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Sum m ary

Tho jMirpose of this thesis was to investigate the usefuhiess of niatli(nnatical mod

elling as an aid to understanding the physico chenicial processes of ioiitoi)hor(?sis 

in transderm al drug delivery and electrochemical sensor technology. W(; h(!gin 

by i)resenting a general introduction to m athematical modelling. In chai)ter one 

we show how it was used in the early stages of m athem atics and how it has d(v 

veloped as a {)owerful tool for a industrial, economic and social disci])lin(!s of tin; 

modern world. From this we discuss one of our i)hysical systems, paying ])articu- 

lar attention to the complexity of the system and the difficulticis associated with 

modelling this.

Chapter 2 outlines the theory of the numeric^il methods u s (h 1 in solving th(i 

systems. We discuss both the finite difference and the finite element method, and 

show how these methods are imi)lemented in practice. Chapter 3 describes how 

the finite element i)ackage ANSYS was u s (h 1 to sinnilate tlu? proc(ws of transcUunial 

drug delivery. We point out the limitations of this system, and conclude with a 

general discussion on i)ossible future work that could be carried out in this area.

Chapters 4, 5 and 6 contain the bulk of the sinuilation work. In (;ac.h chapter 

we begin by discussing the system of interest, show how th(  ̂ nilevant partial 

differential equations (PDEs) and boundary conditions are api)lied, and solv(! 

the system either analytically or, if this is not possbile, numerically. W(̂  pr(!S(!iit 

the results as three dimensional plots of concentration over distanc.e and tinu^ 

as a function of the additional parameters such as migration and reaction which 

were included in the original PDE. Finally we make soinci concluding nnnarks on 

possible future work th a t could be carried out in this area.
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Chapter 1

Introduction

1.1 M athem atical M odelling

M athem atical mocielling has its origins in the beginning of mathematics, where 

it was perceived as a practical science. It was used to assist in agricultural 

endeavours and engineering [jrohlems such as surveying methods for canal and 

reservoir construction. Further advances were made in representing and investi

gating natural phenomena with the development of calculus in the la tte r half of 

the seventeenth century (for an historical review see Eve (1969)). Later, theories 

to explain complex physical phenomena such as gravitation by Newton, Maxwell’s 

theory of electromagnetic waves and Einstein’s theory of relativity were all de

veloped using m athem atical models. As the models have become more complex, 

analytical solutions to the relevant m athem atical equations have not been devel

oped and numerical modelling has arisen. Contemporary numerical modelling 

is performed using computer simulations, and this has advanced greatly in the 

past twenty years. The reasons for the recent advances in modelling stem from 

the development of more easily accessible high-level computer languages and the 

large variety of robust numerical methods available, but most of all from the rel

atively small (and ever decreasing) cost of computer power. Examples of current

1
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problems where m athem atical modelling is useful range from the mechanism of 

transderm al drug delivery, which is the concern of this thesis, to stock market 

volatility.

Numerical models can be used to aid understanding of complex physical pro

cesses or systems. The system might be economic, social, industrial (Burghes 

et al. (1982)) or, in the case of this thesis, physiochemical. In essence m athem at

ical modelling is the transformation of an idealised form of a real-world situation 

into m athem atical terms and numerical modelling is the practical realisation and 

approximation of the solution using a computer.

1.1.1 W hy use models ?

The usual motivation for modelling a system is to answer a question from one of 

the following categories:

•  system understanding

•  system design

•  process optimisation

•  control

In terms of understanding, biologists may wish to gain an understanding 

of the interactions between cells in the body. For both ethical and practical 

reasons, they cannot simply observe the procedure in humans so they make a few 

observations for a small system and then build a full scale m athem atical model 

based on these. Engineers may wish to improve the design of a plant. In this 

case, it is cheaper to develop a m athem atical model rather than build a physical 

model and it is also easier to modify the mathem atical model. By modifying their 

m athem atical model they can obtain the necessary information to improve the 

system design and efficiency. Similarly with process engineering - the param eters
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in a model process can be varied and their effects can be observed without risk. 

In the case of a nuclear reactor, it is too dangerous to use trial and error so 

m athem atical modelling is necessary. Furthermore, exhaustive modelling can be 

used to reduce or eliminate the risk of unforeseen problems occurring. A similar 

argum ent holds for process control. Engineers can model extreme variation of 

the control parameters, observe the results and hence devise safety limits.

The results of modelling are evident in our everyday lives. A topical example 

of this is the problem of preventing grid-lock in the city traffic (Dym and Ivey 

(1980)). Maximising traffic flow rates depends on factors such as traffic speed, 

separation between vehicles, average length of vehicle and number of traffic lights 

in a given distance. If we use these factors to develop a model to measure flow 

rate for different switching sequences, we can then maximise the flow rate thereby 

making the traffic flow more efficient.

1.1.2 Modelling Procedure

The standard procedure involved in modelling is to form a set of m athem atical 

ecjuations to represent the system. For continuous systems, these equations are 

usually ordinary differential equations (ODEs) and partial differential ecjuations 

(PDEs). The equations are solved subject to certain boundary/initial conditions 

and the result is carefully interpreted in order to obtain some physical meaning. 

Therefore, modelling requires not only the ability to solve complex equations, 

but also the ability to translate the system description into m athem atics and rnce 

versa.

There are two classifications of models - steady state and dynamic. A system 

with spatial complexities is usually modelled at steady state  and, if insufficient 

information is obtained from this, it is then modelled over time. In this work, 

we will see tha t the static model is insufficient and therefore our models include 

time dependencies.
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1.1.3 Diffusion Models

This thesis is focussed on macroscopic models of diffusion and their applications 

to transderm al drug delivery and electrochemical sensor technology. The diffusion 

equation is a partial differential equation relating change of m aterial flux with 

respect to distance to rate of change of material concentration with respect to 

time. This type of system also describes phenomena such as weather variations. 

In addition to the mmierous applications in physics and chemistry, another area of 

current interest is financial modelling. Diffusion models have provided the basic 

statistical models for financial research in the past 25 years. In particular the 

Black-Scholes model (Black and Scholes (1973), used to value options, is based on 

microscopic diffusion via Brownian motion and a random walk behaviour (Rossi 

(1996)). The main result of the Black-Scholes model is tha t the stock price, St, 

is governed by the following equation:

dSi =  a{t)Stdt  +  <j{t)StdDi (1.1)

This illustrates th a t the growth rate ^  is the sum of a deterministic term 

a{t)dt  and a random term a{t)dBt  . The function a{t) is known as the volatility 

of the stock and the random term dDt is Brownian motion. This example serves 

to illustrate the scope and diversity of diffusion models.

1.1.4 Conclusion

M athem atical modelling is primarily the use of abstractions as an aid in under

standing the behaviour of complex systems. Providing tha t these abstractions 

represent a good approximation to the system, a wealth of useful information can 

be obtained. However, it must not be forgotten tha t models are abstractions and 

must not be confused with reality. It is im portant to be aware of the lim itations 

of modelling. For example, the classic model of the solar system describing cir-
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cular paths of the planets with the earth as centre was successful in explaining 

phenomena such as day and night, and the seasons. However, when Copernicus 

modified this model and explained the solar system as we know it today, his the

ory was not accepted. In this case the existing model had become confused with 

the tru th  and it served to retard rather than progress knowledge.

There are two systems of interest to us in this work. The first is a transderm al 

drug delivery system, and the second is mediated electrocatalysis. As has been 

mentioned above, the solution of the differential equations is as im[)ortant as 

the ability to translate the physical system into the m athem atical equations. 

Therefore, we must start by understanding the physical systems. These will be 

discussed a t length in the relevant chapters but we will continue now by briefly 

introducing both systems and showing how the pertinent differential equations 

are developed.

1.2 Transdermal Drug Delivery

The recent development of the transderm al patch as a means of controlled release 

of a drug into the body through the skin is marked as a major advance in the field 

of drug delivery (Sanders (1985)). Extensive research, development and m arket

ing by commercial companies such as ELAN Corporation pic and Ciba Geigy 

have ensured tha t products such as the nicotine patch have, by now, become a 

common household name.

However, despite th a t fact th a t it is known what happens as a drug migrates 

from an external source into the skin, and why these processes occur, relatively 

little is understood about their detailed mechanisms. There are a number of 

reasons for this which range from the failure to develop adequate m athem ati

cal models to the pressure always apparent in the development of commercial 

products.

One purpose of this thesis is to add to such knowledge and, in particular.
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to pay attention to the processes that occur when drug transport is assisted by 

an applied electric potential i.e. when the drug transport is iontophoretically 

assisted.

The model will consist of a vehicle containing the drug and the skin onto 

which the drug is applied. The PDE describes movement of the drug from the 

vehicle into the skin. If we are interested in the amount of drug entering the 

skin, then the most useful information comes from time-lag and transient kinetic 

studies on which the experimental research in the literature has been focussed. 

This will be discussed in detail in chapter 5.

1.3 Chemical Sensors

The term chemical sensor defines the general class of self-contained, reversible 

devices that are used to (luantify specific analytes within a complex sample mi

lieu. In the simplest configuration, a chemical recognition element is used in 

conjunction with some form of transducer system. When the immobilized recog

nition element (e.g. a biomolecule) interacts with the target analyte, a change 

is induced in the recognition element that is measured by the transducer (Bright 

(1999)).

Chemical sensors are being used in many applications ranging from manu

facturing, industrial and automotive processing, and combustion control, to en

vironmental and personal space monitoring. They are based on the principle 

of converting a chemical reaction into a measurable physical property -usually 

an electrical signal. They are particularly advantageous because of their low 

cost and are therefore seen as alternatives to large analytical tools such as op

tical spectrometers (Post (1999)). The integration of electrochemically active 

thin films with conventional integrated circuits creates integrated circuit chem

ical microsensors which have advantages of the minimization and robustness of 

solid-state devices. The addition of real-time monitoring to these attribiites.
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make chemical sensors particularly attractive for bio-rnedical applications.

and reaction in polymer thin films. We will see how the concentration of a 

substrate changes across the width of the film and develop expressions for the 

ex{)erimentally measurable quantity - the current response - as a function of 

concentration.

1.4 Theoretical Analysis o f Diffusion

In this final section we take a look at the theory of diffusion. We start with a 

very general description of m atter transport in condensed media. We will see 

how the flux analysis leads us to a partial differential equation (PDE) and we 

will then discuss the best method of solving this PDE. Finally we will look a t the 

analogies between this diffusion eqtiation and tha t relating to heat conduction 

and then conclude with a brief discussion on the use and application of diffusion 

in other branches of physics and chemistry. We begin therefore with an ah initio 

derivation of the diffusion equation.

1.4.1 M atter transport in Condensed media

Consider the motion of particles contained within a specified volume as shown 

in figure 1-1.

The flux of the particles - rate of transport - is described by the following 

equation

where c is the concentration of the species, D  is its diffusion coefficient, B. is 

the universal gas constant (=  8.314 .7 mol~^ K ~ ^ ) , T  is tem perature and fi is the 

electrochemical potential of the diffusant. This is known as the Nernst-Planck 

equation first described by Planck (1890).

In chapter 6 of this thesis we will look a t the process of diffusion, migration

( 1 .2 )
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Figure 1-1: Schem atic representation o f particle m otion

In the jjresence of both a chemical potential and an electrostatic potential, /'/, 

is the sum of the two potentials as follows

fi =  fi +  zF-ip (1.3)

In this case // denotes the chemical potential and the electrostatic potential is 

given by the product of the valency z the Faraday constant F  and the galvanic 

potential ijj.

Therefore equation (1.2) becom es

cD
J  =  +  (1.4)

For ideal-dilute solutions, may be related to the activ ity  of diffusant, a, by 

invoking Henry’s Law (Atkins (1994)) as follows:

/f = +  7?,T In a (1-5)

where is the chemical potential of the pure substance.

T he activ ity  is related to the concentration c by a =  7 c where 0 <  7  <  1 and
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therefore a —> c as 7 ^  1. We will therefore make the approximation that activity 

can be replaced by concentration. It should be noted that, in fact, Henry’s law is 

not valid for charged species since there will always be solute solvent interactions. 

These calculations, therefore, while strictly no valid for the conditions described, 

are useful to get a handle on the process.

The expression for the flux therefore becomes

-* zFc D
J = - c D V l n c - (1.6)

If we assume that the electric field is constant within the volume, then — V-0 

can be set equal to a constant (Eq) and the noting that cV ln c  =  Vc,  equation 

(1.6) is simplified to

-* 2  c V)
J =  D V c + - j ^ E ,  (1.7)

Applying continuity roquiremonts, wo see that the rate of change of concen

tration is equal to the gradient of the flux.

%  =

The negative sign is accountable by the fact that we are looking at the trans

port of particles out of rather than into a region of interest Q,. In terms of 

measurable quantities therefore, the rate of change of concentration is

|  =  V | D V c - ^ £ ; . l  (1.9)

If, in addition to migration, the particles also undergo chemical reaction within 

the volume then an extra term —k c must be added to equation (1.9) where 

k is the reaction rate constant. For simple first order reactions, A: is a constant 

and this gives us a linear differential equation. For higher order reactions, k

can be a polynomial function of c, thereby leading to a more difficult non-linear
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differential equation. This enables us to describe m athem atically any diffusion 

reaction system such as those described by Ludloph et al. (1979) and Lyons et al. 

(1996, 1999).

In most cases, the diffusion coefficient D  is constant across the substance so 

for diffusion-migration and chemical reaction, the diffusion equation is

~  = D V ‘̂c -  Vc -  kc (1.10)
dt R T   ̂ ’

We note th a t this is a co-ordinate free representation and the particular form of

V will depend on whether the geometry is planar, cylindrical or spherical. For a

planar diffusion, we see th a t equation (1.10) becomes

dc d'^c d'^c zF D E q dc dc dc, , -.-.s

This is a partial differential etiuation, the solution of which gives the concen

tration of the particles at a particular time at any point in space.

For the purposes of this thesis, we will examine diffusion-migration and re

action in one dimension only. This situation will pertain for m aterial transport 

through membranes and thin films. It can be seen th a t even a t this simple level 

the equations and solutions are very complex. For this case equation (1.11) re

duces to a more manageable

» ■ »

This partial differential equation can be solved to obtain an expression for the 

concentration profile of the diffusant as a function of time. This expression may 

then be manipulated to obtain a closed form expression for the total ciuantity of 

m aterial entering or exiting the membrane at any given time, and therefore the 

lag time and the permeability can be determined. Typically there will be a lag 

time before steady state conditions are reached. The permeability is a measure
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of the steady state rate of material transport through the membrane. Both of 

these quantities in addition to the total amount entering or exiting may, of course 

be determined by experiment. The solution of such a PDE is the main topic of 

the next chapter. We will continue here by drawing an analogy between heat 

conduction and diffusion.

1.4.2 Heat conduction/DifFusion Analogy

The first law of thermodynamics states than energy is conserved. Heat transport 

in solids is described essentially by the following general equation (Incropera and 

DeWill (1996)) which is derived from this law:

—  =  - V ^ T  +  t ; , V T - ^  (1.13)
at pc pc.

where T  is the tem perature, t is the time, K  is the thermal conductivity, p is

the density, c is the heat capacity of the solid and x  is the distance from the

heat source. The velocity of mass transfer is Vx, and the heat generation rate

per unit volume is denoted by q'". Equation (1.13) describes heat transi)ort via

conduction and convection. If however, there is no convection, equation (1.13)

reduces to

^  =  - V '^ T  (1.14)
at pc

Reducing this to one-dimension it becomes

dt pcdxi  * '

In considering passive diffusion of m atter {i.e. w ithout electrical assistance or 

chemical reactions -the  diffusion equation is
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It, is clear that the temperature in equation (1.15) corresponds to concentration 

in equation (1.16) while the diffusion constant D  is analogous to —. By assigningpc

a constant value of 1 to both p and c, D  can then equated with K .  It is therefore 

possible to simulate passive electrical diffusion using a package designed for heat 

conduction where the diffusion constant is input as the thermal conductivity of 

the material.

The case of electrically assisted diffusion is more complicated. The diffusion 

equation associated with this is

dc ^  d \  Z F D E o d c
dt dx^ R T  dx  ̂ ’

The terms Z, F, D, Eq, R. and T have already been defined. For simplicity, 

the term denoted by a constant /d. Ecjuation (1.17) then becomes

—  =  D — - / ? —  r i  18^
dt dx^ ^ d x   ̂ ’

The general heat transfer equation, equation (1.13), reduces to one dimension

as:

d T  K d ^ T  or q
at pc ox^ ax pc

Comparing with equation (1.18) it is clear that j3 is analogous to and the 

term ^  is zero. Since we have already defined p and c as having a value 1, that 

means that q'" in this case is zero. In the mathematics at least, 7;j;, the velocity of 

mass transfer should equate with (3. Therefore in simulating electrically assisted 

diffusion using a thermal analysis package, the simulation is carried out as for 

the case of simple diffusion. An additional parameter, was included in this 

simulation to account for the electrical parameter
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1.4.3 M easuring Diffusion Coefficients

The choice of method for measuring the diffusion coefficient of a substance de

pends on the physical state of the diffusant and the medium through which it is 

diffusing. Diffusion of m atter in solid media can be measured by monitoring the 

change in conductivity of the substance migrates through the solid. The diffusion 

coefficient of gases can be measured by the flow method (Harteck and Schmidt 

(1933)) or by optical methods (Klotz and Miller (1947)). The diffusion coeffi

cients of liciuids may be measured using the diaphragm cell method (Northrup 

and Anson (1929)), the Lamm’s scale method (Lamm (1939)) or optical m eth

ods among others. Dennis (1968) has shown how diffusion coefficients can be 

determined by changes in concentration of a solution placed above a gel.

1.5 Scope of diffusion studies

Other work in the general area of diffusion includes th a t l)y Mysels and co-workers 

(Mysels (1982), Frisch and Mysels (1983)) who model adsorption from solution. 

In addition to scientific interest, this field is of practical importance in th a t it 

plays a role in detergency, flotation and drug adm inistration. The mechanism 

of adsorption from solution is not fully understood. Early models were based 

on adsorption on a plane in a quiescent solution. From these models, inimerical 

solutions were obtained describing the concentration changes over time. For ideal 

adsorption isotherms, it was possible to obtain exact solutions for the change in 

concentration. Later, Mysels and Frisch (1984) refined the model by including 

a film of liquid a t the surface of the adsorbent and solving the system for ideal 

adsorption isotherm.

Some researchers have looked at passive diffusion in non-homogeneous media, 

(non-ideal membrane diffusion) where there is a gradation in diffusion properties 

along the axis of diffusion (Grztwna and Pertropoulos (1983a,b)). In accordance
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w ith diffusion in heterogeneous m edia the m ost useful studies of these system s are 

done using tim e lag (Pertropoulos and Roussis (1967)) and transient sta te  kinetic 

analysis (Tsirnillis and Pertropoulos (1967)). Higuchi and Higuchi (1960) have 

done som e theoretical analysis on diffusion through heterogeneous barriers in an 

attem p t to more accurately m odel drug delivery into the skin. T hey consider 

however a sim ple case of a two ])liase m ixture, each phase having a characteris

tic diffusion coefficient rather than the more com plicated case m entioned above 

where the diffusion coefficient is continuously varying through the m edium .

A non-linear diffusion equation must be used to describe certain phenom 

ena such as heat conduction in solid H2 (Rosen (1979)). The solutions to such 

equations are as expected, a good deal more com plex than the linear case, as 

dem onstrated by several reports in the literature (Berryman (1980); Berryman 

and Holland (1982); Stephenson (1995)).

1.6 Overview

The purpose of this thesis is to investigate the usefulness of m athem atical m od

elling as an aid to understanding the physico chemical processes of iontophoresis 

in transderm al drug delivery and electrochem ical sensor technology. In this chap

ter we have set the scene by showing how m athem atical m odelling has developed  

and how its applications cover a broad range of disciplines. In chapter two we 

will outline the theory of the numerical m ethods used in solving the system s. We 

discuss both the finite difference and the finite elem ent m ethod, and show how  

these m ethods are implemented in practice.

Chapter three traces initial work done at the beginning of the project, dis

cussing the attem pts to model electro-transderm al drug delivery using a finite 

elem ent package designed for m odelling heat conduction. We point out the lim i

tations o f this system  and indicate how the work could be expanded in the future. 

T he aim  was to exam ine drug m igration from an external patch and into the in-
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dividual layers of the skin. We therefore present a detailed discussion on the 

physical nature of the skin and its electrical properties, before illustrating and 

analysing the results. It soon became apparent th a t ANSYS was not as versa

tile or as well equipped as was necessary to solve our diffusion problems and a 

new direction was therefore taken. The problems of diffusion solved analytically 

where possible, and, where necessary by the finite difference method and the 

finite difference package DEQSOL.

Chapters four five and six contain the bulk of the simulation work. Each 

chapter begins with a discussion of the system of interest and a review the work 

to date. We then show how the relevant partial differential equations (PDEs) and 

boundary conditions are applied, and solve the system either analytically or, if 

this is not possible, numerically. The results are presented as three dimensional 

plots of concentration over distance and time as a function of the additional 

param eters such as migration and reaction which were included in the original 

PDE.

In chapter seven the general conclusions tha t can be drawn from the sttidy 

and their implications for further study and understanding of the system are 

discussed.



Chapter 2

Theory

2.1 Introduction

This chapter explores two different methods of solving the diffusion equation 

numerically. We discuss the use of Finite Difference and Finite Element Methods. 

Specific reference is made to the accuracy of the numerical techniciues in terms 

of justifying the results obtained. We begin with a review on the classification of 

partial differential equations.

2.1.1 Classification of P D E ’s

The diffusion equation is a second order Partial Differential Equation (PDE). Par

tial differential Equations (PDE’s) are divided into one of three classes according 

to their characteristic. The characteristics are defined by the roots of the charac

teristic equation. Hyperbolic equations have two real roots, parabolic equations
I

have one real root and elliptical equations have complex roots or characteristics. 

The generic second order PDE is as follows:
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and its characteristic equation is

(2 .2)

In the case of the diffusion equation, A has a value of 1, B  has a value of zero 

and C  has a value of zero or 1, depending on whether the problem is in one or 

two dimensions.

is a constant. Therefore, based on its characteristics, the diffusion equation is 

parabolic.

PD E’s are also classified into initial value problems and boundary value prob

lems. Initial value problems describe how the solution c{x, t) propagates itself 

forward in time. In contrast boundary value i)roblerns aim to find a static func

tion c{x, y) which has some desired behaviour on the boundary. The diffusion 

I)roblem is therefore an initial value i)roblem.

2.1.2 General considerations

It is always preferable to find an analytical solution rather than a numerical so

lution to a PDE. Analytical solutions are exact whereas numerical solutions, no 

matter how advanced or accurate, will always remain as approximations. In many 

cases it is not possible to obtain an analytical solution to a jjarticular prol)lem 

and in such a case numerical methods can be powerful tools. Several general 

mathematics textbooks (e.(/.Kreyzig (1993)) describe in detail the methods used 

for obtaining analytical solutions of PDE’s. These include the methods of Sepa

ration of Variables, Laplace Transforms and Fourier transforms - all of which are 

used in this work and outlined in detail in Appendix B.

Depending on the class of the PDE, different numerical methods will suit 

more than others. For example, finite difference methods are used for initial 

value problems whereas the finite element method is more suitable for boundary

There is one characteristic for the diffusion equation : ^  =  w where w
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value ijrobleins. A variety of textbooks discuss the ruimerical methods of solving 

ordinary and partial differential equations (Prenter (1975); Sewell (1988)). In 

the following sections we discuss the Finite Difference Method and details of the 

finite difference package DEQSOL which was used in calculations. Then there is 

a description of the finite element method (FEM). Finally, as a benchmark exper

iment we look at a comparison of the numerical solution of the simple diffusion 

equation obtained using the finite difference method with the analytical solution 

(obtained using Laplace transforms) to illustrate the accuracy of this numerical 

method.

2.2 The Finite Difference M ethod

All numerical methods involve simplifying and discretising the problem. Of these, 

the Finite Difference Method is the simplest and the easiest to program. Because 

of its sinii)licity, it is the most widely used numerical method by electrochemists 

(Britz (1981); Pons (1984)) having been introduced by Feldberg (1969) in the 

1960’s. In the finite difference method, Taylor’s theorem is used to rewrites the 

partial differential equations that govern the behaviour of the system in terms 

of difference equations. The initial and boundary conditions pertaining to the 

PDE are applied to the difference equations which are then solved. The solutions 

to these difference equations are analytical and provided that they are close to 

the differential equation, their solution will represent a good approximation to 

the solution of the differential equation. We will now show how typical finite 

difference equations are developed.

2.3 Forward, Backward and Central Difference

Consider an arbitrary function f (x)  shown in figure 2-1. If f ( x)  and its derivatives 

fx^fxx etc. are finite continuous and single valued, then we may do a Taylor
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X + AxX — Ax

Figure 2-1: Graph of an arbitrary function f {x)
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expansion and express f [ x  +  Ax)  as a sum of its derivatives as follows:

A / J . 2  / \ t ^

f { x  +  Ax)  =  f { x )  +  Axf ' { x )  +  - ^ f " { x )  +  ... +  - ^ /" ( - ^ )  +  •••• (2-3)

In this way we have expressed the derivatives of x in terms of the the value of 

the function f { x )  at x and at a step A x  ahead of x.

The Taylor expansion for the backward step is

A  ^ 2  / \  7*^^

f i x  -  Ax)  =  f i x )  -  A x  f i x )  +  - ^ . f ' i x )  +  ... +  i - l ) - - ^ f - i x )  +  .... (2.4)

If we take the first two terms in cither of the expansions and ignore the 

rest some algebraic manipulation leads to an approximation for f^. The first 

equation yields a forward difference approximation since we have used the value 

of the function at a j)oint in front of f^ in order to find the derivative at x. The 

second equation leads to the backward difference approximation.

Both of these approximations are only first order. To get a second order 

approximation for we can add the equations and get the central difference. 

Ex])ressions for the second and subsequent derivatives are obtained in a similar 

manner. They are summarised in table 2.1. We will now illustrate the use of the 

finite difference method in solving the diffusion equation.

2.4 The diffusion equation as a difference equa

tion

The simple Pick diffusion equation (Atkins (1994)) is as follows:

dcix,  t) ^  d ‘̂ cix, t)
dt  ~  d^x

(2.5)
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Approximation Equation Accuracy

Forward difference (First derivative) f  _  f { x + A x ) - f ( x )  
j  X 1®̂ order

Backward difference f  _  f i x ) - f { x - A x )  
J X order

Central difference p __ f {x- \ -Ax)—f { x —Ax)
2 A x

2"'̂  order

Central difference (Second derivative) f  _  f{x-\ -Ax)-\ ‘2 f { x ) - f { x - A x )  
J x x  — 2 n d  Q i-dgj.

Table 2.1: Summary of various finite difference approximations

Since the concentration c is a function of two variables (i.e. space and time), 

a two dimensional grid is made up of distance and time coordinates. If the time 

interval is At,  and the distance interval Ax,  then the spacings between adjacent 

points on the grid are and Ax.  The distance and time coordinates are then 

given by

Xj =  .To +  j A x  and +  nAt

Eac;h point on the grid may then be defined by

Cj =  c{jAx, nAt)  (2.6)

To perform the discretisation, we use a forward difference in time and a cen

tral difference in space, as shown in table 2.1 The discrete form of the diffusion 

equation is

c f - r "  0 ( c ; V i- 2 c “ +  e“_i)
Ax'^

(2.7)
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2.5 Analysis of Num erical Schem es

The accuracy of a numerical scheme depends on three concepts. These are con

sistency, stability and convergence. By consistency we mean that in the limit of 

small step size, the difference equation should tend to the differential equation. 

