspects of the system in particular other elements of the protocol stack. Often (as in the JTRS) the
DSP of the radio system is closely coupled to networking features such as the MAC (Medium
Access Control) or Data Link layers of the protocol stack. While IRIS can be used in this context
also (and this will be demonstrated in Chapter 7), its primary function is to facilitate the

construction of the DSP systems of a reconfigurable radio.

. FIR Filter Decimation 1Q Mixer FIR Filter
\J,U J | [~C) ‘ ‘ /(22\] ! 'Jf—)\(,/’ 4$ }7[P— 'chfjm
Configuration Sonverien [‘ ’ W N 1Y [~ | De-mapping |
1
(\/ \ /))
= Receiver
NCO
Mixer FIR Filter
010110110 | agpsk | /<N 7\/ o U U
Configuration 1 Symbdl ‘ (Z%} ’%; Converter | E
//V 3
NCO {\/\ /) .
il Transmitter

Figure 5.1 — Receiver and Transmitter Example

While the examples in Figure 5.1 illustrate more typical software radio applications, the example in
Figure 5.2 demonstrates how the IRIS system goes further. In this example, a similar configuration
is used to create a radio but it also includes functionality for dynamically reconfiguring both
parameters and the structure of the radio. This allows the creation of truly dynamic designs in
which the radio can change its functionality at runtime as desired. The uniqueness of this approach
is that support for application, structural and parametric reconfigurability is inherently built into the

system and handled by the IRIS Component Framework.

Chapter 5 — The IRIS Reconfigurable Radio IRIS Overview | 84

Reconfigure -___
7| Structure Rer=mev
g i N7 CDlace =~

e\ m !
:‘{\\0&\ Oliato; - QPSK |-
i O S :
Aao®
AN
FIR ot
Filter 4" " Mixer FIR Filter
Conﬂguration AD { /)\\ X% [1 100110100
Converter \\/ i Scale BPSK
o

N\
Local Oscillator 6\, /)

Figure 5.2 — A Reconfigurable Radio System

The final example in Figure 5.3 demonstrates how the IRIS system can facilitate an environment
for experimentation and rapid development of radio systems. In this example a radio configuration
is used to create a test scenario for experimenting with the effects of adding noise to a FSK
(Frequency Shift Keying) signal. The configuration not only specifies the structure of the radio
architecture but a user interface that allows dynamic user interaction with the system. The IRIS

architecture inherently supports this type of functionality.

]
Compare = .
J 'l Cameare [|
|

7 ’ W?FS? 7| Frequency ! Frequency
i Data J’ ’7‘7 Modulator r Analysis Noise J Analysis

Level of Additive Noise

Configuration

Figure 5.3 — A Reconfigurable Radio with User Interaction

5.3 IRIS Architecture

Following a large amount of experimentation with software architectures and software design, an
architecture for IRIS was created. (The term architecture in this context refers to the definition
discussed in Section 3.4.2; an architecture being a superset of principles prevailing a system

design.) Figure 5.4 illustrates the IRIS architecture and introduces all the main entities involved in

Chapter 5 — The IRIS Reconfigurable Radio IRIS Architecture | 85

its design. In addition to defining the general paradigms of the system, the IRIS architecture
consists of a Component Framework, a component model and rules for creating control logic and

radio configurations.

Radio Configuration

? Control Logic

Host Application

& 1 &

IRIS API

Reusable
Radio
RADIO ENGINE Components 4

Component Fram

ework

Operating System
Figure 5.4 — The IRIS Radio Architecture

Each of the entities in the IRIS architecture has been designed to address the reconfigurability

issues as addressed in Chapter 4. The following sections describe each of the entities in detail.

Note: In the remainder of the thesis capital letters will be used to denote the entities of the IRIS

system, e.g. Radio Component, Component Framework and Control Logic

5.4 Radio Components

The fundamental unit for building reconfigurable radios in the IRIS Radio Architecture is the Radio
Component. A user of IRIS creates a radio from existing Radio Components or by creating new
components when necessary. The Component Framework (discussed in the next section) is used to

chain Radio Components together to create the actual reconfigurable radio.

There were a number of challenges in designing the Radio Component. It was necessary to design
the Radio Components to encapsulate radio functionality in a way that would facilitate their reuse
among many applications. It was also necessary to develop a design that allowed ultimate

flexibility throughout the system. Overall, it was necessary to create Radio Components that could

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 86

facilitate application, structural and parametric reconfiguration as discussed in the previous chapter.

The resulting component design is described in the following sections.

5.4.1 Component Granularity and Component Types

Before looking at the actual structure of a Radio Component it is useful to describe component

granularities and component types.

The granularity of Radio Components has been designed as discussed in Section 4.3.1; for
example, each Radio Component implements operations at the granularity of FM modulators,
QPSK symbol detectors and FIR Filters, i.e. the functional ‘parts’ of a radio system. It should be
noted that although this is the approach taken in this work, the system itself does not constrain the
user to a particular granularity. The designer is free to implement components in smaller or larger
granularities if required; however, this thesis argues that these granularities are unsuitable for
reconfigurable radio. This is because radio systems are inherently built in sub-sections that are
easily identifiable. For example, the common Viterbi decoder is a reusable algorithm and therefore
an ideal candidate for a single component. A Viterbi decoder is also made up of many adders and
multipliers, yet it would not make sense to package these elements into individual components. If
adder and multiplier components were built and subsequently connected together to form a Viterbi
decoder, the algorithm would no longer be encapsulated in a component but would exist in the
interconnection between these components. This approach would contradicy the component
principles discussed in Chapter 3, Section 3.3 that require a component to be a self-contained

independent unit of deployment.

Another important aspect of the Radio Component is visibility of its internal implementation. The
Radio Component has been designed to use a black box abstraction. This means that all the
internals of how the component works are hidden from the user of the component. The only way

the component can be used is via the standardised interfaces it provides.

IRIS must support a multitude of different radio configurations. The majority of functions
performed in a reconfigurable radio are DSP related, however there is other functionality that needs
to be addressed such as how to input or output data, and how to interface and control hardware. In

the IRIS architecture different radio functions are categorised by the following three types:

1. DSP components
2. Input/Output (I0) components

3. Standalone components

DSP components allow signal processing functionality to be encapsulated into a component. 10

components are identical to DSP components but have extra constructs for supporting the input and

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 87

output of data into the signal processing chain. Standalone components satisfy the need to have
additional functionality that is required by the radio, but separate from the signal processing chain;
for example, controlling external hardware or implementing timers. The three basic types are

formed by inheriting from the abstract class ‘RadioComponent’ (see

Figure 5.5).
J|>{ RadioComponent K}
DSPComponent I0Component StandaloneComponent
+Process(in signallnOut) +Start()
+Process(in signalin, in signalOut) +Process(in signalinOrOut)
+Stop()

Figure 5.5 — Relationship of Component Types

5.4.2 Component Interfaces

An external view of the Radio Component helps to illustrate how the component is used in creating
a reconfigurable radio. Externally a Radio Component can be viewed as shown in Figure 5.6. The
Radio Component exposes a set of well-defined interfaces, which allow other entities in the IRIS
architecture (such as the Radio Component Framework) to interact with each component using the

same standardised pattern.

XML Interface

Parameter Interface O
Lifecycle Interface

Event Interface O Radio . y
Port Interface O Component O Signal Processing Interface

Command Interface o

O
Reflection Interface

Figure 5.6 — External View of a Radio Component

Each Radio Component implements a set of interfaces each addressing a different requirement.
Separate interfaces ensure that suitable cohesion is enforced in the component. The Radio
Component interfaces have been carefully chosen to address the various ways in which

components can be composed together in a component framework.

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 88

The basic interface supported by DSP and 10 components is the signal processing interface. Figure
5.5 shows the Process () method that components must implement to consume and produce
digital signals. The Process () method is discussed is detail with relevant examples in the next
Chapter, Section 6.2.6. In addition to a signal processing interface, the Radio Component supports
the seven different interfaces which the Component Framework uses to control and interact with
the Radio Component, namely; Lifecycle Interface, Parameter Interface, Event Interface, Port

Interface, Command Interface, Reflection Interface and Component Information Interface.

Lifecycle Interface (Figure 5.7): This interface exposes all the functionality for controlling the
lifecycle of a Radio Component and its function is to allow for initialisation and cleanup of a
component. While these methods represent the basic lifecycle of a component, different component

types add additional steps to the lifecycle of a component.

«interface»
LifeCycle
+GetDetails()
+Calculate OutputSignalFormat(in inputformat)
+Init()
+Destroy()

Figure 5.7 — Lifecycle Interface

Parameter Interface (Figure 5.8): The parameter interface allows the user of a component to
configure and reconfigure the operation of the component throughout its lifecycle. Each component
exposes a set of parameters that define its behaviour and parameters can have any data type. The

parameter interface allows access to these parameters in a generic way.

«interface»

Parameter
+GetParameterValue(in id)
+SetParameterValue(in id, in value)

Figure 5.8 — Parameter Interface

Event Interface (Figure 5.9). Components can fire events to asynchronously inform external clients
of occurrences during the lifecycle of the component. A component can support any number of
events and various types of data can be passed with events. The event interface allows external

clients to subscribe to any event that the component publishes.

«interface»
Event
+AddEventListener(in eventld, in callbackType, in userDefinedValue, in callback)
+RemoveEventListener(in eventld, in callback)

Figure 5.9 — Event Interface

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 89

Port Interface (Figure 5.10): Ports are inputs into a component. This interface allows external
clients to asynchronously pass data to a component for processing. Ports are provided to

differentiate the processing of data from that of digital signals.

«interface»
Port

+ProcessPortData(in id, in data, in length)

Figure 5.10 — Port Interface

Command Interface (Figure 5.11): Commands allow external clients to issue asynchronous
commands to a component. This provides a generic mechanism for exposing common DSP
functionality, examples being: ‘reset synchroniser’, ‘recalculate lookup table’ or ‘cease carrier’.
While parameters could be used to implement this type of functionality, commands provide a

useful way to separate out more numerically based parameters from function-based operations.

«interface»
Command

+TriggerCommand(in id)

Figure 5.11 — Command Interface

Reflection Interfaces (Figure 5.12): The reflection interface allows external clients to query
information about a component programmatically. External clients can query any information
about the type of component, the parameters, events, ports and commands it supports and general-

purpose information about the component such as author, version, etc.

«interface» «interface»

ParameterReflection EventReflection
+GetNumParameters() +GetNumEvents()
+GetParameterName(in id) +GetEventName(in id)
+GetParameterDataType(in id) +GetEventDescription(in id)
+GetParameterDefaultValue(in id) +GetEventDataType()
+GetParameterDescription(in id)
+IsParameterDynamic(in id)

«interface» «interface»
PortReflection CommandReflection
+GetNumPorts() +GetNumCommands()
+GetPortName(in id) +GetCommandName(in id)
+GetPortDescription(in id) +GetCommandDescription(in id)

Figure 5.12 — Reflection Interfaces

Component Information Interface (Figure 5.13): This information provides information about the
component itself and can be used for dynamic and automatic discovery of details about
components. In addition to information such as name, author, version, etc, the component

information exposes two methods offering XML descriptions of the component. The first method is

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 90

an XML interface which exposes an example configuration. This provides a sample of XML to a
client wishing to know how the component can be configured. The second method provides XML
indicating the capabilities of the component including all the information supported by the
reflection information. This XML facility is of use both during system-design and during automatic

reconfiguration in that systems can be built that can automatically use a component without user

intervention.

«interface»
Componentinformation

+GetComponentName()
+GetComponentType()
+GetComponentVersion()
+GetComponentAuthor()
+GetComponentDescription()
+GetComponentXMLDefaultConfiguration()
+GetComponentXML SelfDescription()

Figure 5.13 — Component Information Interface

Once a class implements ail these interfaces, it can be used as a biack box Radio Component within

the Component Framework (see Figure 5.14).

«interface» «interface» «interface» «interface»
Parameter Event PortReflection Command
oy A A\ |
\\ \ ‘I //

«interface» y «interface» «interface» «interface»
ParameterReflection EventReflection Port CommandReflection
N\ 7,

W, N N rA / A

- = \ \ 1 / —
«interface» X \ ! b «interface»

. 1 ..
Componentinformation by \ i 7~ LifeCycle

\ !
W 5 8 Yoo [ST
S S N [[7
= ~ N \ \ 1 / / . #
\\ N \ \ \ | 7 / Ve //
s = ”
RadioComponent

Figure 5.14 — Abstract RadioComponent class

5.4.3 Component Lifecycle

An important aspect of the Radio Component is its lifecycle, i.e. the pattern by which the
component is used. The challenge in designing the lifecycle is to support enough functionality so
that any aspect of a reconfigurable radio can be developed but exposed in a generic way. A suitable

lifecycle has been designed for Radio Components and it consists of seven stages:

1. Loading
2. Initialisation
3. Starting
4

Processing

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 91

5. Stopping
6. Cleanup
7. Unloading

Loading: During this stage the component is loaded for use. This will include any retrieval of
components and any instantiation of classes. Once this stage has completed the component must be

available and ready for use.

Initialisation: During this stage the component is primed with all the information required for
operation. The first step tells the component what parameters it should use and this is performed by
repeated calls to SetParametervalue (). In the assembly of components into a working radio
system, many different types of signal will be used so it is important that the framework can work
out if a configuration is valid. The GetDetails() call provides the framework with the details
required to work out if a component is suitable for inclusion in a radio design. Next, a call to
CalculateOutputSignalFormat () tells the Radio Component what type of input signal it will
be receiving and thus the component can work out what output signal it will produce for the given
input. The final step in initialisation is a call to Tnit (). This allows the component to perform all
other initialisation such as allocating memory, etc and also give the component an opportunity to
reject the configuration it has been initialised with if it detects an error. For example, if the
component does not support a particular data type or has been initialised with incorrect data the

initialisation method can return false to indicate this error.

(10 only) Starting: Indicates to an IO component that input should commence.

(DSP and 10 only) Processing: In this stage the framework repeatedly calls the Process ()
method causing the Radio Component to perform its actual processing. This can be any operation
that the Radio Component supports but mostly DSP components will perform signal processing,
and IO components will perform output/input data to/from hardware. During the process stage the
component can fire events that occur in the course of processing. During this phase the component
will also receive asynchronous method calls from the framework when values have been
reconfigured, when commands have been issued and when data ports have received data. The
developer of the component can decide how best to react to these asynchronous methods according

to the context of a particular component.

(10 only) Stopping: Indicates to an 10 component that input should cease.

Cleanup: At this stage Destroy () is called which allows the component to free resources.

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 92

Unloading: This stage involves the deletion of the component instance and unloading of

component code.

Figure 5.15 shows a UML sequence diagram depicting the lifecycles of a DSP and an IO
component. The differences between the two lifecycles can be seen in this diagram. IO components
offer a Start () and Stop () method in addition to a Process () method. The Start () and
Stop () methods tell a component to cease input or output. These are required as IO components
usually have a great impact on the flow of signals between components. All signals are ultimately
input and output via 10 components therefore these methods allow the flow of signals to be
controlled in the radio. The Process () method allows an IO component to either input or output

data.

