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Summary

Electrodeposits are fractal in nature when grown in a flat electrochemical cell, 

in which an aqueous solution of salt of a metal such as Cu, Zn or Ag is held be­

tween an anode and cathode by two flat sheets of perspex. These fractals undergo 

dramatic changes in their morphologies when grown in the presence of a perpen­

dicular applied magnetic field. In the case of a central cathode encircled by a ring 

anode, deposits become spiral rather than radial in appearance, while the stringy 

deposits grown between two linear electrodes tilt markedly.

An adapted diffusion limited aggregation (DLA) model was used to represent 

this system. The basic DLA model considers an ion as a random walker moving 

about a square lattice until it sticks to an occupied neighbour. As detailed in Chap­

ter 2 this model is adapted to include physical features of the system — applied 

voltage, magnetic field B, gravity — by varying the probabilities of a particle mov­

ing in a given direction. Multiple ions moving simultaneously reflects concentration 

c, and reaction kinetics are introduced through a variable sticking probability.

Chapter 3 considers the effects of these adaptations and the resultant similar­

ity to real electrodeposits. Two magnetic field models are considered, the second 

of which accurately reproduces the morphologies and chirality seen experimentally 

for both circular and linear electrode geometries. The magnetic field effect is most 

likely due to a system-wide Lorentz force induced convection, but can also be con-
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sidered in terms o f  a local electrokinetic effect. Scaling considerations indicate that 

the modelled aggregates represent structures which may be as much as four or­

ders o f  magnitude smaller in diameter than their experimental counterparts. Each 

point on a simulated aggregate may represent the nucleation and growth o f a single 

micron-sized crystallite as found in SEM examination o f these electrodeposits.

An applied magnetic field is also known to enhance the current density j  

plating at a flat electrode surface. In particular, a j  oc relationship has

been reported. This phenomenon was modelled numerically (Chapter 4) using the 

commercial hydrodynamics finite element package FLUENT, and focussing on the 

Aogaki cell geometry which consists o f  an open channel, with a cathode on the 

upper plate and anode on the lower plate, all immersed in a large bath o f electrolyte. 

The j  X B  force induces hydrodynamic flow in the channel which stirs the diffusion 

layer, and thus varies j .

Numerical resuhs in Chapter 5 confirm the j  a  relationship, and

indicate regions o f reverse flow inside the channel walls. At higher fields and con­

centrations, this stretches over the electrode surface. In this case two separate flow 

regimes are identified and the resultant current density profile is examined.

Useful application o f  these magnetohydrodynamic principles requires the abil­

ity to tailor a magnetic field in a specific region in space. One such system o f nested 

permanent magnet cylinders, which achieves a confined, variable field, is consid­

ered in detail in the appendices.
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Abstract

Numerical simulations o f magnetic field effects on electrodeposition are presented. 

An adapted diffusion limited aggregation (DLA) model is used to model electrodeposition 

in a flat electrochemical cell with either concentric or parallel electrodes. Physical prop­

erties of the system such as applied voltage, magnetic field B  and gravity are Introduced 

into the basic random walker DLA model by varying the probabilities that a particle will 

move in a given direction. Multiple particles move simultaneously. Resultant structures re­

produce the morphology and chirality of spiral structures in a circular geometry and tilted 

deposits in a linear geometry for both horizontal and vertical cells. Fractal dimensions 

range from 1.67 < D f < L9L Scaling analysis indicates these electrodeposits may be self 

similar over at least four orders of magnitude. SEM data shows fi’actal behaviour of these 

electrodeposits down to the scale o f individual micron-sized crystals, indicating that each 

point on a simulated aggregate represents the nucleation and growth of a single crystallite.

Enhancement of the current density j  at a flat electrode in the presence o f B  is mod­

elled for an Aogaki cell geometry using the FLUENT finite element package. The exper­

imentally and theoretically demonstrated j  oc relationship was confirmed where

c is concentration. Regions o f reverse flow, which stretch over the edge of the electrode at 

high fields, are analysed in relation to the current density profile along the electrode surface, 

indicating two separate flow regimes at the plate.

Magnetic field control o f electrodeposition requires devices which concentrate B  on 

specific regions of space. An analysis of fields and torques in one such system is presented.



Chapter 1 
Introduction

What do you get when you mix electrochemistry and magnetism?

Well, it goes a Httle like.....

1.1 What is a fractal?

The term ‘fractal’ was coined by Mandelbrot from the Latin adjective fractus derivative 

of the verb frangere meaning “to break”, or to create irregular pieces. He applied this 

term to patterns in Nature, such as coastlines, lightning strikes, clouds, snowflakes and all 

manner of other natural phenomena, from the growth of bacterial colonies to the structure 

of the Universe, which generated patterns indescribable by the rigid constructs of Euclidean 

geometry. Assorted examples [1]- [3] are shown in Figs. 1-4. Stalwart Euclidean objects, 

such as the circle or the line, are in fact far more the exception than the rule in Nature. 

Mandelbrot thus derived a new geometry which extended to describe these systems and 

many new geometric curiosities besides. His geometry considered the way in which a 

pattern fills space on many different length scales.

Central to the definition of this new class of objects was a new way of defining their 

dimension, their fractal dimension. Simply considered [6], for a fractal generated from a 

growth process, its mass M  is related to its linear dimension R  by

M  ~  (1 .1 )

9



1 .Patterns formed by the penetration of warm water into a layer of slush, through a layer 
o f ‘black ice’. The slush later freezes to form the white ice, and the melted regions form 
the patterns of black ice within the white layer (Meakin, 1998).

3



2.Bacterial colonies have fractal structures (Ben-Jacob).

4



3. A head of cauliflower has fractal form (Guyon and Stanley, 1991).

5



4.Spontaneous cracks in this window pane developed with a fractal structure (Guyon and 
Stanley, 1991).

6



M~R^ M~R

(a) (b) (c)

5.(a) space is thoroughly filled and Dj  = 2; (b) for a fractal object 1 <  Z)/ < 2; (c) the 
mass goes as the number N  of lines of which the stringy pattern is formed and Df = I.

7
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Here should be interpreted at meaning “scales as”, and D f defines the fractal 

dimension. Fig.5 outlines how a fractal grown in two-dimensional space can have a non­

integer fractal dimension which is intermediate between the space-fiUing case with D f = 2 

and the linear case o f D f =  1. Thus the fractal dimension o f an object indicates to some 

extent how thoroughly it fills space. This definition extends easily to higher dimensions.

Essential also to the understanding o f fractals, is the concept o f scale-imariance [3], 

meaning that the degree o f their irregularity and fragmentation is identical at all scales. A 

fractal which is perfectly invariant under all degrees o f scaling is said to be self-similar. So 

that if we can make the power law statement

M{R)  = cR^ f  (1.2)

where c is a constant, then we identify the important scaling symmetry

M{XR)  -  c{XR)^f  = c X^ f R^ f  = const ■ M{R)  (1.3)

where A is also a constant.

1.2 Box-Counting

In the course of this study, fractal dimension is determined by the ‘box-counting’ method. 

This method is based on an alternative expression for the power law behaviour of Eq. 1.1 in 

the form of

(1.4)

where is the minimal number o f identical small objects (of linear size e) required to 

cover an object. As represented in Fig.6, 4 boxes o f side L /2  are required to cover the
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M W

e = i/4 s = L!%

6.Two boxes of side L/2 are required to cover the fractal, eight boxes of side L/4, 
fifty-seven boxes of side L/8 and so o n ....

object, 16 boxes of side L/4, 57 boxes of side L/8 and so on, so that in Eq.l .4, means 

“proportional to, when c —» 0”. Dj  may thus be determined from the power law relation

Df = — lim logiV e 
0 logs

(1.5)

Thus by counting the number of successively smaller boxes required to cover a given 

fractal, we may determine its fractal dimension from the slope of a log-log plot of iVg 

against e. Such a graph tends away from linearity at small values of £, so the slope is 

determined from the high e region of the graph. An example is shown in Fig.7 for the 

fractal shown in Fig.6 for which Dj = 1.79. A linear variation of such a log-log plot over 

a large range of scales is a strong indication of self-similarity, and thus of strongly fractal 

behaviour.



lo
g
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2  -

0 I------------------------- -̂------------------------1-----------------------1------------------------- 1-------------------------1---------------------- 1
0 1 2 3 4 5 6

l o g  e

y.Fractal dimension may be calculated from the slope of the linear region of a log-log 
plot of iVg against £.
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1.3 Fractals in the Wild

As this new geometry evolved, the extent of its application was gradually realised. Just as 

some degree of scale invariance is central to the definition of a fi'actal, fractal theories have 

been applied to Nature on all scales, Irom polymer molecules to continental coastlines 

to the large scale structure of the Universe. In the following chapters we will explore 

particular fi'actal structures as they appear in electrochemistry, but first a number of fi'actal 

phenomena and theories are presented as an indicator of the ubiquity of our subject matter.

“How long is the coast of Ireland?”

The original, classic [7] question which yielded a fractal answer was “How long is the 

coastline of Ireland (or Britain or Japan, or whatever country one happens to be writing 

one’s thesis in)?”. Coastlines are fractal in the sense that they are curves with fractal di­

mension greater than one. The difficulty in measuring the length of a coastline is one of 

scale. A first estimate will involve effectively neglecting much of the detail of Qords and 

other features along the perimeter. Increasing the accuracy of the measurement to include 

some of these features will increase the calculated value for the length. The precision of 

the measurement can be refined to the level of individual grains of sand and on down to the 

molecular level. So how long is the coastline?

The solution underpinned by Richardson and later Mandelbrot is that a coastline is 

not simply a one-dimensional line, but rather has a fractal dimension Dj  ~  1.2, and the 

structure of the detail and corrugation is similar on a variety of scales. Thus its measured 

length depends on the scale on which the measurement is made. Measurements of the
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8.8
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8.A log-log plot of coast length against scale yields a fractal dimension of 1.31 for the 
coastline o f Ireland.

length o f the coast o f Ireland vary from 800 km when measured on a 400 km scale, to 

1660 km on a 40 km scale and 3272 km when measured to a scale o f 4 km. A straight line 

results from a log-log plot of length against scale as shown in Fig.8, and yields a fractal 

dimension of  Df  = 1.31 for the Irish coast.

Fractal neighbourhoods

Quite aside from fractal features in Nature, human social and geographical networks also 

appear to develop according to fractal principles. Extensive work on the theoiy o f the “frac­

tal city” has been completed by Batty and co-workers [14] [15], who show the geometry
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of urban residential development to be fractal. The degree to which space is filled, and 

the rate at which it is filled, both follow scaling laws which imply self-similarity at differ­

ent scales. Furthermore, population density functions based on inverse power laws yield 

fractal dimensions specific to each city. Although results vary somewhat for different scale 

and measurement techniques. Batty [15] concludes that the fractal dimensions of Buffalo, 

Cleveland, Columbus and Pittsburgh lie between 1.7 and 1.9. Such models are proving very 

useful for modem urban planning and development. The same authors have begun to con­

sider the “geography” of cyberspace [16]. One can only wonder what fractals are growing 

here too!

The fractal Universe

Fractal theories have been applied to a variety of cosmological phenomena. In fact, fractal 

theories were applied to the structure of universe by Trinity physicist Fournier d’Albe as 

far back as 1907 [17]. On the one hand, percolation models have been used to account for 

the fractal structure of spiral galaxies[l 1]. The model assumes that intense star formation 

is triggered by shock waves due to some nearby event such as a supernova explosion. 

However, shock waves due to star formation in this region can in turn trigger star formation 

in neighbouring regions, and so on ... In this sense clusters of regions of intense star 

formation develop in much the same way as any random, fractal growth process. When 

combined with rotational effects due to the angular velocity of the galaxy being modelled, 

structures very similar to those of spiral galaxies emerge from simulation as shown in Fig.9.
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9.The left-hand side of this figure shows digitised images of galaxies, while the 
right-hand side shows patterns generated by the galaxy percolation model o f Seiden and 
Schulman (Meakin, 1998).
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On larger scales, fractal models have been used to describe large-scale structure in the 

Universe [12], and even provide an alternative theory for the evolution o f  the Universe as a 

huge growing fractal consisting o f  many inflating fireballs that each produce new fireballs, 

which in turn produce more fireballs and so on ad infinitum, resulting in a “self-reproducing 

inflationary Universe” [13].

1.4 Fractals in Electrochemistry

One important segment o f  the whole field o f  fractal research, and the one that concerns 

us here, is electrochemistry. Electrodeposits produced under a variety o f  experimental 

conditions have unusual structures which have intrigued scientists for over five hundred 

years. A  number o f  classic experiments performed by Matsushita [21], Grier [22][23] and 

Sawada [24] yielded patterns which have sparked renewed interest in this problem in recent 

years.

1.4.1 Circular Electrode Geometry

The experimental set-up consisted simply o f  a flat electrochemical cell, with an electrolytic 

solution o f  some metallic salt (for example ZnS0 4 0 r CUSO4 in water) held between two 

perspex plates with a separation ~  0.5 mm. At the centre o f  the plates is a cathodic rod 

(typically made o f  graphite) surrounded by a thin, flat, ring o f  plating metal (e.g. a ring o f  

Cu, Zn) which acts as the anode in the cell. A  typical experimental set-up is shown in Fig. 

10 .
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lO.Typical flat, horizontal electrochemical cell. The electrolyte is held between the cath­
ode and anode by two sheets o f perspex. A voltage is applied between anode and cathode, 
and metal ions from the solution deposit onto the cathode. A similar set-up can also be ar­
ranged for a circular electrode geometry using a (graphite) rod at the centre o f the cell as 
the cathode, encircled by a ring anode.
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A voltage is applied between the cathode and anode. Metal ions are reduced at the 

cathode and the metallic deposit grows according to the chemical reaction

M"+ +  n e - - > M  (1.6)

M  is a metal, originally m solution in ionic form where n is the number o f positive 

charges on the ion. Some typical patterns formed by the resulting deposits are shown in 

F ig .ll.

The principal factors determining the morphology o f the deposit are the magnitude of 

the applied voltage and the concentration of the metal ions in solution. Approximate phase 

diagrams have been constructed outlining the relationship between morphology and these 

two parameters. Broadly speaking, at low voltages and low concentrations the deposits 

form by diffusion limited aggregation (DLA) and are fine, wispy and fem-like with a char­

acteristic fractal dimension D j = 1.67. Still at low concentrations, but at higher applied 

voltages, the deposits become more dense, growing outwards with an expanding circular 

envelope, and are known as dense radial. At high values of both voltage and concentration, 

the deposits grow rapidly along a small number of branches and loose their radial nature to 

become dendritic. At still higher voltages and concentrations, at the upper extremum of the 

phase diagram, the deposits become increasingly one-dimensional and are called stringy. 

A typical phase diagram due to Grier at al is shown in Fig. 12. Most notably, deposits which 

fall under the DLA classification are of particular interest as this kind of fi’actal structure is 

common throughout Nature (see Section 1.3) and provided the inspiration for an important 

numerical tool which will be detailed in Section 1.7.
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(b)

I, (d)

11.Typical fractal electrodeposits with varying morphologies (a) DLA; (b) dense radial; 
(c) dendritic; (d) stringy.
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12.Approximate phase diagram of fractal morphology as a function of applied voltage 
and ion concentration (after Grier et al).
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(a) (b)

13.Morphologies o f deposits grown between linear electrodes at (a) 15 V, 0.01 M; (b) 5 V, 
0.025 M.

1.4.2 Linear Electrodes

Electrodeposits have also been grown in similar flat cells, but in linear rather than radial 

geometries. In this case both anode and cathode are linear electrodes separated by some 

distance [6] [25][26]. Again the electrode/electrolyte system is held between two perspex 

plates (the purpose o f  the upper plate is to make the system increasingly two-dimensional, 

and also to make it portable for image analysis without disturbing the deposit. Deposits 

may, however, be grown without the use o f the upper plate'.) Typical resultant morpholo­

gies are shown in Fig. 13.

Central to the study presented in this thesis, however, is the way in which these flat 

cell electrodeposits grow in the presence o f an externally applied magnetic field.

 ̂ Indeed in some circumstances, notably at applied voltages higher than the reduction potential o f  hydrogen, 
it may be necessary to remove the upper plate to allow hydrogen to bubble o ff so that it does not interfere 
with the growth o f  the metal deposit.
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1.43 Magnetic Field Effects

Horizontal Circular Electrode Geometry

Magnetic field eflfects on the morphologies o f  electrodeposits grown in flat electro­

chemical cells in the presence o f  an applied magnetic field were first considered by M ogi et 

al [27]-[30]. This group concentrated on the effects when the cell was kept horizontal in the 

presence o f  a vertical, applied magnetic field. This work was further developed by Hinds 

et al [31] [32] [33] to investigate the effects o f  magnetic fields applied in and out the plane 

o f  electrochemical cells which were held first horizontally and then vertically. The results 

were, in some cases, quite surprising. Nakabayashi et al have considered similar effects at 

the liquid/liquid interface [34].

Presented here are some o f  the patterns observed by Hinds [38]. In each case copper 

is plated from an electrolytic solution o f  0.2 M CUSO4 in water. The copper anode has an 

inner diameter o f  22 mm, and a graphite cathode o f  diameter 0.9 mm is used. A  voltage o f  

6 V is applied between anode and cathode. The magnetic field was applied by placing the 

electrolytic cell within the bore o f  a Multimag^ In this way magnetic fields in the range 

0 — 1 T could be applied to the growing deposit. Where a magnetic field is applied, it is 

applied for the duration o f  the growth o f  the deposit.

 ̂ A Multimag is a pemianent magnet variable field source which consists o f two nested cylinders. Each 
cylinder is assembled fi-om segments o f  permanent magnet material with the magnetization o f neighbouring 
segments oriented such that their combined effect is to produce a uniform field within the bore o f the cylinder. 
Thus by rotating two such nested cylinders relative to each other, magnetic fields continuously variable in both 
magnitude and direction may be achieved. This system is studied in much greater detail in Appendix A and 
B.
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Firstly we consider cases where the electrolytic cell is kept horizontal. F ig .ll(b) is 

typical o f a the dense, radial kind of deposit grown in the absence of an applied magnetic 

field.

Fig. 14(a) demonstrates the effect o f a magnetic field o f 0.4 T apphed out o f the plane 

o f the page during the growth. Defined branches emerge in the growth pattern and the 

fractal is seen to become chiral. That is that the branches tend to arch with some radius of 

curvature which can be estimated, yielding patterns which look not unlike spiral galaxies.

In Fig. 14(b) the direction of the applied magnetic field is reversed to be into the plane 

o f the page. The resulting fi-actal is similar to that o f Fig. 14(a), but with an accordingly 

reversed chirality.

Although the results considered in detail here all involve plating of non-magnetic 

metals, some interesting work has been carried out by Bodea et al [35] and Imre et al 

[36][37] on magnetic deposits. In particular, [35] when plating Fe or Co in a flat electro­

chemical cell in the presence of a magnetic field in the plane o f  growth, the resultant deposit 

becomes rectangular in shape, with one side of the rectangle parallel to the field direction.

Vertical Circular Electrode Geometry

When a similar cell is held vertically, the deposits produced in the absence o f a mag­

netic field are very different to the comparable horizontal cell result of Fig. 14. As shown 

in Fig. 15(a), the basic deposits now tend to grow upwards in a column from the central 

cathode, with very little growth beneath. The key difference between this and the horizon­

tal set-up, is that gravity is now acting along the length of the cell. This induces natural
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(b)

14.Copper electrodeposits grown (a) with a 0.4 T magnetic field applied out o f  the plane 
of the page and (b) with a 0.4 T magnetic field applied into the plane of the page.
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convective flow in the cell which is clearly dominant in this configuration. On applying a 

magnetic field into the plane o f the cell, however, the growth regime changes dramatically 

and a chiral pattem again results as illustrated in Fig. 15(b). This time, however, the chi­

rality o f the deposit relative to the direction of the magnetic field is opposite to that of its 

horizontal counterpart in Fig. 14. The chirality of a vertical deposit in a magnetic field is, 

however, difiicult to reproduce. It is neither consistently the same as nor opposite to its 

horizontal counterpart. Most commonly it is a mixture o f both.

Linear Electrodes

On growing electrodeposits between linear electrodes, as in Section 1.4.2, patterns 

of the kind shown in Fig. 16 are formed [41]. Similar effects are seen when depositing to a 

thin wire in the presence of a magnetic field and magnetic field gradient [3 9] [40].

Fig. 16(a) indicates the effect o f switching on an extemally applied magnetic field 

out o f  the plane of growth as the cell is kept horizontal. The branches begin to tilt to the 

left-hand side, the direction o f the Lorentz force.

The deposit shown in Fig. 16(b) was produced under the same conditions, only with 

the magnetic field applied into the plane of growth. The effect of Fig. 16(a) is reproduced, 

but with a reversal of the direction o f the magnetic field effect; the branches now tend to 

lean towards the right hand side.

When deposits are grown in this linear electrode geometry, with the cell held verti­

cally, gravity influences the resultant growth as shown in Fig. 17(a). The tentacles o f growth 

tend to tilt slightly upwards, opposite to the direction of g. When a magnetic field is ad-
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(a)r
•w

(b)

15.Deposits grown in a flat electrochemical cell held vertically in (a) the absence of 
applied magnetic field (b) a magnetic field of 0.4 T applied into the plane of the page.
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(a) (b)

16.Deposits grown in a flat, horizontal electrochemical cell in (a) a 0.35 T magnetic field 
applied out o f the plane o f the page and (b) a 0.35 T magnetic field applied into the plane 
o f the page.
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(a) (b)

17.Deposits grown between linear electrodes in a vertical cell under the influence o f (a) 
gravity alone and (b) gravity combined with an applied magnetic field.

ditionally applied to the vertical cell, the outcome o f the competing effects o f gravity and 

magnetic field is somewhat indeterminate as shown in Fig. 17(b).

