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Summary

T he spectrum  of a periodic flux tube in pure SU (3) Yang-M ills theory is evaluated  

non-perturbatively through com putations on the lattice in the region from interm e­

d iate to  long distances (1.5 <  L <  4 fm ). For these flux lengths our results are 

com pared w ith the predictions of a bosonic effective string theory, finding a surpris­
ing good  agreem ent. The m ain object of the first part of this work is the description  

of the lattice  technology and m ethodology used to evaluate the spectrum  of a periodic 

flux tube. We give details of the improved anisotropic lattice action we used in our 

calculations and of the m ethodology we adopted in order to identify the sym m etries 

of a periodic flux tube that winds around one direction. A large number of torelon 

operators are then system atically  constructed and details on the im plem entation and 

on the form of these operators are also given. We perform several long numerical 
M onte Carlo sim ulations for different flux lengths and with different volum es and 

difl'erent values of p.  The second part of this work is dedicated to the description  

of an effective string theory with central charge not equal to the dim ension d and 

the resulting covariant quantization with d — 2 oscillators presented by Polchinski 
and Strominger in 1991. However, as it is also clear from their article, the spectrum  

derived from it does not deviate from the Nam bu-G oto spectrum  at least for the 

corrections they introduced. We then proceed to compare the spectrum  of the QCD  

periodic flux tube w ith the string expectations. Our numerical results confirm the 

string-like flux form ation and details are given regarding the Liischer term in the 

ground state, the level ordering, degeneracy and energy gaps between levels. The 

agreement with a string theory is striking in the presence of the Liischer term , in 

the level ordering and in the degeneracy of all of the fourteen states we considered  

(apart from the ^2u(0) sta te  that reaches a perfect degeneracy only at L >  2.5 fm 

and the problem atic ^ 2 (1 ) state which seems to show a string-like behavior for bigger 

L). T he deviations from the string energy gap for lengths L >  2.5 fm is problem atic 

and already seen in the spectrum  of a quark-antiquark system . Further studies are 

required in order to settle this issue.
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Introduction

The theory of strong interactions, quantum chromodynamics (QCD), was formulated 

30 years ago and has since been a very active field of research. Nowadays, there is 

no doubt that QCD is in reasonable agreement with experimental results of high- 

energy scattering, however work has still to be done to answer the question whether 

QCD is the correct theory of strong interactions at all scales or just an effective high- 

energy limit of a yet undiscovered theory. For instance, the infrared regime of QCD 

is very hard to treat theoretically, since the usual field-theoretical methods are not 

adequate for this theory. This is because the QCD coupling constant Oi{q̂ ) incr(;ases 

at small momentum transfers, reaching a value comparable to 1 at momenta q around 

^\q^\  ~  500 MeV [1]. A power-series expansion in a  does not converge, which makes 

the Feynman diagrammatic technique inapplicable in this region.

Therefore QCD at small momenta or energies E  < \ GeV has to be treated non- 

perturbatively and up to now the best method available is lattice gauge theory. 

Various ideas and methods elaborated during the last two decades, together with 

the development of algorithms for numerical calculations and progress in computer 

technology have made lattice gauge theory one of the most powerful tools for the 

evaluation of non-perturbative characteristics of QCD.

In a lattice simulation, Euclidean space-time is discretized on a torus with points 

separated by the lattice spacing a, which provides an ultra-violet cut-off. While the 

dirac fields, are represented by 4-tuples at lattice sites, x, the gauge fields live on 

the links that connect two sites. The lattice allows for a first principles numerical
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evaluation of expectation values of any observable O  from the computation oi the 

path  integral,

{0(U,q,<i)) = j  [dU\[dq\[dq\0[U,q,q]e -S(U,q,q)  ( 1 )

where the high-dimensional integral is evaluated by means of a stochastic Monte- 

Carlo m ethod as an average over an ensemble of n representative gauge configurat ons. 

An introduction on the recent advances in lattice simulation technology, including 

particular attention to anisotropic lattice and improved gauge actions is given m 

C hapter 1.

The most fundamental problem associated with the infrared dynamics of QCD î  the 

explanation and description of confinement. In general, by confinement one implies 

th a t there are no isolated particles in Nature with non-vanishing color charge, th.-it is, 

all asym ptotic particle states (|in) and |out)) are color singlets. Unfortunately ihere 

is no deri\’’ation of quark confinement starting  from first principles nor is there a 

totally convincing explanation of the effect (see Ref. [2] for a review). By numerically 

simulating gauge theories on the lattice one can predict properties and give hints to 

the underlying mechanisms of quark confinement.

One common choice of order param eter for confinement to be studied on the lattice 

is the Wilson loop. It is defined as the trace of the product of gauge variables along 

a closed oriented contour, dC,  enclosing an area, C,

{W{C)) = T r { V exp ( / dx^Af,{x) 
\JdC

(2)

The Wilson loop can be related to the potential energy of a pair of static  <’olor 

sources (see W ilson’s original work [3] or a more recent monograph [7]), in parti<:ular 

when the contour d C  is a rectangular of dimension C  = t  x  t, eq. (2) can be re­

expressed as

2



(VF(C)) =  ^ | c „ | V ^ " ‘. (3)
n

In the limit of large t, the ground state Eq that will dominate in eq. (3) can be 

identified as the potential between two static quarks separated by a distance r. i.e. 

Eo  =  V { t ).

Lattice gauge theory provides an exact result for the static potential by simply ex­

ploiting the symmetry of a Wilson loop under the interchange of space and time 

directions and by using the reflection positivity of Euclidean n-point functions- In 

fact, it can be proved [8J that the static potential cannot rise faster than linearly as 

a function of the distance r  in the limit r  oo and moreover it is a convex function,

I.e.

^ > 0  and ^ < 0 .  W
dr ar^

Expectation values, as in eq. (2), can also be approximated by expanding the 

exponential of the lattice action in eq. (1), in terms of the lattice coupling constant 

/3. From this strong coupling expansion one obtains the expectation value

{W{C))  =  <i (5)
i /3/2N^)-^ + . . .  N > 2 ,

where C  is the area of the Wilson loop. Considering therefore the case of a

rectangular Wilson loop that extends r / a  points into a spatial direction and t / a

points into the temporal direction one finds the area law

(H^(C)) =  exp[-crrt] +  . . . ,  (6)

with a string tension

3



=  (7)

The fact that lattice gauge theories confirmed the area law for Wilson loops, which 

is one important characteristic of the confining force, does not give a conclusive an­

swer to the question of whether QCD is the right theory for confinement since bag 

models also predict a linear rising of the ground state energy [1, 37].

Probably the most striking feature of the confining force that could be checked using 

the lattice technology is its string-like behavior. In fact, the strong coupling expan­

sion of a Wilson loop can be cast into a sum of weighted random deformations of 

the minimal area world sheet and this sum can be interpreted as representing a vi­

brating string. The idea that the chromoelectric flux between two static sources is 

squeezed into a thin flux tube and that this can be regarded as a string is a fasci­

nating conjecture that has been explored with Monte-Carlo simulations by different 

lattice collaborations [33, 45, 36]. The string action to be employed is not a priori 

known, but the simplest possible assumption is that the string is described by the 

Nambu-Goto action in terms of the { d—2) transverse degrees of freedom of the string. 

The bosonic string model predicts the existence in the potential of the ground state 

of a term proportional to 1 /r , the so-called Liischer term and also how the thickness 

of a QCD flux tube depends on the separation, r of the quarks. In contrast to the 

string picture that finds a logarithm dependence on r for the flux width, the strong 

coupling lattice gauge theory found that the width of the flux tube remains finite at 

r ^  oo, for small /3 [6]. However, the strong coupling expansion seems to break down 

at a certain value of the coupling constant and nowadays it is a well accepted fact 

that the confining regime of lattice gauge theories contains two phases: the strong 

coupling phase and the rough phase. The two are separated by the so-called rough­

ening transition  which is the point in which the strong coupling ceases to converge. 

While at strong coupling the dynamics is confined to the minimal area spanned by a

4



Wilson loop (plus small ’’bumps” on top of the surface) and the fluctuations of the 

flux tube are massive, as the coupling decreases, the color fields between the sources 

can penetrate  over several lattice sites into the vacuum and the fluctuations of the 

flux tube become massless.

Liischer and Weisz [4] were able to compute the static potential in SU(3) lattice gauge 

theory in d =  3, 4 to very high accuracy, and extract

24

from the second lattice derivative of V (r), in the range 0.2 fm <  r  <  1.0 fm . The 

value of c(r) breaks away from the short-distance running Coulomb law towards the 

string-like c(r) ^  1 behavior for values of r  surprisingly well below 1 fm. Independent 

investigations by Juge et al. [36] on the excitation spectrum  of the flux tube between 

two static sources also gave evidence of its string-like behavior. However their studies 

showed a complex non-string level ordering for quark separation r <  2 fm and a 

crossover around 2 fm, a value far from the one found by Liischer and Weisz.

In d =  4 it is hard to disentangle the large-distance 1 /r  term  (the Liischer term) 

expected from the string vibrations, from the perturbative Coulomb term  at short 

distances. A way out is to determine the mass of a closed string, encircling a boundary 

of the lattice for which the string correction term is four times as large as for the 

static potential. Adopting the viewpoint of Juge at al. [36] th a t the nature of the 

confining gluon field is best revealed in its excitation spectrum  we started  a series 

of studies on the spectrum  of a periodic flux tube th a t we present in C hapter 2. In 

fact, the absence of fixed color sources in a periodic fiux tube provides a particularly 

favorable theoretical environment in which to observe the onset of string behavior. 

Comparisons with an efl'ective string theory are also presented in Chapter 3.
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Chapter 1

Lattice gauge theories (LGT)

1.1 Introduction

Progress in Lattice QCD has required a combination of improvements in formulation, 

numerical techniques and computer technology. When Lattice QCD was invented, 

in the mid 1970’s, most of the lattice theorist’s effort was spent in accumulating 

computer time on the world’s largest supercomputers or in designing and building 

faster computers. In fact, until very recently it was thought th a t the lattice spacings 

as small as .05 — .! fm would be essential for reliable simulations of QCD. The formula 

th a t governs the computing time cost of a full QCD simulation is given by

where the first factor is just the number of lattice sites in the grid, and the 

remaining factors account for the “critical slowing down” of the algorithms used 

in the numerical integration as described in Ref. [12]. The formula in eq. (1.1) 

clearly shows th a t the single most im portant factor is the lattice spacing, therefore

possibility to work with large lattice spacings are old ideas, pioneered by Wilson

(1 .1)

making most simulations prohibitive. Improved discretizations and therefore the

6



and Symanzik and others [9]. Coarse lattices offer the advantage of a significant 

reduction in computation overheads making the simplest calculations possible on a 

personal computer. However an attem pt to use improved actions on coarse lattices 

to examine the glueball spectrum of QCD proved to be very difficult [10]. This is 

due to the fact that the number of correlator time intervals which can be measured 

is reduced greatly when the masses in lattice units are large (as in the case of the 

glueball spectrum). A solution to this problem is to make use of anisotropic lattices 

in which the temporal spacing is much smaller than that in the spatial directions. In 

this chapter we want to summarize briefly the recent advances in lattice simulation 

technology on anisotropic lattices that we employed in our series of studies.

1.2 A nisotropic form ulation of LGT

A lattice calculation is a non-perturbative implementation of field theory using the 

path integral approach. The Euclidean space-time is discretized on a torus with 

lattice points separated by lattice spacings and at in the spatial direction and in 

the temporal direction respectively. The lattice spacing provides an ultraviolet cut­

off on the gluonic momentum Qi <  and regulates the theory. The gauge degrees of 

freedom are then represented by oriented links connecting two adjacent sites:

U^{x) =  V [ e ~ ^ ^ ^  e  SU{N),  (1.2)

where Tf, are the generators of SU{N)  and the P-operator orders the A^’s along 

the integration path. Under a gauge transformation G{x) G SU{N)  these links 

transform as

U^{x) =  G{x)Un(x)G^{x +  ap), (1.3)

from which it is clear that the trace of a product of links along a closed loop is

7



gauge invariant. These loops, the Wilson loops, can have an arbitrary shape and size 

and can be taken to lie in any representation of SU{N).  Lattice actions are then 

constructed in a manifestly gauge-invariant way and should approach the continuum 

action, S y m  = ^ J  d ‘̂ xTrF^^F^,y in the limit at, a* —>■ 0.

The simplest non-trivial gauge-invariant objects that can be constructed are the 

traces of the following spatial (sp) and temporal plaquettes (tp).

from which it is possible to construct the simplest lattice action. In fact, one 

readily verifies that the following action possesses the naive correct continuum limit

where P = ^ ,  g is the QCD coupling, ^ is the anisotropic parameter and 

the Q’s are explicitly given in terms of the plaquettes,

Usp = Ui{x)Uj{x + i)Ul {x + j)Uj{x), (1.4)

Utp = Ut{x)Ui{x + i)Ul{x -I- i)Ul{x), (1.5)

Sol^l =  /9(^S2.p +  fS2<p) =  ^ /  +  0(a],  a?), (1.6)

(1.7)
X  i > j

X  i

Once the gauge degrees of freedom and the action have been defined the expecta­

tion value of any observable 0[U] can be determined by the computation of the path 

integral

y D[U]0[U]e~^^^\ (1.9)

8



where 2  =  J  D[U]e~̂ ^̂ '  ̂ is the partition function and D[U] =  Hx,iJ,dUfj,{x) is the 

Haar measure.

The high-dimensional integral is then evaluated by means of a stochastic Monte- 

Carlo method as an average over an ensemble of n representative gauge configurations 

Ci =

< 0> = - Y 0 [ Ci ]  + A 0 { ^ ) .  ( 1.10)
1 = 1  ' '

1.3 Continuum  lim it and im provem ent

The expansion of the link variable in eq. (1.2) show ŝ the presence of higher dimen­

sional operators. For instance, examining the spatial plaquette by means of Stoke’s 

theorem [12],

a

^  A ■ dx =  j  dxidxj {diAj{xo +  x) — djAi{xo +  x))

1
=  a^F,,(xo) +  +  D ^ )F ,,(xo), (1.11)2 4 - s v  * ■ j

we readily find

^ R e  Tr(l -  t/,p) = (1 .12)

and similarly for the temporal plaquette.

—Re Tr(l -  Utp)
24 24 TrFitDtFit

(1.13)
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The higher dimensional operators in eq. (1-12) and (1.13) are suppressed by 

powers of the lattice spacing and therefore are irrelevant operators.

However, the choice of the lattice action is far from unique and one is free to add any 

irrelevant operator with a sensible strength and still recover QCD continuum limit. 

The Symanzik’s improvement program [11] employs this strategy in order to reduce 

discretization errors. This allows one to work on coarser lattices (smaller Lg, Lt) for 

a given accuracy and consequently to reduce computer time.