Stability requires that difference between the computed solution and the exac- 

t solution to the difference equation does not diverge or grow without bound. 

Convergence requires that in the limit of small step size, the computed solution 

should tend to the analytical solution of the differential equation.

In the case of the diffusion equation, Lax’s Fundamental Equivalence theorem 

allows stability to be a sufficient condition for convergence. By taking limits 

as the step size approaches zero, it is easy to show that the diffusion ecjuation 

is consistent. The discussion here will therefore focus on the stability of this 

numerical scheme.

2.5.1 Stability Analysis

In analysing the stability of the scheme, one first of all finds the round-off er

ror - the difference between the exact solution of the discrete equation and the 

computed solution. If the error satisfies the discrete equation, the scheme will be 

stable on the condition that the error does not grow without bound. The diffusion 

equation is a linear equation with constant coefficients and is therefore suitable 

for von Neumann stability analysis. This technique involves decomposing the 

error into a Fourier series. One harmonic of the Fourier series is then substituted 

into the discrete equation. If we require that any harmonic is not amplified by 

the scheme, the requirements for stability are satisfied.

To illustrate how the error is dependent on the time-step we look at the 

discrete form of the time derivative
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Tlie difference between the derivative and the discrete form is an error term to 

the order of At.  Therefore, minimizing the tirne-step will minimize the error.

The discretised form of the diffusion equation equation (2.7) is forward dif

ference in time (FT) and central difference in space (CS). The FTCS scheme 

is first order in time, second order in space and is a fully explicit scheme since 

all information about comes from points preceding it. However, von Neu

mann stability analysis shows that this is unstable for time steps larger than 

approximately These time steps are both prohibitively small and too com

putationally expensive so a new scheme - Crank-Nicholson (Press et al. (1992))- 

is used.

2.5.2 C rank-N icholson Schem e

In the Crank-Nicholson scheme, the discretised spatial ecjuations are moved one 

time step forward relative to the discretisod time equations. The resulting dis- 

cretised ecpiation is as follows:

The advantage of this is that wc now have no restrictions on the size of the 

time step. This is because it can be shown (Press et al. (1992)) that absolute

1, consequently the scheme is unconditionally stable. However, there is a trade

off. The Crank-Nicholson scheme is fully implicit which means that the details 

of small-scale evolution from the initial conditions are inaccurate for large time 

steps.

For a two-dimensional analysis, a more generalised form of Crank Nicholson 

is necessary. The alternating direct implicit method (ADI) involves splitting the 

time step in two thereby creating two sub-steps. In each sub-step, a different 

dimension is treated implicitly.

(2.9)At Ax'^

value of the amplification factor (the condition for stability) is always loss than
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2.5.3 DEQSOL

DEQSOL is an acronym for Differential EQuation SOlver Language. It is a 

software package developed by HITACHI for the purpose of solving Partial dif

ferential equations by means of either the Finite Difference or the Finite Element 

method. On presentation of an input file, the DEQSOL translator generates a 

FORTRAN program which is then compiled and run in the usual way. The input 

file nnist have the following structure:

Statement of: 

the beginning of the i)rogram 

the method used (FDM or FEM)

Statement of; 

the sj)atial domain 

the spatial grid size 

the time 

the time-stej)

Statement of: 

the region used for the calculation 

the variables to be used 

the values of constants 

the boundary conditions 

the initial conditions 

Statement of: 

the beginning of the solver procedure 

the solver procedure 

the end of the solver procedure 

Statement of: 

writing or printing the output data 

the end of the program
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The DEQSOL system therefore offers problem definition, solver description, re

sult manifestation, program connection and file input and output.

The problem definition function allows the user to define the jjroblem re

gion, the variable to which a solution is to be obtained, and the conditions for 

problem resolution based on user supplied data (e.(/.space, time co-ordinates, 

physical constants, variables, partial differential equations boundary and initial 

conditions). The solver description function enables a solution to be obtained 

by dividing the computational region automatically and solving the discretised 

ecjuation according to the predefined procedure {e.g. Gaussian elimination). The 

result manifestation allows the data to be printed or passed to a graphics pro

gram. The program connection facility allows DEQSOL programs to be changed 

to subroutines and so the DEQSOL jjrogram may be connected to a user created 

main program. A sample DEQSOL file is included in Appendix A.L

2.5.4 Applications of Numerical M ethods in Electrochem 

istry

In addition to being useful for solving PD E ’s related to drug diffusion, the finite 

difference method has many other interesting applications especially in the gen

eral area of electrochemistry. Lasia (1985) has looked at applications of FDM to 

cyclic voltammetry. In an earlier publication (Lasia (1983)), he used the Crank- 

Nicholson method for examining dimerisation.

Orthogonal collocation has been used for characterising diffusion at microelec

trodes (Cassidy et al. (1983)) and in other electroanalytical problems (Speiser and 

Pons (1983, 1982a,b); Cassidy et al. (1985)). This technique involves approximat

ing the solution of a PDE to the weighted sum of polynomials and then solving 

the system for the coefficients of these polynomials.

Rudolph (1990) used the ADI for simulation of electrochemical processes. 

Feldberg (1981) refined an exponentially expanding grid method, previously de-
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scribed by Joslin and Pletcher (1974) for the digital simulation of electrochemical 

problems.

2.6 The F inite Elem ent M ethod

2.6.1 Origin o f the FEM

The finite element method was first conceptualised in the 19G0’s by engineers to 

solve problems of heat flow and stress analysis (Zienkiewicz and Cheung (1965)). 

From this mathematicians attempted to put a rigorous mathematical basis on it 

Clough (1960). In essence, finite element analysis develoi>ed as an adaption of the 

calculus of variations to suit data evaluation by computer. Good introductory 

books on this method include Becker (1981); Davies (1980); Lewis and Ward 

(1991) and Heubner and Thornton (1982).

2.6.2 D ifference betw een FD M  and FEM

Whereas the finite difference method gives a point-wise approximation, the need 

arose to introduce a tool for dealing with irregular geometries or unusual sixicifi- 

cation of boundary conditions. In the finite difference method the solution region 

is modelled as a set of points, but the finite element method it is a set of subre

gions or elements. The finite difference method gives a point-wise approximation 

whereas the finite element method gives a piecewise approximation.

2.6.3 T heory of FEM

In a continuum i)robleni, the field variable (concentration, temperature etc.) will 

have an infinite number of values and therefore there are an infinite number of 

unknowns. Using the finite element method, the solution region is divided into 

a finite number of elements and therefore a finite number of unknowns. The
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field variable is then expressed in terms of assumed approximate functions called 

interpolation functions. These functions are defined in terms of the field variables 

a t specified points called nodes. Nodes usually lie on element boundaries although 

it is possible also to have internal nodes .

The nodal values of the field variables define the behaviour of the field com- 

j)letely within the element. In a finite element representation of the jjroblern, 

the nodal variables become the new unknowns. Once these unknowns are found, 

the interpolation functions define the field variable throughout the assemblage of 

elements.

Since the finite element method was developed by m athem aticians, scien

tists and engineers, various different approaches are taken to calculations. These 

include the direct approach, the variational approach, the weighted residuals 

approach and the energy balance approach. The ANSYS program uses the vari

ational approach. Regardless of which approach is chosen, the same basic stejjs 

are involved in implementing the FEM. They are described below as follows;

2.6.4 Steps involved in im plem enting the FEM

The continuum is first discretised into sub-domains called elements. Nodes are 

assigned to each element and interi)olation functions are chosen to represent the 

element behaviour. The interpolation function is usually a polynomial since these 

are easy to differentiate and integrate. The degree of the polynomial dei)ends on 

the number assigned to each element and the continuity requirements. Next, 

inatrices representing element properties are defined. The individual element 

matrices must be assembled together to produce the entire region which is then 

solved. Finally additional computation such as error estimation are made to 

complete the process.

Assume we have a domain as in figure 2-2(a). The domain is divided into 

triangular elements as in figure 2-2(b). The vertices of each triangle arc the nodes
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(a)

Figure 2-2: Domain J] unmeshed (a); and meshed(b) 

of the particular clement p, labelled pi,pj and pk respectively. The field variable

k

ji

Figure 2-3: Arbitrary element P with nodes i,j,k

a t each of these nodes is known. The field variable of the entire element is then 

a function of the field variables at each of the nodes

(j)p — Npi(f)pi +  Npj(j)pj Npk̂ Ppk ( 2 . 10)

The profile of the field variable for the entire domain is then given by



CHAPTER 2. THEORY 29

0n = E<^P (2-11)
p = i

2.6.5 Solution of the diffusion equation using FEM

An example of the finite element method is described in Appendix C using the 

variational method since this is the approach adopted by both the ANSYS and 

DEQSOL programmes. However, such in-depth knowledge is not recjuired and, 

in fact, the detail presented above is more than sufficient to use and understand 

the software.

2.7 Applications of FEM

In early work, Wilson and Nickell (1966) looked at application of FEM to heat 

conduction. An area of current topical interest in FEM is that of modelling 

orthopaedic implants (Prendergast (1997a)). Pan et al. (1995) have looked at 

using FEM for two dimensional diffusion - reaction equations. General topics on 

the use of FEM in diffusion studies are discussed by Ikeda (1983) and Ito (1992).
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Finite Element M odelling

3.1 Introduction

This ('hai)ter describes the {)reliiniiiary work which was carried out using the finite 

element package ANSYS. We will illustrate the use of ANSYS for two aspects of 

transdernial drug diffusion. The first is the microscopic view of diffusion through 

the layers of the skin. The second model is a macroscopic model and we used 

this to examine diffusion at a more general level - from the api)lied patch into the 

skin. This technique of complementary macroscopic and microscopic modelling 

is commonly used for engineering problems which are solved using this software 

(Prendergast (1997b)). We will begin by introducing ANSYS and discussing its 

features. We then look at the system to be modelled, in this case the skin barrier, 

and discuss the complexities involved in modelling it. Finally we present some 

results and discuss the current limitations of the package.

3.2 A N SY S

ANSYS was developed by Swanson Analysis Systems Inc. (www.ansys.corn - 

Canonsburg, PA, U.S.A.) and is used to solve numerically (using the finite ele-

30
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ineiit method) problems in structural, thermal, electrical and fluid flow analyses. 

The capability of difl'usion analysis is not explicitly specified within the ANSYS 

program but, as we have seen in chapter 1, the equations of heat conduction are 

exactly analogous to those of passive diffusion. Therefore this analogy can be 

exploited for our purposes to solve diffusion problems.

ANSYS is organised into three main stages: preprocessor, solution and post

processor. In the preprocessing stage data such as the geometry of materials and 

the type of element type (solid, shell etc.) are entered. The solution stage is where 

the analysis type is defined together with the loads and where the finite element 

solution is initiated. Finally the results obtained may be viewed in graphical 

and tabular form via the post-processor. Input is via menu commands and an 

exami)le of the choice used is given in Appendix A.2.

3.3 The Skin

The skin is the largest organ in the human body, covering an average area of ap- 

I)roximately 2m'  ̂ and receiving one third of all the blood circulating in the body. 

The thickness of the skin varies depending on its location e.g. from 1.5 Trim at 

the eyelids to 4.0 m m  at the soles of the feet. A diagram m atic representation 

of the skin is shown in figure 3-1. Typically, the skin is described in terms of 

three regions. The uppermost region, th a t which is in contact with the external 

environment is called the epidermis.  Beneath this lies the dermis.  The hypoder- 

mis (technically not part of the skin) is situated directly below the skin and this 

contains the adipose tissue.

3.3.1 Com position and structure of the skin

The epidermis  is a stratified structure consisting of five distinct layers as illus

tra ted  in figure 3-2. This highly resistive structure is the main barrier to sub-
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Figure 3-1: Cross section o f human skin (taken from Solomon (1996))

stances entering and leaving the body v ia  the skin. The outermost layer o f the 

epidermis is called the stratum corneum and i t  plays a p ivota l role in  th is bar

rie r function (Walters (1996); F lynn (1992)). Consisting p rim arily  of blocks of 

cytoplasmic protein matrices (called keratin) embedded in an extracellular lip id  

(Walters (1990)), th is keratin gives the skin its  protective function. The stra

tum corneum is on average 15-20 fim  th ick and accounts for three quarters of 

the overall depth o f the epidermis. The structure of these layers has been well 

characterised by Honda et al. (1979).

Below th is non-viable stratum corneum lies the viable epidermis. The layers 

in th is section are stratum lucidum, stratum granulosum, stratum spiriosum  and 

stratum basale. These are known as the viable epidermis because having overcome 

the in it ia l barrier o f the stratum comeurn substances are transported much more 

rap id ly  through the rest o f the epidermis. The perm eability o f substances is much
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Figure 3-2: The epiderm al layers of skin from the sole of the  hum an foot (taken 
from B arre tt (1986))

higher in the lower layers of the epidermis than  in the stratum corneum. T he lipids 

w ithin these layers are neutral (as opposed to  the polar lipids of the stratum  

corneum) and this leads to  facile tran sp o rt of lipophilic substances (R othm an 

(1954)). The epidermis is approxim ately 20 //m  thick in to tal.

T he dermis lies im m ediately below the epidermis. It is a thick fibrous tissue 

which forms the m ain bulk of the skin and is 20-30 tim es thicker th an  the epi

dermis. Below this again lies the subderm al layer where adipose cells are found. 

B oth of these layers present a lim ited resistance to penetra ting  molecules (Brady 

(1991)).

3.3.2 Electrical Properties of Human Skin.

Since much of this work is concerned with electrically assisted drug delivery, it is 

pertinen t to  include a discussion on the electrical properties of the  skin.
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Com plex im pedance spectroscopy is generally used to  determ ine the electri

cal properties of the skin (DeNuzzio and Berner (1990); Nolan et al. (1993)) and 

th is technique has been used to show th a t the resistance of the stratum corneum  

decreases upon hydration (C lar et al. (1975)). Since the skin is a heterogeneous 

organ, its electrical properties vary throughout. T he stratum corneum  for ex

am ple is an insulator. Y am am oto and Y am am oto (1976) have shown th a t by 

stripp ing  successive layers of the stratum corneum  , the resistivity of the skin 

decreases continuously to  a constan t value which agrees closely w ith the known 

value for the  resistivity of deep tissues. They have represented the resistivity  as 

an exponential equation;

p{x) =  (3.1)

where p{x) is the resistivity a t an a rb itra ry  point x, po is the resistivity of the 

outerm ost surface of the keratin  layers, a  is the a ttenuation  coefficient and x  is 

the  distance between the deep tissues and the surface.

G -

Figure 3-3: Equivalent circuit representing the resistance of the skin

The electrical characteristics of the skin may be represented by an equivalent 

electrical circuit as described by Traeger (1966). The circuit consists of a  resistor 

R \  in series w ith a  resistor /? 2  and a polarisation im pedance P  in parallel. This 

is show schem atically in figure 3-3

The parallel resistivity i ?,2 is in the range 100 — SOOOkficm and is a  measure
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Figure 3-4: Equivalent circuit representing the resistance of the layers of the skin

of the steady state conduction through the epidermis and its appendages. Its 

reciprocal is analogous to the skin permeability - a measure of diffusion through 

the stratum corneum.

The small series resistivity, R.\, is the resistivity of the deejjor tissue and has 

a value in the range 0.1-1 k 12cni.

The polarisation impedance rej)resents the fact th a t the current can oscillate 

between restraining membranes which hinder its steady passage. It is due to the 

fact th a t the cells are surrounded by a phospholipid membrane which restricts 

the current flow.

At zero frequency, the polarisation impedance tends to infinity and there is 

therefore d.c. through R\ and R.2 - At high frequency, the polarisation impedance 

falls to zero and the system is a purely resistive R.\. At intermediate frequen

cies the polarisation frequency is less than R 2 but greater than Ry, so th a t R .2 

dominates.

Traeger (1966) has further represented the individual layers of the stratum 

corneum by the circuit shown in figure 3-4. The cell membranes are represented 

by the two capacitors, the intra-cellular resistance by r and the extracellular 

resistance by R.

It is useful to have these equivalent circuits especially when drawing com-
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])arisons with drug diffusion and heat conduction as will be evident later in this 

chapter.

3.3.3 Physical m odels o f the skin

Human skin in situ cannot be used for testing the efficacy of a transdermal sys

tem. Ideally, skin taken from cadavers is used. However there arc many problems 

associated with obtaining suitable samples since there are many variables includ

ing fat content and the anatomical site so it is impossible to repeatedly obtain 

equivalent samples. Cost is a further consideration. Therefore many scientists use 

skin taken from animals. Common among these are mice (Durrheim et al. (1980)) 

rabbits and rats (Rougier et al. (1987)), although it has been reported that snake- 

skin (Higuchi and Konishi (1987); Itoh et al. (1990)) or pig skin (Meyer et al. 

(1978)) have been used as alternatives. In terms of structure and diffusion rate, 

these animal models are good. The main difference between skin from different 

sj)ecies is the thickness and density of the hair follicles.

In many cases, artificial membranes are used. In terms of mathematical mod

elling of the skin, Danielson (1973) has successfully reported the modelling the 

skin as an elastic membrane.

We have seen that the skin is a complex membrane and it is therefore intuitive 

to assume that percutaneous absorption should be an equally complex process. 

We will see in the next section how complex it actually is, but that by breaking 

it down into a sequence of small steps, it is possible to get a good understanding 

of the complete process.

3.4 Percutaneous Absorption

Percutaneous absorption is defined as the mass movement of substances from 

the surface of the skin to general circulation (Idson (1975)). This involves pene-
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tra tion  of the stratum corneum, the viable epidermis and the dermis and finally 

the removal of the penetrant and its metabolites from the dermis and into the 

circulatory system (Vickers and Wepierre (1980)).

(a) in tercellu lar transepiderm al
(b) intracellu lar transepiderm al
(c ) through hair fo llic le
(d) via sw eat duct

Figure 3-5: Schematic diagram showing possible routes of penetration of a sub
stance into the skin, where (a) and (b) are transepidermal, and (c) and (d) are 
transappendageal.

There are two main routes of transport of a substance into the skin. These 

are transepidermal and transappendageal and are outlined in figure 3-5.

The transepidermal route involves moving through the stratum corneum in 

either of two ways. Drugs may migrate either though the m aterial between the 

cells - inter-cellular- or may take the direct route through the cells (transcellular). 

These pathways are marked (a) and (b) in figure 3-5 respectively. Blank (1967) 

has shown th a t polar molecules diffuse principally through a polar pathway con

sisting of ’’bound water” within the hydrated stratum corneum while non-polar
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molecules diffuse through the non-aqueous lipid m atrix .

Bodde (1989) used transm ission electron microscopy studies on H(j2 C l 2 to 

show th a t initially, the inter-cellular pathway is the  favoured m igration route bu t 

th a t a t long tim es the transcellu lar pathw ay will dom inate.

The transappendageal route involves m igration through the  follicular regions, 

or th rough the  sweat ducts. It has been shown th a t charged substances diffuse 

rapidly th rough  the follicular canal and th a t this shunt route m ay be im portan t. 

In particu lar, th is pathway is favoured for large polar molecules

D epending on the natu re  of the absorbent, and the possibility of electrical 

enhancem ent, one particu lar pa th  may dom inate. There are conflicting views 

on this bu t it is agreed th a t no one pa th  is singularly responsible for m aterial 

transpo rt.

For passive diffusion, Scheuplein (1967) claims th a t due to  the  higher diffusion 

coefficients of the  follicles and sweat ducts com pared w ith the stratum corneurn, 

drugs are absorbed preferentially through the follicular regions. He concludes th a t 

initially, the m ain means of absorption is via the follicles . However, the ra tio  of 

the to ta l fractional area of the  follicular regions to  the rest of the skin is a very 

sm all (3 X 10~® : 1 ) so as the tim e increases, the transepiderm al pa th  dom inates. 

In general it only takes a short tim e {circa 300 seconds) Scheuplein (1967) for the 

transepiderm al route to  dom inate. This pathway is therefore known as the pa th  

of bulk diffusion while the o ther is called the shunt route.

W allace and B arnett (1978) used experim ental d a ta  on perm eation of rnethorex- 

a te  to  generate a com puter model and elucidate the  pertinen t param eters such 

as diffusion coefficient and lag time. From this they concluded th a t there is more 

th a n  one pathw ay for percutaneous absorption of the ester. An in teresting re

view of th is area which includes detailed discussions on the role of the various 

physico-chemical param eters is presented by Scheuplein and B lank (1971).

O f the  four steps involved in percutaneous absorption, it has been shown 

th a t penetra tion  of the stratum corneum  is ra te  lim iting (Parry  et al. (1990)).
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Many workers have been active in attem pting to quantify this. Albery and Had- 

graft (1979a) constructed a rotating diffusion cell in order to determine the rate 

constant for the transfer reaction across the interfaces on either side of the epider

mal barrier. In a later paper Albery and Hadgraft (1979b) presented a theoretical 

description of percutaneous absorption including diffusion and depletion in the 

external phase, diffusion through the epidermis and the kinetics of transfer re

actions a t the interfaces. Following this, Albery and Hadgraft (1979c) did some 

in vivo experiments in order to determine the pathways of penetration for some 

esters.

They found th a t the route of penetration is through interstitial channels and 

not through the keratinized cells. Later Albery et al. (1983) looked at the per

cutaneous absorption of three different esters and made a m athem atical model 

describing their findings.

O ther mathematical models include tha t of Cooper (1976) who presented a 

model for estimating in vivo skin permeability coefficients and Michaels et al. 

(1975) also made a physical model of the the stratum corneurn as a two-phase 

protein-lipid heterogeneous membrane. Albery and Hadgraft (1979b) used Michaels’ 

model to explain th a t the low diffusion coefficients of substances through the lipid 

phase were due to the homogeneity of the structure. Another physical model is 

th a t of Rougire et al. (1983) who looked at percutaneous absorption from the 

viewpoint of the stratum corneum as a reservoir. They did quantitative ex

periments using an animal model and suggested verification of their results in 

humans.

There are many methods used to examine the pathways of permeation and 

permeation kinetics. These include application of dyes (Abramson and Gorin 

(1940)), spectroscopy (Reinl et al. (1995)), confocal microscopy (Cullander and 

Guy (1992)) and scanning electrochemical microscopy (Scott et al. (1992)).
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3.5 Microscopic model
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We now show how, given the resistances of various components in the skin, we 

have translated these into suitable parameters for ANSYS and obtained graphical 

solutions for the changes in concentration over time.

The average diffusion constants of a particular drug molecule through different 

parts of the skin axe described by Scheuplein (1967). A less detailed version of 

his results is shown in the following table:

Appendage Average Diffusion Constant Typical diameter

Hair follicle 2 X 10“^cm^sec“ ^ 70 f j i m

Sweat duct 2 X 10“®cm^sec“ ’ 70 n m

Stratum comeum 1 X 10~^“cm^sec” ’ 13 f j L J n

Hydrated Epidermis 1 X 10“®cm^sec“ ' 110 f J L U l

Figure 3-6: Graphical representation of the skin illustrating hair follicle (blue), 
sweat gland (green), stratum comeum  (yellow) and epidermis (red)

Remembering the temperature/concentration analogy, ANSYS was set up to 

perform a thermal analysis. A. cross section of the skin of the forearm was drawn 

schematically as in figure 3-6. (The method followed is contained in Appendix 

A.2.) The total dimensions of the model are 600 /xm by 165 ^m. Included in the 

representation are the following:
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IIIIIL_______________wmimmnm— ■■■■■
Figure 3-7: Meshed model of the skin showing individual simulated elements. 
This mesh was automated by ANSYS as the first step in finite element analysis.

•  Hair Follicle

This is coloured blue and has a width of 70 //m, corresponding to the 

nominal diameter of a hair follicle as in the table above.

• Sweat gland

The sweat gland is represented by the green region in figure 3-6. Again, it 

has a nominal diameter of 70 fj,m.

•  Epidermis

The epidermis is represented by the yellow, and the red region in figure 3-6. 

The upper part of the epidtnnis, the stratum corneurn has a depth of 15 

/im and this is the yellow region. The rest of the epidermis is represented 

by the red region.

The different regions were distinguished only by their diffusion coefficients. 

The regions were then meshed into smaller elements as shown in figure 3-7. As 

ii clear from the diagram, smaller elements were required for the smaller areas.

A normalised concentration of 1 was applied across the upper node of the 

s'.ratum comeum  as shown by .the arrows in figure 3-8. The system was solved for 

virious times commencing with 100 seconds and the results are shown in figure 

310 and figure 3-11. In all cases the key code for the concentrations shown in 

figure 3-9 applies.
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Figure 3-8: Meshed model of the skin where arrows show the nodes on which a 
temperature of 100° C (corresponding to a normalized concentration of 1) wa,'̂  
applied

lllllllll
0  100%

Figure 3-9: Colour coding for concentration plots
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(d )

Figure 3-10: Diffusion pattern through shunts in the skin when a normalised 
concentration (=1) is applied across the surface at t=  100, 200, 300 and 500 
seconds.
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Figure 3-11: Diffusion pattern through shunts in the skin when a normalised 
concentration (=1) is applied across the surface at t=  0.1, 1 , 10, and 100 (x 10'*) 
seconds.
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3.5.1 Discussion

After 100 seconds it can be seen in figure 3-10 th a t diffusion occurs fastest through 

the sweat gland. This is followed closely by diffusion through the hair follicle while 

there is virtually no transport through the unbroken stratum corneum.

The pattern continues in a similar manner a t longer times, diffusion through 

the sweat gland becoming more extensive as time increases through 200 seconds. 

After 200 and more so after 300 seconds, the diffusion pattern  has lost its sym

m etry since there is an overlap of the migratory region of the sweat gland and 

the hair follicle. In practice however, these two are not so close together and each 

would have its own distinct migratory pattern before they merge a t a later time. 

However, due to the scale of the simulation system it would have been difficult 

to spread the shunts further apart, for, in order to reatin resolution, the number 

of cells would have to be increased beyond the capacity of the code. Separate 

diagrams of the individual follicles have shown th a t in the absence of one, the 

second pattern would remain symmetrical. The broadening is due to the absence 

of a sink at the bottom. At this point the model is no longer realistic.

As time continues, towards 0.1 x 10“̂ seconds, we can see th a t while the drug 

concentration is as high as 50 % in the epidermis^ the stratum corneum still 

contains some dark blue regions corresponding to there being virtually no drug 

present. The trend continues with the drug having been successfully transported 

into the bloodstream via the shunt routes at 1 x 10“̂ seconds while it is not until 

after 10 - 100 (x 10^) seconds tha t the stratum corneum also absorbs the drug.

3.5.2 Physical Interpretation and significance

The results obtained are in good agreement with intuition th a t the drug will 

m igrate through the path of least resistance. They support the fact tha t initial 

absorption is transappendageal. W hat is shown in figure 3-10 and figure 3-11 is 

merely the result of a calculation by the finite element method using the values
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for diffusion coefficient obtained in the Uterature and relating the initial concen

tration to the concentration after various time periods. The ANSYS program at 

present is not sufficiently sophisticated to deal with anything other than diffu

sion. For example, we have seen earlier that there are many physiological factors 

associated with drug migration into the skin. The ANSYS solution treats cach 

component as having a fixed resistance even though it has been shown that the 

resistance of the skin decreases once the initial barrier has been broken. Another 

useful feature would be to monitor the time development of the profiles. Again, 

this facility is lacking in ANSYS. However, as this package becomes more widely 

used in the field of biornechanics the future should show some improvements and 

allow for greater versatility for work in this area which, as is evident at present, 

is limited.