1.5 Principles of Electrochemistry

Before we can begin to interpret the mechanisms o f  the interplay between magnetic field 

effects and electrochemical processes, we must first outline some general principles o f 

electrochemistry. For much o f this section, thanks is due to the assorted, received wisdom 

o f a number o f invaluable sources [42]-[47].
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1.5.1 Electrolytes

In an electrochemical system current is passed between two electrodes via an electrolyte. 

An electrolyte is a substance that dissolves in a solvent to produce a conducting solution of 

ions. Here the term electrolyte is also taken to refer to the solution as a whole. Unless oth­

erwise stated, water is generally taken to be the solvent. Other solute species such as acids 

may also be used or added if, for example, the desired effect is to reduce migration effects 

(Section 1.5.4). When a salt is immersed in a solvent, the extent of its ionisation classifies 

the electrolyte as either strong or weak. Immersed in water, the salt is first ionised, and then 

hydrated by water molecules which are dipolar due to their strong hydrogen bonds. The 

dipolar water molecules tend to orient themselves around an ion in solution as in Fig. 18. 

So when considering ions as objects that move through a solution, we actually must con­

sider the larger unit of the ion together with its surrounding hydration sphere of water. This 

structure is more stable than the naked ion, and may consist o f two to three layers o f water 

molecules.

1.5.2 Electrode Potential

Electrochemical reactions occur at the interface between the electrolyte solution and an 

electrode surface. An electrode can act as either a source or a sink o f electrons for the sur­

rounding electrolyte. In the process o f reduction, electrons are supplied from the electrode 

to neutralise positively charged ions in solution; while oxidation takes place when electrons 

are transferred from a negatively charged ion to the electrode. Such reactions are described
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18.Due to the dipolar nature o f water, water molecules orient themselves around an ion 
in solution with them. The ion must thus be considered together with its hydration sphere 
(Hibbert, 1993).



1.5 Principles of Electrochemistry 30

by

O + ne R (1.7)

where O and R  are the oxidised and reduced species respectively. In many systems relevant 

to the present study, the oxidation reaction consists of the dissolution of metal M  from the 

surface of the electrode

In order for electron transfer to take place, there must be a correspondence between 

the energy of the orbital of the valence electron to be transferred to or from the ion in 

solution, and the Fermi energy leveF of the metal electrode. The Fermi energy level Ef  

in the electrode can be adjusted by applying an external potential U, remembering that the 

two are related by

For reduction to take place, electrons must drop from the Fermi level of the electrode 

to a lower orbital energy level available on an ion in solution. The electrode Fermi energy 

must therefore have a certain minimum value before electrons can be transferred. This 

may be achieved applying a sufficiently negative potential to the electrode. This negative 

electrode is then known as the cathode.

For oxidation, on the other hand, electrons must drop from their ionic orbital energy 

level in solution to the Fermi level in the electrode. Thus there is a maximum energy 

that the lowest unoccupied energy level on the electrode can have. This is maintained by 

applying a sufficiently positive potential to the electrode. The positive electrode is known 

 ̂ In a metal, the Fermi energy level is the highest electronic energy level occupied by an electron.

M  M " +  +  n e “ . (1.8)

E f =  -eU . (1.9)
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19.(a)When a negative potential is applied to a metal electrode the Fermi energy level 
is raised, facilitating reduction of an ion. (b)Applying a positive potential to the electrode 
lowers its Fermi level and facilitates oxidation of an ion.

as the anode. Thus applying a suitable potential difference between the anode and cathode, 

electron transfer can be achieved at both electrodes as shown in Fig. 19.

1.5.3 Reaction Kinetics

The value of the electrode potential thus determines whether or not a reduction or an oxi­

dation reaction can take place. It is important to note that an electrode has a certain equilib­

rium potential even in the absence of an externally applied potential. This is known as the 

formal potential U ^\ usually measured relative to the normal hydrogen electrode (NHE). 

In dynamic electrochemistry, the absolute value U o f the electrode potential is not the rel­

evant parameter. Rather we are interested in the its value relative to the standard electrode
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potential, known as the overpotential, U — U°'. This value determines not only the condi­

tions under which an electrochemical reaction can take place, but also determines the speed 

with which the reaction proceeds. Thus the reaction kinetics are determined by the applied 

voltage.

The mechanism o f electron transfer at an electrode occurs in a number o f well defined

steps:

1. The ionic species must move through the solution to the solution/electrode interface. 

The speed o f this mass transfer is determined by the mass transfer coefficient k,i.

2. The ionic atmosphere in the vicinity of the interface is rearranged in response to the

new addition. This takes ~  10~® s.

3. The solvent dipoles associated with the central ion are reoriented in response to the

charged electrode surface. This takes ~  10““  s.

4. Distances between the central ion and the ligands are adjusted. This takes ~  10"^^ s.

5. The electron is transferred. This takes ~  10“ ®̂ s.

Steps 2-5 are all considered under the umbrella of reaction kinetics, which are quan­

tified by the charge transfer rate constants ka and at the anode and cathode respectively. 

ka and kc are determined by the overpotential according to

ka = fco exp [aanF{U -  U^’)/H T] 

K  = k Q e x p [ - a j i F { U - U ^ ' ) / R T ]

(1.10a)

(1.10b)
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If  the reaction kinetics are slow compared to the rate of mass transfer, that is if  ions 

are arriving at the electrode more quickly than they can react, then the reaction is said to be 

m the activation regime.

1.5.4 Mass Transfer: Diffusion, Convection and Migration

Step 1 in the sequence leading up to charge transfer is mass transfer, the transport o f species 

between the electrode surface and the bulk solution. This transport can take place by a 

combination of three mechanisms: diflfiision, convection and migration. The rate of mass 

transfer is monitored by the mass transfer coefficient k^. When the speed of the reaction 

kinetics is large compared to the rate of mass transfer, the reaction is said to be mass 

transport limited. Parameters relevant to mass transport, together with their units and 

typical values are summarised in the table.

Quantity Typical Value Units
Flux, J ~  5 X 10"^ mol m“2 s~^

Current density, j ~  1000 A  m“2
Concentration, c ~  100 mol m“^

Diffusion constant, D ~  1 X 10-9 m^ s-^
Viscosity, u ~  1 X 10-® m^ s-^

Voltage ~  1 V
Velocity, U ~  1 X 10-2 m s~^

Temperature 293 K
Ionic charge number, n 1,2 ,3 ...

Faraday constant, F =  96485.309 C moP^
Gas constant 8.314510 J m o r^

Table 1 : Typical values and units o f  quantities and physical constants relevant in an electrochemical cell.
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Diffusion

Diffusion is the natural movement of a species, whether charged or neutral, due to a 

gradient in its concentration c. Material is swept through the concentration gradient from 

regions of high concentration to regions of low concentration. In the case o f the movement 

of charged species, a net flux J  of the species in the vicinity o f an electrode with normal

where A  is the area o f the electrode through which the current is flowing), according to

where n is the number o f unpaired electrons on the ion, and F  is the Faraday constant, 

F  — 96,500 C m ol~\ The flux J  of a species is the number of moles passing normally 

across a plane o f unit area in unit time, and is measured in units of mol m~^s~^

The net flux J  o f a species through a concentration gradient is given by Pick ’s first

law

n  results in a net current i flowing through the electrode with current density j  (— i /A)

j  =  n F J -n ( 1 . 1 1 )

J  =  - D V c ( 1. 12)

where D is a constant for a given material known as the diffusion coefficient. The rate of

change of the concentration is related to the flux gradient by

(1.13)

leading to the expression of Pick’s second law as

(1.14)

where is the Laplacian operator^.

The Laplacian (del-squared) operator is given by V ^ / =  in Cartesian coordinales.
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Note that at steady state, Eq.1.13 reduces to a conservation equation for current den­

sity

V .J =  0 (1.15)

Convection

When, in addition to diffusion, a convective flow with velocity v is present in the 

fluid, then Pick’s law is modified to give a net flux

J = c v - D V c .  (1.16)

In this case, the first term on the right-hand side indicates the fact that mass transport 

is also achieved when species are moved along within a flow of velocity v. In the case 

of charged particles reacting electrochemically with an electrode, the current density is 

directly enhanced by direct substitution of Eq. 1.16 into Eq.1.11 if v has some component 

which directs the ions towards the electrode surface. In the case where v is parallel to the

electrode surface, there is no direct convective mass transfer to the electrode. The current

density can, nonetheless, be indirectly enhanced as will be outlined in Sec. 1.6.

Pick’s second law is accordingly adapted fi’om Eq.1.16 and Eq.1.13, to give

^  =  -v .V c  + D V V  (1.17)
at

Migration

In the case of migration, ions move through a solution under the influence of an 

external electrical potential applied between two electrodes. In the presence of an electric 

field of strength E =  — VV  ̂(measured in units Vm“ )̂, the net flux of a species due to the
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combined effects of dififiision and migration is

J ^ - D V c - n c ^ E .  (1.18)
K1

The second term on the right hand side of Eq. 1.18 derives from a number of consid­

erations. The net flux of ions with concentration c moving with velocity v is given by

J  =  cv. (1.19)

Neglecting retarding effects, the maximum velocity v achievable by an ion in an electric 

field E  is limited by

v =  uE (1.20)

where the ion mobility u is the proportionality coefiicient between v and E. Finally, the 

diflFusion constant for a given ionic species is closely related to both temperature and the 

mobility of the ion by the Einstein equation

uRT
D =

nF

where R  is the gas constant and T  is temperature.

In the system considered in the Chapters 4 and 5 the electrolyte solution contains 

large quantities of acid. The ions from the acid serve to shield the metallic ions from the 

electrode potential, at all but very small distances from the electrodes. In this system, 

therefore, migration can be largely neglected. In the case of the flat electrochemical cells 

of Chapters 2 and 3, however, there is no acidic supporting electrolyte present, :ind so 

migration must be considered.
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1.5.5 Diffusion Layers and Natural Convection

Of the processes outlined in Sec. 1.5.4, the most relevant to us here is difllision. DiSusive 

mass transfer is achieved w^hen material is swept through a concentration gradient from a 

region of high concentration to a region of low concentration. So we must consider the 

concentration gradients arising in an electrochemical cell. The elecfrodes are immersed 

in an elecfrolyte which contains a bulk concentration Cqq of a given ionic species. If that 

species reacts at the electrode, and assuming that the reaction kinetics are sufficiently fast 

that the reaction takes place immediately on the ion reaching the elecfrode surface, the 

concentration cq of that ionic species at the electrode surface is zero. Thus a concentration 

gradient arises in the vicinity of the electrode as the concentration varies from cq on the 

surface to the bulk value of Coo some small distance away.

The concentration profile is not strictly linear, and the concentration gradient actu­

ally tends asymptotically to zero at large distances from the electrode surface as shown in 

Fig.20.

Nonetheless, a linear approximation can be used to estimate the thickness 6d of the 

diffusion layer, so that the one dimensional concentration gradient may be given as

  ^oc Q)

dy 6d
( 1.21 )

Pick’s first law

dc
j  = n F D ~  

dy
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c = c

Solution

20.Aiiter an initially steep concentration gradient at the electrode surface, the concentra­
tion gradient tends asymptotically to zero at large distances from the electrode surface. A 
linear approximation for the concentration profile can be used, however, to estimate the 
diffusion layer thickness 6d-
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from Eqs. 1.11 and 1.12, may thus be simplified so that the diflusive current density is given 

by

j  = nFD^ °°~ ^ . (1.22)
Od

Thus the thickness of the diffusion layer is the essential parameter in determining the cur­

rent density in the mass-transport limited regime. The value of 5d is limited by natural

convection, and may be controlled by forced convection. The latter mechanism will be 

examined in Sec. 1.6.

At the onset of an electrochemical reaction, a concentration gradient is established 

at the electrode surface. As the reaction proceeds it ‘eats’ further and further into the 

supply of ions from the bulk solution, and the diffusion layer widens accordingly. This also 

establishes, however, density gradients between the ion-rich and ion-poor regions of the 

electrolyte which results in gentle churning (convection) of the electrolyte at the edge of 

the diffusion layer. After some time t, the thickness of the diffiision layer becomes limited 

by these natural convective effects. This growth of the diffusion layer thickness is given by

= (1.23)

where, depending on the solution and the orientation of the electrode surface, a limiting 

value for 6d is typically reached after a time t of the order of 30-60 s. Since D ~  1 x 

10~® m^s”  ̂ (Table 1) it follows that 6d is typically ~  300 /im thick when the limiting 

current is reached.
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This also establishes that in the absence of forced convection, a value may be deter­

mined for the limiting diffusion current density that is

n F D ^ ^ ‘̂ {coo -  Co)
( 7 r f ) i / 2

(1.24)

This is known as the Cottrell equation.

1.6 Magnetohydrodynamics

Hydrodynamics is the study of fluid flow [49], [50]. It considers patterns which evolve 

in fluid flows, particularly when the fluid is interacting with solid objects in its path. It is 

guided by a number o f essential principles and equations from which analytical solutions 

may be derived for the most simple geometries, but which also lend themselves to solution 

by numerical techniques for more complex scenarios. Hydrodynamics essentially considers 

the result of competition between internal friction within the fluid (viscosity) and friction 

between the fluid and a solid surface (the ‘no-slip’ condition) on the one hand, and a driving 

force such as a pressure gradient, gravity or some externally applied force on the other hand. 

Resultant velocity profiles vary widely from system to system.

Hydrodynamics becomes ^magnetohydrodynamics'’ in the presence of an applied 

magnetic field, when a force influencing the fluid flow is the Lorentz force on charged 

particles within the solution or conducting melt.
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1.6.1 Principles of Hydrodynamics

Continuity and Navier-Stokes Equations

The fluids considered in this study are incompressible liquids, and for such liquids 

the following equation o f  continuity o f  momentum holds

V - v - 0 .  (1.25)

This is simply a restatement o f  the law o f conservation o f matter, insisting that flowing fluid 

which enters a region o f  space must all re-emerge from that region o f space. Fluid cannot 

be created or destroyed (or compressed) at any point.

The velocity profile for a given flow is monitored by the Navier Stokes equation

: ^  =  - l v p  +  i / V V + -  (1.26)
Dt p p

where p  is pressure (in units kg m“ ^s~^), p is density (kg m“ )̂, u is kinematic viscosity

(m^s“ )̂ and f  is the sum o f  any other externally applied forces (per unit volume, measured 

in units kg m“^s“^), which may include gravity and/or the Lorentz force. Eq. 1.26 is es­

sentially just a detailed expression o f Newton’s second law o f motion a  =  F /m . That is to 

say that the resultant force experienced by the fluid (terms on the left hand side) is the vec­

tor sum of the applied forces (on the right-hand side). Given that the velocity may vary not 

only in time, but also with position in the fluid we can write out the acceleration as the full 

partial derivatives o f the velocity field, which casts Eq. 1.26 as

d v  d ^ d v  d y d v  d z d v  1 „  ̂ o'7 \
 1------------ +  — — H =  — V p  +  u V ^ v +  (1.27)
dt  d t  d x  dt  dy  dt  d z  p ^  p ’
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Viscosity

The kinematic viscosity u relates to the viscosity /i and the density p by

u = -  (1.29)
P

where the viscosity /x is a measure of the internal friction within a fluid; that is the friction 

between adjacent ‘layers’ o f the fluid as they move relative each other. In a liquid in which 

this intemal friction is high, the fluid does not flow easily. Such a fluid is said to be very 

viscous; an example would be glycerine. When u is low, on the other hand, the fluid flows 

with ease. Examples of less viscous fluids are air and water.

One very important consequence of viscosity is the friction that it generates between 

a solid object and the layer o f fluid in contact with its surface. As a fluid flows past the 

solid surface, the layer o f fluid particles immediately adjacent to the surface adhere to it 

and remain motionless. The stationary layer may be several molecular layers thick. This 

‘no-slip’ condition of

v  =  0 (1.30)

at the boundary with any solid object, sets essential boundary conditions for solving equa­

tions 1.25 and 1.27.

Characteristic Numbers

Hydrodynamic flow is typically classified in terms of its Reynolds Number Re
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for flow with velocity [/ o f a fluid with viscosity i> past a plate o f length d. The dimension- 

less Reynolds number gives a strong indicator of the kind of flow expected from a given 

system. The particular critical value of Re varies somewhat from system to system, but 

for flow past a flat plate, if  Re < 2000 then the flow regime is laminar. For Re > 2000, 

however, the flow becomes turbulent.

The Schmidt number

is characteristic o f the medium with v  and D  primarily representing the properties of the 

solvent and ionic species respectively. Typically 5c  ~  10  ̂ for an aqueous solution (Table 

1). The Pec let number,

on the other hand, represents the relative contributions o f convection and diffusion to the 

transport process.

1.6.2 Magnetohydrodynamics

A particle carrying electric charge q, moving with velocity in a magnetic field B  experi­

ences a force F lor

known as the Lorentz force.

Current i is simply a transfer o f charge per unit time, and thus current density j  may 

be defined as

(1.32)

(1.33)

Flot =  gv X B (1.34)
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where A  is the area through which the current is passing. In the case of electrodeposition, 

A  is the area over which ions are plating. We may thus, from Eq.1.34, define a force per 

unit volume to quantify the effect on a current density j  of an applied magnetic field B,

^ L o r = j x B  (1.36)

In the case that B is not applied parallel to j, then this Lorentz force will tend to in­

duce motion of the ions perpendicular to both j and B. As a result of the large hydration 

spheres about each ion, this induces bulk flow of the surrounding solution. Hydrod>Tiamic 

flow develops in the system. The induced velocity profile may be determined by consider­

ing the Navier-Stokes equation 1.27 with the inclusion of Eq. 1.36,

^  +  (v • V)v =  - ~ V p +  ^ (1-37)
ot p  p

This fluid flow sets up hydrodynamic boundary layers at solid surfaces due to the ’no­

slip’ condition of Eq. 1.30. In particular, fluid flow past the electrode surface replenishes 

the diffusion layer, increasmg the supply of ions to the electrode. The thickness 5d of the 

diffusion layer is decreased and the value of j  may thus be enhanced.

1.6.3 Electrokinetic Effect

An alternative hypothesis for the mechanism behind the magnetic field effect, is that of 

the electrokinetic effect [51]. A number of distinct electrokinetic phenomena occur when 

a solid phase with a surface charge moves relative to a liquid electrolyte phase. In each 

case either an applied electric field induces movement, or movement induces an electric 

field. Particles with a surface charge, for example, may be forced to move though an elec-
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trolyte under an applied electric field (electrophoresis). Alternatively a potential difference 

may be induced across the particle when it is forced to move through the electrolyte un­

der a gravitational force (sedimentation potential). In the case where it is the liquid phase 

which is mobile, if  the electrolyte is forced to flow (imder pressure for example) parallel to 

a charged solid interface, a potential difference is established at the interface (the streaming 

potential) between two points upstream and downstream of the flow. The fourth electroki- 

netic condition occurs when an electric field £'|| parallel to the solid-liquid interface induces 

movement o f the electrolyte parallel to the surface. This is known as electro-osmosis. In 

this case the electrolyte experiences a force

F  = aEii (1.38)

where a  is the conductivity of the solution.

To appreciate the region in which these effects are relevant, we must consider the 

nature o f the so-called '’double-layer'’ at the interface between the conducting phases, in 

our case the metal-electrolyte interface. When an electrode is immersed in an electrolyte, 

any excess charge on the surface must, for electroneutrality, be exactly balanced by an equal 

charge o f opposite sign on the solution side of the interface. Thus any ion exchanging an 

electron at the surface is cushioned from the electrode surface, so that the nearest reacting 

ion is at a distance from the electrode on a plane known as the Outer Helmholtz plane 

(OHP) which is ~  1 nm from the surface. The potential falls off rapidly within the compact 

layer inside the OHP, to a value known as the zeta-potential Q. Beyond this compact layer, 

the potential decays exponentially to zero in the diffuse layer as indicated in Fig.21.
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21 .Potential falls off rapidly within the compact layer ~  1 nm from the electrode surface, 
and then approximately exponentially into the diffijse layer. At the OHP the potential is 
known as the zeta-potential.



1.6 Magnetohydrodynamics 47

So when, as in the case of electro-osmosis, flow of electrolyte is induced along a 

surface, it in fact occurs along a shear plane just beyond the ions immediately attached to 

the surface. In the case o f our system, it has been proposed by Olivier et al [51] that in 

the presence of an applied magnetic field, an electric field Ex is established parallel to the 

electrode surface as a result o f the interaction between the current density j  plating in the 

y-direction and the applied magnetic field B  in the z-direction. This, by electro-osmosis, 

induces a flow of electrolyte parallel to the surface, just beyond the OHP. This represents a 

significant force in the system [52]. Furthermore, it is their contention that this efifect alone 

is sufficient to accoimt for the magnetic field effects on electrodeposition as the observed 

effects persist when the magnetic field is concentrated on the immediate vicinity of the 

electrode alone [53]. This is further justified by the same group by their claim that similar 

convective effects may be reproduced in the absence o f a magnetic field by directly creating 

an electric field Ex parallel to the electrode surface .
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1.7 Numerical Approaches

The development of a science of fractal geometry has been inextricably linked with nu­

merical simulation since its inception. The famous Mandelbrot set [1] generated beautifiil 

fractal images which have been simulated and represented with stunning colours which 

captured the world’s imagination. Though some such models amount to little more than 

mathematical and numerical curiosities, many more practical models have been developed 

to represent a variety of physical processes. Percolation models, for example [55] [56], have 

been applied to the modelling o f systems such as polymer gels, galaxy evolution and for­

mation of colloidal particles, while cluster growth models such as the Eden model [57] was 

originally applied to the problem of the growth of biological cell colonies, and has been 

used as a model for the development of skin cancer [58].

