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T hesis Sum m ary

Software system s have to  be flexible in order to  cope w ith evolving require

m ents. However, since it is im possible to  predict w ith certa in ty  w hat fu ture 

requirem ents will emerge, it is also im possible to  determ ine exactly  w hat 

flexibility to  build in to  a system . Design p a tte rn s are often used to  build 

th is flexibility into a program , so th is question frequently reduces to  w hether 

or not a particu lar design p a tte rn  should be applied to  th e  program . Tlie 

original program m er faces th is dilem m a, and the  m aintenance progrannner 

nm st work w ith th e  consequences of the decision made.

We address th is problem  by developing a m ethodology for the construc

tion of au tom ated  transform ations th a t introduce design p a tte rn s  to  an exist

ing program . This enables a program m er to  safely postpone the  api)lication 

of a design p a tte rn  im til the  flexibility it provides becom es necessary.

O ur m ethodology deals w ith the  issues of reuse of existing transform a

tions, preservation of program  behaviour, and the application of the tran s

form ations to  existing program  code. We apply the m ethodology to  the 

G annna et al p a tte rn  catalogue [41], and find th a t in alm ost 75% of cases 

a satisfactory  transform ation  is developed, and th a t considerable reuse of 

existing transform ations is achieved.
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Chapter 1

Introduction

Getting a design right first time is impossible. One of the major advances 

in software development thinking in the past decade has been the notion 

tha t the process of building a software system should be an evolutionary one 

[10, 81, 48, 3], Rather than the classical waterfall model where analysis is fully 

completed before design, and design fully completed before implementation, 

evolutionary approaches are based on building a simple version of what is 

required and extending tliis iteratively to build a more complicated system. 

As John Gall put it:

“A complex system th a t works is invariably found to have evolved 

from a simple system tha t worked.” [40, p.50]

Or in Kent Beck’s inimitable style:

“S tart stupid and evolve.” (c{uoted in [9G])

We are interested in developing a particular type of autom ated transfor

mation to provide support for software evolution. In section 1.1 we explain 

more exactly what type of transform ations we will focus on and describe this 

in the context of software evolution. In section 1.2 we show how our approach
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also addresses problems faced in the reengineering of legacy systems. In sec

tion 1.3 we state both the thesis and principle contributions of our work, and 

finally, in section 1.4, we provide a road map of this dissertation.

1.1 Evolutionary Approaches to  Software D e

velopm ent

In an evolutionary approach to software development, a simple working sys

tem is built which subsequently undergoes many evolutions until the desired 

system is reached^ At each stage there is a working system which is to be 

extended with a new requirement or set of requirements. It is very unlikely 

th a t the design of the initial system will be flexible enough to elegantly sup

port the later requirements to be added in. Consequently, it is to be expected 

th a t when the system is to be extended with a new’ requirement, its design 

will also have to  be made more flexible in order to acconmiodate the new 

recjuirement elegantly. Current thinking reconnuends breaking this process 

of extending a system into two stages [5, 35, 45], [38, p. 7]:

1. Program Restructuring: This involves changing the design of the pro

gram so as to make it more amenable to the new reciuirement, wdiile 

not changing the behaviour of the program.

2. Actual Updating: Here the program is changed to fulfill the new re

quirement. If the restructuring step has been successful, this step will 

be considerably simplified.

'A s  rem arked in [92], one can never speak of the  ‘‘final” system . Useful system s tend 

to  evolve continiially during their lifetime.
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This thesis will present a novel approach to providing sophisticated auto

m ated support for the restructuring step.

Let us consider now what type of restructurings a designer may want to 

perform in order to make a system more flexible and able to accommodate a 

new requirement. A designer usually has an architectural view of how they 

wish the program to evolve th a t is at a higher level than, for example, simply 

creating a new class or moving an existing method. Probably the most inter

esting and challenging category of higher-level transform ation th a t a designer 

may wish to apply comprises those transformations th a t introduce a design 

pattern^ [41]. Design patterns typically loosen the coupling between program 

components, thus enabling certain types of program evolution to  occur with 

minimal change to the program itself. For example, the instantiation of a 

Product class within a Creator class could be replaced by an application of 

the Factory Method pattern^. This would enable the Creator class to be 

extended to instantiate a subclass of the Product class without significant 

reworking of the existing code.

The restructurings we develop in this thesis will be those th a t autom ate 

the introduction of design patterns to an existing object-oriented program. 

The scenario we consider is as follows: An existing program is being extended 

with a new reciuirenient. After studying the code and the new requirement, 

the designer concludes th a t the existing program structure makes the desired 

extension difficult to achieve, and th a t the application of some particular 

design pattern  would introduce the necessary flexibility to the program. It is 

at this point th a t we aim to provide autom ated tool support. The designer 

selects the design i)attern to  be applied and the program components tha t

^See section 2.2 for a more detailed description of design patterns.
■̂ See appendix A for a description the Factory Method pattern
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are to take part in the restructuring, and our tool applies th a t design pattern 

to the given program components in such a way th a t program behaviour is 

maintained.

A key aspect of this approach is th a t the intellectual decision of what 

design pattern  to  apply, and where to apply it, remains with the designer. 

We are not attem pting to formalise or autom ate quality; our aim is to remove 

the burden of tedious and error-prone code reorganisation from the designer. 

In this thesis we will present and validate a methodology for the development 

of autom ated design pattern  transformations.

1.2 Legacy System s

Brodie and Stonebraker provide a widely-accepted definition of a legacy sys

tem:

“[A legacy system is one] tha t significantly resists modification 

and evolution to meet new and constantly changing business re

quirem ents.” [12, p.xv]

Legacy systems frecjuently recjuire restructuring in order to make them 

more amenable to changes in requirements. This restructuring is performed 

either by hand, or through the use of autom ated tools, for example, [G]. 

In the la tter case, the designer usually specifies certain operations to be 

carried out, for example, to  extract a method from existing code or to  move 

a m ethod from one class to another, and the tool handles the mundane details 

of performing the transform ation itself.

There are clear similarities between a designer restructuring a program 

th a t is still under development as described in the previous section, and the 

restructuring of a legacy system. In both cases the following conditions exist;



•  A new requirement (or requirements) has arisen tha t the program nuist 

fulfill.

•  The structure of the program is not flexible enough to accommodate 

the new requirem ent (s) easily and elegantly.

• The existing program exhibits useful behaviour th a t must be main

tained by any reorganisation tha t takes place.

The similarity between the forward engineering scenario and the restructur

ing of a legacy system becomes even clearer when the following points are 

considered:

• The notion of a legacy system usually evokes an image of an aged 

system developed with now-defunct technology. However, in the above 

definition there is no mention of age; a week-old program developed 

using the latest technology can perfectly fit the definition of a legacy 

system.

• An evolutionary-centric development methodology such as Extreme 

Progranmiing‘* can be viewed as actually encoiuaging the creation of 

a series of legacy systems. Little up-front design is performed, so with 

each new requirem ent tha t is added, the program is restructured just 

enough to elegantly accommodate the new requirement.

The conclusion is th a t evolutionary software engineering and legacy systems 

reengineering are not such different processes. The design pattern  transfor

mations described in this thesis are applicable in bo th  cases.

‘̂ Extreme Program m ing is discussed further on page CO.
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1.3 T hesis and C ontributions

In the last two sections we described how introducing design patterns to a 

program is part both of forward software engineering and of reengineering 

of a legacy system. The fundamental thesis of this wwk can be stated  as 

follows:

Automating the application o f design patterns to an existing pro

gram in a behaviour preserving way is feasible.

The following are the principle contributions of this thesis:

•  A methodology fo r  developing design pattern transformations. This is 

the essential contribution of this w'ork. The methodology we have de

veloped has been apj)lied with full rigour to seven common design pat

terns^, and a prototype software tool has been built th a t can apply 

these seven design patterns to  Java programs®. The methodology has 

also been applied to the remaining patterns in the G annna et al pat

tern catalogue [41], though these pattern  transform ations have not been 

prototyped. The essence of our methodology has been published in 

sununary form in [74, 72], and more completely in [75].

•  A minitransformation librai'y. Design pattern  transform ations have a 

strong degree of commonality and this has been captured in a set of 

six minitransformations. These minitransformations have been imple

mented and dem onstrated to be widely applicable in developing design 

pattern  transformations.

®The seven design patterns to which the methodology has been fully applied are Ab

stract Factory, Factory Method, Singleton, Builder, Prototype, Bridge and Strategy [41].
*'We have used .Java as the vehicle language for this work. The possibility of language

independent approaches is discussed on page 165 in section G.2.
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•  A model for  behaviour-preservation proofs. The transform ations we 

develop m ust be invariant w ith  respect to  program  behaviour. In order 

to  prove th is rigorously for the  sophisticated program  transform ations 

th a t we develop, we have extended existing refactoring work by allowing 

the  transform ation  definition to  contain not only simple sequences, bu t 

also itera tion  and conditional sta tem ents. This model has been applied 

in full rigour to  several exam ples, and has been published in [76].

1.4 Thesis O utline

This thesis is s tru c tu red  as follows:

C h a p te r  1 (th is chapter) in troduces the topic of au tom ated  design p a tte rn  

transform ations and places it in th e  context of evolutionary approaches to 

software engineering and legacy system  reengineering.

C h a p te r  2 describes in detail the  background to  th is work, nam ely program  

restructu ring  and design pa tte rn s. Note th a t research th a t is very directly  

rela ted  to  our w'ork is discussed in th e  relevant la ter chapter.

C h a p te r  3 presents our approach to  dem onstrating  th a t a program  tran s

form ation preserves the behaviour of the program  and applies it in full rigour 

to  a realistic exam ple.

C h a p t e r  4 describes our m ethodology for the  developm ent of au tom ated  

design p a tte rn  transform ations by applying it in detail to  a single flagship 

exam ple.

C h a p t e r  5 applies the  m ethodology to  the  entire G am m a et al design p a t

te rn  catalogue [41] and analyses th e  results.

C h a p t e r  6 contains our overall conclusions and presents fu ture work in the 

area of au tom ated  design p a tte rn  transform ations.
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A p p e n d ix  A  contains a description of the Factory IMethod design pattern, 

which is the subject of chapter 4.

A p p e n d ix  B  contains the complete specification of all analysis functions, 

helper functions and primitive refactorings th a t are used in this work. 

A p p e n d ix  C  describes briefly the minitransformations th a t we developed, 

and provides a reference to the more detailed description in the main text. 

A p p e n d ix  D  describes the architecture of the software prototype developed 

in this w'ork and presents an example of its application.



Chapter 2

Background

In this chapter we explore the background to  this research, with the aim of 

putting our work in context. We survey the two research fields tha t form 

the foundation of this work, namely program restructuring (2.1) and design 

patterns (2.2). In section 2.3 we state precisely the gaps our work aims to 

fill in the existing literature, and, in section 2.4, the chapter is summarised.

Detailed analyses of very closely related work and comparisons between 

our work and others are not covered in this chapter, but appear in later 

chapters.

2.1 Program  R estructuring  and R efactoring

2.1.1 Definitions

In their widely-used taxonomy of reengineering terms, Chikofsky and Cross 

define restmcturing  in this way:

Restructuring is the transform ation from one representation form 

to another at the same relative abstraction level, w'hile preserv-

9



ing the subject system’s external behaviour (functioiiahty and 

semantics). [19]

Prvgram restructuring then is a source-to-source restructuring that preserves 

the semantics and external behaviour of the program.

The first use of the term “refactoring” in the literature was in the work 

of Opdyke and Johnson [78], though the practice was in use well before 

this. Opdyke defines refactorings as “behaviour-preserving program restruc- 

tm in g s \” which is the definition we use in this work. Fowler uses a similar 

definition, though emphasizes that we expect the process of refactoring to 

improve the design:

Refactoring is the process of changing a software system in such 

a way that it does not alter the external behavior of the code, yet 

improves its internal structure. [38, p.xvi]

Roberts changes the definition radically by also i)ermitting “refactorings” 

that change program behaviour [84]. While it is valuable to allow program 

transformations that are not behaviour-preserving, the redefinition of a stan

dard term seems very unnecessary, especially in a field that is already dogged 

by confusing terminology [5].

We have used the term “behaviour preserving” without being specific as 

to what is meant. Opdyke defined it in terms of observable behaviour, i.e., 

that the program nuist produce the same externally observable behaviour for 

any legal input before and after the refactoring [77]. Roberts correctly points 

out that if timing constraints are taken to be part of program behaviour, it 

becomes extremely difficult to argue behaviour preservation. Other non

functional properties of a program, for example memory usage or patterns 
'T liis  is tautological, since restructurings are, by definition, behaviour preserving.
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Domain of Program BehavioursDomain o f Source Programs

Figure 2.1: Graphical Image of Refactorings

of network access, would also be very difficult to maintain in a refactoring^. 

For these reasons, we do not consider in this work programs where timing 

constraints or other non-functional recjuirements are part of their specifica

tion.

2.1 ,2  A  G lobal V iew  o f  R efactoring

Figure 2.1 is a graphical depiction of refactoring and what it aims to achieve. 

The domain on the left is the set of all source programs (e.g., all legal Java 

programs) while the domain on the right depicts the set of all possible pro

gram behaviours. The shaded subset on the left is a set of programs tha t all 

exhibit the same behaviour, depicted by their all mapping to the same point 

in the behaviour domain.

Refactoring research aims to show how, given a program in the shaded 

set, it is possible to transform it to other programs in the same set. Of 

^In a practical sense, the behaviour of a program tha t has been optimised to run in a 

particular hardware/software environment could be affected by refactoring.
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processgetlnput

control

output

Figure 2.2; A Generic Structure Chart

coiu'se, it is not interesting to do this in a random fashion^; the aim is to 

improve the design of the program according to some criteria. Refactoring 

research aims then to build the “train tracks” tha t connect one program 

to another program with the same behaviour. In the diagram, applying 

a composition of refactorings is equivalent to moving along the track to  a 

possibly very different program structure, but one th a t nevertheless exhibits 

the same external behaviour.

Refactoring research has really only taken place in tlie past decade, and 

has been focused on the transform ation of object-oriented programs. To 

understand why it never received much attention in the context of structured 

programming, consider the generic structure chart dei)icted in figiu'e 2.2, and 

what sort of refactorings could be applied to it. It is hard to propose much, 

other than tha t data  tha t is passed around the chart a lot could be moved 

to a shared da ta  structure. The problem to be solved has been factored into 

a number of functions and these have been fixed in a tight control structure 

where little  movement is possible.

By way of contrast, consider the generic class diagram of figure 2.3. Even 

without any knowledge of the actual application, many possible refactorings 

A quirky notion would be to apply refactorings to a program pseudo-randonily, perhaps 

using simulated annealing, and use some metrics suite to decide if the design was improved.
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Figure 2.3: A Generic UML Class D iagram

come to  mind. An interface could be added to  the  class B and the  class A 

updated  to  access B only via th is interface. T he m ethod foo could be moved 

from the  class A to  the  class B and replaced by a delegating m ethod. Perhaps 

foo could be moved to  ano ther class entirely and A updated  to  inherit it from 

th a t class. Sim ilar refactorings could be applied to  the  m ethod foobar. We 

could even contem plate replacing the  aggregation relationship  from A to  B 

w ith an  inheritance relationship  in the  same direction. T he fact th a t so m any 

potential refactorings spring from a simple class diagram  is a conseciuence of 

the  nm ch richer set of abstractions available in the  object-oriented approach 

when com pared w ith th e  s tru c tu red  approach.

2 .1 .3  Form al and Inform al A pp roaches to  B ehaviour  

P reservation

It is theoretically  im possible for a  refactoring technique to  relate all program s 

th a t exhibit the  same behaviour. In practice, we have to  be very m odest in 

our aims. Few industria l languages have a formal sem antics. Even rarer are 

those th a t have a formal sem antics and a com piler th a t verifiably im plem ents 

those sem antics. Even given a formal sem antics for an industrial language, 

th e  com plexity of the  behaviour preservation proofs for non-trivial transfor

m ations will be in tractab le . Approaches based on a formal sem antics of the 

program m ing language cannot therefore be currently  expected to  produce a

13



working software tool*.

Existing refactoring work has generally relied on either a semi-formal 

demonstration of behaviour preservation [77], or indeed no dem onstration of 

behaviour preservation at all [38]. The former approach is appealing, in that 

it mimics to some degree what a disciplined programmer will do in prac

tice when refactoring a program. They will certainly not just change it and 

hope for the best; they will reason logically th a t the change they intend to 

make is behaviour preserving. This is an interesting middle-ground between 

a fully-fornial approach to proving behaviour preservation and ignoring the 

issue completely. By constructing a semi-formal proof of behaviour preserva

tion we improve om- confidence th a t the transformations we build are indeed 

refactorings. Also, if in testing an error is found in th a t a supposed refactor

ing changes the behaviour of the program it has been applied to, the error 

can be traced back to the proof and corrected there.

This notion of behaviom' preservation adm its many simple program refac

torings. Assuming certain i)re-conditions are met by the program being trans

formed, classes, methods and interfaces may be added or removed; invoca

tions of a method may be replaced by invocations of another method; access 

to a field may be replaced by a method invocation, and so on. We will see 

later in this work how such simple refactorings can be combined to produce 

complex transformations th a t have a j)rofound effect on program structure.

‘For an interesting exanii)le of a formal, correctness-preserving apj)roacli to program 

restructuring applied to a small-scale software engineering problem, see [42]. This approach 

requires significant work in reverse engineering the program, and it is not apparent whether 

the transformations used can be automated.
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2.1 .4  E xisting Work in A utom ated  R efactoring

So far we have discussed refactoring in general, but the main focus of this 

thesis is specifically automated refactoring. Obviously autom ation is valu

able; once the programmer decides tha t a certain refactoring should take 

place, much of what remains is tedious and error-prone work. Such work 

should, w'here possible, be autom ated. At the simplest level, the program

mer should be able, for example, to rename a class, and have the refactoring 

tool check th a t the new name is not already in use and update all uses of 

the old class name to the new class name. At a nuich more complex level, 

the programmer should be able to select a number of program elements and 

aj)ply a sophisticated, high-level restructuring to them; this is the direction 

this thesis will take.

The work of Opdyke and Roberts forms the basis for the autom ated 

refactoring approach taken in this thesis. Opdyke defined a set of refactorings 

th a t could be ajjplied to a C-t--|- program [77] and in further work showed 

lunv they could be used to construct higher-level refactorings, for example, 

to convert an inheritance relationship to an aggregation one, and vice versa 

[51]. Roberts [84] extended Opdyke’s work by providing a more formal basis 

for composing refactorings, and examined the use of dynamic information in 

refactoring. This work will be extensively cited throughout this thesis, so it 

is not discussed further here. In the following subsections we consider some 

of the other approaches th a t have been taken to autom ated refactoring. In 

many cases the term  refactoring has not actually been used, but the work 

nevertheless involves behaviour preserving restructuring of object-oriented 

programs.
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A pproaches to  Inheritance H ierarchy R eorgan isation

One of the significant contributions of the object-oriented approach was that 

it made inheritance a firm part of mainstream software development. Design

ing a class hierarchy is a difficult task however, so many a ttem pts have been 

made to provide autom ated support for this process. Probably the earliest 

work th a t addressed this issue was tha t of Pim and W inder [80]. When a 

designer adds a class to a hierarchy, the design of the hierarchy may cause 

tlie class to inherit unwanted attributes. This indicates th a t the hierarchy 

should be reorganised to separate the attributes th a t the designer would like 

to be inherited from the undesirable ones. Pun and W inder show how this re

organisation process can be autom ated and partly formalise their work using 

an algebraic m anipulation system.

Casais solves the “inheritance of unwanted featm es” problem in a some

what different way, specifying both global and incremental algorithms that 

reorganise a class hierarchy so as to remove the inheritance of unwanted fea

tures [16, 17]. This improves on P\m and W inder’s work in th a t it allows 

incremental reorganisation of a class library whenever a class is added to it. 

Casais also defines how to autom ate this restructuring algorithm  precisely 

and, in [18], presents the results of applying his restructuring algorithms to 

the Eiffel libraries. His restructurings are intended to operate in autom atic 

mode, which has the benefit th a t they can be applied to  very large hierar

chies, but the disadvantage th a t they will, in some cases, produce a result 

tha t is either incomprehensible, or of no software engineering impact.

Lieberherr, Bergstein and Silva-Lepe describe an algorithm th a t learns

a class library from a set of object examples, and minimises the number of

aggregation and inheritance relationships’̂ in this library, while preserving the 

^Tliese are the usual in terp re ta tion  of the construction and a lternation  relationships in
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set of objects defined by the  library  [59, 7]. This work is based on the  accepted 

philosophy th a t abstractions are discovered ra th e r th an  invented [50], so it 

makes sense to  allow a  designer to  define the concrete objects they  want to  

use, and then  to  learn the class hierarchy from these exam ples. More recent 

work by Hiirsch and Seiter in the  same area describes a  set of behaviour- 

preserving transform ations th a t can be applied to  a class library  [45]. This 

work has never achieved popularity  in m ainstream  software developm ent, 

probably due to  the fact th a t it is tigh tly  bound to  the  seldom -used adaptive 

software model, where class s tru c tu re  (the class graph) is m odelled separately 

from behaviour {propagation patterns). This contrasts strongly w ith the 

work of Opdyke and R oberts, and the  work presented in th is thesis, th a t 

sim ply assumes the class library  to  be specified in a m ainstream  program m ing 

language®.

Ivan Moore has developed a tool called G uru th a t can analyse and restruc

tu re  an inheritance hierarchy expressed in the  Self program m ing language 

[67, C9]. The inheritance hierarchy is optim ised in a  certa in  way, whilst pre

serving program  behaviour. O ptim al is taken  to  m ean th a t duplicate m ethods 

are removed, m ethod sharing is m axim ised, and redefinition of m ethods is 

avoided. Moore found th a t in general some m anual in tervention was neces

sary to  produce a good result, and th a t given an incom petently-developed hi

erarchy as input, the  restructu ring  could not im prove it ( “garbage in, garbage 

o u t” ). There is also the  risk w ith  th is sort of au tom ated  restructu ring  th a t 

the  essential abstractions th a t the  program m er defined in the hierarchy will 

be removed by the  restructuring , if they  have not yet actually  been made 

use of. In [68] Moore extends th is restruc tu ring  algorithm  to refactor m eth-

the Demeter  notation.
®0pclyke’s refactorings transform ed C + +  j)rograms, R oberts developed the Sm alltalk

Refactoring Browser, while th is thesis will focus on transfornuiig  .Java program s.
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ods by moving common expressions to  separate m ethods and invoking them  

there. W hile th is m ethod-level refactoring can reduce the  anioim t of code in 

the application and increase reuse, the  new m ethods it introduces will not 

necessarily appear cohesive to  the  program m er.

