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Summary

The purpose of this thesis was to investigate the usefulness of mathematical mod-
elling as an aid to understanding the physico chemcial processes of iontophoresis
in transdermal drug delivery and electrochemical sensor technology. We begin
by presenting a general introduction to mathematical modelling. In chapter one
we show how it was used in the early stages of mathematics and how it has de-
veloped as a powerful tool for a industrial, economic and social disciplines of the
modern world. From this we discuss one of our physical systems, paying particu-
lar attention to the complexity of the system and the difficulties associated with
modelling this.

Chapter 2 outlines the theory of the numerical methods used in solving the
systems. We discuss both the finite difference and the finite element method, and
show how these methods are implemented in practice. Chapter 3 describes how
the finite element package ANSYS was used to simulate the process of transdermal
drug delivery. We point out the limitations of this system. and conclude with a
general discussion on possible future work that could be carried out in this arca.

Chapters 4, 5 and 6 contain the bulk of the simulation work. In cach chapter
we begin by discussing the system of interest, show how the relevant partial
differential equations (PDEs) and boundary conditions are applied, and solve
the system either analytically or, if this is not possbile, numerically. We present
the results as three dimensional plots of concentration over distance and time
as a function of the additional parameters such as migration and reaction which
were included in the original PDE. Finally we make some concluding remarks on

possible future work that could be carried out in this area.
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Chapter 1

Introduction

1.1 Mathematical Modelling

Mathematical modelling has its origins in the beginning of mathematics, where
it was perceived as a practical science. It was used to assist in agricultural
endeavours and engineering problems such as surveying methods for canal and
reservoir construction. Further advances were made in representing and investi-
gating natural phenomena with the development of calculus in the latter half of
the seventeenth century (for an historical review see Eve (1969)). Later, theories
to explain complex physical phenomena such as gravitation by Newton, Maxwell’s
theory of electromagnetic waves and Einstein’s theory of relativity were all de-
veloped using mathematical models. As the models have become more complex,
analytical solutions to the relevant mathematical equations have not been devel-
oped and numerical modelling has arisen. Contemporary numerical modelling
is performed using computer simulations, and this has advanced greatly in the
past twenty years. The reasons for the recent advances in modelling stem from
the development of more easily accessible high-level computer languages and the
large variety of robust numerical methods available, but most of all from the rel-

atively small (and ever decreasing) cost of computer power. Examples of current
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problems where mathematical modelling is useful range from the mechanism of
transdermal drug delivery, which is the concern of this thesis, to stock market
volatility.

Numerical models can be used to aid understanding of complex physical pro-
cesses or systems. The system might be economic, social, industrial (Burghes
et al. (1982)) or, in the case of this thesis, physiochemical. In essence mathemat-
ical modelling is the transformation of an idealised form of a real-world situation
into mathematical terms and numerical modelling is the practical realisation and

approximation of the solution using a computer.

1.1.1 Why use models ?

The usual motivation for modelling a system is to answer a question from one of

the following categories:

system understanding

system design
e process optimisation

control

In terms of understanding, biologists may wish to gain an understanding
of the interactions between cells in the body. For both ethical and practical
reasons, they cannot simply observe the procedure in humans so they make a few
observations for a small system and then build a full scale mathematical model
based on these. Engineers may wish to improve the design of a plant. In this
case, it is cheaper to develop a mathematical model rather than build a physical
model and it is also easier to modify the mathematical model. By modifying their
mathematical model they can obtain the necessary information to improve the

system design and efficiency. Similarly with process engineering - the parameters
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in a model process can be varied and their effects can be observed without risk.
In the case of a nuclear reactor, it is too dangerous to use trial and error so
mathematical modelling is necessary. Furthermore, exhaustive modelling can be
used to reduce or eliminate the risk of unforeseen problems occurring. A similar
argument holds for process control. Engineers can model extreme variation of
the control parameters, observe the results and hence devise safety limits.

The results of modelling are evident in our everyday lives. A topical example
of this is the problem of preventing grid-lock in the city traffic (Dym and Ivey
(1980)). Maximising traffic flow rates depends on factors such as traffic speed,
separation between vehicles, average length of vehicle and number of traffic lights
in a given distance. If we use these factors to develop a model to measure flow
rate for different switching sequences, we can then maximise the flow rate thereby

making the traffic flow more efficient.

1.1.2 Modelling Procedure

The standard procedure involved in modelling is to form a set of mathematical
equations to represent the system. For continuous systems, these equations are
usually ordinary differential equations (ODEs) and partial differential equations
(PDEs). The equations are solved subject to certain boundary/initial conditions
and the result is carefully interpreted in order to obtain some physical meaning.
Therefore, modelling requires not only the ability to solve complex equations,
but also the ability to translate the system description into mathematics and wvice
versa.

There are two classifications of models - steady state and dynamic. A system
with spatial complexities is usually modelled at steady state and, if insufficient
information is obtained from this, it is then modelled over time. In this work,
we will see that the static model is insufficient and therefore our models include

time dependencies.
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1.1.3 Diffusion Models

This thesis is focussed on macroscopic models of diffusion and their applications
to transdermal drug delivery and electrochemical sensor technology. The diffusion
equation is a partial differential equation relating change of material flux with
respect to distance to rate of change of material concentration with respect to
time. This type of system also describes phenomena such as weather variations.
In addition to the numerous applications in physics and chemistry, another area of
current, interest is financial modelling. Diffusion models have provided the basic
statistical models for financial research in the past 25 years. In particular the
Black-Scholes model (Black and Scholes (1973), used to value options, is based on
microscopic diffusion via Brownian motion and a random walk behaviour (Rossi
(1996)). The main result of the Black-Scholes model is that the stock price, S,

is governed by the following equation:

dS; = a(t)Sdt + o(t)S,dB, {1.1)

This illustrates that the growth rate %L is the sum of a deterministic term
a(t)dt and a random term o(t)dB,; . The function o(¢) is known as the volatility
of the stock and the random term dB, is Brownian motion. This example serves

to illustrate the scope and diversity of diffusion models.

1.1.4 Conclusion

Mathematical modelling is primarily the use of abstractions as an aid in under-
standing the behaviour of complex systems. Providing that these abstractions
represent a good approximation to the system, a wealth of useful information can
be obtained. However, it must not be forgotten that models are abstractions and
must not be confused with reality. It is important to be aware of the limitations

of modelling. For example, the classic model of the solar system describing cir-
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cular paths of the planets with the earth as centre was successful in explaining
phenomena such as day and night, and the seasons. However, when Copernicus
modified this model and explained the solar system as we know it today, his the-
ory was not accepted. In this case the existing model had become confused with
the truth and it served to retard rather than progress knowledge.

There are two systems of interest to us in this work. The first is a transdermal
drug delivery system, and the second is mediated electrocatalysis. As has been
mentioned above, the solution of the differential equations is as important as
the ability to translate the physical system into the mathematical equations.
Therefore, we must start by understanding the physical systems. These will be
discussed at length in the relevant chapters but we will continue now by briefly
introducing both systems and showing how the pertinent differential equations

are developed.

1.2 Transdermal Drug Delivery

The recent development of the transdermal patch as a means of controlled release
of a drug into the body through the skin is marked as a major advance in the field
of drug delivery (Sanders (1985)). Extensive research, development and market-
ing by commercial companies such as ELAN Corporation plec and Ciba Geigy
have ensured that products such as the nicotine patch have, by now, become a
common household name.

However, despite that fact that it is known what happens as a drug migrates
from an external source into the skin, and why these processes occur, relatively
little is understood about their detailed mechanisms. There are a number of
reasons for this which range from the failure to develop adequate mathemati-
cal models to the pressure always apparent in the development of commercial
products.

One purpose of this thesis is to add to such knowledge and, in particular,
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to pay attention to the processes that occur when drug transport is assisted by
an applied electric potential i.e. when the drug transport is iontophoretically
assisted.

The model will consist of a vehicle containing the drug and the skin onto
which the drug is applied. The PDE describes movement of the drug from the
vehicle into the skin. If we are interested in the amount of drug entering the
skin, then the most useful information comes from time-lag and transient kinetic
studies on which the experimental research in the literature has been focussed.

This will be discussed in detail in chapter 5.

1.3 Chemical Sensors

The term chemical sensor defines the general class of self-contained, reversible
devices that are used to quantify specific analytes within a complex sample mi-
lieu. In the simplest configuration, a chemical recognition element is used in
conjunction with some form of transducer system. When the immobilized recog-
nition element (e.g. a biomolecule) interacts with the target analyte, a change
is induced in the recognition element that is measured by the transducer (Bright
(1999)).

Chemical sensors are being used in many applications ranging from manu-
facturing, industrial and automotive processing, and combustion control, to en-
vironmental and personal space monitoring. They are based on the principle
of converting a chemical reaction into a measurable physical property -usually
an electrical signal. They are particularly advantageous because of their low
cost and are therefore seen as alternatives to large analytical tools such as op-
tical spectrometers (Post (1999)). The integration of electrochemically active
thin films with conventional integrated circuits creates integrated circuit chem-
ical microsensors which have advantages of the minimization and robustness of

solid-state devices. The addition of real-time monitoring to these attributes,
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make chemical sensors particularly attractive for bio-medical applications.

In chapter 6 of this thesis we will look at the process of diffusion, migration
and reaction in polymer thin films. We will see how the concentration of a
substrate changes across the width of the film and develop expressions for the
experimentally measurable quantity - the current response - as a function of

concentration.

1.4 Theoretical Analysis of Diffusion

In this final section we take a look at the theory of diffusion. We start with a
very general description of matter transport in condensed media. We will see
how the flux analysis leads us to a partial differential equation (PDE) and we
will then discuss the best method of solving this PDE. Finally we will look at the
analogies between this diffusion equation and that relating to heat conduction
and then conclude with a brief discussion on the use and application of diffusion
in other branches of physics and chemistry. We begin therefore with an ab initio

derivation of the diffusion equation.

1.4.1 Matter transport in Condensed media

Consider the motion of particles contained within a specified volume 2 as shown
in figure 1-1.

The flux of the particles - rate of transport - is described by the following
equation

J = <l (1:2)

where ¢ is the concentration of the species, D is its diffusion coefficient, R is
the universal gas constant (= 8.314 J mol~' K~'), T is temperature and /i is the
electrochemical potential of the diffusant. This is known as the Nernst-Planck

equation first described by Planck (1890).
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Figure 1-1: Schematic representation of particle motion

In the presence of both a chemical potential and an electrostatic potential, /i

is the sum of the two potentials as follows
j=p+ 2Fy (1.3)

In this case p denotes the chemical potential and the electrostatic potential is
given by the product of the valency z the Faraday constant F' and the galvanic
potential ).

Therefore equation (1.2) becomes

cD

~ﬁ(Vu+ 2FV) (1.4)

For ideal-dilute solutions, ;» may be related to the activity of diffusant, a, by

invoking Henry’s Law (Atkins (1994)) as follows:

p=u' +Rrha (1.5)

where ;¥ is the chemical potential of the pure substance.

The activity is related to the concentration ¢ by a = y¢ where 0 < v < 1 and
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therefore a — casy — 1. We will therefore make the approximation that activity
can be replaced by concentration. It should be noted that, in fact, Henry’s law is
not valid for charged species since there will always be solute solvent interactions.
These calculations, therefore, while strictly no valid for the conditions described,
are useful to get a handle on the process.

The expression for the flux therefore becomes

i ;D 2 (1.6)

J = =DV ine ~

If we assume that the electric field is constant within the volume, then —V4)
can be set equal to a constant (Ej) and the noting that ¢V Ine¢ = Ve, equation

(1.6) is simplified to

Ey (1.7)

Applying continuity requirements, we see that the rate of change of concen-

tration is equal to the gradient of the flux.

dc -
byl _V!] 1.8
5 (1.8)
The negative sign is accountable by the fact that we are looking at the trans-
port of particles out of rather than into a region of interest 2. In terms of
measurable quantities therefore, the rate of change of concentration is
dc zFcD

a = V[DVc e RT

Eo) (1.9)

If, in addition to migration, the particles also undergo chemical reaction within
the volume €2, then an extra term —k ¢ must be added to equation (1.9) where
k is the reaction rate constant. For simple first order reactions, £ is a constant
and this gives us a linear differential equation. For higher order reactions, k

can be a polynomial function of ¢, thereby leading to a more difficult non-linear
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differential equation. This enables us to describe mathematically any diffusion
reaction system such as those described by Ludloph et al. (1979) and Lyons et al.
(1996, 1999).
In most cases, the diffusion coefficient D is constant across the substance so
for diffusion-migration and chemical reaction, the diffusion equation is
dc 2FDE,

E 70 Wieenlrt. — kc :
5 DV-<c 7T Ve —kc (1.10)

We note that this is a co-ordinate free representation and the particular form of
V will depend on whether the geometry is planar, cylindrical or spherical. For a

planar diffusion, we see that equation (1.10) becomes

i 2 o 8.

%:D[%+%+%}~—ZFR%EO %+g—;+% — ke (1.11)

This is a partial differential equation, the solution of which gives the concen-
tration of the particles at a particular time at any point in space.

For the purposes of this thesis, we will examine diffusion-migration and re-

action in one dimension only. This situation will pertain for material transport

through membranes and thin films. It can be seen that even at this simple level

the equations and solutions are very complex. For this case equation (1.11) re-

duces to a more manageable

de DOQC _ 2FDE;, 0c
8t Oxt BRI d¢

— ke (1.12)

This partial differential equation can be solved to obtain an expression for the
concentration profile of the diffusant as a function of time. This expression may
then be manipulated to obtain a closed form expression for the total quantity of
material entering or exiting the membrane at any given time, and therefore the
lag time and the permeability can be determined. Typically there will be a lag

time before steady state conditions are reached. The permeability is a measure
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of the steady state rate of material transport through the membrane. Both of
these quantities in addition to the total amount entering or exiting may, of course
be determined by experiment. The solution of such a PDE is the main topic of
the next chapter. We will continue here by drawing an analogy between heat

conduction and diffusion.

1.4.2 Heat conduction/Diffusion Analogy

The first law of thermodynamics states than energy is conserved. Heat transport
in solids is described essentially by the following general equation (Incropera and
DeWill (1996)) which is derived from this law:

ar. 18 g’

i i L 2 S P B0
= pcv T eV e (1.13)

where T' is the temperature, ¢ is the time, K is the thermal conductivity, p is
the density, ¢ is the heat capacity of the solid and z is the distance from the
heat source. The velocity of mass transfer is v,, and the heat generation rate
per unit volume is denoted by ¢”. Equation (1.13) describes heat transport via
conduction and convection. If however, there is no convection, equation (1.13)
reduces to

RG]

i EV‘ZT (1.14)

Reducing this to one-dimension it becomes

or: "Rt
—=—— (1.15)
gl gedy”

In considering passive diffusion of matter (i.e. without electrical assistance or

chemical reactions —the diffusion equation is

e D82c
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It is clear that the temperature in equation (1.15) corresponds to concentration
in equation (1.16) while the diffusion constant D is analogous to /’)—‘( By assigning
a constant value of 1 to both p and ¢, D can then equated with K. It is therefore
possible to simulate passive electrical diffusion using a package designed for heat
conduction where the diffusion constant is input as the thermal conductivity of
the material.