The particular model which interests us for the present application, also based on 

cluster growth, is the diffusion limited aggregation model.

1.7.1 The Diffusion Limited Aggregation (DLA) Model

This enigmatic model has, for years, been applied to problems in electrodeposition. It 

has proved particularly successful in reproducing the structures produced in the growth of 

metal electrodeposits between two flat horizontal sheets of the kind shown in Fig.! 1(a).

In its simplest form as introduced by Witten and Sander [59] the DLA model is essen­

tially a random walk model. The simulation is carried out on an x iV lattice. Lattices are 

most typically square, although triangular and hexagonal lattices are also common. At the 

outset of the simulation, a site at the centre o f the lattice is occupied, to represent the cen-
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22.A typical computer generated DLA structure.

tral cathode. A particle is then introduced at a random position on the lattice, representing 

a metal ion. This particle moves through the lattice with equal probability |  o f walking up, 

down, left or right (for a square lattice) at each step. When the particle eventually moves to 

a site which has an occupied nearest-neighbour, it sticks to the aggregate. Another particle 

is introduced to the lattice and the process repeats while the deposit is growing. Structures 

of the type shown in Fig.22 are generated by this process.

Despite its simplicity, and its obvious ability to reproduce planar electrochemical 

structures, the underlying theory behind the success o f the DLA model remains elusive
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[60]. The DLA model essentially amounts to a numerical attempt to discretize the solution 

of the Laplace equation that underpins the problem, as outlined in the following section.

The Muliins-Sekerka Instability

Perhaps the most striking thing about DLA-like patterns is the way in which they do, 

or more accurately don’t, fill space. Conceptually it may seem reasonable that a surface 

which is initially rough may develop in a DLA-like manner. New particles will tend to 

stick to the protruding regions, thus screening the interior fi'om fiirther grovvlh. Important 

to understand, however, is that a small instability on a surface which is initially smooth can 

develop into a protrusion which will ultimately result in a DLA structure.

This result can be outlined by casting the DLA problem in continuum terms as is 

clearly summarized in [60]. Let us assume that particles with a continuous density u(r, t)

diffiise towards some smooth surface, and stick to the surface on their arrival. The particles

move according to Pick’s second law of diffusion (Eq.1.14)

du o
— = D V ^ u  (1.39)
at

and the normal velocity of growth i’„ of the surface is proportional to the flux of material 

onto it

du
—  a v „ .  (1.40)
on

Purthermore, we can estimate du/dt oc vdu/dx, so that

(1.41)

As the deposit grows, however, the fact that the basic DLA model releases only one 

particle per cycle reduces the growth velocity to zero. Under these conditions, Eq.1.41 is
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reduced to the Laplace equation

V^u =  0 (1.42)

with the surface boundary condition that the particles stick to the surface immediately on 

arrival, so that the surface density u*

(1.43)

Far from the surface, the density tends to some finite value u u ^ .  This is known as the 

Laplacian growth regime, where the diffusion constant is irrelevant to the growth. These 

equations can equally be considered as identifying a problem in electrostatics where the 

surface of the deposit grows with a velocity proportional to the electric field (potential 

gradient, Eq. 1.40) at that point.

Eq.1.42 and 1.43 might be expected to describe a system which grows uniformly 

from a smooth surface. The Mull ins-Sekerka instability [62], however, identifies the way 

in which a small non-uniformity on the siuface can result in the growth of a highly non- 

uniform deposit. If a small bump is present on a flat, equipotential surface, the value of the 

electric field will be largest in the vicinity of the bimip. From Eq.l .40 the velocity of growth 

from this tip will be greater than fi-om the flat regions o f the surface. This further enhances 

the size o f the bump, and also the extent of its effect on its surroundings. Furthermore, if 

a non-uniformity develops on the bump itself, the branches o f enhanced growth may split. 

The outline of the developing deposit thus rapidly deviates fi'om its initially smooth surface.
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This simplification of the problem to a Laplace equation in Eq.1.42 results in a

straightforward numerical implementation of the problem. The Laplace equation

/

may be represented on a square lattice of sites {i,j) separated from each other by A, by the 

finite equation

u{i +  +  -  iu{ i , j )  +  u { i j  -  I ) + u { i , j  +  1) ^

4A2

where Ax =  A y  =  A. Tlierefore

u{i + l , j )  + u { i - l , j )  + u { i , j - l )  + u{i , j  + l) 
u{i , j )  = -------------------------------   . (1.44)

We now note the similarity between Eq.1.44 and Eq.1.45

^  P(z +  1, j)  +  P{i -  l , j )  +  P{i , j  -  1) +  P{i , j  +  1)

for the probability that a random walker will be found at site {i,j) on a square lattice, 

expressed in terms of the probabilities of finding it at each of the four neighbouring sites. 

Thus the Laplace model can be modelled by a random walker model, where P{i , j )  is 

proportional to the scalar field u{i,j).

This argument outlines the essential principle of the DLA model. Its basic structure 

may be accessibly elaborated, however, by varying P{i , j )  to include more of the physical 

parameters that may be relevant in a given system, such as applied voltage, finite concentra­

tion and for our purposes an applied magnetic field. Chapter 2 presents these modifications 

in greater detail.



Chapter 2 
Adapted DLA Model

One of the most intriguing features o f the success of original DLA model [59] is not 

only the remarkable similarity between its results and those o f real electrochemical exper­

iments, but the fact that this similarity may be achieved without the input o f any of the 

physical details o f the system into the model. Sec. 1.7.1 accoimts for some similarity be­

tween the discrete DLA model and a Laplacian problem in electrostatics. Real systems, 

however, involve variables such as applied voltage [67], concentration (more than one par­

ticle moving simultaneously), concentration gradients, reaction kinetics, gravity and, most 

importantly for this study, applied magnetic field [69] [70][71]. This section demonstrates 

ways in which the basic DLA model can be adapted by introducing preferential drifts to 

incorporate these various effects for both circular and linear electrode flat cell geometries. 

Firstly though, standard techniques for optimising the basic DLA model are outlined.

2.1 Horizontal Circular Electrode Geometry

2.1.1 Speeding Up the Basic Model

The basic DLA model introduced in Sec. 1.7.1 begins by occupying a seed site at the centre 

o f a n N x N  two-dimensional square lattice. A second particle is introduced at a random 

point on the lattice and moves about with equal probability |  o f moving up, down, left 

or right until it neighbours the occupied site at which point it sticks. Another particle is

53



2.1 Horizontal Circular Electrode Geometry 54

randomly introduced and the process is repeated. The first problem with this basic model 

is that it is unnecessarily time consuming. If the new particle begins at some distance from 

the aggregate, it may walk around for any arbitrary number o f steps and never reach the 

deposit at all. Instead it may eventually walk off the lattice, so that another new particle 

must be introduced and the process starts over, with no promise o f success.

Of the ions in a real solution, those that are deposited at the electrode are those 

within the diffusion layer at a given time. Ions in the bulk solution cannot deposit until 

they are gradually queued from the bulk through to the diflfiasion layer. Thus it is sufficient 

numerically to consider only particles which begin their random walk close to the deposit. 

So as the deposit grows, its maximum radius is at all times recorded. A release radius 

H^ei for new particles is thus defined at

R r e l  =  (j'max +  - r̂e/) (2.46)

where Nrei is some number of lattice spacings. In the results presented here Nrei =  10. 

So each new particle begins its trajectory from the lattice site nearest to a point at some 

randomly chosen angle on a circle o f radius Rrei from the initial seed site. Furthermore, 

if a particle walks too far from the deposit time is unproductively spent waiting for it to 

return to the area of interest. Thus a maximum radius Rmax about the initial site is defined 

(dynamically, so that Rmax scales with the growth of deposit). If  a particle moves beyond 

it is terminated and a new particle is randomly introduced at Rrei- This is statistically 

equivalent to the likelihood that a particle which was allowed to continue its trajectory from 

the last point on the killing circle, would re-enter the release circle at the newly chosen 

point. This concept is illustrated in Fig.23.
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max

23.Particles begin their trajectories from a randomly chosen point at a distance r^^„+Nrei 
from the initial seed site. If  a particle moves beyond R^ax it is terminated and a new particle 
introduced.
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The time wasted waiting for distant particles to return to the region o f interest can 

be further reduced by allowing particles to take larger steps at greater distances from the 

aggregate [63]. The distance d of the particle from the maximum growth point of the 

aggregate at r^ax is calculated at each step. The size o f the next step that it can take must 

be smaller than d to ensure that it does not land on a site which is already occupied.

2.1.2 Applied Voltage

As we have seen in Sec. 1.4, and notably in Fig.l 1, applied voltage has a marked eflFect on 

the morphology of fractal electrodeposits. In terms of the DLA model, this has both long 

and short range effects.

A voltage V  generates an electric field E  (Vm~^)

E =  - V K  (2.47)

at a distance from the electrode. Mass transport eflTects due to migration are proportional 

to E  from Eq.1.18, and so migration effects due to applied voltage fall off as one over the 

distance from the electrodeposit. (The perimeter of the deposit is an equipotential surface.) 

Thus the effect of applied voltage on the bulk of the electrolyte is small compared to that 

around the surface. Ideally at every step of the particle’s motion, we would calculate its 

distance to the nearest point of growth of the deposit, and move the particle preferentially 

in that direction. This, however, is computationally very expensive far from the deposit, 

especially given that the eflFect is small in the bulk. Far from the deposit, therefore, we 

simulate the effect o f applied voltage simply as a general drift o f the particles towards the
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centre o f the deposit (generally also the centre o f  the lattice). This central drift is very much 

smaller than the local drift towards the deposit surface.

This numerical approach is similar to that o f  Erlebacher et al [72] who consider the 

cation transport to be diffusion controlled far fi'om the deposit and migration controlled 

close to the aggregate. Their model is based on the proposal by Chazalviel et al [73][74] 

that a space charge region exists close to the surface o f the deposit, within which there 

exists a high electric field and large concentration gradient. (Additional consideration of 

the effects o f local interactions between anions and cations within the solution requires 

solving the Poisson equation at each point. Such a study is currently being conducted by 

Fleury and co-workers.)

At every step in our simulation, the angle 9 c e n  between the y-direction (‘up’) and the 

line from the particle to the centre o f the lattice is calculated using the convention shown 

in Fig.24. The probabilities for the movement in each o f  the four possible directions at 

the next step are then adjusted in geometric proportion to increase the likelihood that the 

particle will move towards centre. The probabilities o f moving up, down, left and right 

respectively become

Up  : , Veen COS 9̂ en
4

(2.48a)

D own : T  ^cen COS ^cen4
(2.48b)

L e f t  : T ”1” Veen s i n  9cen 4
(2.48c)

R ight  : "7 Veen SUl 9 een 4
(2.48d)

where the value o f Ke„ can be adapted to reflect the extent o f this effect.
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cen

Left

Down

Right

24.At each step, the angle ^cen (counterclockwise from the y-axis) between the particle 
and the central initial seed site is calculated.
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The eflfect o f  the applied voltage is most significant in the irmnediate vicinity o f  the 

deposit where its inverse distance character must be taken into consideration. Once the 

particle is within a distance Riook o f  the maximum radius o f  growth o f the deposit, we must

lattice spacings.) Sites within this area are grouped together into sets o f equal distance from 

the particle. Starting from the inside and working outwards, each set is checked until an 

occupied site is detected. Once an occupied site is detected, the searching stops. If  no site 

within the range is occupied, the voltage model o f Eq.2.48 is used. The drift towards centre 

is, however, always very much less significant than the local drift to the deposit surface.

The distance ddeposu from the ion to the occupied site is found fi'om the look-up table, 

as is the angle 9dep defined in Fig.25(a). Odep is the angle from the y-axis to the line joining 

the particle to the nearest occupied site on the deposit. The probabilities o f  the particle 

moving up, down, left and right at the next move respectively become

the distance ddeposu to the nearest point on the deposit. Vmig{ddeposit) =  C/ddeposit, where 

C  is a constant which can be varied in the program. Eq.2.49 thus increases the probability

check whether or not the particle is close to a branch o f  the deposit. We therefore define a

look-up table over sites within a distance Riook o f the particle as shown in Fig.25 {Riook ~  8

Up  ̂ ^ m ig { d d e p o s i t^  9 dep (2.49a)

Down ^ m ig  i^ddeposit') COS Odep (2.49b)

L e f t ^ m ig { d d ^ p 0 g il^  S\Xi 0 dep (2.49c)

Right (2.49d)

where the factor Vmig which determines the extent o f the effect is inversely proportional to
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Down

Right
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>)
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1 “> 20 19 IS 19 20 ^  2

^look

25.(a) Sites within an area Riook of the particle are checked for occupied sites. The angle 
Srnig to the ncarcst occupied site is then calculated, (b) Sites are grouped together into sets 
of equal distance from the particle. Starting from the inside and working outwards, each set 
is checked until an occupied site is detected. Like numbers indicate sites within the same 
set.
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that the particle will move in a direction normal to the surface at the nearest occupied site. 

In the case that more than one “nearest occupied site” is detected (with the same value of 

ddeposit), then the adjustments in Eq.2.49 are made for the respective values of each 

site.

2.13 Reaction Kinetics

The electrodeposits considered here are generally taken to be grown in a mass transport 

limited regime (Sec. 1.5.4). That is to say that the reaction kinetics are fast compared to 

the rate o f diflFusion of ions from the bulk solution to the electrode. It is useful, however, 

to be able to incorporate the eflFect o f reaction kinetics into the simulation. As we saw in 

Eq.1.10, the charge transfer rate constants are strongly dependent on the applied voltage. 

So depending on the value of V  and fco, an ion may not react immediately on arriving at the 

electrode. That is, it may continue to move along, or even away from the electrode before 

it is reduced.

Numerically, this is equivalent to saying that a particle may not stick immediately 

on moving to a site with an occupied neighbour. Up to this point it was assumed that the 

probability p of sticking to the deposit was p = 1. Now, however, a variable sticking 

probability 0 <  p <  1 is introduced, so that on arrival at the deposit, a particle may or 

may not stick. If it does not stick, it continues to move according to the combination 

o f probabilities defined in Eqs.2.48 and 2.49. If at this move, it attempts to move onto 

the occupied neighbour, then it sticks in its original position. A magnetic field effect on
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electrode kinetics is not considered here for, although the question of such an effect remains 

somewhat controversial [64], it is generally determined to be insignificant [65][66][38].

2.1.4 Concentration

The model so far considers the behaviour o f only one particle at a time. The trajectory 

o f one particle is followed until it sticks, and then a new particle is introduced. This, of 

course, is very far from the case in reality; one ion does not wait for another. In real elec­

trolytes there is a finite, and often quite high, concentration of metallic ions surrounding

the electrode. Many ions may simultaneously react all over the surface. As the electrode­

posit grows, so does its perimeter, and so the number o f ions moving close to the electrode 

and being reduced at a given time is constantly increasing.

In light of this the model has been adapted to allow multiple particles to move and 

stick simultaneously. The solution concentration is defined by saying that some fraction fc 

o f the sites within the release band are occupied. The release band is defined as the area 

between and It is essentially a two dimensional equivalent o f the

release circle o f Eq.2.46. We thus define some number nmmers of particles

_ / +  ^ r e l )  ~
'^m o ve rs  ~  J c  . r i {Z..DV)Area o j one Lattice square 

to be assigned sites within the band at start-up.

At each step thereafter, each particle can move according to the probabilities defined 

in the preceding sections. If a particle attempts to move onto a site that is already occupied 

by another moving particle, then it stays put. When one particle sticks (or moves beyond 

^max), a new particle is randomly introduced within the release band. If the site proposed
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for the new particle is already occupied, then these co-ordinates are rejected and another 

site must be chosen. At high concentrations, this may result in the need for several attempts 

before a vacant site is found for the new particle. Similarly, if  a particle attempts to move 

to a site that is already occupied by another, unattached, particle, then the former simply 

moves back to its original position until the next iteration.

A consequence of this algorithm is the fact that the number o f particles moving at a 

given time is constantly increasing as the deposit grows, scaling as

^m o v e rs  ^  (2-51)

2.1.5 Applied M agnetic Field

Two models were used to attempt to introduce the effect of an applied magnetic field. As 

we are dealing with a two dimensional system, we are restricted to considering the effect 

of a magnetic field applied perpendicular to the plane o f growth of the deposit, so that the 

Lorentz j x B force is exerted in the plane in which we are carrying out our calculations.

Effect on Individual Particles

The first approach considers the effect of the magnetic field on a particle moving 

with some velocity v, as adopted by Mizuseki et al [76] [77]. The ‘velocity’ o f the particle 

is determined by, at each step, examining its motion over the previous N  steps. In these 

simulations iV =  4 or 6. The average angle through which it has moved over N  steps 

is calculated relative to the ‘up’-direction as shown in Fig.26. In the absence o f an applied 

magnetic field, the particle will tend to continue along this trajectory as a result o f the other
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Up

vel'magn

Left Right

Down

26.The angle Ô ei through which the particle has moved over the previous N  steps is cal­
culated relative to the ‘up’-direction. Aji applied magnetic field will tend to make it deviate 
from this course by a further angle amagn- Here ajnagn has a positive value, indicating that 
the magnetic field is applied downwards.

forces acting in the system. Under the Lorentz force of an applied magnetic field, however, 

the particle is deflected through some angle amagn fi'om as shown in the figure, amagn 

may have a positive or a negative value depending on the direction of the applied field.

Thus an additional term is added to the probabilities for the particle to move respec­

tively up, down, left or right at the next step.

Up

Down

-  +  Byel cos{9yei + a m a g n  ) 

^T n a g n  )

(2.52a)

(2.52b)
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Right

L e f t  ̂ B ^ g l  Sin(^t;e/ ”1” ^ m a g n )

 ̂ B y e l  S i n ( ^ u e /  “I” O ^m agn} (2.52d)

(2.52c)

where the constants B^ei and amagn each reflect the magnetic field strength.magn

Bulk Flow

The problem with this approach, however, is that it considers the motion of each 

particle individually, without acknowledging the fact that the magnetic field acting on the 

current density j, induces a forced convective flow in the bulk solution according to the 

magnetic field term included in the Navier-Stokes equation (Eq.1.37).

An alternative approach to modelling the magnetic field to some extent incorporates 

this understanding. If we recognise that the magnetic field induces bulk flow o f the fluid, 

then we must also recognise that this fluid must flow over and around the complex surface 

o f the fi'actal. That is we must consider a flow parallel to the surface of the deposit. This 

approach is ftirther justified by considering that, close to the electrode, j is perpendicular to 

the fractal surface (fi-om Eqs.2.49), so the Lorentz force j  x B  will be in a direction parallel 

to the fractal surface.

This model can also be interpreted as incorporating the theory that the application o f 

a magnetic field results in an electrokinetic effect at the electrode, which drags parallel to 

the surface. In any case, we recognise when the particle is in the vicinity o f the electrode 

by again searching within a radius Riook for an occupied site as in Fig.27. So if 9dep is the 

angle from the particle to the nearest point on the deposit, measured anticlockwise from
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dep

RightLeft
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27.The nearest occupied site is found by again scanning over an area o f  radius Riook 
abuut the particle. Flow due to the magnetic field is parallel to the plate, i.e. at an angle 
{ 9 d e p  ±  7r/2) depending on the field direction. Here the angle is [ O ^ e p  — 7t/2),  to model a 
magnetic field applied vertically upwards.

the ‘up’-direction, the flow parallel to the surface will be through an angle {9dep ±  t t / 2) 

depending on the direction o f  the magnetic field.

The probabilities for motion at the next step are thus adapted^ to include terms

Up : ^ +  Bjiow cos(6>rfep ±  7t / 2 ) (2.53a)

Down : ^ cos(^dep ±  tt /2 )  (2.53b)

L e f t  : ^ +  Bfiow sm{6dep ±  tt/ 2 )  (2 .53c)

® Note that in the process o f  modifying the probabilities, it is possible that the final probability P i o f  moving 
in a given direction i may be less than zero or greater than one. In the case that P{ <  0, then we set that 
P i =  0, and renormalise the sum o f  the remaining probabilities to 1.
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Right (2.53d)

2.1.6 The Lattice

In this study the lattice used is in all cases a square lattice. Alternatively a body-centred, 

hexagonal, or random lattice could have been used. It has been shown that for very large 

scale simulations [3], the underlying lattice can begin to affect the self-similarity of the 

growing fractal, as it begins to assume some semblance o f the lattice structure. In this 

case, however, the scale of our simulations is not sufficiently large for this to be a serious 

concern. Furthermore, great care has been taken, for example with the formulation of the 

look-up table in Fig.25, to overcome any tendency towards a square structure. If this is 

not done carefully, then movement towards the deposit can yield misleading results; for 

example, the attempt by Mizuseki et al [77] to introduce a drift towards the surface resulted 

in growth predominantly along the x and y-axes.

2.2 Vertical Circular Electrode Geometry

The thickness of the cell is ~  0.2 rrmi. Although gravitational convection within the diflfii- 

sion layer can be significant in the horizontal cell even within this small thickness [68], we 

do not consider this effect in the present two-dimensional study.

When the cell is held vertically, however, gravity acts along the length of the cell and 

may be modelled m two dimensions. As seen from Fig. 15 in the absence of an applied 

magnetic field, the resultant vertical, columnar growth is radically different from the zero
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field radial morphologies o f the horizontal case. We must thus introduce natural convective 

effects due to gravity into the model in order to consider growth in a vertical cell.

2.2.1 Gravity

As we know from Sec. 1.5.5, the perimeter of the deposit is surrounded by a diSusion 

layer across which the concentration o f metal ions varies roughly linearly. As ion rich 

material has a somewhat higher density (~  1050 kgm”^) than ion depleted solution (~  

1000 kgm.“^), this also results in a density gradient in the same region. Thus around the 

perimeter, three separate regions may be identified [78]:

1. On the lower side o f a branch o f the deposit, the dense solution lies below the less

dense solution, and thus no natural convection takes place.