Snelting and T ip propose reengineering class hierarchies using concept 

analysis [91]. W hen a  designer creates a  class hierarchy, they  are in effect 

describing the ir perception of the  key classes and relationships in the  dom ain 

they are modelling. A program m er who uses th is hierarchy m ay find th a t 

the classes provided are not quite  w hat are required in the ir application, 

and th is will apj)ear as anom alies in the ir code. For exam ple, a class may 

not use all the  functionality of its superclass, or the application m ay create 

several objects of the same class, bu t use different subsets of the  class’s 

functionality  in different contexts. In both  these exam ples, the  user of the 

hierarchy requires different classes (or concepts) from th e  ones provided by 

the designer of the hierarchy. In th is work a concept lattice is constructed  

th a t highlights the concepts th a t th e  program m er has actually  m ade use of. 

This provides valuable guidance in reengineering the class hierarchy; in the 

exam ples described above, the  classes in question probably need to  be split. 

The type of transform ations th is analysis produces would have the  effect of 

m aking the  class hierarchy represent more tru ly  the progranuners’ view of 

the dom ain. In the context of th is thesis, the  reengineering described in this 

paper could be im dertaken prior to  th e  in troduction  of a design pa tte rn .

Other Approaches

Ducasse, Rieger and Demeyer describe a technique for detecting  duplicated  

code based on simple string com parisons to  detect identical lines of code, 

and the  use of a scatter plot to  visualise the  results of the com parisons [28].
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For a program with n hnes of code, the corresponding scatter plot would be 

ail n-hy-n matrix w'here a dot is present at location {i,j) only when line i 

in the program is identical to line j .  This work is used as a basis in [29], 

where a preliminary proposal is made for tool support for refactoring to 

remove duplicated code. They suggest that full automation is possible only 

in simple cases of exact code cloning, and that programmer intervention will 

l)e required in most cases.

Sw'eeney and Tip developed an automated approach to detecting dead 

data members in C + +  applications [95]. A data member m  is defined to 

be dead if there is no object in the program that contains m such that the 

value of rn can affect the program’s external behaviour. Naturally, detecting 

such dead data members paves the way for a simple refactoring that removes 

them. This type of refactoring appears unremarkable but the results achieved 

were dramatic. On the benchmarks tested, an average of 12.5% of the data 

members were found to be dead, and the average occupancy of run-time ob

ject space by dead data was found to be 4.4%. This suggests that refactoring 

research is still in its infancy, and that a lot can still be achieved with cjuite 

simple techniques.

Maruyama and Shima present an approach to method refactoring based 

on the usage patterns of a framework [63]. The basis is that a method in a 

framework has dependencies on other franiewwk methods that to a greater or 

lesser degree match how programmers using the framework will override the 

method. If the method is normally overridden in such a way as to preserve 

these dependencies, it suggests that the interaction with the other methods 

is invariant and can be captured in a template method. Conversely, if the 

method is normally overridden in such a way as to destroy these dependen

cies, it suggests that the method represents a “hot spot” [79] and is better
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modelled as a hook method. In the first case, the transform ation will mean 

th a t a programmer using the framework has less code to write; in the latter 

case it will mean th a t the programmer has less code to  read. Experimental 

results presented in [63] produced a reduction of up to 22% in the num

ber of statem ents a programmer has to write when using the framework to 

develop new applications. Because the refactoring process operates in au

tom atic mode, it exhibits the attendant problem of creating new methods 

th a t may appear meaningless to the programmer. Nevertheless the results of 

this approach seem very valuable, probably because using the modification 

histories of the methods in the framework is in effect giving the programmer 

indirect control over what refactorings take place.

2 .1 .5  C a teg o risa tio n  o f  R efactorin g  A pp roaches

There are a luunber of a ttributes tha t can be used for categorising approaches 

to refactoring. The most significant ones are as follows:

• MeMiod of Application: In a fully-automated approach a software tool 

is used tha t applies a large scale restructuring to  the program. A serni- 

autornated approach also involves a software tool, but involves the user 

choosing what refactorings are to be applied. Finally, the user can 

simply apply the refactoring by hand.

• Approach to Behaviour Preservation: The simplest approach is where 

no proof of behaviour preservation is presented; it is simply taken for 

granted or assumed to be obvious. A semi-formal proof means that 

some formal model (usually first-order predicate logic) is used to sup

port the behaviour preservation arguments, but the reasoning used is 

not limited to syntactic deduction. In a fully formal approach, a formal
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model is used tha t reflects the semantics of the programming language 

sufficiently strongly th a t an entire behaviour preservation proof can be 

constructed in the formal domain.

•  Method o f Composition-. A refactoring approach th a t provides a suite of 

refactorings will usually also provide a method for composing them. In 

dynamic composition the user is allowed to combine refactorings freely 

as they are working on the code, while static composition approaches 

provide the user with a set of higher-level (composite) refactorings.

For example, Fowler presents a catalogue of refactorings [38] th a t are to be 

applied by hand, no proof of behaviour preservation is provided, and nothing 

is said about composing these refactorings. On the other hand Robert’s 

refactorings [84] are apjjlied semi-automatically (the user states where to 

apply them), a semi-formal proof of behaviour preservation is provided, and 

a dynamic method of refactoring composition is provided.

In general, the fully autom atic method of application has the advantage 

that it may be left run in batch mode on a large system without requiring 

user intervention. It may however perform refactorings th a t are of little or 

no real significance, and the ultim ate results may be hard to comprehend.

As discussed earlier, a behaviour preservation argument is desirable, though 

the fully-formal approach is not promising.

As regards composition of refactorings, the dynamic approach is the freer 

and more expressive one. However the static approach allows powerful refac

torings to be developed, tested extensively and then presented to the user as 

a reliable refactoring option.

The approach we take in this thesis is to statically develop semi-automated, 

composite refactorings, and to  develop for each one a semi-formal proof of 

behaviour preservation.
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2.2 D esign  Patterns

Patterns have been one of the most significant developments in software 

engineering in the past decade. The aim of this field is to identify and cat

alogue the knowledge and expertise th a t has been built up over many years 

of softw'are engineering. Patterns can be identified in all parts of the de

velopment process: architecture, analysis, design, coding, reengineering, as 

well as in specific application areas such as real-time programming or user 

interface construction. Patterns are in no way invented; they are discovered 

or “mined” from existing systems. The motivation is to uncover proven de

signs th a t experts have already used and reused, and to distill from these 

the essence of the solution with domain-specific detail removed. The result

ing nugget of design wisdom can then be docimiented and made generally 

available. This pattern  can be assimilated by other designers and applied in 

other domains.

The notion of a i)attern in softw'are was borrowed from the w^ork of the 

architect Christopher Alexander, who described the process of architecting 

living space (be it the corner of a room or an entire city) in term s of patterns. 

He defined the notion of a pattern  in the follcnving way:

Each pattern  is a three-part rule, w'hich expresses a relation be

tween a certain context, a problem, and a solution. [1, p .247]

Varying definitions of the term  pattern  abound, but this “three-part” version 

suits our current purposes. Richard Gabriel puts the Alexandrian definition 

into a softw'are context in this way:

Each pattern  is a three-part rule, which expresses a relation be

tween a certain context, a certain system of forces which occvirs
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repeatedly in tha t context, and a certain software configuration 

which allows these forces to resolve themselves. [39]

This thesis is concerned with the automated application of design pat

terns. We choose to work with patterns at the design level for two reasons:

• It is a richer set than the program-language specific patterns found at 

the coding level.

•  They are more concrete than those found at the analysis level so au

tom ating their application to source code is realistic.

The notions of formalisation and autom ation are not generally welcomed in 

the patterns connnunity. Jim  Coplien expressed this distaste clearly:

Patterns aren’t designed to be executed or analyzed by comput

ers, as one might imagine to be true for rules: patterns are to 

be executed by architects with insight, taste, experience, and a 

sense of aesthetics. [23]

We concur with this position in term s of the first two parts of the Alexan

drian definition. Deciding th a t a context is appropriate for the application 

of a pattern and assessing tha t the forces acting in this context will be re

solved by the pattern  is a m atter of “insight, taste, experience, and a sense of 

aesthetics.” However, the third part of the pattern  definition, tha t of apply

ing the software configiu’ation tha t resolves the forces, is clearly a potential 

candidate for automation. In chapter 4 we will present a methodology for 

the development of autom ated design pattern  transform ations where the de

signer defines the context to which the pattern  is to  be applied and the actual 

application of the software structure is autom ated. O ther work in the area 

of autom ated pattern  application is considered in th a t chapter as well, so in
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this chapter we focus on other uses of form alisation and  aiitom ation in the 

context of design patterns.

2.2.1 Form alisation o f D esign  P attern s

A nthony Lauder and S tu art K ent argue th a t existing p a tte rn  descriptions 

suffer from being expressed in inform al language and being overly-dependent 

on a  specific exam ple to  convey the  essence of the p a tte rn  [56]. T hey conse

quently  develop a formal th ree-part model to  describe a  p a tte rn , viz:

•  Role model. This is the  most abstrac t representation  of the  pattern . 

The actors involved in the  p a tte rn  are identified as well as the ir abstract 

s ta te  and the  essential collaborations between them . These definitions 

are abstrac t and im ply constrain ts th a t any refinem ent of the p a tte rn  

m ust respect.

•  Type model. This is a refinem ent of the  role m odel where roles are 

replaced by domain-specific types th a t define concrete syntax for oper

ations and add to  the  ab strac t sem antics of the  role model.

•  Class model. This final refinem ent is the  actual deploym ent of the 

p a tte rn  in term s of concrete classes.

In each model, system  dynam ics can be expressed using a variant of the 

UML sequence diagram . As each of the  three m odels is formalised in term s 

of sets and constrain ts, it has the  po ten tial to  be used in the developm ent of 

au tom ated  tool support for patterns.

Anm on Eden et al have developed a declarative language called LePUS 

th a t is specifically geared tow ards expressing the  object-oriented m otifs th a t 

typically recur in design p a tte rn s  [33, 32]. In LePUS a program  is modelled as
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sets of entities (classes and m ethods) and various relationships/co llaborations 

between these en tities (inheritance, m ethod invocation, m ethod forwarchng 

etc.). In [33] LePUS is used to  describe a set of the  G am m a et al design 

p a tte rn s  [41] and to  explore th e  relationships between patterns.

LePUS has bo th  a graphical form at and a tex tu a l one th a t closely resem 

bles Prolog. This la tte r fact m akes it easy to  im plem ent a  LePUS model as 

a  Prolog facts database and use it in various p a tte rn  activ ities [31]:

•  Validation. Testing if a  certain  set of classes/m ethods fit a certain  

p a tte rn  can be achieved by executing a cjuery w ith these elem ents as 

argum ents to  the cillery.

•  Discovery. To discover an instance of a certain  p a tte rn  in a model, 

the (juery can be executed w ith variables instead of program  elements. 

This will a ttem p t to  m atch  the  p a tte rn  across the en tire database.

•  Application. R ather th a n  searching for the  p a tte rn  in the  database, 

the assertions representing th e  p a tte rn  are them selves added to  the 

d a ta b a s e '.

A formal model of p a tte rn s  certainly  has po ten tial to  serve as a sound 

foundation for au tom ated  p a tte rn  application. W ork in th is area is ongoing, 

though as yet few working pro to types have been developed. One exception 

is the work of G ert F lorijn and  his group, which is discussed on page 87.

2.2.2 A utom ated  D etection  of D esign  Patterns

A utom ated  detection of design p a tte rn s  is re la ted  to  au tom ated  design p a t

te rn  application and has received some a tten tio n  by researchers. T he idea is 

^Note th a t in our opinion th is work does not fully address the issues involved in p a tte rn  

application, a position we outline in section 4.5
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very tem pting: leave an au tom ated  tool roam  over a large software reposi

tory and see w hat p a tte rn s  it may find. T here is potential to  uncover new' 

patterns, or to  find known j)atterns thus enhancing the com prehension of the 

system.

Kyle Brow'n developed a  tool th a t reverse engineers Sm alltalk program s 

and can recognise certain  design pa tte rn s  in the  code [f3]. In the  tests  he 

conducted, it found several of the G am m a et al p a tte rn s  [41] w ith good 

success. In each case, the  p a tte rn  s tru c tu re  it detected  was la ter verified to  

indeed be an instance of the  relevant pa tte rn . His case study w'as cjuite small 

so it is hard  to  draw' a  firm conclusion from this.

Tonella and  A ntoniol use concept analysis to  identify groups of classes 

sharing com m on p a tte rn s  of relationships, both  s truc tu ra l (inheritance and 

association) and non-structu ra l (m ethod invocation etc.) [98]. T heir claim is 

th a t these groupings are likely to  rei)resent design jm tterns th a t are present 

in the  code. In a case study, the ir approach successfully identified several 

instances of th e  well-known A dapter pa tte rn , and also aided in identifying 

a dom ain-specific p a tte rn  rela ted  to  in p u t/o u tp u t. Of course applying this 

approach to  poorly-w 'ritten code would more likely uncover poor p a tte rn s 

ra ther th an  good patterns.

Jahnke and  Ziindorf propose a m ethod precisely for the identification 

of poor p a tte rn s , w ith  the  in ten tion  of transform ing them  to  good design 

patterns*^ [49]. T hey  use G eneric Fuzzy Reasoning N ets (G FRN s) to  describe 

the poor p a tte rn  s tru c tu re  th a t is to  be transform ed. Because it is “fuzzy,” 

the descrip tion  does not define one precise structu re , bu t a more vague set 

of s tru c tu re s  th a t  ind icate  th a t a certain  p a tte rn  should be applied. The 

poor p a tte rn  identification tool is in tended to  be used interactively: the  user 

®Their novel approach to pattern application is discussed in section 4.5.
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identifies where they  suspect a poor p a tte rn  to  be and th e  G FR N  uses fuzzy 

inference to  assess if the  user is correct. They give an exam ple of using their 

approach to  detect a set of global variables to  which th e  Singleton p a tte rn  

could be applied, bu t otherw ise th is innovative work does not appear to  have 

been developed further.

Keller et al have developed th e  SPOO L environm ent for the  reverse- 

engineering of C + +  code [52]. This is a collection of off-the-shelf tools 

(parsers, browsers, layout generators etc.) th a t are com bined to  produce 

an environm ent th a t can provide several abstrac t views of a software system. 

In [52] SPO O L is used to  recognise pa tte rns during th e  process of reverse 

engineering. They argue th a t ra th e r than  sim ply ex tracting  a design from 

source code, the  rationale behind th is design m ust also be uncovered®. Some 

pa tte rn s can be recognised in a purely au tom atic way, while some require 

user intervention. In [87] SPO O L is also used for th e  detection  of hot spots 

in a framework.

Considering p a tte rn  detection  in term s of the th ree -p art definition of pa t

te rn  given above, we see th a t fully au tom ated  approaches can only ever deal 

w ith  recognition of p a tte rn  structu re . P a tte rn  s tru c tu re  is insufficient in ex

act design p a tte rn  recognition as the p a tte rn  s tru c tu re  m ay be present, but 

not dynam ic relationships or the  in ten t. Also, several p a tte rn s  have the  same 

p a tte rn  structu re , and it is only the  non-structural characteristics th a t differ

en tia te  between them . A part from the first approach above (th a t of Brown), 

all the  p a tte rn  recognition and  detection  work operates in a sem i-autom atic 

way, where the  user is involved in th e  process as well. This again brings the 

“insight, taste , experience, and a sense of aesthetics” into play and m eans 

^E xtracting rationale as well as architecture is also the m ajo r them e in the work of 

W oods et al [100].
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tha t full pattern  recognition is possible.

2.2 .3  P atterns in R eengineering, R everse Engineering  

and E volution

Autom ated introduction of design patterns has a clear application in reengi

neering. In making a system more flexible to cope with future developments, 

introduction of a design pattern  is a likely task to undertake. There can also 

be patterns in the actual process of evolution and reengineering itself, and it 

is this work tha t we look at in this section.

Foote and Opdyke propose a nascent pattern  language to describe the 

process of developing usable software [37]. The topmost pattern, “Develop 

Software that Is Usable Today and Reusable Tomorrow,” gives rise to three 

patterns on the next layer;

• “Prototype a First-Paijs Design.”

• “Expand the Initial Prototype.”

• “Consolidate the Program to Support Evolution and Reuse.”

Their work focuses then on further patterns th a t form part of the consoli

dation pattern, ultim ately leading to the low-level refactorings proposed by 

Opdyke [77]. Although not explicitly mentioned, the pattern  “Apply a De

sign P a tte rn” would be part of consolidation as well, and this thesis provides 

autom ated support for this process.

Demeyer, Ducasse and Nierstrasz propose a pattern  language for reverse 

engineering [24]. They subdivide these patterns into four clusters:

• First Contact: what to do when first approaching an unknown software 

system.
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• Initial Understanding: liow to obtain a preliminary understanding of 

the software system, mainly based on class diagrams.

• Detailed Model Capture: how to obtain a detailed understanding of 

(part of) the software system.

• Prepare Reengineering: since reverse engineering is normally a precur

sor to reengineering, this cluster of patterns shows how to prepare for 

subsequent reengineering.

The patterns developed include the self-explanatory “Read all the Code in 

One Hour” and “Recover the Refactorings,” which aims to recover what the 

original developers learned during the iterative process of development. This 

pattern  language expresses the reverse engineering expertise develoi)ed by 

the authors over several years of academic and practical experience, and so 

reflects a classic use of the pattern  approach. In relation to this thesis, the 

focus is on reverse engineering rather than software evolution or reengineer

ing.

Stevens et al argue tha t one of the main reasons why software reengineer

ing research has had little impact on software reengineering practice is the 

difficulty in communicating the research results to the practicing coninnmity 

[92, 26]. They consequently propose system reengineering patterns as an ap

proach to package and transfer this expertise. For example, the Deprecation 

pattern  captures the well-established practice of updating an unsatisfactory 

interface by defining the new' interface but also leaving the existing interface 

intact. A “dej)recated” fiag is added to the old interface, advising users to 

move to the new one in preference. In time, the imsatisfactory deprecated 

interface can be removed. As argued in section 1.2, this thesis can also be 

viewed as providing autom ated support for the reengineering process.
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2.3 T hesis C ontext

Tliis thesis merges the two strands of research described in this chapter. 

Program restructuring (section 2.1) is used in order to autom ate the apph- 

cation of design patterns (section 2.2) to an existing program. This merging 

is timely, as program restructuring research has suffered from the lack of a 

firm basis for deciding what sort of structures it should be targetting. De

sign patterns are solutions th a t have proven their w'orth in practice, and so 

provide an excellent domain in which to find such target structures.

The existing work in program restructuring is inadequate for our pur

poses. It is only tha t of Roberts [84] tha t deals with a rigorous approach to 

refactoring composition. How'ever he only allows compositions tha t are sim

ple secjuences of refactorings, and many design pattern  transformations are 

too complicated to  be described this way. Accordingly w'e have extended his 

method in several ways, the principle one being tha t we allow a set iteration 

construct in the definition of a composite refactoring.

It is also clear th a t existing design pattern  work is not sufficient for our 

purposes. Building a restructuring tha t applies a design pattern  leads us to 

consider questions about the pattern  tha t have not been addressed in existing 

work. Firstly, it must be decided what the starting point of the transform a

tion should be, i.e., what type of program structure the transform ation can 

be applied to. Secondly, the connnonality between design patterns must be 

identified and exploited in the development of the transformations, to avoid 

the wholesale duplication in the transformation definitions th a t would occur 

otherwise.
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2.4 Sum m ary

In this chapter we have described the two principle research fields upon which 

this thesis is founded: program restructuring and design patterns. The aim 

of this is to provide a general background to existing and ongoing research 

in these areas. In subseciuent chapters we present our own contributions in 

more detail, and also present detailed analysis of our approach in comparison 

to closely related work.
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Chapter 3 

Foundations of Refactoring: 

Behaviour Preservation

111 the previous chapter we described the notion of behaviour preservation and 

hinted at the approach tha t w'ill be adopted in this thesis. In this chapter 

we i)resent our approach to deinonstrating behaviour preservation in detail 

and a])ply it with full rigour to a concrete transformation.

In section 3.1 we describe our approach to defining primitive refactorings, 

stating their pre- and postconditions, and arguing behaviour preservation. 

In section 3.2 a m ethod for the derivation of the pre- and postconditions of 

composite refactorings is presented and applied to a concrete example. In 

section 3.3 our api)roach is compared to other w^ork in the field and finally, 

in section 3.4, the results of this chapter are summarised. The approach 

presented in this chapter has been published in [76].
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3.1 Prim itive Refactorings and Behaviour Preser

vation

A primitive refactoring is a refactoring th a t is not decom posed into simpler 

refactorings. O ur transform ation  approach is based upon a layer of prim itive 

refactorings. Section 3.1.4 describes how we define a  prim itive refactoring, 

while in appendix B.3 a list of the  actual prim itive refactorings used in this 

work is provided.

As sta ted  previously, it is necessary in defining a  prim itive refactoring to  

sta te  w hat the precondition of the  refactoring is. In defining th is precon

dition, assertions are m ade about the  program , for exam ple, th a t a certain  

class exists or a given nam e is not already in use. We define a set of analy

sts functions to  enable these assertions to  be m ade. Analysis functions are 

described fu rther in section 3.1.2.

In developing higher-level refactorings we frequently need to  ex trac t cer

ta in  inform ation from the  program , for exam ple, to  build an interface from 

a class based on th e  signatures of its  public m ethods. This type of function 

does not affect the  program  in any w ây, bu t perform s a more significant task 

th a n  w hat an analysis function does. These fiuictions are referred to  as helper 

functions and are elaborated  fu rther upon in section 3.1.3.

