
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



Reconfigurable Software Radio Systems

A thesis submitted for the degree o f 

Doctor o f  Philosophy

Philip Mackenzie

Department o f Electronic and Electrical Engineering 
University o f Dublin, Trinity College

October 2004



(^TR IN ITY  C O LLE G E ^

0 8 NOV 2004  

l ib r a r y  DUBLIN



D e c l a r a t io n

1 declare that the work described in this thesis has not been submitted as an exercise for a degree at 

this or any other University and that, unless otherwise stated, the work is entirely my own.

I agree that Trinity College Library may lend or copy this thesis upon request.

Philip Mackenzie 

October 2004



S u m m a r y

Software radio has been heralded as a significant evolutionary' step for wireless technology as it 

allows dedicated analogue radio hardware to be replaced with flexible digital signal processing. 

Due to current technological limitations, today’s software-based radios only scratch the surface in 

fully exploiting the potential o f  this new technology. Current approaches are limited by the 

available hardware with software underutilised to its full capacity in most designs. The concept o f 

reconfigurability goes a step further, placing new demands on the canonical software radio and 

requiring more sophisticated software designs.

This thesis explores the concept o f  reconfigurability in the context o f  software radio systems and 

proposes that a software-oriented component-based approach to software radio design can yield 

highly reconfigurable radio devices. To substantiate this claim, reconfigurability is broken down 

into three categories; application, structural and parametric. These categories can be used to assess

the reconfigurability o f  a radio system and provide guidelines for their design. The design,

implementation and analysis o f  a component-based reconfigurable radio system for general-

purpose processors is presented. This system called IRIS (Implementing Radio In Software)

dem onstrates the concepts o f  reconfigurability in practice and provides insight into developing 

software for reconfigurable radio systems. A series o f  case studies are presented that demonstrate 

how the IRIS system and the concept o f reconfigurability developed as part o f  this work are 

applicable to relevant problems in wireless communications.

The following publications directly relate to this thesis:
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1 Introduction

1.1 Overview

This dissertation shows that a sofitware-oriented component-based approach to software radio 

design can yield highly reconfigurable radio devices.

A software radio or software-defined radio is a wireless communications device that can be 

reprogrammed to allow it to communicate using different modulation schemes and frequencies 

without altering or replacing hardware [M itola92]. The software radio uses a generic piece o f 

hardware and digital signal processing (DSP) to manipulate radio signals. This allows the core o f 

the communications system to be developed in software rather than analogue hardware 

components. The software approach results in flexible radio devices that can be easily 

reprogrammed allowing the functionality o f  the device to be changed. It also means that the 

communications techniques themselves can become flexible and adaptable. These advantages have 

brought about a decade o f  research and development in an effort to make the technology a reality. 

However, software radio is still in its infancy. Due to technological limitations, current software 

radios only scratch the surface in fully exploiting the potential o f  this new technology. This thesis 

focuses on recognising and developing the potential o f  the technology by demonstrating how 

highly reconfigurable radio systems can be created.

It is important to discuss what the term ‘reconfigurable’ means in relation to the research presented 

in the thesis. In the context o f  wireless communications the term ‘reconfigurable’ suggests a type o f 

radio device that offers flexibility in the functions it provides, perhaps being capable o f  receiving at 

multiple frequencies or transm itting using multiple modulation schemes. However many different 

types o f radio systems offer these functions and it can become difficult to determine whether one 

radio system is more reconfigurable than another. This raises a fundamental question; how can 

reconfigurability be measured? In this thesis reconfigurability is defined via three categories 

namely, application, structural and parametric reconfigurability. Defining such categories allows 

the level o f  reconfigurability o f  a device to be assessed. The more ways in which a device exhibits 

traits o f each category, the more reconfigurable the device becomes.

Reconfigurability is a desirable property in a radio system as it enables a whole host o f  new 

capabilities. It allows many parameters, that have traditionally been fixed (such as frequency.

I



modulation scheme, power, bit rate, etc), to become variable. This allows truly flexible devices to 

be created and in turn facilitates the development o f  new applications. The three types o f 

reconfigurability and a general discussion o f reconfigurability itself are presented in Chapter 4.

This thesis uses a software-oriented methodology in tackling the problem o f developing software 

for radio systems. It is therefore necessary to discuss explicitly the ‘software’ o f  ‘softAvare radio 

system s’ in order to differentiate this research from other approaches. Current research and 

development in this field is driven (and also limited by) the capabilities and availability o f 

hardware. The focus has been on developing fast, inexpensive hardware and therefore research into 

the software aspects o f  software radio have received less attention. It is argued in this thesis that a 

software-oriented approach to radio system design is essential in achieving reconfigurability. A 

central part o f  this software-oriented approach is the use o f  software components and a component 

framework, both o f which are discussed in detail in Chapter 3. The research presented in the thesis 

shows how software components and com ponent frameworks can be used to deliver better 

reconfigurability in radio devices. These concepts are discussed theoretically and also practically 

through a real-life implementation. Chapters 5 and 6 demonstrate the design, implementation and 

analysis o f  a software system called IRIS (Implem enting Radio In Software) that was developed as 

part o f  this research. IRIS is a com ponent framework that facilitates the development o f  highly 

reconfigurable software radio systems.

I he remainder o f  this chapter provides an overview o f  the key ideas o f this thesis. Section 1.2 

introduces the basic concept o f  software radio. Section 1.3 discusses reconfigurability, how it is 

different from the canonical software radio, and briefly describes the differences between this 

research and other work in the field. Section 1.4 discusses the motivation for using the general- 

purpose processor as the target platform  in this work. The contributions made by this thesis are 

summarised in Section 1.5. Finally, Section 1.6 describes the layout o f  this dissertation.

1.2 The Basic Concept of Software Radio

In a traditional analogue radio transceiver, signals are received and transmitted using analogue 

hardware components. The radio’s hardware design is determined by its end-application, for 

example a two-way radio, an FM audio receiver or a BPSK data-transm itter will each have 

different requirements in operating frequency, modulation scheme bandwidth and power. 

Consequently, if  for example a QPSK data transceiver is required for operation at 500M Hz, then 

the analogue circuitiy will be built to implement this design and this design only. In this case the 

hardware used is dedicated to the particular application and the operating parameters cannot be 

changed, modified or upgraded w ithout altering the hardware design.
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Figure 1.1 illustrates a traditional analogue radio receiver. The signal o f  interest is tuned and 

amplified at the reception frequency before being down-converted to an Intermediate Frequency 

(IF) using the superheterodyne approach [Armstrong24] (IFs and the superheterodyne approach 

are discussed in more detail in Chapter 2). At the IF, the signal is further amplified and filtered 

before the original signal is recovered. This approach to radio design has dominated since the early 

1930s.

Original
Signal

Dem odulationRF/IF
Conversion

Tuning & 
Amplification

Figure 1.1 -  Typical Receiver Using Traditional Analogue Hardware

In a software radio, dedicated analogue hardware is replaced with a combination o f  a minimal RF- 

front end, a digital converter and digital signal processing hardware. The functionality o f  the device 

is defined via software programming, therefore the operating characteristics o f  the radio can be 

reprogrammed and changed without altering any hardware. In contrast to the hardware radio o f 

Figure 1.1, Figure 1.2 shows a diagram o f  a software radio-based receiver. In this scheme the IF 

signal is converted to a digital signal using an analogue to digital converter. Digitisation results in a 

stream o f  numeric samples that are processed mathematically using digital signal processing 

(D SP ') to recover the original signal. Likewise, the same approach can be used in transm itters. In 

this case DSP is used to synthesise signals digitally before being converted to an analogue signal 

for transmission.

OFDM R eceive 
Software

FM R eceive  
Softw are

QPSK R eceive  
Softw are

V
Original
Signal

Digital Signal 
Processing

Tuning & 
Amplification

RF/IF
Conversion

A/D
Converter

Figure 1.2 -  Typical Receiver Using the Software Radio Approach

Two things make this type o f  design distinctly different to the analogue approach. Firstly, the radio 

signal is processed digitally, which makes it possible to process signals using methods that are 

difficult to implement with analogue electronics. Secondly, the signal processing algorithms can be 

upgraded, replaced and reprogrammed through software, which allows one piece o f  generic

‘ The term ‘DSP (Digital Signal Processing)’ should not be confused with the term ‘Digital Signal 

Processor’. The latter will be referred to as a ‘DSP Processor’ to differentiate these terms.
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hardware to act as many different radio devices. This approach to radio design, i.e. the ability to 

replace dedicated analogue radio hardware with a combination o f  digital hardware and varying 

software implementations, forms the basis o f software radio [Mitola95].

Central to the software radio concept is the use o f  DSP for m anipulating radio signals. In a software 

radio, DSP replaces the functionality previously implemented using analogue components and 

moves radio signals into the digital domain. For example, using DSP, a device such as an analogue 

low-pass filter can be implemented by a digital algorithm that achieves an equivalent result. Such a 

paradigm shift raises the question as to what exactly are the advantages o f  moving to DSP. Just as 

with many other engineering applications, however, it is well recognised that DSP techniques have 

many advantages over analogue signal processing.

Lapsley [Lapsley97] describes three ways in which DSP differs from analogue signal processing. 

Firstly, DSP systems exhibit insensitivity to their operating environment. In an analogue circuit 

operating conditions are dependent on com ponent tolerances and tem perature, whereas a working 

DSP system always produces consistent results. This fact means that DSP systems can, in the 

majority o f  cases, offer more predictable behaviour than an analogue design whose characteristics 

can be influenced by a variety o f  external factors. Secondly, DSP systems have the advantage o f 

being insensitive to component characteristics. Physical characteristics such as size and component 

packaging can often influence the decision to use a particular analogue component. Also, economic 

factors such as component cost and availability can influence design decisions. DSP systems do not 

suffer from these limitations because designs are specified via mathematical procedures and not 

components. Finally, DSP has become a less expensive and overall m ore popular approach than 

analogue design because analogue electronic design tends to be much more difficult.

However, even though these advantages exist for DSP, it is always possible to develop an analogue 

device that outperforms even the most powerful DSP device. This raises another question as to 

what the fundamental difference is between these two approaches. The answer is that unlike 

analogue hardware, a DSP system can be reprogrammed to do many different things. A DSP 

algorithm can exist as a set o f instructions, which can be changed and manipulated without altering 

hardware. This ultimately means that software can be used to implement DSP algorithms allowing 

generic programmable radio devices to be created. This cannot be done with a traditional analogue 

hardware-oriented approach to radio system design.

Technology has advanced to such a stage that it is now possible to design, implement and test a 

radio system in software rather than designing, building and physically prototyping analogue radio 

circuitry. Using software, instantaneous changes to a radio system can be made that previously
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required a com plete redesign. Software thus brings a significant change in how radio systems can 

be designed, built, tested and viewed.

1.3 Beyond Software Radio

It is possible today to build reprogrammable radio devices that are software-defined. The next step 

in the software radio space is a move towards reconfigurability [Pereira99, Drew2001, 

Dillinger2003]. The term reconfigurability has emerged over the past few years to demonstrate a 

shift in thinking in the software radio space. The reconfigurability concept is about making the 

software radio do more, applying the technology beyond the radio domain and ensuring its impact 

throughout the com m unications system [Pereira2000].

W hereas the software-defm ed radio approach can be used to define the air interface o f a 

communications system, this definition is typically created only once. In practice the software 

defined radio concept has come to mean software upgrades, bug fixes and new features, rather than 

fully exploiting the capability o f  the technology. Reconfigurability on the other hand recognises 

that the software o f  a radio system does not have to be defined once, but can be changed and 

augmented any number o f  times to serve a greater purpose throughout the communications 

network.

I'his overall concept is best demonstrated by an example. Governments must regulate the use o f 

spectrum to particular frequencies and modes o f  operation to ensure interference-free 

communication. However most o f the time radio devices are completely underutilising the 

available spectrum. 7’he user is limited to a particular frequency and bandwidth even though 

massive amounts o f  bandwidth exist across the entire RF band. These restrictions are often 

imposed across an entire country or regional area even though they are used exclusively in 

particular locations.

In a reconfigurable radio every parameter o f  the radio system is potentially variable and 

implemented in software. This means that a device can dynamically reconfigure itself to make 

better use o f  the available spectrum. A reconfigurable radio may increase its operating bandwidth 

to use additional spectrum when operating in a remote location. It may alter its power to avoid 

interference when in a crowded office block. It may negotiate with another node in the network to 

agree on a particular modulation scheme to suit its location. This type o f capability is not possible 

with dedicated hardware solutions as they are not reconfigurable in the same way. It is also not 

possible with the canonical software defined radio as it typically signifies reprogramming o f 

hardware to upgrade or fix bugs in software, rather than having built-in dynamic behaviour. In 

contrast the reconfigurable radio can change any operating parameter, instantaneously change the
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structure o f the radio system or automatically download new software to enable new features; the 

overall aim being to improve communication. The term ‘reconfigurable radio’ is therefore used in 

this thesis to describe devices that are more dynamic than the canonical software radio.

The approach in this thesis is quite different to other software radio research and no other previous 

work in the field has taken the particular approach presented here. This work is unique as it 

concentrates on reconfigurability and how to deliver this using component-based software. 

However, some other systems, although not focusing directly on reconfigurability, have similarities 

to this work either through their involvement in software radio or through their approach to DSP. 

The following discussion highlights work by others in the field o f  software radio. It concentrates on 

work that has elements in common with this thesis. A more thorough examination o f  these and 

other systems is presented later in Section 2.5.

SPECtRA is a programming library for softw'are radio and was the first project to demonstrate 

working software radio implementations on GPPs [Bose99a]. The focus o f that project was to 

dem onstrate the feasibility o f  software radio on general-purpose processors (GPPs). The IRIS 

system developed as part o f this work is also developed using the GPP as a platform, however the 

work in this thesis is distinctly different. Firstly, while a GPP has been used for this research, this 

thesis does not attempt to propose that the GPP is the best platform for building radio systems. 

Instead, it recognises that the GPP is the most convenient solution within current technical 

capability for demonstrating the concept o f reconfigurability. In time as technology improves there 

may be other better platforms for developing radio systems, but the concepts o f  reconfigurability 

discussed in this thesis will still be applicable.

Secondly, SPECtRA is a C++ based programming library for developing software radio systems. In 

contrast, the IRIS system o f  this work is a component framework. This com ponent framework 

formalises an approach to building radio systems and applies software engineering principles to 

their development. Finally, the SPECtRA system was not focused on reconfigurability. W hile it 

may be possible to use SPECtRA to develop a reconfigurable radio, the system itself has not been 

designed with this as a focus. In contrast, the IRIS system is built from the ground up to facilitate 

reconfigurability. It allows dynamic loading/unloading o f  software components and formalises the 

reconfiguration process. Further technical details o f  SPECtRA and other variations o f  this system 

are discussed in Chapter 2 , Section 2.5.1.

The SCA (Software Communications Architecture) [JTRS2001] o f the U.S. JTRS (Joint Tactical 

Radio System) project is a standard for military software radio systems. This SCA has its roots in 

one o f the first ever software radio projects called SPEAKeasy [Lackey95] (SPEAKeasy is 

discussed later in Chapter 2, Section 2.2). The JTRS is a large com prehensive standard for defining
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radio systems and concentrates on partitioning the system and defining interfaces between elements 

o f  a radio system. The SCA is very different to the IRIS system developed as part o f  this thesis. 

The SCA concentrates on military interests, in reducing the cost o f  their radio systems and 

introducing interoperability into their systems. The SCA does allow for limited reconfigurability 

within individual elements o f  the radio system, however the system as a whole is quite rigid. It is 

focused on aspects o f  communications that are not so relevant to this research such as developing 

tam per-proof radio systems. It also does not mandate a software approach; instead the interfaces 

defined can be implemented in hardware. For these reasons the SCA is unsuitable for exploring 

reconfigurability. The SCA is discussed in more detail in Chapter 2, Section 2.5.2.

I’here are also some generic signal processing environments that can be discussed in the context o f 

this research. Among those is Ptolemy, a software project from Berkley MIT that provides an 

environm ent for modelling, simulation and design o f  signal processing algorithms [Buck94]. 

Central to Ptolemy is the concept o f  models o f computation, a facility that provides a highly 

expressive environment for representing different types o f  signal-based systems. Although Ptolemy 

could be used to model and simulate specific algorithms for software radio it is distinctly different 

to the work o f  this thesis. Firstly, Ptolemy is a tool for modelling and simulation. IRIS is not a tool 

but a component framework for developing real software systems. Although Ptolemy can 

potentially generate source code for a variety o f  platforms the way in which it views its targets is 

quite different to IRIS. IRIS reuses blocks o f signal processing logic as software components, 

whereas the blocks existing in Ptolemy exist at design-time only. These blocks are eventually 

collapsed down to an implementation that is fixed in function. In contrast, the IRIS system is 

designed so that the actual system developed can constantly reconfigure. While Ptolemy is a useful 

tool for developing signal-processing systems, it is not a suitable platform for exploring 

reconfigurability as its focus is developing and merging models o f  computation, a completely 

different paradigm that does not address the needs o f  reconfigurable radio systems. Other tools that 

fall into this category are Matlab and Simulink [M athworks], and SPW (Signal Processing 

Worksystem) [Cadence2002J which are discussed in Chapter 2, Section 2.5.

In summary, the work presented in this thesis is different from other approaches to software radio 

as it focuses on reconfigurability. Reconfigurability is achieved through a software-based approach. 

Reconfigurability is necessary to deliver flexible radio systems capable o f  meeting the demands o f 

future applications such as dynamic spectrum management. The reconfigurability concept is 

demonstrated in this thesis through the IRIS system, a component framework developed for GPPs. 

The next section discusses why the GPP has been chosen as the basis for this work.
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1.4 The General Purpose Processor

The IRIS system developed as part o f  this work is designed to run on GPPs such as the Intel 

Pentium and the implementation presented in this thesis runs on the Windows platform. The GPP 

has been chosen as it provides the best platform for dem onstrating the concepts o f  

reconfigurability, which are the main focus o f this research. This section discusses the motivation 

for this choice.

Mitola summarises the differences in platforms for software radio in the phase space diagram 

reproduced here in Figure 1.3 [Mitola99a]. This diagram plots various radio communication 

applications and how they are typically implemented according to bandwidth and hardware device. 

Mitola draws a tangent across the plane o f radio applications and indicates a shift towards what he 

consideres the ideal software radio as technology improves over time. For example, ‘B’ shows how 

COTS (Commercial O ff The Shelf) handsets typically process baseband signals using ASIC or 

FPGA technology. Likewise, ‘X ’ indicates the ideal software radio (discussed in detail in Chapter 

2, Section 2.4.1) and shows this to be a device implemented using general-purpose processors and 

operating with a digital access bandwidth in the GHz range. The plane cutting diagonally across the 

diagram indicates the current state o f  the art in technology and as the ‘Technology’ arrow indicates, 

increases in technological capability bring us closer to the ideal software radio.
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Figure 1.3 -  Software Radio Phase Space Diagram [Mitola99a|

If the work o f  this thesis were to be mapped onto M itola’s phase space diagram it would sit towards 

the ‘X ’ region. This is because this work uses the GPP as a platform for dem onstrating
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reconfigurability, and also, this work is more focused on the idealistic software radio rather than a 

hardware oriented approach.

It is worth discussing why the GPP is a suitable platform for demonstrating reconfigurability, as it 

is not typically chosen as a platform for real-time signal processing applications. Unlike most other 

work in the software radio space, this thesis is not concerned with developing the most efficient, 

low-power, low-cost device. Instead, its primary concern is demonstrating the fundamentals of 

reconfigurability. Although the GPP is limited in processing power and is unsuitable for embedded 

or low-power applications, the flexibility of the platform makes it an ideal candidate for 

demonstrating the concepts o f reconfigurability. The GPP has the following advantages over more 

traditional embedded devices:

• Readily Available Hardware: Embedded systems require custom hardware to be designed and 

built which is a very costly and time consuming process. While any embedded system could 

potentially contain any combination o f RAM, persistent storage or I/O peripherals, the system 

has to be designed specifically for these hardware components. Also, hardware and software 

interfaces (i.e. drivers) have to be developed to interface these components on the embedded 

target. In contrast, GPPs come in the form of readily available PCs. This hardware is relatively 

inexpensive (compared to the cost o f designing an embedded system from scratch), requires no 

custom hardware design, and even the most basic PC contains large amounts o f RAM and 

persistent storage as standard. RAM is useful for software radio as the high sample rates 

involved in radio systems result in large amounts o f sampled data. This data can be buffered in 

memory. Persistent storage is also important as a software radio can use this space to store 

large files of waveform data and potentially any number of different radio configurations.

• Advanced Languages and Tools: The GPP computer is a pervasive technology thus many 

different languages and development tools exist for developing GPP software. By developing 

software radio on this platform engineers can take advantage o f these advanced tools and 

languages. Unlike other platforms that require output to a target platform for testing, testing on 

a GPP environment is much easier as it can be performed alongside development.

• Operating System: The GPP uses an operating system that provides services such as memory 

management, concurrency and file systems which make it much easier to develop applications. 

These services relieve the programmer o f having to deal with hardware specific memory 

layouts, etc which are common on embedded platforms.

• M oore’s Law: Moore’s Law, a popular observation on semiconductor technology, states that 

the processing power o f semiconductors doubles roughly every 18-24 months [Moore65]. This 

means that an automatic increase in processing power becomes available every 18-24 months. 

This is significant as an embedded design typically requires a full redesign to increase its 

capability to this degree.
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There are two particular limitations to using the CPF platform which are worth discussing; power 

consumption and real-time behaviour. The powe* consumption o f  a GPP is much higher than a 

DSP processor or an FPGA, therefore the GPP is unsuitable for low-power m obile applications. 

However, as discussed, this thesis is not conceTied with developing the most power-efficient 

device, rather its focus is on demonstrating the concept o f reconfigurability. With further research 

and with a focus on reconfigurability, a GPP processor could be developed that meets the needs o f 

the reconfigurable radio with low-power design.

Real-time behaviour is also a concern for many, as oaerating systems such as W indows and Linux 

are pre-emptive and thus inherently non real-time. In these systems the kernel has full control over 

scheduling o f  processes on the com puter and there is nothing to stop a radio application from being 

pre-empted by any other process running on the system. Ultimately this means that the system may 

not be able to meet its stringent timing requirements and thus would be defective as a 

com m unications system. There are two reasons v/h} this concern is o f  lesser importance in the 

context o f  this work. Firstly, this thesis proposes that reconfigurability can make improvements 

over traditional radio system design, and perhaps it is possible to develop radio systems that are not 

so dependent on real-time constraints. Data transmissions for example are often transm itted in 

bursts, are irregular and can tolerate occasional errors. New types o f  radio systems developed with 

inherent reconfigurability could be designed to treat radio signals in the same way as data 

transm issions, therefore there would be a lesser need for stringent real-time behaviour. Secondly, 

while mainstream GPP operating systems do not support real-time operation, many commercial 

products exist either as add-ons, or separate operat ng systems, that provide real-time operation on 

a GPP (for example, VenturCom provide a real-time extension to W indows XP called RTX 

[VenturCom]). Future work could look at implementing a reconfigurable radio system on one o f 

these real-time operating systems. Thus, for the ptrposes o f  this work the advantages o f  the GPP 

greatly outweigh the disadvantages and therefore it has been chosen as a platform for this research.

1.5 Contribution Summary

As stated in Section 1.1 this work shows that that i  software-oriented component-based approach 

to software radio yields highly reconfigurable racio devices. That thesis is proven through the 

following five contributions:

A comprehensive overview o f software radio technology

A com prehensive overview o f  software radio is provided in the thesis. It does this by analysing the 

history o f  the field, contrasting different terms and definitions, exam ining the technologies 

involved, and looking at previous work in the field. This is an important contribution because it 

looks at software radio from various perspectives and does not focus on specific applications such
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as mobile telephony. This should serve as a useful guide to others carrying out research in this 

field.

Categories for assessing reconfigurability in radio systems

Three categories o f  reconfigurability, namely; application, structural and parametric 

reconfigurability are defined in the thesis. These categories allow the level o f reconfigurability o f  a 

radio device to be assessed. This is an important contribution to the field o f  radio system design as 

it gives others the means to contrast and compare different radio systems in terms o f their 

reconfigurable capability. This also serves as a means to defining the software requirements o f  the 

reconfigurable radio system.

Analysis of software design for radio systems

To analyse software design for radio systems this thesis looks at eight software engineering 

principles, namely reuse, abstractions, adaptability and flexibility, complexity, security, portability, 

real-time behaviour and finally upgrading and versioning. This unique perspective on software 

design for radio systems provides a valuable contribution as it highlights the differences between 

developing software for a software radio system and developing mainstream software. This is 

useful as it shows that in many cases the best practices in mainstream software are not necessarily 

applicable when developing radio systems. This contribution also demonstrates that component- 

based software is an effective way to achieve reconfigurability.

Design, implementation and analysis of a reconfigurable radio system

The design, implementation and analysis o f IRIS provides a valuable contribution as it presents 

practical information that will help others to build reconfigurable systems. It demonstrates how the 

reconfigurability concepts presented in this thesis can be applied in practice. It is also important 

that IRIS has been developed on GPPs as this shows that this is a suitable platform for developing 

and experim enting with radio system concepts.

Case studies that apply the reconfigurable radio approach

Three case studies, that demonstrate how the IRIS system and hence the reconfigurable radio 

approach can provide unique capabilities that facilitate new and emerging types o f  radio systems, 

are presented. This is an important contribution as it brings together reconfigurability and practical 

problems in wireless design to prove that the software-based component-oriented approach taken in 

this work is a practical and effective way o f  developing highly reconfigurable radio devices.
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1.6 Dissertation Overview

Chapter 2 presents the history o f  software radio, contrasts terms and definitions, describes the 

technical issues and discusses related work in this field. The software-oriented component-based 

approach presented in this thesis requires background knowledge in software engineering; this is 

presented in Chapter 3. Chapter 4 is the most important chapter in this dissertation as it presents the 

unique approach and key concepts that differentiate this work. That chapter defines the three 

categories o f  reconfigurability; application, structural and param etric that can be used to assess the 

overall reconfigurability o f  a radio device. This chapter then goes on to discuss all the issues 

involved in realising such a device by analysing the role o f  software in radio systems. Chapters 5 

and 6 demonstrate how these concepts have been used to develop a real-life reconfigurable radio 

system called IRIS. IRIS is highly reconfigurable radio system that runs on normal PCs providing 

an ideal experimental platform for demonstrating the concept o f  reconfigurability. Chapter 7 shows 

how both the concepts o f  reconfigurability and the IRIS system itself are applicable to emerging 

wireless technologies. Chapter 8 summarises conclusions from this work and suggests areas for 

future investigation.
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2 Soivare Radio

2.1 Introduction

The p u rp o se  o f  this chapter is to  give a com prehensiv e o v e rv e w o f >ft>are radio  technology aid 

to dem onstra te  w hy the approach taken in this thesis  is d ifftren  to th r  w ork in this field. Ihe 

chap ter is broken dow n as follow s:

Section  2 .2  describes the history and evolution  o f  so ftw are  'ado. iis;ection  first d iscusses an 

early  so ftw are  radio system  called ‘S P E A K easy’ and then p lo s  tie (vebpment o f  the technolcgy 

th rough to  the present day. Section 2.3 con trasts the \  arious tfrm; ai delnitions used to  descrbe 

the so ftw are  radio concept and arrives at a defin ition  su itab le  h r  he orkin th is  thesis. Section '..4 

d iscusses the role o f  hardw are in softw are radio. It starts  by ciscissg te  ‘ ideal Softw are R ad o ’ 

and looks at the practical lim itations involved in deve lop iig  i s tw re  radio system . It aso  

describes the various hardw are techno log ies involved in cna tn g  sctw are radio system  aid 

d iscusses relevant prior research re la ting  to  this thesis. Section 1.5 scuses w ork related to  tlis 

thesis and  dem onstrates the need for a reconfigurab le  approacl toso l/ar radio.

2.2 History

M itola co in ed  the phrase ‘Softw are R ad io ’ in 1991 and in 1991 h tw re  te  first publication on tie 

topic [M ito la92]. T his publication exp lained  som e o f  the b ases if sitwre radio d iscussing A ,0 

and D /A  conversion , sam pling rates and hardw are, but even mere m ptanly predicted a decade )f 

change from  hardw are to  softw are-based  rad io  system s.

M ito la’ s con tribu tion  in the early  90s w as not tha t he invented o fian rad io  itself, but that le 

m arked a shift in th inking by in troducing th is new  term . In ac t thsotw are radio concept hid 

been ev 'o lv ing for m any years w ith d ig ital-signal processing b in .inceasingly  used in m aiy 

aspects o f  electronic design. The term  ‘softw are rad io ’ rrarkd e rrival o f  digital signil 

p ro cessin g  into the field o f  radio system  design.

At the tim e  softw are radio w as seen as an ideal technology fo m ta r  applications. It w oud  

provide flex ib ility  and interoperability  to  organ isations that reied ea ily  on com m unicatiors
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infrastructure. In 1991 the U.S. Department o f Defence began a project called SPEAKeasy 

[Lackey95, Bonser98]. The aim o f  SPEAKeasy was to develop a common communications device 

allowing inter-communication among military allies. The basic problem it addressed was that 

multiple radio standards and implementations existed, with no interoperability between devices and 

no common hardware platform. A software-based signal-processing solution was seen as a way to 

overcome this problem. By manipulating radio signals digitally, they would be able to have one 

common hardware platform with various radio standards supported via different software 

programmes.

SPEAKeasy took place in two phases. Phase I proved the basic concept o f  software radio by 

dem onstrating a reprogrammable piece o f  hardware capable o f  processing RF signals digitally. 

This hardware used four Texas Instruments TM S320C40 DSP processors as a signal-processing 

engine with RF signals digitised at the IF. Software was developed for the radio in the Ada 

language with some temporal and security sensitive elements programmed in assembly language. 

Phase II o f  the project expanded the programme and shifted the processing o f  RF signals from DSP 

processors to FPGAs. This gave more processing power for dealing with higher bandwidth radio 

signals, however the time required in re-programming the FPGAs was seen as a limiting factor o f  

the design. Software implementations were also expanded to include fifteen different operating 

modes, allowing communication with a wide range o f  military waveforms.

While the technical aspects o f  SPEAKeasy were important in proving the basic concept o f  software 

radio, a more significant result o f this work for the space as a whole was that it helped to 

consolidate many o f  the concepts being discussed at the time. The period from 1991 to 1995 saw 

the subject mature resulting in a better understanding o f  the capabilities, limitations and 

possibilities o f  the technology. This is apparent in the May 1995 IEEE Com munications M agazine 

which contains a special issue on software radio. In this publication M itola [Mitola95J discusses 

the ‘Software Radio A rchitecture’, which gave a high-level breakdown o f  the software radio 

system and how signal processing can be applied at each stage o f  the device.

An important aspect o f  M itola’s work on the software radio architecture (also discussed in more 

detail in [M itola2000]) is that it addresses some o f  the key concepts that differentiate a software 

radio from its close relative, the programmable digital radio. A software radio places the A/D/A 

conversion as close as possible to the antenna allowing total programmability o f  RF bands, channel 

access modes, and channel modulation. However, these are often confused with software- 

controlled digital radios that allow the functions o f  the radio to be controlled via software. The two 

differ as a software-controlled digital radio although somewhat variable, is fixed in function, 

whereas a software radio can be redefined to do something entirely different.
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In the mid-nineties, in particular in the U.S., interest in software radio began to emerge in 

commercial applications. This is seen in the 1995 issue o f IEEE Communications Magazine in 

which most o f  the discussion is on applying software radio to mobile cellular communications, in 

particular PCS (PCS or Personal Communications Services is a term used in the U.S. to describe 

the family o f  mobile communications technologies including IS-54/IS-136 and IS-95). This is also 

reflected in other publications in the same magazine as Wepman [W epman95] discusses A/D 

converter theory and Baines [Baines95] discusses the practicalities o f  developing real-time signal 

processing systems using available processors at the time. Again the focus o f  their work was 

largely on applying the software radio concept to mobile communications. It should be noted that 

most o f  the work at this time did not recommend well-defined practices, techniques or specific 

designs for software radio systems, instead much o f this work presented discussions on existing 

communications theory and how it could be applied to the digital domain using software radio.

With the commercial industry mostly focused on applying software radio to mobile 

communications in an effort to reduce cost, some academics began to look at the software radio 

concept itself, with a view to exploring the new capabilities this technology provides. In particular 

the SpectrumW are group at MIT took a unique approach to the software radio concept 

[Tennenhouse95]. Instead o f  concentrating on hardware, they looked at the radio from the software 

perspective. They built radio systems using standard workstations (i.e. PCs containing GPPs) and 

o ff the shelf components. W hile their prototype system was quite limited in signal processing 

power and highly power inefficient, the advantage o f  their system was its flexibility [Bose99a]. 

They recognised that unlike other signal-processing approaches involving FPGAs and DSPs, the 

capabilities o f  their device would scale with M oore’s l.aw.

M oore’s Law [Moore65], a popular observation on sem iconductor technology, states that the 

processing power o f  sem iconductors doubles roughly every 18-24 months. The SpectrumW are 

team recognised that given time, M oore’s law would improve hardware capabilities, therefore the 

major focus on system design should be software. (In June 2003 Vanu Inc., a commercialisation o f  

the SpectrumW are group, carried out field trials o f  a GSM base station built using commodity PC 

servers powered by dual Xeon 2.8 GHz processors [Steinheider2003].) Others also started to look 

at the challenges involved in re-implementing existing radio standards in software. For example, 

Akos describes a software-based GPS receiver using GPPs [Akos97]. Although this system was 

incapable o f  processing these signals in real-time, it was only a m atter o f  time before better 

processors emerged allowing real-time signal-processing o f  radio signals to take place.

Throughout academia, commercial and m ilitary interests there have been different opinions as to 

how to apply software radio technology or what the wide reaching implications o f  it are 

[Pereira2000, Tuttlebee99a]. In the U.S. the migration from analogue to digital communications
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took place from 1996 and resulted in the deployment o f multiple competing digital standards for 

PCS. This resulted in numerous incompatible networks across North America each providing 

different services. Software radio was seen as an important enabling technology for creating a 

terminal that allowed users to interoperate among these networks. In the U.S. software radio 

development has been concentrated on the mobile terminal (the user’s mobile phone). The aim here 

has been to develop reprogrammable radio devices that can interoperate among the various U.S. 

standards. This emphasis on the terminal makes it difficult to take full advantage o f  software radio. 

Mobile terminals have stringent requirements on power and cost that limit the opportunities to 

maximise the use o f  software radio technology. In contrast, Europe adopted one standard, GSM 

(Global System for M obile Communications), which has been in use since 1991. Europeans are 

therefore able to roam seamlessly throughout much o f  Europe and elsewhere. This has meant that 

there has been less urgency for software radio technology in Europe’s 2G networks [Tuttlebee98, 

Tuttlebee99b].

These trends are also reflected in the organisations that promote software radio. The MMITS 

(M odular M ultifunction Information Transfer System) Forum was established in the US in 1996 to 

promote multi-mode term inals capable o f  interoperating with AMPS and multiple PCS standards. 

In 1998 it changed its name to the ‘SDR Forum’ [SDRForum] to symbolise a widening o f  scope, 

yet its focus is still on delivering a solution to a lack o f interoperability in the US. In Europe, 

without such an interoperability problem, the wider implications o f  software radio have been o f 

more interest. I his has elevated software radio research from a purely RF/hardware technique to an 

all-encompassing technology that impacts the whole network [Pereira2000]. Pereira [Pereira99, 

Pereira2001] suggests that software radio has implications across the whole networking 

environment. Drew [Drew2001] discusses similar arguments.

The interest in software radio in Europe prompted the European Commission to fund research into 

many aspects o f  this technology. Several research and development programmes funded projects in 

software radio, in particular ACTS (Advanced Communication Technologies and Services), Esprit, 

and 1ST (Information Society Technologies). The table below lists some o f  the most relevant 

projects carried out in Europe with a brief description. The breadth o f scope in these projects 

demonstrates the impact software radio has had on the communications industry.
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CAST___________Configurable radio with Advanced Software Technology

Concentrated on adaptive radio access including a demonstration o f  key functional blocks in a 
software radio.

DRIVE_________ Dynamic Radio for IP-services in Vehicular Environments

Interoperability o f  standards such as GSM, GPRS, UM TS, DAB, DVB-T with em phasis on multi- 
m edia delivery to vehicular applications.

FIRST_________  Flexible Integrated Radio Systems Technology

Demonstrated the feasibility o f  multi-mode term inals for 2"** and 3"̂  generation mobile systems.

MOBIVAS Mobile Value Added Services

Looked at using software defined radio for delivering new value added services.

PASTORAL Platform and Software for Terminals: Operational Re-configurable

Using FPGAs to deliver a re-configurable, real-time platform for third generation mobile terminals.

SLATS Software Libraries for Advanced Terminal Solutions

Developing software libraries for GSM and W -CDM A on a DSP platform.

SODERA_______ Reconfigurable Radio for SDR for 3rd Generation Mobile Terminals

A feasibility study into the best RF architecture suited for reconfigurable radio.

SORT__________ Software Radio Technology

Looked at the basic hardware building blocks required to realise a software radio with a focus on 
GSM and W-CDMA.

TRUST________  Transparently Reconfigurable Ubiquitous Terminal

A wide-encompassing project primarily focused on the user’s terminal but incorporating many 
investigations into system architecture and reconfigurability for multi-standard devices.

WIND-FLEX Wireless Indoor Flexible High Bitrate Modem Architecture

Investigated the development o f  a high bit rate radio system for indoor applications.

Further information on these projects can be found at [Cordis], 

Figure 2.1 -  European Funded Projects Relating to Software Radio

Looking to the future there are also many other untapped applications o f  the technology both 

within mobile communications and the wider space o f  telecomm unications in general. Starting with 

m obile communications, software radio has only been fully considered for 2G and 3G applications. 

There will however at some stage in the future be options other than these systems with 4G (fourth 

generation) possibly changing the common ways networks operate [ 0 ’M ahony2002], The general 

perception for future generation systems being based on more intelligent flexible networks 

[Ribeiro2001 ]. There are differing viewpoints on what form such networks will take, but the 

general consensus is that devices will be capable o f  seamless, high-bandwidth networking 

anyw here in the world [Gazis2002]. While this type o f  capability is currently provided by cellular- 

based connectivity consisting o f  base stations and m obile terminals, newer research into areas such 

as ad hoc networking suggests that networks could form without such fixed infrastructure
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[Johnson96, Perkins99, 0 ’M ahony200l, Doyle2002c], This concept originates from the efforts 

demonstrated by DARPA’s PRNET [Jub87], except that today the focus is on mobility using low- 

cost lightweight radios. Research and development in this field is currently concentrated on 

developing more efficient protocols for larger and more mobile populations. W hatever form these 

networks take, it is evident that software radio will have an important role to play in providing 

flexible radio communication.

Outside o f  personal mobile communications and military applications, software radio has received 

less attention. Applications that use radio communication are only beginning to see the benefits o f  

this technology (e.g. aeronautical applications [Cummings99a]). There are various reasons for this 

slow adoption. Firstly, the mobile communications industry has dominated research and 

developm ent in radio technology since the inception o f the first analogue cellular systems. Those 

with most to gain from the adoption o f software radio have naturally pushed the development o f  the 

technology. Secondly, no universal or open platform exists for the development o f  software radio at 

present, only some proprietary offerings mainly targeted at mobile communications. In time as 

software radio matures and costs decrease, other industries will be able to employ software radio at 

a reasonable cost. Examples o f  these are emergency services, aeronautical, maritime, public safety, 

security, location-based services, broadcasting and transportation.

In general though, current research in the software radio space is still mostly concerned with 

delivering the hardware platforms that will power software radio systems o f  the future. This is 

where existing research and the work o f  this thesis start to differ. This thesis takes a similar 

approach to the SpectrumW are group in that it takes a more software-centric view to the 

developm ent o f  software radio systems, but a unique approach in that it concentrates on 

reconfigurability and component-based software.

2.3 Terms and Definitions

With differing perspectives on software radio, no clear definition has emerged that satisfies all uses 

o f  the technology. Software radio will be employed in a variety o f  applications from 2G, 3G and 

4G, and also to a host o f  other wireless applications. A consequence o f these various approaches is 

a multitude o f  terms used to describe the technology. To the casual observer terms like software 

radio, software-defined radio, digital radio, reconfigurable radio and cognitive radio are 

interchangeable. However, while they do refer to the same underlying technology, each o f  these 

terms represents a different viewpoint when examined in the literature. This section discusses the 

meaning o f  these terms, discusses the definition o f  software radio and arrives at a term and 

definition suitable for this thesis.
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In the majority o f  software radio literature analysed, no one has distinctly made a comparison 

between the terms ‘Software Radio’ and ‘Software-Defined Radio (SD R)’. A cursory look through 

the literature suggests they are interchangeable, however taking the literature as a whole they are 

quite different. The word ‘Defined’ in SDR suggests that the software for a radio is defined once, a 

typical example being a radio system implemented in software using programmable ASICs, FPGAs 

and to a lesser extent DSP processors. While such a device would be reprogrammable, its end 

application is usually the same, for example a GSM  base station, a D-AMPS mobile terminal or a 

DAB (Digital Audio Broadcasting) receiver. The use o f  SDR technology means these devices can 

be reprogrammed to correct bugs or perform m inor upgrades, however the radio will not typically 

perform any function outside the original specification. The ‘Software Radio’ however tends to be 

a more general term  covering a type o f device that can be reprogrammed to perform many different 

types o f applications. An example o f this is the work by SpectrumW are; they used the term 

‘Software Radio’ as their system allowed the creation o f  any number o f applications using generic 

hardware [Bose99b]. Consequently the purity o f  software radios is also often referred to 

[Tuttlebee99b], with a ‘Pure Software Radio’ meaning a software radio approaching the 

capabilities o f  the ‘Ideal Software Radio’ [M itola99e].