2. On the upper side o f a branch of the deposit, the dense solution lies above the less

dense solution. Gravity thus acts to pull the dense material downwards, which sets up 

convective swirls above the surface. As a result, ions that are above the surface of the 

deposit, arrive more quickly at the electrode surface [79] [80].

3. The side of a branch of the deposit is equivalent to a density gradient at a vertical wall.

In this case as the dense material tumbles downwards under gravity, the less dense 

material at the wall rises upwards. Convection cells are thus established which push 

ions upwards along the surface o f the deposit [68].
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Again we turn to the look-up table defined within an area o f radius Riook from the 

particle. If an occupied site is detected we can, from the angle 9dep (Fig.25) determine 

whether the ion is above, below or to the side o f  the surface.

In the case o f  2, we define a particle as being ‘above’ the surface if  O d ^ p  lies within 

the range

(tT -  l a b o v e )  <  ^dep  <  (tT +  7o6<n,e) ( 2 - 5 4 )

as in Fig.28(a) where 'yabove is a small angle ~  5°. If 9dep satisfies the condition o f  Eq.2.54, 

then the probability that the particle will move downwards at the next step is increased, 

and the probability o f upwards movement is correspondingly reduced. The likelihood o f  

movement to the left or right is unaltered.

Up : ]  -  Gabove (2.55a)

Down : \  +  Gab<rve (2.55b)
4

Similarly it is determined that a particle is lying to the side o f a branch o f the deposit 

if  the angle 9 d e p  lies within the range

(tt/2 -  7«de) <  d d e p  <  (tt/2 +  7 ,^ )  (2.56a)

(37t /2  -  7 ,^ )  < 9dep <  (37t /2  + 7 ^ )  (2.56b)

according to Fig.28(b). In this case the flow will not simply be vertically upwards, but will

be constrained by the solid interface to move upwards parallel to the surface o f  the deposit.

That is to say that if Eq.2.56(a) is satisfied, then the probabilities are adjusted according to

U p (2.57a)
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dep
RightLeft

Down

dep
Right

Down

28.(a) If the particle is within a defined angular radius above the deposit, then it tends 
to drift downwards; (b) if  the particle lies to the side o f the deposit then it tends to move 
upwards parallel to the surface o f  the deposit.
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Down : -  — GsuieCos(0(iep ~  tt/ 2) (2.57b)

Le f t  : ^  +  Gside sm{9dep -  tt/2 )  (2.57c)

Right : GsideSm{9dep -  tt/2 )  (2.57d)

while if Eq.2.56(b) is satisfied, the probabilities vary by

Up : ^  +  G«deCos(^dep +  7t/2) (2.58a)

Down  : Gside cos{9dep +  tt/2)  (2.58b)

Lef t  : ^ +  Gside sin{ddep +  7r/2) (2.58c)

Right : \  -  GsideSm{9dep +  tt/2).  (2.58d)
4

Gabove and Gside are constants representing the strength of natural convection flows.

2.3 Linear Electrode Geometry

In the case of deposition between linear electrodes, most of the above arguments still apply, 

but with a few minor changes.

A circular simulation begins with one central occupied seed site. Now, however, we 

initially occupy one full row o f sites to represent the surface o f the linear cathode. The 

cathode is taken to be in the ‘downwards’ direction. The boundary conditions must also be 

altered somewhat. In the circular case a particle was deemed to have ‘left’ the system if it 

moved beyond some maximum radius iJmax- Now, however, care must be taken to remove 

particles that walk past the open ends o f the cell.
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Eqs.2.49 and 2.53 still apply for behaviour in the vicinity of the surface o f the deposit, 

as does Eq.2.52 for the magnetic field effect on an individual ion with velocity v. In 

approximating the effect of voltage at some distance from the surface, however, the drift is 

no longer towards centre, but downwards towards the cathode. Thus for the linear geometry, 

Eq.2.48 is replaced by

Down

Up

(2.59b)

(2.59a)

where the constant VnneoT represents the strength of the applied voltage.



Chapter 3 
Effects of the DLA Adaptations

The basic DLA model produces diffuse, fem-like patterns o f the kind shown in Fig.29 

(a), which bears a strong similarity to the results of electrodeposition experiments under 

condition of low concentration and low apphed voltage of the kind shown in Fig.29 (b).

In this section we will consider the effects of external influences such as applied 

voltage, ionic concentration, applied magnetic field and gravity which are introduced as 

detailed in Chapter 2.

3.1 Circular Electrodes

3.1.1 Applied Voltage

In the absence o f an applied magnetic field, the key parameters determining the morphol­

ogy of a deposit are the concentration of ions in the solution, and the applied voltage. 

Firstly, while maintaining a very low concentration, we examine the effects o f varying the 

parameters relating to applied voltage. In the first approximation that the growth of the de­

posit is broadly radial, the applied voltage can be modelled according to Eq.2.48, whereby 

the probability is increased that the ions will drift towards the centre o f the deposit. The ex­

tent of this effect can be varied by increasing the constant V^„. Results for varying values 

o f V̂cen are shown in Fig.30.
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29.(a) A typical structure generated by the basic DLA model, compared with (b) a typical 
DLA-type electrodeposit.

T |-

30.Results o f increasing the imposed drift towards the centre o f  the deposit for (a) Plain 
DLA, (b) V e e n  = 0.005 and (c) Ken = 0.05.
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Clearly the imposition o f this central drift results in deposits which are more dense 

and more radial. This change in the morphology of the structures can also be monitored 

through their fractal dimensions which are (a) D f = 1.67, (b) D f = 1.79 and (c) D f = 1.87.

We must recognise, however, that this broad drift towards centre is only valid at a 

distance from the structure. Close to the deposit, the electric field lines emerge perpendicu­

lar to the deposit surface. And thus the ions are preferentially drawn in towards the surface 

according to Eq.2.49. Remembering that in a 2-dimensionaI system, the electric field will 

vary as 1 /ddeposu, we search sites within a distance Riook of the deposit for occupancy as 

detailed in Sec.2.1.2. Thus at a distance from the structure, voltage is still modelled by a 

drift towards centre in the style of Eq.2.48, but once an occupied site is detected within a 

distance Riook of the ion, Eqs.2.48 are abandoned, and Eqs.2.49 are implemented instead. 

Results vary somewhat with the range of Riook as shown in Fig.31.

As the value of Riook is increased from 4 to 10 lattice spacings, the resultant fractals 

become less dense, with more clearly defined branches, and a slightly lower fractal dimen­

sion. We describe this as a ramified structure. Fig.31(a) (also Fig.30(c)) which uses only 

the central drift model, and has D j = 1.87, is shown for comparison. Once we begin to 

consider the effect close to the deposit however, Riook = 4 spacings produces a deposit with 

D f = 1.85, Riook = 6 spacings results in D f -  1.84, while both Riook ~ 8 and Riook = 10 

spacings yield deposits with Z)/ = 1.81. As there was no apparent difference between the 

results for 8 and 10 spacings, we conclude that, due to the fact that Vmig — Knig (1 / ddeposu), 

the bulk o f the effect is contained within a distance smaller than 10 lattice spacings from 

the deposit. Thus for the remainder of the simulations, we take Riook = 10.
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31 .The applied voltage is modelled as a drift perpendicular to the deposit surface with 
a l/ddeposit dependancy. The result depends on the distance Riook over which we scan for 
occupancy, (a) D f =  1.87 as in Fig.30(c) i.e. without the implementation of Eq.2.48, 
(b) Riook = 6 sites, D f =  1.84, (c) Riook ~ 8 sites, D j = 1.81 and (d) Riook ~ 10 sites, 
D f = 1.81. (In each case C  =  1.0, where Vmig = C/ddeposu-)
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Having determined an appropriate value for Riook, Fig.32 demonstrates the effect of 

variations in the value of C, where Vmig{l/d^eposit) = C/ddeposu- The deposits become 

more ramified as the value of C is increased.

3.1.2 Concentration

Experimentally, large variations in the concentration of ions in the solution can have dra­

matic effects on fi’actal morphologies. As illustrated in Fig. 11, in the very high voltage, 

high concentration regime m.orphologies change fi'om radial to dendritic in character. Nu­

merically we introduce a finite concentration by increasing the number of particles walking 

in the system in proportion to the maximum radius of the growing deposit. The number 

of particles moving is some fraction of the number of sites available within an annulus of 

thickness Rrei about the deposit. A constant concentration is thus maintained as the fractal 

develops. On an 800 x 800 lattice, with ions initially placed randomly at 20% of the sites 

about the central seed (in practice this is the maximum percentage of sites which can be 

filled, as the particles are unable to move at greater concentrations), there might typically 

be as many as ~  4000 ions moving around the lattice by the end of the simulation.

Consider, by comparison, the fraction of water molecules in the solution which are 

associated with the ionic hydration spheres. A electrolyte might typically contain a metal 

ion concentration ~  500 mol/m^, i.e. a 0.5 molar solution. A 1 molar solution consists of 

one mole of the substance per litre of water. One litre of water weighs 1000 g, and so con­

tains 1000/18 =  55 moles of water. Taking an average, however, of six water molecules 

associated with the hydration sphere of a given ion, that means that 3 (= 0.5 x 6)of every
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32.Given a value of Riook =  10 lattice spacings, variations in the resultant deposits for (a) 
C = 0.1, Df = 1.85, (b) C =  0.3, D f = 1.83, (c) C  =  0.5, Df = 1.82 and (d) C = 1.0, 
D f  - 1.81 are shown, where V^ig = C/ddeposit-
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55 moles are directly tied to the movement of the ions. That is ~  6% of the volume is ‘oc­

cupied’ by ions and their surrounding hydration spheres. Thus in our simulations, we can 

realistically hope to reproduce the kind of ionic concentrations observed experimentally.

The effect of increased concentration is summarised in Fig.33 for increasing values 

of / .  The resultant deposits become somewhat more dense with raised fractal dimensions 

ranging from 1.80 to 1.83 as /  increases from 0.005 to 0.2.

3.13 Magnetic Field

Individual Particle Approach

In Sec.2.1.5 two models were proposed to represent an applied magnetic field. The 

first considers the effect of a magnetic field on an individual ion which has moved through 

an angle 9̂ ei over the previous N  steps. The extent of this effect is monitored through two 

parameters; the angle amagn through which the particle is deflected relative to and the 

multiplicative factor Taking owgn =  20°, the effects of varying Byei are presented in 

Fig.35, while variations in ocmagn produce the fractals in Fig.34 where — 0.5.

In each case the resultant fractals are spiral outwards from the centre. The extent of 

the spiralling depends on the size of the magnetic field through a^agn and B^ei as encoun­

tered experimentally. Individual branches become thicker and more clearly defined, as they 

drop in number. Fractal dimensions decrease as Byei is increased, though no clear trend in 

the variation o f D j emerges as amagn is varied.

Importantly, the chirality of each of the spiral deposits reverses with a reversal in 

the direction of the applied magnetic field, as in Fig.37. Reversal of the magnetic field
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200 0 200 200 0  2D0

3 3.Concentration is defined by the ratio /  of the number of sites initially occupied within 
an annulus of depth Rrei about the central seed to the total number of sites in that area, (a) 
/  =  0.005, Df  =  1.80, (b) /  =  0.1, Df  -  1.81, /  =  0.15, Df  =  1.83 and (d) /  -  0.2, 
Df  = 1.83.
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34.Numerical results for amagn -  20°, Veen = 0.05 and V^ig = 0.5 with (a) = 0.1,
D f = 1.81, (b) =  0.3, D f = 1.76, (c) = 0.5, D f = 1.70 and (d) B^ei = 0.9,
D f  =  1.66 .
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-2D0 0 200 400

35.Numerical results for B^ei =  0.5, Ken =  0.05 and Vmig = 0.5 with (a) Omagn ^  5°, 
D f = 1.83, (b) =  10°, Df = 1.78, (c) -  20°, D j = 1.70, (d) =  45°,
D f = 1.76 and (e) a ^ g „  - 90°, D f — 1.78.
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direction is represented by changing the sign of amagn- The sign of o;^g„ for a given 

field orientation is determined using the right-hand rule. Fig.36 provides a reminder of 

this rule of ‘thumb’. A magnetic field applied out o f the plane of the page is accordingly 

represented by a negative value of amagn, while a positive value of amagn indicates that the 

field is applied into the plane of the page.

In light of the thumb rule, we re-examine the chirality of the fiactals in Fig.37. While 

in general they have an overall structure which is similar to the experimental electrode­

posits, they spiral in a direction opposite to that observed experimentally. Although results 

of this magnetic field model have been presented by Mizuseki et al [77], they did not re­

fer to, or account for, this inconsistency with the direction of spiralling of the experimental 

result. It is interesting to notice, however that in Fig.35 the chirality of the deposit is less 

pronounced, and one might imagine that it is begirming to spiral in the opposite direction. 

Furthermore, this effect is not observed when the voltage is modelled simply as a drift to­

wards centre. In order to tend towards the correct chirality, the model must first include the 

fact that the ions are moving towards the deposit surface. With this in mind, a new model 

for the magnetic field was introduced.

Bulk Flow Approach

This second method considers the effect of the magnetic field induced bulk flow as it 

moves past the intricate fractal surface. Motion parallel to the deposit surface is indicated 

by increasing the probability that the particle v^l move through an angle (0dep±7r/2) where 

6dep is the angle from the ion to the nearest point on the deposit. As above, {9dep -  tt/2)
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A >: II

36.Right Hand Thumb Rule : Curling the fingers of the right hand from A  through to 
B,  the direction in which the thumb now points indicates the direction o f the cross-product 
vector A X B  (Thomas/Finney 1988).

•400 I------------------------ 1--------------------------1----------------------- <------------------------ 1
400 •aoo 0 200 400 •400 200 200 400

37.The chirality of the numerical deposits reverses when the direction of the applied 
magnetic field is reversed, (a) amagn = -2 0 °  for a magnetic field applied out o f  the plane 
while (b) amagn =  20° for a field applied into the plane.
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indicates that the magnetic field is applied out o f the plane of the cell, and {9dep + t t / 2) 

indicates that it is applied out o f the plane. For the -? r/2  case, results for a number of 

values o f the multiplicative constant Bfiow are shown in Fig.38.

As before, when we reverse direction o f the applied field by reversing the direction of 

the flow past the surface, we also change the chirality of the resultant deposit as in Fig.39.

The chirality achieved with this model is at all times in agreement with the experi­

mental result of Fig. 14.

In tlie first model, where particles respond to the magnetic field in an uncorrelated 

fashion at every distance from the deposit, the spiral structure is the result o f particles 

‘backing up’ from the ends of branches. For both the bulk flow model and the experimental 

data, however, particles appear to flow along following the contour of the curving branch 

until they eventually stick to the end. That is to say that the branches curve and grow in 

the same direction as the flow of electrolyte. This important comparison seems to strongly 

suggest that the effect o f the magnetic field is largely local or, at the very least, that the 

intricate structure of the deposit surface is essential to the growth process.

3.1.4 Reaction Kinetics

Reaction kinetics are modelled through a variable sticking probability p , 0 < p <  1. Low 

values o f p  represent slow reactions. Fig.40 outlines the numerical effect of vary mg p  from 

p = 1.0 andp  =  0.1 for Bfiow =0 .1  and 0.2 respectively. In each case the result is similar, 

in that individual branches become thicker and more clearly defined. The density o f the 

deposit is increased, as is its fractal dimension.
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38. When the field is applied into the plane of the cell, the particle tends to move through 
an angle {Odep — tt/2). Deposits become more dense and compact for (a) =  0.05,
Df  =  1.82, (b) Bfiow =  0.1, D f  = 1.81, (c) Bjiaw =  0.2, Dj  =  1.84 and (d) Bjiow = 0.3, 
Df = 1.84.
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0
400 ^

39.The chirality of the deposit is reversed by reversing the direction of the magnetic field. 
This is achieved by defining flow past the surface as being through an angle (a) {ddep — tt/2) 
for a magnetic field out o f  the plane o f the page and (b) [Odep +  t t / 2) for a magnetic field 
into the plane.
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40.Using the bulk flow magnetic field model with Ken =  0.05, Knig =  0.5 then (a) has 
Bfioro =  0.1, p = 1.0, Df  =  1.81; (b) =  0.1, p =  0.1, Dj  =  1.83; (c) = 0.2,
p = 1.0, Df — 1.84; and (d) Bfiow =  0.2, p =  0.1, Df = 1.85.
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3.1.5 Vertical Cell

Gravity

As detailed in Sec.2.2.1, gravity is introduced by considering swirls of fluid above 

the deposit, and upward flow at the side o f the deposit, due to natural convection. It is 

important to consider both o f these elements to correctly model the effect.

At a first approximation one might be tempted only to consider gravity acting down­

wards from high to low density regions. Doing so, even for a large gravitational factor 

Gabove =  0.8 (Eq.2.55), produces a slight asymmetry about the x-axis, but does not suffice 

to reproduce the columnar structures o f Fig. 15(a).

Instead we must also consider that gravity induces an upwards flow within a density 

gradient at a surface. Although the extent of the effect varies somewhat with the values 

of Gside (the multiplicative factor determining the extent of the preferential movement up­

wards along the surface fi-om Eq.2.57 and 2.58) and 7^^ (the angular range within which a 

particle is considered to be alongside an occupied site, Eq.2.56), the experimentally ob­

served columnar structure o f Fig. 15(a) begins to emerge, indicating that it is upwards 

swirling at the sides which is predominantly responsible for the experimental result. A 

typical numerical result is shown in Fig.41.

Applied Magnetic Field

On applying the bulk flow, local magnetic field model, structures o f the kind shown 

in Fig.42 emerge. The interplay between natural convection and the magnet field is very 

subtle [82]. This pattern has the interesting property that its chirality is somewhat ill-
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41 .Natural convection takes place both above and to the sides of branches of the deposit. 
The combined effect is shown for Gabove = 0.5, =  10°, Gside =  0.5 and '̂ îde =  45°.
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defined. It has regions of strong, opposing chirality, in addition to regions where no clear 

spiralling is observed at all. This provides an interesting comparison with the experimental 

observation that in the vertical cell, although spiral patterns often emerge when a magnetic 

field is applied, the resultant chirahty is variable; sometimes the chirality is the same as the 

horizontal case, sometimes opposite (as in Fig. 15(b)), and often flat regions or regions of 

mixed chirality are observed within the same deposit.

If  the magnetic field is introduced via the ‘individual particle’ model, little variation 

from Fig.41 is observed. If, however, the ‘individual particle’ magnetic field model is 

applied, with amagn — 90°, close to the deposit only, then Fig.42 is reproduced. This 

indicates that the key effect in this system is that of the magnetic field on the ions caught in 

the natural convective flow close to the deposit surface.

3.2 Linear Electrodes

In the low concentration, low voltage regime, and the absence of a magnetic field, the linear 

equivalent of the basic DLA pattern of Fig.29(a) is shown in Fig.43. The experimental 

apparatus is held horizontally, but numerically the cathode is taken to be in the ‘downwards’ 

direction.

3.2.1 Applied Voltage

These fem-like structures become more dense with more clearly defined branches as the 

effects o f applied voltage and concentration gradient are considered. Considering first the 

basic approximation that the effect of an applied voltage is to cause the metal ions to drift
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42.Natural convection combined with a magnetic field applied (a) out o f the plane and (b) 
into the plane. The mixed chirality of these structures is in agreement with experimental 
observation.

43.A linear DLA structure is achieved at low concentration and low voltage.



3.2 Linear Electrodes 93

downwards towards the cathode, the results of Eq.2.59 are shown in Fig.44 as the patterns 

become more dense at increasing Vunear-

As in Sec.3.1.1, however, the voltage is more accurately modelled close to the elec­

trode by considering that electric field lines are perpendicular to the surface. Thus over a 

region Riook (Fig-25) the ion is drawn in perpendicular to the surface with a l/ddeposu de­

pendence, where d^eposu is the distance fi'om the ion to the nearest occupied site. Outside 

Riook, the voltage is simply modelled as the basic downwards drift. Fig.45 shows the still 

dense though increasingly ramified results of this modification.

3.2.2 Applied Magnetic Field

Fig.46 shows the effect of a magnetic field introduced through the second, ‘bulk flow' mag­

netic field model. (Remember that in the ‘bulk flow’ scheme, the magnetic field is modelled 

as inducing a flow parallel to the surface of the deposit.) Clearly the deposit tends to ‘lean’ 

one way or another depending on the direction of the applied magnetic field. It should be 

pointed out the ‘individual particle’ magnetic field model also produces leaning deposits, 

but with a tilt opposite in direction to that of Fig.46. Again, as in the circular electrode 

case, it is the results of the bulk flow model which correctly reproduce the experimental di­

rectionality determined from the right-hand-rule (Fig.36). Fig.47 demonstrates the reversal 

in the direction o f the ‘leaning’ effect. Similar effects have been observed by Tanimoto et 

al when modelling the effect of a magnetic field gradient [83].
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44.1n the basic voltage model, ions drift preferentially downwards with (a) Vnnear — 0 
(basic DLA as in the previous figure), (b) Viinear =  0.01, (c) Vunear =  0.1 and 
(d) Viinear =  0.3.
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45.Far from the electrode, applied voltage is simply modelled as a downwards drift with 
l̂inear =  0.1. Within 3. distancc Riook =  10 sites of the deposit, however, ions are drawn 

in perpendicular to the surface, (a) Kn,g =  0.1, (b) Vmig = 0.3, (c) Vmig =  0.5 and 
(d) Kn,3 =  0.7.
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46.Using (a) Bfi^^ =  0 with Vunear = 0.1 and Kn,g =  0.7 as a point of comparison, 
the figures consider results for a linear electrode when the magnetic field is considered as 
inducing a flow parallel to the surface of the deposit for (b) Bfiow = 0.05, (c) B/iow = 0.1, 
(d) Bfiaw =  0.2 and (e) Bfiow == 0.3.
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Al.Bfiovi =  0.1 for (a) the magnetic field applied into and (b) out o f the plane o f the page.
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48.Numerical results for Gabove = Gside — 0.7 (a) and (b) for gravity applied in two 
opposite directions.

