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Summary

This thesis is a study of the magnetic properties of a class of compounds
known as manganites. They possess many peculiar properties which make
them an interesting field of investigation for both experimentalists and theo-
reticians. The present work deals in particular with CaMnO3; and LaMnQOs,
end-poi'nt compounds of the series La,Ca;_,MnQOs3. ' ’i‘he main issues ad-
dressed are the explanation of the magnetic interactions between manganese
ions and the calculation of the exchange coupling constants J. The aim is
to provide some of the missing information which is still needed for a com-
plete understanding of the microscopic origin of colossal magnetoresistance
in mixed-valence manganites.

A central role in this thesis is played by the existing relationship between
crystal symmetry, spin and orbital ordering; it is shown that they must all
be considered for an accurate description of the exchange coupling.

The study is carried out using ab initio methods, which allow a system to
be studied starting with information only about its chemical composition and
crystal structure. The Unrestricted Hartree-Fock approximation gives an ad-
equate description of the ground state properties of CaMnO3; and LaMnQO3; in
particular, it correctly predicts their antiferromagnetic spin structure. In the
case of LaMnOg, it allows to study the relationship between spin, orbital or-
dering and crystal distortions. The Configuration Interaction approximation,
which is one of the simplest methods to include the effect of electron-electron
correlations in the Hamiltonian, explains the exchanghe coupling mechanism
in terms of hopping of electrons between localised orbitals. The calculated
exchange coupling constants are in good agreement with the ones estimated

from experimental studies.



Sommario

Questa tesi e uno studio delle proprieta magnetiche di una classe di com-
posti nota come manganati. Essi possiedono molte peculiari proprieta che li
rendono un interessante terreno di investigazione sia per sperimentali che per
teorici. Il presente lavoro tratta in particolare del CaMnOj; e del LaMnOs,
composti progenitori della serie La,Ca;_,MnO;. Le (iue;stioni principali che
vengono affrontate sono la spiegazione delle interazioni magnetiche tra ioni
di manganese ed il calcolo delle costanti di accoppiamento J. Lo scopo &
quello di fornire alcune delle informazioni ancora mancanti per una completa
comprensione dell’origine microscopica della magnetoresistenza colossale nei
manganati a valenza mista. Un ruolo centrale in questa tesi viene rivestito
dalle inter-relazioni che esistono tra simmetria del cristallo, spin e ordina-
mento orbitale; viene mostrato che essi devono tutti essere presi in conside-
razione per una accurata descrizione della costante di accoppiamento.

Lo studio viene svolto usando metodi ab initio, i quali permettono lo stu-
dio di un sistema avendo come informazioni iniziali solo la sua composizione
chimica e la sua struttura cristallina. L’approssimazione Hartree-Fock non
ristretta fornisce un’adeguata descrizione delle proprieta dello stato fonda-
mentale del CaMnO3 e LaMnOQOj; in particolare, essa predice correttamente
la loro struttura di spin antiferromagnetica. Nel caso del LaMnQOj, perme-
tte di studiare la relazione tra spin, ordinamento orbitale e distorsioni del
cristallo. L’approssimazione Configuration Interaction, che ¢ uno dei metodi
pitt semplici per includere gli effetti della correlazione elettrone-elettrone
nell’Hamiltoniana, fornisce una spiegazione dell’accoppiamento magnetico in
termini di eccitazioni di elettroni tra orbitali localizzati. Le costanti di ac-
coppiamento cosi calcolate sono in buon accordo con quelle stimate da studi

sperimentali.
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Introduction

Quod super est, agere incipiam quo foedere fiat
naturae, lapis hic ut ferrum ducere possit,
quem Magneta vocant patrio de nomine Grai,
Magnetum quia sit patriis in finibus ortus.

Lucretius, De Rerum Natura

The discovery of the magnetic properties of matter can be dated far back
in time. A few centuries before the birth of Christ travellers returning from
the region of Magnesia, north of Greece, told strange stories about a magic
stone that could attract iron, stories in which reality was often mixed with
legend. Is this prodigious phenomenon to be ascribed to a god? Does the
stone have a soul? These were the kind of questions that Greek and later
Latin philosophers tried to give answer.

Since then, much progress has been made. Classic electromagnetism,
brilliantly summarised in Maxwell’s equations, laid the basis of the modern
theory of magnetism; a complete understanding, though, has only been pos-
sible with the advent of quantum mechanics and relativity, and in particular
with the discovery of the electron spin.

The manganites (general formula 1) _,D,MnO3;, where T and D are a
trivalent and a divalent cation respectively) have been known since the 1950s.
At the end of the 1980s they gained greater attention from material scientists

due to their enormous potential for technological applications. These mate-



rials, for particular values of = for the dopant D, show the peculiar property
of a huge drop of the resistance in a magnetic field, which is termed colossal
magnetoresistance and is accompanied by a paramagnetic-to-ferromagnetic
transition. This characteristic makes them ideal systems for the development
of a new class of magnetic devices.

The “rediscovery” of manganites gave impulse to intense studies in the
last two decades. From an experimental point of view the field is well estabil-
ished in terms of both sample preparation and characterisation. The theory,
on the other hand, is still looking for a complete explanation of the physical
effects which are behind the special properties of manganites. Magnetoresis-
tance cannot be simply explained by theories such as, for example, double
exchange; its microscopic origin must be searched in the strong electron-
phonon coupling, that results in effects like the Jahn-Teller distortion and
the orbital ordering.

The present study takes its motivations from the need to provide some
answers to the many questions which are still unsolved. One of them is the
problem of exchange interactions in manganites, i.e. of the interactions that
take place between the magnetic Mn ions. The aim of this thesis is to inves-
tigate the exchange coupling mechanism in CaMnO3 and LaMnQO3, parents
of the series La;_,Ca,MnQj3 (corresponding to z = 1 and z = 0 respec-
tively); this is a first, necessary step toward a better comprehension of what
happens at intermediate values of x, where the colossal magnetoresistance
is observed. The methods used for the investigation are ab initio methods,
which allow, in principle, to study a system without any other a priori in-
formation than its chemical composition and crystal structure. Exchange
constants are calculated from total energy differences between various spin

ordered structures.



The work done can essentially be divided into two parts:
1) Unrestricted Hartree-Fock study of CaMnOj3; and LaMnQOg;

2) Configuration Interaction study of clusters representing CaMnO; and

LaMnOj;.

The Configuration Interaction method is essential for an adequate de-
scription of the exchange interactions because it provides a way of includ-
ing electron correlations in the Hamiltonian. Nevertheless, in the case of
LaMnQOg;, Unrestricted Hartree-Fock calculations carried out on an idealised
cubic structure give informations about the relationship between magnetic
properties and orbital ordering. Exchange constants calculated in the Con-
figuration Interaction approximation are in good agreement with the values
estimated from experiments and with other theoretical studies.

The thesis is organised as follows. Chapter 1 is an introduction to the
physics of manganites. After a brief review of the early experiments and
theories, it outlines their general properties, with particular attention to
CaMnOj3 and LaMnQOj. It also introduces the exchange coupling mechanism,
and presents some of the theoretical approaches used to investigate it.

Chapter 2 contains a description of the main ab initio methods used
in solid state physics. This include the Unrestricted Hartree-Fock (UHF')
approximation, the Density Functional Theory (DFT) and Configuration In-
teraction (CI). Commercial packages are available in which one or more of
the above methods is implemented. The Chapter includes an account of the
main feature of the two packages used in the present work: CRYSTAL 98
(for UHF) and GAMESS-UK (for CI).

Chapters 3 and 4 report the results of the calculations carried out on

CaMnOj; and LaMnOj in the UHF and CI approximations respectively. In



Chapter 3 the role of the Jahn-Teller distortions and of orbital ordering
in LaMnOj; is investigated with calculations carried out on crystallographic
cells of various symmetries. In Chapter 4, calculated exchange couplings are
discussed in terms of the correlation energies and the relative weight of the
configurations in the total wave function. Results depend on the values of an
array of point charges surrounding the cluster, which is essential to reproduce
the correct Madelung potential.

A last chapter contains some conclusions and an outlook for possible
future work.

Finally, the Appendix gives some details about the basis sets used to
describe the atomic orbitals and about the k-point grid employed in the
reciprocal space integration.

The main results of this work have been published in:

M. Nicastro and C.H. Patterson, Phys. Rev. B, 65, 205111 (2002).



Chapter 1

Characteristics of manganites

This chapter provides an introduction to the physical properties of mangan-
ites and a review of the main achievements, both in theory and experiment,
that occurred after the discovery of their striking properties by Jonker and
van Santen in the early 1950s [1, 2]. Many excellent reviews exist on the
subject, treating it from different points of view (3, 4, 5, 6, 7], so what is pre-
sented here is only intended as an introduction allowing the comprehension
of what will be discussed in the following chapters.

Firstly the main properties will be presented, by analysing the rich phase
diagram of these compounds; then a brief history of their discovery and of
the early theories proposed will be presented. CaMnO3; and LaMnQO3, which
constitute the main subject of the present work, will be presented in more

detail. A final section is dedicated to the exchange coupling mechanism.

1.1 General properties

The term manganites refers to manganese compounds with the composition
T, 2D, MnOj3, where T is a trivalent cation (e.g. La, Pr, Nd) and D a

divalent cation (e.g. Ca, Ba, Sr, Pb). They crystallise as cubic perovskites
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Figure 1.1: Ideal cubic perovskite structure of CaMnQOj.

(8], even if variations and distortions of such a structure are often present!'.
In what follows most of the attention will be on the series of manganites
La;_,Ca,MnQOj.

The ideal cubic perovskite structure of composition ABOj3 is shown in
Fig. 1.1 for CaMnOs; each Mn ion is surrounded by six oxygen ions to form
a regular octahedron. The stability of the perovskite structure is related to
the so called Goldsmith tolerance factor f [9], a formula that relates the A
and B cation radii, ra and rg, and the oxygen radius ro:

A+ T
= —\/—5—%19;5 . (1.1)
The ideal radii of A and B can be calculated from eq. (1.1). The former

!'The prototype perovskite compound, CaTiO3, was discovered by Gustave Rose in 1839
from samples found in the Ural mountains; he named it after the Russian mineralogist
Count Lev Aleksevic Perovskii (1792-1856).



must be the same as the oxygen radius
ra=To =144 , (1.2)
while the latter is given by
rp=ro (V2—1)=0584 . (1.3)

This gives an f of unity for ideally sized ions; in practice it is found that the
perovskite structure is stable for 0.85 < f < 1.02.

The resurgence of the interest in manganites in the last few years is moti-
vated by their possible use in technological applications. The reason is that,
for some particular percentage z of doping, they show the phenomenon of
the so-called colossal magnetoresistance (CMR). The magnetoresistance
is a drop in resistance that accompanies the paramagnetic to ferromagnetic
transition; it depends on the applied magnetic field H and can be defined,
at a particular temperature, as [10]

pAG) — sli)
iy . (1.4)

Jin et al. [11] first used the term “colossal” to describe the large magne-

R(H) =

toresistance effect they observed in epitaxially grown La-Ca-Mn-O thin films.
The change in resistivity, at 77 K in a field of 6 Tesla, was R(H) = 127, 000%,
was negative and was isotropic with respect to the field orientation; near room
temperature the values were about 1300 % at 260 K and 400 % at 280 K.
Such values were much larger than those previously observed in the so-called
giant magnetoresistance (GMR) materials.

This opened a completely new opportunity for magnetic devices like
magnetic field sensors, magnetoresistive read-heads, magnetoresistive micro-

phones and so on. Magnetic systems of great potential are those with a
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Figure 1.2: Experimental phase diagram of La;_,Ca,MnOj3; (from Ref. [13])

limited ability to transport electricity in zero field, resulting from two com-
peting ground states. In this sense manganites appear as the ideal system for
magnetic devices. CMR is associated with a ferromagnetic to paramagnetic

phase transition, which takes place at a Curie temperature T¢ around room

temperature (metal-insulator transitions).




Soon after the rediscovery of manganites, theoreticians pointed out that
a simple picture based on previously proposed theories could not explain the
peculiar behaviour of manganites [12] and the richness of the phase diagram
shown in Fig. 1.2 for La,Ca;_,MnQO3. Here z, the Ca fraction, also indicates
the percentage of Mn** ions present. The end point compounds are LaMnQO3
and CaMnOs, corresponding to x=0 (all Mn ions are 3+, no Mn** ions are
present) and x=1 (100% of Mn** ions) respectively. The part of the phase
diagram of greatest interest is between z = 0.2 and z = 0.5 (in fraction z
of Ca), because this is the interval where the compound is a ferromagnetic
metal and shows CMR.

The particular properties of manganites derive from the close interplay of
different kinds of behaviour, and in particular from the fact that they show
spin, charge and orbital ordering.

Some of the possible spin orderings are shown in Fig. 1.3. The top-left one
is the ferromagnetic structure (FM), the rest are antiferromagnetic (AF). In
the A-type (also known as layered AF), planes of opposite spin arrangements
alternate along one direction; each spin has four parallel and two anti-parallei
nearest neighbours. In the C-type (or chain), spins are antiferromagnetically
coupled in planes and ferromagnetically between planes; each spin has two
parallel and four anti-parallel neighbours. The same neighbour coupling can
also be arranged in a different way, to form the so-called E-type AF structure.
Finally, the G-type (or rock salt) contains each spin surrounded by six of
opposite orientation. Composite structures are also possible. Fig. 1.3 shows
the CLL type AF, which presents alternated C and I “units”.

The main role in determining the very peculiar properties of manganites
is played by the 3d electrons of the Mn ions. In a crystal fieid, the five d levels

are no longer degenerate, as they are in a free atom. In a cubic environment



FM A-type AF

E-type AF

Figure 1.3: Some magnetic spin structures. In the CE structure up and down
spins are represented with solid and open circles for more clarity.

such as the perovskite structure, where each Mn ion is esacoordinated with
oxygen ions, they split into two sets: three form a degenerate t,, set at lower
energy and two an e, set at higher energy. To understand how this happens,
it is necessary to refer to the shape of the d wave functions (Fig. 1.4). The
to, wave functions are d,, d,, and d,, and their electron density is directed
in between the negatively charged ligands (oxygen ions). The e, wave func-
tions, on the other hand, are d,2_,» and ds.»_,» and have an electron density
pointing directly toward the surrounding ligands. The latter experience a
stronger Coulomb repulsion and their energy is raised. The t,, - e, splitting

due to the crystal field is indicated by Acg. When further reduction of the
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Figure 1.4: Shape of the d wave functions. Top: t, orbitals dgy, d;;, dy..
Bottom: e, orbitals d3,2_,2 and dg2_.

symmetry occurs, more splitting takes place, as shown schematically in Fig.
1.5

Charge ordering is the name given to an ordered pattern of Mn?*
and Mn*" ions. In fact in La,Ca,_,MnOj; the eg charge distribution is not
uniform: a fraction 1—z of Mn ions (Mn®*) has an e, electron and a fraction =
(Mn**) has no e, electron. At particular temperatures and concentrations a
periodic pattern of filled and empty e, sites is formed, and this is called charge
ordering. Its first, clear evidence was found in La,Ca, ,MnQOjz by Chen
and Cheong [14] in 1996; their electron-diffraction images clearly showed
superlattice peaks consistent with alternation of Mn?* and Mn** charges.

Similarly, orbital ordering for Mn?* ions arises if a periodic pattern of
orbital occupancies appears. The filling of d levels follows Hund's rule: in

order to minimise Coulomb repulsion, electrons are accommodated in such

11



free atom cubic tetragonal orthorhombic

Figure 1.5: Sketch of the splitting occurring in the five degenerate d levels
when a free atom is placed in a crystal field. The ¢y, - e, splitting in a
cubic (octahedral) environment and further splitting following a reduction of
symmetry to tetragonal or to orthorhombic are shown.

a way to form a state with maximum possible spin. This means that in
Mn*t (d3) ions the three d electrons will occupy the lowest energy o, states
with a total spin of 3/2, while the four d electrons in Mn3* (d*) ions will
occupy the three t, plus one of the e, states to give a total spin of 2. The
Hund’s rule coupling energy Jy; is normally about 2-3 eV in manganites and
is larger, for example, than the inter-site hopping interaction of an e, electron
between neighbouring sites. In general the occupied e, orbital will be a linear
combination of the two types of orbitals described above. In Fig. 1.7 it is
possible to see how occupied e, orbitals on Mn3* ions form a regular pattern
of alternating orientations in the plane.

The microscopic origin of orbital ordering is in the Jahn-Teller (JT) effect
[15, 16] that characterises d* ions in an octahedral environment; it is a conse-
quence of a very general and powerful theorem in quantum mechanics known

as the Jahn-Teller theorem, which was published in 1937 [15] and states:
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Figure 1.6: The 6-plane for the visualisation of all possible e, s‘tates. A few
points are shown as examples: A (f = 0) is d3,2_,2; B (6 = 7) is dp2_pp2;
C (0 = 2n) is dag2_y2; D (60 = —37) is dy2_yp; E (0 = —37) is dyyp_,2; F
(6 = 37) is d,2_,2. From ref. (17].

Any non-linear molecular system in a degenerate electronic state
will be unstable and will undergo a distortion to form a system of
lower symmetry and lower energy thereby removing the degener-

acy.

The degenerate electronic state in this case is the set of linear combinations
of the two e, orbitals; as a consequence, the crystal will distort, the symmetry
will lower and one of the two e, orbitals will be favoured, with a consequent
removal of the degeneracy. For example a local elongation along the z axis
stabilises the dj,» .2 orbital, whereas a local contraction along the same
axis favours d,2_,» stabilisation. As the problem is one of double orbital
degeneracy, it is convenient to describe the orbital structure in the same way
as with a spin 1/2 system, i.e. with a pseudospin operator. The basis chosen

is formed by the two eigenstates: |d3,z_,2 >, corresponding to the eigenvalue
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1/2, and |d;2_,2 >, corresponding to the eigenvalue -1/2. Then a general

linear combination of such states can be written as
[ .8
loce >= cos -2-|d3z2_,.2 > +sin §|dzz“y2 > . (1.5)

From this formula d3,2_,» and d,2_,» are obtained for § = 0 and § = 7.
Nevertheless, directions z, y and z are equivalent and, in a sense, arbitrary.
So not only an orbital ds,2_,» extended along z can be formed, but also a
d3z2_r2 along = or a d3e_,» along y. They correspond to some particular
rotation of axes in space. A useful tool that helps visualise such a rotation
is the #-plane [17], where points represent particular orientations of orbitals
in space. In Fig. 1.6 [17] some example of points in the #-plane are shown.
A schematic picture of spin, charge and orbital ordering is shown in Fig.

1.7 for Lal/gCal/gMnOg.

1.2 Early experiments and theories

The history of the study of manganites is more than 50 years old. It began
in 1950 with the first experimental work by Jonker and van Santen (1, 2] who
studied samples of La; ,A’;MnQOj3, where A’ was one of the divalent cations
Ca%*, Sr?t and Ba?t. They found a surprising correlation between the Curie
temperature 7T¢, the conductivity o and the saturation magnetization Mg. In
particular in polycrystalline samples of La; ,Sr,MnQOs they observed that,
for t = 0.3, T¢, 0 and Mg reached their maximum value (in particular the
value Mg = 90 Gauss/g corresponds to full polarisation of all the 3d electrons
present). The resistivity p behaved like a semiconductor (dp/dT < 0) above
Te, but below T¢ it was significantly reduced and had metallic behaviour
(dp/dT > 0).

More experimental work followed in the next few years, resulting in a
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Figure 1.7: Schematic picture of spin, charge and orbital ordering in
L&]/QC&]/QMHOg.

huge effort exploring all the different aspects that could better characterise
the manganites. In particular, low temperature properties were studied, such
as specific heat, magnetisation, the Seebeck effect, the Hall effect, magnetore-
sistance, resistivity, I-V curves and so on [18, 19].

Volger [18] first described magnetoresistance and other transport prop-
erties in 1954. In his work, the magnetoresistance R(H), defined as in eq.
(1.4), is plotted as a function of temperature; it is negative and has a peak
near T¢. He also noted that a theory based on simple exchange interactions
could not explain such transitions.

In 1955 Wollan and Koehler [20] produced an extensive neutron diffrac-
tion study of the magnetic properties of the series La,Ca;_,MnQO3, which

also included x-ray diffraction measurement of lattice distortions and ferro-
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magnetic saturation data. They showed how nagnetic properties depended
on the relative amount of trivalent and tetrawnlent manganese ion content
and were able to identify the magnetic structwre. The phase diagram that
they produced [20] actually appears nowadaysto be very accurate, despite
the experimental limitations of the time. It closly matches more recent ones
(21, 13] which is an amazing result if one consicers the technology now avail-
able, resulting from years of experience in specmen fabrication, boosted by
development in superconductivity.

In the following years the basic theoretical id:as were developed to explain
such a behaviour. Anderson [22], in 1950, had ilready proposed a theory to
explain antiferromagnetism in manganese oxice. He started from an idea
by Kramers [23], who first pointed out the posibility to have an exchange
coupling through the intermediate non magneic ion. In antiferromagnetic
compounds such as MnO, for example, magn:tic ions are quite far apart
(over 4 A), so that their wave functions don’t cverlap, and are separated by
non magnetic ions (oxygen); the exchange coupling between them, which is
more then one tenth of ordinary exchange in netals, cannot come from the
“ordinary” or “direct” exchange and was named superexchange. The basic
assumption is that in the total wave function some weight has to be given
to configurations in which an electron from the oxygen has hopped into an
empty orbital of the magnetic ion; such an “ex:ited state” would give some
sort of paramagnetism to the oxygen and mactes the exchange interaction
possible.

Zener [24] suggested a mechanism, that he named double exchange, to ex-
plain the coexistence of ferromagnetism and metallic conductivity observed
by Jonker and van Santen. They had already cuggested that electrical con-

ductivity in manganites should originate from the “migration” of Mn** ions,
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i.e. an Mn*" ion capturing an electron from a reighbouring Mn** ion. How
this happened, though, was not trivial, since the ions are quite far apart
and don’t have an appreciable overlap; in addition to this they are separated
by an O* ion which is closed shell. So Zener introduced the concept of
simultaneous transfer of an electron from Mn*" to oxygen and from oxygen
to Mn** (double exchange). In a partially fillad d shell the lowest energy
state corresponds to the one in which all electron spins point in the same
direction (this is known as Hund’s rule); if the mobile electron retains this
property and the spins of the d shells are parallel, then the two configurations
Mn**O? " Mn** and Mn*tO?> Mn*' are degenerate. In other words double
exchange requires both hopping electrons to have the same spin (the one of
the O electron involved), i.e. charge carriers move most easily in a ferromag-
netic environment. The coupling of degenerate levels will, of course, remove
the degeneracy; Zener estimated the splitting of the degenerate levels to be
proportional to the transition temperature 7 and, using classical arguments,
he also predicted the electrical conductivity to be

ze? Tc
Ty (1.6)
where a is the Mn-Mn distance and z is the Mn** fraction. The degen-
eracy of the two configurations, which is a consequence of the double Mn
valence, makes double exchange intrinsically different from the ordinary su-

perexchange introduced by Anderson [22] and based on an idea by Kramers

[23]; this is very clear from the words of Zener himself:

“This inderect coupling through the orygen ton by means of a
double exchange should not be confused with the indirect coupling
introduced by Kramers and now called superezchange. In our

case, the system is inherently degenerate owing to the presence
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of Mn ions of two charges. The double exchange thereby intro-
duced leads to a ferromagnetic alignment of spins. In Kramers’
case only excited states are degenerate. The superezchange via
these excited states leads to an antiferromagnetic alignment of

spins” [24]

Zener’s double exchange was later generalised by Anderson and Hasegawa
[25] with a semiclassical model in which the spins of the ion cores are treated
classically and the mobile electron quantum mechanically. The double ex-
change interaction was calculated in terms of a transfer integral, b, and the
internal (Hund’s rule) exchange integral, Jy. They found that Zener’s level
splitting is proportional to cos(6/2), where 6 is the classical angle between
the core spins. Their fundamental result is that the effective transfer integral
becomes

tef = bcos (g) . (1.7)
They showed that a quantum description of the spins could be achieved by
replacing cos(8/2) with (Sy + 1/2)/(2S + 1), where Sy is the total spin and
S is the core spin. Anderson and Hasegawa also derived a form for the
susceptibility as a function of temperature; they argued that it should follow
a Curie-law behaviour at high temperature

C

X =75 (1.8)

with C constant, i.e 1/y should intercept the 7" axis at zero. This is actu-
ally in contrast with the experimental evidence, which shows a Curie-Weiss

behaviour
B g b,

Eq. (1.9) describes quite well the susceptibility of ferromagnets in the param-

¥ (1.9¢

agnetic region above T¢. A separate symbol, 6, is used for the paramagnetic
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Curie temperature because experimentally it is always found to be greater
than 7.