3.6 Membrane

The previous section considered only the diffusion process in which it was assumed 

that the drug was ai)plied directly onto the skin. We will now show how the work 

is performed when a control membrane is placed between the drug reservoir and 

the surface of the skin. The membrane is of the order of 1 mrn thick (Bannon 

(1989)) but in the next model, figure 3-12, we have included a membrane of 0.3 

m m  thickness because the relative size of the rest of the model allows only this.

By varying the permeability (the diffusion constant) of the membrane there

fore, it is possible to control the rate of drug transport into the skin. For example, 

a membrane of diffusion coefficient 1 x 10“®m'̂ s“  ̂ is compared with a membrane 

of diffusion coefficient 1 x 10“‘̂ m^s“ ^ The run time for both is set to 100 seconds.
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Figure 3-12; Representation of the skin system with the membrane of 0.3mm 
thickness included (grey region)

3.6.1 D iscussion

Figure 3-13 is a comparison of the ratio of initial to final concentration for diffu

sion of the same drug through two membranes of different diffusion coefficients. 

One can easily see how the membrane with the higher diffusion constant allows 

faster penetration of the drug into the circulatory system. In reality, the mem

brane acts as a method of control. Depending on the desired delivery rate a 

membrane of suitable diffusion coefficient can be chosen. Again, due to the limi

tations of the software, we are unable to compare membrane controlled systems 

with for example matrix controlled systems. However, this should be possible in 

future studies as the system becomes more advanced.
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(b)

Figure 3-13: Diffusion through the shunts with membrane of high diffusion coef
ficient (a) and low diffusion coefficient (b)

■■
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3.7 M acro m odelling

111 th is section we concentrate on a m ore macroscopic p icture of drug diffusion 

rrorri a  tra iisdennal patch and into tlie skin. As in the previous section the cliange 

in concentration of the drug over tim e is m onitored.

3.7.1 T he M odel

Figure 3-14; D iagram m atic rej)resentatioii of the different iriaterials used to  model 
the transderm al system. This is a cross-section of the system which m ust be ro
ta ted  through 3G0° to  generate the com plete picture. The skin is represented by 
the orange m ateria l, the gel containing the drug is represented by the blue niate- 

()1 mejnl)rane is shown bv the heavv black line and the electrodesI M M  . . . < . .
i i c L i .  jL i i r ;  \ A i i i L i

are shov.'i’. in red. The outer grey area is sim ply the housing for the  pa,tch and 
tins IS w hat would be seen by the user.

in the sam e m anner as before, the  tem peralure-diflusion analogy wa.s used
 3 . .  i - i ___________ 1 ........ 1 - . , . : , ............................... ........... . . . i  A .___________ 3 . . i . . . .  ............
d J J U  cl i . t ic t i  i i i c t i  a l J a l V i ^ J ^  Wci.^ L d i  I u u i .  n  l u u v  » . n i u t : u . M U i i * : r i . i  p i d i i  U i  ci v v t . i i h M i g

pa.tch c.ame in the  form of an .AUTOCAD drawing as shown a.bove. The inner

 11 i . . x i . ^  j  I . . - -    i : ___  „ r  ^  _______ n n i . -  i   .j ____j - i . -  _______________ i.
v v e i j  L U J J l c U l l l l l g  I J i C  U 1 U g  i l c l b  a  I c L U l U b  U i  / C J l i .  J  I l C  U U L l l l U U l l C i S  U l  I I J U  U U l U l

v/p1] a.re iO rm and 1-2.5 c.vn frnm the r.eTu.re. Tims, the. vnliiTrie of both
 n . .  i .1 . ...... T~»i. ^ j __________ _________ : ____  ............ , i  i
V VU ii^  m u  l i c U i i C .  1  IIL- U J c l V V J l l g  VVtU*̂  l l i i p u i  I C U  i l l i u  j  l i N O J O  t U i U  b U i l c t U J V  L L U  tX l iU

ri,T*P fDllT* ri'StlT'f't COTTIDOT̂ PTltS tO thlFl SVStPTD ĴFI sHoVw' IT' fiCTllTP *1 1''I

Thereiore four difi'erent m ateria ls were defined in A NSI'S.
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Material iio.l, the skin was assigned a diffusion coefficient of 1 x .

The gel containing the drug -  material no.2 -  was assigned a diffusion constant 

of 1 X 10“ ^4n^s“ ^ Gel is more viscous than water which is nominally assumed 

to have diffusion coefficient of 1 x 10~^°m^s“ '. Material no.3, the membrane was 

given a diffusion coefficient of 1 x 10“ '*m^s“  ̂ and m aterial no.4, the electrode was 

assigned a nominal diffusion coefficient of lm ^s~^ These diffusion coefficients 

are standard values taken from Lide and Frederikse (1993) A tem perature of 100 

was applied along the active well. The system was run for a period of 10,000 

and 20,000 seconds. The results for this macroscopic model are shown in Figure 

3-15.

3.7.2 Discussion

As in the previous sections, the current limited capabilities of ANSYS mean th a t 

there are only a few basic observations to be discussed based on Figure 3-15. The 

outline of the patch can be seen by comparison with figure 3-14. It is clear tha t 

after 10,000 seconds, there has been drug flow from the well into the skin. After 

a longer time (20,000 seconds) this increase in concentration within the skin is 

more apparent.

Due to the limitations of the software, it is impossible to include effects such 

as increase in skin hydration, molecular characteristics of the drug Singh and 

Singh (1993) and other factors which affect the rate of transport.

Although the common units for diffusion coefficient are cm ^s~\ the dimen

sions of these parameters and indeed all parameters are expressed in terms of SI 

units. This is to facilitate the finite element calculations and also the conversion 

from thermal to diffusion quantities.
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F ip ir r  3-15; 
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Diftusinn thrm igh the skin at 10,000 and 20.000 seconds as modelled
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3.8 Iontophoresis

For the case of electrically assisted diffusion, we know that ions move under 

the influence of an electric field (Vincent (1976)). We expect there to be a 

high concentration of ions in regions of high electric field intensity and a low 

concentration of ions in regions with low field intensity Figure 3-16 is a plot

(b)

F.gure 3-16: Graphical (a) and arrow (b) plot of electric field intensity which 
slows low electric field intensity (blue) to high field intensity (red)

of the electric field intensity for such a system as a contour plot and an arrow 

pbt respectively^ This plot w ^  generated by ANSYS and it corresponds to the 

fidd intensity resulting from tlie application of the electric field described in the 

previous section. From this plot, it is reasonable to assume that drug will move 

m>re rapidly from the regions close to the interface of the patch and the skin That
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is, the concentration of drug within the patch does not remain homogeneous.

Researchers a t Elan Corporation pic (Foley (1997)) have done experimental 

work in an a ttem pt to quantify this effect. It has not been possible, however, 

to simulate these conditions because as previously discussed ANSYS is not yet 

suitable to model such phenomena involving electrical fields.

3.8.1 Experimental

This section contains the results of work carried out by ELAN. A circular j)atch 

was cut into four areas as shown in figure 3-17. The areas were labelled A, B, C 

and D. The radii and areas of these regions are given in table 3.1. The aim was 

to have approximately the same area in each region (and thus the same amount 

of drug initially). This was coupled with the constraint th a t the cutting tools 

were of certain fixed diameters so it was not possible to meet the reqiiirments 

exactly. Assuming th a t initially the drug concentration was homogeneous, the

Figure 3-17: Transdermal patch divided into areas for separate analysis

total amount of drug present initially was proportional to the area. The drug 

was allowed to diffuse (iontophoretically) out of the patch and into a membrane 

The anioimt of drug present in each portion was measured after periods of 3 and
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Item A B C D Total
radius(mm) 
area {mm?)

5
79

7.5
98

10.49
169

14.9
354

14.9
700

Table 3.1: List of the radii and surface areas of the four regions of the {)atch

6 hours. These meastirements are given in table 3.2. These amounts were then 

calculated as a percentage of the initial theoretical amount of drug present.

3.8.2 Discussion

Since these are the only results available from this study, it is difficult to draw 

definite conclusions. As is clear from the results, there is a lot of disparity and 

lack of agreement between the two sets of data  (a) and (b). The error margins are 

cpiite large and the results must be regarded as requiring confirmation. However, 

the trend of more rapid concentration depletion from the outer edge of the patch 

is olwious even with these crude data. Therefore, this experimental data  give an 

accurate, though not precise description of what was expected from the siiinilation 

results shown in figure 3-16.

3.8.3 ANSY S Simulation

We have seen th a t in order to include the effects of an electric current, we must 

include additional terms in the general diffusion equation (1.12). Where we have 

equated diffusion coefficient with thermal conductivity, it is clear from equation 

(1.13) th a t the electric field is equated with velocity.

However, from preliminary tests, we have seen th a t this is not a direct analogy. 

The velocity term arises from convection and is due to the motion of the medium 

containing the heat. This corresponds to the gel in the drug matrix.

As has been discussed earlier, the drug is released from the gel and the gel 

itself does not penetrate the skin. Therefore, this analogy cannot be expected to
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Item A B C D Total
initial amount(mg) 0.33 0.41 0.71 1.48 2.92
3hrs .22 .27 .39 .66
% of initial 66 65 55 45
6hrs .05 .03 .04 .06
% of initial 15 7.3 5.7 4

(a)

Item A B C D Total
initial amount(mg) 0.33 0.42 0.71 1.50 2.96
3hrs .17 .23 .27 .63
% of initial 51 55 38 42
6hrs .05 .03 .03 .01
% of initial 15 7.1 4.2 1.5

(b)

Table 3.2: Amount of drug measured in each sector of the patch after the drug has 
diffused out after three and six hours. The results of two separate measurrnents 
(a) and (b) are given. (Note that the initial amount was not actually measured 
but in fact calculated from the amount of to tal drug present in the patch before 
it was sectioned.)
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be valid

As a trial, an electrical analysis was carried out. The electric flux of each 

element was tabulated and then entered as the m aterial property of conductivity 

in a subsequent thermal analysis.

Essentially, the equation solved by ANSYS via the finite element method 

became

This did not work since, by analogy with equation (1.18). ft should be mul

tiplied by the first derivative of c w.r.t. x  and not the second derivative.

3.8.4 Conclusion

For a small range of cases we have seen tha t ANSYS is a good niodelling tool 

for diffusion analysis. However, for complicated cases such as electrically assisted 

diffusion, the current limited capabilities of ANSYS mean th a t an alternative tool 

is necessary to model such processes. The results presented in this chapter are of 

limited use. They really serve to show how, with more versatility such software 

could be adapted and used as a modelling tool. W hat we have seen is th a t since 

the mathem atics of the phenomena of heat transfer and m atter transport are so 

closely related tha t the same tools can be used to represent both provided tha t 

there is some degree of flexibility within them. The aim of this work has been 

to investigate the usefulness of ANSYS as a modelling tool for the transderm al 

patch system. The work has clearly shown tha t more versatility of the software 

is a fundamental requirement if realistic systems are to be modelled.

Therefore, we adopted another approach to continue and extend our mod

elling. We started  with the partial differential equations and solved them analyt

ically. Where no analytical solution was available we used DEQSOL, the finite 

difference numerical solver package discussed in the chapter 2 and the results for

(3.2)
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drug release from an inert m atrix are given in the next chapter.



Chapter 4

Diffusion from an Inert M atrix

In this chapter we examine the migration of a drug, from a transderrnal j)atch, 

into the skin. To this end we have developed a mathematical model. The model 

is based on diffusion from an inert matrix of finite size. It is assumed that there is 

a uniform concentration of drug present in the matrix, that the transport out of 

the matrix is governed by the diffusion equation and that this diffusion is planar. 

For simplicity it is also assumed that the skin is an infinite sink and that the flux 

on the other side of the matrix is zero - that is that the drug can only exit the 

matrix on one side. The pertinent differential equation for this model (equation 

(1.16)) has been solved and is derived in many textbooks (.lost (I960)). The 

purpose of this chapter is to extend the previous work to include the effect of an 

electric field applied across the matrix which will enhance or retard the passage of 

an ionized drug molecule into the membrane. The advantage of such electrically 

assisted transport is that it allows greater control over the rate of delivery. In 

addition, the system as programmed will allow a chemical reaction to take jjlace 

within the matrix that will cause a further depletion in the drug concentration.

We will start by taking a brief look at the entire sequence of events that result 

in a transdermally administered drug being made available to the circulatory 

system. We will take a detailed look at the functions and features of a transdermal

58
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delivery system. From here we will look at the phenomenon of iontophoresis. 

Finally, before discussing our particular model we will review the m athem atical 

models in the literature.

4.1 Drug Delivery

The three aspects of drug delivery are drug input, pharmacokinetics and phar- 

modynamics. Drug input describes the rate and time course of systemic drug 

input. Pharmacokinetics is concerned with the uptake of the drug into the circu

latory system and blood plasma levels. Pharmodynamics involves examining the 

interaction between the drugs and the cells in the body with the ultim ate aim of 

maximising the therapeutic effects, minimising side effects and prevention of the 

development of tolerance to this therapeutic effect.

Of these three aspects, this work is only concerned with drug input. The 

pharmacokinetics are of some minor significance in tha t the aim of drug input is 

to ultim ately detect blood plasma levels in order to confirm that the drug has 

indeed entered the body. In order to place this work in context, it is useful to 

have some knowledge of all three processes and a good review of this is presented 

by Mazer (1990).

4.1.1 Drug Input

We will see th a t it is possible to control the migration of a drug into the body 

either by choice of a delivery a m atrix or by the use of a membrane as well as by 

other means. Our theories on m atrix control are presented later in this chapter 

and those on membrane control are in chapter 5. We will therefore continue with 

a discussion on pharmacokinetics.
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4.1.2 Pharmacokinetics

The purpose of pharmacokinetic modelling is to accurately predict blood plasma 

levels that will result from dermal penetration. A pioneer in this field was Had- 

graft (1979) who looked at the ei)idermis in terms of its function as a reservoir and 

also at the metabolism that takes place therein (Hadgraft (1980)) An early model 

by Guy and Hadgraft (1982) described epidermal uptake via Michaelis-Menten 

kinetics with a a two-step model. Approximate solutions were found for long 

times where the concentration is considerably larger than the Michaelis-Menten 

constant and again at long times where the concentration is considerably smaller 

than the Michaelis-Menten constant. Later Guy and Hadgraft (1983) described 

another two step model for drug delivery from a vehicle into the skin, and then 

from the skin into the capillaries in order to derive approximate expressions for 

the total amount of a drug delivered into the circulatory system. These approx

imations were for long and short times, and can be used for com[)arison with 

experimental data once the various rate constants are known.

Physically-based pharmacokinetic models to predict plasma levels hav(! been 

presented by Guy and Hadgraft (1984, 1985). Since then, several pharmacokinetic 

models have been proposed in the literature to describe the passive transderrnal 

delivery of a variety of compounds for example, Selegine (Barrett et al. (1997a,b); 

Mahmood et al. (1994)). Most recently, Rohatagi et al. (1997) developed an 

integrated pharmacokinetic and metabolic model for Selegine and metabolites 

after transdermal administration. Other workers Riviere et al. (1992), Silcox 

e t al. (1990) have looked at j)lasma levels developed using a flap of human s tra tu m  

co7-netirn applied to an animal model.

Having seen a brief picture of the developments in modelling the cycle of 

a drug from diffusion out of the patch to detection in the blood, we will now 

concentrate on the first aspect of this, drug input, and begin with some general 

considerations of transdermal drug delivery.



C H APTER 4. DIFFUSION  FROM A N  IN E R T  M A T R IX  61

4.1.3 Transdermal drug delivery - General Considerations

An ideal transderm al delivery system provides a uniform zero-order delivery rate 

which is effective within a therapeutic window. It is effective for the adm inistra

tion of drugs with short half lives and it is non-invasive facilitating easy cessa

tion by removal and therefore increased patient compliance (Corish and Corrigan 

(1990)). The main advantage of a transdermal delivery system over traditional 

routes is th a t it allows drug to enter the body at an approximately uniform rate 

over an extended period of time. There are many other advantages associated 

with this novel drug delivery technique. Since it goes directly into the blood

stream , the drug does not pass through the gastrointestinal tract where it can be 

partially degraded and it also avoids first-pass contact with liver where it could 

be i)artially metabolised (Ranade and Hollinger (1996)). It also avoids the risk 

and inconvenience of intravenotis therai)y.

The essential components of a transderm al device are a drug reservoir and a 

means to control the release of drug onto the surface of the skin. Older technicjues 

used to control the release of a drug include covering it with a slow dissolving 

coating, fornmlating it in a suspension or ennilsion, or complexing with ion ex

change resins. More recent techniciues which provide more control and are under 

current investigation include the encapsulation of a drug in a polymer for exam

ple a hydrogel (Conaghey et al. (1998a,b)), dissolution of the drug in a m atrix 

(Scott and Hollenbeck (1991)) and the use of liquid crystals (Carr et al. (1997)) 

as novel delivery vehicles. We will concentrate on a simple membrane controlled 

system, tha t is where the release of drug to the skin is controlled by a membrane. 

A schematic representation of each of these types of devices is show in figure 4-1. 

A typical device, illustrated in figure 4-1(c) consists of an impermeable backing, a 

drug reservoir, a diffusion control membrane and an adhesive strip which ensures 

tha t the drug stays in contact with a particular chosen site on the skin. The 

rate of drug effusion to the skin depends on the diffusion coefficient of the drug
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Figure 4-1: Schematic diagram of the various drug delivery systems, (a) adhesive 
control, (b) drug is microsealed in a polymer, (c) membrane control

through the membrane.

The particular design of the delivery device is very im portant to ensure zero 

order release. As we will see later in this chapter, the theoretical model of a 

m atrix device was first described by Higuchi (1961). He found the release rate 

to be inversely proportional to time. The aim is to have a zero order rate of 

release. In order to achieve this Rhine et al. (1980) designed a hemispherical 

device with a hemispherical hole. Later Kuu and Yalkowsky (1985) descril)cd 

a rectangular device again with hemispherical holes. However, the fundamental 

problem with both of these devices is tha t they are difficult to manufacture on
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a large scale. Mishra and Yalkowsky (1990) designed a device based on a much 

simpler geometry - a flat circular hole device - which has as its trade off the fact 

th a t it doesn’t give exact zero order kinetics, but it is certainly a reasonable first 

attem pt.

There are many physico-chemical and physiological factors governing the pas

sage of a drug into the skin. A good discussion on these is presented in the review 

article by Singh and Singh (1993).

Some drugs such as nitro-glycerin pass through the skin naturally. Others 

may need a chemical penetration enhancer (Walters (1989)) or some form of 

therm al perturbation (Bodde et al. (1990)). It has been shown by .Jenkinson and 

Walton (1974); Russo et al. (1980)and Shelly et al. (1950), th a t the application 

of an electric field as a means of driving drug into the skin can be an effective 

alternative. This phenomenon known as iontophoresis, is especially significant 

for trans{)orting ionized drugs. We will now take a more detailed look a t the area 

of iontophoresis.

4.2 Iontophoresis

Iontoi)horesis is a process which causes an increased permeation of ionized sub

stances into or through a tissue by the application of an electric field (Tyle 

(1986)). This method was first suggested by Leduc (1900) a t the beginning 

of the twentieth century as an alternative means of delivering medicine to the 

body. However despite the fact th a t knowledge of the technique has been gaining 

in momentum, its use is still not widespread (Singh and Maibach (1993)).

A typical iontphoretic device is show schematically in figure 4-2. It consists 

of an active well containing the drug and a passive well containing a buffer. 

Electrodes are attached to the wells and an electric potential is applied across 

them. This causes the drug to ionise and has the effect of driving the ions into the 

skin. Assuming th a t the drug ions are positive as shown in figure 4-2, a circuit is
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Drug
(D+,A-)

Buffer ions
(H+, A-)

Figure 4-2: Schematic diagram of an iontphoretic device, adapted from a review 
by Burnette (1988)

set up whereby the positive drug ion is driven into the bloodstream. Since 

th(! skin itself contains extracellular fluid with Na~^ as its prim ary cation and 

Cl~ as its primary anion, these ions are affected by the process. The sodium ion 

migrates towards the negative electrode and the chloride ion migrates towards the 

positive electrode. In addition the buffer ion (designated by A~  in the diagram) 

also migrates into the bloodstream.

As detailed in chapter 3, the transfollicular and transai)pendageal routes con

stitu te  the major pathways for penetration of ionized species and this penetration 

can be facilitated by the application of an electric field.

Foley and Corish (1992) have shown that the resistance of the skin decreases 

on the application of an electric current and used this fact to investigate the 

increased permeation of morphine hydrochloride into the skin. Vincent (1976) 

has discussed quantitatively the effect of applying an electric field to an ion and 

obtained expressions relating the magnitude of the force to the magnitude of the 

subsequent velocity. Many researchers have compared passive and iontophoretic
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iiiechaiiisins e.g. Singh and Singh (1993). Masada et al. (1989) developod a 

theoretical equation relating flux enhancement to applied voltage and successfully 

applied their theory to a four-electrode system.

Burnette and Marrero (1986) compared iontophoretic and passive transport 

of thyrotropin across excised nude mouse skin and concluded th a t the motion of 

the charge and uncharged species was greater for in the presence of an electric 

current. Yoshida and Roberts (1995) used conductivity measurements to predict 

transport of various anions across excised skin.

As far as the mechanism and j)athways through which iontophoresis takes 

place, Burnette and Ongpipattanakul (1987, 1988) have looked at the pore trans

port j)roperties and they also characterised the permselective properties of excised 

skin during iontophoresis. There is therefore a great deal of interest and research 

in this technology.

However, despite the recent surge in research and knowledge of ionto{)lioresis 

in the last two decades, further research is still required in order to maximize the 

advantages of this system

4.2.1 Mechanisms of flux enhancement

Iontophoresis enhances drug delivery by 3 mechanisms namely

•  (i) the ion-electric field interaction provides an additional force which drives 

the ions into the skin

•  (ii)the presence of a current increases skin permeability

•  (iii) electro-osmosis produces bulk motion of solvent, carrying with it neu

tral species in solvent stream.

Pikal and Shah (1990) have examined the transport mechanisms in iontoi)horesis 

in particular looking at the effect of electrosomotic flow.
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Praissman et al. (1973) rejiorted that the phenomenon of electroosmosis oc

curs when a current is passed through a membrane separating two electrolytes. 

The momentum of ion flow produces bulk motion of the solvent and therefore 

increases the momentum of the neutral species. The role of electro-osmotic flow 

in transdermal iontophoresis is discussed by Pikal (1992). He suggests that the 

theory developed by Manning (1967) (who related electroosmosis to measurable 

quantities such as viscosity etc.) is reasonable in that it agrees closely with ex

periment. Pikal concludes that of the three mechanisms of flux enhancement by 

iontophoresis, electro-osmotic flow is the dominant flux enhancer for large ions. 

For smaller ions however, the ionic effect dominates. We have already discussed 

the first two mechanisms in chaj)ter3. Of these three mechanisms, we will concen

trate on the second one and models for this are presented in tlie next section. The 

increase in skin permeability was discussed in chapter 3 where we also presented 

a more general discussion on the function of the skin.

4.2.2 M odels for iontophoresis

There are two models used to describe the ionic effect of iontophoretic transport 

of drugs across tlie skin. The first of these is the constant field approximation. By 

assuming a constant field field everywhere, the solution is applicable to ions of any 

valence. The steady state form of this approximation was derived by Goldman 

(1943) and the time dependent form was derived much later by Keister and 

Kasting (1986). Although this theory is the most mathematically tractable and 

useful for iontophoresis, it is important to be aware of a second model called the 

electro-neutrality model and described by Planck (1890). The main assumption of 

Planck’s model is that all points within the membrane are electrically neutral on 

a microscopic scale. Planck obtained steady state solutions for a 1:1 electrolyte 

using this model and Scliogl (1954) later extended this steady state model to 

include more complex electrolyte mixtures.
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Norman (1975) examined the diffnsional spread of iontophoretically injected 

ions and assumed a constant field approximation. His model was th a t of diffusion 

from an infinite source into an infinitely thick membrane. He remarked th a t the 

reason for using the constant field approximation was tha t the use the electro- 

neutrality condition would require both the conductivity and the osmotic pressure 

to be significantly altered. This in turn  would cause solvent movements which 

would interfere with the flux analysis.

However, Kasting and Keister (1988) later remarked th a t the constant field 

approximation is not suitable for thick membranes so the Norman (1975) analysis 

was deeined incorrect. They recently reviewed both of the models, showing the 

limits of usefulness of each. For our purposes we will consider very thin mem

branes and therefore the Goldman approximation is most useful. The Planck 

approximation is better when considering thicker membranes or when there are 

vastly different ion concentrations on either side of the membrane.

In all cases of ionto[)horetic models, the conclusions (in contrast with the 

solutions) have been simi^le; The skin is a very complex organ and there is 

more than one pathway through it. Additional considerations such as convective 

coui)ling between flows, the effect of fixed charges, the effect of more than on(! 

drug species, the variation in diffusivity and ion mobility upon the ai)plication 

of an electric field must also be taken into account in order to get a complete 

solution to the behaviour of a drug in the skin. It is very difficult to predict 

the behaviour of a drug which comes in contact with the skin. But in order to 

understand how the behaviour of the skin differs from the behaviour of an ideal 

membrane, one nmst first of all understand the behaviour of an ideal membrane.

This ends our theoretical description of iontophoresis. We will continue by 

reviewing the m athem atical models th a t have so far been presented to describe 

drug release from a membrane and then present our extensions to these models.
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4.3 R eview  of m athem atical m odels
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The subject of passive release of a drug from a bounded membrane has received 

considerable attention in the literature (Higuchi (1967)). The am ount of solid 

m aterial (Q) released from a planar system having a homogeneous m atrix into a 

perfect sink has been derived by Higuchi (1961) as

Q =  (4.1)

where D  is the diffusion coefficient, Cq is the initial amount of drug per unit 

volume, C., is the solubility of the drug in the medium and t is time.

In this case, there is clearly a linear relationship between Q and . Therefore, 

for the system mentioned, a linear plot of Q versus should be a good indicatioti 

of m aterial transfer via this mechanism of diffusion.

However Schwartz et al. (1968) showed that the release of m aterial from a 

m atrix , if controlled by first order kinetics, could be described by a rate law such 

as

^  ^  v.xp[kt] (4.2)

where Qq is the amount of material present in the m atrix initially, k is the first 

order rate constant and an A  is arbitrary constant (which, for simplicity, we will 

set as 1). The above is a more constrained form of equation (4.1). It can be 

m anipulated and rewritten as

log{Q) = k t -  log{Qo) (4.3)

so th a t a plot of log(Q) against t should be linear. Examination of a m atrix 

system  dem onstrated th a t both plots of Q against and log{Q) against t can be

essentially linear. Therefore further analysis was necessary in order to differen

tia te  between the two possible mechanisms. This involved measuring the rate of
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release or the permeability. Additional studies were conducted by Donbrow and 

Friedman (1975) confirm this, and suggest a standard procedure be applied to all 

data in order to fully exem plify the pertinent transport m echanism . This stan

dard procedure consists of presenting plots of Q  against ^2 and log(Q)  against t 

in addition to presenting a j)lot of ^  against It can be easily shown that a 

linear plot o f ^  against ^  will be a good indication of diffusion control whereas 

a non-linear plot suggests first order kinetic control. This is because a plot of 

Q  against f }  is essentially the same as a plot of ^  against ^  but the difference 

between diffusion control and kinetic control may not be apparent (due to size of 

error bars) when com paring a plot of log{Q)  against t  w ith a plot of Q  against 

. The differences are in fact, an artefact of the fitting procedure.