The representation of gauge fields by eq. (1.2) also gives rise to lattice artifacts 

due to the presence of higher order terms of gaAf^ and the ^4^’s if contracted with 

each other generate tadpole contributions. Parisi, Lapage and Mackenzie, in [13, 14], 

proposed a mean-field improvement to get rid of these artifacts. In the following 

sections, the Symanzik approach and the tadpole (mean-field) improvement will be 

briefly explained and applied to anisotropic lattices.

1.4 Sym anzik’s im provem ent

As mentioned in the previous section, any lattice operator O, constructed from the 

link variables, will have an asymptotic expansion for a^, ^  0 of the form

0 0  f M { k )  \
, (1.14)

k=0 V  “  /

where Oa^ are local continuum operators with dimension k — kg + kf. Moreover, 

when the lattice operator O is invariant under gauge transformations, rotations and 

reflections the operators Oa^ that can occur in the expansion (1.14) are severely re­

stricted since they must have the same symmetries of O.

It turns out that there are only two dimension-four operators,
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and
ij i

There are no dimension-five operators and eighteen independent, dimension-six 

operators, ten of which may be expressed as unimportant total derivatives [15]- 

To elim inate 0{a^)  lattice artefacts one can perform an asymptotic expansion of a 

suitable lattice action and adjust the interaction couplings so as to reproduce the 

correct continuum QCD action with the 0{a^)  terms absent. For instance, a general 

improved action can be written as,

 ̂ i

where Oi[U]  are the lattice operators defined by

Uc  being the ordered product of hnk variables along a closed loop C. There 

are several elementary loops on the lattice that can occur in the improved action of 

eq. (1.15). We are going to follow the choice of C. Morningstar and M. Peardon [16.17] 

who adopted an improved action with the spatial and temporal plaquette Ugp, Utp, 

the planar 2 x 1  spatial rectangles Ugr and the short temporal rectangles Ustr given 

respectively by eq. (1.4), (1.5) and

U,r =  U^{x)Ui{x +  i )Uj (x +  2 i ) u l i x  + i + i)t// {x +  3)U] {x) ,  (1-17)

Vstr =  Ui{x)Ui{x + i )Ut{x +  2V)Ul (2: +  * +  i)u} {x + t ) u ! { x ) .  (1-18)

By means of Stoke’s theorem it is easy to find the asymptotic expansion of the 

spatial and temporal rectangles,

11



i R e  Trd -  t/„) =  ^
2d® 2fi®

, (1.19)

and similarly for the temporal rectangles,

iR e T r (l -  U„,) = ^
o„4_2 o„2_4

2oJofTi:F„Fy + ^ T r f.,D ''F „  + ^ T rF i,C ?F „

(1.20)

The interaction couplings q  in the improved action

S  — ^ C 2 ^ t p  ^^4^s£d ( 1 .2 1 )

can then be chosen to eliminate 0 { a , g )  errors. Here D,gp and f l t p  are given by 

eq. (1.7) and (1.8) and ^ s t r  by

^̂ .. =  E E  ^ReTr(l -  U„), ( 1 .2 2 )
I

iReTr(l -  U„r). (1.23)

Using the asymptotic expansion given above we find tha t imposing the following 

three constraints at tree-level

1 1 .  1 
- C l  +  - C 2  +  2C3 +  C4 —

1 5
24*' 6"’ “

the classical action

^C 2  +  - C 4 - 0 ,  (1-24)
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(1.25)

has 0{aj ,a ‘̂) discretization errors.

The 0{aj)  error can be removed by the addition of counterterms which couple next- 

nearest-neighbor time slices, for instance by adding the tall temporal rectangle in the 

lattice action [15]. However, this operator introduces spurious high-energy modes 

that have detrimental effects on the correlation functions [18].

distances of order 1/20 to 1/10 fm and therefore lattice spacings must be at least 

this small before improved actions are useful. A trivial modification of lattice QCD, 

called “tadpole improvement” allows perturbation theory to work even at distances 

as large as 1/2 fm, as phenomenological applications of continuum perturbative QCD

QCD and for the continuum resides in the fact that all gluonic operators in lattice 

QCD are built from the link operator,

rather than from the vector potential A^(a:).

In fact, contracting the two gluons in A^^{x)/2 gives rise to tadpole diagrams. 

However tadpole contributions are generally process independent and so it is possible 

to measure their contribution in one quantity and then correct for them in all other 

quantities. Assuming that we can evaluate the tadpoles contribution in the link 

operators,

1.5 Tadpole Im provem ent

It was noticed that traditional perturbation theory for lattice QCD begins to fail at

suggested [12]. The cause of the mismatch between perturbation theory for lattice

U^{x) = e 1 -  iagAf,{x) - (1.26)

13



Ui{x) =  u , U i ( x ) , (1.27)

and

Ut(x)^utUt (x) ,  (1.28)

we can then replace every lattice operator by Ui{x)  —)• Ui{x)/us  and Ut{x)  — > 

Ut{x)/ut.

The tadpole factors u, and Ut are computed numerically in a simulation. They 

are determined by guessing input values for use in the action, measuring the values 

of (|R eTrt/sp)J and (|ReTrC/ip)J respectively ^  then readjusting the input values 

accordingly. Since in the Landau-gauge perturbation theory, 1 — (|T r[/() cx (at/a*)^, 

when at is significantly smaller than a^, we can safely set Ut =  I. Applying tadpole 

improvement in our action of eq. (1.25) we get,

Tadpole improvement is the first step in a systematic procedure for improving 

the action. The next step is to add in renormalizations due to contributions from 

k > IT fa  physics not already included in the tadpole improvement. However the 

coefficients of the correction terms in the gluonic action (1.29) are known only to the 

leading order in ag (so th a t the action (1.29) has leading 0(0^, af, a^a^) discretiza­

tion errors). In principle the coefficients of the correction terms should be computed 

by “matching” physical quantities computed using perturbation theory in the lattice 

with the analogous quantities in the continuum. It is, however, clear from the simula­

tions [20, 12, 17] th a t tree-level tadpole improvement autom atically captures most of 

the 0(o!,,) corrections. Also, the restoration of continuum symmetries can be used as

^Alternatively the mean link can be determined evaluating the expectation value of the link in 
Landau gauge.
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a criterion for tuning the input parameters (i.e. spatial mean link Us, anisotropic pa­

rameter) beyond their tadpole-improved tree-level values. In Section 1.7 we describe 

in detail how the tuning is performed.

1.6 Further im provem ent

In the seminal work on the glueball spectrum [17] C. Morningstar and M. Peardon 

noticed that the Symanzik-tadpole-improved action of eq. (1.29) gave good scaling 

for the 2++ and 1+“ glueballs. However they also found that for the lightest, scalar 

state, the mass (in unit of vq) was seen to fall rapidly to a minimum when the 

spatial lattice spacing is 0.25 fm, where the scaling violations are 25% and 

then rise as the lattice spacing is increased further: the so-called “scalar dip”. In 

comparison with Wilson simulations, the use of the improved action reduced the 

depth of the dip, but only by about a third. It has been conjectured that this dip 

may be related to the presence of a critical endpoint in a line of phase transitions 

in gluonic actions that include an adjoint coupling [23, 26]. It is indeed known that 

pure S U (3) lattice gauge theory containing fundamental and adjoint representations 

of the gauge fields undergoes a first order phase transition for positive values of the 

adjoint coupling [24, 25, 26]. From the action constructed from plaquettes in both 

the fundamental and the adjoint representations of SU{N)

■5 =  ( '  -  , (1.30)

various authors revealed a non-trivial phase structure and in particular a critical 

endpoint. A current estimate (see Ref. [26]) of the location of this endpoint for SU(d)  

gauge theory is =  (4.00(7), 2.06(8)), that lies well above the axis. This

is consistent with the observation that there is no discontinuity in the behavior of 

the expectation values of Wilson loops and in the glueball masses, obtained with
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fundamental loop actions {/3a — 0). This implies that it is safe to take the continuum 

limit along the line Pa =  0. However, U. Heller [26] showed that at the critical 

endpoint the scalar glueball mass mo++ vanishes and along the line I3a = 0, although 

there are no singularities, this critical endpoint could cause significant deviations in 

the scaling for the scalar glueball mass, the ’’scalar dip” found in both the Wilson 

action and improved actions. It is also expected that on a trajectory that lies below 

the j3f axis (negative ^ a ) the influence of the endpoint should be less than along 

!3a =  0. To test this conjecture C. Morningstar and M. Peardon [16, 29] added 

adjoint-like terms to the anisotropic action of eq. (1.29):

5 E  [l -  (ReTr(/.,(x)) (R eT rt/.,(i +  ())2
X,l>j

(1.31)

This term correlates pairs of spatial plaquettes separated by one site temporally. 

The separation of the two plaquettes allows the standard Cabibbo-Marinari and over­

relaxation gauge field update methods to be applied. The asymptotic expansion of 

eq. (1.31) is readily found to be identical to Qgp up to 0{a‘l)

E
x , i> j

^iReTr [ (h A ■ dx 
2N  V/n

x , i> j

(1.32)

This also implies that the operator combination

(1.33)

has an identical expansion in powers of the lattice spacing to Qgp for all values of u  

up to 0{ag). Thus, starting from the improved action in eq. (1.29) it is straightforward 

to construct a Symanzik improved, two-plaquette action by simply replacing the
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spatial plaquette term in eq. (1.29) with the linear combination Qsp- In full this 

action is

j  5(1 + u>) 

I 3eu4 I2uiuf
| .  (1.34)

It has leading 0{ag ,a f ,as0 . l )  discretization errors and only connects sites on ad­

jacent time-slices, ensuring the free gluon propagator has only one real mode. In 

the next section we will describe how to set this free parameter in such a way that 

physical mass ratios are independent of ui.

Tadpole param eters.

As we have already mentioned in the previous sections the coefficients of each term 

in the action (1.34), obtained using the Symanzik approach, are chosen so that the 

action has no O(a^) discretization errors in tree-level perturbation theory. Tadpole 

improvement of the perturbative expansion is achieved by tuning the input spatial 

tadpole parameter Ug (ut =  1, since at <C a^) for self-consistency at each choice of 

/? and For instance, the expectation value of the spatial plaquette is computed 

for a range of input parameters Ug close to the self-consistent value u*. A linear 

interpolation is sufficient to give an accurate value of u*. This value is then checked 

in a further Monte-Carlo simulation.

A nisotropy

The anisotropic parameter  ̂ is equal to the aspect ratio of the spatial and temporal 

lattice spacings, Oj and at at tree-level. At higher orders in the perturbative expan­

sion, this aspect ratio receives quantum corrections, so a renormahzed anisotropy

1.7 Tuning the parameters
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determined from a physical process, differs from ^ at 0{as).  The renormaliza­

tion of the anisotropy can be determined by measuring the static-quark potential 

V{x, y, z) from Wilson loops in different orientations. Following a procedure similar 

to Ref. [21], the potentials between two static sources propagating along the z-axis 

separated along both coarse and fine axes are measured by

letting z oo (here W s s { x , t )  are spatial Wilson loops and Wts{t,z)  are loops 

using the fine direction).

Since the UV divergences due to the static sources are the same and for a physical 

distance r we have \x\ = t — r we can set x — nug and t = nmat  and tune ^ such 

th a t the ratio

which implies the anisotropy =  m.

An alternative method for determining is the use of the dispersion relation for 

the torelon. This state will be described in detailed in the next chapter, but for the 

moment it will be enough to say tha t it is a Polyakov line th a t loops around the 

lattice in one direction, eg. z.

( 1.35)

( 1 .37)

where

L 2 {x ,y , t )  =  Tr +  kz , t ) .  (1.38)

It is constructed from links which are smeared in a manner to be described in the
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next chapter and its correlation function is evaluated for various choices of momen­

tum p =  (Px, Py)  =  ( n x , n y ) { 2 ' K ILgas) where Lg is the lattice extent in the x  and y 

directions. We thus measure

C (p ,t) =  c(p)e (1.39)

( 1.40)

where M r is the torelon mass and from eq. (1.40) we can easily obtain In

Free param eter u

As we mentioned in the previous section uj must be chosen to be greater than zero 

so that the approach to the QCD continuum is made on a trajectory far away from

implies w > 0) also the physical quantities should be independent of it. It has 

been confirmed in Ref. [16] that once the input is set beyond uj = \  there is little 

dependence of physical mass ratios on the precise value of the parameter and thus 

no fine tuning is required to reproduce continuum results.

1.8 Setting the energy scale

In order to convert quantities measured with lattice simulations into physical units 

the energy scale must be set by determining the lattice spacing at for each /3 and 

An experimentally well known quantity is chosen and then measured on the lattice 

in terms of Cf. The hadronic scale parameter tq defined in terms of the force between 

static quarks by [r'^dV{f)/ dr\r^ro — 1-65, where V{f)  is the static quark potential, is

Chapter 2 we present an example of a torelon dispersion relation for a 12  ̂ x 6 x 48 

lattice.

the critical endpoint in the plane of fundamental-adjoint couplings {^a — 0, which
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an attractive possibility since it can be measured very accurately both experimentally 

(where ss 410 MeV) and on the lattice [17, 22], In fact on the lattice the values 

of the potential V (f) were extracted as usual from the Wilson loop for each f. The 

potential so found fit the form V(fJ — Cc/r +  o r +  Vo very well. The fit parameters 

6c, <7 and Vo are then used to extract the ratio

ro/as =  \ / ( l . 6 5 +  ec)/cra2. (1.41)

1.9 Comments and comparisons with the litera­

ture

In this chapter we gave a brief introduction to the construction of the anisotropic lat­

tice action of eq. (1.34) proposed by C. Morningstar and M. Peardon in Refs. [16, 29]. 

We adopted an anisotropic action in our calculation of the QCD periodic fiux tube 

spectrum (to be presented in the next chapter) since the use of anisotropic lattices 

proved to be essential in the calculation of the glueball spectrum (see Ref. [19]). It 

is also important to realize that due to the enormous effort required by lattice QCD 

simulations, one is restricted to rather coarse lattice spacings and therefore it is vital 

to choose the lattice action such that already at a coarse lattice spacing the lattice 

artefacts are small. The action of eq. (1-34) is constructed using the Symanzik 

scheme that allows the systematic elimination of lattice artefacts, order by order in 

the lattice spacing and the coupling constant. For SU(3) isotropic lattice gauge the­

ory a complete Symanzik method has been worked out by Liischer and Weisz [5], up 

to the 1-loop level in perturbation theory, to ehminate the 0(a^, a^) corrections. The 

action of eq. (1.34) does not include counterterms which would eliminate the 0(af)  

errors. In fact it was noticed that these terms introduce spurious high energy modes 

that have detrimental eff'ects on the correlation functions. Also, the action of eq.
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(1.34) is improved only at tree level, but, since we work at rather large values of the 

gauge-coupling, it is not clear a priori, whether a 1-loop improvement is of any help. 