The term ‘Digital Radio’ has been used but it is a broad term and can be confusing in the context o f 

software radio. Earlier radio designs often featured aspects o f  digital signal processing in the form 

o f  audio processing, filtering or by virtue o f  their use o f  digital modulation [Fines95]. The term 

becomes am biguous however in the light o f  software-based radio systems, as SDRs and digital 

radios are built using the same fundamental technologies, i.e. ASICs and FPGAs. The difference 

lies in the viewpoint o f  those who design, build and sell these devices. The digital radio designer 

perceives the radio device as a completely digital hardware based device, designed and optimised 

for a particular application. The SDR-based designer views the radio system somewhat similarly in 

term s o f hardware, but with a strong focus on reprogramming the software implementation.

The term ‘Reconfigurable Radio’ has emerged recently to emphasise the reconfigurable nature o f 

software radio technology. The viewpoint here is that software radio should impact not ju st at the 

physical layer but should provide opportunities for new applications and services higher up in the 

protocol stack [Pereira99]. Similarly Ikonomou [lkonomou99] addresses the issue by stating that 

software radio concepts now extend well beyond the simple reconfiguration o f  air interface 

parameters but extend through the network into service creation and application development. 

Chapter 4 discusses reconfigurability in more detail as the concept o f the reconfigurable radio will 

be expanded on and used extensively in this thesis.

Finally, the concept o f  the ‘Cognitive Radio’ was introduced by M itola [M itola2000, Mitola99b]. 

The cognitive radio is similar to the reconfigurable radio concept but broader in scope as it referrs
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to a more futuristic radio device. The cognitive radio is seen as an intelligent software radio device 

in that it can make informed decisions about its environment, perhaps in which modulation scheme 

or frequency allocation it uses. The cognitive radio augments the software radio through Radio 

Knowledge Representation Language and can manipulate the protocol stack to make better 

decisions about radio use. The cognitive radio concept was first developed with military 

applications in mind and is particularly suited for introducing advanced levels o f  security and 

associated military interests into software radio. Recently cognitive radio has started to emerge in 

discussions about new policies for spectrum m anagement in the U.S. [FCC2002].

In addition to ambiguous terms, software radio also suffers from a multitude o f  contrasting 

perceptions about the exact definition o f  software radio. M itola defines the software radio as 

follows:

‘A software radio is a radio whose channel modulation waveforms are defined 

in software. That is, waveforms are generated as sampled digital signals, 

converted from digital to analog via a wideband DAC and then possibly 

upconverted from IF to RF. The receiver, similarly, employs a wideband 

Analog to Digital Converter (ADC) that captures all o f  the channels o f the 

software radio node. The receiver then extracts, downconverts and 

demodulates the channel waveform using software on a general purpose 

processor. ’ [Mitola]

Buracchini discusses the software radio concept and identifies the need for a common definition. 

He suggests that software radio should be defined as follows:

'Software radio is an emerging technology thought to build flexible radio 

systems, multiservice, multistandard, multihand, reconfigurable and 

reprogrammable by software ’ [Buracchini2000J

Buracchini’s definition is perhaps too simplistic to fully describe the software radio. The overall 

problem encountered throughout the literature is that the software radio concept brings a particular 

approach to building radio systems rather than a concrete system design. The viewpoint on the 

technology can thus be different depending on how someone wants to apply the software radio 

approach. Instead o f  one all-encompassing definition, the SDR Forum have classified radio systems 

into the following five tiers [SDRForum2]:
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T ier 0 -  H ardw are Radio

‘The radio is implemented using hardware components only and cannot he 

modified except through physical intervention. ’

T ier I -  Softw are C ontrolled  Radio (SC R )

‘Only the control functions o f an SCR are implemented in software - thus only 

limited functions are changeable using software. Typically this extends to inter­

connects, power levels etc. hut not to frequency hands and/or modulation types 

etc. ’

T ier 2 -  Softw are D efined Radio (SD R )

‘SDRs provide software control o f a variety o f modulation techniques, wide-hand 

or narrow-hand operation, communications security functions (such as hopping), 

and waveform requirements o f current and evolving standards over a hroad 

frequency range. The frequency hands covered may still he constrained at the 

front-end requiring a switch in the antenna system. ’

T ier 3 -  Ideal Softw are Radio (ISR )

‘ISRs provide dramatic improvement over an SDR hy eliminating the analog 

amplification or heterodyne mixing prior to digital-analog conversion. 

Programmability extends to the entire system with analog conversion only at the 

antenna, speaker and microphones. ’

T ier 4 -  U ltim ate Softw are Radio (U SR )

‘USRs are defined fo r  comparison purposes only. It accepts fully programmable 

traffic and control information and supports a broad range o f frequencies, air- 

interfaces & applications software. It can switch from one air interface format to 

another in milliseconds, use GPS to track the users location, store money using 

smartcard technology, or provide video so that the user can watch a local 

broadcast station or receive a satellite transmission. ’

W hile the categorisation  o f  radio system s into d iffe ren t tiers is a good w ay o f  d istingu ish ing  

d ifferen t types o f  radio system s, the actual defin itions o f  each type are not that useful. For exam ple 

the ir defin ition  o f  the SDR does not m ention digital signal p rocessing and describes ‘softw are 

co n tro l’, c learly  this is in d isagreem ent w ith the general consensus that SD R s im plem ent all radio 

functionality  using DSP. A lso, the ir descrip tion  o f  the  ‘U ltim ate Softw are R ad io ’ is quite narrow  in 

focus as it seem s to concentrate  on the capabilities o f  a users term inal. Specific app lications such as 

G PS are m entioned when in fact the ideal and ultim ate  softw are radios should be capab le  o f
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com m unicating with any other radio system regardless o f  frequency, modulation scheme or 

communications standard (the ideal software radio is discussed in more detail in Section 2.4.1.)

Lehr also recognises the confusion over software radio terms and suggests a more technical 

definition in that the term ‘software radio’ (as opposed to software-defined radio) should be 

reserved for systems that digitise the signal at the IF stage or further towards the antenna 

[Lehr2002]. This approach differentiates the software radio from radio systems that use software in 

their design but not for the processing o f  radio signals directly. While this is not a definitive 

statem ent it does raise an important issue as to where digital conversion should take place 

suggesting that this may be a way o f categorising different types o f  radio systems.

W ithout concentrating on specific technologies or applications the U.S. Federal Communications 

Commission (FCC) define software radio as:

‘A software defined radio is a radio that includes a transmitter in which the 

operating parameters o f  the transmitter, including the frequency range, 

modulation type or maximum radiated or conducted output power can he 

altered by making a change in software without making any hardware 

changes. ’ [FCC2001]

The FCC definition represents the regulatory view o f the software radio and this is demonstrated by 

its concentration on the transmitter, the goal o f the regulator being to avoid interference. It is thus 

an incomplete and unsuitable definition for this discussion.

From these different perspectives it is clear that it is difficult to arrive at an exact definition that 

satisfies every viewpoint. To address the lack o f clarity about software radio systems this thesis 

proposes the following definition that better defines the software radio concept:

‘A software radio is a device that digitally converts radio signals in order 

to processes them using a software programme. Digitisation must occur 

close enough to the antenna to allow any function o f  the radio to be 

altered dynamically at runtime. ’

This definition is distinct from others for the following reasons:

•  rh is definition requires that a software programme is used to process signals digitally. 

This differentiates it from other hardware-defined approaches.

•  This definition requires digitisation as close as possible to the antenna to allow 

variability in all radio functions. This is included to ensure that the soflware radio
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defin ition  does not extend to  devices that process radio  signals d ig itally  yet do not 

o ffer variab litiy  in th is function. It is th is variability  that m akes the softw are radio 

concept unique.

•  Finally , th is defin ition  uses the  term  ‘run tim e’. R untim e is a softw are concept m aking 

it c lea r that all functionality  m ust be im plem ented in softw are ra ther than softw are- 

con tro lled  hardw are.

in d iscussing  the m ore reconfigurable softw are radio. C hap ter 4 also  defines a defin ition  o f  the 

‘R econfigurable R ad io ’.

2.4 Hardware

Section 2.2 d iscussed  the history o f  softw are rad io  w ithout dw elling  on specific technical principals 

or exam ples. T h is section presents all the  technological know ledge required to  understand the 

softw are radio concept. This section starts by looking at the ‘Ideal Softw are R ad io ’, often seen as 

the ultim ate goal in radio system  developm ent. T his is fo llow ed by a look at som e practical 

lim itations exp la in ing  why the ideal softw are radio is not possib le at present. T he rem ainder o f  the 

section looks at the various hardw are technologies required  to  realise a softw are radio.

2.4.1 The Meal Software Radio

Before rev iew ing  specific  technologies and techn iques for softw are radio, it is useful to  look at 

w hat m ost perceive as the u ltim ate goal in softw are radio technology, often term ed the ‘Ideal 

Softw are R ad io ’ [M itola92]. Figure 2.2 show s a diagram  o f  the ideal softw are radio. C entral to  the 

ideal device is tha t the signal is d ig itally  converted  as close as possible to  the an tenna with all radio 

functionality  im plem ented using DSP, w ith only a m inim al essential am ount o f  analogue hardw are 

used.

In this schem e the  radio w ould be ab le to  transm it and receive extrem ely  large bandw idths. In the 

receiver scenario  th is would allow  the radio  to  d ig itise  the entire RF band w ith DSP used for all 

receiver functionality  including tuning, filtering  and dem odulation. In such a radio device it w ould 

be possible to  receive on m ultiple frequencies sim ultaneously  w ith each individual signal possibly 

using d ifferen t bandw id ths and m odulation schem es.

Likew ise, in the transm itter scenario , DSP softw are w ould be used to  generate a w ideband signal 

capable o f  transm itting  anyw here in the RF band. It w ould  be possib le to sim ultaneously  m odulate 

m ultiple signals using different frequencies, bandw idths and m odulation schem es. E ffectively  the 

analogue R F-front end o f  the ideal softw are rad io  w ould act as a physical gatew ay to  the 

electrom agnetic spectrum  w ith all radio functionality  im plem ented by DSP softw are.
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The ideal software radio is a long-term goal. Although this goal may never be reached or warrant 

the investment to reach it, it does underpin the direction o f  software radio, i.e. moving DSP as close 

as possible to the antenna. Any developments in analogue electronics, DSP or radio engineering 

that bring us closer to that objective will deliver great opportunities for new types o f  wireless 

devices and hence new applications and services.
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Figure 2.2 -  The Ideal Software Radio

2.4.2 Practical Limitations

While there may be some existing technologies capable o f  bringing us closer to the ideal software 

radio (for example superconductors have been suggested for use in software radios [Semenov99, 

Brock2001, Brock.2002, Fujim aki200l]) these are typically not feasible in cost or complexity and 

are not suitable replacements for existing radio hardware. To achieve the practical software radio 

with today’s technology the designer must use conventional analogue techniques in combination 

with newer DSP hardware. The challenge is to strike a balance between analogue circuitry, digital 

conversion and DSP. The amount o f  each technology used will be dependent on the particular 

application but also on the capability and cost o f  the devices available. The most common approach 

taken today is to employ conventional analogue radio electronics for m anipulation o f higher 

frequencies with digitisation and digital signal processing occurring at lower frequencies 

[Hentschell99].

Figure 2.3 shows a more practical architecture for the software radio. In the receiver branch the 

signal o f  interest is mixed with a local oscillator that down converts the signal to a lower frequency. 

The signal is then digitised at this lower frequency. Likewise in the transm itter the signal is 

modulated via DSP and mixed with a local oscillator to up convert the signal to the transmit 

frequency. This design ensures that the demands on analogue to digital converters (ADCs) and
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digital to analogue converters (DACs) are much less at these lower frequencies. Also, the DSP 

hardware can process data at a reasonable sample rate, much lower than the actual operating 

frequency o f  the radio.
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Figure 2.3 -  A More Practical Software Radio Solution

In Figure 2.3 the left side o f the diagram represents the analogue portion o f the radio and this 

configuration is a typical superheterodyne architecture [Armstrong24J. In the receive path o f  this 

architecture the signal o f  interest is tuned, amplified and then down converted to a common 

frequency called the Intermediate Frequency (IF). The use o f  an IF allows a receiver to maintain 

selectivity and sensitivity across multiple receive frequencies. Selectivity refers to the receiver’s 

ability to reject all frequencies except the frequency o f  interest. This will determ ine how well a 

receiver can receive a signal in the presence o f  other signals and noise. Sensitivity refers to how 

well a receiver can receive weak signals. Due to the physical nature o f  analogue com ponents it is 

difficult to build a receiver that maintains selectivity and sensitivity across m ultiple frequencies and 

this difficulty increases with frequency. Converting a signal to the IF goes some way to solving 

these problems. The IF is a common frequency enabling analogue circuitry to be optimised for 

selectivity and sensitivity at this one frequency, ultimately reducing the amount o f  unwanted noise. 

In addition this frequency is usually lower than the actual receive frequency thereby simplifying 

analogue design.

A few IFs have become standard allowing manufacturers to produce com ponents optimised for 

these frequencies, examples o f  which are 455kHz, 10.7MHz, 70Mhz, 140MHz. IFs are chosen
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primarily to suit the bandwidth o f  the intended application but may also be influenced by factors 

such as component specifications and noise performance.

In the transm itter a similar approach is used. Signals can be modulated and then up-converted to a 

common IF frequency. This IF can then be translated and amplified for transmission at the required 

frequency. Many variations can be made on this architecture; some approaches use multiple mixing 

stages especially in high frequency applications. Also, different types o f  filtering can be used 

depending on the demands o f  the application. In summary, the central idea behind the 

superhetrodyne approach is the use o f  mixing and filtering stages to translate signals to more 

m anageable frequencies and this approach can be applied to a vast number o f  applications in radio 

design.

The wide acceptance o f  the superheterodyne architecture has meant that it has become a popular 

choice in the migration towards software radio. In both receivers and transmitters, the approach has 

been to introduce digitisation at the IF frequency. As Figure 2.3 illustrates, this hybrid approach 

uses analogue circuitry for high frequency operations with DSP performed at lower frequencies. 

M oreover this strikes a balance that makes software radio more realisable and affordable using 

current technology.

Another architecture gaining more recognition in software radio applications is direct conversion, 

also known as Zero-IF. Its architecture is much the same as Figure 2.3 except for the frequencies 

used by the local oscillator. In the receiver this scheme means that the signal o f  interest is down 

converted directly to baseband bypassing any use o f  an IF frequency. Likewise in the transm itter a 

baseband signal is directly up-converted to the signal o f interest. (Gu discusses Zero-IF in the 

context o f  software radio tGu2002]). While this may seem advantageous, there are various 

problems associated with this technique, in fact these problems are the reason the superheterodyne 

approach dominates most designs. In particular, direct conversion results in a large DC offset in the 

signal which can make it difficult to recover the original signal. This DC offset is caused by a 

mismatch between analogue circuits which is temperature and time dependent introducing a 

variable error into the signal. Also, oscillator leakage, self-mixing, flicker noise and other 

inconsistencies can result in a corrupted signal [Patel2000]. This technique is however gaining 

popularity over the superheterodyne approach as it has better immunity to adjacent channel 

interference and is quite tolerant to variations in input power [Haruyama2001 J.

This discussion demonstrates that there is no single or best way to develop the hardware o f  the 

software radio system. Many areas o f expertise from RF-hardware design to DSP processing 

devices must undergo significant development to meet the demands o f the software radio and to 

move it towards the ideal software radio. For this reason there has been a variety o f  research and
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development on tackling this problem. The software radio hardware research space can be divided 

into three areas o f  research split according to their function as shown in Figure 2.4; these are the 

RF front-end and antenna, digital conversion and DSP hardware. The following three sections 

discuss these important aspects o f  software radio and highlight relevant research in each one.

RF Front End 
& Antenna

Digital
Conversion

Digital Signal 
Processing 
Hardware

Figure 2.4 -  Research and Development in Software Radio 

2.4.3 Front-End Technologies

Even from the early days o f  software radio, developing the RF front-end has been recognised as a 

significant challenge [Mitola95]. The aim in software radio is to build a general-purpose front-end 

that acts as an interface between the antenna and DSP hardware. This is a significant change to 

existing RF front-ends. For example, existing multi-standard mobile phones (tri-band phones) 

contain three separate receiver chains for each standard [Tsurumi99], Using the software radio 

approach these separate devices would be replaced by a single generic architecture.

The ideal device would allow the reception and transmission o f  arbitrary frequencies and 

bandwidths, but in practice hardware limitations mean that these parameters have to be constrained 

to a particular application. An example o f  this is the differing dynamic range requirements o f GSM 

and W-CDMA systems. GSM has stringent requirements on signal to noise ratios (SNR) but the 

spread spectrum nature o f W-CDMA means the SNR can be relaxed. Providing a common RF- 

front end for a device that can operate within both these standards would thus present a significant 

challenge with today’s technology.

1 he requirement to digitise as close as possible to the antenna is not possible with current digital 

converter technology nor by the speed o f current DSP processors or FPGAs. Cummings discusses 

this, pointing out that even if digital converters enabled digitisation at high frequencies such as 2 

GHz for example, a DSP processor would have to operate at 2500GHz to process these signals 

[Cummings2002b]. This is clearly outside the capabilities o f  today’s devices so currently practical 

RF front-ends must be customised for a particular application.

Chapter 2 — Softw are [<adio Hardware j 27



Hentschel [Hentschel99] discusses the tradeoffs associated with front-end design. Lii<.e most 

approaches he suggests that a limited band be selected out o f  the full band by means o f  analogue 

conversion and IF filtering. Beach [Beach2002] addresses the same issue and discusses the 

requirements and specifications o f  RF front-ends for software radio applications such as GSM 900, 

DCS 1800, DECT, UMTS, Bluetooth and FIyperlan/2. He discusses the tradeoffs associated with 

using different architectures concentrating on direct conversion and multiple conversion types. He 

suggests that with the current capabilities o f  technology a practical front-end for software radio is 

best achieved using a multiple conversion architecture (or superhetrodyne approach) as direct 

conversion can cause problems with wide bandwidth signals. Once conversion is completed, 

sample rate conversion can also be an issue [Abu2003, Hentschel2000].

in working towards more advanced front-ends a variety o f  research has presented designs and 

techniques for improving them. The challenge is to deal with problems such as linearity, image 

rejection, efficiency and power. As examples, MacLeod [MacLeod2001] recognises the importance 

o f  image filtering and am plifier linearity in front-end design. In similar discussions Kenington 

[Kenington2002] describes linearised transmitters and Morris [Morris98] describes the use o f 

polynomial pre-distortion for improving am plifier linearity across a wide band o f  frequencies. 

Brinegar [Brinegar98] discusses the use o f  a flexible filter for a software radio application and for 

higher frequencies Streifinger [Streifinger2003] discusses front-end developm ent at microwave 

frequencies above lOGHz. Some test beds have also been proposed and Schacherbauer 

[Schacherbauer2001 ] presents a wideband front-end capable o f receiving a 5M Hz bandwidth from 

800M Hz to 2200MHz. M obile applications in particular pose significant challenges for front-ends. 

Kenington [Kenington2000J highlights the issue o f power consumption in A/D converters for 

mobile software radio terminals. Cummings [Cummings2002] recognises that a ‘sweet spot’ must 

be found in front-end development for software radio so that power consumption, size and cost can 

be optimised. Further discussion on these issues can be found in [W iesler2002, Cummings2002b, 

Salkintzis99].

Antennas are often overlooked when considering the RF front-end and in the area o f  software radio 

in general. Smart antennas represent the forefront o f antenna research. Using digital beam forming, 

a smart antenna uses an array o f antennas to increase the carrier-to-interference ratio in a wireless 

link [Razavilar99]. Smart antennas have become important in cellular applications in that they 

allow cell capacity to be increased by allowing the polar pattern o f an antenna to be modified 

dynamically. Using these techniques two transmitters can transmit to the same receiver on the same 

frequency, with the receiver adjusting its polar pattern to match the incoming signal. Smart 

antennas and software radio are complementary technologies having the potential to greatly 

increase the flexibility o f  radio systems. Research combining these technologies includes
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applications in direction finding [Kennedy95], evaluation test beds [Green2002] and their use in 

base stations for mobile communications [Perez2001],

2.4.4 Digital Conversion

Digital converters, i.e. analogue to digital converters (ADCs) and digital to analogue converters 

(DACs) are very important aspects o f  any software radio as they form the boundary between the 

analogue and digital domain. Digital converter technology is being pushed to its limits by the 

requirements o f  software radio. Software radio requires converters that can not only sample at very 

high frequencies but can also offer a suitable dynamic range (i.e. bit-depth or word size) for 

representing signals [Wepman95].

The converter must provide an adequate signal-to-noise ratio (SNR), something that can be difficult 

to achieve with linearity problems and quantisation noise. Another important param eter is Spurious 

Free Dynamic Range (SFDR) that specifies the ratio in dB between the output o f  a converter and 

the peak spurious signal, an important parameter in judging whether a weak signal can be received 

in the presence o f  a strong one.

Providing a suitable SNR and SFDR exist, a converter’s sample rate is the next important 

parameter. This ultimately determines the frequencies and bandwidths o f signals that can be used 

by the system. Direct sampling can be performed by using a sampling rate at double the signal o f  

interest. However, by exploiting the Nyquist theorem the sampling rate can be significantly 

reduced [Nyquist24]. The Nyquist theorem states that the sampling rate must be double the 

bandwidth o f  the signal, allowing converters to operate at a lower rate. This can also serve as a 

mechanism for down-conversion by simultaneously converting the IF frequency to baseband. It 

should be noted though that it is not ju st sufficient to lower the sample rate. The converter must 

have sufficient analogue input bandwidth and sample and hold circuitry to track and thus sample 

the higher frequency signal. The main point to note here is that the sampling rate, SNR and other 

parameters, and consequently the converter used, has an impact on the overall design o f  the 

software radio. According to the needs o f  the intended application the converter and overall 

architecture can be designed in creative ways meaning many different types o f  software radio 

architectures are possible.

Brannon [Brannon2002] gives a comprehensive overview o f  digital conversion for software radio. 

Concentrating on mobile communications he notes that the state o f  the art in digital converters lies 

at sampling rates in excess o f  lOOMFlz with typically a 14-bit word size, but that 16-bit devices 

sampling at 120MHz are in increasing demand. Devices with higher dynamic range are constantly 

being required to allow the recovery o f  weak transmitted signals in the presence o f  strong ones.
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Brannon also discusses the emerging technology o f  Sigma-Delta converters. These can be used to 

create highly optimised integrated circuits combining many RF/IF functions into one device. 

Further discussion on these topics can be found in [M itola99d, Fettweis2002, Abeysekera2002].

2.4.5 Digital Signal Processing Devices

Following digital conversion at the required frequency, radio signals exist in the digital domain. 

Depending on where digital conversion occurs in the radio and what the bandwidth o f  the signal is, 

the amount o f  data produced will vary. Some designs will digitise the signal at baseband thus the 

DSP will perform modulation and demodulation. O ther designs will digitise close to the antenna 

requiring functions such as channelisation or direct down conversion to be performed in the digital 

domain. There are almost no limitations as to which radio functions can be implemented in the 

digital domain, but obviously the necessaiy processing power must be available and this becomes 

the limiting factor.

To perform DSP some form o f  semiconductor is required. A variety o f  devices have emerged to fill 

this role, in particular these devices have become the mainstream technologies o f choice when 

implementing DSP systems: the ASIC (Application Specific Integrated Circuit), FPGA (Field 

Programmable Gate Array), DSP processor and more recently a range o f  reconfigurable processors.

ASIC: The ASIC (Application Specific Integrated Circuit) is a sem iconductor device specially 

designed for a particular application [Smith97]. The ASIC cannot be reprogrammed and 

implements a one-off design that is often mass-produced. Because they are application specific, 

ASICs can be highly optimised for power and performance thus these devices are often used in 

applications requiring the best performance for example in graphics calculations or high-speed 

networking. They can also be more cost effective on a large scale as silicon area can be optimised. 

In conjunction with an A/D or D/A converter, an ASIC device can manipulate digitised signals and 

this combination is used in many existing applications in digital audio, graphics and control 

systems.

FPGA: Unlike the ASIC the FPGA (Field Programmable Gate Array) offers the advantage o f  re­

programmability. The FPGA can be reprogrammed many times allowing the functionality o f  the 

device to be changed as required. An FPGA consists o f  general-purpose logic cells that can be 

reprogrammed and interconnected to form a particular application. Hardware description languages 

such as VHDL [IEEE2000] and Verilog [IEEE2001] are used to programme the FPGA although 

some newer languages such as System-C [System-C] and Handel-C [Chappell2002] offer more 

high-level programming constructs. The reprogrammable nature o f  these devices means they can 

be readily tested and also reprogrammed in the field to correct errors. Due to these advantages the
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FPGA has become the device o f choice where low-level digital hardware in conjunction with 

reprogrammable control is required. Although the FPGA in conjunction with design tools allow 

optimisation to take place, the FPGA cannot achieve the same performance or power efficiency of 

the ASIC. When used in conjunction with the A/D and D/A converters the FPGA can act as a 

general purpose device and has become a platform for many applications in such diverse areas as 

video manipulation, networking and telecommunications.

Also in the FPGA family is the FPAA (Field Programmable Analogue Array). Instead of 

interconnecting logic cells, the FPAA offers inter-connectable analogue blocks that can be used to 

create reprogrammable analogue circuits. This is useful in applications such as high-end filter 

design as in some cases it can be more cost efficient to implement such an algorithm using 

analogue components rather than using DSP.

Finally, another approach in the FPGA family is the hybrid FPGA-CPIJ. This is a device that 

contains both a CPU and an FPGA. The CPU can reprogram the FPGA thus it is possible to offload 

processing from the CPU to the FPGA for performance critical applications. Examples of hybrid 

FPGA-CPU systems are Virtex II Pro platform from Xilinx [Xilinx] and the Excalibur platform 

from Altera [Altera]. In the short term it is possible that type o f device that will be useful for 

software radio systems, as this solution is quite cost effective and offers a good price versus 

performance ratio for commercial applications.

DSP Processor: A DSP processor is a processor specifically designed for signal processing 

applications [Lapsley97], The DSP processor has emerged to fill a gap in the market for a device 

that offers a good price versus performance trade-off, and allows for the efficient, low-power 

implementation of signal-processing algorithms. DSP processors offer intrinsic support for 

multiply-accumulate and fixed point calculations which are common requirements for signal 

processing algorithms, but which are more difficult to implement using ASICs and FPGAs. 

Software for DSP processors has typically been developed using proprietary assembly languages 

and these are often different for each device family. More recently higher-level compilers for 

languages such as C and C++ have emerged from DSP processor vendors thus greatly simplifying 

development. DSP processors have become a mainstream popular choice for DSP applications but 

still lack the processing power o f the FPGA and the ASIC.

Reconfigurable Processors: At the signal processing stage o f the software radio the trend has been 

to move from ASIC designs to more reconfigurable devices such as the FPGA and DSP processor. 

There are however some new types o f processors emerging specifically targeted at communications 

applications. These devices have emerged to address limitations o f the FPGA and DSP processor, 

but are also specifically targeted at the requirements o f 3G standards. The limitations they address
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are the reconfigurable nature o f  FPGAs and DSPs. Although reconfigurable, they usually have to 

be taken offline to be reprogrammed. Newer chips such as the Chameleon Reconfigurable 

Communications Processor (RCP) offer a general-purpose architecture that can be reconfigured on 

the clock cycle introducing rapid reconfigurability [Bums2003]. The RCP is aimed at high capacity 

3G base station applications. Another example is that o f  the Adaptive Computing Machine from 

Q uicksilver [W atson2002, M aster2002]. Like the RCP this device allows rapid reconfiguration but 

at a lower rate and is more suited to handset applications. This device allows the creation o f  custom 

data paths and uses specific techniques for improving the performance o f  multiplication and 

additions enabling DSP algorithms to be implemented more efficiently. A final example is the 

Sandblaster SB9600 Processor from Sandbridge Technologies [Glossner2003], another high-speed 

reprogrammable device catering for the needs o f  baseband processing for applications such as GPS, 

Bluetooth and WLAN. This device again demonstrates a move towards more high-level 

programming languages as it allows high-speed low-level programming to be achieved in C++ and 

Java.

From this discussion it is evident that there are many devices available for signal processing. For 

commercial applications, the one chosen will depend on the intended application and the cost o f  the 

device. In terms o f  software radio research the FPGA is quite popular and has served as a platform 

for a great deal o f  research into signal processing for software radio. As examples. Rice [Rice2001] 

shows how maximum likelihood phase synchronisation can be implemented with an FPGA. Seskar 

[Seskar99b] discusses FPGA-based architectures for interference cancellation in software radio. 

Ahlquist [Ahlquist99] discusses an FPGA approach to implementing error coding techniques. 

Abeysekera [Abeysekera2002] uses an FPGA to implement a sigma-delta architecture and Honda 

[Honda2001] discusses a technique for reducing the BER (Bit Error Rate) for software download 

using an FPGA. All these examples demonstrate existing techniques from radio technology 

migrating to the digital domain, with a focus on development with high speed FPGAs.

The ASIC offers full custom design for low-cost, high volume applications and thus has seen less 

interest in the software radio space as most research is o f  an experimental nature. The trend has 

been to use FPGAs and DSPs which both offer tools that make system design much easier. Many 

test beds have been based around the use o f  DSP processors, examples can be found in 

[Ellingson98, Patti99, Reichhart99, Dixon2001]. Power has been a particular concern for mobile 

applications and Gunn [Gunn99] addresses this issue discussing a low-power DSP subsystem. 

O ther approaches are also evident and Kokozinski [Kokozinski2002] suggests that analogue and 

digital designs should be integrated on the same chip, something that may be possible with 

technologies such as the FPAA.

Chapter 2 — Softw are Radio Hardware | 32



As discussed in Chapter I the work in this thesis is based on using GPPs. While other platforms 

have been considered, the GPP offers the best environment for demonstrating the concepts of 

reconfigurability. The next section discusses related work to this thesis and in particular highlights 

other work that has used the GPP as a platform.

2.5 Related Work

There has been limited work done on developing software radio systems on GPPs. As discussed in 

the previous section, most efforts have been concentrated on the development o f FPGA and DSP 

designs. The work outlined in the following sections is a summary o f related work that has either 

directly involves software radio on GPPs or closely related work that offers further insight into the 

topic.

2.5.1 SPECtRA and Variants

As briefly outlined in Chapter 1, the Spectrum Ware group at M.l.T. was the first group to 

investigate the use o f GPPs for software radio [Bose99a]. As part o f this work the SpectrumWare 

group demonstrated SPECtRA (Signal-Processing Environment for Continuous Real-Time 

Applications), the first software architecture specifically designed for the development o f software 

radio systems on GPPs using Linux as the operating system [Bose99b]. After some initial work 

SPECtRA was redesigned as PSpectra (Parallel SPECtRA), a system designed to achieve higher 

performance via multi-threading [Vasconcellos2000]. While somewhat internally different, the 

main objectives and characteristics of the SPECtRA and PSpectra environments are the same. 

Central to both designs was the aim o f developing a toolkit for writing signal processing 

applications. The main characteristics of the Spectra designs was the use o f a modular 

programming environment, infinite streams and the separation between in and out of band paths.

• Modular Programming Environment -  Signal processing algorithms such as demodulators and 

encoders are coded into reusable modules by implementing C++ classes. Modules can be either 

sources for producing data, sinks for consuming data or processing modules for performing 

signal processing. Each module can have a different set o f inputs and outputs. By connecting 

together modules it is possible to construct signal processing applications.

•  Infinite Streams -  Data flow between modules is accomplished via infinite streams. Each 

module ‘sees’ an infinite stream of data which means that a module can request the arbitrary 

number o f samples it requires to perform processing. A data-pull model is used to move data 

through the system. Using this technique a sink starts the data flow by issuing a request for a 

number of samples. This request propagates through the system with each module calling on its 

downstream neighbour to produce the desired number of samples. This technique has a benefit
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in allowing unnecessary samples to be discarded thereby reducing required processing power. 

The technique works by lazy evaluation in that samples are only generated when absolutely 

needed.

•  In-band and out-of-band paths -  The Spectra environments differentiate between code for 

performing signal processing functionality and code for controlling the general operation o f the 

system (see Figure 2.5). In-band code consists o f  the modules themselves and connectors. 

Connectors provide the infinite stream abstraction and act as the binding between modules. A 

simple set o f  rules governs the connection o f  modules via connectors which are also C++ 

classes. Out-of-band code concerns the maintenance o f the system and involves code for 

creating and modifying the topology o f the system, communication among modules that does 

not involve signals (e.g. setting a sample rate), handling user interaction and monitoring system 

performance.

It should be noted that PSpectra contains extra functionality for creating more complex 

multithreaded designs. It also allows the building o f  meta-modules which encapsulate multiple 

modules into single modules.

Configuration & control 
Script

in-band

SinkSource Prod Proc2

Figure 2.5 -  SPECtRA In-Band and Out-of-Band Paths (Bose99b|

Using the Spectra libraries SpectrumW are demonstrated various software radio implementations 

including some analogue schemes, digital modulation and television receivers. Another 

contribution o f  the Spectrum W are group was their approach to algorithm development. With 

software radio systems built using commodity PCs with different resources available to an 

embedded system, a different approach could be used in developing many traditional 

com m unications algorithms. For example, W elbom discusses a technique for waveform synthesis 

for software radio, a technique particularly suited to GPP based radio systems which have access to 

large amounts o f  RAM (Random Access M emoiy) for storing pre-computed values [W elborn99a].

Following this work others have built on the PSpectra environment. The GNURadio project is an 

effort to build open-source software for software radio [GNU] that also runs on Linux. This group 

has used the PSpectra library as a basis for their project and have implemented a digital television
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receiver among other schemes. EPSpectra [Kim2001a, Kim200l b] is another extension to PSpectra 

that uses the language Esterel to improve the real-time capabilities o f  PSpectra.

Following on from the work o f  SpectrumW are at MIT, Vanu Inc are a commercial venture working 

on the development o f  software for software radio systems [Chapin2002]. Vanu Inc. have 

successfully used GPPs to implement existing cellular standards such as GSM , thus demonstrating 

that GPPs are a practical hardware platform for software radio [Steinheider2003]. Their approach 

too has been built on the work o f  SpectrumW are but beyond sim ilarities with SpectrumW are 

(SPECtRA, PSpectra, etc), only limited details are available on the specifics o f  how their systems 

work. One aspect that is documented is a language called Radio Description Language (RDL) 

[Chapin2001], a Java-based language for building software radio systems. This language allows 

high level programming and control o f  signal processing functions and forms the basis o f  their 

GSM implementation.

The difference between this thesis and the variety o f  work discussed in this section is that neither 

SPECtRA, PSpectra, GNlJRadio nor EPSpectra were built with reconfigurability as a focus, rather 

as systems to demonstrate concepts o f  software radio. In contrast, the IRIS system presented in this 

thesis is designed specifically for demonstrating and allowing experimentation with the concept o f 

reconfigurability.

2.5.2 Software Communications Architecture

The U.S. military have been active in software radio research and developm ent since the early days 

o f the SPEAKeasy project as discussed in Section 2.2. Currently this effort is being led by the U.S. 

defence’s Joint Program Office (JPO) under the Joint Tactical Radio System (JTRS) programme. A 

result o f  this work has been the development o f an open standard for the developm ent o f software- 

based communications systems called the SCA (Software Communications Architecture) 

[JTRS2001, J7'RS2002, Melby2002]. By creating an open standard that addresses both military and 

commercial applications the JPO hope that the development o f  SCA com pliant commercial 

technologies will lead to reduced costs, increased interoperability and upgradeability.

Due to the diverse requirements across military and commercial applications, an open standard 

targeting one particular hardware platform would never be successful. Instead the SCA is an 

implementation independent standard that specifies a set o f  rules that constrain the design o f 

com munications systems. The SCA has been structured to [JTRS2001];

•  Provide for portability o f  applications software between different SCA implementations.

•  Leverage commercial standards to reduce development cost.

•  Reduce development time o f  new waveforms through the ability to reuse design modules.

•  Build on evolving commercial frameworks and architectures.
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The software structure o f  the SCA is based around an ‘Operating Environment’ which consists o f  a 

Core Framework (CF), CORBA middleware and a POSIX (Portable Operating System Interface) 

based operating system. The CF is an architecture that defines software interfaces that provide for 

the deployment, management, interconnection and intercommunication o f  software elements. The 

SCA inherently supports distributed computing be it in the form o f  inter-chip communication or 

across a network. CORBA (see Section 3.5.2) is used throughout the specification as an 

interoperability mechanism. CORBA acts as a ‘logical software bus’ allowing interconnection 

among the modules o f  the system. There has been some debate over the use o f  CORBA in such 

systems due to performance problems, however these problems have been shown to be tolerable in 

some circum stances [Bertrand2002]. The SCA relies on the use o f a real-time POSIX-based 

operating system for providing base services such as multi-threading and memory management.

The SCA is a very comprehensive standard. It dictates interface definitions for every aspect o f a 

com munications system. W hereas software radio is usually concerned with the physical layer o f  the 

communications stack, the SCA is a broader specification as it specifies interfaces for physical, link 

and network layers o f  the communications stack. The software structure o f the SCA is shown in 

Figure 2.6. M oving from left to right the diagram shows how an SCA com pliant system is 

partitioned from the physical layer RF stage right to I/O applications. Each section o f  the system is 

viewed as a software component. CORBA is used for all interaction among com ponents but some 

devices, for example FPGAs or DSPs, may not be capable o f  CORBA communication. For this 

reason ‘A dapters’ are specified which allow non-CORBA components to interact within the 

system. The logical software bus is shown which allows intercommunication among modules and 

the base services o f operating system and hardware elements are shown at the bottom o f the 

diagram. .V pp lications
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Communications applications built using the SCA are based around the use o f ‘Resources’. A 

resource is a single abstraction for many of the software components in the system. Examples 

include a LinkResource for components involving link layer processing and devices such as 

ModemDevice, I/ODevice and SecurityDevice all o f which can be used in the same way. The 

internal implementation o f resources is application dependent and hidden, thus Resources provide a 

black box abstraction for reuse.

Although not specifically designed for reconfigurability, the SCA is of interest in this thesis as it 

uses an object-oriented and component-based approach to the problem of developing software for 

software radio. The SCA could be viewed as a component framework with each of its resources 

defined as a different software component. Beyond this analogy though the system features limited 

reconfigurability. The SCA is a good example o f a ‘Software Defined Radio’ as opposed to 

‘Software Radio’ (as per the discussion in Section 2.3). Once a radio standard is implemented on 

this platform it is rigidly fixed and only limited reconfigurability can take place within the sub­

elements o f the system. The system as a whole cannot be reconfigured to do something completely 

different. For this reason it is unsuitable for demonstrating the concepts o f reconfigurability 

presented in this thesis.

2.5.3 DSP Design Tools

While not built directly for software radio, it is useful to contrast the work in this thesis against 

some DSP design tools.

Ptolemy is a software project from Berkley MIT that provides an environment for modelling, 

simulation and design o f signal processing algorithms [Buck94]. Central to Ptolemy is the concept 

o f models o f computation, a facility that provides a highly expressive environment for representing 

different types of signal-based systems. The reason Ptolemy is somewhat related to this work is that 

the system presented in this thesis also provides an environment for developing signal-based 

systems. However, there are some distinct differences between Ptolemy and the work in this thesis.

Firstly, Ptolemy is a tool for modelling and simulation. IRIS is not a design tool but a component 

framework for developing real reconfigurable radio systems. Although Ptolemy can potentially 

generate source code for a variety of platforms the way in which it views its targets is quite 

different to IRIS. IRIS reuses blocks of signal processing logic as software components, whereas 

the blocks existing in Ptolemy exist at design-time only. These blocks are eventually collapsed 

down to an implementation that is fixed in function. In contrast, the IRIS system is designed so that 

the actual system developed can constantly reconfigure. At its core IRIS supports application.
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structural and parametric reconfiguration, concepts that do not enter into the Ptolemy design 

paradigm.

SPW (Signal Processing W orksystem) from Cadence for example is a tool for capturing, simulating 

and verifying DSP designs for FPGAs. This tool provides the full tool flow for developing SoC 

(System on Chip) and FPGA designs. It provides a visual block-based user interface for 

constructing any type o f  FPGA design. This type o f  tool is extremely different in function to the 

IRIS system. As with Ptolemy, SPW is primarily a design tool with integrated simulation and 

testing, whereas IRIS is a component framework for building real reconfigurable radio systems. 

The IRIS component framework hosts radio applications much in the same way an operating 

system hosts a user’s application. For this reason the tool flow approach o f  SPW is quite different.

O ther tools that fall into this category are Matlab and Simulink [Mathworks], M atlab and Simulink 

are simulation tools for modelling, simulation and development o f  signal processing algorithms. 

Both o f  these are different to the work presented in this thesis as they are design tools whereas the 

IRIS system is a component framework for implementing real reconfigurable radio systems. These 

systems have not been built specifically for developing reconflgurable radio systems. These tools 

and other approaches are discussed further in Section 2.5.

2.5.4 Other Approaches

Using a somewhat different approach to SPECtRA and the SCA is the work o f  Srikanteswara 

[Srikanteswara2000a, Srikanteswara2000b]. Srikanteswara presents a software radio architecture 

designed for reconfigurability using FPGAs. The system uses an FPGA which can be 

reprogrammed at runtime. Signal processing functionality is implemented in processing modules 

that can be swapped and reconfigured at runtime to dynamically change the functionality o f  the 

radio. Functionality is divided into layers and processing o f  data occurs in a similar way to a 

communication stack. Data propagates through the system using stream-based processing which 

uses a common bus for transferring data and control information. Self-steering streams weave 

through layers, each o f  which performs processing on the data. Data is thus transferred as 

packetised data and can contain either control information or signal data. The packet can contain 

configuration information on how the data should be processed via ‘embedded variables’. Other 

‘non-embedded variables’ can provide variability independently o f  the data stream.