Unlike 10 components, a DSP component has two Process () methods. The two methods differ in
the way signals are processed by the component. One method is for processing signals in place, in
that both the input and output of the component are read and written to the same memory location.
The second type uses separate memory locations for both input and output. Memory conservation
is an important factor in software radio design so the in-place method was designed to allow the
developer to conserve the amount of memory used in the system. In some circumstances it can also
reduce the amount of memory copying required in a component. The not-in-place method is
provided so that memory copying can be reduced, as sometimes the in-place method requires data
to be copied to a temporary location before processing. By providing separate inputs and outputs it
is possible to avoid this copying. Overall these methods provide enough flexibility for the

programmer to write efficient and simplified Radio Components.

The sequence diagram for the lifecycle of a standalone component is shown in Figure 5.16.
Standalone components do not interact with signals and thus have less functionality. While all
other components are processing signals, the standalone component can perform other functionality
in response to changing parameters, commands or ports. Like all components, standalone

components can fire events.

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 93

RadioEngine DSPComponent RadioEngine 10Component

|

T
|
|
—

i
|
I
i
. Load and Create Instance ! B Load and Create Instance
Loading { ? Loadlng{
[all params] SetParameterValue ([all params] SetParameterValue
GetDetails GetDetails
Initialisation CalculateOutputSignalFormat Initialisation < CalculateOutputSignalFormat
Init Init
[while radio running] Process Start
Starting {
ValueHasChanged ([while radio running] Process()
5 TriggerCommand
Processing
Events Fired ValueHasChanged
i TriggerCommand
Process Complete Processmg <
[S Events Fired
Cleanup Beiml Process Complete
k S s
Delete Instance and Unload . Stop
Unloading ; Stopping
L] i
I |
! ! Destroy
Cleanup
Delete Instance and Unload
Unloading

A

Figure 5.15 — Sequence Diagrams of DSP and 10 Component Lifecycles

Standalone components do not offer any new lifecycle methods to the standard component and thus
are the most basic type of component. Standalone components operate through the use of

parameters, events, ports and commands.

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 94

RadioEngine Standalon:

i ;
i l
|
1
Loadmg { Load and Create Instance !
([all params] SetParameterValue
GetDetails
Initialisation {
Init
(ValueHasChanged
< TriggerCommand
Component Active {
Events Fired
\
Desiro
Cleanup { ey
Un|oading { Delete Instance and Unload
I
I
I

Figure 5.16 — Sequence Diagram of Standalone Component Lifecycle

5.4.4 Discussion

From the list of interfaces discussed in the previous section it becomes apparent that a significant
amount of code must be written to implement each interface. The reason so many interfaces are
required is to make up for the lack of reflection in some programming languages, in this case C++.
As discussed in Section 3.3.3, reflection allows code to query the capabilities of other compiled
code dynamically and facilitates meta-data. Languages like Java and C# inherently support
reflection and thus a binary executable from these languages can be queried to find out what
methods and member variables is exposed by the code. C# (and Microsoft’s .NET platform in
general) goes a step further than Java in that it inherently supports attributes (also known as
declarative constructs), pieces of data that can be included within a programme itself

[Liberty2001]. Using reflection a C# programme can read its own attributes.

Reflection information is required by the IRIS system because components have to be loaded
dynamically and used at runtime. This reflection information allows the framework to query the

component as to its capabilities, the data types it supports and provides access to additional meta-

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 95

data such as the component’s name, version, description and documentation. For this to happen the
framework has to be able to query information dynamically about the component, from simple
information such as the component’s name to more complicated information such as the parameters
and events that a component supports. The latter is important when considering graphical
applications and visualisation of radio systems. Using reflection a user interface can query
information about all components in a generic away allowing the details of a component to be

displayed. This allows a user to graphically build radio systems without having to write code.

To overcome this problem the process of writing most of these interface methods has been
automated via a scripting language. This language will be covered in the next chapter (Section
6.2.3), but the overall effect of using this technique is that the programmer only has to implement a
minimal amount of code to programme a Radio Component. This is illustrated in Figure 5.17. By
using the scripting language the only interfaces the programmer has to implement are the lifecycle

and signal processing interfaces. The remainder of the interfaces are automatically generated.

XML Interface

Parameter Interface O—f

Event Interface O—— Lifecycle Interface

Port Interface O— Signal Processing Interface

Command Interface o—

. Programmer Implementation

Reflection Interfaces Automatically Generated

Figure 5.17 — Radio Component Showing Interfaces Implemented by Code Generation

In addition to implementing various interfaces, the abstract RadioComponent class provides
several methods that allow the component implementation to interact generically with external
users of the component (see Figure 5.18). For example, by overriding the valueChanged ()
method, the programmer can be notified when a parameter has been changed externally. Likewise
CommandWasTriggered () indicates to a component that external control logic issued a command
to the component and ProcessPortData () indicates that data was received into a port of the
component. These facilities maintain the black box abstraction that allows Radio Components to be

used generically.

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 96

RadioComponent

#ValueHasChanged(in parameterlid)
#CommandWasTriggered(in command!d)
#ActivateEvent(in eventid, in data)
#ProcessPortData(in portld, in data, in length)
#Loglnfo(in text)

#LogError()

#LogWarning(in text)

#F atalStop()

+GetOutputSignalFormat()
+GetlnputSignalFormat()

Figure 5.18 — RadioComponent

For firing events the RadioComponent class offers the method ActivateEvent () which allows
a component to generically notify any number of external subscribers during processing. The
scripting language automatically generates generic code that allows the Component Framework to
interact with the Radio Component in this way. RadioComponent also supports a variety of
support methods for logging information and errors, and for querying information about the signals

it will be receiving from the Component Framework.

Implementing DSP and 10 components requires the programmer to write signal processing code
and this is written in the Process () method. The engine repeatedly calls a component’s
Process () method providing it with memory locations for reading and writing samples. This
technique decouples components as each component does not require knowledge of the other
components in the reconfigurable radio. Components are thus passive, only performing processing

when called on to do so.

The other methods left for implementation by the programmer are mostly to satisfy the lifecycle of
a particular component type. The programmer must implement GetDetails() and
CalculateOutputSignalFormat () to allow external clients to query information about how a
component plans to process data. The GetDetails () method allows a component to specify the
data types it can accept and whether or not it processes data in-place.
CalculateOutputSignalFormat () allows an external client to figure out what block size and
sampling rate it can expect as an output from the component for a given input. The programmer can
use the calls from Init () and Destroy() to perform pre and post steps to processing. 10

components can avail of calls to Start () and Stop () to control the input and output of data.

Chapter 5 — The IRIS Reconfigurable Radio Radio Components | 97

5.5 Component Framework

The IRIS Radio Component Framework is an infrastructure that allows Radio Components to be
composed together to form a reconfigurable radio. The diagram of the IRIS architecture is
reproduced here in Figure 5.19. This diagram shows the role of the Component Framework in the
architecture. The framework is the core of the architecture consisting of the sub-systems required to
build a reconfigurable radio. It consists of the Radio Engine, Component Manager, Control Logic

Manager, XML parser and the IRIS API:

e Radio Engine: The Radio Engine implements different radio configurations and is the core of
the Component Framework. The Radio Engine brings together Radio Components and Control

Logic to implement the radio design and controls their interaction.

e XML Parser: The XML parser reads XML radio configurations, verifies their content and
converts them to an internal representation of a radio design that can be implemented by the

Radio Engine.

e Component Manager: The Component Manager is responsible for loading and unloading
Radio Components from the framework. The component manager can load components from a
variety of locations (e.g. local file system or internet) and present them in a generic form for

use by the Radio Engine.

e Control Logic Manager: The Control Logic Manager loads and unloads various types of
Control Logic for use by the Radio Engine. Control logic can be implemented in potentially
any language (currently C++ and Java are supported) so the manager must present each of

these control logic types in a generic way for use by the engine.

e /RIS API: The IRIS API is provided to allow the Component Framework to be integrated into
other applications. The API abstracts the particulars of the Component Framework,
components and control logic from the user of the API providing a simple interface for the

construction of reconfigurable radios

Chapter 5 — The IRIS Reconfigurable Radio Component Framework | 98

Radio Configuration

i

Host Application

48 1 &

IRIS API

Reusable
Radio
RADIO ENGINE Components

Component Framework

Operating System

Figure 5.19 — The IRIS Radio Architecture

The operation of the Component Framework is illustrated by the flow diagram shown in Figure
5.20. This diagram shows that there are three main stages a radio system goes through;
initialisation, running and cleanup. In the initialisation stage the XML configuration is read,
verified and converted to an internal structure. The Radio Engine uses the internal structure in
conjunction with the Component Manager and Control Logic Manager to build the radio system.
During the running stage the engine controls the movement of signals through the components of
the radio system. Also, Control Logic can respond to events from the components and reconfigure
any aspect of the system. Finally, at the cleanup stage all the resources used by the system are

released.

Chapter 5 — The IRIS Reconfigurable Radio Component Framework | 99

o1pey] 9[qeIn3uoddy S| YL — ¢ 1adey)

yiomawres. | Judsuodwo))

!

001

o1pey] d[qean3yuoddy € Juneau)) 10y weadeiq Mo — (07'S 24ndiy

XML parser is used to read and
verify the syntax of an XML
b configuration. The
configuration is translated into
an internal representation

The radio engine reads
internal radio configuration
and verifies that the radio

structure is valid

The engine traverses the tree
of Radio Components to verify
<
structure, allocate resources
and initialise each component

START

v v

The engine continually
calls upon components to
process signals, routing
outputs to inputs

¥

The engine is stopped.
It cleans up by using
managers to unload all
components and
control logic

The radio engine uses the
component manager to find,
» load and instantiate the
components required to
implement the radio design

v

If specified, the engine uses
the Control Logic Manager to
load, find and initialise control

logic

Control Logic controls and
reconfigures the radio via
the control logic interface

Initialisation

Radio
Running

Cleanup

5.5.1 Radio Engine

The Radio Engine is the core of the Radio Component Framework. The engine is responsible for
assembling a reconfigurable radio from a set of Radio Components. To achieve this it must be
possible to define a radio configuration that shows how Radio Components can be fitted together
thus allowing the Radio Engine to translate this into a working radio system. It was decided to use
XML to define the radio configuration as it allows the representation of hierarchical data and thus

was suitable for defining the structure of a radio system.

The XML file defines three things:

1. Components: The list of components required in the radio system along with values for
configuring each component in a particular way.

2. Control Logic: Details about control logic. Control Logic is additional code written by the
radio designer to control components and to provide a generic way to allow interaction
among components. Control Logic is application specific in that each type of radio system
will have a different Control Logic implementation. Control Logic is discussed in detail in
Section 5.6.

3. Documentation: Details about the radio system being created, i.e. radio system name,

description and version.

The interaction of components, XML configuration and Control Logic are illustrated in Figure

5.21.
Reconfigurable Radio Configuration Reusable Radio Components

XML

Radio Engine

Working Radio System

Figure 5.21 — Interaction of Radio Engine, Radio Components and Control Logic

Chapter 5 — The IRIS Reconfigurable Radio [101

5.5.2 Basic XML Configurations

The IRIS architecture defines its own XML configuration that allows a radio configuration to be
described. The following example demonstrates how a basic configuration can be used to combine
two Radio Components. In this example an FIR filter and a Decimator are being connected. A third
component (i.e. a signal generator component) is included in the example as a means of supplying

input to the two components of interest.

.A: : 0.05 o 1t A: £ Signal Generator FIR Filter Decimation

J

Figure 5.22 — Basic Series of Components

Configurations are built via structures, specified via the <structure> XML tag. Structures
represent sequences of components and can be combined to form almost any radio configuration.
Within a structure components are specified for inclusion via the <component> tag. The
<parameters> tag within this allows the individual parameters for a component instance to be
specified. From the simple example shown above, the engine will use the component manager to
source and instantiate the ‘SignalGenerator’, ‘LowPassFIRFilter’ and ‘Decimator’
components. Following initialisation and start-up, the Radio Engine will continually call
Process () in each component passing outputs into inputs. All radio systems are constructed in

this way.

There are a few points that should be noted from the example above. Firstly, the order of
components as they appear in the <structure> XML tag is the same order the signal takes as it
passes through the components. (The only exception to this is when parallel components are used.
In this case the signal may be transferred to two structures or components, which appear one after
another in the configuration.) This approach simplifies the configuration mechanism without the

need for specialised structural languages.

Chapter 5 — The IRIS Reconfigurable Radio [102

Secondly, the SignalGenerator component demonstrates the automatic handling of sample rates
and block sizes. The exact handling of sample rates and block sizes is discussed in detail in the next
Chapter, Section 6.2.5. The SignalGenerator is the first component in the signal chain and thus
this component determines the sample rate and block sizes used in the chain. In the initialisation
phase the Radio Engine reads this signal format from the SignalGenerator and calls
CalculateOutputSignalFormat () on each subsequent component thereby working out

automatically the sample rates and block sizes to use between components.

Thirdly, the designer of the radio system is abstracted from the details of the platform, operating
system and implementation languages of components. The engine maintains this abstraction and

also automates other facilities such as memory allocation.

5.5.3 More Complex Radio Configurations

Not all radio configurations are linear. IRIS was therefore designed to facilitate more complex
radio structures. Virtually any desired hierarchy of components can be created by combining the
<parallel> tag in XML with any of the multiple structures available. The following discussion

describes the IRIS structures and details how they are realised in IRIS.

Duplicated Signal Path

It is often necessary to pass a signal to two or more processing algorithms (see Figure 5.23). For
example a design may require the filtering of two signals with a comparison of their result. IRIS
supports the automatic duplication of signals. Figure 5.23 shows how the output of a sine wave
generator can be passed to two FIR filters in parallel. The two filters are defined within one
embedded structure, within the overall structure. IRIS recognises the embedded structure and will

construct a signal path and include automatic duplication of the signal to both filter components.

In this case the two components in parallel must be configured to accept a signal of the same
sample rate as the same signal from the signal generator is copied and passed to both components.

During initialisation the Radio Engine will detect such inconsistencies, indicate an error and exit.

Chapter 5 — The IRIS Reconfigurable Radio [103

FIR Filter

Signal Generator — %

@‘ FIR Filter
==

Figure 5.23 — A Duplicated Signal Path

For large amounts of data the duplication of signals can sometimes hinder performance, as a copy
of the signal has to be created. For this reason IRIS only performs memory copying when
absolutely necessary. This is achieved by analysing the component layout. Signal copying is
avoided if IRIS detects that a particular component configuration will not corrupt a signal, thus

allowing the same signal to act as an input to multiple components.

Synchronous and Asynchronous Signal Paths

DSP designs often require multiple signals to be processed simultaneously. This accommodates
designs that use multiple input or output channels, or applications that require asynchronous
processing as is the case in a transceiver which requires both a transmitter and receiver path. IRIS
is capable of processing multiple signal paths as it supports the expression of multiple structures in

XML. IRIS supports two types of signal paths, synchronous and asynchronous.