4.4 More detailed models

For a ])lanar system  having a granular m atrix, additional jmrameters including 

the tortousity factor of the capillary system , r , and the porosity of m atrix, e, are 

included in the diffusion controlled m odel (Higuchi (1963)). This gives the more

com plex expression __________________

Q =  ^ ^ { 2 C , - e C s ) C , t  (4.4)

In a subsequent report Desai et al. (1965), showed that these factors are not 

independent. T hat is variation of one will autom atically vary the others. This 

m eans that such a system  is more difficult to m odel accurately than a system  

where all the parameters are independent of one another. In fact, all m odels to  

date assum e that there is no correlation between any of the param eters and there 

is therefore a need for more sophisticated m odels in this area.

Higuchi (1960) also showed how a sim ple solution of the diffusion equation  

(given below - equation (4 .5)), previously derived in many textbooks (c./. .lost
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(I960)), can be applied in order to quantify drug absorption from solutions.

dc d'^c , ,

Again given conditions of an infinite sink on one side of the solution matrix, 

he derived an expression for the concentration profile of the m aterial within the 

m atrix as a function of distance and time. This expression is then m anipulated to 

obtain an expression for the quantity of material released as outlined in equation 

(4.6).

Q =  -  -  E  expl--------- ------------- ] (4.6)

where D  and t are the diffusion coefficient and the time as defined l)efon; with 

the additions of h as the thickness of applied phase of drug solution and Co again 

being the initial concentration of the solute. It is clear tha t the solution phase 

has a finite thickness h. The relationship between Q and t is much more comi)lex 

than the previous cases and makes the task of confirming this mechanism, a lot 

more difficult than the cases discussed in the previous section.

However, it can be shown (Higuchi (1962)) that, for serni-infinite diffusion, 

th a t is in the limit as h approaches infinity, the expression for Q is much more 

simple.

Q = 2C o(— y  (4.7)
7T

In figure 4-3 we have plotted Q against t from equations 4.6 and 4.7. This 

serves to clarify the assertion of Higuchi tha t for release of < 60%, the simple ex

pression for amount released from a semi-infinite m atrix is a good approximation 

to the amount of of drug released from a matrix of finite thickness h.

Therefore for all the cases mentioned above, plots of Q against \ / t  will be 

essentially linear. In order to differentiate between diffusion obeying and not 

obeying Pick’s law one should plot Q against Cq. A useful summary of models
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Figure 4-3: Comparison of diffusion from a semi-infinite source (eciuation (4.7)) 
with diffusion from a source of finite length (equation (4.6)) showing th a t the 
api)roximation is good up to 60%. The dashed line indicates the exact solution 
and the full line indicates the approximation.

discussed above is presented in a review paper by Higuchi (1967).

4.5 Extension of M odels to include iontophore

sis

We now show how we have extended the model based on Pick’s law to include

the effects of iontophoresis and first order chemical reaction within the matrix. 

We start by showing how the expressions for concentration, amount released 

and permeability for passive diffusion were derived. From here we use similar
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techniques to derive the same quantities for transport via iontoplioresis. The aim 

is to discuss these equations in as general terms as is possible so th a t it will be 

easy to transfer the knowledge to other applications of the diffusion equation.

4.6 General D escription of the physical system  

and form ulation of the boundary value prob-

Wc represent the patch as a rectangular m atrix of length L. We assume that 

there is a uniformly distributed concentration of drug in the patch initially and 

tha t diffusion is planar. The spatial region inside the i)atch is therefore defined 

as 0 <  .T < L. The receptor for the drug is the skin and we assume th a t as 

soon as the drug reaches the surface of the skin it is trans[)orted into the low(?r 

layers. We will apply a uniform electric field E  across the m atrix only, and w(i will 

assume th a t the ionic mobility of the drug is //. We will further allow the drug 

ions to undergo a chemical reaction with a first order rate constant k. Our initial 

condition is therefore tha t of a uniform concentration of drug cq in the matrix. 

The first boundary condition describes the skin as a uniform sinkG TIk; only 

means of exit of the drug from the m atrix will be into the skin and therefore the 

flux a t the other extremity is zero. Thus we have the second boundary condition. 

The differential equation governing the transport and kinetics is

lem

dc _  fiE L  dc
(4.8)

This is presented in non-dimensional form by the use of the following nor

malised param eters
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and is tlierefore transfornuxi to a more manageable

73

du d'^u du  X

where w represents a non dimensional penetrant concentration at any point in 

the membrane which is scaled with respect to the concentration cq a t the donor 

solution/m em brane interface, x  is the normalised distance variable scaled with 

respect to the total thickness L  of the membrane. Hence we note th a t 0  < < 1

and 0 < X <  1- Furthermore, 7 , /3 represent a normalised diffusion/reaction 

and diffusion/migration param eter respectively. In fact the diffusion/reaction 

param eter 7  is defined as the ratio of the flux due to the chemical reaction to 

the flux arising from the species diffusing through the matrix. In a similar way, 

the i)arameter, defines the ratio of the migration flux to the diffusion flux and 

compares the magnitudes of the transport rate of penetrant through the m atrix 

via migration and diffusion respectively. Consequently the ratio ^ compares the 

rate of penetrant species reaction at a site in the matrix to the rate of electro

migration of penetrant species within the matrix. The param eter P depends 

directly on both the electric field strength E within the m atrix and on the ionic 

mobility //, of the penetrant species. It also depends on the m atrix thickness 

and is inversely proportional to the diffusion coefficient D  of the jjenetrant. In 

contrast the param eter 7  is directly proportional to the first order rate constant 

for species removal within the m atrix and is inversely proportional to the diffusion 

coefficient D. The expression presented in equation (4.10) should be com])ared 

with the the equation governing simple passive diffusion within the membrane 

which is well described by the time dependent Fick diffusion eciuation

du d'̂ u

The problem is defined m athematically in terms of the following initial and 

boundary conditions:
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(4.12)

4.7 Solution of the Passive equation
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Figure 4-4: Concentration profile of diffusion from an inert m atrix over time with 
values of r  starting  at 0.01 (uppermost curve) and incrementing in ten steps of 
equal size 0.05 as far as 0.46

The passive equation is solved using the technique of separation of variables, 

a common method for solving differential equations which are dependent on more 

than one variable. We assume that the complete solution can be separated out 

into two components, one of which is dependent only on the spatial variable X{ x )  

and the other is only dependent on time T (r). Both components are foimd and
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the equation admits the following solution:

(2n +  l)^nH
4 (4 . 13)

Typical diffusant concentration profiles through the m atrix obtained using 

equation (4.13) are presented in figure 4-4.

Initially the concentration profile shows a m atrix full of drug with slight de

pletion a t one end as the drug is carried into the skin. As time goes on, since this 

is not an infinite source, the drug concentration within the membrane decreases 

rapidly again with depletion occurring to a greater extent at the region closest 

to the skin until finally the membrane is devoid of drug completely.

An interesting way to look at this profile is as a surface i)lot of Xi t '«■ 

(figure 4-5). Here we can see tha t initially there is a steep gradient in concen

tration change over time. However, the system rapidly settles down and there 

is a more or less uniform decrease in concentration across the m atrix as time 

goes on. This is interesting because it is contrary to the arguments proposed by 

Higuchi in his theoretical description of drug release from a membrane, because 

he has assumed that the profile is more like a moving boundary, where the drug 

will be removed completely from the extremity at the infinite sink before there 

is any concentration change in the other extremity. This means th a t there is a 

sharp discontinuity in the profile as opposed to the situation pertaining to a drug 

present in solution where, except for the initial stages, the profile is smooth and 

continuous.
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Figure 4-5; Surface plot of basic solution showing concentration profile over time 
with values of r  starting at 0.01 and incrementing in ten steps of ecjual size 0.05 
as far as 0.46

4.8 Quantity delivered

In terms of the actual amount of drug delivered into the skin, this is obtained via 

the equation

Q, =  dt (4.14)

where A is the cross-sectional area of the plane. In terms of normalised parame

ters, this is

Qr =  -ALco  ^  d r  (4.15)

The quantityALco denotes the total amount of diffusant contained initially in
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the matrix and is the amount tha t would be released after an infinite amount of 

time Qoo- It is clear that, in this case, Qoo =  1- However it is standard procedure 

to express the amount delivered as a fraction of Qoo and hence

Q r ^ - Q o o J ^  (4.16)

The ratio ^  versus r  defines the quantity of primary experimental interest.
V o o

From equation (4.13) and equation (4.16) we can show that this is

=  ^ (4 17)
(2« -  1)" i

We have seen in section 4.4 that the approximation is good for release of up

to 60%.

We note from the ])rofile in figure 4-3 that there is no lag time but rather

what is seen is a ’’burst effect” of drug released from the patch. It is useful to

note tha t in reality there is some lag time and evidence of this can be seen in the 

work of Foley (1991) among others.

4.9 Electrically assisted diffusion w ith concur

rent first order chemical reaction

Following from the results for concentration driven diffusion, the case of elec

trically assisted diffusion with concurrent first order chemical reaction is now 

considered. The objective is to determine once again, how the concentration 

changes over distance and time when a voltage is applied and when a chemi

cal reaction involving the drug takes place. We will also look at the amount of 

substance released, the permeability and the lag time since these are the quan

tities of experimental significance. In terms of drug transport, this is associated 

with the phenomena of iontophoresis. However, as mentioned earlier, the general
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caso will be considered because then the governing differential equation may also 

be applied to another area of physical chemistry, namely, diffusion and migration 

and reaction in polymer-modified electrodes. For example, Yap et al. (1983) have 

solved a similar equation but related to polymer modified electrodes.

We will therefore consider the case with the same boundary and initial condi

tions as for the passive case (section 4.6) but with the addition of an electric field. 

The boundary conditions are those of zero flux a t one extremity of the m atrix 

and an infinite sink a t the other. These are expressed m athem atically as follows:

Qli
Jo =  —  -  l3uo = 0, u{l, t )  = 0 (4.18)

oXo
We recall th a t J  is the flux, ft is the migration param eter and u is normalized 

concentration. The initial condition is as before

■u(x,0) =  l (4.19)

Using the techniqtie of sejjaration of variables, the general solution of eciuation 

(4.10) is found to be

OO

=  XI e"^[C'cos(6x) +  Dsm{bx))]exp{—X^t) (4.20)
n = 0

This is solved with the conditions given above. The comi)lete solution (detailed 

in Appendix D .l) is

By  °°
u{x, t )  =  exp{  —  ) Y ,  Bn[sh\{bnX)]eM->^‘̂f') (4.21)

n = 0

where the coefficient of time in the exponential term. A, contains functions of the 

m igration and reaction param eters {ft and 7 ) and is defined as

A =  j  -  7  (4.22)
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The coefficients of the summation, Bn, are more complex

(4.23)

with bn being a solution of the transcendental function

(4.24)

Interestingly, the coefficients Bn of the summation, contain functions of the 

migration parameter (3 only. Therefore, when considering diffusion and concur

rent chemical reaction, the expression for the concentration profile is reasonably 

simple. Typical concentration profiles are given in figures 4-7 to 4-12 inclusive. 

These j)lots were generated by DEQSOL (the numerical finite difference jjack- 

age), because the analytical solution involves an aforementioned transcendental 

function which must be evaluated numerically. These are discussed in detail 

below.

4.10 D iscussion

With some algebraic manipulation, we can show that when 7 and are set 

to zero that equation (4.21) reduces to equation (4.13) - the expression for the 

concentration with passive diffusion. This is shown explicitly in Appendix D.2. 

We will now look at the effect of the each of the migration and reaction parameters 

on the concentration profile. The figures presented in the following pages are 

surface plots showing how the normalised concentration u varies with distance x  

and migration parameter (5 for the time periods r =  0.01,0.05,0.1 and 0.3. The 

reason for choosing these particular time periods is that they show an interesting 

range of change and they also correspond with the information contained in the 

profile for passive diffusion (figure 4-3) and are therefore useful for comparison.

Figure 4-G is a develoi)ment of the u, Xi 7 surface as a function of time r
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and normalized migration parameter /3. The first plot in the series shows the 

normalised concentration profile at r  =  0.01 for typical positive values of the 

migration parameter fi. The reaction parameter 7 is zero. This early time i)rofile 

indicates clearly that the drug is being repelled from the site of applied voltage 

and the magnitude of the repulsion is a quasi linear function of the magnitude 

of the applied voltage. However, since it is still a short time period, the effect 

of the voltage does not manifest itself to a great extent at the other extremity 

of the matrix. The concentration profile up to approximately 20% of the length 

of the matrix varies significantly with applied voltage but the profile beyond this 

limit is more or less independent of the voltage. The second plot in Figures 4-G 

shows a similar surface plot but at a longer time period. Here we see a significant 

deviation from the passive profile as a function of the voltage. There is clearly 

a non-linear dependence of the concentration on the voltage. It is interesting to 

note that for /? =  5, the force due to the voltage greatly outweighs the ability of 

the skin uj)take and there is a concentration j)eak in the middle of the matrix. 

Even at =  1, this peak prevails. There is therefore an optimal value of the 

voltage somewhere between p - 0 and /? =  1 where the total force into the 

matrix is c(}ual to the force out and there is no concentration build-up in the 

matrix. The third plot in figure 4-6 is the surface profile at longer times r  =  0.1. 

This profile is very similar to that of r  =  0.05, the difference being that the 

profile for large positive /3 is not as steep as the previous plot therefore indicating 

that much of the drug has exited the matrix. Finally we look at the j)rofile for 

r  =  0.3. In this case we see that the positive voltage had forced the drug through 

the matrix and for large P, the matrix is almost devoid of drug. This is in sharj) 

contrast to the the profile where there is no field and j3 — 0. At this state the 

shape of the profile has not changed much from its appearance at the earlier time 

step. The overall concentration is reduced but there is still a large variation in 

the concentration at different positions.

Figure 4-7 contains the same information as figure 4-6 but now the reaction
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param eter has been included and 7  =  1. There is very little difference between 

these plots. The reason for this is tha t the layer thickness -Xf(-  defined as the 

distance the drug will travel before undergoing chemical reaction is given by 

Xh- =  ^- L  denotes the layer thickness which is normalised so th a t L — 1. 

Therefore for 7  =  1, the layer thickness is also unity so the drug will traverse the 

m atrix  before undergoing chemical reaction.

Figure 4-8 depicts the time evolution for 7  =  10. In this case the layer 

thickness is X/^- = 3.2 and so considerably more depletion is apparent compared 

with the case of no chemical reaction. In fact at later times, the drug has cither 

exited the m atrix completely or undergone reaction and the effect of the field is 

overshadowed by the extent of chemical reaction. The extreme case of 7  =  100 

is presented in figure 4-9. Here the ratio of migration to diffusion is in the range; 

.05 >  ^ > 0. As would be expected, the effect of large reaction param eter is to 

cause considerable depletion of the drug before it has exited the m atrix and (!ven 

with the enhancement of an electric field, the high reaction rate dominates and 

it takes only a very short time (r  < 0.05) before the m atrix is comi)letely devoid 

of drug.

Figure 4-10 shows more clearly the effect of the reaction param eter on the 

passage of drug. Here we see tha t in the absence of an electric field, the con

centration of drug varies greatly across the m atrix even for the small range of 

reaction param eters presented. As time goes on, the difference is even stronger 

as evident in the slope of the u, 7  profile at n =  0. It is interesting to compare 

this with the profiles in Figure 4-11. Again the effect of the m agnitude of the 

reaction param eter is clearly manifested in the profiles. The characteristic hump 

due to the push-start effect of the migration is also clearly evident. These pro

files are very much different to those of figure 4-10 and they serve to show how 

the variation of one parameter has a large effect on the resultant concentration 

profile.

Figure 4-12 depicts the time evolution of the concentration profiles for negative
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values of (3. This means that the voltage is of opposite polarity to the ions in 

the matrix. Therefore, rather than being forced out of the matrix, the drug 

ions are attracted towards the voltage source. In fact, the physical importance 

of having this voltage is minimal. As is intuitive and as we have seen through 

the mathematics, this results in less drug being administered than is desired. 

It serves to retard rather than enhance the rate of delivery. However, if used 

in conjunction with a chemical enhancer or some other enhancer, this type of 

voltage may play a role in the fine tuning of the delivery rate.

Surprisingly though, this does not significantly inhibit the passage of the drug 

through the matrix and it is clear that the concentration profile is similar for the 

whole range of voltages in the latter half of the matrix, that is the jjart closest to 

the skin. However, there will be significant differences in the amount delivered 

for the difl'erent voltages at this time because, for high voltages, so much of the 

drug is attracted to the voltage source.

4.10.1 Q uantity delivered

We shall now derive the expression for the total amount of drug exiting the 

matrix and discuss the effect of fi and 7 on this. We recall that the amount of 

drug delivered equation (4.16) is given by

The first derivative of u w.r.t. x  from equation (4.21) was found. This derivative 

was then evaluated at x =  1 .̂nd integrated over time. The resulting ecjuation 

showing the amount as a function of time is

(4.25)

^  =  - e x p ( ^ )  B ,n[^sin(6m) +  6„cos(6„)|ex i)(-A ‘''T) (4.2C)
-t/oo ^  « _ n  ^
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O  B °°
77^  =  -e .'i-p (-)  srn{bm)] e x p ( -A V )  (4.27)
V oo n - 0

where all the term s are defined as before. The expression for Q  involves 

transcendental functions. The first few terms in the solution of this were eval

uated num erically and are given in the Handbook of M athem atical Functions 

(Abram owitz and Stegun (1965)). This is not enough for an accurate solution. 

Therefore, in order to  j)roduce the results we have calculated the derivative using 

a central finite difference scheme and fitted this to a polynom ial function. The  

polynom ial was chosen as being of the form Q =  at^ + h t  where the param eters a 

and h were fitted by least squares m ethod. The reason for the particular choice of 

power law was that for the passive case, the am ount is described by the function  

at^ and for the case of electrical assisted delivery it has been noted Nolan (1996) 

from experim ental data results that the profile takes on a linear shai)e at long 

values o f r . The i)lots shown in figure 4-13 are for various values of ft w ith 7  =  0 . 

This corresponds to a i)hysical case of iontophoresis with no reaction i)arameter. 

The plot of ft - 0, or that of j)assive release, is also included for comparison. 

From these i)lots we can see that as the electric current is increased, the rate of 

release also increases. This is in agreement with what would be expected. It is 

also good to  see that there is a good deal of sim ilarity between this theoretical 

result and the experim ental results produced by Foley (1991) which are dei^icted 

in figure 4-14.

4.11 Conclusions

In this chapter we have considered planar diffusion of a substance from an inert 

m atrix and looked at the resulting concentration profiles in the presence of both  

electrom igration and first order chemical reaction. We have applied this to the 

process of iontophoresis in an effort to understand more fully the m echanism  of
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this. However, tliere are limitations to the model which will result in differences 

between these theoretical predictions and experimental results. For exam])le, wc. 

have considered planar diffusion and assumed th a t there is no si)reading of tin; 

drug on the surface of the skin. Secondly, we have assumed tha t the skin is 

an infinite sink. As has been discussed in chapter 3 the stratum coTneurn is a 

barrier to foreign substances and will not transport the drug immediately into 

the lower layers of the skin. Neither have we been able to model the changes in 

jiermeability of the skin once the transport through the barrier begins. Further 

models of ioiitophoretic transport will need to take some of these modifications 

into account.

In terms of amount of drug delivered for the passive case, from a m atrix 

controlled system, the de{)endence on time is . An ideal delivery system will 

have a zero order dependence on time but we have seen at the beginning of this 

chapter th a t there have been some efforts in design of the patch made to a ttain  

this situation. Our model for ionto])horetic transport cannot be reduced to a 

simj)le approximation as in the passive case. There is an obvious dependence on 

time and in order to control this, it may be advisable to api)ly a control membrane 

between the skin and the matrix. The analysis of this is the subject of the next 

chapter.
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Y =  0
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X = 0.05

1 = 0.1 x = 0.3

Figure 4-6: Surface plot of fu ll solution of inert m atrix showing time development 
of the concentration profile as a function of distance w ith in the m atrix and the 
migration parameter /?. The migration parameters are positive indicating that 
the applied voltage is of the same charge as the ionized drug. The reaction 
jjarameter 7 is zero.
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Figure 4-7: Surface plot of full solution of inert matrix showing time develoi^ment 
of the concentration profile as a function of distance within the matrix and the 
migration jiarameter (3. The migration parameters are positive indicating that 
the ai)plied voltage is of the same charge as the ionized drug. The reaction 
parameter 7 =  1.
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y =  10

1 =  0.1 1 =  0.3

Figure 4-8: Surface plot of full solution of inert matrix showing time development 
of the concentration profile as a function of distance within the matrix and the 
migration {)arameter /?. The migration parameters are positive indicating that 
the applied voltage is of the same charge as the ionized drug. The reaction 
parameter 7 =  10.
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y= 100

Figure 4-9: Surface plot of full solution of inert matrix showing concentration 
profile as a function of distance within the matrix and the migration paranieter 
(5. The migration parameters are positive indicating that the applied voltage is 
of the same charge as the ionized drug. The reaction parameter 7 - 100.
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Figure 4-10: Surface plot of iiTll Vcmition of inert matrix showing concentration 
profile as a function of distance within the matrix and the reaction parameter 7 . 
The reaction is causing a depletion in concentration within the matrix. There is 
no voltage present, = 0
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Figure 4-11: Surface plot of'^fitnQoSition of inert matrix showing concentration 
jjrofile as a function of distance within the matrix and the reaction i)arameter 
7- The reaction is causing a depletion in concentration within the matrix. The 
voltage is positive indication that it forces the drug out of the matrix.
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Figure 4-12: Surface plot of full solution of inert matrix showing concentration 
profile as a function of distance within the matrix and the migration parameter 
p. The migration parameters are negative indicating that the ajjplied voltage is 
of the same charge as the ionized drug
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Figure 4-13: Theoretical plot of normalized amount of passive and electrically 
assisted drug release from an inert matrix (Q), against normalised time (r) with 
the /5 parameter denoting the normalised magnitude of the electric current as
0,1,2,3,4,5
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Figure 4-14: Experimental results of passive and electrically assisted delivery of 
morphine from hydrogels where 0.25ma represents a current of 0.25 milli-ain[)s. 
(This data is taken from the Ph. D. thesis of Foley (1991))



Chapter 5

Diffusion in a Finite Membrane

5.1 Introduction

Tho analysis of material transport in hounded membranes is a subject of nnicli 

current interest. Time dei)endent ])assive diffusion of material through mem

branes and thin films has been tho subjcct of mathem atical modelling for many 

years and reference may be made to the classical monographs produced by Carl- 

saw and Jaeger (1977), Crank (1975), Barrer (1951) and .lost (1960) for a com

prehensive survey of progress in this area.

Tlie analysis of bounded diffusion processes in which the diffusing m aterial is 

also subjected to applied electric fields and can undergo chemical reaction with 

sites located in the diffusion medium is considerably more complicated and for 

this reason has not received comparable attention to date.

Attention is focused on bounded diffusion/migration/reaction(DMR.) prob

lems because these processes describe the operation of systems of current t(!ch- 

nological importance such as electric field assisted iontophoretic drug delivery 

devices (Clemessy et al. (1991)), {)olymer modified electrode sensors (Andrieux 

and Saveant (1992), Evans (1990), Hilman (1987), Lyons (1994b), Lyons (1996)) 

and acid transport in a lead/acid cell (Nilson (1993)).

94
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In this chapter we discuss the process of diffusion, reaction and migration 

througli membranes of finite thickness L. Mathematical modelling of these sys

tems involves the formation of a partial differential equation, a suitable^ initial 

condition and physically reasonable boundary conditions. The differential ecjua- 

tion is then solved to obtain a closed form expression for the concentration i)rofil(  ̂

of the diffusant as a function of distance and time. This expression may tluui be 

manipulated to obtain a closed form exi)ression for the total (luantity of material 

released from or entering into the membrane at any given time. The lag tini(! 

r/, of the penetrant sj)ecies and the normalised permeability p may b(? obtaincnl 

by algebraic mani{)ulation of the expression for cpiantity releas(Hl. TIk  ̂ lag time 

is defined as the time recjuired for attainment of the steady state diffusion con

ditions while the jjermeability is a measure of the steady state rate of material 

transport through the membrane material. Both of these (iuaiititi(;s as w(;ll as 

the (luantity diffusing may be readily determined via experiment. In particular, 

the lag time r/, may be used to obtain an estimate of the diffusion coc^fficicnit D 

of the transported s])ecies via the expression r/, =  ^  (Crank (1975)).

Aspects of material transj)ort in membranes have b(;en previously discusscnl 

in the literature. For instance, Ludloph et al. (1979), presented an analysis 

to calculate the lag time expected for bounded diffusion coupled with clu^mi- 

cal reaction and sorption of diffusing species. They showed that th(̂  lag tinu  ̂

for bounded passive diffusion coupled with reversible penetrant immobilisation 

within the membrane is given by r/, =  ^ { 1  +  K )  where K  rei)resents the e(jui- 

librium constant relating free and bound penetrant. Leypoldt and Gough (1980) 

and indei)endently Manning (1980) examined the same system using fiiut(! Fourier 

transform methods. More recently Keister and Kasting (1986) modelknl electric 

field enhanced active diffusion within a finite membrane by a separation of vari

ables method, and derived an expression for the lag time. Chen and Ros(uiberger 

(1991) derived closed form solutions for the steady state permeability and lag time 

of a linear diffusion system with concurrent reaction using the Laplace transform
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technique.

In this chapter we present an alternative analysis of bounded diffusion with 

concurrent chemical reaction and obtain closed form expressions for the concen

tration profile of the penetrant and the total quantity of diffusant exiting the 

membrane as a function of time. The effect of applied electric field and chemical 

rate constant on both the lag time and the permeability is also elucidated.

voltage
+ 1 source

Donor
C om partm ent

< o
< o ,

'A ctive'^
site

M em brane A cccptor
C om partm ent

Figure 5-1: Schematic representation of free standing membrane of finite thic;k- 
ness L, containing immobilised active binding/reaction sites. The penetrant 
species passes through the membrane from a donor to a receptor compartment. 
A uniform electric field is present in the membrane which can facilitate transport 
of penetrant.

The m athem atical model presented can be used to analyse the following ex

perimental arrangement. We consider a thin homogeneous membrane of thickness 

L  th a t vseparates two bulk volumes figure 5-1. We assume th a t the diffusion is 

planar, hence the spatial variable is defined over the range 0 < .r <  L. The 

region x  < 0 is designated as the donor compartment and the region x  > L is 

the receptor compartment. We also assume that the membrane is subjected to a 

constant uniform electric field. Fiirthermore the diffusing penetrant reacts within
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the iiieiiibrane according to a first order kinetic expression with a rate constant 

k. Initially, the membrane is devoid of penetrant. At time;  ̂ =  0 the fac(  ̂ o f the 

membrane adjacent to the donor com partm ent is exposed to a concentration cq 

while the other face in contact with the receptor comjjartnient is m aintained at 

zero concentration. It is also assumed that the solutions on both sid(;s o f the; 

membrane are well stirred, that the receiver solution acts as an infinite sink and 

that the donor solution serves as an infinite source.