Although completely hardware based, this system again demonstrates the common approach and 

advantage o f using separate processing modules for implementing radio systems. Just like the 

PSpectra approach, this system allows different radio configurations to be created by 

interconnecting generic processing modules. Also, modules can be swapped and reconfigured at
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runtime allowing the system to dynamically adapt. It should be noted that beyond the conceptual 

view, this type o f system works in a completely different way to a GPP based system. GPPs have a 

different architecture in that programmes are loaded from RAM and executed sequentially via an 

instruction set. On the other hand the interconnections within an FPGA are physically re-adjusted 

each time a new configuration is reprogrammed. Thus, an FPGA cannot achieve the same levels o f 

reconfigurability possible with the GPP as each new iteration in configuration would require a 

change in physical hardware. It should be noted that if  the reprogrammable features o f  the FPGA 

are not used and it is programmed once to act as a GPP, it too would feature the same levels o f 

reconfigurability. However, this would be a more costly process than using readily available 

hardware as discussed in Section 1.4.

In the evolution towards software radio it is not surprising to find a wide body o f  research based on 

m igrating existing radio techniques into the digital domain. Many existing techniques from the 

analogue domain require a new approach for digital implementation. As examples, Ikemoto 

[Ikemoto2002] discusses the use o f  adaptive channel coding schemes using finite state machines, 

these being a concept from the digital domain. Similarly Harris [Harris2001] discusses the 

development o f  multi-rate digital filters for symbol tim ing and Zhao [Zhao2002] discusses the use 

o f  an existing scheme, GM SK (Gaussian Minimal Shift Keying), in a receiver implementation. 

Also Yang [Yang2002] describes techniques for implementing broadband frequency hopping 

multi-carrier systems in the context o f  software radio and Thara [Thara2002] discusses the use o f  

Turbo coding. All these cases demonstrate existing radio techniques being migrated to more 

software radio orientated, DSP-based applications.

A significant focus for software radio has been its capability in allowing software download or 

OTAR (Over The Air Reconfiguration). The basic idea here is that a software radio can reconfigure 

itself by downloading new software from a remote location. There are various issues associated 

with this including security [M ehta2001, Michael2002] and mode switching [Cummings99c]. 

Chapter 7 (Section 7.2) will discuss OTAR in more detail through a case study.

An emerging area o f  research is the concept o f waveform description languages (W DL), languages 

capable o f  providing a portable mechanism for describing software-defined waveforms. Willink 

[W illink2002] discusses the composition o f such languages and discusses the design o f  such a 

language for describing waveforms in a platform independent way. The main aim o f  this approach 

is to provide a language that facilitates the expression o f  software radio concepts without the 

overhead associated with other general-purpose functional or descriptive languages. Chapin also 

discusses a similar approach with RDL (Radio Description Language) [Chapin2001 ]. This 

language is Java based and operates on general-purpose processors allowing the control o f  signal 

processing functions and higher protocol level functionality.
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2.6 Summary

This chapter has presented a comprehensive overview o f  software radio technology. The history o f 

software radio and the discussion o f terms and definitions demonstrate that the scope o f  the 

technology is large and that it impacts radio system design in many different ways. The discussion 

o f  hardware demonstrated both the ideal and practical software radio, and presented an overview o f 

the hardware required to realise a practical software radio system within today’s technological 

capability. The final section narrowed the focus towards the work in this thesis by discussing 

relevant research relating to this thesis. From this discussion it is evident that research into software 

for software radio systems is varied. The work discussed dem onstrates a variety o f  approaches and 

it is clear that more work is required to consolidate many o f the ideas being discussed. In 

addressing such needs, this thesis makes its contribution to this area by now focusing on the 

development o f  software for reconfigurable radio systems.
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3 Software Engineering

3.1 Introduction

This chapter presents an overview o f  software engineering and provides background information 

on a range o f principles and techniques for developing good quality software systems. Later 

chapters will use these principles in discussing the developm ent o f  highly reconfigurable radio 

systems.

Software engineering has evolved as a standalone discipline o f  engineering as software needs to be 

properly engineered to produce reliable software systems. The problem o f  complexity was widely 

recognised in the early days o f  software technology. In the late 1960s attempts to develop large- 

scale software systems resulted in seriously flawed systems that often contained errors that were 

difficult to fix. Frequently these systems did not effectively solve the problem being addressed. 

These issues became known as the ‘software crisis’ [Dijkstra72].

At the time, the popular belief was that software problems are intrinsically complex (such as 

mathematical calculations), but this observation was incorrect and in reality most software systems 

are complex due to the vast number o f  details that must be dealt with. It is the systematic 

management and abstraction o f  these details that forms the basis o f  software engineering. Three 

decades later there is a better understanding o f  why software can be complex and significant work 

has been carried out on developing methodologies, principles and techniques for developing large 

robust software systems.

The practices o f  software engineering are not typically applied to software radio. Most o f  the time 

software development for a software radio system is done using hardware description languages for 

FPGAs, or C implementations for DSP processors. In this environment the application o f  software 

engineering techniques is sacrificed in favour o f  optimisation, i.e. performance (faster execution 

speed) and smaller code size. Faster performance translates to cheaper processors, as more efficient 

code requires less processing power. Smaller code size translates to cheaper devices, as less storage 

memory or RAM is required. Optimisation usually means breaking encapsulation, reducing code 

reuse and reducing the m aintainability o f  the code, thus abandoning many o f the principles that 

underline modem software construction. However, to meet the demands o f  increasingly complex 

radio standards more and more code is being written. W ithout proper use o f  software engineering
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techniques, software radio has the potential to fall foul to its own ‘software crisis’, ultimately 

resulting in unstable and unreliable radio systems.

For this reason it is important to apply the principles of software engineering in software radio and 

this has been a major focus of this thesis. While modem software engineering dictates practices in 

everything from managing people to project coordination, it is the technical practices o f software 

engineering that are more relevant in this work. Object-oriented techniques and component-based 

software are the techniques used in tackling the problems of complex software development. By 

applying these techniques to software radio, software can move from being complex and error- 

prone to being manageable, reliable and stable.

In addition, another advantage o f using software engineering techniques is that software can 

become better structured. Using these techniques software can be built that is reusable, flexible and 

adaptable. A reusable piece o f software is constructed in such a way that it can be easily reused by 

others thus eliminating re-implementation. A flexible  piece of software offers variability in how it 

performs its function and provides a simple mechanism for doing so. An adaptable piece of 

software can be used in scenarios that were unforeseen at design time. This work attempts to build 

software for software radio that exhibits these traits.

The remainder o f this chapter presents an overview of software engineering techniques. It begins 

by briefly discussing object-oriented software but moves on to concentrate on component-based 

software. Existing component technologies are discussed, as the system presented later in this 

thesis is a component-based software system for software radio. The overall purpose o f this chapter 

is to provide background information on the software approach employed in this thesis. The reader 

familiar with software principles may wish to skip to Section 3.6, which summarises the main 

points of this chapter.

3.2 Object-Oriented Software

3.2.1 Overview

Before object orientation, the dominating approach to programming was the functional 

decomposition approach o f procedural languages such as C and Fortran. Using functional 

decomposition a problem is approached from the top-down with each problem broken down into 

sub-problems. Functions consisting of algorithms are written to solve each problem and a hierarchy 

o f these functions form the resulting solution. While functional decomposition is a fundamental 

technique o f software design, when developing a software system of considerable scale this 

structured approach can run into difficulty. Programmes can become difficult to maintain and 

extend, overall reducing the quality o f software produced.
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The object-oriented approach works differently to functional decomposition. Instead of breaking 

down problems into functions and algorithms, a problem is addressed by identifying objects that 

play a role in the system. The system is built by defining a set of objects and defining relationships 

between them. Object-oriented programming has its roots in the languages SimuIa-67 [Dahl70] and 

Smalltalk-80 [Goldberg83]. These languages were the among the first to use the concept o f an 

object. In its purest sense an object is something that has state and behaviour. Objects communicate 

with each other through message passing which may alter the state o f the object. The behaviour an 

object provides is defined by its interface or set o f commands it provides. Object-oriented 

languages allow a system to be built around concepts and constructs o f the real world as opposed to 

concepts intrinsic to computers such as algorithms and hardware. Object-orientation is thus a way 

o f modelling and viewing software systems with the term object-oriented design (OOD) used to 

describe the design process required to develop such software.

In the practice o f OOD, two design techniques are o f particular importance; UML and design 

patterns. In designing the object-oriented system some method of describing object-oriented 

designs is required. UML (Unified Modelling Language) has emerged to fill this role [OMG2002]. 

UML is a graphical language used for defining the relationships between objects and use-cases o f a 

software design. UML will be used later in this thesis to help explain software designs. Design 

patterns are used in object-oriented programming to capture the solutions of recurring problems 

[Gamma95J. Each pattern describes the solution to a problem that reoccurs frequently. By 

recognising reoccurring problems and applying the appropriate patterns, a software designer can 

apply tried and trusted principles to a design thereby creating more robust software. These 

techniques provide the designer with mechanisms for communicating software designs.

Closely related and often confused, object-oriented programming (OOP) is a different practice to 

OOD. Whereas OOD is about modelling and viewing a software system, OOP is about how to 

actually implement an object-oriented design in software. The two practices are distinct because 

each programming language implements object-orientation in different ways. While an exhaustive 

discussion of object-oriented languages will not be presented here, the main concepts o f OOP exist 

through encapsulation, inheritance, interfaces and polymorphism.

Encapsulation provides modularisation in a software system. An object uses encapsulation to 

shield its internal data from modification by another object. Instead each object exposes an 

interface by which other objects access its data or request it to perform some operation. Using this 

mechanism the internal implementation o f behaviour and the data itself are essentially hidden.

Inheritance allows one object to inherit the characteristics of another object. By doing so an object 

can reuse the functionality o f  another, thus it is possible to create hierarchies o f objects. While the
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concept of inheritance itself is simple, the implementation and use o f inheritance is a subject of 

much debate. Problems such as the fragile base class or diamond dependencies can occur if 

inheritance is not used with care.

An interface defines the interaction o f objects. An interface specifies the operations an object will 

support and thus offers a way to express the functionality o f an object independently o f an 

implementation. The interface is thus an important tool during both OOD and OOP. In OOD it 

allows designers to express the functionality o f a software object without having to w on^ about 

how it should be implemented. During OOP interfaces can be used to enforce a design, as code will 

fail to compile unless the implementation adheres to a set o f interfaces.

Polymorphism is the ability o f an object to appear in multiple forms, depending on context. For 

objects to be polymorphic they must inherit from the same base class and implement the same 

functionality. A typical scenario involves the use o f an abstract base class to represent some entity, 

for example a ‘Vehicle’. Other classes can inherit from this base class to create different types of 

objects, e.g. ‘Aeroplane’ or ’Car’. A polymorphic language allows the programmer to interact with 

any sub-classed ‘Vehicle’ object without knowing whether it is an ‘Aeroplane’ or ‘Car’. When 

used in conjunction with interfaces, polymorphism can offer a powerful construct for hiding the 

implementation o f an object. Using polymorphism many different objects may expose the same 

interface with the details o f each object hidden in the implementation.

Objects are commonly defined via the class construct. The class is a construct that allows the 

specification o f an object via the data it stores and the methods it exposes. Central to the class is 

encapsulation, or data hiding. The class offers a set o f access modifiers that allow access to data 

and methods to be restricted. Using these modifiers unnecessary internals o f a class can be hidden 

from external clients. Whereas a class defines the blueprint for an object, an instance is a 

manifestation o f that object. Thus from one class definition, multiple instances o f an object can be 

created. A class is said to be abstract if it does not implement all the methods specified in its class 

definition.

3.2.2 Object-Orientation fo r Software Reuse

Object-orientation inherently supports software reuse. OOP allows the construction o f software 

objects that can be reused by others to solve similar problems. The advantages o f software reuse in 

OOP are not often apparent in small software systems. Often, it can seem unnecessary to use 

classes, especially when programming a small system in which it is known that classes will never 

be reused. Effective reuse only becomes apparent in large software systems. Most large systems 

rely on the definition o f basic objects that are reused extensively throughout the system. Software
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construction at this scale can leverage object reuse to great effect in reducing the amount o f  code 

used, and also increasing the simplicity and thus m aintainability o f  the system.

For software to be effectively reused it is not sufficient to just place code into a class, there are 

many other factors that determine how reusable an object really is. W hile some o f these factors 

may be loosely defined by elements o f taste or aesthetics, others are well-recognised principles and 

have been formalised in the literature. O f the latter we consider here the concepts o f granularity, 

coupling and cohesion.

Granularity

There is an inverse relationship between software granularity and software reuse. Objects are 

designed to represent and solve problems for a particular domain (or application). The larger a 

software object is, the more domain-specific the object will become. A software object is not likely 

to be reused if  it caters too specifically to a particular domain or application. Conversely, a fine­

grained object can potentially be reused more because it provides limited functionality and is not so 

domain-specific. Choosing the correct context and granularity for a software object will thus 

determine how often the software can be reused.

The effect o f  granularity is evident in the class libraries available for programming with languages 

such as Java. The Java class library offers a wide range o f  classes ranging from domain- 

independent to domain-specific. Fine-grained classes representing primitive types such as strings 

and integers are used extensively throughout the whole class framework, whereas larger more 

domain-specific classes can only be reused in that dom ain’s context, for example graphics or 

networking classes.

Cohesion

Cohesion is the measure o f  the level o f  logical relationships in a piece o f  software. Balen 

[Balen2000] defines cohesion to be ‘a measure o f  the level o f  logical relationships between 

methods o f a class and also a measure o f logical relationships among sub-system s’. Yourdon 

[Yourdon79] has defined cohesion using various terms, namely coincidental, logical, temporal, 

procedural, com m unicational, sequential and functional. These definitions identify the 

characteristics o f  cohesive software modules at various levels o f  cohesion from weak to strong.

In general it is advantageous to strive for highly cohesive software objects. In a highly cohesive 

software object (or functionally cohesive module according to Yourdon and Constantine) the 

elements the object expose will be related in that they all contribute to solve a common problem. 

An object with weak cohesion haphazardly associates elements that share no common purpose. 

While the obvious approach to software construction always suggests using cohesive elements, the 

practicalities o f  design make this difficult to achieve. A cohesive object is more likely to be reused
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than an object with weak cohesion, as the cohesive object will be logically structured as a unit that 

addresses a particular problem.

Coupling

W hereas cohesion is a measure o f  the relationship between software elements, coupling measures 

the dependencies among elements. VanVliet [VanVliet2000] defines coupling to be ‘a measure o f 

the strength o f  the inter-module connections’. Similar to cohesion, various terms have been used to 

define various levels o f  coupling, namely content, common, external, control, stamp and data 

ranging from tightest to loosest. Tightly coupled objects are objects that require a lot o f 

dependencies on other objects to function. A loosely coupled object has weak dependencies in that 

it can function independently o f  other objects.

In general loosely coupled objects are preferred over tightly coupled ones. A loosely coupled object 

can offer better software reuse, as it can be adapted for use in many different scenarios without 

having to maintain inter-object dependencies. In practice creating loosely coupled objects is 

difficult because functionality is gained by bringing together objects to form new objects. By 

bringing together objects new dependencies are formed which tightens coupling. One common 

solution is to re-implement the functionality o f  other objects to avoid dependencies but this goes 

against software reuse and can increase the level o f  cohesion.

3.3 The Principles of Software Components

Following on from object-oriented techniques, the software component is a more comprehensive 

unit o f  abstraction that also attempts to address the problems o f  complexity and reuse in software 

systems. This section defines software components, their difference to objects and how they can be 

constructed.

J.3.1 Defining the Software Component

W hereas object-orientation is well understood as a methodology for designing and programming 

software, the concept o f  the software component is a new er concept and thus has various meanings 

throughout the literature. Various definitions have been proposed;

‘A software component is a unit o f composition with contractually specified 

interfaces and explicit context dependencies only. A software component 

can he deployed independently and is subject to composition by third 

parties ’ [Szyperski2002J

'A software component is a static abstraction with plugs ’ [Nierstrasz95]
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Reusable software components are self-contained, clearly identifiable 

pieces that describe and/or perform specific functions, have clear 

interfaces, appropriate documentation and a defined reuse status. ’

[Sametinger9 7]

‘A reusable software component is a logically cohesive, loosely coupled 

module that denotes a single abstraction ’ [Booch87]

While definitions vary in scope, the essence o f the software component is that o f a reusable piece 

o f software with well-defined functionality that exposes well-defined contractual interfaces. It is 

interesting to note that Sametinger includes documentation in the definition o f the software 

component and that Szyperski includes reference to use o f components by third parties. This 

suggests a higher-level construct than the object, in that a software component is not simply a 

software implementation but addresses a wider range o f issues in how its functionality is described 

and how the component is used and made available.

In Szyperski’s comprehensive text on component software [Szyperski2002] he identifies the 

software component via the following characteristic properties;

1. A component is a unit o f  independent deployment

For a component to be independently deployable, the component must be self-contained. It 

must be packaged into an independent unit and must be well separated from its environment 

and from other components.

2. A component is a unit o f  third-party composition

Components are primarily designed, implemented, tested, and subsequently used by people 

who do not have the desire or expertise to write the software for themselves. For these reasons, 

people who use the component should not be (or should not have to be) aware of any of the 

construction details o f the component.

3. A component has no externally observable state

Components often represent heavyweight pieces o f functionality in a system. Often there will 

only be one instance o f a component in a process. A component should have no persistent state, 

i.e. the component should be identical to copies o f itself This is in contrast to a software 

object, in which its identity is defined by its state.

Again, these properties suggest that the software component is a very different construct to the 

object. For example, Szyperski suggests that there should be only one instance o f a component 

whereas objects are specifically designed so that they can be instantiated multiple times. Overall,
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object-orientation is a technique for building the internals o f  a piece o f  software. Component 

software is about how this implementation is packaged and deployed for use by others.

3.3.2 Objects vs. Components

Objects and components are often confused. This section discusses the difference between objects 

and components, and how they facilitate different methods o f reusing software.

The differences between objects and components can be summarised as follows:

•  In OOP, every object is constructed in a different way and specific knowledge o f the object is 

required to avail o f  its functionality. In contrast, in component technology components that 

implement completely different functionality often use the same interface. In this way 

components are much more standardised ways o f  exposing functionality.

•  Objects are often language and platform specific making binary interoperation difficult. Many 

component standards are built specifically for language and platform independence allowing 

many different types o f  components to interact.

• In objects, dependencies may have to be sourced so that the component will function. A

component usually contains everything it requires to function reducing the amount o f

dependencies it requires.

• In object-oriented languages an object is often statically linked into an application requiring the

application to be rebuilt if  significant changes are made to the object. In component-based

programming components are mostly dynamically linked and interchangeable allowing 

different components to be used without recompilation. This approach can be used for software 

maintenance and upgrading, or as a technique to enforce a contract between different pieces o f 

software.

The component concept embodies a particular viewpoint on how software should be reused. In 

other contexts reuse can be as simple as the copying o f  source code or using a set o f  library 

routines. In OOP, objects are reused via instantiation or inheritance. Even though these facilities do 

work, OOP and other methods often fail in achieving effective reuse o f  code.

For example, objects are often seen as bad elements o f  reuse. While a software component can be 

built using an object-orientated language, object-orientation itself says nothing about how to 

package the software into a reusable unit. Also, it says nothing about how the com ponent’s 

interface will be exposed to the outside world, or how it interacts with other types o f  components. 

The concept o f  the software component goes some way in solving the problems o f  reuse. Software 

components satisfy the need in software engineering to be able to package and subsequently reuse a 

piece o f  software.
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A useful characteristic in discussing reuse is the level o f  visibility exposed by software. Visibility 

in this context is the visibility a programmer has o f  the internals o f  a piece o f  software. This 

visibility is often referred to in terms o f  ‘white box’ or ‘black box’ abstractions. In a black box 

abstraction, the programmer using the software only has knowledge o f  an interface and its 

specification. All other details are hidden. A white box abstraction may still enforce the 

encapsulation (hiding) o f  functionality but will allow the functionality to be extended or modified 

via mechanisms such as inheritance. Other terms are also used to refer to levels o f  visibility that lie 

between white and black abstractions, for example a ‘glass box’ abstraction allows the internals o f  

a piece o f  software to be viewed without allowing modification o f  functionality.

Software components are seen as black box units o f abstraction whereas objects can be viewed as 

white box abstractions. Components do not reveal their internal functionality and operate via their 

interface only. Objects on the other hand are white box because they allow their functionality to be 

changed via inheritance. W hite box abstractions and thus objects in general are seen as bad 

elements o f reuse. The problem lies in O O P’s use o f  inheritance for software reuse. Inheritance 

allows changes to be made to the internals o f  an object and this introduces the possibility that 

programmers might reinterpret or simply break an object. For this reason software components are 

designed to be black box units in that they do not typically allow extensibility though inheritance.

Another important issue when considering reuse is granularity. Granularity for software 

components is similar to the concept o f  granularity for objects (see Section 3.2.2). Whereas objects 

are seen as finer grained elements reused in the construction o f  software, components are larger 

entities that enable software reuse at a much larger granularity, perhaps reuse o f a complete 

software system.

3.3.3 Constructing Components

A component is constructed and hence defined via:

•  The interface it exposes.

•  The dependencies it requires to operate.

• The meta-data it exposes.

•  How it is deployed.

Each o f  these is discussed in the following sections.

Interfaces

An important characteristic o f  a software component is how it defines its interfaces. The interface 

in the context o f  the component is quite different to the interface defined by OOP. In OOP the 

interface is defined as part o f  the programming language. W hereas the interface in OOP defines its
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relation to other objects within the context o f  a particular language, the interface o f the component 

defines its interaction with other components that may be implemented in different languages and 

may even exist across networks on different platforms. Therefore in the context o f  components, 

interfaces define a com ponent’s interaction with the outside world.

The interface is often seen as a contract, the analogy being that breaking the contract, or the way in 

which components interact, is equivalent to breaking the software. Thus, all components must use a 

well-defined interface. Interfaces have an important role to play in quality, as overall software 

quality can depend on how well interfaces are defined and how well both clients and providers 

adhere to these interfaces.

Dependencies

In OOP new objects are created by bringing together existing ones. A dependency identifies the 

relationship between objects brought together in this way. If object A is constructed by combining 

objects B and C, then object A has a natural dependency on B and C; in other words, object A 

cannot exist without B and C. It follows that to reuse a piece o f  object-oriented software, 

knowledge o f its dependencies are required and these dependencies must be present for the 

software to work. Dependencies are difficult to avoid, but one o f  the aims o f  component-based 

software is to shield programmers from having to deal with the particular dependencies o f  a 

component. This is reiterated by Szyperski’s definition o f  the component being ‘a unit o f 

independent deploym ent’. Thus, a self-contained unit should contain all dependencies necessary for 

its correct function.

Meta-Data

M eta-data is information about information. In terms o f  component technology meta-data is an 

important facility for self-description. Using meta-data a component can export any information 

about the services it offers, the interfaces it exports, what its dependencies are, etc. Information 

about a component can by dynamically queried and this can be done programmatically without 

human intervention.

M eta-data is a useful facility in loosening the coupling between software elements. Instead o f 

having to statically link pieces o f  code together during development, meta-data can allow dynamic 

discovery and the use o f new components that become available at runtime. This allows a system to 

be extensible in that it can load new functionality without recompilation.

Object-oriented languages such as Java and C# support meta-data via reflection. Reflection allows 

an external client to query all information about a compiled class. C# has more advanced support 

for meta-data in that it supports attributes. Attributes allow arbitrary pieces o f  meta-data to be
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included alongside compiled code. Components may support their own methods for exposing meta­

data or they can use specific language facilities such as reflection.

Deployment

An important aspect of a component technology is to define how a component is deployed, as this 

will ultimately determine how the component is made available and used. Deployment in this 

context refers to how the component is integrated into new systems and the mechanisms involved 

in availing o f a component’s functionality. There are various techniques for deploying a 

component. Firstly, there are binary compatibility standards. These types o f components can be 

constructed in any language, but to expose functionality it must expose its functionality using a 

particular binary format. Secondly, some approaches are language specific and require the 

component to expose its functionality via the constructs o f a particular language. Finally, there are 

distributed components that are made available via communications networks. In this case the 

component is accessed via a communications protocol and this can be useful in allowing 

intercommunication among components across languages and platforms.

Whatever the deployment option the component technology must have well-defined mechanisms 

for ensuring that providers know how to construct components in a proper way and that clients of 

these components know how to access and use them.

3.4 Component Composition

Components are only of use if they can be combined with other components to form useful 

applications. How components are assembled together is called component composition.

3.4.1 The Component Framework

Szyperski provides the following definition o f the component framework:

'A component framework is a dedicated and focused architecture, usually 

around a few  key mechanisms, and a fixed  set ofpolicies fo r  mechanisms at 

the component level’ [Szyperski2002]

A component framework (sometimes called a container) addresses the need to be able to plug 

components together to form useful applications. A standardised framework eliminates the need to 

handwrite code to combine components together. A framework will usually provide a mechanism 

for interconnecting components allowing them to be combined in a generic way.
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There are two ways in which components can interact in a framework, either through wiring 

(connection oriented programming) or through contextual frameworks. In a connection oriented 

framework the ‘plugs’ of components are connected together and information flows directly from 

one component to another. In a contextual framework communication is achieved via services. In 

this case components communicate via services specifically designed to manage communication 

between them.

Components and frameworks are often confused. Lumpe argues that components cannot exist 

without frameworks and that a component by itself is meaningless without the context of a 

framework [Lumpe99J. An example is user interface components. On its own a user interface 

control is useless but when combined with other controls and placed on a window, useful 

applications can be created. It is true that even if a concrete component framework exists it is 

pointless to construct a component without knowing how it will interact with other components to 

form a useful system. I.umpe therefore provides the simplistic definition that ‘a  software 

component is an element o f  a component fi-amework. ’

A common analogy used to describe component frameworks is a stereo system. A stereo system 

can be supplied in various components (CD, tape, tuner, etc), which are then wired together to form 

a system. The audio interconnections among components adhere to specific electrical standards. 

Likewise the electricity supplied to each component is standardised. These standards, the electrical 

connectors and the components themselves have to adhere to a ‘framework’ so that they can 

interoperate effectively.

To allow interoperation among components the component framework should be able to interact 

with and control components. A framework has to be built to accommodate a particular component 

standard or possibly multiple standards. In fact, realistically the framework will be built first with 

subsequent components implemented and tested against the component framework to ensure they 

are functioning correctly. A component framework may also include mechanisms for automating 

component composition. This may involve some type o f either scripting language, programming 

language or glue [Schneider99]. The particular facility available for component composition will 

be dependent on whether the framework allows composition o f components at compile time or 

runtime.

3.4.2 The Component Architecture

The component architecture is a particular set o f rules governing the use o f components and a 

component framework. [Szyperski2002] provides the following definition of the component 

architecture:
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‘A component system architecture consists o f a set ofplatform decisions, a 

set o f component frameworks, and an interoperation design for the 

component frameworks. '

Whereas a component framework allows com ponent composition, the component architecture 

dictates the overall system-wide policies concerning the use o f  components. The component 

architecture is concerned with defining the overall principles o f a software system and this 

architecture will dictate policies on functionality, performance, reliability and security. As such, a 

system may include multiple component frameworks all conforming to the same architecture. The 

component framework may itself be a component; in this case the component architecture may 

dictate the interconnection among multiple com ponent frameworks.

3.5 Existing Component Technologies

Later in this thesis the concepts o f  component-based software will be used to build a component 

framework for software radio. To gain more insight into how these techniques can be put to use, 

this section examines three existing component technologies, namely: Java components, CORBA 

components and M icrosoft based components.

3.5.1 Java Based Components

I he Java language [Gosling96J is one o f the most popular languages in use today. It is an object- 

oriented language that allows cross-platform operation using a virtual machine. The Java Virtual 

Machine (JVM ) executes byte-code produced by the Java compiler. Various platform vendors can 

thus support Java by implementing a suitable JVM . Java has become a popular language and is in 

widespread use throughout desktop, server-side, internet and mobile applications.

Java is a very suitable language for developing software components. Java inherently supports 

features such as reflection and advanced networking capabilities which provide a rich infrastructure 

for developing software components. Thus, various com ponent technologies have emerged for the 

Java platform. O f these two are o f particular interest in this discussion, JavaBeans and Enterprise 

JavaBeans (EJB).

JavaBeans

A Java bean is a Java software component [Sun97]. A Java bean encapsulates functionality into a 

unit called a bean. JavaBeans address the need in Java to have some way o f  packaging functionality 

and resources into a module that can be repeatedly reused. A bean is primarily used for packaging 

graphical controls, but it is also suitable for creating general-purpose Java components. What 

differentiates a Java Bean (or Java component) from a standard Java class are the standardised 

facilities a bean uses to expose its functionality. Every bean must contain:
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• Properties; A bean can expose properties that can be used to configure an instance o f a 

bean. These properties are configured using set and get methods for each property.

•  Events: A bean can provide or consume events. Events allow a Java bean to

asynchronously react to or control other external users o f  the bean.

• Methods: A bean exposes all other functionality through standard Java methods (or 

functions)

In addition, JavaBeans relies on some features o f  the Java language to facilitate component 

constructs:

•  Reflection (meta-data): The Java language supports reflection that allows external clients

to quei7 information about a bean. Using reflection it is possible to find out

programmatically what properties, events and methods a bean exposes.

• Packaging: A Java bean can be programmed via a number o f  Java classes. In addition, 

resources such as graphics may be required. JavaBeans allows all code and resources to be 

packaged into a Java archive (JAR) file.

The JavaBeans standard applies many o f  the concepts o f software com ponents discussed in 

previous sections. In particular:

• Interfaces: The Java bean exports a well-defined standardised interface consisting o f 

events, properties and methods.

•  Unit o f deployment: The Java bean is packaged as an independent unit (a JAR file) 

incorporating all the code and resources required for its operation.

•  Meta-data: The Java bean supports reflection which allows users o f  the bean to query 

information about the bean programmatically. This allows an external client to dynamically 

query the capabilities o f a bean.

•  Black box: A Java bean represents a black box abstraction, in that knowledge o f  its internal 

operation is not required to make use o f  it as a component. Although it may be technically 

possible to inherit from a Java bean class, this is not normally done and the problems o f 

white box reuse are thus avoided.

The JavaBeans standard does not however dictate a particular framework for composition o f 

components. It is a connection-oriented com ponent model and communication between beans 

requires connecting events mechanisms together. This usually requires a custom container to be 

built for each application. The JavaBeans standard is a minimal standard and so it faces other 

limitations. In particular there is no support for distributing Java beans via a network which makes 

it unsuitable for large enterprise scale applications. For this reason the Enterprise JavaBeans 

standard was created.
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Enterprise JavaBeans

Despite similar names, JavaBeans and Enterprise JavaBeans (EJB) [Sun2001] work very 

differently as component technologies. Fundamentally they address different types of applications. 

JavaBeans defines lightweight usually graphical components whereas EJB defines a whole 

infrastructure for developing distributed transaction-oriented applications [Monson2001]. Thus the 

EJB component model deals with issues such as security, persistence, transaction management and 

distributed computing. The EJB standard defines three different types of components namely: 

entity, session and message-driven components. These component types are specifically designed 

for use in building data centric business applications.

O f particular interest in the context o f this thesis is how EJB components are constructed and 

composed together to make useful applications. EJBs are programmed against a set o f interfaces 

and base classes that define the functionality a bean should provide. These classes and interfaces 

are designed is such a way that the developer can concentrate on business logic without having to 

wort7  about the specifics of transaction processing or networking. The EJB standard defines an 

infrastructure that factors out these difficult aspects of programming into generic services that are 

used among all components. This approach o f factoring out common functionality is closely related 

to aspect-oriented programming [Kiczales97].

Like JavaBeans, an EJB is packaged into a JAR file as its unit o f deployment. This JAR file 

contains all the required code and resources the EJB requires to operate. EJB uses a deployment 

descriptor which defines what components should be included in the application and all the 

configuration required for these components to work together. The deployment descriptor is 

defined using XML (extensible Markup Language). EJBs are deployed via a container, a type of 

component framework (see Section 3.4.1) that allows component composition. The container is 

responsible for hosting the EJBs, providing the infrastructure that allows component functionality 

to be exposed to the outside world and allowing intercommunication among components. EJB 

containers are standardised via the EJB specification and various EJB containers (also known as 

application servers) are provided by different vendors. Standardisation ensures that EJB 

components are guaranteed to work within any container.

In terms o f component technologies, JavaBeans are similar to EJB in how they are packaged (JAR 

files) and in their use o f black box abstractions. They do however differ in the following ways:

• Interfaces: Whereas JavaBeans provides one type o f interface consisting of events, 

properties and methods, EJB defines three different kinds o f components each of which 

defines its own interface.

• Meta-data: EJB defines an interface that allows a container to query information about the 

capabilities of a component via meta-data
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• Deployment: EJB uses an XML deployment descriptor file to dictate how components are 

assembled to form applications.

•  Framework: EJB defines a standardised framework for component composition based on 

an EJB container.

•  Distributed: EJB supports the distribution o f components across a network.

3.5.2 CORBA Based Component Technologies

CORBA (Common Object Request Broker Architecture) is a standard maintained by the OMG 

(Object M anagement Group) that allows software from different environments and platforms to 

interact. CORBA was introduced in 1991 to address the growing lack o f  interoperability among 

languages, implementations and platforms. CORBA is an open standard for the production o f 

distributed object systems. CORBA provides a mechanism whereby objects can communicate with 

each other regardless o f  where they are located, be it in the same programme, different programmes 

on the same machine or on separate machines [Balen2000],

Central to CORBA is an IDL (interface Definition Language) and the ORB (Object Request 

Broker). IDL is a language for the specification o f  interfaces allowing the developer to specify 

what functionality an object will expose. CORBA defines mappings from IDL to many languages 

therefore interoperation across language boundaries is possible. The ORB is the system that 

performs the communication among CORBA objects. The ORB uses HOP (Inter-ORB 

Interoperability Protocol) for communication am ong ORBs and thus allows the various objects to 

communicate. CORBA incorporates several services that are used in combination with the ORB to 

facilitate distributed object architectures.

When CORBA is used to expose the functionality o f  an object, this object can be viewed as a 

software component in terms of:

•  Reuse: Once a CORBA object has been exposed (either locally or across a network) it can 

be reused by multiple clients.

•  Interfaces: CORBA does not specify a particular common interface for CORBA objects as 

each object is allowed to expose its own interface. However, in CORBA an object’s 

interface is translated to a common format so that objects written in different languages can 

interoperate. Although not strictly a well-defined interface in the com ponent sense, this 

common format can be viewed as a type o f  well-defined interface in its own right. CORBA 

also supports events via an events service which allows asynchronous messaging between 

objects.

• Meta-data: Meta-data (or meta-information as it is often called in the context o f  CORBA) 

allows dynamic discovery o f  objects.
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•  Black box: A CORBA object provides a black box abstraction o f  sorts. Using a CORBA 

object only requires information about its interface and thus the internal operation o f  the 

object are hidden.

While CORBA objects can be viewed as software components, CORBA was not strictly designed 

as a component model and thus has many limitations. For this reason the CORBA Component 

Model (CCM ) specification was created by the OMG.

CORBA Component Model

While CORBA itself provides an infrastructure for wiring objects together, the CCM goes a step 

further in providing an infrastructure for deploying components. The CCM is aimed at the same 

types o f  applications as EJB, and in fact EJB components can be used in conjunction with CCM 

components within the CCM standard. Like EJB, the CCM defines different types o f  components 

that represent the building blocks o f  enterprise applications namely: service, session, entity and 

process components. It also defines a container model, a packaging and deployment model and 

support for transactions and persistence. Again, these elements o f  enterprise data centric 

applications are o f  lesser interest in the context o f  this thesis, but a lot can be learned from looking 

at how CCM components are constructed and how they are composed into applications.

The following features o f  a CCM component are o f  most interest [Gschwind2002]:

• Facets: A facet is the interface that a com ponent exposes. A CCM component can contain 

multiple facets.

• Receptacle: A receptacle is a way to specify what interfaces a component requires from other 

components. Alternatively, a receptacle o f  a component specifies what facets o f  another 

component it will use.

•  Events: CCM components can both provide (publish) and consume (subscribe to) events. This 

provides an asynchronous way to pass information between components.

•  Attributes and configuration: A CCM com ponent can be configured via attributes which are 

identified using named values.

A CCM component is packaged into a single redistributable file called a CCM assembly. Like EJB 

the CCM uses an XML configuration document to describe these components and how they should 

be deployed.

To host CCM components the CCM defines a container (i.e. a com ponent framework). This is 

similar to an EJB container. The container provides interfaces for providing transaction, security, 

persistence and notification services. The facets, receptacles, event sources and sinks allow 

components to be connected together to form the application.
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3.5.3 Microsoft Component Standards

M icrosoft have produced a variety o f standards for creating software components. These standards 

address both standard application development and distributed enterprise applications.

COM

COM (Component Object Model) is a standard by M icrosoft for creating reusable software 

components. COM and its predecessor OLE (Object Linking and Embedding) are language 

independent standards. Unlike the Java approach which uses a common virtual machine, the COM 

approach is to use a set binary standard. COM com ponents can be implemented in any language, 

but must conform to the binary format set out by Microsoft.

A COM object enforces a black box abstraction by exposing its functionality through a simple 

interface mechanism. Every COM object must implement the same well-defined interface called 

IUnknown. This interface allows the user o f  a COM object to programmatically acquire the 

information required to use the COM component. IUnknown must always supply the three 

methods; Querylnterface () , AddRef () and Release (). Using Querylnterface () a client 

wishing to use the component can query a table to obtain references to the interfaces supported by 

the component. Using the reference a client can make use o f  the component. The AddRef () and 

Release 0 methods are used to implement reference counting which allows the component to 

keep track o f instances o f  the component.

COM is a simple standard used primarily for application development. Other com ponent standards 

such as ActiveX build on COM by exposing different interfaces [Chappell96]. The COM standard 

itself does not dictate any particular framework for combining COM components and this is usually 

left to the application developer. Although simple, COM demonstrates the use o f  some 

fundamental concepts o f  component software:

•  Reuse; COM components support black box reuse o f  software.

•  Interfaces; COM supports a well defined interface structure. The binary standard used by 

COM can be more efficient than HOP used by CORBA or the use o f  a virtual machine 

which can introduce performance overheads.

• Meta-Data; A COM type library can be supplied that allows a client to dynamically 

discover information about the interfaces a COM com ponent exposes.

DCOM (Distributed Component Object Model), an extension to COM, allows COM components to

be used over a network and facilitates the creation o f  distributed component based applications.
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COM+

COM + was the first technology to combine support for transaction monitors and ORBs (Object 

Request Brokers). A transaction monitoring system forms a type o f  operating environment for 

applications in which it automatically manages transactions, resource management and fault 

tolerance. An ORB permits objects to be used across a network allowing the application to be 

distributed. COM + combined these principles facilitating the use o f  COM objects in this 

environment, which was particularly important for enterprise business applications. COM is 

analogous to JavaBeans, and COM+ is analogous to EJB.

COM + applications can still be built individually today but the services o f  COM + have been 

integrated into the new .NET platform. O f particular interest is a reoccurring paradigm among 

component models and component containers. EJB, CCM and COM + all factor out common 

services from component implementations. This sim plifies component development by making 

these services universal to the architecture o f the com ponent system.

.NET

The .NET framework was introduced by M icrosoft as a general purpose framework for creating 

applications. The core o f  the .NET framework is the CLR (Common Language Runtime). Similar 

to the Java Virtual Machine, the runtime allows the execution o f  a platform independent binary 

code called MSIL (M icrosoft Intermediate Language). W hereas the Java Virtual Machine has 

typically only been used to execute Java programs, the .NET CLR is specifically designed to 

provide enough facilities so that compilers can be easily written for any languages.

The .NET framework itself does not dictate a particular component model as it encompasses a 

broad technology base for developing many different types o f  applications [L6wy2003]. .NET 

itself can be used to build different types o f com ponent models and inherently supports many 

features that make this easier. O f these the following are o f  interest;

• Language independence: .NET allows multiple languages to interoperate through the CLR 

allowing components implemented in different languages to interoperate at a binary level

•  Packaging: .NET allows code and resources to be packaged into a unit called an assembly

• Interfaces: .NET is built on object-oriented principles therefore it supports the 

infrastructure required to develop components with well defined interfaces

•  Attributes and reflection: .NET has inherent support for meta-data via attributes and allows 

reading o f  this data through its reflection APIs. This provides powerful support for 

allowing dynamic use o f  components at runtime.

• Remoting: .NET supports distributed objects which are useful in building distributed 

component-based applications
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3.6 Summary

This chapter has provided an overview o f  software engineering, in particular the principles o f 

component-based software. It has shown that software engineering provides principles and 

techniques for dealing with software complexity, and for developing software that is adaptable, 

flexible and reusable. The main principles covered in this chapter can be summarised as follows:

Principles Description

Object-oriented analysis Object-orientation prom otes the building o f  quality, robust software
UML UML provides an effective tool for graphically modelling an object- 

oriented design
Design Patterns Ensure that tried and tested paradigms are used throughout the 

design
Classes, Inheritance, 
Interfaces and 
Polymorphism

The basis o f  object-oriented programming

Granularity, Cohesion and 
Coupling

Useful metrics for designing good quality objects, i.e. objects that 
help to reinforce the quality and stability o f  software

Component-Based
Software

Component-based software promotes the packaging and reuse of 
software

Black box Software components feature black box abstractions which hide the 
client from the internal implementation o f  a com ponent

Granularity Component granularity is important in that it affects the reusability 
o f  a component

Interfaces A component must expose a well-defined interface
Dependencies An individual component should have minimal dependencies but 

components may sometimes be interdependent
M eta-Data M eta-data and reflection are important facilities in allowing the 

dynamic discovery and use o f  a component
Deployment A component model should specify how a com ponent is packaged 

and deployed
Architecture The architecture o f  a com ponent technology should specify the rules 

associated with building applications for the domain the architecture 
addresses

Frameworks Components are pointless without frameworks. A component 
technology should provide a framework that allows components to 
be connected together to form useful applications.