3.2.3 Gravity

Natural convection due to gravity is implemented, as in Section 2.2.1, by convective swirling, 

above and to the sides of branches o f the deposit. The effect as shown in Fig. 48, is to cause 

a slight tilting o f the branches o f the linear deposit. The direction o f this tilting is in agree­

ment with the experimentally observed result as shown in the figure.



3.2 Linear Electrodes 99

49.The combined efifects o f gravity and an applied magnetic field tend to either re­
inforce o f cancel each other depending on their relative orientations as shown for 
G a b o v e  = G s i d e  =  0.7, with B =  0.05 in (a) and (b), Bjiorn =  0.1 in (c) and (d), 
and Bfiow = 0.15 in (e) and (f).

3.2.4 Gravity and Magnetic Field

Given that the effect of both gravity and magnetic field is to cause a tilting of the branches of 

the deposit, their combined effects tend to either reinforce o f cancel each other depending 

on their relative orientations as shown in Fig.49. As little experimental data exists for the 

combined effect o f gravity and magnetic field in the linear electrode case, however, the 

accuracy of this final prediction cannot yet be clearly determined.



Chapter 4
Magnetohydrodynamic Flow through an Open

Channel

4.1 The Aogaki Cell

In the previous chapters we have considered the effect o f a magnetic field on the mor­

phology o f  electrodeposited structures. It has also been well established, however, that an 

applied magnetic field can enhance the plating current j  at an electrode. In particular, a

j  cx 5^/3 (4.60)

relationship has been reported [32][86][94], and in some cases j  a  B^^‘̂ [92], or j  a  

have been observed [84] [85]. Leventis et al have derived a j  oc relationship for 

deposition at millielectrodes [87]-[88], while White et al have shown an applied magnetic 

field to enhance the plating current on the scale o f  microelectrodes [89], where the force due 

to an applied magnetic field gradient has also been considered [90]- [91]. The relationship 

of Eq.4.60 was clearly established in a very neat experimental set-up devised by Aogaki et 

al. [93][94].

The system consists o f a rectangular cell as in Fig.50, with electrodes placed on the 

top and bottom panels. The cathode is placed on the top panel, so that the current o f  metal 

ions passes vertically upwards fi-om anode to cathode, in order to minimise effects due to 

natural convection. The entire cell is then immersed in a large bath filled with electrolyte.

100



50.The Aogaki Cell. Current flows vertically upwards from anode to cathode in the 
presence o f a perpendicular applied magnetic field. This induces a bulk flow o f solution 
through the cell, perpendicular to both j  and B  (Aogaki 1975).
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The electrolyte may consist o f  CUSO4  in water with concentrations ranging from 0.02- 

0.076 M. In contrast to the system modelled in Chapter 2, this electrolyte also contains a 

strong, acidic supporting electrolyte o f IM H2 SO4 .

A magnetic field is applied across the cell, perpendicular to the direction o f  current 

flow, as shown in the figure. By Eq.1.36, a flow o f the electrolyte is induced along the 

length o f  the cell, perpendicular to both j  and B.

4.2 Interplay between Convective Flow and Diffusion

As described in Sec. 1.5.5, in a quiescent electrolyte as the supply o f ions in the vicinity 

o f the electrode is exhausted, the diffusion layer will gradually extend into the bulk until 

its thickness is ultimately limited by natural convection. In the case, however, that there 

is hydrodynamic flow o f the electrolyte past the electrode surface, the diffusion layer is 

constantly replenished with ions. The diffiision layer thickness can thus be maintained at a 

given value depending on the flow velocity Depending on the profile o f the flow, relation­

ships may be defined between the thickness o f the diffusion layer Sd and the hydrodynamic 

boundary layer thickness 6.

In particular in the case o f bulk flow with velocity U  past an infinite flat plate, the 

classic boundary layer profile, shown in Fig.51, is established. The thickness o f  such a 

boundary layer is generally [50] given by

® It is for this reason that some stirring mechanism, such as a paddle, magnetic stirrer, or rotating disc 
electrode, is often used to maintain a high, constant current in industrial processes.

(4.61)
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51 .In the case o f flow past a flat plate, the classic hydrodynamic boundary layer profile 
emerges. The diffusion layer is also shown for comparison.
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The X  and y  components of velocity within the boundary layer are given by Levich [49] as

1.33 
4

1.33 («2b)

These expressions are then used in the solution of the convective difflision equation 

(Eq.1.17) given, in the steady state, by

dc dc f  d^c d ^ c \

with the additional approximation that ^  < <  ^  so that the first term on the right hand 

side may be neglected. From this, Levich ultimately derives the expression

- H Q . / .  f ^ \
y = 0

for the concentration gradient at the electrode surface. Given the assumption o f Section 

1.5.5 that the concentration gradient across the difRision layer is roughly linear, then the 

diffusion layer thickness can be given as

ux ( D'^

(4.64)
1/3

^ d ~ 3 j — ( - 1  (4.65)

which combined with Eq.4.61 relates it to the boundary layer thickness by

(5d?= i0 .6 (-j 6. (4.66)

Given that the systems under consideration have diffusion coefficients o f D ~  1 x 10~^ 

m ^s~\ and viscosity i/ ~  1 x 10~® m^s“ \  we can, in the case o f flow past a long, flat 

electrode, make the rough approximation that
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d

52.Poiseuille flow into a narrow pipe.

Therefore, for the simple geometry of current plating to a flat electrode, in the pres­

ence of a flow of the electrolyte with bulk velocity U past the electrode, we could estimate 

the diffusion current density j  simply be calculating the thickness o f the hydrodynamic 

boundary layer, and then, from Eq.4.67, inserting a value for 6d into Eq.l .22.

In our geometry, however, we are considering flow between two flat plates, separated 

by some distance d. In the case that d is very large compared to the lengths of the plates, 

then the flow past each plate is essentially that described in Eq.4.62. As d is reduced, how­

ever, the two boundary layers begin to interact with each other, resulting in flow which is 

intermediate between the boundary layer flow of Fig.51 and the Poiseuille flow o f Fig.52. 

Unlike boundary layer flow, where velocity gradients are restricted to regions close to the 

walls with a uniform velocity throughout the bulk solution, here the velocity gradient per­

sists into the bulk, with the velocity reaching a maximum value of vq only at the centre of 

the channel. There is no y-component to the velocity at any point in the channel.
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Clearly in this case the thickness o f the diSusion layer cannot be defined by the 

simple approximation of Eq.4.67. Rather an expression, given by Levich [49], for the 

concentration gradient at the wall in this instance is

on the assumption that u »  D.  This equation is valid over a distance H  along the plates, 

over w^hich a steady state diffusion layer is being established. According to Levich [49], 

~  R e . Pr .(d/2); typically H  »  h, where h is the distance over which a steady-state 

velocity profile is established. Beyond H, Sd is independent of x.

4.3 Aogaki’s Theoretical Prediction and Experimental Result

Based on the theory of the previous section, Aogaki et al. [94] have derived an elegant 

theoretical model for the magnetic field effect on the current density in this system. Firstly 

[93] it is established that, in the case o f large separation o f the plates, the bulk velocity of 

the flow is related to the driving magnetic field by

where j  is the average current density over the electrode, p is the density o f the fluid, 

Apo is the pressure difference between the outlet of the channel and x  = oo which, under 

standard experimental conditions, is negligibly small, and xi  and X2 indicate the range of 

the electrode on an x-axis which has its zero point at the opening o f the channel.

(4.68)

= - - A p o  +  - B j  [X2 -  a:i) (4.69)
P P
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Combining this with Eq.l .22, under the assumption of boundary layer flow past the 

plate, the following expression for j  is determined as

]  =  -  0.333 Apo(2:2 -  (4.70)

given that at limiting current the ion concentration at the wall cq =  0. The factor H  is given 

by

H = ~  ~  (4.71)

This theoretical prediction agrees with their experimental data to within a multiplica­

tive factor of 7 /̂ ,̂ where 7  takes different values of order 0.1 for different geometries. In 

the case of the geometry considered here 7  =  0.118.

In the case of Poiseuille flow [92], however, the current density is expected to vary as

j  = (4.72)

where

K  = 0.504 (nF)3/2 [ypiy^n^  (4 .7 3 )

and h is the separation between plates of length I.
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4.4 Numerical Model 

4.4.1 The Full Geometry

The problem was approached numerically in a manner similar to that adopted by Ngo Boum 

et al [95]-[97]. The model was developed using the commercial finite element hydrody­

namics package, FLUENT. (Finite difference methods, however, can also be applied to 

such convective-diffusion problems as outlined by Fahidy [98].) Here the system was sim­

plified to a 2-dimensional model as in Fig.53 consisting o f  two flat plates contained within 

a rectangular cell. Regions are defined on the plates which represent the electrodes between 

which current passes.

The geometry is defined using a general script so that all o f the key parameters o f the 

system are easily varied; the length, thickness and separation o f the plates, the dimensions 

o f the outer container, as well as the boundary conditions on all surfaces. In the case o f  

the results presented we have used the Aogaki’s geometry with Xo =  0, Xi =  4.5 cm, 

X2 =  9.5 cm and X3 =  10.0 cm. h — 5.0 cm and the separation between the outer walls is

An initial value for current density is defined everywhere between the electrodes. A 

script was written to add the Lorentz bulk j x  B  force term to the Navier-Stokes Eq.1.37. 

The three key dynamical equations governing the behaviour o f  the system are then solved 

simultaneously, namely the Navier-Stokes equation Eq.1.37,

30 cm.

d \
+  (v  • V )v  =  — V p  +  i/V^v +  

P

j x B

P
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wall

electrode

plate

53.The basic two-dimensional geometry consists o f two flat plates contained within a 
rectangular cell.



4.4 Numerical Model 110

the continuity equation Eq. 1.25

V - v  =  0

and the steady state convective diffusion equation Eq.4.63

D V ^ c  — v-Vc =  0.

From the final equation we determine the value o f  the concentration gradient { d c / d y ) y ^  

at the cathode surface. Thus fi-om

the current at every point on the electrode surface is calculated. As the present geometry 

consists simply o f two parallel electrodes o f  macroscopic dimensions, we assume that the 

current passes in a straight line, perpendicular to the plates. Thus for a given value o f x 

along the plate, the current density at y  is equal to the current density calculated at the wall; 

that is j {x ,  y) =  j {x ,  y =  0). So new values for j  have now been assigned to every point 

between the electrodes.

These new j  values for the Lorentz force are passed back into the Navier Stokes 

equation, which generates new values for j  and so on .... Thus for a given value o f  B,  we 

repeatedly solve for j  until the system converges on a self-consistent solution.

Note that although a single average value o f  j  is used everywhere at the very first 

iteration, thenceforth every point on the mesh between the electrodes is assigned its own 

local value o f j .  In establishing convergence between successive iterations, however, the 

point o f comparison is the average value o f j  along the cathode surface.

The concentration boundary conditions are as follows:

(4.74)
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•  Container walls : c = ĉ o',

•  Non-electrode plate walls : c =  Cqq;

•  Cathode surface : c =  0;

•  Anode surface : c >

Two approaches to the boundary conditions on velocity have been separately exam­

ined, namely:

• V =  0 on all solid surfaces;

• (9f/(9x =  0 at the surfaces to the left and right of the outer container (i.e. these are 

not solid surfaces, but infinite sources and sinks of fluid), and =  0 on all other 

solid surfaces.



Chapter 5 
Magnetohydrodynamic Simulation

5.1 Velocity Profiles

In the first instance, we simulated the entire system consisting of two flat plates (electrodes 

displaced right of centre as in Fig.53) immersed in electrolyte contained between four solid 

walls. A typical velocity profile emerging from this simulation is shown in Fig.54. The 

Lorentz force acting on the solution carrying current between the electrodes, by the conti­

nuity equation, induces a bulk flow of the electrolyte down through the whole length o f the 

cell. The high velocity jet emerging fi-om the end of the tube, can result in complex flows 

at the walls of the outer container as seen in the figure. This behaviour in the outer regions 

of the system has a negligible effect on the flow within the tube, yet adds considerably to 

the computation time and the difficulty in achieving convergence o f the solution. As a re­

sult, the system was somewhat simplified by changing the boundary conditions on the left 

and right hand walls of the outer container. The top and bottom surfaces remain solid, with 

the v =  0, ‘no-slip’, boundary condition. Now, however, the left and right hand faces are 

given zero gradient boundary conditions; that is to say that they provide infinite sources 

and sinks of fluid.

A typical velocity profile obtained using these new boundary conditions is shown in 

Fig.55 for a concentration Coo =  76 mol/m“  ̂ at an applied magnetic field of  B  =  0.2 T. 

Along the interior surface of the plate walls, a hydrodynamic boundary layer is established.

112



54.The two flat plates are surrounded by four solid walls. Current flowing between the 
electrodes experiences a Lorentz force which forces fluid down along the length of the 
cell. At high fields, the high velocity flow results in complex motion at the walls of the 
surrounding container.

113
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55.As in the previous figure, but now the left and right faces o f the outer container have 
been given zero gradient boundary conditions, so that they act as infinite sources and sinks 
for the fluid.

Fig.56 zooms in on this profile between the plates. The thickness of the diffusion layer is 

very small compared to the region over which the velocity gradient occurs as illustrated in 

Fig.57 which compares the velocity and concentration profiles along a line from mid-point 

between the plates to the electrode edge at the middle o f the cathode. Note that although 

the two boundary layers interact with each other to some extent, this is not Poiseuille flow.



56.The velocity profile between the plates.
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57.The velocity and concentration profiles plotted as v/umax and c/coo respectively along 
a line drawn from the mid-point between the electrodes to the edge of the cathode. The 
diffusion layer is clearly contained well within the hydrodynamic boundary layer.

0
/0
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5.2 The Mesh

The biggest difificulty in attempting to solve this problem, as should be apparent from 

Figs.55-57, is that the regions of interest in the problem occur over many different or­

ders o f magnitude. The outer cell has width 3 x 10“  ̂m, although significant variations in 

the velocity profile occur only over the width of the tube ~  1 x 10“  ̂ m, but the concen­

tration variation occurs entirely within the diffusion layer ~  1 x 10“'* m. This demands 

the use o f a highly refined mesh along the electrode wall, but the use o f such a mesh at 

every point in the system would be an enormous waste of resources. In fact, it transpired 

that meshing proved to be one of the most time-consuming aspects of the problem. Ulti­

mately the mesh used was refined to successively high degrees over different regions o f the 

problem, as illustrated in Fig.58.

5.3 Current Density Profiles

Once the solution has reached convergence, the value o f {dc/dy)y=,o is calculated at each 

point on the electrode surface. From this, the diffusion current density j  is calculated from 

Eq.4.74. As diffusion is the dominant mode of mass transport in this system, at each node 

(x, y) we assign j{x,  y) =  j{x ,  0). Fig.59 considers the variation in j  along the electrode 

surface at low B  values. For values of magnetic field uplo B  ^  0.2 T, the current displays a 

sharp peak at the leading edge of the electrode, which decreases gradually along its length. 

This corresponds clearly with the behaviour (Fig.59(b)) of the concentration gradient over 

the same region. Here, due to the flow of fluid past the plate, a sharp increase in the
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(a)

rr

(b)

(C)

58.The mesh was refined to different degrees over different regions o f interest as illus­
trated by increasing zooms; (a) the whole system, (b) between the plates, (c) at the electrode 
surface.
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diffusion layer thickness from zero is observed at the electrode edge, which then gradually 

increases in value along the surface. Fig.60 shows the steady-state distribution of current 

density between the plates, (b) shows the sharp peak in the current density at the leading 

edge of the plate which is to some extent smoothed out by the mesh at a distance from the 

electrode as shown in (c).

Less clear cut, however, is the profile of j  along the electrode surface at higher B  

values, as shown in Fig.61 (a). In this case the current density shows a sharp peak at the very 

edge of the electrode which suddenly drops off, only to rise more gradually to a maximum 

further down the plate. This peak falls off again slowly before peaking again briefly at 

the end of the plate. Fig.61(a) shows the corresponding concentration distribution at the 

surface. Here we see nothing like the smooth, boundary layer style diffusion layer profile 

of Fig.59(b) where the ionic material is dragged down along the channel by the fluid flow. 

In this case rather, ions appear to have been dragged backwards away from the leading edge 

of the electrode to some extent. In this case the diffusion layer is in fact quite thick at the 

leading edge of the electrode and decreases in thickness up to a point some distance along 

the electrode beyond which it slowly increases in thickness again. As the solution of the 

convective-diffiision equation 4.63 depends strongly on the solution of the Navier-Stokes 

equation, we turn to the velocity profile for an explanation.

The colour plots of the flow in Fig.55-56 seem to demonstrate smooth, laminar flow 

through the channel in the positive x-direction. Examining this flow more carefully, how­

ever, using arrow plots to assess not only the magnitude of the velocity, but also the direc­

tion of the flow, points to an interesting phenomenon; eddy-current swirling is observed
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59.For B  =  0.2 T, and Coo =  76 mol/m^, (a) the profile o f  current density along the 
electrode surface shows a sharp peak at the leading edge, which decreases gradually; (b) the 
corresponding concentration profile shows a sharp increase in the diffusion layer thickness 
at the electrode edge, gradually increasing over the length o f  the electrode.
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60.(a) The current distribution between the electrodes at 5  =  0.2 T. (b) zooms in by a 
factor or 10 on the sharp peak in the current density at the leading edge o f the plate which 
is to some extent smoothed out by the mesh at a distance from the electrode as shown in
(c).



5.3 Current Density Profiles 122

P o s it io n  (m )

61.For B  =  0.3 T, and Coo =  76 mol/m^, (a) the current density along the surface of the 
electrode; (b) the corresponding concentration profile at the leading edge of the electrode.
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along the walls at the mouth o f the opening. Even in the case o f low B,  as shown in Fig.63 

for 5  =  0.2 T, just inside the mouth o f the channel a region can be identified at the plate 

surface where the fluid actually flows in the negative x-direction. Note that although the 

magnitude of the velocity in this region is very tiny, it is nonetheless reverse flow. At low 

B ,  however, this eddy current swirling does not extend as far as the electrode surface, and 

so the diffusion layer remains undisturbed.

At higher B,  on the other hand, this swirling becomes more intense, persisting right 

down over the beginning o f the electrode, as illustrated in Fig.64. T he vortex region, where 

the velocity profile rotates from reverse to laminar flow can be identified some distance 

along the electrode surface. The profile of along the y-axis, shown in Fig.62, indicates 

the region of reverse flow at the electrode edge. This accounts for the unusual concentration 

distribution of Fig.61(b) insofar as the reverse flow drags ions away Irom the electrode, 

destroying the anticipated smooth diffusion layer of Fig.59(b). The outline o f the diffusion 

layer is thus separated into two regions, one contained within the boundary layer o f flow in 

each of the two directions, with a minimum thickness at the vortex point between the two 

flow directions.

This phenomenon, and its effect on the current distribution, are most clearly iflus- 

trated in Fig.65. These graphs plot normalised values of j  at the electrode surface, and 

normalised values of Vx 100 fim  from the plate surface at and around the electrode. Here 

we see the region o f eddy current swirling as a negative region on the plot o f Vx. For 

B  =  0.2 T, the region of reverse flow does not extend to the electrode, and the current den­

sity profile is as expected in the case o f laminar flow. For the case o f  B  — 0.3 T, however.
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62.At the leading edge o f the electrodes, plot o f Vx along the y-ax\s from the mid-point 
between the electrodes to the cathode. Negative values indicate the region o f reverse flow.
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where the reverse flow does extend beyond the electrode edge, we can identify that region 

of the electrode where j  drops from its edge peak, and then climbs to the second maximum 

as corresponding with the region of reverse flow. As the flow returns to forward flow, the 

current density profile tails off to lower values with a profile similar to that of the laminar 

flow 5  =  0.2 T case. We also see in both cases that the edge peak of j  has a small local 

effect on the velocity profile, but is clearly not responsible for the reverse flow, which is a 

hydrodynamic effect of the electrolyte passing over the outer edge of the channel.

5.4 Current Enhancement

Considering now the overall variation of j  as a function of B, for concentrations of = 

76 mol/m“  ̂and 28 mol/m“ ,̂ the results are shown in Fig.66. Overall an excellent agree­

ment is found with both experiment and theoretical prediction. At fields B > 0.3 T, j  

plotted against B^^^ falls nicely in with a linear fit as shown in the figure. At lower fields, 

however, the current value tends to level out towards the value of the zero-field limited dif­

fusion current of Eq. 1.24. The limiting diffusion current is determined, in the absence of 

forced convection, by the time t before natural convective effects limit the growth of the 

diffusion layer thickness. As this system is devised with the cathode placed horizontally 

on the upper wall of the cell, specifically to reduce natural convective effects, we may ex­

pect that t is somewhat larger than the typical value of 30 s for a vertical electrode. From 

the Cottrell plot of Fig.67 we may expect the limiting current density to be of the order 

30 Am“ .̂ This is approximately the value that limits the magnetic field effect of Fig.66(a). 

This important point deserves emphasis, as experimental data presented in the literature
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63.At B  = 0.2 T, an arrow plot reveals that (a) although the flow is in the positive 
x-direction in the bulk in the channel, at the mouth of the cell eddy-current behaviour 
is observed at the wall. The fluid actually moves in the negative a:-direction at the wall, 
(b) zooms in on the electrode edge (which appears to the extreme right of (a)) showing that 
in this case the eddy current swirling does not extend to the electrode.
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64.At 5  =  0.3 T an arrow plot (a) of the velocity shows that the eddy swirling is again 
present inside at the inlet; (b) the eddies continue strongly into the region leading up to the 
electrode edge and (c) in this case they persist past the leading edge of the electrode.
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65.The x-com ponent o f  velocity (20 f im  from  the surface) along the plate length and 
the current density (norm alised to  j x 10~®) along the electrode length are both plotted for 
(a) 5  =  0.2 T and (b) B  =  0.3 T.
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may lead one to believe that the j  oc relationship yields a straight line graph through 

the origin. This, importantly, is not the case, as we must remember that current flows in the 

absence of any applied magnetic field. Thus there must exist some threshold below which 

the magnetic field induced convection is not suflBcient to appreciably change the thickness 

o f the difilision layer. Magnetic field enhancement o f the plating current should only be 

observed, therefore, above this threshold magnetic field value.