C ertain  general assum ptions are m ade abou t the  program  being tran s

formed and these are described in section 3.1.5. Also, the  m athem atical 

prelim inaries for th is chap ter are described in section 3.1.1.

3.1.1 M athem atical Prelim inaries

W’e use the  following nota tion  based on [62], also used in [84]. This will be 

used extensively in section 3.2 where it will be necessary to  be precise about
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the effect of a refactoring on a j)rogram.

• P\ This is the program to be refactored.

•  Jp : Denotes an interpretation of first-order predicate logic where the 

universe of discourse comprises the program elements of P, and the 

fmictions and predicates of the calculus reflect the analysis functions 

as applied to the program P.

• \=ip pre-Ff. Denotes the evaluation of the precondition of the refactoring 

R  on the program interpretation Xp.

• postii{Tp): Denotes the program interpretation I p ,  rewritten with the 

postcondition of the refactoring R.

•  f [^/ y] ' -  Denotes an analysis function th a t is precisely the same as the 

analysis function / ,  except tha t it maps the element x  to y. This synttix 

is used in postconditions to describe the effect of the refactoring on the 

analysis fmictions. Note th a t the name of a new analysis function 

produced as the result of applying a refactoring is w ritten with a prime 

('), so stating th a t an analysis function /  is updated with the new 

element (x, y)  would be w ritten thus: / '  =  f [x/y],

•  ±: Is used in a postcondition to  mean an undefined value. For example, 

if a transform ation removes a method called m, the updating of the 

c lassO f  analysis function to indicate tha t m  no longer belongs to any 

class would be w ritten thus: c l a s s O f  =  c la ssO f[v i / l ] .

3.1.2 Analysis Functions

Analysis functions serve two related roles in our work. Firstly, they are used 

as functions and predicates in the first-order predicate calculus expressions
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that define the precondition of a refactoring. Secondly, they are implemented 

as actual operations that can be applied to a Java program to extract some 

information about the program, for example, to test if a method is in a certain 

class or to find the signature of a given method. The relationship between 

these two roles is that the latter is the implementation of the interpretation 

of the former. We will simply speak of “analysis functions” and rely on the 

context to make it clear whether we are referring to a fmiction in first-order 

predicate logic, or a concrete operation, or both.

The analysis functions used in this work are defined in appendix B.l. 

There are also dependencies between the analysis functions and these are 

described in appendix B.1.1. For example, if one class inherits from another 

class, the type of the former class must also be a subtype of the type of 

the latter class. In computing the precondition of a composite refactoring in 

section 3.2, it will be necessary to make use of these dependencies.

Some of the analysis functions are obviously easy to evaluate, for example, 

the classO f  fimction that tests if a method is a member of a class. Others 

are more difficult, and a number of them are generally undecidable. In the 

latter case, there are three possible ways the situation can be dealt with:

1. An implementation may not be necessary. Some analysis functions 

are only used in a precondition when a previous refactoring has al

ready established the condition. This type of analysis function will 

appear in precondition specifications, and in behaviour preservation 

arguments, but the necessity for an implementation will never arise. 

An examj)le of this is the createsSameObject analysis function, that 

tests if a given method and constructor return identical objects given 

the same arguments. It is necessary to implement a refactoring (in fact 

make Abstract, a helper function, see section 3.1.3) that sets up this
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condition, but this is a straightforward task.

2. A conservative estimation can he made. For some imdecidable analysis 

functions a useful conservative estim ation exists. For example, the 

uses{m ethodl,m ethod2) analysis function tha t determines if m ethodl 

may invoke method2 can only be determined precisely by using an 

expensive dynamic analysis of the program. However, a conservative 

estim ation tha t probably includes some false positives can be easily 

made based on the program text.

3. The programmer 7uay be queried. Asking the programmer to assess 

if a given precondition holds is not an luireasonable approach. They 

would have to make this assessment anyway were they to perform the 

refactoring by hand, so their workload is not being increased. Indeed, 

this approach encourages them to think about program conditions tha t 

they might otherwise have overlooked.

Program  E ntit ies

In describing a refactoring or its precondition, it is necessary to refer to 

various program elements: classes, methods, interfaces etc. The principle 

elements th a t we make use of, and their interrelationships, are depicted as 

a UML class model in figure 3.1. O ther program entities tha t are used in 

defining refactorings and analysis functions are: Interface, Argimient, Objec- 

tReference, Field, Param eter, Expression, Variable and M ethodlnvocation.

For any entity X, we also define an entity SetOfX th a t represents a set 

of entities of the type X. Note th a t for purposes of brevity, a program entity 

and its name may be used interchangeably. For example, a refactoring that 

operates on a Class may instead be passed a String th a t represents a class
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Class ObjectCreationExprnclassCreated

}ins constructorlnvokedcon âins

createsSameObjectMethod Constructor

sigO f

Signature

Figure 3.1: Principal Program Entities and their Relationships

name. getClass(String) could be used to make this relationship precise, l)ut 

this adds unnecessary bulk to the descriptions.

3.1.3 Helper Functions

In describing a refactoring it may be necessary to extract richer content from 

the program code than is provided by the analysis functions. For example, 

we may wish to l)uild an interface from a class based on the signatures of 

its public methods. Helper fmictions are vised to perform this type of task. 

Because they are not at the prim itive level of the analysis functions, we 

provide them with a pre- and postcondition. Helper functions are proper 

functions without side-effects on the program, so the postcondition invariably 

involves the return  value of the helper function itself. The complete list of 

helper functions used in this w'ork is presented in appendix B.2.
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3.1.4 Prim itive Refactorings

The aim of this work is to  develop composite refactorings th a t introduce de

sign patterns, not to develop a complete set of primitive refactorings as such. 

For this reason, we have not defined refactorings th a t we assessed might tran 

spire to be useful; rather we have defined a new refactoring only when the 

need for it arose. The complete list of refactorings used in this work is pre

sented in appendix B.3. Some of them are standard and would be part of any 

refactoring suite, for example, addClass. Others are idiosyncratic and cjuite 

peculiar to  the present work, for example, replaceObjCreationWitfiMethlnvo- 

cation, which replaces a given object creation expression with an invocation 

of a given m ethod using the same argument list.

Each primitive refactoring is described in the following way:

• Name, return type, argument types and informal description'. The re

tu rn  and argum ent types may be boolean or void, or one of the program 

entities described in section 3.1.2. Name and informal description are 

self-explanatory.

• Precondition: This is an assertion, w ritten in first-order predicate logic, 

th a t nuist be true in order for the refactoring to be behaviour preserv

ing. If a precondition fails, and the transform ation is nevertheless per

formed, the resulting program may not be legal Java or may behave 

differently from the original program.

• Postcondition: This is a mapping from analysis functions to analysis 

functions. It describes the effect of applying the refactoring in terms 

of changes to  the analysis functions defined in appendix B .l.

• Behaviour preservation argument: Opdyke [77] presents behaviour preser

vation argum ents in term s of seven program properties th a t he proposes
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are easily violated during refactoring^ We take a similar approach, but 

rather than  limiting the properties th a t are maintained to a fixed few, 

we consider what properties can possibly be violated by each individual 

refactoring and argue tha t they are not. The arguments are non-formal 

in style and cannot guarantee th a t no behaviour violations occur, but 

they are rigorous and are intended to be stronger than the argument 

a program m er would typically make internally were they to perform 

the refactoring by hand. A key advantage to our ap])roach is th a t 

the behaviour preservation argument is made only once by the creator 

of the prim itive refactoring, and need not be repeated by the many 

programmers who will apply the transform ation in practice.

3.1.5 A ssu m p tio n s  and L im ita tions

It is assinned th a t certain constraints hold on the Java programs th a t are 

transformed in this work. The assumptions we make are as follows:

1. The initial program must compile correctly. If this was not the case, 

then, for example, the refactoring adclMethod could change the pro

gram behaviour by causing an illegal program to become a legal one.

2. Reflective programs cannot be transformed safely using the approach 

in this w'ork. For example, the following code invokes a method called 

foo() on object obj:

obj .ge tClass() .getMethod(” foo” ,null).invoke(obj);

It is clear th a t if the program is transformed to rename the method

'Tokuda and Batory use an approach based oii Opdyke’s, and point out that at least 

three more ijrograni properties are necessary to maintain program behaviour [96].
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foo, this code excerpt will not execute as before, but will throw an 

exception.

3. We have assumed that objects are only created using the new operator. 

The issues surrounding object cloning have not been dealt with in detail 

in this w’ork^.

4. Private classes are not considered. We disallow the creation of a new 

class if its name clashes with an existing class, even if the existing class 

is private and no real clash exists.

5. Packages are not dealt with in this work, so a class or interface can be 

safely identified by just its name.

6. The interface to a method is described by its name, return type, and pa

ram eter types. Exceptions also form part of the interface to a method, 

but for simplicity we have ignored them in this work.

The first two constraints are fundamental to our approach, the third involves 

an issue tha t we have not yet addressed, while the last three are simplifica

tions tha t would be burdensome to do without, but are not essential to our 

approach.

3.2 C om posite Refactorings

The ultim ate goal of this work is to use the refactorings, helper functions, and 

analysis functions described in the last section to define behaviour preserving

^For example in a new expression, the class of the created object is given explicitly. 

However, in a clone expression, the class of the created object is not known statically, 

but depends on the type of the receiving object. This would be an issue when designing 

transformations for creational patterns, as they have an impact on how objects are created.
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design pattern transformations. As will be presented in the next chapter, the 

process of constructing a design pattern transformation is essentially a top- 

down one, but there is also an element of bottom-up composition of existing 

refactorings. In this section we describe the way in which we compose refac

torings, and present a technique for computing the pre- and postconditions 

of a composite refactoring. The importance of these techniques lies in the 

fact that they allow us to implement a design pattern transformation as a 

composition of refactorings and then to check the legality of the composition 

and calculate its overall precondition.

We could avoid the necessity of calculating the overall precondition of 

a composite refactoring by checking the precondition for each component 

refactoring just before it is applied. If a precondition fails, we simply rollback 

to the starting point and inform the user. This approach is undesirable 

whether the composition is legal or illegal:

• If the composite refactoring is legal, testing its precondition will nor

mally be faster, and never slower, than testing the precondition of each 

component refactoring separately.

• If the composite refactoring is illegal, testing its precondition will be 

considerably faster than applying several of the component refactorings 

and then being obliged to rollback to the starting point. Note that some 

refactorings are not undoable, so supporting rollback would involve 

checkpointing.

Since we aim to build refactorings statically, the program P  is not available 

for a “try it and see if it works” approach. No assumptions can be made 

about P, other than those described in section 3.1.5.

In our work, we have discovered that there are two ways in which we need
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to  compose refactorings:

1. Chaining.

2. Set iteration.

Chaining is where a sequence of refactorings are apphed one after the  other. 

For exam ple, the following chain adds m ethods foo and goo to  the  class c.

addMethod(c,foo)

addMethod(c,goo)

Set itera tion  is where a  refactoring or a  refactoring chain is perform ed on a 

set of program  elem ents. For exam ple, the  following set itera tion  copies all 

the m ethods of the  class a to  the  class b.

ForAII m:Method, classOf(m)=a { 

addMethod(b,m)

}

O ther forms of com jjosition are possible as well of course, the  m ost obvious 

one being a selection statem ent. A lthough this is straightforw ard to  deal 

w ith, it is om itted  here tis we have found th a t in the  construction of design 

p a tte rn  transform ations in th is work, chaining and set iteration  suffice.

3.2.1 C om puting Pre- and P ostcon d ition s for a Chain  

o f R efactorings

A chain of refactorings m ay be of any length, bu t we can simplify th e  com

p u ta tion  of its pre- and postconditions by observing th a t we need only solve 

th e  problem  for a chain of length 2. This procedure can then  be iteratively  

applied to  the  rem aining chain until the  full pre- and postconditions have
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been com puted. For a chain of length n, n-1 applications of th is process will 

be recjuired.

The two refactorings to  be com posed are referred to  as R \  and R-2 - For 

a general refactoring i?,, its precondition and postcondition are denoted by 

pren^ and postR^ respectively. See figure 3.2.

pre, post.

precompositc

Figure 3.2: A Com posite Refactoring w ith Pre- and  Postconditions

The naive approach  to  com puting the  precondition is simply to  logically 

AND the  preconditions, i.e.,

]) f  ^ c o m p o s i t e  P ^  ^  P^

however there are several problem s w ith this. Firstly, postfix may guaran

tee preji^ which m eans th a t an unnecessarily strong precondition results (or 

indeed typically  a  contrad ictory  precondition), for exami)le,

addClass(c)

addM ethod(c,m )

ANDing the  preconditions produces, am ong o ther clauses, ~'isClass{c)  A 

isClass{c) ,  even though th is chain is perfectly correct. T he source of th is 

contrad iction  lies in th e  fact th a t th e  two preconditions should be valid a t 

different points in th e  transform ation.

Secondly a com position may be sim ply illegal, e.g..
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deleteClass(c)

addMethod(c,m)

ANDing th e  preconditions here gives simply isClass{c)  even though this 

chain is illegal! A lthough the  precondition for addMethod is valid at the 

s ta rt of the  chain, deleteClass breaks it so th is com position of refactorings 

can never be legal.

The precondition of the  chain is com puted first^. D uring th is com putation 

it m ay em erge th a t the  chain is in fact illegal. If th e  chain is legal, the 

postcondition is then  com puted. We describe how these com putations are 

perform ed in th e  following tw'o subsections.

L egality  te s t  and p recon d ition  com p u tation

Assuming th e  chain is legal, its precondition is obtained by logically ANDing 

preiij w ith w hatever p arts  of prefix th a t are not guaranteed  by postR^. The 

parts  of preji.^ th a t are not guaranteed  by postn^ are obtained by evaluating:

(Ip) P>'£R2

If a  contrad iction  arises in th is evaluation, the  chain is illegal. T he post

condition of the  first refactoring sets up a condition th a t contradicts the 

precondition to  the  second refactoring.

The precondition of th e  com plete chain is obtained  by evaluating:

preR^A \=postn^{ip) preR^

A contradiction  can arise in th is evaluation as well, and th is also means

th a t th e  chain is illegal. In th is case the precondition to  the  first refactoring 

■*It is valuable to compute the precondition first, because if the chain requires a stronger 

precondition than simply prsR^, it can be useful to use this stronger condition in later 

computations.
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demands a certain condition tha t contradicts the preconchtion to the second 

refactoring, and the first refactoring does not change this condition.

P o stcon d ition  com p u tation

In our approach"* a postcondition is described as a set of updates to analysis 

functions in the following form:

/ '  =  f\xlv\ 
g'  =  g [ p / i ]

Any analysis function not mentioned in the postcondition is implicitly not 

affected by the refactoring.

The i)ostcondition of a refactoring chain is obtained by concatenating 

the function ui)dates described in the postconditions. For example, if postji^ 

contains the majjping:

d a s s O f  =  da s s O  f [ f oo /  c\]

and postfix contains the niapi)ing:

d a s s O f  =  d a s sO  f [ f oo /  C2 ]

then naturally d a s s O f  =  dassOf [ foo /C 2 ] becomes part of the postcondi

tion of the chain. Denoting this concatenation operation as | we state  the 

postcondition of the chain to be;

postR  ̂ I postR^

Table 3.1 describes how this operator works in general.

A complete example of the application of this algorithm is given in section 

3.2.3.
■'I am grateful to  Dr. .lohii Boylaiid of the U niversity of W isconsin for pointing out 

problem s in my original approach to  postcondition com putation.
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pOStR^ pOStR^ pOStR^ 1 pOStR^

f  =  f [ x / y ] 9' =  g[p/(}] f  =  f [ ^ / y ]  g' =  g[plq]

f  =  f [ x / y ] f  =  f [ p / q ] f  =  f [ x/ y ] [p/ ( i ]

f  =  f [ ^ / y ] f  =  f [ x / z ] f  = f [ x / z ]

Table 3.1: C oncatenation  of Postconditions

3.2.2 C om puting Pre- and p ostcond itions for a Set It

eration

A set itera tion  has the following format:

ForAII x:Ent i ty,  P r e d ( x , . . . )  {

R ( x , . . . )

}

where E n t i t y  is some type of program  entity, P red  is some predicate and 

denotes the  program  entities th a t are argum ents to  th e  predicate an d /o r 

argum ents to  the refactoring. If the  set of x  of type E n t i t y  th a t satisfies 

P r e d {x , . . . )  is given as { x i , x 2 , . . .  and w riting Hi as a  shorthand  for

B { x i , . . . ),  then  th is iteration  m ay be viewed as the following chain:

/ ? i ,  R 2 ,  ■ ■ . ,  R „

However th is is a set iteration , so th e  refactorings could take place in any 

order. T h a t is to  say, they  m ust be able to  connm ite and th is fact enables us 

to  define when a  set iteration  is legal and w hat its pre- and postconditions 

should be.

1. Legality test. A set itera tion  is illegal if the  precondition of any com po

nent refactoring depends on th e  postcondition of another com ponent
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refactoring. It is also illegal if the postcondition of any component 

refactoring contradicts the precondition of another component refac- 

toring'\ Both these conditions are captured by requiring th a t for any 

refactoring Ri in the set iteration, the evaluation of the precondition is 

not affected by the prior application of any sequence of R j , j  7̂  i. We 

express this using the notation of section 3.1.1 as:

G { l . . n } ,  \=jppreR^ =  [=1^, p r e /j .  

where P' =  postR^^^ ( . . .  postn.^ {postR^^ (2^p)))r 

jm e  { l..n}  -  {z}, = j y ^  X = y

Roberts [84] looks at the issue of connnutativity of general refactorings 

in detail, however we are only concerned with the constrained case 

of set iterations. A very conservative approach to take is to demand 

th a t the postcondition of a component refactoring in a set iteration 

should not refer to  the analysis functions used in its precondition. This 

has transpired to be too constraining to be of use, so it will often 

prove necessary to examine the semantics of the iteration performed to 

ascertain if the above property holds. The legality test performed on 

page 50 is an example of this.

2. precondition computation: Any of the /?, could be the first in the chain. 

Since the precondition of the first refactoring of a chain must form part 

of the precondition for the whole chain, the precondition of the set 

iteration nnist be at least the ANDing of the preconditions of each 

of the component refactorings. Nothing stronger is required, so the 

®The component postconditions could be allowed to contradict each other. However 

the postcondition notation would have to be extended to allow disjunction between the 

function updates.
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precondition for the above chain can be expressed as:

i = n
A pren^

i = \

or in a more useful form as:

Vx : E n ti ty ,  Pred[x) •  preR(^x,...)

3. postcondition compxitation: By a similar argument, the postcondition 

for the above chain can be expressed as:

postR^ I postR^ I ... I postR^^

We have described how j)re- and postconditions can be computed for refac

toring sequences and set iterations. In the next section we apply these tech

niques to a non-trivial example.

3 .2 .3  A W orked E xam p le

In this section we take a typical composite transform ation tha t involves both 

chaining and set iterations and compute its pre- and postconditions. The 

calculations are performed in all detail in this example, but in future we will 

only sununarise the derivation.

The example we use is the algorithm that describes how to apply the 

E n c a p s u l a t e C o n s t r u c t i o n  miuitransformation®. The purpose of this 

m initransform ation is to loosen the binding between one class (creator) and 

another class th a t it instantiates {product). It does this by adding new con

struction methods to the creator class th a t perform the creation of product 

objects. Each new m ethod is given the name createP, and all expressions that 

®Minitransfonnatioiis are described in detail in section 4.3. For the purposes of the 

current ciiapter, they may be thought of simply as composite refactorings.
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create product objects in the creator class are updated to use the appropri

ate construction method. The impact of applying this m initransformation is 

tha t extending the creator class to work with a new type of product class is 

simply achievable by subclassing creator and overriding the createP method.

The algorithm for this minitransformation is defined as follows using the 

analysis functions, helper functions and refactorings described in earlier sec

tions:

EncapsulateC onstruction(C lass creator, Class product, String createP){

ForAII c:Constructor,  c lassOf(c)=product  {

Method m =  makeAbstract(c ,  createP);  

addMethod(creator ,  m);

}

ForAII e:ObjectCreationExprn, classCreated(e) =  product A 

containingClass(e) =  creator  A 

nameOf(containingMethod(e))  ^  createP {

replaceObjCreationWithMethlnvocat ion(e,  createP);

}

}

Computing the pre-and postconditions of this composite refactoring proceeds 

in several steps:

1. Compute pre and post for the chain in the first set iteration body

2. Compute pre and post for the first set iteration

3. Compute pre and post for the second set iteration

4. Compute pre and post for the overall chain
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C om puting pre  and post for the chain in the first set iteration body

1. Legality test and precondition computation-. This involves first rew riting 

the  precondition of addMethod(creator, m) w ith th e  postcondition of 

makeAbstract(c, createP):

Hp o s t „ , a k e A b s t r a c t { I p )  a d d M cthod

=  isC lass{crea tor ) / \ ^de f ines{crea tor ,  n a m e O f[ m / c r e a te P ] { m ) , s ig O f{ m ) )  

=  isClass{creator)  A - 'def ines{creator,  createP,  s i g O f{ m ) )

and then  ANDing this w ith th e  precondition for Method m =  makeAb- 

stract(c). The la tte r  is sim ply true, so the  final precondition for th is 

chain is:

i sC la s s {c r e a to r ) f \ ^d e f  ines{creator, createP, s ig O f{m ) ) {3 . l )

No contradiction occurred so the  chain is legal.