The case of electrically assisted diffusion is more complicated. The diffusion

equation associated with this is

dc _ . 0Pc 2FDE;be
% 0. AT 0z

(110

The terms Z, F, D, Ey, R and T have already been defined. For simplicity,

the term ZE0Mis denoted by a constant 3. Equation (1.17) then becomes

Oc 0%c Oc

The general heat transfer equation, equation (1.13), reduces to one dimension

as:

2 "
%—f:;—i%gfrvz%—(;—c (1.19)

Comparing with equation (1.18) it is clear that J is analogous to v, and the
term % is zero. Since we have already defined p and ¢ as having a value 1, that
means that ¢" in this case is zero. In the mathematics at least, v,, the velocity of
mass transfer should equate with 3. Therefore in simulating electrically assisted
diffusion using a thermal analysis package, the simulation is carried out as for

the case of simple diffusion. An additional parameter, v,, was included in this

simulation to account for the electrical parameter £.
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1.4.3 Measuring Diffusion Coefficients

The choice of method for measuring the diffusion coefficient of a substance de-
pends on the physical state of the diffusant and the medium through which it is
diffusing. Diffusion of matter in solid media can be measured by monitoring the
change in conductivity of the substance migrates through the solid. The diffusion
coefficient of gases can be measured by the flow method (Harteck and Schmidt
(1933)) or by optical methods (Klotz and Miller (1947)). The diffusion coeffi-
cients of liquids may be measured using the diaphragm cell method (Northrup
and Anson (1929)), the Lamm’s scale method (Lamm (1939)) or optical meth-
ods among others. Dennis (1968) has shown how diffusion coefficients can be

determined by changes in concentration of a solution placed above a gel.

1.5 Scope of diffusion studies

Other work in the general area of diffusion includes that by Mysels and co-workers
(Mysels (1982), Frisch and Mysels (1983)) who model adsorption from solution.
In addition to scientific interest, this field is of practical importance in that it
plays a role in detergency, flotation and drug administration. The mechanism
of adsorption from solution is not fully understood. Early models were based
on adsorption on a plane in a quiescent solution. From these models, numerical
solutions were obtained describing the concentration changes over time. For ideal
adsorption isotherms, it was possible to obtain exact solutions for the change in
concentration. Later, Mysels and Frisch (1984) refined the model by including
a film of liquid at the surface of the adsorbent and solving the system for ideal
adsorption isotherm.

Some researchers have looked at passive diffusion in non-homogeneous media,
(non-ideal membrane diffusion) where there is a gradation in diffusion properties

along the axis of diffusion (Grztwna and Pertropoulos (1983a,b)). In accordance
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with diffusion in heterogeneous media the most useful studies of these systems are
done using time lag (Pertropoulos and Roussis (1967)) and transient state kinetic
analysis (Tsimillis and Pertropoulos (1967)). Higuchi and Higuchi (1960) have
done some theoretical analysis on diffusion through heterogeneous barriers in an
attempt to more accurately model drug delivery into the skin. They consider
however a simple case of a two phase mixture, each phase having a characteris-
tic diffusion coefficient rather than the more complicated case mentioned above
where the diffusion coefficient is continuously varying through the medium.

A non-linear diffusion equation must be used to describe certain phenom-
ena such as heat conduction in solid Hy (Rosen (1979)). The solutions to such
equations are as expected, a good deal more complex than the linear case, as
demonstrated by several reports in the literature (Berryman (1980); Berryman

and Holland (1982); Stephenson (1995)).

1.6 Overview

The purpose of this thesis is to investigate the usefulness of mathematical mod-
elling as an aid to understanding the physico chemical processes of iontophoresis
in transdermal drug delivery and electrochemical sensor technology. In this chap-
ter we have set the scene by showing how mathematical modelling has developed
and how its applications cover a broad range of disciplines. In chapter two we
will outline the theory of the numerical methods used in solving the systems. We
discuss both the finite difference and the finite element method, and show how
these methods are implemented in practice.

Chapter three traces initial work done at the beginning of the project, dis-
cussing the attempts to model electro-transdermal drug delivery using a finite
element package designed for modelling heat conduction. We point out the limi-
tations of this system and indicate how the work could be expanded in the future.

The aim was to examine drug migration from an external patch and into the in-
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dividual layers of the skin. We therefore present a detailed discussion on the
physical nature of the skin and its electrical properties, before illustrating and
analysing the results. It soon became apparent that ANSYS was not as versa-
tile or as well equipped as was necessary to solve our diffusion problems and a
new direction was therefore taken. The problems of diffusion solved analytically
where possible, and, where necessary by the finite difference method and the
finite difference package DEQSOL.

Chapters four five and six contain the bulk of the simulation work. Each
chapter begins with a discussion of the system of interest and a review the work
to date. We then show how the relevant partial differential equations (PDEs) and
boundary conditions are applied, and solve the system either analytically or, if
this is not possible, numerically. The results are presented as three dimensional
plots of concentration over distance and time as a function of the additional
parameters such as migration and reaction which were included in the original
PDE.

In chapter seven the general conclusions that can be drawn from the study
and their implications for further study and understanding of the system are

discussed.



Chapter 2

Theory

2.1 Introduction

This chapter explores two different methods of solving the diffusion equation
numerically. We discuss the use of Finite Difference and Finite Element Methods.
Specific reference is made to the accuracy of the numerical techniques in terms
of justifying the results obtained. We begin with a review on the classification of

partial differential equations.

2.1.1 Classification of PDE’s

The diffusion equation is a second order Partial Differential Equation (PDE). Par-

tial differential Equations (PDE’s) are divided into one of three classes according

to their characteristic. The characteristics are defined by the roots of the charac-

teristic equation. Hyperbolic equations have two real roots, parabolic equations

have one real root and elliptical equations have complex Il‘oots or characteristics.
The generic second order PDE is as follows:

0%c 0%c d%*c dc Oc

Ox? i Baz;ay + C(9y2 =f@y0 or’ E)_y)

16
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and its characteristic equation is

oy \? dy .
A(%> +BL+C =0 (2.2)

In the case of the diffusion equation, A has a value of 1, B has a value of zero
and C has a value of zero or 1, depending on whether the problem is in one or
two dimensions.

There is one characteristic for the diffusion equation : %Zf = w where w
is a constant. Therefore, based on its characteristics, the diffusion equation is
parabolic.

PDE’s are also classified into initial value problems and boundary value prob-
lems. Initial value problems describe how the solution ¢(x,t) propagates itself
forward in time. In contrast boundary value problems aim to find a static func-

tion ¢(x,y) which has some desired behaviour on the boundary. The diffusion

problem is therefore an initial value problem.

2.1.2 General considerations

It is always preferable to find an analytical solution rather than a numerical so-
lution to a PDE. Analytical solutions are exact whereas numerical solutions, no
matter how advanced or accurate, will always remain as approximations. In many
cases it is not possible to obtain an analytical solution to a particular problem
and in such a case numerical methods can be powerful tools. Several general
mathematics textbooks (e.g.Kreyzig (1993)) describe in detail the methods used
for obtaining analytical solutions of PDE’s. These include the methods of Sepa-
ration of Variables, Laplace Transforms and Fourier transforms - all of which are
used in this work and outlined in detail in Appendix B.

Depending on the class of the PDE, different numerical methods will suit
more than others. For example, finite difference methods are used for initial

value problems whereas the finite element method is more suitable for boundary
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value problems. A variety of textbooks discuss the numerical methods of solving
ordinary and partial differential equations (Prenter (1975); Sewell (1988)). In
the following sections we discuss the Finite Difference Method and details of the
finite difference package DEQSOL which was used in calculations. Then there is
a description of the finite element method (FEM). Finally, as a benchmark exper-
iment we look at a comparison of the numerical solution of the simple diffusion
equation obtained using the finite difference method with the analytical solution
(obtained using Laplace transforms) to illustrate the accuracy of this numerical

method.

2.2 The Finite Difference Method

All numerical methods involve simplifying and discretising the problem. Of these,
the Finite Difference Method is the simplest and the easiest to program. Because
of its simplicity, it is the most widely used numerical method by electrochemists
(Britz (1981); Pons (1984)) having been introduced by Feldberg (1969) in the
1960’s. In the finite difference method, Taylor’s theorem is used to rewrite the
partial differential equations that govern the behaviour of the system in terms
of difference equations. The initial and boundary conditions pertaining to the
PDE are applied to the difference equations which are then solved. The solutions
to these difference equations are analytical and provided that they are close to
the differential equation, their solution will represent a good approximation to
the solution of the differential equation. We will now show how typical finite

difference equations are developed.

2.3 Forward, Backward and Central Difference

Consider an arbitrary function f(z) shown in figure 2-1. If f(z) and its derivatives

fu, for ete. are finite continuous and single valued, then we may do a Taylor
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Tz — Az T T+ Az

Figure 2-1: Graph of an arbitrary function f(x)
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expansion and express f(z + Az) as a sum of its derivatives as follows:

Az?

flz+ Az) = f(z) + Azf'(z) + ot

Kt
")+ ... + T—Lr'f"(:l;) + ... (2.3)

In this way we have expressed the derivatives of x in terms of the the value of
the function f(z) at x and at a step Az ahead of x.

The Taylor expansion for the backward step is

,.2 N
Z0) 4 ot (P )+ (20)

flx — Az) = f(z) — Az f'(z) + T
! n

If we take the first two terms in either of the expansions and ignore the
rest some algebraic manipulation leads to an approximation for f,. The first
equation yields a forward difference approximation since we have used the value
of the function at a point in front of f, in order to find the derivative at . The
second equation leads to the backward difference approximation.

Both of these approximations are only first order. To get a second order
approximation for f, we can add the equations and get the central difference.
Expressions for the second and subsequent derivatives are obtained in a similar
manner. They are summarised in table 2.1. We will now illustrate the use of the

finite difference method in solving the diffusion equation.

2.4 The diffusion equation as a difference equa-
tion
The simple Fick diffusion equation (Atkins (1994)) is as follows:

delzt)  _Oela i)
ot o 7 o 4
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Approximation Equation Accuracy

Forward difference (First derivative) A ﬂ%z_u@ 1% order

Backward difference Foims ﬂﬂ%g——ml 1%* order

u f(z+Az)— f(z—Ax)

e 2nd order

Central difference

f a flz+Az)+2f(z)— f(z—Ax)
Jaz 2

e 2nd order

Central difference (Second derivative)

Table 2.1: Summary of various finite difference approximations

Since the concentration ¢ is a function of two variables (i.e. space and time),
a two dimensional grid is made up of distance and time coordinates. If the time
interval is At, and the distance interval Az, then the spacings between adjacent
points on the grid are At and Az. The distance and time coordinates are then
given by
z; = 29 + 10F and tn = to + nAt

Each point on the grid may then be defined by
cj = c(jAr,nAt) (2.6)

To perform the discretisation, we use a forward difference in time and a cen-
tral difference in space, as shown in table 2.1 The discrete form of the diffusion

equation is
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2.5 Analysis of Numerical Schemes

The accuracy of a numerical scheme depends on three concepts. These are con-
sistency, stability and convergence. By consistency we mean that in the limit of
small step size, the difference equation should tend to the differential equation.
Stability requires that difference between the computed solution and the exac-
t solution to the difference equation does not diverge or grow without bound.
Convergence requires that in the limit of small step size, the computed solution
should tend to the analytical solution of the differential equation.

In the case of the diffusion equation, Lax’s Fundamental Equivalence theorem
allows stability to be a sufficient condition for convergence. By taking limits
as the step size approaches zero, it is easy to show that the diffusion equation
is consistent. The discussion here will therefore focus on the stability of this

numerical scheme.

2.5.1 Stability Analysis

In analysing the stability of the scheme, one first of all finds the round-off er-
ror - the difference between the exact solution of the discrete equation and the
computed solution. If the error satisfies the discrete equation, the scheme will be
stable on the condition that the error does not grow without bound. The diffusion
equation is a linear equation with constant coefficients and is therefore suitable
for von Neumann stability analysis. This technique involves decomposing the
error into a Fourier series. One harmonic of the Fourier series is then substituted
into the discrete equation. If we require that any harmonic is not amplified by
the scheme, the requirements for stability are satisfied.

To illustrate how the error is dependent on the time-step we look at the

discrete form of the time derivative

60 (:;L+1 S C;L
e - e LU t 2.
5 e + O(At) (2.8)
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The difference between the derivative and the discrete form is an error term to
the order of At. Therefore, minimizing the time-step will minimize the error.
The discretised form of the diffusion equation equation (2.7) is forward dif-
ference in time (FT) and central difference in space (CS). The FTCS scheme
is first order in time, second order in space and is a fully explicit scheme since
all information about c;’“ comes from points preceding it. However, von Neu-
mann stability analysis shows that this is unstable for time steps larger than
approximately A,—fz These time steps are both prohibitively small and too com-

putationally expensive so a new scheme - Crank-Nicholson (Press et al. (1992))-

is used.

2.5.2 Crank-Nicholson Scheme

In the Crank-Nicholson scheme, the discretised spatial equations are moved one
time step forward relative to the discretised time equations. The resulting dis-

cretised equation is as follows:

1 : n+1 n+1 n+1
gt~ Doy >0 bk (2.9)
T Az '

The advantage of this is that we now have no restrictions on the size of the
time step. This is because it can be shown (Press et al. (1992)) that absolute
value of the amplification factor (the condition for stability) is always less than
1, consequently the scheme is unconditionally stable. However, there is a trade-
off. The Crank-Nicholson scheme is fully implicit which means that the details
of small-scale evolution from the initial conditions are inaccurate for large time
steps.

For a two-dimensional analysis, a more generalised form of Crank Nicholson
is necessary. The alternating direct implicit method (ADI) involves splitting the
time step in two thereby creating two sub-steps. In each sub-step, a different

dimension is treated implicitly.



CHAPTER 2. THEORY 24

2.5.3 DEQSOL

DEQSOL is an acronym for Differential EQuation SOlver Language. It is a
software package developed by HITACHI for the purpose of solving Partial dif-
ferential equations by means of either the Finite Difference or the Finite Element
method. On presentation of an input file, the DEQSOL translator generates a
FORTRAN program which is then compiled and run in the usual way. The input

file must have the following structure:

Statement of:
the beginning of the program

the method used (FDM or FEM)

Statement of:
the spatial domain
the spatial grid size

the time

the time-step

Statement of:
the region used for the calculation
the variables to be used
the values of constants
the boundary conditions

the initial conditions

Statement of:
the beginning of the solver procedure
the solver procedure

the end of the solver procedure

Statement of:
writing or printing the output data

the end of the program
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The DEQSOL system therefore offers problem definition, solver description, re-
sult manifestation, program connection and file input and output.

The problem definition function allows the user to define the problem re-
gion, the variable to which a solution is to be obtained, and the conditions for
problem resolution based on user supplied data (e.g.space, time co-ordinates,
physical constants, variables, partial differential equations boundary and initial
conditions). The solver description function enables a solution to be obtained
by dividing the computational region automatically and solving the discretised
equation according to the predefined procedure (e.g. Gaussian elimination). The
result manifestation allows the data to be printed or passed to a graphics pro-
gram. The program connection facility allows DEQSOL programs to be changed
to subroutines and so the DEQSOL program may be connected to a user created

main program. A sample DEQSOL file is included in Appendix A.1.

2.5.4 Applications of Numerical Methods in Electrochem-
istry

In addition to being useful for solving PDE’s related to drug diffusion, the finite
difference method has many other interesting applications especially in the gen-
eral area of electrochemistry. Lasia (1985) has looked at applications of FDM to
cyclic voltammetry. In an earlier publication (Lasia (1983)), he used the Crank-
Nicholson method for examining dimerisation.