A synchronous signal path synchronises signals at particular points in the radio system. This
facility is required in designs that process one signal through multiple paths, each path containing
different numbers of components. The general problem is illustrated in Figure 5.24. One signal
enters the system at X. This signal is copied, one copy applied to A, the other applied to D. The
result that appears at Y must be the result of processing through A, B and C. Likewise the output at
Z must be the result of the same signal processed by D and E. The order and technique used to

process signals is essential in ensuring that the output receives the processed blocks of data at the

Chapter 5 — The IRIS Reconfigurable Radio | 104

same time even though they have taken different paths through the system. Without

synchronisation there would be a delay between the outputs of these multiple paths.

- Output

Figure 5.24 — Synchronisation in IRIS

Synchronisation is achieved in the IRIS system by grouping sets of components into a structure.
Each structure is treated as a single component thus in the example in Figure 5.24, A, B and C
would be grouped for processing as would D and E. A single thread is used for processing which
eliminates the need for radio-wide synchronisation of memory. In the example discussed, A, B and
C would be processed first with the result stored in memory, followed by copying the signal for

processing by D and E. Only then are the two resulting blocks passed to the output.

In contrast, asynchronous structures are executed in different threads in the operating system. In the
example above asynchronous operation would mean that (A, B, C) and (D, E) would be processed
by different threads. To simplify memory synchronisation the blocks of memory used for
communication between these components is allocated from different pools of memory, thus no
OS-level synchronisation such as mutexes are required. This type of radio layout is more suitable
when completely separate structures of components are required, an example being a transceiver. A
transceiver requires both transmit and a receive paths thus it makes sense to separate these out into
asynchronously. An advantage of this technique is that the use of multiple threads can also improve
performance in implementations that use a lot of hardware 1/O. A disadvantage of this technique is

that memory cannot be shared between multiple paths therefore more memory may be required.

Figure 5.25 is an example of where synchronous parallel paths are created. The <parallel> tagin
XML is used to indicate to IRIS that two synchronous parallel structures are to be created. Figure
5.26 is an example of where two independent asynchronous paths are created. The overall radio

configuration contains two base structures, both operating independently of each other.

Chapter 5 — The IRIS Reconfigurable Radio | 105

= 1 ZET) imate
= alse”>
a1Gence "
>noise</signal> = | g
Rate>44100- Rate>

’

Signal Generator FIR Filter
nd” ="false”>

="SignalGenerator”>
>noise</signal>

Rate>44100</sampl

&

Signal Generator FIR Filter

ndPassFIRFilter”> @

&

Figure 5.25 — Multiple Synchronous Signal Paths

noise

11 B

512

s>32
0.05
8</fact Signal Generator FIR Filter Decimation
y ‘ 1
0]
mate2”> ————J

Signal Generator FIR Filter

U

«

Figure 5.26 — Multiple Asynchronous Structures

Chapter 5 — The IRIS Reconfigurable Radio | 106

Embedded Structure
At any point in the signal path IRIS supports embedded structures. This means that a group of
components can be encapsulated to appear as just one component. In the example in Figure 5.27

one of the parallel paths contains an embedded structure.

jnal>noise jna
i o 44100 P o -D-D-k
"kSize>512</t ke |

32 FIR Filter

50,15/ cutof Eipws :
e e e Signal Generator [$ } 7\/&/

” - . F,,,,7 ., e

Figure 5.27 — An Embedded Structure

Signal Routing

IRIS supports signal routing in that it allows a signal to be optionally routed to a particular
component. For example in Figure 5.28 the signal can be routed to one component or the other. The
route that a signal takes can be adjusted at runtime thus allowing dynamic designs to be
implemented. For example a modulation detection/classification component could cause the signal
to be routed to the appropriate demodulation component. The XML description file allows for this
by using the ‘selected” and ‘exclusive’ options of the <structure> tag. The
‘exclusive=true’ statement means that all routes are mutually exclusive thus only one route can
be chosen. The ‘selected="0"" statement tells the engine which route to take and this value can

be changed at runtime.

Multiple Inputs

Finally, IRIS allows signals from multiple components to be passed to one component. This is
achieved via channels. Two signals from different components are combined as a multi-channel
signal for input to another component (Figure 5.29). Inputs can also come from embedded
structures. By combining all these constructs almost any DSP system can be achieved by the

engine.

Chapter 5 — The IRIS Reconfigurable Radio | 107

radio
2 M
o
[
j="0">
s>32</numtaps> FIR Filter
>0.05</cutoff>
= Signal Generator
¢ A
I
: FIR Filter
I
S =
Figure 5.28 — Signal Routing
s lge
19000 i
60000 - :
M 4096</nt
form>sin</wave
alge
) 19500- Signal Generator
implerat 60000
u $>4096-
sin</wave /-\J
pa ‘ Signal Generator Costas Loop
= e
Figure 5.29 — A Component with 2 Input Channels
[108

Chapter 5 — The IRIS Reconfigurable Radio

5.5.4 Internal Radio Representation

The XML parser must verify and convert the XML configuration into an internal representation for
realisation by the Radio Engine. In early basic prototypes radio systems were built from series of
components, in this case the only information that had to be stored internally was a list of
components and their sequential order. However, as the design progressed it was recognised that a
more hierarchical design was required to facilitate all of the constructs discussed in the previous
section. A model was designed that allows components to be specified in a hierarchical order whilst

simultaneously catering for the needs of signal processing.

The main problem that has to be addressed by the internal structure is synchronisation. The
embedded structures discussed in the previous section introduce a problem in that they allow
multiple components to be viewed as a single component. When single components are used in
parallel with embedded components the engine must ensure that all processing has completed
before the results are used. Figure 5.30 demonstrates this by showing synchronisation points. All

processing of components must be completed before passing beyond this point.

Synchronisation points \

Embedded Structure
containing another
embedded structure

R

Figure 5.30 — Synchronisation of Processing

Internally the radio system is represented as shown in Figure 5.31. To take account of
synchronisation in the internal representation of the radio, components and structures are stored in
entities called Units. Each Unit can contain either a component or a structure, a structure being the

equivalent of the embedded structure discussed above. Multiple units are stored in a Parallel, the

Chapter 5 — The IRIS Reconfigurable Radio [109

parallel being synchronised. Thus, during processing the Radio Engine goes through the hierarchy

of the radio structure, processing each parallel in turn.

Structure

-name

Parallel

-isMutuallyExclusive

-isBaseStructure
-collectionParallels : Parallel
-collectionStructures : Structure

. -whichSelected
1 -collectionUnits

Unit

-radioComponent
1 |-collectionStructures : Structure

RadioComponent

-type

-instanceName
-parameters

Figure 5.31 — Internal Representation of Radio System

5.5.5 IRIS API

As shown in the [RIS Radio Architecture diagram (see Figure 5.4), the architecture provides an

APl (Application Programming Interface) called the IRIS API. This API encapsulates all the

functionality of the Component Framework into one API that can be used by other applications to

create reconfigurable radio systems. The interface provided by the API is shown in Figure 5.32. In

the next chapter, Section 6.4 will demonstrate how this interface can be used in practice.

IRIS API

+IRISInitSystem()
+IRISGetVersion()

+IRISCreateEngine()

+IRISGetJVM(in whichEngine)

+IRISGetError(in whichEngine)

+IRISRedirectLogOutput(in whichEngine, in callback)

+IRISDestroyEngine(in whichEngine)
+IRISSetComponentsDir(in whichEngine, in directory)
+IRISGetComponentsDir(in whichEngine)

+IRISSetJVM(in whichEngine, in javaVirtualMachineDirectory)

+IRISLoadRadio(in whichEngine, in pathXMLRadioConfiguration)
+IRISUnloadRadio(in whichEngine)

+IRISIsRadioLoaded(in whichEngine)

+IRISSetControlLogic(in whichEngine, in controlLogicInterface)
+IRISStartRadio(in whichEngine)

+IRISStopRadio(in whichEngine)

+IRISIsRadioStarted(in whichEngine)

+IRISGetXMLStructure(in whichEngine)

Figure 5.32 — Interface of the IRIS API

Chapter 5 — The IRIS Reconfigurable Radio

110

5.6 Control Logic

Although components allow functionality to be abstracted and encapsulated into reusable units,
when components are combined together dependencies naturally occur (coupling and dependencies
were discussed in Section 3.2.2). If for example (see Figure 5.33) a particular radio configuration
requires that component 4 is dependent on symbol timing information provided by component B,
then it follows that component 4 cannot operate without component B. If at a later date we want to
reconfigure to a new radio implementation which uses a different source of symbol timing, then 4

will have to be changed to accommodate this new dependency.

Dependency between A and B

Figure 5.33 — Component Dependency

IRIS allows components to remain independent and decoupled by introducing the concept of
Control Logic which allows component interaction to be specified by an implementation that exists
outside the components themselves (see Figure 5.34). In addition, Control Logic is also abstracted
from the overall structure of the radio implementation. This means that even if additional
components are added into a structure (such as inserting a new component between 4 and B) the

control logic will still function.

Control Logic

]

Figure 5.34 — Using Control Logic to Eliminate Component Dependencies

The Control Logic for IRIS can be implemented in either C++ or Java and is isolated from the
particulars of components. Java in particular allows radio implementations to take advantage of
Java’s vast class library. A simple API is provided in both C++ and Java to allow the Control Logic
to query and manipulate the radio through interaction with the Radio Engine. The interface
definition of this API is shown in Figure 5.35. By making calls to this API the Control Logic can

manipulate the components of a radio system.

Chapter 5 — The IRIS Reconfigurable Radio Control Logic | 111

«interface»
Radio

+GetNumComponents()

+GetAllComponents(inout array, inout size)

+FindComponent(in name)

+FindComponent(in name, in instanceName)

+FindParameter(in componentld, in name)
+SetParameterValue(in componentld, in parameterld, in value)
+GetParameterValue(in componentld, in parameterld, out value)
+FindEvent(in componentld, in name)

+Subscribe ToEvent(in componentld, in eventld, in callback)
+UnsubscribeFromEvent(in componentld, in eventld, in callback)
+FindPort(in componentld, in name)

+SendDataToPort(in componentld, in portld, in data, in length)
+FindCommand(in componentld, in name)

+TriggerCommand(in componentld, in commandld)
+InstantiateComponent(in type, in instanceName)

+Replace Component(in existingComponentld, in newComponentid)
+InsertComponentBefore(in componentldBefore, in componentldNew)
+InsertComponentAfter(in componentidAfter, in componentldNew)
+RemoveComponent(in componentld)

+FindParallel(in name)

+ParallelSetSelected(in parallelld, in selected)
+ParallelGetSelected(in parallelld, out selected)
+ParallelSetExclusive(in parallelld, in exclusive)
+ParallelGetExclusive(in parallelld, cut exclusive)

Figure 5.35 — Interface Control Logic uses to Control Radio

Like Radio Components, the Control Logic has a well-defined lifecycle and each controller must
implement the same interface for use by the Component Framework. Figure 5.36 shows the

interface definition for Control Logic. Three methods must be implemented:
Load(): This method is called by the Radio Engine to initialise the Control Logic. It provides a
reference to the Radio interface (Figure 5.35), allowing the Control Logic to interact and

reconfigure the radio system.

AttachToComponents(): This method is called to allow Control Logic to perform any initialisation

of its own prior to the running of the radio.

Unload(): This method is called by the Radio Engine to unload the Control Logic allowing it to

free its resources.

The lifecycle of the Control Logic is depicted in UML sequence diagram shown in Figure 5.37.

«interface»
ControlLogic
+Load(in radiolnterface)
+AttachToComponents()
+Unload()

Figure 5.36 — Controller Interface

Chapter 5 — The IRIS Reconfigurable Radio Control Logic | 112

RadioEngine ControlLogic

T
|
|

Load Code and Create Instance

Load()

h 4

AttachToComponents()

SubscribeToEvents

AttachToComponents Complete

Event Fired

TriggerCommand

SetParameterValue

SendDataToPort

Unload()

Delete Instance and Unload

Figure 5.37 — Lifecycle of Control Logic

Chapter 5 — The IRIS Reconfigurable Radio Control Logic | 113

5.7 Worked Example

The overall operation of the IRIS framework is best illustrated by an example. While the IRIS
system could be used for building many devices such as receivers, transmitters, test equipment and
signal analysis tools, the transceiver is the best example to illustrate its many features. A
transceiver incorporates both a receiver and transmitter and so is a good choice for demonstrating
how multiple sub-systems can co-exist and interoperate within the Component Framework. For this

example a digital FSK (Frequency Shift Keying) transceiver is considered.

5.7.1 An FSK Transceiver

The FSK transceiver considered will allow digital data to be transmitted and received using the
IRIS system. This functionality could be used in many scenarios for example in communicating
digital speech or any form of data. This raises the question as to what the operating parameters of
the device might be, e.g. frequency, data rate, bandwidth, etc. Usually in traditional radio design
these specifications determine the structure, hardware and capabilities of the final device. For
example the data rates required to facilitate transmission of speech and video are very different and
so will usually result in completely different hardware being used. Changing this rate if at all
possible usually requires a significant change in hardware forcing changes from clock frequencies

to firmware.

In the IRIS system however, all the specification of the application is independent of low-level
hardware details. At this higher abstraction, system specifications are more decoupled from
hardware, for example the hardware architecture is never changed in response to a change in
transmission data rate. The one parameter that the system is dependent on is the overall processing
power of the architecture and once the GPP system provides enough processing capability many
radio types using different specifications can be implemented. This type of capability radically
changes the radio design paradigm affecting how radio systems can be viewed and constructed.
Instead of creating an FSK modulator for voice and another for data, one generic FSK software
component is created and by changing the parameters of this component many different types of

information can be accommodated.

With this approach in mind, designing the FSK transceiver becomes less about choosing operating
parameters and more concerned with functional partitioning of the system via software
components. Once the appropriate generic components have been built, the radio system can be

configured via parameters to deliver the required specification.

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 114

5.7.2 Partitioning the System

In approaching the problem of building the FSK transceiver, the functional partitioning via
components is thus first considered. A basic design for an FSK transceiver is shown in Figure 5.38.
In the transmitter path a binary signal is modulated as an FSK signal using two local oscillators.
Each oscillator generates a signal corresponding to a binary ‘1’ or ‘0’ producing a waveform as
shown in Figure 5.39. This signal is then up converted, filtered and then converted to an analogue
signal. Likewise in the receiver branch the received signal is digitised, down converted and filtered.
The baseband signal is then demodulated by mixing it with two local oscillators at the same
frequencies as those in the transmitter. Following filtering, the transmitted data is recovered via an
‘integrate and dump’ stage which outputs the stream of received bits. (For simplicity a non-

coherent receiver is shown).