The dependence of the current density on the concentration of the ions in solution in 

the presence o f a fixed magnetic field is shown in Fig.66(b). Here, for a constant value of 

B =  0.5 T we see good agreement with the linear dependence o f j  on predicted in 

Eq.4.70.

Combining the data of Figs.66(a) and (b) into Fig.68, we see that our numerical 

model has very closely reproduced the observed

j  oc C^35l/3
J oo

relationship over a range of values o f concentration and applied magnetic field.

Fig.69 shows the comparison between our numerical data, the theoretical prediction 

of Aogaki fi'om Eq.4.70 and 4.71 and his experimental results. Our simulation shows very 

good agreement with the theoretical values. The j  oc B̂ ^̂  form of the experimental 

data is reproduced, although our absolute values are somewhat larger.
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66.For concentration c^o =  76 mol/m  ̂ (a) plots j  against The straight line show 
a linear fit to the higher field data, while the lower field value levels off to the zero field
value, (b) plots j  against at a constant value o f  B  =  0.5 T. The straight line shows a 
linear fit to the data.
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67. Variation o f  the zero-field limited diffusion current with time.
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68.Plot o f j  against data shown together with a straight line fit.
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69.Calculated j values are in very good agreement with the Aogaki analytical model and 
both are somewhat larger than the experimental data.



Chapter 6 
Discussion

We have shown how the interplay between magnetic fields and electrodeposition re­

sults in a variety o f phenomena which can be successfully modelled numerically. Very 

striking is the success o f  a rather simple DLA model in reproducing the fractal patterns ob­

served when a magnetic field is applied perpendicular to a flat elecfrochemical cell. Good 

agreement with the experimental results is achieved for both linear and circular electrode 

geometries.

The very fact that any observable agreement is achieved between the experimental 

and modelled irregularities o f the deposits, points to their fractal nature. As outlined in 

Section 1.1, one o f the key properties o f fractals is their scale-invariance, which means that 

their structure and the degree o f  their irregularity is similar at all scales. These simulations 

challenge that definition in attempting to relate our simulation to some length scale in the 

real problem.

One approach to defining a convenient length scale for our deposits, relates to the 

hydration spheres about the moving ions. Consider that each metal ion is, as outlined 

in Sec. 1.5.1, surrounded by a sheath o f  water molecules, which extends to at least one 

hydration sphere o f  6 water molecules. The real size o f  a moving ion is thus limited by the 

size o f its hydration sphere. Given that one mole o f  H2O occupies 18 x 10“ ® m"^, then 

6 water molecules occupy ~  18 x 10“ ^  m '^ , and thus the hydration sphere has diameter 

~  0.7 nm. Thus if we consider that in our simulation, two moving particles may not occupy

134
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the same site, then we may set a length scale that the spacing between neighbouring sites 

~  0.7 nm. Thus a numerical lattice of 800 x 800 represents a fractal of width ~  0.5 /xm. 

Our box-counting log-log plots indicate self-similarity over two orders of magnitude, but 

given that the experimental electrodeposits have width ~  0.01 cm, the similarity between 

the experimental and numerical results indicates that these structures may be self-similar 

over a further 4 or 5 orders o f magnitude. If this is the case, they may truly be considered 

to be fractal.

This hypothesis has probed in a recent examination of zinc electrodeposits in the 

electron microscope. This study confirms that the deposits are roughly self-similar from a 

scale of mm to yum. The original deposit was ~  25 mm in diameter, and their floral structure 

is maintained. Fig.70, over four orders of magnitude to the 10 /xm scale of Fig.71(a). On 

the 1 /xm scale of Fig.7 1(b), however, individual zinc crystallites with smooth surfaces are 

seen in the deposits. These crystallites are the elementary building blocks o f the structure 

and set a limit to its fractal behaviour. The growth o f such a crystallite is initiated by 

a nucleation process about which growth proceeds. Interpreting our simulations in the 

context of this data, a random walker sticking to the simulated electrodeposit may in some 

way be equivalent to the nucleation and growth of a single micron-sized crystallite. Such a 

nucleation and growth mechanism is also consistent with Fleury’s SEM and AFM analysis 

of branched fractal electrodeposits [99], which points to polycrystalline growth developing 

out of oscillatory nucleation events.

With this in mind we consider the number o f particles involved in a typical numerical 

aggregate compared to the number o f ions reduced in a typical experiment. Experimen-
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015152 WD17.3nm 20.0kV x30

015153 WD16.9mm 20.OkV x300 lOOum

70.SEM images o f a dense radial zinc electrodeposit at a scale o f (a) 1 mm and 
(b) 100 ^m.
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(a)

(b)

71.SEM images of the fractal of the zinc electrodeposit o f the previous figure at a scale 
of (a) 10 and (b) 1 fim. The fractal structure breaks down and individual zinc crystals 
emerge on the 1 ^m  scale.
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tal deposits such as those in Fig. 14 contain ~10^° atoms, while the simulated fractals o f 

Fig.38 contain only -10^ atoms. This might suggests that the fractals really are self simi­

lar over at least 5 orders o f magnitude, from a scale o f  mm to nm. Alternatively, as seems 

possible based on these SEM results, we may interpret the disparity between the number o f 

experimental and numerical atoms as indicating that each atom in the simulation actually 

represent a cluster o f atoms. One must bear in mind, or course, that the experimen­

tal cell is not entirely two dimensional on the scale o f  the crystallites and does, or course, 

have some small thickness (~  200 f i m ) .

Such crystalline structure has also been observed by Grier et al [22] from transmis­

sion electron micrographs and x-ray diffraction, but only for dendritic deposits. In their 

study DLA-like aggregates displayed an amorphous structure, with rough, unfaceted tips 

evident on a scale o f less than 30 nm. Thus the crystallographic and scaling properties o f a 

deposit may depend on the conditions under which it is grown.

The problem o f scale leads us to important questions regarding the scales over which 

the various effects in the model should be deemed to act. For example, the value o f R io o k ,  

that radius about a particle within which the program scans for an occupied site on the 

deposit, is used repeatedly throughout the simulations. Firstly, as there is no supporting 

acidic electrolyte present in the fractal experiments, the migration force is long range, and 

falls off in two dimensions as l / d d e p o s u  into the solution as shown in Section 2.1.2, where 

d d ep o sit is the distance from the ion to the nearest point on the aggregate. Although, in 

principle, dde-posit should be calculated for every particle at every step, this would prove 

very computationally costly. Furthermore, it is found numerically that the significance o f
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this 1 /ddeposit dependence is seen to saturate within ddeposit ~  10 sites. This results in our 

selection, in Section 3.1.1, o f Riook =  10 sites. Beyond Riook the effect o f the applied 

electric field is simplified to a small, constant drift towards the deposit. So in this sense 

Rtook may be taken to be the range over which migration is most significant. If  we identify 

the site in the simulation with the dimensions of a crystallite in the deposit, Riook ~  20 //m.

Numerically, we use the same value o f Riook, however, when considering the effects 

o f natural convection. Natural convection is induced by a density gradient between re­

gions o f ion-rich and ion-poor solution. As detailed in Section 1.5.5, in the vicinity of 

the electrode surface a concentration (density) gradient develops between the bulk solution 

with concentration Coo of metal ions, and the surface of the electrode where cq  =  0  as all 

the ions have been reduced to metal atoms. Natural convective flows develop as a result 

o f this concentration gradient which exists within the diffiision layer which typically has 

thickness ~  100 /xm. Although these flows conceivably develop to become larger scale 

effects in the case o f the vertical cell, this is the scale on which they originate. Thus when 

we model natural convection within Riook of the deposit, we are effectively setting Riook 

within 5d- Alternatively one could argue that although we limit our simulation of natural 

convection to regions close to the surface, that this is really just the local effect of a larger 

scale convective flow.

Such an argument may be supported by the results from the numerical introduction 

o f an applied magnetic field. Our first model for magnetic field considers the electrolyte 

effectively as a collection o f ions, each of which experiences a force due to a magnetic field. 

In this case, although the Lorentz force F£,or =  ?v x B  is perpendicular to both v  and B,
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the net effect will be to deflect the ion by some angle a^nagn to its ballistic trajectory along 

V.  The inadequacy o f this model, however, was its failure to consider that B  is not acting on 

each ion in isolation, but on all o f the ions in solution, so we must consider the cumulative 

effect o f B  on j. This results, not in a deflection o f  the motion o f  an individual particle, 

but in a bulk flow o f the material with some velocity in a direction perpendicular to both 

B  and j. Any such flow is confined by the ‘no-slip’ condition (Eq.1.30) to flow parallel to 

any solid surface in its path; that is it must flow parallel to the surface o f the electrode. We 

limit our model, therefore, to considering the effect o f  this flow on particles close to the 

surface. That is not to imply, however, that the magnetic field necessarily acts only close to 

the electrode surface. Rather the assumption is that this Lorentz forced convective flow is 

everywhere in the cell perpendicular to both B and j ,  but that we can reduce computation 

time by considering its effects close to the surface only. In this sense, although Riook marks 

the limiting distance within which we consider this flow, it need not mark the limit o f the 

flow itself.

This approach is also consistent with the electrokinetic theory o f  Olivier et al [51][53] 

who argue that the effect o f the apphed magnetic field is equivalent to inducing a non­

electrostatic field parallel to the electrode surface, which pulls ions along the surface ac­

cording to electrokinetic effects. Their theory (Section 1.6.2) does not prohibit bulk con­

vective flow under a magnetic field, but instead argues that all effects can be accounted for 

by considering only local electrokinetic effects beyond the outer Helmholtz plane close to 

the electrode.
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In these simulations, the ionic concentration is modelled simply by allowing many 

particles to move and stick simultaneously. It would be interesting, however, to extend the 

model to allow for a more complex concentration map about the fractal tips due to the local 

electric field [100] [101]. This could prove especially usefiil in a three-dimensional DLA 

simulation where gravitational convection close to the tips in the small third dimension is 

relevant [68].

The numerical data presented in this study considers only the eflfect o f a magnetic 

field on the growth o f fractals o f non-magnetic metals. The deposition o f magnetic mate­

rials, however, in an applied magnetic field results in quite different structures as shown 

by Bodea et al [35]. As a development o f our numerical study, it might be interesting at 

some later stage to introduce a term for the force F  =  —V  (m  • B) on magnetic dipole 

moment m  of a magnetic ion due to the combination of the externally applied magnetic 

field and that magnetic field due to the fi’actal aggregate itself. It would also be interesting 

to determine the magnetisation curves o f these magnetic fractal structures.

In the case of our magnetohydrodynamic simulations o f current enhancement due to 

forced convection in the Aogaki cell, the agreement o f the numerical result with experi­

mental observations and theoretical predictions for

j  oc oo

is very satisfactory. A number o f assumptions and simplifications are made, however, in 

building our numerical model.

In principle the electric and magnetic fields involved in these calculations should 

take the effective values inclusive of the secondary effects o f induced Hall voltage due
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to charged particles moving in a magnetic field, and the induced magnetic field due to 

the velocity o f  these charged particles. In practice, however, these secondary perturbations 

may be ignored [93][95] due to the small ionic carrier mobilities. By contrast, large electron 

mobilities make these secondary effects non-negligible m the case o f  liquid metal melts.

In our simulation we have considered only the diffusion current density in our cal­

culation o f  j .  As we are in the mass-transport limited regime (i.e. the region o f  a plot 

o f  current density against applied voltage where the reaction kinetics are very much faster 

than the rate o f  diffiision o f  material across the difiusion layer, and thus the current density 

is limited only by the speed o f  diffusion; in this region the current density is independent o f 

increasing voltage), diffiision is the limiting process determining j .  That is to say that mi­

gration o f the ions under the applied electric field o f Eq. 1.18 is insignificant in determining 

the limiting current density. This is particularly valid given that the electrolyte in this sys­

tem contains, as well as CUSO4 , a strong, acidic supporting electrolyte o f IM  H 2 SO 4  which 

screens the Cu^"  ̂ ions from the applied electric field. In the bulk solution it is these excess 

ions o f the supporting electrolyte which carry the bulk o f the current density. These ions 

draw the electrolyte towards the electrode by migration under a small potential gradient, 

diffusion not being relevant in the bulk as no concentration gradient exists here. Nonethe­

less, diffusion is the rate determining process and by continuity the value o f  the migrative 

current density in the bulk must equal that o f  the diffusion current density calculated at the 

surface.

Alemany et al [95] [96] introduce a migration term into their magnetohydrodynamic 

simulations, on the grounds that, although migration does not affect the absolute value for
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the limiting current, its eflfect far from the diffusion layer may affect the distribution of j  

in the bulk solution. In particular for a complex electrode geometry the electric field lines 

may not be exactly perpendicular to the electrode surface, but may bend somewhat out into 

the bulk. Accordingly, their expression for j  is given by

j  =  - n F D V c - a E *  (6.75)

=  —nFD'Vc — a'V^*

where the apparent electric field E*, due to the apparent potential is introduced such 

that the steady state conservation of current density (Eq.1.15) is satisfied.

As the geometry under consideration here consists of two, macroscopic, flat elec­

trodes, however, the electric field lines between them deviate from linearity only close to 

the electrode edges. In the bulk of the fluid between the plates, therefore, our approxima­

tion of j{x , y) =  j(x , 0) remains suflBcient. For such a simple cell configuration, the addi­

tion of a migration term in the bulk serves only as a perturbation to the dominant diffusion 

current density. A more complicated geometry, however, involving a strongly non-linear 

distribution of electric field lines will require inclusion of the second term of Eq.6.75.

The results of Fig.66 for c =  76 mol m“  ̂ show a clear linearity between j  and 

for B  ^  0.3 T. Below this value, the results tend towards the value for limiting 

diffusion current density in the absence of an applied magnetic field. This important point 

emphasises the fact that only above some limiting value of magnetic field (for a given 

concentration and cell geometry) does the magnetic field generate a forced convective flow 

strong enough to affect the thickness of the diffusion layer, and thus the current density. So
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it is important to note that this curve does not pass through the origin. Rather it levels out 

to the value o f  the limiting current density by natural convection.

The absolute values calculated for the current density are in very close agreement 

with the theoretical predictions o f Aogaki in Eq.4.70. They are, however, somewhat larger 

than the experimental observation. This is most likely due to the fact that the zero gradient 

boundary conditions on the external walls o f  the numerical cell allow the electrolyte to 

flow faster than it would if  fully confined by solid boundaries. This will tend to decrease 

the boundary layer thickness, and thus increase the current density.

It is very interesting, however, that such good agreement should exist with Aogaki’s 

analytical model, as his model derives the relationship o f  Eq.4.70 on the assumption of 

smooth boundary layer flow past the electrode surfaces. On the contrary, however, we find 

that eddy currents caused by rapid flow past the leading edge o f the channel wall can ex­

tend well beyond the electrode edge at high velocities. The result is that complex velocity, 

and thus concentration, profiles can exist at the electrode. Yet fi-om Fig.68, our model re­

produces the j  oc relationship predicted by Aogaki in both form and magnitude.

We can understand this by dividing the electrode into two sections, the downstream section 

with flow in the normal, forward direction, and the upstream section with the back stream­

ing flow. Within each section the flow is uniform and parallel to the surface. Thus Aogaki’s 

model for the hydrodynamic flow effect on the diflfiision layer profile may be applied to 

each section separately. The result is overall compliance with his theoretical prediction. 

Aogaki has elsewhere [102][103] proposed a theory for the effect o f  an applied magnetic 

field on dissolution at an electrode based on a theory o f  micro-vortices whose cumula-
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tive effect is to produce a number of larger macro-vortices at the electrode surface. In this 

model, microscopic defects on the surface result in local currents which, under the Lorentz 

force, generate micro-vortices. Although our model does not consider such microscopic 

features o f the system, there may ultimately prove to be a link between deposition through 

this kind of vortex flow and the reverse flow which we observe here.

Further numerical work in this area may prove very useful as a guide to improving 

industrial plating processes. In particular, if the uniformity o f the thickness o f the deposit 

is a key consideration, it may be desirable to eliminate the enhanced deposition at the elec­

trode edge due to the current density spike in this region. MHD simulation could be used 

to develop a flow guide geometry that would produce a uniform hydrodynamic boundary 

layer thickness, and thus a uniform plating current over the length o f the electrode. Con­

versely, such considerations could possibly be applied to enhance plating at a particular 

point o f an electrode. Such boundary layer control has been attempted by Weier et al [104]. 

Magnetic field sources may be designed to tailor magnetic fields to a particular applica­

tion. Permanent magnets prove particularly useful for such field confinement on a variety 

o f scales.



Chapter 7 
Conclusions

This thesis has presented the successfiil application o f modelling techniques to two 

different aspects o f magnetic field effects on electrodeposition, magnetic field effects on the 

growth of fi'actal electrodeposits, and magnetic field induced current density enhancement 

at a flat electrode. In both cases the resultant effects proved to be due to a Lorentz force 

acting on the ionic current.

Our enhanced random walker model for the magnetic field effect on fractal elec­

trodeposition in flat electrochemical cells proved effective. The morphologies produced 

mirrored the experimentally observed spiral patterns closely for both circular and linear 

electrode geometries. An attempt at defining the minimum length scale for the numerical 

structures indicates that they represent agglomerates of crystallites about 2 /im in size. The 

similarity in the resultant morphologies suggests very strongly firactal behaviour o f fi^ ta l 

electrodeposits, over several orders of magnitude.

Numerical simulation of magnetohydrodynamic flow in an Aogaki cell yielded a lin­

ear dependence o f j  oc as seen experimentally. The origin of this effect is in the

flow of electrolyte caused by the Lorentz force acting on a current density j  in a magnetic 

field B.  This flow past the electrode has an effect similar to any other form of mechanical 

stirring in that it continuously replenishes the supply o f plating ions to the electrode, thus 

enhancing the plating current density. The fact that the magnitudes o f our calculated cur­

rent densities were larger than the experimental values is primarily due to the fact that the
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open boundary conditions on the ends of our cell allowed the electrolyte to flow faster than 

it would in a real system. The numerical values agreed very closely, however, with Ao- 

gaki’s analytical prediction. This was somewhat surprising as Aogaki’s theoretical model 

assumes smooth laminar flow over the flat electrode surfaces, when in fact our simulation 

reveals an area o f reverse flow which, at high flow velocities, can stretch over the electrode 

surface. This may be understood by dividing the electrode into two regions, one with nor­

mal and one with backwards flow. Each satisfies Aogaki’s laminar flow model, and thus the 

j  a  relationship holds overall.

There is significant scope to apply these numerical techniques to industrial processes 

to modify MHD flows so as to concentrate deposition in desired regions. Such refinement 

would require specialised magnetic field sources, of the kind analysed in the appendices, 

capable o f concentrating flux into a confined space.
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Appendix A 
Analysis of Torque in Nested Halbach 

Cylinders

Rotatable nested cylindrical magnets may be used to generate variable magnetic 

fields. A mutual torque exists between the cylinders which is an important consideration 

in practical designs. We present a thorough investigation o f  this torque, combining experi­

ment, computation and theory. In the finite length case, in which the magnetisation varies 

according to the prescription o f  Halbach, the torque is an end effect. It is proportional 

to sina, where a  is the angle defining the relative orientation o f the cylinders. Practical 

designs use a discrete number N  o f permanent magnet segments to approximate the con­

tinuously varying magnetisation o f  the ideal design. These introduce higher components 

sin (na) to the angular dependence o f torque, where the allowed values o f  n  are restricted 

to n =  [UN ±  1) according to the Segmented Magnet Torque Theorem.

A .l Introduction

Permanent magnet variable flux sources have some appealing advantages over conventional 

electromagnets. They are compact, and require no cooling or external power supply. Long 

permanent magnet cylinders, known as Halbach cylinders or dipole rings, create a magnetic 

field in their bore which is uniform to a very good approximation. Two such cylinders 

can be coaxially nested and rotated about their common axis to create a variable field as 

described by Leupold [107].

159
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Among the issues encountered in the design o f such devices, there is the problem 

o f mutual torque between the two cylinders. The torque is exactly zero in the idealised 

model o f infinitely long cylinders with continuously varying orientation of the magnetisa­

tion. Thus its origins and magnitude in real systems have not been apparent.

Here an experimental, numerical and theoretical analysis o f the torque as a function of 

the relative angle between the cylinders is presented. Principles of symmetry are applied, 

and a theorem is proved concerning the functional form of the energy and torque. An 

analytical theory emerges which is confirmed and complemented by numerical simulations. 

There remain to be resolved some minor discrepancies with experimental observations, but 

the present level o f understanding provides a valuable design tool.