To clarify this question we refer the reader to Ref. [34] where studies of the scaling 

behavior of various quantities have been considered. The introduction of an adjoint 

part in the action of eq. (1.34) with a negative value for was considered in order 

to stay aw'ay from the SU(3) first order phase transition line. As already explained 

in Sec. 1.6 at the end-point of this SU(3) first order phase transition (see Ref. [28]) 

lattice artefacts might completely disguise the continuum physics. A recent study 

investigating whether corrections to scaling can be reduced by using a negative value 

of the adjoint coupling is presented in Ref. [35].
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Chapter 2

QCD Spectrum

2.1 Introduction

It is widely believed that QCD is linearly confining and that this explains why we 

do not observe quarks or gluons in nature. The chromo field distribution between 

static quarks in SU{2) was computed in Ref [32] on lattices with physical extent 

ranging from 1.3 fm up to 2.7 fm. The energy flux profile suggested that gluon 

field forms a string-like object over physical distances as large as 2 fm. Innumerable 

lattice QCD simulations [33] have also confirmed that the energy of the ground state 

rises linearly with the separation between the quark and antiquark, naively suggesting 

that the gluon field forms a string-like object connecting the quark and the antiquark. 

However, Juge, Kuti and Morningstar in Ref. [37] stressed the fact that the spherical 

bag model also predicts a linearly rising energy and hence the linearly rising ground- 

state energy is not conclusive evidence of string formation. We, thus, adopted the 

viewpoint of Juge, Kuti and Morningstar that the relevant properties of the confining 

gluon field are best revealed in its excitation spectrum. They reported in a series of 

studies [36, 37, 38, 39, 40, 41, 42] a comprehensive lattice determination of the excited 

gluon field between a static quark-antiquark pair.

A particularly favorable theoretical environment in which to observe the onset of
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string behavior is provided by the analysis of the spectrum  of a QCD periodic flux 

tube due to the absence of fixed color sources.

2.2 How to calculate the energy spectrum

The starting  point is the observation th a t

C{t)  =  {4)\t)(t){Q)) =  ^  |(vac|(/>|n)|V'^"‘ -)■ |(vac|( |̂0)l ê"- '̂'*, (2.1)
n

where |0) is the lightest state tha t couples to the operator cj) and E q is its energy. 

However, because the correlation function of eq (2.1) is decreasing exponentially 

in t, it will, a t large t, disappear into statistical noise. It is very im portant, then, 

to obtain the asymptotic behavior of the correlator as quickly as possible. In order 

to do so we choose operators for which the overlap with the lightest state  is as large 

as possible using smearing and variational methods. Also the use of an anisotropic 

lattice, described in the previous chapter, in which the temporal spacing at is much 

smaller than th a t in the spatial direction a^, enables us to exploit the enhanced 

signal-to-noise of the correlation function a t smaller tem poral separations.

So if we want the energy spectrum of a flux tube th a t winds once around one 

direction, we have to use the following strategy:

•  identify the symmetries of this particular problem

•  construct an operator with the quantum numbers of the desired symmetries

•  employ smearing and variational techniques to find the operator th a t best over­

laps the state with the quantum  numbers desired.
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2.3 Sym m etries of the problem

On a torus, a global Z3 symmetry is associated with each compactified space-time 

direction, fjL. In particular, multiplying all links in one direction by 2, a non-trivial 

element of Z 3 , the center of the group 5'J7(3),

. 2  U J x )  for x„ =  0 and v =  u,
U,{x)  U , { xY   ̂  ̂ (2.2)

Uu{x) otherwise,

leaves the Haar integration measure dUi and the plaquette action invariant. In 

fact in a contractible loop, such as a plaquette, any factor of 2  from a forward going 

link is necessarily cancelled by a corresponding factor from a backward going link. 

One of the simplest objects that is sensitive to the center symmetry is a Wilson line 

that encircles a spatial lattice direction, i:

Li{t) =  Tr Uj^^iUi{x +  ki , t ) .  (2.3)

From its correlation function

(ReLi{t) ReLi{0))  «  e for t ^  0, (2.4)

the energy of the “torelon” can be extracted, a state that exists only on a torus

and that corresponds to a color flux tube wrapping around a periodic boundary. In

contrast to the plaquette, the Wilson line will acquire just a single factor 2

Li{t)  ^  2 Li{t).  (2.5)

The transformation property of the Wilson line under the center symmetry implies 

that [7, 50]
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2, {U{ t )  i . (0 ) )  =  E,ez(3)^" i.(0)> =  0 =

=  (ReLi{t) ReLi{0)) — {ImLi{t) ImLi{0))  

3. (ReLi{t) ReLj{0))  = 0  ior i ^  j .

The first property is directly related to confinement. Recalling th a t confinement 

can be identified as the phase in which global center symmetry is also a symmetry 

of the vacuum [44], the vacuum expectation value of a torelon can be regarded as a 

true order param eter: zero in one phase and non-zero in another, which associates 

the breaking of a global symmetry with the transition from one phase to  the other.

=  0 ^  unbroken Z 3 symmetry confinement phase.

An analogy with the Polyakov loop, a loop th a t winds around the tem poral direc­

tion, would also disclose the physical implications of a non-zero vacuum expectation 

value of the torelon, in particular the breaking of the flux tube [45]. The last two 

properties are useful in the determination of the symmetries th a t we have to consider 

when calculating the energy spectrum of a flux tube. For instance, property 2 implies

Li{0)) =  (ReLiit) ReL,{0)) =  {ImL,{t)  7m L,(0)), (2.6)

and so torelon states are degenerate with respect to charge conjugation since 

under charge conjugation the trace of an ordered product of link matrices will go to 

its complex conjugate: so the real part is (7 =  -h and the imaginary p art is C  =  —,

Re Li{t) Re Li(t),

I m  Li(t) —I m Li{t).

^Here the imaginary part i{ReLi{t) ImLi{0) }  + {ImLi{t) ReLi{0))  vanishes by charge invaxiance.
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Property 3 tells us that the overlap of torelons winding around orthogonal spatial 

directions is zero, thus nothing is to be gained by producing linear combinations that 

transform according to irreducible representations of the rotation group Oh [50]. To 

clarify this point it is helpful to describe in detail how torelon states are constructed 

(for a review applied to glueballs see Refs. [46, 47]). The gauge invariant operator in 

eq. (2.3) is the simplest torelon operator that can be constructed on the lattice. It 

is clear, however, that it transforms trivially under translations on the winding axis 

and under rotations and reflections on the plane perpendicular to the winding axis. 

Thus more complex operators need to be considered to obtain the excited states of 

the flux tube. In order to do so, consider the trace of a product of link matrices

around an arbitrary closed loop C  that encircles a winding direction and call it tc'-

Tc =  Tr (2.7)

It is clear that properties (l)-(3) equally apply to this operator, for any shape C. 

In order to construct states with the right quantum numbers we assume that the 

continuum limit of SU{3) lattice gauge theory exists. The states to be considered are 

then described by the irreducible representations of 50(3 ) (8) Z2 ® Z2  where Z2 are 

the two discrete symmetries: the total space reflection and the charge conjugation. 

In addition we want to consider states with definite momentum. Call the symmetry 

group of interest G =  50 (3 ) (8> Z2 <S> Z2 <8> X, where X is the translation group, and 

T(6)C the shape obtained by applying the transformation T E G on C.  Torelon 

operators that transform irreducibly under an irreducible representation of the group 

G can be built by taking an appropriate linear combination;

^  (2.8)
X T s G p

The coefficients depend on the irreducible representation R  of the little group
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Gp, and the factor has been included to obtain operators with non-zero momen­

tum p. Applying the torelon operator of eq. (2.8) to the vacuum will create a state 

with momentum p  and quantum numbers that correspond to the irreducible rep­

resentation R  of the group Gp. As described above, the center symmetry of the 

lagrangian allows us to restrict our torelon operators to be positive under charge 

conjugation and therefore only the real part of the trace will be considered in eq. 

(2.8). If we consider operators with non-zero momentum along the l-axis, Pz, the 

little group Gp consists of rotations on the plane perpendicular to the i-axis and of 

the ^ 2 {'P) parity reflection that reflects operators in one coordinate axis on the z =  0 

plane, V  : (x, y)  —> { x , —y).  Operators with zero momentum are described by the 

irreducible representations of 5 0 (3 )  ® I ‘2 - However, because the overlap between 

torelons winding in orthogonal directions is zero, we can reduce this symmetry group 

to rotations on the plane perpendicular to one winding direction z, to the Z 2 {V)  

and to the Z2(7?.) that reflects operators about the midpoint on the winding axis. 

Summarizing, the representations to be considered are the ones that correspond to 

the following group:

5 0 (2 )  ® Z2 (P ) ® Z 2 { n)  for p =  0,

=  (2.9)

5 0 (2 )  ® Z 2 {V)  for P z  ^ 0  P x  =  Py  =  0-

On the lattice this symmetry group is broken to the point group <S> ' 2̂ {T̂ ) for 

Pz =  Q and Ciu for P z  ^  0. contains rotations of |  and the reflection in the xy  

plane (7^-parity) and has five irreducible representations: ^ i ,  A 2 , Bi ,  B 2 , E.  Z2(7?-) 

denotes the two-element group consisting of the identity operation and the reflection 

about the midpoint on the winding axis z. States that are even/odd under 7?.-parity 

are labeled by the subscripts g / u  respectively. The irreducible representations of 

and the corresponding coefficients in the linear combinations
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E x ,y ,z E T e a , «<''>ReTr(t/3-(»)c, ±  UnTmci) for P =  0,

(2 .10 )

e'"-' E t€ C „  o'*>ReTr[/T(«)C, for p,  #  0,

are described in detail in Appendix A. The index i is introduced, here, because 

the closed loop C{ used to build torelon states in eq. (2.10) can take any shape. 

We constructed fifteen different shapes and from each one we built a basis for each 

irreducible representation of using the character projection operator as described 

in detail in Appendix A. In Fig 2-1 we present the shapes used and in Table 2.1 we 

summarize the irreducible contents for each shape, Q .

Figure 2-1: The fifteen prototype lattice paths used in the construction of torelon 
operators

It is worth making a comment on the P-parity, V  : (x,  y) —> (x, —y) (see Ref [47]). 

The fact that the angular momentum operator x d y  — y d x  flips sign under parity has 

important consequences for the spectrum. In the continuum, states that transform 

irreducibly under S0{ 2 )  (g) Z 2 ('P) are built as |i, ± )  =  \j) ±  V\ j )  where Ij) is some
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state  with angular momentum j  and energy Ej .  As long as j  /  0 these two states 

cannot be null since \j) and V\ j )  are orthogonal to  each other and also they are 

degenerate since V  commutes with the Hamiltonian. This argument clearly fails for 

j  =  0, thus in the continuum we expect parity doubling for states with j  ^  0. On 

the lattice 5 0 (2 ) is broken to C4 and as explained in Appendix A the states th a t 

transform irreducibly under the j  representation also transform irreducibly under 

representations with j '  = j  ± 4 k  for A: =  0 , ± 1, ± 2, . . .  

shape  ̂Aig(O) ^(1) ^ 1, ( 0) B2M  A2u{0) Ai (2) Bi{2) B^{2) E{2) A i(l) ^ 2(1) B i(l) B^jl)
# 1 1 0 0 0 0 0 0 0 0 0 0 0 0
# 2 1 1 1 0 0 1 1 0 0 0 0 0 0
# 3 1 1 1 0 0 1 1 0 1 1 0 1 0
# 4 1 1 1 0 0 1 1 0 0 0 0 0 0
# 5 1 1 1 0 0 1 1 0 1 1 0 1 0
# 6 1 1 0 1 0 1 1 1 0 1 1 0
# 7 1 1 0 0 1 0 1 1 0 0 0 0 0
# 8 1 1 1 1 1 1 1 1 1 1 1 1 1
# 9 1 1 0 1 1 1 1 1 0 0 0 0 0
# 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1
# 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
# 1 2 1 1 1 0 1 1 1 1 1 1 1 1 1
# 1 3 1 0 0 1 1 1 1 1 1 0 0 0 0
# 1 4 1 1 0 1 0 1 1 1 0 1 1 0
# 1 5 1 1 1 0 0 1 1 0 0 0 1 0 1
d W  2 15 13 8 7 6 13 12 9 9 6 7 8 5

rhe notation is to be read as first letter corresponds to the irreducible representation of C41/ x
and the number in parenthesis represents the momentuna along the winding axis.

2d{R) is the number of shapes that projects on the representation R.

Table 2.1: Irreducible contents of the representations of Ci„ on the different loop 
shapes.

Thus on the lattice there is no reason to  expect parity doubling for j  — 2, any 

more than for j  =  0 , although we should continue to observe parity doubling for 

the 1^ states. Obviously once the continuum limit is reached by taking the lattice 

spacing to zero and the volume to infinity we should also be able to recover parity 

doubling for the 2^ states.
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2.4 Smearing operators

As already pointed out, the signal-to-noise ratio in the determination of the corre­

lation function, C{t) =  falls exponentially fast with respect to t.

Thus it is crucial to use operators for which the overlap (vac|</»(̂ |̂0) is as large as 

possible, that it is to say we want operators that are close to the wave-function of 

the state in question. In Ref [51], M. Teper showed, in a study on glueballs, that the 

mismatch between 0|vac) and the physical ground-state wave function |0) increases 

rapidly as the lattice spacing goes to zero. This is intuitively obvious since the phys­

ical extension of the state remains fixed while the operator <j) probes an ever smaller 

region as one decreases the lattice spacing. A crucial ingredient in constructing op­

erators 0 that possess the extended structure of the physical state is the link variable 

smearing. The smeared link is a combination of the original link and the spatial 

staples surrounding it

ul'-Hx) =  + (2 .11)

with

= U‘~°\x)Uf\x+0)Ul'-'‘1{x+ii)+Ul‘-°\x~0)U ‘-;Hx-i>)U^«\x-0+i,), (2.12)

where is a free parameter and is usually chosen such that = p. The smeared 

link is then projected back onto the gauge group: =  'Psv{^){U^^\^)-\-Cf\x)}.

The process can be iterated n-times and one then constructs from these smeared links 

the operators described in the previous section.

In our calculations we used a new analytic smearing of the SU{3) links proposed by 

C. Morningstar and M. Peardon [53]. Noting that the matrix Q^{x), defined by
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Qni.x) = -  ^ T r { V t \ { x )  -  n^{x)),  (2.13)

where

Si„(i) =  C,(x)Ul{x), (2.14)

is Hermitian and traceless, and hence, is an element of SU{3), they defined

an iterative, analytic link smearing algorithm in which the links {x) at step n are 

mapped into links U ^ ^ ^ \ x )  using

C/^"+i)(a:) =  (2.15)

The implementation of is done in an efficient way as described in Ref [53].

Our operators 4>f'\x) are then constructed as in eq. (2.10) using these stout, smeared 

links instead of the simple U^{x).

In particular, we used two diff’erent smeared links: one obtained from U/j,{x) after 6 

iterations with p =  0.12 and the other obtained from U^(x) after 12 iterations with 

the same value of p. The two levels of smearing, combined with the fifteen shapes of 

Fig 2-1, give us a large basis of operators to which we apply variational methods. The 

dimension of this basis for each representation is where presented

in the last row of Table 2.1, is the number of shapes that project on one particular 

irreducible representation, R.