Figure 3.1 -  Summary of Software Engineering Principles

The reason for discussing software engineering in this chapter has been to assemble techniques and 

practices for tackling the problem o f  developing software for software radio. This approach has 

been taken because software engineering practices are not typically applied to software radio and as 

explained in Section 3.1, history has shown that ignoring these principles in favour o f  optimisation 

can lead to un-maintainable, complex and expensive software.
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By looking at these principles and seeing them in use in technologies like EJB, COM +, .NET and 

CCM much can be learned about how to build quality software. For example, all these technologies 

share a common characteristic in that they support base services. The function o f  these services is 

to factor out common functionality required by many components. Instead o f  each component 

having to re-implement this functionality they can reuse these base services, thus greatly 

simplifying the implementation o f components. A good example o f a base service is 

synchronisation. The basic problem may be that multiple components require serialised access to a 

resource. Instead o f  each component requiring knowledge o f  how to negotiate, acquire and release 

the common resource, a ‘synchronisation’ service built into the fabric o f the com ponent framework 

automates the process. This makes it seamless and trivial to gain access to shared resources. 

Services are useful as they demonstrate how the concept o f a component framework can be used to 

simplify the development o f  complex systems, while allowing software to be reusable, flexible and 

adaptable.

Another common trait from the component frameworks analysed is their use o f  well-defined 

mechanisms for performing operations such as firing an event, calling a method or deploying a 

final system. Each system as part o f its architecture and framework defines a set o f  principles, each 

o f  which must be adhered to if  software is to function correctly. This effectively enforces a set o f 

rules both on the programmers that write components and those that write the framework. For 

example, if an event is fired by creating a block o f data and placing it in a queue then this should be 

the one and only way this is possible. A component framework will not allow any circumvention o f 

this rule. This approach results in less ambiguity and ultimately more robust software.

A conscious decision has been made during this work to not reuse an existing component 

technology such as COM, EJfJ or .NET. Some component frameworks although useful in 

demonstrating the principles o f  com ponent software would be completely unsuitable for 

developing radio systems. For example, EJB has been specifically designed for developing multi­

tier business applications that are based around databases, business processes and content delivery 

to users. This is clearly a completely different type o f  end-application to radio and so the EJB 

semantics would make this pointless. EJB is also a Java based language and although the approach 

presented in this thesis is not particularly concerned with code performance, in the current state o f  

the art Java itself is rarely used for high data rate signal processing on GPPs.

In general component models such as COM +, CCM and even the support provided by .NET have 

been designed to accommodate the needs o f  developers building mainstream information-based 

business applications, everything from banking systems to user applications. Thus, the base 

services they provide do not meet the needs o f  radio applications. These models have not been 

designed with signal processing in mind. They have no built-in semantics for representing a signal.
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performing a mathematical routine or interfacing with hardware. This thesis presents a system that 

fills this void.

Another compelling reason not to use these component models is that to fully explore the use o f a 

component-based approach to software radio requires a fresh look at both software development 

and component models in the context o f  radio. To use a component model designed for building a 

type o f  software unrelated to radio systems would make it difficult to fully explore this space. 

Instead o f  trying to fit a radio system into a com ponent model not designed for this purpose, the 

approach taken has been to develop a component model completely suited to radio systems.

In summary, software engineering techniques such as services, the mechanisms o f events, etc and 

component models are not currently used in radio systems, although as discussed, it is this type o f 

software that is increasingly required. The remainder o f  this thesis demonstrates how this can be 

done. Chapter 4 discusses the particular type o f  radio system being built, namely the reconfigurable 

radio. The reconfigurable radio concept is com pletely dependent on the software engineering 

principles presented in this chapter. Many o f  the principles o f  the reconfigurable radio are built on 

the premise o f  the component-based approach and the reconfigurable radio is only fully realisable 

using these techniques.
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4 Reconfigurable Radio

4.1 Introduction

This chapter presents a discussion o f reconfigurability in software radio systems, which is the core 

concept o f  this thesis. Section 4.2 discusses reconfigurability in detail and defines the three

categories o f  reconfigurability; application, structural and parametric. Section 4.3 provides a

detailed discussion on all the issues surrounding the development o f software for radio systems. 

Section 4.4 discusses the possible architectures for developing a system that is highly 

reconfigurable.

4.2 Reconfigurability

The term ‘reconfigurability’ is used extensively throughout the literature and refers to many 

different facets o f  software radio reconfiguration in both the hardware and software domains. For 

this reason, the following discussion is presented in order to precisely characterise what is meant by 

reconfigurability in this thesis.

4.2.1 Reconfigurability From Hardware to Software

Figure 4.1 depicts a graph that has been created to illustrate the level o f  reconfigurability o f  the 

various software radio hardware solutions which were introduced in Chapter 2. On the graph two 

types o f  reconfigurability are considered. A device can be considered to be reconfigurable if  its 

functionality can be changed (blue line). A device can also be considered to be reconfigurable if the 

way in which the functionality is performed can be altered (red line). Using these definitions the 

devices listed on the graph have varying degrees o f  reconfigurability.

As an example consider an ASIC. It performs one particular dedicated function which cannot be 

changed. However, the ASIC does allow the parameters o f  the function it performs to altered. For 

example, a GSM baseband processor ASIC cannot be used to process the baseband signals o f  any 

other radio standard but it will offer variability in how this function is performed, perhaps by 

allowing the output power to be changed. However, such changes require dedicated hardware such 

as a m icrocontroller to be used therefore giving it a ‘Low to M oderate’ score in how it allows the 

altering o f  functionality (red line).
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Figure 4.1 -  Level of Reconfigurability for Various Signal Processing Devices

The FPG A  is another exam ple, a device that can both change its functionality  and o ffer variability  

in how  this functionality  is perform ed. W hile it scores m oderately  high in term s o f  altering  

functionality , it scores low in its ability  to change its functionality . A lthough som e FPG A s allow  

full or partial dynam ic reprogram m ing, in practice  FPG A  developm ent is a longer and m ore 

com plex process than say DSP or G PP softw are developm ent. This is because FPGA designs are 

highly bound to the t>'pe o f  FPGA being  used and require decisions on rou ting  and placing o f  

functionality  on the physical device. D ynam ic reprogram m ing m akes th is task  m ore d ifficu lt as 

som e o f  the reconfiguration scenarios m ay be unknow n at design tim e m aking it d ifficu lt to 

a llocate resources on the FPGA. In contrast a device such as the G PP does not require m ore silicon 

real estate to  im plem ent new  functionality , only additional softw are program s. A lso, 

reconfiguration o f  an FPGA can have an im pact on the o ther circuitry  surrounding  an FPG A , so 

special considerations and thus lim itations in reconfigurab ility  are com m on.

The shaded w indow  surrounding FPGA and D SP techno logy  represents the curren t state o f  the art, 

i.e. these hardw are devices are the m ain focus for develop ing  softw are radio  so lu tions today. W hile 

these technologies o ffer the perform ance and real-tim e behaviour required  by to d ay ’s radio 

standards, the trade-o ff that results in using these dev ices is a lim it in reconfigurability .

In term s o f  th is d iscussion it is im portant to  expand  on the role o f  softw are in reconfigurabie 

devices. Not all o f  the devices in Figure 4.1 run softw are in the conventional sense. For exam ple, 

FPG A s require the use o f  a hardw are descrip tion  language such as V H D L or V erilog. Som e other
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languages exist also including System-C [System-C] and Handel-C [Chappell2002] that offer more 

software-like semantics for expressing FPGA functionality. Beyond these semantics though, these 

languages simply offer higher level constructs for expressing hardware functionality. They are 

hardware specific and there is limited abstraction between language and hardware. Thus FPGAs 

cannot be reconfigured to the same degree as a purely software-based device. For example, the 

FPGA cannot reorder the way in which it processes two signals without reprogramming hardware.

Software used in DSP processors is more similar to software running on a GPP rather than the 

FPGA. As in the case o f the FPGA, the conventional method o f programming DSP processors has 

moved from assembler languages to more high-level languages such as C. The difference however 

is that DSP processors execute instructions whereas FPGAs take a reprogrammable logic approach. 

DSP processors are therefore better suited for reconfigurable tasks. Flowever they still have 

features that limit the levels o f  reconfigurability possible.

DSP processor designs are highly bound to the particulars o f  the processor and the surrounding 

hardware. This is required to achieve constraints in real-time behaviour and to optimise power and 

performance. 1 his however limits the devices ability to reconfigure. For example, a maximum level 

o f  reconfigurability would allow a software radio device to change its own functionality by 

applying new algorithms and loading new code as required. In the DSP processor this would be 

difficult to achieve as any change to code could affect the hardware-oriented aspects o f  the design 

such as real-time behaviour and performance. Also, since DSP code is highly bound to hardware, 

most DSP implementations maximise the use o f hardware by manipulating low-level aspects o f  the 

system such as bus access and caches. Thus, it can be difficult to allow any aspect o f  the system to 

change dynamically without breaking or disrupting another.

From this discussion it is evident that devices can be reconfigurable to varying degrees, yet the 

term reconfigurable loosely applies to them all. The purpose o f  this work is to make advances 

towards the creation o f  a more ideal software radio. Chapter I discussed the choice o f  platform for 

this research, the GPP. This choice also has major implications for the level o f  reconfigurability 

that can be achieved in a software radio. Using the GPP provides a flexible environment and allows 

the development o f  software radio systems with exceptional levels o f  reconfigurability. The GPP 

shields software development from the particulars o f  hardware with many hardware specific 

functions such as virtual memory and m ulti-threading handled by the operating system. This 

simplifies software development and allows many different software implementations and hence 

software configurations to be used interchangeably. RAM and persistent storage are also important 

factors in that they allow vast amounts o f different configurations and code to be stored for 

reconfigurable purposes. In this context reconfigurability is thus software-based, and although there
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may still be some hardware aspects involved such as control over an RF front-end, the majority of 

radio functionality is implemented in software.

4.2.2 Reconfigurability Defined

Following on from the previous discussion it is useful to strictly define reconfiguration using three 

distinct categories, namely, application, structural and parametric reconfiguration.

• Application Reconfiguration - At this level the whole radio can be reconfigured by replacing 

the software o f the software radio. This type o f reconfiguration can allow a radio to completely 

change the application it performs. For example this might involve the same hardware being 

reconfigured from being a two-channel analogue FM transceiver to being a 10 channel digital 

BPSK transceiver.

• Structural Reconfiguration -  Structural reconfiguration allows components to be added, 

replaced or reorganised while the radio is operating. For example we may decide to change the 

way in which a signal is processed, perhaps introducing two stages of filtering instead of one. 

In this case the radio will still perform the same function but reconfiguration may have benefits 

in improving signal quality, power consumption or performance.

• Parametric Reconfiguration -  Software allows the individual parameters o f signal processing 

functionality to be changed dynamically. For example we may want to change the coefficients 

used by a filter or change a particular frequency setting. This level o f functionality will allow 

individual elements o f the radio system to be exposed for reconfiguration during the operation 

of the radio.

Just as important as each degree o f reconfigurability is the time each one takes. For example, one 

system may support application reconfiguration in that it can be sent to a factory to be 

reprogrammed, another may perform the same reconfiguration seamlessly without any loss of 

communication. In reconfigurable radio these changes should occur at runtime and reconfiguration 

should occur as fast as possible without any loss o f communication.

The degrees o f reconfigurability discussed here are somewhat different to those in current 

mainstream or commercial approaches to software radio as discussed in Chapter 2. Those 

approaches base their reconfigurability solely on the capabilities of hardware whereas 

reconfiguration in this discussion is based entirely on reconfiguration in software. For this reason 

the term ‘Reconfigurabie Radio’ is used for the remainder o f this thesis to differentiate the existing 

disparate variety o f approaches to sofitware radio from the more software-centric, GPP-based 

approach taken in this thesis. Thus for the purposes o f this work the reconfigurable radio is defined 

as follows:
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‘The reconfigurable radio is a software radio with a minimal-hardware RF 

front-end with the remainder o f processing performed using general- 

purpose processors. The software o f a reconfigurable radio allows 

application, structural and parametric reconfiguration. ’

4.2.3 The Benefits o f a Reconfigurable Radio

The prim ary benefit o f  reconfigurable radio is that it a llow s trad itionally  fixed operating  param eters 

to  becom e variable. This allow s radio system s to  becom e m ore flexible in how  they  com m unicate. 

F lexibility  has been constrained in the past due to the  characteristics o f  the com m unications 

channel, an environm ent that is noisy, lossy and corruptive to  the transm itted  signal. To achieve 

com m unication in this m edium  stric t standards fo r operation have been required. These standards 

often lim it radio system s in realising  the full potential o f  the m edium . For th is reason m ost w ireless 

standards are fixed in m odulation schem e, bandw idth , frequency allocation and pow er. W ith 

reconfigurable radio, these constra in ts can be som ew hat relaxed, as it is possib le to  build flexible 

term inals that constantly  reconfigure them selves to  suit the ir environm ent. R econfigurable radio 

o ffers an unprecedented  opportun ity  to  create devices that can o ffer better, m ore reliable 

com m unications. C onsequently  m any operating  param eters w hich are usually rigidly fixed, can 

now  becom e adaptable, for exam ple:

•  Propagation: C hannel characteristics such as m ulti-path  fading require additional p rocessing by 

a radio. U sing reconfiguration the radio can dynam ically  change how it deals w ith these issues.

•  Power: The radio  can dynam ically  a lter its R F-pow er ou tput to  suit its operating  environm ent.

•  Location: A ccording to  its location the radio can dynam ically  change m any param eters that 

may im prove its ability  to com m unicate.

•  M odulation schem e/bandw idth: the radio  can dynam ically  change the m odulation  schem es and 

hence the bandw idth it uses to  com m unicate. This can be varied to  d ifferen t degrees from  one 

o ff  changes to  dynam ic m odulation changes even during  transm ission.

•  Frequency: W ith a general-purpose term inal capab le  o f  operating  on a large range o f  signals, 

term inals w ill be able to  dynam ically  change they  frequency  used to  com m unicate.

•  A lgorithm s: The radio can dynam ically  reconfigure itse lf  to  use d ifferent a lgorithm s to  process 

signals. This w ill allow  it to  change its operation  to  su it m any d ifferen t scenarios.

•  Pow er consum ption: By dynam ically  chang ing  the w ay in w hich a radio processes signals it 

will be possib le to vary the pow er used by the rad io  device w hich is im portant for battery 

pow ered m obile equipm ent.
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Also there are intrinsic technical advantages and opportunities possible using the reconfigurable 

radio approach, for example visibility and rapid development.

Visibility: To test or calibrate an analogue radio system typically requires probing a circuit with an 

oscilloscope or spectrum analyser. The signal has to be isolated in a particular part o f the circuitry 

and then interpreted via the general-purpose tools available. Often, due to the use o f analogue 

integrated circuits and prefabricated modules, the signal o f interest is not available as an output 

because a module implements several stages o f the radio design. For example, a baseband 

processor chip may amplify an IF signal, down convert it to baseband and perform demodulation. 

All this functionality occurs internally within the chip and often the signal o f interest cannot be 

isolated.

Within a software radio all signals exist digitally and are available at runtime. This is useful for two 

reasons. Firstly, the radio system can have built-in validation. As all signals are accessible the 

system itself can perform verification of signal integrity at various stages in the radio. This can be 

done both during development and after the radio is deployed. Secondly, using graphical tools 

these signals can be directly accessed. Not only can these signals be viewed in the traditional way 

(for example using oscilloscope traces and spectrum analysis), but also new ways o f graphing and 

interpreting these signals are possible without building new hardware. This can be useful for either 

exploring how existing radio technologies work or as a tool for creating new types of radio 

systems. Thus, as these two examples demonstrate, the software radio brings an increased level of 

visibility to radio system internals.

Rapid Development: Speed of development is often overlooked when discussing software radio. 

Speed in this context refers to how long it takes to design, implement, test and deploy a radio 

system. Analogue radio systems have to be physically built before they can be properly tested. 

Simulation can go some way in reducing the need for a physical prototype, but nevertheless at 

some stage in the design an analogue prototype must be constructed. In software radio, beyond the 

RF front-end there is no need to build a physical prototype at every stage in the design. The 

fundamental paradigm shift here is that the prototype is the software under development. Instead of 

incremental physical prototypes that can take months to design and build, the radio system is tested 

during the development process, rapidly increasing the entire development process.

This fundamentally changes the radio system development process. In this environment the 

complexity o f a radio system is now contained in its software programs rather than its hardware. 

Increasing demands on functionality require additional software development rather than additional 

hardware design. The process can be made even quicker through software reuse. Designers can add
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on new features to the radio system by reusing third party software components. This eliminates the 

need for them to re-implement functionality themselves, thus rapidly reducing development time.

4.3 Software for Software Radio

The following topics are o f major concern when designing a piece of software;

1. Reuse.

2. Abstractions.

3. Adaptability and Flexibility.

4. Complexity.

5. Security.

6. Portability.

7. Real-time Behaviour.

8. Upgrading and Versioning.

It is important to discuss each of these topics in the context of designing a reconfigurable radio.

4.3.1 Reuse

Software reuse will become just as important in radio systems as it has become in mainstream 

software. In the DSP of radio systems many signal processing algorithms and functional algorithms 

occur frequently throughout different radio designs and standards. For example, BPSK (Binary 

Phase Shift Keying) modulation occurs frequently throughout many types of communication and 

thus a properly constructed piece of software implementing BPSK can be reused in multiple 

applications without re-implementation. This raises the question as to what is the best way to reuse 

elements of software radios. To address this issue, the role o f software granularity, cohesion and 

coupling must be analysed (as discussed in Section 3.2.2).

The granularity chosen in a software radio design will be a determining factor in how well 

software objects can be reused. Using a fine granularity, DSP software would be broken down into 

fundamental units that represent the building blocks o f DSP systems. For example, one approach 

could be to break down DSP algorithms into adders, multipliers, or multiply-accumulate elements. 

However, this approach does not leverage effective reuse as the objects are too small and generic 

and do not contain enough domain specific functionality to be labelled as software radio 

components. The user of these components would have to introduce too much ‘glue code’ and thus 

reuse would be lost.

A larger granularity is also possible, for example on the system scale where components 

encapsulate systems such as two-way radios or GSM base stations. Although these are suitable as
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methods for distributing or replicating a complete system, they are not suitable elements of reuse 

for building the software o f software radio systems. This type o f object is too big and thus only 

reusable in completely domain specific applications.

The granularity balance for software radio can be struck by viewing the system as reusable radio 

parts, each implemented in software. These parts each implement a different aspect o f common 

radio functionality such as the QPSK modulator, low-pass filter or speech-encoder. A component 

with this granularity holds enough functionality to warrant reuse but is not application specific 

enough to limit its usefulness and thus it can be applied in a wide range o f different scenarios.

Cohesion is important in software radio in that the reusable pieces of software that make up a 

software radio system should be logically related in such a way that they enable effective building 

o f quality radio systems. In an individual component, the functionality or methods it exposes 

should be logically related and contribute towards the same problem. This is a problem in 

mainstream software as diverse functionality' can be implemented by building objects in similar 

ways, thus bad cohesion is a result o f exposing functionality haphazardly. Software radio on the 

other hand is domain specific, thus most objects in the software radio system will be DSP 

algorithms and thus common cohesive DSP interfaces can be used to expose the functionality o f an 

object.

Cohesion also plays a role in larger scales. The sub-systems and elements that make up a software 

radio system should be cohesive in that they all relate to the problem of software radio in the same 

way. For example, using elements of different granularity throughout the system would result in 

bad cohesion, as it may be difficult to combine fine and coarsely grained elements to form the radio 

system. Objects should be logically designed employing the particular style o f the software system 

being used.

Coupling is a veiy important aspect o f developing reusable software for software radio. As 

discussed in Section 3.2.2, the level o f coupling will dictate how dependent a software element is 

on other elements. In software radio, coupling is especially significant as it has an important 

consequence to DSP software that does not typically appear in mainstream software. When 

designed well, mainstream software is easily tested. In the majority o f software, the correctness of 

software is typically boolean in that the software either performs its function correctly or it does 

not, examples being, ‘the numbers were added correctly’, ‘the e-mail was sent’, ‘the disk access 

failed’.

However in DSP software errors are not so apparent. A piece o f software can be functioning 

perfectly, but in reality it is not producing the correct result. Thus, DSP software typically requires
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additional testing from the DSP domain to determine whether the software is functioning correctly, 

for example, testing the signal to noise ratio or performing frequency analysis. Dependencies and 

hence coupling add to this problem, as traditional approaches to ensuring correct functionality 

across dependency boundaries are boolean-based logic rather than DSP-aware constructs. For this 

reason software-based DSP systems can suffer more from dependency problems than other 

software in that changes to reusable elements can have unnoticed or undefined effects across a 

software radio system. Also, DSP algorithms themselves are not standardised in any way so 

algorithms such as filters implemented by two different programmers may not produce the same 

result.

To illustrate this problem consider the tightly coupled software element shown in Figure 4.2. This 

software element is a simple channel extraction implementation using the three stages o f mixing, 

filtering and decimation to extract a signal o f  interest from a wideband source. The common 

approach o f object-oriented design would be to delegate operations such as filtering to other 

objects, as filtering is reused in many scenarios throughout radio design. The difficulty arises when 

some aspect o f  a reusable element is changed, for example, the programmer notices a bug in the 

filter windowing function and fixes it. In this case there is a risk that the expected behaviour o f  the 

channel extractor and other elements that depend on this filter will be altered.

Reusable C om ponents

Work delegj :ed to  other a  m ponents

Mixer

input output

Filter Decimator

NCO

Figure 4.2 -  A Tightly Coupled Software Component
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In the channelisation example this may result in an altered frequency response, ultimately having a 

knock on effect throughout the system. The underlying reason this can occur is because the original 

implementer o f  the channelisation algorithm would have based their design on a filter that they 

assumed would always produce the same values. Thus changing the characteristics o f  this filter can 

lead to unexpected results in any component that reuses this element. The main point to note here is 

that even though a piece o f  software works correctly and consumes and produces valid data, this 

does not mean the data is correct when analysed and interpreted using DSP.

The channel extractor is a very simple example, but there are more subtle cases where this type o f 

dependency-caused error can take place. For example, consider the following hypothetical example 

o f  a decim ator algorithm. A programmer decides to improve the performance o f  a reusable 

decim ator algorithm by changing the number o f decimation stages used in the algorithm. While the 

decimator still performs its function within specification and the code still exposes the same 

interface, the programmer has inadvertently introduced noise into the system by introducing 

multiple stages o f  processing. This has a knock on effect throughout the system in multiple places 

making the source o f  the problem difficult to find. Another interesting angle on this problem, but 

with the same negative result occurs if the programmer actually improves the noise performance o f 

an algorithm in some way. Again, this can also have a knock on effect as other elements in the 

system are designed and tested against the noisier decimator, and thus a new decimator producing 

different signals could result in undesired functionality such as glitches.

To combat these types o f  problems, again a balance has to be struck, this time between coupling 

and quality. If a complex algorithm is subject to change and interpretation then it should be 

encapsulated into a reusable object and not delegated out to external objects. Although some 

reusability is lost, this approach will yield better results overall for such applications. If extensive 

delegation is to take place then strict practices must be adhered to ensure the integrity o f  the 

software. This may involve documentation procedures or if possible the software environment and 

hence the mechanism for reusing elem ents should be DSP-aware in that inconsistencies can be 

easily detected.

Finally, aside from technical issues, it should be noted that reuse and hence properties such as 

granularity, coupling and cohesion also have an economic consequence. W hile many organisations 

will practice reuse for internal development, reuse is also important on a larger scale as it fosters a 

market for buying and selling software. Take granularity for example; too small a granularity and 

elements will not contain enough functionality to warrant their sale. Too big a granularity and 

elements will be too application specific therefore reducing their market potential. Thus for 

economic and technical reasons, software for software radio systems should ensure that objects are 

properly designed for reuse to ensure their overall success.
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4.3.2 Abstractions

How software for radio systems is viewed plays an important role in ensuring its success and 

contributes towards an effective level o f reuse. As discussed in Section 3.2.2, visibility is an 

important aspect o f partitioning software into reusable elements such as objects or components. 

Visibility specifies how much the internal workings o f a software object are exposed to the users of 

that object. ‘Black box’ abstractions shield the user o f the object from the internals of that object. 

Likewise, ‘white box’ abstractions allow the internals of the object to be extended through 

mechanisms such as inheritance.

it is important to consider what type o f abstractions will be used in the construction o f software for 

software radio. Black box abstractions offer the potential to allow the development o f software 

radio systems without requiring specific knowledge o f how the system works. This could occur in 

various ways. For example, the whole software radio system itself could be treated as a black box 

software component. The developer would use a well-defined interface to create new software 

radios. In this case the developer would be shielded from the operation o f the software radio system 

thereby protecting the internal workings from disruption.

Another way of applying the black box abstraction is to view the various reusable objects o f a 

software radio system as black box components. In this way these components are combined 

together to form various software radio solutions. The developer who combines these components 

does not require knowledge of how these various reusable elements work, just how to make them 

work together.

While the advantages of black box reuse are evident, there are some problems with black box reuse 

when developing software for software radio. Performance is always a primary concern and the 

overhead o f maintaining strict interfaces through black box abstractions could hinder the 

performance o f the radio system. In this case white box abstractions may be more appropriate in 

that the reusable elements become more flexible and can be altered to improve performance.

Overall in designing software for software radio we must strive to use black box abstraction as 

much as possible and only break this abstraction when the specifics of software radio pose no other 

alternative.

4.3.3 Adaptability and Flexibility

Adaptability will enable a piece of software to be reused beyond its original design. In a software 

radio this corresponds to developing signal processing algorithms that can be adapted for use in 

new applications. A prime example o f an adaptable element is an FIR filter. FIR filters are used
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extensively throughout many DSP systems. For an element such as an FIR filter to be adaptable it 

must facilitate its use in many different scenarios. For example the filter should be able to work 

with different sources of signals, possibly represented using different data types or supporting 

various methods for processing data. If a software radio is created out o f adaptable elements then 

the level of adaptability will determine how often this element and hence code can be reused in 

other applications.

Flexibility allows a soflrware radio to offer variability in how it performs its function. Whereas 

adaptability facilitates reuse o f an element in different scenarios, it is mostly concerned with the 

technical issues o f how an element exposes its functionality. Flexibility on the other hand concerns 

the actual functionality the element provides. Flexibility in the case of the FIR filter will ensure that 

the FIR filter provides enough control over the FIR algorithm itself. A suitable level o f flexibility 

will allow us to change the window o f the filter or specify our own windowing function. Flexibility 

will allow us to specify a range of increments for changing the cut-off frequency o f the filter. 

Flexibility may even offer us the functionality o f designing the filter coefficients for us. Flexibility 

and adaptability go hand in hand in creating reusable software for software radio.

4.3.4 Complexity

Complexity is a problem that faces any large software system. As radio technology continues to 

move towards more software-based implementations the amount of software required to build a 

radio system will continue to increase. Without proper management complexity will start to emerge 

in software radio systems in the form of bad quality and difficult to maintain software.

This problem can manifest itself in many ways. As demand increases for new wireless applications 

and increased capability, new and more complex DSP algorithms will be developed to meet the 

needs of these applications. Whether implemented on reprogrammable hardware or high-level 

software, the amount o f software being implemented for software radio systems will continue to 

increase. As well as increasing DSP code, there will also be an increase in code enabling new 

capabilities such as software download and interoperability. If the current approaches being used 

for FPGA and DSP processor development are carried forward into these future systems, (as 

discussed in Section 3.1) a ‘software crisis’ o f sorts could emerge in the domain of software radio. 

These approaches based on functional decomposition and hardware-bound languages do not 

encourage the building of quality software for large systems.

To deal with the problems o f complexity in software radio the methodologies o f software 

engineering must be brought to bear on the problem. A combination of object-oriented and 

component-based software approaches should be used. However, most o f these techniques are
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tailored for building software that values stability, robustness and m aintainability over performance 

whereas performance is often a critical issue in software radio applications. Although a piece o f 

software may be well built and highly reliable it may not be feasible to use the software if it 

requires an impractical amount o f processing power.

A balance must be struck between achieving the required code performance while also managing 

the complexity o f  the software. Complexity ultimately increases the cost o f a device as the more 

com plex it becomes the more costly it is to maintain. Thus, some designers may decide to invest in 

more powerful hardware allowing them to reduce complexity by using software engineering 

methodologies. This may prove more cost efficient in the long term, as the cost o f  more expensive 

hardware may be less than that o f  m aintaining a complex product over many years.

4.3.5 Security

Security is an important topic that has always surrounded telecommunications. W ireless 

communication is prone to eavesdropping and hence security o f communications over the wireless 

channel is particularly relevant. Cryptography is therefore often employed to secure wireless 

communications. Physical modulation techniques are also used to prevent denial o f  service 

attacks an example being spread spectrum technology, which can be used to prevent radio 

jam m ing. As well as the existing threats o f  eavesdropping and denial o f service, software radio 

introduces a new unique challenge to securing wireless communications. This challenge is radio 

viruses.

It could be possible to build a ‘radio virus’ or ‘radio w orm ’ similar to the viruses and worms 

written to infect computers on the Internet. Attackers could exploit weaknesses in the 

implementation o f  a software radio to gain control o f  the device. A similar type o f attack occurs 

today on the Internet by viruses and worms that exploit buffer overruns. A buffer overrun is caused 

by a bug in a program allowing an attacker to overwrite a buffer in com puter’s memory. This can 

be exploited by writing a malicious program into the computers memory giving the attacker full 

control over the device. The first buffer overrun attack occurred in 1998 with the Morris worm 

[Eichin89J. A survey o f  buffer overrun techniques can be found in [Cowan2000].

In the case o f  the software radio, bugs in signal processing software, or the underlying operating 

system as in the case o f  a GPP, could permit an attacker to send signals that manipulate a buffer 

overflow in the radio device. For example, a digital communications standard such as GSM expects 

fixed sized frames o f data with a standardised fram e structure. Any receiver that does not check the 

values in the received frame structure correctly could be open to attack. Attackers could send 

malicious frames containing non-standard values thus exploiting weaknesses in the system and
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giving them full control o f  the terminal. A denial o f  service attack could pit radio terminals against 

each other or against base stations to disrupt communication by flooding the spectrum with 

unnecessary transmissions. The attacker may not even have to manipulate a particular buffer 

overflow weakness; a specially crafted transmission may be enough to ‘confuse’ the radio system 

and render it useless.

Although radio systems do not face this threat today, it could become a serious threat if  software 

radio terminals become more standardised and ubiquitous. If software radio systems become 

commonplace and are used for a variety o f  applications then there will be an abundance o f 

terminals and hence more potential and incentive for an attacker to find weaknesses in a device. To 

prevent these types o f  attacks software radio systems must be designed to incorporate secure, 

formally validated techniques to prevent denial o f  service attacks, unauthorised modification o f 

software and to maintain communications privacy. Software downloading to radio terminals must 

also be secure and thus code for software radio systems needs to be distributed securely. It must be 

digitally signed [RSA78J to ensure that code loaded remotely is from the correct author.

Many different approaches can be used to secure software radio systems in the future. The best 

deterrent will be good software designs that inherently support security and practices that leverage 

good quality software, as bad quality results in flaws that can be exploited. Other complementary 

procedures may have to be introduced such as code validation and rigorous testing procedures. 

Overall, a secure software radio system will require vigilance and recognition o f possible threats.

4.3.6 Portability

Portability enables software to work on multiple platforms. With current software radio technology 

portability is difficult. The variety o f  hardware platforms and software techniques means that it is 

difficult to build a single piece o f  software that will run on many platforms. Portability is still a 

problem in general-purpose computing where there is standardisation amongst computer 

manufacturers and languages enabling elements o f cross-platform and source-level portability. 

Signal processing hardware however has not yet reached this level o f  standardisation and code for 

DSP processors and FPGAs, etc are mostly m anufacturer specific. While it is possible to 

programme some o f  these devices using either C or variants o f  the C language, a practical 

implementation typically requires hardware specific instructions and hence proprietary 

development languages.

Portability will continue to be an ongoing challenge in both general-purpose computing and 

software radio. Improving portability for software radio systems will reduce the cost o f  developing, 

maintaining software thus allowing for better quality software.
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4.3.7  Real- Time Behaviour

Many radio standards dictate tiie use o f strict timing and latency requirements for communication. 

The software o f a software radio system must be able to facilitate the real-time nature o f whatever 

scheme is being implemented. This has been a primary driving factor for the DSP processor in that 

this device facilitates the development o f real-time code and allows the developer to be 

deterministic in how long operations will take. In the GPP however, this poses a significant 

challenge. Typical GPP systems are based around the use o f general purpose operating systems that 

typically do not meet the latency requirements o f existing radio standards. For example, the GSM 

standard requires timing o f TDMA (Time Division Multiple Access) frames in the order of 

microseconds whereas the thread scheduler o f Linux and Windows offers only tens o f milliseconds 

accuracy.

There are however some approaches in alleviating these problems (as discussed in Section 1.4). A 

real-time operating system can be used to allow microsecond-level timing on GPPs. Even without 

such an operating system more accurate timing can be aided by the generic front-end, and by 

specific implementations o f drivers which facilitate the type o f accuracy required by these 

applications. A different approach altogether would be to relax the need for such stringent timing 

and to leverage the flexibility o f a software-based radio system in meeting the demands o f the 

application. For example, in a data communications system the requirements on timing may not be 

as stringent as they are in a voice system. In this case algorithms could be used to introduce 

functionality that compensates for inaccurate timing through signal processing or buffering 

techniques.

4.3.8 Upgrading and Versioning

A primary motivating factor for software radio has been the promise o f general-purpose radio 

devices that allow functionality to be upgraded. There are however practical challenges to making 

this type o f upgrading a reality. Specifically, the possibility that multiple versions o f the same air 

interface exist poses a significant problem in that it could hinder effective communications.

There are two ways in which this problem can manifest itself Firstly, incompatible versions of 

software can cause the system to fail. For example, a radio device that is partially upgraded may 

download a new speech encoder or modulator algorithm. This new software is however 

incompatible with the remainder o f the system and thus crashes. The problem is further 

complicated if a system consistently upgrades its software by downloading new pieces o f software. 

Without proper management each device could contain different combinations o f software in 

configurations unforeseen by the manufacturer. This type of problem has plagued mainstream
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operating systems for some time and software radio systems need proper management to avoid this 

type o f problem.

The second type o f  upgrading problem is more subtle in that although the software may be 

functioning properly, the use o f  multiple software versions may make communication error prone 

or impossible. This type o f  error usually happens when an initial release o f  software is followed by 

an upgrade. For example, consider the case o f a mobile phone that implements a common standard 

such as GSM. After deploying the handset the m anufacturer realises that some aspect o f the 

software is not fully standards compliant and taking advantage o f the software radio capability 

posts new software for download which the handsets automatically retrieve. It is inevitable that 

software upgrades cannot propagate instantaneously to all handsets due to bandwidth and the high 

probability that some handsets will be powered off. Consequently, the radio system must have a 

mechanism to deal with handsets having different versions o f  components o f  the software radio 

system in order to ensure that the operation o f  the network is not comprised.

One way to overcome these problems is to employ a versioning system especially designed to 

maximise communication. This type o f  system would force terminals to upgrade software when 

appropriate. It could also manage compatibility issues in providing information about which 

components are valid combinations. Component sets could be validated for com patibility by 

checking their versions. Also, security could be involved in that communication is only allowed if 

the terminal uses particular software versions.

Although rapid reconfiguration has obvious advantages, these examples discussed illustrate that if 

software versioning and upgrading are required then an infrastructure needs to be in place to avoid 

these errors. This has been acknowledged in the literature, particularly in the development o f

software download for mobile phones [Bucknell2002]. These systems have more control over the

software a terminal uses for communication in that the terminal is constantly connected to a base 

station which can trigger various forms o f  software download. This does not however deal with 

more distributed approaches in applications such as ad hoc networking where there is no central 

infrastructure. Chapter 7 addresses these issues in more detail by discussing case studies in both 

software download and wireless networking.

4.4 Developing a Reconfigurable Radio

4.4.1 System Design Considerations

There are various ways that the development o f  a reconfigurable radio system can be approached. 

Software radio implementations such as the C++ based PSpectra system are based around the use 

o f  a class library that offers common signal processing classes that can be reused to form a
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software radio application. This results in separate executable programs, one for each radio 

implementation. Although this approach works well there are certain lim itations, in particular when 

considering reconfiguration. W hile these libraries support constructs for binding together reusable 

classes to form radio implementations, they have not specifically included support for 

reconfiguration. Whereas application reconfiguration is accomplished via separate standalone 

executables, both structural and parametric reconfiguration requires the programmer to implement 

separate code for each application. Thus, each standalone executable is implemented in a different 

way to form the software radio.

An alternative approach that supports reconfiguration better is to factor out as many domain- 

specific operations as possible into a software framework. This removes the need for each 

programmer to re-implement the same constructs fo r each software radio application (see Figure 

4.3). Using this approach the radio is not a standalone executable that interacts w ith the operating 

system but a radio configuration used to configure a component framework. This design contains 

all the information required to build the radio system including signal processing parameters, 

structural designs and any additional code not covered by this domain-specific framework. By 

inherently supporting application, structural and parametric reconfiguration in the component 

framework itself, it becomes much simpler to develop a reconfigurable radio.

This approach is quite different to say a DSP processor platform. The DSP processor provides an 

efficient processor for executing signal processing algorithms, however it does not dictate any 

particular constructs or style for the structure o f the software. Developers are free to manipulate the 

capabilities o f  the device in any way they see fit. Also, software is typ ica lly developed in assembly 

language and C, but these languages themselves do not dictate any type o f software design. The 

difference w ith the framework approach is that it exp lic itly  dictates how the software should be 

constructed w ith the aim o f  improving the quality o f  the system as a whole.

Component Framework Approach
I

■ I 
I

Radio Configuration i
I

'  I
I

- —  -     I I
I

Connponent Framework 1

Operating System 

Hardware

Figure 4.3 -  Different Approaches to Reconfigurable Radio System Design

Class Library Approach

Radio Executable

Operating System

Hardware
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In terms o f the signal processing capability o f  the reconfigurable radio, the framework must be 

extensible in that it allows any type o f  signal processing functionality to be used in the system. This 

signal processing functionality should be incorporated in such a way that allows it to be easily used 

by different radio configurations. The framework should also be extensible in that it allows new 

signal processing functionality to be added easily, but also allows radio configurations to include 

additional code that can interact with signal processing algorithms. Thus, the framework needs 

interfaces and constructs that allow this type o f  integration to occur easily.

4.4.2 Enabling Reconfiguration

As discussed in Section 4.2.2, the core requirement o f  the reconfigurable radio is the ability to 

enable application, structural and parametric reconfiguration. These facets o f  the reconfigurable 

radio are the enabling techniques to a whole host o f  new software radio applications. Enabling 

these applications requires the framework to both inherently support each type o f  reconfiguration 

and to enable monitoring and control. The following sections discuss how this can be achieved.

Enabling Application Reconfiguration

Application reconfiguration will allow the framework to change the type o f  radio system it 

implements (for example QPSK transceiver, GPS receiver, TV transmitter, etc). Using the 

component framework approach, each radio application is differentiated by the configuration 

passed to the framework. This configuration must specify all the details required to implement the 

radio design. The following elements are required in the configuration:

• Signal Processing -  The configuration must specify which signal processing algorithms 

should be used to implement the design.

• Structure -  The configuration must specify how the signal processing algorithms should be 

combined together to form the reconfigurable radio.

•  Parameters -  The configuration should include the parameters that configure the operation 

o f  signal processing algorithms, for example frequency settings or filter taps.

• Code -  The configuration should include any code required to implement specific 

operations for the radio application.

•  Packaging -  The configuration should be packaged into a unit which can be easily 

deployed to reconfigurable radio devices.

• Information -  The configuration should include informational data about itself and its 

purpose, possibly allowing a user or other software agent to decide whether to use the 

application.

Chapter 4 — R econllgurable Radio D evelop in g  a R econfigurable Radio | 80



Enabling Structural Reconfiguration

In enab ling  structural reconfiguration the infrastructure needs to be im plem ented in a  flexible way 

tha t a llow s the structure o f  the radio  to  be changed. For structural reconfiguration to  be feasib le the 

softw are o f  the reconfigurable radio has to  be inherently  built w ith th is feature in m ind. A lso, the 

adap tab ility  and flexible nature o f  signal processing  algorithm s should facilitate  this.

S tructural reconfiguration  can be im plem ented in various w ays. A sim ple approach is to  use offline 

reconfiguration  in that the softw are radio  infrastructure supports the creation  o f  d ifferen t types o f  

structures. For exam ple, i f  a softw are radio im plem entation consists o f  filters, m ixers and 

m odulators then the softw are radio  in frastructure should facilita te  the  com bination  o f  these 

elem ents in any order.