The actual air interface of the radio system is facilitated by an RF front end. This device is
responsible for down-converting a signal of interest for demodulation and for up-converting the
transmitting signal for transmission. As discussed in Section 2.4.3 up and down conversion can
work in various ways either through an IF or by using direct conversion (zero-1F). This example
assumes that an RF front-end exists that allows transmission and reception on a large range of

frequencies with a suitable signal to noise ratio.

Receiver Path

-

Mixer FIR Filter
Q-RHI
& N s -
Mixer FIR Filter I
= 6) Oscillator ——

&) 1040110,
/ ./

4. 6) Oscillator [
l FIRFilter
% Sl
\\‘/ /’\) Oscillator { Fl\ﬁr - I
— . N, o
_ RF Front Mixer
End

== I
-~

} A/D
Received Converter

Signal

~

<f>o ilat
\) Oscillator
]

FIR Filter Mixer
Transmitter — — 7 B
Signal D/A , A Foid o010
Converter ! R
& @ Oscillator
Oscillator

-

Transmitter Path

Figure 5.38 — FSK Transceiver Design

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 115

Carrier 0

1:0:1:1:+0:0:1
- w0 e . B Time
VT WW MMMJA\/AVMWWMA v

Figure 5.39 — FSK Waveform

There are various goals that must be addressed in partitioning such a system into components.
Firstly, there is the goal of reuse. The aim here is to create components that can be reused in other
applications. This requires an effective component granularity to be chosen. Secondly,
reconfigurability is an issue. The boundary of components should facilitate structural
reconfiguration so that components can be replaced or inserted at runtime. For this to happen the
partitioning of the system should be related to function, for example it makes more sense to replace
a reusable channel extraction component then it does to alter individual multipliers in a filter.
Thirdly, the structure of components used should facilitate the operation of the radio. Components
should be suitably identified as DSP, 10 or Standalone components. Also, their composition should

occur logically, for example separating out the signal paths for transmitter and receiver.

Figure 5.40 shows how such a design can be partitioned into software components using the IRIS
system. There are many ways this partitioning can take place and various tradeoffs associated with
its implementation. For example, consider the channel extraction component. This component takes
a wideband signal, mixes it with a local oscillator, filters and then decimates the signal to a lower
sample rate. While this component could be built from separate mixer, filter and down sampler
components, it is sometimes better to encapsulate all this functionality into one component. Doing
so can offer opportunities to optimise the performance of the component and is suited to radio
functions such as channel extraction that are particularly data intensive. For example, Welborn
[Welborn99b] describes a technique for implementing narrow band channel extraction from
wideband receivers, a technique that reduces the processing requirement for channel extraction by

combining and reordering stages of channel extraction.

On the other hand there are cases where optimisation may not be possible or required. The
transmitter of the FSK transceiver is an example. Here separate components are used to implement
the up conversion, up sampling and filtering of the signal before transmission. At this point the data
rates may not be so intensive and reducing the ability to optimise may be an acceptable loss in the

face of gaining more reusable components.

Another example is the FSK demodulator component. This contains a great deal of functionality

that could be reused in other applications such as integrators, etc. However, the overall design must

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 116

be considered and implementing this and larger structures via hierarchies of components can over
complicate a design making the radio design error prone and difficult to maintain. Also, if we want
to later replace the FSK demodulator with another demodulator it is much easier to replace one
component rather than a complex structure of interconnected components. For this reason the best
approach is to partition the system via function, e.g. FSK modulator, down sampler, channel

extractor.

Receiver Path

-

Data Input Channel Extractor FSK Demodulator
Component Component Component

Mixer FIR Filter
|
@Oscnlla(or } —

. Down
Mixer FIR Filter Sampler

A AD /\% Compare Bit Buffer
¥| Converter /\C// Saciiator —
i
FIR Filter
Received 5 0
Signal "\) Oscillator = I
N e
= - Mixer
—a
i S'a"::'(‘;“e : | RF Front End
RF Front E ontrolier Contiotar [
Component |
T — |
> |
S |
i Data Output FIR Filter]‘ Up Converter Up Sampler FSK Modulator |
i Component Component | Component Component Component ‘
| FIR Filter Mixer Lookup Table |
| [om | [1] TIO| e |
| | X | T | S —1 | |Bit Shifter ’ |
Converter J] /\tj ‘ [\)’ ‘ J f |
Transmitted S L | b [| | |
Signal | | | — -
| I N |
; j. & ;
| Oscillator |
sl 1 . .

Transmitter Path

Figure 5.40 — Partitioning of FSK Transceiver into Software Components

5.7.3 Structures

With an appropriate component composition decided, an XML configuration can be written to
describe the design. This XML configuration is used by the Component Framework to create the
radio system. As discussed in Section 5.5.2 an XML file is used to define a set of structures, a
structure being a set of components. Internally the Radio Engine uses these structures to identify
how it should pass signals between components. Considering the FSK transceiver example, it
contains three sub-systems, the receiver, the transmitter and the RF front-end controller. To
separate out these sub-systems each is specified in a separate structure. Internally, the Radio Engine
assigns one thread to each structure and this thread controls all the interaction among components.
The use of a thread for structures and hence multi-threading in general is an important
consideration for the Radio Engine. In general multi-threading offers advantages in that it can

improve performance and is a useful technique in partitioning code into separate functional units.

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 117

However it can also introduce problems such as increased code complexity. Multi-threaded code
often requires synchronisation by the use of mutexes and semaphores, which can be difficult to

debug and maintain.

In terms of the IRIS system there were various ways multithreading could have been used in the
processing of signals. One option was to assign a thread to each component; in this way
components would be autonomous in their processing of signals (see Figure 5.41). Using this
approach however, introduces some problems. Firstly synchronisation is required to pass signals
between components and secondly, this synchronisation must occur independently of the radio
structure. It is difficult to have a system that uses threads for each component and at the same time
allow components to be developed without knowledge of their place in the radio system. One aim
of the system was to reduce the burden on the programmer and to make the system easy to use.

Therefore this approach was not used as overall it makes the radio system more complex.

Instead the approach used has been to use a single thread for each structure which has control over
the whole radio system. This greatly simplifies the complexity of Radio Components. In terms of
the FSK transceiver example, this approach results in the engine using three threads; one for each

structure, the receiver, transmitter and RF front-end controller.

B
v v

Single Thread Per Component Single Thread Per Structure

Figure 5.41 — Multithreading Approaches

The XML configuration to achieve this design is shown in Figure 5.42. This configuration shows

how the various parameters for the transceiver can be set.

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 118

<?xml version="1.0" encoding="utf-8" 2>
<radio>
<description>
<name>FSK Transceiver</name> <comment>FSK Transceiver Example</comment>
</description>

<structure name="RFFrontEnd">
<component type="HardwareController">
<parameters>

<serialport>COMl</serialport>
<transmitfrequency>100000000</transmitfrequency>
<receivefrequency>100000000</receivefrequency>
</parameters>
</component>
</structure>
<structure name="Receiver">
<component type="a2dpci4020" instance="DataInput">
<parameters>
<samplingRate>4000000</samplingRate>
<outputBlockSize>524288</outputBlockSize>
<channel>1</channel>
<useExternalClock>off</useExternalClock>
<voltage>5</voltage>
</parameters>
</component>
<component type="ChannelExtractor">
<parameters>
<MixerFrequency>2694700</MixerFrequency>
<NumberTaps>8</NumberTaps>
<FilterCutoff>0.07</FilterCutoff>
<Decimation>16</Decimation>
</parameters>
</component>
<component type="FSKDemodulator”">
<parameters>
<BlockSize>40960</BlockSize>
<SampleRate>250000</SampleRate>
<SignalFrequencyl1>10000</SignalFrequencyl>
<SignalFrequency2>30000</SignalFrequency2>
<CarrierFrequency>20000</CarrierFrequency>
<SymbolLength>30</SymbolLength>
</parameters>

"

¢ me="Transmitter">
<component type="FSKModulator”">
<parameters>
<BlockSize>40960</BlockSize>
<SampleRate>250000</SampleRate>
<CarrierFrequency>20000</CarrierFrequency>
<SignalFrequencyl>10000</SignalFrequencyl>
<SignalFrequency2>30000</SignalFrequency2>
<SymbolLength>30</SymbolLength>
</parameters>
</component>
<component type="UpSampler">
<parameters>
<ratio>4</ratio>
</parameters>
</component>
<component type="UpConverter">
<parameters>
<MixerFrequency>190000</MixerFrequency>
</parameters>
</component>
<component type="FIRFilter">
<parameters>
<NumberTaps>32</NumberTaps>
<CutoffFrequency>0.05</CutoffFrequency>
</parameters>
</component>
<component type="DataOutput">
<parameters>
<OutputChannel>0</OutputChannel>
<ScaleFactor>2.0</ScaleFactor>
</parameters>
</component>
</structure>

</radio>

Figure 5.42 — XML Configuration for FSK Transceiver

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 119

5.7.4 Control Logic

The last aspect of the system that needs to be addressed in how data can be input and output from a
device like an FSK transceiver. As introduced in Section 5.6, control logic is a general-purpose
mechanism for providing this type of functionality. Control Logic provides a generic way to
perform interaction with components without requiring specific knowledge of the internal workings

of'a component or of the structure of the radio itself.

Generic interaction with components is provided by the control facilities all components provide,
namely, properties, events, ports and commands. Properties allow control logic to change a value in
a component, for example a frequency setting. A piece of Control Logic can use a component’s
events by providing callback functions that are triggered when a component fires an event. Ports
allow Control Logic to send data to a component and commands allow the logic to trigger the
running of routines in a component. By using combinations of these, control logic can control any

aspect of the radio system.

Control Logic mimics the type of control functionality that might be found in the microprocessor of
a software-defined radio system or in the infrastructure of the JTRS SCA discussed in Section
2.5.2. Its similarities being that it controls and monitors the overall operation of the device.
However, apart from this, Control Logic in the IRIS system is distinctly different. Unlike these
other systems the IRIS control logic is only loosely coupled to the components of the radio system.
It has been specifically designed this way for reconfigurability. Components can be added,
removed and replaced from the radio system and the Control Logic will still function. This loose
coupling is maintained by the Radio Engine which abstracts the control logic from the engine and
by the APIs it provides. Instead of providing direct access to components the Radio Engine acts as
a proxy to all control logic/component interaction, effectively maintaining separation between
control logic and components. Instead of manipulating the parameters of a component directly it
uses the standard facilities for component interaction provided by the framework (as demonstrated
in Section 5.6). By using calls such as SetParameter () and ReplaceComponent () the

radio system can be manipulated to achieve parametric and structural reconfiguration.

Returning to the FSK transceiver example, the requirement here is straightforward; the control
logic must be able to send data to the FSK modulator component for transmission and be able to
receive data from the FSK demodulator component following reception. This is illustrated in
Figure 5.43. For transmission the control logic accesses the ‘SendData’ port of the FSK modulator
component it can then use the controller API to send data to the component. Internally the
component implements a handler function that allows it to react to the instruction to send data. For
reception the control logic subscribes to the ‘DataReceived’ event that the FSK demodulator

component provides. Every time data is received the Radio Engine calls a method in the Control

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 120

Logic thereby transferring the data from the component through the proxy of the engine and into

the controller.

Receiver Path

-

- Data Input Channel Extractor - “F;SK Demodulator
Component Component Component

Down
Mixer FIR Filter Sampler

A AD
V| Converter
Received
Signal M\,) Oscillator
NS E— - Mixer
Change h 4
Standalone Frequency
RF FrontEnd |
R ot EvaConvoter | “EETEN g CONTROL LOGIC
Component
Y
Send Data
" DataOutput “FIR Fitter *(" Up Converter Up Sampler | FSK Modulator
Component C Comp Compx Component
FIR Filter Mixer Lookup Table J
ei——_ - . - — o+
[DA % (|]] " . ,ﬁ Shifter
\ Converter Xy ’
Transmitted . =I5 |
Signal o
©
Oscillator
L I ST S | N R —

Transmitter Path

Figure 5.43 — FSK Transceiver Using Control Logic

Figure 5.44 shows example control logic for the FSK transceiver (error reporting code has been
removed for brevity). This controller continuously listens for a signal on a specified frequency.
Once a signal is received it transmits “Hello’ and moves to the next frequency. During the calls to
Load () and AttachToComponents () the control logic finds all the references it requires to the
components of the radio system. It finds the ‘Sendbata” port for transmission and subscribes to
the ‘DataReceived’ event from the demodulator component. When a signal is received the

frequency is incremented and the RF-Front End is instructed to move to a new frequency.

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 121

void Controller::Load(EngineInterface *engineInstance)
{
engine = engineInstance;

}
bool Controller::AttachToComponents ()

FSK 1 $11.1 o5 -omponent

hComponentModulator = engine;>FindComponent("FSKModulator“);

Find 1e ModulateData port of the FSK modulator

hPortModulate = engine->FindPort (hComponentModulator, "ModulateData");
Find the FSK Demodulator component

hComponentDemodulator = engine->FindComponent ("FSKDemodulator") ;

Subscribe t the SignalReceived event of the demodulator
engine->SubscribeToComponentEvent (hComponentDemodulator,
"SignalReceived",
(int) this,
SignalReceived) ;

¥ 1€

hComponentFrontEnd = engine—>FindComponent("FrontEnd");

Find the parameter 1ency

hParameterFfequency = engine—>FindParameter(hComponentFrontEnd, “Frequency”) ;

currentFrequeﬁcy = 100000000;
englne->SetParameterValue (hParameterFrequency, currentFrequency);

1 Controller::Unload()

i Controller::SignalReceived(int identifier, void* data, unsigned int length)
{
Controller *instance = (Controller*)identifier;
*message = "Hello";

instance->engine->SendToPort (instance->hComponentModulator,
instance->hPortModulate,
(unsigned char*)message,
strlen (message) +1) ;

currentFrequency += 1000000;
engine->SetParameterValue (hParameterFrequency, currentFrequency):;

Figure 5.44 — Sample Control Logic Source Code

5.7.5 Reconfiguration
Section 4.2 discussed reconfigurability and how this can be broken down into parametric, structural
and application reconfiguration. This section demonstrates how the IRIS system achieves

reconfigurability in the context of the FSK transceiver example.

The example of the FSK transceiver already features parametric reconfiguration. When changing

the frequency of the RF Front-End the control logic is changing a parameter of the radio system

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 122

and thus reconfiguring its functionality. Any parameter of a component in the radio can be changed

in this way thus allowing any aspect of the system to be reconfigured dynamically at runtime.

Internally inside components, the component must react to a parameter change. Each component
can optionally implement the valueChanged () method and thus perform any recalculation or
reconfiguration required to react to a parameter change. For example, the FSK modulator
component may have to recalculate its lookup table to respond to a change in operating

frequencies.