2.5 Im plem entation details

The evaluation of the torelon operators of eq. (2.10) is done in two steps using two 

diff'erent C programs. The first program chooses some initial paths Q  (see Fig. 2-1) 

and represents them in some graphical representation, i.e. (z,x,z,z,-x,z). These initial 

paths are chosen to be combinations of some “basic operators” . These basic operators

31



could be straight lines, i.e. (z,...) with NZlink steps in the z-direction (similarly for 

other directions) and angles, i.e (z..,x...) with NZlink steps in the z-direction and 

NXlink steps in the x-direction (and similarly for the other directions). The use of 

these “basic operators” reduces the computational cost during the evaluation of the 

trace of links around the paths The operations of the group of interest K  = G®T  

(where G is the group of rotations and reflections as given in eq. (2.9) and I  are 

the translations on the z-axis) are then applied on the initial paths. Of the resulting 

paths TCi (where T E K) only those that differ with respect to each other are kept, 

reducing greatly the computational cost in the evaluation of sums of eq. (2.10). These 

paths are then labeled according to the group operation T G K  that was performed. 

From the character table presented in Appendix A, it is then straightforward to 

get the coefficient in each irreducible representation that must be assigned to each 

transformed path TCi in the sum of eq. (2.10). The second program performs the 

product of links along all the paths TCi generated by the first program in terms of the 

“basic operators” and multiplies their trace by the corresponding coefficients. Before 

evaluating the correlators we performed several checks. In particular we checked if the 

torelon operators were gauge invariant and also if they transformed according to the 

irreducible representation under consideration. The last check was done by applying 

the same group operations T E K  (translations and rotations) on the lattice and 

evaluating the torelon operators on these transformed lattices. These values were 

then compared with the torelon operators of the untransformed lattice to check if 

they transformed irreducibly under the representation of interest.

^As a simple example, choosing among the basic operators the following; # 1  =  (z,x), # 2  =  
(z,z) and # 3  =  (-x,z), an original path of the form (z,x,z,z,-x,z) can be re-expressed as (# 1 ,# 2 ,# 3 ) ,  
which halves the number of operations to be performed in the evaluation of the trace.
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2.6 Analysis details

From the large basis of operators constructed in the previous sections we form the 

best operator as a linear combination of the basis operators

A T(«)

=  (2-16)
1 = 1

The coefficients are determined by maximizing the correlation function

($ (« )t(0 )# (« )(0 ))' ’

The requirement =  0 yields a generalized eigenvalue problem

‘''>(0)C £(0«<f>W  =  A ™ ( 0 « f V ) ,  (2-18)
km

where Ckm is the x correlation matrix

W =  +  ' ) « ’W ). (2-19)
T

In common with most implementations, the eigenvectors are calculated with nor­

malization

= (2-20)
km

( R )
a t  t  =  1 and then frozen at all subsequent times. The eigenvector Vq cor­

responding the largest eigenvalue then yields the coefficients for the operator 

 ̂ which best overlaps the lowest lying torelon state |0) in

the representation R  of interest. Operators which overlap excited states can also be 

constructed using other eigenvectors o f eq (2.18). In Fig 2-2 we present the lowest 

and the first exited energies for the channel Aip(O) obtained using the m ethod de-
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scribed above. Information about the composition of in terms of the operators 

used in the simulation is obtained from the overlap (^nV i) =  J2jCij{0)vl^\

In the limit where the basis { ( f > i }  is complete this procedure becomes exact [54], This 

means that we can extract the energy of the lightest state, with the quantum num­

bers of the irreducible representation R, directly from the correlation function at any 

time t,

C{t) =  (2.21)

A, and A*.
ig ig

1  1 1 1  ̂ 1 1----------

^ I  "m iB--- , : ffi  -..................

N=2 string level

^ $ O
N =0 string level

"■‘ O 1 2  3 4 5 6 7 8 9
Time separation

Figure 2-2; Lowest and first excited state for the channel ^ig(O) for a 8̂  x 48 lattice 
with (3 =  2.0. 500 bins (10 configurations per bin) have been used.

In practice, however, we have a limited basis and eq. (2.21) gives us at best 

just an upper bound estimate for the energy Eq- We can improve this estimate by 

calculating C(t)  at all times t. For each time then we define an effective energy by

[

0. 5

0. 4

0. 3

34



( $ ^ ( t )$ (0 ) )  =  ( $ t ( 0 ) e - " ‘$ ( 0 ) )  =  (2.22)

and we know that £'eff will approach E q from above as t  increases. The better 

our choice of basis operators, the smaller the value of t  at which this occurs. Again, 

if our basis was complete then £'eff(^) =  E q for all t. So we can estimate the value of 

Eq from the value of £'eff(i) on its plateau. In practice, what we actually do is to fit 

the correlation function to an exponential in t  over a finite interval [̂ 1 ,^2] such that

($ t(^ )$ (o )) =  A  (e-® ‘ +  , (2.23)

where T  denotes the extent of the lattice in the time direction From the 

exponent we then obtain our estim ate of the energy E q and from the amplitude of 

the exponential the normalized projection of our operator onto the lightest state, 

i.e. |(vac|^f^^|0)p. Our choice of the fitting interval [ti, 2̂] is guided by the plateaux 

observed in the effective mass and is constrained by the requirement that a reasonable 

X^/d.o.f should be obtained. Error estimates on the energy E  and on the amplitude 

are obtained using a bootstrap procedure-

2.7 Num erical results

The elements of the correlator matrix given by eq. (2.19) were estimated using Monte 

Carlo methods. Different simulations were performed on the CMU Cluster The 

input parameters are summarized in Table 2.2.

The renormalized anisotropy is evaluated using the method described in Chap­

ter 1, Sec. 1.7. In particular the torelon dispersion relation for a 12  ̂ x 6 x 48 lattice 

has been evaluated from the correlation function of the simplest torelon (shape # 1

^The second exponential has been included due to  the periodic boundary conditions in the time 
direction for which we have C(t )  =  C ( T  — t) as it is clear from eq. (2.19).

''The CPU resources of the Carnegie Mellon University Cluster were kindly made available by 
Prof. C. Morningstar.
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^0 Lattice a j r o a s ( f m ) #  bins ^
2.0^ 7.205 0.3817 8 X 8 X 8 X 48 0.4332(11) 0.208(1) 2270
2.0^ 7.205 0.3817 8 X 8 X 12 X 48 0.4332(11) 0.208(1) 2966
2.0^ 7.205 0.3817 8 X 8 X 16 X 48 0.4332(11) 0.208(1) 6559
2.0^ 7.205 0.3817 6 X 6 X 16 X 48 0.4332(11) 0.208(1) 6190
1.8^ 7.201 0.3436 8 X 8 X 12 X 48 0.56306(75) 0.27 2966
2.0 7.205 0.3817 8 X 8 X 8 X 48 0.4332(11) 0.208(1) 500
2.0 7.205 0.3817 8 X 8 X 12 X 48 0.4332(11) 0.208(1) 2400
2.0 7.205 0.3817 8 X 8 X 16 X 48 0.4332(11) 0.208(1) 2900
2.0 7.205 0.3817 6 X 6 X 16 X 48 0.4332(11) 0.208(1) 2000

2.16 7.192 0.4080 8 X 8 X 20 X 48 — 0.167 3200
^Each bin is the average of 10 measurements ^Simulations done using only the first eight shapes 

Table 2.2: Input parameters used in torelon simulations.

in Fig. 2-1) winding around the 2  direction. This torelon line is associated with a 

particular point in the {x, y)-plane and is constructed from links which are smeared 

in a manner described in Sec. 2.4. Recall, eq. (1.37)

L, {p , t )  (2.24)
x,y

where

L^{x, y, t) =  Tr +  kz,  t). (2.25)

Eight smearing levels have been applied for this purpose and the outcome is 

presented in Fig. 2-3. The highest momentum used in the fit is {px,py) =  (1 ,1) to 

give the renormalized anisotropy of  ̂ =  6.16(11) for the simulation with /? =  2.0 and 

 ̂ =  6.08(17) for /3 =  2.16.

In the simulations presented in Table 2.2 which have been used to evaluate the 

QCD flux spectrum, five sweeps were performed between measurements and the mea­

surements were averaged into bins of 10 in order to reduce data storage requirements. 

In all simulations, the number of bins goes from 500 to 6500 depending on the size 

of the lattice used. The first five simulations were done using only the first eight
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Torelon dispersion on 12 x6x48
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Figure 2-3: Plot of E{p'^) versus on 12  ̂ x 6 x 48 lattice. The line shows the fit to
£(p2) = ^  + Bp2.

shapes given in Fig. 2-1. The results were presented at the Lattice03 conference in 

Japan [43]. However, the decay into noise of the A2{1) plateau and the ambiguity 

in the determination of the energy of the -6 2 (1), -629(0 ), >l2u(0 ) states made us think 

that the basis of operators could have been improved. In Fig 2-4 we display the 

overlaps ($ V i)  (for the shorter simulation, with /3 = 2.0) for these states, in a way 

similar to Ref. [50]. These plots give information about the composition of the “best” 

operator ^  for these states and they clearly show that the use of the pool with 15 

shapes will improve their energy determinations. For example, considering the ^ 2u 

state in Fig. 2-4, we see that the contributions of the basic operators (f)n and 0 i2 

are more important than the contributions of the basic operators (/»e and This 

fact explains why the energy determination of this state is poor when using only the 

first eight shapes. In general, the energy determinations of all states using the whole 

pool of operators has improved in those cases where it was poor and agrees in the

1 1 1 1 1 r i 1 1

[3=2.0, ^0=7.205

6000 configs

......

- ...

I

■
........ .................

■

..e-'""
... ,-e-

1 1 1 1 1 1 1 1 .j.
0 1 2 3 4 5 6 7 8

p̂  in units of (2 ;i/12 )̂
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cases where there was no ambiguity, already using eight shapes. The results of fitting 

the variationally-optimized correlators C{t)  to the function given in eq. (2.23) are 

summarized in Tables 2.5-2.8. We also included a two-exponential fit, according to 

the function,

=  A (e-^‘ +  +  B , (2.26)

in order to check if there were contaminations to the ground-state from excited 

states^. We found that the results obtained using eq. (2.26) are consistent with the 

one-exponential fit, showing that our operators overlap well with the ground-states 

in each channel. Some examples of the effective energy plots are presented at the 

end of the chapter in Figs 2-5,..,2-12. For each channel in each simulation done using 

fifteen operators, it was possible to find a fit region [̂ 1,^2] in which the correlation 

function was well described by its asymptotic form as indicated by the quality of the 

fit. Convincing plateau, which span a minimum of three time-slices or more, were 

observed in all effective energies. The overlaps with the lowest-lying states were also 

found to be good, better than 90% in most cases. This clearly demonstrates the 

effectiveness of the link-smearing and variational techniques in diminishing excited- 

state contamination. Our best estimates for the torelon energies in terms of are 

summarized in each of the Tables 2.5-2.9.

would like to acknowledge Dr. Sinead Ryan for providing me with the analysis-code used to 
fit our data to eqs. (2.23) and (2.26)
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p=0 A,
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P=1 B

Figure 2-4; Overlaps ($V n) =
that show the relative 

contributions to the “best” operator in 
the variational method. (See Sec. 2.7 in 
the text for more details.)
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2.8 Finite volume and spacing effects

In this section we want to evaluate the magnitude of the discretization errors in the 

torelon energy determinations. One source of uncertainty could be the finite volume. 

The energies of torelons confined in a finite box with periodic boundary conditions 

also in the directions perpendicular to the winding flux can differ appreciably from 

their infinite volume values. Finite volume effects can also induce a splitting in the 

Bi and B2 energies as pointed out in Section 2.3. In order to check the effects 

of simulating in a finite volume, we performed an extra simulation using a lattice 

of different spatial extent in the direction perpendicular to the winding axis. The 

temporal extent was held fixed at 48 grid points (2 fm). The results from the 6̂  x 16 

lattice differ very little from the 8̂  x 16 in most cases, suggesting that our lattice 

volumes are sufficiently large to ensure that finite volume errors are negligible, at 

least for the QCD flux lengths considered in our studies. The results are presented 

in Table 2.3.

Channel L i i / a *  =  6 II 00

p  =  Q Al g 0.651(2) 0.649(4)
p  =  \  E 0.733(1) 0.729(3)

0.794(4) 0.797(3)
p  =  0 A2u 0.788(4) 0.791(7)
P = 0 Bi g 0.801(4) 0.797(3)
P =  0 B2g 0.780(9) 0.796(3)
p  =  2 A i 0.813(7) 0.804(6)
p  =  2 B i 0.813(7) 0.805(7)
p  =  2 B 2 0.808(3) 0.805(6)
p  =  2 E 0.807(2) 0.805(4)
p = l  A i 0.862(3) 0.864(3)
p = l  A 2 0.826(8) 0.840(3)
p = l  B i 0.867(3) 0.869(3)
p = l  B 2 0.863(9) 0.886(8)

Table 2.3: Energy estimates in terms of Wor /5 =  2.0 and various lattice volumes, 
where Ly is the lattice extent in the directions perpendicular to the flux tube.
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In order to quantify finite lattice spacing artefacts we should evaluate the QCD 

flux spectrum at a fixed physical volume with different lattice spacings. The reason 

why we need to keep the physical volume fixed is clarified in the next Chapter, but 

for the moment it is enough to say that this is the only clean way to disentangle 

the spacing artefacts from the physical energy dependence on the length of the QCD 

flux tube, as predicted by an effective string theory. In particular, assuming that 

the Lz =  16 simulation at /3 =  2.0 and the Lz =  20 simulation at /? =  2.16 have 

exactly the same physical volume, x 16 = Cj x 20, we could compare the ratio of 

the energies in lattice units obtained in the two simulations (as shown in Table 2.4) 

to the expected value of

atE/atE  =  a^C/asi = 20 ^/16 (2.27)

where the ^’s are the renormalized anisotropies in the two simulations. In this 

way we could check whether finite spacing artefacts are present. It is, however, clear 

from eq. (2.27) that it is essential to tune the input parameters to get a perfect 

match in the physical volumes. Table 2.4 shows deviations of about 4% from the 

expected value. However the fact that this value is kept almost constant through 

all the channels made us think that there is a slight mismatch between the physical 

volumes in the two simulations.
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Channel /3 =  2.16 P =  2.0 ratio
p  =  0 Alg 0.543(1) 0.649(4) 1.1952(76)
p  =  1 E 0.598(5) 0.729(3) 1.219(11)