DeGennes [26] discussed some effects of mobile electrons in an antiferro-
magnetic lattice at low doping, i.e. at low Mn** content. He showed that
electrons (or holes) will necessarily produce some canting of the spin arrange-
ment. He also introduced, for the first time, the concept of carriers that get
“self-trapped” by distortions of the spin lattice, and that are now referred to
as magnetic polarons.

A few years later, in 1972, a fully quantum mechanical treatment of the
double exchange magnet was proposed by Kubo and Ohata [27]; they intro-

duced the double exchange Hamiltonian

H=-Ja ) (Si 0sy) clciy + 3. tiiclcis (1.10)

i,S,S' i,j,s

which is now an established starting point for theoretical studies. Here Jy is
the intra-atomic (or Hund’s rule) exchange energy, S; is the spin due to the ¢,
electrons and o is the Pauli matrix; c;'s and ¢;; are creation and annihilation
operators for an e, electron with spin s (up or down) at the Mn site ¢ and
finally ¢;; is the transfer-matrix element.

As already mentioned, a simple picture based on double exchange is not
able to offer a microscopic description of CMR in manganites. This point was
made very clear by Millis, Littlewood and Shraiman [12] in 1995. In order to
explain the experimental data on the resistivity of La; ,Sr,MnOj3 [10, 28],
they proposed a theory that, in addition to double exchange, included the
strong electron-phonon coupling arising from the Jahn teller splitting of the
¢y levels. In the same way double exchange alone cannot explain the metal-
insulator transition and all other particular behaviours they possess.

Manganites are examples of strongly correlated electron systems, i.e. sys-

tems where correlations between electrons are very important. Already back
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in 1937 de Boer and Verwey [29] reported that some transition-metal oxides
such as NiO, in spite of possessing a partially filled d band, were insulators.
In the same year, Peierls [30] made the suggestion that the electron-electron
correlation could be responsible for the insulating state. The strong Coulomb
repulsion could prevent the electrons from moving through the lattice, be-
cause they would have to spend a long time in ions already occupied by other
electrons. Great theoretical progress in understanding the physics of strong
correlated electrons and the metal-insulator traasition has been achieved by
Mott in a series of papers [31, 32, 33, 34, 35]; so the insulating state is usually
called a Mott (or Mott-Hubbard) insulator.

The simplest way to describe such transitions would be through some lat- -
tice fermion model, which should include the possibility of electron hopping
as well as the Coulomb interaction. The most famous and celebrated among
these models is the Hubbard model [36, 37, 38, 39, 40]. In a second-quantised

form its Hamiltonian is given by

H=— tiiCLCis + U Ny - 111)
15" bl

2,058 ?

The first term describes the hopping of electrons from site i to site j; the
second one accounts for the Coulomb repulsion (U) between electrons. 7
(s =7,1) is the number operator defined as n;; = (:Is(:,»s. This model only
considers electrons in a single band and doesn’t take into account any com-
plications like orbital degeneracy; nevertheless it is successful in the descrip-
tion of both the insulating and the metallic state of the system and of the
basics of the exchange interaction. The limit of weak interaction (U << t)
corresponds to the metallic state; the system is metallic even for half-filled
bands (i.e. one electron per site, n = 1), independent of the distance between
sites. Clearly, for large enough distance between sites (small ¢) and n = 1,

electrons are localised on each site and the system should be an insulator
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(Mot insulator). This corresponds to the second term in eq. (1.11), which
contans the on-site Coulomb repulsion (U). The cost of creating a charge
excitztion, i.e. of moving one electron from its site to another one, will be U,
because that’s the repulsion energy the electron will experience in going onto
an already occupied site. On the other hand the gain for this transfer will be
~ t, but if U >> t (strong interaction) the material will remain an insulator
with a gap ~ U —t. So the second term of the Hamiltonian (1.11), which is
the main term in this case, leads to the formation of localised moments on
each site; this state is characterised by spin degeneracy. The first term in eq.
(1.11), the electron hopping term, lifts the spin degeneracy and, in second
order perturbation theory in ¢t/U << 1, leads to an antiferromagnetic ex-
change interaction between these localised magnetic moments [36, 41]. This

is usually described by an effective exchange Hamiltonian

Hcff:JZSiSj (112)
1,]
with
i
= (1.13)

In other words the virtual hopping of electrons leads to an antiferromag-
netic Heisenberg exchange interaction. This is the superexchange interac-
tions described above, and it is the main mechanism of exchange in magnetic
insulators.

The Hubbard model is still too over-simplified and doesn’t give a com-
plete theoretical description of strongly correlated electron systems. Other
effects have to be taken into account such as the orbital degeneracy, the
electron-phonon coupling (which is also responsible for the JT effect). Cur-
rently, theoretical study of manganites i1s done using ab tnitio methods (as

in the present work) or model Hamiltonian calculations that start with a
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parametrised version of the problem. Fectronic properties of transition-
metal oxides are given by the interplay o many different interactions which
are of more or less the same order of mignitude (ox 1 eV). They are sum-

marised as follows [3]:

a) the Mott-Hubbard interaction Uyy: energy for the creation of the exci-

tation

a* d*=2d " &

b) the charge-transfer interaction U,q: energy cost for the transfer of an

oxygen p electron to the neighbouring Mn ion, i.e. for the excitation
p6 d" = TS dn-H :
¢) the transfer integral ¢, or equivalenily the free particle bandwidth W:

W =12t ;

d) the Hund’s rule exchange interaction U: energy needed to flip a d

electron spin:

(J"ex = ZJH ;
e) the crystal-field splitting Ay ;

e) the Jahn-Teller splitting of the e, crbitals d;r

1.3 End point compounds

Both end-point compounds of the series La,Ca;_,MnOj3 are antiferromag-
netic insulators, though with different spin structures and crystal symmetries.
This section summarises their main properties derived from experiments and

from theoretical studies.
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1.3.1 CaMnO;;

CaMnQj is experimentally found to crystallise in the ideal cubic perovskite
structure (Fig. 1.1) with a lattice constant a = 3.73 A [20]. Some slight
deviations from this structure have been observed; some samples present
monoclinic [20] or orthorhombic structure [42, 43], but they differ very little
from the ideal cubic one. The Néel temperature (Tx) is around 110-130 K
(20, 21]. Below this temperature CaMnOj is an antiferromagnetic insulator
of type G. In this compound manganese is a 4+ ion (d®). The majority
ta4 orbitals are fully occupied, the minority are all empty; there are no e,
electrons, so the cubic structure is stable.

An ab instio study carried out by Pickett and Singh [44] analysed the elec-
tronic structure and the transport properties in the series La,Ca;_,MnOsj;
their calculations were performed using the Local Spin Density Approxima-
tion (LSDA) to the Density Functional Theory (DFT - see next chapter).
For CaMnQ3, using total energy calculations, they found that the G-type
AF is, as expected, the ground state. From band structure and density of
state analysis they derived information on transport properties. In particu-
lar, they predicted that the G-type is actually an insulator, with a calculated
gap of 0.42 eV, while the (experimentally inaccessible) A-type and FM struc-
tures are metallic and half-metallic (metallic majority but insulating minority
bands) respectively. The ground state magnetic moment, which they calcu-
lated to be 2.48 pp, is in agreement with the experimental one of 2.65 up,
obtained from fitting to neutron diffraction data [20]. The Hund’s rule value,
3 pg, is indeed expected to be reduced by Mn d - O p hybridisation. Similar
results were obtained by Satpathy and collaborators [45], using the same cal-
culation method. This work also explored electron correlation effects, which

are very important for the transition-metal binary oxides; the authors es-
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timated the on-site Coulomb interaction U and the intra-atomic exchange
jarameter Jy, which have almost identical values (U =~ 10 eV and Jy ~ 0.9
¢V) for both CaMnO3 and LaMnO3.

The ground state electronic structure of CaMnOs; was also studied by
Freyria-Fava et al. [46] using a different ab tnitio approach, the Unrestricted
Hartree-Fock approximation (UHF - see next chapter). Again, the G-type
AF is the most stable structure, and the compound is a large-gap (8.9 eV)
nsulator. It is actually a characteristic of the Hartree-Fock approximation
io give considerably larger gaps compared to DFT. The calculated magnetic

noment is 3.25 pp in this case.

1.3.2 LaMnOg3;

LaMnOj; is at the other end of the series La,Ca;_,MnQOj3. Because all Mn ions
tave a valence of 3+, the compound is characterised by strong J-T distortions
end the symmetry is far away from the idealised cubic perovskite.

The crystallographic parameters (lattice vectors and atom positions) were
experimentally determined by Elemans and co-workers [47] using neutron
powder diffraction. The symmetry of the structure is the distorted, or-
thorhombic Pnma [8], space group No. 62 in the International Tables [48]; it
is also known as the gadolinium orthoferrite (GdFeOj3) structure type [49, 50].
Such a structure contains more distortions than the pure Jahn-Teller ones
since the oxygen octahedra are also tilted and rotated. Eleman’s parameters
are reported in Table 1.1. The Pnma structure can be derived from the cubic

perovskite structure by the following operations, each resulting in a reduction

of symmetry [44]:

) Rotation of an oxygen around the z axis, traditionally referred as the

b crystal direction; because all octahedra remain connected, adjacent
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Wyckoff site  z/a  y/b z/c
La 4c 0549 1/4 0.010
Mn 4a 0 0 0
Oy 4c -0.014 1/4 -0.070
Oqr 8d 0.309 0.039 0.224

Table 1.1: Structural fractional parameters of Pnma LaMnOs from Elemans
et al [47). a = 5.742A, b = 7.668A and c = 5.532A at 4.2 K.

ones in the £ —y (or a— c) plane rotate in opposite directions, resulting

in a v/2 x v/2 doubling of the cubic unit cell.

i1) Tilting of an octahedron along the Mn-O-Mn direction in the a — ¢
plane; as a consequence, different layers tilt in opposite direction, so

that there is a further doubling of the cell along b.

The r’wt result is an orthorhombic cell in which b < ¢ < a and corresponding
approximately to a v/2 x 2 x V2 quadrupling of the cubic cell; its volume
is the same as a cube with an edge length of 3.934 A. As can be seen from
Table 1.1, there are a total of seven internal structural parameters (the others
correspond to high symmetry positions for those ions): two each for La and
Oy, situated on the Wyckoff 4c sites [8, 51] with mirror symmetry and three
for Oy on the general 8d site. Finally, Mn is situated on the 4a site with
inversion symmetry. Mn-O bond lengths, which are 1.97 A in the ideal
cubic perovskite structure, become 1.96 A (medium distance) along the b
vertical direction, whereas a short and a long distance (1.91 and 2.18 A
respectively) alternate in the a — ¢ plane. Fig. 1.8 clearly shows distortions
in the experimental Pnma structure of LaMnQO3. Apart from the J-T effect,
distortions in LaMnOj; have also been attributed to the large size of the La3*t
cation (49, 52|, which doesn’t favour a stable cubic structure according to the

Goldsmith tolerance factor (eq. (1.1)).
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€ La ®&w Oo

Figure 1.8: Experimental Pnma structure of LaMnQOj; the distortion from
the ideal cubic perovskite structure is evident, as well as the tilt and rotation

of the oxygens octahedron.

As a consequence of the J-T effect, the alternation of a short and a long
Mn-O bond length in the a — ¢ plane results in orbital ordering, shown in
Fig. 1.9. The occupied e, orbital, in such a plane, is alternatively ds,2_,2
anc ds,»_r2. Experimental evidence for orbital ordering in LaMnQOj has been
found by Murakami et al. [53] after observation that it led to intensity at
Bragg peaks indexed (h00) and (0k0), with h and k odd, which would be
nominally extinct.

LaMnOj is, like CaMnOj, an antiferromagnetic insulator. Its magnetic
structure is A-type AF, with ferromagnetically ordered a — ¢ planes stacked
along b (often referred as the vertical direction) in an antiferromagnetic way.
The transition temperature Ty is around 140-160 K [20, 21]. The compound

also undergoes a structural phase transition at &~ 750 K, where its symmetry
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Figire 1.9: The Jahn-Teller effect and consequent orbital ordering in
LaNnQOj;. The alternation of a long and a short Mn-O bond length in the
a —c plane results in alternate occupation of ds,2_,2 and ds,2_,2 orbitals.

is described as cubic [54].

Results on transport and magnetic properties of LaMnO; were reported
by Pickett and Singh [44] and Satpathy et al. [45] in their already cited
papers; similar LSDA calculations can be found in ref. [55]. Calculations
carred out on a cubic idealised structure with the same volume as the ex-
perimental one showed that the conductivity can be described as metallic
and that the minimum total energy belongs to the FM spin arrangement;
the magnetic moment was calculated to be 3.38 up in the FM case and 2.89
pp in the AF case [44], again below the Hund’s rule value of 4 pp. Use of
the distorted experimental structure was necessary to open the gap (0.12 eV

is the calculated one [44], compared to &~ 0.2 eV from experiments [56, 57])
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and to lower the observed A-type AF below the FM; the distortion also
strengthens the magnetic moment, which becomes 3.38 up [44], compared to
an experimental value of 3.89 up [20]. The authors of ref. [45] also showed
that a calculation on the cubic structure in which only an in-plane J-T dis-
tortion was present already reproduced the correct ground state, and they
concluded that such a distortion is the main one responsijble for the magnetic
and electronic properties of LaMnOj.

Unrestricted Hartree-Fock calculations [58] confirmed the same kind of
magnetic and structural properties. There were, nevertheless, large differ-
ences in the prediction of band structures between the two approaches. As
the authors of ref. [58] pointed out, in LSDA the Mn d bands lie near the top
of the valence band, above the O p bands, whereas in their UHF the opposite
was found. The same UHF band behaviour was predicted by Saitoh et al.
[59], who fitted experimental photoemission results to a cluster configuration
interaction model. And in the same ref. [45], using LSDA corrected with
on-site Coulomb interaction U (the LDA + U approach), the order of the
bands was switched compared to pure LSDA.

Exactly the same applies to the band structure of CaMnQOj [44, 45, 46].

1.4 Intermediate concentrations. CMR

As previously mentioned, the series of La,Ca; ,MnQO3 appeals for possible
applications in magnetic sensor devices because for concentrations 0.2 < z <
0.5 and low temperatures these materials are ferromagnetic and their con-
ductivity is metallic (see Fig. 1.2). Lowering the temperature, the resistivity
p increases (by 2 - 3 orders of magnitude) and reaches a maximum at a tem-
perature T* very close to the Curie temperature (but not exactly coincident

with it; sometimes, nevertheless, they are assumed to be the same); below

28



T*, then, p drops again very rapidly (within a few Kelvin). Application of a
magnetic field lowers the resistivity around T* and the percentage decrease
can be very huge in a field of a few Tesla (typically ~ 5 Tesla): this is the
CMR phenomenon, which is mainly observed for z =~ %

After the discovery by Jin et al. [11], many experiments have been per-
formed and various values for CMR have been reported. The first results
on a single crystal sample (Lages(CaPb)o3sMnQO;) were given by Liu et al.
[60] who found R(H) = 3 (300 %). A study of laser deposited films of
Lag7Cag3MnOj3 [61, 62] reported a value of R(H) = 10. An interesting con-
sequence of the application of a magnetic field is that T* is shifted upward,
typically by dT*/dH =~ 10 K/T.

Essential ingredients for the comprehension of the physics of manganites
are, as has already been stated, the spin, charge and orbital degrees of free-
dom which are available for these compounds. In particular, e, electrons
play a special role in producing the non-conventional metal-insulator transi-
tion via the coupling of the three types of ordering. The main parameters,
i.e. the band filling (or doping level) and bandwidth (or electron hopping)
can easily be controlled by varying the chemical composition; so the different
regions of the phase diagram can be studied.

[n the metallic range (0.2 < z < 0.5), the drop of p below T indicates
that high temperature resistivity is mainly due to scattering of conduction
electrons by disordered spin; as a consequence, the application of a magnetic
field can recover the low resistivity state. What was also found is that in
order to observe a metal-insulator transition the residual resistivity py of the
sample must be greater then a critical resistivity p,. [63].

Charge and orbital ordering is more evidently observed for 2 around 0.5.

Because they are short range correlations, their presence results in an in-
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Exchange Sign

g R
i +
J +
J& -

Table 1.2: Sign of exchange interactions in La,/,Ca,;;sMnQO3; + corresponds
to AF, - to FM interaction.

sulating state; when they disappear, a transition to a metal takes place.
The 50-50 compound, La,/,Ca;»,MnQOs3, is an antiferromagnetic insulator of
CE-type (see Fig. 1.3) at low temperature; then, as the temperature is in-
creased, it first becomes ferromagnetic (Tx = 155 K) and then paramagneti;:
(Tc =~ 255 K) [64]. In the CE-type four different magnetic couplings can be

identified; they are usually referred to as follows:

i) J$), the Mn3*-Mn** coupling corresponding to an occupied e, orbital

on the Mn®** pointing toward the neighbouring Mn** in the plane of

Fig. 1.7,

i) Jl(j), the Mn?*-Mn** coupling corresponding to an occupied e, orbital
on the Mn**' oriented perpendicular to the neighbouring Mn** in the

plane of Fig. 1.7;
1) JU, the Mn**-Mn** coupling between planes;
w) J?, the Mn3*-Mn** coupling between planes.

No experimental values have been reported, but the signs of the interactions
are known. They are summarised in Table 1.2.
Charge and orbital ordering in this compound was shown earlier in Fig.

1.7. Using a dark-field imaging technique [14], transition to ferromagnetism

30



has been attributed to a commensurate-to-incommensurate charge ordering
transition. Experimental studies [14, 64] also reveal how charge ordered
domains can persist in the incommensurate phase; such a mysterious coexis-
tence of ferromagnetism and charge ordering appears in the form of striped
domains [65].

The experimentally observed charge distribution in La,/2Cai/2MnO3 (see
Fig. 1.7) has been explained using a model of localised classical electrons
coupled to lattice degrees of freedom and, via the Coulomb interaction, to
each other [66].

Magnetic and transport properties have been studied in the LSD approxi-
mation for z = ; and z = 3 [44]. The switch from AF to FM was reproduced
by these calculations, in which a study of band structure reveals the impor-
tance of hybridisation between Mn d and O p states and the dependence of

such a hybridisation on the spin structure.

1.5 The exchange coupling mechanism

This section is a short review of experimental and theoretical achievements
in the understanding of the exchange coupling mechanism in manganites; it
starts with Goodenough’s model [67], which was the first systematic attempt,
in 1955, to explain the magnetic behaviour of the recently discovered man-
ganites. As already pointed out, a complete description is based on double
exchange and superexchange, but it also has to include other more compli-
cated aspects such as orbital degeneracy and the electron-phonon interaction
leading to the jahn-Teller splitting of the e4 levels.

A note is needed at this point to clarify the convention that will be
adopted throughout the present work, as there are many different ways of

defining the Heisenberg Hamiltonian that describes the exchange (one is
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given, for example, in eq. (1.12)). In what follows the form adopted will
be the one due to Domb and Sykes [68],

H= }: Ji,-% . (1.14)
<>

S, is the spin operator, S is the magnitude of the total spin of an ion and J; is
the exchange coupling between spins at sites ¢ and 7; when J < 0 the coupling
is ferromagnetic, when J > 0 the coupling is antiferromagnetic. The symbol
< ij > denotes a pair of neigbouring sites where double counting is excluded.
Of course not all authors use the above convention, and conversions are often
needed to compare results. In the remaining of this work such conversions

will always be carried out, and results from the literature will always be

reported according to (1.14).

1.5.1 Goodenough’s model

The first comprehensive attempt to give an adequate description of the ex-
change coupling mechanism was produced by Goodenough [67] in 1955. The
series of manganites La,Ca, ,MnQOj; had been recently studied by Wollan
and Koehler [20] and a theoretical explanation was needed. Goodenough
proposed a model in which he discussed Mn-O hybridisation, leading to the
concept of semicovalent exchange and to a successful description of the cor-
relation between spin, orbital ordering and crystallographic structure.

The chemical binding in the manganites was explained in terms of specific
bond types between Mn ions which depended on the charge and spin of pair
of ions separated by an O ion. Formally the ions have charges of +3 or +4
(Mn) and -2 (O). However there is a degree of covalency (that Goodenough
named semicovalency) in the Mn-O bonds and charge is shared between the

O ion and its Mn neighbours in the Mn-O-Mn chain. The specific type of
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Figure 1.10: Schematic summary of the Goodenough model (see Table I of
ref. [67]) showing the empty hybrids for each ionic configuration and the
types of interactions.

binding depends on the relative spin orientation of the Mn ions as well as
on the availability of empty Mn hybrid orbitals to accept O 2p electrons. If
the Mn spins are parallel (FM coupling), a consequence of Pauli’s exclusion
principle is that only one of the O 2p electrons can be effectively shared with
the Mn ion (the one with the spin parallel to the Mn ions’ spin), but if the
Mn spins are anti-parallel (AF ordering) both O 2p electrons can be shared,
resulting in stronger Mn-O bonds than in the FM coupling case. Table I
of rel. [67] is summarised in Fig. 1.10. O 2p electron sharing is illustrated
by a double-lobe hybrid for AF coupling (type I interaction) and a single-

lobe hybrid (type II interaction) for FM coupling. In terms of the Mn-Mn
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separation, interaction I corresponds to a short distance, whereas interaction
II corresponds to a large one.

The nature of Mn empty hybrids depends on the charge of the ion; ac-
cording to Goodenough’s model, an Mn*' ion has an octahedral set of 6
d?sp® empty hybrid orbitals formed by empty 3d, 4s and 4p orbitals while
an Mn®' ion has a square planar set of 4 dsp? empty hybrid orbitals. Mn-O
covalent bonds only exist if the Mn ion has an empty hybrid pointing toward
a neighboring O ion, otherwise the interaction is purely ionic (type III inter-
action, indicated by filled circles in Fig. 1.10); in the latter case the Mn-Mn
distance is the longest.

Using this set of prescriptions, Goodenough was able to predict the mag-
netic structure, the nature of the exchange coupling and their relationship
with the crystal symmetry across the La,Ca;_,MnQOj series.

For z = 1 (CaMnOj3) all Mn ions are Mn**; there is always an empty
orbital available and every Mn-O bond can be semicovalent. All Mn*t-Mn**
interactions are of type [, with any ion antiferromagnetically coupled to its
six neighbours, i.e. with a positive exchange coupling (J > 0) between them.
Another consequence is that all Mn-Mn distances are the same and the cubic
structure is stable.