Orthogonal collocation has been used for characterising diffusion at microelec-
trodes (Cassidy et al. (1983)) and in other electroanalytical problems (Speiser and
Pons (1983, 1982a,b); Cassidy et al. (1985)). This technique involves approximat-
ing the solution of a PDE to the weighted sum of polynomials and then solving
the system for the coefficients of these polynomials.

Rudolph (1990) used the ADI for simulation of electrochemical processes.

Feldberg (1981) refined an exponentially expanding grid method, previously de-



CHAPTER 2. THEORY 26

scribed by Joslin and Pletcher (1974) for the digital simulation of electrochemical

problems.

2.6 The Finite Element Method

2.6.1 Origin of the FEM

The finite element method was first conceptualised in the 1960’s by engineers to
solve problems of heat flow and stress analysis (Zienkiewicz and Cheung (1965)).
From this mathematicians attempted to put a rigorous mathematical basis on it
Clough (1960). In essence, finite element analysis developed as an adaption of the
calculus of variations to suit data evaluation by computer. Good introductory
books on this method include Becker (1981); Davies (1980); Lewis and Ward
(1991) and Heubner and Thornton (1982).

2.6.2 Difference between FDM and FEM

Whereas the finite difference method gives a point-wise approximation, the need
arose to introduce a tool for dealing with irregular geometries or unusual specifi-
cation of boundary conditions. In the finite difference method the solution region
is modelled as a set of points, but the finite element method it is a set of subre-
gions or elements. The finite difference method gives a point-wise approximation

whereas the finite element method gives a piecewise approximation.

2.6.3 Theory of FEM

In a continuum problem, the field variable (concentration, temperature etc.) will
have an infinite number of values and therefore there are an infinite number of
unknowns. Using the finite element method, the solution region is divided into

a finite number of elements and therefore a finite number of unknowns. The
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field variable is then expressed in terms of assumed approximate functions called
interpolation functions. These functions are defined in terms of the field variables
at specified points called nodes. Nodes usually lie on element boundaries although
it is possible also to have internal nodes .

The nodal values of the field variables define the behaviour of the field com-
pletely within the element. In a finite element representation of the problem,
the nodal variables become the new unknowns. Once these unknowns are found,
the interpolation functions define the field variable throughout the assemblage of
elements.

Since the finite element method was developed by mathematicians, scien-
tists and engineers, various different approaches are taken to calculations. These
include the direct approach, the variational approach, the weighted residuals
approach and the energy balance approach. The ANSYS program uses the vari-
ational approach. Regardless of which approach is chosen, the same basic steps

are involved in implementing the FEM. They are described below as follows:

2.6.4 Steps involved in implementing the FEM

The continuum is first discretised into sub-domains called elements. Nodes are
assigned to each element and interpolation functions are chosen to represent the
element behaviour. The interpolation function is usually a polynomial since these
are easy to differentiate and integrate. The degree of the polynomial depends on
the number assigned to each element and the continuity requirements. Next,
matrices representing element properties are defined. The individual element
matrices must be assembled together to produce the entire region which is then
solved. Finally additional computation such as error estimation are made to
complete the process.

Assume we have a domain 2 as in figure 2-2(a). The domain is divided into

triangular elements as in figure 2-2(b). The vertices of each triangle are the nodes
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(a)

(b)

Figure 2-2: Domain €2 unmeshed (a); and meshed(b)

of the particular element p, labelled p;, p; and py respectively. The field variable

Figure 2-3: Arbitrary element P with nodes i,j,k

¢ at each of these nodes is known. The field variable of the entire element is then

a function of the field variables at each of the nodes

d’p &= Npi¢pi = ij¢pj ol Npk¢pk (210)

The profile of the field variable for the entire domain is then given by
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ba=3 b (2.11)

p=1
2.6.5 Solution of the diffusion equation using FEM

An example of the finite element method is described in Appendix C using the
variational method since this is the approach adopted by both the ANSYS and
DEQSOL programmes. However, such in-depth knowledge is not required and,
in fact, the detail presented above is more than sufficient to use and understand

the software.

2.7 Applications of FEM

In early work, Wilson and Nickell (1966) looked at application of FEM to heat
conduction. An area of current topical interest in FEM is that of modelling
orthopaedic implants (Prendergast (1997a)). Pan et al. (1995) have looked at
using FEM for two dimensional diffusion - reaction equations. General topics on

the use of FEM in diffusion studies are discussed by Ikeda (1983) and Ito (1992).
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Finite Element Modelling

3.1 Introduction

This chapter describes the preliminary work which was carried out using the finite
element package ANSYS. We will illustrate the use of ANSYS for two aspects of
transdermal drug diffusion. The first is the microscopic view of diffusion through
the layers of the skin. The second model is a macroscopic model and we used
this to examine diffusion at a more general level - from the applied patch into the
skin. This technique of complementary macroscopic and microscopic modelling
is commonly used for engineering problems which are solved using this software
(Prendergast (1997b)). We will begin by introducing ANSYS and discussing its
features. We then look at the system to be modelled, in this case the skin barrier,
and discuss the complexities involved in modelling it. Finally we present some

results and discuss the current limitations of the package.

3.2 ANSYS

ANSYS was developed by Swanson Analysis Systems Inc. (www.ansys.com -

Canonsburg, PA, U.S.A.) and is used to solve numerically (using the finite ele-

30
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ment method) problems in structural, thermal, electrical and fluid flow analyses.
The capability of diffusion analysis is not explicitly specified within the ANSYS
program but, as we have seen in chapter 1, the equations of heat conduction are
exactly analogous to those of passive diffusion. Therefore this analogy can be
exploited for our purposes to solve diffusion problems.

ANSYS is organised into three main stages: preprocessor, solution and post-
processor. In the preprocessing stage data such as the geometry of materials and
the type of element type (solid, shell etc.) are entered. The solution stage is where
the analysis type is defined together with the loads and where the finite element
solution is initiated. Finally the results obtained may be viewed in graphical
and tabular form via the post-processor. Input is via menu commands and an

example of the choice used is given in Appendix A.2.

3.3 The Skin

The skin is the largest organ in the human body, covering an average area of ap-
proximately 2m? and receiving one third of all the blood circulating in the body.
The thickness of the skin varies depending on its location e.g. from 1.5 mm at
the eyelids to 4.0 mm at the soles of the feet. A diagrammatic representation
of the skin is shown in figure 3-1. Typically, the skin is described in terms of
three regions. The uppermost region, that which is in contact with the external
environment is called the epidermis. Beneath this lies the dermis. The hypoder-
mis (technically not part of the skin) is situated directly below the skin and this

contains the adipose tissue.

3.3.1 Composition and structure of the skin

The epidermis is a stratified structure consisting of five distinct layers as illus-

trated in figure 3-2. This highly resistive structure is the main barrier to sub-
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Figure 3-1: Cross section of human skin (taken from Solomon (1996))

stances entering and leaving the body via the skin. The outermost layer of the
epidermis is called the stratum cornewm and it plays a pivotal role in this bar-
rier function (Walters (1996); Flynn (1992)). Consisting primarily of blocks of
cytoplasmic protein matrices (called keratin) embedded in an extracellular lipid
(Walters (1990)), this keratin gives the skin its protective function. The stra-
tum corneum is on average 15-20 pm thick and accounts for three quarters of
the overall depth of the epidermis. The structure of these layers has been well
characterised by Honda et al. (1979).

Below this non-viable stratum corneum lies the viable epidermis. The layers
in this section are stratum lucidum, stratum granulosum, stratum spinosurﬁ and
stratum basale. These are known as the viable epidermis because having overcome
the initial barrier of the stratum corneum substances are transported much more

rapidly through the rest of the epidermis. The permeability of substances is much



CHAPTER 3. FINITE ELEMENT MODELLING 33

Epidermis <

Stratum
BpAROASHIn

Figure 3-2: The epidermal layers of skin from the sole of the human foot (taken
from Barrett (1986))

higher in the lower layers of the epidermis than in the stratum corneum. The lipids
within these layers are neutral (as opposed to the polar lipids of the stratum
corneumn) and this leads to facile transport of lipophilic substances (Rothman
(1954)). The epidermis is approximately 20 pm thick in total.

The dermis lies immediately below the epidermis. It is a thick fibrous tissue
which forms the main bulk of the skin and is 20-30 times thicker than the epi-
dermis. Below this again lies the subdermal layer where adipose cells are found.
Both of these layers present a limited resistance to penetrating molecules (Brady

(1991)).

3.3.2 Electrical Properties of Human Skin.

Since much of this work is concerned with electrically assisted drug delivery, it is

pertinent to include a discussion on the electrical properties of the skin.

[ Stratum
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Complex impedance spectroscopy is generally used to determine the electri-
cal properties of the skin (DeNuzzio and Berner (1990); Nolan et al. (1993)) and
this technique has been used to show that the resistance of the stratum corneum
decreases upon hydration (Clar et al. (1975)). Since the skin is a heterogeneous
organ, its electrical properties vary throughout. The stratum corneum for ex-
ample is an insulator. Yamamoto and Yamamoto (1976) have shown that by
stripping successive layers of the stratum corneum , the resistivity of the skin
decreases continuously to a constant value which agrees closely with the known
value for the resistivity of deep tissues. They have represented the resistivity as

an exponential equation:

alr) = goe " (8:1)

where p(z) is the resistivity at an arbitrary point x, py is the resistivity of the
outermost surface of the keratin layers, « is the attenuation coefficient and x is

the distance between the deep tissues and the surface.

R,

3

Figure 3-3: Equivalent circuit representing the resistance of the skin

The electrical characteristics of the skin may be represented by an equivalent
electrical circuit as described by Traeger (1966). The circuit consists of a resistor
R, in series with a resistor R, and a polarisation impedance P in parallel. This
is show schematically in figure 3-3

The parallel resistivity R is in the range 100 — 5000k{2cm and is a measure
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Figure 3-4: Equivalent circuit representing the resistance of the layers of the skin

of the steady state conduction through the epidermis and its appendages. Its
reciprocal is analogous to the skin permeability - a measure of diffusion through
the stratum corneum.

The small series resistivity, I?;, is the resistivity of the deeper tissue and has
a value in the range 0.1-1 k Qcm.

The polarisation impedance represents the fact that the current can oscillate
between restraining membranes which hinder its steady passage. It is due to the
fact that the cells are surrounded by a phospholipid membrane which restricts
the current flow.

At zero frequency, the polarisation impedance tends to infinity and there is
therefore d.c. through R, and R,. At high frequency, the polarisation impedance
falls to zero and the system is a purely resistive R;. At intermediate frequen-
cies the polarisation frequency is less than Ry but greater than R;, so that R,
dominates.

Traeger (1966) has further represented the individual layers of the stratum
corneum by the circuit shown in figure 3-4. The cell membranes are represented
by the two capacitors, the intra-cellular resistance by r and the extracellular
resistance by R.

It is useful to have these equivalent circuits especially when drawing com-
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parisons with drug diffusion and heat conduction as will be evident later in this

chapter.

3.3.3 Physical models of the skin

Human skin in situ cannot be used for testing the efficacy of a transdermal sys-
tem. Ideally, skin taken from cadavers is used. However there are many problems
associated with obtaining suitable samples since there are many variables includ-
ing fat content and the anatomical site so it is impossible to repeatedly obtain
equivalent samples. Cost is a further consideration. Therefore many scientists use
skin taken from animals. Common among these are mice (Durrheim et al. (1980))
rabbits and rats (Rougier et al. (1987)), although it has been reported that snake-
skin (Higuchi and Konishi (1987); Itoh et al. (1990)) or pig skin (Meyer et al.
(1978)) have been used as alternatives. In terms of structure and diffusion rate,
these animal models are good. The main difference between skin from different
species is the thickness and density of the hair follicles.

In many cases, artificial membranes are used. In terms of mathematical mod-
elling of the skin, Danielson (1973) has successfully reported the modelling the
skin as an elastic membrane.

We have seen that the skin is a complex membrane and it is therefore intuitive
to assume that percutaneous absorption should be an equally complex process.
We will see in the next section how complex it actually is, but that by breaking
it down into a sequence of small steps, it is possible to get a good understanding

of the complete process.

3.4 Percutaneous Absorption

Percutaneous absorption is defined as the mass movement of substances from

the surface of the skin to general circulation (Idson (1975)). This involves pene-



CHAPTER 3. FINITE ELEMENT MODELLING 37

tration of the stratum corneum, the viable epidermis and the dermis and finally

the removal of the penetrant and its metabolites from the dermis and into the

circulatory system (Vickers and Wepierre (1980)).

(a)

(b)

\ i
T i

(a) intercellular transepidermal
(b) intracellular transepidermal
(c) through hair follicle

(d) via sweat duct

Figure 3-5: Schematic diagram showing possible routes of penetration of a sub-
stance into the skin, where (a) and (b) are transepidermal, and (c) and (d) are
transappendageal.

There are two main routes of transport of a substance into the skin. These

are transepidermal and transappendageal and are outlined in figure 3-5.

The transepidermal route involves moving through the stratum corneum in

either of two ways. Drugs may migrate either though the material between the

cells - inter-cellular- or may take the direct route through the cells (transcellular).

These pathways are marked (a) and (b) in figure 3-5 respectively. Blank (1967)

has shown that polar molecules diffuse principally through a polar pathway con-

sisting of "bound water” within the hydrated stratum corneum while non-polar
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molecules diffuse through the non-aqueous lipid matrix.

Bodde (1989) used transmission electron microscopy studies on HgyCly to
show that initially, the inter-cellular pathway is the favoured migration route but
that at long times the transcellular pathway will dominate.

The transappendageal route involves migration through the follicular regions,
or through the sweat ducts. It has been shown that charged substances diffuse
rapidly through the follicular canal and that this shunt route may be important.
In particular, this pathway is favoured for large polar molecules

Depending on the nature of the absorbent, and the possibility of electrical
enhancement, one particular path may dominate. There are conflicting views
on this but it is agreed that no one path is singularly responsible for material
transport.

For passive diffusion, Scheuplein (1967) claims that due to the higher diffusion
coefficients of the follicles and sweat ducts compared with the stratum corneum,
drugs are absorbed preferentially through the follicular regions. He concludes that
initially, the main means of absorption is via the follicles . However, the ratio of
the total fractional area of the follicular regions to the rest of the skin is a very
small (3 x 1075 : 1) so as the time increases, the transepidermal path dominates.
In general it only takes a short time (circa 300 seconds) Scheuplein (1967) for the
transepidermal route to dominate. This pathway is therefore known as the path
of bulk diffusion while the other is called the shunt route.

Wallace and Barnett (1978) used experimental data on permeation of methorex-
ate to generate a computer model and elucidate the pertinent parameters such
as diffusion coefficient and lag time. From this they concluded that there is more
than one pathway for percutaneous absorption of the ester. An interesting re-
view of this area which includes detailed discussions on the role of the various
physico-chemical parameters is presented by Scheuplein and Blank (1971).

Of the four steps involved in percutaneous absorption, it has been shown

that penetration of the stratum corneum is rate limiting (Parry et al. (1990)).
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Many workers have been active in attempting to quantify this. Albery and Had-
graft (1979a) constructed a rotating diffusion cell in order to determine the rate
constant for the transfer reaction across the interfaces on either side of the epider-
mal barrier. In a later paper Albery and Hadgraft (1979b) presented a theoretical
description of percutaneous absorption including diffusion and depletion in the
external phase, diffusion through the epidermis and the kinetics of transfer re-
actions at the interfaces. Following this, Albery and Hadgraft (1979c) did some
in vivo experiments in order to determine the pathways of penetration for some
esters.