0.660(4) 0.797(3) 1.2076(86)
p  =  0 A2u 0.656(5) 0.791(7) 1.205(14)
P = 0  Big 0.657(4) 0.797(3) 1.2131(86)
P = 0  B2g 0.658(9) 0.796(3) 1.2097(86)
p  =  2 Ai 0.671(3) 0.804(6) 1.198(10)
p  =  2 El 0.668(3) 0.805(7) 1.205(11)
p  =  2 B 2 0.674(7) 0.805(6) 1.194(15)
p  =  2 E 0.663(3) 0.805(4) 1.2142(81)
p = l  Ai 0.713(4) 0.864(3) 1.2118(79)
p = l  A 2 0.695(4) 0.840(3) 1.2086(81)
p = l  Bi 0.710(4) 0.869(3) 1.2239(80)
p = l  B 2 0.720(4) 0.886(11) 1.230(16)

Table 2.4: Energy estim ates in terms of  ̂ for /3 =  2.0 and  ̂ for /? =  2.16. The 
ratio should be compared with a t / d t  ~  1.25.
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Channel Nexp fit range xV ^of Q energies overlap 
p = fd Aig 1 2^7 0 7 4  0.77 0.309(1) 0.987(3}

2 2-6 1.5/1 0.22 0.309(1) 0.987 2)
p = l E  1 3^  ̂ 06971 0.41 0.454(2) 0.963(5)

2 1-11 4.9/7 0.68 0.446(9) 0.92(5)
A\g 1 2̂ 8̂ L3/5 0.93 0.524(3) 0.967(5)

2 1-11 1.8/7 0.97 0.524(5) 0.965(13)
p = Q A2u I 3^7 3:6/3 0.64 0.459(4) 0.95(1}

2 1-11 7.1/7 0.41 0.455(12) 0.92(6)
p =  0 Big 1 2^6 E3/3 0.73 0.534(3) 0.967(6)

2 1-8 4/4 0.41 0.533(6) 0.963(20)
p = 0 B2g I 2^7 Z2/4 OJ 0.539(3) 0.954(6)

2 1-10 5.8/6 0.45 0.532(9) 0.934(32)
p = 2 Ai  I ^  0.052/2 0.97 0.606(3) 0.955 5)
p = 2 i 2^5 3372 0.17 0.606(3) 0.954(5)

2 1-5 0.98/1 0.32 0.594(9) 0.907(43)
p ^ 2  B 2  I 3^7 065/3  0.88 0.604(6) 0.92(1}

2 1-7 0.67/3 0.88 0.601(14) 0.91(5)
p = 2 E  I 3^8 0 7 4  0.12 0.595(3) 0.928(9)

2 1-10 10/6 0.11 0.595(8) 0.92(3)
p ^ l  Ai  i 3^  ̂ 3:274 0.53 0.612(6) 0.87(1)

2 1-11 2.3/7 0.94 0.584(29) 0.72(15)
p = l  A 2  i 2^5 L3/2 0.53 0.528(2) 0.956(4

2 2-7 3.2/2 0.2 0.528(2) 0.956(4)
p = l  Bi  I 3^8 0.94/4 0.92 0.641(6) 0.91(1}

2 1-11 2.2/7 0.95 0.627(21) 0.84 l)
p = l  B 2  1 3̂ 6̂ 0.057/2 0.97 0.634(7) 0.87(1)

2 1-10 5.5/6 0.48 0.630(16) 0.87(1)
_____________ 2 2-8 0.47/2 0.79 0.631(9) 0.86(2)

Table 2.5; Results from fits to the /? =  2.0, L — 8^ x  48 correlators using fifteen 
operators. Energies are given in units of
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Channel Nexp fit range / do i  Q energies overlap 
p = 0 Aig 1 3^5 a T e / l  0.69 0 .480(2) 0.970(5)

2 1-5 0.12/1 0.73 0.475(9) 0.90(1)
p = l  E  i  3^6 0 / 2  0.43 0.579(1) 0.954(4)

2 1-5 0.004/1 0.99 0 .575(5) 0.954(4)
p =  0 1 3^6 4 l j 2  0.11 0.643(4) 0.932(11)

2 1-6 2.8/2 0.25 0 .636( 13) 0.89(5)
p = 0 A2u I 2^5 1 5 /3  0.74 0 .631(2 ) 0.955(3)

2 1-9 4.1/5 0.54 0.630(2) 0.954(5
p = 0 Big i  2=6 0 / 3  0.92 0 .657(2) 0.960(4)

2 2-6 0.15/1 0.69 0.661(4) 0.97(2)
p ^ O  B2g i 2=4 0 1 2 /1  0.73 0 .656(2) 0.96(1)

2 1-8 7.4/4 0.12 0.656(3) 0.963(6)
p = 2 Ai  1 O  4 9 /4  0.29 0.683(3) 0.94(1)

2 1-5 1.1/1 0.31 0 .680(7) 0.93(2)
p = 2 I 3=8 L 7/4  0.79 0 .676(3) 0.93(1)

1 1-7 3.4/3 0.34 0.673(7) 0.90(1)
p = 2 B 2 I 2=4 O  0 .679( 1) 0.951(3)

2 1-5 2.4/1 0.12 0.672(8) 0.93(3)
p = 2 E  1 3=6 0797/2 0.62 0 .670(3 ) 0.919(8)

2 1-7 4.3/3 0.23 0.658(9) 0.85(5)
p -  1 1 2=8 0 / 5  0.13 0.727(2) 0.937(3)

2 1-10 8 /6  0.24 0 .723(5) 0.92(1)
p = l  A 2 i  2=8 2!e75 0.76 0.673(1) 0.942(3)

2 1-8 1.5/4 0.83 0 .670(4 ) 0.93(1)
p ^ l  Bi  1 3-8 C T /i (U  0.730(4) 0.92(1)

2 1-8 3.1/4 0.54 0 .721(9) 0.87(7)
p = l  B 2 i 3=8 0 7 4  0.28 0.743(4) 0.91(1)

______________ 2 1-8 4.5/4 0.35 0 .738(13) 0.89(4)

Table 2.6: Results from fits to the /? =  2.0, L =  8  ̂ x 12 x 48 correlators using fifteen 
operators. Energies are given in units of
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Channel N e x p  fit range x^/dof Q energies overlap 
p ^ O  Aig I 3^7 0 7 3  0.71 0.649(4) 0.94(1)

2 1-7 2.3/3 0.5 0.645(8) 0.91(4)
p = l E  I 3^6 081/2  0.67 0.729(3) 0.931(7)

2 1-6 1.7/2 0.43 0.725(7) 0.91(3)
p = 0 Alg I 2^4 0.00042/1 0.98 0 .797(3) 0.934(6)

2 1-8 8.6/4 0.07 0.797(3) 0.934(6)
p = 0 A2u 1 3̂ 6̂ 017/2  0.92 0 .791(7) 0.94(2)

1 2-6 0.2/3 0.98 0.789(3) 0.938(6)
2 2-6 0.21/1 0.65 0.788(6) 0.931(6)

p = 0 Big 1 ^  2 3 /4  0.64 0 .797(3) 0.931(6)
1 3-7 1.7/3 0.63 0.791(7) 0.93(2)
2 1-9 2.9/5 0.72 0.783U7) 0.88(6)

p=^0 B2g I 2̂ 8̂ T 7J5 0.74 0 .796(3) 0.943(6)
1 3-8 2.4/4 0.67 0.791(8) 0.93(2)
2 1-8 2.1/4 0.72 0.784^1) 0.90(4)

p = 2 I 3^8 0 4 / 3  0.97 0 .804(6) 0.90(l)
2 2-10 0.89/5 0.97 0.803(7) 0.89(2)

p = 2 El  I 3^7 L5/3 0.67 0.809(5) 092(1)
2 1-7 1.3/3 0.72 0 .805(7) 0.90(4)

~p = 2 B 2 I 3 3  0.025/1 0.87 0 .805(6) 0.9l(l)
2 1-8 7.3/5 0.23 0.800(11) 0.87(5)

p = 2 E  I 3^8 2 3 /4  0.62 0 .805(4 ) 0.92(1)
2 1-8 1.6/4 0.81 0.797(8) 0.88(3)

p = l  Ai  1 2 3  0 / 5  0.82 0 .864(3) 0.932(5)
2 2-10 3.5/5 0.62 0.860(6) 0.91

p = l  A 2 1 2^7 2 3 /4  0.62 0 .840(3) 0.915(5)
1 1-10 7.8/6 0.25 0.836(5) 0.90(1)

p = l Bi  1 2^4 0:44/1 0.51 0 .869(3 ) 0.933(5)
p = l B 2 1 3 3  r a / l  0.51 0.886(8) 0.92(2)

1 2-6 1.8/3 0.62 0.890(3) 0.933(6)
___________ 2________ 1-8 3.9/4 0.42 0 .886( 11) 0.933(6)

Table 2.7: Results from fits to the j3 =  2.0, L =  8  ̂ x 16 x 48 correlators using fifteen 
operators. Energies are given in units of .
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Channel Nexp fit range x^/dof Q energies overlap
p = 0 A^g 1 2-5 0 / 2  0.32 0.651(2) 0.963(4)

2 1-8 5.9/4 0.21 0.647(6) 0.95(2)
p = l  E  1 ^  1J2 0 6  0 .733(1) 0.947(3)

2 1-6 1.7/2 0.42 0.732(1) 0.944(4)
p = Q 1 2^5 4 3 /2  0.12 0.794(4) 0.926(7)
p = Q A2u 1 2-5 0.65/2 0.72 0.788(4) 0.930(7)

2 2-11 9.9/6 0.13 0.788(4) 0.931(5)
p = 0 Big i  2̂ 8̂ 2 1 /5  0.83 0 .801(4 ) 0.942(8)

1 3-8 2.1/4 0.72 0.799(9) 0.93(2)
2 1-9 2.2/5 0.82 0.800(6) 0.93(1)

p = 0 B^g I 2^8 9 3 /5  0.09 0.800(4) 0.946(7)
1 3-7 2.5/3 0.48 0.780(9) 0.88(2)
2 1-7 5.2/3 0.16 0.782(15) 0.87(6)

p = 2 Ai  i  3^6 0 / 2  0.49 0 .813(7) 0.91 1)
2 1-7 4.2/3 0.24 0.810(19) 0.89(9)

p = 2 Bi  i  3=7 5:9/3 0.12 0 .813(7) 0.92(1)
2 1-7 6.2/3 0.1 0.815(8) 0.93(2)

p =  2 52 I 2=7 5:3/4 0.26 0 .808(3) 0.935(5)
2 1-7 6.2/3 0.1 0.815(8) 0.93(2)

p ^ 2  E  I 2=8 3:6/5 0.61 0 .807(2) 0.935(3)
1 1-9 3.9/5 0.56 0.806(3) 0.935(3)

p = l  Ai  I 2=5 0 / 2  0.44 0 .862(3) 0.929(6)
2 1-5 0.81/1 0.37 0.853(12) 0.89(4)

p = l  A 2  i 2=6 477/3 0 2  0.841(3) 0.921(6)
1 3-6 0.88/2 0.64 0.826(8) 0.92l(6)
2 1-6 0.77/2 0.68 0.817(15) 0.83(6)

p = l  Bi  1 2=6 0.12/3 0.99 0 .867(3) 0.932(6)
2 2-6 0.13/1 0.72 0.865(5) 0.92

p = l  B 2  i 3=6 0 7 2  0.33 0 .863(9) 0.86(2)
_____________ 2 1-6 2.3/2 0.32 0.855(18) 0.82(7)

Table 2.8; Results from fits to the /5 =  2.0, L =  6^x 1 6 x 4 8  correlators using fifteen 
operators. Energies are given in units of
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Channel Nexp fit range xVdof Q energies overlap
p =  Q Alg 1 3-7 0.74/3 0.86 0.839(8) 0.99(2)

1 2-7 5/4 0.29 0 .823 (3 ) 0.946(6)
2 1-10 21/6 0.002 0.836(1) 0.971(4)

p  =  1 E 1 3-8 4.4/4 0.35 0.887(5) 0.90(1)
2 1-9 4/5 0.55 0 .880 ( 10) 0.90 1

P =  OA\ g 1 3-7 0.64/3 0.89 0.945(15) 0.87(3)
1 2-7 3.1/4 0.54 0.967(5) 0.93(1)
2 1-9 2.4/5 0.79 0 .956 ( 15) 0.89(5)

p  =  0 A2u 1 2-7 5.1/4 0.28 0 .952 (5 ) 0.927(9)
2 1-9 4.6/5 0.46 0.932(16) 0.85(6)

P =  0 Big 1 2-7 1.2/4 0.87 0 .962 (5 ) 0.93(1)
2 1-7 1.2/3 0.75 0.961(8) 0.92(1)

P = 0  B2g 1 2-6 0.9/3 0.82 0 .955 (5 ) 0.94(1)
2 1-6 0.9/2 0.64 0.955(7) 0.94(1)

p  =  2 Ai 1 2-5 2.8/2 0.25 0 .972 (4 ) 0.921(7)
2 1-7 4.9/3 0.18 0.960(13) 0.88(4)

p  =  2 El 1 2-5 1.9/2 0.39 0 .965 (4 ) 0.920(7)
2 1-9 4.7/5 0.45 0.954(13) 0.88(4)

p  =  2 B 2 1 3-8 4/4 0.41 0.939(10) 0.85(2)
2 1-10 5.7/6 0.45 0 .936 ( 18) 0.85(2)

p  =  2 E 1 2-5 1.7/2 0.43 0.960(2) 0.922(5)
2 1-9 4.7/5 0.46 0 .955 (9 ) 0.922(5)

p = ^ l  Ai 1 3-6 0.23/2 0.89 0 .998 ( 13) 0.87(3)
1 2-6 1.6/3 0.67 1.013(4) 0.913(8)
2 1-6 0.52/2 0.77 0.993(10) 0.87(3)

p = l  A 2 1 3-5 0.86/1 0.35 0 .976 ( 13) 0.79(3)
1 2-5 13/2 0.001 1.021(5) 0.907(8)
2 1-10 12/6 0.05 0.987(29) 0.7(1)

p = l  Bi 1 3-5 2.6/1 0.1 0 .991 ( 13) 0.85(3)
1 2-4 2.4/1 0.12 1.011(5) 0.908(8)
2 1-9 8.2/5 0.15 0.985(28) 0.8(1)

p =  l  B 2 1 3-6 2.3/2 0.31 1 .011 ( 14) 0.85(3)
1 2-5 1.6/2 0.45 1.028(5) 0.899(8)
2 1-7 4.8/3 0.19 1.010(15) 0.83(8)

Table 2.9: Results from fits to the /? =  2.0, L =  8  ̂ x 20 x 48 correlators using fifteen 
operators. Energies are given in units of
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Channel fit range xVdof Q energies overlap
p  = 0 Aig 1 2^5 0.17/2 0.92 0.543(1) 0.973(3)

2 2-7 2.6/2 0.28 0.543(1) 0.973(4)
p = l  E  2 2^T1 0 7 6  0.14 0.598(5) 0.91(2)
p  = 0 Alg I 3̂ 8̂ 0.11 0.660(4) 0.92(1)

2 1-8 5.9/4 0.21 0.644(16) 0.84(9)
p ^ O  A2u i 3^8 6/4 0 2  0.656(5) 0.91(1)