Structural reconfiguration allows Control Logic to manipulate the structure of the radio system by
adding, removing or replacing components at runtime. Also, when components are in parallel
signals can be routed to one or other components. To demonstrate how this works in the context of
the FSK transceiver, Figure 5.45 shows how the FSK modulator component of the transceiver can

be replaced at runtime.

void Controller::SignalReceived(int identifier, void* data, unsigned int length)
{
Controller *instance = (Controller*)identifier;
newModulationScheme = (char*)data:;

HANDLE COMPONENT hComponentNewModulator =
engine->InstantiateComponent (newModulationScheme) ;

(hComponentNewModulator == INVALID HANDLE VALUE)
{
printf ("Unknown modulation scheme or component %s\n", newModulationScheme) ;
}
f (engine->ReplaceComponent (hComponentFSKModulator, hComponentNewModulator) == false)

{

printf ("Error replacing component, incompatible with this configuration");

i

engine->DestroyComponent (hComponentFSKModulator) ;

Figure 5.45 — Code for Replacing a Component at Runtime

In this example the data of the received signal contains the name of the new component that should
replace the existing modulator. Using this name the new component is instantiated and used to
replace the existing component with a call to ReplaceComponent (). This example demonstrates
that functionality of the radio can be replaced at runtime. This shows that it is possible for radio
systems to alter their structure based on information received from other systems. This facility also
allows the FSK transceiver to become a general-purpose generic transceiver requiring only changes
in modulators and demodulators to enable new modulation schemes. (Chapter 7 will demonstrate

case studies showing how this type of reconfiguration can be used in other scenarios).

Chapter 5 — The IRIS Reconfigurable Radio Worked Example | 123

The final type of reconfiguration considered is application reconfiguration. This would require the
IRIS system to be reconfigured at runtime to implement a system using a different set of
components, parameters and control logic, thus in the focused context of the FSK transceiver this
facility holds less consequence. However, instead of changing the radio application completely,
application reconfiguration can be used as a means to upgrade the software of a reconfigurable
radio. With new components, parameters and control logic, a working radio system can be
reconfigured to a newer version possibly fixing bugs or enabling new capabilities. For example, in
the FSK transceiver example this could be used to upgrade the device by introducing a new
configuration with a new set of parameters that allow for better data throughput. Application

reconfiguration can be programmed via the IRIS API which is discussed in the next chapter.

5.8 Summary

The focus of this chapter has been the basic design and capabilities of IRIS, a means of building a
reconfigurable radio system using a component framework. The approach taken makes it extremely
simple to express the structure of a reconfigurable radio system. Part of this approach has been to
factor out as many common radio functions as possible into the framework so that radio system
design is simple and straightforward. This allows the system developer to concentrate on the design
of radio systems without having to deal with recurring problems and issues surrounding platforms
and hardware. As demonstrated in the worked example, the system features application, structural
and parametric reconfigurability through a cohesive APL. IRIS is thus a system that allows the

development of highly reconfigurable radio systems.

Chapter 5 — The IRIS Reconfigurable Radio Summary | 124

Implementation and Analysis

6.1 Introduction

This chapter provides further insight into the reconfigurable radio concept by discussing the
practical implementation of a real-life reconfigurable radio system. The IRIS Architecture
described in the previous chapter has been implemented as a fully functioning system and runs on
Windows 2000/XP. Implementation issues surrounding the Radio Component, the fundamental
unit for building reconfigurable radios in IRIS, are discussed in Section 6.2 and are followed by
practical examples in Section 6.3. Section 6.4 provides details of the IRIS API and supporting
tools. The use of externai hardware is discussed in Section 6.5 with results of scalability and

memory analysis of the system presented in Section 6.6.

6.2 Implementing Radio Components

This section gives insight into the development of Radio Components on Windows. It starts by
discussing some operating system issues of relevance when considering component-based
reconfigurability. It then goes on to provide detailed technical information on how Radio
Components deal with different sampling rates and data types, how they carry out signal
processing, and how the Component Framework combines components together to create a radio

system.

6.2.1 Choice of Operating System

There were no specific requirements of the IRIS system that demanded a particular operating
system. All modern operating systems provide basic system services such as virtual memory,
multi-threading, networking and therefore any of them would have been suitable for building the
core IRIS system. However, integrating the IRIS system with hardware posed a significant
challenge. During the course of this research it was difficult to source A/D/A converters of
appropriate specification and most of them suitable for the task required Windows to operate
therefore Windows was a natural choice. Also, using Windows offered the opportunity to integrate
the IRIS system into the DAWN networking system, also a Windows-based system, the result of

which is presented in Chapter 7.

6.2.2 Radio Components on Windows

The IRIS system was targeted for development in an object-oriented language such as C++, but the
C++ language itself does not have direct support for creating software components. In practice, it is
the operating system that dictates how code can be encapsulated and reused in this way. To
implement IRIS Radio Components for practical use the following questions had to be addressed
for the windows operating system:

e What form would a component take?

e How would components be loaded, unloaded and instances created of a component at runtime?

e How would components expose their functionality?

The unit of code reuse inherent to the Windows operating system is the DLL (Dynamic Link
Library). DLLs are libraries of executable code that can be dynamically loaded from disk by
applications. It should be noted that while it would be possible to develop a completely proprietary
method for encapsulating code in the same way as a DLL, the DLL approach has a distinct
advantage. DLLs are highly integrated into the Windows operating system as it uses DLLs to
improve system performance. For example, if multiple threads on the same Windows computer use
the same DLL, only one copy of the DLL code will be loaded and shared seamlessly between the
threads. This optimisation provides better overall system performance and is particularly important
for a software radio system that re-uses multiple components in a radio design. DLLs thus provide

an efficient mechanism for reuse.

DLLs make their functionality available or expressed in software terms, ‘expose their functionality’
through an export table. This table describes the functions that the DLL contains, functions that
other applications can make use of by loading the DLL. Most windows development tools allow
the creation of DLLs and functions written in languages such as C and C++ can be exported in this

way.

IRIS Radio Components have been realised using DLLs and each component is written as a
separate DLL. Each Radio Component DLL exposes two functions that the IRIS Component
Framework can use to create and destroy instances of a component, CreateRadioComponent ()

and ReleaseRadioComponent ().

Figure 6.1 shows how these functions are exported from the DLL for a Radio Component. The
component in the example is the SignalGenerator component. As detailed in the previous
chapter, this component is used to generate a signal that can be fed to other components. When

CreateRadioComponent () is called an instance of the specified component is created. Likewise

Chapter 6 — Implementation and Analysis Implementing Radio Components | 126

a call to ReleaseRadioComponent () deletes the instance of the component. It should be noted
that while C++ has been used for this work, any language that supports the exporting of code in this

way (i.e. virtual function pointer tables) could be used to build components.

xtern "C" jeclspec (dllexport) Component* CreateRadioComponent ()

return new SignalGeneratorComponent () ;

rn "C" declspec(dllexport) void ReleaseRadioComponent (Component* comp)

if(comp != NULL)delete comp;

Figure 6.1 — Exporting a Component from a DLL

DLLs meet all the requirements of the Radio Component, and are particularity suitable because
they contain native code. DLLs can be dynamically loaded and unloaded from the system using
calls to the Windows platform API functions LoadLibrary() and FreeLibrary(). Once
loaded, any number of instances of a component can be created using calls to
CreateRadioComponent (). These component instances can then be used by the Component
Framework to realise the radio design. The overhead of doing this is negligible as DLLs are an

integral and thus highly optimised aspect of the Windows operating system.

6.2.3 Programming Radio Components

As shown in the previous section, the functions exported by the DLL is straightforward requiring
only two functions, however the actual implementation of a Radio Component itself is more
involved. As shown in Chapter 5, Section 5.4, IRIS Radio Components are rich in functionality and
as a result require the implementation of many interfaces. While the IRIS system was designed to
facilitate rapid development and experimentation of radio systems, having to implement numerous
interfaces to create a component can be tedious. To solve this problem a scripting language and

code generator has been developed to automate the process.

The scripting language is written as part of the C++ header file of a component. The programmer
writes attributes alongside C++ code. These attributes expose information about the component and
identify the properties of the component. (Attributes are hidden in C++ comments to avoid
compiler errors). Properties include parameters, events, ports and commands as discussed in the
previous chapter. Before compilation a Java-based parser reads these attributes and generates
seventy methods offering all the functionality required by the Component Framework. The reason

so many methods are required is to facilitate function overloading so components can support

Chapter 6 — Implementation and Analysis Implementing Radio Components | 127

multiple data types for parameters and events. A full list of these methods are included in Appendix

10.1.

Figure 6.2 shows the C++ header file of a Signalstrength component. This simple component
has been designed to fire events indicating whether the signal received is above or below a

threshold value.

//@component analyses the signal strength of the incoming block

//@version 1.1

//@author Philip Mackenzie

//@event SignalAboveThreshold float fired when the signal level is greater than threshold
//@event SignalBelowThreshold float fired when the signal is less or equal than threshold
lass SignalStrengthComponent : public DSPComponent

private:
//@param the threshold in dB at which a signal exists
//@default -144

//@dynamic
threshold;
rtual void GetDetails (ComponentDetails *details);
rtual void CalculateOutputSignalFormat () ;
rtual bool Init():
rtual bid Process(Signal signal);
tual void Destroy():

Figure 6.2 — Header File of a Signal Strength Component

Each line starting with “/ /@’ indicates an element of the scripting language. For example, the line:

//@event SignalAboveThreshold float fired when the signal level is greater than threshold

indicates that this component exposes an event called ‘SignalAboveThreshold” and every time
this event is fired it supplies a floating point value. The remainder of the line allows the

programmer to provide information about the event.

The declaration:

//@param the threshold in dB at which a signal exists
//@default -144
//@dynamic

threshold;

exposes one of the member variables of the class as a parameter of the component. The
‘//@param’ statement must be included and indicates that threshold will be exposed as a
parameter. °//@default’ provides a default value for the threshold. The engine automatically uses
this value if none is supplied. ‘//@dynamic’ indicates that this component can be changed

dynamically at runtime and the engine will inform the component when this value has changed

Chapter 6 — Implementation and Analysis Implementing Radio Components | 128

through the valueHasChanged () method. A full list of the commands supported is included in
Appendix 10.2.

Overall, the code generator automates the process of creating a Radio Component allowing the
programmer to concentrate on the implementation of radio functionality. This greatly reduces the

time required to build and test components.

6.2.4 Dealing with Signals

An important issue when designing the Radio Component was how it would deal with signals,
more specifically:
e How should numeric samples be stored?

e How should signals (multiple samples) be manipulated by components?

Samples must be stored using a data type that suits the particular application. The data type used to
store samples must offer enough dynamic range to allow the full range of digital sample values to
be represented in the radio system. Dynamic range is the ratio between the largest and smallest
numbers that can be represented. For example, 16-bit integers offer the ability to represent numbers
from —32768 to 32767 which corresponds to a dynamic range of approximately 96 dB. Devices
such as DSPs and in particular FPGAs can be limited in the number of data types available.
However the flexibility of the GPP offers a variety of data types, ranging from both signed and

unsigned integers to floating point representations (see Figure 6.3).

Name Bits Range Dynamic Range |
Signed Integers 8 -128 to 127 48.1dB

16 -32768 to 32767 96.3dB

32 -2147483648 to 2147483647 192.7dB
Unsigned Integers 8 0 to 255 48.1dB

16 0 to 65535 96.3dB

32 0 to 4294967295 192.7dB
Floating Point (Single Precision) 32 1.4x 10" t03.4 x 10 1668dB
Floating Point (Double Precision) 64 49 x 10 t0 1.8 x 10°® 12630dB

And also complex number combinations of each, for example two 16-bit signed integers could be
used to represent a complex number, thus resulting in 32-bits being used.

Figure 6.3 — Data Types Supported by IRIS

The choice of data type influences the implementation of the overall application. For example,
choice of data type can have a dramatic effect on the amount of memory used in the system with a
move from 8-bit to 32-bit representation causing a quadrupling in memory requirements. Data

types can also affect performance with differences occurring between calculations performed using

Chapter 6 — Implementation and Analysis Implementing Radio Components | 129

integer and floating point arithmetic. The performance hit may be due to capabilities of the
underlying processor or to the fact that increased amounts of data need to be transferred to and

from RAM.

IRIS components can support multiple data types, meaning that they can consume and produce
signals of any of the supported data types. Internally, no restrictions are placed on the use of data
types. Programmers are free to use techniques such as templates to develop generic algorithms that
work with many different data types. However, care should be taken when doing this as moving
between data types can introduce subtle errors caused by loss of precision. For example, if an
algorithm is implemented using a double precision floating point number then moving to a signal
precision floating point or even an integer data type will change the precision of the calculation.
This can change the accuracy of the calculation and have an overall effect on the output of the

algorithm.

For the IRIS system, a primary aim was flexibility and thus it was necessary to be able to
inherently support multiple data types in the system. This raises problems however as the desire is
to create components that are highly compatible, yet incompatible data types can break a system.
To overcome this problem the IRIS components were designed so that they can accept and produce
multiple data types but in a well defined way. A component exports a method called
GetDetails () which the Component Framework uses to obtain information about the signal
formats a component can produce and consume. The framework uses this information to verify the
validity of a radio design by checking that the input and outputs between components are

compatible.

Another flexibility issue is how signals or blocks of multiple samples are handled by the system.
IRIS uses the common signal processing approach of treating signals as blocks of data. Blocks are
stored in memory as a series of sequential samples. For DSP applications it is also useful to be able
to represent signals using complex numbers. Complex numbers require the use of two numbers to
correspond to the real and imaginary values of a complex number. IRIS inherently supports the

data types and their corresponding complex combination of all the data types shown in Figure 6.3.

Another concern is multiple signals, as it is common for signal processing algorithms to produce or
consume multiple signals. The problem is that IRIS must allow multiple signals to be represented
and at the same time be able to ensure the validity of a radio configuration. For simple cases this is
not a problem, for example an | (In-phase) and Q (Quadrature) signal is often represented as a
complex signal therefore a complex data type can be used. But for implementations requiring
multiple arbitrary channels, this method is not suitable. For example, a narrow-band channel

extraction component may output eight channels of data from only one input.

Chapter 6 — Implementation and Analysis Implementing Radio Components | 130

One possible solution to support this is to use bigger block sizes (or a larger data type) to allow
multiple signals to be combined together. However, this requires the programmer to implement
code to combine and extract the multiple signals upon input or output, something that causes
additional processing overhead and can lead to error-prone code. For this reason IRIS inherently
supports channels. Channels allow a component to input or output multiple simultaneous channels
of data. In memory IRIS stores samples and channels sequentially as depicted in Figure 6.4. By
inherently supporting channels in the architecture, the programmer does not have to resort to a

personal means of passing multiple signals between components.

Start of Memory Block

!

Channel 0 Channel 1

Figure 6.4 — Sequential Layout of Samples and Channels in Memory

6.2.5 Block Size and Sample Rate

The term ‘block size’ refers to the size of data used to transfer a portion of a signal between
components. From early prototypes it became evident that multiple block sizes were required for
the IRIS system for various reasons. Firstly, a fixed block size limits the ability to reuse a
component in different scenarios, as it is difficult to combine code that requires different block
sizes in a generic way. For example, an algorithm requiring a fixed block size of 200 samples will
require alteration to deal with a block size of 201 samples. Secondly, block size is directly
proportional to the latency of the system. Block size can be an important parameter in tuning the
system to both application and performance requirements. Finally, some hardware devices (or their
device driver implementations) can often specify a set range of block size values. By
accommodating a varying block size it is possible to work with various different types of hardware
input/output devices without having to alter components. For this reason, all IRIS components

support variable input and output block sizes.