2. postcondition computation'. There is no analysis function updated  in 

bo th  p o s t a d d M e t h o d  p o s t j n a k e A b s t r a c t  SO wc cau siniply coucatenatc 

the postconditions to  obtain:

crea tesSam eO bjec t '  =  createsSameObject[{c,  m)/ t rue]  

n a m e O f  = n a m e O  f [ m  /  create P] 

c l a s s O f  =  classO f [ m  /  creator]

Va : Class ,  a ^  creator •  e q u a l l n t e r f  ace{a, creator)  =J> 

equal I n t e r  face '  =  equairnterface[[a ,  crea tor) / fa lse]  (3.2)

Com puting pre  and post for the first set iteration

1. Legality test: On first glance the postcondition of the body of this 

itera tion  (3.2 above) appears to  have no im pact on the precondition 

(3.1 above). However from appendix  B.1.1 we know th a t
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d a s s O f{ m )  =  creator A narneOf {rn) =  createP  

defines{creator, createP, s i g O f  {rn))

and this may contradict the second conjunct of 3.1. This would only 

occur if there were two methods m with the same signature. However, 

m is a m ethod whose signature is derived from iterating through the 

constructors of the product class. Since no two constructors in the 

same class can have the same signature, neither can two methods in 

the set iteration have the same signature. This means tha t the value 

for sigOf(rn) will vary on each iteration so there is no risk tha t the 

precondition will be violated.

precondition computation: On every iteration, the precondition must 

be true, i.e.,

isCIass{creato7') A -idef  ines{creator, createP, s igOf{m))

must be valid for every constructor processed. The first conjunct is not 

affected by the iteration, so it simply becomes part of the precondition 

of the iteration. The second conjimct presents a problem as rn is only 

calculated in the body of the iteration and so cannot be used in the 

precondition. However, s igO f{m )  is the same as the signature of the 

constructor being processed, so we can write the precondition as:

isClass[creator) AWc : Constructor,  c E product •

^ d e f in e s  {ere at or, createP, sigOf{c))  (3.3)

This precondition ensures th a t no m ethod called createP  already exists 

in the creator class with a signature th a t matches any of the construc

tors of the product class. If for practical reasons we prefer not to allow
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a method called crea teP  to exist in the creator  class at all, then this 

simpler precondition may be used:

isClass{crea tar)  A ~<defines{creator, createP)

3. postcondition computation: The postcondition for the body of this iter

ation is given in (3.2) above. The iteration creates a new rn each time, 

so the full postcondition is:

Vc : Constructor,  c G product •  3m  : Method  such that

createsSameObjec t'  =  createsSa;m.eOhject[{c, m)/ true \  

n a m e O f  =  narneO f [m /crea teP ]  

c l a s s O f  =  c l a s s O f [ m l  creator]

Va : Class ,  a ^  creator •  e q u a l ln t e r f  ace{a, creator)  => 

equal In ter  face'  =  equaHnterface[{a,  crea tor) /fa lse ]  (3.4)

C om pu tin g p re  and p o s t  for th e  second set iteration

1. Legality test: The postconchtion of the refactoring 

replaceObjCreationWithMethInvocation(e, createP) 

is that e is deleted, i.e.,

containing Method' =  containingMethod[e/  A.].

This can only have an impact on the precondition' 

createsSameObject{constructorInvoked{e), createP) A 

containingMethod{e)  ^  crea teP

^Wliere there is a disjunctive in the jjreconchtion as here, it may be clear tha t only 

one of the clisjuncts is relevant and we can safely choose th a t one to work with, hi 

this case returnsSameObject{constructorInvoked{e), m) A hasSingleInstance{product) 

is dropped in favour of createsSameObject{confitructorInvoked{e),m). The droj)ped 

disjunct relates to the very rare case where the product class is only instantiated once.
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if e refers to  the  same object creation expression. However, the  set 

iteration  processes each product creation expression in the  class creator, 

so e will refer to  a different expression on each iteration . This set 

itera tion  is therefore legal.

2. precondition computation: For each object creation expression processed 

in the  iteration , there m ust be a  su itable m ethod called createP defined 

in the  creator class:

Ve : O b jec tC rea tio n E xp rn ,  classCreated{e)  =  product A

con ta in ingC lass{e)  =  creator  A

n a m e O f  {conta in ingM ethod{e))  7  ̂ crea teP  •

3 m  : M ethod, n a n i e O f { T n )  = createP, d e f  ines{creator , m)  such th a t 

crea tesSam eO bjec t{ccn is truc torInvoked{e) ,m )  (3.5)

Note th a t the precondition conjunct con ta in ingM ethod{e) ^  m  is 

dropped as this is guaranteed by the fact th a t n a m e O f  {rn) =  crea teP  

and n a m e O f  {conta in ingM ethod{e))  7  ̂ createP.

3. postcondition computation: All th e  product creation expressions in the 

creator class th a t are not in a m ethod called createP have been re

moved:

Ve : O h jec tC rea tio n E xp rn ,  classCreated{e) = product A 

conta in ingC lass{e) = creator  A 

n a m e O f  {containing M ethod{e)) ^  crea teP  •  

conta in ing  M e t  hod' =  con ta in ing  M eth o d [e /1.] (3.6)
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C om p u tin g  pre  and post for th e  overall chain

1. Legality test and precondition computation: Precondition 3.5 must be 

rew ritten with postcondition 3.4 and the remaining conjuncts made 

part of the precondition of the whole minitransforniation. Before this 

can be performed, postcondition 3.4 must be massaged to a suitable 

form.

Postcondition 3.4 makes a universally quantified statem ent about all 

the constructors of the class product. For every product creation ex

pression in the creator class there is a corresponding constructor in 

the product class. We can therefore safely replace the quantification 

over the constructors of the product class with quantification over the 

product creation expression in the creator class. If the product class 

has constructors tha t are not used in the creator class, this change 

will weaken the postcondition. Using a weaker j)ostcondition than is 

actually guaranteed is fortunately a safe substitution.

Postcondition 3.4 may therefore be rew ritten thus^:

Ve : ObjectCreationExprn,classCreated{e) = product, 

containingClass{e) =  creator •  3rn : Method, such that 

creates SameObject' =

createsSameObject[{constructorInvoked{e), m )/true \  

n a m e O f  =  nam eO  f[rn /  create P] 

c la s s O f  =  classO f[ m  /  creator]

The transform ation of the classOf relationship may be replaced by a 

similar transformation to the defines relationship (see section B.1.1) to 

^The filial p a rt of the postcondition has been dropped as it is clear th a t the effect of 

th is  refactoring on the equallnterface analysis function is irrelevant in th is context.
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give:

Ve : ObjectCreat ionExprn, dassCreated{e) = product, 

containingClass{e) = creator •  3rn : Method  such that 

creates SameObject '  =

createsSameObject[{const7'uctorlnvoked{e),m)/true]

n a m e O f  =  nameO f [ m  /  create P]

de fines '  = defines[{creator,m)/true]  (3.7)

This postcondition is now in a suitable format to rewrite precondition 

3.5 as follows;

Ve : ObjectCreationExprn,  classCreated{e) = product A 

containingClass{e) = creator A

narneOf[m/createP]{containingMethod{e)) ^  createP  •

3rn : Method, nameOf[m/createP]{m)  =  createP, 

d e f  ines[{creator, m)/true]{creator, m)  such tha t

createsSarneObject[{constructorrnvoked{e), rn)/true]{constructorInvoked{e), m)

Simplifying this out gives:

Ve : ObjectCreationExprn,  classCreated{e) = product A

containingClass{e) = creator A

narneOf [containingMethod{e))  7̂  createP •

3ni : Method, true

Tliis simplifies to just true, so in fact the precondition for the second 

set iteration is fully guaranteed by the postcondition of the first set 

iteration. This means tha t the precondition of the second set iteration 

does not contribute anything to the overall precondition for this mini-
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transforinatioii, so the overall precondition is simply the precondition 

to the first set iteration, namely precondition 3.3.

2. postcondition computation: The postcondition for the first set iteration 

(3.7) and the second (3.6) are combined as follows:

Ve : ObjectCreaticmExprn,classCreated{e)  =  product, 

containingClass{e) = creator •  3rn : M ethod  such tha t 

creates SameObject' =

createsSameObject[{constructorInvoked{e), m)/true]  

n a m e O f  — nam eO  f[m /crea te  P] 

d e fines '  =  defines[{creator,rn)/t7'ue]

Ve : ObjectCreationExprn,classCreated{e) = product,

containingC lass{e) =  creator,

n a m e O f {containingMethod{e)) ^  createP  •

containing M et hod' — containing M ethod[e/1.] (3.8)

Note tha t the first set iteration adds a construction method to the 

creator class, regardless of whether it used in the product class or not. 

Constructors of the product class tha t are not used in the creator class 

could be om itted from the transformation, but this was not done as it 

is likely tha t a future evolution of the program would make it necessary 

to include them  again.

It is interesting to observe th a t in the overall precondition the product 

class was not required to exist. This is correct, in th a t the E n c a f s u l a t e - 

CONSTRUCTION transform ation reduces in this case to the null transforma

tion, which is of course behaviour preserving. How'ever, for this transforma

tion to l)e useful, the product class must indeed exist. For this reason we will 

sometimes add such extra  conditions to the precondition of a transformation.
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3.2.4 C om m entary

We have dem onstrated tha t if precondition 3.3 holds in a given program, 

then the E n c a p s u l a t e C o n s t r u c t i o n  transformation can be safely ap

plied without changing the behaviour of the program. Also, in the final 

program state, postcondition 3.8 will be valid.

The argument was non-trivial and required a considerable amount of ef

fort. However this need only be done once, and then the minitransformation 

can be added to a library and reused in any mnnber of future design pattern 

transformations. The existence of this argument enhances our confidence 

tha t the transform ation is indeed behaviour preserving. If during prototype 

evaluation it transpires tha t the implemented transform ation is not behav

iour jjreserving, the error can be traced back and, if it is present in the 

l)ehaviour preservation argiunent, it may be corrected there.

Constructing the behaviour preservation argmnent also caused us to give 

consideration to factors tha t were not innnediately apparent from the mini

transform ation description. For example, the fact tha t the creator' class 

might already have methods called createP  and th a t this is not a problem 

unless the signature of one of them  clashes with the signature of a construc

tor in the product class was made very clear during the com putation of the 

pre- and postconditions.

Finally, this m ethod of arguing behaviour preservation is not formal®. 

First-order predicate logic is used in defining the preconditions and some 

of the reasoning performed is formal and based purely on the laws of first- 

order logic. However, it was frequently necessary to use our knowledge of 

the semantic domain (Java programs) in computing the pre- and postcon

ditions. For example, the transform ation of postcondition 3.4 to the more 

^It is for th is reason we avoid using the term  “p ro o f’ in th is  chapter.
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useful postcondition 3.7 required this knowledge. Since our purpose is to 

provide a m ethod of argument th a t reflects in some way how a programmer 

reasons about a program, this is a valid approach. Were we to attem pt to  au

tom ate the process of computing the pre- and postconditions for a composite 

refactoring, then this approach would of course need to be strengthened.

3.3 R ela ted  W ork

Donald Roberts [84, 85] describes a similar approach to computing the pre- 

and postconditions of a composite refactoring to the one we have presented 

here. However he does not demand th a t a refactoring be behaviour preserv

ing '̂  ̂ [84, p. 19] and so does not argue this for his refactorings. The algorithm 

we present differs from his in several ways:

• it tests if the chain is legal rather than assuming it is [84, p.39];

• it allows set iterations over refactorings and chains;

• it makes use of the relationships between analysis functions^

• it computes the postcondition for a composite refactoring, as we intend 

to use the composite refactoring in further compositions.

Tokuda and Batory use a set of Opdyke-style refactorings in order to 

build higher-level refactorings [96] and to study the use of refactorings in 

the evolution of object-oriented programs. A very interesting feature of this 

work is th a t they present the first ever case study th a t actually takes an 

existing system th a t has been reengineered, and attem pts to perform the 

*°Aii u iifortm iate redefinition of an exi.sting term .
'*R ol)erts neglects th is in his work and, for exam ple, does not identify the relationship 

between i sClass  and isGlobal,  i.e., th a t I sClass{class)  ^  I sG lo ba l{n am eO f  {class)).
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reengineering th a t took place using a refactoring tool. They estim ate tha t 

were they to perform the changes involved in the reengineering by hand, 

it would take them  approximately ten times longer than it took them  to 

perform the changes using autom ated refactorings. This improvement is 

a ttribu ted  to the obvious reduction in the amount of manual work required, 

and the fact th a t reliable autom ated refactorings reduce the amount of testing 

required. This result has provided some concrete evidence favouring the use 

of autom ated refactoring approaches.

Schulz [88] proposes arguing behaviour preservation by first transform

ing a legacy object-oriented program into an adaptive program [61]. This 

adaptive program can be reasoned about more easily and the transform a

tions performed on this program. Finally the transformed adaptive program 

is converted back to a nou-adaptive program. He does not describe this last 

conversion and it is not clear th a t it is feasible. In other work Schulz [90] 

proposes using Opdyke’s approach [77, 51] to prove behaviour preservation 

of design pattern  transformations.

Elbereth is a tool developed for refactoring Java programs [54] th a t uses 

the notion of a star diagram. A star diagram allows the progranuuer to 

easily view all uses of a construct (method, field etc.) across the entire 

program without having to also view unrelated code. Korman describes 

how the program m er can be supported in performing a variety of refactoring 

tasks, such as adding a new subclass or replacing an existing class with an 

enhanced version. W hile these tasks are intended to be refactorings, he does 

not address the issue of arguing th a t they are behaviour preserving.

Developing the pre- and postcondition for a composite refactoring bears 

an obvious resemblance to the weakest precondition calculus of D ijkstra’s 

guarded command language [27]. In tha t approach, if we wish the compo-
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sitioii of two transform ations T\ and T 2 to  leave the program  in the s ta te  

post composition, then  the  weakest precondition necessary is given by:

Wp(T\ , Wp(T2, post composition^)

where wp{T, post)  is th e  weakest precondition th a t will ensure th a t the  tran s

form ation T  will leave th e  program  in a s ta te  where post is true. The aim 

of th is w'ork is th a t given a postcondition, it should be possible to  derive an 

algorithm  (a com position of transform ations) th a t  can reach th is postcondi

tion, and  work out w'hat precondition m ust hold in the  initial state.

The problem  we faced in dem onstrating  behaviour preservation is differ

ent. We use postconditions to  describe the  resu lt of api)lying a refactoring 

only in sufficient detail th a t it  is possible to  determ ine w'hat subsequent refac

torings are legal. The refactoring itself has a richer m eaning, bu t th a t is only 

described inform ally in th e  refactoring description and not cap tured  in the 

formal postcondition. In com posing these refactorings, we have a notion of 

w hat is to  be achieved, and th e  purpose of the pre- and postcondition com

pu ta tion  is to  determ ine w hether the  com posed refactoring is legal, w'hat 

types of program  it can be applied to, and w hat subseciuent refactorings 

can be legally applied. The possibility of extending th is work to  the  formal 

derivation of the  com plete design p a tte rn  transform ation  will be discussed in 

section 6.2.

Refactoring is a key part of K ent Beck’s Extreme Pi'ogramrmng m ethod

ology [3]. E xtrem e progranm iing requires m any rap id  iterations through the 

developm ent process, each tim e extending the system  functionality  a little  

further. As little  up-front design is perform ed, it is necessary to  refactor 

the  program  w henever a new' requirem ent makes th e  existing design inade- 

c^uate. Behaviour preservation is not discussed in th is approach, bu t in effect 

it is dem onstrated  th rough  th e  use of au tom ated  corrective regression test-
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ing [58]. After refactoring, the programmer runs an autom ated test suite on 

the program. If the program produces the same test results as it did before 

the refactoring, it is concluded th a t the behaviour of the program has not 

changed. Obviously this approach is dependent on the completeness on the 

test suite, and thus can never be fully relied upon.

Test suites are used in a different way to dem onstrate behaviour preserva

tion in the Sm alltalk Refactoring Browser [11]. For example, in the rename Method  

refactoring, all methods th a t call the renamed m ethod must also be updated. 

However, in Sm alltalk it is impossible to find all the callers of a method sta

tically, so the authors use dynamic analysis to compute this. The program 

code is instrum ented, run on a test suite, and it is calculated from the ex

ecution trace what methods called the given method. As in the previous 

case, this approach is only as effective as the test suite used in the dynamic 

analysis.

Finally, in a recent text on the topic of refactoring by M artin Fowler [38], 

only scant atten tion  is paid to the topic of behaviour preservation, and that 

is in two chapters w ritten by Opdyke and Roberts respectively, whose work 

has been extensively cited in this chapter. This tex t does however provide a 

detailed listing of low-level refactorings th a t can be performed by hand, and 

gives useful informal advice on where they should be ai)plied and what steps 

should be taken to achieve a safe refactoring.

3.4 Sum m ary

In th is chapter we presented our approach to defining primitive refactorings 

and composing these to create more complicated refactorings. Two methods 

of comi)osition were allowed: sequencing (or chaining), and iteration over a
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set of program elements. A method for computing the pre- and postcondi

tions of such composite refactorings was also described. This approach to 

behaviour preservation is undecidable in general, but for the simple precon

ditions we work with this will prove not to be an issue.

In the next two chapters we will show how these forms of composition 

can be used to build sophisticated design pattern  transformations.
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Chapter 4

A M ethodology for the  

D evelopm ent of Design Pattern  

Transformat ions

4.1 Introduction

111 this chapter we describe in detail the methodology we propose for the 

development of design pattern  transformations. The motivations for our 

ai)proach are presented in section 4.1.1 followed by a brief overview of the 

entire methodology in section 4.1.2. The approach we take in describing the 

methodology is to describe each part in a general way and then to apply it 

to one design pattern. The flagship pattern  we use is the Factory Method 

pattern  (see appendix A), as it is sufficiently complicated to exercise the 

methodology and yet yields an elegant result. The details of the methodology 

appear in sections 4.2 and 4.3, culm inating in the final specification of the 

Factory Method design pattern  transform ation in section 4.4. In section 4.5 

we evaluate related work in the area of design pattern  application and finally,
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in section 4.6, a summary of this chapter is presented.

The essence of the approach presented here has been pubHshed in smn- 

niary form in [74, 72], and in more detail in [75].

4.1.1 M otivation

There are several criteria we wish our methodology to fulfill;

1. The design pattern  transform ations developed must preserve program 

behaviour.

2. The transformations are to be applicable to real programs.

3. Reuse of portions of existing transformations should be feasible and 

encouraged.

4. Judging where a pattern  should be apjjlied remains the domain of the 

programmer.

We ex[)and on these criteria in the following paragraphs.

1. Behaviour Preservation

For any form of autom ated refactoring to be successful in practice, the pro

grammer must have a strong degree of confidence th a t the transformations 

being applied do indeed preserve program behaviour [89]. In our approach, 

we therefore place a heavy emphasis on dem onstrating th a t the design pat

tern transformations are behaviour preserving. The fomidations of our ap

proach to behaviour preservation were introduced in chapter 2 and presented 

in detail in chapter 3. In this chapter we use these foundations to show how 

behaviour preservation can be dem onstrated for a complete design pattern 

transformation.
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2. Applicability to real programs

The transform ations developed should be applicable to real programs and be 

able to cope with the complexities of source code representation of design 

structures. This is especially im portant if they are to be used in practice for 

transforming existing legacy systems, where formal design documentation 

frequently does not exist. This criterion conflicts to a certain extent with the 

previous point, in th a t formally proving complex behavioural properties of 

programs w ritten in industrial-strength languages is currently impractical. 

We have resolved this by working with an industrial language, Java, and 

taking a semi-formal approach to dem onstrating behaviour preservation.

3. Reuse where possible

Design patterns have a lot in common so it is to be expected th a t design p a t

tern transform ations will have a lot in common as well. In our methodology 

we seek to decompose the transform ations into reusable units and to make 

these units available to later developments of design pattern  transformations.

4. Programmer controls quality

One of the pitfalls in attem pting to  autom ate patterns is to treat them  com

pletely formally and not allow for the fact tha t their “goodness” is some

thing essentially informal [26]. In section 2.2 we described the design insight 

necessary to assess what pattern  to  apply and where to apply it. In our 

methodology the programmer remains in control of these issues.

4.1 .2  O utline o f  the M ethodology

The complete methodology is depicted as a UML activity chart in figure 

4.1. Initially a design pattern  is chosen tha t will serve as a target for the 

design i)attern transform ation under development. We then consider what
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Pattern J
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I Define \
minitransformations ^

/  D ecom pose into
Minipatterns j

no

, Do minitransformations 
^ x is t?

yes

/JDefine transformation as composition
of minitransformations

Figure 4.1: The Design Pattern  Methodology

tlie starting  point for this transformation will be, th a t is, what sort of design 

structures it may be applied to. This starting j)oint is term ed a precursor, 

which is described in more detail in section 4.2. It has now been determined 

where the transformation begins, (the precursor) and where it ends (the de

sign pattern  itself). This transform ation is then decomposed into a sequence 

of minipatterns. A m inipattern is a design m otif th a t occurs frequently; in 

this way it is similar to a design pattern  but is a lower-level construct.

For every m inipattern discovered a corresponding minitransformation  

th a t can apply this m inipattern must also be developed. A minitransfor-
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Illation comprises a set of preconditions, an algorithm ic description of the 

transform ation , and a set of postconditions. The algorithm  is expressed in 

te rm s of the prim itive refactorings and helper functions defined in appendix 

B. It is built by hand, using the  precursor and the  design p a tte rn  s truc tu re  as 

a gu ided  T he pre- and postconditions are com puted by applying the  m ethod 

described in chap ter 3 to  th is algorithm .

M initransforniations are our un it of reuse, so for any m in ipa tte rn  identi

fied we first check if a n iin itransform ation for it has already been built as part 

of the  developm ent of a  previous design p a tte rn  transform ation. If so, th a t 

n iin itransform ation can be reused now', otherw ise a new niin itransform ation 

m ust be developed. Section 4.3 exam ines m in ipatterns and m initransform a

tions in more detail, and in particu la r specifies precisely th e  m initransfornia

tions th a t com prise the  Factory M ethod transform ation.

The final design p a tte rn  transform ation  can now be defined as a compo

sition of m initransforniations. T he pre- and postconditions for th is design 

p a tte rn  transform ation  are com puted in the  same w'ay as they  are com puted 

for a iiiiiiitransform ation. In the  following sections we describe th is entire 

process in full detail, finally providing th e  com plete specification of the Fac

tory  M ethod transform ation  in section 4.4. In particu lar, th e  concepts of 

precursor, minipattern  and minitransformation  are discussed in detail.

4.2 Precursors

M uch of the existing w'ork on design p a tte rn  transform ations [14, 30, 36, 

96, 55, 9] assumes as a s ta rtin g  point w hat can be term ed  a green field sit-

*By th is we sim ply mean tlia t im plem enting a m initransform ation is sim ilar to  the 

norm al process of inform al program  developm ent, where the program  specification has 

been given rigorously, though not formally.
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nation. By this we mean th a t when the design pattern  transform ation is 

apphed to the program, the components th a t take part in the transforma

tion do not already have any existing relationships pertaining to the pattern. 