The m athem atical description of the i)robleni involves a tim e dependent dif

fusion eciuation of the following type:

du  d'^u du
=  (G-l)

UT OX o x

which is the sam e as equation (4.10). This expression is i)resent(^d in non dini(ni- 

sional form. T his is done via definition of the following normalis(Hl ])arameters 

as have l)een defined in the i)revious chapter :

c D t X kL'  ̂ II,EL j,n fr ô
n =  -----, ^ X =  7 7  =  - p r ,  P =  - p T  =  ~kcq L D  D  Id

where v, rejjresents a non-dim ensional i)enetrant concentration at any point in 

the membrane which is scaled with respect to the concentration cq at tin; donor 

solu tion/m em brane interface, and x  normalised distances variables scakul

w ith res])ect to the total thickness L  of the membrane. Hence w(; not(! that 

0 <  Vi <  1 and 0 <  x  <  1. The representations of 7  and ft have bcK̂ n pnw iously  

described in section 4.6.

The expression presented in ecjuation (5.1) should be compared w ith tlu; the 

eciuation governing sim ple passive diffusion within the membrane which is wĉ ll 

described by the tim e dependent Fick diffusion equation
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The i)robleiii is defined inatheniatically in terms of the following initial and 

boundary conditions:

0) =  0, '«((), r)  =  1, u (l, r )  =  0 (5.4)

The first condition is the initial condition. The second and third are boundary 

conditions and they describe an infinite source on one side and an inifint(^ sink 

on the other.

We shall initially present a solution of the simple passive diffusion problem 

governed by equation (5.3) and then outline how the more complex situation of 

diffusion coupled with concurrent electromigration and chemical reaction which 

is governed by the differential e(}uation presented in ecjuation (5.1) is tackled. 

In both cases we utilise the technique of Laplace Transformation which is tlu; 

solution techniciue of choice when bounded diffusion i)robl(!nis are examined.

5.2 Passive diffusion in a finite m em brane

We initially indicate the manner in which the Fick diffusion eciuation (5.3) is 

solved subject to the initial and boundary conditions presented in equaticm (5.4). 

The diffusion ffux at the membrane recej)tor com partm ent interface corresponding 

to X =  1 i« given by

We take Laplace transforms of equation (5.3) to obtain the following ordinary 

differential equation:

(5.5)

and the normalised diffusion flux is given by:
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d'^u
— - p u  =  () (5.7)

where p denotes the Laplace parameter and u rei)resents the conc(uitration of

penetrant in Laplace space. Efjuation (5.7) is subject to the following transfornuHl 

boundary conditions:

u{0,p )  =  - ,  72(1, 7;) =  0 (5.8)
V

As outlined in appendix E .l , the solution of equation (5.7) is given by:

_ _  c o sh (0 3 x )  s i n h ( ^ x )  _  sin h (y /p (l -  x ))  .

p  p m M V P )  ’

We use the coini)lex inversion theorem to obtain the inverse Laplac(; Transform  

and inv(!rt ecjuation (5.9) to obtain the following expression for the normalised 

concentration profile:

w(x, 7") =  1 -  X -  2 X ] exp(-n'^TrV) (5.10)
n = l

Typical diffusant concentration profiles through the membrane obtaiiK^d using 

eciuatioii (5.10) are presented in figure 5-2.

We can use equation (5.G) and equation (5.10) to obtain the following exj)res- 

sion for the diffusion flux at the m em brane/receptor com partm ent int(!rface:

=  = l  +  2 f  = i ! i < = ^ e x p ( - „ V r )  (5.11)
r ^ l  riTT

The total quantity N{ t )  o f penetrant passing through the membrane after 

tim e t  is given by:

N{ t )  =  A  C  j { t )d t  (5.12)
Jo

where A  is the membrane surface area. Since dt  =  using (^luation

(5.G) we can readily show that
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Figure 5-2: Typical concentration j)rofiles computed using eciuation (5.10) for 
simple passive diffusion through a membrane of finite thic;kness. TIk  ̂ con
centration profiles are presented for normalised times (from left to right) of 
r =  1x10“'', 1x10“'̂  1x10"'^, 3x10“ ,̂ 0.1 and 0.6 respectively

N { t ) =  N oo [  'I'(r)r/r (5.13)
Jo

where the total quantity of material released into the receptor compartnuuit 

at very long times is given by N ^  =  A L kcq. The ratio versus r defines the

quantity of primary experimental interest.

From equation (5.11) and equation (5.13) we can show that

1 oo (' — 1 ')"
Q{r)  =  7- -  p -  2 ^  e x p ( -n ‘‘̂ 7rV) (5.14)

and we can identify the normalised lag time as A typical release;
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Figuro 5-3: Variation in (juantity of penetrant dclivorocl to the r(!cci)tor coiiijjart- 
niont as a function of normalised time. This curve was computed tising ecjuation 
(5.14)

profile is presented in figure 5-3.

We can obtain useful limiting expressions for the normalised releases function 

Q { t ) in the limit of short and long times r. We return to eciuation (5.9) and note 

that

u =  7;~^cosech-ypsinh(\/p(l — x)) (5.15)

Now short times correspond to r <C 1 and p ^  1. Under such conditions 

we note that cosech(y^) 2exp(—y/p). Also ^  _| =  —y/P cosech 

—2y/pexp( —y/p) and so the normalised release profile is given by
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Q{r)  =  - L - r (i) =  - L - p ' ( r )flx/x=i ,

(5.16)

where represents the inverse Laplace Transformation ojjerator and w<! 

have used the fact that integration with respect to time r is ectnivalent to division 

by the Laplace parameter p. Hence the diffusant release profile at short tirn(w is 

obtained by inverting the expression:

Q{ t ) ^  2L - I p  e x p ( - ^ )

We note (Churchill (1972))

(5.17)

L-
e x p [-fv ^ ]

P'
=  2 j -

7T

where a  >  0. If we set rv =  1 we obtain

Q{ t ) =  4 \/rierfc
. 2 ^ .

(5.19)

where we note that ierfc denotes the complementary error function int(igral 

which is defined as

2 roo roo roo
?-erfc(x) =  —̂  /  ((? —x) exp[—0‘̂ ]d0 =  / erfc[(?]d6> =  / (1 — erfc[^])d(^ (5.20)

\/7r Jx Jx Jx

where  ̂ is a dummy integration variable and erf(x) represents the well known 

error function. It can be shown Spanier and Oldham (1987) that th(̂  following 

asymptotic expansion is useful when the argument of the repeated integral of the 

complementary error function is large:
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i - o v M x )  ~  T  +  (r 21)
 ̂ ~  0F(2x)n+' n!j!(2x)- .̂i

Specifically for n = 1 and setting 7/ =  we obtain for r/ ^  1 ( or r  <C 1)

and so the expression for the release profile valid for short times is given by

■ 2exp[-ir]
Q { t ) «  4 \/r 8  _  •'* r 1 1—̂ T   ̂ exp[—— ] (5.23)J ' 4r

This expression is valid up to r  Ri 0.02 (error 10%). For r  =  0.1 there is a 

50% error in using equation (5.23) to estimate the ciuantity of diffusant releascnl 

from the membrane. The full expression must be used for r  vahuis grc^ater thati 

0 . 02 .

Conversely for long times when 1 we use the fact tha t cos(!ch sa

to obtain p~^ cosech {^/p) ^  ^  ~  when the la tter is substituted

in equation (5.1G) we obtain

Q { t )  ^  t  -  ]: =  t  -  t i , (5.24)
G

This expression valid at long times is used experimentally to evaluate the 

lag time r/, and hence the diffusion coefficient D , of the penetrant through the 

membrane. Now the permeability in normalised form is defined as

«=S=(f)\  /  r —►oo

Hence from equation (5.24) we note tha t p =  1 as expected for a system 

exhibiting simple passive diffusion. Furthermore, tho nornialis(xl lag timc  ̂ is
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hence the lag time for passive diffusion through a membrane of thickness L is 

predicted to be t i  =  ^  as is well known (Crank (1975)).

5.3 Electric field assisted diff'usion w ith concur

rent first order chemical reaction in a finite 

membrane

We now present a solution of equation (5.1) which describes electric field assistcnl 

diffusion with concurrent first order reaction kinetics in a finite m(unbran(\ Such a 

situation would typically correspond to iontophoretic transport of a chargxul drug 

si)ecies across a membrane barrier in which the drug can be metaboliscnl via first 

order kinetics. The analysis could also be used to describe substrat(' transi)ort 

and reaction within a free standing electronically conducting polymer nuunbranc; 

in which the diffusing substrate reacts with sites located on the polymer chains 

via first order kinetics.

We apply the Laplace transform to eciuation (5.1) to obtain:

This ordinary differential equation with constant coefficients is solved using the 

Lajjlace Transformed boundary conditions presented in eciuation (5.8). Tlui g(;n- 

eral solution to equation (5.27) is

(5.27)

“ (X.;') =  <'xi>[?xl Aais\\(<Ji + px) +  B sh ih (^ C  +  !'x) (5.28)

where we note that

(5.29)
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and A  and D  are constants of integration which are evahiated from the bound

ary conditions presented in equation (5.8). As outlined in ai)i)endix E.2 we can 

show readily th a t

- f   ̂ r s i n h ( V C + 7 ^ 1  -  X)1 .r

W hen the diffusion is passive ^ =  0, and if there is no loss of peu(!trant via 

first order chemical reac:tion then C =  'infl we note innnediatc^ly th a t ecjuation 

(5.30) reduces d irectly  to equation (5.9) which we have j)nwiously exainincnl. Tlu^ 

Laj)lace transform  presented in equation (5.30) may he inverted using tin; H(;avi- 

sido expansion theorem  or via the com])lex inversion form ula (Spiegel (19G5)). In 

ai)i)endix E.2 we use the former strategy  to show th a t the norm alised pcuietrant 

(X)ucentration profile w ithin the m em brane is given by

u{x ,  r)  =  n ,(x )  -  'tk{x, r)  (5.31)

where represents the steady s ta te  com ponent and ?/./, is the transi(Mit con

tribu tion  to  the concentration profile. The la tte r ciuantities are given by:

7i,(x) = oxp[̂ x] 's in h (\/C (l -  x ) '
sinh \/C -  <'^P[2

-s in h (\/7 +  ^ ( 1  -  x)~ 

sinh
(5.32)

and

3  717T • • 3^
M x , r )  = 2 e x p [-x ]  ^  ^ ^ ^  sin(nTrx) exp[-(n'^7r''^ +  7  +  — )r](5.33)

 ̂ 7 1 = 1  'n?TT‘̂ +  7 + 4

We can readily show th a t the expressions presented in e(iuation (5.32) and 

ecpiation (5.33) reduce to  th a t outlined in equation (5.10) when the i)aram eters 

P and  7  are bo th  zero and sirnj)le passive difftision pertains. Norm alised concen-
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tratioii profiles for penetrant are presented in figure 5-4 - 5-11 for typical values 

of the m igration parameter ft and the reaction/diffusion parametc^r 7 .  T lu!S(^ pro

files are presented in a three dim ensional format for ease of representation. For 

instance in figure 5-4 we show how the normalised concentration profile u varies 

with ft at different values of normalised tim e r  ranging from r  =  0.01 to st(\ady 

state when the reaction/diffusion j)arameter 7  is zero. In figure 5-5 conccnitration 

profiles are [)rosented for various / i  and r  values but in this case 7  =  1. T I k ? 

same com putation is re{)eated in figure 5-6- 5-8 hut in this cas(i 7  =  10 ,100  and 

1000 respectively. A further sot of concentration i)rofiles is presented in figure 

5-9 - 5-11. In this case the effect of the sign and m agnitude o f the m igration pa

rameter on the shape o f the (?/., x»7) surface is explored. In figure 5-9 the (effect 

of negative on the value {u, x , l )  surface is presented. Here the field opposes 

the m igration of i)enetrant through the membrane. In figure 5-10 where ft =  0 

the tim e develoi)inent of, and the effect of the reaction/diffusion paranu^tcu' 7  on 

the ((/,,x ,7 ) surface is j)resented. In figure 5-11 the tim e variation of the (v/,,X)7) 

surface when ft =  10 is i)resented. Here the field enhances penetrant transport 

through the membrane.

5.4 Discussion

In appendix E.3 we show that ecjuation (5.1) may be integrated to obtain an 

analytical expression for the concentration profile of j)enetrant if a solution of the 

following form is assumed:

u ( x , t ) =  nxp[fxl<!xp[-CT|w(x,r) (5.34)

where lo{x , t ) satisfies the sim ple Fick diffusion equation:

doj d^uj
(5.35)

Ot
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and also satisfies the following initial and boundary conditions:

107

w (x ,0 ) =  0, =  exp[Cr], c j ( l ,r )  =  0 (5.3G)

where we define r/ =  f . This alternative strategy can prove to be very useful 

when other types of bounded diffusion i)robleins in membranes are considered.

As outlined in Appendix E.2 , we can show that the normalis(!(l rel(!as(! ])rofil(! 

of penetrant from the membrane as a function of time is given by

Q{r)  =  yCexp[,f]cosech[yC]'r +  2exp[^] ^  -  exp[-(n^7r'‘̂ +  C)r])

(5.37)

We follow Leypoldt and Gough (1980) and note that the coni[)lex varial)k^ 

theory (specifically the method of contour integration) may be used to (^xi)r(ws 

the following infinite seri(vs in terms of a closed form expression involving the 

hyperbolic functions

,1 0 ^  = 'i (“»™t\/c(«>‘>‘\/c - )̂) (S-38)
and so the normalised release j)rofile of penetrant becoines

Q{^) = \Zc<^xp[^]cosech[yC]r-iexp[^]^cosechyc((:othyC-^^^(l-exp[-(n'V'^+C)r])
(5.39)

In the limit of long time the last term on the right hand side of eciuation (5.39) 

reduces to zero and we obtain that

Q { t  oo) =  yCexp[^]cosech[-yC]r -  ^ exp[,^] |^cosechy^(^cothyC -

(5.40)

The normalised permeability may immediately be evaluated from the lattcu' 

expression and is given by
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P =  ( ^ ) =  TC (’xp[^]c:osoch[yC] (5.41)
V /  r —>oo

We also note that equation (5.40) can be written in the form

Q { t  ^  o o ) =  p ( C ,  0 ^  -  P i C  O n i O  (5.42)

and so the norm alised lag tim e for electric field assisted diffusion with con

current first order chemical reaction is given by

where L(x) is the well known Langevin function which is given by

L{x)  =  coth(x) — -  (5.44)

E(}uation (5.43) may also be written in another way

r,,«) = - 5(^ i'( \/C )) = n ,K )(^ i( \/< ))  (5.45)

where r/,(0) denotes the normalised lag tim e for passive diffusion. Eciuation 

(5.41) and Equation (5.45) may be used to exam ine the way in which th(; per

m eability and the lag tim e vary with the diffusion/m igration j)arameter ft and 

the diffusion/reaction jjarameter 7 . W hen the r/ parameter is very sm all w(' not(! 

that coth ^ ( 1  +  |)a n d  ^L(a/C) s i 1 and we obtain that t/,(C) ~

one would expect. Also since cosech a/C ~   ̂ and exp(^) 1 + ^ , for sm all values 

for  ̂ and C, then from equation (5.41) we note that the normalised perm eability  

p  reduces to 1 +   ̂ ~  1 as indeed it should.

For the specific case of active diffusion or iontophoresis corresi)onding to 7  =  0 

the pertinent expressions for the perm eability and lag tim e are given by
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pW = f<-xp|g|cosoch|g| = i _ ^ ‘ l̂ ^̂  ̂ = g

) )  =  r , . ( 0 ) |( c o t h [ ^ ]  -  I )  (5.40)

The first exijression in ecjuation (5.46) i)rovide.s and analytical expr(!ssioii for 

the degree of current or flux enhancem ent at tlu; membrane receptor interface due 

to iontophoresis under steady state conditions. The second expn^ssion is (xiuation 

(5.46) indicates how the normalised lag tim e varies w ith m igration i)aram(;t(!r ft. 

The expressions provided in equation (5.46) are represented graphically in figures 

5-12 - 5-14. In figure 5-12 the current enhancem ent factor is i)lotted as a function  

of the m igration parameter ft. The same function is (lisi)layed in sem i-logarithm ic  

format in figure 5-13. Now ft =  where W  denotes the api)li('d

potential difference across the membrane and 2  is tlui valencc; of tin; diffusing 

H])ecies. Hence from figure 5-12 we note that the enhancem ent ratio or the ratio 

of steady sta te  flux w ith applied voltage to the steady sta te  ])assiv(i flux is an 

asym m etric function of applied voltage W .  For large positive vahu\s of ft tlui 

enhancem ent factor is a linear function of ft. For negative valuers of ft, wluui the 

applied voltage inhibits the flow of charged si)ecies through the membraiK;, the 

enhancem ent factor is a rapidly decreasing function of ft (figure 5-13). Typically  

for ft =  —10,p =  —4.54 X 10"'* or =  —4.54 x 10~''jp. The species flow 

is therefore strongly inhibited. As noted from figure 5-14 the ratio is a 

sym m etric function of the ft parameter. The lag tim e for active diffusion n l̂ativc  ̂

to that observed for passive diffusion is reduced with increasing i)ositive valuers of 

ft. However due to sym m etry of the function the lag tim e is also reduced for 

increasingly negative values of the ft j)arameter. This observation has also be(;n 

noted by K eister and K asting (1986) and while it may seem at first unusual, it c,an 

be explained by the fact that the steady state flow is nnich lower and thercifon;
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it takes less tim e to  a tta in  this steady state. It is interesting to  note th a t Chen 

and R.osenberger (1991) have deterniined th a t the sym m etry exhibited by the 

lag tim e exjn-ession arises m athem atically  from the sym m etry w ith resp(u:t to 

the exchange of the co-ordinate variables exhibited by the corresponding G nnin’s 

function for the general diffusive/convective boundary value probkun.

T he results presented in equation (5.46) derived from the more general ex- 

j)ressions presented in ecjuation (5.41) and equation (5.45) are in exact agreem ent 

w ith those previously published by K eister and K asting (198C) who exam ined 

iontophoretic drug tran sp o rt through a finite m em brane and solved the diffu

s ion /m igration  equation via the separation of variables techniciue.

For the specific case of passive diffusion couj^les w ith concurrcuit Krst order 

(‘hem ical reaction corresjjonding to the situation  of ft =  0 , the normaliscHl per

m eability and lag tim e are given by the following expressions:

can readily show th a t —> 1 and r/,(7 ) —> t/ ,(0 ). Conversely when 7  is large

then cosech y /7  2 exp( —^ 7 ) and coth y / 7  ks 1 +  2 exp( —y/7 ) and therefore

p{ l)  =  -v/^cosech^/^

(5 ,47)

W hen 7  is small then noting th a t cosech ^ /7  ~  and coth +  we

1 ------^  -H 2 e x p { - ^ )

(5.48)

Hence we expect th a t the norm alised perm eability and the lag tini(! d(!cr(^as(i
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rapidly w ith increasing values of 7  when 7  is large. This contention is supported  

by the com putations presented in figure 5-15 and figure 5-16. W(! not(^ from 

figure 5-15 that if a sem i-logarithm ic scale is used, the normalised periiu^ability 

exhibits only a sm all decrease with increasing 7  up to a value close to 0.5. It then 

decreases cpiite rapidly w ith increasing reaction/diffusion parameter. A sim ilar 

behaviour is observed for the normalised lag time.

The general situation corresponding to finite values of ft and 7  is described 

by equation (5.41) and equation (5.45). In figure 5-17 we indicate the manner in 

whicii the norm alised perm eability p varies with the m igration i>arameter ft for 

various values o f the reaction/diffusion j)arameter 7 . W hen the reaction/d iflusion  

param eter is sm all then p  varies linearly with ft. Hence we ol)serv(! a markcnl 

enhancem ent in the steady state flux w ith increasing value o f the (electric field. 

W hen 7  becom es significant the p versus ft behaviour changes. We not(! from 

figure 5-17 that p  still increases with increasing ft but when 7  is significant the 

strictly  linear increase is not observed for all values of ft. Indeed for ft valu(\s in 

the range 0.01 to 1, p  can be less than unity if 7  is finite. Hence if the electric field 

is sm all and the concurrent chemical reaction is operative then tlu; stc^ady state; 

flux of penetrant can be less that that observed for sim ple passive diffusion in tlu; 

absence o f electric fields and chemical reaction. Penetrant flux enhancenuint is 

only observed for ft values greater that 1 , and indeed the oijeration of a chemical 

reaction within the membrane reduces the enhancing effect o f the electric field on 

the transport rate o f penetrant species. This statem ent can Ix; seen more easily  

in figure 5-18 where we show the variation of p w ith 7  for different ft vahuis. 

We see from this that p  decreases sm oothly w ith increasing 7  for all values o f ft 

exam ined, but the dis-enhancing effect of 7  on p is not as markcKl for ft values.

The variation of lag tim e with ft and 7  given by ecjuation (5.45) is illustrated  

in figure 5-19 and figure 5-20. Here the com putational datum  is the ratio of the 

norm alised lag tim e for finite ft and 7  to that expected for sim ple passive diffusion. 

In figure 5-19 we indicate how the latter quantity varies w ith m igration i)aratnet(u-
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j3 for given values of the reaction /diffusion jmraineter 7 . The lag tinu^ deen!ases 

significantly w ith increasing /3 for all values of 7  exam ined, although the rate of 

decrease is not as marked when 7  is large, furthermore, any effect that 7  has on 

the lag tim e ratio is not resolvable for (3 values greater than 70. In figure 5-20 w(̂  

indicate the manner in which the lag tim e ratio varies w ith 7  for various ft values. 

Again the lag tim e ratio decreases with increasing 7  for sm all to int(u-mediat(! ft 

values but when ft becom es significant (>  2 0 ) very little  variation in lag tini(i 

ration w ith 7  is observed.

5.5 Concluding Com m ents

In the initial sections of this chai)ter we exam ined jjassive diffusion through a 

membrane of finite thickness and derived (via Laj)lace Transform analysis of the 

tim e dei)endent Fick diffusion equation) analytical solutions for the conc(!utra- 

tion profile of penetrant through the membrane as a function of tim e and for 

the am ount of penetrant released into a receptor com partm ent as a func:tion of 

tim e. The lag tim e and jjenetrant i)ermeability can be derived from the latt(;r 

exi)ression.

In the second part o f the chapter we have shown that the t(K:hni(iue of Lai)lace 

Transform ation provides a useful protocol for the solution of m aterial trans])ort 

problems in finite membranes in which diffusion , m igration and concurrent first 

order chem ical kinetics are considered. The variation of the substrate i)erni(;abil- 

ity  and lag tim e with both reaction/diffusion ])arameter and m igration/diffusion  

param eter is com puted via analytical solution of the diffusion /reaction /m igration  

('(piation to obtain closed form expressions. These expressions are u s (k 1 to com- 

l)ute dim ensionless working curves for the steady state perm eabilities and the lag 

tim es that can be compared with experim ental data.
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Y = 0  7 = 0

1 = 0.01 1 = 0.05

Y=0 Y=0

I = 0.1 steady state

Figure 5-4: Developirient of the {u, Xi P) surface as a function of l)oth normalised 
time and reaction/diffusion param eter 7
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Y = 1 1

1 = 0.01 x = 0.05

y = 1 Y= 1

T =  0.1 steady state

Figure 5-5: Development of the {u, x, /?) surface as a function of both normalised 
time and reaction/diffusion parameter 7
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y =  10 Y =  10

1 = 0.01 x = 0.05

y =  10 y =  10

X  = 0.1 steady state

Figure 5-6: Development of the {u, x, P) surface as a function of both normalised 
tim e and reaction/diffusion param eter 7
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y =  100 y =  100

T =  0.01 1 =  0.05

Y= 100 y =  100

T = 0.1 steady state

Figure 5-7: Development of the {u ,x ,P )  surface as a function of both normalised 
time and reaction/diffusion param eter 7
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1000 y =  1000

1 = 0.01 x = 0.05

Y= 1000 Y=1000

X = 0.1 steady state

Figure 5-8: Development of the (?/, x, /S) surface as a function of both normalised 
time and reaction/diffusion parameter 7
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p = -10

x = 0.01

(3 = -1 0

T =  0.1

Figure 5-9: Development of the {u, x, /5) 
time and migration parameter ^

(3 = -1 0

T = 0.05

P = -10

steady state

surface as a function of both normalised
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(3 = 0

T = 0.01 x = 0.05

p = o

10 
100 f 

1000

10 y 
100 '  

1000

T =  0.1 steady state

Figure 5-10: Development of the (u, x, (^) surface as a function of both norrnalis(Hl 
time and migration param eter /3
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(3 = 10

T = 0.01

10

1 =  0.1

Figure 5-11: Development of the {u, x, 
time and migration parameter

(3 =  10

X = 0.05

(3 = 10

steady state

surface as a function of both normalised
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Figure 5-12: Variation of the flux enhancement parameter p with migration pa
rameter p
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Figure 5-13: Semi-logarithmic presentation of variation of the flux enhancement 
param eter p with migration param eter /3
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1

7 = 0.01

0.5

7 =  100

0

50 100-100 -50 0

(3

Figure 5-14: Variation of the ratio of the penetrant lag time in the presence of 
a field Ti{(3) with tha t due to simple passive diffusion r/,(0) with the migration 
param eter (3. Note tha t the lag time ratio function exhibits symmetry with 
respect to the migration parameter. This symmetry is maintained regardless of 
the value of the reaction/diffusion param eter adopted.
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Figure 5-15: Variation of flux enhancement factor p with reaction/diffusion pa
rameter 7 .The data is generated from equation (5.48) and P — Q is assumed. The 
data is presented in both linear and semi-logarithmic form for clarity.
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Figure 5-16: Variation of normalised lag time with reaction/diffusion parameter 
7 . The data is generated from equation (5.48) and /? =  0 is assumed. The data 
is presented in both linear and semi-logarithmic form for clarity.
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Figure 5-17: Variation of flux enhancem ent parameter p  w ith m igration param
eter j3 for various fixed vahies of the reaction/diffusion parameter 7 . The curves 
were com puted using equation (5.41) for various 7  vahies in the range 0.01 to  
1 0 0 . The data is presented in both hnear and sem i-logarithm ic form for clarity.
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Figure 5-18: Variation of flux enhancement parameter p with reaction/diffusion 
parameter 7  for various fixed values of the migration parameter [5. The curves 
were computed using equation (5.41) for various j3 values in the range 0.01 to 
100. The data is presented in both linear and semi-logarithmic form for clarity.
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Figiire 5-19: Variation of normalised lag time with migration parameter /3. The 
curves were computed using equation (5.41) for various 7  values in the range 0.01 
to 100. The data is presented in both linear and semi-logarithmic form for clarity.
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Figure 5-20: Variation of normalised lag time with reaction/diffusion parameter 
7 . The curves were computed using equation (5.45) for various j3 values in the 
range 0.01 to 100 The data is generated from equation (5.48) and /? =  0 is 
assumed. The data is presented in both linear and semi-logarithmic form for 
clarity.