They found that the route of penetration is through interstitial channels and
not through the keratinized cells. Later Albery et al. (1983) looked at the per-
cutaneous absorption of three different esters and made a mathematical model
describing their findings.

Other mathematical models include that of Cooper (1976) who presented a
model for estimating in vivo skin permeability coefficients and Michaels et al.
(1975) also made a physical model of the the stratum corneum as a two-phase
protein-lipid heterogeneous membrane. Albery and Hadgraft (1979b) used Michaels’
model to explain that the low diffusion coefficients of substances through the lipid
phase were due to the homogeneity of the structure. Another physical model is
that of Rougire et al. (1983) who looked at percutaneous absorption from the
viewpoint of the stratum corneum as a reservoir. They did quantitative ex-
periments using an animal model and suggested verification of their results in
humans.

There are many methods used to examine the pathways of permeation and
permeation kinetics. These include application of dyes (Abramson and Gorin
(1940)), spectroscopy (Reinl et al. (1995)), confocal microscopy (Cullander and
Guy (1992)) and scanning electrochemical microscopy (Scott et al. (1992)).
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3.5 Microscopic model

We now show how, given the resistances of various components in the skin, we
have translated these into suitable parameters for ANSYS and obtained graphical
solutions for the changes in concentration over time.

The average diffusion constants of a particular drug molecule through different
parts of the skin are described by Scheuplein (1967). A less detailed version of

his results is shown in the following table:

Appendage Average Diffusion Constant | Typical diameter
Hair follicle 2 x 10~ "cm?sec™? 70 pm
Sweat duct 2 x 10 %cm?sec! 70 pm
Stratum corneum 1 x 10" “cmm?sec! 13 pm
Hydrated Epidermis 1 x 10~ %m2sec™! 110 pm

Figure 3-6: Graphical representation of the skin illustrating hair follicle (blue),
sweat gland (green), stratumm corneum (yellow) and epidermis (red)

Remembering the temperature/concentration analogy, ANSYS was set up to
perform a thermal analysis. A cross section of the skin of the forearm was drawn
schematically as in figure 3-6. (The method followed is contained in Appendix
A.2.) The total dimensions of the model are 600 pum by 165 pm. Included in the

representation are the following:



CHAPTER 3. FINITE ELEMENT MODELLING 41

Figure 3-7: Meshed model of the skin showing individual simulated elements.
This mesh was automated by ANSYS as the first step in finite element analysis.

e Hair Follicle

This is coloured blue and has a width of 70 um, corresponding to the

nominal diameter of a hair follicle as in the table above.

e Sweat gland

The sweat gland is represented by the green region in figure 3-6. Again, it

| has a nominal diameter of 70 pm.

e Epidermis
The epidermis is represented by the yellow, and the red region in figure 3-6.
The upper part of the epidermas, the stratum corneuwm has a depth of 15
pm and this is the yellow region. The rest of the epidermzis is represented

by the red region.

The different regions were distinguished only by their diffusion coefficients.
The regions were then meshed into smaller elements as shown in figure 3-7. As

is clear from the diagram, smaller elements were required for the smaller areas.

A normalised concentration of 1 was applied across the upper node of the
* siratum corneum as shown by the arrows in figure 3-8. The system was solved for
various times commencing with 100 seconds and the results are shown in figure
310 and figure 3-11. In all cases the key code for the concentrations shown in

fizure 3-9 applies.
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Figure 3-8: Meshed model of the skin where arrows show the nodes on which a
temperature of 100° C (corresponding to a normalized concentration of 1) was
applied
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Figure 3-9: Colour coding for concentration plots
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Figure 3-10: Diffusion pattern through shunts in the skin when a normalised
concentration (=1) is applied across the surface at t= 100, 200, 300 and 500

seconds.
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Figure 3-11: Diffusion pattern through shunts in the skin when a normalised
concentration (=1) is applied across the surface at t= 0.1, 1, 10, and 100 (x 10")
seconds.
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3.5.1 Discussion

After 100 seconds it can be seen in figure 3-10 that diffusion occurs fastest through
the sweat gland. This is followed closely by diffusion through the hair follicle while
there is virtually no transport through the unbroken stratum corneum.

The pattern continues in a similar manner at longer times, diffusion through
the sweat gland becoming more extensive as time increases through 200 seconds.
After 200 and more so after 300 seconds, the diffusion pattern has lost its sym-
metry since there is an overlap of the migratory region of the sweat gland and
the hair follicle. In practice however, these two are not so close together and each
would have its own distinct migratory pattern before they merge at a later time.
However, due to the scale of the simulation system it would have been difficult
to spread the shunts further apart, for, in order to reatin resolution, the number
of cells would have to be increased beyond the capacity of the code. Separate
diagrams of the individual follicles have shown that in the absence of one, the
second pattern would remain symmetrical. The broadening is due to the absence
of a sink at the bottom. At this point the model is no longer realistic.

As time continues, towards 0.1 x 10? seconds, we can see that while the drug
concentration is as high as 50 % in the epidermis, the stratum corneum still
contains some dark blue regions corresponding to there being virtually no drug
present. The trend continues with the drug having been successfully transported
into the bloodstream via the shunt routes at 1 x 10* seconds while it is not until

after 10 - 100 (x 10?) seconds that the stratum corneum also absorbs the drug.

3.5.2 Physical Interpretation and significance

The results obtained are in good agreement with intuition that the drug will
migrate through the path of least resistance. They support the fact that initial
absorption is transappendageal. What is shown in figure 3-10 and figure 3-11 is

merely the result of a calculation by the finite element method using the values
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for diffusion coefficient obtained in the literature and relating the initial concen-
tration to the concentration after various time periods. The ANSYS program at
present is not sufficiently sophisticated to deal with anything other than diffu-
sion. For example, we have seen earlier that there are many physiological factors
associated with drug migration into the skin. The ANSYS solution treats each
component as having a fixed resistance even though it has been shown that the
resistance of the skin decreases once the initial barrier has been broken. Another
useful feature would be to monitor the time development of the profiles. Again,
this facility is lacking in ANSYS. However, as this package becomes more widely
used in the field of biomechanics the future should show some improvements and
allow for greater versatility for work in this area which, as is evident at present,

is limited.

3.6 Membrane

The previous section considered only the diffusion process in which it was assumed
that the drug was applied directly onto the skin. We will now show how the work
is performed when a control membrane is placed between the drug reservoir and
the surface of the skin. The membrane is of the order of 1 mm thick (Bannon
(1989)) but in the next model, figure 3-12, we have included a membrane of 0.3
mm thickness because the relative size of the rest of the model allows only this.

By varying the permeability (the diffusion constant) of the membrane there-
fore, it is possible to control the rate of drug transport into the skin. For example,

1

a membrane of diffusion coefficient 1 x 10~°m?s~! is compared with a membrane

of diffusion coefficient 1 x 10~*m?s~!. The run time for both is set to 100 seconds.
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Figure 3-12: Representation of the skin system with the membrane of 0.3mm
thickness included (grey region)

3.6.1 Discussion

Figure 3-13 is a comparison of the ratio of initial to final concentration for diffu-
sion of the same drug through two membranes of different diffusion coefficients.
One can easily see how the membrane with the higher diffusion constant allows
faster penetration of the drug into the circulatory system. In reality, the mem-
brane acts as a method of control. Depending on the desired delivery rate a
membrane of suitable diffusion coefficient can be chosen. Again, due to the limi-
tations of the software, we are unable to compare membrane controlled systems
with for example matrix controlled systems. However, this should be possible in

future studies as the system becomes more advanced.
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Figure 3-13: Diffusion through the shunts with membrane of high diffusion coef-
ficient (a) and low diffusion coefficient (b)



CHAPTER 3. FINITE ELEMENT MODELLING 49

3.7 Macro modeliing

In this section we concentrate on a more macroscopic picture of drug diffusion
from a transdermal patch and into the skin. As in the previous section the change

in concentration of the drug over time is monitored.

3.7.1 The Model

Figure 3-14: Diagrammatic representation of the different materials used to model
the transdermal system. This is a cross-section of the system which must be ro-
tated through 360° to generate the complete picture. The skin is represented by
ial the gel containing the drug is represented by the blue mate-
vial. The conbtrol membrane is shown by the heavy black line and the electrodes
are shown in red. The outer grey area is simply the housing for the patch and
this 1s what would be seen by the user.

In the same manner as before, the temperature-diffusion analogy was used
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patch came in the form of an AUTOCAD drawing as shown above. The inner
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edifed. There are four distinct comnponents to this system as shown in figure 3 14

Therefore four different materials were defined in ANSY'S.
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Material no.1, the skin was assigned a diffusion coefficient of 1 x 107'"%m?s~!.

The gel containing the drug — material no.2 — was assigned a diffusion constant
of 1 x 107" m?s~!. Gel is more viscous than water which is nominally assumed

2

to have diffusion coefficient of 1 x 107m?s~!. Material no.3, the membrane was

given a diffusion coefficient of 1 x 10~*m?s~! and material no.4, the electrode was

assigned a nominal diffusion coefficient of 1m?s~!.

These diffusion coefficients
are standard values taken from Lide and Frederikse (1993) A temperature of 100
was applied along the active well. The system was run for a period of 10,000
and 20,000 seconds. The results for this macroscopic model are shown in Figure

3-15.

3.7.2 Discussion

As in the previous sections, the current limited capabilities of ANSYS mean that
there are only a few basic observations to be discussed based on Figure 3-15. The
outline of the patch can be seen by comparison with figure 3-14. It is clear that
after 10,000 seconds, there has been drug flow from the well into the skin. After
a longer time (20,000 seconds) this increase in concentration within the skin is
more apparent.

Due to the limitations of the software, it is impossible to include effects such
as increase in skin hydration, molecular characteristics of the drug Singh and
Singh (1993) and other factors which affect the rate of transport.

. the dimen-

Although the common units for diffusion coefficient are cm?s~
sions of these parameters and indeed all parameters are expressed in terms of SI
units. This is to facilitate the finite element calculations and also the conversion

from thermal to diffusion quantities.
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Figure 3-15: Diffusion through the skin at 10,000 and 20.000 seconds as modelled
hv ANSVYS
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3.8 Iontophoresis

For the case of electrically assisted diffusion, we know that ions move under
the influence of an electric field (Vincent (1976)). We expect there to be a
high concentration of ions in regions of high electric field intensity and a low

concentration of ions in regions with low field intensity Figure 3-16 is a plot

Fgure 3-16: Graphical (a) and arrow (b) plot of electric field intensity which
stows low electric field intensity (blue) to high field intensity (red)

of the electric field intensity for such a system as a contour plot and an arrow
pbt respectively, This plot was generated by ANSYS and it corresponds to the
fidd intensity resulting from the application of the electric field described in the
previous section. From this plot, it is reasonable to assume that drug will move

more rapidly from the regions close to the interface of the patch and the skin That
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is, the concentration of drug within the patch does not remain homogeneous.
Researchers at Elan Corporation ple (Foley (1997)) have done experimental

work in an attempt to quantify this effect. It has not been possible, however,

to simulate these conditions because as previously discussed ANSYS is not yet

suitable to model such phenomena involving electrical fields.

3.8.1 Experimental

This section contains the results of work carried out by ELAN. A circular patch
was cut into four areas as shown in figure 3-17. The areas were labelled A, B, C
and D. The radii and areas of these regions are given in table 3.1. The aim was
to have approximately the same area in each region (and thus the same amount
of drug initially). This was coupled with the constraint that the cutting tools
were of certain fixed diameters so it was not possible to meet the requirments

exactly. Assuming that initially the drug concentration was homogeneous, the

Figure 3-17: Transdermal patch divided into areas for separate analysis

total amount of drug present initially was proportional to the area. The drug
was allowed to diffuse (iontophoretically) out of the patch and into a membrane

The amount of drug present in each portion was measured after periods of 3 and
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lItem |A|B| C ]D Total|

radius(mm) | 5 | 7.5 10.49 | 14.9 | 14.9
area (mm?) | 79| 98 | 169 | 354 | 700

Table 3.1: List of the radii and surface areas of the four regions of the patch

6 hours. These measurements are given in table 3.2. These amounts were then

calculated as a percentage of the initial theoretical amount of drug present.

3.8.2 Discussion

Since these are the only results available from this study, it is difficult to draw
definite conclusions. As is clear from the results, there is a lot of disparity and
lack of agreement between the two sets of data (a) and (b). The error margins are
quite large and the results must be regarded as requiring confirmation. However,
the trend of more rapid concentration depletion from the outer edge of the patch
is obvious even with these crude data. Therefore, this experimental data give an
accurate, though not precise description of what was expected from the simulation

results shown in figure 3-16.

3.8.3 ANSYS Simulation

We have seen that in order to include the effects of an electric current, we must
include additional terms in the general diffusion equation (1.12). Where we have
equated diffusion coefficient with thermal conductivity, it is clear from equation
(1.13) that the electric field is equated with velocity.

However, from preliminary tests, we have seen that this is not a direct analogy.
The velocity term arises from convection and is due to the motion of the medium
containing the heat. This corresponds to the gel in the drug matrix.

As has been discussed earlier, the drug is released from the gel and the gel

itself does not penetrate the skin. Therefore, this analogy cannot be expected to
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Ll bl 4 0T TRy TTTORE |

[ [tem
initial amount(mg) | 0.33 | 0.41 | 0.71 | 1.48 | 2.92
3hrs 22l 2|k 989,66
% of initial 66 | 65 | 651 45
6hrs 105 |08 1= e e 16
% of initial 15 el 4
(a)
| Item | A | B | C | 0, | Total |
initial amount(mg) | 0.33 | 0.42 | 0.71 | 1.50 | 2.96
3hrs o L e i e i i e (!
% of initial 8 58 198 | 42
6hrs 105« (=086 03 .01
% of initial 16 ] T4 491 18
(b)

Table 3.2: Amount of drug measured in each sector of the patch after the drug has
diffused out after three and six hours. The results of two separate measurments
(a) and (b) are given. (Note that the initial amount was not actually measured
but in fact calculated from the amount of total drug present in the patch before

it was sectioned.)
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be valid
As a trial, an electrical analysis was carried out. The electric flux of each
element was tabulated and then entered as the material property of conductivity
in a subsequent thermal analysis.
Essentially, the equation solved by ANSYS via the finite element method
became
dc D%

TR o o

(3.2)
This did not work since, by analogy with equation (1.18). /3 should be mul-

tiplied by the first derivative of ¢ w.r.t.  and not the second derivative.

3.8.4 Conclusion

For a small range of cases we have seen that ANSYS is a good modelling tool
for diffusion analysis. However, for complicated cases such as electrically assisted
diffusion, the current limited capabilities of ANSYS mean that an alternative tool
is necessary to model such processes. The results presented in this chapter are of
limited use. They really serve to show how, with more versatility such software
could be adapted and used as a modelling tool. What we have seen is that since
the mathematics of the phenomena of heat transfer and matter transport are so
closely related that the same tools can be used to represent both provided that
there is some degree of flexibility within them. The aim of this work has been
to investigate the usefulness of ANSYS as a modelling tool for the transdermal
patch system. The work has clearly shown that more versatility of the software
is a fundamental requirement if realistic systems are to be modelled.

Therefore, we adopted another approach to continue and extend our mod-
elling. We started with the partial differential equations and solved them analyt-
ically. Where no analytical solution was available we used DEQSOL, the finite

difference numerical solver package discussed in the chapter 2 and the results for
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drug release from an inert matrix are given in the next chapter.