Conseciuently these approaches do not support the breaking of existing rela

tionships as part of the transform ation process. From a software evolution 

perspective this is inadequate because in an existing program the basic in

tent of the pattern  may well exist in the code already, but in a way that 

is not amenable to further program evolution. For example, in the case of 

the Factory M ethod pattern, the Creator class may already create and use 

instances of a Product class, but not in the flexible manner th a t allows easy 

extension to other Product classes.

At the other extreme there is the antipattern approach [53, 70], which was 

investigated in our earlier work [71, 73] and is also used in [25]. In this ap

proach the assumption is made th a t the programmer has failed to appreciate 

the need for the pattern  in the first instance, and has used some inadequate 

design structure to deal with the situation. The philosophy behind this ap

proach is th a t the code may have been developed by a programmer who was 

not aware of patterns. For example, in the case of the Factory M ethod pat

tern, the client of the Creator class may have to configure it with a flag to 

tell it what type of Product class to  create. We discovered several problems 

with the an tipattern  approach:

• For any pattern  there are several variants and for each variant there 

can be several antipatterns. The volume of antipatterns rises sharply 

and each one has to be dealt with individually.

• The design knowledge encapsulated in design patterns has been de

veloped over many decades of software development. A programmer 

who is “not aware of patterns” and chooses an inappropriate solution
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‘ green field precursor antipattem

No element o f Basic intent o f Corrupt design
pattern present pattern present

Figure 4.2: Possible starting points for a Design Pattern  Transformation

to a design problem has really just made a mistake^. The problem of 

transforming an antipattern  to a design pattern  then becomes th a t of 

transforming poor design to good design, which cannot of course be 

solved generically.

For these reasons we use a different starting point for our transformations. 

For a large class of design patterns, the effect of the pattern  may be viewed as 

making certain program evolutions easier. This suggests tha t in the simple 

case the design pattern  is not needed, but as future changes in recjuirements 

demand greater flexibility from the software, it becomes necessary. For ex

ample, it is frecpiently the case tha t a class A creates an instance of a class 

B, but normally this relationship does not require the application of a design 

pattern. However a future change in the requirements may well require th a t 

the class A have the flexibility to work with any one of a number of differ

ent subclasses of B, and so the need for the Factory Method pattern  arises. 

The progrannner of the original system did not make an error of judgement; 

software systems w'ill always evolve in ways tha t the original creators simply 

cannot foresee^. Indeed, applying a design pattern  where it is not needed is 

highly undesirable as it introduces an unnecessary complexity to the system.

^The author’s position is that a programmer who is faced at some point with the 

prospect of using an antipattern solution will baulk, and restructure the design in order

to enable a more elegant soluticjn.
^As Lucy Berlin commented, “Prescience is not an exact science” [8].
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Creator
creates ►

Product

method 1 — ^ foo
method2

Figure 4.3: Precursor for the Factory Method Transformation

This leads us to our description of a precursor: a precursor is a design 

structure tha t expresses the intent of a design pattern  in a simple way, but 

that would not be regarded as an example of poor design. This is not a formal 

definition, but it serves to exclude both the green field situation where there is 

no trace of the intent of the pattern  in the code, and the antipattern  situation 

where the progranuner has tried to resolve the problem in an inadeqiiate way. 

Figure 4.2 illustrates the relationship between these various starting points.

For example, the precursor we use for the Factory M ethod pattern  is 

simply this: the Creator class must create an instance of the Product class. 

This is specified using an analysis function thus:

creates(creator, product)

Figure 4.3 depicts this precursor in a UML class diagram. This condition 

may appear to be trivial, but it is a natural precursor to the Factory Method 

pattern. The Creator class creates and uses an instance of the Product class 

and while this is adequate for the moment, a new requirement may demand 

that the Creator class be able to work with other types of Product class and 

this will rec[uire the application of the Factory M ethod pattern.
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4.3 M in ipatterns and M initransform ations

111 developing a transform ation for a particular design pattern  we naturally 

wish to reuse our previous efforts as much as possible. To obtain maximum 

leverage, this reuse should be at the highest level possible. Examining the 

design pattern  catalogues [41, 15, 43, 44], it is clear tha t certain motifs occur 

repeatedly across the catalogues. For example, a class may know of another 

one only via an interface, or the messages received by an object may be dele

gated to a component object for detailed processing. These design motifs, or 

m inipatterns, are combined in various ways to produce different design pat

terns. In this way a pattern  can be viewed as a composition of m inipatterns. 

By focusing on developing transformations for m inipatterns, we are able to 

develop a library of useful transform ations tha t can be reused whenever that 

m inipattern is identified again in a later development. The transformation 

tha t corresponds to a m inipattern is naturally called a minitransformation. 

In the case of the Factory Method pattern  we can identify four component 

m inipatterns:

1. A b s t r a c t i o n : The Product class must have an interface th a t reflects 

how the Creator class uses the instances of Product th a t it creates.

2. E n c a p s u l a t e C o n s t r u c t i o n : In the Creator class, the construction 

of Product objects must be encapsulated inside dedicated, overrideable 

methods, which we term  construction methods.

3. A b s t r a c t  A c c e s s : A part from within the construction methods de

scribed in (2) the Creator class must have no knowledge of the Product 

class except via the interface described in (1).

4. P a r t i a l A b s t r a c t i o n : The Creator class must inherit from an ab-
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stract class where the construction methods are declared abstractly.

This amounts to a declarative description of the structure of the Factory 

M ethod pattern. It is obvious tha t other patterns use some of these m inipat

terns as well. For example, A bstract Factory uses all of them, while many 

design patterns make use of the A b s t r a c t i o n  m inipattern. In the following 

subsections each of the above m inipatterns is taken in turn  and processed as 

follow's;

1. A minitransformation for this m inipattern is specified in term s of the 

primitive refactorings and helper functions defined in appendix B;

2. The pre- and postconditions for this minitransformation are computed 

using the method described in chapter 3.

In ai)pendix C a complete list of all the minitransformations developed in 

this work is presented, together with a reference to the thesis section where 

more detail can be found.

4,3 ,1  T h e  A b straction  M in itran sform ation

The A b s t r a c t i o n  minitransformation is used to add an interface to a class. 

This enables another class to take a more abstract view of this class by 

accessing it via this interface. This minitransformation is implemented in 

the following way as a chain of refactorings:

Abstraction(C lass c, Str ing newName){

Inter face inf =  abs t rac tC las s(c ,  newName)\ 

addlnter face( inf);  

addlmplementsLink(c ,  inf);

}
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An interface is first created th a t reflects the  public m ethods of th is class‘d. 

This interface is then  added to  the  program  and an implements link is added 

from the class to  th is interface.

To dem onstrate  legality of th is chain and to  com pute its pre- and post

conditions, we apply the  m ethod described in section 3.2.1. The com putation 

is straightforw ard and produces the  following: 

p re c o n d i t io n :

The class c exists: 

isClass(c)

No class or interface w ith the nam e newName  exists: 

-'isClass(nei(;A^ame) A - ’isInterface(ne?i»A^ame) 

p o s tc o n d i t io n :

A new interface inf  called newName exists: 

nam eO f =  n.a.meOi[inf/newName] 

isln terface' =  isln terface[in //true]

The class c and the  interface inf  have the  same public interface: 

eciuallnterface' =  equalIn terface[(c ,m /)/true]

An implements link exists from the class c to  th e  interface inf\ 

im plem entsln terface ' =  im plem entslnterface[( c, inf) /  true]

The effect of applying th is m in itransform ation  to  th e  Factory M ethod pre

cursor (figiue 4.3) is depicted in figure 4.4. An interface has been added th a t

provides an ab strac t view of the  P roduct class.

^The new interface created here reflects the entire public interface of the class, even 

though all tha t is required are the parts of the public interface that are actually used in 

whatever context is going to use this interface. However, if this context happens not to 

use an essential part of the class, this transformation would result in the creation of an 

unintuitive interface. A consequence of our approach is th a t the declared type of some 

variables will be broader than how they are actually used.
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creates ►
foo

Product

foo

« in t e r f a c e »
Productinf

method 1 
method2

Creator

Figure 4.4: Apphcation of the A b s t r a c t i o n  Minitransformation

4 .3 .2  T h e E n ca p su la teC o n stru ctio n  M in itran sform a

tio n

This minitransformation is used when one class creates instances of another, 

and it is required to weaken the binding betw'een the tw'o classes by packag

ing the object creation statem ents into dedicated methods. It was already 

considered in great detail in section 3.2.3. The algorithm is given on page 

49, so here we simply restate, with some extra supporting text, the pre- and 

postconditions.

E n c a p su la te C o n s tru c tio n (C la ss  creator^ Class product, String cj'eateProduct) 

p re c o n d itio n :

The class creator exists: 

isClass( crmio?’)

The creator class defines no methods called createProduct tha t have the 

same signature as a constructor in the class product:

V c: Constructor, c G product •
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-I defines( creator, createProduct, sigOf(c)) 

postcond ition:

For every product object creation expression in the creator class, a method 

called createProduct th a t creates the same object is added to the creator class:

V e:ObjectCreationExprn, classCreated(e) =  product, 

containingClass(e) =  creator •  3 m:Method such tha t

createsSam eObject' =

createsSameObject[(constructorInvoked(e),m)/true] 

nam eO f =  ncinieOf[m/ createProduct] A 

defines' =  defines[(creator,ni)/true]

Every product object creation expression in the creator class tha t is 

not contained in a method called createProduct is deleted;

V e:ObjectCreationExprn, classCreated(e) =  product, 

containingClass(e) =  creator, 

nameOf(containingM ethod(e)) ^  createProduct •

containinglVIethod' =  containingjMethod[e/_L]

Apj)lying this m initransformation to the structure tlepicted in figure 4.4 re

sults in the structiu'e depicted in figure 4.5. For each constructor of the 

Product class, a method of the same signature has been added to the Cre

ator class th a t returns the same object as the corresponding constructor. All 

creations of Product objects in the Creator class have been updated to invoke 

these methods instead.

4.3 .3  T he A b stractA ccess M initransform ation

The A b s t r a c t A c c e s s  m initransform ation is used when one class (context) 

uses, or has knowledge of, another class (concrete) and we w'ant the relation-
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« in t e r f a c e »
Productinf

foo

Creator

method 1 
method2 
createProductO 
; Product \

Product
creates ►

foo

R eplace all 
new  ProductO ; 

w ith 
createProductO ;

Product createP roductO  { 
return  new  Product();

Figure 4.5: Application of the E n c a p s u l a t e C o n s t r u c t i o n  Minitransfor- 

niatioii
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ship Ijetween the  classes to  operate in a more abstrac t fashion via an  interface.

It may well happen th a t there are m ethods in the con text  class th a t need 

to  access the  concrete  class directly, for exam ple, they  may in stan tia te  the 

concrete class, and these m ethods should be excluded from the transform a

tion. This m initransform ation is im plem ented in the  following way as a set 

iteration:

AbstractA ccess(C lass context, Class concrete, Interface inf,

SetOfString skipM ethods){

ForAII o:ObjectRef, typeOf(o)=concrete, containingClass(o)=context, 

nameOf(containingMethod(o)) 0  skipM ethods { 

replaceClassWithlnterface(o,/n^);

}

}

This m initransform ation takes each object reference in th e  class context  th a t 

is of the tyy>e concrete, excluding any references th a t are contained in any 

m ethod called sk ipM ethods ,  and changes the ir existing type from the  class 

concrete  to  the interface i n f .  A pplying the m ethod described in section 

3.2.2, the pre- and postconditions are com puted to  be'^: 

p re c o n d it io n :

The interface in f  and the classes context and concrete exist: 

is ln terface(m /) A isClass(coniexi) A isC lass(concrete)

An implements link exists from the class concrete to  the interface inf: 

in iplem entslnterface(concrete, inf )

Any sta tic  m ethods in the  concrete class are not referenced through 

any of the  object references to  be updated:

®Tlie isClass{context)  j)art of the preconclition is added to avoid the transformation 

rechicing to the null transformation, as described on page 56.
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V in:Metliocl, ui G concrete, isStatic(iii) •

V o:ObjectRef, typeOf(o)=concreie, contaiiiiiigClass(o) =  coniexi •

uses(o,ni)

Any public fields in the concrete class are not referenced through any 

of the object references to be updated:

V f:field, f G concrete, isPublic(f) •

V o:ObjectRef, typeOi{o) = concrete, containingClass(o) =  conie.x^ •

-I uses(o,f) 

p o s tco n d itio n :

All references to the concrete class in the context class not in skipMethods 

have been changed to refer instead to the interface inf:

V o:ObjectRef, typeOf(o) =  concre^e, containingClass(o) =  context

nanieOf(containingjMethod(o)) 0  skipMethods •

typeO f =  typeOf[o/zn/]

The initial conjuncts of the precondition simply ensure th a t referenced classes 

and interface exist and have the proper relationship. The last two conjuncts 

ensure that if the concrete class has public fields or static methods, these 

are not used by any of the object references to be updated. We {)resent a 

complete categorisation of preconditions in section 4.4.1.

Applying this minitransformation to the structure depicted in figure 4.5 

resTilts in the structure depicted in figure 4.6. In the Creator class all refer

ences to the Product class have been replaced by references to the Product 

interface.
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« in t e r f a c e »
Productinf

foo

Creator Product
creates ►

method 1 
method2 
createProductO  
:ProductInf

foo

Replace all references to 
the class Product with the 
interface Productinf

Figure 4.6: A pplication of the A b s t r a c t A c c e s s  M initransforniation 

4.3 .4  T h e  P artia lA b straction  M initransform ation

The PyXirriALABSTRACTlON niinitransforniation is used to  construct an ab

stract class from an existing class and to  create an extends relationship be

tween the two classes. It is related  to  the A b s t r a c t i o n  niin itransform ation 

of section 4.3.1, bu t ra ther than  building a com pletely abstrac t interface from 

the class, it builds an abstrac t class where only certain  specified m ethods are 

declared abstractly . This m initrausform ation is im plem ented in the following 

way:

PartialAbstraction(Class concrete, String newName,

SetOfString abstractM ethods){

Class abstract =  createEmptyClass(neivA/ame); 

addClass(abstract, superclass(concrete), concrete)'

ForAII m:Method, m e concrete, nameOf(m) G abstractM ethods{
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Method absMethod =  abstractM ethod(m ); 

addMethod(abstract, absMethod);

}
ForAII m :Method, m €  concrete, nameOf(m) ^  abstractM ethods{ 

pullUpM ethod(m );

}

}

T h is  in in itra n s fo rin a tio n  creates an em pty class called newNarne and inserts 

i t  in to  the  inheritance  h ierarchy ju s t above the class concrete. For each 

m ethod in  abstractMethods, an abstract m ethod is created and added to  

th is  new class. A n y  m ethods not in  abstracfMethods are moved from  the 

class concrete to  th is  new class. B y inspection we see th a t a lthough the 

preconditions fo r the addClass re facto ring  and the second set ite ra tio n  are 

ciuite com plicated, most o f the conjuncts are guaranteed by the fact th a t 

the new superclass o f concrete is the em pty class th a t has ju s t been added.

Note also th a t since every m ethod being pu lled  up in to  th is  new class conies 

from  the same class, there can be no name clashes betw'een these methods.

The same arg iunent applies to  the abstract m ethods th a t are added to  the 

superclass. The pre- and postcond itions are thus com puted to  be: 

p re c o n d it io n ;

No class or in terface w ith  the name newName m ay exist:

-I isClass(neryA^ame) A isInterface('newA'^ame)

The concrete class nm st exist: 

isClass( concrete)

A ny  fields used by m ethods th a t are to  be pu lled  up m ust not be pub lic :

V f:F ie ld , m :M e thod , f  G concrete, m G concrete, m  ^  ahstractMethods •  

i f  uses(m ,f) then -i isP u b lic (f)
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postcondition:

A new class called newName  exists:

isClass' =  isClass[newiVame/true]

An extends link exists from the  class concrete to  the  class called newName, 

and from th e  class called newName  to the  former superclass of concrete:

superclass' =  supevclass[concrete/newName][newName/s\\perc\ass{concrete)]  

The class concrete and its new superclass define precisely the  sam e type:

equalln terface' =  equallnterface[( concrete, superclass '(concrete))/true]

All m ethods in concrete not in abstractAlethods are moved to  the  superclass;

V m :M ethod, m G concrete, m ^  abstractMethods •

classO f =  classO f[m /superclass'( concrete)]

Any m ethod in abstractMethods will have an abstrac t m ethod declared 

in the  class called newName:

V m :M ethod, m € abstractMethods •

declares' =  declares[(superclass(concr’ete), m, direct)/true]

Any holds used by the  moved m ethods are also moved to  the  superclass:

V m :M ethod, ni G concrete, m ^  abstractMethods •

V f:Field, f E concrete, uses(ni,f) •

c lassO f =  classO f[f/superclass(concrete)]

A pplying th is m initransform ation to  the s truc tu re  depicted in figure 4.6 re

sults hnally in the Factory M ethod s truc tu re  depicted  in figure 4.7. An 

abstrac t C reator class has been added th a t defers the definition of th e  con

struction  m ethods to  its subclasses. T he original C reator class sim ply inherits 

th is class and provides definitions for tlie construction m ethods.

We have considered four m initransform ations and shown how they  can be 

applied in sequence to  produce the  Factory M ethod design p a tte rn  s truc tu re .

We exam ine th is com plete design i)attern  transform ation  in m ore de ta il in
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creates ►

foo

ProductCreator

foo

« in t e r f a c e »
Productinf

method 1 
method2 
createProdiict () 
: Productinf

« a b s tr a c t »
AbsCreator

Figure 4.7: AppHcatioii of the P a r t i a l A b s t r a c t i o n  Minitransformation 

the next section.

4.4 T he Factory M eth od  Transform ation

The transformation that introduces the Factory Method pattern is defined 

simply as the secjuential application of the minitransformations defined in 

the preceding sections:

applyFactoryMethod(Class creator. Class product, String productinf,

String absCreator, String createProduct){ 

A b s t r a c t i o n  [product, productinf)-,

ENCAPSULATEC0NSTRUCTl0N(creat0r, product, createProduct)-, 

ABSTRACTAccESs(creator, product, productinf createProduct)] 

PARTlALABSTRACTlON(creafor, absCreator, createProduct)-,
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}

Applying the m ethod described in section 3.2.1, we compute the precon

dition of this transformation to be; 

precondition;

1 . The classes creator and product exist;

isClass(c r e a to r )  A isClass(y9ro6?uci)

2. No class or interface called absCreator or productinf exists;

-'isClass(aftsCrea^or) A -■islnterface(a6sCreaior) A 

~\sC\ass{productInf) A ~'\slnter{cLce{productInf)

3. In the creator class there are no methods called createProduct that 

have the same signature as a constructor in the class product:

V c;Constructor, c G product •

-• defines( crm^or, createProduct, sigOf(c))

4. The creator class can create instances of the product class;

cveatcs{creator, product)

5. Public fields in the product class are not referenced through 

any of the product object references in the creator class;

V f;field, f e  product •  V o;ObjectRef, typeOi{o)=prodxict, 

containingClass(o) =  creafo?’ • uses(o,f)

6. Any fields in the product class used by methods in tha t class nuist 

not be public;

V f;Field, m;Method, f € concrete, m G concrete, uses(ni,f) •

isPublic(f)

7. Any static methods in the product class are not referenced through 

any of the product object references in the creator class;

V m;Method, m G product, isStatic(m) •

V o;ObjectRef, typeOf{o)=product, containingClass(o) =  creator •
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uses(o,m)

Note th a t we do not com pute th e  postcondition for a  design p a tte rn  tran s

form ation itself. This may appear to  be a  useful task, as th e  result could help 

to  cap ture the  essence of the  p a tte rn  in a  formal way. However, recall th a t we 

are using pre- and postconditions only as an aid to  dem onstrating  behaviour 

preservation. W hile the  postcondition for a design p a tte rn  transform ation 

would provide a notion of w hat is true  after a p a tte rn  is applied, it would 

not be strong enough to  provide real insight into the essential na tu re  of the 

p a tte rn  itself. It would however be very useful as pa,rt of a  tool th a t m ain

ta ins facts and constrain ts about th e  program , and th is is discussed further 

in section 6.2.

In appendix D, we present an exam ple of the Factory M ethod transfor

m ation being applied to  a  sam ple Java program.

4.4 .1  A  C ategor isa tion  o f  th e  P recon d it ion s

T he preconditions for the  Factory M ethod transform ation  can be divided 

into four categories. T he first th ree preconditions sim ply ensure th a t the 

classes referred to  in the param eters to  th is transform ation  exist and th a t the 

nam es for the new program  en tities to  be introduced by th is  transform ation  

do not clash w’ith  any existing nam es. These preconditions are trivial bu t 

are necessary to  ensure th a t the  transform ation  operates correctly. If one of 

them  fails the  program m er need only be requested to  choose a different nam e 

to  replace the offending choice.

The fourth  precondition is the  key precursor' precondition. This describes 

the  essence of the  s ta rtin g  point for th e  transform ation, as depicted  in figure 

4.3. It im plies th a t there is a tigh t binding between the  C reator class and the
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P roduct class and th is is w hat the  application th is p a tte rn  is to  am eliorate. In 

general, if a  precursor precondition fails, it is of ciuestionable value to  continue 

w ith  th e  transform ation. In the  Factory M ethod exam ple, the  transform ation  

can continue, bu t it is effectively a  green field beginning then , and some of 

th e  transform ations perform ed will be needless. Note th a t th is  precursor 

precondition was added by hand ra th e r th a n  being the  result of com puting 

the  precondition of the chain of m initransform ations.

T he fifth and six th  preconditions are exam ples of refactoring precondi

tions. Failure of one of these indicates th a t there  are minor problem s th a t 

prevent the  transform ation  from being applied. The P roduct class has public 

d a ta  fields, which are a w ell-established exam ple of poor class design [82]. 