Chapter 6 

Diffusion, M igration and 

Reaction in Conducting Polym er 

M odified Electrodes

6.1 Introduction

Electroactive polymer films have received considerable attention in the literature 

recently because of their wide range of possible applications. These include elec

trocatalysis, molecular electronics and chemical and biosensor technology. A thin 

film of an electroactive polymer deposited on the surface of a support electrode 

constitutes a chemically modified electrode. This deliberate immoblization of a 

chemical m icrostructure on a host electrode surface (to perform a specific task) 

is usually performed via a process of electropolymerization. The electropolymer

ization is carried out by immersing an inert conductive support electrode into a 

solution containing an electroactive monomer. The monomer is then deposited 

onto the inert conductive support surface to form a three-dimensional conductive 

microstructure. The particular application of electrocatalysis is of interest to us 

and useful summaries of work to date in this area are provided by Hilman (1987),

130



CH A P TE R  6. PO LYM ER MODIFIED ELECTROD E  131

Lyons (1990, 1994a,b), Evans (1990), Wring and Hart (1992) and Murray (1992).

Electrode.

Polym er

Solution Electron Transfer 

(indicated by heavy arrow)

(a) (b)

Figure 6-1: Schematic diagram outlining the difference between mediated electron 
transfer (a) and conventional electron transfer (b). In figure (a) the electron 
transfer takes place between the polymer film and the redox species in solution 
as opposed to conventional electron transfer (b) where there is direct transfer 
between the Fermi level of the metal and the redox species in solution.

Electrocatalysis of electrode reactions involves direct participation of the poly

mer material. Conventional electron transfer as (discussed in monographs on 

electrode kinetics) describes the direct electron transfer between the Fermi level 

of the metal and the redox species in solution. This is in contrast to heteroge

neous m ediated electrocatalysis where the electron transfer is mediated by the 

species in the film. One advantage of this is th a t the coated electrode adopts 

the characteristics of the deposited microstructure and the overpotential of the 

coated electrode is often considerably less than the overpotential of the uncoated 

electrode, therefore facilitating the process of charge transfer. In fact the sup

port electrode pays a passive role in the electron transfer process, its sole function 

being a connector for electron flow in the electric circuit.

However, the main advantage of a surface modification is th a t an electrode
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may be suitably modified to perform a specific task. By choosing an appropriate 

coating, one can exercise complete control over the redox reaction. In order 

to exploit this to its full potential, a thorough understanding of fundamental 

principles of the way in which the deposited layer mediates the oxidation or 

reduction process is necessary. Although the physical process is quite complex, we 

can develop a simple mathem atical model to describe it. This involves generating 

a suitable differential equation to describe the coupled diffusion migration and 

reaction. Given a suitable initial condition and physically reasonable boundary 

conditions, this equation is solved. Where an analytical solution is possible, it 

is possible to obtain the current response. However, the chemical reaction term 

is described by the complex Michaelis Menten kinetics and this results in a non

linear differential equation which can only be solved numerically. The [)uri)ose 

of this work is to solve and analyse these equations but we begin with a brief 

historical and mathem atical background.

6.2 Classification of Polym er modified E lectrodes

The first chemically modified electrode system was developed as a two dimen

sional structure. The chemical inicrostructure was very thin, usually only one 

monolayer and they are the called monolayer modified electrodes. These simple 

structures are easy to model mathematically but are of limited utility because a 

three-dimensional dispersion of active sites is not attained.

A further development was that of a three dimensional chemical microstruc

ture, the so-called polymer modified electrode. In this system the active species 

has a dual function, namely to shuttle electrons and to provide good electrocat- 

alytic activity. Their operational characteristics are described by Andrieux et al. 

(1978) and Albery and Hillman (1984).

The dual function of the active species can be restrictive so a further improve

ment on this came in the form of a polymer based integrated system known as
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a rnicroheterogeneous system. In this integrated system the functions of charge 

transfer to the catalytic site and catalytic activity are performed by different 

comj)onents within the layer. This means tha t both functions can be ])erformed 

in parallel and there is no competition or restriction. The theory of these mi- 

croheterogeneous systems has been established by Lyons et al. (1989a,1)); Lyons 

and B artle tt (1991); Lyons et al. (1992, 1994). Their are a number of advantages 

of these systems. Firstly, they are easy to fabricate. Secondly, the functions are 

distinct and separate. Thirdly, the three-dimensional dispersion gives a high c;on- 

centration of sites thereby providing excellent catalytic advantages. Fourthly, the 

microscopic particles can act as catalytic sites for multi electron transfer reactions 

and finally the polymer m atrix stabilises the whole system.

6.3 Heterogeneous M ediated Catalysis - Gen

eral Considerations

The process of heterogeneous catalysis is a basic two step process. We will outline 

this as follows:

A + ne~ B  

S  + B - ^ P  + A  (6.1)

The first step requires charge injection to convert the precatalyst (A) to its cat- 

alytically active form (B). The second step involves the reaction of the activated 

catalyst (B) with the substrate (S) to give the product (P) and to regenerate the 

precatalyst. This is therefore a cyclic process and the regenerated precatalyst 

from step two is used to repeat step one.

The first step is characterised in terms of the rate constant the symmetry 

factor a  and the standard potential E^{A — B).  The second step has a second
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R eaction  at 
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Figure 6-2: Schematic representation of mediated electrocatalysis at a conducting 
polymer electrode material

order rate constant of k. It is usual that the rate of transfer for both steps is 

very fast and that k'  ̂ > >  k. In this case the electron transfer will take place at 

a j)otential close to that of the couple A — D. This is what we mean by mediated 

electrocatalysis.

The kinetics are determined by the rate of reaction between the activated 

catalyst (B) and the substrate (S) - the rate constant k, and the rate of diffusion 

of the substrate from the bulk solution to the interface with rate constant kp.  

Therefore we must also consider concentration polarization.

The above model adequately describes two-dimensional systems. A descrip

tion of a three dimensional system requires additional considerations such as the 

rate of charge propagation through the matrix and the permeability of the mem

brane. The kinetics of heterogeneous mediated catalysis involves a combination
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of the following steps

First there is charge injection at electrode-polymer interface. This is generally 

kinetically facile. The next step is conversion of the precatalyst to the catalyt- 

ically active species This is potential gradient driven. Following this there is 

charge propagation in the polymer layer, a concentration gradient driven process 

described by the diffusion coefficient Dg. Finally the substrate and catalytically 

active species react with rate constant k in the ’’reaction zone” . The ’’reaction 

zone” is in the polymer layer and depending on whether the relative rate of 

substrate to electron transfer, may be situated closer to the electrolyte or the 

electrode interface.

We will now take a look at the interaction between sites and substrates in the 

polymer film. The substrate binds to sites in the polymer to form a coiiijjlex. 

This complex subseciuently decomposes into products. The steady state  current 

response exhibits biphasic behaviour with respect to the concentration. T hat is, 

in the limit of low concentration, the reaction exhibits first order kinetics whereas 

for high concentrations, zero order kinetics pertain (Lyons (1994b)). This is 

characteristic of a Michaelis-Menten process, which has been well established in 

enzyme kinetics.

The coating of a metal oxide with an electronically conducting polymer to 

facilitate the oxidation of catechol, ascorbate or glucose have been studied in 

our laboratory. None of these systems contain redox enzymes and yet they ex

hibit Michaelis Menten behaviour. This serves as adequate justification th a t our 

postulation of Michaelis Menten behaviour is correct.

Chemical reaction and substrate diffusion are not the only processes which 

had to be considered when modelling the amperometric response of conductive 

polymer sensors. As noted in the recent work of Doblhofer and Vorotyntsev 

(1994), quite significant potential gradients can exist within the thin films. One 

caimot assume that the gradients are uniform and since many organic substances 

(e.g. ascorbic acid) are ionized when they penetrate the polymer, it is reason-
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al)le to assume that the substrate will migrate as well as diffuse in the polymer 

layer. Therefore we will consider the problem of reaction/diffusion/migration of 

a substrate through a thin polymer film.

6.4 D escription of the Boundary Value Problem

For the purposes of mathematical modelling, we consider a thin electronically 

conductive film deposited on the surface of an inert support electrode to form a 

chemically modified electrode. We assume that the layer is of uniform thickness 

L. We further assume that the mediator sites are uniformly dispersed throughout 

the bulk of the layer and that the polymer film is electronically conducting so that 

charge percolation from site to site throughout the polymer layer is not rate de

termining. We also, for the sake of simplicity, neglect concentration polarization 

effects of the substrate in solution.

The following reaction sequence is postulated:

5  +  i? ^  [55]+ ->  P  + A  (G.2)

This reaction sequence is the well known Michaelis-Menten tight binding mech

anism, and Km Ĵ 'Hd kc denote the Michaelis constant and the catalytic rate (;on- 

stant respectively.

The differential equation quantifying the transport and kinetics with in the 

polymer film may be written as

ds kcC^s
m =

where s is the substrate concentration, t is time , x  is distance D is the diffu

sion coefficient of the substrate in the layer and denotes the total catalyst 

concentration in the film.

Although the expression presented in equation (6.3) adequately describes the
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substrate reaction kinetics mediated via immoblized polymer sites, the inherent 

non-linearity of the Michaelis-Menten reaction term makes a full analytical solu

tion of the differential equation difficult, especially when electrornigration effects 

are also considered. Conseqtiently, we shall consider a more simple reaction rate 

term in which the substrate reaction kinetics are pseudo first order. This is a 

good approximation for the low concentration limit (Lyons (1994b)). Hence the 

reaction rate term is given by ks  =  .

We assume that the transport processes of diffusion and migration obey the 

Nernst -Planck equation and so the electromigration term is given by the ciuantity

z F D ^ E d s  ds

where  ̂ denotes the valence of the charged substance, E  denotes the electric 

filed within the polymer film /i,, denotes the mobility of the substrate within the 

polymer and s represents the concentration of substrate in the layer.

The pertinent reaction diffusion migration equation describing the substrate 

transport and kinetics within the polymer film is therefore given by

ds  d'^s z F E D s d s  ,
m =

This equation must be solved subject to the following boundary conditions: 

when X =  0, ^  =  0 and when x  =  L, s  — k s °°  where k, denotes the partition 

coefficient of the substrate and s ° °  denotes the bulk concentration of the substrate 

in solution. The first boundary condition implies that the substrate reacts on 

the polymer sites and not on the support electrode surface, whereas the second 

boundary condition implies that concentration polarisation of the substrate in 

the solution can be neglected.

As with previous chapters, the diffusion/reaction/migration equation is recast 

into dimensionless form. The following normalised parameters are introduced
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. s  .T  kL-̂   ̂ zFEoDL
u =  ------  X =  V  7  =  P =  —-  ^  (6.6)

K , S ° °  ^ L ' Ds D ,R T   ̂ ’

and equation (6.5) becomes

du d' û du

The norniaUsed boundary conditions are

( 1 ^ )  = 0 ,  ?x(l,r) =  l ,  and  u(x,0)==() .  (6.8)

Before presenting the sohition to this boundary vahie problem, we will briefly 

disc:uss the normalised steady-state current response.

6.4.1 Current Response

The rate at which ions can be discharged at electrodes is quantified by the current 

density j ,  the electric current per unit area. The current density is sirn[)ly a mea

sure of the cliarge flux and is obtained from the differential equation describing 

the transfer process. The flux j  is given by

*  I /  ^ 1 D s K S ° °  . s ,
J =  k s {x , t )dx  =  — - — 7  u {x ,T )dx  (6.9)

Hence the normalized current response y is then given by

y "  T P A n — ^n r  AL>sKS°° Jo

Therefore in order to determine the steady-state current response y  we nmst 

firstly integrate the differential equation equation (6.7) subject to the boundary 

conditions outlined in equation (6.8).

At steady state and for a simple case of diffusion and reaction, as in equation
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(6.11) below, the normalised current response may be very much simplified.

du d'^u
Ot  d x ^

j u  (6 .11)

Since the time derivative is zero, the integral of u times 7  over the widtli of the 

membrane is given by the derivative of u with respect to normalized distance x  

as shown below;

7 ^  u[x,ry\x =  (6 .12 )

It is then natural to assume that for the more complicated case of diffusion 

migration and reaction, by similar arguments, the steady state normalised current 

response would be given by

7 ^  ’i(x,7-)dx =  ( 1 ^ )  - ^ % = i (6.13)

However, it is important to be aware of the nature of the electric field which 

causes the migration. As detailed by Doblhofer and Vorotyntsev (1994), the 

electric field is not uniform within the membrane and its effects are really only 

noticeable at the metal/j^olymer interface. Therefore, since there is a negligible 

field at the polym er/electrolyte interface (i.e. where x  =  1) we will assume that in 

this case, although we include the migration term in calculating the concentration 

profile, it is more reasonable to omit it in estimating the current response. Hence 

the steady state current response for diffusion /m igration /reaction is given by 

equation (6 .12).

6.5 Solution of the Differential Equation

Eciuation (6.7) was solved using the technique of separation of variables. We first 

of all separate the solution into a steady state term ( which is dei)endent only on
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x) and a transient term which is dependent on both x  and r. The steady state 

solution is obtained by forcing the boundary conditions to be valid for the steady 

state solution. The initial condition is then imposed on the transient component 

and this solution is obtained by separation of variables or Laplace Transforms. 

In Appendix F .l we show how the solution was obtained. It is given as follows:

u { x , t ) =  U , s - \ - U t r  (6.14)

where Ugs is the steady state solution and utr is the time dependent portion. The

steady state solution is given by

fasinh{bx) -  bcosh{bx)\
= axpWx -  1» ,..inh(6)-ico^h( r j

where « =  f  and b = +  't)  ̂• The transient portion is defined as

OO

uir =  exp(a(x -  1)) ^  sin(6„(l -  x))  exp(-A V ) (6.16)
n = l

In this case the coefficient of time in the exponential term, A, is defined as A =  

+  7 — is a rather complicated

D„ = if’6„cos(6„) — bam{bn) I sinh(/;) (6.17)

+  [bnCOs{bn) — R.bsin{bn)) cosh(6) — h (6.18)

where

R  =
a cosh b — b sinh b 
b cosh b — a sinh b

(6.19)
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and bn are the sohitions of the transcendental equation
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/;„ =  a ta n ( 6„) (C.20)

6.6 Results

Wo will begin by discussing the steady state results. The steady state  concentra

tion profile is given by equation (6.15). It can be seen from this equation tha t the 

profile is dependent on both the migration factor /5 and the reaction param eter 7 . 

In the following section we discuss plots of the concentration profile as a function 

of both of these parameters. Let us first look at the sign convention of ft and 7 . 

ft is the migration param eter and it can enhance or retard the motion of the ions 

(lei)ending on whether it is positive or negative. From the m athem atics abov(!, 

we have chosen negative ft to be when the electric field is opposite in polarity to 

the ions and therefore this enhances the motion of them since they are a ttracted  

towards the electrode where the field is strongest (c./. Doblhofer and Vorotyntsev 

(1994)). Therefore positive ft is when the field is of the same polarity as the ions 

and they are therefore repelled away from it. This is show schematically in figure 

G-3.

The reaction param eter 7  is only ever jjositive. Since the differential equation 

has been defined using the term —7 ^, the effect of the reaction param eter is 

to reduce the amount of substrate present in the film. As 7  increases, the rate 

of substrate depletion decreases since, as mentioned earlier, we have assumed a 

first order chemical reaction with rate constant 7 . A negative value for 7  has no 

physical meaning. In mathematical terms this would correspond to an increase 

in concentration of the substrate over time but there is no generation of the 

substrate within the film - all of it enters from the redox solution and therefore 

we will only look at the physical case of positive 7 .
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Figure 6-3: Pictorial representation of the enhancement (a) and retardation (b) of 
ions in a polymer due to the effect of the field. The substrate (shown as negative 
ions) moves from left to right across the j)olymer film. If the field is opposite in 
polarity to the substrate, the migration is enhanced and this corresponds to a 
negative P parameter. Conversely if the field is the same polarity as the substrate, 
the migration is retarded and this corresponds to positive /3.
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6.6.1 Steady State Concentration Profiles
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Figure 6-4: Variation of normalised substrate concentration u with normalised 
distance x  for mediated catalysis at a conducting polymer electrode. The ft 
migration parameter is zero.

Figure 6-4- 6 - 6  are steady state surface plots of the variation in normalised 

substrate concentration across the membrane as a function of the reaction param

eter 7  for fixed values of the migration parameter j3. The purpose of these j)lots 

is to demonstrate the effect of positive and negative /3 relative to 7 . We will first 

of all discuss the effect of 7 . Basically as the reaction parameter increases, the 

concentration within the polymer matrix decreases. The migration parameter is 

zero in figure 6-4. It has a value of /3 =  —10 in figure 6-5 and P =  10 in figure 

6 -6 . It is interesting to note that the the difference in the concentration profile
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Figure 6-5: Variation of normalised substrate concentration u with normalised 
distance \  for mediated catalysis at a conducting polymer electrode. The ft 
migration parameter is —10.

for positive values of ft is much greater than that for negative values of /?, relative 

to ft =  0.

It should be noted that contrary to the convention presented in earlier chap

ters, but in agreement with literature convention, positive ft corresponds to re

tardation of migration - meaning that the electric field is opj)osite in polarity 

to the ions and they are therefore attracted away from the reaction interface. 

Conversely, negative ft corresponds to enhancement of migration where the field 

speeds up the process of migration across the film.

In figure 6-7 the steady state concentration profile corresponding to a fixed 

7 value of 0.1 are presented. Hence the magnitude of the chemical reaction
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Figure 6-6: Variation of normalised substrate concentration u with normalised 
distance x  for mediated catalysis at a conducting polymer electrode. The ft 
migration jmrameter is 10.

flux is one tenth that of the substrate diffusion flux. The concentration jjrofiles 

corresponding to migration parameter values in the range —10 < ^  < 10 are 

presented. This corresponds to the range —100 < ? < 100. If we focus initially 

on the /3 =  0 case, we see that there is very little depletion of the substrate 

throughout the bulk of the polymer film. Now we recall that when 7 is small 

the substrate reaction flux is slower than the substrate diffusion flux and we 

expect a rapid permeation of substrate throughout the entire layer followed by 

a small amount of chemical reaction which occurs throughout the entire film. 

Indeed we recall that ^  where L denotes the layer thickness and Xk

represents a characteristic reaction layer thickness which is defined as the distance
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y=  0.1

Figure 6-7: Variation of normalised substrate concentration u with normalised 
distance x  for mediated catalysis at a conducting polymer electrode. The reaction 
param eter 7  =  0 . 1  and the migration param eter is in the range — 1 0  < /? < 1 0 .

the substrate travels in the layer before it undergoes chemical reaction with tlie 

polymer sites. Hence for 7  =  0.1, ^  = 0.32. The reaction layer thickness is

considerably larger than the physical dimension of the layer. This is a ttribu ted  to 

the rapid diffusion and slow rate of chemical reaction. For optimum transport, the 

reaction layer thickness should tend to infinity, requiring tha t the substrate should 

travel infinitely far before depletion by chemical reaction. When the migration 

param eter is finite and negative, the substrate concentration [profiles indicate a 

large amount of substrate migration due to the fact th a t the field accelerates 

the transport of the charged substrate. On the other hand, when the migration 

param eter is finite and positive the electric field retards substrate transport and
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Figure 6-8: Variation of norinalised substrate concentration u with normalised 
distance \  for mediated catalysis at a conducting polymer electrode. The reaction 
parameter 7 =  1.0 and the migration parameter is in the range —10 < ft < 10.

there is a very low concentration of substrate in the film relative to the simple 

reaction/diffusion case.

In figure 6-8 the corresponding situation for 7 =  1 is presented. Here L  =  Xk 

and the reaction layer thickness extends over the entire physical dimension of the 

polymer film. The concentration profile computed in the absence of electric field 

indicates a steady depletion of substrate through the layer. The concentration 

profiles computed for negative ft values are relatively full again indicating the 

effect of the field in attracting the substrate into the film. However, the profiles 

observed for positive ft values indicate that much less substrate has jjenetrated 

the film than in the absence of a field. When =  10, virtually all of the substrate
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Figure 6-9: Variation of normalised substrate concentration u with normalis(!(l 
distance x  for mediated catalysis at a conducting polymer electrode. The reaction 
I)arameter 7  =  1 0 . 0  and the migration param eter is in the range — 1 0  < ft < 1 0 .

tha t has entered the film has undergone reaction at normalised distance values 

less than 0.5.

The situation pertaining for 7  =  10 is presented in figure G-9. Here ^  =  3.2 

and so in the absence of electromigration effects we expect th a t the facility of the 

reaction kinetics between substrate and polymer site will be such tha t much of 

the substrate will undergo reaction before it has had a chance to diffuse far into 

the layer. If the applied electric field serves to inhibit substrate transport, then 

we note that again, any substrate entering the film is rapidly depleted. For the 

case of enhanced electric field, since the reaction term  is larger, less substrate is 

present in the film because it has been depleted at a greater rate than for smaller
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Figure 6-10: Variation of normalised substrate concentration u with normalised 
distance x for mediated catalysis at a conducting polymer electrode. The reaction 
parameter 7  =  1 0 0 .0  and the migration param eter is in the range — 1 0  < < 1 0 .

values of 7 .

The situation pertaining for large 7  values is presented in figure 6-10. Here 

^  =  1 0  and the rate of chemical reaction is considerably faster than th a t of dif- 

fusior, Hence much of the substrate is consumed in a first-order reaction near the 

polynier/solution interface. The magnitude and sign of the migration i^aramoter 

f3 havn only a small effect on the shape of the concentration profile.

It is instructive to use equation (6.15) to evaluate Uq, the normalized concen- 

tra tia i  of substrate present in the steady state at the support electrode/polym er 

interfice. The results of such a calculation are presented in figure 6-11 where 

Uq is plotted as a function of the migration param eter /? for four values of the
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Figure 6-11: Variation of normalised substrate concentration a t the support elec- 
trode/i)olynier interface as a fimction of migration param eter [5 for different vahies 
of the reaction/diffusion param eter 7 .

reaction/diffusion parameter 7 . When 7  is small, the rate of chemical reaction 

is much slower tha t the rate of substrate diffusion. Hence uq remains close to 

unity for (5 values between -10 and zero. However, uq subsequently drops rapidly 

to values near zero when there is a positive > 0 , retarding) electromigrative 

contribution to the substrate transport and kinetics.

This observation implies th a t when the local electric field in the film servos 

to retard the rate of migration of substrate to the reaction interface, this is the 

dominant force. Indeed, even a small degree of retardation - when ft is positive 

but still close to zero - manifests as a large reduction in substrate concentration 

at the interface relative to tha t when there is no field. This is especially evident
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for 7  > 0 .1 .
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6.6.2 Transient Solution

Wo have seen th a t the transien t solution is given by equation (6.14) where the 

specific term s are detailed in equation (6.15)-(6.20). The difficulty w ith this lies 

in the fact th a t equation (6.20) is a transcendental function. T he num erical roots 

of this function are given by A bram ow itz and Stegun (1965) for certain  values of ft 

bu t even w ith these only the  first ten term s in the sum  are calculated. In th is case, 

there was insufficient convergence. A nother way to  obtain  the roots is graphically 

bu t th is is long and complex. The graphical roots are only approxim ations as-well 

so ano ther approxim ate m ethod is to  solve the entire differential ecjuation via th(; 

finite difference m ethod as discussed in chapter 2 .

The following plots are results obtained using DEQSOL the software j^ackage 

wliich solves differential ecjuations via the finite difference m ethod. In term s 

of m easuring accuracy, we did a benchm ark test by solving the steady s ta te  

form w ith D EQSOL and com paring this w ith the analytical solution described 

in e(}uation (6.15). The results m atched to an accuracy of >  99%.

6.6.3 Transient C oncentration Profiles

In figure 6-12 and 6-13 the tim e development of the concentration profiles cor

responding to  a  fixed 7  value of 0.1 are presented. The analytical steady  s ta te  

profile has been presented in figure 6-7 and it is clear th a t this m atches the profile 

ob tained  num erically as depicted in figure 6-13. At short tim es ( r  =  0.01) the 

concentration profile is essentially uniform  across the range of ft values shown. 

As tim e increases to r  =  0.03 the effect of the enhanced m igration param eter 

given by negative ft m anifests itself. There is a higher concentration of substra te  

a t the incom ing side of the  polym er m atrix  bu t the concentration a t the poly

m er/electrode interface is still zero for all ft. As the tim e is increased further
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to r  =  0.05, the concentration at the polymer/electrode interface is observed to 

be noticeably larger for finite negative /? and again as time is further increased, 

the profile takes a different shape with the substrate moving quickly through the 

matrix for enhanced migration and more slowly (even resembling the initial state) 

for finite positive /5 (retarded migration). As we proceed even further along the 

time scale the difference between the profiles is more pronounced. It is interesting 

to note that at steady state the concentration for finite negative ft is apjjroxi- 

mately unity whereas for the finite positive ft, the profile has not progressed rnuc;h 

beyond what was observed initially.

Figure 6-14 and 6-15 show the time development of the surface across the 

range of ft values — 1 0  >  /3 >  1 0 . As we have noted for the previous case, the 

steady state solution obtained in this manner matches that presented via the 

analytical solution in figure 6 -8 . The same arguments apj)ly for these plots as for 

the previous case where 7  =  0.1. However despite the fact that the reaction layer 

thickness is ten times that of the j)revious case, there is very little to differentiate 

between the plots and the real differences manifest only as we approach steady 

state conditions. At steady state the difference between the profiles for 7  =  0.1 

and 7  =  1 is apparent in that for the larger reaction layer thickness, there is 

significantly more concentration dei)letion throughout the jjolymer.

The most significant observation in the profiles for 7  10 (figure 6-16 and

6-17)is that it now takes a nnich longer time for the substrate to diffuse to the 

polym er/electrode interface. Even at steady state conditions, the concentration 

of enhanced field substrate is approximately 50% of what it was for the case 

of 7  =  1. There is very little change in the i)rofile for retarded field migration 

(positive 7 ). The reason for this is that if there is negligible substrate present in 

the first instance, the effect of concentration depletion through large 7  results in 

negligible substrate at the end and there is therefore no appreciable difference in 

the profile as 7  is increased.

Finally then the profiles at the extreme case of 7  =  100 are presented in figure
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C-18 and 6-19. Here the rate of chemical reaction is considerably faster than tha t 

of diffusion. Hence any substrate entering the film is consumed in a first order 

reaction near the polymer/electrode interface. The magnitude and sign of the 

migration param eter have no significant effect on the shape of the concentration 

profile.