The design o f an ideal Halbach cylinder is indicated in Fig.72(a). The axis of the 

cylinder is the 2-axis, and the magnetisation lies in the plane perpendicular to 2 . The mag­

nitude of the magnetisation is constant, while its orientation varies continuously: at an 

angular position ip measured clockwise from the y-axis the magnetisation has orientation 

2il> as shown in the figure. A cylinder with continuously varying magnetisation direction 

will be termed an ‘ideal Halbach’ cylinder. An infinitely long ideal Halbach cylinder pro­

duces a uniform magnetic field in the y-direction within the bore, and zero field everywhere 

outside the cylinder. The magnitude o f the induction B in the bore [108] is

where Br is the remanence o f the material, and Ro, Ri are the outer and inner radii of the 

cylinder respectively.

(A.1)
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72.(a) The ideal infinite length dipole ring, with definition o f angular variables; (b) The 
finite length, segmented Halbach approximation, with definition of angular variables; (c) 
Two nested cylinders; the field in the bore is the vector sum of the fields from the individual 
cylinders.
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Fig.72(b) presents a practical approximation to this design, as suggested by Halbach 

[109]. A discrete number N  of imiformly magnetised segments is used to approximate the 

uniformly varying magnetisation of the ideal design. The direction of the magnetisation in 

any segment is constant and given by twice the angular position ^  =  7  ̂of the centre of the 

segment, where =  j27r/A^ for j  =  1,2,..., N.  We refer to this design as the ‘segmented 

cylinder’. Inhomogeneities in the field within the bore and some stray field outside the 

cylinder result fk)m the segmented structure and finite length of such a magnet.

A pair of coaxially nested cylinders, one inside the bore of the other, is shown in 

Fig.72(c). Such a pair can generate magnetic fields which are continuously variable in both 

magnitude and direction, as suggested in reference [107]. The resultant field in the cen­

tral bore is the vector sum of fields from the individual cylinders. By rotating the cylinders 

with respect to each other, the magnitude and orientation of the central field can be uni­

formly varied. If the dimensions of the cylinders are chosen such that the same bore field 

is produced by each cylinder alone, then the magnitude of the resultant field of the pair can 

range from zero to twice that of a single cylinder.

Commercial cylinders are constructed using rare-earth magnet materials such as Nd- 

Fe-B. These materials have very square hysteresis loops with a high coercivity > 1-5 

T) and small transverse susceptibility (x_l ~  0.1), so that the magnetisation pattern of the 

cylinders is essentially unaffected by the large fields to which it is exposed [108]. Thus in 

theoretical calculations of the field due to such a cylinder it is a fair approximation to take 

the susceptibility in any direction to be zero.
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In a typical device [110], two cylinders are independently rotated by motors which 

drive them to the positions necessary to produce a given field. A variable torque is experi­

enced as one cylinder is rotated relative to the other. Torque places strain on the gears and 

motors turning the cylinders, and can contribute significantly to their wear and tear. Hence, 

it is important to have a greater understanding of its origins.

We have investigated this torque experimentally (Section A.2), using computer mod­

elling (Section A.4) and analytically (Section A.5). In Section A.3 we present the back­

ground theory necessary for our analysis. We show that torque is absent for infinitely long

ideal cylinders, and results from field non-uniformities in nested segmented cylinders of 

finite length.

The energy dE of a small element of magnetic material with volume dV and uniform 

polarisation J, placed in an external magnetic field Happ, is given by

dE =  -J-HappdV  (A.2)

where J  is related to magnetisation M  hy J  — HqM.  For these rigid magnets the polarisa­

tion is equal to the remanence J =

The element experiences a torque dVm, tending to align J  with Happ, given by

=  J  X HappdV (A.3)

and a torque dT j  about a fixed origin

drf  =  r X  F  (A.4)

where r  gives the position of the element relative to the origin.
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F  =  -V{dE)  =  V (J  • dV (A.5)

is the force on the element due to the gradient of the applied field, in the case where J  is 

constant over the volume dV.

In the case of concentric cylinders, and as a result of the reciprocity theorem given 

in section A.3.1, the torque on the system may be calculated by considering the rotation of 

either cylinder about its axis in the field due to the other cylinder which is kept stationary. 

The total torque F consists of contributions dTm and dV /  (Eqs.A.3 and A.4) integrated over 

the volume of the first cylinder. The z-th component of the torque is given by

Tj = y  | ( J  X Hgpp). + y ^  £ijkrjJi{'VkiHapp)i)^dV. (A.6)

The torque and the enei^  are related by

dE
T = - —  (A.7)da

where a  is the angle of rotation of the inner cylinder relative to the outer, as shown in 

Fig.73, and E  is the energy of one cylinder in the field of the other.

A.2 Experimental Results

We measured the variation in torque as a function of a  for a nested two-cylinder system, 

where a is the angle through which the inner cylinder is rotated from the position where

its magnetisation is fiilly aligned with that of the outer, fi'om Fig.73. Both cylinders were

made of segments of Nd-Fe-B. The cylinder dimensions are given in the table.
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73.Graphical definition of the relative angular rotation a between the cylinders when the 
outer cylinder is kept in a fixed position.
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Inner Cylinder OuterCylinder 
Inner Radius (mm) 26 52.5
Outer Radius (mm) 47.5 110

Length (mm) 100 100
Segment Number N  % %

Nominal Value for Remanence (T) 1.08 1.17

Table A 1 : Cylinder characteristics.

Each cylinder was connected, via a system of gears, to a d.c. motor [111]. The 

position o f each cylinder at any instant was recorded via an absolute encoder.

The torque Tmot generated by the d.c. motor is directly proportional to / ,  the current 

drawn,

Tmof =  (A.8)

where kr  is the torque constant given by

(A.9)

Here V  is the operating voltage, R  is the resistance at the motor terminals and uim 

is the angular speed of the rotor in (radian/s). This equation is obtained by equating the 

power input to the motor, Pi =  V I, to the total output power Pq generated by the motor. 

Po is the sum of the power associated with the torque, Tmot^^m, and the power loss, R P .

If the motor is run at constant voltage, the torque generated by the motor at any instant 

can be calculated by monitoring the variations in current drawn and motor speed. This can 

then be related to the torque experienced by the cylinder via the gear ratios. The gearing 

system comprised a planetary gearbox, and a worm-wheel unit.

In the measurements reported below, the outer cylinder was held in a fixed position 

while the inner cylinder was rotated. The inner motor was run at a constant voltage of 12 V.
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The current, inner encoder position and voltage were recorded at regular time intervals, and 

the angular speed lUc o f  rotation o f  the cylinder at each o f  these instants was determined. 

The angular speed u J m  o f  the motor was found from

^teeth  /  » 1
u J m  =  ^ c r g b   (A. 10)

^staT t

where r g b  is the gearbox ratio, U te e th  is the number o f  teeth in the worm-wheel, and U s ta r t  

is the number o f  starting teeth in the worm screw.

From these data, the torque Fmot generated by the motor was calculated at each in­

stant using Eqs.A .8  and A .9. This yielded the torque F experienced by the cylinder;

i~ i  r '  /  ^ 'te e th  \
1 ^ motT^gbi JV m ^w w V gb

^ s t a r t

where 77̂ , and ??gj,are the efficiencies o f  the motor, worm-wheel and gearbox respec­

tively.

The cylinder torque for a constant applied voltage o f  12 V is plotted in Fig.74(a) as 

a function o f  the relative orientation a for two complete rotations o f  the inner cylinder, and 

the current and angular velocity o f  the cylinder are plotted in Fig.74(b). In this case the 

cylinder was rotating in the clockwise direction, so that a is negative. As will be explained 

more fully later, the variation in torque around one full rotation o f  the cylinder is essentially 

sinusoidal. For one half o f  each cycle, the motor is working to overcome the magnetic 

torque. In this region, an increase in load torque is reflected by an increase in the current 

drawn by the motor, and a decrease in the speed o f  the motor head and vice versa. For the 

second half o f  each cycle, both the motor and the magnetic torque rotate the cylinder in the 

same direction, so there is effectively zero load torque on the motor. The current drawn
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by the motor is reduced and its speed increased. However, the maximum (no load) speed, 

no, and the minimum (no load) current, Iq, are determined by the applied voltage and the 

terminal resistance o f the motor, and their values are defined for a given motor. In this case 

no =  4090 rpm, and I q =  12.3 mA. Hence, in this region of the graph, both current and 

speed remain approximately constant.

Fig.74(b) shows variation in current I  for two complete clockwise rotations. Similar 

data were collected for rotation in the anticlockwise sense. These two sets o f data were 

combined to indicate the structure of the torque variation over 360 degree cycles. The 

combined data for one complete rotation are shown in Fig.74(c).

These measurements were repeated for constant voltages of 6 V, 8 V and 10 V, and 

also while rotating the inner cylinder at four different values of constant speed and allowing 

the voltage to vary. Each of these cases yielded results consistent with those presented 

above.

The variation of the current as a function o f a may be written as a Fourier series

A Fourier transform of the current data is shown in Fig.75, plotting the amplitude 

o f the current, \ / a \  + as a function of the order, n, of the term. The dominant term 

is evident at n =  1, indicating that the variation is mainly sinusoidal. Higher order terms 

are also evident, in particular at n =  7, 15 and 23, each with a smaller neighbouring 

peak around n =  9, 17 and 25 respectively. That is, higher order terms are significant at 

n =  {kN  ±  1), where N  is the number of segments on the cylinder and A: is an integer.

OC

(A. l l )
n = l
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74.(a) Torque on the inner cylinder over two full clockwise rotations; (b) Current drawn 
by inner cylinder motor and cylinder angular velocity for two clockwise rotations; (c) Cur­
rent data from clockvsdse and anticlockwise rotations combined to give complete informa­
tion over one complete rotation.
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75.A m plitude o f  Fourier com ponents o f  data in the previous figure, show ing a dom inant 
peak at the n  =  1 term  o f  the Fourier series, w ith successive peaks at the n  =  { k N  ±  1) 
term s as labelled, where N  =  S i s  the num ber o f  segm ents and A: is an integer.

These term s in the torque variation are m odelled num erically and accounted for analytically 

in the following sections.

A.3 The Model

The num erical and analytical calculations w hich we present depend on the following: (i) 

the Reciprocity Theorem  w hich allows us to find the torque by calculating the energy o f 

the inner cylinder in the field o f  the outer;

(ii) the rigidity o f  the polarisation in the high rem anence, high coercivity m aterials 

used to construct the cylinders. This allows us to use a magnetic charge m odel for our
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field calculations, and in particular a surface charge model for calculating the field due to a 

segmented cylinder (Section A.4.1);

(iii) the symmetry properties of the cylinders which lead to the ‘Segmented Magnet 

Torque Theorem’ (Section A.5.2) concerning the angular dependence of the torque.

A.3.1 Reciprocity

The Reciprocity Theorem [112] for magnetostatic energy, states that the energy, E,  of one 

magnet due to the field of a second is equal to the energy of the second due to the field of 

the first. That is,

E = I  H i - J2cI V =  f  H 2 - J i d V  (A.12)
J a i l  space J a i l  space

where i/ , is the magnetic field produced by magnet with polarisation Ji, where i =  1,2. 

The inner and outer cylinders must experience equal and opposite torques which may be 

calculated fi-om the energy using Eq.A.7. In our nested model we choose to calculate the

torque by considering the effect on the inner cylinder of the field due to the outer one.

A.3.2 Magnetic Ciiarge Model

As the first step in the simulation, we calculate the field due to the outer cylinder alone 

(Section A.4.1). The model depends on the assumption, which is an adequate approxi­

mation for the real cylinders, that each segment has a perfectly rigid polarisation J. The 

magnetic induction within a block of magnetic material is

B  — + J (A. 13)



A.3 The Model 172

In a magnetostatic system.

V x (A. 14)

so we may define a scalar potential by

(A. 15)

Since V • 5  =  0, then fi-om Eq.A.12

- V - J
(A. 16)

and satisfies a Poisson equation with magnetic charge density =—V • J.

In the ideal case, the field is calculated fi"om a non-zero volume charge density, as in 

appendix B. In the case of a segmented cylinder, however, each segment has uniform and 

perfectly rigid J . Thus the volume magnetic charge density in each segment is zero. 

In this case the magnet may be represented by charged surfaces, as in the surface charge 

model of Yonnet [113]. The magnetic charge density a  on a surface with unit normal n is 

given by

By way of illustration, Fig.76 shows a cuboidal magnet represented by two charged 

surfaces. Analytical expressions for the vector field at a point, due to a charged rectangular 

surface have been derived by Akoun and Yonnet [114].

A.3.3 Consequences of particular symmetries in Halbach cylinders

Both the ideal and segmented designs have a bilateral symmetry.

a = J  -n (A. 17)
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- o

76.A cuboid o f magnetic material with polarisation J  may be represented as two planes 
with equal an opposite surface charge density a .
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i.e. J  is symmetric about tp = 0:

J{ip = e) = J{ip = —e) (A. 18)

In the ideal case and the case o f cylinders with an even number o f segments N ,  there 

is also a vertical asymmetry:

i.e. J  is anti-symmetric about ip =  7r/2,

J{'ip = tt/ 2 + e) = —J{xp = Trf2 — e) (A. 19)

for any angle e. Note that the angle 'ip is measured from the y-axis as in Fig.72, and is 

related to the usual polar angle (p,hy ip = n /2  — (p.

Now consider the case o f two infinitely long ideal cylinders (with polarisation direc­

tion varying continuously). Each has zero external stray field, and a perfectly uniform bore 

field. Therefore the field due to the inner cylinder in the volume occupied by the outer 

cylinder is zero. Hence according to Eq.A.6, the outer cylinder experiences no torque. By 

reciprocity, there can be no torque on the inner cylinder, which experiences a uniform field 

due to the outer cylinder. This implies that an ideal cylinder experiences zero torque in a 

uniform field. As a consequence o f the symmetries in Eqs.A.18 and A. 19, a finite length 

cylinder composed o f an even number N  o f segments also experiences zero torque in a 

uniform field, as the torque on each segment is exactly balanced by an equal and opposite 

torque on another segment.

The torque observed experimentally must therefore arise from non-uniformities in 

the field, which are attributable to the segmented structure and finite length o f both inner 

and outer cylinders.
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A.4 Numerical Simulation

There are two main steps in calculating the variation o f the torque as the cylinders rotate. 

Firstly, the field produced in the bore of the outer cylinder is calculated numerically, using 

the surface charge model, as described in Section A.4.1. Secondly the torque experienced 

by the inner cylinder in this field is calculated, as in Section A.4.2. In Section A.4.3 we 

present the results of these calculations. Section A.4.4 presents a numerical analysis o f  

the non-uniformities in the profile of the field in the cylinder bore, and relates these to the 

torque.

A.4.1 Field Calculation

For the following calculation on segmented cylindrical magnets, each segment is treated 

as a combination o f prisms in order to approximate curved surfaces. The total field at 

any point is simply the sum of the field contributions from each face, calculated using the 

surface charge model (Section A.3.2). On a cross-section of the cylinder, we specify a grid 

of points, each with position vector r =  (x, y, z) as shown in Fig.77(a). At each of these 

points within the bore of the outer magnet we calculate the components of the field Hx, 

Hy and H^. The field varies along the length o f the cylinder as well as across the width of 

the bore, and so is calculated across similar grids on a number of different, equally spaced 

planes as shown in Fig.77(b). Each point at which the field is calculated is surrounded 

by an element with volume AV" =  L(P, where d is the separation between neighbouring 

points on the grid, and L is the separation between successive planes. This volume element 

must be sufficiently small to ensure the accuracy o f the calculation.
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(a)

77.(a) The grid of points, in one plane, at which the field o f the outer cylinder is cal­
culated. The inner cylinder is placed in the bore, and those grid points lying within the 
cross-section of the inner cylinder are used for the torque calculation; (b) Planes along the 
length o f the cylinder.
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A.4.2 Torque Calculation

The total torque on the inner cylinder is calculated by summing over individual volimie 

elements AV, as in Eq.A.6. Similarly for the total energy E:

r  ^ X (A.20)
t i

F  =  J ]  =  -  ^  J(’) • (A. 21)
t t

Here is the field due to the outer cylinder at the position o f the i-th volume 

element of the inner cylinder, and is the polarisation of that element. The force at 

each point is proportional to the field gradient at that point, from Eq.A.5.

A.4.3 Numerical Results

In this section, the results o f the calculation o f F and E  are presented for cylinders of the 

same dimensions as those used to obtain the experimental data, given in the previous table. 

In accordance with expectations, the only non-zero component o f torque is F ,̂ about the 

axis o f the cylinder.

Fig.78(a) and (b) show F 2 and E  respectively as functions of a  (the angle through 

which the inner cylinder is rotated from the fiilly aligned position, as in Fig.73). The 

energy reaches a minimum at the fully aligned (a  =  0) position. The energy data are 

closely fitted by a cosine fimction, E — —A  cos a,  where ^  is a positive constant. There 

are two contributions to F̂  in Eq.A.20 (see Eqs.A.3 and A.4), each of which is shown in 

Fig.79. The F^z and F t e r m s  are found to be well approximated by A sin a  and —2A sin a  

respectively. A good approximation to the total torque is therefore given by Fj =  —A sin a.
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78.(a) Torque on the inner cylinder as a flmction o f angular position a  within the bore o f 
the static outer cylinder; (b) Energy o f the inner cylinder as a function o f  a .
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79.The resultant torque Fz is a combination o f two contributions.
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Numerical values of the contributions to the torque from different cross-sections 

along the axis of the cylinder show that the main contributions come from the end re­

gions. The total value of the torque is not significantly changed by increasmg the lengths 

of the cylinders, while the contribution from the cenfral region becomes negligible. This 

indicates that the torque is primarily an end effect associated with the field inhomogeneities 

at the cylinder ends.

In addition to the ftmdamental sinusoidal variation, F is modulated by structure asso­

ciated with segmentation. In similar contexts this structure is often referred to as “cogging 

torque”. Fig.80(a) shows the amplitude of the Fourier components of the torque data in 

Fig.78(a). The order of the dominant term in the torque variation, n =  1, corresponds 

to the leading sine term. The 7th order term is also pronounced. Higher harmonics are 

present, but with much smaller amplitudes. To see these more clearly, we fit a curve of the 

form B s m a - \ - C  sin(7Qi) to the data in Fig.78(a), where B  and C  are constants. The fitted 

curve is then subtracted from the original data. In so doing we largely remove the n =  1 

and n =  7 terms. A Fourier transform of the remaining data is shown in Fig.80(b). Higher 

order terms can now be seen to occur in pairs at n =  (Â  — 1), {N + l), { 2N—1), {2N -t-1), 

{3N — 1), {3N +  1), etc., where .V =  8 is the number of segments (i.e. peaks at n =  7, 9, 

15, 17, 23, 25, etc.). These terms coincide with the n  =  {kN ±  1) terms which emerged 

experimentally in Fig.75. These results will be accounted for by the theory of Section A.5.
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80.(a) Amplitude of Fourier components of the simualted F  ̂data, with dominant terms of 
order n =  1 and 7 as labelled; (b) Fourier transform of the same data after a function of the 
form B sin a  +  C sin(7o:) is fit to the data and subtracted off. Peaks of order n =  {kN ±  1) 
are now apparent, where =  8 is the number of segments and A: is an integer.
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A.4.4 Analysis of the Field Profile

Numerical calculation confirms that for a segmented cylinder with even N  placed in a 

completely uniform field, the torque vanishes at every value of a . Therefore in the case of 

two segmented cylinders, the existence of finite torque, and the dependence o f E  and F on 

a,  arise from inhomogeneities in the field.

We have investigated these inhomogeneities by using the surface charge model to 

calculate the field in the bore o f an outer cylinder with dimensions as given in the earlier 

table. We demonstrate separate contributions to field non-uniformities by varying segment 

number N  and length L.

Approximation of Ideal Infinite Length Cylinder

Fig.Sl(a) shows the profile of Hy in the bore midway along the length of the cylinder 

(z = 0) when the cylinder is very long (to approximate infinite length) and has a large 

number o f segments, =  128 (to approximate uniformly varying magnetisation). To the 

accuracy o f our numerical procedure, Hy remains constant at all points in this central plane, 

as expected for an ideal cylinder of infinite length.

Field Variation due to Finite Length

Fig.81(b) shows the profile at z =  0 in a cylinder with N  =  128 to approximate 

uniformly varying magnetisation, but with L =  100 mm. The magnitude o f the field at 

Ip = 0 and 'ip = TT is greater than that atrp = tt/2  and ip = 3n/2.  As the cylinder is made 

longer, the extent of this effect at the central z = 0 position decreases, although it persists 

at both ends. This is therefore an end effect, associated with the finite length of the cylinder.
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v(;=37t/

81 .Profiles o f  the y  com ponent o f  field at z =  0 in the bore o f  (a) an ideal, infinite length 
cylinder; (b) an ideal, finite length cylinder; (c) an 8-segm ent, finite length cylinder.
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Contou
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82.Field values in the next figure are taken clockwise from the starting point around a 
circular contour inside the bore.

To determine a specific form for the end effect of Fig.8 1(b), consider the calculated 

magnitudes of Hy and as a function o f angular position V' at a fixed radius within the 

bore such as that shown in Fig.82. Hy as a fimction o f rp is shown in Fig.83(a). This 

function is well fit by :

Hy = H q + a h  cos (2'0) (A.22)

Fig.83(b) plots Hx against i/;, which is fitted by :

Hx = A //s in  {2'ip) (A.23)

Eqs.A.22 and A.23 are accounted for analytically in appendix B.
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83.(a) Hy around contour o f  20 mm radius; (b) around contour o f  20 mm radius; (c) 
Hy around contour o f  40 mm radius; (d) Hy around contour o f  40 mm radius; all at z =  0 
in a bore o f 52.5 mm radius.
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Field Variation due to Segmentation

Fig.81(c) shows the profile for an 8-segment, finite length cylinder. Again the end 

effect is apparent, but in addition, peaking in the field occurs near the boundaries between 

adjacent segments throughout the bore.