Chapter 4

Diffusion from an Inert Matrix

In this chapter we examine the migration of a drug, from a transdermal patch,
into the skin. To this end we have developed a mathematical model. The model
is based on diffusion from an inert matrix of finite size. It is assumed that there is
a uniform concentration of drug present in the matrix, that the transport out of
the matrix is governed by the diffusion equation and that this diffusion is planar.
For simplicity it is also assumed that the skin is an infinite sink and that the flux
on the other side of the matrix is zero - that is that the drug can only exit the
matrix on one side. The pertinent differential equation for this model (equation
(1.16)) has been solved and is derived in many textbooks (Jost (1960)). The
purpose of this chapter is to extend the previous work to include the effect of an
electric field applied across the matrix which will enhance or retard the passage of
an ionized drug molecule into the membrane. The advantage of such electrically
assisted transport is that it allows greater control over the rate of delivery. In
addition, the system as programmed will allow a chemical reaction to take place
within the matrix that will cause a further depletion in the drug concentration.
We will start by taking a brief look at the entire sequence of events that result
in a transdermally administered drug being made available to the circulatory

system. We will take a detailed look at the functions and features of a transdermal
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delivery system. From here we will look at the phenomenon of iontophoresis.
Finally, before discussing our particular model we will review the mathematical

models in the literature.

4.1 Drug Delivery

The three aspects of drug delivery are drug input, pharmacokinetics and phar-
modynamics. Drug input describes the rate and time course of systemic drug
input. Pharmacokinetics is concerned with the uptake of the drug into the circu-
latory system and blood plasma levels. Pharmodynamics involves examining the
interaction between the drugs and the cells in the body with the ultimate aim of
maximising the therapeutic effects, minimising side effects and prevention of the
development of tolerance to this therapeutic effect.

Of these three aspects, this work is only concerned with drug input. The
pharmacokinetics are of some minor significance in that the aim of drug input is
to ultimately detect blood plasma levels in order to confirm that the drug has
indeed entered the body. In order to place this work in context, it is useful to
have some knowledge of all three processes and a good review of this is presented

by Mazer (1990).

4.1.1 Drug Input

We will see that it is possible to control the migration of a drug into the body
either by choice of a delivery a matrix or by the use of a membrane as well as by
other means. Our theories on matrix control are presented later in this chapter
and those on membrane control are in chapter 5. We will therefore continue with

a discussion on pharmacokinetics.
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4.1.2 Pharmacokinetics

The purpose of pharmacokinetic modelling is to accurately predict blood plasma
levels that will result from dermal penetration. A pioneer in this field was Had-
graft (1979) who looked at the epidermis in terms of its function as a reservoir and
also at the metabolism that takes place therein (Hadgraft (1980)) An early model
by Guy and Hadgraft (1982) described epidermal uptake via Michaelis-Menten
kinetics with a a two-step model. Approximate solutions were found for long
times where the concentration is considerably larger than the Michaelis-Menten
constant and again at long times where the concentration is considerably smaller
than the Michaelis-Menten constant. Later Guy and Hadgraft (1983) described
another two step model for drug delivery from a vehicle into the skin, and then
from the skin into the capillaries in order to derive approximate expressions for
the total amount of a drug delivered into the circulatory system. These approx-
imations were for long and short times, and can be used for comparison with
experimental data once the various rate constants are known.

Physically-based pharmacokinetic models to predict plasma levels have been
presented by Guy and Hadgraft (1984, 1985). Since then, several pharmacokinetic
models have been proposed in the literature to describe the passive transdermal
delivery of a variety of compounds for example, Selegine (Barrett et al. (1997a,b);
Mahmood et al. (1994)). Most recently, Rohatagi et al. (1997) developed an
integrated pharmacokinetic and metabolic model for Selegine and metabolites
after transdermal administration. Other workers Riviere et al. (1992), Silcox
et al. (1990) have looked at plasma levels developed using a flap of human stratum
corneum applied to an animal model.

Having seen a brief picture of the developments in modelling the cycle of
a drug from diffusion out of the patch to detection in the blood, we will now
concentrate on the first aspect of this, drug input, and begin with some general

considerations of transdermal drug delivery.



CHAPTER 4. DIFFUSION FROM AN INERT MATRIX 61
4.1.3 Transdermal drug delivery - General Considerations

An ideal transdermal delivery system provides a uniform zero-order delivery rate
which is effective within a therapeutic window. It is effective for the administra-
tion of drugs with short half lives and it is non-invasive facilitating easy cessa-
tion by removal and therefore increased patient compliance (Corish and Corrigan
(1990)). The main advantage of a transdermal delivery system over traditional
routes is that it allows drug to enter the body at an approximately uniform rate
over an extended period of time. There are many other advantages associated
with this novel drug delivery technique. Since it goes directly into the blood-
stream, the drug does not pass through the gastrointestinal tract where it can be
partially degraded and it also avoids first-pass contact with liver where it could
be partially metabolised (Ranade and Hollinger (1996)). It also avoids the risk
and inconvenience of intravenous therapy.

The essential components of a transdermal device are a drug reservoir and a
means to control the release of drug onto the surface of the skin. Older techniques
used to control the release of a drug include covering it with a slow dissolving
coating, formulating it in a suspension or emulsion, or complexing with ion ex-
change resins. More recent techniques which provide more control and are under
current, investigation include the encapsulation of a drug in a polymer for exam-
ple a hydrogel (Conaghey et al. (1998a,b)), dissolution of the drug in a matrix
(Scott and Hollenbeck (1991)) and the use of liquid crystals (Carr et al. (1997))
as novel delivery vehicles. We will concentrate on a simple membrane controlled
system, that is where the release of drug to the skin is controlled by a membrane.
A schematic representation of each of these types of devices is show in figure 4-1.
A typical device, illustrated in figure 4-1(c) consists of an impermeable backing, a
drug reservoir, a diffusion control membrane and an adhesive strip which ensures
that the drug stays in contact with a particular chosen site on the skin. The

rate of drug effusion to the skin depends on the diffusion coefficient of the drug
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Figure 4-1: Schematic diagram of the various drug delivery systems, (a) adhesive
control, (b) drug is microsealed in a polymer, (¢) membrane control

through the membrane.

The particular design of the delivery device is very important to ensure zero
order release. As we will see later in this chapter, the theoretical model of a
matrix device was first described by Higuchi (1961). He found the release rate
to be inversely proportional to time. The aim is to have a zero order rate of
release. In order to achieve this Rhine et al. (1980) designed a hemispherical
device with a hemispherical hole. Later Kuu and Yalkowsky (1985) described
a rectangular device again with hemispherical holes. However, the fundamental

problem with both of these devices is that they are difficult to manufacture on
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a large scale. Mishra and Yalkowsky (1990) designed a device based on a much
simpler geometry - a flat circular hole device - which has as its trade off the fact
that it doesn’t give exact zero order kinetics, but it is certainly a reasonable first
attempt.

There are many physico-chemical and physiological factors governing the pas-
sage of a drug into the skin. A good discussion on these is presented in the review
article by Singh and Singh (1993).

Some drugs such as nitro-glycerin pass through the skin naturally. Others
may need a chemical penetration enhancer (Walters (1989)) or some form of
thermal perturbation (Bodde et al. (1990)). It has been shown by Jenkinson and
Walton (1974); Russo et al. (1980)and Shelly et al. (1950), that the application
of an electric field as a means of driving drug into the skin can be an effective
alternative. This phenomenon known as iontophoresis, is especially significant
for transporting ionized drugs. We will now take a more detailed look at the area

of iontophoresis.

4.2 Iontophoresis

[ontophoresis is a process which causes an increased permeation of ionized sub-
stances into or through a tissue by the application of an electric field (Tyle
(1986)). This method was first suggested by Leduc (1900) at the beginning
of the twentieth century as an alternative means of delivering medicine to the
body. However despite the fact that knowledge of the technique has been gaining
in momentum, its use is still not widespread (Singh and Maibach (1993)).

A typical iontphoretic device is show schematically in figure 4-2. It consists
of an active well containing the drug and a passive well containing a buffer.
Electrodes are attached to the wells and an electric potential is applied across
them. This causes the drug to ionise and has the effect of driving the ions into the

skin. Assuming that the drug ions are positive as shown in figure 4-2, a circuit is
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Figure 4-2: Schematic diagram of an iontphoretic device, adapted from a review
by Burnette (1988)

set up whereby the positive drug ion (D%) is driven into the bloodstream. Since
the skin itself contains extracellular fluid with Na*t as its primary cation and
Cl~ as its primary anion, these ions are affected by the process. The sodium ion
migrates towards the negative electrode and the chloride ion migrates towards the
positive electrode. In addition the buffer ion (designated by A~ in the diagram)
also migrates into the bloodstream.

As detailed in chapter 3, the transfollicular and transappendageal routes con-
stitute the major pathways for penetration of ionized species and this penetration
can be facilitated by the application of an electric field.

Foley and Corish (1992) have shown that the resistance of the skin decreases
on the application of an electric current and used this fact to investigate the
increased permeation of morphine hydrochloride into the skin. Vincent (1976)
has discussed quantitatively the effect of applying an electric field to an ion and
obtained expressions relating the magnitude of the force to the magnitude of the

subsequent velocity. Many researchers have compared passive and iontophoretic
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mechanisms e.g. Singh and Singh (1993). Masada et al. (1989) developed a
theoretical equation relating flux enhancement to applied voltage and successfully
applied their theory to a four-electrode system.

Burnette and Marrero (1986) compared iontophoretic and passive transport
of thyrotropin across excised nude mouse skin and concluded that the motion of
the charge and uncharged species was greater for in the presence of an electric
current. Yoshida and Roberts (1995) used conductivity measurements to predict
transport of various anions across excised skin.

As far as the mechanism and pathways through which iontophoresis takes
place, Burnette and Ongpipattanakul (1987, 1988) have looked at the pore trans-
port properties and they also characterised the permselective properties of excised
skin during iontophoresis. There is therefore a great deal of interest and research
in this technology.

However, despite the recent surge in research and knowledge of iontophoresis
in the last two decades, further research is still required in order to maximize the

advantages of this system

4.2.1 Mechanisms of flux enhancement

Iontophoresis enhances drug delivery by 3 mechanisms namely

e (i) the ion-electric field interaction provides an additional force which drives

the ions into the skin
e (ii)the presence of a current increases skin permeability

e (iii) electro-osmosis produces bulk motion of solvent, carrying with it neu-

tral species in solvent stream.

Pikal and Shah (1990) have examined the transport mechanisms in iontophoresis

in particular looking at the effect of electrosomotic flow.
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Praissman et al. (1973) reported that the phenomenon of electroosmosis oc-
curs when a current is passed through a membrane separating two electrolytes.
The momentum of ion flow produces bulk motion of the solvent and therefore
increases the momentum of the neutral species. The role of electro-osmotic flow
in transdermal iontophoresis is discussed by Pikal (1992). He suggests that the
theory developed by Manning (1967) (who related electroosmosis to measurable
quantities such as viscosity etc.) is reasonable in that it agrees closely with ex-
periment. Pikal concludes that of the three mechanisms of flux enhancement by
iontophoresis, electro-osmotic flow is the dominant flux enhancer for large ions.
For smaller ions however, the ionic effect dominates. We have already discussed
the first two mechanisms in chapter3. Of these three mechanisms, we will concen-
trate on the second one and models for this are presented in the next section. The
increase in skin permeability was discussed in chapter 3 where we also presented

a more general discussion on the function of the skin.

4.2.2 Models for iontophoresis

There are two models used to describe the ionic effect of iontophoretic transport
of drugs across the skin. The first of these is the constant field approximation. By
assuming a constant field field everywhere, the solution is applicable to ions of any
valence. The steady state form of this approximation was derived by Goldman
(1943) and the time dependent form was derived much later by Keister and
Kasting (1986). Although this theory is the most mathematically tractable and
useful for iontophoresis, it is important to be aware of a second model called the
electro-neutrality model and described by Planck (1890). The main assumption of
Planck’s model is that all points within the membrane are electrically neutral on
a microscopic scale. Planck obtained steady state solutions for a 1:1 electrolyte
using this model and Schogl (1954) later extended this steady state model to

include more complex electrolyte mixtures.
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Norman (1975) examined the diffusional spread of iontophoretically injected
ions and assumed a constant field approximation. His model was that of diffusion
from an infinite source into an infinitely thick membrane. He remarked that the
reason for using the constant field approximation was that the use the electro-
neutrality condition would require both the conductivity and the osmotic pressure
to be significantly altered. This in turn would cause solvent movements which
would interfere with the flux analysis.

However, Kasting and Keister (1988) later remarked that the constant field
approximation is not suitable for thick membranes so the Norman (1975) analysis
was deemed incorrect. They recently reviewed both of the models, showing the
limits of usefulness of each. For our purposes we will consider very thin mem-
branes and therefore the Goldman approximation is most useful. The Planck
approximation is better when considering thicker membranes or when there are
vastly different ion concentrations on either side of the membrane.

In all cases of iontophoretic models, the conclusions (in contrast with the
solutions) have been simple: The skin is a very complex organ and there is
more than one pathway through it. Additional considerations such as convective
coupling between flows, the effect of fixed charges, the effect of more than one
drug species, the variation in diffusivity and ion mobility upon the application
of an electric field must also be taken into account in order to get a complete
solution to the behaviour of a drug in the skin. It is very difficult to predict
the behaviour of a drug which comes in contact with the skin. But in order to
understand how the behaviour of the skin differs from the behaviour of an ideal
membrane, one must first of all understand the behaviour of an ideal membrane.

This ends our theoretical description of iontophoresis. We will continue by
reviewing the mathematical models that have so far been presented to describe

drug release from a membrane and then present our extensions to these models.
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4.3 Review of mathematical models

The subject of passive release of a drug from a bounded membrane has received
considerable attention in the literature (Higuchi (1967)). The amount of solid
material (Q)) released from a planar system having a homogeneous matrix into a

perfect sink has been derived by Higuchi (1961) as

Q = /Dt(2C, - C,)C, (4.1)

where D is the diffusion coefficient, Cj is the initial amount of drug per unit
volume, Cj is the solubility of the drug in the medium and % is time.

In this case, there is clearly a linear relationship between () and t3. Therefore,
for the system mentioned, a linear plot of () versus ¢ should be a good indication
of material transfer via this mechanism of diffusion.

However Schwartz et al. (1968) showed that the release of material from a
matrix, if controlled by first order kinetics, could be described by a rate law such
as

b A explkt] (4.2)

Qo
where @)y is the amount of material present in the matrix initially, £ is the first
order rate constant and an A is arbitrary constant (which, for simplicity, we will
set as 1). The above is a more constrained form of equation (4.1). It can be

manipulated and rewritten as

log(Q) = kt — log(Qo) (4.3)

so that a plot of log(Q) against ¢ should be linear. Examination of a matrix
system demonstrated that both plots of () against tz and log(Q) against t can be
essentially linear. Therefore further analysis was necessary in order to differen-

tiate between the two possible mechanisms. This involved measuring the rate of
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release or the permeability. Additional studies were conducted by Donbrow and
Friedman (1975) confirm this, and suggest a standard procedure be applied to all
data in order to fully exemplify the pertinent transport mechanism. This stan-
dard procedure consists of presenting plots of () against t3 and log(Q) against t
in addition to presenting a plot of %2 against é [t can be easily shown that a
linear plot of %? against é will be a good indication of diffusion control whereas
a non-linear plot suggests first order kinetic control. This is because a plot of
() against t2 is essentially the same as a plot of %Ji against % but the difference
between diffusion control and kinetic control may not be apparent (due to size of
error bars) when comparing a plot of log(Q) against ¢t with a plot of ) against

1 . . . >
t2. The differences are in fact, an artefact of the fitting procedure.