The other end point compound, LaMnOs3, only contains Mn3* ions. For
Mn3* | more than one combination of spin and hybrid orientation (and there-
fore of types of interaction) is possible; each of them would necessarily pro-
duce a distortion in the lattice, due to the different bond lengths associated
with the different interactions. Goodenough describes one possible arrange-
ment, in which the coplanar set of four empty hybrids is ordered in one
plane, giving interactions of type I within that plane. Between planes, with

no orbitals available for bonding, interactions would be of type IIl. This kind
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Figure 1.11: Higher energy ordering of Mn empty orbitals in LaMnOj. (A)
Possible arrangement resulting when occupied orbitals are d,2_,2; (B) empty
orbital arrangement with AF spin coupling (interaction type I); (C) empty
orbital arrangement with FM spin coupling (interaction type II); empty or-
bital arrangement with weak spin coupling (interaction type III). Black circles
represent oxygen ions.

of arrangement of empty orbitals is shown in Fig. 1.11(A). It is clear that
such an ordering would produce a large crystal distortion to a tetragonal
symmetry and would be energetically unfavourable. |

There is, anyway, a possible ordered configuration which would pro-
duce smaller lattice distortions and would therefore be more stable. This

is sketched in Fig. 1.12. The spins of the Mn ions alternate along the a,
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Figure 1.12: Predictions of the Goodenough model for LaMnO3. The anti-
ferromagnetism is A-type and the symmetry is tetragonal with a; < a; = a3.

direction, while they remain the same in planes perpendicular to a,; inter-
actions of type III, which would cause the largest distortion in the lattice,
are avoided and there are only interactions of type I (along a,, the antifer-
romagnetic direction) and of type Il (in ferromagnetic planes perpendicular
to the a, directions). So Goodenough correctly predicted the compound to
be an A-type antiferromagnet, with intra-plane FM coupling (J/ < 0) and
inter-planar AF coupling (J > 0) and tetragonal symmetry (a, < a; = a3).
He also noted that, due to the fact that in type II interactions the O ion is
closer to the Mn ion with an empty orbital pointing toward it (with which
it forms a covalent bond), the symmetry will actually be orthorhombic and
orbital ordering should be observed.

Goodenough extended his analysis to all ranges of doping using the same
kind of arguments. Kegarding the z = (0.5 composition, for example, he suc-
cessfully predicted the occurrence of charge ordering and, among all possible
spin and orbital arrangements he identified the CE-type structure to be the

most stable.
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1.5.2 Experimental results

A few experimental works have been carried out aimed at a determination of
exchange coupling constants. They make use of different techniques, among
which are neutron scattering and measurement of the Néel temperature.
Moussa et al. [69] carried out a neutron scattering study on powder
and single crystals of the orthorhombic phase of lanthanum manganite; they
found their samples to be in the antiferromagnetic phase below Ty = 139.5
K. Their spin wave spectrum was well accounted for by a simple Heisenberg

Hamiltonian plus a term including a single ion anisotropy contribution
H= lIHeisenberg‘l)zS’i22 . (115)
i

Only two exchange integrals were needed to describe the experimental data:
J|| between nearest neighbours in the basal plane and J, along the vertical

direction. They found

Jy = —6.6 meV (1.16)

J. = 46 meV. (1.17)

According to the sign convention in eq. (1.14), Jj is ferromagnetic and J
is antiferromagnetic; the former is a factor 1.4 larger then the latter. They
commented that such a result was in agreement with the expected behaviour
according to Goodenough’s prediction and that it was a signature of the
existence of orbital ordering in LaMnOs.

In later work the same experimental group [70] extended its study to the
region of low doping (z = .05, x = 0.08), where new spin dynamics appear
in addition to the normal superexchauge spin waves.

Very similar results (Jy = -6.7 meV, J;, = 4.8 meV) were obtained in
another neutron scattering study on an LaMnQOj single crystal by Hirota et

al. [T1].
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For CaMnO3 only one exchange parameter is needed to describe the G-
type AF interaction of Mn ions with their nearest neighbours. J can be
estimated from the experimental Néel temperature (Ty = 110 K [20]) using
the Rushbrook-Wood approximation [68]

kTN
J

= (z— 1)(0.579s(s + 1) — 0.072) , (1.18)

where kg is the Boltzman constant, s is the spin and z is the coordination
number; its value is

J=6.6 meV. (1.19)

1.5.3 Ab initio and model Hamiltonian calculations

Many theoretical studies exist that have been able to calculate exchange
couplings for CaMnQO3 and LaMnOj3. Most of them make use of models based
on parametrised Hamiltonians, so that complications like the J-T effect, or
the large on-site Coulomb interaction U, can be taken into account. Some of
them are reviewed in this section, with the aim of giving some ideas of the
way they are generated and of the results they produce.

There are, nevertheless, also ab initio calculations that proved successful,
despite the fact that such a method is thought not to give good quantitative
results for strongly correlated electron systems. Among them, those carried
out in a work by Solovyev et al. [72] gave exchange couplings for LaMnOj in
the Local Spin Density approximation. A crucial role was attributed by the
authors to lattice distortions (i.e. to the J-T effect) which were found to be
responsible for the actual magnetic structure of the compound. Without J-T
distortions, the system remains ferromagnetic. The structural modifications

induced by distortions can be defined by the parameter

= (1.20)



where d;, and dg are the long and short Mn-O bond length in the basal plane.
In the experimental structure R, ~ 1.13, whereas Solovyev et al. found that
J. switched to an antiferromagnetic positive sign at B; ~ 1.12, being still
ferromagnetic at the experimental value. The calculated exchange couplings

were

Jy = -9.1 meV (1.21)
Ji = =3.1 meV. (1.22)

Nevertheless, in their calculations the exchange along the vertical direction
due to second neighbour interaction was of comparable size; once this inter-
action was included in the expression for J, , its antiferromagnetic behaviour
could be recovered.

A different ab initio approach, the UHF approximation, was used by Su et
al. [58] to study the electromic structure of cubic and orthorhombic LaMnOs.
Exchange couplings J; and J, were both ferromagnetic in the cubic idealised
structure, as a consequence of the FM structure being the ground state. In
the distorted orthorhombic structure the correct sign of the exchange was

found, even if the values,

Jy = -3.5 meV (1.28)

|

Ji = 0.8 meV, (1.24)

particularly J;, did not agree well with experiment. In such a calculation,
interactions between non-nearest neighbours were practically zero, in contrast
to LSDA [72].

Turning now to model Hamiltonian calculations, the first to be men-
tioned is the one carried out by Miliis [73], who gave an estimate of exchange
coupling in CaMnOj3 and LaMnOQOj using arguments based on Anderson’s su-

perexchange. It is, in other words, a quantitative version of Goodenough’s
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State { Mn O Mn  Energy
Label | () (2p,) (e;)

CaMnO; C1 0 2 0 0
C2 1 1 0 A’
C3 0 1 1 A
C4 1 0 1 2A"+Ug

LaMnO3s; L1 1 2 1 0
L2 g 1 1 A
L3 1 1 2 A
L4 2 0 2 20+ Up
L5 2 2 0 Ubmn
L6 1 0 | UMn

Table 1.3: States, occupancies and energies used in Millis’ theory [73].

model. Miilis focused on an Mn-O-Mn bond and in particular on the role of
Mn e, and O 2p, orbitals. Then, starting from an idealised ground state, he
considered all possible states than can be reached with one or two electron
hops. For CaMnO; the ground state has no e, electrons on the Mn atoms
and two electrons on the oxygen; for LaMnOj3 the ground state has one ¢,
electron on each Mn and two electrons on O. ¢y, electrons were supposed not
to be involved in these transitions and to form an “inert core” of spin 3/2; ¢,
electrons, on the other hand, were assumed to be always parallel to the core
spins (Hund’s rule). Tabie 1.3 (taken from ref. [73]) lists all states that can
be taken into account and defines all energies involved in the various pro-
cesses. States that differ by a single electron hop are connected by a matrix
element {. Hamiltonian matrices can now be written for both compounds in
the basis of Table 1.3, and the magnetic exchange constant can be calculated
in terms of the difference between the ground state energy with core spins
parallel and the state with core spins antiparallel.

The way to proceed is shown here in the case of CaMnOj3; for LaMnOs;
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the situation is complicated by the presence of the extra e, electron on the
manganese, but a very similar procedure applies. States entering the Hamil-
tonian for parallel spins are C1, C2 and C3, whereas all states C1-C4 enter

the one for antiparallel spins:

0 t t
Hy=|1t A" 0 . (1.25)
i U & )
S 0
t & 1 t

0 t t 2A'+Up

4th order perturbation theory yields, for the difference in lowest eigenval-

ues, 2
2+ oa

AR (A 1+ Ugf2)

which is of order #*/A’”. Millis interpreted this difference as the classical

Heisenberg energy 2Js% and, taking s = 3/2, the exchange constant is
g £) g g

P (1.28)
T 9N (A + Ug/2) -

Using the Rushbrook-Wood approximation approximation (eq. (1.18)), to-
gether with the experimental Néel temperature Ty &~ 110 K, Millis found J
~ 10 K (i.e. 7.8 meV using our convention).

Feiner and Ole$ [74] derived a spin orbital model for LaMnO3 which

included the following terms:
H=H +H, +Hpr+H, . (1.29)

H., and H,, are the superexchange terms due to ¢, and ty, excitations

He, — (tgg"y) (”gy‘@) = (’ia) (fﬁg(f)

Hy,, — (tggeg) (tggeg) e (tggeg) (t‘;geg) ;
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whereas H;r and H, describe the J-T interaction and the contribution of
the crystal field. The authors identified in H,, i.e. in the hopping of an
ey electron from its site to the neighbouring one, the strongest channel of
superexchange. It should be noted that, unlike the model proposed in [73],
oxygen electrons are not included in the hopping process and don’t take part
in superexchange. For CaMnQOj;, where no e, electrons are present, Feiner
and Oles pointed out that H;,, would be the only channel of superexchange;

they calculated, in this case,
J =103 meV , (1.30)

which corresponds to Ty = 124 K. For LaMnOj; the two exchange couplings

were calculated as

Ji = 9.2 meV (1.31)
Ji = 7.0 meV; (1.32)

though they are higher then the experimental value, the ratio iﬁ st Q7T
agrees well with the experimental 0.7 [69].

Meskine, Konig and Satpathy [75] have proposed an electronic Hamilto-
nian model for the Mn-O-Mn triad to explain the microscopic origin of the
exchange interaction in manganites. The Hamiltonian for the triad was writ-
ten as a sum of three contributions, namely kinetic, Coulomb and Hund's

rule energies:

H = Hkr + Hcoutomb + HHund - (133)

Such a Hamiltoman was exactly solved by direct diagonalisation using the
Lanczos method, and the results were rationalised using fourth-order pertur-
bation theory.

The magnetic structures of CaMnOg, LaMnOj3 and La, 2Ca;/2MnO;3 were

successfully explained taking into account the orientation of the e, orbitals
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irduced by a J-T distortion and the appropriate Mn-O hopping. The mag-
ntudes of the exchange coupling were found to be strongly dependent on
tte hopping parameter ¢, varying as t* in fourth order perturbation theory.
Different effects influencing the exchange were considered. The inclusion of
tte 5, hopping, for example, produced an FM contribution that could be
stbstantial for an Mn-O-Mn bonding angle 6 far from -180°; in CaMnOj3 it
cculd switch the sign of the exchange to ferromagnetic for # < 132°. The
célculated exchange couplings were in good agreement with the experimental

velues. For CaMnO;

J =08 meV . (1.34)
ard for LaMnO;

Jy = -7.8 meV (1.35)

Ji = 2.6 meV. (1.36)

Exchange couplings were also calculated for La,/,Ca;/;MnO3. For this com-
peund there are no experimental values, only the sign of the interaction has
been determined (see Table 1.2). The results found by Satpathy and collab-

orators agree with the signs of ail interactions.
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Chapter 2

Ab initio calculations of
properties
of periodic systems

[n this chapter an overview is given of the main ab initio methods currently
adopted for the determination of the electronic properties (i.e. those depend-
ng on the electronic structure) of a crystalline system [76, 77|, with special
ittention to transition metal materials [78].

Ab initio calculations can provide the chemical and physical properties
i a system given the chemical composition and the crystal structure. In
orinciple there is no need for other a prior: information; nevertheless some
'mpirical notion can be used in practice and previous experience always
urns out to be valuable in any new situation. Codes based on ab nitio
nethods have been developed; they are able to return accurate resuits at a
easonable cost in computational time. The field is rapidly and constantly
srowing. The characteristics of a program that mainly appeal to solid state
shysicists and chemists are ease of use, simplicity of input, understandable
yutput, good documentation. Speed of execution is, of course, another much
sought-after property, especially in light of the bigger and bigger systems

hat theoreticians are willing to test. A little effort in terms of time and
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study is needed in the beginning to acquire familiarity with such codes, but
that turns out to always be a good investment because programs have now
quite a long lifetime (ten years or even more) and upgrades (new versions)
are issued regularly. Ab initio (or first principles, as they are often called)
methods have played a prominent role in the last years, due to the availability
of more and more powerful computers that can perfarm faster calculations
and allow the theory to be tested on more realistic systems. Their success
in the description of simple metals, semiconductors and organic materials is
surprising.

Different approaches can be used in solid state physics and chemistry
according to the kind of system being studied. It should be kept in mind
that the main requirement for the wave function of the system is that it
must be antisymmetric with respect to the interchange of both the space
and spin coordinates of any two electrons (Pauli exclusion principle). In the
special case of magnetic materials (the object of the present study) or of
molecules with an odd number of electrons, one is dealing with properties
that derive from unpaired electrons. There is the need to describe open shells,
i.e. orbitals occupied by one electron only, as opposed to closed shells, which
are doubly occupied.

The wave function for a single particle is called orbital. A spatial orbital
¢i(r) is a function of the position vector r and describes the spatial distribu-
tion of an electron. To take the spin into account, two orthonormal functions
are used, a(w) (spin up) and F(w) (spin down), which form a complete set.
A spin orbital is the product of the space and spin part and is indicated by
x(x), where x stands for both the space and the spin coordinates. So from

a spatial orbital one can form two different spin orbitals, one for spin up

(x(x) = ¢i(r)a(w)) and one for spin down (x(x) = ¥;(r)B(w)).
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The computational schemes which are mainly used for ab initio calcula-
tions, and which are discussed in the present chapters, are the Hartree-Fock
(HF), the Density Functional Theory (DFT) and the Configuration Interac-
tion (CI).

2.1 One-electron Hamiltonian

The starting point for a theory is always to write down the complete Hamil-
tonian for the solid; it contains the kinetic energies of electrons and nuclei
plus interaction terms between electrons and nuclei. The knowledge of such a
Hamiltonian and of the nuniber of electrons contains in itself all the necessary
information about the electronic structure of the system, but, in order to be
able to extract this information, a few simplifications are needed in the form
of the Hamiltonian: the Born-Oppenheimer approximation is employed, and
relativistic effects are neglected. So one is left with the time-independent,
non-relativistic Shrodinger equation for the N-particle wave function of all
the N electrons in the system, ¥(r;s,,r28;...rysy), which depends on the
spin s and the position r; in atomic units, it is written as:
= (v-sey
9 |

1 frl I

Z:r, rjl)q::E\p . (20)

Here the first term is the electron kinetic energy, the second term is the
electron-ion interaction Vg (including contributions from all ionic positions
R), and the third is the electron-electron Coulomb repulsion.

[t is this last term that makes eq. (2.1) notoriously not separable into N
distincet electron problems. The Hartree-Fock approximation and the Density
Functional Theory are two standard ways to proceed. They originate from
two different points of view, but in both of them the result is that each

electron moves independently in the field of all the others through the action
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of an effective potential V¢ (mean field theory); this makes the Hamiltonian
separable and the problem of N electrons reduces to N independent electrons

problems. Eq. (2.1) can be re-written as

=Y (5 V2 + Ve + Vaalr)) (2.2)
i

The history of application of HF and DFT to solid state physics is long
and well established; they have been applied to a variety of systems, in par-
ticular to semiconductors and insulators {79, 80, 81, 82, 83]. After many
years of great success of DFT, in particular for the description of semicon-
ductors and insulators, there has been recently a resurgence of popularity
of 'the HF approximation among solid state scientists due to its success in
the description of ground state properties of transition metal compounds,
a field where results are much more reasonable compared to DFT. A good
example could be the study of NiO and MnO, for which better agreement
with experiment is achieved within HF theory [78, 84, 85]; or, similarly, the

study of manganese perovskites, as described in the previous chapter.
The next two sections will briefly present the HF and DFT approaches
to the solution of eq. (2.2). Then a description will also be given of the

packages used for the calculations carried out in the present work.

2.2 The Hartree-Fock approximation

In the Hartree-Fock (HF) approach [86, 87, 88] one starts with an approx-
imate description of the ground state wave function ¥y. This is done using a

Slater determinant, which 1s an antisymmetrised product of N one-electron
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ipin orbitals (so it satisfies Pauli principle):

xi(x1)  xi(x2) -0 xa(xw)
T B ) S 2 Xz(.m) Xz('X'z) Xz(?(N)
xn(xi) xw(x) -+ xwixw)

(2.3)
Che factor (N!)~!/2 ensures normalisation. It can actually be shown that the
slater determinant is the best single determinant approximation for ¥, in a

-ariational sense [89]. Minimisation of the quantity

< ‘I’o'Hl‘I’O >
< Wo|¥q >

vith respect to the v; (the spin dependence has been left out for brevity),

eads to the set of Hartree-Fock equations:

_%V%/)i(r) + Vi (r)i(r) + Vaar(r)si(r)

=3 [ ) = e (2.4)

In this case Vi (see eq. (2.2)) is the sum of two contributions. The first,

YHar, 18 the classical (Hartree) electron-electron Coulomb interaction
Vi Ha,l /dl‘ /) o I'" (25)

vhere
=3 a(r)? (2.6)
:
is the total electron density; the second is the explicit non-local exchange
nteraction. Then eq. (2.2) is solved with a Self Consistent Field (SCF)
jrocedure. By definition, the only approximation is in the beginning, in the
croice of the Slater determinant as a form for the ground state; apart from

tiis, the method is exact.
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The main limitation of the HF method is the fact that it neglects electron-
electron correlation; by considering that each electron moves in an average
field due to all the others, their repulsion is actually overestimated [90]. HF
tkeory is also not suitable for the calculation of excited states which, in prin-
ciple, correspond to energy values higher than the occupied ones. Koopman'’s
theorem [77] gives a method to calculate approximate ionisation energies, but
it assumes that the removal of one electron does’t affect the other occupied
orbitals. This lack of relaxation produces ionisation potentials which are too
large; taking into account correlation effects (whose importance increases
with the number of electrons) could fix in part this error. As a consequence,
calculated band gaps, for example, are usually about twice the value from
experiments. For insulators and semiconductors, though, band structures
can easily be corrected using procedures such as the GW approximation
[91]. The HF approximation gives very poor results when applied to metals,
where correlation effects are essential for screening the r ' dependence of the
Coulomb interaction; as a result, the gap is too big and there is zero density
of states at the Fermi level, which is, of course, in contrast with experimental
evidence [92].

In the HF approximation each electron experiences the same mean field,
so the self-interaction term arising from the Coulomb potential is exactly
cancelled by a corresponding contribution from the exchange term (see eq.
(2.4)). This is believed to be the main reason that makes HF more suitable
for the description of the strongly correlated electron systems [78].

In the standard Hartree-Fock theory (also referred to as Restricted
Hartree-Fock - RHF) each orbital is occupied by two electrons with op-
posite spin (closed shell system); in this case a single Slater determinant is

enough for the description of the ground state wave function. When deal-
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‘igure 2.1: Definition of the molecular orbitals in the Restricted Hartree-Fock
Jpen Shell (a) and Unrestricted Hartree-Fock (b) approximations [93, 112].

ng with open shell systems (e.g. magnetic systems), a single determinant is
10t, in the most general case, an appropriate wave function; in order to get
he correct spin eigenfunctions it is necessary to use a linear combination of
Slater determinants [93].

There are two versions of the HF theory that make it suitable for the
cescryption of open shell sysytems. The Restricted Hartree-Fock Open
Shell (ROHF) wave function is one choice and is, in general, a sum of Slater
ceterminants. Fach determinant contains a subset of closed shell (doubly
cccupied) orbitals and a subset of open shell (singly occupied) orbitals. In
the special case of maximum spin (high spin case), nevertheless, a single de-
ferminant 1s still sufficient. Alternatively, the Unrestricted Hartree-Fock

(UHF) approximation retains the mono-determinantal description by using
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tvo separate sets of orbitals for spin up («) and spin down (3) electrons (so
ttere are no doubly occupied orbitals). Fig. 2.1 shows the molecular orbital
diagrams corresponding to the ROHF and UHF definitions. Unlike ROHF,
UHF wave functions are not eigenfunctions of the total spin operator S? be-
ceuse they are a mixture of spin states. For example, in the case of the H,
molecule, the ROHF wave function is a singlet, whereas.the UHF wave func-
tion is a combination of a singlet and a triplet. Dispite this limitation, UHF
wave functions are energetically more stable and most of all allow solution

with a local negative spin density (antiferromagnets), a feature that is not

possessed by ROHF.

2.3 Density Functional Theory

The Density Functional Theory (DFT) approach is based on two theo-
rems proposed by Hohenberg and Kohn [94] in 1964 and on a computational
scheme implemented by Kohn and Sham [95] (K-S) the following year. The
quantity used to describe the ground state ¥, and the properties of the sys-

tem is the one-electron density matrix

plr.r'} = N/.../drg...dr,v X [Wo (r,01;72,09;...;TN,0N)

Wo(r',01;r9,00;...5Tn,0n8) | - (2.7)

Vee contains, in this case, all information about many body interactions
through the exchange and correlation potential which is, in turn, a universal
functional of p(r,r’) (i.e. it uniquely depends on the total charge density)
(94].

Unlike HF| the aim of DF'T is not to give an approximate form for W, but
to exactly calculate (in the limit of an exact exchange-correlation potential)

the ground state energy Ey and electron density. If the exact functional was
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known, the self consistent solution of equation (2.2) would give the exact
ground state density and energy; actually, it’s analytic form is unknown and
some approximations must be made, as will be explained in a moment. In

this sense the wave function Wy_g which solves the equation is not the true

Wy, apart from the fact that it defines the same density; it only corresponds to
a fictitious non-interacting system whose role is to parametrise the variation
of energy with respect to the ground state densities [94]. For the same reason
the eigenvalues ¢; of the Hamiltonian don’t have the same physical meaning
as those appearing in the HF equations (2.4) and should not be used to
describe excitation energies (Koopman’s theorem cannot be applied in this
case).

Another thing to be noticed is that the electron-electron Coulomb inter-
action term includes a spurious contribution arising from the interaction of
each electron with itself (self-interaction). It is not exactly cancelled by a cor-
responding exchange term of opposite sign, as in HF (see previous section),
because of the approximate treatment of the exchange-correlation potential.
Methods have been proposed for the inclusion of self-interaction corrections;
see ref. [96] for a review.

As mentioned before, a few approximations have been proposed for the
{escription of the exchange-correlation potential. Among these, the Local
Density Approximation (LDA) [97, 98] has been very successful because
t 1s quite accurate and computationally convenient. In general the exchange-
sorrelation potential in r depends on p(r’) (r' # r), so it is non-local. LDA
wssumes locality: Vig(r) only depends on the density in the same point r.
such an assumption is justified when effects of spatial variations of the elec-
ron density may be neglected, so that the exchange-correlation potential is

aken from the known results of electron systems with constant density (the
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hanogeneous electron gas.

Application of LDA to the study of strongly correlated systems encoun-
teed many difficulties because most of the results were not in agreement
wth experiment. For example, when applied to insulating, magnetically or-
deaed compounds (for example NiO, MnO, NiS, YBa,Cu3O¢ and La,CuQO4
(9, 100, 101]), a metallic, non-magnetic ground state, was found.

Several improvements to LDA were proposed to get a better description
ofthese materials. Among them, the Local Spin Density Approximation
(ISDA) [102, 103] allows the description of open shell systems, in the same
wey as the UHF does in the framework of the HF approximation. LSDA in-
traduces a spin dependence in the electron density, which splits into a density
fo: spin up (pt(r)) and a density for spin down (p;(r)), to allow for possible
spn-density waves or antiferromagnetic states. Following this approach, the
prsence of the gap at the Fermi level for MnO was correctly predicted [100],
as well as the antiferromagnetic insulating behaviour of LaMO3 (M = Cr,
Ma, Fe, Ni) [565], but LSDA fails in many other contexts. Even in MnO the
result is not completely satisfactory because the gap only opens as a conse-
quence of the antiferromagnetic order, whereas the material is observed to
be insulating also at temperatures well above the Néel temperature.