Developing algorithms to be variable in block size can come as quite a change to existing DSP
developers. In many existing applications block sizes are fixed, especially in applications where the
sample rate of the signal being processed does not change. For example, many audio DSP

implementations always use the same sample rate of 44.1kHz, therefore static block sizes and

Chapter 6 — Implementation and Analysis Implementing Radio Components | 131

hence static latencies are common. DSP processor implementations mostly use fixed block sizes

aid the code implementations are fixed to a particular block size/latency.

It software-based radio applications however, the block size can change throughout the signal
pocessing chain. This is because the sample rate of the signal often changes many times as it
makes its way through the path of the receiver or transmitter. The receiver example in Chapter 5,
Fgure 5.3 (Section 5.8) was an example of a radio system in which the sample rate changes. In that
cese the signal of interest was down-converted and then down-sampled to a lower frequency.
LCown-sampling reduces the sample rate of the signal. Down-sampling (and up-sampling) occur

oten in radio applications as high sample rates require large amounts of data to represent a signal.

Manipulating the sampling rate of the signal path can have a dramatic effect on the performance of
the system reducing the processing requirements by many orders of magnitude. In general, in the
receiver the aim is to reduce the sample rate as soon as possible after reception. In the transmitter
the aim is to increase the sample rate as late as possible before transmission. Each different radio
scheme will have different signal characteristics and therefore there is no generic way to dictate
how the sample rate can be manipulated. To address the problem of multiple sample rates and
hence varying block sizes, the IRIS architecture inherently supports variability of these parameters.
Where possible IRIS components are built to work at any sample rate, with any block size and with

a variety of data types.

The Component Framework automatically handles all calculations involving block sizes, sampling
rates and data types. This is illustrated in Figure 6.5. This diagram shows a sequence of
ccmponents that produce and consume different numbers of samples. The blue boxes in the middle
describe the function of each component and what it is configured to do. The green and yellow
bexes on the right show how the data type, sample rate and number of samples are used in
celculating the memory required to store the output of a component for a given input. For example,
the Down Sampler component is configured to decimate the incoming signal by a factor of eight.
Thus, the signal entering this component with a sample rate of 160kHz (160,000 samples per
second) and a block size of 3200 samples will require a memory block of 6400 bytes. After
decimation the output block size required is reduced, as the number of samples produced is 400
requiring a block size of 800 bytes. Similarly the ‘Scale and Convert’ component causes a different
block size to be output as it changes the data type of the input signal from a 16-bit integer to a 32-

bit floating point number.

These calculations are carried out in the initialisation phase of each radio system. The IRIS system
starts at the beginning of the signal processing chain by looking at the output produced by the first

component. Each component is given the sample rate, number of samples and data type it will be

Chapter 6 — Implementation and Analysis Implementing Radio Components | 132

rceiving. A component must then calculate the output it will produce for that given input. This
means that the person designing the radio system only has to specify the sample rate and data type
fc the first component. The engine automatically calculates the values required for the rest of the
sstem based on this first component. If any mismatch occurs during this operation the IRIS system
ilicates an error and exits. This can occur when the data type produced by one component is not
spported by the next. Another example is when a hardware device requires a fixed block size and
a:omponent either produces too many or too few samples. In this case a buffering component can

b used or the designer can change the sample rate of the first component so that the correct block

ste is produced where required.

Signal Generator Signal Generator Output
ﬂS@naI Output: Noise No. Samples: 3200
Senerator Sample Rate: 160kHz Sample Rate: 160kHz
Block Time: 20ms 16bit=2 bytes per sample
Block Length:3200 Samples 3200 * 2 = 6400 bytes
Data Type: 16bit (2bytes) Output: 6400 bytes
Block Size: 6400 bytes
| |
FIR % FIR Filter FIR Filter Output
Filter Low Pass Filters the No. Samples: 3200
signal with a cutoff Sample Rate: 160kHz
frequency of S5kHz Output: 6400 bytes

Down
Sampler

Down Sampler

Decimates the signal by a
factor of 8

Down Sampler Output

3200 / 8 = 400 samples
No. Samples: 400
Sample Rate: 20kHz

Output: 800 bytes
Scale and Convert Scaler and Converter Output
sizeof (float) = 4 bytes
Convert and Converts the data type to 400 * 4 = 1600
Scale single precision floating No. Samples: 400
point and scales it to Sample Rate: 20kHz
values from -1.0 to 1.0 Output: 1600 bytes
Up Sampler
g % Up Sampler 400 * 4 = 1600 samples
Sampler U es th ; i5 No. Samples: 3200
fziigg zf 4 s o X Sample Rate: 160kHz
j Output: 6400 bytes

Figure 6.5 — Automatic Calculations Performed by the Framework

Chpter 6 — Implementation and Analysis

Implementing Radio Components

133

6.2.6 Implementing Process()

By implementing the Process() method a component makes available or exposes its
functionality. Two types of Process () calls are available, in-place and not in-place. Signals are
passed to a component via a data structure that contains pointers to memory that can be used to
input or output data (see Figure 6.6). This data structure also provides access to the various
input/output channels of the component and to numeric values which indicate timestamps and

sample counts. These values can be used to implement specific timing logic in components.

struct Signal

{

void *data;

void *channel [MAX NUM CHANNELS];
long timestamp;

long samplestamp;

Figure 6.6 — Struct Definition used by Process()

To demonstrate a typical scenario, Figure 6.7 shows an simple Process () method of an in-place

component that doubles the amplitude of the incoming signal.

‘oid MyComponent: :Process (Signal inout)

it *sig = (float*)inout.data;
r(int i=0; i<SignalFormatInput.blockSize; i++)

8ig *= 2.0f;

Figure 6.7 — Example Process() Method

During the initialisation phase of the radio each component is configured with a particular signal
format which can be accessed by the SignalFormat data structure as shown in Figure 6.8. This
data structure provides the developer with essential configuration information about block sizes,
sample rates, channel information and data types. This information is used continuously by a

component in its calculations.

struct SignalFormat

{
int blockSize;
int numChannels;
int samplingRate;
DataType dataType;

Figure 6.8 — Signal Format Struct

Chapter 6 — Implementation and Analysis Implementing Radio Components | 134

6.3 Radio Component Examples

6.3.1 Worked Example

To demonstrate how a practical Radio Component is created, the design of an FSK (Frequency

Shift Keying) modulator is considered. The function of this Radio Component is to take data and to

generate an FSK signal for further transmission by other components. This example demonstrates

how the component can use the facilities available in the IRIS architecture to expose the

functionality of a component in a generic way.

As discussed, each Radio Component in IRIS is defined via its parameters, events, ports and

commands. Figure 6.9 below shows the properties that can be used to define an FSK component.

Property Type Description

Parameters

SampleRate The sample rate of the output FSK signal
BlockSize The number of samples to output from the component
CarrierFrequency | The frequency of the carrier signal
SignalFrequencyl The frequency of the first signal
SignalFrequency?2 The frequency of the second signal

SymbolLength The length in samples for one symbol

Events

DataModulated Fired when the data has been modulated

Ports

ModulateData When data is sent to this port it is modulated using FSK
Commands

Reset Resets the modulator aborting all transmissions

Figure 6.9 — Properties of FSK Component

To expose this information from the component the code in Figure 6.10 is written. From the header

file in the figure, the code generator generates the XML definition of the component as shown in

Figure 6.11. The code generator can then use this XML description to generate all the code

required for the component to be used by the Component Framework (as discussed in Section

6.2.3).

Chapter 6 — Implementation and Analysis

Radio Component Examples

|

135

lass FSKModulatorComponent : public IOComponent

fa

bool debug;

'i‘éiéékSiie;
 SamplingRates
n¢‘$iéhélFrequencyli
‘siénalFrequency2i
"SyﬁgolLenqth?

t CarrierFrequency;

. Truncated

Figure 6.10 — C++ Header File Definition of FSK Modulator Component

To implement the actual signal processing code of the FSK component the developer must
implement the lifecycle of the component as discussed in Section 5.4.3 and the methods to receive
data. For example, Figure 6.12 shows the code used to respond to data sent to its port. When data is
received the component allocates memory for the data and copies it to this location. It then signals
an event to indicate that modulation should occur and waits for this to complete. This is required as
information can arrive into ports asynchronously and thus this code has to wait until calls to
Process () have occurred to modulate the data. When completed it fires an event using

ActivateEvent () to notify externally subscribed code that processing has completed.

Chapter 6 — Implementation and Analysis Radio Component Examples | 136

<component type="fskmodulator">
<description>
<name>FSKModulator</name>
<author>Philip Mackenzie</author>
<version>1.1</version>
<information>modulates data using Frequency Shift Keying</information>
</description>
<parameters>
<parameter name="BlockSize" type="int" id="VALUE_ BLOCKSIZE">
<description>what block size to produce</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>2048</default>
</parameter>
<parameter name="SamplingRate" type="int" id="VALUE SAMPLINGRATE">
<description>the sampling rate in samples per second</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>44100</default>
</parameter>
<parameter name="SignalFrequencyl" type="int" id="VALUE_ SIGNALFREQUENCY1">
<description>the first frequency in Hz</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>600</default>
</parameter>
<parameter name="SignalFrequency2" type="int" id="VALUE_SIGNALFREQUENCY2">
<description>the second frequency in Hz</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>1200</default>
/parameter>
<parameter ="SymbolLength" type="int" id="VALUE_ SYMBOLLENGTH">
<description>the symbol length of a bit in Hz</description>
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>300</default>

"

rrierFrequency" type="int" i="VALUE CARRIERFREQUENCY">
<desc rwp*wun ‘the frequency of the training carrier in Hz</description>
amic>no< Liynamu, >

<bytes>4</bytes>

<array>no</array>

<default>900</default>
</parameter>

</parameters>

<events>
<event name="DataModulated" type="int" id="EVENT_ DATAMODULATED">
<1d>EVENT_ DATAMODULATED</1d>
de<i“;p:;3ﬂ»f1red when the data has been modulated</description>
</event>

</events>

<ports>
<port name="ModulateData" id="PORT_ MODULATEDATA">
<id>PORT_MODULATEDATA</id>
<description>modulates the data sent through the port</description>
</port>
</ports>

<commands>
<command name="Reset" id="COMMAND RESET">
<id>COMMAND RESET</id>
<description>resets the modulator</description>
</command>

</commands>

</component>

Figure 6.11 — XML Generated to Describe the FSK Modulator Component

Chapter 6 — Implementation and Analysis Radio Component Examples | 137

bool FSKModulatorComponent::ProcessPortData(int portId, unsigned char* data, int length)
{

if (portId == PORT_MODULATEDATA)

{

dataToTransmit = new unsigned char[length];
dataToTransmitLength = length;
memcpy (dataToTransmit, data, length);

SignalObjectAndWait (hEventWait, hEventComplete, INFINITE, FALSE);

delete [] dataToTransmit;
dataToTransmit = NULL;
dataToTransmitLength = 0;

ta has 1lated

ActivateEvent (EVENT_DATAMODULATED, length);

return true;

Figure 6.12 — Code to Implement Data Received Port

When process () is called it must generate an FSK waveform as shown in Figure 6.13. This may
require multiple calls to Process () as the signal may span multiple blocks of data. The
component can make use of the lifecycle of the component to prepare itself for processing. For
example, a component can use the Tnit () method to pre-calculate lookup tables which can be
used to generate the waveform. This reduces the amount of processing required in the Process ()

method to generate the FSK waveform.

1

Carrier 0 1 0 0.8 1
AANAAANAAAAD Time
A ™

Figure 6.13 — FSK Waveform

Once the FSK component has been compiled as a DLL it can be used in any radio configuration

using the XML shown in Figure 6.14.

Chapter 6 — Implementation and Analysis Radio Component Examples | 138

Figure 6.14 — XML for Configuring an FSK Modulator Component

This example has demonstrated the development of a single component, however over fifty
components have been developed for use in the IRIS system for use in this and other related
research. The next sections briefly outline some of the more interesting of these that provide insight

into the reconfigurable radio concept.

6.3.2 Signal Processing Components

A variety of components have been written implementing the standard functions required in radio
systems. Examples being:

ChannelExtractor: This component extracts a channel of interest from a wideband source

FIRFilter: Filters a signal using an FIR filter

DownSampler: Down samples (decimates) a signal to a lower sample rate
UpSampler: Up samples a signal to a higher sample rate

SignalScaler: Scales (amplifies or attenuates) a signal by a specified amount
SignalDetector: Detects when a signal is present

These components can be used as fundamental building blocks when designing many radio

systems.

Modulation and demodulation are also catered for with a variety of analogue and digital schemes.
The simplest of these allow operation with AM and FM analogue signals, a variety of digital
schemes such as the FSK example presented, but also other researchers have concentrated on using
IRIS for more complex modulation schemes such as OFDM (Orthogonal Frequency Division
Multiplexing) [Nolan2003a, Nolan2003b, Nolan2003c, Nolan2003d]. This work has produced
promising results demonstrating that a generic OFDM component can be written which can be

reconfigured to work with a variety of operating parameters.

Also in related research to this work, techniques for performing automatic modulation detection
have been developed. These allow a radio system to reconfigure itself dynamically according to the

detected modulation scheme of the incoming signal. The IRIS system has been used as the basis for

Chapter 6 — Implementation and Analysis Radio Component Examples | 139

this work and further information can be found in [Nolan2001, Nolan2002a, Nolan2002b,
Nolan2002c¢].

Specific applications have been catered for too; for example components have been built to handle
specific 2-way radio systems and another allows decoding of a proprietary data communications
module. Another researcher has used IRIS to build an RDS (Radio Data Signal) [Flood2003]. This
receiver reuses some of the standard signal processing components mentioned above in addition to

a ‘Costas Loop” component and ‘RDS Decoder’ component.

6.3.3 10 Components

A variety of components have been written to allow both the input and output of signals using
external hardware. Section 6.5 will discuss the use of IRIS with hardware in more detail, but in

terms of the components involved there are a new points worth noting,.

IO components specifically cater for the input and output of signals. The idea is that any signal
source or signal output can be encapsulated as a standard component. This means that 10
components can be used interchangeably in a system to process signals in different ways. While
most radio systems will be built for one particular piece of input/output hardware (or RF front-end),
during the testing phase it is advantageous to be able to route signals to different hardware. This
can be achieved in the IRIS system by replacing the IO component to route the signal to another

piece of hardware to even to write it to a file.