2 1-8 4.1/4 0.39 0.637(16) 0.80(8)
p  = 0 Big I 3̂ 8̂ 0 / 4  07f 0.657(4) 0.93(1)

2 1-11 4.1/7 0.77 0.652(10) 0.90(4
p  = 0 B^g I 3^8 174 0.91 0.658(4) 0.91(1)

2 1-9 3.4/5 0.63 0.644(15) 0.82(8)
p =  2 I 3^8 2:8/4 0.59 0.671(3) 0.922(9)

2 2-9 1.9/4 0.76 0.659(15) 0.86(8)
p =  2 Bi  I M  0.11/2 0.95 0.668(3) 0.917(9)

2 1-6 0.91/2 0.63 0.652(12) 0.83(6)
p =  2 B 2 I 4^8 2 3 /3  0.48 0.676(7) 0.92 3)

2 1-9 2.4/5 0.79 0.674(7) 0.92(2)
p =  2 E  I 3^7 0 7 3  0.23 0.663(3) 0.929(6)

2 2-7 0.34/2 0.85 0.644(16) 0.83(9)
p = l  I 3^5 084/1 0.36 0.713(4) 0.918(11)

2 1-9 8.4/5 0.13 0.707(12) 0.89(5)
p = l  A 2 1 3^5 O / I  0.26 0.695(4) 0.92(l)

2 1-5 0.19/1 0.66 0.680(20) 0.84(10)
p = l  Bi  I 3̂ 8̂ 0 7 4  0.76 0.710(4) 0.906(10)

2 1-9 7.4/5 0.19 0.703(14) 0.86(7)
p = l  B 2 I 04771 0.49 0.720(4) 0.90(1)

_____________2 1-9 7.1/5 021 0.709(13) 0.84(6)

Table 2.10: Results from fits to the /5 =  2.16, L =  8  ̂ x 20 x 48 correlators using 
fifteen operators. Energies are given in units of
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Figure 2-5: Effective energy plot showing the results of a single-exponential fit to the 
torelon correlation function for the ^ 2w(0 ) channel.
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Figure 2-6: Effective energy plot showing the results of a single-exponential fit to the 
torelon correlation function for the Big{0) channel.
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H gure  2-7; Effective energy plot showing the results of a single-exponential fit to  the 
torelon correlation function for the ^ 29(0 ) channel.
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Figure 2-8: Effective energy plot showing the results of a single-exponential fit to the 
torelon correlation function for the A i(l) channel.
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Figure 2-9: Effective energy plot showing the results of a single-exponential fit to  the  
torelon correlation function for the ^ 2 (1 ) channel.
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Figure 2-10: Effective energy plot showing the results of a single-exponential fit to 
the torelon correlation function for the B i( l)  channel.
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Figure 2-11: Effective energy plot showing the results of a single-exponential fit to 
the torelon correlation function for the Ai{2) channel.
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Figure 2-12: Effective energy plot showing the results of a single-exponential fit to 
the torelon correlation function for the 52(2) channel.
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Figure 2-13; Effective energy plot showing the results of a two-exponential fit to the 
torelon correlation function for the -E'(l) channel.
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2.9 Comments and comparisons with the litera­

ture

In this chapter we described the technology used in order to evaluate the spectrum 

of a periodic QCD flux tube. Considerations of the center symmetry only, allowed 

us to identify (see Sec. 2.3) the relevant symmetries of a closed flux tube encircling 

a periodic boundary with one unit net winding number: the “torelon” . The torelon 

state, in its simplest form can be written

Li{t) =  Tr +  ki, t), ;2.28)

(using a combination of smeared and blocked links), and has been widely used 

previously in literature to evaluate the string tension (see Refs. [47, 49, 48, 52).

To my knowledge, the work presented here is the first that tries to create system­

atically torelon operators that overlap states with all the quantum numbers allowed 

by the center symmetry. For completeness, therefore, we decided to describe briefly 

in Sec. 2.5 the technology adopted to this aim. These operators were also improved 

using the usual smearing method, as described in Sec. 2.4. The method adopted here 

is the analytic smearing proposed by C. Morningstar and M. Peardon in R ef [53], 

whose implementation is very efficient. The standard variational method is then ap' 

plied in order to obtain the operator that “best” overlaps the lightest state o: each 

particular channel as described in Sec 2.6. In this section, details of the analysis are 

also given. In Sec. 2.8 we tried to give a flavor of the finite volume effects and latticf^ 

spacing artefacts. We tried to convince the reader of the difficulties encountered in 

doing a system atic continuum limit extrapolation. For instance, we describec that 

two ingredients are strictly necessary;

1. we need to keep the physical volume fixed: L =  Ug Lg in the 2:-direction,

2. we need to calculate the renormalized anisotropy
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and both must be obtained with high precision.

Juge et al. in Refs. [36, 37, 38] studied previously the spectrum of a flux tube 

between static sources and they seemed to avoid a  clean continuum extrapolat on as 

described in Sec. 2.8. However, by simulating the energy spectrum for different ^uark 

separations with different lattice spacings they showed a good scaling behavioi-
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Chapter 3 

Quark confinement and the string 

picture

3.1 Introduction

Today almost no one seriously doubts tha t quantum  chromodynamics confines quarks, 

but despite efforts stretching over thirty  years there exists no derivation of quark 

confinement starting  from first principles. It is however widely believed th a t the 

confining regime of QCD is described by some kind of effective string model [30, 31]. 

This conjecture originates from the phenomenological observation th a t meson states 

in QCD fall on linear, nearly parallel, Regge trajectories. In fact when the spin, J  

of mesons is plotted as a function of squared meson masses m^, it turns out th a t the 

resulting points can be sorted into groups which lie on straight lines, and th a t the 

slopes of these lines are nearly the same. This remarkable feature of hadron physics 

can be reproduced by a very simple model th a t supposes th a t the meson consists 

of a straight line-like object of constant energy density running between a massless 

quark and antiquark. A way of making this model more realistic would be to allow 

for quantum  fluctuations of the line-like object in directions transverse to the line. 

These considerations led to the development of string theory and in particular to the
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Nambu-Goto action

S n  =  j  d r d a y ^ d e t  g ,  (3.1)

where x^{r ,a )  are coordinates of the world-sheet swept out by the line running 

between the quark and antiquark as it propagates and g is the induced metric on the 

world-sheet. The Nambu-Goto action, although inspired from hadronic physics, is 

not an adequate fundamental theory of mesons. In particular, for the long QCD flux 

tubes th a t we have considered in the previous chapter most degrees of freedom are 

frozen out. The only degrees of freedom required by the symmetries of the low-energy 

theory are the two transverse oscillations of the flux tube. Comparing this feature 

with the properties of the standard string quantization we arrive at a paradox. In 

fact the covariant (Virasoro) quantization leads to longitudinal oscillations outside 

the critical dimension d = 26, giving a total of rf — 1 oscillators, while the light-cone 

quantization spoils Lorentz invariance outside the critical dimension. Thus, for the 

purpose of describing the quantum states of a QCD flux tube, none of the standard 

string quantizations are correct and the string action adopted in order to explain 

the dynamics of a QCD flux tube should be treated as an effective, rather than 

a fundam ental one. A promising efl’ective string theory was derived by Polchinski 

and Strominger [55]. This model is valid only for a string whose length is greater 

compared to the fundamental scale a. In particular in their work they presented a 

conformal field theory with central charge not equal to d and the resulting covariant 

quantization with d — 2 oscillators. However, the Polchinski and Strominger action, 

as presented in Ref. [55] does not seem to deviate from the Nambu-Goto action for 

long strings as will be explained in the following sections. In Sec. 3.2 we present 

a summary of the study of Polchinski and Strominger. We caution the reader th a t 

this section does not intend to add anything to their work presented in Ref. [55], but 

serves only as a background for the derivation of the string spectrum, presented in
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Sec. 3.3.

3.2 Effective bosonic string

As with other effective theories, the action proposed by Polchinski and Strominger 

contains an infinite number of terms, suppressed by powers of the fundamental scale 

a and the theory breaks down when extrapolated to short strings. They started by 

considering strings that wind once around the direction:

(7 +  27t) =  3;^(r, cr) +  27r/?53, (3.2)

and wrote a general Lagrangian as an expansion in powers of where each 

first derivative of is of order R. They excluded terms proportional to the leading- 

order equation of motion d + d - X ^  (using light-cone coordinates = t  ±  a )  which 

can be removed by a field redefinition, and terms proportional to the leading-order 

constraints d±x-d±x,  which vanish. Then through order R~^ the only possible terms 

give the action

—  f  >
4ti- JS =  —  I dT+dr- (3.3)

The expansion around the classical ground state to the leading-order of the action 

of eq. (3.3) takes the form

(3.4)

where the must satisfy the following conditions in order to guarantee the 

periodicity of eq (3.2) and the Virasoro constraints T±± =  0:
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e>i-e^_ = 5 l  (3.5)

e±- e± — 0. (3.6)

Also combining eq (3.5) and eq (3.6) in (e+ — e_) • (e+ — e_) =  1 we get the 

additional condition

=  (3.7)

The action in eq. (3.3) is invariant [6S < under the modified conformal

transformation

Sx^ = e~{T~)d-X^ -  — . (3.8)
2 d+x ■ o—x

The Noether procedure gives the leading correction to the energy momentum 

tensor, that reads in the work of Polchinski and Strominger [55] as

=  +  +  (3.9)
2a^ 2 a+x ■ O-x

which obeys d - T  < 0{R~^)  (and similarly for (+  ^  —)).

Introducing the fluctuation defined as

+  (3.10)

the Lagrangian and the energy-momentum tensor become

^  ^  ^  +  0{R-^) ,  (3.11)

and
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T—  =  • a_y -  ' d-V ~  ^ e +  • d ly  +  0 (i?  ^), (3.12)

respectively.

The general solution compatible with the periodicity requirement is

=  x^, +  aa^T- +  ia +  aaor+ +  za (3.13)
n ■“  n

with Uq =  Oo and

OO CX)

d-y^ = a ^  d+y^'= a ^  a„e“*"’’+. (3.14)
n = —OO n = —00

Thus in order to obtain the Fourier modes of the energy momentum tensor, Lm 

and Lm simply insert the expansion (3.14) into the Virasoro constraints T =  0 and

R n

n

where the Virasoro operator reads

2 / an,m n

+  ^ e _  • ^  n^a„e“*"'’'+ +  0{R~'^)

T  1 -  -  -R _ r  an^/3 _ ^ / r , - 2 N  / o i r \
Liji 7) /  . • ^n—m ' • “I ' ®n "1“ ~X̂ n,0 • Gji +  OyR  ). (3.15)

z —'  a  I  IXm

In a similar way, from T  we obtain L̂ ,
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Lji 2 ^   ̂ • (̂ n—m ' • “I” ^ 2 ^  ®+ ' 0(^2 ). (3.16)
m

The normal ordering constant |  in (3.16) can be obtained by the algebra of the

Virasoro generators. In particular from the T  T  operator product Polchinski and

Strominger showed that the central charge and the Virasoro algebra are given by

c =  d+12/3, c =  26, (3.17)

and

\Lm) Ln\ — (rn Tl)LjYn,+n (3.18)

The physical states of the full Hilbert space are then those which satisfy the

Virasoro conditions:

Lo = Lo = 1, (3.19)

Lm = rn Vm > 0. (3.20)

3.3 Sym m etries

Since we are interested in comparing the energy spectrum of a QCD flux tube as 

described in the previous chapter to an effective string theory, we need to classify the 

string states by their quantum numbers with respect to total momentum, angular 

momentum and parity and therefore we need to find the corresponding operators. To 

obtain the total momentum of the string, consider the symmetry ^  and

apply the Noether procedure to get the conserved current daP^ = 0 where
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n  = (3.21)

The total conserved momentum of the string is then found by integrating the 

current over a at t  — 0 [57]. This gives

j f  =

47ra^

da

da

dx^
dr T = 0

(e^i? + e>tR) +  a + a ^ < eT L U ^ — i n a

^  (e-; + e") + i  «  + as . (3.22)

Thus using eq. (3.7) one obtains

R
O'

+  — e +  ■ a o  +  ■ O q  +  +  — Oq2a2 2a2
(3.23)

A similar statement applies to the current of the angular momentum J^ ''. For 

instance, considering only the angular momentum on the plane perpendicular to the 

direction we have for fj,,v ^  3:

dx‘'
dr T = 0

= 2oV + a Y i + « E
n̂ O n̂ O

(3.24)

(where we used eq. (3.22)) and thus

,dx''
dr

X''
,dx^

dr r = 0

\ n ^ 0  njtO /

+  Y 1  T ,  1-)],
n,m̂ O n,m̂ O
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where other terms like [a^, a^] vanish from the Poisson brackets. We therefore 

obtain

jM- =  for i/ ^  3, (3.25)

where

E  ^ (“- « <  -  “- « < )  ’ (3.26)
n̂ O

with an identical expression for in terms of a^.

We conclude this section by introducing two more symmetries that we will call TZ- 

parity and "P-parity. The coordinate transformation

a' = 27t -  a, (3.27)

which changes the orientation (handedness) of the world-sheet is the symmetry 

generated by the 7?.-parity operator. Applying eq. (3.27) twice gives the identity, so

= 1 and the eigenvalues of 71 are ±1. From the mode expansion of

given by eq. (3.13) one obtains

 ̂ = (27t — a)R5^ + (i?e^ + aa^ + R et + acg) r  

+ ia y
^  n " ^  n "
n^O n^O

=  71 {RS^a) 7Z~̂  +  (i?e+ +  aog +  R e t  +  aag) r  

+ iaJ2 -7Zdil7Z-̂ e-̂ ^̂ +,, n ^  n
n^O n^O

which, comparing the Fourier modes, gives:

(3.28)
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K o!;k - ‘ =  a;, (3.29)

K<TC-> =  < .  (3.30)

The 7^-parity operator reflects the string in one coordinate axis:

V ■. {-x^,x'^). (3.31)

From the mode expansion of given by eq. (3.13) one obtains

PalV- '  =  - a l  (3.32)

ValV-'  =  a l  (3.33)

with equivalent relations for the a’s.

3.4 C onstruction of the spectrum

As already said, the “physical states”, jphys > of the full Hilbert space are those 

which obey the Virasoro constraints:

(Lo +  L o - 2 ) | p h y s > = 0 ,  (3.34)

(Lo -  Lo)|phys > =  0, (3.35)

L„|phys > =  0 Vm > 0. (3.36)

The first condition (3.34) is equivalent to a mass-shell condition since, using eq. 