This prevents the  transform ation  from being perform ed as public fields can

not be accessed through an interface. If the progranuner agrees, th is class 

can be refactored automatically® to  make th is d a ta  private or pro tected  and 

instead to  provide access to  the  offending fields via public accessor and nui- 

ta to r  m ethods. This then  removes th is obstacle to  the application of the 

transform ation. See section 6.2 for fu rther consideration of the  possibility of 

such pre-transform ation refactorings.

The final precondition is term ed  a  contraindication and failure here indi

cates th a t there is a more serious problem  in applying the Factory M ethod 

pa tte rn . T he P roduct class has a s ta tic  m ethod th a t is used by the  C reator 

class. This implies th a t the  C reator class depends on the actual class of the 

P roduct it uses and th is cannot be replaced by access via an ab strac t in ter

face. This is an inherent problem  in the  design of the  program  th a t prevents 

the  application of the  p a tte rn  transform ation . In th is case the  design nuist 

‘'T he refactoring u.sed here would be an autom ated version of the EncapsulateField 

refactoring described in [.38, p.206].
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be revisited  by th e  progranm ier to  determ ine if it is possible to  resolve this 

issue.

4.4.2 A ssessing  the Factory M ethod  Transform ation

We already sta ted  th a t we regard the  transform ation  for th e  Factory M ethod 

p a tte rn  as valuable. In th is section we highlight why it is good, th a t is, w hat 

c riteria  we used in m aking th is assessm ent:

1. T he precursor is plausible. By th is we m ean th a t it is likely to  occur 

in practice. It is not a bizarre structu re , bu t is one th a t a  program m er 

would typically  use in developing an in itia l prototype, w'hen the ir focus 

is more on correct operation th an  reuse.

2. The precursor is strong  in th a t it cap tures the essence of w'here this 

transform ation  should be applied. The transform ation  also m ade good 

use of the  precursor in term s of providing a behaviour-preserving tran s

form ation. T he precm ’sor s ta tes  th a t one class in stan tia tes  ano ther and 

the  transform ation  m ade the  na tu re  of the  in stan tia tion  more flexible 

while not affecting its behaviour.

3. T here w'as significant reuse of m initransform ations. This transform a

tion sim ply used four m initransform ations and required no o ther in ter

vening refactorings. We will see in chap ter 5 th a t th is  is an unusually 

sim{)le result. In the  general case we can expect to  have to  add some 

“glue” refactorings betw een the  m initransform ations, in order to  ensure 

th a t the  preconditions for each m initransform ation  are valid.

4. T he transform ation  is elegant and compelling. This is a m a tte r  of 

judgem ent of course, bu t the  transform ation  is certain ly  straightfor-
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ward and it is not difficult to see tha t its effect is indeed to apply the 

Factory Method pattern.

4.5 R elated Work

In the previous chapter related work in the area of behaviour preservation 

was evaluated. In this section we consider other work specifically in the area 

of the autom ated application of design patterns.

Florijn, Meijers and van Winsen have developed a patterns tool th a t 

provides a broad range of support for a progrannner working with patterns 

[36, 64]. Their focus is on the representation of design patterns within the 

tool itself, and the maintenance of the constraints associated with a design 

pattern, i.e., checking tha t changes to the program do not violate any of 

the design patterns present in the code. Their work also deals with p a t

tern application, but the starting point of their transform ations is the green 

field situation, so the issues of behaviour preservation and reorganisation of 

existing relationships as part of the transform ation process do not arise.

Recent work by Tokuda and Batory has shown how design patterns can 

be automatically applied to a C + +  program [96, 97]. They use a set of refac

torings similar to Opdyke’s set and show how they can be used to construct 

design pattern  transformations. W hereas we build static composite refactor

ings and compute the full precondition for the composition, their approach 

assumes th a t the programmer is inspecting the code and applying each refac

toring in turn. M initransformations are not used in their w'ork and a green 

field starting point is assumed. As in the previous w'ork cited, this la tter 

point means th a t behaviour preservation is not a significant issue in their 

work, and their transformations have quite a different flavour from ours.
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Yehiiclai, Gil and Eden [30] have developed a prototype tool called the 

patterns wizard th a t can apply a given design pattern  to an Eiffel program. 

This work is related to ours in th a t it takes a metaprogramniing approach 

and organises the transformations into four levels: design pattern, micro

pattern  (similar our m inipatterns), idioms (our refactorings) and abstract 

syntax tree. The starting point they use is the green field situation, rather 

than attem pting to deal with a precursor as we do. This makes the patterns 

wizard unsuitable for reengineering certain types of program th a t our ap

proach can handle. If the progrannner has already partially introduced the 

intent of the pattern  to the code, using the patterns wizard to  apply this 

pattern  will leave an amount of manual work for the programmer to do in or

der to bring the program to a consistent state. A s  a consequence of taking a 

green field approach, behaviour preservation is not so im portant and is more 

or less ignored in their work. The m icropatterns developed in their work are 

used in the specification of several design pattern  transformations. However, 

they are at a lower-level tha t the ones w'e have identified; for example, of 

the four m inipatterns we used to  define the Factory M ethod transformation, 

only one. A b s t r a c t i o n , appears in Eden’s catalogue [34]. This is partly a 

consequence of our taking a precursor as the starting point for our transfor

mations: certain m inipatterns are necessary in oiu' approach th a t would not 

be needed otherwise.

Yehudai, Gil and Eden have also developed a declarative language called 

LePUS for formally specifying the structural and behavioural aspects of de

sign patterns [33]. They propose th a t this can be developed into a tool that 

apj^lies a design pattern  by adding the required LePUS pattern  definition to 

the program specification. This is true in the abstract LePUS domain, but 

there are many issues to be resolved in transforming this abstract specifica-



tioii in to  executable code. A t the  tim e of w riting practical results in th is area 

are not evident in the ir published work.

A utom atically  apj)lying design pa tte rn s  to  a UML model has been ex

plored by Sunye, Le G uennec and Jezequel [94]. The approach described 

here takes a m etaprogram niing approach as we do, and also argues th a t it 

is th e  program m er th a t should decide on th e  application of a p a tte rn  while 

a software tool is best used to  help in perform ing the  actual transform ation. 

This work natu ra lly  focuses on the  design level, so issues of code transfor

m ation do not occur and  behaviour preservation is not em phasized. The 

paper m entions the  notion of a  com posite refactoring, bu t describes neither 

how com position can take place, nor a m ethod for com puting the pre- and 

postconditions for a com posite refactoring.

The work of Schultz and Zim m er is also rela ted  to  w hat we have presented 

here [89, 101]. They merge O pdyke’s refactoring work w ith so-called design 

p a tte rn  operators to  produce behaviour-preserving transform ations th a t in

troduce design patterns. Their published work to  date  presents only their 

initial ideas.

.lahnke and Ziindorf describe an approach to  detecting  poor design p a t

terns and transform ing them  to  good design p a tte rn s  [49]. The detection 

asj)ect of the ir work is discussed in chap ter 2, so here we focus on the p a t

te rn  application part. T hey also use a notion sim ilar to  our precursor (a 

“naive solution” they  te rm  it) as a s ta rtin g  point, based on the suggested 

naive solutions in the G annna et al catalogue [41]. T hey only present one 

exam ple, the  Singleton pa tte rn , and choose th e  sam e s tarting  point as we 

do on page 128, nam ely a collection of global variables^. In the ir work the 

' We also present a Singleton transform ation  th a t uses a different precursor in section 

5 . 3.1
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design i)attern structure is stored at a conceptual level, together w ith a pro

totypical implementation of the pattern, a scheme that is similar to that 

used by Florijn [36]. This scheme is more flexible than ours, in th a t the 

transform ation tool can be easily configured with a new pattern. However 

our approach, by developing a collection of minitransformations, effectively 

builds a high-level language for describing design pattern  transformations. 

This allows a pattern  transform ation to be described abstractly, without 

having to  explicitly store its structiu'e. Pattern  application in their approach 

is achieved using a rewriting scheme, where, for example, there is a rule that 

show's how' a naive Singleton structure should be replaced with the Singleton 

pattern  structure. Each rule can have subrules tha t deal w'ith various aspects 

of the transformation. The essential difference Ijetween this work and ours is 

the use of a rule-based approach versus a metaprogramming approach. One 

can regard a minitransforniation as a rule, and view' the precondition as the 

predicate th a t fires this rule. The difference then is th a t in their work the 

rule is autom atically fired when part of the program matches the predicate, 

whereas in ours the programmer defines the program components to w'hich 

the rule is to be applied. The notion of a rule containing subrules is similar 

to how' a design pattern  transform ation uses other minitransform ations and 

refactorings in its transform ation logic. One can certainly imagine a com

plicated design pattern  transform ation th a t could be more easily described 

as a set of rules than  as a complex algorithm with many conditionals and 

iterations. We conclude th a t this approach is certainly of interest, though it 

does not appear to have been taken further than this original paper

The FAMOOS project (Framework-based Approach for M astering Object- 

Oriented Software Evolution) also made a contribution in this area, though 

their single publication th a t deals explicitly with design j)attern transforma-

90



tioiis only presents the ir initial ideas [25]. They con trast the  notion of a 

generic  model of the  program  being transform ed w ith a specific model of the 

program . A generic model is one th a t can be abstrac ted  directly  from the 

code, while a specific m odel requires th a t the user add some domain-specific 

inform ation to  the model. T hey argue strongly th a t while a specific model 

is of course harder to  build, th e  ex tra  inform ation it provides is essential in 

perform ing in teresting program  transform ations. A lthough we use a generic 

m odel of the  program  (see appendix  D) in our work, it is left up to  the user to  

decide w'hat design p a tte rn  to  apply and w hat program  com ponents are to  be 

transform ed, and th is in effect brings domain-specific knowledge to  bear ui)on 

th e  transform ation. In th is way w'e achieve the benefits of bo th  m ethods: an 

au tom atically -ex tracted  m odel and rich transform ation possibilities.

In the  paper under discussion [25], the  s tarting  point used for the trans

form ations is an an tip a tte rn . T he A bstract Factory p a tte rn  is given as an 

exam ple, and the  s ta rtin g  point is where case analysis has been used to  de- 

te rnnne  w hat type of widget to  create. In section 4.2 we have presented our 

argum ents against allowing for an tii)a tterns in general, though in th is case 

th e  problem  seems to  be such a com mon one th a t it is w orth j^roviding an 

au tom ated  solution.

Lauder and K ent describe a i)attern-based approach to  legacy system  

reengineering th a t also deals w ith an tip a tte rn s  [57]. T heir work focuses on 

th e  concrete an tip a tte rn s  th a t occur in legacy system s and the positive p a t

te rn s th a t can be applied to  replace them . Six an tip a tte rn s  and the ir positive 

resolving p a tte rn s  are described. T he p a tte rn s they  consider are a t an ar

ch itectu ral level ra th e r th a n  a  design level and so are too  abstrac t to  be 

considered as candidates for th e  au tom ated  approach we have described.

There is a stronger argum ent in favour of transform ing arch itectu ral an-
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tip a tte rn s  th an  design-level an tipa tte rn s. A n tipa tte rn s a t an arch itectu ral 

level can occur, for exam ple, when m any new features are added to  a  system  

w ithout the  system  being given an arch itectu ra l overhaul. W hile th is is not 

desirable, it can easily occur on a  pro ject given the  deadline-driven na tu re  of 

th e  software industry. It is considerably less acceptable th a t a program m er, 

working on the ir own, should in troduce an  an tip a tte rn  a t the design level. 

Note th a t we did not argue th a t an a n tip a tte rn  s ta rting  point is a bad  idea, 

ra th e r th a t the  precursor s ta rting  point is more logical and valuable in the 

contex t of program  evolution.

Budinsky t t  al describe a tool bu ilt in IBM th a t can generate code au

tom atically  for a given design p a tte rn  [14]. The focus of th is work is quite 

different from ours in th a t it ignores the  problem  of in tegrating the  p a tte rn  

w ith  com ponents already existing in the program . The sta rting  point for 

them  is therefore the  green field s itua tion  so, as e laborated in section 4.2, 

th e ir  transform ations can l)e much simi)ler and behaviour preservation is not 

an issue. A sim ilar connnent applies to  existing industrial software tools th a t 

claim  to  provide support for design pa tte rn s, for exami)le [9].

4.6  Sum m ary

In th is  chap ter we presented our approach to  developing design p a tte rn  tran s

form ations by taking one pa tte rn , the  Factory M ethod pa tte rn , decom posing 

in to  its constituen t m inipatterns, developing a  m initransform ation for each 

m in ip a tte rn , and finally specifying th e  com plete transform ation  as a  sequen

tia l com position of these m initransform ations. In the  next chapter we apply 

th is m ethodology to  several o ther p a tte rn s  and assess its applicability  to  the 

en tire  G am m a et al p a tte rn  catalogue.
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Chapter 5

Applying the Methodology to 

the Gamma et al Catalogue

To fully apply and evaluate this methodology would involve designing trans

formations for a large numljer of design patterns, building a tool th a t imple

ments these transformations, and evaluating the tool in a practical context. 

Such a route however would move this project from proof of concept valida

tion to serious industrial softw’are development. We apply the methodology 

in a more limited w'ay therefore, but one th a t nonetheless dem onstrates the 

valiflity of our approach and the range of its application'.

In section 5.1 we discuss the criteria we use in choosing a precursor for 

a design pattern. This is an im portant process, as a transform ation will not 

be useful if its starting point does not occur in practice. Section 5.2 contains 

some more detail on the notation we use to describe the transformations. In 

section 5.3 transformations are developed for a collection of creational pat- 

*Our apjji'oach to validation is in keeping with other approaches in this area. Lauder 

and Kent, for example, in validating their work on pattern formalisation, satisfied them

selves by applying their technique to three sample design patterns [56],

93



terns from the  G am m a et al catalogue [41]. This illustrates the  applicability 

of th e  methodology, and shows th a t the  m initransform ations identified in 

the developm ent of one design p a tte rn  transform ation  are indeed reusable in 

o ther transform ation  developm ents. The leaves in question the applicability 

of th is  approach to  s tru c tu ra l pa tte rn s, and especially to  behavioural pa tte rns 

where the  s tru c tu re  of th e  p a tte rn  is less im portan t th a n  its  dynam ic aspects. 

This question is addressed in sections 5.4 and 5.5 where transform ations for 

a s truc tu ra l p a tte rn  and a  behavioural p a tte rn  are developed.

In section 5.6 we take the  rem aining p a tte rn s in the  G am m a et al ca ta

logue and assess the  applicability  of our approach to  each design pa tte rn . We 

a ttem p t to  find a com pelling precursor for each p a tte rn  and sketch a tran s

form ation for th a t design pa tte rn . The results of this work are analysed in 

section 5.7. In section 5.8 we point to  where related  work on th e  topic of de

sign p a tte rn  application is considered, and finally, in section 5.9, a sununary 

of th is chap ter is presented.

All the  p a tte rn  transform ations listed in sections 5.3, 5.4 and 5.5 have 

been fully pro to typed  so we are very confident of th e  value of the results 

presented there. For details of the  p ro to type tool we have developed, see 

appendix D. T he precursors and transform ations proposed in section 5.6 

have not been pro to typed, bu t are based on a study  of the  p a tte rn  itself cou

pled w ith th e  experience we have gained from proto typing  the o ther p a tte rn  

transform ations.

The reader is advised th a t the  m ateria l of th is chap ter is very detailed 

in places, and assum es a working knowledge of the design p a tte rn s  in the 

G annna et al catalogue [41].
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5.1 C riteria for S electing  a Precursor

The notion of precursor described in the last chapter is supported by the 

work of Foote and Opdyke [37]. They break the software lifecycle into three 

phases: prototyping, expansionary and consolidatory. At the end of the pro

totyping phase a working system has been built th a t matches the initial set 

of requirements. As new requirements appear, the system will have to  be 

expanded. However, it will inevitably transpire tha t the existing design is 

not flexible enough to support the new requirements th a t appear. In this 

case a consolidation must take place, where the software is reorganised and 

refactored to enhance its flexibility in preparation for accommodating the 

new requirements.

Our work clearly aims to help in the consolidation phase. Thus the pre

cursors we use as starting points for the design pattern  transform ations are 

structures tha t are likely to be built during the prototyping phase. We ex

pect them  to be simple structiu'es th a t are adecjuate for the purposes of 

building a working system rapidly, but inadequate in terms of supporting 

future evolution and reuse.

We arrive at a precursor for a design pattern  by studying the description 

of the design pattern  and attem pting to find the structure th a t a  program

mer would be likely to have used during the prototyping phase, when the 

flexibility and power of the pattern  were not yet required. This is naturally 

a m atter of judgement. In some cases w'e are able to find a very likely and 

compelling precursor, in other cases it less clear how' useful the precursor will 

be. In section 5.6 ŵ e provide an assessment of the value of each precursor 

and the transform ation it gives rise to, and in section 5.7 these results are 

sunmiarised and analysed.
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5.2 Transform ation N otation

We have already vised our simple no ta tion  for describing com posite refactor

ings in chapters 3 and 4. In th is chapter the  same no ta tion  is used, bu t some 

shortcu ts are taken  which we describe here:

•  In some cases we do not give the  full param eter list for a transform ation 

as it may sim ply be too long. For exam ple, the  Builder transform ation 

creates more th an  a dozen new program  entities (classes, variables etc.) 

and  it would be confusing to  paranieterise the  transform ation  to  this 

ex ten t. R ather, we sim ply choose su itable nam es for the new ly-created 

program  elem ents w ithin the transform ation  algorithm  itself.

•  In some transform ations (for exam ple. A bstract Factory) a set iteration  

creates a num ber of program  elem ents th a t m ust be referred to  la ter on, 

so we make some assum ptions abou t names: for a class nam ed Widget, 

Widgetlnterface is a new' interface created  from th is class, absWidget 

is a new abstrac t class created  from th is class, and createWidget is a 

new m ethod th a t creates and re tu rns an instance of th is class. W here 

need be, these nam es are referred to  as interfaceName(c), abstractClass- 

Name(c) and constructionMethodName(c) respectively^.

•  allClasses is used to  denote all the classes of the  program.

^Being jjrecise at)out the.se issues is not a technical challenge, but the verbosity it 

would add to the transformations would only serve to obfuscate the important issues in 

the transformation.
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5.3 Transformations for the Gamma et al Cre

ational Patterns

In the  previous chap ter the  transform ation  for the Factory M ethod p a tte rn  

was presented in detail. In the  following subsections transform ations are 

developed for the  rem aining G am m a et al creational pa tte rn s, nam ely Sin

gleton, A bstract Factory, Builder and Prototype.

5.3.1 The Singleton  Transform ation

The in ten t of the Singleton p a tte rn  [41, p. 127] is to  constrain  a class to  having 

only a  single instance, and to  provide a global point of access to  th is instance. 

The Singleton p a tte rn  prevents nuiltiple instan iations of a  class by m aking 

the constructor of the  class pro tected , and m aking the  class itself responsible 

for its own instan tia tion . Access to  th is instance is then  provided using a 

sta tic  m ethod, the getlnstance m ethod, th a t creates the  instance only when 

required to  do so.

As explained in [41], the  constructo r is m ade p ro tec ted  ra th e r th a n  pri

vate, in order to  allow the  class to  be subclassed. T here are, however, prob

lems w ith th is ai)proach th a t are not resolved in th a t tex t. T he singleton 

class nuist be able to  in s tan tia te  any of its  subclasses, and th is requires the 

constructors of the  subclasses to  be public^. This m eans however th a t a 

client is not prevented from creating  m ultiple instances, so the  principle aim 

of th e  p a tte rn  is not enforced. T here are several possible ways of resolving 

th is issue;

1. T he singleton subclass is m ade an inner class of th e  singleton class

■^Overriddiiig tiie getlnstance method in the subclass to create and return an instance 

of the subclass is not j)ossible as static methods cannot be overridden in .Java.
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itself'. External instantiation is thus not possible, and the singleton 

constructor can in fact be made private. However the singleton class has 

explicit knowledge of its subclasses, and switching to  a new singleton 

subclass dynamically is not possible.

2. Each subclass is given a static register method tha t instantiates the 

class itself and registers this instance with the singleton superclass. The 

singleton superclass has no knowledge of its subclasses, and a client can 

install a new singleton dynamically by invoking the register method on 

the recjuired class.

The second solution is more flexible and therefore preferable. In our work 

however we have used the original, imperfect solution presented in [41, p. 133], 

where the constructor of each subclass is required to be public.

Precursor for th e  S in g leton  T ransform ation

There are two compelling starting points to use for this transformation:

1. A class exists tha t is only instantiated once, or is instantiated many 

times but each instance is identical and does not subsequently change 

state. Applying the Singleton pattern  here has the benefit of enforcing 

the implicit “single instance” constraint, and of improving the clarity 

of the program.

2. A collection of global variables is used in the program. By collecting

these into a singleton class, access to these variables is granted in a
■*Aii inner class is known only to its enclosing class, but has access to this class and its 

superclasses. They are commonly used when one object needs to send another object a 

chunk of code that can access the first object’s methods and fields. The manner in which 

they are used here, where the inner class is also a subclass of its enclosing class, can be 

conceptually confusing [46].
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flisciplined way through m ethod invocation, ra ther th a n  ad hoc variable 

accesses spread across the  program .

B oth of these possibilities are useful. The second one has a very clear applica

tion in tidy ing  up code th a t was w ritten  w ithout full a tten tion  being paid to 

ciuality guidelines. We work w ith the  first one here, because, as will become 

apparent in section 5.3.2, it is also used in applying the  A bstract Factory 

pa tte rn . Later in th is chapter (page 128) we develop a  transform ation  th a t 

deals w ith the  second case.

S p ecification  o f th e  S in g leton  T ransform ation

The transform ation  th a t introduces the Singleton p a tte rn  is defined as fol

lows:

applySingleton(Class concreteSingleton, String newAbstractSingleton){ 

PARTIAL A BSTRACTlON(concreteS/ng'/eton, newAbstractSingleton); 

addSingletonMethod(netv/AbsfractS/ng/efon, concreteSingleton)-, 

ForAII e:ObjCreationExprn, classCrested(e)=conc/'eteS/>7^/efon, 

e ^  newAbstractSingleton {

replaceObjCreationWithMeth Invocation (e, 

newAbstractSingleton.get\nstance{))]

}

makeConstructorProtected{newAbstractSingleton)\

}

Initially p a r t i a l A b s t r a c t i o n  is applied to  make a new ab strac t class th a t 

provides the  same interface as the class to  be singletonised. T he singleton 

m ethod and  field are then  added to  th is ab strac t class. The object re tu rned  

by the singleton m ethod getlnstance is an instance of the  concrete singleton
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class. All object creation expressions tha t create an instance of this class 

are then updated to invoke the singleton method instead. At this point, the 

constructors of the abstract singleton class are made protected. As explained 

earlier, the constructors of the concrete singleton class must remain public.