Figure 6-20 -6-25 are time development surface plots of the variation in con

centration across the membrane as a function of the migration param eter 7 . We 

have chosen to look a two extreme cases of finite positive /i and finite negative ft 

with the third case of /? =  0 for comparison. For ^  =  0 there is very little change in 

the plot over the first four time snai)-shots. The difference between the i)rofiles of 

7  =  0.1 and 7  =  100 is very small. For this reason we have included an additional 

7  =  1000. The difference in each of the reaction terms is very nnich ai^parent as 

we approach steady state. Here the concentration at the polyrner/electrode inter

face sweeps from unity for 7  =  0 .1  when the reaction [)arameter has little effect, 

to zero for 7  =  1 0 0 0  when the effect of the reaction param eter overshadows all 

other phenomena. When (5 = the migration param eter enhances movement 

into the m atrix and there is a clear distinction between the shaj)e of the i)lots 

at each different time shot. For small 7  the migration enhancement dominates 

and the substrate rapidly moves into the film with relatively little depletion. In 

contrast, for large 7  ( =  1 0 0 0 ) the migration enhancement has no effect and the 

profile remains as it was for no field enhancement i.e. ft — 0. Again at steady 

state  there is a contrast between the profile for positive and negative 7 . This 

contrast is so stark th a t there is not a smooth transition between the various 

profiles but it mtist be remembered tha t this is a logarithmic scale so such effects 

are magnified greatly. Again, as seen in previous plots for the case oi ft = 1 0  and 

retardation of the substrate the increase in 7  and time have little effect on the 

profile which remains as zero throughout the majority of the film.
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U 0.5 

0

1

1

U 0.5 

0

1

Y=0.1 y = 0 . 1

x = 0.01 1 = 0.03

Y=0-1 Y=0.1

1 = 0.05 T = 0.1

Figure 6-12: Development of the 7 surface as a function of both normalised 
time r  and migration param eter /?.
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y=0.1 y = 0.1

steady state

Figure 6-13: Development of the u, x ,7  surface as a function of both normalised 
time r  and migration parameter (3.
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Y = 1  Y = 1

t  = 0.01 1 = 0.03

y = l  Y = l

x = 0.05 T = 0.1

Figure 6-14: Development of the m, x, 7 surface as a function of both normalised 
time T and migration param eter p.
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1

U 0-5 

0

1

y=  1

1 =  0.3

1

steady state

Figure 6-15; Development of the u, x, 7 surface as a function of both normalised 
time T and migration parameter /3.
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y=  10 Y =  10

T = 0.01 t = 0.03

y=  10 y=  10

1 = 0.05 1 = 0.1

Figure 6-16: Development of the u, x, 7 surface as a function of both normalised 
time r  and migration parameter j3.
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1

uO.5
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1

y =  10

x = 0.3

y= 10

steady state

Figure 6-17: Development of the u, x, 7 surface as a function of both normalised 
tim e r  and migration parameter /3.
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y=  100

x = 0.01

y =  100

X = 0.05

Figure 6-18: Development of the u, x, 7 
time r  and migration parameter f5.

y=  100

T = 0.03

y =  100

T =  0.1

surface as a function of both normalised
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J =  100 y =  100

X =  0.3 steady state

Figure 6-19: Development of the u, x, 7 surface as a function of both normalised 
time T and migration parameter
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p=o  p =o

1 = 0.01 t  = 0.03

(3 = 0

0.1

100 y 
1000

X = 0.05

p = 0

0.1

10 y
100 I 

1000

x = 0.1

Figure 6-20: Development o f the u, x, 7  surface as a function o f both normalised 
tim e r  and reaction/d iffusion parameter 7 . The 7  parameter is presented in 
logarithm ic form.
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(3 =  0 (3 =  0

T = 0.3  steady state

Figure 6-21: Development of the ?/, x , 7  surface as a function of both norm alised  
tim e r  and reaction/diffusion parameter 7 . The 7  parameter is presented in 
logarithm ic form.
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p = -1 0  p =  -1 0

1 = 0.01 x = 0.03

p = -1 0

0.1

100 y 
1000

T = 0.05

p = -1 0

0.1

100 y 
1000

X = 0.1

Figure 6-22: Development of the u, x, 7 surface as a function of both normalised 
time T and reaction/diffusion parameter 7 . The 7 parameter is presented in 
logarithmic form.
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p = -1 0  p =  -1 0

T =  0 .3  steady state

Figure 6-23: Development of the u, x, 7 surface as a function of both normalised 
time T and reaction/diffusion parameter 7 . The 7  parameter is presented in 
logarithmic form.
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p = 10 P = 1 0

1 = 0.01 1 =  0.03

(3 = 10

0.1

0.4q p
X  °  0

■0 y 
100 '  

1000

X = 0.05

(3 = 1 0

0.1

100 ^ 
1000

T =  0.1

Figure 6-24: Development o f the n, x, 7  surface as a function o f both normalised 
tim e T  and reaction/diffusion parameter 7 . The 7  parameter is presented in 
logarithm ic form.
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p = 1 0  (3=10

X = 0.3 steady state

Figure 6-25: Development of the u, 7  surface as a function of both normalised 
time T and reaction/diffusion parameter 7 . The 7  parameter is presented in 
logarithmic form.
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6.6.4 Current Response

The normalised steady state current response is given by

(6 .21 )

We note that when ,5 =  0, this reduces to

Vss =  \/7  tanh ^ (6 .22)

which is in agreement with an expression previously derived by Lyons et al. 

(1996).

We illustrate equation (6.21) in figure 6-26 where we present a plot of nor

malised current response ijgg as an explicit function of the migration parameter ft 

for various values of the reaction/diffusion i)arameter 7 .  We note that for a given 

value of 7  the normalised current increases with increasing value of the migration 

parameter /3. In figure 6-27 we present a log/log plot of normalised current as 

a function of reaction/diffusion parameter /3. The shape of the plot changes as 

the value of the migration parameter varies from large negative values to large 

positive values, for instance, for 13 =  0, the plot of log versus log 7  exhibits a 

clear ”dog-leg” form with the slope changing from unity to 0.5 with increasing 7  

value. This behaviour can be readily understood as follows, for instance , when 

/? =  0 we note that equation (6.22) predicts that when 7  is small, tanhy/^ k. y / 7  

and so ?/ «  7  and so the log/log plot should exhibit a slope of unity. On the other 

hand, when 7  is large we note that tanhy/^ ^  1 and yss ~  and the slope 

of the double logarithm plot should be 0.5. This is indeed as observed in figure 

6-27. The situation is more complicated when the migration parameter is finite. 

For instance, if we assume that the reaction/diffusion parameter is large and that 

7  > >  ^  or y / j  — ^  »  2 assume that tanh y / j  +  ^  ^  tanh \//7

and so the current response presented in equation (6.22) reduces to
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0
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Figure 6-26: Variation of normalised steady state current response with migration 
parameter /?. Data are presented for the region of small and large 7  values. The 
7  values are 7  =  0.01,0.1, 0.5 ,1 , 5 from top to bottom.

2/„  ^  (6.23)
2 j  +  tanh y / j

Now since y / j  is large we can assume that tanh ^  ^  1 and so equation (6.23) 

reduces to

2 j  _  y / j
A  
2 v/ 7

Hence when is large we note from equation (6.23) that the normalised cur

rent response would increase with ^ /7  but that the rate of increase is moderated

2^ )by the electric filed dependent factor ^1 -i—
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Figure 6-27: Double logarithmic plot illustrating the variation of normalised cur
rent with reaction/diffusion parameter 7  for a wide range of ft values. 7  =  
5,10, 50,100 from top to bottom.

In contrast, when < <  |  we can assume that y l  + ^  ~  f  H,nd so the 

current response reduces to

2% tanh f

In this case the hyperbolic functions involve the migration parameter alone. Now 

if the migration parameter is very large and the diffusion /reaction parameter is 

small, then tanh f  ~  1 and equation (6.25) reduces to

yss ^  2̂  S (6.26)
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If the migration parameter is small but the diffusion.reaction parameter is 

still smaller, then we can write tanh f  ~  f  and equation (6.25) reduces to

Vss ~  ( l  +  f )  'y (6-27)

Specifically for the range - 1  < |  <  1 we note that ( l  +  f )   ̂ ~  1 — f  and so 

ecpiation (6.27) simplifies further to

Vss ~  f  j  ^  0 ) (6.28)

Hence for small values of 7  we predict that the normalised current response y 

should vary linearly with the reaction/diffusion parameter 7 , but the rate of this 

variation will depend on the field-dependent factor ^ 1  -|- |^

When the latter limiting forms of equation (6.22) are considered it is not 

surprising that the sinijjle dog-leg behaviour exhibited by the ^ =  0  situation is 

not observed for finite no-zero (5 values. The slope of unity is observed over most 

of the range of 7  values examined when j3 is negative. However when p  si positive 

the unity slope region in the double logarithmic plot is observed only over a more 

restricted range of 7  values. When /? is large and positive, very little variation of 

normalised current y with reaction/diffusion parameter 7  is observed.

We can obtain a further insight into the transport and kinetics by compar

ing selected critical values of the flux reaction parameter ^ with selected

values of the reaction/diffusion parameter 1 — This exercise results in the 

construction of a schematic case diagram which is presented in figure 6-28. For 

all values of  ̂ and when 7  is large, the reaction is diffusion controlled. In the 

upper right hand quadrant the reaction flux will be much larger than the reac

tion fiux and both will be much larger than the flux due to substrate diffusion. 

In the lower right hand quadrant the reaction fiux will be much larger than the 

electromigration flux, which is in turn much larger than the diffusion flux, both



CHAPTER 6. POLYMER. MODIFIED ELECTRODE 172

DMR
log(y)

Figure 6-28: Schematic case diagram  ilh istrating  the possible rate-determ ining  
steps as a function of the param eters ^ and 7

of these situations are designated case D. in contrast in the upper left hand quad

ran t when ^ is large and when 7 is small the net reaction ra te  or current will 

be controlled by a slow rate  determ ining chemical reaction, th is is designated 

R,. In this quadran t the electrom igration flux is greatest. In the  lower left-hand 

quadran t when ^ is small and when 7 is small, the net current will be governed by 

the  electrom igration flux. This is case M. Here the flux due to  substra te  diffusion 

will be largest. In the region close to  the origin of the coordinate system , the 

general DM R applies where ^ =  7 =  1. In this region the current will be equally 

determ ined by each of the underlying processes.

As discussed earlier, the transien t current response is given by
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Figure 6-29: Transient current plot illustrating how the current response varies 
as a function of time for different negative values of /3. The variation with time 
is best seen with negative /5 [c.f. figure 6-26 where there is a large variation in 
current response for positive fi). The reaction parameter 7 =  0.

The derivative of equation (6.14) was evaluated at x  =  1- It comes out as

Vtr =  Vss -  X] exp(-A V ) (6.30)
71=0

All the terms have been defined earlier in the chapter. Unfortunately the ap

pearance of a transcendental function in the form of bn makes evaluation difficult. 

In figure 6-29 we show how the current response changes over time.
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6.6.5 Concluding C om m ents

The effect, of substrate electromigration within an electrodeposited elcectroactive 

polymer thin film sensor on the shape of both the substrate concentration profiles 

and the amperometric current response has been elucidated via the analytical 

solution of the governing reaction/diffusion migration differential equation for the 

steady state case and numerical finite difference method for the time dependent 

case. The electromigration effect has been quantified in terms of a parameter 

{5 which dei)ends on the magnitude of the electric field strength to the diffusion 

flux. The effect of the internal electric field will be most ai)parent when the 

reaction/diffusion parameter 7  is small (the 7  parameter reflecting the ratio of 

the chemical reaction flux to the diffusion flux). Hence the electromigration will 

be relatively unimportant when the rate of chemical reaction is large compared 

with the rate of substrate diffusion. Under siich circumstances the nuHliated 

reaction takes place in a reaction layer at the [)olymer/solution interface, which 

is of molecular dimension.

This analysis is also restricted in scope in that we only consider the situation  

where the reaction kinetics are first order in substrate concentration. Conse- 

cjuently the analysis will only be valid for situations where the substrate con

centration in the film will be less than the Michaelis constant K m - Under such 

conditions we expect that the layer will be unsaturated, i.e. not all polymer ac

tive sites will be occupied by the substrate. This work will be performed in this 

laboratory in the future.



Chapter 7 

Concluding Remarks

The work contained in this thesis describes mathem atical modelling of two physico

chemical phenomena, namely transderm al drug delivery and charge transfer in 

polymer modified electrodes. We have used both numerical and analytical tech

niques for the purpose of modelling.

Initially we looked at the finite elcrnont method and the associated software 

package ANSYS. We examined diffusion of a drug from an external i>atch into 

the skin and then further diffusion of the drug through the layers of the skin. 

Although this analysis gave good insight, we also saw the lim itations of the 

package and concluded that it was not yet versatile or sophisticated enough to 

cope with our systems.

We then looked at analytical methods for solving the equations of diffusion. 

These are discussed in chapter 5. While analytical methods are undoubtedly 

superior to numerical methods, we can be faced with tedious mathematics. For 

the purpose of comparison with experiment, it is necessary to find a simpler 

api)roxiniation by deciding which of the parameters may be eliminated. This is a 

possibility for future work in the area. Chapters 4 and 6 describe how the diffusion 

equation was solved numerically, using the finite element package DEQSOL. Both 

of these analysis have helped to give a clearer insight into the physico-chemical

175
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pheiioiiieiia they describe.

In all cases we have developed partial differential equations to describe the 

processes of diffusion. The solution of these eqtiations describes the concentration 

as a function of distance, time and the reaction and migration parameters. In 

order to concur with experiment, time-lag and transient kinetic studies have been 

carried out, or in some cases, the concentration expression has been manipulated 

in order to obtain an expression for amount of material which has passed through 

a particular region as a function of time.

Our models are that of bulk diffusion through the system. The systems have 

been examined on a macroscopic level. In order to obtain further insight into 

both systems, it might be useful to carry out a microscopic diffusion analysis 

where diffusion is described in terms of Brownian motion and a random walk.

The two software packages used for numerical siirnilations have distinct char

acteristics and differences. The finite difference package DEQSOL is ideal for the 

beginner. It is user-friendly and good for solving systems with simple geometries. 

For more systems with more complicated geometries however, the finite element 

method is better and ANSYS is useful in this regard. However, this i>ackage is 

not as user-friendly and the beginner may obtain strange results if ho has not 

clearly defined all the parameters of the problem.

The availability of resources changes over the three to four years of Ph.D. re

search. During the course of this work, a new supercomputer was purchased and 

is used jointly by Trinity College and Queen’s University, Belfast. The arrival 

of this computer has created more opportunities to advance work in modelling 

and simulation. For example, a joint project between Hitachi and Pharm aceu

tics Department was developed with the aim of simulating drug dissolution in 

the human stomach. The applications of computers in chemical modelling are 

boundless. This research still forms part of the foundation of i)hysico-chemical 

modelling.



Appendix A

Numerical input files

In this appendix we will present a typical DEQSOL input file followed by a 

detailed line-by-line explanation on the meaning of each part of the code. We 

will then show how an ANSYS model is created. Since the ANSYS program is 

menu driven, the exact file is not presented.

A .l  DEQSOL sample input file

The following is a DEQSOL input file which was used in the solution of one of 

the equations discussed in the thesis.

177
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1 PROG E2;

2 METHOD FDM;

3 DOMAIN X=[0:1];

4 TIME T=[0:.05];

5 TSTEP DLT=[0(.0001).05];

6 MESH X=[0:l:300];

7 REGION R = (l), 

L=(0),

WHOLE=(*);

8 VAR U,W;

9 BCOND U =  0.0 AT L, 

U = 0 AT R ,,

W:=U;

10 ICOND U=1 AT WHOLE, 

W:=U;

11 COUNT NT;

12 SCHEME;

13 ITER NT UNTIL NT GE 500;

14 SOLVE W OF

(W-U)/DLT= (1/2*(DXX(U)+DXX(-W)) 

BY ’GAUSS’ WITH EPS(1.0D-15);

15 U=W;

16 END ITER;

17 WRITE X TO FILE13; 

WRITE W TO FILE13;

18 END SCHEME;

19 END;
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1. The program is defined and given the name E2.

2. Tlie method of analysis is the finite difference method (FDM)

3. The domain is defined on the x  as between 0 and 1.

4. The time range is from 0 to .05 in this analysis.

5. The time is divided into 500 sub steps of .0001 seconds.

6. The mesh region between 0 and 1 is divided into 300 sub-steps.

7. The region is assigned the name R(right) and L(left) for each of its bound

aries. The full area is called ’’Whole” .

8. The variables are defined as U and W.

9. The boundary conditions are defined as u =  0 at the left boundary, u =  0

at the right and the same boundary conditions apply to W  as apply to U .

10. The initial condition is defined as C/ =  1 everywhere. Again, this is also 

true for W .

11. The name of the counter which will count the number of repetitions of the 

computation is called N T

12. The solving scheme is initialised.

13. The loop will run 500 times.

14. The equation to be solved is entered here in its Crank-Nicholson format.

15. The value of U is renewed.

16. The iteration is completed.

17. The results are written to file 10.
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18. The scheme is ended.

19. The program is complete.
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A .2 ANSYS procedure

P R E F E R E N C E S

structural thermal or electromagnetic 

P R E P R O C E S S O R  

Define Element Type (Plane55)

Define Real Constants 

Define Material Properties (therm, conductivity, density, heat caj).) 

Create model using key points lines and areas 

Mesh Model 

SO L U TIO N  

Define Analysis Type (transient)

Loads

Apply initial conditions 

Set time and timestep 

Solve

G E N E R A L  P O S T P R O C E S S O R

Plot Results (nodal soln, temperature)



A ppendix B 

A nalytical m ethods used to solve 

Partial Differential Equations

B .l  Separation of Variables

In tlio case of diffusion, the solution -  the value of concentration at a particular 

point and a particular time -  is given by u{x, t).  Using the separation of variables 

technique u is separated into two functions X (x) and T [ t ). It is assumed that 

the variables are separable. The solution of the diffusion equation is given by

where .Y is a function of x  only and T is a function only of r. Equation B .l then 

becomes

u = A^(x)T(r) (B.l)

XT'  =  TX" (B.2)

This may then be rearranged (the variables separated) to give

(B.3)

182
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where — A'̂  is an arbitrary constant.

We therefore have two ordinary differential equations

X"
^  (B.4)

and

V
Y  = -A' (B-5)

These are solved to give

A" =  ylsin(Ax) +  i?cos(Ax) (I3-6)

and

T  = (B.7)

The two separate solutions are then reunited to give

XI = e~^^'^[A sin(Ax) +  B  cos(Ax)] (B-8)

This is the general solution, and the constants A, D and A are determined by

satisfying the particular initial and botindary conditions. We will apply this to 

the following boundary conditions:

u((),r) =  0, u ( l , r )  =  0 (B.9)

Inserting the first condition:

u{Q,T) = 0 = e-^'^[B] (B.IO)

From this we see tha t 5  =  0.
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?x(l,r) =  0 =  e sin(A)] (B .ll)

Therefore A =  rnr. The initial condition gives a vahie for A:

m(x , 0) =  1 =  ylsin(n7Tx). (B.12)

Checking for orthogonahty this is

[  AnSin{n-Kx)sm{mn)()dx = 2Snm (B.13)Vo

1 if m  = n

0 if m  ^  n

Therefore A  is given by

A„ = —  (B J5)
n7T

where n  is odd. The particular solution is therefore:

A OO  1

^  n=0

This, as we recall, is a well known solution to the diffusion equation and it 

describes the passive form of planar diffusion of a substrate from a matrix. In 

the next section, we will show how this same equation is solved using the method 

of Laplace transforms.
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B .2 Laplace Transforms

185

Laplace Transforms are a powerful technique in solving differential equations 

which are dependent on both space and time. The methodology has been dis

cussed at length in a number of textbooks (Spiegel (1965) Kreyzig (1993)). Ap

plication of the Laplace transform to a differential equation results in the removal 

of the time variable and an ordinary differential equation which is purely space 

dependent remains. The solution of this equation is then easier to obtain. The 

solution to the differential equation of interest is obtained by finding the inverse 

Laplace transform of the solution of the purely space dependent equation.

The inverse Laplace transform of a function is then found either via a variety 

of special techniques (Spiegel (19G5)), through tables (McCollum (1965))

or more generally via the Complex Inversion formula. The choice of inversion 

dejjends on the complexity of the transform.

If the Laplace transform of a function f ( t )  is f (p) ,  where p  is the Laplace 

parameter then

(B.17)

B .2 .1  Laplace form of the diffusion equation

The diffusion equation is given by

du d'̂ u
(B.18)3t

From equation (B.17) we can see that

L ( / ' ) = p L ( / ) - / ( 0 ) . (B.19)

Therefore the reduced diffusion equation (equation (B.18)) is transformed as
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follows;

This equation admits the following general solution

u =  -  +  cosh(/;^/^x) +  ^(sinhp^^^x) (B.21)
P

where A  and B  are constants determined by the boundary conditions. Since 

the differential equation was transformed, the boundary conditions must also 

undergo a Laplace transform. So, since

n(0, r )  =  0, => uo = 0 (B.22)

M (l,r) =  0, ^ u i = 0  (B.23)

?/,(X,0) =  1, => Up=o = ^  (B.24)

Then,

U( 0, T)  =  0 = - - h A  (B.25)
P

So

and

A = ~ -  (B.26)
P

J7 (l,r)  =  0, => -  — -  cosh(;;^'^^) +  B  smh{p^^^) (B.27)
P P

Therefore,
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^  cosh(p‘/") _  1 ,J3 2gN
ps in h(p i /2 )  ps inh(p i /2 )

The sohition then becomes

1 cosh(p^/'^a:) cosh(p^/^) sinh(p^/^3;) sinh(p^/^x)
p P ps in h(p i /2 )  ps in h(p i /2)

B.2.2 Evaluation of the inverse Laplace Transform

The concentration is then obtained by evahiating the sum of the inverse Lai)lace 

transforriis. That is

, , ,_ ,r f^ o s h (p i /2  _^^cosh(7;i/2)sinh{p*/23-) s in h ( / ; i / ‘'^a;).
'u (X ,r j  =  L l [ - \ - L  1 ----------------) \+L  1 -------------- ■ . ,  , ------------\ - L  1 — . . , .

p p /;sm h(/;‘/^) 7;smh(7;'/‘̂ )‘
(B.30)

Those can all be found in tables (McCollum (1965)) but for more complex terms, 

the complex inversion fornuila must be used.
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B.3 The Com plex Inversion Formula

The Complex inversion formula as detailed in Spiegel (1965) is as follows: If

f{p) = Lf{t),

then

is given by
1 n+ioo

m  = 7^^ /  e '‘/(p)<i»
ZTTZ Jy—ioo

The integral is evaluated using the Bromwich contour: ^  e‘''*/(/;)dp where C

is the contour line shown in figure B-1. If we represent the arc by F, it follows

Y - vT

Figure B-1: Bromwich Contour represented by a circle cut off by the line X  =  7 

that since

I n + iT
F(i] =  Jim —  /  e”‘f(p)Av

fi->oo l-Kl J-y-iT



A P PENDI X B. ANA LY T ICA L  METHODS 189

1 f'y+ioo1 r'y+ioo
F{t)  =  lini [—  / e^^f{p)dp ~  —  e^^f{p)dp]

fl—>oo ZTTl J'y—ioo Z'K'l J y —ioo

If we choose 7  such that the only singularities of f{p)  are poles all of which 

lie to the left of the line s =  7  for some real constant 7 , and the integral around 

r  approaches zero as R  —> 0 0 , then by the residue theorem we can write

0 0

F{t) = ^  residues of e^\f{p) at the poles o f /(/>). (B.31)
n = 0

B.3.1 Implementation of the Complex Inversion Formula

We now evaluate the individual inverse Laplace Transforms as outlined in section 

B.3.

The root of the denominator is p = 0 so the pole of the contour is a t p =  0. 

The residue at pole 7; =  0 is

lirn (7 ;-0 )-e ( '’‘) =  1 (B.32)

j ^ - l  |~cosh j .

Again, for this transform the pole is at p =  0. The residue at pole p =  0 is 

therefore

l i „ ( p _ 0 ) E 2 5 W e - . -  =  L (B.33)
p^O  p

T - 1  rcosh p^''  ̂sinh p'/'^y 1. 
L p s in h (p '/2 )  -I"
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Here the poles are at p  =  0 and p  =  (since sinh(/;'/^) =  0) We now

find the residues of
cosh(p'/^) sinh(p^/^x)

psinh(/;^/^) 

at the poles. The residue at pole p  =  0 is

coshfp^/^) sinhfp^/^a;) , ,-n, . \
lim -  0 ---------------------------------------------------------------- B.34

Using L’hopital’s rule, it turns out that the lim it is =  0. The residue at pole

p  =  —n̂ 7r'  ̂ is
.  , 2  2 N C O s h p ‘ / 2 s i n h ( j y ‘ / 2 2 ; )

hm /; +  n V " ) . , ,  (B.35)

Again L’hopital’s rule is recjuired to evaluate the lim it which is

00

- J 2 —  (B.36)
n= 0

And the sum of the residues is

2
— — sin n7r,Te~" ’̂̂ ^̂  (B.37)

«=o

Therefore

I coshp^/'^sinh///^a; ^  2 . oo\
L M----- — —— -------- = - /  — s m n n x e  (B.38)

 ̂ psmhp^/^

T he inverse Laplace transform of p‘ginjf(p̂ i/2 ) is evaluated in a sim ilar manner. 

A gain the poles are at p =  0 and p  — —n 7̂r .̂

T he residue at pole p  =  0 is

(B.39)
7;sm h(pi/2)

T h is lim it is evaluated as =  0.
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The residue at pole p =  —n ir is

liin (p 4- n ir ) — . ,
psinh(p'/^)

Using L’hopital’s rule this becomes

00 n

y~  ̂ —( —I)'*— sin(n7ra;)e
n=0

And the sum of the residues is

n = 0

00 o

—( —1)” — s m { m T x ) e { —n^7T^t).
n=0

Therefore,

> s m h p i / 2 J  V /  V A 7

The concentration profile is therefore given by

u {x ,t ) = —[sin(n7Tx)fi +  ( —1)" sin(n7ra;)e7T

More concisely this is

(B.40)

(B.41)

(B.42)

(B.43)

4 1 r 1
u{x, r) = ~ Y l  sin (2n +  \ ) t̂ x  (B.44)

^  n = 0  i  I J
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B.4 Fourier Transforms

192

The final analytical method of solving a partial differential equation to bo dis

cussed here is the method of Fourier Transforms. Complete discussion on Fourier 

transforms are available in a variety of textbooks (Spiegel (1965); Kreyzig (1993)). 

We will first of all show how a function is expanded into a Fourier Series and then 

how the Fourier transforms arise.

B.4.1 Theory

If a function F{x)  is continuous, periodic and bounded, then for every point of 

continuity, we have

°° , T 1 7 V X , . . .  T I T T X ,
(B.45)=  +  a„cos(—- ) +  fe„sm (-— )

^ 71 =  0  L t  I.

This is called the Fourier Series of F{x).

The finite Fourier sine transform of F{x)  in the range 0 < x < I is

r l  Jl'TTT
/ ,(n )  =  /  F{x) f i in{-— )dx.  (B.46)

Jo L

where n is an integer. F{x)  is called the inverse finite Fourier sine transform

of f s { n ) .

Similarly the finite Fourier cosine transform is

r l  Ti'TTT
f c { n ) =  /  F{x)cos{—— )dx (B-47)

Jo I

Therefore, if F{x)  =  u, then

r l  777TT
f J u )  =  /  us i n(— )da; (B.48)

Jo I

if F{x)  = f , then
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 ̂ / uu\ n au . .TiTTx. , _

which upon integrating by parts becomes

, f a u \  . jiTTX. n-K r  jnrx .  , 

which simphfies to

Proceeding to evahiate F{x)  =
d x '^

, /d^u\  riTT , /'du\

/ ' f ) ' ^ ' I l \  717T
0  -  i) cosriTr] (B.53)

In a similar fashion, it can be shown that

/ c ( ^ )  =  -  u{l , t) cos rnr] (B.54)

and

TI^Tt '  ̂ TJ'TT
— j  =  -j^fs{u)  +  — M o ,  t) -  u^{l, t) cos7t7r] (B.55)

where Ux denotes the partial derivative of u with respect to x.