(3.16), it implies
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1 R  °°
-(ao +  Co) +  - ( e _  -ao +  e+ -ao) +  a_„-a„ : +  ; a_„ ■ a„ :) +  P - 2  +  0{R~^) =  0.

n = l
(3.37)

With the use of eq. (3.23) this expression becomes

2 ~  2 N  +  N  rxt r,-2\ /'Q

where

N  =  Y^a-n-o,n,  (3-39)
n = l

with a similar expression for N  in terms of a„. In a similar way the second 

condition (3.35) takes the form

^  ^  ^  • ao -  —e_ • ao +  0(i?"^), (3.40)
2 I a a

where P  can be understood as the operator that generates translations on the 

string and is given by

P ^ N  -  N.  (3.41)

The third condition (3.36) leaves d — 2 allowed polarizations for each physical 

state. In fact, considering the first excited states C • o_i|0, k, k > , where the ground

state |0, k,k  >  is an eigenstate of and with common eigenvalue ak' ,̂ the Li

subsidiary condition implies that C • w =  0 where

+  a P  -  (3.42)
a R

This has d — 1 solutions, but is null, so the solution is null and leaves
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d — 2 oscillations.

The operators N  and N  in eqs. (3.39) and (3.41) are then to be understood in terms of 

the transverse oscillations only. It is worth noticing that the conditions in eqs. (3.38) 

and (3.40) do not differ up to the correction given by Polchinski and Strominger from 

the physical conditions derived from the simpler Nambu-Goto action. In the rest of 

this section all formulae obtained for the string spectrum can be regarded as derived 

from Nambu-Goto theory or equally from Polchinski and Strominger theory (up to 

the order given in Ref. [55]).

We need novv̂  to compare the spectrum of the bosonic string considered above with 

the gluon excitation spectrum of the QCD flux tube. The first step is to relate the 

length L of the QCD flux tube to the radius R  of the closed string

L =  2ttR. (3.43)

Also, the parameter l / 4 7 ra  ̂ containing the fundamental scale a has dimensions 

of (length)"^ or (mass)^ (see eq. (3.3)) and therefore can be identified as the string 

tension a

1
o  =

47ra^

Recalling also the value of j3, eq. (3.38) can be rewritten as

(3.44)

—p  ̂ =  — -'Ka +  Attg {N  -\- N ).  (3.45)
o

The problem is then reduced to finding the excitation modes of the bosonic string  

with exact momentum P , angular momentum J , 7?.-parity and P-parity for each 

energy level, i.e. the eigenstates common to the operators P , N ,J  =  E 12 +  -^ 1 2 5  

and V. As already noted, after imposition of the physical constraints there are only

2  independent transverse oscillators and this suggests adopting the 2 -dimensional
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harmonic oscillator algebra.

Noting that the a m  are related to the conventionally normalized harmonic oscillator 

operators by

<  = (3-46)

(3-47)

where the superscript H  denotes the harmonic oscillator operators, we can define 

the 2-dimensional harmonic oscillator algebra by

Also, from the commutators of ajj we get

K . « a = 0 ,  l < , o f | = J „ , „ ,  (3.50)

« >  < 1 =  0. K .  < 1  =  (3-51)

Similar algebra can be obtained for ajj. In terms of this algebra the energy, angular

momentum and momentum operators in eq. (3.39), eq. (3.26) and eq. (3.41) take

the form

/ /  =  7V +  iV =  ^ z ( i V /  +  Ar/ +  7Vf+ iV/), (3.52)
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J = E,2 + Eu = Y.^-N: + N f - N :  + N̂ ),
i

(3.53)

P  -  (TV/ +  <  -  iV/ -  Nf ) ,  (3.54)
i

where the Ni S  are the number operators N  =  a|aj. Similarly the 7?.-parity and 

P-parity operators will act on this new system of oscillators as

n a in -^  =  ~at (3.55)

=  - a t  V aiV -^  =  (3.56)

The general eigenstate common to H,  J  and P  is of the form

!■> > =  > , (3 .57)
j k l m

with eigenvalues

E =  Y^in^.+Y^jn'^^ +  ' ^ k h l  +  ' ^ l n f ,  (3.58)
i j  k I

3 ^ +  (3-59)
i  j  k I

and

p =  ^  ^  jn^ - J 2 k h l - Y ^  Inf .  (3.60)
i j  k I

As already said, the quantum ground state |0; fc. A: >  is an eigenvector of Oq and 

Cq with common eigenvalue ak^  and is annihilated by the lowering operators, i.e. 

j  = 0, p = 0 and N  = N  = 0. If we choose k =  {ko, 0, 0, k^) and impose the physical
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condition (3.40) we obtain, with the aid of eq. (3.5), =  0 and for the total energy

E l =  — ^7ra. (3.61)
o

Also this state is an eigenvector of Tl and V  with eigenvalue +1 and thus can be 

identified with the gluonic flux tube ground state ^1,(0).

Let us now analyze in detail the first three energy levels, where most of the gluon 

states we are interested in, will lie. Denoting with a common notation the four 

harmonic operators as

we can list all the possible ways of building an eigenstate of H  and P  with eigen­

values E  =  1, 2, 3 and p =  0, ± 2  respectively.

The complete list is presented below, where, for example, the notation n x t m  denotes 

the possible ways to build an operator that creates n types of an m string mode of 

right/left chirality.

E =  1 E ^ 2 E  =  3

p =  0 2 x t l

p — ±1 1 X ti 3 X ti 

1 X -j- 1 X 2̂ 

1 X ti +  1 X ti

p ^ ± 2 1 x t j

1 X t 2

2 x t l

In the first energy level there are only the states denoted by the notation 1 x ti,  

that is states created by the string operators From eq. (3.54) there are just

two states with positive momentum that can be built in this way: and with

angular momentum j  =  —I and j  =  I respectively. Also these two states are related
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to each other by the T’-parity operator and they are not eigenstates of the 7?^-parity 

operator, as expected. Thus we can identify { a f  +  â i -,0!^ — ai^)|0; k , k  > with the 

gluon state  £'(1) with total energy given by:

— E q 47ra +  pj, (3.63)

where, from eq. (3.40), Ps = ^ -  Applying the same analysis to the rest of the 

energy levels we can summarize the outcome in Table 3.1.

Level Type State QCD R{p,)
E=0 to |0) AigiO)
E=1 I X t i (“f  + a f , a f - a f ) | 0 ) E ( l )
E=2 2 X t i ( a f a f +  a f a f ) | 0 ) Blg{0)

(oftaf -  a fa f ) jO ) B2g{0)
( a fa f - A2u{0)
(afa« +  a f a f  )|0) AUO)
o f t t f  |0) A ( 2 )

I X ( W f +  ( a r n i o ) 5 i(2)
- ( a f ) ^ ) | 0 ) B2{2)

1 X t 2 (®2 + -  4^)10) E{2)
E=3^ \  X t \  \  X t2 ( d f a f +  0^02^) 0) B i ( l )

( a f a f -  a f  4^)10) 5 i ( l )
( a f a f +  a f a f )  |0) ^i(l)
( a f a f -  a f a f ) | 0 ) ^ 2(1)

^This level also includes the states 1* with p = l and states with p=3 not considered in our calcula­
tions

Table 3.1: Lowest string energy levels and their corresponding string and QCD states. 
The operator creates an m string mode of right(left) chirality.

It is worth considering the states th a t lie on the second level as listed in Table 3.1:

•  The two states (af^)^ and (a^^)^ have angular momentum j  = 2 and j  = —2 

respectively. They are not eigenstates of the 7?^-parity operator and they are 

related to each other by P-parity. Recalling how the states were built in 

Appendix A we can identify the corresponding linear combinations with the
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gluon states Bi{2 ) and 8 2 (2 ). Similar considerations apply to the states 

and whose linear combination we can identify with the gluon state £^(2). 

The total energy for these four states is given by

Ei = El + Sira + pI, (3.64)

where, using eq. (3.40), pz =  X '

• The state is an eigenstate of both the 7^-parity operator and V-

parity operator with eigenvalues —1, in agreement with our identification with 

the gluon state ^2u(0). Similar considerations apply to the other states with 

momentum p =  0. Their total energy is

El = El + Sttct. (3.65)

Therefore, in the second level there is a fine structure predicted by this string 

model between the states with momentum p = 0 and momentum p — 2 .

3.5 Comparison with the QCD flux tube

The spectrum shown in Fig. 3-1 provides clear evidence that the gluon field as ob­

tained in the previous chapter, can be well approximated by an effective string theory 

for large flux length L. In order to systematically compare the spectrum of gluonic 

excitations of a periodic QCD flux tube with the spectrum predicted by an effec­

tive string theory, such as the one derived by Polchinski and Strominger, we need to 

address three issues: the Liischer term, level ordering and level degeneracy and the 

energy gap between levels.
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Liischer term

The transverse size of the hadronic flux tube is expected to be larger than 0.5 

fm [52]. This corresponds, with our lattice spacing set at ^  0.21 fm , to about 

2-3 lattice spacings. Thus any effective string theory should only apply for 

lengths greater than this transverse size In our studies we are considering a 

string of length greater than 1.6 fm thus we are far from the critical value of 

0.5 fm. The ground state energy, given in eq. (3.61), at large L  gives the usual 

formula

E( L)  =  a L - 7 r / ( 3 L ) .  (3.67)

Fitting L  from 8 to 20, using the data presented in the last chapter, to the 

function f ( L )  =  A L  B j L  we obtain an acceptable fit with

^  =  0.04145(17), J5 = -0 .1 8 3 (1 6 ), x V d o f= 1 .4 , (3.68)

where the parameter B  is close to the expected value tt/3^ =  0.170(3) ( the 

value of the renormalized anisotropy is taken to be  ̂=  6.16(11)). Attempts to 

fit to the function f { L )  =  A L  gave an unacceptable value for x^/dof.^

The plot of

^Various authors tried to give an answer to the question: when is a string “long”?
G. Bali in Ref. [7] suggested that, because of the form of the ground state energy, given by

E{L) =  (3.66)

the string picture at best appHes to distance Lc =  ~  0.65 fm, since l/-\/a  0.45 fm.
B. Lucini and M. Teper in Ref. [45] suggested that provides the natural length scale
for the physics of the confining flux tube and therefore a string of length =  Ly/a  >  1 ( thus 
L ^  0.45 fm ) can be considered long.

^We also fit the ground state in its form E'̂  =  — |7tct to the function f{x)  =  A^x +  B A
obtaining

A =  0.04142(17), B =  -0.351(31), xV dof =  1-5, (3.69)

where the parameter B  is close to the expected value | |  =  0.340(6).
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E ( L ) ! L  = o - ~ ,  (3.70)

in Fig 3-2 best illustrates the presence of the Liischer term  in our results. The 

correction L~^ in eq. (3.67) expected by an effective string theory is slowly 

decreasing and it is not obvious when it can be considered negligible. From 

our fit data, it is an empirical observation th a t this term  could be considered 

negligible when it is of the same order as the error estimate for A  as given by 

eq. (3.68), i.e.

~  «  O M L ,  (3.71)

which implies L >  3 fm. In the case of a string with fixed ends one has to take 

into account the self energy of the static ends. The ground state energy

E{L)  = Vo + a L- T r / {1 2 L) ,  (3.72)

shows th a t the constant Vq tends to obscure the contribution 7t/{12L)  coming 

from the self energy of the quantum  fluctuations of the string. A torelon has 

no such “end effects” and also its contribution to the L~^ term  is four times 

bigger than for a fixed end string. These observations suggest th a t it could be 

easier to detect the presence of the Liischer term  using closed strings.

Level orderings

For 1.5 < L <  2 fm the level orderings of some states are not consistent with 

the expectations from an effective string theory. In particular the ^2u(0) and 

A 2 {1) states, in the second and third level respectively, seem to undergo a 

crossover above 2 fm as shown in Fig. 3-1. It is worth noting th a t the quark- 

antiquark spectrum  as reported by Juge et al. [37] exhibits a similar behavior
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(even though for earlier L) exactly for these same states that according to their 

notation are to be identified with and For L >  2 fm the levels agree 

without exception with the orderings expected from an effective string theory.

Level degeneracy

For 1.5 <  L <  2 fm the level degeneracy of the ^2^(0) and ^ 2 (1 ) states, as 

expected from an effective string theory, is lost, and for the other states is 

approximate. For L >  2 fm we see that the ^2«(0) state seems to slowly 

reach the right degeneracy with the states belonging to its level group. The 

degeneracy of the second level, approximated at around 2.5 fm, is perfect for flux 

length up to 4 fm as shown in Fig. 3-4^. In order to check this striking behavior 

of the periodic flux tube we tested these degeneracies using two different values 

of the lattice spacings a* =  0.21 fm and ag =  0.17 fm for the flux tube with 

L =  3.3 fm. The results are shown in Figs 3-7 and 3-8. It is worth stressing 

that in the second level the split between the two groups of states with difl'erent 

momenta (p =  0 and p =  2) and its decrease with L  is expected by any effective 

string theory, as described in the previous section. It could be interesting to 

check the L~^ dependence, however, even if our data qualitatively agree with 

this expectation, we need more simulations above 2 fm in order to prove it 

quantitatively.

In the third level the problematic state A2{1) never reaches the degeneracy with 

the other three states belonging to its level group, at least for the lengths L 

considered here.

Energy gap

For 1.5 <  L <  2.5 fm the energy gaps agree surprisingly well with the string 

expectation for all levels — 0 ,1 , 2, 3 as shown in Figs. 3-2,..,3-6. Polchinski

^For the simulation at 4 fm the error-bars are slightly bigger. This last simulation was performed 
in order to confirm that the perfect degeneracy seen at 3 fm was conserved for L > 3 fm. We therefore 
did not consider it necessary to reduce further the error-bars by increasing the statistics.
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and Strominger claim  in Ref. [55] that their procedure, briefly sum marized in 

the previous sections, can be continued to find higher order corrections to the  

action in eq. (3.3) and in particular they give hints for corrections of order 

However, it is our opinion that, at least in the range of flux lengths we 

are considering, these term s would probably not add any useful inform ation to  

our numerical studies. However the m ost tantalizing behavior is the deviation  

for flux of length L >  2.5 fm from the effective string theory o f Polchinski and 

Strominger and from Nam bu-G oto. These deviations make the applicability  

of an effective string theory problematic. The spectrum  of the static  quark- 

antiquark system  studied by Juge et al. in R ef [36] presents a sim ilar behavior 

for long separations  ̂ .