The components currently written for the IRIS system allow the input and output of signals to a

variety of PC hardware. Examples are:

A2DPCI4020: A component allowing input from a 20MHz PCI A/D Converter
DAC0412HS: A component allowing output to a 250kHz D/A Converter
WaveOut: Allows audio output using Windows audio API

Waveln: Allows audio input using Windows audio API

DirectXOut: Allows audio output using DirectX API

DirectXIn: Allows audio input using DirectX API

ASIOOut: Low latency audio output using the ASIO standard

ASIOIn: Low latency audio input using the ASIO standard

In addition to higher frequency DAC and ADC converters, this list shows that components have
been written to accommodate a variety of audio standards. Although this type of hardware does not
allow operation at RF frequencies, they are useful in testing the basic functions of the system.

ASIO (Audio Streaming Input Output) has been particularly useful [Steinberg99]. ASIO is a

Chapter 6 — Implementation and Analysis Radio Component Examples | 140

standard for low latency audio allowing deterministic input and output of digitised audio signals in
real-time. This provided a valuable test environment for verifying the functionality of the IRIS
system as its low latency operation better mimics an RF front-end even though it operates at a
lower sampling frequency. A practical radio system using RF frequencies is discussed in Section

6.5.

6.3.4 Testing Components

A series of components have been developed for testing purposes. Some of these are particularity
interesting, as they do not have counterparts in the analogue world. For example, of great
importance has been the ability to write and read digitised RF waveforms directly to/from the hard
disk. This effectively allows the recording of RF signals that can be processed later offline by re-
reading in the waveform from a file. This makes it very easy to test the implementation of Radio
Components and complete systems as a receiver can be tested against real test signals offline
without having to use external RF test equipment. For example, the ADC card allows the
digitisation of a large bandwidth up to 10MHz, and using a FilewWriter component this signal
can be written to a file. In this raw state the signal of interest can be analysed later to assess its
frequency content and to perform tuning in software by extracting different signals from the
wideband source. This changes the radio design paradigm in that radio signals become much more

accessible and facilitates the development of new types of radio systems in creative ways.

Testing components include:

FileReader: Reads a waveform from the hard disk

FileWriter: Writes a waveform to the hard disk

NumericAnalyser: Performs analysis on the numerical content of signals
SignalGenerator: Allows the output of a variety of signals at any frequency
SignalAboveThreshold: Fires events when a signal is above a threshold

Delay: Introduces a delay between blocks

SystemStatistics: Provides information about the CPU time being used by a radio

6.3.5 Visualisation Components

Visualisation components have been written allowing the signal to be viewed and analysed at any
point in the radio system. By simply moving the component through the radio structure (or by
using multiple visualisation components), the user can inspect the signal at any point in the radio.
As an example, Figure 6.15 shows the output of a spectrum analyser component plotting the power

spectrum of an FM signal after demodulation. This diagram clearly shows the constituent parts of a

Chapter 6 — Implementation and Analysis Radio Component Examples | 141

broadcast FM signal, namely the 19kHz pilot tone and 38kHz DSB-SC (Double Side Band-

Suppressed Carrier) stereo signal.

Spectrum Display R G -0

Power Spectrum of Demodulated FM

19 kHz Pilot Tone

/ 38 kHz DSB-SC

01 2kH3 / (Stereo Left-Right Signal)

0 12500 |

Frequency in kHz ‘

Figure 6.15 — IRIS Screenshot of Received FM Signal

Visualisation components include:
Performs an FFT displaying the power spectrum of a signal in real-time
Traces the waveform of a signal in real-time

Displays the amplitude and peak value of a signal in real-time

6.4 Using the Component Framework

6.4.1 IRIS API

While the Component Framework could have been implemented as a standalone entity, it is of
better use when combined with other software. For example, it may be necessary to integrate a
reconfigurable radio into another system that requires wireless communication. The IRIS system
caters for this through the IRIS APIL. As introduced in Chapter 5, Section 5.5.5, the IRIS API

abstracts the programmer from all the details of the underlying system effectively encapsulating the

Chapter 6 — Implementation and Analysis Using the Component Framework 142

framework into a reusable sub-system. This allows someone to use IRIS without requiring specific

knowledge of radio technology.

Figure 6.16 shows sample code for creating a new reconfigurable radio using the IRIS API. This
example shows how to configure the framework, for example setting the components directory. A
call to IRISLoad () loads the radio configuration into the framework. At this point the framework
verifies the radio design and brings together the Radio Components and Control Logic to form the

system. A subsequent call to TRISStartRadio () starts flow of signals through the radio system.

At this high level no knowledge of radio systems is required as the description of the radio and

associated Control Logic is contained within the radio configuration.

bool CreateReconfigurableRadioExample ()

|

IRISInitSystem() ;

HANDLE_IRIS_ENGINE hRadio = IRISCreateEngine () ;

Jjging

IRISRedirectLogOutput (hRadio, IRISLogOutput) ;
IRISSetComponentsDir (hRadio, "c:\IRIS\components");

f (IRISLoadRadio (hRadio, "MyRadio.xml") == false)
{
*error = IRISGetError (hRadio);
printf ("An error occured loading the radio: %s\n", error);

f (IRISStartRadio (hRadio) == false)
{
har *error = IRISGetError (hRadio);
printf ("An error occured starting the radio: %s\n", error);

7

Figure 6.16 — Code to Create a Reconfigurable Radio

While the IRIS API allows implementations to be abstracted from the underlying system, there are
occasions when an application using IRIS as a sub-system may require full interaction with
particular components in the radio system. For example, when used in a communications stack an
application may need to transfer packets to and from the radio system. As another example a
graphical-based radio system may need to control a component to change a frequency setting or

alter the properties of a filter.

Chapter 6 — Implementation and Analysis Using the Component Framework | 143

To facilitate this an application that uses the IRIS sub-system may create its own control logic in
addition to the control logic of the radio system itself. Figure 6.17 illustrates this. The diagram on
the left shows an application that uses the IRIS sub-system, fully abstracted from the internal
operation of the radio. The diagram on the right shows how additional control logic can be
specified by an application allowing it to control components and receive information from the

radio system.

APPLICATION USING IRIS AS SUB-SYSTEM

APPLICATION'S
APPLICATION USING IRIS AS SUB-SYSTEM > CONTREN LOGIC
IRIS API IRIS API

vy Vv

CONTROL LOGIC

—> |
—> |

NS

Fully Abstracted Radio Interaction with Radio

Figure 6.17 — Application Specified Control Logic

Additional control logic can be attached to a radio system simply by using the IRIS API. Figure
6.18 shows a code sample of a control logic controller and how the IRIS API can be used to attach
this control logic to a radio system. This technique is very useful for graphical applications as it

allows the internals of a radio system to be viewed and changed dynamically at runtime.

Figure 6.19 shows a screenshot of an application that uses this facility to expose the parameters of a
radio system, in this case displaying the parameters exposed from an FM receiver. This application
creates additional control logic as described above and attaches it to the receiver. It then uses the
reflection interface of each component (see Section 5.4.2) to query information about its
parameters. Using this information it constructs a user interface and creates separate graphical
controls for each parameter of the radio. This allows the user to dynamically change any parameter

of the radio, a useful tool for experimentation and development.

Chapter 6 — Implementation and Analysis Using the Component Framework | 144

//Application specified control logic
class ApplicationController : public ControllerInterface
{
private:
EngineInterface *engine;
public:
Called when the radio is b 1g loaded
virtual void Load(Enginelnterface *eng)
{
engine = eng;
}
all N 3111 14l € >ontrol 10gicC
virtual bool AttachToComponents ()
{
F hanr ~omponent and
/ [s€ i frequency
HANDLE COMPONENT hComponent = engine->FindComponent ("ChannelExtractor");
HANDLE PARAMETER hParameter = engine->FindParameter ("MixerFrequency");
engine->SetParameterValue (hComponent, hParameter, 2000000);
}
virtual
{
}
i
Truncated
ApplicationController *controller = new ApplicationController();
Apply the ntr] t irrent radi nfigurat
IRISSetControlLogic (hRadio, controller);

Figure 6.18 — Sample Code for Creating Application-Defined Control Logic

Chapter 6 — Implementation and Analysis Using the Component Framework | 145

M Parameters e x|
output Block Size 524288
sampiingRate 4000000
numBlocks ToRead 0
fiename 100MHz pem
e C—
nomalise Multiplier 1.000000
doFoatConversion m
delay 0 0.01) 100
fileFormat short 16
source Switch [""_—_Ll
ChannelbBxdractor
o C—
decimation 16
mixerFrequency 2680000.00 0 {r 4000000
number Taps 8
fiterCutoff 0.070000
phaseOffset 0.000000
FMDemodulator
deviation 0.250000
LowPassFIRFiter
fiterCutoff 013 0.01 B 05
numberTaps 128 1.00 —_— 512
DownSampler
ratio 5 668934
AudioOutput
debug ‘m—-‘g
stereo I;———E]
Youmn 200 1000 ——————p— 255

Figure 6.19 — Screenshot of Parameter Controller

6.4.2 Tools

Using the IRIS API two tools have been written which automate many of the procedures in loading
and running a radio system. The launcher is a standalone executable that encapsulates the
Component Framework. This command line application uses the IRIS API to load and control
radio systems. This tool provides various facilities for debugging and testing individual Radio

Components and complete radio systems.

One of the advantages of using GPPs is the ability to have rich graphical user interfaces allowing
interaction with the internals of the radio system. To demonstrate this the IRIS Radio Designer was
written, a graphical user interface built also with the IRIS API that allows users to design and test
radio systems interactively. Screenshots of the system are shown in Figure 6.20. The screenshots

show various functions of the radio designer and how it can be used to edit radio configurations,

Chapter 6 — Implementation and Analysis Using the Component Framework | 146

graphically visualise signals in real-time and view various graphical representations of a working

radio system.

3 IRIS Radio Launcher - [C:\swradio\IRIS\examples\FMReceiver\|

Fle View Rado Components Help

=lolx|

No Radio Loaded

%User Tme: 000

FLEYEX

[C\swradio\IRIS\examples\FMRecerver\FMRecerver i

| %Kemel Tme: 000

Man Log XML Configuration | itemal Represertation | Radio Structure | Memory Structure | Al Components |

<?xml version="1.0" encoding="UTF-8"7>
<radio>

<description>
<name>Receiver<{/name>

</description>
<debug>
</debug>

<{structure name="a2dtest™>

<{parameters>

<{/parameters>
K/component>

<{parameters>

<component type="a2dpcik82e">

<comment>Samples at 4MHz<{/comment>

<displaycontreller>on</displaycontroller>

<{samplingRate>40000008</samplingRate>
<outputBlockSize>524288</outputBlockSize>
<datatype>float32</datatype>
<boardNumber>1<{/boardNumber>
<channel>1</channel>
<useExternalClock>off<{/useExternalClock>
<debug>on</debug>

<{voltage>5</voltage>

<component type="channelextractor”>

<mixerfrequency>2694700</mixerfrequency>
<decimation>16</decimation>

[RI=

Radio Designer Showing XML Configuration

£ I R
P e a1
= A2 R OO S ool

Mar Log | *ML Carnguston | imema Regrosertaion | Raso Snchwe Wamery Smesse | a1 Congonerts |

Internal Memory Structure

" =
N62080178 0 APDPCT4020
|
| 1 Chaane [Extractos
1
{Xe>112816)
2 FMD«
]
N6 10551)
I
{ t LowP
) S

Displaying Real-time Spectrum

[2 =lojx|
[E “ > ’ PE] % Parameters = s x
. 3
— FmFenie
Man Log | XL Corfiguraton | ieeral fu
Tog] Started... — oupuBockSee k]
Setting components directory H
Loading 'C:\swrad ONIRIS\exam sorcircRie
Structure 0 - azdtest 3
Base Structure - true rentocka lethad
Set: Mumber parallel = 1, Sel
UMt 0: Component: Name = flename
Set: Number parallel = 1, Sel e
Ume 0 Component: Name « %8 [=l
Set: Mumber parallel = 1, el Nomsisebtole
UMt 0: Component : Name =
oPoatCanversen =]
Set: Mumber parallel - 1, Sel
UMt 0: Component: Name = comucu [|
Set: Mumber parallel = 1, Sel .
UMt 0: Component: Mame - e87 2 —t
Set: mumber parallel = 1, Sel fiefomst
Umit 0 Component : -
source Swich PR |
Crameiacior
Fully Parallel: Formatting F1
FU11y Parallel: Formatting Ch debwg =] H
Fully paralle]: Formatting X
Fully Parallel: Formatting Lo
Fully Parallel: Formatting Do o "
Fully Parallel: Formatting Au 10000000
Tnitialising FileReader compo ~efmousncy N 000000
Initialising ChannelExtractor
— g

ox

Intialising FMOenodul ator e

% (RIS Radio Launcher - [C:\swradio\IRIS\e =loj x|
Fle Ven Rado Components Hep |
. » Fladio Loaded % Usen T (1] |
l; A->) =0 | e — e ;]xx,:v: 0m Jl
Mor Log | XML Cordigueton | itemal Represertsion | Rado Siuchse Memory Snchse | A Componerts | }
=
Internal Memory Structure I
e T
_(X54984736 L= 0-EileReader) 5-AudioOutput
e e
(1-ChannefExtractor "2 FMDemodulator 3-LowPassFIRFilier) 4-DownSampler
4 ‘
|
=ljf
o s L T RS B R |
Viewing Internal Memory Structure
% IRIS Radio Launcher - [C:\swradio\IRIS\ examples\FMRece SHORT Inxmi =loj x|
Fle Vew Rado Components Heb
. » o 7y Radolosded % Use T 20 |
IG A->) >0 |G S p— _-_]xxa-sv: 0m |
Mo Log | XML Corfgureson | reemal Represertaton Rado Suctuse | Momory Srucure | Al Components |
2]
|
[FMDemodulator_findemodulator l
)
r |
Low lnFIRFllerilm\'pmfnmu] |
3
DownSampler_downsampler
|

Reconfiguring Parameters in Realtime

Viewing Structure of Radio System

Figure 6.20 — Radio Designer User Interface Screenshot

Chapter 6 — Implementation and Analysis

Using the Component Framework | 147

6.5 External Hardware

The IRIS system as implemented provides the software infrastructure for building radio systems,
however to effectively test and experiment with real signals it was necessary to integrate the system
with a real RF front-end. Various hardware setups and associated Radio Components have been

developed enabling the input and output of RF and audio signals.

Radio Components have been developed allowing signals to be input from hardware and output to
hardware. For example, a data acquisition component allows the input of digitised signals from an
ADC (Analogue to Digital Converter) PCI (Peripheral Component Interconnect) card. This
component is implemented as an IRIS 10 component with parameters used to control variables
such as the sampling rate of the converter and input voltage settings. Each type of hardware
component encapsulates the hardware interface through the standard IRIS configuration
mechanism (as discussed in Section 5.5). For example, the XML configuration file may be used to
indicate the sample rate of an ADC. The component uses the value received from the framework to
initialise the hardware using the programming library provided by the original manufacturer of the
board. The advantage of encapsulating this functionality into an IRIS component is that it can be

re-used in many different designs.