Another correction to LDA was proposed through the use of gradient
corrected functionals in the so-called Generalized Gradient Approxima-
tion (GGA) [104, 105, 106, 107]. Simple LDA is too drastic in the sense
that Veg only depends on the local electron density; this is, of course, not
rrue in strongly correlated materials, where the spatial dependence is very
mportant. So LDA is can be seen as the zeroth order term in an expansion
of the exact functional. GGA takes into account also terms in Vp(r) in such

an expansion. Results, once again, only show partial improvement compared



v LDA [108, 109].

Initially this failure was thought to originate from the independent elec-
ton approximation, i.e. from the fact that strongly correlated systems could
1ot be described by band theory. Now it is acknowledged that this is not
tie case [78]. The main problem of LDA and its modifications is, as already
nentioned, the approximate treatment of the exchange interaction that does
ot lead to a cancellation of the self-interaction in the Coulomb term; this
wnphysical effect causes LDA to work very poorly for strongly correlated ma-
trrials. Ground state properties are better described within the framework
d the HF approximation, which gives results in better agreement with ex-
reriments, for example in the case of manganese oxides [85] or manganites
(18, 46, 110, 111].

Apart from the ground state, though, in general strongly correlated ma-
trrials are not accurately described with a single determinant wave function.
I order to include correlation effects and to be able to study excited states,
a multi-determinantal approch is necessary. One of such approaches is the
Configuration Interaction approximation, which has been used in this work

and which will be introduced in a following section.

2.4 The CRYSTAL 98 package

The present section contains a brief description of the code that was used for
tie UHF calculations on CaMnOj3 and LaMnOj carried out in the present
vork and described in Chapter 3. They were performed using the commercial
package CRYSTAL 98 [112, 113|, which is an ab initio code for both HF
and DFT treatment of periodic systems; it was developed jointly by the
I'ipartimento di Chimica Teorica - Universita di Torino (Italy) and CCLRC

(Council for the Central Laboratories of the Research Councils) - Daresbury

o4



Laboratory (UK). CRYSTAL 98 has been used with success (together with
its previous releases, in 1988, 1992 and 1995), on a huge variety of systems.
For a full list of materials studied and bibliography the official CRYSTAL
w:b sites at the University of Torino and at Daresbury Laboratory can be
visited [80]. Here only the basics of its working principles will be outlined;
for a complete documentation see refs. {112] and [113]. .

In any ab instio program the first step is the choice of the basis set that has
to describe molecular orbitals. There are basically two different possibilities
available: plane waves (PW) or Gaussian type orbitals (GTO). In CRYSTAL
the latter choice is employed. Each crystalline orbital ;(r; k) is a linear
ccmbination of Bloch functions (with coefficients a,,(k)) ¢,(r; k), defined in

terms of local functions (or atomic orbitals) ¢, (r):
Yi(r; k) = ) a,,i(k)gpu(r; k) (2.8)
i

¢u(r; k) = Z oulr — A, - T . (2.9)
A, is the coordinate of the n:cleus, in the reference cell, on which ¢, is
centred; the 3 ¢ is extended to all lattice vectors T. The atomic orbitals are
expressed as linear combinations (contractions) of ng individually normalized
Gaussian type functions ' with the same centre, with coefficients d; and

exponents «;:

nG
cult— A, —T) =Y d;Glajir— A, ~T) . (2.10)
]

Compared to a PW basis, Gaussian orbitals allow the description of core
and valence states with a limited number of basis function. On the other
hand, there is a price to pay and this is loss of orthogonality, universality
and the need for more sophisticated algorithms.

The Gaussian basis sets used for Ca, La, Mn and O were identical for

both the bulk UHF and the cluster Configuration Interaction calculations
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(performed with the GAMESS-UK package). They are slightly modified
versions of those used in a HF study of CaMnOj; [46] and of MnO and NiO
85]. For lanthanum, the basis set that was used is one optimised for the

!, modified in the exponents of the outer shells. A more detailed

La3t ion
lescription of the basis sets will be given in Appendix.

CRYSTAL 98 carries out an SCF calculation until canvergence on energy
‘or on eigenvalues) is reached. The theoretical description of the method
1sed can be found in the CRYSTAL manual [112] or in the paper by Roetti
113,

The integration in reciprocal space plays a very important role, at each
stage of the SCF procedure as well as, at convergence, for determining the
“ermi energy and a number of other observable quantities. The integral
svaluation is carried out over a specified portion of the BZ defined by a
special net of inequivalent sampling points called the Monkhorst net [114].
some details about the grid of k-points used in the present work is given in
Appendix.

A feature of CRYSTAL largely exploited in the present work is that it
ullows the user to converge the SCF solution to the desired spin structure,
naking it possible to study spin polarised systems. Atoms in the crystal-
ographic cell can be assigned either an up or a down spin, and the total
nagnetic moment can be locked to the desired value for some SCF cycle;
such a choice for the initial guess ensures that the solution falls into a local
ninimum and converges. As a result, total energies can be calculated in the
same crystal for different spin orientations and the nature of the magnetic
zround state can be investigated.

CRYSTAL also allows the alteration of orbital occupation before the SCF

'This basis set is unpublished, but is available at
ittp://www.tcm.phy.cam.uk /mdt26 /crystal.html.
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by shifting upward selected eigenvalues (the shift is then removed after the
first cycle); this option artificially removes orbital degeneracy and can be
wed to converge the solution to some particular orbital occupation. In other
vords;, it can be used to study orbital ordering in cases like LaMnQOj3, where
tvo e, orbitals are available to be occupied by one electron.

Finally, there are many properties that CRYSTAL is able to calculate af-
ter convergence. The full list is available in the user’s manual [112]. Among
tiem it is worth mentioning the Mulliken population analysis, the band struc-
tire, the charge and spin density, the density of states; these are the main

ozes used to study the properties of the manganites in the present thesis.

2.5 Configuration Interaction

As seen in section 2.2, the HF approximation doesn’t include any description
of the correlation among electrons. The correlation energy is the difference
between the exact (non relativistic) energy £ of the system and the HF

erergy F in the limit of a complete basis set:
EC()rr =F - E() . (211)

The problem of electron correlation has been extensively dealt with in
modern molecular quantum chemistry and many schemes have been devel-
oped to include it in the wave function of the system; they all use occupied
and virtual orbitals as basic ingredients. Among such correlation schemes,
Configuration Interaction (Cl) is a very simple one, at least conceptu-
ally [121]. The use of the CI approximation is well established in theoretical
quantum chemistry. A few examples of applications can be found in Chapter
4 of the book by Szabo and Oslund [77] and in the references cited in there.

It has been recently applied to La;CuO,4 (115, 116] and KNiF3 [118] for the
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cilculation of exchange couplings.
The exact, non relativistic N-electron wave function ¥ can be expressed
& a linear combination of Slater determinants ¢ (trial basis functions). The

natrix representation of the Hamiltonian in the chosen basis
Hyy =< %l H|g; > (2.12)

cin then be diagonalised to find the eigenvalues. In principle, if the basis
vere complete (i.e. if all excited states of the system were included), one
would obtain the exact energies not only for the ground state, but also for all
tie excited states. In practice, however, only a finite set of trial N-electron
functions can be handled; consequently CI provides an upper limit to exact
erergies and good estimates of energy differences.

Given a set of 2n one-electron spin orbitals and N electrons (with N < 2n),
there are ( %\T; ) ways of forming an N-electron Slater determinant. Even
fcr small molecules and limited basis sets, though, this is a huge number
aad, as already said, only a limited fraction of them can be handled. The
d:terminantal trial wave functions can be constructed from the Hartree-Fock
molecular orbitals; it is then natural to describe then by specifying how they
dffer from the HF wave function |¥y >. This is formed using the N lowest
energy spin orbitals; from them, one can construct all possible N-electron
determinants which differ from |W, > in having one excited orbital, then two
and so on.

Defining |47 > as the singly excited determinant that differs from |¥, >
ir having the spin orbital x, replaced by x,, |[¢ > as the doubly excited
determinant that differs from |¥, > in having the spin orbitals x, and y,

replaced by x, and x, and so on, the expansion of the exact many-electron
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wive function |¥ > is:

|\II> = Col\p0>+ZC£|w;>+ Z C;i ;z>
a,r

a<b
r<s
rst|,/rst rstu|,;rstu
+ Z chrl¥iee > + Z Crales 7 e« (2.18)
a<b<c a<hb<c<d
r<s<t r<act<u

The limitation to indices a < b, r < s and so on ensures that double
excitations are not counted twice. This is the form of the so-called full CI
matrix. If |¥, > is a good approximation for the ground state of the system,
ore expects ¢y to be much greater than the other expansion coefficients.

A significant number of determinants is eliminated (although the number
le't is still too big) by considering that the matrix element between wave
functions with a different number of @ and 3 spins is zero.

The most general form of a CI wave function for N electrons with a
particular total spin S in the active space is a linear combinations of spin

acapted functions (SAFs)
Yer = ZC&/),'SAF . (2.14)

A SAF is the antisymmetrised product of a spatial orbital and a spin eigen-

function (SEF), ©,, for the specific spin state:
PN = A ({core}d;ok...0:6:0,) (2.15)

where A is the antisymmetrising operator and {core} is the product of the
doubly occupied orbitals in the core space. Each SEF consists of an orthonor-
mal combination of products of the one-electron eigenspinors « and j3, the
primitive functions 6;:

8, =Y af . (2.16)
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SEFs are eigenfunctions of S? and of S, and can be generated in many
different ways [77].

Using SAF's of specific $? and S, reduces the number of configurations
because of the orthonormality of the primitive functions (< 6;|6; >= d;;).

As an example of SEFs, consider the case of six unpaired electrons; this is
the situation arising when dealing with the three ¢,, electrons on each of two
neighbouring Mn ions in CaMnQOj. There are five SEFs if the six electrons
are coupled into a singlet and one SEF if they are coupled into a septet state.

Denoting with 1 a spin up and with 0 a spin down, the five SEF's relative

50 the singlet state are:

101010

101100

110010 (2.17)
110100

111000 .

“or the case in question there are twenty possible primitive functions; theo-
‘ems exist that allow the calculation of the coefficients of eq.(2.16) [119].
Apart from the determinants eliminated on the basis of the above con-
siderations about spin, there are others which do not appear in the full CI
sxpansion matrix. First of all there is no coupling between the HF ground
state and singly excited states (Brillouin’s theorem [120]); because matrix
elements between Slater determinants which differ by more than two spin
orbitals are zero [77], there is also no coupling between the ground states
and triple or quadruple excitations, nor between singles and quadruples and
so on. Denoting, in a symbolic form, with |[S > all the terms of eq. (2.13)

involving singly excited states, with |D > all the doubly excited and so on,
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the block structure of the full CI matrix (which is Hermitian) looks like the

following:

[ < Uo|H|Ty > 0 < th|H|D > 0 0
<SIHIS> <SHID> <SHIT> 0

< DIH|D > < DIH|T > < DIH|Q >

<TH|IT> <TIH|Q>

< QH|Q >

(2.18)
The fact that single excitations don’t couple with |¢) > doesn’t mean there is
no interaction between them at all: they mix indirectly via double excitations
because they both couple to them.

With the exception of small molecules, even with a minimal basis set,
there are so many possible spin adapted configurations that full CI becomes
computationally impracticable. The CI expansion needs to be truncated
somehow, for example by considering only a limited number of possible exci-
tations; this will result, of course, in an approximate treatment of correlation,
with the error getting bigger for systems with a larger number of electrons.

The simplest of such truncations is achieved by taking into account only
single and double excitations from the ground state and is generally referred
to as Singles and Doubles Configuration Interaction (SDCI) approx-
imation; it is described by taking only the first two terms the sum (2.13).
CI calculations on manganites clusters carried out in the present work (see
Chapter 4), make use of the SDCI approximation as implemented in the
GAMESS-UK package described in the next section.

2.6 The GAMESS-UK package

GAMESS-UK [122] is an ab initio electronic structure program that allows
the HF', DF'T and Multi-Configuration Self Consistent Field (MCSCF) treat-
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ment of molecules and clusters. It also includes the possibility of performing
a variety of post-SCF calculations. It has been developed with the contribu-
tion of many authors.

Molecular orbitals are described, in the same way as in CRYSTAL, by
Gaussian type functions; s, p, d, f and g shells can be used. After the SCF
calculation, the user has many available tools for the analysis of the wave
function. Among them, for example, there is the determination of the orbital
and atomic charges using both Mulliken and Distributed Multipole Analyses,
together with a graphical analysis of the wave function by the calculation of
charge densities, molecular orbitals, atom difference densities and electro-
static potentials on a grid of points. Another feature is the localisation of
orbitals using the Foster-Boys algorithm [123].

Among the post-SCF modules, a few CI schemes, based on different ap-
proaches, can be used. Conventional Table CI [124] and Direct CI [125, 126]
are the main ones. They are both multi-reference schemes i.e. more then one
configuration can be given as reference in the input; then all possible single
and double excitations from them are taken into account for the construction
»f the CI wave function. The difference between the Table CI and the Di-
rect CI formulations is that in the former the Hamiltonian matrix elements
‘or one pair of configurations are calculated at a time (configuration-driven),
while in the latter the integrals over the one-electron basis functions are ex-
wmined in sequence to determine Hamiltonian matrix elements to which they
:ontribute (integral-driven).

For the CI calculations on CaMnO3 and LaMnOj; clusters described later
n Chapter 4, the Direct CI approximation has been used. The main advan-
.age of Direct CI is in the fact that one can avoid the explicit construction

f the CI Hamiltonian matrix; instead, directly from the list of transformed
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nolecular integrals, a matrix times vector multiplication is performed
Z=HC , (2.19)

vhere C is a trial column of CI expansion coefficients.

The N-electron antisymmetrised SEFs are constructed from molecular or-
ritals which are partitioned into an internal (normally occupied orbitals) and
un external space (normally unoccupied in the ground state); lower indices
ure assigned to internal MOs and higher indices to external MOs.

The Direct CI scheme in GAMESS makes use of the Yamanouchi-Kotani
YK) genealogical spin functions [127], the coupling order being such that
iigher indexed MOs are coupled before lower indexed MOs. Then spin func-
ions are ordered following a particular convention. This will be clarified with
. specific example. Consider five singly occupied MOs coupled to a doublet
total spin 1/2); then there are five possible spin functions [77]. If 1 and 0 are
1sed to represent spin up and spin down respectively, proceeding from the
owest indexed singly occupied MO (left), write down the appropriate digits
or all the spin functions. The resulting binary number defines the way they

re ordered:

e 10101: Spin function 1

101106: Spin function 2

11001: Spin function 3

e 11010: Spin function 4

11100: Spin function 5.

Single and double excitations are generated with the requirement that

¢ maximum of two electrons can be allowed to occupy the external space.
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'The number of generated configurations can be quite large even if the CI
pocess is limited to single and double excitations; a selection procedure is
aplied by calculating the coupling of each configuration with the reference
ores and discarding those that lie below a certain threshold. According to the
o:cupation and spin pattern found in the external space, the spin functions
ae placed in four states: vacuum states, with no electrons in the external
space, doublet states, with one electron in the external space, singlet and
trplet states, with two electrons in the external space, appropriately spin

coupled.
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Chapter 3

UHF calculations on
CaMnOj3 and LaMnOs;

n this chapter the first part of the work done, i.e. the Unrestricted Hartree-
“ock study of CaMnO; and LaMnQOs, is reported. The UHF approxima-
ion, as implemented in the CRYSTAL package, has been used to investigate
he magnetic properties of these compounds, in particular the nature of the
sround state (and its relationship with the structural symmetry) and the
ralue of the exchange coupling constants.

For CaMnQOj3, only the experimentally observed cubic structure has been
studied. The correct ground state is found; results are in agreement with
he Goodenough model, which is able to explain the relative energies of the
lifferent spin ordered structures. The calculated value of J, though, is larger
‘hen the experimental estimate [20, 68].

In the case of LaMnOs, there is a need for a deeper understanding of the
‘elationship between magnetism, structure and orbital ordering. Calculations
n the present study have been first carried out on an idealised cubic crystal;
hese identify independent spin and orbital ordering contributions to the
{amiltonian. Then the experimental Pnma structure was analysed, as well as

& cubic structure in which simple Jahn-Teller distortions are present; lattice
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parameters and atomic positions have been optimised for LaMnQOj in the
Prnma structure. Experimental distortions are found to be very important
for a correct description of the magnetic ground state; calculated exchange
couplings reproduce the correct A-type AF behaviour of LaMnQOs, though

their value is below the ones reported from experiments.

3.1 CaMnO3

As described in Chapter 1, CaMnQOj is experimentally found to be in the
cubic ideal perovskite structure (Fig. 1.1) with a lattice constant a = 3.73
A; its ground state is the AF G-type structure and the Néel temperature is
Ty = 110 K. For this UHF study, two sets of calculations have been carried
out, at lattice constants equal to 3.73 A and 3.75 A, for the FM and for the
A, C and G AF spin orderings. Relative energies and magnetic moments
(from Mulliken population analysis') are summarised in Table 3.1, which
also reports other calculations from the literature [46, 44], together with the
experimental estimate of the magnetic moment [20]. The lowest energy was
found for the G-AF at 3.73 A, which is 24.3 meV below the corresponding
G structure at 3.75 A.

Mulliken populations had very similar values in all calculated structures
and lattice constants; Table 3.2 shows charge values for the lowest energy
G-type AF at a = 3.73 A. It should be noticed that, unlike Ca which is prac-
tically 2+, charges on Mn and O are quite different from the nominal values.
The detailed output of the Mulliken population from the CRYSTAL pro-
gram, for both alpha+beta (charge) and alpha-beta (spin) electrons, is given

in the Appendix as a reference. Though the Mulliken analysis only gives

'The magnetic moment, in this case, only includes the spin contribution; taking into
account the orbital part might, of course, bring some minor correction to its value.
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Magn. Rel. energy =~ Magn. moment
ordering (meV/Mn ion) (1p/Mn)
Present work, a = 3.73 A FM 0 3.16
A-AF -23.6 3.18
C-AF -45.1 3.18
G-AF -64.3 3.23
Present work, a = 3.75 A FM 0 3.19
A-AF 222 ° 3.21
C-AF -42.4 3.23
G-AF -60.6 3.25
UHF [46] FM 0 3.17
G-AF -66.0 3.25
LSDA [44] FM 0 2.81
A-AF -57 272
G-AF -116 2.48
Experiment [20] 2.65 :

“able 3.1: Summary of UHF results for CaMnOj; relative energies from
UHF calculations (in meV/Mn ion) and magnetic moments from Mulliken
jopulation analysis (in pp/Mn) are shown for two lattice constants. Also
siwown are other UHF and LSDA calculations and the experimental value of
tie magnetic moment.

«n approximation for the orbital and atomic populations, some conclusions
are still possible using a semicovalent model based on Goodenough prescrip-
tons. Oxygen, with its charge equal to -1.33, is missing 0.67 electrons in
tre valence orbitals (which would allow it to reach the nominal charge of -2);
 the other hand, Mn has an excess charge of 1.87 electrons, that partially
jopulate the two (nominally empty) e, orbitals (see Appendix). Manganese
tas six empty hybrids available for semicovalent bonding, each for any of the

sx neighbouring oxygens; so each O has transferred 0.33 electrons on each
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ion | tot. charge | ionic charge | Mn 3d population
Ca* 18.14 +1.86 tyy € total
Mn** 22.87 +2.13 1329 141 4.70
0% 9.33 -1.33

[able 3.2: Calculated charge values (in e) for CaMnOj3 from Mulliken popu-
ation analysis; details of the Mn 3d populations are also shown.

ide to an Mn ion? and this roughly adds up to the total excess charge on
vin. An evidence of the fact that there is a good degree of covalency can be
ound in the overlap Mulliken population (also reported in the Appendix). It
thows that the only appreciable overlap is between Mn and O and involves
).074 electrons.

In spite of having almost five electrons in the d orbitals (see Table 3.2
ind Appendix), i.e. of being a nearly 2+ ion, the magnetic moment on the
nanganese is close to the expected 3 up. The detailed alpha-beta population
inalysis shows that the magnetic moment mainly comes from the ¢,, electrons
2.79 pup) and that the e, orbitals contribute much less to it (0.40 wg); this
s because an Mn ion receives, by symmetry, electrons of opposite spin from
he two sides in the O-Mn-O chain.

As a comparison for UHF energies, it is worth presenting some results (see
Table 3.3) obtained within the Local Spin Density Approximation (LSDA) to
Density Functional Theory (DFT); in particular the calculations made use of
ihe von Barth-Hedin [102] form for the exchange and correlation potential.
<ven if both UHF and LSDA predict the correct magnetic ground state,
energy differences between the various spin structures in the latter case turn

out to be much bigger then the corresponding UHF ones. Because exchange

*Looking at the oxygen p,, p, and p, orbital population in details, what actually
happens is that the charge is mainly missing from the orbital which points toward the Mn
P g y g
nn.
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Magn. Rel. energy = Magn. moment
ordering (meV/Mn ion) (1p/Mn)

FM 0 2.54
C-AF -180.2 2.41
G-AF -231.4 2.40

Table 3.3: DFT results for CaMnQOj; relative energies and magnetic moments
from Mulliken population analysis (in up/Mn) are shown for a = 3.75 A.

couplings are calculated from energy differences, they will also be larger (and
as noticed above, UHF already overestimates them). This is in agreement
with what is generally believed, i.e. that the HF approximation is more
appropriate then DFT for a description of the ground state of transition

metal compounds.

3.1.1 CaMnOj3 and Goodenough’s model

Goodenough’s model [67], the first successful attempt to describe in a sys-
tematic way the relationship between exchange coupling and crystallographic
structure in manganites, gives the correct predictions in the case of CaMnQOs.
In that model, because Mn ions are 4+ ions, there is always a hybrid orbital
available to be shared with a O?"; as a consequence, all interactions can be
of type I (see Fig. 1.10). The resulting structure is cubic, as the Mn-Mn
separations are all the same, and the AF G-type structure is the ground
state.

The model has been applied to explain the relative energies of the A-
AF, G-AF and FM spin orderings in CaMnO; and LaMnOj in the idealised
perovskite cubic structure [110]. Using a simplified argument in which it was
assumed that an empty e, orbital is either available or not, it was found

that the relative energies of these magnetic structures can be explained by
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Figure 3.1: Covalent exchange structures in CaMnQj; derived from the Good-
enough model (see Fig. 1.10). a = 3.73 A.

counting the numbers of each type of interaction in each magnetic state and
then calculating the relative energy of each type of interaction. Fig. 3.1(a)
shows empty Mn hybrids and spin orientations appropriate for 6 type II
interactions per Mn** ion in FM CaMnOj3;. When layered AF coupling of
spins is introduced (fig. 3.1(b)) the total energy is lowered by 23.6 meV per
formula unit. In this case there are 2 type I and 4 type II interactions per
Mn ion. In the G-AF structure (fig. 3.1(c)) each Mn spin is surrounded
by 6 neighbours with opposite spin and the number of type I interactions
is maximised to 6 per Mn ion. The relative energy is -64.3 meV. From
these results it can be estimated that type I interactions are ~20 meV lower
in energy than type II interactions in CaMnOj with the cubic perovskite

structure [110].

3.1.2 Exchange coupling; Heisenberg and Ising Hamil-
tonians

Calculated energy differences can be used to derive the exchange coupling J

for CaMnOys; this has been done by mapping these differences onto a simple
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Hamiltonian. It has been specified earlier that the form used is the one
of equation (1.14); a few comments are needed at this point to clarify the
validity of such a mapping and the comparison with results by other authors
and from experiments.

The type of package used for the present calculations only allows two
possible values for the atomic spin (up or down), so that the scalar product
is either 1 or -1. What is actually done, then, is to map energy differences
on an Ising rather than on a Heisenberg Hamiltonian (the latter takes into
account all spin orientations through the scalar product S; QJ) Equation

(1.14) has to be re-written as

H= 2, Jij% : (3.1)
<ij>
where S, is the z component of the i-th atom.