Figs.83(c) and (d) show Hy and Hx as functions of V'. The peaking effects of the eight 

segments appear superimposed on the end effect of Figs.83(a) and (b). As the number of 

segments is increased towards the case of an ideal, but finite length cylinder, the magnitude 

of the segmentation peaking decreases.

A.5 Theoretical Model

In this section we demonstrate theoretically that the variation of the torque with relative 

orientation of the cylinders arises fi'om field inhomogeneities due to their finite length and 

segmented structure. We apply symmetry arguments in the case of an ideal cylinder in 

Section A.5.1, and extend them to prove the ’Segmented Magnet Torque Theorem’ in Sec­

tion A.5.2. In Section A.5.3 we show analytically that the primary variation is due to finite 

length, while in Section A.5.4 we show that, in the limit of very long magnets, the torque 

does not increase with length. As an extension of this we identify the way in which the 

torque scales with the cylinder dimensions.

A.5.1 Symmetry arguments in the ideal, finite length case

Firstly we consider a pair of nested, ideal, finite length Halbach cylinders, that is, cylin­

ders in which the magnetic polarisation varies continuously as shown in Fig.72(a). The
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polarisation J  depends only on the angle ip (measured clockwise from the y  axis), while its 

magnitude J  is independent o f position:

J  (ip) =  J  (sin 2xpx +  cos 2ip y) (A.24)

If  the relative orientation of the cylinders a is measured from the minimum energy 

configuration, where the polarisations in the two cylinders are fiilly aligned (Fig.73), then 

we shall show that the energy satisfies

E{ q)  =  E{0)cosa  (A.25)

where we expect E{0) <  0. The corresponding torque is

dE
r{a) =  — — =  E (0 )s in a  (A.26)

da

The proof follows:

At a point in an ideal Halbach cylinder with angular p)Osition ip, the polarisation J,

Eq.A.24, makes angle ip with the radius vector as shown in Fig.72(a). So rotating the inner

cylinder through an angle 0 relative to the outer one is equivalent to keeping both cylinders 

fixed and rotating the polarisation at each point in the inner cylinder through angle —6, as 

shown in Fig.84.

The energy of an element o f the inner cylinder o f volume dV  at the point r wdth 

coordinates (p, y, z) is

dE(r)  =  -J { r ) .H{r )  dV =  - J H { r )  cosP{r) dV  (A.27)
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84.Rotating the inner, ideal Halbach cylinder by 6 is equivalent to rotating the magneti­
sation at each point by ~ 6 .
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where J ( r )  is the polarisation o f the inner cylinder, and /3(r) is the angle between this 

polarisation and the field H{r)  due to the outer cylinder at that point. Let E{6o)  be the result 

of integrating Eq.A.27 over the volume o f the inner cylinder, for some relative orientation 

of the cylinders a  =

Notice that integration o f Eq.A.27 over the angular variable ip gives zero if the field 

is entirely uniform. This follows because, in the case where H  is independent o f r  and 

parallel to the y axis, the angle P{r) = 2ip + do. Integration over ijj then gives zero energy 

and zero torque, in agreement with the symmetry arguments presented in Section A.3.3.

For an arbitrary initial relative orientation 9o, the energy after a further rotation 

through 6 is found by rotating the polarisation at each point through —9. The energy of 

the volume element at point r  becomes

dEir) = - J  H{r)  cos(/3(r) + e ) d V  = R e { - J  H{r) }dV  (A.28)

where, for convenience, we have introduced complex notation. The magnitude o f the polar­

isation, and the field H  and angle (3 at the point r  are unchanged. Integrating this expression 

over the volume V  of the inner cylinder will give the form of the energy as

E{e + 9o) = Re{f{eo)e^^} (A.29)

where

f i ^o)  =  - J  j  d V H { r )  =  |/(0„)| (A.30)

Eq.A.29 then gives
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E{9 +  Oo) =  \f{e,)\cos{9  +  (A.31)

If the initial orientation is chosen to be the minimum energy orientation, then 60 — 0, and 

the angle 6 becomes a , the angular displacement from the minimum energy position from 

Fig.73. The bilateral symmetry of the polarisation, Eq.A.18, implies that

E{cx) =  E { - a )  (A.32)

and this is only satisfied when Pi{0) = 0, giving the results Eqs.A.25 and A.26 advertised 

above for the energy and torque. This result is confirmed analytically in Section A.5.3.

A.5.2 The Segmented Magnet Torque Theorem

In the case of segmented cylinders the discussion above may be generahsed to prove the 

following theorem:

The torque between a pair o f  segmented cylinders offinite length and relative orien­

tation a  is obtained by differentiating the energy with respect to a, where the energy may 

be written

E{a) = oq C 0 S Q +  (ttfc cos{kN  — l ) a  +  bk cos{kN  +  l)o:) (A.33)
k = l

and the summation is over all positive integers k

In the segmented case, the direction of the polarisation is constant within a seg­

ment, so that rotation of the inner cylinder through angle 9 is equivalent to rotation of 

through angle —9 only when 0 is an integer multiple o f 2 n / N .  It is this restricted symmetry 

property which dictates the form of Eq.A.33, as follows.
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Again it is convenient to use complex notation and write the energy of an element at 

point r, for some arbitrary orientation angle 9o in the range 0 to 27r/AT, as

d£;(*)(r) =  - cos/3^")(r) dV = - R e  dV (A.34)

where, as in Eq.A.27, is the angle between and at that point, and the

superscript (s) identifies the segmented case. Now after a rotation through 2tt/ N  the energy 

of the element becomes

dE^^\r) =  -  ^^33^

Integration over the volume of the inner cylinder gives the energy corresponding to 

the relative orientation a = 6o + 27t/N as

E^^\a) = Re{f^^\do) (A.36)

where, corresjX)nding to Eq.A.30,

= - J ( ^ )  J  d V H ^ ^ ^ r )

We define

and Eq.A.36 may be written in terms of the angle a:

E{a) = Re{F{a) e*“ }

Since F{a) depends only on 9o, we may write
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F{a) = F{eo + 2 n /N )  = F{do) (A.37)

Thus F{a)  is periodic in 2tt/ N ,  and may be expanded in a Fourier series:

+ 0 0

F{a) Ckexp{ikNa)
k=—oo

Substitution of this expansion into Eq.A.36 gives, for arbitrary relative orientation a,  

an expression o f the form

=  Re < coexp(io;)+ ^  Ckexp{i{kN + l)o:) +  c_fc exp (j (— +  l ) a )

The bilateral symmetry requirement Eq.A.32 eliminates all sine terms in Eq.A.38. 

Thus this expression for the energy reduces to Eq.A.33, and since the orientation a  =  0 

corresponds to a minimum energy we should expect oq < 0. DiflFerentiation of Eqn.(28) 

gives the following expression for the torque:

r(a) =  oo sinQ!+ {{kN  — 1) ajt cos{kN  — l)a +  {kN  +  1) bk cos{kN + l)a)

The allowed terms which emerge in this equation agree with those seen both experi­

mentally and numerically, shown in Figs.75 and 80 respectively.

f c = i

(A.38)

(A.39)

A.5.3 Analytical Results for the Finite Length Effect

In the previous section, we showed by symmetry arguments that the leading term in the 

torque variation is sinusoidal, as shown in Eq.A.39. In this section we show analytically
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that the leading sinusoidal term is determined by field non-uniformities due to the finite 

length of the cylinders.

Consider nested cylinders o f finite length, but uniformly varying magnetisation. The 

outer cylinder is kept fixed and the inner rotated through a  from the fully aligned position 

as in Fig.73. From Eq.A.6, the torque dT^ on any volume element o f the inner cylinder, 

dV,  centred on point r(x , y, z) =  r{p, ip, z), is given by

dr^(p, 7p, z) =  {JxHy -  JyHx) dV  +  {xFy -  yF^) (A.40)

where the force on the element has components Fj J; (ViHi) dV,  and J  lies in
I

the xy-plane.

When the two cylinders are in the fully aligned position, the polarisation J  at an 

angular position xjj in each cylinder is at 2'0 to the y-axis. After rotating the irmer cylinder 

through Q, the polarisation J  at a point in the inner cylinder with orientation 'tp is given by

J  = J  (sin {2ip +  q) X +  cos (2?/; +  a) y) (A.41)

In appendix B, we have derived analytical forms of the x  and y  components of the 

field in the bore, Eq.B.17:

Hx =  A i /  (p, z) sin {2xjj)

Hy = Ho (p, z) + A H  (p, z) cos (2ip) (A.42)

where the expressions for Ho{p,z) and A H {p ,z )  are given in Eq.B.18. In the case of 

infinite length, A H  —>■ 0 and H q —>■ { J / plq) \xi{R„/Ri) as in Eq.A.l. The field gradient has
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components

dH^ d { A H )  . , . 2 A H  ,
  =  —   smV’sm(2V’)H--------- cos^cos(2'0) (A.43)
o x  op  p

dH^ d { A H )  2 A H  . ,
— — =  —   cos yj s m [ 2 ip ) ------------------------------sm ip cos(2'0)
o y  op  p

dHy d{Ho +  AHcxis{2iP)) . , 2 A H
   = —------------------ — — sm -Ip------------cos tp sm[2'ip)
o x  o p  p

dHy d{Ho +  AHcos{2-ilj))  , , 2A H  .
— ~ — — costp-\---------- sm ip sm{2ip)
o y  o p  p

since, from Fig.85,

X — psiaip (A.44a)

y — p cos Ip (A.44b)

Substituting into Eq.A.40, and cancelling terms, we find

dr  2 = (J  Hq sin {2ip +  a) +  J  A H  sin a  — 2J A H  sin a) dV  (A.45)

Eq.A.45. contains two separate contributions:

{J^Hy -  JyH^) =  {J Ho sin {2iP + a) + J  A H  sin a)  (A.46)

and

{xFy — yFx)  =  —2J A H  sin a  (A.47)

The total torque Ttot is found by integrating over the volume o f the inner cylinder:

rtot(o:) =  J J J  {J Ho sin {2ip + a) — J  A H  sin a) p dp dip dz  (A.48)

After performing the angular integration

rtot(tt) =  —27t J  s in a  J J  A H {p,z) p dp dz  (A.49)
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I.e.

rto t(a ) (X -  sin a (A.50)

Note that the result in Eq.A.49 is the combination o f the two terms in Eqs.A.46 and 

A.47, which contribute in a ratio —2 : 1. This is in agreement with the ratio between these 

contributions found numerically in Fig.79.

This analysis demonstrates that, in the case o f an ideal cylinder o f finite length, the

and in agreement with experimental (Section A.2) and numerical (Section A.4.3) results.

A.5.4 Torque in the case of long ideal Halbach cylinders

In the case o f ideal Halbach cylinders of finite length, the torque tends to a constant as the 

length is increased. It is therefore an end effect. This is demonstrated theoretically below.

Consider first a single semi-infinite Halbach cylinder occupying — cxd <  z <  0. The 

field at a distance z fi'om the end of the cylinder is given by H{z)  (suppressing the other 

spatial variables p, 4>). For large z, this field is the sum of contributions from distant dipoles, 

so it must diminish with z at least as fast as

A Halbach cylinder o f finite length L may be treated as a finite section o f an infinite 

cylinder, which consists o f the finite section v^th a semi-infinite section added at each end. 

The field H{z)  in the bore of the finite section is the difference between the uniform field

torque varies as —sin{a)  in accordance with the symmetry arguments o f Section A.5.1,

(A.51)

Ho due to the infinite cylinder and the contributions A /fi(z ) and A H 2 {z) from the two
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semi-infinite segments:

H { z) =  H o - A H i {z ) - A H 2 { z )

The torque on a Halbach cylinder in a uniform field is zero (Sections A.3.3 and 

A.5.1). So, in considering the torque on a second Halbach cylinder of length L, nested 

within the first one (also of length L), there is no contribution from Hq, and we can use 

—{AHi{z) + A H 2 {z)) instead of H.  Expressing this torque in terms of an integral (the 

element dT^ of Eq.A.6 integrated over the volume of the inner cylinder) we see that the 

contribution of each of the two terms AHi{z)  and AH^iz)  is independent of L as L oo, 

because of the rapid convergence of the fields indicated by Eq.A.51. This equation suggests 

that the asymptotic form of the torque for long cylinders is of the form

The order indicated is an upper bound. The symmetries considered here imply a 

stronger (octupole) decrease of the field than and the actual asymptotic form of F 

should be of order L~^.

From the definition of energy in Eq.A.2, we see that as the dimensions are scaled up, 

the energy must scale as (length)^. We have just shown that, in the ideal case, the torque is 

independent of the length of the cylinder, in the limit of large length. The scaling law may 

therefore be written

r  ^  constant+ 0(L ') (A.52)

Scaling laws

(A.53)
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independent of L, for long, ideal Halbach cylinders. For segmented cylinders there is a 

second term of order R^L. This prediction is bom out by numerical calculation .

A.6 Conclusion

Halbach cylinders experience zero torque in uniform applied field. Thus the origin of the 

real torque observed in nested systems of finite length, segmented Halbach cylinders mer­

its investigation. In Section A.5.3, we see that although each volume element experiences 

a large torque due to the applied field Hq, these contributions cancel over the whole cylin­

der, due to symmetry. Therefore the resultant torque is determined by the much smaller 

fluctuations in this field due to finite length and segmentation. The total torque for cylin­

ders with this particular symmetry is much less than we should expect from the magnitude 

of the torque on any one segment.

The principal variation of the torque as the inner cylinder is rotated through an angle 

a , while holding the outer cylinder fixed, is sinusoidal. We have derived an analytical 

theory of the inhomogeneities in the fields produced in the cylinder bores. This, together 

with symmetry arguments, leads to the fact that the dominant sinusoidal variation in torque 

is an end effect due to the finite lengths of the cylinders.

The remaining variation in the torque is accounted for in the ‘Segmented Magnet 

Torque Theorem’ where we use symmetry to isolate the higher order, n = {kN  ±  1), 

terms in the Fourier transform of the torque data (where N  is the number of segments in 

the cylinder, and A; is an integer). This symmetry analysis says nothing about the size of the 

coefficients in Eq.A.39. In particular, nothing is determined about specific dependencies of
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the coefficients on N  or on the dimensions of the cylinders. This may provide an interesting 

topic for future study. However, the numerical calculations show that all coefficients for 

A: >  1 are small compared with the magnitude of oq, and decrease strongly with k, although 

this may not necessarily be the case for alternative designs.

In the case of ideal cylinders, the torque is independent of the length L, in the limit 

of large L, and this leads to the scaling law F oc F^, where i? is a radial dimension of the 

nested cylinders. This implies that, for long ideal cylinders, the torque is produced entirely 

in regions within a distance ~  R  from either end.

Good agreement was found between experiment, numerical calculation and analytic 

theory, with respect to angular variation of torque as the cylinders are rotated. The calcu­

lated value for the magnitude of the torque was found to be an upper bound on experimental 

values. Experimental results show maximum values ranging from 6 — 13 Nm for different 

magnet assemblies of the same dimensions with an average of approximately 8 Nm, while 

the numerical maximum is 12.6 Nra. A number of factors may account for this difierence, 

as follows.

Our field calculation is based on the assumption of zero transverse susceptibility Xl-> 

while in reality x ±  ~  0.1. As this will tend to ahgn the magnetisation direction along the 

direction of the applied field, it may act to reduce the net torque experienced. Calculated 

fields are often as much as 10% greater than those measured in the bores of real cylinders. 

In part this reflects non-rectangularity of the hysteresis loop. As torque is proportional 

to J^, this may account for up to 20% reduction in the torque observed compared to that 

calculated. In addition, in the two cyUnder system detailed in Section A.2, steel ball-
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bearings are attached to the cylinder ends to allow them to rotate. This soft magnetic 

material draws some flux from the bore, particularly at the ends where the torque is most 

significant. This reduction in applied field may further serve to reduce the experimentally 

observed torque. Thus the calculated value fiar torque acts as an upper bound for real 

systems.



Appendix B 
Calculation of the field due to a finite length 

ideal Halbach cylinder

The field due to a Halbach cylinder may be calculated from a magnetic potential 

which satisfies the Poisson Eq.A.16. In the case o f an ideal cylinder, the polarisation varies 

continuously according to Eq.A.24. I f  this equation is rewritten in terms o f  conventional 

cylindrical coordinates p, (f) ( =  t t /2  — tp) and z, the polarisation is o f  the form

J{(f)) — J  (sin(2(/)) X — cos(2^) y) (B .l)

In this case, the volume magnetic charge density is

p „ ( r )  =  - V J  =  - ? ; ^  (B.2)
P

This is non-zero over the volume V  o f the cylinder; Ri < p < Ro, 0 <  0  <  27t, and, 

in the case o f finite length, —L /2  <  z <  L /2 .

The solution to the Poisson equation for the potential at a point r  is

f ^ ( r )  =  (B.3)
47T/io J v  r  -  r  I

where primed coordinates indicate source points, and the integration is over the volume

o f the cylinder. The denominator in the integrand may be expanded in terms o f  spherical

harmonics: B.3

1 1 /

^  EE (b .4)
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where r< and r> are respectively the lesser and greater o f r  and r'. This equation is 

expressed in spherical polar coordinates, related to the cylindrical coordinates by

p =  r s in ^  (B.5)

z = r  cos 6 = p cot 6

Substitution o f Eq.B.4 into Eq. gives the potential

OO + l  ^  7 \

/=Om=-i ^ ^

where

=  (27̂

For source points such that r' > r the first term in Eqn.(A6) contributes to the poten­

tial, while the second term is the contribution from regions where r' < r .

In the case o f an infinitely long ideal cylinder, the potential, giving rise to the field o f 

Eq.A.l, is

i P m o o ^ S i n d  s i n (B.8)

We wish to calculate the potential within the bore o f an ideal Halbach cylinder of 

finite length L.

At an arbitrary point r  in the bore there will, in general, be contributions to the po­

tential from points in the magnetic material with r' > r, such as r '2 in the unshaded region 

o f Fig.85, and also from points with r ' <  r, such as in the shaded region. To simplify
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85.The field at a point r in the cylinder bore is due to source points r' in the cylinder, 
some of which satisfy r > r', such as r'j in the shaded regions, and some of which satisfy 
r < r', such as in the unshaded regions.
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- m

+oO

+172

86.(a) The field due to an ideal Halbach cylinder of finite length L may be calculated by 
integrating over the volume of the cylinder, (b) alternatively it may be found by calculating, 
by integration, the field due to two semi-infinite cylinders, separated by a distance equal to 
the length of the finite length cylinder, and subtracting this field from the field created by 
an infinite length cylinder.

the calculation and avoid the necessity of evaluating contributions from points with r' < r, 

we proceed as follows:

We calculate the potential due to two semi-infinite ideal cylinders, one extending 

from 2 =  L/2 to oo, and the other from z =  —L/2 to —oc, Fig.86. From this we find the 

potential due to these cylinders at points in the bore between z =  —L/2  and z =  +L/2,  

and then subtract the result from the potential for a cylinder of infinite length, Eq.B.8. The 

field due to a cylinder extending from z =  —L/2 to z =  L/2 at a point within its bore 

is then found from the gradient of this potential. All points within the material of the two 

semi-infinite cylinders satisfy r' > r, where r refers to any point within the bore of the 

finite length cylinder, —L/2 < z <  +L /2, p < Ri.

Consider a cylindrical shell of thickness dp' at a fixed radius //  within the semi­

infinite cylinder defined hy Ri < p' < Ro, L/2 < z' < oo. The contribution of this shell
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to the potential at a point r in the region p <  Ri, —L /2 < 2 <  + L /2  is, from Eqs.B.2, B.6 

and B.7
00 +i

d < P m + { r ,  0 , 4>)

/=0 m=—/
where

Using Eq.B.5 to write z' and r' in terms o f O' and // , this becomes 

 2y r î
daim = -  [  d9' f  cUf)' sin  ̂O ' ,(()')

^0 J o  Jo  F{21 + l)/io

where, from Fig.86, the upper limit of the integration over 6 satisfies

cot 9i  =  —  (B-11)
2f/  ̂ ^

Integrating over 4>' and substituting into Eq.B.9 we obtain

d^m+ ~  £  | |  ^  j | .  P i (cos 0) sin 0 r' ̂  dO' sin'"^ 6' P / (cos 9')^

(B.12)

where P[^{cos9') is an associated Legendre function.

Similarly an expression is obtained for the potential d(p^_{r, 6 ,4>) due to the cylin­

drical shell extending from z =  —L/2 io —00. The symmetry properties o f the integrand 

indicate that each term of the summation in dip̂ _̂  is equal to the corresponding term in 

d(p^_ apart from a factor (—1)'+^ Thus terms with even I cancel. The total potential due 

to the two semi-infinite cylinders is obtained by integrating over p':

^  T lT n i 9)sm(j)r^ (  f  ^  /  dO'sin'“  ̂9’ P / (cos0')V

(B.13)
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Notice that the upper limit of the integration over ^  is a function of f/,  Eq.B.ll.

The integrand of the angular integration may be rewritten using the property of Legendre

functions

sin V  =  (B.14)

Finally, the potential due to a cylinder of length L  is

^mL =  V’moo -  i^m + +  ^m~)  (B-15)

=  - ^ r s m 9 s m ( j ) h x ( + —  ^ P / ( c o s 0) sin0 r '

where

J r , P' J o W -  sm ^
The magnetic field due to the finite length cylinder, H  =  — has components

Hx{r,9,(p) = Ai7(r, 0) sin(20) (B.17)

H y { r ,  9 , 4>) =  H q — ^ H { r ,  9 )  cos(20)

(r, 9 , 4 > )  = AH^: (r, 9 )  sin 0

where

//q \ R i J  + d{cos9)