In the experimental prototype developed for this work, a hardware setup allowing the reception of
RF signals has been developed (see Figure 6.21) and this forms a basic RF front-end. A
commercial wideband receiver is used to tune to a frequency of interest. The 10.7MHz IF signal is
available from the receiver and this signal is amplified, digitised, filtered and fed to the input of the
ADC card. Using band pass sampling at the appropriate rate (typically a 4AMHz sampling rate), the

IF signal is digitised allowing the remainder of receiver functionality to be implemented in

Y | - L

— |
Wideband | | IF Amplifier ’ | PC with 20MHz

i
|

icati —

{ ComRn;té;;SZtr'ons | | and Filtering " AID Converter

software.

Figure 6.21 — Receiver Hardware Setup

To demonstrate how the hardware works, Figure 6.22 shows a photograph of the hardware
consisting of the wideband receiver, IF amplifier and ADC PCI card. Superimposed on this figure
is the component structure for typical receiver architecture. This picture illustrates how IRIS forms

the infrastructure between hardware, software and also the user of the software.

In terms of performance, for example using a 2GHz Pentium IV processor, the IRIS system can

digitise a signal at 4MHz using band pass sampling, extract a channel of interest, and perform FM

Chapter 6 — Implementation and Analysis External Hardware | 148

demodulation and audio playback. Using un-optimised code within components this consumes

approximately 60% of processor time. Performance and related issues are discussed in the next

section.
. — = ; I g -
T g~;
3 ‘-,
o 8
<)
x
CONTROL LOGIC =
‘“
] 2 . 5 ®
| i3 28 E 3 -l
- 23 A0 82 E =
|o| g2 2 §3 5 §& & e
|2 28 8 S c £ a =
; £ gd.' & o % S
(o] 5 = s
7)) j=3 <] o E s = T 6 5]
im E N Bl B B & 5
E % e 4 g B g G 8 .(%‘5-;,. .8 ,.5:&, § © ;-j,w,ma é < =
= S i joqa X S -
— 1 E a “1 P 5 [°d © P,
= 6 < O
T £ E
-
<

Spéctrum Display

Figure 6.22 — IRIS Test Hardware

Chapter 6 — Implementation and Analysis External Hardware | 149

6.6 Analysis

The purpose of the IRIS system has been to demonstrate the concepts of reconfigurability through
the use of the IRIS Component Framework. Performance of individual signal processing
algorithms has not been a primary concern as the onus is on developers to write high-performance
Radio Components. (Performance in this context refers to how efficiently code executes on a
processor). While IRIS does not specifically dictate policies for writing highly efficient DSP code,
as a framework it should not hinder the overall performance of a radio system. Highly efficient
components are of no use without an efficient and scalable technology for combining these

components together.

To address this issue the IRIS implementation was developed in such a way that it does not hinder
the performance of the overall system and attempts to keep the overhead of the framework to a
minimum. The following sections analyse various aspects of the framework with respect to

performance and scalability.

6.6.1 Scalability

Scalability is the measure of how well a system performs as it grows in size or as more demand is
placed on the system. The aim is to create systems that scale linearly so that as system size or load
increases the processing power required increases linearly. A system that features bad scalability
will thus have an exponential or even unpredictable response to increasing demand. For example,
for a web server, scalability is measured by load, i.e. the number of requests being received for web
pages. As more users request web pages the processing time required to deal with these requests
must increase linearly. Also, as more processing power (e.g. additional CPUs) is added to a server

its load capacity should increase linearly.

In implementing the IRIS architecture it was important that scalability was considered. The aim
was to ensure that as more increasingly complex radio systems are developed, involving the use of
more Radio Components, the processing time of the system should not hinder the overall
performance of the system. In the IRIS architecture it is the Radio Engine that has the potential to
hinder scalability as it provides the interconnection between components. The engine naturally
introduces a processing overhead and thus as radio systems grow more interconnections are
required between components. It was thus important to implement the engine in such a way that

this overhead is kept to a minimum and where possible to make this overhead scale linearly.

In the IRIS system basic configurations of components scale linearly. This is achieved by storing

the structure and interconnection between components in a highly efficient and scalable data

Chapter 6 — Implementation and Analysis Analysis | 150

structure. In the object-orientated approach of storing the radio structure (see Section 5.5.4) the
structure of the radio is stored in a high-level representation that can represent a complex hierarchy
of components. In this form the radio layout is stored in memory just as it appears in the XML file.
C++ classes are used to represent each entity, examples being the <structure>,
<component> and <parallel> tags. In this form finding a particular component and its
interconnections takes a non-deterministic amount of time. The hierarchy must be searched to

determine interconnections between components. It is not scalable to require such a search each

time a component produces an output.

Instead, the Radio Engine pre-processes and converts the object-oriented structure into a highly
efficient linked list data structure and in the process pre-determines the interconnection among
components. When this process is complete the engine has a linked list in memory, the nodes of
which correspond to the path of the signals rather than the visual hierarchy of the radio. This means
that when passing signals between components the engine only has to walk a basic linked list rather
than having to perform un-deterministic searches of data. The advantage of this technique is that
more interconnections can be added between components without hindering scalability, as the
process of traversing the linked list is always linearly scalable. The disadvantage is the increased

code and complexity required to implement this scheme.

A practical experiment was carried out to test the scalability of the IRIS implementation. The aim
of the experiment was to plot the CPU processing time required to implement radio systems of
various sizes to determine if the processing time scales linearly. A simple DSP configuration was
constructed using a signal generator followed by multiple FIR filter components (Figure 6.23). The
FIR filter component was used, as filtering is the most commonly used signal processing algorithm.
Each separate test involved the generation of a 40kHz sine wave (sampled at 250000 samples per
second) that was passed through multiple FIR filters. Five FIR filters were added at a time to the
XML configuration until the full processing power of the CPU was reached. The percentage CPU
time was measured using calls to the Win32 method GetProcessTimes (). In this test CPU
percentage refers to the percentage of user mode CPU processing time spent processing 254952
samples during a one second interval. The test was performed on a 2.8GHz Pentium 4, 266MHz
DDR 1GB SDRAM running Windows XP. All tests involved code that was compiled with full

optimisations with the Microsoft Visual Studio .NET C++ compiler.

Signal Generator FIR Filter Multiple FIR Filters FIR Filter
M : IR :
o P e N X | X
A e e = A PN
] ! o ____1
Figure 6.23 — Scalability Test Scenario
Chapter 6 — Implementation and Analysis Analysis | 151

Thhe esults of the scalability test are shown in Figure 6.24. The red line indicates the percentage of
CPUtime required to process increasing numbers of FIR filters. The linearity of the red line

imdiates that the IRIS system achieves linear scalability for this basic set of components.

IRIS Scalability Test

10

9 /

. f/

(g // ' —+— %CPU Time Native
£ & e |« % CPU Time IRIS
§ 4 i
= o

2(

1(S

0 50 100 150 200 250

Number of FIR Filters

Figure 6.24 — IRIS Scalability Test Results

To ivestigate the overhead associated with using the Radio Engine a second scalability test was
perfemed. The aim of this test was to quantify the overhead of using a Component Framework as
oppoed to implementing code as native executables. For this test the code of the signal generator
and ‘IR filter were extracted from the components and implemented as a standalone native
execitable. Functionally the two systems produced identical results but one was built using the
geneal-purpose Component Framework and the other was a purpose built executable. In the native
implmentation there is no overhead associated with decoupling components as there is in the IRIS
systen and the result of this can be seen by the blue line in Figure 6.24. The difference in CPU
time between these two approaches in graphed in Figure 6.25. This graph demonstrates that the
priceof using IRIS is a processing overhead that increases linearly as more sequential components

are alded to the configuration.

Althaigh the difference plot shown in Figure 6.25 demonstrates a 10 to 12% CPU overhead for
200 :omponents or more, in reality most radio implementations will require much less and will
rarel" go beyond 20 or 30 components. The graph indicates that up to 50 components the overhead
assodated with using IRIS is on the order of 0 to 2% for the test system used, a figure which is
mininal and in the vast majority of cases an acceptable price to pay for the facilities the

archiecture provides.

Chapte 6 — Implementation and Analysis Analysis | 152

Difference in % CPU Time between IRIS and Native Implementations

14

\

-
N
[

=
o
4

Difference in % CPU Time
o)} oo
4

0 50 100 150 200 250
Number of FIR Filters

Figure 6.25 — Difference between IRIS and Native Implementation

These tests have analysed only sequential chains of components for scalability. It should be noted
that more complex examples involving signal duplication and branching would not necessarily
demonstrate linear scalability, as these features would require further processing overhead between
components. As scalability in itself is not a focus of this thesis, these basic examples should serve

as a basis for future work into analyzing more complex sets of components.

6.6.2 Memory Consumption

An important consideration for IRIS was the memory consumption of the system. The use of
memory in a software radio can have a direct impact on the performance of the radio system. In the
IRIS design the allocation and designation of memory for use by components is controlled by the
Radio Engine, therefore it was important to implement a memory policy that worked well across

multiple types of radio applications.

The considerations for memory were twofold, firstly to reduce memory copying and secondly to
reduce the amount of memory used. The copying of memory can be expensive in processing time
due to the large amounts of data inherent to software radio. Since IRIS allows the use of any
number of components in a variety of hierarchies and structures, it was important the IRIS system
did not rely on copying of signals between components during operation. The amount of memory
used had to be kept to a minimum. In a GPP-based operating system virtual memory is used to
increase the amount of memory available to applications. This works by swapping data from RAM
to disk when memory is low. When the swapped memory is requested by an application it must be
transferred back into memory making the overall time to access memory much slower. With
excessive amounts of memory typically used by software radio applications it was important to

develop a radio infrastructure that used memory in an efficient way.

Chapter 6 — Implementation and Analysis Analysis | 153

The basic approach developed in managing memory for the implementation of IRIS was to allocate

memory in such a way that the output of one component is written directly to the input of another

component. For simple radio configurations this approach is simplistic, however the problem can
become more complex for the following reasons:

e Size: Components in a radio can consume and produce different block sizes therefore different
sized memory blocks are required throughout the radio.

e Multiple Signals: The hierarchical approach used for expressing radio systems allows multiple
signals to exist simultaneously in the radio system, therefore the radio system must facilitate
the use of multiple memory allocations.

In addition IRIS allows complex hierarchies of components to be implemented and thus the output

of one component must be mapped to the input of one or more other components while trying to

make best use of memory.

To address these issues a specific memory algorithm was developed within the Radio Engine. This
algorithm attempts to efficiently reuse memory throughout a hierarchy of components while
keeping memory copying to a minimum. The algorithm works by predetermining the path of
signals through a component hierarchy before radio operation begins. With this knowledge the
engine can allocate the same memory block to multiple components without having to worry about
signals being overwritten. To achieve this the engine contains a memory manager, a sub-system
that allows memory to be allocated, locked and released. During the construction phase of the
radio, the engine traverses the structure of the radio locking memory where needed and
subsequently unlocking it when it identifies that it is no longer required by a component. Internally,
the memory manager maintains a pool of memory, which is reused according to the current
lock/release status of the memory it maintains. Using this technique only the minimum amount of

memory required by a radio is used.

The basic concept of this approach is illustrated in Figure 6.26. In this simple example only two
memory blocks are required to allow a signal to be passed through seven components as blocks get
reused. The result of using this technique for a practical scenario is shown in Figure 6.27. Here the
memory required is analysed for the signal generator, FIR filter example of the previous section
(Figure 6.23). The blue line shows the total amount of memory the engine requests from the
memory manager and the red line shows the amount of memory that is actually used. In simple
scenarios like this the engine can reduce the amount of memory required to a constant amount for

any number of Radio Components.

Chapter 6 — Implementation and Analysis Analysis | 154

D Memory Block 1

Memory Block 2

/I-Q,) T L /]ﬂ\ /F\ Pk . I

Figure 6.26 — Memory Allocation Technique

Memory Allocation for Multiple FIR Filters

Thousands

—&— Memory Requested
= Memory Allocated

Size In Bytes

0 20 40 60 80 100
Number of FIR Filters

Figure 6.27 — Memory Allocation for Multiple FIR Filters

The reason the previous example can allocate so little memory is because the structure is simple.
There is only one signal in the path, block sizes are fixed and thus maximum reuse can take place.
However, in a practical software radio system, block sizes vary due to differing sampling rates and
data types used in the system. For example, a transmitter will up convert a signal resulting in much
more memory being required at the end of the signal processing chain than the beginning. In this
scenario although the memory manager may contain memory blocks to service the needs of the

engine, these blocks may not be big enough and thus additional memory has to be allocated.

To analyse the effectiveness of the memory manager in the face of growing and shrinking block
sizes, two test scenarios were developed. In the first scenario, a high data rate signal is consistently
down sampled by half using multiple ‘DownSampler’ components (see Figure 6.28). This

effectively reduces the sampling rate and the block size by half with each extra component.

Chapter 6 — Implementation and Analysis Analysis

Signal Down Multiple Down
Generator Sampler Down Samplers Sampler

IRUERE

Figure 6.28 — Memory Test for Down Sampler Scenario

The results of this test are graphed in Figure 6.29. The test involved analysing the memory
requirements for down sampling a I00MSPS (Million Samplers Per Second) signal split into block
sizes of 23592960 samples (90MB). This graph shows that the memory required for a system
involving a constantly decreasing block size can becomes constant, i.e. after a few stages of down
sampling enough memory has been allocated overall to service the needs of the full system. The
reason this happens is that larger memory blocks are allocated first (for higher sample rates) and

these can be reused to service the needs of components requiring smaller memory blocks.

Memory Consumption for Multiple Down Samplers
300000

250000

Thousands

B E @ 5 8-8 B8 B B S B 5 B W 88

200000

/ —&— Memory Requested
150000 |/
#- Memory Used

/

100000 [

Memory Size in Bytes

50000

0 5 10 15 20

Number of Down Samplers
Figure 6.29 — Memory Consumption for Multiple Down Samplers

Figure 6.30 shows the second scenario in which a signal is up sampled by two, effectively doubling
the sample rate and hence memory requirements for each additional component. The results of this
test are shown in Figure 6.31. This graph demonstrates that although the memory manager can
reduce the amount of memory used in the up sampler scenario, memory usage cannot converge to a

set memory amount as block sizes constantly increase.

Chapter 6 — Implementation and Analysis Analysis | 156

Signal Up Multiple Up
Generator Sampler Up Samplers Sampler

i s Bl e 3
I
|
I
—
|
I
I

f _____ Y
| |
Figure 6.30 — Memory Test for Up Sampler Scenario

-

Memory Consumption for Multiple Up Samplers
450000
400000 +—m ———

350000 |

Thousands

300000 +———

250000 | R o P S —&— Memory Requested

-8 Memory Used

200000 ———— —

150000

Memory Size in Bytes

100000 e

50000

0% & 8 & 8 B 5 % 8 58
0 5 10
Number of Up Samplers

Figure 6.31 — Memory Consumpti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>