4.4 More detailed models

For a planar system having a granular matrix, additional parameters including
the tortousity factor of the capillary system, 7, and the porosity of matrix, €, are
included in the diffusion controlled model (Higuchi (1963)). This gives the more

complex expression

Q= \/%(200 — eCy)Cit (4.4)

In a subsequent report Desai et al. (1965), showed that these factors are not
independent. That is variation of one will automatically vary the others. This
means that such a system is more difficult to model accurately than a system
where all the parameters are independent of one another. In fact, all models to
date assume that there is no correlation between any of the parameters and there
is therefore a need for more sophisticated models in this area.

Higuchi (1960) also showed how a simple solution of the diffusion equation

(given below - equation (4.5)), previously derived in many textbooks (c.f. Jost
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(1960)), can be applied in order to quantify drug absorption from solutions.

de | 0%c

Again given conditions of an infinite sink on one side of the solution matrix,
he derived an expression for the concentration profile of the material within the
matrix as a function of distance and time. This expression is then manipulated to
obtain an expression for the quantity of material released as outlined in equation

(4.6).

o 1 —D(2n + 1)*r%t
= hCy[1 — — :
L v 1;) (2n +1)2 T, 4h? ) G

where D and ¢ are the diffusion coefficient and the time as defined before with
the additions of h as the thickness of applied phase of drug solution and Cy again
being the initial concentration of the solute. It is clear that the solution phase
has a finite thickness h. The relationship between Q) and ¢ is much more complex
than the previous cases and makes the task of confirming this mechanism, a lot
more difficult than the cases discussed in the previous section.

However, it can be shown (Higuchi (1962)) that, for semi-infinite diffusion,
that is in the limit as h approaches infinity, the expression for ) is much more
simple.

Dt>% (4.7)

)t 200<—

s

In figure 4-3 we have plotted ) against ¢ from equations 4.6 and 4.7. This

serves to clarify the assertion of Higuchi that for release of < 60%, the simple ex-

pression for amount released from a semi-infinite matrix is a good approximation
to the amount of of drug released from a matrix of finite thickness h.

Therefore for all the cases mentioned above, plots of @ against v/ will be

essentially linear. In order to differentiate between diffusion obeying and not

obeying Fick’s law one should plot @) against Cy. A useful summary of models
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Figure 4-3: Comparison of diffusion from a semi-infinite source (equation (4.7))
with diffusion from a source of finite length (equation (4.6)) showing that the
approximation is good up to 60%. The dashed line indicates the exact solution
and the full line indicates the approximation.

discussed above is presented in a review paper by Higuchi (1967).

4.5 Extension of Models to include iontophore-
sis

We now show how we have extended the model based on Fick’s law to include
the effects of iontophoresis and first order chemical reaction within the matrix.
We start by showing how the expressions for concentration, amount released

and permeability for passive diffusion were derived. From here we use similar
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techniques to derive the same quantities for transport via iontophoresis. The aim
is to discuss these equations in as general terms as is possible so that it will be

easy to transfer the knowledge to other applications of the diffusion equation.

4.6 General Description of the physical system
and formulation of the boundary value prob-
lem

We represent the patch as a rectangular matrix of length L. We assume that
there is a uniformly distributed concentration of drug in the patch initially and
that diffusion is planar. The spatial region inside the patch is therefore defined
as 0 < o < L. The receptor for the drug is the skin and we assume that as
soon as the drug reaches the surface of the skin it is transported into the lower
layers. We will apply a uniform electric field E across the matrix only, and we will
assume that the ionic mobility of the drug is p. We will further allow the drug
ions to undergo a chemical reaction with a first order rate constant k. Our initial
condition is therefore that of a uniform concentration of drug ¢y in the matrix.
The first boundary condition describes the skin as a uniform sink6 The only
means of exit of the drug from the matrix will be into the skin and therefore the
flux at the other extremity is zero. Thus we have the second boundary condition.
The differential equation governing the transport and kinetics is

dc  Oc whL8c

ot Ox2 D 8z A Gl

This is presented in non-dimensional form by the use of the following nor-

malised parameters

C Dt gl i kLZ /LEL 7 jm
i L Al s
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and is therefore transformed to a more manageable

ou Ou ou

5 W—ﬁa—x—yu (4.10)
where u represents a non dimensional penetrant concentration at any point in
the membrane which is scaled with respect to the concentration ¢y at the donor
solution/membrane interface. x is the normalised distance variable scaled with
respect to the total thickness L of the membrane. Hence we note that 0 < u < 1
and 0 < x < 1. Furthermore, v, 3 represent a normalised diffusion/reaction
and diffusion/migration parameter respectively. In fact the diffusion/reaction
parameter v is defined as the ratio of the flux due to the chemical reaction to
the flux arising from the species diffusing through the matrix. In a similar way,
the parameter, 3 defines the ratio of the migration flux to the diffusion flux and
compares the magnitudes of the transport rate of penetrant through the matrix
via migration and diffusion respectively. Consequently the ratio % compares the
rate of penetrant species reaction at a site in the matrix to the rate of electro-
migration of penetrant species within the matrix. The parameter 3 depends
directly on both the electric field strength E within the matrix and on the ionic
mobility g of the penetrant species. It also depends on the matrix thickness
and is inversely proportional to the diffusion coefficient D of the penetrant. In
contrast the parameter v is directly proportional to the first order rate constant
for species removal within the matrix and is inversely proportional to the diffusion
coefficient D. The expression presented in equation (4.10) should be compared
with the the equation governing simple passive diffusion within the membrane
which is well described by the time dependent Fick diffusion equation

Ou ° u

The problem is defined mathematically in terms of the following initial and

boundary conditions:
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ou
u(y, 00 =1, (0_7)X:0 =l gl 7)) =0 (4.12)

4.7 Solution of the Passive equation

normalized amount delivered
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Figure 4-4: Concentration profile of diffusion from an inert matrix over time with
values of 7 starting at 0.01 (uppermost curve) and incrementing in ten steps of
equal size 0.05 as far as 0.46

The passive equation is solved using the technique of separation of variables,
a common method for solving differential equations which are dependent on more
than one variable. We assume that the complete solution can be separated out
into two components, one of which is dependent only on the spatial variable X (x)

and the other is only dependent on time 7'(7). Both components are found and
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the equation admits the following solution:

i 2(_11)n o ((2n +21)7TX> exp (_(_Q%W) (4.13)

Typical diffusant concentration profiles through the matrix obtained using
equation (4.13) are presented in figure 4-4.

Initially the concentration profile shows a matrix full of drug with slight de-
pletion at one end as the drug is carried into the skin. As time goes on, since this
is not an infinite source, the drug concentration within the membrane decreases
rapidly again with depletion occurring to a greater extent at the region closest
to the skin until finally the membrane is devoid of drug completely.

An interesting way to look at this profile is as a surface plot of x, 7 and
(figure 4-5). Here we can see that initially there is a steep gradient in concen-
tration change over time. However, the system rapidly settles down and there
is a more or less uniform decrease in concentration across the matrix as time
goes on. This is interesting because it is contrary to the arguments proposed by
Higuchi in his theoretical description of drug release from a membrane, because
he has assumed that the profile is more like a moving boundary, where the drug
will be removed completely from the extremity at the infinite sink before there
is any concentration change in the other extremity. This means that there is a
sharp discontinuity in the profile as opposed to the situation pertaining to a drug
present in solution where, except for the initial stages, the profile is smooth and

continuous.



CHAPTER 4. DIFFUSION FROM AN INERT MATRIX

)
1 b
08 | /,/ Z
06 | 7
|
02 | s et i
0

76

Figure 4-5: Surface plot of basic solution showing concentration profile over time
with values of 7 starting at 0.01 and incrementing in ten steps of equal size 0.05

as far as 0.46

4.8 Quantity delivered

In terms of the actual amount of drug delivered into the skin, this is obtained via

the equation

tf oe
Qi=-DA [ (%>2=Ldt

(4.14)

where A is the cross-sectional area of the plane. In terms of normalised parame-

ters, this is

™ ([ Ou
Qs = —ALCO/O (a) led‘r

15)

The quantity ALcy denotes the total amount of diffusant contained initially in
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the matrix and is the amount that would be released after an infinite amount of
time Q. It is clear that, in this case, Qo = 1. However it is standard procedure

to express the amount delivered as a fraction of ()4 and hence

Qoo/ <6“> (4.16)

The ratio gL versus 7 defines the quantity of primary experimental interest.
oo

From equation (4.13) and equation (4.16) we can show that this is

Q- 8 & 1 (2n + 1)*x?r
e SRy A .
@ — ::f) Gn 1) exp( 1 ) (4.17)

We have seen in section 4.4 that the approximation is good for release of up
to 60%.

We note from the profile in figure 4-3 that there is no lag time but rather
what is seen is a "burst effect” of drug released from the patch. It is useful to
note that in reality there is some lag time and evidence of this can be seen in the

work of Foley (1991) among others.

4.9 Electrically assisted diffusion with concur-
rent first order chemical reaction

Following from the results for concentration driven diffusion, the case of elec-
trically assisted diffusion with concurrent first order chemical reaction is now
considered. The objective is to determine once again, how the concentration
changes over distance and time when a voltage is applied and when a chemi-
cal reaction involving the drug takes place. We will also look at the amount of
substance released, the permeability and the lag time since these are the quan-
tities of experimental significance. In terms of drug transport, this is associated

with the phenomena of iontophoresis. However, as mentioned earlier, the general
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case will be considered because then the governing differential equation may also
be applied to another area of physical chemistry, namely, diffusion and migration
and reaction in polymer-modified electrodes. For example, Yap et al. (1983) have
solved a similar equation but related to polymer modified electrodes.

We will therefore consider the case with the same boundary and initial condi-
tions as for the passive case (section 4.6) but with the addition of an electric field.
The boundary conditions are those of zero flux at one extremity of the matrix

and an infinite sink at the other. These are expressed mathematically as follows:

ou
Jo=— —PBuyg=0 u(1 — A
o A Bug W (4.18)

We recall that J is the flux, f is the migration parameter and u is normalized

concentration. The initial condition is as before

u(x,0) =1 (4.19)

Using the technique of separation of variables, the general solution of equation

(4.10) is found to be

wx, 7= i e™[C cos(by) + Dsin(by))]exp(—A*t) (4.20)

n=0
This is solved with the conditions given above. The complete solution (detailed

in Appendix D.1) is

Hx,T) = ez‘p(%) iBn[sin(bnx)]exp(—/\zt) (4.21)

where the coefficient of time in the exponential term, A, contains functions of the

migration and reaction parameters (3 and ) and is defined as

A=0b? /3_2_ 4.22
_)n+4 o ( )
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The coefficients of the summation, B,,, are more complex

8b,,
Bn b e e 4.2
B2+ 412 (o)
with b, being a solution of the transcendental function
5]
b, = %tan(bn) (4.24)

Interestingly, the coefficients B, of the summation, contain functions of the
migration parameter 3 only. Therefore, when considering diffusion and concur-
rent, chemical reaction, the expression for the concentration profile is reasonably
simple. Typical concentration profiles are given in figures 4-7 to 4-12 inclusive.
These plots were generated by DEQSOL (the numerical finite difference pack-
age), because the analytical solution involves an aforementioned transcendental
function which must be evaluated numerically. These are discussed in detail

below.

4.10 Discussion

With some algebraic manipulation, we can show that when v and 3 are set
to zero that equation (4.21) reduces to equation (4.13) - the expression for the
concentration with passive diffusion. This is shown explicitly in Appendix D.2.
We will now look at the effect of the each of the migration and reaction parameters
on the concentration profile. The figures presented in the following pages are
surface plots showing how the normalised concentration u varies with distance y
and migration parameter 3 for the time periods 7 = 0.01,0.05,0.1 and 0.3. The
reason for choosing these particular time periods is that they show an interesting
range of change and they also correspond with the information contained in the
profile for passive diffusion (figure 4-3) and are therefore useful for comparison.

Figure 4-6 is a development of the u surface as a function of time 7
b ¥
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and normalized migration parameter 3. The first plot in the series shows the
normalised concentration profile at 7 = 0.01 for typical positive values of the
migration parameter 3. The reaction parameter v is zero. This early time profile
indicates clearly that the drug is being repelled from the site of applied voltage
and the magnitude of the repulsion is a quasi linear function of the magnitude
of the applied voltage. However, since it is still a short time period, the effect
of the voltage does not manifest itself to a great extent at the other extremity
of the matrix. The concentration profile up to approximately 20% of the length
of the matrix varies significantly with applied voltage but the profile beyond this
limit is more or less independent of the voltage. The second plot in Figure 4-6
shows a similar surface plot but at a longer time period. Here we see a significant
deviation from the passive profile as a function of the voltage. There is clearly
a non-linear dependence of the concentration on the voltage. It is interesting to
note that for 4 = 5, the force due to the voltage greatly outweighs the ability of
the skin uptake and there is a concentration peak in the middle of the matrix.
Even at f = 1, this peak prevails. There is therefore an optimal value of the
voltage somewhere between = 0 and # = 1 where the total force into the
matrix is equal to the force out and there is no concentration build-up in the
matrix. The third plot in figure 4-6 is the surface profile at longer times 7 = 0.1.
This profile is very similar to that of 7 = 0.05, the difference being that the
profile for large positive /3 is not as steep as the previous plot therefore indicating
that much of the drug has exited the matrix. Finally we look at the profile for
7 = 0.3. In this case we see that the positive voltage had forced the drug through
the matrix and for large 3, the matrix is almost devoid of drug. This is in sharp
contrast to the the profile where there is no field and 5 = 0. At this state the
shape of the profile has not changed much from its appearance at the earlier time
step. The overall concentration is reduced but there is still a large variation in
the concentration at different positions.

Figure 4-7 contains the same information as figure 4-6 but now the reaction
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parameter has been included and v = 1. There is very little difference between
these plots. The reason for this is that the layer thickness - X - defined as the
distance the drug will travel before undergoing chemical reaction is given by
Apies % L denotes the layer thickness which is normalised so that L = 1.
Therefore for v = 1, the layer thickness is also unity so the drug will traverse the
matrix before undergoing chemical reaction.

Figure 4-8 depicts the time evolution for v = 10. In this case the layer
thickness is X = 3.2 and so considerably more depletion is apparent compared
with the case of no chemical reaction. In fact at later times, the drug has either
exited the matrix completely or undergone reaction and the effect of the field is
overshadowed by the extent of chemical reaction. The extreme case of v = 100
is presented in figure 4-9. Here the ratio of migration to diffusion is in the range
00 > g > 0. As would be expected, the effect of large reaction parameter is to
cause considerable depletion of the drug before it has exited the matrix and even
with the enhancement of an electric field, the high reaction rate dominates and
it takes only a very short time (7 < 0.05) before the matrix is completely devoid
of drug.

Figure 4-10 shows more clearly the effect of the reaction parameter on the
passage of drug. Here we see that in the absence of an electric field, the con-
centration of drug varies greatly across the matrix even for the small range of
reaction parameters presented. As time goes on, the difference is even stronger
as evident in the slope of the u,~y profile at u = 0. It is interesting to compare
this with the profiles in Figure 4-11. Again the effect of the magnitude of the
reaction parameter is clearly manifested in the profiles. The characteristic hump
due to the push-start effect of the migration is also clearly evident. These pro-
files are very much different to those of figure 4-10 and they serve to show how
the variation of one parameter has a large effect on the resultant concentration
profile.