Applying the algorithms of section 3.2, we compute the precondition of 

this transformation to be: 

precondition:

1. No class or interface may have the name newAbstractSingleton:

isC\ass{newAbstractSmgleton) A 

-I \slntevface{newAbst7'actSingleton)

2. The concreteSingleton class must exist:

isClass( concreteSingleton)

3. concreteSingleton cannot define a m ethod called “getlnstance” :

-^(\e^\\C'a{concTeteSingleton, “getlnstance” )

4. concreteSingleton cannot contain a field called “instance” :

V f: Field, concreteSingleton •  nameOf(f) ^  “instance”

5. A non-private field called “instance” cannot be defined in any 

superclass of concreteSingleton-.

if  f:Field G els, els G supevc\cisses{conc7'eteSingleton), 

nameOf(f) =  “instance” th en  isPrivate(f)

6. concreteSingleton must have only one constructor and it must 

require no parameters:

V c:Constructor G concreteSingleton •  noOfParam eters(c)=0

7. Only a single instance of concreteSingleton is ever created:

hasSingleInstance( concreteS'zn£?/eton)

The first two preconditions are trivial, simply ensuring th a t the concreteSin

gleton class exists, and th a t the name newAbstractSingleton does not clash
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w ith  any existing name.

T he next three preconditions are refactoring preconditions. For sim phcity, 

we have reserved the nam es “ge tln stance” and “instance” for use in the 

S ingleton pa tte rn . If they  are ah’eady in use in the class to  be singletonised, 

a  renam ing refactoring should be applied. A field nam ed “instance” m ay be 

defined in a superclass of the  concrete singleton class, bu t it m ust be private, 

otherw ise it could be accessed by a  subclass of the  concrete singleton class 

and  th is  link would be broken by the  addition of a field of th e  sam e nam e to 

th e  concrete singleton class.

Precondition 6 is a contrciindication. If a  class has m ore th a n  one con

s truc to r, we can expect th a t it is in stan tia ted  in different places to  different 

in itia l states, and th is makes it unsuitab le  for the  application  of th e  Single

ton  p a tte rn . Also, its constructor should be the no-arg constructor, since 

the  class in stan tia tes  itself only once and la ter invocations of the  getlnstance  

n \ethod  m erely re tu rn  th is instance, bu t do not recreate it.

T he final precondition is b o th  a contraindication and the  precursor. If the 

singleton class has m ultiple instances, applying this p a tte rn  will surely have 

a  d isastrous effect on program  behaviour, and th is is an inherent p roperty  

of th e  program . The notion of a single-instance class also represents the 

precursor we have used for the  Singleton pattern .

5.3 .2  The A bstract Factory Transform ation

T he in ten t of A bstract Factory p a tte rn  [41, p .87] is to  allow a  program  th a t 

works w ith  a family of classes (e.g., an interface toolkit) to  be easily ex

tended  to  work w ith a different, b u t related , family of classes. It is clearly 

closely rela ted  to  the Factory M ethod pa tte rn , even though th e  im plem enta

tion struc tu res of these two p a tte rn s  are ciuite different [41], It is therefore
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very satisfying tha t the transformations we develop for these two patterns 

transpire to be quite similar. Interestingly, Anmon Eden et al reported a sim

ilar result in their formalisation of these two patterns using the declarative 

language LePUS [33].

In the following sections the precursor for this transformation is described 

followed by the specification of the transform ation and its preconditions.

P recursor for th e  A b stract Factory T ransform ation

W'e can extend the precursor for the Factory M ethod pattern  to produce 

a related precursor for the A bstract Factory transformation. We assume 

that the program being transformed creates and uses concrete instances of a 

family of Product classes. Again, this is not a poor structure of itself, but 

if a reciuirement arises for the program to  work with a different family of 

Product classes, this structure will prove to be too inflexible. Applying the 

Abstract Factory pattern  in this case results in a system where a new family 

of classes can be plugged in with a mininuun of difficulty.

S p ecification  o f th e  A b stract Factory T ransform ation

The transform ation tha t introduces the A bstract Factory pattern is defined 

as follows:

applyA bstractFactory(S etO fC lass products, String newFactoryName,

String newAbsFactoryName){ 

addClass(createEmptyClass(netvFacforyA/ame));

ForAII c:Class, c G products {

ABSTRACT!ON(nameOf(c));°

ABSTRACTAccESs(allClasses, nameOf(c));  

ENCAPSULATEC0NSTRUCTl0N(/7eivFacf0ryA/ame, nameOf(c));
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}
APPLYSlNGLEl'ON{newFactoryName, newAbsFactoryName)]

ForAII e:ObjCreationExprn, classCreated(e) G products {

replaceObjCreation With Meth Invocation (e, neM//46sFacforyA/ame-|- 

“getlnstance().create” -t-classCreated(e));

}
}

First the empty concrete factory class is added to the program. Then the 

product classes are processed by adding an interface to each one, redirecting 

all accesses to the product classes to go via the corresponding interface, and 

adding construction methods for each product class to the concrete factory 

class.

The Singleton pattern  is applied at this stage to produce the abstract 

factory class, and to impose the single-instance constraint on the concrete 

factory class. Finally, the existing object creation expressions th a t create 

instpjices of the product classes are updated to use the corresponding con

struction method in the abstract factory class.

We apply the algorithms of section 3.2 to compute the following precon

ditions for this transformation:

precondition:

1. All the classes in products must exist, and for each class its

interface name nuist not be in use:

V c G products •  isClass(c) A

-iisClass(interfaceName(c)) A -■isInterface(interfaceName(c))

2. No class or interface may have the name newFactorxjName or

^For .simplicity, the  full argum ent lists for the m initrau.sform ations in the body of this 

loop are not given. See section 5.2 for an explanation  of this.
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new AbsFactoj'y Name:

-> isClass{newFactoryName) A -> islntevia.ce{newFactoryName) A 

isClass{newAbsFactoryName) A islnteria,ce{newAbsFactoryNaTne)

3. The classes in products have no public fields:

V fifield, V ciClass, f € c, c G products •  isPublic(f)

4. The classes in products have no static methods:

V m:Method, V c:Class, m G c, c G products •  -• isStatic(m)

Given th a t this is a more complex transform ation than the related Factory 

M ethod transformation, it is at first sight curious th a t the preconditions 

transpire to be considerably simpler. This is because we create completely 

new abstract and concrete factory classes, rather than  adding methods to 

existing classes. For example, using A F PL y S i n g l e t o n  would normally add 

a number of new preconditions to a refactoring chain, but in this case it is 

applied to a class that just been created, and from this we were able to show 

th a t all the Singleton transform ation preconditions were satisfied.

The categorisation of these preconditions is similar to Factory Method.

The first two are trivial, the th ird  is a refactoring precondition and the last 

one is a contraindication. Note tha t there is no j)recursor precondition for this 

pattern: it may be applied to any set of classes in the program. However, if 

the set of product classes chosen does not form a logical family, the resulting 

program will naturally be more complicated than the original program, for 

absolutely no benefit.

5.3 .3  The B uilder Transform ation

The intent of the Builder pa ttern  [41, p.97] is to separate the construction of a 

complex object from its representation, so th a t the same construction process
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^  constructl ()

construct2()

Figure 5.1: The Precursor for th e  Builder Design P a tte rn

can create  different representations. This p a tte rn  is therefore useful when a 

j)roduct object has a  complex, step-by-step  construction  process and  it is 

desirable th a t th e  object th a t d irects th e  construction  be able to construct 

other, rela ted  p roduct objects as well. By adding  a builder object betw een 

the d irector and the  product, it becom es easy to  configure the d irector w ith 

another type of builder th a t will construct th e  desired product object.

Precursor for th e  B uilder T ransform ation

The precursor for the  Builder transform ation  is depicted  as a UML diagram  in 

figure 5.1. The d irector class in stan tia tes  th e  p roduct class and then  invokes 

a series of m ethods on th is p roduct ob ject (constructl and construct2 in the 

figure) to  bring it to  its  fully-constructed s ta te . T he chent can then  ob ta in  

the p roduct ob ject by invoking getProduct on th e  director. An exam ple of 

th is s tru c tu re  is where a parser ob ject (d irector) creates an em pty parse tree 

object (product) and then  invokes a series of addNode operations on th e  parse 

tree to  bring it to  a  s ta te  where it represents th e  inpu t being parsed. W hen 

parsing is com plete, a client of the  parser ob ject m ay recjuest it to  re tu rn  the  

parse tree  th a t has ju s t been constructed .

T his s truc tu re , where the d irector class connnunicates w ith the p roduct 

class directly, will prove inadequate if th e  d irec to r class has to  be ex tended  

to  construct ano ther type of p roduct object, one th a t has a different con-
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structioii process. T he adchtion of a  level of indirection through a builder 

class makes th is type of extension easy. We assum e for now th a t the  interface 

to the new builder class is the  same as th a t of the  curren t product class, so 

all the builder class does is to  delegate d irectly  to  th e  product class. In the  

general case the  builder receives construction requests from the  d irector class 

and transla tes them  into the appropria te requests to  th e  p roduct class. O ur 

transform ation assumes th is translation  to  be sim ply th e  identity  transla tion , 

as this produces th e  desired behaviour-preserving result. The program m er 

may of course la ter update  th is translation  to  perform  som ething more so

phisticated.

Specification  o f th e  B uilder T ransform ation

In considering th is transform ation it is clear th a t there is a them e involved 

th a t has not been encountered thus far, nam ely th a t of delegation. A new' 

builder class is to  be added between the  existing d irector class and th e  prod

uct class, and the  du ty  of the builder is to  delegate the  recjuests it receives 

from the d irector to  the  product object. It is tem p tin g  to  develop a  m ini

transform ation th a t takes an existing class and delegates its responsibilities 

to  another class. However, arguing behaviour preservation for such a  mini- 

transform ation  is cliunsy, so we choose another perspective where we w rap an 

existing class w ith a delegation/w rapper class. T h is wTapper class delegates 

its responsibilities to  the  w rapped class, so program  behaviour is preserved. 

T his n iin ipattern  is called W r a p p e r  and is described in full detail in section 

5.4.2 in the context of the  Bridge pattern .

The transform ation  th a t introduces the  Builder p a tte rn  can now' be de

fined as follows:

applyBuilder(C lass director, Class product, Str ing bu ilderN am e){
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ARSTRACTlON{product,  product Interface);

\VRAPPER{director,  productlnterface, builderName)', 

ABSTRACTAcCESs(allClasses, product,  productlnterface);

ForAII c:Constructor, c e  builderNam e{  

absorbParameter(c, 1);

}
parameteriseField(cy/rector, builderName)-,

}

First A[}STRACTI0N is used to  add to  the  program  an interface to  the given 

prochict class. This enables the  WRAPPER m initransform ation (see section 

5.4.2) to be used to  create the  builder class and to  set it up to  delegate to  

the product class the construction requests it receives from the director class. 

A i j s t r a c t A c c e s s  is now used to  dissolve the  dependency of the  program  

on the  concrete product class®. At th is point the essential s tru c tu re  of the 

Builder p a tte rn  has been introduced, but there is still some w'ork to  be done. 

The builder class curren tly  takes the  product it is to  construct as a ])ara- 

nieter, so the absorbParameter refactoring is used to  push th e  creation of the 

I)roduct object in to  the builder class where it belongs. T he opposite problem  

exists between d irector and  ljuilder, in th a t the  d irector object creates the 

builder it is to  use and th is does not fit the norm al p a tte rn  solution. The pa- 

rameteriseField refactoring is thus api)lied to  enable the  clients of th e  director 

class to  pass it the  builder object th a t it is to  use. This com pletes the  ap

plication of the Builder p a tte rn '.  T he effect of applying th is  transform ation  

'^Gaiiinia et al suggest th a t  th is is noniially  not useful as the products produced by 

concrete builders tend  to differ considerably [41, p .101]. We choose to  follow the solution

described by G rand [43, p. I l l ] ,  and provide an interface for the product class.
^Further refactorings could be applied now, so th a t clients would get the  constructed

{iroduct object from the builder object, ra ther th an  from the  director object.
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Figure 5.2: T he Builder Design P a tte rn

to  the Builder precursor (figure 5.1) is depicted as a U jML d iagram  in figure 

5.2.

A pplying the algorithm s of section 3.2, the preconditions of th is transfor

m ation are com jjuted as follows:

p recond ition:

1. The director and product classes m ust exist and the  nam e 

builderNam,e m ust not be in use:

mClcins{director) A iaClciSs{product) A

-<isC\i\ss{ builder N am e) A -'isInterface(6?/zWerA^ame)

2. T he product class m ust not have sta tic  m ethods:

V m :M ethod, m € product •  -iisS tatic(m )

3. The product class m ust not have public fields:

V f:field, f e  product •  ->isPublic(f)

4. The product class m ust have only one constructo r and th is 

constructor m ust recjuire no param eters:

V c:C onstructor, c 6 product •  noO fParam eters(c)= 0
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The transform ation  for the  Builder p a tte rn  is one of the  most complex of 

all the  transform ations developed in th is work, though much of the com

plexity is hidden inside its constituen t m initransform ations and refactorings. 

The preconditions for the  transform ation  are quite simple, again because 

most of the  preconditions of its constituen t m initransform ations and refac

torings are guaranteed  by earlier parts  of the  transform ation. For example, 

the W r a p p e r  m initransform ation can only be applied if the director class 

only uses m ethods of the  product class th a t are declared in the interface 

productlnterface. This condition does not appear in the precondition to  the 

transform ation  above, since it has already been set up by the  aj)plication of 

the A b s t r a c t i o n  m inipattern .

T he first precondition is trivial. T he second is a contraindication, though 

as pointed out in the  footnote on page 107, the A b s t r a c t A c c e s s  m ini

transform ation  th a t gave rise to  th is precondition could be om itted  from 

the transform ation. The th ird  condition is a straightforw ard refactoring pre- 

conchtiou, while the  final condition is also a refactoring precondition bu t is 

of more in terest. In absorbParameter the construction  of product objects is 

moved from the  d irector class to  the builder class. Each such object cre

ation expression nm st l>e the  same and not be dependent on its context. The 

only likely way for th is to  happen is if the  p roduct class only adm its no-arg 

construction. Bearing in m ind th a t th is p a tte rn  is applicable where product 

objects are constructed  in a step-by-step fashion, it is not im reasonable to  

re([uire th a t the  constructor for the p roduct class itself takes no param eters.

5.3.4 T he P roto typ e Transform ation

The in ten t of th e  P ro to type p a tte rn  [41, p. 117] is to  specify the kind of 

objects to  create by using a prototypical instance, and to  create new objects
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by cloning this instance. The appUcabihty section for this pattern  proposes 

three situations where it may be applied:

1. to achieve dynamic loading of classes, or

2. to avoid building a hierarchy of factory classes, one for each product 

class, or

3. when instances of a class can have an initial state th a t is one of only a 

few possible combinations.

Although these criteria are stated to be disjunct, in fact the Prototype pat

tern could not be applied if only the second were true and not the third. 

If objects of the product class can be constructed in a wide range of initial 

states, apj)lying the Prototype pattern  is not possible. Note that a precursor 

for the first criterion is very likely to be an antipattern , so we do not look 

further at this possibility.

Precursor for th e  P r o to ty p e  T ransform ation

The precursor we consider is therefore where the programmer has explicitly 

instantiated the product class at several points in the client class before 

realising tha t all these instances are identical*^. The updating of the object 

creation statem ents to use a cloned prototype object is possible only if the 

argiuneuts to the object creation statem ents have the same values in every 

case. This is highly unlikely to occur unless the client class only instantiates 

the product class using its no-arg constructor. For this practical reason we 

limit the precursor for this pattern  by enforcing this precondition.

more general .sohitioii is also possible, where the initial state of the objects created 

fits into one of several categories.
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S p ecifica tion  o f th e  P ro to ty p e  T ransform ation

T he transform ation  th a t introduces the P ro to type p a tte rn  is defined as fol

lows:

applyPrototype(Class client, Class product, String productlnterface){  

createExclusiveComponent(c//enf, product, “prototype” ); 

A b s t r a c t i o n  {product, productlnterface)] 

ABSTRACTAccESS(c//ent, product, productlnterface)',

ForAII e:ObjCreationExprn, c\assCreated{e)=product,  e G client { 

replaceObjCreationWithMethlnvocat ion(e,  "prototype.clone()” );

}
}

Using createExclusiveComponent  a field called “p ro to type” is added  to  the  

client class to  store the  prototypical object of the  p roduct class. A b s t r a c -  

riON is now applied to  the p roduct class and A b s t r a c t A c c e s s  to  ab strac t 

the  client class from the product class. F inally replaceObjCreationWithMe- 

thlnvocation is applied to  change all creations of p roduct ob jects to  invoke 

th e  clone m ethod on the pro to typical product object instead. The invocation 

of th e  clone m ethod on the  p roduct class assumes th a t th is  class is indeed 

clonable; see the definition of isClonable on page 191 for more detail.

A m inim alist approach was taken  in building th is transform ation. A more 

sophisticated  approach was also possible, by binlding a p ro to type m anager 

th a t would handle prototypes for a collection of classes and allow th e  collec

tion  to  grow and contract dynam ically.

We apply the algorithm s of section 3.2 to  com pute the  following precon

ditions for the  above transform ation:

precondition:
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1. The given classes must exist:

isClass(c/^en^) A \sC\eLSs{p7'oduct)

2. No class or interface with the name productlnterface exists:

-^isClass{productInterface) A -^ishitevface{productInterface)

3. The client class cannot contain a field called “prototype” :

V f:Field, {^client •  nameOf(f) ^  “prototype”

4. A non-private field called “prototype” cannot be defined in any 

superclass of client:

if  f:Field G els, els G superclasses(c/ieni), 

nam eO f(f)=“prototype” th en  isPrivate(f)

5. The product class must not have public fields:

V f:field, f G product •  -'isPublic(f)

6. The pr'oduct class must not have static methods:

V m:Method, m G product •  -iisStatic(m)

7. The product class nuist be clonable:

isClonable (product)

8. The client class creates product objects only using the no-arg 

constructor:

V e:ObjectCreationExprn, e G client, classCreated(e)=profi?ic^ •

noOfArgunients(e)=0

The categorisation of these preconditions is as follows. The first two are 

trivial, the third, fourth and fifth are refactoring preconditions, the sixth and 

seventh are contraindications, while the final one is a precursor precondition 

th a t we assumed in order to ease the specification of the transformation.

This completes the application of our methodology to the Gamma et al 

creational patterns. We postpone analysing the results until section 5.7 after
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Figure 5.3: The Precursor for the Bridge Design Pattern

the entire catalogue has been considered. In the following sections 5.4 and 

5.5, we dem onstrate the broader application of this methodology by applying 

it to a structural pattern  and a behavioural pattern.

5.4 Transform ation for a Structural Pattern: 

Bridge

The intent of the Bridge pattern  [41, p. 151] is to decouple an abstraction 

from its implementation so tha t the two can vary independently. It is useful 

when an abstraction needs to be implemented in several ways, and also needs 

to  be open to extension using inheritance.

5.4.1 Precursor for the B ridge Transform ation

The precursor for this pattern  follows naturally from the description of the 

pattern  given in [41]. It is depicted graphically as a UML diagram in figure 

5.3. We see tha t there is a client class th a t makes use of an interface tha t has 

been implemented in several different implementation classes. The weakness
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of th is  s tru c tu re  becom es apparen t if the progrannner la te r w ants to  extend 

th e  interface in some way: for each existing im plem entation class, a  new class 

will have to  be added. For exam ple, a  client class m ight use a queue interface 

th a t is im plem ented in one subclass as a  s ta tic  array and in another as a 

dynam ic linked-list structu re . If we need to  extend the  client to  work w ith 

a dequeue® as well, it is na tu ra l to  add th is as a subinterface of th e  queue 

interface. However, now the  dequeue interface m ust itself be provided w ith 

two subclasses to  provide a s ta tic  and  a dynam ic im plem entation. The appli

cation of th e  Bridge p a tte rn  to  th is s itua tion  will enable the  queue interface 

to  be ex tended  separately  from its im plem entation.

In considering th is transform ation  it is clear th a t th e  them e of delegation 

is involved again. A new bridging class is to  be added betw een the  existing 

client classes and the  im plem entation  classes. The d u ty  of th is class is to  

delegate all the  recjuests it receives from the  client to th e  appropria te  im ple

m entation  object. In the  following section we describe th is m in ipa tte rn  in 

detail, and in section 5.4.3 th e  Bridge transform ation  itself is dealt with.

5.4.2 The W rapper M initransform ation

The W r a p p e r  m initransform ation is used to  ‘Svrap” an existing receiver 

class w ith ano ther class, in such a  way th a t all requests to  an object of the 

wrapj)er class are passed to  the  receiver ob ject it wraps, and sim ilarly any 

results of such requests are passed back by the  w rapper object. This re

quires th a t all existing instan tia tions of th e  receiver class be also w rapped 

w ith an instan tia tion  of the  w rapj)er class itself. The overall effect of this 

m initransform ation  is to  add a certain  flexibility to  the relationship  between 

a client ob ject and the  receiver object it uses. All com m im ication now goes 

double-ended queue.
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via th e  w rapper object, which m eans th a t run-tim e replacem ent of the  re

ceiver object becomes possible w ithout the  client object being aware of the 

change. In a certain  regard, th is m in ipa tte rn  is the  dynam ic equivalent of 

the A b s t r a c t  A c c e s s  m initransform ation.