On the other hand, experimental values for J are always derived using the
Rushbrook-Wood approximation (eq. (1.18)) [68], which is a fitting formula
based on the Heisenberg Hamiltonian. The question about how to relate J
values calculated using Ising and Heisenberg Hamiltonians can be addressed
by finding a formula to fit Ising data. Such data can be found in a paper
by Butera and Comi [117] who study an Ising model using high temperature
expansions. In this way it is possible to derive k7,./J values and compare
them to the fit by Rushbrook and Wood. Table 3.4 shows the fit for three

different spins and also gives the Ising/Heisenberg ratio; the Ising values

(third column) have been converted to Heisenberg units multiplying by 4s?.

In the case of CaMnOj3 (s=3/2) Table 3.4 shows that J calculated using
an Ising Hamiltonian will be 2.32 times smaller than the one calculated with

a Heisenberg Hamiltonian.
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S
1/2
1
3/2

kT./J Heisenberg &T./J Ising Ising/Heisenberg ratio

1.81
5.43
10.49

4.51
12.76
24.39

2.49
2.34
2.32

lable 3.4: Comparison between Heisenberg and Ising Hamiltonians for three
liffferent values of the spin s. The second column is the Rushbrook-Wood
ipproximation [68], the third is based on data by Butera and Comi [117].

Having discussed this point, it is possible to turn to the calculation of

I. With three relative energies available (see Table 3.1), exchange interac-

ions up to the third nearest neighbour can be calculated. Denoting with

I, Jo and J; the interactions in the cubic lattice corresponding to the in-

eratomic vectors [a,0,0], [a,a,0] and [a,a,a], the three equations for their

letermination are:

Egm — Eg-ar

Solving them, J;, J, and J3 turn out to be

for a = 3.73 A, and

Jr
Ja
J3

Ji
J2
J3

1

5 (4J; + 16J5 + 16J3) (3.2)
1

3 (8J; + 16J,) (3.3)
1 .

3 (12J; + 13J5) . (3.4)
10.7 meV

0.3 meV (3.5)
0.0 meV |

10.1 meV

0.2 meV (3.6)
0.0 meV
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ora=3.75A.

The above values clearly show how interactions further than the nearest
1eighbour ones fall to zero very rapidly. It is impossible, in the present
:alculation, to check (as is generally believed) whether exchange interactions
onnecting magnetic ions along a linear chain are stronger then the ones
which don’t (like [a,0,0]); this is because interactions.along, for example,
2a,0,0], contribute equally to the four spin structure and cancel out in
snergy differences.

The experimental value for J, estimated from Ty = 110 K [20] using
:he Rushbrook-Wood approximation (eq. (1.18)), is 6.6 meV. According to
what has been said before about Ising and Heisenberg Hamiltonians, with the
same T the Ising value for J estimated from experiment will be smaller by
a factor of 2.32 (see Table 3.4), i.e. it will be 2.84 meV. In their theoretical
work Satpathy and collaborators [75] report the same calculated J of 6.6
meV?; Millis [73] estimates J = 10 K, i.e 7.8 meV. There is good agreement
between our calculated value and the one from ref. [75], though ours is
slightly overestimated.

If, for comparison, the calculation of J is repeated in the LDA case, it is

found that

Ji = 38.6 meV

Jy = 3.2 meV.

Such values are much bigger then the corresponding UHF ones, and this
is again an indication of the fact that LDA proves less adequate for describing

these type of systems.

*Due to the different definition used in that work, the difference between a pair of ferro
and antiferromagnetically coupled Mn ions is twice the exchange energy defined in eq.
1.14. Hence their values have to be divided by 2 in order to compare them to the present
work.
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21.3 Band structures and hybrid DFT theory

Fand structures of CaMnO3; have been reported by several groups, both in
tie LSDA [44, 45] and in the UHF [46] approximation; some of them have
been discussed in the previous chapter.

The main difference between the two approaches is that UHF overesti-
nates the gap. This can be seen from the band structure plotted below for
(aMnOg in the ground state G-AF structure (Fig. 3.2). Comparison with
HFG. 4 in ref. [44], an LSDA calculation, clearly shows such a difference:
tie calculated gap is 0.015 Hartree in LSDA and about 0.36 Hartree in the
pesent UHF case.

The density of states projected on O 2p and Mn ¢,, and e, orbitals is
reported in Fig. 3.3. From both the band structure and the density of states
anarrow Mn t,, band can be observed around -0.73 Hartree; above that,
a wider oxygen 2p band extends from -0.6 Hartree up to the Fermi level.
This is a characteristic generally found in the HF approximation [58]. At the
brttom of the conduction band, Mn e, and ¢,, bands can be observed around
01 and 0.25 Hartree respectively. The occupied ¢, band is consistent with
tte calculated moment of 3.25 up, i.e. coming, as expected, mainly from ¢,,
ekctrons.

As an intermediate step between pure HF and pure DFT, it is possible to
inplement a DFT scheme that includes a certain percentage of exact Hartree-
Fock exchange. Such a theory has been successfully applied to La,CuQ4 by
VMartin and Illas [116], who used an hybrid exchange potential containing
an equal mixture of the exact HF exchange and of the Dirac-Slater LDA ex-
ctange [128]; the correlation potential was the Vosko-Wilk-Nusair parametri-
sation of the Ceperley-Alder free electron-gas correlation results [129].

Exploiting a feature of CRYSTAL 98, that allows the use of hybrid
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tigure 3.2: Band structure of CaMnOj in the G-AF spin structure - UHF
alculation. The Fermi energy is indicated by a dashed line.

exchange-correlation potentials, a similar kind of calculation has been carried
aut on the G-AF ground state of CaMnOj, using the same 50% mixture of
FF and LDA exchange and the same correlation potential as in ref. [116].
Fig. 3.4 and Fig. 3.5 show the new band structure and density of states
following this hybrid choice. The main thing to note is the reduction of the
gap, which is now about 0.15 Hartree; this is half the pure HF one, indicating
an approximately linear scaling with the percentage of HF exchange. The

other difference with the previous pure HF band structure is that now Mn
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Figure 3.3: Projected density of states for the G-AF structure of CaMnQOs,
from a UHF calculation.

76



01t -
o il B0 I N S —eme SO
- H o
o 0F 4 Z 0 \Va
& FXNON g el X
> / \ \/ Q
a -01¢t
=
w

r X 110 | G L= 110

Figure 3.4: Band structure of CaMnQj3 in the G-AF spin structure - hybrid
DFT calculation. The Fermi energy is indicated by a dashed line.

tog bands start to hybridise with the oxygen and move closer to the oxygen
bands at around -0.5 Hartree. The charge from Mulliken population analy-
sis, in this case, is +1.81 for Mn and -1.2 for O, to show that indeed more
hybridisation is present.

Finally, the energy differences between the FM and the G-AF structures
in the hybrid DFT case has been evaluated; the G-AF structure is below the
FM one by 202.2 meV, which results in an exchange coupling J = 33.7 meV.
This value is closer to the experimental estimate (6.6 meV) then the one
calculated in the LSDA approximation (38.6 meV); both of them, anyway,

are much higher the the HF value (10.7 meV).
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Figure 3.5: Density of states for CaMnOj in the G-AF structure from an
hybrid DFT calculation.
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3.2 LaMn03

n LaMnQOj the situation changes and, as was remarked before, becomes
nore complicated due to the presence of an extra electron that populates
in e, orbital in the 3d shell. The compound is experimentally observed
n the distorted (orthorhombic) Pnma structure [47] and is an A-type AF
20]. Configuration Interaction (CI) cluster calculations are needed to provide
tetailed information on exchange coupling between neighbouring Mn ions;
evertheless, in the case of LaMnQOjz, UHF calculations are helpful for a
s¢udy of orbital ordering in this compound. Obviously one can expect that
exchange constants will depend on orbital ordering: the latter determines
vhich orbital is empty and therefore available for exchange coupling. What
5 not known is whether there is a relationship between the e, charge density
pbr a particular orbital ordering and the spin ordering.

A series of calculations in the (ideal) cubic perovskite structure shows
that a Hamiltonian with independent exchange and orbital ordering terms
cescribes total energies of LaMnO3 with different spin and orbital ordering
sccurately. An optimised Pnma structure shows the correct ground state, as
vell as the correct sign for the exchange constants; it is almost isoenergetic
vith a cubic perovskite structure with a 5% J-T distortion. This is described

in more detail in the following sections.

3.2.1 Cubic idealised structure

Results of calculations where a cubic unit cell is used are presented first.
"he most important feature found is that the solution of the SCF calcula-
tion converges to different orbital occupancies starting with different initial
conditions.

The CRYSTAL package allows the choice of the initial guess for orbital
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wccupancy, so that the system which is being studied can be converged to
he desired final state. Using this technique, total energy calculations on
awbic LaMnOj3 with different spin and orbital ordering have been performed.
"he extra electron can populate any of the two e, orbitals (ds,2_,2 or d,2_,2)
n the 3d shell. Using a doubled cubic perovskite unit, containing two Mn
itoms, the occupied e, orbitals can be chosen to be the same or to be dif-
erent. It is important to stress here the fact that in the distorted Pnma
dructure occupied orbitals are not pure ds,2_,2 or d;2_,2 but linear combina-
fions of them taking different orientations in space; nevertheless a study of
rbital ordering in an idealised cubic LaMnQOj can be useful in order to get a
letter understanding of the mechanisms determining the exchange coupling
properties of this compound.

A cubic unit cell with the same volume as the experimental structure
(60.88 A3 [47]) has a lattice constant a = 3.934 A. This was optimised by
Patterson [111] through total energy minimization (using the ferromagnetic
gpin ordering in the experimental orbital ordering) and the calculated min-
inum energy lattice constant, ¢ = 3.953 A, for a volume of 61.77 A3, is
dose to the experimental one in the ’cubic’ phase of LaMnO3 (3.947 A) that
cceurrs at temperatures above 750 K [564]. Such an optimised structure lies
zbout 10 mev below the ¢ = 3.934 A one. An analysis of total energies in
the different spin and orbital orderings shows that they can be well fitted by

& Hamiltonian of the form

~

gz,- . Sz,- ~
H. = Z J,jj——ST—" =t HOO s (31)
<ij>
vhere Hgo is the orbital ordering term, i.e. a term depending on orbital
crdering only.

In Table 3.5 relative energies and magnetic moments (from Mulliken pop-

tlation analysis) are reported for a = 3.934.
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Spin and Relative Energy | Magnetic moment
Orbital ordering (meV/Mn ion) (up/Mn ion)
FM dy2_2/dya_yo 0.00 3.88

FM d3,2_,2/d3,2_,2 -6.1 3.88
A-AF dz2_y2/dx2_y2 -14.4 3.90
G-AF d3,2_,2/d3,2 12 -34.0 3.88
A-AF d3,2_2/dy2 2 -34.4 3.87
G-AF dy2_p2[dy2_yp -34.9 3.88
A-AF ds,2 ;2 /dpa_pp -40.23 " 3.89
G-AF dazz_rz/dzz_yz -95.4 3.89

FM dg,2_,3/dga_yp -131.5 3.88

Table 3.5: Relative energies and magnetic moments (from Mulliken popu-
lition analysis) for cubic LaMnQOj with different spin and orbital orderings.
Iattice constant is 3.934 A.

These calculations must, of course, be carried out in a doubled unit cell;
i1 this way one is able to assign a different spin (and/or a different e, orbital
orcupancy) to the two Mn ions in the cell. In the A-type AF the cell is
dyubled along the [001] direction, in the G-type it is doubled along the [110],
(101] and [110] directions. For an FM spin ordering any doubling of the cell is
equivalent (same total energy), but orbital ordering removes this degeneracy.

If the aim is to look at the ds,2_,2/d,2_,2 orbital ordering, the cell must

-y
b: doubled in a G-type way, to ensure that the orbital of one species is
strrounded by six orbital of the other species; A-AF ds,2_,2/d;2_,» orbital
oxdering is not compatible with the corresponding unit cell doubling and
cennot be used to determine Hep.

For d3,2 2 /d3,2 12 and dy2 2 /d;2 2 orbital orderings two distinct ex-
ctange constants are postulated, one in the zy plane (J) and one along the
drection perpendicular to that plane (J,); for ds,2 ,2/d,2_,2 only a single

exchange constant (J; = J,) is postulated. Then, first, energy differences

between different spin structures and same orbital ordering can be used to
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Orbital ordering | J; (meV) | Ji (meV)
d3,2_y2/dg,2_p2 -0.1 14.2
dye_y2 dga_yo 5.1 7.2
dgzz_rz/dzz__yz -6.0 -6.0

Table 3.6: Exchange constants in cubic LaMnOj for various orbital orderings.
J; couples Mn ions in the zy plane, J, those along a direction perpendicular
t) the zy plane.

alculate exchange coupling constants for each orbital ordering; they are
Isted in table 3.6.

Once the exchange couplings have been calculated for each orbital order-
iig, relative energies of the same orbital but different spin orderings can be
wed to calculate the Hpp terms in eq. (3.7). Their values will depend on
tie energy chosen as a reference; taking for this purpose the energy of the

EM structure in the d,2_,2/d;2_,2 ordering (just as in table 3.5) it is found

tiat
d322—r'~2/d312_r2 "201 meV
Hdﬂ-yz/d,z_yz = =174 meV
Hdaz'l_,l/dx'z_yg = —113.5 meV.

V'hen these values for Hpo are substituted back in eq. (3.7), relative en-
egies for the spin and orbital ordering considered agree very well with the
vilues reported in table 3.5 (the maximum discrepancy is less then 0.2 meV),
confirming the suitability of the Hamiltonian.

For each spin structure and orbital ordering charge density difference
pots have been obtained. A charge density difference plot is a plot of the
d fference in charge density between the UHF wave functions of the bulk solid
aad the one from the isolated ions, using the same basis set in both cases. It

alows visualisation of orbital ordering as well as charge displacements in the
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cystal. In order to achieve this, instead of subtracting the charge density of
a1 isolated Mn®' ion, it is more suitable to subtract the charge density of
a1 Mn** ion; in this way the extra e, electron can be clearly observed. Such
fots were almost identical for different spin orderings and only changed when
abital ordering changed, again indicating that independent spin and orbital
adering components contribute to total energies in cubic LaMnOj3; they are
siown in fig. 3.6. By looking at fig. 3.6 and table 3.6 it can be noticed that a
jositive, antiferromagnetic exchange occurs whenever two identical orbitals
ae found side by side (with the exception of the small J; = —0.1 meV in
tie d3,2_,2/d3,2_,2 ordering); a negative, ferromagnetic exchange occurs, on
tie other hand, when the two orbitals are different. This is a characteristic
tiat will be found in the Pnma symmetry as well, and is actually a property
o the real material. Distortions of the oxygen charge are also related to the
t'pe of exchange that occurs between the manganese ions. In the lower panel
o fig. 3.6 (d3,2_,2/d,2_,» ordering) there is an evident build-up of charge on
tie oxygen in the direction of negative value contour lines of a neighbouring
nanganese; such a distortion occurs even if the oxygen is exactly in the center
o the Mn-Mn distance and results in FM (J < 0) coupling. It should also
b2 noted that there is relatively little distortion in the O charge density in
fiz. 3.6(b) along the z direction, where a large AF coupling is present.

The main conclusion now, having presented the results of cubic LaMnQOjy
cilculations, is that spin and orbital ordering contributions to the Hamil-
tonian are independent. Different final states are found, depending on the
o°bital occupancy in the initial guess. It was already pointed out that when
tvo neighbouring electrons in the crystal occupy e, orbitals corresponding
to the same combination of ds,2_,2 and d,2_,2, an AF coupling is established

batween them; when alternated combinations of orbitals are present the cou-
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SEE

Figure 3.6: Charge density difference plots for cubic LaMnO;z in the ay
(left) and zz (right) plane. Orbital ordering is ds,2_,2/ds.2_,2 ((a),(b)),
dy2_y2 [dy2_y2 ((c),(d)) and dy2_p2/dy2_2 ((e),(f)). The difference in charge
densities is between the UHF density for the bulk solid and the UHF density
for isolated Mn** and O*~ ions. Blue. red and green lines represent positive,
negative and zero values respectively.

84



700 v v -

400 |
300
200

100} :

Rel. energy (meV/Mn ion)

-100

-200 : . .
092 096 1t 104 108

Figure 3.7: Plot of relative energies as a function of the ratio between lattice
constants a and c¢ for the tetragonal LaMnOj in the G-AFM structure. The
constant volume corresponds to that of a cube with edge a = 3.953 A. Orbital
ordering is ds,2_,2/d3,2 2 (solid), dy2_y2/d;2 2 (dashed) and ds,2_,2/dy2 2
(dotted). Reference energy is the same as in table 3.5.

pling is ferromagnetic. In this way energy differences within a particular spin

structure can be explained even in the case of a distorted lattice.

3.2.2 Tetragonal LaMnOQOg;

The relationship between orbital ordering and crystal symmetry has been
explored further. In the G-AF structure, the total energy was calculated as
a function of tetragonal distortion. A tetragonal distortion is a modification
of the cubic lattice such that either a = b < ¢ or a = b > ¢ (P4/mmm space
group); the volume was kept constant 61.77 A3, corresponding to one of the
minimum energy cubic structure.

Fig. 3.7 shows the results at various orbital occupancies. It can be
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Figure 3.8: UHF majority spin band structure of tetragonally distorted
LaMnQO; with FM spin ordering. Mn*" occupied d bands are clustered
around -10 eV and the unoccupied d band is around +10 eV at the ' point.
Inset shows the splitting of the five degenerate d levels into a ty;, + e, set in
a octahedral environment and further splitting following a tetragonal distor-
tion.

observed that the ds,»_,2/d,»_,» orbital ordering is the most stable for a

~y
narrow region around the cubic structure (a/c = 1); otherwise the stability
switches to ds,2_r2/ds;2_ ;2 for a < c and to dy2_y2/dy2_ 2 for a > c. In other
words, the preferred e, orbitals are always oriented along the direction where
the elongation takes place in the tetragonal modification. So it looks like
the explanation could be simply electrostatic: the orbitals try to avoid each

other in order to minimize Coulomb repulsion.

The most stable energy, as seen from fig. 3.7, occurs for an a/c ratio
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Figure 3.9: Summary (in scale) of relative energies (in meV/Mn ion) for FM
LaMnOj in the various structures studied.

around 0.94; that energy, at least for the G-AF structure, is about 160 meV
below the reference energy. It will be shortly shown that such an energy low-
ering is, anyway, smaller than the one that is obtained with a J-T distortion
or when the energy minimised Pnma structure is used.

A band structure calculation in tetragonal LaMnOj can also show the
reduction of orbital degeneracy when the cubic symmetry is broken. Fig.
3.8 shows the FM majority spin band structure of LaMnQO3; with tetragonal
svmmetry: as expected, four levels are filled and one level is unfilled. The
splitting of the five degenerate levels is the same as the one described in Fig.

1.5 for tetragonal symmetry breaking.
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2.3 J-T distorted and Pnma structure

The study of cubic LaMnOj has given, as a result, some insight into the
rlationship between structure and orbital ordering. Because of the cubic
smmetry, all Mn-O-Mn distances being the same, ds,2_,» and d;:_,2 or-
htals are equivalent in principle. Forcing occupancy to follow a particular
pmttern produces the consequences described above and it can be learned
low magnetic exchange is related to orbital ordering.

The experimental structure of LaMnOQO3 is of distorted Pnma symmetry;
tie magnetic ordering is antiferromagnetic of A-type. Structural parameters
d:termined by neutron diffraction [47] were shown in table 1.1. Such parame-
tirs have been optimised by energy minimization in the A-FM spin ordering;
al seven internal parameters (the ones not fixed by symmetry) were opti-
nised, as well as the three lattice constants. The resulting structure is 194
neV below the experimental one and 298 meV below the optimised cubic
sructure. A calculation has also been performed using the optimised cubic
sructure to which a simple in-plane 5% J-T distortion has been added (see
fiz. 1.9); this structure is almost isoenergetic with the optimised Pnma (it is,
nore exactly, 8 meV below). Fig. 3.9 displays these energy differences in a
schematic way; Table 3.7 contains lattice parameters used in the calculations
(experimental ones are presented as well for comparison).

It is worth analysing in more detail the main changes that take place
when going from the experimental to the optimised Pnma structure. The
wlume is increased from 60.88 to 62.53 A3 i.e by 2.7% (the volume of the
lcwest energy cubic structure is 61.77A%). The a lattice vector is practically
urchanged, whereas b and ¢ increase by 1.1 and 1.6% respectively. Mn-O
a1d La-O distances change as well; they are reported in table 3.8.

The first thing to notice is that the extent of the J-T distortion is reduced
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z/a y/b zfe

Experimental [47) | La  0.549 0.250 0.010
a=>5742 A Mn 0.000 0.000 0.000
b="7.668 A O, -0.014 0.250 -0.070
c=5532 A O;; 0.309 0.039 0.224
Optimised La 0517 0.250 0.001
a=5740 A Mn 0.000 0.000 0.000
b=7.754 A O; -0.002 0.250 -0.027
c=5620 A O;r 0290 0.014° 0.237
Jahn-Teller La 0.500 0.250 0.000
a=5.590 A Mn 0.000 0.000 0.000
b=7.905A O; 0.000 0.250 0.000
c=5590 A O;r 0.2625 0.000 0.2625

Table 3.7: Structural parameters for J-T distorted and Pnma LaMnQOs.

in the optimised Pnma structure: the ratio between the long and the short
Mn-O in-plane bonds goes from 1.15 to 1.12. Then the Mn-O distance shrinks
as well. The La-O distances, on the other hand, increase significantly. In
other words lower energy is found in the case of smaller distortions and larger
La-O distances. The sum of the La** and O?" ionic radii [130] is 2.76 A.
La-O distances in the optimised Pnma structure are just below this value,
whereas the experimental distances are much smaller.

Relative energies for Pnma and J-T distorted LaMnOj3; are reported in
table 3.9, as well as the calculated magnetic moment.

Charge values from Mulliken population analysis are given in Table 3.10.
As can be seen, the compound is more ionic compared to CaMnQOj, with
the actual charges being closer to their nominal values. In the same way as
in CaMnQOj, the detailed output of the UHF Mulliken population analysis
(reported in the Appendix) can help understanding the ionic charge in terms
of semicovalent bonds between Mn and O. Mn is, again, a nearly 2+ ion, with

almost five electrons in the 3d orbital. This time each manganese only has
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Mn-O La-O
cubic (opt.) 1.976 2.795
Pnma (exp.) 1.903 2.433
1.957 2.461
2.185 2.548
Pnma (opt.) 1.910 2.609
1.944 2.666
2135 2.684
cubic (opt.) + J-T | 1.877 2.795
1.976 = 2,797

2.075

Table 3.8: Mn-O and La-O distances (in A) in LaMnOs.

four empty hybrids available for accepting electrons from the oxygens, which
form the pattern shown earlier in Fig. 1.12. Oxygen can transfer charge to
Mn on both sides along the vertical AF direction and on one side only in the
FM plane; this explains why O; is missing more charge (0.25 electrons) than
Oy (0.18 electrons). Mn has an extra 0.76 electrons, 0.66 of which in the
3d shell; this is more or less the number obtained if one takes into account
the charge tranferred from the four oxygens that can form a bonding with
it. Regarding the magnetic moment, this is close to the expected 4 ug; in
particular a contribution of 2.56 p15 comes from to, orbitals and a contribution
of 1.37 g comes from e, orbitals. The overlap population analysis shows,
first of all, that the degree of semicovalency is much less than in CaMnOj (as
stated before, LaMnQOj5 is more ionic). Then it also shows that the largest
overlap (0.030 electrons) is found between Mn and the oxygen which has the
shortest bonding distance in the plane.