O f  m ore in terest in this thesis is dynam ic reconfiguration  w hich is structural reconfiguration  

occu rring  w hile the device is operational. E nabling this type o f  reconfiguration  requires a m ore 

sophisticated  approach. Specifically  the infrastructure has to  m aintain the in tegrity  o f  the radio 

app lication  during  the reconfiguration process. The system  m ust ensure that new  configurations are 

valid and do not cause the system  to becom e unstable. A lso, w here possib le the system  should 

a ttem pt to  continue operation during  the reconfiguration  process. This will only  be possib le in 

cases w here reconfiguration does not d rastically  change the functionality  o f  the radio.

In chang ing  the structure o f  the radio, the infrastructure should inherently  support softw are 

dow nload. This w ill allow  new functionality  to  be dow nloaded and integrated into the structure o f  

the radio  w ithout having to alter, recom pile or stop the radio system .

To fac ilita te  the changing o f  the rad io ’s structure, the infrastructure should expose an API 

(A pplication  Program m ing Interface) that allow s program m ers to  w rite code that can a lter the 

structure. This should include m ethods to  edit the configuration  via adding, rem oving  or changing 

the o rder o f  signal processing algorithm s.

Enabling Parametric Reconfiguration

Param etric  reconfiguration  w ill prim arily  be concerned w ith allow ing  the param eters o f  signal 

p rocessing  algorithm s to be changed thus enabling  reconfiguration . T his requires an infrastructure 

that fac ilita tes the exposure o f  param eters. Thus, each signal p rocessing algorithm  w ill use d ifferent 

param eters, exposed in a consisten t w ay via a standardised  param eter interface. T his in terface 

should  provide all the functionality  to  a llow  any type o f  param eter to  be read or changed. A lso, the 

s tructure  o f  the algorithm s them selves m ust be able to  cope w ith changing  param eters, for exam ple
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if a frequency setting is changed a lookup table may have to be recalculated. The infrastructure 

should inherently support mechanisms for enabling all o f  these tasks.

Monitoring and Control o f Reconfigurability

The three types o f  reconfiguration discussed offer extremely flexible radio systems, however they 

are useless without some way to control and m onitor their use. As discussed in the previous section 

a framework is required that hosts the radio system, provide explicit design rules and allow control 

o f  the radio system as a whole. This framework can provide information about the radio system by 

allowing the monitoring o f  system functionality such as viewing signals. It can also provide 

external control functions by exposing a control interface. This can be used by other software 

systems that use a reconfigurable radio as a sub-system.

4.5 Summary

This chapter has analysed all the issues surrounding the development o f  software for software radio 

systems. The term ‘reconfigurable radio’ has been defined to differentiate the approach taken in 

this thesis from others. Reconfigurability has been analysed and broken down into the three 

categories o f  reconfigurability; application, structural and parametric. These categories allow the 

level o f  reconfigurability o f  a device to be assessed and provide useful guidelines for determining 

the requirements o f  a reconfigurable radio system. The next chapter presents the design o f a 

reconflgurable radio system that is built using component-based software and features the three 

categories o f reconfigurability.
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The IRIS Reconfigurable Radio

5.1 Introduction

This chapter describes the design o f  IRIS (Implementing Radio In Software) [Mackenzie2002b, 

Doyle2002a, Mackenzie2003]. Sections 5.2 and 5.3 provide a high level overview o f  the IRIS 

system. Section 5.4 discusses the component-based approach taken in designing radio components 

and how they can be defined in software. Section 5.5 discusses the component framework used to 

compose these components together to form a reconfigurable radio system. Section 5.6 discusses 

control logic, a mechanism provided by the IRIS architecture for defining the inter-relationships 

between components. Finally to demonstrate how components, the component-framework and 

control logic fit together, Section 5.7 provides a worked example o f  developing an FSK transceiver 

using IRIS.

5.2 IRIS Overview

IRIS has been built to demonstrate the concepts o f  reconfigurability as discussed in the previous 

chapter. The purpose o f IRIS is to both demonstrate this through a practical example and from this 

to gain insight into the problem o f  developing software for reconfigurable radio systems.

IRIS is a component framework designed to run on GPPs. Signal processing components are 

written in C++ and each component implements a generic signal processing algorithm or 

encapsulates some other sub-system such as a hardware device. Radio systems are created by both 

instructing the component framework to assemble components in a particular way, and by defining 

the interrelationships between instances o f  components. The IRIS system is highly structured and 

the mechanisms for building radio systems are well defined within the IRIS architecture. Basic 

radio systems can be built by com bining existing components. More complex designs can be 

addressed by writing new components and writing control logic, essentially application-specific 

code that defines the interaction among a particular set o f  components in the radio system. The 

IRIS system uses XML as a configuration mechanism and control logic can be written in either 

C++ or Java.
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Figures 5.1 to 5.3 give an indication o f  what is possible w ith IRIS. The diagram in Figure 5.1 

demonstrates how both transmitter and receiver architectures are specified via the same generic 

configuration mechanism. IRIS uses the same type o f  configuration mechanism to realise every 

type o f  radio system. For instance, it does not constrain radio system design via entities such as 

receiver, transmitter, transceiver, etc; each radio system is made from generic components. This 

approach is quite different to other approaches such as the JTRS SC A  which defines concrete 

interfaces for every element o f the radio system (see Chapter 2, Section 2.5.2).

These two examples demonstrate the level at which IRIS addresses the development o f radio 

systems, the DSP level. The development o f  an air interface can often be intertwined w ith other 

aspects o f  the system in particular other elements o f  the protocol stack. Often (as in the JTRS) the 

DSP o f  the radio system is closely coupled to networking features such as the M AC  (Medium 

Access Control) or Data L ink layers o f  the protocol stack. W hile IRIS can be used in this context 

also (and this w 'ill be demonstrated in Chapter 7), its primary function is to facilitate the 

construction o f  the DSP systems o f  a reconfigurable radio.
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Converter ▼
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Figure 5.1 -  Receiver and Transm itter Example

W hile the examples in Figure 5.1 illustrate more typical software radio applications, the example in 

Figure 5.2 demonstrates how the IRIS system goes further. In this example, a sim ilar configuration 

is used to create a radio but it also includes functionality for dynamically reconfiguring both 

parameters and the structure o f  the radio. This allows the creation o f  tru ly dynamic designs in 

which the radio can change its functionality at runtime as desired. The uniqueness o f this approach 

is that support fo r application, structural and parametric reconfigurability is inherently bu ilt into the 

system and handled by the IRIS Component Framework.
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Figure 5.2 -  A Reconfigurable Radio System

The final example in Figure 5.3 demonstrates how the IRIS system can facilitate an environment 

for experimentation and rapid development o f  radio systems. In this exam.ple a radio configuration 

is used to create a test scenario for experimenting w ith the effects o f adding noise to a FSK 

(Frequency Shift Keying) signal. The configuration not only specifies the structure o f  the radio 

architecture but a user interface that allows dynamic user interaction w ith the system. The IRIS 

architecture inherently supports this type o f  functionality .

Configuration
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NoiseData

Compare

Frequency
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Frequency
Analysts

Level of Additive Noise

Figure 5.3 -  A Keconflgurabie Radio with User Interaction

5.3 IRIS Architecture

Following a large amount o f  experimentation w ith software architectures and software design, an 

architecture fo r IRIS was created. (The term architecture in this context refers to the definition 

discussed in Section 3.4.2; an architecture being a superset o f  principles prevailing a system 

design.) Figure 5.4 illustrates the IRIS architecture and introduces all the main entities involved in
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its design. In addition to defining the general paradigms o f the system, the IRIS architecture 

consists o f  a Component Framework, a com ponent model and rules for creating control logic and 

radio configurations.
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Figure 5.4 -  The IRIS Radio Architecture

Each o f the entities in the IRIS architecture has been designed to address the reconfigurability 

issues as addressed in Chapter 4. The following sections describe each o f the entities in detail.

Note: In the remainder o f the thesis capital letters will be used to denote the entities o f the IRIS 

system, e.g. Radio Component, Component Framework and Control Logic

5.4 Radio Components

The fundamental unit for building reconfigurable radios in the IRIS Radio Architecture is the Radio 

Component. A user o f IRIS creates a radio from existing Radio Components or by creating new 

components when necessary. The Component Framework (discussed in the next section) is used to 

chain Radio Components together to create the actual reconflgurable radio.

There were a number o f  challenges in designing the Radio Component. It was necessary to design 

the Radio Components to encapsulate radio functionality in a way that would facilitate their reuse 

among many applications. It was also necessary to develop a design that allowed ultimate 

flexibility throughout the system. Overall, it was necessary to create Radio Components that could
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facilitate application, structural and parametric reconfiguration as discussed in the previous chapter. 

The resulting component design is described in the following sections.

5.4.1 Component Granularity and Component Types

Before looking at the actual structure o f  a Radio Component it is useful to describe component 

granularities and component types.

The granularity o f  Radio Components has been designed as discussed in Section 4.3.1; for 

example, each Radio Component implements operations at the granularity o f  FM modulators, 

QPSK symbol detectors and FIR Filters, i.e. the functional ‘parts’ o f a radio system. It should be 

noted that although this is the approach taken in this work, the system itself does not constrain the 

user to a particular granularity. The designer is free to implement components in smaller or larger 

granularities if required; however, this thesis argues that these granularities are unsuitable for 

reconfigurable radio. This is because radio systems are inherently built in sub-sections that are 

easily identifiable. For example, the common Viterbi decoder is a reusable algorithm and therefore 

an ideal candidate for a single component. A Viterbi decoder is also made up o f  many adders and 

multipliers, yet it would not make sense to package these elements into individual components. If 

adder and multiplier components were built and subsequently connected together to form a Viterbi 

decoder, the algorithm would no longer be encapsulated in a component but would exist in the 

interconnection between these components. This approach would contradicy the component 

principles discussed in Chapter 3, Section 3.3 that require a component to be a self-contained 

independent unit o f deployment.

Another important aspect o f the Radio Component is visibility o f its internal implementation. The 

Radio Component has been designed to use a black box abstraction. This means that all the 

internals o f how the component works are hidden from the user o f  the component. The only way 

the component can be used is via the standardised interfaces it provides.

IRIS must support a multitude o f different radio configurations. The majority o f  functions 

performed in a reconfigurable radio are DSP related, however there is other functionality that needs 

to be addressed such as how to input or output data, and how to interface and control hardware. In 

the IRIS architecture different radio functions are categorised by the following three types:

1. DSP components

2. Input/Output (lO) components

3. Standalone components

DSP components allow signal processing functionality to be encapsulated into a component. lO 

components are identical to DSP components but have extra constructs for supporting the input and
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output o f  data into the signal processing chain. Standalone components satisfy the need to have 

additional functionality that is required by the radio, but separate from the signal processing chain; 

for example, controlling external hardware or implementing timers. The three basic types are 

formed by inheriting from the abstract class ‘RadioComponent’ (see 

Figure 5.5).

RadioComponent

SlandaloneComponent
+P rocess(in  signallnO ut) 
+P rocess(in  signalln, in signalO ut)

DSPComponent
+Start()
+ P rocess(in  signallnO rO ut) 
+Stop{)

lOComponent

Figure 5.5 -  Relationship of Component Types 

5.4.2 Component Interfaces

An external view o f  the Radio Component helps to illustrate how the component is used in creating 

a reconfigurable radio. Externally a Radio Component can be viewed as shown in Figure 5.6. The 

Radio Component exposes a set o f  well-defined interfaces, which allow other entities in the IRIS 

architecture (such as the Radio Component Framework) to interact with each component using the 

same standardised pattern.

XML Interface 

?
Parameter Interface O—  

Event Interface o —  

Port Interface o —  

Command Interface o —

Radio
Connponent

—O Lifecycle Interface 

—O Signal Processing Interface

Reflection Interface

Figure 5.6 -  External View of a Radio Component

Each Radio Component implements a set o f  interfaces each addressing a different requirement. 

Separate interfaces ensure that suitable cohesion is enforced in the component. The Radio 

Component interfaces have been carefully chosen to address the various ways in which 

components can be composed together in a component framework.
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The basic interface supported by DSP and lO components is the signal processing interface. Figure 

5.5 shows the P r o c e s s  () method that components must implement to consume and produce 

digital signals. The P r o c e s s  () method is discussed is detail w ith relevant examples in the next 

Chapter, Section 6.2.6. In addition to a signal processing interface, the Radio Component supports 

the seven different interfaces which the Component Framework uses to control and interact w ith 

the Radio Component, namely; Lifecycle Interface, Parameter Interface, Event Interface, Port 

Interface, Command Interface, Reflection Interface and Component Information Interface.

Lifecycle Interface (Figure 5.7): This interface exposes all the functionality fo r controlling the 

lifecycle o f a Radio Component and its function is to a llow  for initialisation and cleanup o f a 

component. W hile these methods represent the basic lifecycle o f  a component, d ifferent component 

types add additional steps to the lifecycle o f a component.

((interface*
LifeCycle

+GetDetails()
+CalculateOutputSignalFormat(in inputformat)
+lnit()
+Destroy()

Figure 5.7 -  Lifecycle Interface

Parameter Interface (Figure 5.H): The parameter interface allows the user o f a component to 

configure and reconfigure the operation o f  the component throughout its lifecycle. Each component 

exposes a set o f parameters that define its behaviour and parameters can have any data type. The 

parameter interface allows access to these parameters in a generic way.

((interface*
Parameter

+GetParameterValue(in id) 
+SetParameterValue(ln id, in value)

Figure 5.8 -  Parameter Interface

Event Interface (Figure 5.9): Components can fire events to asynchronously inform external clients 

o f  occurrences during the lifecycle o f the component. A  component can support any number o f 

events and various types o f data can be passed w ith events. The event interface allows external 

clients to subscribe to any event that the component publishes.

((interface*
Event

+AddEventListener(in eventid, in callbackType, in userDefinedValue, in callback) 
+RemoveEventListener(in eventid, in callback)

Figure 5.9 -  Event Interface

Chapter 5 — I he IR IS Rcconfigurable Radio Raciio Components | 89



Port Interface (Figure 5.10): Ports are inputs into a component. This interface allows external 

clients to asynchronously pass data to a component for processing. Ports are provided to 

differentiate the processing o f  data from that o f digital signals.

«interface»
Port

+ProcessPortData(in id, in data, in length)

Figure 5.10 -  Port Interface

Command Interface (Figure 5.11): Commands allow  external clients to issue asynchronous

commands to a component. This provides a generic mechanism for exposing common DSP

functionality, examples being: ‘ reset synchroniser’ , ‘ recalculate lookup table’ or ‘ cease carrier’ .

While parameters could be used to implement this type o f  functionality, commands provide a

useful way to separate out more numerically based parameters from function-based operations.

«interface»
Command 

+TriggerCommand(in id)

Figure 5.11 -  Command Interface

Reflection Interfaces (Figure 5.12): The reflection interface allows external clients to query 

information about a component programmatically. External clients can query any information 

about the type o f  component, the parameters, events, ports and commands it supports and general- 

purpose information about the component such as author, version, etc.

«interface»
EventReflection

+GetNumEvents() 
*GetEventName(in id) 
+GetEventDescription(in id) 
+GetEventDataType()

«interface»
CommandReflection

+GetNumCommands() 
+GetCommandName(in id) 
+GetCommandDescription(in id)

Figure 5.12 -  Reflection Interfaces

Component Information Interface (Figure 5.13): This information provides information about the 

component itse lf and can be used for dynamic and automatic discovery o f  details about 

components. In addition to information such as name, author, version, etc, the component 

information exposes two methods offering X M L  descriptions o f  the component. The firs t method is

«interface»
PortReflection

+GetNumPorts() 
+GetPortName(in id) 
+GetPortDescription(in id)

«interface»
ParameterReflection

+GetNumParameters() 
+GetParameterName(in id) 
+GetParameterDataType(in id) 
+GetParameterDefaultValue(in id) 
+GetParameterDescription(in id) 
+lsParameterDynamic(in id)
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an X M L  interface which exposes an example configuration. This provides a sample o f  X M L  to a 

client w ishing to know how the component can be configured. The second method provides X M L  

indicating the capabilities o f  the component including all the information supported by the 

reflection information. This X M L  fac ility  is o f  use both during system-design and during automatic 

reconfiguration in that systems can be built that can automatically use a component w ithout user 

intervention.

«interface»
Componentlnformation

+GetComponentName()
+GetComponentType()
+GetComponent VersionQ
+GetComponentAuthor()
+GetComponentDescription()
+GetComponentXMLDefaultConfiguration()
+GetComponentXMLSelfDescription()

Figure 5.13 -  Component Information Interface

Once a class implements all these interfaces, it can be used as a black box Radio Component w ith in 

the Component Framework (see Figure 5.14).

«interface»
Parameter

«interface»
EventReflection

((interface;
Event

{(interface))
ParameterReflection

((interface)) 
Command Reflection

Interface;
Port

((interface))
Command

((interface))
PortReflection

((interface))
Componentlnformation

RadioComponent

Figure 5.14 -  Abstract RadioComponent class

5.4. J Component Lifecycle

An important aspect o f the Radio Component is its lifecycle, i.e. the pattern by which the 

component is used. The challenge in designing the lifecycle is to support enough functionality so 

that any aspect o f  a reconfigurable radio can be developed but exposed in a generic way. A  suitable 

lifecycle has been designed for Radio Components and it consists o f  seven stages;

1. Loading

2. Initialisation

3. Starting

4. Processing
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5. Stopping

6. Cleanup

7. Unloading

Loading: During this stage the component is loaded for use. This will include any retrieval of 

components and any instantiation o f classes. Once this stage has completed the component must be 

available and ready for use.

Initialisation: During this stage the component is primed with all the information required for 

operation. The first step tells the component what parameters it should use and this is performed by 

repeated calls to SetParameterValue () . In the assembly of components into a working radio 

system, many different types o f signal will be used so it is important that the framework can work 

out if a configuration is valid. The GetDetails() call provides the framework with the details 

required to work out if a component is suitable for inclusion in a radio design. Next, a call to 

CalculateOutputSignalFormat () tells the Radio Component what type o f input signal it will 

be receiving and thus the component can work out what output signal it will produce for the given 

input. The final step in initialisation is a call to Init (). This allows the component to perform all 

other initialisation such as allocating memory, etc and also give the component an opportunity to 

reject the configuration it has been initialised with if it detects an error. For example, if the 

component does not support a particular data type or has been initialised with incorrect data the 

initialisation method can return false to indicate this error.

(I() only) Starting: Indicates to an lO component that input should commence.

(DSP and I() only) Processing: In this stage the framework repeatedly calls the Process () 
method causing the Radio Component to perform its actual processing. This can be any operation 

that the Radio Component supports but mostly DSP components will perform signal processing, 

and lO components will perform output/input data to/from hardware. During the process stage the 

component can fire events that occur in the course o f processing. During this phase the component 

will also receive asynchronous method calls from the framework when values have been 

reconfigured, when commands have been issued and when data ports have received data. The 

developer o f the component can decide how best to react to these asynchronous methods according 

to the context o f a particular component.

(lO only) Stopping: Indicates to an lO component that input should cease.

Cleanup: At this stage Destroy () is called which allows the component to free resources.
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Unloading: This stage involves the deletion o f the component instance and unloading of 

component code.

Figure 5.15 shows a UML sequence diagram depicting the lifecycles of a DSP and an lO 

component. The differences between the two lifecycles can be seen in this diagram. lO components 

offer a Start () and StopO method in addition to a Process () method. The Start {) and 

Stop () methods tell a component to cease input or output. These are required as lO components 

usually have a great impact on the flow of signals between components. All signals are ultimately 

input and output via 10 components therefore these methods allow the flow o f signals to be 

controlled in the radio. The Process () method allows an lO component to either input or output 

data.

Unlike 10 components, a DSP component has two Process () methods. The two methods differ in 

the way signals are processed by the component. One method is for processing signals in place, in 

that both the input and output of the component are read and written to the same memory location. 

The second type uses separate memory locations for both input and output. Memory conservation 

is an important factor in software radio design so the in-place method was designed to allow the 

developer to conserve the amount of memory used in the system. In some circumstances it can also 

reduce the amount o f memory copying required in a component. The not-in-place method is 

provided so that memory copying can be reduced, as sometimes the in-place method requires data 

to be copied to a temporary location before processing. By providing separate inputs and outputs it 

is possible to avoid this copying. Overall these methods provide enough flexibility for the 

programmer to write efficient and simplified Radio Components.

The sequence diagram for the lifecycle o f a standalone component is shown in Figure 5.16. 

Standalone components do not interact with signals and thus have less functionality. While all 

other components are processing signals, the standalone component can perform other functionality 

in response to changing parameters, commands or ports. Like all components, standalone 

components can fire events.
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Load and Create Instance

[all params] SetParameterValue

GetDetails

CalculateOutputSlgnalFormat

Init
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[while radio running] ProcessO

ValueHasChanged

T riggerCommand

Events Fired

Process Complete

Stop

Destroy

Delete Instance and Unload

T
Figure 5.15 -  Sequence Diagrams of DSP and lO  Component Lifecycles

Standalone components do not offer any new lifecycle methods to the standard component and thus 

are the most basic type o f component. Standalone components operate through the use o f 

parameters, events, ports and commands.
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RadioEnQine
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Loading |
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D estroy

D elete In s tance  and  Unload

Figure 5.16 -  Sequence Diagram of Standalone Component Lifecycle

5.4.4 Discussion

From the list o f  interfaces discussed in the previous section it becomes apparent that a significant 

amount o f  code must be written to implement each interface. The reason so many interfaces are 

required is to make up for the lack o f reflection in some programming languages, in this case C++. 

As discussed in Section 3.3.3, reflection allows code to query the capabilities o f  other compiled 

code dynamically and facilitates meta-data. Languages like Java and C# inherently support 

reflection and thus a binary executable from these languages can be queried to find out what 

methods and member variables is exposed by the code. C# (and M icrosoft’s .NET platform in 

general) goes a step further than Java in that it inherently supports attributes (also known as 

declarative constructs), pieces o f data that can be included within a programme itself 

[Liberty2001]. Using reflection a C# programme can read its own attributes.

Reflection information is required by the IRIS system because components have to be loaded 

dynamically and used at runtime. This reflection information allows the framework to query the 

component as to its capabilities, the data types it supports and provides access to additional meta-
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data such as the com ponent’s name, version, description and documentation. For this to happen the 

framewori<^ has to be able to query information dynamically about the component, from simple 

information such as the com ponent’s name to more complicated information such as the parameters 

and events that a component supports. The latter is important when considering graphical 

applications and visualisation o f  radio systems. Using reflection a user interface can query 

information about all components in a generic away allowing the details o f a component to be 

displayed. This allows a user to graphically build radio systems without having to write code.

To overcome this problem the process o f  writing most o f  these interface methods has been 

automated via a scripting language. This language will be covered in the next chapter (Section 

6.2.3), but the overall effect o f  using this technique is that the programmer only has to implement a 

minimal amount o f  code to programme a Radio Component. This is illustrated in Figure 5.17. By 

using the scripting language the only interfaces the programmer has to implement are the lifecycle 

and signal processing interfaces. The remainder o f  the interfaces are automatically generated.

XML Interface 1
Parameter Interface O  

Event Interface o  

Port Interface O—  

Command Interface o

'Radio '''■ 
Component

I
Reflection Interfaces

-O  Lifecycle Interface

-O  Signal Processing Interface

Programmer Implementation 

Automatically Generated

Figure 5.17 -  Radio Component Showing Interfaces Implemented by Code Generation

In addition to implementing various interfaces, the abstract RadioComponent class provides 

several methods that allow the component implementation to interact generically with external 

users o f the component (see Figure 5.18). For example, by overriding the ValueChanged () 
method, the programmer can be notified when a param eter has been changed externally. Likewise 

CommandWasTriggered () indicates to a component that external control logic issued a command 

to the component and ProcessPortData () indicates that data was received into a port o f  the 

component. These facilities maintain the black box abstraction that allows Radio Components to be 

used generically.
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RadioComponent
#V alueH asC h an g ed (in  p aram eterld )
#C om m andW asT riggered (in  com m andld)
#A ctivateEvent(in  even tid , in d a ta )
# P ro c essP o rtD a ta (in  portid, in d a ta , in length)
#Loglnfo(in text)
#LogError()
#LogW arning(in text)
# F ata lS top ()
+G etO utpu tS ignalForm at()
+ G etlnpu tS ignalF orm at()

Figure 5.18 -  RadioComponent

For firing events the RadioComponent class offers the method ActivateEvent () which allows 

a component to generically notiiy any number o f  external subscribers during processing. The 

scripting language automatically generates generic code that allows the Component Framework to 

interact with the Radio Component in this way. RadioComponent also supports a variety o f  

support methods for logging information and errors, and for querying information about the signals 

it will be receiving from the Component Framework.

Implementing DSP and lO components requires the programmer to write signal processing code 

and this is written in the Process () method. The engine repeatedly calls a com ponent’s 

Process 0 method providing it with memory locations for reading and writing samples. This 

technique decouples components as each component does not require knowledge o f the other 

components in the reconfigurable radio. Components are thus passive, only performing processing 

when called on to do so.

The other methods left for implementation by the programmer are mostly to satisfy the lifecycle o f 

a particular component type. The programmer must implement GetDetailsO and 

CalculateOutputSignalFormat () to allow external clients to query information about how a 

component plans to process data. The GetDetails () method allows a component to specify the 

data types it can accept and whether or not it processes data in-place. 

CalculateOutputSignalFormat () allows an external client to figure out what block size and 

sampling rate it can expect as an output from the component for a given input. The programmer can 

use the calls from lnit() and Destroy () to perform pre and post steps to processing. 10 

components can avail o f  calls to Start () and Stop () to control the input and output o f  data.
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5.5 Component Framework

The IRIS Radio Component Framework is an infrastructure that allows Radio Components to be 

composed together to form a reconfigurable radio. The diagram of the IRIS architecture is 

reproduced here in Figure 5.19. This diagram shows the role o f the Component Framework in the 

architecture. The framework is the core o f the architecture consisting o f the sub-systems required to 

build a reconfigurable radio. It consists o f the Radio Engine, Component Manager, Control Logic 

Manager, XML parser and the IRIS API:

• Radio Engine: The Radio Engine implements different radio configurations and is the core of 

the Component Framework. The Radio Engine brings together Radio Components and Control 

Logic to implement the radio design and controls their interaction.

• XML Parser: The XML parser reads XML radio configurations, verifies their content and 

converts them to an internal representation o f a radio design that can be implemented by the 

Radio Engine.

• Component Manager: The Component Manager is responsible for loading and unloading 

Radio Components from the framework. The component manager can load components from a 

variety of locations (e.g. local file system or internet) and present them in a generic form for 

use by the Radio Engine.

• Control Logic Manager: The Control Logic Manager loads and unloads various types of 

Control Logic for use by the Radio Engine. Control logic can be implemented in potentially 

any language (currently C++ and Java are supported) so the manager must present each of 

these control logic types in a generic way for use by the engine.

• IRIS API: The IRIS API is provided to allow the Component Framework to be integrated into 

other applications. The API abstracts the particulars o f the Component Framework, 

components and control logic from the user of the API providing a simple interface for the 

construction o f reconfigurable radios
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Figure 5.19 -  The IR IS  Radio Architecture

The operation o f the Component Framework is illustrated by the flow  diagram shown in Figure 

5.20. This diagram shows that there are three main stages a radio system goes through; 

initialisation, running and cleanup. In the initialisation stage the X M L  configuration is read, 

verified and converted to an internal structure. The Radio Engine uses the internal structure in 

conjunction w ith the Component Manager and Control Logic Manager to build the radio system. 

During the running stage the engine controls the movement o f  signals through the components o f 

the radio system. Also, Control Logic can respond to events from the components and reconfigure 

any aspect o f  the system. Finally, at the cleanup stage all the resources used by the system are 

released.
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5.5.7 Radio Engine

The Radio Engine is the core o f the Radio Component Framework. The engine is responsible for 

assembling a reeonfigurable radio from a set o f  Radio Components. To achieve this it must be 

possible to define a radio configuration that shows how Radio Components can be fitted together

X M L  to define the radio configuration as it allows the representation o f  hierarchical data and thus 

was suitable fo r defining the structure o f  a radio system.

The X M L  file  defines three things:

1. Components: The list o f  components required in the radio system along w ith  values for 

configuring each component in a particular way.

2. Control Logic: Details about control logic. Control Logic is additional code written by the 

radio designer to control components and to provide a generic way to a llow  interaction 

among components. Control Logic is application specific in that each type o f radio system 

w ill have a different Control Logic implementation. Control Logic is discussed in detail in 

Section 5.6.

3. Documentation: Details about the radio system being created, i.e. radio system name, 

description and version.

The interaction o f  components, X M L  configuration and Control Logic are illustrated in Figure

thus allow ing the Radio Engine to translate this into a working radio system. It was decided to use

5.21.
Reconfigurable Radio Configuration Reusable Radio Components

XML CONTROL
LOGIC

Radio Engine

CONTROL
LOGIC

Working Radio System

Figure 5.21 -  Interaction of Radio Engine, Radio Components and Control Logic
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5.5.2 Basic XML Configurations

The IRIS architecture defines its own XML configuration that allows a radio configuration to be 

described. The following example demonstrates how a basic configuration can be used to combine 

two Radio Components. In this example an FIR filter and a Decimator are being connected. A third 

component (i.e. a signal generator component) is included in the example as a means o f supplying 

input to the two components o f  interest.

<radio>
<structure name="FilterAndDecimate"> 

<component type="SignalGenerator"> 
<parameters>

<signal>noise</signal> 
<sampleRate>44100</sampleRate> 
<blockSize>512</blockSize> 

</parameters>
</component>
<component type="LowPassFIRFilter"> 

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff> 

</parameters>
</component>
<component type="Decimator"> 

<parameters>
<factor>8</factor>

</parameters>
</component>

</structure>
</radio>

S ignal G en e ra to r FIR Filter D ecim ation

Figure 5.22 — Basic Series of Components

Configurations are built via structures, specified via the < s t r u c t u r e >  X M L  tag. Structures 

represent sequences o f components and can be combined to form almost any radio configuration. 

Within a structure components are specified for inclusion via the <component> tag. The 

<parameters> tag within this allows the individual parameters for a com ponent instance to be 

specified. From the simple example shown above, the engine will use the component manager to 

source and instantiate the ‘SignalGenerator’, ‘LowPassFIRFilter’ and ‘Decimator’ 
components. Following initialisation and start-up, the Radio Engine will continually call 

Process () in each component passing outputs into inputs. All radio systems are constructed in 

this way.

There are a few points that should be noted from the example above. Firstly, the order o f 

components as they appear in the < s t r u c t u r e >  XML tag is the same order the signal takes as it 

passes through the components. (The only exception to this is when parallel components are used. 

In this case the signal may be transferred to two structures or components, which appear one after 

another in the configuration.) This approach simplifies the configuration mechanism without the 

need for specialised structural languages.
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Secondly, the S i g n a l G e n e r a t o r  component demonstrates the automatic handling o f sample rates 

and block sizes. The exact handling o f  sample rates and block sizes is discussed in detail in the next 

Chapter, Section 6.2.5. The S i g n a l G e n e r a t o r  is the first component in the signal chain and thus 

this component determines the sample rate and block sizes used in the chain. In the initialisation 

phase the Radio Engine reads this signal format from the S i g n a l G e n e r a t o r  and calls 

C a l c u l a t e O u t p u t S i g n a l F o r m a t  () on each subsequent component thereby working out 

automatically the sample rates and block sizes to use between components.

Thirdly, the designer o f  the radio system is abstracted from the details o f  the platform, operating 

system and implementation languages o f  components. The engine maintains this abstraction and 

also automates other facilities such as memory allocation.

5.5.3 More Complex Radio Configurations

Not all radio configurations are linear. IRIS was therefore designed to facilitate more complex 

radio structures. Virtually any desired hierarchy o f  components can be created by combining the 

< p a r a l l e l >  tag in XML with any o f  the multiple structures available. The following discussion 

describes the IRIS structures and details how they are realised in IRIS.

Duplicated Signal Path

It is often necessary to pass a signal to two or more processing algorithms (see Figure 5.23). For 

example a design may require the filtering o f  two signals with a comparison o f  their result. IRIS 

supports the automatic duplication o f signals. Figure 5.23 shows how the output o f  a sine wave 

generator can be passed to two FIR filters in parallel. The two filters are defined within one 

embedded structure, within the overall structure. IRIS recognises the embedded structure and will 

construct a signal path and include automatic duplication o f the signal to both filter components.

In this case the two components in parallel must be configured to accept a signal o f  the same 

sample rate as the same signal from the signal generator is copied and passed to both components. 

During initialisation the Radio Engine will detect such inconsistencies, indicate an error and exit.
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<radio>
<structure name="duplicated">

<component type="signalgenerator"> 
<parameters>

<frequency>440</frequency> 
<samplerate>44100</samplerate> 
<numsamples>1024</numsamples> 
<waveforra>sin</waveform> 

</parameters>
</component>
<parallel name="fliters"

exc1usive="false" selected="0"> 
<coraponent type="LowPassFIRFllter"> 

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</parameters>
</component>
<component Lype="LowPassFIRFilter"> 

<parameters>
<numtaps>32</numtaps>
<cutoff>O.OK/cutoff>

</parameters>
</component>

</parallel>
</structure>

S ig n a l G e n e r a to r

F IR  Filter

FIR  Filter

Figure 5.23 -  A Duplicated Signal Path

For large amounts o f  data the duplication o f  signals can sometimes hinder performance, as a copy 

o f  the signal has to be created. For this reason IRIS only performs memory copying when 

absolutely necessary. This is achieved by analysing the component layout. Signal copying is 

avoided if IRIS detects that a particular component configuration will not corrupt a signal, thus 

allowing the same signal to act as an input to multiple components.

Synchronous and Asynchronous Signal Paths

DSP designs often require multiple signals to be processed simultaneously. This accommodates 

designs that use multiple input or output channels, or applications that require asynchronous 

processing as is the case in a transceiver which requires both a transm itter and receiver path. IRIS 

is capable o f processing multiple signal paths as it supports the expression o f multiple structures in 

XML. IRIS supports two types o f  signal paths, synchronous and asynchronous.

A synchronous signal path synchronises signals at particular points in the radio system. This 

facility is required in designs that process one signal through multiple paths, each path containing 

different numbers o f  components. The general problem is illustrated in Figure 5.24. One signal 

enters the system at X. This signal is copied, one copy applied to A, the other applied to D. The 

result that appears at Y must be the result o f processing through A, B and C. Likewise the output at 

Z must be the result o f  the same signal processed by D and E. The order and technique used to 

process signals is essential in ensuring that the output receives the processed blocks o f  data at the

C hapter 5 — The IRIS R econflgurable Radio 104



same time even though they have taken different paths through the system. Without 

synchronisation there would be a delay between the outputs o f  these multiple paths.

B C
Y

Output

D E
Z

Figure 5.24 -  Synchronisation in IRIS

Synchronisation is achieved in the IRIS system by grouping sets o f  components into a structure. 

Each structure is treated as a single component thus in the example in Figure 5.24, A, B and C 

would be grouped for processing as would D and E. A single thread is used for processing which 

eliminates the need for radio-wide synchronisation o f memory. In the example discussed. A, B and 

C would be processed first with the result stored in memory, followed by copying the signal for 

processing by D and E. Only then are the two resulting blocks passed to the output.

In contrast, asynchronous structures are executed in different threads in the operating system. In the 

example above asynchronous operation would mean that (A, B, C) and (D, E) would be processed 

by different threads. To simplify memory synchronisation the blocks o f memory used for 

communication between these components is allocated from different pools o f  memory, thus no 

OS-level synchronisation such as mutexes are required. This type o f  radio layout is more suitable 

when completely separate structures o f  components are required, an example being a transceiver. A 

transceiver requires both transmit and a receive paths thus it makes sense to separate these out into 

asynchronously. An advantage o f  this technique is that the use o f  multiple threads can also improve 

performance in implementations that use a lot o f  hardware I/O. A disadvantage o f  this technique is 

that memory cannot be shared between multiple paths therefore more memory may be required.

Figure 5.25 is an example o f  where synchronous parallel paths are created. The < p a r a l l e l >  tag in 

XML is used to indicate to IRIS that two synchronous parallel structures are to be created. Figure 

5.26 is an example o f  where two independent asynchronous paths are created. The overall radio 

configuration contains two base structures, both operating independently o f  each other.
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<radio>
<structure name="FilterAndDecimate">

<parallel name="first" exclusive="false"> 
<component type="SignalGenerator"> 

<parameters>
<signal>noise</signal>
<sampleRate>44100</sampIeRate>
<blockSize>512</blockSize>

</parameters>
</component>
<component type="BandPassFIRFilter"> 

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff> 

</parameters>
</component>

</parallel>
<parallel name="second" exclusive="false"> 

<component type="SignalGenerator"> 
<parameters>

<signal>noise</signal>
<sampleRate>44100</sampleRate>
<blockSize>512</blockSize>

</parameters>
</component>
<component type="BandPassFIRFilter"> 

<pararaeters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</parameters>
</component>

</parallel>
</structure>

</radio>

S ig n a l G e n e r a to r  F IR  F ilter

S ig n a l G e n e r a to r  F IR  F ilter

Figure 5.25 -  Multiple Synchronous Signal Paths

<radio>
<structure naint— "FilterAndDecimatel"> 

<component  ̂yp^-'"SignalGenerator"> 
<paratneters>

<signal>noise‘/sLgnal> 
<sampleRate>4 4100-. /sampleRate> 
<blockSize>512</blockSize> 

</parameters>
</component>
<component r ype="LowPassFIRFilter"> 

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</pararaeters>
</component>
<component t ype="Decimator"> 

<parameters>
<factor>8</factor> 

</parameters>
</component>

</structure>
<structure name="FilterAndDecimate2"> 

<component i ype="SignalGenerator"> 
<parameters>

<signal>noise</signal> 
<sampleRate>4 4100</sampleRate> 
<blockSize>512</blockSize> 

</parameters>
</component>
<component i yp''-''BandPassFIRFilter"> 

<parameters>
<numtaps>32</numtaps>
<cutoffLow>0.10</cutoffLow> 
<cutoffHigh>0.20</cutoffHigh> 

</parameters>
</component>

</structure>
</radio>

S ignal G en e ra to r FIR Filter D ecim ation

S ignal G en e ra to r FIR Filter

□ □ □ 
□ □

Figure 5.26 -  Multiple Asynchronous Structures
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Embedded Structure

At any point in the signal path IRIS supports embedded structures. This means that a group o f 

components can be encapsulated to appear as ju s t one component. In the example in Figure 5.27 

one o f  the parallel paths contains an embedded structure.

<radio>
<structure -^"Fi 1 terAndDecimatel">

<component yp ’ "SiqnalGenerator"> 
<parameters>

<s igndl>noise</signal>
<sampleRate>4 4100</sampleRate> 
<blockSize>512'-/blockSi ze> 

</parameters>
</component>
<pdrallel nami- "branch" --.'v.-1 i v(^-"f alse"> 

<structure n.in-;; ="Fi 1 t.erAndDecimate2"> 
<component •yp= "Decimdtor"> 

<parameters>
<factor>8</factor> 

</parameters>
</component>
<component t yP' ="BandPassFIRFilter"> 

<parameters>
<numtaps>32</numtaps>
<cutoffLow>0.15</cutoffLow> 
<cutof fH igh>0.30</cutof fHigh> 

</parameters>
</component>

< / s t  r u c t u r e >  
iromponent r y r  "LowPd.ssFIRKi i t e r " >  

< p a r a m e t c : G : '
<numt.api;>32' /riumtaps>
- c u t  o f f  > 0 .  0 5 '  i ' - i t  ' j f  f  >

/ p d  r a m e i  f"l
‘ / ( - o m p c j r i c ' r ; !

/para 1 '
' - / i  L i  UCi l u  r e >

FIR  F ilter

S ig n a l G e n e r a to r

FIR  F ilter

Figure 5.27 -  An Embedded Structure 

Signal Routing

IRIS supports signal routing in that it allows a signal to be optionally routed to a particular 

component. For example in Figure 5.28 the signal can be routed to one component or the other. The 

route that a signal takes can be adjusted at runtime thus allowing dynamic designs to be 

implemented. For example a modulation detection/classification component could cause the signal 

to be routed to the appropriate demodulation component. The XML description file allows for this 

by using the ‘selected’ and ‘exclusive’ options o f  the <structure> tag. The 

‘exclusive=true’ statement means that all routes are mutually exclusive thus only one route can 

be chosen. The ‘selected="0"’ statement tells the engine which route to take and this value can 

be changed at runtime.

M ultiple Inputs

Finally, IRIS allows signals from multiple com ponents to be passed to one component. This is 

achieved via channels. Two signals from different components are combined as a multi-channel 

signal for input to another component (Figure 5.29). Inputs can also come from embedded 

structures. By combining all these constructs alm ost any DSP system can be achieved by the 

engine.
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<radio>
<structure name="TwoFilters">

<component type="SignalGenerator">
<parameters>

<signal>noise</signal>
<sampleRate>44100</sampleRate>
<blockSize>512</blockSize>

</parameters>
</component>

<parallel name="branch" exclusive="true" selected="0"> 
<component type="LowPassFIRFilter">

<parameters>
<numtaps>32</numtaps>
<cutoff>0.05</cutoff>

</pararaeters>
</component>

<component type="LowPassFIRFilter">
<parameters>

<numtaps>64</numtaps>
<cutoff>0.15</cutoff>

</parameters>
</component>

</parallel>
</structui:e>

</radio>

FIR Filter

Signal Generator

FIR Filter

Figure 5.28 -  Signal Routing

<radio>
<structure n,;:;.. ■-"dupl icated">

<parallel "f ilters" - .i-s ;'./e="false"

<component ‘ yr-:”"signalgenerator"> 
<parameters>

<frequency>19000</frequency> 
<samplerate>60000</samplerate> 
<numsamples>4096</numsamples> 
<waveform>sin</waveform> 

</parameters>
</component>
<component ‘yp-: "signalgenerator"> 

<parameters>
<frequency>19500</frequency> 
<samplerate>60000</samplerate> 
<numsamples>4096</numsamples> 
<waveform>sin</waveform> 

</parameters>
</coraponent>

</parallel>
<component t yp;i-"costas">

<parameters>
</parameters>

</component>
</structure>

</radio>

Costas Loop

Signal Generator

Signal Generator

Figure 5.29 -  A Component with 2 Input Channels
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5.5.4 Internal Radio Representation

The XML parser must verify and convert the XM L configuration into an internal representation for 

realisation by the Radio Engine. In early basic prototypes radio systems were built from series o f 

components, in this case the only information that had to be stored internally was a list o f  

components and their sequential order. However, as the design progressed it was recognised that a 

more hierarchical design was required to facilitate all o f the constructs discussed in the previous 

section. A model was designed that allows com ponents to be specified in a hierarchical order whilst 

simultaneously catering for the needs o f  signal processing.