Figure 4-12 depicts the time evolution of the concentration profiles for negative
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values of 3. This means that the voltage is of opposite polarity to the ions in
the matrix. Therefore, rather than being forced out of the matrix, the drug
ions are attracted towards the voltage source. In fact, the physical importance
of having this voltage is minimal. As is intuitive and as we have seen through
the mathematics, this results in less drug being administered than is desired.
It serves to retard rather than enhance the rate of delivery. However, if used
in conjunction with a chemical enhancer or some other enhancer, this type of
voltage may play a role in the fine tuning of the delivery rate.

Surprisingly though, this does not significantly inhibit the passage of the drug
through the matrix and it is clear that the concentration profile is similar for the
whole range of voltages in the latter half of the matrix, that is the part closest to
the skin. However, there will be significant differences in the amount delivered
for the different voltages at this time because, for high voltages, so much of the

drug is attracted to the voltage source.

4.10.1 Quantity delivered

We shall now derive the expression for the total amount of drug exiting the
matrix and discuss the effect of # and v on this. We recall that the amount of

drug delivered equation (4.16) is given by

a2

The first derivative of u w.r.t. y from equation (4.21) was found. This derivative

(4.25)

ax

= 1

was then evaluated at y = 1 and integrated over time. The resulting equation

showing the amount as a function of time is

% = — Z Bm 9111 m) + bm €08(bm )] exp(—A*T) (4.26)
0o n=0
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c?_t = —eap(3) 3 BulBsin(b)] exp(~*r) )

£ n=0

where all the terms are defined as before. The expression for (Q involves
transcendental functions. The first few terms in the solution of this were eval-
uated numerically and are given in the Handbook of Mathematical Functions
(Abramowitz and Stegun (1965)). This is not enough for an accurate solution.
Therefore, in order to produce the results we have calculated the derivative using
a central finite difference scheme and fitted this to a polynomial function. The
polynomial was chosen as being of the form @ = at? + bt where the parameters a
and b were fitted by least squares method. The reason for the particular choice of
power law was that for the passive case, the amount is described by the function
at? and for the case of electrical assisted delivery it has been noted Nolan (1996)
from experimental data results that the profile takes on a linear shape at long
values of 7. The plots shown in figure 4-13 are for various values of 3 with v = 0.
This corresponds to a physical case of iontophoresis with no reaction parameter.
The plot of = 0, or that of passive release, is also included for comparison.
From these plots we can see that as the electric current is increased, the rate of
release also increases. This is in agreement with what would be expected. It is
also good to see that there is a good deal of similarity between this theoretical
result and the experimental results produced by Foley (1991) which are depicted

in figure 4-14.

4.11 Conclusions

In this chapter we have considered planar diffusion of a substance from an inert
matrix and looked at the resulting concentration profiles in the presence of both
electromigration and first order chemical reaction. We have applied this to the

process of iontophoresis in an effort to understand more fully the mechanism of
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this. However, there are limitations to the model which will result in differences
between these theoretical predictions and experimental results. For example, we
have considered planar diffusion and assumed that there is no spreading of the
drug on the surface of the skin. Secondly, we have assumed that the skin is
an infinite sink. As has been discussed in chapter 3 the stratum corneum is a
barrier to foreign substances and will not transport the drug immediately into
the lower layers of the skin. Neither have we been able to model the changes in
permeability of the skin once the transport through the barrier begins. Further
models of iontophoretic transport will need to take some of these modifications
into account.

In terms of amount of drug delivered for the passive case, from a matrix
controlled system, the dependence on time is t3. An ideal delivery system will
have a zero order dependence on time but we have seen at the beginning of this
chapter that there have been some efforts in design of the patch made to attain
this situation. Our model for iontophoretic transport cannot be reduced to a
simple approximation as in the passive case. There is an obvious dependence on
time and in order to control this, it may be advisable to apply a control membrane
between the skin and the matrix. The analysis of this is the subject of the next

chapter.
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Figure 4-6: Surface plot of full solution of inert matrix showing time development
of the concentration profile as a function of distance within the matrix and the
migration parameter . The migration parameters are positive indicating that
the applied voltage is of the same charge as the ionized drug. The reaction
parameter 7y is zero.
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Figure 4-7: Surface plot of full solution of inert matrix showing time development
of the concentration profile as a function of distance within the matrix and the
migration parameter . The migration parameters are positive indicating that
the applied voltage is of the same charge as the ionized drug. The reaction

parameter v = 1.
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Figure 4-8: Surface plot of full solution of inert matrix showing time development
of the concentration profile as a function of distance within the matrix and the
migration parameter 3. The migration parameters are positive indicating that
the applied voltage is of the same charge as the ionized drug. The reaction

parameter v = 10.
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Figure 4-9: Surface plot of full solution of inert matrix showing concentration

profile as a function of distance within the matrix and the migration paramete

r

. The migration parameters are positive indicating that the applied voltage is

of the same charge as the ionized drug. The reaction parameter v = 100.
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profile as a function of distance within the matrix and the reaction parameter ~.
The reaction is causing a depletion in concentration within the matrix. There is

no voltage present, 3 =0

Figure 4-10: Surface plot of Fitl Qo’{sution of inert matrix showing concentration
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Figure 4-11: Surface plot of ¥ Q(éution of inert matrix showing concentration
profile as a function of distance within the matrix and the reaction parameter
v. The reaction is causing a depletion in concentration within the matrix. The
voltage is positive indication that it forces the drug out of the matrix.
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Figure 4-12: Surface plot of full solution of inert matrix showing concentration
profile as a function of distance within the matrix and the migration parameter
. The migration parameters are negative indicating that the applied voltage is
of the same charge as the ionized drug
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Figure 4-13: Theoretical plot of normalized amount of passive and electrically
assisted drug release from an inert matrix (Q), against normalised time (7) with
the 4 parameter denoting the normalised magnitude of the electric current as

0,1,2,3,4,5
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Figure 4-14: Experimental results of passive and electrically assisted delivery of
morphine from hydrogels where 0.25ma represents a current of 0.25 milli-amps.
(This data is taken from the Ph. D. thesis of Foley (1991))



Chapter 5

Diffusion in a Finite Membrane

5.1 Introduction

The analysis of material transport in bounded membranes is a subject of much
current interest. Time dependent passive diffusion of material through mem-
branes and thin films has been the subject of mathematical modelling for many
years and reference may be made to the classical monographs produced by Carl-
saw and Jaeger (1977), Crank (1975), Barrer (1951) and Jost (1960) for a com-
prehensive survey of progress in this area.

The analysis of bounded diffusion processes in which the diffusing material is
also subjected to applied electric fields and can undergo chemical reaction with
sites located in the diffusion medium is considerably more complicated and for
this reason has not received comparable attention to date.

Attention is focused on bounded diffusion/migration/reaction(DMR) prob-
lems because these processes describe the operation of systems of current tech-
nological importance such as electric field assisted iontophoretic drug delivery
devices (Clemessy et al. (1991)), polymer modified electrode sensors (Andrieux
and Saveant (1992), Evans (1990), Hilman (1987), Lyons (1994b), Lyons (1996))

and acid transport in a lead/acid cell (Nilson (1993)).

94
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In this chapter we discuss the process of diffusion, reaction and migration
through membranes of finite thickness L. Mathematical modelling of these sys-
tems involves the formation of a partial differential equation, a suitable initial
condition and physically reasonable boundary conditions. The differential equa-
tion is then solved to obtain a closed form expression for the concentration profile
of the diffusant as a function of distance and time. This expression may then be
manipulated to obtain a closed form expression for the total quantity of material
released from or entering into the membrane at any given time. The lag time
71, of the penetrant species and the normalised permeability p may be obtained
by algebraic manipulation of the expression for quantity released. The lag time
is defined as the time required for attainment of the steady state diffusion con-
ditions while the permeability is a measure of the steady state rate of material
transport through the membrane material. Both of these quantities as well as
the quantity diffusing may be readily determined via experiment. In particular,
the lag time 7;, may be used to obtain an estimate of the diffusion coefficient D

L?

of the transported species via the expression 7, = &5 (Crank (1975)).

Aspects of material transport in membranes have been previously discussed
in the literature. For instance, Ludloph et al. (1979), presented an analysis
to calculate the lag time expected for bounded diffusion coupled with chemi-
cal reaction and sorption of diffusing species. They showed that the lag time

for bounded passive diffusion coupled with reversible penetrant immobilisation

L?
6D

within the membrane is given by 7, = 25(1 + K) where K represents the equi-
librium constant relating free and bound penetrant. Leypoldt and Gough (1980)
and independently Manning (1980) examined the same system using finite Fourier
transform methods. More recently Keister and Kasting (1986) modelled electric
field enhanced active diffusion within a finite membrane by a separation of vari-
ables method, and derived an expression for the lag time. Chen and Rosenberger

(1991) derived closed form solutions for the steady state permeability and lag time

of a linear diffusion system with concurrent reaction using the Laplace transform
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technique.

In this chapter we present an alternative analysis of bounded diffusion with
concurrent chemical reaction and obtain closed form expressions for the concen-
tration profile of the penetrant and the total quantity of diffusant exiting the
membrane as a function of time. The effect of applied electric field and chemical

rate constant on both the lag time and the permeability is also elucidated.

voltage }——M—————
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Figure 5-1: Schematic representation of free standing membrane of finite thick-
ness L, containing immobilised active binding/reaction sites. The penetrant
species passes through the membrane from a donor to a receptor compartment.
A uniform electric field is present in the membrane which can facilitate transport
of penetrant.

The mathematical model presented can be used to analyse the following ex-
perimental arrangement. We consider a thin homogeneous membrane of thickness
L that separates two bulk volumes figure 5-1. We assume that the diffusion is
planar. hence the spatial variable is defined over the range 0 < z < L. The
region x < 0 is designated as the donor compartment and the region x > L is
the receptor compartment. We also assume that the membrane is subjected to a

constant uniform electric field. Furthermore the diffusing penetrant reacts within
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the membrane according to a first order kinetic expression with a rate constant
k. Initially, the membrane is devoid of penetrant. At time ¢t = 0 the face of the
membrane adjacent to the donor compartment is exposed to a concentration ¢
while the other face in contact with the receptor compartment is maintained at
zero concentration. It is also assumed that the solutions on both sides of the
membrane are well stirred, that the receiver solution acts as an infinite sink and
that the donor solution serves as an infinite source.

The mathematical description of the problem involves a time dependent dif-
fusion equation of the following type:

ou  0*u ou

which is the same as equation (4.10). This expression is presented in non dimen-
sional form. This is done via definition of the following normalised parameters
as have been defined in the previous chapter :

c Dt T kL? wll i

U= — :___l T = — f“_" — .2
- KCo' e i e | f D ) S

where u represents a non-dimensional penetrant concentration at any point in
the membrane which is scaled with respect to the concentration ¢, at the donor
solution/membrane interface, and x is the normalised distance variable scaled
with respect to the total thickness L of the membrane. Hence we note that
0 <u<1and0 < x < 1. The representations of 7 and /3 have been previously
described in section 4.6.

The expression presented in equation (5.1) should be compared with the the
equation governing simple passive diffusion within the membrane which is well

described by the time dependent Fick diffusion equation

or  Ox?
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The problem is defined mathematically in terms of the following initial and

boundary conditions:

w(x; 0} =8, Wl r)=1, il el (5.4)

The first condition is the initial condition. The second and third are boundary
conditions and they describe an infinite source on one side and an inifinte sink
on the other.

We shall initially present a solution of the simple passive diffusion problem
governed by equation (5.3) and then outline how the more complex situation of
diffusion coupled with concurrent electromigration and chemical reaction which
is governed by the differential equation presented in equation (5.1) is tackled.
In both cases we utilise the technique of Laplace Transformation which is the

solution technique of choice when bounded diffusion problems are examined.

5.2 Passive diffusion in a finite membrane

We initially indicate the manner in which the Fick diffusion equation (5.3) is
solved subject to the initial and boundary conditions presented in equation (5.4).
The diffusion flux at the membrane receptor compartment interface corresponding

to x = 1 is given by

Dkcey [ Ou

j= W (5.5)
Lelak oy iy
and the normalised diffusion flux is given by:
jL ou
. SOMEER W e (5.6)
DK,C() (9)(

3
We take Laplace transforms of equation (5.3) to obtain the following ordinary

differential equation:
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— —pu=0 (5.7)

where p denotes the Laplace parameter and @ represents the concentration of
penetrant in Laplace space. Equation (5.7) is subject to the following transformed

boundary conditions:

1
#(0;p) = . Wl pr =4 (5.8)

As outlined in appendix E.1, the solution of equation (5.7) is given by:

cosh(y/px)  sinh(y/px)  sinh(y/p(1 — x))
P ptanh(,/p)  psinh(\/p)

We use the complex inversion theorem to obtain the inverse Laplace Transform

u(x,p) = (5.9)

and invert equation (5.9) to obtain the following expression for the normalised

concentration profile:

>, sin(nmy ,
Wt =10 T _(7;_) exp(—n"r’T) (5.10)

n=1

Typical diffusant concentration profiles through the membrane obtained using
equation (5.10) are presented in figure 5-2.

We can use equation (5.6) and equation (5.10) to obtain the following expres-

sion for the diffusion flux at the membrane/receptor compartment interface:

ou X, sin(nmy) s
¥(r) = - <_> =142 ——=~ exp(—nnr) (5.11)
ox . n; nmw

The total quantity N(t) of penetrant passing through the membrane after

time ¢ is given by:

N@it)=A O"j(t)dt (5.12)

. . y 2 . .
where A is the membrane surface area. Since dt = ;—3—(17' then using equation
s

(5.6) we can readily show that
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Figure 5-2: Typical concentration profiles computed using equation (5.10) for
simple passive diffusion through a membrane of finite thickness. The con-
centration profiles are presented for normalised times (from left to right) of
T = 1x1074,1x1073, 1x1072, 3x102,0.1 and 0.6 respectively

N(r)=Ng /OT U(7)dr (5.13)

where the total quantity of material released into the receptor compartment
' — o R o N(T) ies ineg
at very long times is given by Ny = ALkcy. The ratio 5= versus 7 defines the
o0
quantity of primary experimental interest.
From equation (5.11) and equation (5.13) we can show that

(=1)" :

e exp(—n’n?T) (5.14)
n’m

and we can identify the normalised lag time as t;, = % A typical release
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Figure 5-3: Variation in quantity of penetrant delivered to the receptor compart-
ment as a function of normalised time. This curve was computed using equation

(5.14)

profile is presented in figure 5-3.
We can obtain useful limiting expressions for the normalised release function
Q(7) in the limit of short and long times 7. We return to equation (5.9) and note

that

i = p~'cosech/psinh(y/p(1 — x)) (5.15)

Now short times correspond to 7 < 1 and p > 1. Under such conditions

we note that cosech(y/p) ~ 2exp(—,/p). Also gLX_‘X_l = —,/p cosech /p =

—2,/pexp(—/p) and so the normalised release profile is given by
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Lo gnl 4 ‘l_’_’> L —1(@) :
Q(r) =-L [/0 <(1X X:ldT}-— L l:p i x:ldT (5.16)

where L™!

represents the inverse Laplace Transformation operator and we
have used the fact that integration with respect to time 7 is equivalent to division
by the Laplace parameter p. Hence the diffusant release profile at short times is

obtained by inverting the expression:

Q) 27 lp;z:i ('.xp(—\/]_))} (5.17)

We note (Churchill (1972))

it i, 2
g [(—EI—)[I)::_,M] = 2\/§ex1)[~%] — (yorf(:[%] % 2\/Fierf(:[2(#] (5.18)

where o« > 0. If we set o« = 1 we obtain

1
Qri=4 T’i(!rf(i[—]
where we note that ierfc denotes the complementary error function integral

which is defined as

ierfc(x) = % /xoo(f)—x) exp[—0%]df = /xoo erfc[f]df = /Xoo(l —erfc[f])dd (5.20)

where 6 is a dummy integration variable and erf(x) represents the well known
error function. It can be shown Spanier and Oldham (1987) that the following
asymptotic expansion is useful when the argument of the repeated integral of the

complementary error function is large:
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2 exp[—x?] & (n + 2j)! (
\/7?(2X)ll+l = Il' (2)()2’ :

Specifically for n = 1 and setting n = 2—\'/——; we obtain forn > 1 (or 7 < 1)

i"erfe(x) =

2 exp[—n?]
Vv (2n)?

and so the expression for the release profile valid for short times is given by

i"erfc(n) ~

Q(1) = 4\/?[2(\3‘1)[_%) ]] il e 1

T ﬁT“i exp[——

47']
This expression is valid up to 7 & 0.02 (error 10%). For 7 = 0.1 there is a

%l

50% error in using equation (5.23) to estimate the quantity of diffusant released
from the membrane. The full expression must be used for 7 values greater than
0.02.