Now exchange couplings can be calcnlated from energy differences; as
usual J; and J| represent the coupling in the plane (a/c in Pnma) and along

the vertical distance (b axis). The calculated values for the Pnma structure,
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Spin and Relative Energy | Magnetic moment
Orbital ordering (meV/Mn ion) (p/Mn Ion)
Pnma (exp.) FM 0.0 4.00
Pnma (exp.) A-FM -1.2 4.00
Pnma (exp.) G-FM 13.9 3.96

Pnma (opt.) FM 0.0 4.00
Pnma (opt.) A-FM -2.0 3.96
Pnma (opt.) G-FM 21.9 3.94

J-T FM 0.0 " 4.00

J-T A-FM 1.t 3.98

J-T G-FM 33.6 -

Table 3.9: Relative energies and magnetic moments for Pnma and J-T dis-
torted LaMnQOs.

wing both the experimental lattice parameters and the optimised ones, and
fcr the J-T distorted structure, are listed in Table 3.11, where they are also
compared to the experimental values (from neutron scattering data) and
te other calculations found in the literature. The experimental estimates
ae based on a Heisenberg Hamiltonian. In order to get the corresponding
estimates from an Ising Hamiltonian, it can be observed that in Table 3.4
tte Ising/Heisenberg ratio is nearly converged at 2.32 for s = 3/2, so it is
reasonable to assume the same ratio for s = 2. Such a factor brings the

experimental values for J, and Jjj to 2.0 and -2.9 meV respectively.

ion | tot. charge | ionic charge | Mn 3d population
La* 53.85 +3.15 tay €, total
Mn?* 22.76 +2.24 2.94 1.72 4.66
o7 9.75 -1.75
07, 9.82 -1.82

Table 3.10: Calculated charge values (in €) for LaMnQOjs in the Pnma struc-
ture from Mulliken population analysis. O; and O;; are vertical and in-plane
oxygens respectively. Details of the Mn 3d populations are also shown.
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Jy (meV) | Jy (meV)
Pnma (exp.) 0.6 -3.7
Pnma (opt.) 1.0 -6.0
cubic (opt.) + J-T -0.6 -8.1
UHF Pnma (exp.) [58] 0.8 -3.5
LSDA Pnma (exp.)[72] -3.1 -9.1
Model Hamiltonian [75] 2.6 -7.8
Experiment [69] 4.6 -6.6
Experiment [71] 4.8 6.7

Talle 3.11: Calculated exchange couplings for Pnma and J-T distorted struc-
wures; results reported by other authors are also shown, together with exper-
meital values.

['he Js that were obtained using the optimised Pnma structure have the
orect sign but they are underestimated; in particular J, is very different
fon the experimental value. The structure with the 5% J-T distortion,
thoigh lower in energy, gives a very small ferromagnetic value for J, (this is
tecruse the A-AF is slightly above the FM spin ordering).

['he relationship between exchange coupling and orbital ordering can be
emaysed with the help of charge density difference plots. In fig. 3.10 they
ere ceported for the J-T distorted LaMnOj. The plots are very similar in the
fnna case, but an advantage of the J-T distorted structure is that oxygen
end manganese atoms lie in the same plane and are more easily visualised.
First of all it can be noticed that only orbitals of one symmetry alternate in
tie x-y plane; they are ds,»_,2 and d3,2 2 and they are oriented along the
bngest Mn-O distance. Again, as in fig. 3.6, the oxygen charge is distorted,
row toward the closest manganese. This gives a FM coupling in the plane.
£loag the vertical direction (7 axis in fig. 3.10(b)) orbitals are oriented in
tie same way and the coupling is AF. It should also be pointed out that it

is possible to recognise in fig. 3.10(a) and (b) the same pattern of orbitals
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Fgure 3.10: Charge density difference plots for J-T distorted LaMnO; in the
xy (a) and xz (b) plane. Orbital ordering is ds;2_,2/d3,2_2 in (a), whereas
in (b) orbitals of the same type order along the z axis. The difference in
charge densities is between the UHF density for the bulk solid and the UHF
density for isolated Mn*! and O%~ ions. Blue, red and green lines represent
pesitive, negative and zero values respectively.

that were schematically drawn in Fig. 1.11 (C) and (D) respectively.

3.2.4 Band structures and hybrid DFT theory

Asin CaMnOQj. band structures have been plotted in the UHF approximation

and in an hybrid DFT theory containing 50% of exact Hartree-Fock exchange.

Figs. 3.11 and 3.12 show the band structure and the projected density
of states for the A-type AF LaMnOj in the optimised Pnma structure. Mn
ty, and e, form a band that extends for about half a Hartree and is centred
around 0.52 Hartree; eight bands are occupied. which is consistent with the
calculated magnetic of 3.96 ;5. Such a band is again below the wide oxigen

baad. Above the Fermi level. bands are a mixture of Mn #5, and e,.
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Figure 3.11: Band structure of Pnma LaMnOj in the A-AF spin structure -
UHF calculation. The Fermi energy is indicated by a dashed line.

The corresponding plots in the case of the hybrid DFT theory are shown
n Figs. 3.13 and 3.14. The gap is reduced from about 0.5 Hartree to about
).2 Hartree when the hybrid exchange potential is used. Such a value is still
much bigger than the 0.026 Hartree reported from pure LSDA calculations
44].

In the Hybrid DFT case, energy differences between the various spin
structures become larger, and, as a consequence, exchange interactions be-

come larger as well. Using the optimised Pnma structure, the G-AF structure
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Figure 3.12: Density of states for LaMnOj in the A-AF structure from UHF
calculations. The Fermi energy is indicated by a dashed line. Energies are
in Hartree.
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Figure 3.13: Band structure of Pnma LaMnQOj in the A-AF spin structure -
hybrid DFT calculation. The Fermi energy is indicated by a dashed line.

is above the reference FM energy by 43.0 meV, while the A-FM is 6.7 meV

below the same reference energy. The resulting exchange couplings are, then,
Jyp = 3.3 meV

J| = —12.4meV.

Comparison of these values with the ones reported in Table 3.11, shows that
they are actually about three times larger then those calculated in the UHF

approximation on the same crystal structure (first line of Table 3.11).
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Figure 3.14: Hybrid DFT calculation of the density of states for the A-type
AF LaMnQOs.
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33 Conclusions

Tk UHF calculations reported in the present chapter have allowed the study
of he ground state properties of CaMnOj3 and LaMnOs3.

The Mulliken population analysis finds a total charge on Mn which is
clee to +2 in both CaMnO3; and LaMnOs, indicating the presence of extra
eletrons. These come from semicovalent bonds with dxirgen on the O-Mn-O
chin; the degree of semicovalency is higher in CaMnOj3, with more charge
traisferred from O to Mn than in LaMnQOj. The situation is consistent with
a pcture based on availability of empty hybrids for electron sharing, like in
Godenough’s model. The way UHF describes the change in valence states
in joing from CaMnOj to LaMnOj is, therefore, in terms of decreasing semi-
coulency, with a total charge that stays around +2. The magnetic moment,
on he other hand, is always close to the expected Hund’s rule value, as con-
firned by band structure and density of states plots. UHF calculations of
enegy differences for various spin orderings in cubic CaMnOj; predict the
corect ground state, in agreement with experiments and with the Goode-
nowgh model. The value of the (antiferromagnetic) exchange interaction is
in ood agreement with other calculations but is overestimated (about 63%
higier) compared to the experimental one.

In the case of LaMnQOj;, a study of the idealised cubic structure allows
to dentify independent spin and orbital ordering terms in the Hamiltonian;
charge density difference plots are a very useful tool to visualise the relation-
shi» between spin, orbital ordering and crystal distortions. UHF calculations
on Pnma LaMnQOj3 with optimised lattice parameters and atom positions well
des:ribe the ground state of the compound, giving exchange coupling with
the expected sign. Calculated Js are, nevertheless, below the experimental

values.
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This discrepancy will be eliminated by performing Configuration Interac-
ton calculations. They will give an insight into the mechanism of exchange
cupling, identifying the interactions that are mainly responsible for it, and
wll make it possible to get better values for J as well. All this will be the
sibject of the next chapter, in which the results of the CI study of CaMnQO;

ad LaMnQOj are reported.

89



Chapter 4

CI calculations on
CaMnOj3; and LaMnOj;

UHF calculations on CaMnO3 and LaMnOj; presented in the previous chap-
ter show that the ground state of these compounds is correctly described and
that the exchange couplings have the expected sign.} Their values, though, are
overestimated in one case and underestimated in the other. In this chapter
Configuration Interaction (CI) calculations performed on clusters of mangan-
ites are discussed.

CI provides a way to go beyond the HF approximation and to improve on
it by introducing electron correlation. It gives a simple and straightforward
way of exploring the role that configurations other than the ground state have
indetermining the magnetic behaviour in strongly correlated materials and of
checking the validity of the proposed theories based on model Hamiltonians.

In the present chapter, results are reported for CI calculations on clusters
of manganites representing CaMnQO3 and LaMnQOj; they have been carried
out using the Direct CI module as implemented in the package GAMESS-
UK. described in Chapter 2. Exchange couplings were caiculated as en-
erzy differences between two spin states in a localised orbital basis and they

are in good agreement with reported experimental values for CaMnOj3 and
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Figure 4.1: Cluster used in the study of manganites; the Mn-O-Mn axis is
aleng the z direction.

=

LaMnOj3; an analysis of the wave functions also made it possible to determine
which exchange processes turn out to be important in the exchange coupling
mechanism.

The chapter starts with an introduction to describe the way calculations
were performed; then the results for CaMnO3; and LaMnQO; are presented

and discussed.

4.1 Introduction to the calculations

The first step in the CI study is the identification of the cluster to be used.
The aim of the present calculations is to investigate the exchange coupling
mechanism between two neighbouring Mn ions via the central oxygen; so
the cluster chosen includes the two manganese atoms with their surrounding
(nearest neighbour) oxygen octahedra sharing a common vertex, for a total
of thirteen atoms (see Fig. 4.1). Of course, atomic positions are assigned in

such a way to reproduce distances occurring in the crystal. These thirteen
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atoms are treated quantum mechanically, using the same Gaussian basis set
as in the UHF calculations.

A different number of electrons (or, in other words, a different total
charge) is present in the cluster, depending on whether it is used to de-
scribe CaMnQO3 or LaMnO3. So an MngO}‘f_ cluster represents CaMnQOj3 and
an MnyO1¢~ cluster represents LaMnOj.

An important feature of the exchange coupling constants in CaMnO3; and
LaMnOQOgj is that their value strongly depends on the population of the Mn e,
and of the O 2p orbital. Fig. 4.2 shows how the Js calculated from clusters
representing CaMnOj3; and LaMnQOj vary as a function of the charge of the
Mn ion. It then becomes a fundamental issue to be able to reproduce a
population as close as possible to the one found in the bulk by the UHF
calculations (see Tables 3.2 and 3.10). To achieve this, the cluster has been
embedded in a spherical array of point charges; they were placed at the ionic
sites of the compounds and the value of the charges was adjusted so that
the correct population on the cluster ions was obtained. This was necessary
to recreate the crystal environment and to generate the correct Madelung
potential. In both CaMnO3 and LaMnOj the radius of the sphere was about
20 A and included over 3000 charges.

In the previous chapter it was found that the number of electrons in the 3d
shell for the two compounds is actually five (rather than three and four). The
question arises of what is the effect of the number of cluster electrons on the
calculated value of the exchange couplings. In other word, whether it would
be possible to reproduce the current results by using a cluster with a total
number of electrons equal to the number found in the UHF approximation.
A test calculation with such a number in the cluster representing calcium

manganite and no point charge around it, though, could not be successfully
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Figure 4.2: Exchange coupling constants for CaMnO; and LaMnOj; from CI
calculations as a function of Mn ion Mulliken populations.

run because the self-consistent cycles before the Cl treatment of the wave
function (see below) were very unstable and did not converge. So the problem
remains unsolved and the question is still open.

The effect of truncating the point charge array at a finite distance has

been examined in detail in ref. [115]; using smaller point charge arrays than
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tie ones used in the present work, the authors of that paper found that
tie Madelung potential in the centre of the cluster had a root mean square
dfference from the full Madelung potential of about 3 %. Details about the
wlues of the point charges for the two clusters will be given in the following
stctions.

The next thing to do in this type of calculation is to generate a suit-
a)le starting wave function for the successive CI treatment. This is found
if one notes that high spin multiplicity states, such as the septet and the
mnet states of the clusters used here, are generally well described by a self
censistent field (SCF) restricted open shell Hartree-Foch (ROHF) wave func-
ton. So ROHF orbitals were generated using the corresponding module in
CAMESS. The spin multiplicity of the wave function was seven for CaMnO3
axd nine for LaMnOg, i.e. the high spin states for both clusters which have
sik and eight unpaired electrons, respectively.

The CI calculations were carried out in a localised orbital basis which
povides a means of identifying the exchange coupling mechanism in terms
of fluctuations of electrons between the localised orbitals. Orbitals were
lccalised using the Foster-Boys algorithm {123] which generates localised or-
btals with maximally separated centroids. Orbitals were actually localised
iv three separate steps: doubly occupied O 2p were localised first, then singly
occupied Mn d orbitals (t5, only for MnO}}™, ty, and the occupied e, for the
Nn,O19 cluster), and then empty Mn eq orbitals. Three separate localisa-
tiHn steps are necessary to preserve the invariance of the ROHF energy, since
any mixing of orbitals with different occupancy would result in an increase
of the total energy.

The way the wave functions for the CI calculations were constructed from

this localised orbitals is now explained in more detail. First of all, following
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he procedure used in GAMESS, the orbital space was partitioned into a
ore space, an active space and a space of redundant, unoccupied orbitals
vhich were discarded in the construction of the CI wave function. Doubly
«ccupied orbitals belong to the core space, with the exception of the three O
‘p orbitals (p,, p, and p,) localised at the site of the central oxygen atom, the
me that forms the common vertex of the two octahedra. They belong to the
«ctive space, together with the occupied and unoccupied Mn d orbitals. The
«ctive space was further divided into an internal (doubly or singly occupied
abitals) and an external space (orbitals, initially unoccupied, the occupation
d which is allowed during the CI process).

As already mentioned in Chapter 2, eigenstates of a Hamiltonian de-
eribing spin systems can be written as linear combinations of SAFs, which
ae anti-symmetrised products of space orbitals and SEFs (eqs. (2.14) and
(2.15)); the Direct CI module in GAMESS uses the Yamanouchi-Kotani (YK)
stheme[127] for generating them. Referring, for example, to the septet state
br the Mn,O;7 cluster, the corresponding SAF was constructed from six
sngly occupied ty, orbitals and doubly occupied core orbitals. The form of

thie wave function can be written as

U}SEPL = A ({(‘,OT(’.} ((bzy,l(bxz,lgbyz,l¢my,r¢mz,r¢yz,r)(aaaaaa) ) . (4 1 )

Here {core}, the product of the doubly occupied orbitals in the core space,
ircludes the three O 2p orbitals localised on the central oxygen; [ and r on
t1e 1y, orbitals indicates whether they are centered on the left or on the right
Mn ion, respectively.

The singlet was constructed from the same set of localised orbitals; the
satisfactory results obtained demonstrate that the localised orbitals gener-
ased for the high spin state are a very good approximation to the optimal

orbitals for open-shell low-spin multiplicity states and that a high-spin mul-
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tplicity ROHF wave function is an excellent starting point for perturbative
cuculations on high and low spin multiplicity states in the solid state. The

syin coupling, in the singlet case, has the form

—5(@aap - pppana) . (42)

Eq. (4.2) is one of the five spin eigenfunctions 6, for six electrons coupled
itto a singlet state'.

Hund’s rule requires all three spins on each Mn ion to point in the same
drection; so this SEF is expected to have the larger weight in the CI wave
fictions. This is actually what happens, provided that the spatial orbitals
nultiplying this SEF are previously ordered in such a way that Mn orbitals
lccalised on each side are grouped together. The spin-adapted wave function

fer the singlet is, therefore,

= 1 , ) ,
SINg _ ﬁA ({core}(bry,10z2.1Pyz 1Py, r Pzz.rPyzr) (@888 — BBBaaa)) .

(4.3)

SEFs for the nonet and the singlet in LaMnOjs, containing eight electrons,
ae constructed in exactly the same way.

If the determinantal energies of the singlet and of the high spin wave
functions are evaluated (using conventional rules[77]), the singlet always
has a higher energy’.

When the CI expansion of the wave function is carried out, all possible
single and double excitations into the empty, available orbitals are included.

So the septet and the singlet described in eqs. 4.1 and 4.3 (or the nonet and

'"GAMESS simply indicates this as the SEF number five (see (2.17)); anyway, even if
formed with contributions from all twenty primitive functions, that SEF can be approxi-
mated with the form of eq. (4.2).

“The same property, for example, is found for the He atom in the 1s2s configuration;
in that case the triplet is below the singlet when they are described by the Heitler-London
velence bond wave functions.
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singlet in the case of the Mn,O1%~ cluster) are the dominant SAFs (main
configurations) in the more general CI expansion which includes other SAFs.
These SAFs will be described in more details in the next two sections, which

report the resuits of the CI calculations on the clusters studied.

4.2 CI results for CaMnO;

This section reports the results of the CI calculations on the Mn,Ol7~ cluster
representing CaMnQOj. Some of the localised orbitals used in the calculation
are shown in fig. 4.3. In the calculations the Mn-O-Mn bonding is along
the z axis, so the doubly occupied O 2p, (fig. 4.3(a)) and the empty (e,)
Mn dj,2_,2 (fig. 4.3(c)) are the orbitals which are mainly responsible for the
exchange coupling.

In the previous section the dependence of the exchange couplings on the
Mn charge and on the Madelung potential of the cluster was pointed out. The
latter has been taken into account by surrounding the cluster with an array
of point charges, located at the ionic sites of the crystal. The dependence on
the Mn population is shown in Fig. 4.2 (upper curve). It can be seen that J
increases for increasing population on the Mn, and it is easy to understand
why. Since the Mn ionic charge is different from 4+, there is a population
on the (nominally empty) e, orbitals. Because (see below) the main process
involved in the exchange coupling mechanism is the charge transfer to/from
the €, orbitals, for greater values of Mn charge there is more room for charge
transfer and J increases.

UHF calculations on CaMnOjs found Mulliken populations which were
quite different from the nominal values; they were taken as a guide to build
up charges in the present case. From Table 3.2 it can be seen that they were

Cat'Mn*2130~ 133, if these are used as values for the corresponding point
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Figure 4.3: Localised orbitals used in the cluster CI calculations for CaMnOj.
a) O 2p;; b) Mn dg,; ¢) Mn ds,2_,0.
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Figure 4.4: Fundamental SAFs for CaMnOj; a) septet, b) singlet. Only one
O 2p orbital is shown for clarity.

charges, however, the resulting ROHF population on the Mn-O-Mn central
triad is Mn™2020Q~131Mn*260 je  there is excessive charge on the Mn ions.
So the point charge values were adjusted to Cat!-!>Mn*284¢Q~133 and this
choice resulted in Mn 2170~ 1'!Mn+217 for the central triad and O~'® and
O 157 for the other two types of oxygen in the cluster; in other words, as a
consequence of the adjustment, charge is tranferred from the outer oxygens
to the central Mn and O ions, each gaining about 0.4 e. Note that these
adjustments leave each point charge unit cell neutral, while the radius of the
sphere of point charges is also adjusted to return an entire cluster with a
total charge close to zero (this is achieved with a total of 3019 centres in the
present case).

The fundamental SAFs for the septet and singlet state were given in eqns.
4.1 and 4.3; a schematic picture to help visualising them is found in fig. 4.4.
When these are the only SAFs present in the CI wave function for each of
the two spin states, they come with a coefficient ¢; of unity. As pointed

out above, the singlet is above the septet and the energy difference between
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tiem is 3.6 meV. When additional SAFs are permitted by allowing single
aid double excitations to take place, the weight of the fundamental SAFs is
brlow one and the additional SAFs appear in the wave function, even if with
amuch smaller weight. Although the active space used is very limited, there
ae quite a few SAFs entering the CI wave function; there are, for example,
fcur possible SAFs in which an electron hops from one Mn 5, orbital on the
rght to another ¢y, orbital on the left (no contribution, as expected, comes
fiom 2y orbitals, as well as several SAFs in which an electron is excited from
a1 O 2p orbital to an Mn e, orbital. In order to analyse the wave function,
it is convenient to use the sum of the squares of the occupancies (i.e. |cZ|)
o’ all configurations of a particular type; comparing them, it is thén possi-
be to quantify the relative importance that each configuration holds in the
tetal wave function. Table 4.1 shows relative energies and summed occupan-
ces obtained from the CI calculations for the cluster representing CaMnOj;
otcupation numbers refer to ¢, — t,, exchange, in which an electron has
hopped from one Mn ion to the other, and to O— e, exchange, in which 1 or
2 electrons are transferred from an O 2p orbital to an Mn ion3. A schematic
pcture of these excitations is also given in fig. 4.5.

From the table it can be seen that when the single and double excita-
tibons in the active space are allowed, the main SAF contributes to the wave
function with an occupation of 0.9926 in the singlet and of 0.9943 in the
septet state; therefore there are larger correlations for the singlet than for
the septet. In the singlet case there is a contribution from the ty, — ty,
exchange (these fluctuations are absent in the septet as a consequence of

Pauli exclusion principle), but this contribution is only 0.0005, much smaller

3The sumn of SAF occupancies is slightly less than unity when excitations are allowed.
Thais is because there is a large number of configuration with a coeflicient smaller, in
absolute value, than 0.003, which would only contribute 0.000009 to the sum and have
therefore been omitted.
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State | Energy® | Main SAF | t5y =ty | O — ¢4 (1€) | O — €, (2€)
singlet’ | +3.6 1.0000 0.0000 0.0000 0.0000
septet® 0.0 1.0000 0.0000 0.0000 0.0000
singlet® | -149.6 0.9926 0.0005 0.0038 0.0017
septet® | -133.4 0.9943 0.0000 0.0027 0.0017

Table 4.1: Relative energies (in meV) and SAF occupation numbers for sin-
get and septet states of the Mn,Ol ™~ cluster representing CaMnOj.
®Inergies are relative to the ROHF septet state

b“undamental SAFs only

““undamental SAFs + all single and double excitations into the active space

taan the others. O— e, contribution are the same for both spin states for
tae hopping of two electrons; what is different is the coefficient that gives
tae contribution of single O— e, excitations: it is 0.0038 for the singlet and
0.0027 for the septet.

Table 4.1 also lists the energies of the states relative to the ROHF septet.
The septet is 133.4 meV below the fundamental septet SAF energy (which
is, of course, the same as the ROHF septet); this is the correlation energy
for that state. Eq. (2.11) gives a general definition of the correlation energy
in solid state physics as the difference between an SCF energy (e.g. the HF
energy) and the energy of a wave function in which correlations have been
included (exact wave function). Here it is defined as the difference between
the fundamental SAF energy and the energy calculated when excitations are
allowed to take place within the active space *. The singlet fundamental SAF
energy is 3.6 meV higher then the corresponding septet one; when excitations
are allowed the singlet energy is 149.6 meV lower than the reference septet

energy, so that the correlation energy for the singlet state is 153.2 meV.

“The active space considered is of limited size and additional correlation energies might
be present. There might be, for example, fluctuations within an O ion. They have not been
considered here because they are believed to give a minor contribution to the exchange
constants
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Figure 4.5: Schematic view of the main excitations included in the CI ex-
pansion of the singlet and septet wave function for CaMnOj (see Table 4.1).
a) tag — tag; b) O — ¢, (1e); ¢) O — ¢4 (26).

According to eq. (1.14), the exchange coupling is calculated as half the
energy difference between septet and singlet when the additional SAFs are
taken into account; this gives for J a value of 8.1 meV, which is in good
agreement with the reported experimental value of 6.6 meV, estimated from
a Néel temperature of 110 K, and with recently reported values from model
Hamiltonian calculations [75].

To end this section, it worth adding a final note about the effect that point
charges have on the exchange coupling. First of all, a caiculation was carried
out on the Mn,O;7 cluster with no external point charges. The Mulliken pop-

ulation on the central Mn-O-Mn chain was, in that case, Mnt%*6(Q~0-94\Mp + 246

and the exchange coupling was calculated to be 58.5 meV i.e. too much in
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ecess compared to the experimental value. Then a calculation in which the
pint charges were set at the UHF Mulliken population values gave J = 21.0
neV. When they were adjusted to the values described above, J dropped
t« 8.1 meV and there was a sharp decrease in degree of correlation of the
wwve function. This could have been expected and is in agreement with

eperiment.