The main problem that has to be addressed by the internal structure is synchronisation. The 

embedded structures discussed in the previous section introduce a problem in that they allow 

multiple components to be viewed as a single component. When single components are used in 

parallel with embedded components the engine must ensure that all processing has completed 

before the results are used. Figure 5.30 dem onstrates this by showing synchronisation points. All 

processing o f  components must be completed before passing beyond this point.

Synchronisation points

Embedded Structure 
containing another 

embedded structure

Figure 5.30 -  Synchronisation o f Processing

Internally the radio system is represented as shown in Figure 5.31. To take account o f 

synchronisation in the internal representation o f  the radio, components and structures are stored in 

entities called Units. Each Unit can contain either a com ponent or a structure, a structure being the 

equivalent o f the embedded structure discussed above. M ultiple units are stored in a Parallel, the
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parallel being synchronised. Thus, during processing the Radio Engine goes through the hierarchy 

o f  the radio structure, processing each parallel in turn.

-IsMutuallyExclusive
-whichSelected
-collectionUnits

Parallel

-type
-instanceName
-parameters

RadioComponent

-radioComponent 
-collectionStructures: Structure

Unit

-name
-isBaseStructure 
-collectionParallels : Parallel 
-collectionStructures : Structure

Structure

Figure 5.31 -  Internal Representation of Radio System

5.5.5 IR IS A P I

As shown in the IRIS Radio Architecture diagram (see Figure 5.4), the architecture provides an 

API (Application Programming Interface) called the IRIS API. This API encapsulates all the 

functionality o f the Component Framework into one API that can be used by other applications to 

create reconfigurable radio systems. The interface provided by the API is shown in Figure 5.32. In 

the next chapter. Section 6.4 w ill demonstrate how this interface can be used in practice.

IRIS API

+IRISInitSystem()
+IRISGetVersion()
+IRISRedirectLogOutput(in whichEngine, in callback) 
+IRISCreateEngine()
+IRISDestroyEnglne(in whichEngine)
+IRISSetComponentsDir(in whichEngine, in directory) 
+IRISGetComponentsDir(in whichEngine)
+IRISSetJVM(in whichEngine, in javaVirtualMachineDirectory) 
+IRISGetJ\/M(in whichEngine)
+IRISLoadRadio(in whichEngine, in pathXMLRadioConfiguration) 
+IRISUnloadRadio(in whichEngine)
+IRISIsRadioLoaded(in whichEngine)
+IRISSetControlLogic(in whichEngine, in controlLogicinterface) 
+IRISStartRadio(in whichEngine)
+IRISStopRadio(in whichEngine)
+!RISIsRadioStarted(in whichEngine)
+IRISGetError(in whichEngine)
+IRISGetXMLStructure(in whichEngine)

Figure 5.32 -  Interface of the IRIS API
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5.6 Control Logic

Although components allow functionality to be abstracted and encapsulated into reusable units, 

when com ponents are combined together dependencies naturally occur (coupling and dependencies 

were discussed in Section 3.2.2). If for example (see Figure 5.33) a particular radio configuration 

requires that component A is dependent on symbol timing information provided by component B, 

then it follows that component A cannot operate without component B. If at a later date we want to 

reconfigure to a new radio implementation which uses a different source o f  symbol timing, then A 

will have to be changed to accommodate this new dependency.

Dependency between A and B

Figure 5.33 -  Component Dependency

IRIS allows components to remain independent and decoupled by introducing the concept o f  

Control Logic which allows component interaction to be specified by an implementation that exists 

outside the components themselves (see Figure 5.34). In addition. Control Logic is also abstracted 

from the overall structure o f the radio implementation. This means that even if additional 

components are added into a structure (such as inserting a new component between A and B) the 

control logic will still function.

Control Logic

Figure 5.34 -  Using Control Logic to Eliminate Component Dependencies

The Control Logic for IRIS can be implemented in either C++ or Java and is isolated from the 

particulars o f  components. Java in particular allows radio implementations to take advantage o f 

Java’s vast class library. A simple API is provided in both C++ and Java to allow the Control Logic 

to query and manipulate the radio through interaction with the Radio Engine. The interface 

definition o f this API is shown in Figure 5.35. By making calls to this API the Control Logic can 

manipulate the components o f  a radio system.
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«interfaces 
Radio

+GetNumComponents()
+GetAIIComponents(inout array, inout size)
+FindComponent(in name)
+FindComponent(in name, in instanceName)
+FindParameter(in componentid, in name)
+SetParameterValue(in componentid, in parameterld, in value) 
+GetParameterValue(in componentid, in parameterld, out value) 
+FindEvent(in componentid, in name)
+SubscribeToEvent(in componentid, in eventid, in callback) 
+UnsubscribeFromEvent(in componentid, in eventid, in callback) 
+FindPort(in componentid, in name)
+SendDataToPort(in componentid, in portid, in data, in length) 
+FindCommand(in componentid, in name)
+TriggerCommand(in componentid. in commandid) 
+lnstantiateComponent(in type, in instanceName) 
+ReplaceComponent(in existingComponentld, in newComponentId) 
+lnsertComponentBefore(in componentldBefore, in componentldNew) 
+lnsertComponentAfter(in componentldAfter, in componentldNew) 
+RemoveComponent(in componentid)
+FindParallel(in name)
+ParallelSetSelected(in parallelld, in selected)
+ParallelGetSelected(in parallelld, out selected) 
+ParallelSetExclusive(in parallelld, in exclusive) 
+ParallelGetExclusive(in parallelld, out exclusive)

Figure 5.35 -  Interface Control Logic uses to Control Radio

Lii<.e Radio Components, the Control Logic has a well-defined lifecycle and each controller must 

implement the same interface for use by the Component Framework. Figure 5.36 shows the 

interface definition for Control Logic. Three methods must be implemented;

Load(): This method is called by the Radio Engine to initialise the Control Logic. It provides a 

reference to the Radio interface (Figure 5.35), a llow ing the Control Logic to interact and 

reconfigure the radio system.

AttachToComponentsO: This method is called to a llow  Control Logic to perform any initialisation 

o f  its own prior to the running o f  the radio.

Unload(): This method is called by the Radio Engine to unload the Control Logic a llow ing it to 

free its resources.

The lifecycle o f  the Control Logic is depicted in U M L  sequence diagram shown in Figure 5.37.

«interface»
ControlLogic

+Load(in radiointerface)
+AttachToComponentsO 
+Unload()

Figure 5.36 -  Controller Interface
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RadioEnglne ControlLoaic

1
t
1
1
I
1

Load Code and Create Instance i
^  1

LoadO

Attach! oComponentsO

SubscribeT oEvents

AttachToComponents Complete
^--------------------------------------------------------------------------------------------

Event Fired
N

TriggerCommand

SetParameterValue
\

SendDataToPort
\

UnloadO

Delete Instance and Unload

1
t
1
I
1
1

Figure 5.37 -  Lifecycle of Control Logic
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5.7 Worked Example

The overall operation o f the IRIS framework is best illustrated by an example. While the IRIS 

system could be used for building many devices such as receivers, transmitters, test equipment and 

signal analysis tools, the transceiver is the best example to illustrate its many features. A 

transceiver incorporates both a receiver and transmitter and so is a good choice for demonstrating 

how multiple sub-systems can co-exist and interoperate within the Component Framework. For this 

example a digital FSK (Frequency Shift Keying) transceiver is considered.

5.7. 1 An FSK Transceiver

The FSK transceiver considered will allow digital data to be transmitted and received using the 

IRIS system. This functionality could be used in many scenarios for example in communicating 

digital speech or any form o f data. This raises the question as to what the operating parameters of 

the device might be, e.g. frequency, data rate, bandwidth, etc. Usually in traditional radio design 

these specifications determine the structure, hardware and capabilities o f the final device. For 

example the data rates required to facilitate transmission o f speech and video are very different and 

so will usually result in completely different hardware being used. Changing this rate if at all 

possible usually requires a significant change in hardware forcing changes from clock frequencies 

to firmware.

In the IRIS system however, all the specification o f the application is independent of low-level 

hardware details. At this higher abstraction, system specifications are more decoupled from 

hardware, for example the hardware architecture is never changed in response to a change in 

transmission data rate. The one parameter that the system is dependent on is the overall processing 

power of the architecture and once the GPP system provides enough processing capability many 

radio types using different specifications can be implemented. This type of capability radically 

changes the radio design paradigm affecting how radio systems can be viewed and constructed. 

Instead of creating an FSK modulator for voice and another for data, one generic FSK software 

component is created and by changing the parameters of this component many different types of 

information can be accommodated.

With this approach in mind, designing the FSK transceiver becomes less about choosing operating 

parameters and more concerned with functional partitioning o f the system via software 

components. Once the appropriate generic components have been built, the radio system can be 

configured via parameters to deliver the required specification.
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5.7.2 Partitioning the System

In approaching the problem o f  building the FSK transceiver, the functional partitioning via 

components is thus first considered. A basic design for an FSK transceiver is shown in Figure 5.38. 

In the transm itter path a binary signal is modulated as an FSK signal using two local oscillators. 

Each oscillator generates a signal corresponding to a binary ‘ 1’ or ‘0 ’ producing a waveform as 

shown in Figure 5.39. This signal is then up converted, filtered and then converted to an analogue 

signal. Likewise in the receiver branch the received signal is digitised, down converted and filtered. 

The baseband signal is then demodulated by mixing it with two local oscillators at the same 

frequencies as those in the transmitter. Following filtering, the transmitted data is recovered via an 

‘integrate and dum p’ stage which outputs the stream o f  received bits. (For simplicity a non­

coherent receiver is shown).

The actual air interface o f  the radio system is facilitated by an RF front end. This device is 

responsible for down-converting a signal o f  interest for demodulation and for up-converting the 

transm itting signal for transmission. As discussed in Section 2.4.3 up and down conversion can 

work in various ways either through an IF or by using direct conversion (zero-IF). This example 

assumes that an RF front-end exists that allows transmission and reception on a large range o f 

frequencies with a suitable signal to noise ratio.

R e c e iv e r  P a th
 ►

M ixer FIR F ilter

M ixer FIR F ilter
O sc illa to r

C o m p a re

FIR  F ilter

O sc illa to r

M ixer

A/D
C o n v e rte rR e c e iv e d

S ig n a l

R F  F ro n t 
E nd

O sc illa to r

M ixerFIR F ilter
T ra n sm itte r

S ig n a l

O sc illa to r

FSKD/A
C o n v e rte r

O sc illa to r

i  —  ------------  ----------

Figure 5.38 -  FSK Transceiver Design
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Carrier 0 1 0  1 1 0  0 1m ■ II ■■
Figure 5.39 -  FSK Waveform

There are various goals that must be addressed in partitioning such a system into components. 

Firstly, there is the goal o f  reuse. The aim here is to create components that can be reused in other 

applications. This requires an effective com ponent granularity to be chosen. Secondly, 

reconfigurability is an issue. The boundary o f  components should facilitate structural 

reconfiguration so that components can be replaced or inserted at runtime. For this to happen the 

partitioning o f  the system should be related to function, for example it makes more sense to replace 

a reusable channel extraction component then it does to alter individual multipliers in a filter. 

Thirdly, the structure o f  components used should facilitate the operation o f  the radio. Components 

should be suitably identified as DSP, lO or Standalone components. Also, their composition should 

occur logically, for example separating out the signal paths for transm itter and receiver.

Figure 5.40 shows how such a design can be partitioned into software components using the IRIS 

system. There are many ways this partitioning can take place and various tradeoffs associated with 

its implementation. For example, consider the channel extraction component. This component takes 

a wideband signal, mixes it with a local oscillator, filters and then decimates the signal to a lower 

sample rate. While this component could be built from separate mixer, filter and down sampler 

components, it is sometimes better to encapsulate all this functionality into one component. Doing 

so can offer opportunities to optimise the perform ance o f the component and is suited to radio 

functions such as channel extraction that are particularly data intensive. For example, Welborn 

[W elbom99bJ describes a technique for implementing narrow band channel extraction from 

wideband receivers, a technique that reduces the processing requirement for channel extraction by 

combining and reordering stages o f channel extraction.

On the other hand there are cases where optimisation may not be possible or required. The 

transm itter o f the FSK transceiver is an example. Here separate components are used to implement 

the up conversion, up sampling and filtering o f  the signal before transmission. At this point the data 

rates may not be so intensive and reducing the ability to optimise may be an acceptable loss in the 

face o f gaining more reusable components.

Another example is the FSK dem odulator component. This contains a great deal o f  functionality 

that could be reused in other applications such as integrators, etc. However, the overall design must
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be considered and implementing this and larger structures via hierarchies o f  com ponents can over 

complicate a design making the radio design error prone and difficult to maintain. Also, if  we want 

to later replace the FSK demodulator with another demodulator it is much easier to replace one 

component rather than a complex structure o f interconnected components. For this reason the best 

approach is to partition the system via function, e.g. FSK modulator, down sampler, channel 

extractor.

P ath

D ata Input 
C om ponent

C hannel Extractor 
C om ponent C om ponent

hXH5HI]
Oscillator ^

C om pare

Down
S am plerFIR Fitter

Bit Buffer
C onverter

O scillator

R eceived
Signal Oscillator

RF Front End
R F Front End Controller 

C om ponent

D ata Output 
C om ponent

FIR Filter 
Compor>ent 

FIR Filter

Up C onverter 
Com porw nt

Up S am pler 
C om ponent

FSK  Modulator 
Compor>ent

Lookup Table

C onverter
T ransm ttted

Signal

T ransm itter Path

Figure 5.40 -  Partitioning of FSK Transceiver into Software Components

5 .7.3 Structures

With an appropriate component composition decided, an XML configuration can be written to 

describe the design. This XML configuration is used by the Component Framework to create the 

radio system. As discussed in Section 5.5.2 an XML file is used to define a set o f  structures, a 

structure being a set o f  components. Internally the Radio Engine uses these structures to identify 

how it should pass signals between components. Considering the FSK transceiver example, it 

contains three sub-systems, the receiver, the transmitter and the RF front-end controller. To 

separate out these sub-systems each is specified in a separate structure. Internally, the Radio Engine 

assigns one thread to each structure and this thread controls all the interaction among components. 

The use o f a thread for structures and hence multi-threading in general is an important 

consideration for the Radio Engine. In general multi-threading offers advantages in that it can 

improve performance and is a useful technique in partitioning code into separate functional units.
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However it can also introduce problems such as increased code complexity. M ulti-threaded code 

often requires synchronisation by the use o f  m utexes and semaphores, which can be difficult to 

debug and maintain.

In terms o f  the IRIS system there were various ways m ultithreading could have been used in the 

processing o f  signals. One option was to assign a thread to each component; in this way 

components would be autonomous in their processing o f  signals (see Figure 5.41). Using this 

approach however, introduces some problems. Firstly synchronisation is required to pass signals 

between components and secondly, this synchronisation must occur independently o f  the radio 

structure. It is difficult to have a system that uses threads for each component and at the same time 

allow components to be developed without knowledge o f  their place in the radio system. One aim 

o f  the system was to reduce the burden on the program mer and to make the system easy to use. 

Therefore this approach was not used as overall it makes the radio system more complex.

Instead the approach used has been to use a single thread for each structure which has control over 

the whole radio system. This greatly simplifies the com plexity o f  Radio Components. In terms o f 

the FSK transceiver example, this approach results in the engine using three threads; one for each 

structure, the receiver, transm itter and RF front-end controller.

Single Thread Per Component Single Thread Per Structure

Figure 5.41 -  Multithreading Approaches

The XML configuration to achieve this design is shown in Figure 5.42. This configuration shows 

how the various parameters for the transceiver can be set.
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<?xml version="l.0" encoding="utf-8" ?>
<radio>

<description>
<name>FSK Transceiver</name> <comment>FSK Transceiver Example</comment> 

</description>
<structure name="RFFrontEnd">

<component type="HardwareController">
<parameters>

<serialport>COMl</serialport>
<transmitfrequencY>100000000</transmitfrequency> 
<receivefrequency>l00000000</receivefrequency> 

</parameters>
</component>

</structure>
<structure name="Receiver">

<component type="a2dpci4020" instance="DataInput">
<parameters>

<samplingRate>4000000</samplingRate>
<outputBlockSize>524288</outputBlockSize>
<channel>K/channel>
<useExternalClock>off</useExternalClock> 
<voltage>5</voltage>

</parameters>
</component>
<component type="ChannelExtractor">

<parameters>
<MixerFrequency>26947 00</MixerFrequency> 
<NumberTaps>8</NumberTaps>
<FilterCutoff>0.07</FilterCutoff> 
<Decimation>16</Decimation>

</pararaeters>
</component>
<component ype= "FSKDemodulator" ">

<parameters>
<BlockSize>4 0960</BlockSize>
<SampleRate>250000</SampleRate>
<SignalFrequencyl>10000</SignalFrequency1>
<SignalFrequency2>30000</SignalFrequency2>
<CarrierFrequency>20000</CarrierFrequency>
<SymbolLength>30</SymbolLength>

</parameters>
</component>

</structure>
<structure namf="Transmitter">

<component r ypf-="FSKModulator"">
<parameters>

<BlockSize>40960</BlockSize>
<SampleRate>250000</SampleRate>
<CarrierFrequency>20000</CarrierFrequency> 
<SignalFrequencyl>10000</SignalFrequency1> 
<SignalFrequency2>30000</SignalFrequency2> 
<SymbolLength>30</SymbolLength>

</parameters>
</component>
<component type="UpSampler">

<parameters>
<ratio>4</ratio>

</parameters>
</component>
<component type="UpConverter">

<^parameters>
<MixerFrequency>190000</MixerFrequency>

</parameters>
</component>
<component type="FIRFilter">

<parameters>
<NumberTaps>32</NumberTaps>
<CutoffFrequency>0.05</CutoffFrequency>

</parameters>
</component>
<component ■; ype="DataOutput">

<parameters>
<0utputchannel>0</0utputchannel>
<ScaieFactor>2.0</ScaleFactor>

</pararaeters>
</component>

</structure>
</radio>

Figure 5.42 -  XML Configuration for FSK Transceiver
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5.7.4 Control Logic

The last aspect of the system that needs to be addressed in how data can be input and output from a 

device like an FSK transceiver. As introduced in Section 5.6, control logic is a general-purpose 

mechanism for providing this type o f functionality. Control Logic provides a generic way to 

perform interaction with components without requiring specific knowledge of the internal workings 

o f a component or o f the structure of the radio itself.

Generic interaction with components is provided by the control facilities all components provide, 

namely, properties, events, ports and commands. Properties allow control logic to change a value in 

a component, for example a frequency setting. A piece o f Control Logic can use a component’s 

events by providing callback functions that are triggered when a component fires an event. Ports 

allow Control Logic to send data to a component and commands allow the logic to trigger the 

running o f routines in a component. By using combinations o f these, control logic can control any 

aspect of the radio system.

Control Logic mimics the type o f control functionality that might be found in the microprocessor of 

a software-defined radio system or in the infrastructure of the J I RS SCA discussed in Section 

2.5.2. Its similarities being that it controls and monitors the overall operation o f the device. 

However, apart from this. Control Logic in the IRIS system is distinctly different. Unlike these 

other systems the IRIS control logic is only loosely coupled to the components o f the radio system. 

It has been specifically designed this way for reconfigurability. Components can be added, 

removed and replaced from the radio system and the Control Logic will still function. This loose 

coupling is maintained by the Radio Engine which abstracts the control logic from the engine and 

by the APIs it provides. Instead o f providing direct access to components the Radio Engine acts as 

a proxy to all control logic/component interaction, effectively maintaining separation between 

control logic and components. Instead o f manipulating the parameters o f a component directly it 

uses the standard facilities for component interaction provided by the framework (as demonstrated 

in Section 5.6). By using calls such as SetParameter () and ReplaceComponent () the 

radio system can be manipulated to achieve parametric and structural reconfiguration.

Returning to the FSK transceiver example, the requirement here is straightforward; the control 

logic must be able to send data to the FSK modulator component for transmission and be able to 

receive data from the FSK demodulator component following reception. This is illustrated in 

Figure 5.43. For transmission the control logic accesses the ‘SendData’ port o f the FSK modulator 

component it can then use the controller API to send data to the component. Internally the 

component implements a handler function that allows it to react to the instruction to send data. For 

reception the control logic subscribes to the ‘DataReceived’ event that the FSK demodulator 

component provides. Every time data is received the Radio Engine calls a method in the Control
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Logic thereby transferring the data from the com ponent through the proxy o f  the engine and into 

the controller.

R eceiv er Path

FSK Dem odulator 
C om ponent 

Mixer f i r  Filter
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D ata Input 
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O scillator

FIR Filter
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Bit Shifter
C onverter

T ransm itted
Signal
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Figure 5.43 -  FSK Transceiver Using Control Logic

Figure 5.44 shows example control logic for the FSK transceiver (error reporting code has been 

removed for brevity). This controller continuously listens for a signal on a specified frequency. 

Once a signal is received it transmits ‘Flello’ and moves to the next frequency. During the calls to 

Load {) and AttachToComponents () the control logic finds all the references it requires to the 

components o f  the radio system. It finds the ‘SendData’ port for transmission and subscribes to 

the ‘DataReceived’ event from the demodulator component. When a signal is received the 

frequency is incremented and the RF-Front End is instructed to move to a new frequency.
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void Controller::Load(Enginelnterface *enginelnstance) 
{

engine = enginelnstance;

bool Controller::AttachToComponents()
{

//Find the FSK modulator component
hComponentModulator = engine->FindComponent("FSKModulator");

//Find the ModulateData port of the FSK modulator
hPortModulate = engine->FindPort(hComponentModulator, "ModulateData"), 

//Find the FSK Demodulator component
hComponentDemodulator = engine->FindComponent("FSKDemodulator");

//Subscribe to the SignalReceived event of the demodulator 
engine->SubscribeToComponentEvent{hComponentDemodulator,

"SignalReceived",
(int)this,
SignalReceived);

//Find the FrontEnd component
hComponentFrontEnd = engine->FindComponent{"FrontEnd");

'/Find the parameter for setting the frequency
hParameterFrequency = engine->FindParameter(hComponentFrontEnd, "Frequency");

//Set the frequency to an initial value 
currentFrequency = 100000000;
engine->SetParameterValue(hParameterFrequency, currentFrequency); 

return true;

void Controller::Unload()
{
}

void Controller::SignalReceived(int identifier, void* data, unsigned int length) 
{

Controller ‘instance = (Controller*)identifier;

/ 'Modulate/rrdnsm.:. 'he message 'Helif' 
char ‘message = "Hello";
instance->engine->SendToPort(instance->hComponentModulator,

instance->hPortModulate,
(unsigned char*)message, 
strlen(message)+1);

■■Change the operatLng rrequency of the RF Front End 
currentFrequency += 1000000;
engine->SetParameterValue(hParameterFrequency, currentFrequency);

Figure 5.44 -  Sample Control Logic Source Code

5.7.5 Reconfiguration

Section 4.2 discussed reconfigurability and how this can be broken down into parametric, structural 

and application reconfiguration. This section demonstrates how the IRIS system achieves 

reconfigurability in the context o f  the FSK transceiver example.

The example o f  the FSK transceiver already features parametric reconfiguration. When changing 

the frequency o f  the RF Front-End the control logic is changing a parameter o f  the radio system
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and thus reconfiguring its functionality. Any param eter o f  a component in the radio can be changed 

in this way thus allowing any aspect o f  the system to be reconfigured dynamically at runtime.

Internally inside components, the component must react to a parameter change. Each component 

can optionally implement the ValueChanged () method and thus perform any recalculation or 

reconfiguration required to react to a param eter change. For example, the FSK modulator 

component may have to recalculate its lookup table to respond to a change in operating 

frequencies.

Structural reconfiguration allows Control Logic to manipulate the structure o f  the radio system by 

adding, removing or replacing components at runtime. Also, when components are in parallel 

signals can be routed to one or other components. To demonstrate how this works in the context o f 

the FSK transceiver. Figure 5.45 shows how the FSK modulator component o f  the transceiver can 

be replaced at runtime.

void Controller::SignalReceived(int identifier, void* data, unsigned int length)
{

Controller ‘instance = (Controller*)identifier;

//Extract "he name c: "he modulator 
char newModulationScheme = (char*)data;

•'■■'Create a new f-omponent-
HANDLE_COMPONENT hComponentNewModulator =

engine->InstantiateComponent(newModulationScheme) ; 
it(hComponentNewModulator == INVALID_HANDLE_VALUE)
{

printf ("Un)cnown modulation scheme or component %s\n", newModulationScheme) ; 
return;

)

i-'ep'-.ace \ht ex^; : ng du-.a* >r with the new jne 
if(engine->ReplaceComponent(hComponentFSKModulator, hComponentNewModulator) == false) 
(

p r i n t f ("Error replacing component, incompatible with this configuration"); 
return;

}

/■'Re ■ease ..hi existing modu/ator
engine->DestroyComponent(hComponentFSKModulator);

Figure 5.45 -  Code for Replacing a Component at Runtime

In this example the data o f the received signal contains the name o f  the new component that should 

replace the existing modulator. Using this name the new component is instantiated and used to 

replace the existing component with a call to ReplaceComponent {). This example demonstrates 

that functionality o f  the radio can be replaced at runtime. This shows that it is possible for radio 

systems to alter their structure based on information received from other systems. This facility also 

allows the FSK transceiver to become a general-purpose generic transceiver requiring only changes 

in modulators and demodulators to enable new modulation schemes. (Chapter 7 will demonstrate 

case studies showing how this type o f  reconfiguration can be used in other scenarios).
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The final type o f  reconfiguration considered is application reconfiguration. This would require the 

IRIS system to be reconfigured at runtime to implement a system using a different set o f  

components, parameters and control logic, thus in the focused context o f  the FSK transceiver this 

facility holds less consequence. However, instead o f  changing the radio application completely, 

application reconfiguration can be used as a means to upgrade the software o f  a reconfigurable 

radio. With new components, parameters and control logic, a working radio system can be 

reconfigured to a newer version possibly fixing bugs or enabling new capabilities. For example, in 

the FSK transceiver example this could be used to upgrade the device by introducing a new 

configuration with a new set o f  parameters that allow  for better data throughput. Application 

reconfiguration can be programmed via the IRIS API which is discussed in the next chapter.

5.8 Summary

The focus o f  this chapter has been the basic design and capabilities o f  IRIS, a means o f  building a 

reconfigurable radio system using a component framework. The approach taken makes it extremely 

simple to express the structure o f a reconfigurable radio system. Part o f  this approach has been to 

factor out as many common radio functions as possible into the framework so that radio system 

design is simple and straightforward. This allows the system developer to concentrate on the design 

o f radio systems without having to deal with recurring problems and issues surrounding platforms 

and hardware. As demonstrated in the worked example, the system features application, structural 

and parametric reconfigurability through a cohesive API. IRIS is thus a system that allows the 

development o f  highly reconfigurable radio systems.
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Implementation and Analysis

6.1 Introduction

This chapter provides further insight into the reconfigurable radio concept by discussing the 

practical implementation o f a real-life reconfigurable radio system. The IRIS Architecture 

described in the previous chapter has been implemented as a fully functioning system and runs on 

Windows 2000/XP. Implementation issues surrounding the Radio Component, the fundamental 

unit for building reconfigurable radios in IRIS, are discussed in Section 6.2 and are followed by 

practical examples in Section 6.3. Section 6.4 provides details o f  the IRIS API and supporting 

tools. The use o f external hardware is discussed in Section 6.5 with results o f  scalability and 

memory analysis o f  the system presented in Section 6.6.

6.2 Implementing Radio Components

This section gives insight into the development o f  Radio Components on W indows. It starts by 

discussing some operating system issues o f relevance when considering component-based 

reconfigurability. It then goes on to provide detailed technical information on how Radio 

Components deal with different sampling rates and data types, how they carry out signal 

processing, and how the Component Framework combines components together to create a radio 

system.

6.2.1 Choice o f Operating System

There were no specific requirements o f  the IRIS system that demanded a particular operating 

system. All modem operating systems provide basic system services such as virtual memory, 

multi-threading, networking and therefore any o f  them would have been suitable for building the 

core IRIS system. However, integrating the IRIS system with hardware posed a significant 

challenge. During the course o f  this research it was difficult to source A/D/A converters o f  

appropriate specification and most o f  them suitable for the task required W indows to operate 

therefore Windows was a natural choice. Also, using W indows offered the opportunity to integrate 

the IRIS system into the DAWN networking system, also a W indows-based system, the result o f 

which is presented in Chapter 7.
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6.2.2 Radio Components on Windows

The IRIS system was targeted for development in an object-oriented language such as C++, but the 

C++ language itself does not have direct support for creating software components. In practice, it is 

the operating system that dictates how code can be encapsulated and reused in this way. To 

implement IRIS Radio Components for practical use the following questions had to be addressed 

for the windows operating system:

•  What form would a component take?

• How would components be loaded, unloaded and instances created o f a component at runtime?

•  How would components expose their functionality?

The unit o f  code reuse inherent to the W indows operating system is the DLL (Dynamic Link 

Library). DLLs are libraries o f  executable code that can be dynamically loaded from disk by 

applications. It should be noted that while it would be possible to develop a completely proprietaiy 

method for encapsulating code in the same way as a DLL, the DLL approach has a distinct 

advantage. DLLs are highly integrated into the W indows operating system as it uses DLLs to 

improve system performance. For example, if m ultiple threads on the same W indows computer use 

the same DLL, only one copy o f  the Dl.L code will be loaded and shared seamlessly between the 

threads. This optimisation provides better overall system performance and is particularly important 

for a software radio system that re-uses multiple components in a radio design. DLLs thus provide 

an efficient mechanism for reuse.

DLLs make their functionality available or expressed in software terms, ‘expose their functionality’ 

through an export table. This table describes the functions that the DLL contains, functions that 

other applications can make use o f  by loading the DLL. Most windows development tools allow 

the creation o f DLLs and functions written in languages such as C and C++ can be exported in this 

way.

IRIS Radio Components have been realised using DLLs and each component is written as a 

separate DLL. Each Radio Component DLL exposes two functions that the IRIS Component 

Framework can use to create and destroy instances o f  a component, CreateRadioComponent () 
and ReleaseRadioComponent() .

Figure 6.1 shows how these functions are exported from the DLL for a Radio Component. The 

component in the example is the SignalGenerator component. As detailed in the previous 

chapter, this component is used to generate a signal that can be fed to other components. When 

CreateRadioComponent () is called an instance o f  the specified component is created. Likewise
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a call to ReleaseRadioComponent () deletes the instance o f  the component. It should be noted 

that while C++ has been used for this work, any language that supports the exporting o f  code in this 

way (i.e. virtual function pointer tables) could be used to build components.

e x t e r n  "C"  d e c l s p e c ( d l l e x p o r t )  Component*  C r e a t e R a d i o C o m p o n e n t ()
{

r e t u r n  new S i g n a l G e n e r a t o r C o m p o n e n t ( ) ;
}

e x t e r n  "C"  d e c l s p e c ( d l l e x p o r t )  v o i d  R e l e a s e R a d i o C o m p o n e n t { C o m p o n e n t *  comp)
{

i f  (comp != NULL) d e l e t e  comp; I*

Figure 6.1 -  Exporting a Component from a DLL

DLLs meet all the requirements o f  the Radio Component, and are particularity suitable because 

they contain native code. DLLs can be dynamically loaded and unloaded from the system using 

calls to the Windows platform API functions LoadLibrary () and FreeLibrary ( ) .  Once 

loaded, any number o f  instances o f  a component can be created using calls to 

CreateRadioComponent 0  . These com ponent instances can then be used by the Component 

Framework to realise the radio design. The overhead o f  doing this is negligible as DLLs are an 

integral and thus highly optimised aspect o f  the W indows operating system.

6.2.3 Programming Radio Components

As shown in the previous section, the functions exported by the DLL is straightforward requiring 

only two functions, however the actual implementation o f  a Radio Component itself is more 

involved. As shown in Chapter 5, Section 5.4, IRIS Radio Components are rich in functionality and 

as a result require the implementation o f  many interfaces. While the IRIS system was designed to 

facilitate rapid development and experimentation o f  radio systems, having to implement numerous 

interfaces to create a component can be tedious. To solve this problem a scripting language and 

code generator has been developed to automate the process.

The scripting language is written as part o f  the C++ header file o f a component. The programmer 

writes attributes alongside C++ code. These attributes expose information about the component and 

identify the properties o f  the component. (A ttributes are hidden in C++ comments to avoid 

com piler errors). Properties include parameters, events, ports and commands as discussed in the 

previous chapter. Before compilation a Java-based parser reads these attributes and generates 

seventy methods offering all the functionality required by the Component Framework. The reason 

so many methods are required is to facilitate function overloading so components can support
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multiple data types for parameters and events. A full list o f  these methods are included in Appendix 

1 0 . 1 .

Figure 6.2 shows the C++ header file o f  a SignalStrength component. This simple component 

has been designed to tire events indicating whether the signal received is above or below a 

threshold value.

------------------------------------------------------------------------------------------------------------------------------------
//@component analyses the signal strength of the incoming block
//@version 1.1
//Sauthor Philip Mackenzie
//@event SignalAboveThreshold float fired when the signal level is greater than threshold 
//@event SignalBelowThreshold float fired when the signal is less or equal than threshold 
class SignalStrengthCoraponent : public DSPComponent 
{
private:

//Sparam the threshold in dB at which a signal exists 
//©default -144 
//@dynamic 
int threshold;

public:
virtual void GetDetails(ComponentDetails ‘details);
virtual void CalculateOutputSignalFormat();
virtual bool InitO;
virtual void Process(Signal signal);
virtual void Destroy();

) ;

Figure 6.2 -  Header File o f a Signal Strength Component

Each line starting with ‘/ / 0 ’ indicates an element o f  the scripting language. For example, the line;

//0event SignalAboveThreshold float fired when the signal level is greater than threshold

indicates that this component exposes an event called ‘SignalAboveThreshold’ and every time 

this event is tired it supplies a floating point value. The remainder o f  the line allows the 

programmer to provide information about the event.

The declaration:

//@param the threshold in dB at which a signal exists 
//@default -144 
//@dynamic 
int threshold;

exposes one o f the member variables o f the class as a parameter o f  the component. The 

V / 0 p a r a m ’ Statement must be included and indicates that t h r e s h o l d  will be exposed as a 

parameter, ‘/ / © d e f a u l t ’ provides a default value for the threshold. The engine automatically uses 

this value if none is supplied, ' / / © d y n a m i c ’ indicates that this component can be changed 

dynamically at runtime and the engine will inform the component when this value has changed
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through the ValueHasChanged () method. A full list o f  the commands supported is included in 

Appendix 10.2.

Overall, the code generator automates the process o f  creating a Radio Component allowing the 

programmer to concentrate on the implementation o f  radio functionality. This greatly reduces the 

time required to build and test components.

6.2.4 Dealing with Signals

An important issue when designing the Radio Component was how it would deal with signals, 

more specifically:

•  How should numeric samples be stored?

• How should signals (multiple samples) be manipulated by components?

Samples must be stored using a data type that suits the particular application. The data type used to 

store samples must offer enough dynamic range to allow the full range o f  digital sample values to 

be represented in the radio system. Dynamic range is the ratio between the largest and smallest 

numbers that can be represented. For example, 16-bit integers offer the ability to represent numbers 

from -32768 to 32767 which corresponds to a dynamic range o f  approximately 96 dB. Devices 

such as DSPs and in particular FPGAs can be limited in the number o f  data types available. 

However the flexibility o f the GPP offers a variety o f  data types, ranging from both signed and 

unsigned integers to floating point representations (see Figure 6.3).

Name Bits Range Dynamic Range
Signed Integers 8 -128 to 127 48.1dB

16 -32768 to 32767 96.3dB
32 - 2147483648 to 2147483647 192.7dB

Unsigned Integers 8 0 to 255 48.1dB
16 0 to 65535 96.3dB
32 0 to 4294967295 l92.7dB

Floating Point (Single Precision) 32 1.4 X 1 0 " '^ to 3 .4 x  10^* 1668dB
Floating Point (Double Precision) 64 4.9 X 10-’ '̂* to 1.8 X lO’®* 12630dB
And also complex number combinations o f  each, for example two 16-bit signed integers could be

used to represent a complex number, thus resulting in 32-bits being used.

Figure 6.3 -  Data Types Supported by IRIS

The choice o f  data type influences the implementation o f the overall application. For example, 

choice o f  data type can have a dramatic effect on the amount o f  memory used in the system with a 

move from 8-bit to 32-bit representation causing a quadrupling in memory requirements. Data 

types can also affect performance with differences occurring between calculations performed using
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integer and floating point arithmetic. The perform ance hit may be due to capabilities o f  the 

underlying processor or to the fact that increased am ounts o f data need to be transferred to and 

from RAM.

IRIS components can support multiple data types, meaning that they can consum e and produce 

signals o f  any o f the supported data types. Internally, no restrictions are placed on the use o f  data 

types. Programmers are free to use techniques such as tem plates to develop generic algorithms that 

work with many different data types. However, care should be taken when doing this as moving 

between data types can introduce subtle errors caused by loss o f  precision. For example, if  an 

algorithm is implemented using a double precision floating point number then moving to a signal 

precision floating point or even an integer data type will change the precision o f  the calculation. 

This can change the accuracy o f the calculation and have an overall effect on the output o f  the 

algorithm.

For the IRIS system, a primary aim was flexibility and thus it was necessary to be able to 

inherently support multiple data types in the system. This raises problems however as the desire is 

to create components that are highly compatible, yet incompatible data types can break a system. 

To overcome this problem the IRIS components were designed so that they can accept and produce 

multiple data types but in a well defined way. A component exports a method called 

GetDetailsO which the Component Framework uses to obtain information about the signal 

formats a component can produce and consume. The framework uses this information to verify the 

validity o f  a radio design by checking that the input and outputs between components are 

compatible.

Another flexibility issue is how signals or blocks o f  multiple samples are handled by the system. 

IRIS uses the common signal processing approach o f  treating signals as blocks o f  data. Blocks are 

stored in memory as a series o f  sequential samples. For DSP applications it is also useful to be able 

to represent signals using complex numbers. Complex numbers require the use o f  two numbers to 

correspond to the real and imaginary values o f  a com plex number. IRIS inherently supports the 

data types and their corresponding complex combination o f  all the data types shown in Figure 6.3.

Another concern is multiple signals, as it is common for signal processing algorithms to produce or 

consume multiple signals. The problem is that IRIS must allow multiple signals to be represented 

and at the same time be able to ensure the validity o f  a radio configuration. For simple cases this is 

not a problem, for example an I (In-phase) and Q (Quadrature) signal is often represented as a 

complex signal therefore a complex data type can be used. But for implementations requiring 

multiple arbitraiy/ channels, this method is not suitable. For example, a narrow-band channel 

extraction component may output eight channels o f data from only one input.
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O ne possib le solution to support this is to  use bigger block sizes (o r a larger da ta  type) to allow  

m ultip le signals to be com bined together. H ow ever, th is requires the program m er to  im plem ent 

code to  com bine and extract the m ultiple signals upon input o r output, som eth ing  that causes 

additional processing  overhead and can lead to  error-prone code. For th is reason IRIS inherently 

supports channels. C hannels allow  a com ponent to  input or output m ultip le sim ultaneous channels 

o f  data. In m em ory IRIS stores sam ples and channels sequentially  as depicted  in Figure 6.4. By 

inherently  supporting  channels in the arch itectu re , the program m er does not have to  resort to  a 

personal m eans o f  passing m ultip le signals betw een com ponents.

Start of Memory Block

i
I Channel 0 I Channel 1

I I I
Figure 6.4 -  Sequential Layout of Samples and Channels in Memory 

6.2.5 Block Size and Sample Rate

The term  ‘block s ize’ refers to  the size o f  data used to  transfer a portion o f  a signal betw een 

com ponents. From early prototypes it becam e ev ident that m ultip le block sizes w ere required for 

the IRIS system  for various reasons. Firstly, a fixed block size lim its the ab ility  to reuse a 

com ponent in d ifferen t scenarios, as it is d ifficu lt to  com bine code that requires d ifferen t block 

sizes in a generic way. For exam ple, an algorithm  requiring  a fixed block size o f  200 sam ples will 

require alteration  to  deal w ith a block size o f  201 sam ples. Secondly, block size is directly  

proportional to  the latency o f  the system . Block size can be an im portant param eter in tun ing  the 

system  to both application and perform ance requirem ents. F inally, som e hardw are devices (or their 

device driver im plem entations) can often specify  a set range o f  block size values. By 

accom m odating a varying block size it is possib le to  w ork w ith various d ifferen t types o f  hardw are 

input/output devices w ithout having to  a lter com ponents. For th is reason, all IRIS com ponents 

support variable input and output block sizes.