Conversely for long times when p < 1 we use the fact that cosech /p ~

3
z = 5 A N el ey \ viladll s e o s
to obtain p~2 cosech (\/p) & -5 — % and when the latter is substituted

\/7_' P

in equation (5.16) we obtain

1
QU BT (5.24)

This expression valid at long times is used experimentally to evaluate the
lag time 7;, and hence the diffusion coefficient D, of the penetrant through the

membrane. Now the permeability in normalised form is defined as

LP  (dQ ;
= — = _— -2r
AT (m)rm D)

Hence from equation (5.24) we note that p = 1 as expected for a system

exhibiting simple passive diffusion. Furthermore, the normalised lag time is

Dty
Wi i

I :
S <
ilia (540
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hence the lag time for passive diffusion through a membrane of thickness L is

predicted to be t;, = (f—;; as is well known (Crank (1975)).

5.3 Electric field assisted diffusion with concur-
rent first order chemical reaction in a finite
membrane

We now present a solution of equation (5.1) which describes electric field assisted
diffusion with concurrent first order reaction kinetics in a finite membrane. Such a
situation would typically correspond to iontophoretic transport of a charged drug
species across a membrane barrier in which the drug can be metabolised via first
order kinetics. The analysis could also be used to describe substrate transport
and reaction within a free standing electronically conducting polymer membrane
in which the diffusing substrate reacts with sites located on the polymer chains
via first order kinetics.

We apply the Laplace transform to equation (5.1) to obtain:

;o ﬂi P u=0 (5.27)

This ordinary differential equation with constant coefficients is solved using the
Laplace Transformed boundary conditions presented in equation (5.8). The gen-

eral solution to equation (5.27) is

a(x,p) = exp[éx] [A cosh(y/¢ + px) + Bsinh(y/¢ + px)] (5.28)

where we note that

_ﬁ N 2 /_3_2_ r
fomp (=0 e (5.29)
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and A and B are constants of integration which are evaluated from the bound-
ary conditions presented in equation (5.8). As outlined in appendix E.2 we can

show readily that

Lt b sinh(1/¢ + p(1 — x) >
Ilr(/\’[)) = (VXI)[f/\/,] ]) Si[lh \/m (:)30)

When the diffusion is passive £ = 0, and if there is no loss of penetrant via
first order chemical reaction then ¢ = 0 and we note immediately that equation
(5.30) reduces directly to equation (5.9) which we have previously examined. The
Laplace transform presented in equation (5.30) may be inverted using the Heavi-
side expansion theorem or via the complex inversion formula (Spiegel (1965)). In
appendix E.2 we use the former strategy to show that the normalised penetrant

concentration profile within the membrane is given by

u(x, 7) = us(x) = w(x,7) (5.31)

where ug represents the steady state component and wu, is the transient con-

tribution to the concentration profile. The latter quantities are given by:

sinh(y/C(1 — X)]

/_3 ][sinh(\/'y - %2(1 ~ X)] (5.32)

us(x) = exp[€x] . B, = 0xp[2 X T m
and
/ 2
Wty r) = 2(‘xp[ x] Z 3L22 sin(nmy) exp[—(n’n? 4+ v + = 1 )7](5.33)

=14 7T2+"Y

We can readily show that the expressions presented in equation (5.32) and

equation (5.33) reduce to that outlined in equation (5.10) when the parameters

3 and ~ are both zero and simple passive diffusion pertains. Normalised concen-
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tration profiles for penetrant are presented in figure 5-4 - 5-11 for typical values
of the migration parameter 8 and the reaction/diffusion parameter v. These pro-
files are presented in a three dimensional format for ease of representation. For
instance in figure 5-4 we show how the normalised concentration profile u varies
with 4 at different values of normalised time 7 ranging from 7 = 0.01 to steady
state when the reaction/diffusion parameter v is zero. In figure 5-5 concentration
profiles are presented for various  and 7 values but in this case v = 1. The
same computation is repeated in figure 5-6- 5-8 but in this case v = 10, 100 and
1000 respectively. A further set of concentration profiles is presented in figure
5-9 - 5-11. In this case the effect of the sign and magnitude of the migration pa-
rameter on the shape of the (u, x,7) surface is explored. In figure 5-9 the effect
of negative 3 on the value (u, x,y) surface is presented. Here the field opposes
the migration of penetrant through the membrane. In figure 5-10 where 3 = 0
the time development of, and the effect of the reaction/diffusion parameter v on
the (u, x,7) surface is presented. In figure 5-11 the time variation of the (u, x, )
surface when = 10 is presented. Here the field enhances penetrant transport

through the membrane.

5.4 Discussion

In appendix E.3 we show that equation (5.1) may be integrated to obtain an
analytical expression for the concentration profile of penetrant if a solution of the

following form is assumed:

u(x, 7) = exp[§x] exp[—(T]w(x, T) (5.34)
where w(x, 7) satisfies the simple Fick diffusion equation:
0 o i
b 1 (5.35)

gr: L
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and also satisfies the following initial and boundary conditions:

wix,0) =0, w0, 7) =expiCr], Wik, }=0 (5.36)

where we define 1 = g This alternative strategy can prove to be very useful
when other types of bounded diffusion problems in membranes are considered.
As outlined in Appendix E.2 | we can show that the normalised release profile

of penetrant from the membrane as a function of time is given by

1)[1112 2

Qlr) = \[(“{p[f (oso(h[\[ C]T + 2 exp[¢] "Z:I m(l — exp[—(n*7* + ¢)7])
(5.37)

We follow Leypoldt and Gough (1980) and note that the complex variable
theory (specifically the method of contour integration) may be used to express
the following infinite series in terms of a closed form expression involving the

hyperbolic functions

00 ( 1)n"zﬂ,z a 1 TR ; % L
Z m i ((,()5(,(,11\/—5((,0“1\/2 \/(_:>>

n=l

and so the normalised release profile of penetrant becomes

Q(r) = \/onp[f]cosech[ﬁ]r—%(exp[f] ((:()S(!(Illﬁ((iot}l[—%))( —exp[—(n?*724¢)7))
(5.39)

In the limit of long time the last term on the right hand side of equation (5.39)

C,"!

reduces to zero and we obtain that

Q(T = o0) = \/Eexp[f](:oscch[\/aT - %exp[&] <cosech\/-c_(c0th\/2 - %))
(5.40)

The normalised permeability may immediately be evaluated from the latter

expression and is given by
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dr

p <Q> - C(‘,xp[£](:()sc(:ll[\/a (5.41)

We also note that equation (5.40) can be written in the form

Q1 — 00) = p(, &) — p(¢, £)7L(C) (5.42)

and so the normalised lag time for electric field assisted diffusion with con-

current first order chemical reaction is given by

fee _2_%(@,11\& 3 %) - —ﬁL(ﬁ) (5.43)

where L(x) is the well known Langevin function which is given by

L(z) = coth(x) — % (5.44)

Equation (5.43) may also be written in another way

(0 = ~5 (/0 = () (FL/O) (545

where 7,,(0) denotes the normalised lag time for passive diffusion. Equation
(5.41) and Equation (5.45) may be used to examine the way in which the per-
meability and the lag time vary with the diffusion/migration parameter 3 and
the diffusion/reaction parameter v. When the n parameter is very small we note
that coth /¢ =~ %(1 + §)and Z’L(\/Z) ~ 1 and we obtain that 7;,(¢) ~ 7,(0) as
one would expect. Also since cosech /¢ ~ % and exp(§) ~ 1+ ¢, for small values
for £ and ¢, then from equation (5.41) we note that the normalised permeability
p reduces to p~ 1+ & &~ 1 as indeed it should.

For the specific case of active diffusion or iontophoresis corresponding to v = 0

the pertinent expressions for the permeability and lag time are given by
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B B B 1 e
3) = — exp|=|cosech|=| = ——— — ="*
p() 5 (xp[z](osm }1[2] it

(5.46)

The first expression in equation (5.46) provides and analytical expression for
the degree of current or flux enhancement at the membrane receptor interface due
to iontophoresis under steady state conditions. The second expression is equation
(5.46) indicates how the normalised lag time varies with migration parameter /3.
The expressions provided in equation (5.46) are represented graphically in figures
5-12 - 5-14. In figure 5-12 the current enhancement factor is plotted as a function
of the migration parameter 3. The same function is displayed in semi-logarithmic
format in figure 5-13. Now [ = ‘%’— = 5% where VV denotes the applied
potential difference across the membrane and z is the valence of the diffusing
species. Hence from figure 5-12 we note that the enhancement ratio or the ratio
of steady state flux with applied voltage to the steady state passive flux is an
asymmetric function of applied voltage VV. For large positive values of 3 the
enhancement factor is a linear function of 3. For negative values of 3, when the
applied voltage inhibits the flow of charged species through the membrane, the
enhancement factor is a rapidly decreasing function of 3 (figure 5-13). Typically
for B = —10,p = —4.54 x 107" or jyr = —4.54 x 107*jp. The species flow
is therefore strongly inhibited. As noted from figure 5-14 the ratio %%)2 is a
symmetric function of the  parameter. The lag time for active diffusion relative
to that observed for passive diffusion is reduced with increasing positive values of
A. However due to symmetry of the function %%%)Z, the lag time is also reduced for
increasingly negative values of the 3 parameter. This observation has also been

noted by Keister and Kasting (1986) and while it may seem at first unusual, it can

be explained by the fact that the steady state flow is much lower and therefore
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it takes less time to attain this steady state. It is interesting to note that Chen
and Rosenberger (1991) have determined that the symmetry exhibited by the
lag time expression arises mathematically from the symmetry with respect to
the exchange of the co-ordinate variables exhibited by the corresponding Green’s
function for the general diffusive/convective boundary value problem.

The results presented in equation (5.46) derived from the more general ex-
pressions presented in equation (5.41) and equation (5.45) are in exact agreement
with those previously published by Keister and Kasting (1986) who examined
iontophoretic drug transport through a finite membrane and solved the diffu-
sion/migration equation via the separation of variables technique.

For the specific case of passive diffusion couples with concurrent first order
chemical reaction corresponding to the situation of 4 = 0, the normalised per-

meability and lag time are given by the following expressions:

p(y) = /ycosech /vy

ok )

= l\/(%) {3((:()th\/— - %)} (5.47)

71,(7)

is g y i at cosec a4 b . e £l \
When 7 is small then noting that cosech /7 =~ 7 and coth /7 ~ 7 + %, we
can readily show that p(y) — 1 and 7,,(y) — 7,(0). Conversely when 7 is large

then cosech /¥ ~ 2exp(—,/7) and coth /7 & 1 + 2exp(—,/7) and therefore

37’L(0)
\/,7

TL(7) =

{1 G % 4 26-'1017(—\/“7)}

8- 4)

Hence we expect that the normalised permeability and the lag time decrease

(5.48)
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rapidly with increasing values of v when + is large. This contention is supported
by the computations presented in figure 5-15 and figure 5-16. We note from
figure 5-15 that if a semi-logarithmic scale is used, the normalised permeability
exhibits only a small decrease with increasing vy up to a value close to 0.5. It then
decreases quite rapidly with increasing reaction/diffusion parameter. A similar
behaviour is observed for the normalised lag time.

The general situation corresponding to finite values of 4 and ~ is described
by equation (5.41) and equation (5.45). In figure 5-17 we indicate the manner in
which the normalised permeability p varies with the migration parameter 3 for
various values of the reaction/diffusion parameter y. When the reaction/diffusion
parameter is small then p varies linearly with 3. Hence we observe a marked
enhancement in the steady state flux with increasing value of the electric field.
When v becomes significant the p versus g behaviour changes. We note from
figure 5-17 that p still increases with increasing # but when = is significant the
strictly linear increase is not observed for all values of . Indeed for 3 values in
the range 0.01 to 1, p can be less than unity if v is finite. Hence if the electric field
is small and the concurrent chemical reaction is operative then the steady state
flux of penetrant can be less that that observed for simple passive diffusion in the
absence of electric fields and chemical reaction. Penetrant flux enhancement is
only observed for 3 values greater that 1, and indeed the operation of a chemical
reaction within the membrane reduces the enhancing effect of the electric field on
the transport rate of penetrant species. This statement can be seen more casily
in figure 5-18 where we show the variation of p with v for different 3 values.
We see from this that p decreases smoothly with increasing v for all values of 3
examined, but the dis-enhancing effect of 4 on p is not as marked for 3 values.

The variation of lag time with 3 and 7 given by equation (5.45) is illustrated
in figure 5-19 and figure 5-20. Here the computational datum is the ratio of the
normalised lag time for finite 3 and 7 to that expected for simple passive diffusion.

In figure 5-19 we indicate how the latter quantity varies with migration parameter
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g for given values of the reaction /diffusion parameter . The lag time decreases
significantly with increasing /3 for all values of v examined, although the rate of
decrease is not as marked when v is large. furthermore, any effect that v has on
the lag time ratio is not resolvable for 3 values greater than 70. In figure 5-20 we
indicate the manner in which the lag time ratio varies with v for various /3 values.
Again the lag time ratio decreases with increasing v for small to intermediate /3
values but when 3 becomes significant (> 20) very little variation in lag time

ration with ~ is observed.

5.5 Concluding Comments

In the initial sections of this chapter we examined passive diffusion through a
membrane of finite thickness and derived (via Laplace Transform analysis of the
time dependent Fick diffusion equation) analytical solutions for the concentra-
tion profile of penetrant through the membrane as a function of time and for
the amount of penetrant released into a receptor compartment as a function of
time. The lag time and penetrant permeability can be derived from the latter
expression.

In the second part of the chapter we have shown that the technique of Laplace
Transformation provides a useful protocol for the solution of material transport
problems in finite membranes in which diffusion , migration and concurrent first
order chemical kinetics are considered. The variation of the substrate permeabil-
ity and lag time with both reaction/diffusion parameter and migration/diffusion
parameter is computed via analytical solution of the diffusion /reaction/migration
equation to obtain closed form expressions. These expressions are used to com-
pute dimensionless working curves for the steady state permeabilities and the lag

times that can be compared with experimental data.
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