4.3 CI results for LaMnQO;

I the case of LaMnQOj3 two exchange couplings are defined: a ferromagnetic
oie in the plane (J)j) and an antiferromagnetic one along the vertical direction
(1)- So two different Mn, O]9~ clusters need to be considered. The first one,
d:scribing an Mu-O-Mn triad (and the corresponding surrounding octahedra)
siuated in the plane, in which two different Mn-O bond lengths are present,
was used for the calculation of Jj. The second one described a cluster oriented
aong the vertical direction, where there is only one Mn-O bond length, and
this was used to calculate J,. Atom distances and bond angles were the same
a: the ones used in the optimised Pnma structure described in the previous
clapter. Both types of cluster were surrounded by a spherical array of point
clarges, again located at the positions corresponding to the optimised Pnma
ciystal; their values were adjusted in order to recreate the bulk Muiliken
prpulation on the Mn ions and on the central oxygen found within the UHF
ajproximation, i.e. La'*®Mnt22(Q 175 182 (gee Table 3.10). Using the
seme kind of approach as in the Mn, O}~ cluster for CaMnOj, point charges
were adjusted to be Lat#8Mn #280() 1-80, 180 4nd this choice resulted in a
Mulliken population of Mn*2450Q~1-65Mnt%% for the central triad ions. The
tctal charge of the cluster was kept close to neutrality by using a total number

of centres equal to 3735.
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Figure 4.6: Localised orbitals used for the CI calculation of the exchange
corstant J; in the cluster representing LaMnOs;. Top: occupied Mn eg;
boitom: empty Mn e, orbitals and O 2p,. The dark sphere is at the oxygen
position.

The strong dependence of the exchange coupling on the Mn charge can
be observed in the middle and lower curve in fig. 4.2. Both of them show the
same kind of behaviour that was described for J in CaMnOQj; in the curve for
J) the coupling depends less dramatically on the Mn ion charge, nevertheless
an increase in its negative value is still observed for increasing Mn ion charge.

Some of the localised orbitals used in the CI calculations are shown in
Figs. 4.6 and 4.7 in a 3d representation. Fig. 4.6 shows the orbitals that
were used for the calculation of the antiferromagnetic J,, so there is only
one kind of occupied e, orbital, oriented perpendicular to the Mn-O-Mn axis
(top), and one kind of unoccupied e, orbital, oriented along the Mn-O-Mn
axis (shown it the bottom, together with the O 2p, orbital).

Orbitals used for the calculation of the ferromagnetic J; are, instead,
shown in fig. 4.7. The top panel shows occupied e, orbitals of alternate

d3y: 2 and d3,2_,2 symmetry. The opposite alternation is found in the bot-
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Figure 4.7: Localised orbitals used for the CI cluster calculation of the ex-
change constant Jj in LaMnO3. Top panel: occupied Mn e,; bottom panel:
empty Mn e, and O 2p,. The e, orbital on the left is the one involved into
the exchange process. The dark sphere is at the oxygen position.

tom panel containing the empty e, orbitals, as well as the O 2p, orbital; the
ey orbital on the left is the one involved in the exchange process.

Looking at the localised orbitals in LaMnQOj, the dependence of the ex-
change coupling on the e, population shown in Fig. 4.2 has a simple, intuitive
explanation. To change the population of the e, orbitals means to change
their shape and orientation in space, which in turn affects the extent of the
coupling.

The fundamental SAFs in this case are the singlet and nonet states and
can be derived in the same way as the singlet and septet for CaMnQO3 were

derived in eqns. 4.3 and 4.1. A schematic representation is given in Fig. 4.8.

Energy differences and summed occupation numbers from the CI calcula-
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Figure 4.8: Fundamental SAFs for LaMnOg3; a) nonet, b) singlet. Only one
O 2p orbital is shown for clarity.

tions are given in Table 4.2. In the cluster calculation corresponding to Mn
ions coupled along the vertical direction by the exchange coupling J;, the
fundamental SAF for the singlet state is 11.9 meV above the nonet. When
additional SAFs are included by allowing all single and double excitations
within the considered active space the singlet and the nonet are found to be
93.5 and 83.3 meV respectively below the reference fundamental SAF energy.
So the correlation energies are 83.3 meV for the nonet and 105.4 meV for
the singlet. In the case of the calculation on the cluster corresponding to Mn
ions coupled in the plane by Jy, the fundamental SAF for the singlet state
is 17.9 meV higher then the nonet. After excitations have been included in
the CI process, the singlet and the nonet have a relative energy of -64.9 and
-79.9 meV, and the correlation energies are 82.8 and 79.9 respectively.
From the table it can be seen that, as in the case of CaMnQOs3, the excita-
tions from O to e, involving one electron are the main fluctuations about the
fundamental SAFs. Both for ./, and .J, occupation numbers for the singlet

are smaller the for the nonet, to indicate that larger correlations are present
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i

Stzte | Energy® | Main SAF |ty = £, | O = e, (le) | O = ¢, (2e)
snglet’ | +11.9 1.0000 0.0000 0.0000 0.0000
roret? 0.0 1.0000 0.0000 0.0000 0.0000
snglet® | -93.5 0.9937 0.0006 0.0037 0.0007
roret® -83.3 0.9954 0.0000 0.0030 0.0007

Ji

Stete | Energy® | Main SAF | 50 5ty | O = ¢4 (1€) | O — e, (2€)
snglet’ | +17.9 1.0000 0.0000 0.0000° 0.0000
roret? 0.0 1.0000 0.0000 0.0000 0.0000
snglet® | -64.9 0.9949 0.0004 0.0025 0.0006
roret® -79.9 0.9946 0.0000 0.0038 0.0008

Table 4.2: Relative energies (in meV) and SAF occupation numbers for sin-
glet ard nonet states of the Mn,O1$™ cluster representing LaMnOj.
%Energies are relative to the ROHF nonet state

bFundamental SAFs only

‘Fundamental SAFs + all single and double excitations into the active space

compared to the high spin case.
“rom the energy difference between nonet and singlet the exchange cou-

plings can be calculated, and they turn out to be
Ji=35.1 meV

and

Jy=-7.5 meV.

[t should be recalled that they have to be compared to experimental values
of 48 and -6.7 meV [69].

A CI calculation was also performed on a cluster in which experimental
structural parameters and atomic positions were used. Surrounding point
charges had values that were close to the Mulliken population values from
UHF calculations, namely +2.6 for Mn, -1.8 for O and +2.8 for La. The

resulting exchange coupling constants were 3.3 (for J,) and -3.6 meV (for
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Jyj). They are quite different from the ones reported above, and this shows
the effect that a proper choice of point charge values has on the final results.

A further test of the influence the Madelung constants of the cluster has
on the exchange constant has also been carried out. Obviously ions which
are several lattice constants away from the central cluster will have negligible
influence on the central cluster and can be treated as point charges rather
then distributed charges without significantly alterate the potential and af-
fect the calculation [115, 116, 118]. In order to estimate the consequences of
terminating the cluster with point charges, a CI calculation was performed
in which the 12 La ions situated immediately close to the central cluster were
replaced by La®t pseudopotentials (the 54 electron core LANL pseudopoten-
tial was used [131]). This resulted in a small increase in J; (from 5.1 to
5.2 meV) and in no change for J; (-7.5 meV were obtained again). So no

difference is found compared to the previous calculation.

4.4 Conclusions and discussion

Cluster CI calculations provide a way to get detailed information on the ex-
change coupling mechanism. Results are strongly dependent on the Madelung
potential of an array of point charges surrounding the cluster; the magnitude
of such point charges needs to be adjusted in order to recreate a charge pop-
ulation close to the value found in the bulk UHF calculations on the central
Mn and O ions. This is true for both CaMnO3; and LaMnOQOsj; the latter
compound is, though, more ionic, with UHF charges closer to the nominal
values. In CaMnQOj; a calculation in which the point charges were kept at the
nominal values has given an energy difference between septet end singlet of
57 meV (i.e. a J of 28.5 meV), far larger than the experimental result. This

characteristic of the manganites is well shown in fig. 4.2. Once this has been
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taken into account, calculated exchange couplings are in good agreement
with reported experimental values.

In order to understand the main processes involved in the exchange mech-
anism, occupation numbers have been tabulated for the various SAFs that
take part in the CI wave function (see Tables 4.1 and 4.2). The O — e,
exchange involving 1 electron always gives the higher contribution, so it can
be considered as the main responsible for the exchange coupling. It is worth
noting, at this point, that the type of excitations described by Millis [73] to
be fundamental in the exchange process, i.e. those obtained when a couple
of electrons from the central oxygen hop onto the two Mn ions on the left
and on the right simultaneously, is not found in the present calculations. The
common feature of the two theories, though, is that the 2p — e, exchange is
the main process involved, a conclusion which is also found in the work by
Satpathy and collaborators [75].

An important role is played by the correlation energy of the different
states involved. In the singlet state, they are always higher than the correla-
tion energy for the corresponding high spin case. This is true for a wide range
of magnetic ions which are exchange coupled via a closed shell non-magnetic
anion. The reason is because there are many more singlet SAFs then high
spin SAFs in any particular active space. In the case, for example, of the
active space used for LaMnOQOg, there are over 18,000 singlet SAFs compared
to about 1,500 nonet SAFs: given a specific number of electrons, there are
many more ways to arrange them to form singlet states than there are to
form nonet states. So, even if only a few of them appear in the CI wave func-
tion with a significant weight, it is not surprising that the singlet correlation
energy is larger.

The correlation energy is related to the number of empty e, orbitals avail-
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able in the exchange process. In CaMnOj; and along the vertical direction in
LaMn(j3 there are two empty Mn e, orbitals available and, as a consequence,
the singlet correlation energy is significantly larger then the high spin state
correlaiion energy. This is enough to bring the singlet (which was higher
when oaly the fundamental SAFs were considered) below the high spin state
and an antiferromagnetic coupling is obtained. For the_other case studied,
namely the calculation of the in-plane constant J||, there is only one available
Mn e, orbital and the singlet correlation energy is just higher then the nonet
correlaiion energy. In this case, considering that the fundamental SAF for
the singlet is 17.9 meV above the nonet, the exchange process is not enough
to bring the singlet below the nonet and a ferromagnetic coupling is found.
In othe: words, the coupling of a couple of Mn ions is antiferromagnetic when
the diflerence in the singlet and high spin state correlation energies ezceeds
the spltting between the fundamental SAFs of the singlet and of the high
spin state.

Fig. 4.9 is presented as a conclusion to the present chapter. It summarises
the main resuits of this CI study of CaMnO3 and LaMnQOj. It shows, for
each of the clusters considered, the correlation energies, the energy difference
between low and high spin states and the occupancy of the main SAF in each

spin steate.
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CaMnOg4 LaMnO4
interplanar intraplanar
septet singlet nonet singlet nonet singlet
‘ I
79.7 182.8
133.4153.2 83.3 |105.4 14.7
10.2 0.9975
0.9977 J 0.9973
) 16.2 Qe
0.9942 '
0.9926

Figure 4.9: Summary of main results of ciuster CI calculations. Correlation
energies are represented hy vertical arrows and are given in meV in plain
text. Energy differences between low and high spin states (which are equiva-
lent to double the corresponding exchange constant) are given in italics and
occupancies of the fundamental SAF in each state are printed at the base of
each arrow. The horizontal line is the reference SCF ROHF energy for each
state.
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Conclusions and outlook for
future work

I never thirk of the future. It comes soon enough.

A. Einstei

The present thesis has dealt witi the calculation of exchange coupling
constants in CaMnOj3; and LaMnQOj; this has been done using two ab initio
methods, the Unrestricted Hartree-Fick and the Configuration Interaction.

Marganites have been extensively studied in the last few years because
of their colossal magnetoresistance properties and the consequent possibil-
ity of practical applications in magnetic devices. But these compounds are
also interesting in themselves, for the fundamental questions that they pose
to theoreticians. Orbital ordering, charge ordering, Jahn-Teller effect, mag-
netic polarons and many other concepts have been introduced in order to
explain the magnetoresistance and tte other particular behaviours (such as
the metal-insulator transition) in manganites. A comprehension of the mech-
anisms governing the exchange coupliig (and hence the magnetic properties)
is still far from complete, and the present thesis aims to contribute in this
direction.

It is well known that a single-particle theory is not suitable for an accurate

description of stongly correlated electron systems such as the manganites.
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Nevertheless, UHF has proven to give reasonable results, at least for ground
states; due to its exact treatment of the exchange, that leads to the cancella-
tion of the unphysical electron self-interaction, it performs definitely better
than Density Functional Theory, where the exchange-correlation potential is
approximated.

The UHF study carried out in this work has reproduced the expected
magnetic behaviour and crystal structure of CaMnO3; and LaMnQO3. In par-
ticular, for the latter compound, by investigating an idealised cubic structure,
it has been possible to identify independent contributions to the Hamiltonian
from spin and orbital ordering terms.

Hartree-Fock wave functions have been used as a starting point for a suc-
cessive Configuration Interaction study of clusters representing CaMnQO3 and
LaMnOg. CI is one of the simplest methods to include correlation effects in
the Hamiltonian. The calculations were carried out in a basis of localised
orbitals. By allowing single and double excitations to take place from the
ground-state HF configuration, the exchange coupling has been studied in
terms of fluctuations of electrons. This has allowed to identify which con-
figurations other than the ground state take part in the exchange coupling
mechanism and their weight in the total wave function. O — e, hopping
have been found to be the main source of superexchange.

A central issue of the CI calculations is that the results are strongly depen-
dent on the population of the e, and O 2p orbitals, which is in turn influenced
by an array of point charges surrounding the cluster. The values of such point
charges needed to be adjusted to reproduce the correct Madelung potential
of the crystal and, as a consequence, the UHF population of the e; and O 2p
orbitals. Following these adjustments, the exchange coupling constants have

been calculated; they are in good agreement with experimental estimates and
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with other reported values from ab initio or model Hamiltonian methods.

Fig. 4.9 at the end of Chapter 4, which summarises the results of the CI
calculations, can be regarded as the main conclusion of the present thesis. In
particular it clearly shows the role that the correlation energy has in deter-
mining the spin ordering, i.e. in selecting the ground state spin arrangement.

Apart from the results obtained, the work carried out in this thesis has
also laid the foundation for some future work. The same kind of study can be
extended to manganites with mixed Mn3t-Mn** valence, and in particular to
the region of the phase diagram characterised by colossal magnetoresistance
behaviour. Some preliminary UHF calculations on La;/3Ca;/;MnO; [134]
show that the simple picture of a lattice of alternating Mn3* and Mn** ions
is not actually realised; instead, both manganese have a charge of about 3+
and the hole is by preference localised on the oxygen. The ROHF treatment
of the corresponding cluster confirms this result: the calculation with an
Mn**-Mn** alternation is about 0.3 eV higher in energy than the one in
which the hole is on the oxygen.

Another possible application of the same technique could be the study of
layered cuprates superconductors, where the exchange coupling also have an
important role [135].

The Configuration Interaction approximation can also provide parameters
for model Hamiltonian calculations. Such parameters are usually guessed on
the basis of physical considerations. CI allows them to be obtained from
an ab initto method. Work is in progress at the moment to calculate such
parameters; then they will be used to solve the Hamiltonian with a quantum

Monte Carlo technique [136].
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Appendix: Details of
calculations

This appendix shows details of the ab initio calculations on CaMnO; and
LaMnOj and described in Chapters 3 and 4. The basis sets employed for
the description of the atomic orbitals of calcium, lanthanum, manganese and
oxygen are reported and explained. The k-point mesh used in the reciprocal

space integration and the method for its selection are outlined.

A. Gaussian basis sets

Gaussian basis sets used for both UHF and CI calculations were briefly de-
scribed in section 2.4. This section reports the detaiis of the basis sets used
for Ca, La, Mn and O; the basis sets describing the last two elements were
the same in the case of CaMnO; and of LaMnOs;.

Each atomic orbital is described by a linear combination of individually
normalized Gaussians (eq. (2.10)); exponents (in Bohr?) and contraction
coefficients must be specified in the input file. The type of shell must also
be specified: s, p or d. The sp type can aiso be chosen, in which an s and
a p shell have different contraction coefficients but share the same exponent;
such a choice results in a reduction of the auxiliary functions that need to be
calculated for the evaluations of electron integrals and is, therefore, is com-

putationally more convenient from the point of view of speed of execution.
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It is conventional to describe the basis set using a string of digits rep-
resenting the number of gaussian primitives in each contraction. Core and
vilence functions are separated by a dash; polarisation functions are pre-
ceded by the corresponding letter according to their type (s, p, d). The
string terminates with a G which stands for Gaussian.

For example, the basis set used for Mn is labelled 86-411d41G. It means
tlat the two core shells (1s and 2sp) are formed with 8 and 6 contractions
respectively, and that there are 4, 1 and 1 contractions in the valence shells
(¢sp, 4sp and 5sp). Finally, two d polarisation functions follow (3d and 4d),
wth 4 and 1 contractions. This basis set for Mn was originally optimised
fa MnO and NiO [85]; the outer d exponent was furtherly optimised for
CiMnOj; by changing it from 0.249 to 0.259 Bohr—2 [46].

The oxygen basis set is the 8-411G with principal quantum number up
tc n = 4; in the same way as Mn, it was derived in ref. [85] and optimised
ir ref. [46] for CaMnO3; in the present calculations the value of the outer sp
exponents has been changed to 0.4763 and 0.22 Bohr 2.

Calcium is described by the 86-511d3G basis set originally designed for
C\F5 [132] and also used for CaMnO; [46].

Finally, the basis set used for La (976633-31G) is one optimised for La3*
(se footnote at page 56); it was slightly modified for the purpose of the
pesent calculations in that the 5d orbital was removed from the basis and
tte 6sp and 7sp were replaced by a single sp orbital exponent of 0.3917
Bohr 2.

What follows is the basis set input for CRYSTAL 98. The first line indi-
cites the atomic number and the total number of shells. Shells are introduced

b a line containing 5 numbers:
o type of basis set used (integer); 0 designes a general basis set given as

126



nput

sype of shell (integer): 0 (s), 1 (sp), 2 (p) or 3 (d)

aumber of contraction in the shell (integer)

aumber of electrons in the shell (real)

scale factor.

For each contraction in the shell, the values of the exponent and of the
contraction coefficient are given; in the case of an sp sheill an s and a p

contraction coefficient are present.

Calcium (Ca) - 86-511d3G

20 6
0 0 8 2. 1.

191300. .0002204
26970. .001925
5696. .01109
1489. .04995
448 .3 .1701
154.6 .3685
60.37 .4034
25.09 .1452

448.6 -.00b75 00847
105.7 -.0767 06027
34.69 =.1122 2124
13.5 2537 3771
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0 3 3

3.
0.
0.

.82
.819
8. L.
.750
.400
.5970
.408
.7260

.246
0. 1.

191
8683
3191

.688 .401
.349 .198
.0020 -.0365
=,1288 =.0685
-.6960 .1570

1.029 1.4820
.9440 1.0250

.16
.3130
.4060

Lanthanum (La) - 976633-31G

57 8
0 0 9

5466346 .
793978.
171448.

44597 .
12964 .

4141

1476.

2. 1.

5

4
8

<92

39

.0000487
.000403
.00231

.0111
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0

589.
248.

16031.
3742.
1165.

421.
173.

139
08

T4l
38
229
294

.3786
.822

.647
.798
.6774
.6625
. 8388
.8213

10.

. 627
=33
.0043
. 368
.8229
.8497

.5834
.5736

.4339
.2063

.00037
.00629
.0515
.1462
BTT2
.6067
.5197

.00653
.021
.3186
40991
.8567
.4321

.015

.10562
.3295
.4739
.2641
.0446

-53

.3373

.00111
.00997
.0574
.2169
.4582
4778
.241

]
o
re
N
NS

~.1348
.3206
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3.0748
10.
8.9453
3.6796
1.554

7.6157
2.7631
1.3323

0 1 1 0. 1.

.3917

Manganese (Mn) - 86-411d41G

257

g 0 8 2. 1.

292601.
42265.

8947 .29
2330.32
702.047
242.907
.955

BITT

6 1 6 8. 1.

.14
.651

.5093

8. 1.

.0398

.2225
.588
.4048

.2651
.8808
.4515

.000227
.0019
.0111
.05601
.1705
.3691
.4035
.1437

~-.0053
-.0673
~.1293

,4518

.0281
.3278
2509

.0086
.0612

.2135
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23.129
9.7536
3.4545

38.389

15.4367
6.1781
2.8235

1.2086

0 1 1 0. 1.

.4986

0 3 4 4. 1.

22.5929
6.167
2.0638

. 7401

0 8 1 0. i

0.259

Oxygen (O) - 8-411G

8 4

6 0 8 2. 1.

8020.
1338.
255.4
69.22

.2535
.6345
.2714

.0157

~.2535
-.8648

.9337

.0708
.3044
.5469
.5102

1.000

.00108
.00804
.056324
.1681

.4018
.4012
2222

.0311
.0969
.2563
.6552
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23.90 .3581
9.264 .3855
3.851 .1468
1.212 0728

0 1 4 8.1
49.43 -.00883 .00958
10.47 -.0915 .0696
3.235 -.0402 .2065

1.247 .3790 .3470

B. Reciprocal space grid

As anticipated in Chapter 3, a fundamental issue for reciprocal space inte-
gration is the selection of the set of k-vectors in which the integration will be
carried out. CRYSTAL 98 makes use of a particular grid in the irriducible
Brillouin zone (IBZ) called Monkhorst net [114].

The Monkhorst net is defined by the basis vectors by /sy, by/s, and bs/s3,
where by, by and bj are the ordinary reciprocal lattice vectors and s, sg, s3
are integer shrinking factors, to be given as input. For 3D crystals s; = s, =
s3 = IS (CRYSTAL notation) The number of points generated depends on
the symmetry of the crystal (i.e. on the number of symmetry operators for
the crystal [51]) and is given asymptotically by the product of the shrinking
factors divided by the order of the point group; for the same shrinking factor,

systems with higher symmetry will have less points in the mesh compared to
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systems with lower symmetry. The case of conductors is more complicated.
Two more parameters are needed in the CRYSTAL input file: ISHF, the
number of symmetrised plane waves used for representing the k dependence
of the eigenvalues, and ISP, which defines a denser net for the evaluation of
tke Fermi energy and of the density matrix called Gilat net [133]; a suitable
velue for ISP would be double the one for IS.

In the case of CaMnOQ3, for example, the space group is the cubic Pm3m
(r. 221 in the International Tables [48]) and possesses 48 symmetry operators
[61]. In a calculation on the single unit cell, IS=8 generates a Monkhorst net
with 35 k-points belonging to the IBZ. For a calculation on the A-AF spin
ordered structure the cell has to be doubled along one direction (e. g. z) and
tte two resulting Mn ions must be made inequivalent in order to allow them
tc have opposite spins. These two operation reduce the number of symmetry
operators from 48 to 8 and, as a consequence, the same IS= 8 as before results
now in 75 k points. In the case of the G-AF structure, where doubling of the
cell takes place along a diagonal, the symmetry operators become 24 and 29
point are generated. What follows is the output from CRYSTAL showing, for
tte ground state G-AF structure, the generated k-point; they are expressed,
as already specified before, in oblique (or fractional) coordinates, i. e. in
tte basis of the reciprocal lattice vectors, and in unit of IS. This means, for

example, that the k-point
ol 8 3 1)

ir the list below has cartesian coordinates

n

6 3 1
kb’_b’)-_bj\
(b1 gbe: gb)

Direct and reciprocal lattice vectors are shown as well (a = 3.73 A).
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**x K POINTS COORDINATES (OBLIQUE COORDINATES IN UNITS OF IS = 8)

=R ¢ 0 0 2-€6( 1 0 0) 3C( 2 0 00 4¢€( 3 0 0
B-R{ 4 0 0) 6CG( 1 1 9) 7-€( 2 1 0) 8€CC 38 1 )
9-C{ 4 1 ©) 10-€G( & 1 0) 11-CC 6 '1 @ 312 7 1 .0)
13-C( 2 2 0) 14-C( 3 2 0) 15-CC 4 2 0) 16-C( 5 2 0)
17-c( 6 2 0) 18-C( 3 3 0) 19-C( 4 3 .0) 20-C( 56 3 0)
21-R( 4 4 0) 22-Cc( 3 2 1) 23-C( 4 2 1) 24-C( 5 2 1)
25-C( 4 3 1) 26€C( 5 8 1) 27-€L 6 B8 1) 28C( B 4 1)
29-C( 6 4 2)

3 K e KK K K A 3K K A K K 3 R 3Kk K K K K K K K R R K K K 3K 3K k3 ok K K 3Kk K K oK K K K K 3 K K K 3K oK K K 3K oK K K K kK R ok R KOk Rk

DIRECT LATTICE VECTORS COMPON.(A.U.) RECIP. LATTICE VECTORS COMPON.(A.U.)