D eveloping algorithm s to  be variable in block size can com e as quite  a change to  ex isting  DSP 

developers. In m any ex isting  applications block sizes are fixed, especially  in app lica tions w here the 

sam ple rate o f  the signal being processed does not change. For exam ple, m any audio DSP 

im plem entations alw ays use the sam e sam ple rate o f  44.1kH z, therefore static block sizes and
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hjnce static latencies are common. DSP processor implementations mostly use fixed block sizes 

aid the code implementations are fixed to a particular block size/latency.

Ir software-based radio applications however, the block size can change throughout the signal 

p ocessing chain. This is because the sample rate o f the signal often changes many times as it 

n^akes its way through the path o f  the receiver or transmitter. The receiver example in Chapter 5, 

F gure 5.3 (Section 5.8) was an example o f  a radio system in which the sample rate changes. In that 

Cise the signal o f  interest was down-converted and then down-sampled to a lower frequency. 

Cown-sampling reduces the sample rate o f  the signal. Down-sampling (and up-sampling) occur 

oiten in radio applications as high sample rates require large amounts o f  data to represent a signal.

Manipulating the sampling rate o f  the signal path can have a dramatic effect on the performance o f 

the system reducing the processing requirements by many orders o f  magnitude. In general, in the 

rtceiver the aim is to reduce the sample rate as soon as possible after reception. In the transm itter 

the aim is to increase the sample rate as late as possible before transmission. Each different radio 

scheme will have different signal characteristics and therefore there is no generic way to dictate 

how the sample rate can be manipulated. To address the problem o f multiple sample rates and 

hence varying block sizes, the IRIS architecture inherently supports variability o f these parameters. 

Where possible IRIS components are built to work at any sample rate, with any block size and with 

a variety o f  data types.

The Component Framework automatically handles all calculations involving block sizes, sampling 

ra:es and data types. This is illustrated in Figure 6.5. This diagram shows a sequence o f 

components that produce and consume different numbers o f samples. The blue boxes in the middle 

describe the function o f  each component and what it is configured to do. The green and yellow 

bcxes on the right show how the data type, sample rate and number o f samples are used in 

calculating the memory required to store the output o f  a com ponent for a given input. For example, 

the Down Sampler component is configured to decim ate the incoming signal by a factor o f  eight. 

Thus, the signal entering this component with a sample rate o f  160kHz (160,000 samples per 

second) and a block size o f  3200 samples will require a memory block o f  6400 bytes. After 

decimation the output block size required is reduced, as the number o f  samples produced is 400 

requiring a block size o f 800 bytes. Similarly the ‘Scale and Convert’ component causes a different 

block size to be output as it changes the data type o f  the input signal from a 16-bit integer to a 32- 

bit floating point number.

These calculations are carried out in the initialisation phase o f  each radio system. I ’he IRIS system 

starts at the beginning o f the signal processing chain by looking at the output produced by the first 

component. Each component is given the sample rate, number o f  samples and data type it will be
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rceiving. A component must then calculate the output it will produce for that given input. This 

nians that the person designing the radio system only has to specify the sample rate and data type 

fr the first component. The engine autom atically calculates the values required for the rest o f  the 

sstem based on this first component. If any mismatch occurs during this operation the IRIS system 

idicates an error and exits. This can occur when the data type produced by one com ponent is not 

soported by the next. Another example is when a hardware device requires a fixed block size and 

a:omponent either produces too many or too few samples. In this case a buffering component can 

b used or the designer can change the sample rate o f  the first component so that the correct block 

S’.e is produced where required.

Signal
3enerator

FIR
Filter

Down
Sam pler

Convert and

Up
Sam pler

Signal Generator

Output: Noise
Sample Rate: 160kHz
Block Time: 20ms
Block Length: 3200 Samples
Data Type; 16bit(2bytes)
Block Size: 6400 bytes

HR Filter

Low Pass Filters the
signal with a cutoff
frequency of 5kHz

Down Sampler

Decimates the signal by a 
factor of 8

Scale and Convert

Converts the data type to 
single precision floating 
point and scales it to 
values from -1.0 to 1.0

Up Sampler

Upsamples the signal by a 
factor of 4

Down Sampler Output

3200 / 8 = 400 samples 
No. Samples: 400 
Sample Rate: 20kHz 
Output: 800 bytes

________ FIR Filter Output
No. Samples: 3200 
Sample Rate: 160kHz 
Output: 6400 bytes

Signal Generator Output

No. Samples: 3200 
Sample Rate: 160kHz 
16bit=2 bytes per sample 
3200 * 2 = 6400 bytes 
Output: 6400 bytes

Up Sampler

400 * 4 = 1600 samples 
No. Samples: 3200 
Sample Rate: 160kHz 
Output: 6400 bytes

Scaler and Converter Output
sizeof (float) - 4 bytes 
400 * 4 = 1600 
No. Samples: 400 
Sample Rate: 20kHz 
Output: 1600 bytes

Figure 6.5 — Automatic Calculations Performed by the Framework
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6.2.6 Implementing ProcessQ

By im plem enting the Process () m ethod a  com ponent m akes availab le o r exposes its 

functionality . T w o types o f  Process () calls are  available, in-place and not in-place. Signals are 

passed to a com ponent via a data structure  that contains pointers to  m em ory that can be used to  

input or ou tput data (see Figure 6.6). T his data  structure also  provides access to  the various 

input/output channels o f  the com ponent and to  num eric values w hich indicate tim estam ps and 

sam ple counts. T hese values can be used to  im plem ent specific  tim ing logic in com ponents.

struct Signal 
{

void *data;
void *channel[MAX_NUM_CHANNELS]; 
long timestamp; 
long samplestamp;

};

Figure 6.6 -  Struct Definition used by Process()

To dem onstrate a typical scenario, Figure 6.7 show s an sim ple Process {) m ethod o f  an in-place 

com ponent that doubles the am plitude o f  the incom ing signal.

void MyComponent::Process(Signal inout)
{

float *sig = (float*)inout.data;
for(int i=0; i<SignalFormatInput.blockSize; i++) 
(

sig *= 2.Of;
}

}

Figure 6.7 -  Example Process() Method

D uring the in itialisation phase o f  the rad io  each com ponent is configured w ith a particu lar signal 

form at w hich can be accessed by the SignalFormat data structure as show n in Figure 6.8. This 

data structure provides the developer w ith essential configuration  inform ation about block sizes, 

sam ple rates, channel inform ation and da ta  types. T his inform ation is used continuously  by a 

com ponent in its calculations.

struct SignalFormat 
{

int blockSize; 
int numChannels; 
int samplingRate; 
DataType dataType;

Figure 6.8 -  Signal Format Struct
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6.3 Radio Component Examples

6.3.1 Worked Example

To demonstrate how a practical Radio Component is created, the design o f  an FSK (Frequency 

Shift Keying) modulator is considered. The function o f  this Radio Component is to take data and to 

generate an FSK signal for further transmission by other components. This example demonstrates 

how the component can use the facilities available in the IRIS architecture to expose the 

functionality o f  a component in a generic way.

As discussed, each Radio Component in IRIS is defined via its parameters, events, ports and 

commands. Figure 6.9 below shows the properties that can be used to define an FSK component.

Property Type Description
Parameters
SampleRate 
BlockSize 
CarrierFrequency 
SignalFrequencyl 
SignalFrequency2 
SymbolLength

Events

The sample rate o f  the output FSK signal
The number o f  samples to output fi-om the component
The frequency o f  the carrier signal
The frequency o f  the first signal
The frequency o f  the second signal
The length in samples for one symbol

DataModulated

Ports

Fired when the data has been modulated

ModuiateData

Commands

When data is sent to this port it is modulated using FSK

Reset Resets the modulator aborting all transmissions

Figure 6.9 -  Properties o f FSK Component

To expose this information from the component the code in Figure 6.10 is written. From the header 

file in the figure, the code generator generates the XM L definition o f the component as shown in 

Figure 6.11. The code generator can then use this XML description to generate all the code 

required for the component to be used by the Com ponent Framework (as discussed in Section 

6.2.3).
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//©component modulates data using Frequency Shift Keying
//©version 1.1
//©author Philip Mackenzie
//©port ModulateData modulates the data sent through the port 
//©event DataModulated int fired when the data has been modulated 
//©command Reset resets the modulator 
class FSKModulatorComponent : public lOComponent 
(
private:

//©param whether to output debugging information 
//©default false 
bool debug;

//©param what block size to produce 
//©default 2048 
int BlockSize;

//©param the sampling rate in samples per second 
//©default 44100 
int SamplingRate;

//©param the first frequency in Hz
//©default 600
//©dynamic
int SignalFrequencyl;

//©param the second frequency in Hz 
//©default i200 
//©dynamic
int SignalFrequency2;

//©param the symbol length of a bit in Hz 
//©default 300 
//©dynamic 
int SymbolLength;

//©param the frequency of the training carrier in Hz
//©default 900
//©dynamic
int CarrierFrequency;

. . . . Truncated

Figure 6.10 -  C++ Header File Definition of FSK Modulator Component

To implement the actual signal processing code o f  the FSK component the developer must 

implement the lifecycle o f  the component as discussed in Section 5.4.3 and the methods to receive 

data. For example. Figure 6 .12 shows the code used to respond to data sent to its port. When data is 

received the component allocates memory for the data and copies it to this location. It then signals 

an event to indicate that modulation should occur and waits for this to com plete. This is required as 

information can arrive into ports asynchronously and thus this code has to wait until calls to 

Process () have occurred to modulate the data. When completed it fires an event using 

ActivateEvent () to notify externally subscribed code that processing has completed.
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<component type="fskmodulator">
<description>

<name>FSKModulator</name>
<author>Philip Mackenzie</author>
<version>l.l</version>
<information>modulates data using Frequency Shift Keying</information> 

</description>
<parameters>

<parameter name="BlockSize" type="int" id="VALUE_BLOCKSIZE">
<description>what block size to produce</description> 
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>2048</default>

</parameter>
<parameter name="SamplingRate" type="int" id="VALOE_SAMPLINGRATE">

<description>the sampling rate in samples per second</description> 
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>44100</default>

</parameter>
<parameter name=”SignalFrequencyl" type="int" id="VALUE_SIGNALFREQUENCYl"> 

<description>the first frequency in Hz</description> 
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>600</default>

</parameter>
<parameter name="SignalFrequency2" type="int" id="VALUE_SIGNALFREQUENCY2"> 

<desciiption>the second frequency in Hz</description> 
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>1200</default>

</parameter>
<parameter name="SymbolLength" type="int" id=”VALUE_SYMBOLLENGTH"> 

<description>the symbol length of a bit in Hz</description> 
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>300</default>

</pararaeter>
<parameter name="CarrierFrequency" ‘ype="int" Ld="VALUE_CARRIERFREQUENCY">

<description>the frequency of the training carrier in Hz</description> 
<dynamic>no</dynamic>
<bytes>4</bytes>
<array>no</array>
<default>900</default>

</parameter>
</parameters>

<events>
<event name="DataModulated" type="int" id="EVENT_DATAMODULATED">

< id>EVENT_DATAMODULATED</id>
<description -fired when the data has been modulated</description> 

</event>
</events>

<ports>
<port name="ModulateData" id="PORT_MODULATEDATA">

< i d> PORT_MGDULATEDATA</id>
<description>modulates the data sent through the port</description>

</port>
</ports>

<commands>
<command name="Reset" id="COMMAND_RESET">

<id>COMMAND_RESET</id>
<description>resets the modulator</description>

</command>

</commands>

</component>

Figure 6.11 -  XML Generated to Describe the FSK Modulator Component
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bool FSKModulatorComponent::ProcessPortData(int portid, unsigned char* data, int length)

//Allocate memory and copy in received data 
dataToTransmit = new unsigned char(length]; 
dataToTransmitLength = length; 
memcpy(dataToTransmit, data, length);

//Signal that the data should be modulated and wait 
//unti ; It has been completed
SignalObjectAndWait(hEventWait, hEventComplete, INFINITE, FALSE);

//Deallocate memory 
delete [] dataToTransmit; 
dataToTransmit = NULL; 
dataToTransmitLength = 0;

//Fire event to indicate to external subscribers that 
//the data has been modulated 
ActivateEvent(EVENT_DATAMODULATED, length);

return true;

if(portid == PORT_MODULATEDATA)

return false;

Figure 6.12 -  Code to Implement Data Received Port

When Process () is called it must generate an FSK waveform as shown in Figure 6.13. This may 

require multiple calls to Process {) as the signal may span multiple blocks o f  data. The 

com ponent can make use o f  the lifecycle o f  the com ponent to prepare itse lf  for processing. For 

example, a com ponent can use the Init () method to  pre-calculate lookup tables which can be 

used to generate the waveform, i'his reduces the am ount o f  processing required in the Process {) 
method to generate the FSK waveform.

Carrier 0 1 0  1 1 0  0 1

■III Time

I
Figure 6.13 -  FSK Waveform

Once the FSK com ponent has been compiled as a DLL it can be used in any radio configuration 

using the X M L  shown in Figure 6.14.
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<component type="FSKModulator" instance=''MyModulator">
<parameters>

<BlockSize>40960</BlockSize>
<SampleRate>250000</SampleRate>
<SignalFrequencyl>10000</SignalFrequencyl>
<SignalFrequency2>30000</SignalFrequency2>
<CarrierFrequency>20000</CarrierFrequency>
<SymbolLength>30</SymbolLength>

</parameters>
</component>

—— — T H a — ■ ' * " ■*-

Figure 6.14 -  XML for Configuring an FSK Modulator Component

This example has demonstrated the development o f a single component, however over fifty 

components have been developed for use in the IRIS system for use in this and other related 

research. The next sections briefly outline some o f  the more interesting o f  these that provide insight 

into the reconfigurable radio concept.

6.3.2 Signal Processing Components

A variety o f components have been written implementing the standard functions required in radio 

systems. Examples being;

ChannelExtractor; This component extracts a channel o f interest from a wideband source 

FIRFilter: Filters a signal using an FIR filter

DownSampler: Down samples (decimates) a signal to a lower sample rate

UpSampler: Up samples a signal to a higher sample rate

SignalScaler: Scales (amplifies or attenuates) a signal by a specified amount

SignalDetector: Detects when a signal is present

These components can be used as fundamental building blocks when designing many radio 

systems.

Modulation and demodulation are also catered for with a variety o f  analogue and digital schemes. 

The simplest o f  these allow operation with AM and FM analogue signals, a variety o f  digital 

schemes such as the FSK example presented, but also other researchers have concentrated on using 

IRIS for more complex modulation schemes such as OFDM (Orthogonal Frequency Division 

M ultiplexing) [Nolan2003a, Nolan2003b, Nolan2003c, Nolan2003d]. This work has produced 

promising results demonstrating that a generic OFDM component can be written which can be 

reconfigured to work with a variety o f  operating parameters.

Also in related research to this work, techniques for performing automatic modulation detection 

have been developed. These allow a radio system to reconfigure itself dynamically according to the 

detected modulation scheme o f  the incoming signal. The IRIS system has been used as the basis for
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this work and further information can be found in [Nolan2001, Nolan2002a, Nolan2002b, 

Nolan2002c].

Specific applications have been catered for too; for example components have been built to handle 

specific 2-way radio systems and another allows decoding o f  a proprietary data communications 

module. Another researcher has used IRIS to build an RDS (Radio Data Signal) [Flood2003]. This 

receiver reuses some o f  the standard signal processing components mentioned above in addition to 

a ‘Costas Loop’ component and ‘RDS Decoder’ component.

6.J.J lO  Components

A variety o f  components have been written to allow both the input and output o f  signals using 

external hardware. Section 6.5 will discuss the use o f  IRIS with hardware in more detail, but in 

terms o f the components involved there are a new points worth noting.

lO components specifically cater for the input and output o f  signals. The idea is that any signal 

source or signal output can be encapsulated as a standard component. This means that lO 

components can be used interchangeably in a system to process signals in different ways. While 

most radio systems will be built for one particular piece o f  input^output hardware (or RF front-end), 

during the testing phase it is advantageous to be able to route signals to different hardware. This 

can be achieved in the IRIS system by replacing the lO component to route the signal to another 

piece o f hardware to even to write it to a file.

The components currently written for the IRIS system allow the input and output o f signals to a 

variety o f PC hardware. Examples are:

A2DPCI4 020; A component allowing input from a 20M Hz PCI A/D Converter

DAC0412HS: A component allowing output to a 250kHz D/A Converter

WaveOut: Allows audio output using W indows audio API

Wavein: Allows audio input using W indows audio API

DirectxOut: Allows audio output using DirectX API

Directxin; Allows audio input using DirectX API

ASlOOut: Low latency audio output using the ASIO standard

ASIOIn: Low latency audio input using the ASIO standard

In addition to higher frequency DAC and ADC converters, this list shows that components have 

been written to accommodate a variety o f  audio standards. Although this type o f  hardware does not 

allow operation at RF frequencies, they are useful in testing the basic functions o f  the system. 

ASIO (Audio Streaming Input Output) has been particularly useful [Steinberg99]. ASIO is a
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standard for low latency audio allowing deterministic input and output o f  digitised audio signals in 

real-time. This provided a valuable test environment for verifying the functionality o f  the IRIS 

sjstem  as its low latency operation better mimics an RF front-end even though it operates at a 

lower sampling frequency. A practical radio system using RF frequencies is discussed in Section 

6 .5 .

6.3.4 Testing Components

A series o f components have been developed for testing purposes. Some o f these are particularity 

interesting, as they do not have counterparts in the analogue world. For example, o f  great 

importance has been the ability to write and read digitised RF waveforms directly to/from the hard 

disk. This effectively allows the recording o f  RF signals that can be processed later offline by re­

reading in the waveform from a file. This makes it very easy to test the implementation o f Radio 

Components and complete systems as a receiver can be tested against real test signals offline 

without having to use external RF test equipment. For example, the ADC card allows the 

digitisation o f  a large bandwidth up to lOMHz, and using a FileWriter component this signal 

can be written to a file. In this raw state the signal o f  interest can be analysed later to assess its 

frequency content and to perform tuning in software by extracting different signals from the 

wideband source. This changes the radio design paradigm in that radio signals become much more 

accessible and facilitates the development o f  new types o f  radio systems in creative ways.

Testing components include:

FileReader:

FileWriter:

NumericAnalyser:

SignalGenerator:

SignalAboveThreshold:

Delay:

SystemStatistics:

Reads a waveform from the hard disk

Writes a waveform to the hard disk

Performs analysis on the numerical content o f  signals

Allows the output o f  a variety o f signals at any frequency

Fires events when a signal is above a threshold

Introduces a delay between blocks

Provides information about the CPU time being used by a radio

6.3.5 Visualisation Components

Visualisation components have been written allowing the signal to be viewed and analysed at any 

point in the radio system. By simply moving the com ponent through the radio structure (or by 

using multiple visualisation components), the user can inspect the signal at any point in the radio. 

As an example. Figure 6 .15 shows the output o f  a spectrum analyser component plotting the power 

spectrum o f an FM signal after demodulation. This diagram clearly shows the constituent parts o f  a
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broadcast FM signal, namely the 19kHz pilot tone and 38kHz DSB-SC (D ouble  Side Band- 

Suppressed Carrier) stereo signal.

S pectrum  Display

P o w e r S p e c tru m  o f D e m o d u la te d  FM

Audio
19 kHz Pilot Tone

38 kHz DSB-SC 
(Stereo Left-Right Signal)

l | l l l l  l l l l j l l l l  III! I

125.00

F re q u e n c y  in kH z

Figure 6.15 -  IRIS Screenshot o f Received FM Signal

Visualisation com ponents include:

SpectrumDisplay: Performs an FFT displaying the pow er spectrum o f  a signal in real-time

Oscilliscope: Traces the waveform o f  a signal in real-time

PeakMeter: Displays the amplitude and peak value o f  a signal in real-time

6.4 Using the Component Framework 

6.4.1 IRIS API

While the C om ponent Framework could have been implemented as a standalone entity, it is o f  

better use when combined with other software. For exam ple, it may be necessary to integrate a 

reconfigurable radio into another system that requires wireless communication. The IRIS system 

caters for this through the IRIS API. As introduced in Chapter  5, Section 5.5.5, the IRIS API 

abstracts the program m er from all the details o f  the underly ing system effectively encapsulating the
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framework into a reusable sub-system. This allows someone to use IRIS without requiring specific 

knowledge o f  radio technology.

Figure 6.16 shows sample code for creating a new reconfigurable radio using the IRIS API. This 

example shows how to configure the framework, for example setting the components directory. A 

call to IRISLoad () loads the radio configuration into the framework. At this point the framework 

verifies the radio design and brings together the Radio Components and Control Logic to form the 

system. A subsequent call to IRISStartRadio {) starts flow o f  signals through the radio system.

At this high level no knowledge o f  radio systems is required as the description o f  the radio and 

associated Control Logic is contained within the radio configuration.

bool CreateReconfigurableRadioExample() |
( I

//Initialise the IRIS sub-system 
IRISInitSystemO ;

^Create a radio engine 
HANDLE_IRIS_ENGINE hRadio = IRISCreateEngine();

■ 'Redirect the log output to receive logging messages 
IRISRedirectLogOutput(hRadio, IRISLogOutput);

//Tel the fraiwî work where the components are 
IRISSetCoraponentsDir(hRadio, "c:\IRIS\components");

/'Load ‘he radic
if(IRISLoadRadio(hRadio, "MyRadio.xml") == false)
(

char ‘error = IRISGetError(hRadio);
printfC'An error occured loading the radio: %s\n", error); 
return false;

)

■ irt 'he ra ! ‘ 
if(IRISStartRadio(hRadio) == false)
{

char *error = IRISGetError(hRadio);
printfC'An error occured starting the radio: %s\n", error), 
return false;

return true;

Figure 6.16 -  Code to Create a Reconfigurable Radio

While the IRIS API allows implementations to be abstracted from the underlying system, there are 

occasions when an application using IRIS as a sub-system may require full interaction with 

particular components in the radio system. For example, when used in a communications stack an 

application may need to transfer packets to and from the radio system. As another example a 

graphical-based radio system may need to control a component to change a frequency setting or 

alter the properties o f  a filter.
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To facilitate this an application that uses the IRIS sub-system may create its own control logic in 

addition to the control logic o f  the radio system itself. Figure 6.17 illustrates this. The diagram on 

the left shows an application that uses the IRIS sub-system, fully abstracted from the internal 

operation o f  the radio. The diagram on the right shows how additional control logic can be 

specified by an application allowing it to control components and receive information from the 

radio system.

APPUCATION USING IRIS AS SUB-SYSTEM

IR IS API

CONTROL LOGIC

Fully Abstracted Radio

IR IS  API

APPLICATION'S 
CONTROL LOGIC

CONTROL LOGIC

APPLICATION USING IRIS AS SUB-SYSTEM

Interaction with Radio

Figure 6.17 -  Application Specified Control Logic

Additional control logic can be attached to a radio system simply by using the IRIS API. Figure 

6.18 shows a code sample o f a control logic controller and how the IRIS API can be used to attach 

this control logic to a radio system. This technique is very useful for graphical applications as it 

allows the internals o f a radio system to be viewed and changed dynamically at runtime.

Figure 6.19 shows a screenshot o f an application that uses this facility to expose the parameters o f a 

radio system, in this case displaying the parameters exposed from an FM receiver. This application 

creates additional control logic as described above and attaches it to the receiver. It then uses the 

reflection interface o f each component (see Section 5.4.2) to query information about its 

parameters. Using this information it constructs a user interface and creates separate graphical 

controls for each parameter o f  the radio. This allows the user to dynamically change any parameter 

o f  the radio, a useful tool for experimentation and development.
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//Application specified control logic
class ApplicationController : public Controllerlnterface 
{
private:

Enginelnterface ‘engine;
public:

//Called when the radio is being loaded 
virtual void Load(Enginelnterface *eng)
{

engine = eng;
1
//Called to initialise control logic 
virtual bool AttachToComponents ()
{

//Find the channel extraction component and 
//set its frequency to 2MHz
HANDLE_COMPONENT hComponent = engine->FindComponent("ChannelExtractor"); 
HANDLE_PARAMETER hParameter = engine->FindParameter("MixerFrequency"); 
engine->SetParameterValue(hComponent, hParameter, 2000000);

//Called during unload 
virtual void UnloadO 
{
}

. . . Truncated

'/Create instance of controller
ApplicationController ‘controller = new ApplicationController (),

'Apply the control logic C;; t.he current radio configuration 
IRISSetControlLogic(hRadio, controller);

Figure 6.18 -  Sample Code for Creating Application-Defined Control Logic
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Figure 6.19 -  Screenshot of Parameter Controller

6.4.2 Tools

Using the IRIS API two tools have been written which automate many o f the procedures in loading 

and running a radio system. The launcher is a standalone executable that encapsulates the 

Component Framework. This command line application uses the IRIS API to load and control 

radio systems. This tool provides various facilities fo r debugging and testing individual Radio 

Components and complete radio systems.

One o f the advantages o f using GPPs is the ab ility  to have rich graphical user interfaces allow ing 

interaction w ith the internals o f the radio system. To demonstrate this the IRIS Radio Designer was 

written, a graphical user interface built also w ith the IRIS API that allows users to design and test 

radio systems interactively. Screenshots o f the system are shown in Figure 6.20. The screenshots 

show various functions o f the radio designer and how it can be used to edit radio configurations.
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graphically visualise signals in real-time and view various graphical representations o f a working 

radio system.
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6.5 External Hardware

The IRIS system as implemented provides the software infrastructure for building radio systems, 

however to effectively test and experiment with real signals it was necessary to integrate the system 

with a real RF front-end. Various hardware setups and associated Radio Components have been 

developed enabling the input and output o f  RF and audio signals.

Radio Components have been developed allowing signals to be input from hardware and output to 

hardware. For example, a data acquisition com ponent allows the input o f  digitised signals from an 

ADC (Analogue to Digital Converter) PCI (Peripheral Component Interconnect) card. This 

com ponent is implemented as an IRIS lO com ponent with parameters used to control variables 

such as the sampling rate o f  the converter and input voltage settings. Each type o f  hardware 

com ponent encapsulates the hardware interface through the standard IRIS configuration 

mechanism (as discussed in Section 5.5). For example, the XML configuration file may be used to 

indicate the sample rate o f an ADC. The component uses the value received from the framework to 

initialise the hardware using the programming library provided by the original m anufacturer o f  the 

board. The advantage o f encapsulating this functionality into an IRIS component is that it can be 

re-used in many different designs.

In the experimental prototype developed for this work, a hardware setup allowing the reception o f 

RF signals has been developed (see Figure 6.21) and this forms a basic RF front-end. A 

commercial wideband receiver is used to tune to a frequency o f interest. The 10.7MHz IF signal is 

available from the receiver and this signal is amplified, digitised, filtered and fed to the input o f  the 

ADC card. Using band pass sampling at the appropriate rate (typically a 4M Hz sampling rate), the 

IF signal is digitised allowing the remainder o f  receiver functionality to be implemented in 

software.

W ideband
C om m unications

R eceiver

IF Amplifier 
an d  Filtering

PC  with 20MHz 
AID  C onverter

Figure 6.21 -  Receiver Hardware Setup

To demonstrate how the hardware works. Figure 6.22 shows a photograph o f the hardware 

consisting o f the wideband receiver, IF am plifier and ADC PCI card. Superimposed on this figure 

is the component structure for typical receiver architecture. This picture illustrates how IRIS forms 

the infrastructure between hardware, software and also the user o f  the software.

In terms o f performance, for example using a 2GHz Pentium IV processor, the IRIS system can 

digitise a signal at 4M Hz using band pass sampling, extract a channel o f  interest, and perform FM
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demodulation and audio playback. Using un-optimised code within components this consumes 

approximately 60% o f  processor time. Performance and related issues are discussed in the next 

section.

CONTROL LOGIC

Figure 6.22 -  IRIS Test Hardware
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6.6 Analysis

The purpose o f  the IRIS system has been to dem onstrate the concepts o f  reconfigurability through 

the use o f the IRIS Component Framework. Performance o f  individual signal processing 

algorithms has not been a primary concern as the onus is on developers to write high-performance 

Radio Components. (Performance in this context refers to how efficiently code executes on a 

processor). W hile IRIS does not specifically dictate policies for writing highly efficient DSP code, 

as a framework it should not hinder the overall performance o f  a radio system. Highly efficient 

components are o f  no use without an efficient and scalable technology for combining these 

components together.

To address this issue the IRIS implementation was developed in such a way that it does not hinder 

the performance o f the overall system and attempts to keep the overhead o f  the framework to a 

minimum. The following sections analyse various aspects o f  the framework with respect to 

performance and scalability.

6.6.1 Scalability

Scalability is the measure o f  how well a system perform s as it grows in size or as more demand is 

placed on the system. The aim is to create systems that scale linearly so that as system size or load 

increases the processing power required increases linearly. A system that features bad scalability 

will thus have an exponential or even unpredictable response to increasing demand. For example, 

for a web server, scalability is measured by load, i.e. the number o f  requests being received for web 

pages. As more users request web pages the processing time required to deal with these requests 

must increase linearly. Also, as more processing power (e.g. additional CPUs) is added to a server 

its load capacity should increase linearly.

In implementing the IRIS architecture it was important that scalability was considered. The aim 

was to ensure that as more increasingly com plex radio systems are developed, involving the use o f 

more Radio Components, the processing time o f  the system should not hinder the overall 

performance o f  the system. In the IRIS architecture it is the Radio Engine that has the potential to 

hinder scalability as it provides the interconnection between components. The engine naturally 

introduces a processing overhead and thus as radio systems grow more interconnections are 

required between components. It was thus important to implement the engine in such a way that 

this overhead is kept to a minimum and where possible to make this overhead scale linearly.

In the IRIS system basic configurations o f  com ponents scale linearly. This is achieved by storing 

the structure and interconnection between components in a highly efficient and scalable data
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structure. In the object-orientated approach of storing the radio structure (see Section 5.5.4) the 

structure o f the radio is stored in a high-level representation that can represent a complex hierarchy 

of components. In this form the radio layout is stored in memory just as it appears in the X M L  file. 

C++ classes are used to represent each entity, examples being the <structure>, 
<component> and <parallel> tags. In this form finding a particular component and its 

interconnections takes a non-deterministic amount o f time. The hierarchy must be searched to 

determine interconnections between components. It is not scalable to require such a search each 

time a component produces an output.

Instead, the Radio Engine pre-processes and converts the object-oriented structure into a highly 

efficient linked list data structure and in the process pre-determines the interconnection among 

components. When this process is complete the engine has a linked list in memory, the nodes of 

which correspond to the path of the signals rather than the visual hierarchy o f the radio. This means 

that when passing signals between components the engine only has to walk a basic linked list rather 

than having to perform un-deterministic searches o f data. The advantage o f this technique is that 

more interconnections can be added between components without hindering scalability, as the 

process o f traversing the linked list is always linearly scalable. The disadvantage is the increased 

code and complexity required to implement this scheme.

A practical experiment was carried out to test the scalability o f the IRIS implementation. The aim 

of the experiment was to plot the CPU processing time required to implement radio systems of 

various sizes to determine if  the processing time scales linearly. A simple DSP configuration was 

constructed using a signal generator followed by multiple FIR filter components (Figure 6.23). The 

FIR filter component was used, as filtering is the most commonly used signal processing algorithm. 

Each separate test involved the generation of a 40kHz sine wave (sampled at 250000 samples per 

second) that was passed through multiple FIR filters. Five FIR filters were added at a time to the 

X M L  configuration until the full processing power o f the CPU was reached. The percentage CPU 

time was measured using calls to the Win32 method GetProcessTimes ( ) .  In this test CPU 

percentage refers to the percentage of user mode CPU processing time spent processing 254952 

samples during a one second interval. The test was performed on a 2.8GHz Pentium 4, 266MHz 

DDR 1GB SDRAM running Windows XP. All tests involved code that was compiled with full 

optimisations with the Microsoft Visual Studio .NET C++ compiler.

Signal G enerator F IR  Filter Multiple F IR  Filters F IR  Filter

Figure 6.23 -  Scalability Test Scenario

Chapter 6 — Implementation and Analysis Analysis | 151



T’heesults o f  the scalability test are shown in Figure 6.24. The red line indicates the percentage o f 

C PI time required to process increasing numbers o f  FIR filters. The linearity o f  the red line 

inidiates that the IRIS system achieves linear scalability for this basic set o f  components.

IRIS Scalability Test
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Figure 6.24 -  IRIS Scalability Test Results

To iivestigate the overhead associated with using the Radio Engine a second scalability test was 

perftrmed. The aim o f this test was to quantify the overhead o f using a Component Framework as 

oppced to implementing code as native executables. For this test the code o f  the signal generator 

and TR filter were extracted from the components and implemented as a standalone native 

execitable. Functionally the two systems produced identical results but one was built using the 

geneal-purpose Component Framework and the other was a purpose built executable. In the native 

impl;mentation there is no overhead associated with decoupling components as there is in the IRIS 

systen and the result o f this can be seen by the blue line in Figure 6.24. The difference in CPU 

time between these two approaches in graphed in Figure 6.25. This graph demonstrates that the 

priceof using IRIS is a processing overhead that increases linearly as more sequential components 

are aided to the configuration.

Alth(ugh the difference plot shown in Figure 6.25 demonstrates a 10 to 12% CPU overhead for 

200 :omponents or more, in reality most radio implementations will require much less and will 

rare!’ go beyond 20 or 30 components. The graph indicates that up to 50 components the overhead 

associated with using IRIS is on the order o f 0 to 2% for the test system used, a figure which is 

mininal and in the vast majority o f  cases an acceptable price to pay for the facilities the 

archiecture provides.
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Figure 6.25 -  Difference between IRIS and Native Implementation

1 hese tests have analysed only sequential chains o f  components for scalability. It should be noted 

that more com plex exam ples involving signal duplication and branching would not necessarily  

demonstrate linear scalability, as these features would require further processing overhead between 

components. A s scalability in itse lf is not a focus o f  this thesis, these basic exam ples should serve 

as a basis for future work into analyzing more com plex sets o f  components.

6.6.2 Memory Consumption

An important consideration for IRIS was the mem oi^ consumption o f  the system . The use o f  

memory in a software radio can have a direct impact on the performance o f  the radio system. In the 

IRIS design the allocation and designation o f  memory for use by components is controlled by the 

Radio Engine, therefore it was important to implement a memory policy that worked w ell across 

multiple types o f  radio applications.

The considerations for memory were twofold, firstly to reduce memory copying and secondly to 

reduce the amount o f  memory used. The copying o f  memory can be expensive in processing time 

due to the large amounts o f  data inherent to software radio. Since IRIS allow s the use o f  any 

number o f  com ponents in a variety o f  hierarchies and structures, it was important the IRIS system  

did not rely on copying o f  signals between com ponents during operation. The amount o f  memory 

used had to be kept to a minimum. In a GPP-based operating system  virtual memory is used to 

increase the amount o f  memory available to applications. This works by swapping data from RAM  

to disk when memory is low. When the swapped memory is requested by an application it must be 

transferred back into memory making the overall time to access memory much slower. With 

excessive amounts o f  memory typically used by software radio applications it w as important to 

develop a radio infrastructure that used memory in an efficient way.
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The basic approach developed in managing memory for the implementation o f  IRIS was to allocate 

memory in such a way that the output o f one com ponent is written directly to the input o f  another 

component. For simple radio configurations this approach is simplistic, however the problem can 

become more complex for the following reasons:

•  Size: Components in a radio can consume and produce different block sizes therefore different 

sized memory blocks are required throughout the radio.

•  M ultiple Signals: The hierarchical approach used for expressing radio systems allows multiple 

signals to exist simultaneously in the radio system, therefore the radio system must facilitate 

the use o f  multiple memory allocations.

In addition IRIS allows complex hierarchies o f  com ponents to be implemented and thus the output 

o f  one com ponent must be mapped to the input o f  one or more other components while trying to 

make best use o f  memory.

To address these issues a specific memory algorithm was developed within the Radio Engine. This 

algorithm attempts to efficiently reuse memory throughout a hierarchy o f components while 

keeping memory copying to a minimum. The algorithm works by predetermining the path o f 

signals through a component hierarchy before radio operation begins. With this knowledge the 

engine can allocate the same memory block to multiple components without having to worry about 

signals being overwritten. To achieve this the engine contains a memory manager, a sub-system 

that allows memory to be allocated, locked and released. During the construction phase o f  the 

radio, the engine traverses the structure o f the radio locking memory where needed and 

subsequently unlocking it when it identifies that it is no longer required by a component. Internally, 

the memory manager maintains a pool o f  memory, which is reused according to the current 

lock/release status o f  the memory it maintains. Using this technique only the minimum amount o f  

memory required by a radio is used.

The basic concept o f  this approach is illustrated in Figure 6.26. In this simple example only two 

memory blocks are required to allow a signal to be passed through seven components as blocks get 

reused. The result o f  using this technique for a practical scenario is shown in Figure 6.27. Here the 

memory required is analysed for the signal generator, FIR filter example o f the previous section 

(Figure 6.23). The blue line shows the total am ount o f  memory the engine requests from the 

memory manager and the red line shows the am ount o f  memory that is actually used. In simple 

scenarios like this the engine can reduce the am ount o f  memory required to a constant amount for 

any number o f  Radio Components.
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Figure 6.26 -  M emory Allocation Technique
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Figure 6.27 -  Memory Allocation for M ultiple FIR Filters

The reason the previous exam ple can allocate so little m em oiy  is because the structure  is sim ple. 

There is only one signal in the path, block sizes are fixed and thus m axim um  reuse can take place. 

However, in a practical softw are radio system , block sizes vary due to  d iffering  sam pling  rates and 

data types used in the system . For exam ple, a transm itter will up convert a signal resu lting  in m uch 

more m em ory being required at the end o f  the signal processing  chain than the beginning. In this 

scenario although the m em ory m anager may contain  m em ory blocks to  service the needs o f  the 

engine, these blocks may not be big enough and thus additional m em ory has to be allocated .

To analyse the effectiveness o f  the m em ory m anager in the face o f  grow ing and shrink ing  block 

sizes, tw o test scenarios w ere developed. In the first scenario , a high data rate signal is consisten tly  

down sam pled by h a lf  using m ultip le  ‘DownSampler’ com ponents (see F igure 6.28). This 

effectively reduces the sam pling rate and the block size by h a lf  w ith each ex tra  com ponent.
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Figure 6.28 -  Memory Test for Down Sampler Scenario

The results o f this test are graphed in Figure 6.29. The test involved analysing the memory 

requirements for down sampling a lOOMSPS (M illion  Samplers Per Second) signal split into block 

sizes o f 23592960 samples (90MB). This graph shows that the memory required for a system 

involving a constantly decreasing block size can becomes constant, i.e. after a few stages o f down 

sampling enough memory has been allocated overall to service the needs o f the full system. The 

reason this happens is that larger memory blocks are allocated first (for higher sample rates) and 

these can be reused to service the needs o f components requiring smaller memory blocks.
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Figure 6.29 -  Memory Consumption for Multiple Down Samplers

Figure 6.30 shows the second scenario in which a signal is up sampled by two, effectively doubling 

the sample rate and hence memory requirements for each additional component. The results o f this 

test are shown in Figure 6.31. This graph demonstrates that although the memory manager can 

reduce the amount o f memory used in the up sampler scenario, memory usage cannot converge to a 

set memory amount as block sizes constantly increase.
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Figure 6.30 -  Memory Test for Up Sampler Scenario
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Figure 6.31 — Memory Consumption for Multiple Up Samplers

I'he three memory tests presented here have demonstrated that it is possible to constantly reduce 

the amount o f  memory required by the system in a generic way. By observing memory use the 

engine can reduce the overall memory requirement o f  a radio by reusing memory among 

components. The down and up sampler scenarios have tested these lim its to extremes. In reality 

less sample rate changes w ill probably take place meaning more memory reuse can occur.

These tests also highlight the dominance o f  large mem oi^ allocations in memory consumption. For 

example, the down sampler test showed memory usage convergence at 202.5MB (53.08 m illion 

samples). The reason this memory requirement is so high is due to the firs t few stages o f  down 

sampling which require the representation o f  a lOOMSPS signal w ith 90M B block sizes whereas 

subsequent stages require much less memory. Thus, analysing the sampling rate and memory 

requirements o f  a radio application can be an important tool in identifying the requirements o f  the 

overall system.
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6.7 Summary

This chapter had demonstrated the implementation o f  IRIS providing a practical insight into the 

development o f  reconfigurable radio systems. Through a series o f examples this chapter has 

demonstrated how the IRIS system is flexible enough to handle the requirements o f  almost any 

radio system and to allow the specification and construction o f  these systems in a generic way. The 

results o f  analysis show that IRIS can be implemented in a scalable and memory efficient way.
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7 Case Studies

71 Introduction

Tie two previous chapters discussed the IRIS system and how it can be used to develop common 

radio systems such as receivers, transmitters and transceivers. However, although IRIS facilitates 

th; development o f  these devices, its reconfigurable nature enables much more. To demonstrate the 

fijxibility o f  IRIS, this chapter shows how it can be applied to some newer emerging wireless 

technologies. This is shown by way o f three case studies.

‘C'ver the Air Reconfiguration’ is presented first. This case study shows how the IRIS system, in 

pjrticular its support for reconfigurability, facilitates the development o f  radio systems that can be 

reconfigured remotely by downloading new software. The next study discusses Wireless 

Networking and how the IRIS system can work as the physical layer in a communications stack, 

brnging enhanced reconfigurability to ad hoc wireless communications. The final study discusses 

thj growing need for spectrum management technology and describes how IRIS can be used to 

biild systems to address this need.

11 Over the Air Reconfiguration

7.1.1 Overview o f  Over the Air Reconfiguration

C tapter 2 (Section 2.5) touched on the topic o f  software download or Over-the-Air 

Reconfiguration (OTAR). OTAR allows a mobile wireless terminal (such as a mobile phone) to be 

reconfigured by downloading new software to the terminal over the wireless connection [Noblet98, 

Cimm ings99c, Bucknell2002]. This software can be used to reconfigure the wireless terminal thus 

changing the capabilities o f  the radio device.