Torelon excitations

^N =3
" n =2  p=2 
< N = 2 p=0

N=1

"n = o

;liort distance 
ordering

w 0.6

0.4

0.2

2010 15 25
L /  a

S

Figure 3-1; The spectrum  of gluonic excitations for a periodic flux tube o f length L. 
The crossover of the two states ^2u(0) and ^ 2 (1 ) is shown. T he lines represent the 
Nam bu-G oto formula in lattice units.

would like to acknowledge my debt to Prof. Kuti for the advice he gave me to plot the 
energy gaps for all levels as against the length L. This makes the equivalence between the
Nambu-Goto and Polchinski-Strominger spectrum clear up to the order presented in Ref. [55].
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Figure 3-1: The spectrum of gluonic excitations for a periodic flux tube of length E. 
The crossover of the two states ^2u(0) and A2{1) is shown. The lines represent the 
Nambu-Goto formula in lattice units.

would like to acknowledge my debt to Prof. Kuti for the advice he gave me to plot the 
energy gaps for all levels as against the length L. This makes the equivalence between the
Nambu-Goto and Polchinski-Strominger spectrum clear up to the order presented in Ref. [55].
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Figure 3-3: The first energy gap above the ground state  lEf = + Ana +  . The
results are shown against the length of the periodic flux tube L. The line represents 
the Nambu-Goto formula in lattice units and its width takes into account the errors 
in the estimation of the string tension and the anisotropy.
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N=2 p=0 string level
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Figure 3-4: The second energy gap above the ground state  =  E q +  Sttct. The 
results are shown against the length of the periodic flux tube E. The line represents 
the Nambu-Goto formula in lattice units and its width takes into account the errors 
in the estim ation of the string tension and the anisotropy.
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N =2 p=2 string level
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Figure 3-5: The second energy gap above the ground s ta te  =  Eg +  + p\. The
results are shown against the length of the periodic flux tu b e  E. T he line represents 
the N am bu-G oto form ula in la ttice  units and its w idth takes into account the errors 
in the estim ation of the string  tension and the anisotropy.
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Figure 3-6: The th ird  energy gap above the ground state E’f  =  Eg +  127ra + P 3 . The 
results are shown against the length o f the periodic flux tube E. The line represents 
the Nanibu-Goto form ula in la ttice units and its w id th  takes in to  account the errors 
in the estimation of the string tension and the anisotropy.
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Figure 3-7: Degeneracies for the string level N=2 for the states with p= 0  obtained in 
two simulations w ith different lattice spacings and same physical volume of 3.3 fm.
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Figure 3-8: Degeneracies for the string level N =2 for the states with p= 2  obtained in 
two simulations with different lattice spacings and same physical volume of 3.3 fm.
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3.6 Comments and comparison with the literature

In this chapter, Monte Carlo computations of the energies of fourteen stationary 

states of the gluon field of a periodic flux tube of length L were presented for a range 

of L from 1.5 to 4 fm. We found a striking confirmation of string-like flux formation 

of the gluon field. In particular the Liischer term predicted by string theory seems 

to be well reproduced by our numerical calculations of the ground state energy. This 

is in agreement with previous numerical studies of a periodic flux tube as presented 

in Refs [52, 45]. In order to compare our numerical results to an eff’ective string 

theory we also addressed three important issues: level ordering, level degeneracy and 

the energy gaps between levels. The string-like level ordering is soon reached at 1.6 

fm for all the states apart from the two problematic ^2u(0) and >12(1 ) states. The 

^2ti(0) state reaches the level order expected by string theory between 1.5 and 2.5 

fm while the ^ 2 (1 ) state surprisingly a bit later. The string-like degeneracies of the 

states considered in this study are also well established for length L greater than 

2 fm, apart from the problematic ^ 2 (1) state. An interesting observation on the 

^ 2u(0 ) state is that its energy with respect to the ground state is kept constant, 

A E  =  E { A 2u) — E{Aig)  Si 855 MeV for intermediate distances. An ongoing study on 

its excited state could reveal a new interesting physical interpretation for this state 

for lengths 1.5 < L <  2.5 fm. The energy gap of the first excited state of the spectrum 

of a periodic flux tube seems to follow the Nambu-Goto expectation for all lengths 

L >  1.5 fm, while the higher energy gaps (N=2 and N=3) seem to deviate from the 

string expectation for lengths L >  2.5 fm. These deviations challenge an effective 

string theory and they are also present in the spectrum of a static quark-antiquark 

potential [36].
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Conclusions

The main object of the first part of this work was the description of the lattice 

technology and methodology used to evaluate the spectrum of a periodic flux tube. 

The first step was to describe an improved anisotropic lattice action that C. Morn- 

ingstar and M. Peardon proved, in their calculations of the glueball spectrum, to have 

good scaling behavior. We then described the methodology we adopted in order to 

identify the symmetries of a periodic flux tube that winds around one direction. In 

fact an extensive use of the properties of the center symmetry allowed us to reduce 

the symmetries we have to consider when studying a periodic flux tube. A large 

number of torelon operators were then systematically constructed. Details on the 

implementation and on the form of these operators are also given, since there was 

no previous description in the literature to date. Smearing and variational methods 

were then applied. We performed several long numerical Monte Carlo simulations 

for different flux lengths in order to evaluate the energy of each operator with the 

quantum numbers desired. Convincing plateau were observed in all effective energies 

confirming the quality of the torelon operators we built. Simulations with different 

volumes and different values of P were also performed in order to study finite vol­

ume and lattice spacing artefacts. However a clean extrapolation to the continuum 

seems problematic since it is required to fix the physical volume exactly at the same 

size while varying the value of /5. It is also important to evaluate with higher preci­

sion the renormalization in the anisotropy In order to evaluate the renormalized 

anisotropy the calculation of the torelon dispersion relation seems to be cleaner
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than the sideways potential method, however we still need to reduce further the er­

rors we obtained. The second part of this work is dedicated to the description of 

an effective string theory with central charge not equal to the dimension d and the 

resulting covariant quantization with d — 2 oscillators presented by Polchinski and 

Strominger in 1991. However, as it is also clear from their article, the spectrum, 

derived from it, does not deviate from the Nambu-Goto spectrum at least for the 

corrections they introduced. We then proceeded in comparing the spectrum  of the 

QCD periodic flux tube with the string expectations. Our numerical results confirm 

the string-like flux formation and details are given regarding the Liischer term  in the 

ground state, the level ordering, degeneracy and energy gaps between levels. The 

agreement with a string theory is striking in the level ordering and in the degeneracy 

of all of the fourteen states we considered, apart from the A 2u{0 ) state th a t reaches a 

perfect degeneracy only at L > 2.5 fm and the problematic A2{1) state which seems 

to have a string-like behavior for bigger L. Further investigations on the nature of 

these problematic states for intermediate lengths are still ongoing. The deviations 

from the string energy gap for lengths L > 2.5 fm is problematic and already seen in 

the spectrum  of a quark-antiquark system. It is not clear what the source of these 

deviations is.
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Appendix A

Group theory

It is convenient to begin this section with a brief discussion of the background 

group theory that is necessary for building irreducible representations of the point- 

symmetry group Ciy®'L2{R). The simplest procedure for finding the representations 

of Cii, <S> ’̂ 2{R)  is to consider first the abelian subgroup C4, which has only four el­

ements: the identity E  and the rotations by tt and named Ciz,C2z and 

respectively. Since the number of classes in an abelian group is equal to the order 

of the group we have four irreducible representations, all of them one dimensional. 

From the fact that =  E  , C2Z =  C'L and C2zCaz =  it is easy to build the 

character table of the group.

C 4 E C2Z
^ - 1

A\ z 1 1 1 1

B 1 -1 1 -1

E \ x ± i y 1 i -1 -i

1 -i -1 i

Here we follow the usual notation for the representations: one dimensional representa­

tions are denoted by A  or B,  depending on whether the basis function is symmetric 

or antisymmetric with respect to rotation about the principal axis (that has been
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chosen to be z), while the two one-dimensional representations denoted by E are 

complex conjugate. This will be more apparent later, once a basis for each repre­

sentation has been found. In order to do so, let us consider the general element v, 

which in our problem of finding gluonic operators that transform irreducibly under 

C4 will correspond to a general shape of torelon, but could, in general, be a three 

dimensional vector or a function f {x,y,z) .  Recalling that the character projection 

operator for each irreducible representation is defined as

^  ^ E  x(r)*o(T),
 ̂T e G

where x{T) is the character of the operation 0{T) and g 

group, we can build a basis for each irreps r(T)

VA = P^v = \ {0 {E)v  +  0{C,,)v + 0 {C2z)v + 0(C4-;)t;), (A.2)

(A.l)

= 4 is the order of the

VB = P^v  =  -AO{E)v -  0[C,,)v  + 0{C2z)v -  0(C4-;)t;), (A.3)

ve =  P^v =  \ {0 {E)v  + iO{C,,)v -  0 {C2,)v -  iO{C ,̂^)v), (A.4)

and its complex conjugate

Ve =  P^v  =  \ {0{E)v  -  iO{C^,)v -  0{C2z)v + iO{C^^)v),  (A.5)

where for instance 0 {Ciz)v is a loop with the shape obtained rotating of |  the

initial loop v. For example, the graphical representation of eq. (A.3) is illustrated in

the following figure:

 ̂ ■ n r •
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for the simplest staple

_J L

It is easy to check that with R = A, B, E  transforms irreducibly, since 0 {T)v^ = 

x (T )v^  for all T  G C4 (for one dimensional representation x{T) = r(T )), thus v^, 

given by eq. (A.2)-(A.5) is a basis function for the corresponding one-dimensional 

representation R. In order to label each of these representations with the correspond­

ing value of the irreducible representation j  of the continuum group, SO{2), it is best 

to note that, as any abelian group, C4 is a cyclic group (of order 4) with generator Caz, 

since = E  as expected. Thus the characters can be written as x(C'S) =  

with j  = 0, 1, 2, 3. Looking at the table above we can therefore make the following 

identifications: the representation A  corresponds to j  = 0, B  to j  = 2, E  to j  = 3 

and its conjugate to E  to j  — 1. Also note that the states that transform irreducibly 

under a representation labelled by j ,  transform irreducibly also under f  = j  ± 4k for 

k = 0 , ± 1 , ± 2 . ...

We can now easily generalize the procedure to the non abelian group C41,: it is the 

semi direct product C4 ®1,2{V) where Z^iV)  =  {E,IC2x}, IC2X being the reflection 

in the plane passing through the principal axis 2. Thus the group consists of 8 

elements: the four elements of C4, {£', C42, C2z-, and the four elements obtained

by group multiplication of IC2X with them:

{lC2xJC2a = IC2xCiz,IC2b =  IC2xIC^^, IC2y =  IC2xC2z}- It is easy to check that 

they form 5 classes:

• c, = {£},

•  C j =  {C2A,

.  Cj = {C4„C,-‘},

• Q  =  {IC2x,C2y},
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•  C, = {IC2a.C2,}.

Since the sum of the square of the dimensions di {i = 1, . . .  ,5) of the inequivalent 

irrep is equivalent to the order of the group G there are 5 irreducible representations 

with dimensions di = d,2 = = I and d^ — 2. The simplest procedure

for finding the representations is to start from those previously determined for C^, 

which, as already noted, is a subgroup of C4 .̂ The eigenvalues of IC 2X are ±1, since 

I C 2 X  ~  Hence taking the basis function v a  of the representation A  of C 4  we 

have either 0{IC2x)va — ^va-  Thus we obtain both the character table and the 

basis functions of the two one-dimensional representations Ai and A 2 , symmetric 

and antisymmetric under the reflection IC 2X, given respectively by

VAi = v a  +  0 { I C 2 x)v a , (A.6)

v a 2  = v a -  0 { I C 2 x)v a - ( A . 7)

These two representations correspond to the continuum states given by 0*. Sim­

ilarly, taking the beisis function Vb o^ the representation B  of C4  we obtain both 

the character table and the basis functions of the two one-dimensional irreducible 

representations Bi  and B 2 by

V B i =  V b  +  0 { I C 2 x ) V B i (A-8)

Vb2 = Vb — 0{IC2x)vb - (A-9)

These two representations correspond to the continuum states given by 2"̂ . The 

characters of the two-dimensional representation can now be found using the following 

property
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-  E  y " i T y x ' { T )  =  6 „ i ^  j ,  (A .IO )
^ T6G

where g  is the order o f the group, g =  S. In particular we have to  im pose the  

following conditions:

x(C '/) +  x(C's) +  2 x (C s) +  2 x ( Q )  +  2x (C'5) =  0, (A .11)

x { C i )  +  x i Ce )  -  2 x ( Cs )  +  2 x ( Q )  -  2 x ( C , )  =  0, (A.12)

x ( C j )  +  x i Ce )  +  2x(C 5) -  2 x ( Q )  -  2x {C5) =  0, (A.13)

x { C i )  +  x i Ce )  -  2x {C3) -  2 x ( Q )  +  2x(C 5) =  0, (A.14)

Also, since a representation is irreducible if and only if

^ E  =  !■
^ T e G

we have to im pose the following condition

|x(C '/)P  +  lx(C'2)P +  2 |x (C'5)P +  2 |x ( Q ) P  +  2 |x (C'5)P =  8. (A .15)

From these five equations we obtain x { C i )  — 2, x i ^ s )  =  ~ 2  and x(C'3 ) =  

x ( Q )  =  x i C s )  =  0. The com plete character table is here illustrated.
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C 4 .-1 } E C2. ^ -1 I C 2, IC2a IC2y IC2b

^1 0+ 1 1 1 1 1 1 1 1

^2 0 - 1 1 1 1 -1 -1 -1 -1

Bi 2+ 1 -1 1 -1 1 -1 1 -1

B 2 2- 1 -1 1 -1 -1 1 -1 1

E 1 2 0 0 -2 0 0 0 0

In order to obtain the two basis functions for this two-dimensional representation 

we employ the character projection operator P  of eq (A.l). Since we are dealing with 

a two dimensional representation the procedure is not as straightforward as it was 

when we derived the basis function of the one-dimensional representations for 

The steps are the following:

• Take a test state u such that Pu is not identically zero.

• Construct 0 { T ) P  u for each transformation T  E G.

• From these states extract d = 2 linearly independent states.

Following the steps above it is easy to build the following two basis functions;

/

V
u^ =

0 { E ) v  -  0(C2z)v -  0 { I C 2 , ) v  + 0{IC2y)v  

- 0 { C 4 ^ ) v  + 0{C^,^)v + 0{IC2a)v  -  0{IC2b)v
(A.16)

and

/
(A.17)

V

0 { C ^ , ) v  -  0{C^,^)v  +  0{IC2a)v  -  0{IC2b)v  

0 { E ) v  -  0{C2z)v  +  0{IC2x)v  -  0{IC2y)v

where again v can take any torelon shape. The basis functions for each represen­

tation are summarized in the following table.
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Ciy r E C2. ^ -1
^42 IC 2. IC2a IC2y IC^b

A, 0+ 1 1 1 1 1 1 1 1

A 2 0“ 1 1 1 1 -1 -1 -1 -1

2+ 1 -1 1 -1 1 -1 1 -1

B 2 2- 1 -1 1 -1 -1 1 -1 1

E 1 1 0 

0 1

0 -1 

1 0

-1 0 

0 -1

0 1 

-1 0

-1 0 

0 1

0 1 

1 0

1 0 

0 -1

1
0

The irreducible representations of Cii, could have been found, in a more formal 

way using the induced representation method on the group C4, th a t is, however, a 

lengthy method.

It is easy now to solve the problem of finding irreducible representation for the direct 

product C4,, <S> 22(7?.) where ^ 2(7̂) is the group with just two elements Z2(7?.) =  

{E,TZ}  and 71 is the reflection on the plane perpendicular to the principal axis z. In 

fact each representation of gives rise to two representations of the direct product, 

one which is symmetric and one which is antisymmetric with respect to the reflection 

7?., denoted by the index u and g respectively.
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