Therefore, if one has boundary conditions of flux (u^;), the Fourier cosine 

transform  is used to solve the differential equation whereas boundary conditions 

in term s of concentration dictate the use of the Fourier sine transform.
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B.4.2 Fourier transforms applied to the diffusion equation

We recall that the problem is to solve the equation

du
d r  dx^

(B.56)

subject to the following initial and boundary conditions: 

u{x,  0) =  1 u(0, r) =  0 u (l, r) =  0

Since wc have boundary conditions involving the species concentration alone, 

the Fourier sine transform is chosen.

Equation B.56 then becomes

^ ' | ^ s i n ( n ^ x ) = / ‘ | ^ s i n M  (B.57)

Let

V =  F,(m) =  [  ?isin(n7Tx) (B.58)
Jo

c\v
^  =  —n̂ TT̂ v +  rnr(uo — uicoslmr)) (B.59)

dr

Since uq =  0 and u\ =  I, equation B.59 becomes

^  =  —n̂ TT̂ v (B.60)
dr

The solution to this equation is

V =  (B.61)

A value for C  is obtained by transforming the initial condition and inserting 

into equation B.61
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m(x,0) =  1, ^  F,(uo) =  ;^ [ ( -1 )"  -  1] and v{n,0) = ^ [ -

o 2 n + l
c  = -----------------.

Therefore

22n+l

riTT

The inverse Fourier Series of v{= u) is then

C30

U
n = 0

=  2 ^  w sin(n7Tx)

195

r  -  1]

(B.62)

(B.63)

(B.64)

(B.65)

4 ^  1
+ l)7rx).

^ „ = o 2 n  +  l
(B.G6)



Appendix C

Finite Element M ethod

C .l Example of im plem entation o f the Finite  

Element M ethod

Consider the diffusion equation:

dc d^c

As with previous examples we begin by redefining the diffusion equation in 

non- dimensional terms. Equation (C .l) becomes

S  -  S I ' ' ’ !

We will further simplify things by taking to be a constant. By this we look 

at steady state diffusion or diffusion after a long time has elapsed. The constant 

is given the value F  say. Then equation (C.2) becomes

I  = ̂
In solving by variational approach this is ecjuivalent to finding a value for

196
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th a t minimises the functional

r ^ A / d i i \ 2  ^  ,

The finite elem ent procedure is executed as follows: The m em brane will

c = I O O c = o

.25

1.00

Figure C-1: Schem atic diagram  of the  m em brane meshed w ith four elements

be divided into four elem ents of equal length as shown in figure C-1. Sincc^ the 

m em brane is 1 unit long this corresponds to elements of 0.25 units length and 

the fim ctional becomes

for each element.

We will select linear in terpolation functions to describe the concentration 

variation so th a t for each elem ent the concentration a t each node is described by

Un =  Qfl +  a2Xn  (C.4)

where n  =  1, 2 ,3 ,4 , 5.

T he concentration in a  particu lar elem ent is then given by

M =  NiUi +  Ni+iUi+i (C.5)
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where i is the number of the element and Cj is the concentration at the i' 

Therefore the concentration in the first element is given by

u =  N iU i +  N2U2

I t  can be shown that

^  X i + I  -  X  ^  X ~  X i  

X j+ 1  Xi  X i + l  X i

Since Xi+\ Xi — L  =  follows that

Nx =  ^  iV2 =  I

I t  is customary to write this in matrix form as

Ui
u ■ N i 7V2

U2 _

More concisely this is

u  =  |iV]|f/]

du — 1 1
d i  “  :25 '“  +

In m atrix form this becomes

du
dx

1/L 1/L
U i

1
cs

1

or again more concisely

‘ node. 

(C.G)

(C.7)

(C.8)

(C.9)

(C.IO)

(C . l l)

(C.12)

(C.13)
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The functional is then rewritten as

199

r-25 1
I  -  [F][iv][t/]dx

Minimising with respect to [U], this becomes

.25 II  -  [FlIAfjdx = 0

(C.14)

(C.15)

or

. .2 5  1

7o 2
- 1 / L

1/L
1 /L  1 /L [U] -  [F]

1 - x / L

x / L
clx 0

Upon performing the integration this becomes

1 /L  - 1 / L

- 1 / L  1 /L

L
L / 2

m  =  [f'l
0

L /2

(C.16)

(C.17)

A similar expression is obtained for each of the other nodes and the entire solution 

is assembled to give the following:

1 /L

1

- 1

0

0

0

-1 0

2 - 1

-1 2

0 -1

0 0

0 0

0 0

- 1  0

2 - 1  

- 1  1

Ui Fx

U2 F2

=  L Fs

U4 F,

Us F,

(C.18)

This is simplified to give



A P P E N D I X  C. F IN IT E  E L E M E N T  M E T H O D 200

1 - 1  0 0 0 U\ Fi

- 1  2 - 1  0 0 U2 F2

0 - 1  2 - 1  0 '^3 F ,

0 0 - 1  2 - 1 U4 F a

0 0 0 - 1  1 U5
.

(C.19)

Inserting  the correct figures, {L =  0.25 and =  200) together w ith the 

boundary  conditions {u\ =  100 and =  0), the m atrices may be solved and the 

following results are produced:

U2 =  93.75 

ii3 =  75 

U4 =  43.75

M athem atically, the direct approach is easier to work out. G alerk in’s m ethod 

of weighted residuals Houbncr and Thornton  (1982) is also used for this type of 

problem  and examples of these may be foimd in many FEA  tex tbooks (Becker 

(1981); Davies (1980); Lewis and W ard (1991)).
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Inert M atrix

In this section we will show how the expression for the transient concentration 

profile in chapter 4 was obtained from the pertinent diffusion equation. The 

m ethod used was sc])aration of variables and the solution is detailed as follows:

D .l  Transient Profile

Given the equation

du d‘̂ u du

with boundary conditions

Qii
Jo =  —  -/3?/o =  0, Ii(l,r)  =  0 (D.2)

5Xo

and the initial condition

u(x,0) =  l (D.3)

201
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Wo may rewrite the above as

du  du

where

a =  ^  and — 7  (D.5)

We apply separation of variables to get

u =  X { x ) T { r )  (D .6 )

Therefore

X T '  =  X ”T  -  2aX 'T  -  {a  ̂ -  l)^)XT (D.7)

and
T' X" X '
— =  ^  - /? Y  -  7  =  constant = -A'^ (D .8 )

The time dejjendent portion has the following solution:

T (r) =  A e x p { —X^T) (D.9)

The X-dependent portion is solved as follows:

X" -  PX'  -  ( 7  -  X^)X =  0 (D.IO)

We note that equation (D.IO) is a second order linear differential equation with 

constant coefficients, and consequently in may be integrated using standard meth

ods. We assume a solution of the following form:

( D. l l )
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where d must be deterinineci. Substituting the latter expression and its derivatives 

into equation (D.IO) we obtain the following characteristic equation

a'  ̂ -  p a - { j  -  X )̂ = Q  (D .12)

This quadratic equation has two distinct roots given by

n =  j  +  ( ^  +  ( 7 - A ^ ) ) ’ (D .13)

and

< v = f - ( j  +  ( 7 - A ^ ) ) ^  (D .14)

The general solution is then

A' =  e"^[>lcos(62X) +  -Csin(62X)] (D.15)

The com plete transient solution is therefore

OO

u,r =  ^  e“^[C cos(&2X) +  D  sin{b2x)]a^p{ — (D .16)
n = 0

We will now apply the boundary and initial conditions in order to obtain par

ticular values for the arbitrary constants. To make the calculations easier, the 

boundary conditions will be transformed according to x  —>■ 1 — X- Therefore,

-/o =  ^  -  Puo =  0 ^  Ji =  ^  -  =  0 (D .17)
dXo 9Xi

and

7/ ( l , r)  =  0 u ( 0 , r )  =  0 (D .18)
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T he first boundary condition is apphed

204

«tr(0, r ) =  0 =>(7 =  0

The second boundary condition is apphed

j d u
J i  =  —  -  /3mi =  0  

1

Du
— = ae“"̂ [i?sin(/j2X)] + be~‘̂ [̂D cos{b2x)]^̂ p{—̂ T̂)

D'i
—/3u^=i =  [aD s'm{b2 )+ b D  cos{b2 ) —2 a B  sm{h2 )]e~"‘e x p { —X^T)

^Xx=i

/̂ cos(/>2) -  «sin(ft2) = 0

B is given by the transcendental function

h =  a tan b

We apply the initial condition

u(x, 0) = 1

and get

u{ x , 0 )  =  1 = er^^[D sin{b2 x)]

Therefore

=  [Bnsm{bnx)]

(D .19)

(D .20)

(D.21)

0 (D .22) 

(D .23)

(D.24)

(D .25)

(D .26)

(D .27)

We m ultiply by sm{bmX)  apply orthogonality to get a value for B^.
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2 s iii( i^ x ) =  2 ^  Bn sin(6„x) sin(&mX) (D .28)
rn=0 rn=0

2 ^  e“^siii(fe^x) =  Bn (D.29)
m =0

Replacing the sum m ation by integration, this is

Dn =  2 [  e“^sin(fo,„x)dx (D.30)
Jo

We note that =  cos(6mx)+*«in(6mX)- Therefore the integration is simplified 

by taking the im aginary part of as follows:

Dr =  2 t  e“ ê*''"‘^dx (D .31)
Jo

We perform the integration and nniltiply above and below by the comi)lex con

jugate of a +  ib in order to remove the unwanted com plex numbers.

-  ?'/^m)(cos(i>„,x) +  i  sin(i),„x)] (D .32)

Considering the imaginary part only:

2e“>c
^  -  >̂m cos(6,„x)]o (D .33)

(I +

g
B n  =  4 ^ 2  ^  4 //2  ~  cos(/;^) +  (D .34)

Rem em bering that

b =  a tan b b m  cos b m  =  a sin b m (D .35)
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Therefore
Q U

^  (D-36)

B y  °°
n{x, r) = exp{ —  ) ^  Bn sin{bnX)exp{-XH) (D.37)

 ̂ n=0

D.2 Reduction to passive diffusion

Given the transient equation:

B y  ° °
u{x,  t ) = f'Xpi —  ) sm{bnX)exp{- \^t )  (D.38)

^ n=0

We set /? =  7 =  0. Therefore a = b = 0. The expression for the concentration 

profile then becomes:

OO Rh
u{x, = mn{bnX)exp{-X^t) (D.39)

n=()

Simplifying this, we get

OO 2 (D.40)
n=0

Then, since

bncoshn = as'mbn = 0 ^  cos bn = 0 (D.41)

b n = f :  (D.42)
n - 0  ^

Therefore the expression for the concentration profile becomes:

, , ^  4 . ,(2n+ l)7rY . , ,(2n +  l)7r,9 . _
„ ( i ( 2 n + l ) j r  2 2

When we re appy the transformation x ^  1 — X> this becomes



A P P E N D IX  D. INERT MATRIX 207

«U,r) = £  ^ ^ c o , s ( e ^ i ^ ) o x p ( - ( < ^ ) V )
„=o(2^i+l )7T 2 2

which is exactly that obtained for the passive case equation (4.13).

(D.44)
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Finite M embrane

E .l steady state amount

The general solution to equation (5.7) is given by

u{x,p) = AH\nh[^)x] + Z?cosh[y^x] (E.l)

Note tha t we choose hyperbolic functions since the diffusion space is finite and 

lies in the range (0,1). When x  = 0, u = ^ and so B  = ^. Also when x  =  1, w- =  0 

and so =  p tanh ^  • Hence substitution of these quantities into equation (5.7) 

iiinnediately produces

P p s in h (y ^)
1 s in h ( ^ )  c o sh (^ /^ )  -  c o s h ( ^ )  s in h (^ /^ )  

P sinh(\/P)

_  1 s i n h ( ^ p ( l  -  x)
p s in h ( ^ )

(E.2)

which results in equation (5.9) in chapter 5.

We now use the complex inversion formula to invert equation (5.9). We recall

208



APPENDIX E. FINITE MEMBRANE  209

that y{p) represents the Laplace transform of a function y(r), then according 

to the complex inversion formula we can state that:

rc+ioo r
y{^)  = ;r^  / exp{pT)y{p)dp =  —  f  exp(/;r)77(7;)fi7; (E.3)

ZTTI Jc—ioo Z tVZ J

where the integration in equation (E.3) is to be performed along the line p  =  c 

in the complex plane where p  =  x +  iy.  The real number c is chosen sucli

that p  =  c lies to the right of all the singularities, but is otherwise assumed to

be arbitrary. In practice however, the integral is evaluated by considering the 

contour integral presented on the rhs of equation (E.3) which is evaluated using 

the so-called Bromwich contour. The contour integral is then evaluated using the 

residue theorem which states that for any analytic function F{z)\

<f F{z)dz  =  2m  ^  7?,fi,s'[F(z)],_,„ (E.4)
n

where the residues are computed at the poles of the function F{z).  Hence, from 

equation (E.3) we note that

y{T) = H  ^f-‘>’[exp(pr)7/(p)] +  p  = pn (E.5)
n

From the theory of complex variables we can show that the residue of a function 

F{z)  at a simple pole 2 =  a is given by

B.es[F{z%_^^ =  Lim;,^a[{z -  0 )^ ( 2 )] (E.6)

ats in h ( \ /p x '
p s i n h ( v ^ )Hence in order to invert equation (5.9), we need to evaluate Res 

the poles.

Note that we have set \  Now the poles are obtained from /;sinh

(I. Hence there is a simple pole at /; =  0 (this will ultimately produce the steady 

state contribution to the concentration profile) and there are infinitely many 

poles given by the solution of the equation sinh =  0 and so Pn =  with
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n  =  1 ,2 ,3 ...  .

These will ultim ately produce the transient contribution to the concentration  

profile. Hence we note that

=  L i n ip ^ o ip  -  0 ) exp(/^r)

u {x , t ) =  Re s  

sinh

p  sinh y/p
+  R e s

p = 0
p  sinh ^

p  sinh ^
+  {p -  pn) exp(pr)

P - P n

sinh

p  sinh -y/p
E.7)

T he following Taylor series ex])ansion of the hyperbolic term s are useful

sinh ^Jpx 

sinh ^
x' +  ^  +

3 ! + . . . 1 +  ^ +  ..
(E.8)

Using this expansion we note that the first residue in equation (E.7) is given by

Re s
sinh

lim
p—>0

exp(pr) (E.9)

The second residue can be evaluated as follows. It is established that is F{ z )  

can be expressed as F{ z )  =  where the functions /  and (j are analytic at 

p  =  Pn and g{pn)  =  0 while ,</'(/>»„) ^  0 and f {p„)  ^  0, then Res[F{z)]j,=j,,^ =

exp[p„r].Consequently from equation (E.7) we set /(/;„ ) =  V and
n = l  ® Vn

g{Pn) =  siiih y/P^. Noting that =  —n^7r ,̂ then f / {n)  =  2; ^  cosh[n7rz] =  

^  ^  0 . Also f { p n )  =  ^  sinh[innx'] ^
Zmxt J.n'Ki '  •’ '''' —n̂ TT̂

can show that

Res
sinh ^Jpx 

s i i i h y ^
— ^  s in [n 7 T X ^ ] e x p ( n ^ T r ^ r )

n
(E.IO)
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and the concentration ijrofile is given by

u {x , t ) =  l -  x -  2 5 Z n  =  1°°— sin[n7Tx'] (E .ll)

which is equation (5.10) in the text. In arriving at equation (E .l l)  we have noted 

that sin[n7Tx'] =  sin[n7r(l — x)] =  — ( —1)” sin[n7rx]- Note that the transient 

contribution to the concentration profile subtracts from the steady state profile 

as it should. We not indicate the manner in which equation (5.14) is obtained. 

Using equation (5.11) and equation (5.13) we obtain

r

Q{ t )  — j  [l +  2 ^ n  =  1°°(—l)" exp(—n^TT r̂) dr  (E.12)
0

This ex])ression sinijjlifies to

We recall that ^  - ~ Y , n  =  . Hence, using the latter identity we note

that equation (E.13) reduces to equation (5.14) as desired.

E.2 transient amount

In this appendix we indicate how equation (5.30) was derived. We begin with 

equation (5.28) and evaluate the constants A  and B.  When x  =  so

from equation (5.28) we note that
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From equation (E.14) and refl)2 we get

212

B  =  —  I- , T (E.16)
ta n h [^ ( +  pj

Hence tlie normalised concentration profile in Laplace space is given by

u{x,P) = cxp[,̂ x]
r  . / / ” -L -ri

= exp[,fx]

cosh \/C + P X  VC +  PX
p  p  tanh v̂ C +  P.

~ X /C ^ X  cosh y cT p /;s in h  Ĵc + p
V C T p (l -  X.)

= exp[,̂ x]
p  sinh \/C  +  P

(E.17)

which is equation (5.30) .

We now indicate how equation (E.17) may bo inverted using the Heaviside 

expansion theorem. We firstly set (j)̂  =  p  +  C hence =  psinifi - Now

the H eaviside expansion theorem states that if we can express a Lajjlace Trans

form as y{p)  =  ^  and if we can set (j{p) =  [p -  a i ) { p  -  a 2 ){p -  03)  {p -  <•)!„)

where a^, k =  1 , 2 , 3.... are constants, then the inverse Laplace transform is given

by

?y( )̂ =  Z  exp(o;fcr) (E.18)

We need to evaluate the zeroes of p s in h ^  =  0. Clearly p  =  0 is a zero 

and the others are given by ,sin/i0„ =  —isin[z0„] =  0. Hence siri[z^„] — 0 or 

4>n =  iti'K, n =  1,2,  3.... Now — (  =  —n^7r̂  — C- Thus we have our roots.

We can readily show that =  sinh 0 +  /; cosh (/>^. Since 0  =  y/P +  C>

t  =  W  =  sinh (/)„+/;„ cosh We can obtain an

expression for the concentration j)rofile by considering each root in turn, p  =  0 

and p  =  Pn and using the Heaviside expansion forrruila presented in equation
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(E.18).

The term for =  0 gives the steady state concentration profile. Here (j) =  

and so
■yc(i-x)' (E.19)

sinh

which is equation (5.32). The transient contribution to the concentration profile 

is given by

ut{x. r) =  exp[^x] £  ,inh ----- (^xp(p„r) (E.20)
" "  2 S q r tC + P n  cosh y /C ,+ P n

where — Q =  —n^7r^—7 -  We can readily show that sinh v̂ C +  Pn —

sinh[m 7r] =  i sin[n7r] =  0. Also 2 sqft’c+pn “  \/C +  Pn

cosh[in7r] =  cos[n7r]( —I)". We finally note that sinh \ / C  +  7^n(l —x) =  ?-sin[n7r(l — 

x)] =  —?'(—!)” sin[ri7rx]. If we substitute the latter identities into equation (E.20) 

we obtain

r , ^  7i7T sin[n pivl , , x

M x ,  r) =  - 2  exp[,fx ^ -----2 2 , ^ +  C)^) (E.21)

We now indicate how equation (5.37) is derived. The normalised release profile 

is given by

Q ( t ) =  ~  dT (E.22)
/ d i i \

We differentiate equation (E.19) and set x  =  1 to obtain

f  dus
^  ~  exp[^]cosech^  (E.23)
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Sim ilarly from equation (E.21) we can show that

( ^ )  =  V tI C c +  (E.24)

Hence using equation (E.22) we obtain

Q{r) =  ~  e x p [ ^ ] c o s e c h ^ / c d T  +  2 exp[^] exp[-(n'-^7r^ +  O t ](I.tnH^ + C
oo I -I \ n „ 2 „ 2

71 =

00 z' 1 \ n ^ 2 ' Z{ — l l^ 7 7 ^ 7 r^
-2 exp [^ ] Y .  -2 ^ 2  4.   ̂ ( x̂p[-(?), 7̂r''  ̂ +  C)?"] 

n=\ n n
(E.

which is equation (5.37).

E.3 alternative method

In th is appendix we discuss the use of the substitution presented i equation (5.34) 

of the paper as an alternative way of solving the RDM  boundary value jjroblem. 

We begin w ith equation (5.34)

u{x, t )  =  exp[^x] fixp[-Cr]a;(x, r) (E.26)

and propose that uj obeys the sim ple Pick diffusion equation:

duj d'̂ u)

now the in itial and boundary conditions for the u function are ?/(x, 0) =  0, ?/((), r )

1, u { 1 , t )  =  0. Utilising these conditions and substituting into equation (E.26)

im m ediately  yields that uj satisfies the following initial and boundary conditions:
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‘̂ (x ,0) =  0, u;(0,r) =  exp[Cr], a ; ( l ,r )  =  0 (E.28)

We now take Laplace Transforms of equation (E.27) to obtain

d^oj
^  =  0 (E.29)

and the boundary conditions transform as

‘̂ (0,/j) =  uj{l,p) = 0 (E.30)
p - C

The solution to equation (E.29) has the form

U) = A  c o s h [v /^  +  B  s i n h [ v ^  (E.31)

Now when x =  so =  —D tanh ^ ) .  Also when x  — — ^

so /I =  Hence B  =  (p_;;)taiih y/p' Substituting this result into equation (E.31) 

yields

_ _  cosh[y^] sinh[y^]
P - C  ( p - C ) t a n h ^  

cosh[y?^] sinh[^] -  sinh[^/^] cosh[^  
( p -  C ) s i n h y ^

sinh ^ p ( l  -  x)  
{ p - 0  sinh ^

(E.32)

which must be inverted. This can be done using tables of inverse Laplace trans

forms to obtain:
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Substituting into equation (E.26) affords

216

sinh JC(1 - X )  ^ . , ^ ( - l ) " n 7 T  . . r . 2 2 i
u { x , t )  =   --------. ■ - 7^ - ........cxp[CrJ+2exp[r/x] ^  ■ sin[n7r(l-x)J exp - ( n  t t^+Qt]

sinn a/C
{ EM)

which is equivalent to equation (5.32) and 5.33.



A ppendix F

Polym er Modified Electrode

As in the two previous cases, we assum e th a t the sohition consists of a steady 

s ta te  term  u^s and a transien t term  Utr-

T he strategy  for obtaining the concentration profile is set ou t as follows:

•  Assume th a t the solution can be split up into a steady s ta te  term  'u.,., and 

a  transien t term

m(X, r) = + Utr

•  O b tain  a general solution for Ugg-

•  Im pose the boundary conditions on Ugs and obtain  vahies for the a rb itra ry  

constan ts in the general sohition.

•  Solve the transient sohition by separation of variables to get a general tran 

sient solution containing two arb itra ry  constants.

•  Im pose the condition th a t since satisfies the boundary  conditions, uir =  

0 a t the  boundaries ( or if the boundary conditions are described in term s 

of flux, ^ = 0 ) .

•  Im pose the initial condition u { x A ^ )  ^  +  '>hr{xA^) to  ob ta in  a  value

for the  last constant
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Note: We have seen that the sohition of this equation blows up when we 

attem pt to solve it as is. We will therefore make a transformation and solve the 

('(luation where X ^   ̂ ~  X we will reverse the situation at the end.

F .l  Steady State Solution

We start with the steady state solution then: The steady state form of the dif

ferential equation is

This is a second order partial differential equation with constant coefficients. The 

general solution is given by

Usu = [/lcosh(/;x) + i?sinh(/;x)] (F-2)

where a =  |  and /; =  +  7 ) 2  and A and B arc arbitrary constants. We impose

the boundary condition u{0, r) =  1 and hence obtain a value for A.

Uss{Q,  t ) — [A cosh(O) +  B  sinh(O)] (F-3)

1 =  1 [yl +  0] (F.4)

Therefore 4̂ =  1. We impose the second boundary condition =  0

and obtain a value for the constant B.

Oh
—  =  —ae““̂  [ylcosh(fcx) +  -Bsinh(^jx)] +  [/l/;sinh(fcx) +  BhcoHh{bx)] ox

(F.5)

du

dXx=x
+  !5u^=\=Q  (F .6 )
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Therefore

—ae““ [/lcosh(/;) +  Bosinh(6)] +  [>lsinh(&) +  i^cosh(fe)]

+ 2ae“" [ylcosh(6) +  i?asinh(/;)] =  0 (F-7)

Adding wo get

ae“" [A cosh(6) +  Da sinh(/;)] +  [A sinh(ft) +  B  cosh(/;)] =  0 (F.8)

We simplify and remembering tha t A =  1, this becomes

acosh{h) + DaHmh{h) +  /;sinh(^^) +  Bbcosh{h) =  0 (F-9)

and hence the constant B is given by

asmh(6) +  icosh(6)

(We also denote B by the symbol R for future reference.)

We insert the values for A and B into the general solution to obtain:

, ,, , acosh(fc) +  ^)sinh(t) . , ,
+  „si„h(4) +  (>cosh(6)

(F .l l )

We now solve the transient solution

F.2 Transient Solution

The technique of separation of variables is well documented in appendix B .l and 

appendix D .l and will not be repeated here. The general solution is

OO

Utr = e“̂ [C'cos(&2x) + Dsin{b2 x)]exp{-X'^T) (F.12)
n= 0
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where 1)2 =  ( ^  +  7 — A' ^ ) 2  and C and D are the undeterm ined constants. We

remember that since the steady state sohition satisfied the bom idary conditions, 

that the transient vahies are zero. That is

du
U t r { 0 , T ) = 0  + /0 u ^ = i= O  (F .13)

C'X x=i

We imi)ose the first boundary condition

OO

utr{0, t )  =  0 =  ^  e^[C cos(O) +  Dsin(0)]e.7;7;(—A'^r) (F-14)
n = 0

and therefore obtain that C  =  0.

We im pose the second boundary condition to obtain a value for

fill °°
- 7 ^  = ' ^ c r " - D n C x p { - X ' ^ T ) [ - a s m { h 2 ) +  b2{cosl)2)] (F-15)

x = l  n=()

Therefore

fill
- 7 ^  +  /5%=i =  (’^ “D n e x p i - X ^ T )  [asin(^2) +  fc2(cos/;2)] =  0 (F .16)

x = l  n = 0

Therefore, 1)2 is given by the transcendental equation:

/>2 =  —o t a n 6 2  (F .17)

T he transient solution is now

OO

utr =  e“^[Dsin(^j2X)]ea;p(-AV) (F-18)
n= 0

where all constants are determined apart from D, which will now be determ ined  

from the initial condition. We im pose the initial condition:

u{x,0) =  0 (F .19)
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Therefore

+ ?X(r(x,0) == 0 (F.20)

Inserting the  vahies for and tiir into the above equation we get

e-ax , ,, . -acosh(^)) - /;sinh(6) . , .
cosh /;x + -----■asinh(o) +  ocosh(o)

- ^ e  “^[Ds in(62X)]e.'cp(0)
n = 0

(F .21)

Simplifying this we get

[cosh(6x) +  7?sinh(/;x)] =  -  ^ [D sin(/j2X )] (F-22)
n = 0

We m ultip ly  both sides by 2sin(/;,„x) Jipply orthogonality  to  get a  value for 

Dn-

2 [cosh(/>x) +  /?sinh(/;x)]siu(/;,„x) =  - 2  sin(/>2x) si«(/>mX)] =  A*
n = 0  n = 0

(F .23)

The sum m ation  is replaccxl by in tegration and this becomes

fO O

Dn = 2 [cosh(ftx) +  i?sinh(6x)] sin(6,„x) (F .24)
J n = 0

The in tegration  is carried out in the exact same m anner as detailed in aj)i)endix 

D .l. T he final value of is given by

D„
+ hi {RbnCos{bn) -  bsin{hn))  sinh(fe) (F .25)

+  ( bnCos{bji) — R h s m { b n ) ) cosh(6) — b (F .26)
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