X ¥ Z X ) § YA
.00000 7.04868 7.04868 -.44570 .44570 .44570
7.04868 .00000 7.04868 .44570 -.44570 44570
7.04868 7.04868 .00000 .44570 .44570 -.44570

The Pnma structure of LaMnQOj is characterised by lower symmetry com-
pared to Pm8m. The A-AF case only has 4 symmetry operators and a shrink-
ing factor of 4 results in 30 k-points. They are reported below, together with
the direct and reciprocal lattice vectors (lattice parameters from the opti-

mised Pnma structure).

***x K POINTS COORDINATES (OBLIQUE COCRDINATES IN UNITS OF IS = 4)

i-RC 0 0 0) 2-CC 1 0 0) 3-R( 2 0 ©O) 4-CC 0 1 0)

5~-C( 1 1 Q) 6-C( 2 1 0) 7-C(C 3 1 0) 8-R( 0 2 0)
0

9-C( 1 2 0) 10-R( 2 2 0) 11-c(C 0 0 1) 12-c( 1 1)
13-C( 2 0 1) 14-CC 0 1 1) 15-CC 1 1 1) 16-CC 2 1 1)
17-c( 3 1 1) 18-C( 0 2 1) 19-C( 1 2 1) 20-C( 2 2 1)
21-RC 0 0 2) 22-C(C 1 0 2) 23-R( 2 0 2) 24-C( 0 1 2)
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P~ 1 1 2y 26-0( 2 3 2) 27-¢{ 3 1 2) 28-R( O 2 2)
29~ 1 2 2) 30=R{ 2 2 2)
HOR AR AK AR KKK AR AR KA KKK KKK KKK KKK KKK KKK K KRR K AR KKK AR KKK KKK

DIRECT LATTICE VECTORS COMPON.(A.U.) RECIP. LATTICE VECTORS COMPON.(A.U.)

X ¥ Z X 6 ) A
10.84703 0.00000 0.00000 0.57925 0.00000 0.00000
0.00000 14.65294 0.00000 0.00000 0.42880 0.00000
0.00000 0.00000 10.62027 0.00000 0.00000 0.59162

Freyra-Fava et al. [46] and Su et al. carried out similar UHF calculations
on CaMnOj; and LaMnQOj respectively and they have commented on how the
k-grid size affects the total energy of the system. In [46] the authors used the
same grid as in the present work (IS=8, 29 k-points) for the G-AF structure;
they reported that increasing IS to 12 resulted in a difference in total energy
of about 2 eV per cell. Su and co-workers used I1S=6 (80 k-point) for their
UHF study of Pnma LaMnOs; they noted that the total energy difference
with a 30 k-points calculation (IS=4) was less than 0.003 meV /Mn.

C. UHF Mulliken population analysis

This section reports the detailed Mulliken population analysis from the UHF
calculations performed using the CRYSTAL package. The population is given
for each atomic orbital and then, summed, for each shell in the basis set used
(see Section A of this Appendix). The output of the program also includes
the overlap population condensed to the first four neighbouring atoms.

In order to identify the sequence of atomic orbitals, it is important to
recall the order used by CRYSTAL for the internal storage of sp and d orbitals

(112]:
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sp S’ "E7 y’ z
d 322—-1r2 zz,yz, 22 —y%, oy

Atomic centers in the unit cell are labelled with a sequence number in
CRYSTAL. Each of the following subsections also contains the coordinates
of such centers; this is needed to distinguish, for example in the case of

LaMnQj3;, in-plane and vertical oxygens.

(32&&111()3

G-type AF supercell

*x**x ATOMS BELONGING TO THE SUPERCEL
ATOM X(AU) Y(AU) Z(AU)
1 CA 0.000 0.000 0.000

2 CA 0.000 0.000 -7.049
3 MN -3.524 -3.524 -3.524
4 MN 3.524 3.524 3.524
50 0.000 3.524 3.524
6 0 0.000 3.524 -3.524
70 3.524 0.000 3.524
8 0 3.524 0.000 -3.524
9 0 3.524 3.524 0.000
10 0 -3.524 -3.524 -7.049

ALPHA+BETA ELECTRONS
MULLIKEN POPULATION ANALYSIS - NO. OF ELECTRONS 138.000000

ATOM Z CHARGE A.0. POPULATION

1 CA 20 18.146 2.000 1.974 2.035 2.035 2.035 916 1.213 1.213
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2 CA 20 18.146

3 MN 25 22.863
4 MN 25 22.863
50 8 9.330
6 0 8 9.330
70 8 9.330
8 0 8 9.330
9 0 8 9.330
10 O 8 9.330
ATOM Z CHARGE

1.213
.238
2.000
1.213
.238
2.000
.652
.305
.128
2.000
.652
.305
.128
1.997
.614
1.997
.614
1.997
.614
1..897
.614
1./997
.B79
1.997
.579

SHELL POPULATION

.961
SO1T
.974
861
017
.898
.356
.367
.339
.898
.356
.367
.339
.491
.463
.491
.463
.491
.463
.491
.463
.491
.463
.491
.463
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.520
025
.035
.520
.025
.057
.026
.968
.128
.067
.026
.968
.128
.628
.389
.628
.389
774
.531
774
.5631
774
631
.T74
.531

.520
.025
.035
.520
.025
.057 .
.026
.968

. 087
.026
.968

.531
174
.b31

.520
.017
.035
.520
1T
.057
.026
.367

.057
.026
.367

774
1531
LT74
.531
774
.531
774
531
.628
.389
.628
.389

.171
025
916
371
.025
.382
.408
.968

.382

.408

.968

.946

.946

.946

.946

.238

-213
.238

.652

.305

.339

.652

.305

.339

579

.614

.614

.614

.614

.238

213
.238

.652

.305

.128

.6562

.305

.128

.614

.614

D78

<579

.614

.614



© 0 N O O b W N

—
(>

OVERLAP POPULATION

ATOM A

ATOM A

ATOM A

20
20
25
25

© o0 0 0 o o
© W W W W

1 CA

2 CA

3 MN

18.
18.
22,
22,

146
146
863
863

.330
.330
.330
.330
.330
.330

N ONONN

.000
.000
.000
.000
99T
<987
-997
907
997
997

.079
.079
.069
.069
.666
.666
.666
.666
.666

N NN N N N O 0 0 @

.666

CONDENSED TO

ATOM B

il

CA

10 O

4 MN

2 CA

ATCM B

2

CA

70

4 MN

1

CA

ATOM B

CELL
0 O

o o ©

CELL

138

N N N N N N N N e

ATOMS FOR FIRST

0)
0)
0)
0)

0)
1)
0)
0)

.557
.557
.337
.337
.754
.754
.754
.754
.754
.754

.519
.818
.433

ok NN

.433

1.914

1.914
1.914
1.914
1.914
1.914

R(AB) /AU

.000
4.984
6.104
7.049

R(AB) /AU

.000
4.984
6.104
7.049

.884
.884
1.324 3.637 1.062
1.324 3.637 1.062
4 NEIGHBORS
R(AB) /ANG OVPOP (AB)
.000 18.157
2.638 -.001
3.230 .000
3.730 .000
R(AB) /ANG OVPOP (AB)
.000 18.157
2.638 -.001
3.230 .000
3.730 .000
OVPOP (AB)

R(AB) /AU R(AB)/ANG



ATOM A 4 MN

ATOM A 50

3 MN

10 0

2 CA

4 MN

ATOM B

4 MN

10 O

2 CA

3 MN

ATOM B

50

4 MN

10 O

1

CA

e T o S

(
(
(
(

0

o o O 9O

0

0)
0)
0)
0)

0)
0)
0)
0)

0)
0)
0)
0)

.000
3.524
6.104
7.049

.000
1.865
3.230
3.730

R(AB) /AU R(AB)/ANG

.000
3.524
6.104
7.049

R(AB) /AU

.000
3.524
4.984
4.984

.000
1.865
3.230
3.730

R(AB)/ANG
.000
1.865
2.638
2.638

22.440
.074
.000

-.003

OVPOP (AB)

22.440
.074
.000

-.003

OVPOP (AB)
9.332
.074
-.016
~-.001

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

ALPHA-BETA ELECTRONS

MULLIKEN POPULATION ANALYSIS - NO.

ATOM Z CHARGE A.0. POPULATION

1 CA 20

2 CA 20

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

139

OF ELECTRONS .000000
.000 .000 .000 .000
.000 .000 .000 .000
.000 .000 .000 .000
.000 .000 .000 .000
.000 .000 .000 .000

.000
.000

.000
.000

.000
.000

.000
.000



3 MN 25
4 MN 25
50 8
6 0 8
70 8
8 0 8
90 8
10 0 8
ATOM Z
1 CA 20
2 CA 20
3 MN 25

3.230

-3.230

.000

.000

.000

.000

.000

.000

CHARGE

.000
.000
3.230

.000
.000
.008
-.006
.022
.000
-.008
.006
-.022
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

SHELL

.000

.000
.000

.000
.002
.010
.154
.048
-.002
=040
-.154
-.048
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

POPULATION

.000
.000
-.003

140

.000
.002
.008
.909
.022
.002
.008
.909
.022
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.023

.000
.002
.008
«908

.002
.008
.909

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.033

.000
- 002
.008
.154

.002
-.008
-.154

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
-.020

.000

.000

.000

.909

.000

.000

-.909

.000

.000

.000

.000

.000

.000

.000
.000
3.034

.008

.006

.048

.008

.006

.048

.000

.060

.000

.000

.000

.000

. 162

.008

.006

.022

.008

.006

.022

.000

.000

.000

.000

.000

.000



O 00 N o O s
a 6 oo a o o

10

MN 25 -3.230
8 .000
.000
.000
.000
.000
.000

o 0 o o« o

.000
.000
.000
.000
.000
.000
.000

.003

.000

.000

.000

.000

.000
.000

OVERLAP POPULATION CONDENSED TO

ATOM A 1 CA

ATOM A 2 CA

ATOM A 3 MN

10 0

10 O

ATOM B

ATOM B

ATOM B

CELL

(o0
A
(o
o

0

0
0
0

CELL

0
=1
=

0

QY]
(0

( -1

0
=1

0

141

023

.000

.000

.000

.000

.000

.000

ATOMS FOR FIRST

0)
0)
0)
0)

0)
1)
0)
0)

0)
0)
0)
0)

-.033
.000
.000
.000
.000

.000 _

.000

.020 -3.034

4 NEIGHBO

R(AB) /AU R(AB)/ANG

.000
4.984
6.104
7.049

R(AB) /AU

.000
4.984
6.104
7.049

R(AB) /AU

.000
3.524
6.104
7.049

.000
2.638
3.230
3.730

R(AB)/ANG
.000
2.638
3.230
3.730

R(AB) /ANG
.000
1.865
3..230
3.730

=162

RS

OVPOP (AB)
.000
.000
.000
.000

OVPOP (AB)
.000
.000
.000
.000

OVPOP (AB)
3.374
-.024

.000
.000



ATOM A

ATOM A

IQaﬂNdll()g

4 MN

50

A-type AF supercell

ATOM X (AU)

1

o o W N

© 0 N O

10
11

LA
LA
LA
LA
MK
MN
MN
MN
0

)

0

=0
-5.
5.

Y (AU)
.239
.184
.184
.239
.000
.424
.424
.000

022
402
402

4 MN
10 O
2 CA
3 MN

50

4 MN
10 O
1 CA

Z(AU)

ATOM B

ATOM B

N AN N

~ A AN
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0)
0)
0)
0)

0)
0)
0)
0)

R(AB) /AU
.000
3.524
6.104

7.049 .

R(AB) /AU
.000
3.524
4.984
4.984

R(AB)/ANG
.000
1.865
3.230
3.730

R(AB)/ANG
.000
1.865
2.638
2.638

OVPOP (AB)

-3.374
.024
.000
.000

OVPOP (AB)
.000
.024

-.005
.000



12 0.022 -3.663 0.287

13 3.146 0.205 2.517
14 2.278 -0.205 -2.793
15 -2.27¢ T:.121 2.793
16 .146 ~7.121 ~2.617
17 -3.146 -0.205 -2.517
18 -2.278 0.205 2.7893

19 2.218 =7.121 -2.733

(] [e] (o) (= M e o (=] o o
|
w

20 3.146 ' F.121 2.817

ALPHA+BETA ELECTRONS
MULLIKEN POPULATION ANALYSIS - NO. OF ELECTRONS 424.000000

ATOM Z CHARGE A.0. POPULATION

1 LA 57 53.861 1.999 2.052 1.999 1.999 1.999 1.752 1.998 1.998
1.998 2.000 2.000 2.000 2.000 2.000 0.063 0.891
0.892 0.892 1.999 1.999 1.999 1.999 1.999 2.137
1.170 1.170 1.170 1.964 1.904 1.902 1.904

2 LA 57 53.851 1.999 2.052 1.999 1.999 1.999 1.752 1.998 1.998
1.998 2.000 2.000 2.000 2.000 2.000 0.063 0.891
0.892 0.892 1.999 1.999 1.999 1.999 1.999 2.137
1.170 1.170 1.170 1.964 1.904 1.902 1.904

3 LA 57 53.851 1.999 2.052 1.999 1.999 1.999 1.762 1.998 1.888
1.998 2.000 2.000 2.000 2.000 2.000 0.063 0.891
0.892 0.892 1.999 1.999 1.999 1.999 1.999 2.137

1.170 1.170 1.170 1.964 1.904 1.902 1.904
4 LA 57 63.851 1.999 2.052 1.999 1.999 1.999 1.762 1.998 1.998
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10

11

12

MN

MN

MN

MN

25

25

25

25

22.

22.

22,

22.

749

749

749

749

(62

.762

.762

.762

-

S O © N O O O N O O O N © O o BN

. 988
.892
170
.000
.631
.314
-102
.000
.631
.314
.102
.000
.631
.314
.102
.000
.631
.314
=102
.997
.461
997
.461
.997
.461
+997
.461

—

o O O e o o a o o o

.000
.892
.170
.899
.330
782
.1565
.899
.330
162
.155
.899
.330
.762
.155
.899
.330
.762
.155
.504
.692
.504
.692
.504
.692
.504
.692
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N O © » N O O = N O O

o O e e B O O 9O O KB

o

.000
999
170
.059
.016
119
.100
.059
.016
019
.100
.0569
.016
.719
.100
.069
.016
.719
.100
.758
774
.758
774
.758
774
.758
774

o O O O O o o o

.000
.999
.964
.058
.019
.931

.058
.019
.931

.068
.019
-931

.058
.019
931

.689
.593
.689
.593
.689
.593
.689
.593

= N = =N

o

0 QO © O o O O O

.000
<999
.904
.069
.017
.677

.059
017
87T

.059
017
BTT

.059
.017
.677

<162
.766
«762
.766
.762
.766
.762
.766

.000
~289
02
.375
.426
.935

.375

.426

.935

.375

.426

.935

.375

.426

.935

.785

.785

.785

.785

.063
.999
.904
.628
.316
.129

.628

.315

129

.628

.315

.129

.628

.315

.129

.457

.457

. 457

. 457

.891
.137

.633

311

«1b%

.633

311

. 1561

.633

311

.151

.633

s311

.151

.525

.525

.526

.525



13

14

15

16

17

18

19

20

ATOM

0 N & O e W N

LA
LA
LA
LA
MN
MN
MN
MN

57
57
57
57
25
25
25
25

.818

.818

.818

.818

.818

.818

.818

.818

CHARGE

53.
53.
53.
53.
22.
29
22.;
22..

851
851
851
851
749
749
749
749

1.997
0.475
1.997
0.475
1.997
0.475
1.997
0.475
1897
0.475
1.8997
0.475
1..997
0.475
1.997
0.475

SHELL

1.999
1.:.999
1.800
1.999
.000
.000
.000

N N NN

.000

O e 0O O 0 O e v o 0N 0 0 9O 09 9 O

POPULATION

8.

o & o0 & o0 o o«

.508
.726
.508
726
.508
.726
.608
.726
.508
.726
.508
.726
.508
.726
.508
726

050

.050
.0580
.050
.074
.074
.074
.074
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o 09I O 0 O e eo b o 0 0 oD e D O

N NN N

NN

.726
.731
28
731
ok 28
.731
.726
.731
.726
.731
.726
.731
.726
731
126
.731

.747
.747
.747
. 747
.267
.267
.267
.267

O &6 ©6 66 66 © o o 0 o oo o o o o o

10.
10
10.
105

S Y SO

.760
.783
.760
.783
.760
783 _
.760
.783
.760
.783
.760
.783
760
.783
.760
.783

000
000
000
000

.382
.382
.382
.382

o QO OO0 o 0O O O o 9O © 9O 9 oo, O O

N N NN

21
.703
B . !
.703
W
.703
< 21
.703
21
.703
J21
.703
shli 2l
.703
« P21
.703

39
.739
.739
.739
.366
.366
.366
.366

K N N N R - I I

.766

.766

.766

.766

.766

.766

.766

.766

906
.996
.996
.996
.024
.024
.024
.024

©C O O o o O o O

.470

.470

.470

.470

.470

.470

.470

.470

.646
.646
.646
.646
.636
.636
.636
.636

N~ N NN

.453

.453

.453

.453

.453

.453

.453

.453

.674
.674
.674
.674



10
1%
12
13
14
15
16
I
18
19

a 60 &8 0 6 60 0 6868 a a a9 o

20

cC o 0 o O o 0 o & o0 o« o
© W W W W W YW W W v v ©

.762 1
462 1
(62 1
«Mba 1
.818 1

.818 1

818 1
.818 1

818 1.
.818 1.
.818 1

818 1.

07
997
.997
907
.997

997
997

.997
997

997

=997
.997

gt
2
112
12
.716
.16
16
(16
T 18
<116
.T16

N N N NN NN NN N NN

.716

OVERLAP POPULATION CONDENSED TO

ATOM A

ATOM A

1 LA

5 MN

ATOM
1 LA
13 0
11 @
16 O

ATOM
5 MN
18 O
12 0
138 0

B

B

CELL
( 00
(-1 0
{ -1 @
( 0 1
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N N NN N NN N NN DN

ATOMS FOR

0)
0)
0)
0)

0)
0)
0)
0)

+228
2228
.228
.228
.163
.163
.163
.163
.163
.163
.163
.163

.825
.825
.825
.825
.943

.943
.943
.943
.943
.943

NN N NN N N DN N N DD N

.943

.943

FIRST

R(AB) /AU R(AB)/ANG

0.000
4.930
5.038
5.073

R(AB) /AU

0.000
3.610
3.675
4.034

0.000
2.609
2.666
2.685

R(AB)/ANG
0.000
1.910
1.944
2138

4 NEIGHBORS

OVPOP (AB)
53.901
-0.015
-0.008
-0.007

OVPOP (AB)
22.685
0.030
0.016
=0..01¢



ATOM A 7 MN ATOM B CELL R(AB) /AU R(AB)/ANG OVPOP (AB)

TMN (0 0 0) 0.000 0.000 22.685
16 0 ( 0 0 0) 3.610 1.910 0.030
110 (-1-1 0) 3.675 1.944 0.016
19 0 (-1 0 0) 4.034 2.135 -0.011
ATOM A 9 0 ATOM B CELL R(AB) /AU R(AB)/ANG OVPOP (AB)
90 ( 0 0 0 0.000 0.000 9.757
8MN ( 0 1 0) 3.675 1.944 0.016
LA ( 0 0 -1} 5.038 2.666 -0.008
19 0 ( 01 0) 5.151 2.726 0.000
ATOM A 13 O ATOM B CELL R(AB) /AU R(AB)/ANG OVPOP (AB)
130 ( 0 0 0) 0.000 0.000 9.850
6MN (1 0 1) 3.610 1.910 0.030
5MN ( 0 0 0) 4.034 2.135 -0.011
1A (1 0 0) 4.930 2.609 -0.015
ATOM A 15 O ATOM B CELL R(AB) /AU R(AB)/ANG OVPOP (AB)
16 0 ( 0 0 0) 0.000 0.000 9.850
8MN ( 0 1 0) 3.610 1.910 0.030
7TMN (0 1 1) 4.034 2.135 -0.011
3LA ( 0 0 0) 4.930 2.609 -0.015

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
ALPHA-BETA ELECTRONS
MULLIKEN POPULATION ANALYSIS - NO. OF ELECTRONS 0.000000
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ATOM

1 LA

2 LA

3 LA

4 LA

5 MN

6 MN

7 MN

Z CHARGE

57

57

57

57

25

25

25

0.

000

.000

.000

.000

.958

.958

.958

A.0. POPULATION

o O O O 0 O OO o o O o0 O v o o oo e o

|
o

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.006
.011
.063
.000
.006
.011
.053

o © O oo o O O O O o0 O O v O o O o0 o v O e o oo ©O

.000 -0.

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.002
.010
.706
.030
.002
.010
.706
.030

002
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o O O o 0 0 v O o O OO0 o o o o o

|
o

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.002
J012
.621
.056
.002
.012
.621
.056
.002

o O O 0 B 0 0O O O o O O o oo ' o9 o9

|
o (e} o

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.002
011
.902

.002
011

.902

.002

o O O 00 o O o0 O oo o OO o o o o o

|
o (@] o

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.002
.011
.586

.002

.011

.586

.002

o0 0 0 O D o0 e O O 9 O O 9 a9 O

| |
(@} (=)

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.001
.003
.909

o O & O o 0o 0 o o o 0 a o 9 v v o

|
o (o}

.001 0.
;003 =0.
.909 0.

001 -0,

.000 O.
.000 O.
.000 O.
.000

.000 O
.000 0.
.000 O.
.000

.000 O.
.000 O.
.000 O.
.000

.000 0.
.000 0.
.000 O
.000

.006 O.
i =0,
.063 0

006 O.

013 -0.

053 0.

006 -0.

000
000
000

.000

000
000

000
000
000

000
000

.000

007
012

.019

007
012
019

007



10

11

12

13

14

15

16

17

18

MN 25 -3.
0 8 0
0 8 0
0 8 0
0 8 0
0 8 0
0 8 0
0 8 -0
0 8 -0
0 8 0
0 8 0

958

.000

.000

.000

.000

.017

L0177

<017

<017

.017

017

.006
.011
.063
.000
.006
<011
.0563
.000
.000
.000
.000
.000
.000
.000
.000
.000
.005
.000
.005
.000
.005
.000
.005
.000
.005
.000
.005

.010
.706
.030
.002
.010
.706
.030
.000
.000
.000
.000
.000
.000
.000
.000
.003
.004
.003
.004
.003
.004
.003
.004
.003
.004
.003
.004
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012
.621
.056
.002
.012
.621
.056
.000
.000
.000
.000
.000
.000
.000
.000
.010
.004
.010
.004
.010
.004
.010
.004
.010
.004
010
.004

011
.902

.002
.011
.902 .

.000
.000
.000
.000
.000
.000
.000
.000
.01b6
.008
.015
.008
.015
.008
.015
.008
.015
.008
.015
.008

.011
.586

.002
011
.586

.000
.000
.000
.000
.000
.000
.000
.000
.002
.001
.002
.001
.002
.001
.002
.001
.002
.001
.002
.001

.003
809

.001

.003

.909

.000

.000

.000

.000

.004

.004

.004
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