Fcr the mobile communications industry, OTAR has moved from being an ancillary aspect o f  

so:^ware radio to become a primary motivating factor driving the adoption o f software radio. In this 

field manufacturers have long recognised the advantages o f  being able to use software to perform 

upgrades, fix bugs or add new features to a mobile phone. Software download occurred first with 

the ability to upgrade the firmware (essentially the operating system) o f  a mobile phone. This gave 

manufacturers the ability to correct errors or add new features. Subsequently with more data 

connectivity appearing in handsets, the download paradigm has extended into downloading over-
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the-air and the downloading o f Java applications and games to phones has become commonplace. 

Many believe the next stage in this evolution is that the radio system o f  the mobile phone will be 

upgradeable over-the-air, facilitated by software radio.

There are wider implications o f  this technology that could change the economics and usage models 

for wireless devices. Just as software download has become ubiquitous on the Internet, this type o f 

download scenario could in time begin to emerge in wireless devices. Instead o f  radio devices 

being sold with fixed operating parameters, software download could allow devices to be sold as 

general-purpose units that are later configured for a particular application, much in the same way 

computers are sold today. For example, when someone owning a general-purpose communications 

device enters a new city, their mobile wireless terminal could automatically download the local 

popular communications standard. This would consist o f  the software required to configure the 

radio system, possibly including information such as local frequency plans, modulation schemes, 

etc. This type o f reconfiguration could allow the general-purpose radio terminal to cut across the 

standards boundaries o f  today offering true ubiquitous connectivity.

Technically, OTAR allows two capabilities. Firstly, OTAR allows a terminal to download new 

software that changes the capabilities o f  the device, possibly introducing new features or changing 

the standards by which the radio device communicates. For example, a mobile phone could 

download a wireless standard such as GSM and reconfigure itself to work with this new standard. 

Secondly, OTAR facilitates the upgrading o f  software. Using OTAR, a mobile device can 

download new software that possibly fixes bugs, adds new features or improves the performance o f 

the device. For example, a terminal could download a more CPU efficient filtering algorithm thus 

improving its battery performance. The technical capabilities and potential advantages o f  OTAR 

are evident, but there is no consistent methodology for enabling OTAR in radio systems. The next 

section shows how the IRIS system can address this need.

7.2.2 Applying IRIS to OTAR

To enable OTAR, two main issues must be addressed; how to download software and how to 

reconfigure a device once the download has completed. In terms o f the work in this thesis, the latter 

is facilitated by reconfigurability. The built-in reconfigurability o f  the IRIS system allows a radio 

to be reconfigured once a software download has been completed. To actually download software, 

the main issue that has to be addressed is what actually gets downloaded, as different degrees o f 

reconfiguration will require different types o f  downloads. By looking at the degrees o f 

reconfigurability discussed in this thesis, we can identify what needs to be downloaded via OTAR 

to enable reconfiguration.
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Parametric reconfiguration allows the parameters of signal processing or any radio functionality to 

be altered. In terms o f software download, parametric reconfiguration would involve the transfer of 

a new parameter or set of parameters that change the configuration o f components in the radio 

system. This could be as simple as transferring the new operating frequency o f the radio system to 

more complex configurations that redefine the signals in components by changing sample rates, 

data types, etc. Downloaded parameters could be transferred via XML thus providing a 

standardised method for OTAR at this level.

Structural reconfiguration allows the actual structure o f components in the radio system to be 

changed, altered or replaced. Structural reconfiguration could be very important for software 

download, especially as it facilitates the replacement o f components. A new software component 

could be downloaded and used to upgrade an existing component (the issues surrounding software 

upgrading for software radio were discussed in Section 4.3.8). For example, a new speech encoder 

component could be downloaded possibly offering improved speech quality. The software 

component and associated structural information can therefore be another downloadable item.

Application reconfiguration allows the whole radio to be changed, consequently altering the 

complete function o f a radio system. Application reconfiguration is the most comprehensive form 

of software download, as by downloading a new configuration, a radio should reconfigure itself to 

work as a completely different device. This could involve the download o f new components or be 

achieved by reusing existing ones. For application reconfiguration to occur with OTAR, 

components, XML configurations and control logic would have to be downloaded.

These types o f reconfiguration are summarised in the table shown here in Figure 7 .1:

Reconflguration Type Items Required for Download

Parametric Parameters

Examples: Frequency settings, sample rates, filter characteristics, 

modulation settings.

Structural Components and Parameters

Examples: OMSK modulator, FIR Filter, Speech Encoder.

Application Components, Parameters and Control Logic

Examples: GSM  transceiver, QPSK transceiver, GPS receiver, location 

transmitter.

Figure 7.1 -  Items for Download with OTAR

While these types o f reconfiguration directly dictate the type o f downloads that should take place, a 

method is still required to perform the actual download. A set protocol or procedure is required to
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initiate aid perform the actual reconfiguration. There are various forms such a protocol can take 

but this vill largely depend on the final application, and who has control over the radio terminal. 

For m obie telephony the network operator may want to have the ability to remotely reconfigure 

the m obie phones using its network. This would allow the operator to ensure the stability and 

reliabilit} o f the network by controlling the communications standards used. In this scenario the 

operator nay ‘push’ new software to mobile phones. This would have an impact on roaming 

allowing people to use their phone in any country. Network operators could push a download to a 

users phoie that provides the software required to operate in that network.

On the ether hand in some situations it may be the owner o f  the terminal who initiates a 

reconfigu ation. For example, in an emergency, police officers may want to reconfigure their 2-way 

radios to illow communication with other emergency services. In this scenario the police officer’s 

radio devce would initiate the reconfiguration by ‘pulling’ new software. W hatever form OTAR 

takes, the software radio system must provide sufficient functionality to facilitate these processes.

In terms o f the IRIS system there are two ways in which software download is catered for, 

depending on the levels o f reconfiguration required. Figure 7.2 shows how software download 

could be Dcrformed using the control logic o f a reconfigurable radio. In this scenario the control 

logic would use a protocol for sending and receiving data through the radio system. This protocol 

could be Lsed to initiate software download between two radio systems. As described in Figure 7.1, 

the actual information received could be XML data for parametric reconfiguration or the actual 

binary code o f  a component with associated parameters for structural reconfiguration.

CONTROL LOGIC

Softw are Download Protocol

I ■7 : I

Figure 7.2 -  Software Download with Control Logic

While control logic facilitates the reconfiguration o f  parameters and structure, application 

reconfiguration is the full upgrade o f  a whole radio system possibly including the control logic 

itself In this scenario the software download mechanism must exist outside the radio system itself
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tha t las to  be replaced. T h is is facilitated  using the  IRIS API (see Section 6.4.1). Figure 7.3 show s 

a diagram o f  how this w ould work.

M obile IRIS 
R ad io  D evice

F ixed S ta tion
In ternal View

CONTROL LOGICCONTROL LOGIC

Softw are Download ProtocolSoftw are Download Protocol
cn

IRIS API IRIS API

 ̂ r

CONTROL LOGICCONTROL LOGIC

Figure 7.3 -  Software Download Using the IRIS API

In th s  scenario extra control logic is w ritten  at the level o f  the IRIS API (as discussed in Section 

6.4.1 . This control logic can im plem ent the  dow nload  protocol for receiv ing  the softw are, but it is 

also ieparated from the particu lar radio  itse lf in such a w ay that it can undo the ex isting  radio 

systen  and reconfigure it to the new  dow nloaded  specification .

There are several form s the actual protocol used for softw are dow nload could take. R eliable 

com nunication  is required to  reconfigure  the radio system  itself. R econfiguration at th is low level 

is oft;n beneath the logic that im plem ents error correction  and reliability  protocols. For this reason
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protocols implemented for software download may require their own protocol stacks to ensure 

reliable transfer o f  data.

There are other problems that have been addressed in the literature which deserve consideration in 

the context o f  the IRIS system. Security is a common concern as the adverse reconfiguration o f a 

terminal could have dire consequences in a radio network as discussed in Section 4.3.5. Michael 

[Michael2002] and Bucknell [BucknelI2000] have both suggested schemes for secure download for 

software radio systems. The consensus is that security incorporating suitable encryption needs to be 

built into the download protocol itself. In the IRIS system, either a control logic or IRIS API level 

protocol can be written to enable this, the specifics o f  which will depend on the final application.

The last problem to discuss is software versioning. As mentioned in Chapter 4, Section 4.3.8, 

conflicts in the versioning o f  software can lead to a malfunctioning system or even result in more 

subtle communications errors due to an unexpected configuration. This problem can be further 

complicated by the fact that a radio system may not be able to re-establish com munications to fix 

the problem. For this reason, when performing software download, the radio system must be able to 

validate a particular radio configuration. IRIS supports two methods for validating configurations. 

Firstly, the IRIS system automatically verifies the structure o f  a radio design by checking its 

configuration. This checks the validity o f  the XML itself and also the semantics o f the radio design. 

As discussed in Section Chapter 6, 6.2.5, invalid block sizes or sample rates cause an error to be 

raised. I'his error checking ensures that incompatible component combinations and parameter 

values are avoided. Secondly, IRIS inherently supports versioning o f components. Each component 

has versioning information associated with it. Using this information the control logic o f  a radio 

system can predetermine whether particular components will work together.

7.2.3 Conclusions

This case study has discussed OTAR and how it is possible using the IRIS system. This review has 

shown that the degrees o f reconfiguration supported by the IRIS system can be directly mapped 

onto the software elements that are downloaded by an OTAR-capable reconfigurable radio. The 

inherent reconfigurability o f  the IRIS framework ensures a suitable platform for developing OTAR 

radio devices.

7.3 Wireless Networking

7.3.1 Overview o f Wireless Networking using DA WN

In related research to this work, the NTRG (Networks and Telecommunications Research Group) 

in Trinity College has developed a test bed for developing wireless networking applications called 

DAWN (Dublin Ad hoc W ireless Network) [ 0 ’Mahony2002]. This test bed is a software-based 

environm ent for dynamically creating network communication stacks and it allows for
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experimentation with a wide range o f networking technologies. DAWN has been a host to a variety 

o f research related to wireless networking [ 0 ’Mahony2002b, Doyle2002b, Doyle2002c, 

DoylelOOl, Forde2000],

DAW N is a useful test bed for developing wireless applications. Figure 7.4 illustrates a typical 

DAWN network topology, in such a topology many devices can participate in the network 

including fixed computers with wireless connections and mobile devices for example PDAs 

(Personal Digital Assistants) and laptops. Each device hosts a DAWN stack that provides all the 

communications infrastructure required to enable communications with multiple devices.

Internally, the core o f the DAWN test bed is a ‘generic layer’ interface that allows the dynamic 

assembly o f a network communication stack. Individual layers are written to address the various 

functional requirements o f networking, for example security, routing and medium access control 

(MAC). Infomiation is passed through the stack using messages, each containing a data payload 

and additional descriptive information. This descriptive information can be used to transfer 

inforrnation between layers in a stack.

Fixed
Network

Laptop

□
UHF Radio

W ireless
Connectivity

Laptop I

PDA

UHF Radio

Fixed
Network

Internet

PDA

Figure 7.4 -  Typical D A W N  Topology

A typical DAWN stack is shown in Figure 7.5. A t the top o f the stack sit various applications 

which have been developed for use in a DAWN network including a messaging application, a real­

time phone and standard testing facilities such as pinging. Below this level sit the layers which 

make up the communications stack. A variety o f layers exist including layers dealing with
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netw orking functions such as routing, security , reliability  and m edium  access control. By 

com bining layers in d ifferent w ays, m any types o f  stacks can be created.

UHF 802 .11b

Ad Hoc Routing

Medium Access

Chat Ping Phone

Security

Figure 7.5 -  A Typical DAWN Stack

In addition to protocol layers and research-based  netw orking layers, various physical layers have 

been developed allow ing com m unication  over U H F transceivers and W ireless LAN (802.11b) 

[G ast2002]. The UHF m odule allow s for low bit rate data transfers at around 30kbps and are used 

in experim ental work for large populations o f  ad hoc netw orking  nodes. U sing W ireless LAN 

equipm ent speeds o f  up to 1 1M bps can be achieved. The ultim ate goal is that the physical layer 

m oves from being a hardw are dependent device (as it is w ith UH F radio and 802.1 lb )  to  an ideal 

softw are radio approach, in that any radio  schem e can be im plem ented as part o f  the D A W N  stack.

7.3.2 Applying IRIS to Wireless Networking

To investigate the role o f  softw are radio  in the netw orking  environm ent, the IRIS system  has been 

used in conjunction with the DA W N  stack. U sing the IRIS API, a layer has been w ritten  that 

allow s the IRIS system  to act as a physical layer in the DA W N  com m unication stack (see Figure 

7.6). T h is layer acts as a bridge betw een the layer construct and the IRIS API. By in teracting  with 

the IRIS API and control logic, the generic physical layer can send data to  an IRIS radio for 

transm ission and likew ise receive data. U sing th is approach , new  physical layers can be created  by 

using a different radio configuration w ith this generic  layer.
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Figure 7.6 — IRIS Incorporated into DAWN

Even though current technology lim its the ability  for IRIS to  replace CPU intensive schem es such 

as 802.1 lb , the integration o f  IRIS into DAW N has provided valuable insight into how  softw are 

radio and in particu lar reconfigurability  w ill play  a role in the future o f  w ireless netw orks. 

Incorporating IRIS into the stack has provided insight into how  softw are radio can enhance the 

capabilities o f  a w ireless netw ork through reconfiguration . The m ain benefit o f  th is has been to see 

how  other layers in the com m unications stack such as m edium  access control and ad hoc routing 

can benefit from  the reconfigurable nature o f  IRIS. T his can m anifest itse lf in various w ays.

In m ost com m unication stacks the physical layer or com m unications m edium  in general is not 

subject to change. The physical layer is usually  rig id ly  fixed in function. For exam ple, the only 

param eters that are user changeable in the 802.11b standard are concerned w ith protocol 

procedures. It is not possible to a lter the w ay in w hich the device com m unicates its rad io  signals. 

A better physical layer w ould allow  any aspect o f  physical layer com m unications to  be changed 

dynam ically , facilita ting  new  possib ilities and types o f  com m unication. IRIS facilita tes th is in the 

DA W N  stack. Through reconfiguration  IRIS can allow  upper layers in the stack to change aspects 

o f  the physical layer. For exam ple, the M AC layer could a lter the physical layer to better enable 

collision  detection or the cryptography layer could interact w ith IRIS to  instigate low er level
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cryptography thus securing com m unication  throughou t the stack. T his approach provides the 

flexibility needed to address the needs o f  future applications.

In addition to  upper layers contro lling  the physical layer, inform ation and control can occu r in the 

opposite direction. C urrent physical layer standards provide only lim ited inform ation about signals 

being received. In 802.1 lb  for exam ple, som e vendors allow  the incom ing signal strength  to  be 

m easured, but in practice th is inform ation is not used in the actual com m unications procedure. In 

contrast, the IRIS physical layer can provide additional inform ation to  upper layers about 

com m unications. Any inform ation or occurrence in the physical layer can be relayed to  upper 

layers, possibly allow ing them  to m ake b etter decisions therefore enabling m ore effective 

com m unications overall. For exam ple, the IRIS system  can provide a routing layer w ith details 

about the signal strength o f  received signals thus p rovid ing  inform ation that could be used to  m ake 

an informed decision about w hich route to take. T his is an em erging area o f  research in ad hoc 

netw orking and the need for such devices is d iscussed  in the contex t o f  fu ture w ork in C hap ter 8. 

A s another exam ple, the IRIS physical layer could  calcu late  the conditions o f  m ulti-path fading 

experienced at the receiver. U sing this inform ation an upper layer could m ake an inform ed decision 

about the environm ent it is operating  in, possib ly  chang ing  the protocols to  suit that context. Again, 

th is type o f  inform ation and control facilita tes new  types o f  in telligent applications.

Intelligence how ever does not have to be in tegrated  th roughout the com m unication stack, in 

particular the physical layer should be flexible in that it can be integrated w ith a num ber o f  existing  

standards w ithout requiring  alteration. In this scenario  it w ould be advantageous that the physical 

layer w orks intelligently to allow  better com m unications. O ne possib ility  is that the IRIS physical 

layer could m onitor the traffic  sent and received by upper layers. U sing th is inform ation it would 

m ake intelligent decisions about the type o f  com m unications to  use. For instance, when 

experiencing a low volum e o f  traffic the IRIS system  could m ove to  a m ore pow er efficient 

m odulation schem e to save battery pow er. As ano ther exam ple (and th is tim e considering  the 

ex istence o f  an ideal front-end) the physical layer in detecting  an increase in th roughpu t could 

dynam ically  create new transceivers in softw are thus increasing the capacity  o f  the radio link. 

W hile som e o f  these exam ples are not possib le at present, im provem ents in technology  can only 

bring us nearer to this type o f  capability .

O verall, w ireless netw orking has m uch to  gain from  reconfigurab le  radio. Instead o f  the physical 

layer being a statically  configured device serving the low est com m on denom inator, it can becom e a 

dynam ic intelligent device serving the d iverse  needs o f  a variety  o f  applications.
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7.3.3 Conclusions

This case study has shown how IRIS can be used as the physical layer in a communications stack 

without modification. It demonstrates how the reconfigurable framework o f  IRIS can enable new 

and improved capabilities in wireless networking. W hile some o f  these techniques may not be 

applicable today, new emerging technologies such as ad hoc networking are built with more 

flexibility in mind. These networks are highly reconfigurable as they have no fixed infrastructure 

and each node in the network is autonomous, acting both as host and router [Broch98]. In this type 

o f  environment the reconfigurability discussed can facilitate better communications enabling new 

types o f  applications.

7.4 Spectrum Management

7.4.1 Overview o f Spectrum Management

The growth o f  wireless communications over the past two decades has generated an increasing 

demand for spectrum allocation. In response to these demands the communications regulators o f 

many governments around the world have been taking a fresh look at how spectrum is allocated 

and managed with a view to improving spectrum capacity. (Existing methods for spectrum 

management are discussed in [W ithers91]). One organisation making considerable progress in this 

field is the U.S. Federal Communications Commission (FCC). In their Spectrum Policy Task Force 

report [FCC2002] they outline bold new strategies for spectrum reform by introducing fundamental 

changes into spectrum management.

The main point emerging from the FCC report is that the current methods used to regulate spectrum 

are outdated and do not reflect current technological capabilities. In essence, the technological 

needs o f  today were unforeseen when these regulations were put in place. One example is the way 

mobile communications has changed the use o f  spectrum. Previously, use o f  the spectrum was 

largely via a broadcasting model whereby a small num ber o f transmitters served a large number o f  

receivers. This model was used throughout television and radio broadcasting, and for information 

devices such as pagers. W hereas the broadcast model required only a small number o f  frequencies 

to serve sometimes millions o f  users, the mobile phone requires both a downlink and an uplink 

channel for each individual user o f  the system. Consequently spectrum usage increases for each 

additional user o f  the system.

Current allocation policy results in even more demand due to the dimensions used for allocation. 

Allocation is performed mostly by frequency, yet other dimensions such as space, time and power 

also exist and offer great potential to increase capacity. Increased allocation by space would allow 

organisations in different regions to use the same frequencies. In time the granularity o f  space
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could be reduced and in the extreme possibly allowing users to use the same frequencies in much 

sm aller vicinities, for example in different floors o f  a building. Allocation by time would allow 

users access to underutilised spectrum, effectively filling the unused gaps o f  available spectrum 

time. Transmit power, although partly regulated today, could be made a more effective means o f 

allocation and would go hand in hand with regulation by space. Overall, there are many new ways 

to allocate spectrum but until now the technology has not existed to allow its implementation.

The FCC and other bodies have recognised that software radio is an enabling technology in 

achieving more effective spectrum regulation. Software radio can offer the flexibility required to 

deliver devices that are dynamic in their use o f  frequency, power and time, thus reconfigurability 

has a significant role to play. The next section describes how the IRIS system can be used to build 

two types o f systems that enable dynamic spectrum use.

7.4.2 Applying IRIS to Spectrum Management

This section shows how the IRIS system can be used to address two issues in dynamic spectrum 

use, namely interference temperature and spectrum monitoring.

One o f  the fundamental reasons spectrum is regulated is to ensure interference free communication. 

Therefore, in exploring new ways o f allocating spectrum it has been important to address how 

interference will be managed in this new dynamic environment. The FCC have proposed the use o f 

an ‘Interference Temperature’, a metric that measures the RF power available at the receiving 

antenna [FCC2003]. The idea is that spectrum aware devices can dynamically calculate the current 

temperature to determine whether it is permissible to communicate or whether the device should try 

a new frequency. The FCC has proposed that the metric be defined as ‘the RF power generated by 

undesired emitters plus noise sources that are present in a receiver system per unit o f  bandw idth’ . 

Regulators can assign different threshold levels for each band, effectively allowing them to control 

the noise floor. This requires a device that can measure the interference tem perature and react 

accordingly.

An interference temperature device requires reconfigurability in that the device must be able to 

adjust its operation in relation to its environment. Using IRIS this type o f  system can be developed 

by employing control logic and parametric reconfiguration. Figure 7.7 shows a diagram o f  how the 

FSK transceiver example from Chapter 6 could be modified to react to Interference Temperature.
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Figure 7.7 -  FSK Transceiver with Interference Temperature Detector

In th is  design the radio m onitors the tem perature  via an In terference Tem perature com ponent. This 

calcu lates the noise per unit bandw idth on the curren tly  tuned frequency. This can be done in 

several ways. If  a periodic transm ission o f  a know n sequence is taking place the com ponent can 

com pare the known transm ission w ith the received signal. A s the noise increases over tim e w ith the 

introduction o f  new transm itters into the band it can track the noise difference. W ithout a fixed 

periodic transm ission to correla te  against, the com ponent could m easure the overall pow er o f  the 

noise floor over time.

U sing control logic the consequence o f  this tem perature  can be com puted possibly chang ing  the 

operating  frequency o f  the radio system  by con tro lling  the RF front-end. The tem peratu re  could 

also change other aspects o f  the radio system  perhaps changing the m odulation  schem e or data rate 

o f  the  radio  to  reduce the in terference it causes.

B ecause the IRIS system  exists prim arily  in softw are, enabling  in terference tem perature  is 

straightforw ard, only requiring the inclusion o f  a new  com ponent and som e additional control 

logic. T he fact it is written in G PP-based softw are also  m eans that the com ponent can be reused in 

m any o ther designs requiring th is functionality . T h is reiterates a point from  C hap ter 3 about 

softw are com ponents; they allow  encapsulation  and reuse o f  softw are and are a su itable m ethod o f  

deploym ent. For exam ple, instead o f  regulating  the requirem ents o f  individual radio devices 

regulatory  bodies such as the FCC could  regulate and approve particu lar softw are com ponents for
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use in Interference Temperature calculations. However, the actual method for doing this requires 

further research and is discussed in Section 8.3.

Besides the actual terminals that communicate, there are other types o f devices that will be required 

in a dynamic spectrum environment, one such example being a device for monitoring spectrum 

usage. Many regulators already m onitor spectrum on a regular basis but in a more demanding and 

dynamic environment communications will have to be more closely monitored to ensure that the 

policies in place are effective. This will require monitoring stations that can detect the Interference 

Temperature but possibly also analysing individual transmissions. This could be o f use in enforcing 

regulations by tracking misuse o f  spectrum or by producing statistics and feedback information 

regarding the types o f transm issions occurring in the medium.

The IRIS system can be used to develop such a m onitoring device. Figure 7.8 shows the design o f  a 

spectrum monitoring system. This system sweeps any band o f  interest and continually analyses the 

signals received for any communications occurring in that band. This can be done by basic pattern 

matching in looking for strong signals and any signal o f  interest can be down converted to 

baseband where it enters a signal buffer. The buffer makes use o f  the large amounts o f  RAM 

available with a GPP design to store the most recently received radio signals. The control logic on 

receiving a particular signal o f  interest can retrieve a previous occurring signal and possibly record 

it to disk for later analysis. A signal database is also included and this could be used to store 

statistical information resulting from the analysis.
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Figure 7.8 -  Spectrum Monitoring System
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7.4.3 Conclusions

This section has discussed the emerging area o f  spectrum management and how the IRIS system 

can address the technological needs o f devices operating in this environment. The interference 

temperature device demonstrates how tem perature calculations can be encapsulated in a Radio 

Component and subsequently used to reconfigure other parts o f  the radio system. This type o f 

system can be built easily using the IRIS com ponent framework. W hile this discussion has only 

provided a brief overview o f the topic, spectrum management is an important and growing area o f 

research. For this reason Chapter 8, Section 8.3.4 suggests future directions for research in this 

field.

7.5 Summary

These case studies have demonstrated that the approach to reconfigurability in this thesis and the 

IRIS system in general are applicable to emerging techniques and technologies in communications. 

OTAR showed how IRIS and its support for reconfigurability deliver the functionality required for 

software download, an important technique in the software radio space. Wireless networking 

demonstrated how IRIS can act as the physical layer in a communications stack and also offers new 

capabilities to wireless networking devices by introducing elements o f  physical layer 

reconfigurability to the communications stack. Spectrum Management showed how IRIS can assist 

the development o f a new emerging technology, enabling a fundamental change in the way 

communications take place. Overall these case studies demonstrate that the IRIS system and the 

concepts o f reconfigurability are important contributions as they show that a software-oriented 

component-based approach to software radio design yields highly reconfigurable radio devices.
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8 Conclusions

8.1 Introduction

T his chapter draw s conclusions from  this thesis. Section  8.2 revisits the specific  contribu tions 

identified in the in troductory chapter and show s how  they w ere achieved. Section 8.3 highlights 

fu ture w ork that can follow  from  th is body o f  research  and Section 8.4 concludes.

8.2 Summary of Contributions

The purpose o f  th is w ork has been to  show  tha t a softw are-orien ted  com ponent-based approach to 

softw are radio design yields highly reconfigurable radio  devices. The fo llow ing discussion review s 

the contribu tions that have been presented to substan tia te  th is claim .

A comprehensive overview of software radio technology

The thesis as a w hole provided insight into softw are radio technology, the main discussion o f  

w hich w as presented in C hapter 2. That chapter presented a com prehensive review  o f  the history 

and evolution o f  softw are radio, focusing both on the technology involved and the w ider 

consequences o f  softw are radio itself. This chap ter gave a unique perspective on the subject, 

show ing  how  it is a w ide and diverse field, bringing together various technologies to  in troducing a 

new  paradigm  in radio system  design. The v iew poin t taken in exp lain ing  softw are technology  w as 

unique because unlike m ost o ther research it did not concentrate  on one particu lar application  such 

as m obile telephony, w ireless LAN or digital telev ision . Instead this discussion w as presented from 

a general perspective and thus provides a unique p icture o f  the softw are radio space as a w hole. 

T his discussion also provided the background know ledge necessary  to  approach the problem  o f  

reconfigurab ility  in radio system s. Thus, the softw are-orien ted  solution presented is generic and 

can be applied to  m any d ifferent applications including m obile telephony, etc.

Categories for assessing reconfigurability in radio systems

A s the aim  o f  the thesis w as to develop highly reconfigurab le  devices, it w as thus necessary  to have 

a m etric in assessing  the level o f  reconfigurability . T h is need has resulted in the m ost im portant 

contribu tion  o f  th is w ork, w hich is the analysis, defin ition  and categorisation  o f  reconfigurability . 

T his is a unique contribution  as no prior w ork in th is field has looked at the concept o f
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reconfigurability in this way. The three categories, application, structural and parametric 

reconfiguration, can now be used by others in assessing the reconfigurability o f  radio systems. 

These categories have also served as basic requirem ents for the IRIS system.

Analysis of software design for radio systems

Chapter 4 analysed eight topics in software developm ent and how they apply in the field o f 

software radio. These topics: - reuse, abstractions, adaptability and flexibility, complexity, security, 

portability, real-time behaviour and fmally upgrading and versioning - have been the result o f  

extensive research. That research demonstrates the need for component-based software in 

delivering reconfigurable radio systems and thus is an important contribution.

Design, implementation and analysis of a reconfigurable radio system

The IRIS system demonstrates some fundamental properties o f  the reconfigurable radio concept. 

Firstly, it shows that it is possible to develop a reconflgurable radio system that exhibits 

application, structural and parametric reconfigurability. Secondly, it demonstrates that component- 

based software can be used to develop highly reconfigurable radio systems and that it is possible to 

encapsulate signal processing algorithms into such a com ponent without compromising its level o f  

reconfigurability. Finally, it provides useful information to others who may consider following on 

from this research in developing either reconfigurable radio systems or other signal processing 

systems on GPPs. For these three reasons this is an important contribution to the field o f  software 

radio.

Case studies that apply the reconflgurable radio approach

The case studies presented in Chapter 7 are an important part o f  this work as they show that the 

IRIS system and hence the software-oriented component-based approach o f  this thesis is applicable 

to real problems in radio system design. It shows that the operations required in applications such 

as OTAR (Section 7.2) or network integration as in the case o f  DAWN (Section 7.3) can be 

mapped directly to the categories o f  reconfigurability. For example OTAR relies on structural 

reconfiguration and DAWN relies on parametric reconfiguration. This shows that the concepts 

presented in this thesis are valid and that the approach taken is justified.

8.3 Future Work

At various points throughout this research, areas o f  interest have been highlighted that require 

further research. The following sections discuss these in turn.
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8.3.1 Hardware

D espite its softw are-oriented approach, reconfigurab ie  radio requires hardw are capab le  o f  

de livering  the type o f  platform  it requires. T he fo llow ing  areas in hardw are developm ent for 

reconfigurab ie  radio require m ore attention:

•  More dynamic RF front-ends

C urren t technology cannot provide the requirem ents o f  the ideal softw are radio  as d iscussed  in 

Section 2.4.1. In the evolution  tow ards the ideal softw are radio m ore dynam ic RF front-ends 

are  required  that deliver better perform ance, larger bandw idths and can operate on m ultip le 

frequencies. N ew  techniques and fu rther research are required to  deliver th is goal.

•  Low power hardware

F urther im provem ents in low pow er hardw are need to  be m ade to  allow  the reconfigurab ie  

rad io  concept to  be feasible for m obile devices. A reduction in pow er consum ption w ould 

a llow  reconfigurabie radio devices to  be em bedded into m obile term inals w hile still a llow ing  

them  to perform  the m ajority  o f  signal p rocessing in softw are. T his requires fu rther research  in 

sem i-conductor technology'.

•  Signal processing devices that inherently support reconfigurability

C hapter 4 discussed reconfigurab ility  and defined  application , structural and param etric  

reconfiguration as m etrics for assessing  reconfigurability . An in teresting  area o f  research 

w ould be to  develop a dom ain-specific  piece o f  signal p rocessing hardw are that inherently  

supports application , structural and param etric  reconfigurability . A nother in teresting  area 

w ould be the tools required to develop  softw are for this platform . An environm ent that 

supported  com ponent-based softw are developm ent w ould  be o f  particu lar interest.

8.3.2 Software

T he d iscussion o f  softw are design for radio system s and the IRIS system  itse lf have dem onstrated  

that com ponent-based softw are can yield highly reconfigurab ie  radio  devices. T here are how ever 

som e areas w hich could benefit from fu rther research:

•  Real-Time

T he topic o f  real-tim e behaviour o f  signal p rocessing  algorithm s needs to  be investigated  in the 

contex t o f  reconfigurabie radio. T here are potentially  tw o m ajor research areas w ith in  this 

topic; firstly, real-tim e constra in ts can hinder reconfigurab ility , as som e aspects o f  perform ing  

a reconfiguration  may not be determ inistic . F urther research  needs to  be carried  ou t to 

investigate how application, structural and param etric  reconfiguration  can be achieved in a hard 

real-tim e environm ent. Secondly, w ith the reconfigurab ie  approach it may be possib le to  relax 

the needs o f  real-tim e behaviour altogether. A radio system  built from  the ground up to  be less 

stringent on real-tim e requirem ents may be ab le to  operate  w ithout real-tim e constrain ts.
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Further research could investigate the developm ent o f  a lgorithm s and softw are fo r supporting 

th is  type o f  com m unication.

•  IRIS Cxmponenls

O ther rjsearchers are already using the IRIS system  as a basis for experim entation  and 

d ev e lopnen t o f  new  radio system s [F lood2003, N olan2003d, N olan2002c], T hese researchers 

have developed com ponents for experim enting  w ith m odulation schem es and algorithm ic 

techniques. Research on IRIS can con tinue  e ither by extending  the IRIS system  itse lf  and 

investig iting  its use on o ther platform s o r by the developm ent o f  m ore com ponents. The latter 

could prove to be o f  great interest, as by developing  a host o f  reusable com ponents, m any new 

applications are possible.

•  IRIS Framework

C hapter 6, Section 6.6 d iscussed som e basic scalab ility  and m em ory experim ents carried  out on 

the IRIS system . Further w ork on the IRIS system  could concentrate on developing  the 

im plem entation further, using it to develop com plete  com m unications system s to  a com m ercial 

g rade ard  reporting  on the scalability  and perform ance required. Further scalab ility  w ork could 

co n cen fa te  on analysing  m ore com plex sets o f  com ponents for linear scalability.

•  B etter integration with networking p ro toco ls

Section 7.3 touched on the subject o f  ad hoc netw orking  and m entioned the integration o f  a 

reconfigurable radio into an ad hoc node. This is an area that requires further research to 

investigate how the reconfigurable radio and ad hoc routing  protocols can interact and share 

inform ation that may im prove overall com m unication  in the m obile environm ent.

8.3.3 Security

Security  has been touched on at various points th roughout th is thesis, in both the d iscussions o f  

softw are radio security  in Section 4.3.5 and in the d iscussion  o f  O T A R  in Section 7.2. T his is an 

im portant area for future investigation as it is im portant that as radio system s m ove into the digital 

dom ain the> do not succum b to the softw are problem s experienced  in m ainstream  softw are. These 

problem s include v iruses, w orm s and o ther m alic ious code w ritten w ith the intent o f  exploiting  

w eaknesses in radio system s. It still has to be proven that th is is even possible. Perhaps the reason 

no such attacks have em erged as o f  yet is due to  the  inaccessib ility  o f  flexible RF equipm ent. W hen 

devices em erge that allow  the developm ent o f  flex ib le  softw are radio  system s, and particularly  

devices th a t allow  arbitrary choice o f  transm it and receive frequency, th is barrier w ill d isappear. 

T hese types o f  devices are already beginning to  appear, the G N U R adio  pro ject d iscussed  in Section 

2.5 being an exam ple. Increased accessib ility  to  the RF spectrum  w ill open the m edium  to attackers 

that will be able to w rite program s to  target security  w eak im plem entations o f  public radio 

standards.
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Sev/eral areas 'or further research are thus required:

•  Analysis c f the threat

An analysis o f  the security threats in radio systems should be carried out to determine the 

feasibility o f  such attacks. O f particular focus should be to determine whether it is feasible that 

viruses anJ worms can affect the software radio as they would the average PC.

•  Cryptographic techniques

Air interfaces should be secured using cryptography and secure protocols. Further research 

should concentrate on deciding what the best security system is for the radio environment.

•  Defensive software devehpment

An analys s should be carried out on how to develop secure software for reconfigurable radio 

systems. This work would ensure that the software development process itself does not 

introduce exploitable weaknesses into radio systems.

8.3.4 Spectrum Management

Section 7.4 gave a brief overview o f spectrum management and how IRIS could potentially be used 

to  develop systems that facilitate the types o f systems required in a spectrum managed 

env ironment. This is still an emerging area o f research and thus many unexplored areas exist.

T h e  following topics require further investigation:

•  Interference temperature

The interference temperature melric discussed in Section 7.4 requires further attention. 

Although the FCC have suggested a metric based on noise per unit bandwidth, further research 

is required to determine if this is in fact the best way to measure interference. Additional 

schemes should be researched, proposed and investigated.

•  Spectrum-ifware devices

Further research needs to be done on the whole topic o f developing spectrum-aware devices. 

Research should concentrate on how they interact, manage their use o f  the spectrum and 

relating to security, how a dynamic device that can operate on any frequency can be trusted to 

not overuse or ‘pollute’ the RF spectrum.

•  Regulatory issues

The regulatory issues surrounding spectrum management need to be investigated as the new 

concept o f  dynamic spectrum allocation fundamentally changes the model by which spectrum 

has been allocated in the past. Research needs to be carried out to determine the best way to 

manage this resource and in particular how technologies such as reconfigurable radio can be 

used effectively in a managed spectrum environment.
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8.41 C<nclusion

Thiis thesis represents a step forward in our understanding o f  what reconfigurability means in the 

conitext o f radio systems. Instead o f concentrating on delivering software radio using today’s 

harrdware ttchnologies, this thesis has asked questions about how these radio systems will manifest 

thermselves in the future. This research has shown that a software-oriented component-based 

appjroach t( software radio design results in highly reconfigurable radio devices, something that 

willl be imp)rtant in delivering the next generation o f  wireless devices.
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10 Appendix

10.1 Methods Exposed by a Radio Component

A Radio Component exposes the fo llow ing methods.

M ethods providing information about a Radio Component:

char * GetDefaultXML{);
char* Getlnfo();
char * GetName();
char* GetVersion();
char* GetAuthorO;
char* GetValue(char *name);

M ethods for dealing with parameters:

int GetNumParameters();
char * GetParameterName(int identifier);
char * GetParameterDefaultValue(int identifier);
char * GetParameterlnfo(int identifier);
char * GetParameterDataType(int identifier);
boo I IsParameterDynamic(int identifier);
boc. IsParameterDynamic(char *name);
boou. SetValue(cha r *name, char *value);
bool SetValue(int parameterld, bool value);
bool SetValue(int parameterld, char value);
bool SetValue(int parameterld, unsigned char value);
bool SetValue(int parameterld, short value);
bool SetValue(int parameterld, unsigned short value);
bool SetValue(int parameterld, int value);
bool SetValue(int parameterld. unsigned int value);
bool SetValue(int parameterld. int64 value);
bool SetValue(int parameterld. unsigned int64 value);
bool SetValue(int parameterld. float value);
bool SetValue(int parameterld, double value);
bool SetValue(int parameterld, char* value);
bool SetValue(int parameterld. unsigned char* value, unsigned int size);
bool GetValue(int parameterld. bool* value);
bool GetValue(i nt parameterld. char* value);
bool GetValue(int parameterld. unsigned char* value);
bool GetValue(int parameterld. short* value);
bool GetValue(Int parameterld. unsigned short* value);
bool GetValue(int parameterld. int* value);
bool GetValue(int parameterld. unsigned int* value);
bool GetValue(int parameterld. int64* value);
bool GetValue(int parameterld. unsigned int64* value);
bool GetValue(int parameterld. float* value);
bool GetValue(int parameterld. double* value)/
bool GetValue(int parameterld. char* value, unsigned int size);
bool GetValue(int parameterld. unsigned char* value, unsigned int* size);
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M ethods for dealing with commands:

int GetNumCommands{) ;
char* GetCommandName(int identifier); 
char* GetCommandlnfo{int identifier); 
char* GetCommandDeclaration(int identifier); 
int GetCommandDeclarationValue(int identifier);

Methods for dealing with ports:

int GetNumPorts();
char* GetPortName(int identifier); 
char* GetPortInfo(int identifier); 
char* GetPortDeclaration(int identifier); 
int GetPortDeclarationValue(int identifier);

Methods for dealing with events:

int GetNumEvents() ;
char* GetEventName(int identifier); 
char* GetEventlnfo{int identifier); 
char* GetEventDataType(int identifier); 
char* GetEventDeclaration(int identifier); 
int GetEventDeclarationValue(int identifier); 
int GetEventCallbac)cType (int identifier);
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, Lnt identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event/ int identifier
bool SubscribeToEvent(char *event. int identifier
bool SubscribeToEvent(char *event. int identifier
bool SubscribeToEvent(char *event. int identifier
bool SubscribeToEvent(char *event/ int identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, int identifier
bool SubscribeToEvent(char *event, int identifier

pEventCallbackData callback); 
pEventCallbackBool callback); 
pEventCallbackByte callback); 
pEventCallbackByteUnsigned callback); 
pEventCallbacklntl6 callback); 
pEventCallbackIntl6Unsigned callback); 
pEventCallbackInt32 callback); 
pEventCallbackInt32Unsigned callback); 
pEventCallbackInt64 callback); 
pEventCallbackInt64Unsigned callback); 
pEventCallbackFloat callback); 
pEventCallbackDouble callback); 
pEventCallbackString callback);
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10.2 Code Generator Commands

T h e  fo llo w in g  c o m m an d s  can  be u sed  w ith  th e  co d e  g e n e ra to r  d esc rib ed  in S ec tion  6 .2 .3 :

D eclaration D escrip tion
//@component <description> Indicates the class declaration immediately following the declaration 

is a Radio Component.

Example:
//©component GMSK Modulator

//@version <version number> Identifies the version o f  the component. 

Example:
//0version 1.3b

//Sauthor outhor's name> Indicates the author o f  the component. 

Example:
//©author Philip Mackenzie

//@event <name> <ciatatype> <info> Indicates that an event will be fired from the component. 

Example:
//0event SignalReceived int signal received

//@port <name> <info> Indicates that this com ponent supports an input data port for 
receiving data from external sources.

Example:
//0port ModulateData modulates received data

//@commanci <name> <info> Indicates that this com ponent exposes a command which can be fired 
from external control logic.

Example:
//©command ResetFilter resets the filter

//@param <name> Indicates that the next member variable declaration will be exposed 
as a param eter o f  the component.

Example:
//0param frequency cutoff

//Sdefault <default value> Specifies the default value for the parameter. 

Example:
//©default 3.14

//@dynamic Indicates that the param eter is dynamic

Example:
//©dynamic
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