An issue th a t m ust be dealt w ith is where one or more of the client classes 

provide a “g e tte r” m ethod th a t re tu rn s an  instance of a receiver object. If 

the  receiver classes are to  be w rapped from all o ther classes in the  program, 

it m akes sense to  re tu rn  the  w rapped receiver object. However, it is only 

the  client classes th a t should see th e  w rapped receiver class; o ther classes in 

the  program  should deal d irectly  w ith  the  receiver classes as before. T here

fore, to  allow for a client th a t provides direct access to  its receiver object, 

createWrapperClass adds a  ge tte r m ethod to  the  w rapper class to  re tu rn  this 

object, while useWrapperClass updates th e  ge tte r m ethod in the  client class 

to  delegate to  the  getter m ethod to  the  w rapper class*”.

W’e have assm ned in the  description of th is m in itransform ation th a t there 

is a single receiver cla^ss to  be w rapped. In the more general case there will 

be a set of receiver classes to  be w rapped. In th is case, the  set of receiver 

classes is given by an interface th a t reflects how the  receivers are used in the 

client classes. For our curren t purposes of building a transform ation  for the 

Bridge pa tte rn , it is the la tte r  version th a t is of in terest, so it is th e  one we 

specify here.

This m initransform ation is im plem ented in term s of refactorings in the 

following way:

i°Thi s issue resulted in a lot of complexity in the detailed design and iniplenientatiou of 

tills minitransformation. It is interesting therefore to note th a t this could be avoided were 

the assumption to be made tha t the initial program complies with the Law of Demeter 

[60]. In a program that observes this law, an object would not extract a subobject from 

another object, and send a message to it.
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WRAPPER(SetOfClass clients, Interface iface, String wrapperName){

Class wrapper =  createWrapperClass(/Yace, w/rapperA/ame, "receiver” ); 

addClass(wrapper);

ForAII c:Class, lmplementslnterface(c, iface) {

useWrapperClass(c//enfs, wrapper, c, "getReceiver” );

}

}

In it ia l ly  the w rapper class is created and added to  the program . Then i t  

is used to  w rap each o f the receiver classes and, correspondingly, any c lients 

th a t use these receiver classes are updated to  w rap each construction  o f a 

receiver class w ith  an instance o f the w rapper class.

To dem onstra te  leg a lity  o f th is  chain and to  coni])ute its  pre- and post

conditions, we app ly  the a lgorithm s o f section 3.2. The com puta tion  is 

s tra igh tfo rw a rd , especially since most o f the p recond itions for useWrapper- 

Class are p rovided by createWrapperClass. The fo llow ing  pre- and postcond i

tions are produced: 

p re c o n d it io n :

The given in terface m ust exist: 

is ln terface (i/ace)

The name for the new w rapper class is no t in  use:

isC lass(wrapperNam e) A -> isInterface(w;rap;;e7Wame)

The c lien t classes on ly  use m ethods o f the receiver classes th a t are 

declared in  the in terface iface:

V o :()b jec tR e f, conta in ingC lass(o) G clients, 

in ip lem ents In te rface (typeO f(o ), iface) •

V m :M ethod , uses(o,m) •  declares(?/ace, m) 

p o s tc o n d it io n :
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The w rapper class has been added to  the program: 

isCIass' =  isClass[w;7-apj9er/true]

(Further properties of the  wrapper  class are given on page 198.)

All object references to  receiver classes in clients  have been changed 

to  wrapper:

V o:O bjectRef, containingC lass(o) G clients, 

im plenientsInterface(typeO f(o), i f  ace) •

ty p e O f= ty p e O f[o /wrappei']

All creations of receiver ob jects in the  clients  have been updated:

V e:O bjectC reationE xprn , im plenientsInterface(classC reated(e), 

iface), containingC lass(e) G clients  •

classC reated '=classC reated[e/?orapper]

Any receiver ob ject will exhibit the sam e behaviour as an instance of 

the class called wrapperNa.nie th a t has been given th is  object as its 

construction argiunent:

V c:Class, im plem entslnterface(c, ?/ace) •

V e:O bjectC reatiouE xprn , c lassC rea ted(e)= c •

exhibitSam eB ehaviour' =

exhibitSam eBehaviour[(e, new wrapperName{e))/true]

5 .4 .3  Specification  o f  th e  B r id ge T ransform ation

T he transform ation  th a t introduces the  Bridge p a tte rn  can now be defined 

very simi)ly as follows:

applyBridge(SetOfClass clients, Interface iface, String bridgeName){ 

WRAPPER(c//enfs, iface, bridgeName)',

}
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clien t
>

bridge
O

« ln t e r f a c e »

---------- > iface

A  Pv.

im p le m e n ta tio n i im p le m e n ta tio n 2

Figure 5.4: The Bridge Design P attern

The W r a p p e r  niinitransforniation does all of the work here, setting up 

the bridge class and ensuring tha t it delegates requests from the client classes 

to  the classes th a t implement the given interface. The effect of applying this 

transform ation to the Bridge precursor (figure 5.3) is depicted as a UML 

diagram in figure 5.4.

Once the structure of the Bridge j)attern has been reified in the program 

code, the programmer can exploit this. The bridge class can be subclassed 

and new methods added. If need be, the implementation of methods in 

the bridge class can be changed to  do more than simply delegate to the 

implementation classes. These changes are facilitated by the introduction of 

the Bridge pattern, but cannot be made j^art of the transform ation itself, as 

they are dependent of the intention of the programmer and are not in general 

behaviour-preserving.

The precondition for this transform ation is naturally just the precondition 

for the W r a p p e r  minitransform ation given in section 5.4.2 above, so it is 

not restated here.
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5.5 Transform ation for a B ehavioural Pattern: 

Strategy

Behavioural patterns have the possibility of challenging our approach very 

strongly. Since we transform one type of program structure (a precursor) 

into another one (the desired design pattern  structure), it is unclear how a 

pattern  th a t has little structure will be handled. In this section we address 

this question by applying the proposed methodology to a behavioural pattern  

and assessing the result.

The intent of the Strategy pattern  [41, p .315] is to enable several related 

algorithms to be encapsulated into their own respective classes, so th a t a 

client can be dynamically configured with an object of one of these classes. 

For example, a tree class might incorporate a traversal algorithm th a t returns 

the nodes of the tree in some order. Rather than hardcoding one particular 

traversal algorithm into the tree class itself, the Strategy pattern  encapsulates 

the traversal algorithm into its own class and allows a tree object to be 

configured with different traversal algorithms. This makes it easy to achieve 

in-, pre- and post-order traversals of the same tree object.

5.5.1 Precursor for th e S trategy  Transform ation

The natural precursor for this pattern  is w^iere a class incorporates a number 

of methods and fields tha t are all related to some particular algorithm. W'hile 

this cannot be regarded as a bad structure, its inadequacies become apparent 

if a requirement arises th a t the class be configurable to use a one of a number 

of related algorithms.

As with the Bridge and Builder patterns, there is a form of delegation 

taking place here as w'ell. The strategy methods will be moved to their own
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class and  the original class will delegate to  them . T he W R A P P E R  m inipattern  

th a t was used earlier is not so suitable here: nothing is being “w rapped,” 

ra th e r p a rt of the  original class is being split off into a new class and behaviour 

is being preserved by the  original class delegating to  the  new one. In the 

following section we describe th is m in ipa tte rn  in detail, and  in section 5.5.3 

the  S trategy  transform ation  itself is dealt with.

5,5.2 The D elegation  M initransform ation

The D e l e g a t io n  m initransform ation  is used to  move p a rt of an existing 

class to  a  com ponent class, and to  set up a  delegation relationship  from the 

existing class to  its com ponent.

This m initransform ation is defined as follows^

Delegation(Class context, SetOfM ethod moveMethods,

String delegation Name) { 

addClass(createEmptyClass(c/e/egaf/onA/ame)); 

createExclusiveComponent(coA7fext, delegationName, "delegation” ); 

ForAII nniMethod, m G m oveM ethods { 

abstract Method FromClass(m); 

move Met hod (con text, “delegation” , m);

}

}

T he em pty delegation class is first added to the  program  and an exclusive 

''R o b e rts  deals with this transfoniiatioii as well [84. p.40]. Since he does not use a 

precursor, he can ignore the problem of initialising the component object that is being 

delegated to. Also, he does not abstract the method to be moved from its class, so he 

only permits the moving of a method tha t does not access any fields or methods in its own 

cla.ss or any of its superclas.ses.
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component of this class is added to the context class. Now each of the 

methods to be moved can be processed. A method to be moved must first be 

“abstracted” from its class, th a t is, everything it refers to in the class must 

be made public. At this point, the moveMethod refactoring may be invoked 

to move the method to the delegation class.

Using the algorithms of section 3.2, the pre- and postconditions for this 

minitransformation are computed as follows:

precondition:

The given context class must exist: 

isClciss{ context)

The name for the delegation class must not be use:

-'isClcisii{delegntionName) A ~'islnteTfsice{dele(jationNnm,e)

The methods to be moved must belong to the context class:

V m G rnoveMethods •  m € cojitext

The context class cannot contain a field called “delegation” :

V f:Field, {^context • nameOf(f) ^  “delegation”

A non-private field called “delegation” cannot be defined in any 

superclass of context:

if  f:Field G els, els G s\ipevclasses{context), 

nameOf(f) =  “delegation” th en  isPrivate(f) 

p ostcond ition:

A new class called delegationName has been added to the program: 

isClass' =  isClass[de/e^ationA'’am e/true]

The class context has a field called “delegation” of type deleg ationName\ 

3 f: Field, f G context such tha t

typeO f= typeO f[f/deleg ationN ame] 

nam eO f=nam eO f[f/“delegation” ]
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“delegation” refers to an exclusive component of context.

isExclusiveConiponent'=isExclusiveComponent[(con<ea:^, “delegation” )/true] 

All methods/fields defined directly or indirectly in context tha t are 

used by a method in moveMethods are now public:

V m;M ethod e  moveMethods •

V x:Field/M ethod, deRnes{context, x), uses(m,x) •

isPublic'=isPublic[x/true]

The given methods have been moved to the delegation class:

V ni:AIethod G moveMethods •

classOf=classOf[m /delegationN ame]

The class context delegates invocations of moved methods to methods 

th a t exhibit the same behaviour in the delegation class:

V ni:M ethod G moveMethods •  3 n:Method, classOf (n) =  con<ea;t, 

nam eO f (n)=nam eOf(ni), sigOf (n)=sigOf(m) such that

uses'=uses[(n,m )/true]

exhibitSameBehaviour'=exhibitSameBehaviour[n/m]

5.5 .3  Specification o f the S trategy  Transform ation

The transform ation tha t introduces the Strategy pattern  can now be defined 

very simply as follows:

applyStrategy(Class context, SetOfMethod strategyMethods,

String strategyName){

DELEGATION (context, strategyMethods, strategyName) 

ABSTRACTlON(sfrategyA/ame, strategylnterface);

ABSTRACTAcCESS(context, StrategyName,  strategylnterface);
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At the  com pletion of th is transform ation, th e  strategy  m ethods have all 

been moved to  the  strategy  class. Each one takes its context ob ject as an 

argum ent, and refers back to  th is context for any fields it needs access to. 

If th e  program m er has chosen a cohesive set of stra tegy  m ethods, it is to  

be expected th a t most of these fields can be moved to  the  strategy  class as 

well, and then  some or all of th e  strategy  m ethods will not need the  context 

argum ent anym ore. This p a rt of the  transform ation  can be au tom ated  quite 

straightforw ardly, bu t for clarity  we have om itted  it.

A pplying the  algorithm s of section 3.2, the  preconditions for th is tran s

form ation are com puted as follows:

p re c o n d i t io n :

1. The given context class nuist exist:

isClass(con^erri)

2 . The nam e for the  stra tegy  class nm st not be use:

~'isC\ciSs{strategyNarne) A -'islutQvicLce{st7-ategyName)

3. T he nam e for the  stra tegy  interface m ust not be use:

^isC\&as{strategyInterface) A -^\sluteTiace{st7'ategyInte7'face)

4. The strategy  m ethods m ust belong to  th e  context class:

V m e  strategy Methods •  m G context

5. The context class cannot contain a field called “delegation” :

V f:Field, {^context •  nam eO f(f) 7  ̂ “delegation”

6 . A non-private field called “delegation” cannot be defined in any

superclass of context:

i f  f:Field 6  els, els G swpevcla,sses{context),

nam eO f(f) =  “delegation” th e n  isP rivate(f)

7. No stra tegy  m ethod m ay be static:

V m e  strategy Methods •  -•isStatic(m )
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T he first four preconditions are triv ial, the  next two are refactoring precondi

tions while the  last one is a  contraindication. T he contraindication  is derived 

from the use of the  A b s t r a c t  A c c e s s  n iin ipattern , since moving a static  

m ethod to  the  stra tegy  class would make it subsequently inaccessible when 

th e  strategy  interface is added.

In spite of initial concerns th a t our approach would have problem s dealing 

w'ith a  behavioural p a tte rn , a com pelling precursor was found for th e  S trategy 

p a tte rn  and the  transform ation  to  apply th is p a tte rn  did not prove to  be 

particu larly  difficult to  work out. In section 5.7 we provide an explanation 

for th is phenom enon.

5.6 Precursors and Transformations for the 

Gamma et al Patterns Catalogue

In th is section the  rem aining p a tte rn s  of the G am m a et al catalogue [41] are 

analysed w ith a view' to  finding a suitable precursor, assessing if th e  transfor

m ation is workable, and determ ining  the  m initransform ations th a t are likely 

to  be used. Please note th a t th e  transform ations offered in th is section have 

not been p ro to typed  and w'orked out in as m uch detail as those in previous 

exam ples. O ur aim  here is to  make a  global assessm ent of the  applicability  of 

th e  methodology, w ithout applying the  full rigour of the  approach to  every 

exam ple. In each case we assess the  result we achieve and place it in one of 

the  following categories:

1. Excellent: T he m ethodology worked very w'ell. A plausible precursor 

was found and a com pelling transform ation  was built, m aking use of 

some of the  m initransform ations already identified.
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2. Partial: There is some problem with the result (see list below) tha t 

means a usable transformation can be developed, but it is not complete.

3. Impractical: There is a serious problem with the result (see list below) 

tha t makes it impossible to build a transformation, or produces one 

that is so constrained th a t it is of no practical value.

There are a mnnber of w'ays in which a design pattern  can be found to 

be less suitable for the application of our methodology. We describe them 

l)elow.

•  A convincing and useful precursor cannot be foimd. Sometimes there 

is no compelling way a programmer might have partially ini])lemeuted 

the intent of the pattern without either using a poor design (an an

tipattern), or going the whole way and implementing the full pattern  

structure. We may in this case be able to work with a weak precursor 

tha t is very close to the green field starting point. This is a workable 

solution, but not very satisfactory, as there is little need for behaviour- 

preservation proofs in this case. Examples; Decorator and Observer.

• There is a compelling precursor, but it is not a structure th a t can easily 

l)e pointed to and identified in code, even by a programmer who knows 

the code well. It may, for example, contain behavioural elements tha t 

are dispersed around the code. The problem here is tha t this type 

of precursor is too inexact to be used to  drive a behaviour-preserving 

transform ation, and so is useless as a starting point for an autom ated 

approach. In some cases dynamic analysis or sophisticated pattern  

recognition might provide a solution, but this is beyond the scope of 

this work. Examj)les: Facade, M ediator, Interpreter and Flyw^eight.
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•  Even if a com pelling and easily identifiable precursor can be found, it 

may be th a t the  resulting  transform ation  still leaves a certain  am ount 

of work for the program m er to  do in order to  com plete the  application 

of the  pa tte rn . N ote th a t if the  am ount of work to  be done is small, 

we m ay still categorise the  result as excellent. Examples: A dapter, 

Builder, Bridge, C hain of Responsibility, Proxy and S tate.

A word on the  precision of th e  specification of the precursor is useful here. 

If we were searching for the  precursor in th e  code, its specification would 

have to  be com pletely precise. However, in our approach, the progrannner 

identifies exactly  where the  design p a tte rn  is to  be applied. This m eans th a t 

the au tom ated  tool need only identify the  aspects of the existing s truc tu re  

th a t need to  be restructured , and th is is th e  purpose of the  precursor. For 

exam ple, in the  case of the  Factory M ethod p a tte rn , the tool only has to 

identify the  places in the  class where a p roduct object is created. The “ex tra” 

part of the precursor, the  fact th a t th is is a good spot to  apply the  Factory 

M ethod ])attern, has been provided by the  program m er.

In general th e  applicability  section of a design p a tte rn  description suggests 

the  precursor [41]. If there are several d istinc t applicability  clauses (i.e., if 

they are disjunctives) th is may give rise to  several precursors. In the  case of 

the P ro to type p a tte rn , for exam ple, there  are th ree  applicability  clauses, bu t 

we find th a t one of them  is natu ra l to  choose as the  basis for the  precursor.

5.6.1 The Gamma et al Creational Patterns

In th is section we consider the  application of our m ethodology to  each of 

the  creational p a tte rn s  of the  G am m a et al catalogue [41]. Since w'e have 

dealt w ith these pa tte rn s  already, we sim ply place th e  precursor and  resulting  

transform ation  into one of the  th ree  categories listed on page 124.
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A b stract Factory

This p a tte rn  has been fully dealt w ith in section 5.3.2. T he precursor is a 

s truc tu re  th a t is likely to  occur during the  evolution of a software system 

and the  transform ation  is compelling.

Overall Assessment: Excellent.

B uilder

This p a tte rn  has been fully dealt w ith in section 5.3.3. The precursor and 

transform ation  are com pelling, though they  lack the  sim plicity and elegance 

of, for exam ple, the  Factory M ethod transform ation. We explained on page 

106 th a t a small am ount of work is left to  the program m er a t the  end of the 

transform ation, bu t it is nevertheless a very valuable result.

Overall Assessment:  Excellent.

Factory M eth od

Due to  the  elegance of its solution, th is p a tte rn  was chosen as our flagship 

exam ple and was presented in detail in chap ter 4.

Overall Assessment:  Excellent.

P ro to ty p e

This p a tte rn  has been fully dealt w ith in section 5.3.4. T his solution has 

weaknesses in th a t th e  precursor is som ew hat more constrained th an  th a t 

for the o ther creational i)atterns, and the  construction of the  clone m ethod 

is not au tom atab le  in every case. However, the  transform ation  is generally 

straightforw ard, and constructing  the  clone m ethod could be a problem  even 

for a program m er applying th is  p a tte rn  by hand.

Overall Assessment:  Excellent.
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S in g leton

This pa ttern  has been fully dealt with in section 5.3.1. The precursor used 

there (a single-instance class) is not a very compelling one and cannot be 

verified automatically. However, ŵ e chose this precursor because it made it 

possible to reuse the entire transform ation in developing the A bstract Factory 

transform ation. As already stated, a more generally applicable precursor is 

where there is a set of global variables to be packaged into a singleton class^^. 

This gives rise to the following transformation:

]. Add an empty class to the program and use a p p l y S i n g l e t o n  from 

section 5.3.1 to make it a singleton class.

2. For each global variable to be encai)sulated, add a field of this type to 

the singleton class, along with “getter” and “setter” methods for this 

field.

3. Replace every reading of a global variable with an invocation of the 

corresponding “getter” method, and every writing of a global variable 

with an invocation of the corresponding “setter” method.

4. Delete all the (now imused) global variables.

This is both a practical precursor and a straightforward transformation. 

Overall Assessment. Excellent.

*^This was also the precursor used by Jalinke and Ziindorf [49], the only other api^roach 

to design pattern transformations that uses a similar notion to that of a precursor. See 

page 89 for a more detailed description of this work.
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5.6.2 The Gamma et al Structural Patterns

In th is section we consider the  appUcation of our m ethodology to  each of the 

s tru c tu ra l pa tte rn s  of th e  G am m a et al catalogue [41]. If the  p a tte rn  has been 

dealt w ith before, we sim ply place the  precursor and resulting transform ation  

into one of the  th ree categories listed on page 124.

A dapter

T he in ten t of th e  A dapter p a tte rn  [41, p. 139] is to  convert the  interface of an 

existing class in order to  make it com patible w ith  the interface th a t its clients 

expect. T his allows classes to  work together th a t could not otherw ise do so, 

due to  m inor inconipatabilities in the  interface provided and the interface 

expected. Fully au tom ating  th e  application of th is p a tte rn  poses a  problem  in 

th a t the  m apping from the new adap ter interface to  the  existing adajjtee class 

should be specified by the  program m er. Developing a language to  specify th is 

m apping is non-trivial and beyond the scope of th is work.

We take a simple approach and assiune th is  m apping to  be the identity  

m apping. This allows the construction  of a transform ation  th a t applies the 

A dapter s tru c tu re  in a behaviour-preserving fashion, bu t leaves an am ount 

of work for the  program m er to  do. T he precursor is sim ply where a  client 

class uses a supplier (adaptee) class and a recjuirem ent is in troduced th a t  the 

client be able to  work w ith any one of a fam ily of supplier classes, each one 

j)roviding essentially th e  same functionality  as the  existing one, bu t w ith a 

different interface.

The transform ation  then  becomes:

1. A pply W r a p p e r  to  the supplier class to  produce the  concrete adap ter 

class.
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2. A pply A b s t r a c t i o n  to  th e  concrete adap ter class and  A b s t r a c t  A c 

c e s s  to  abstrac t the  client class from the concrete adap ter class.

This application of th ree m initransform ations produces th e  A dapter struc

ture, where the  adap ter class sim ply delegates each request to  the  existing 

supplier class. The progranm ier m ay now update  th e  adap ter class to  per

form a more sophisticated adap tation , and add new supplier classes.

Overall Assessment:  Excellent.

B ridge

This p a tte rn  has been fully dealt w ith in section 5.4.3. As explained on page 

118, a small am ount of work m ay be left to  the program m er a t th e  end of the 

transform ation, bu t overall the  precursor and transform ation  are compelling. 

Overall Assessment:  Excellent.

C om p osite

The in ten t of the Com posite p a tte rn  [41, p. 163] is to  enable a client class to 

trea t a single com ponent object and a com position of com ponent objects in a 

imiform fashion. T he m ost na tu ra l precursor here is where the  program m er 

has identified a 1:1 relationship  between a client class and a com ponent class, 

and has im plem ented th is by giving the client class a  field of type com ponent. 

If it la ter trans{)ires th a t the  card inality  of th is relationship  m ust be extended 

to  1:N, it may be n a tu ra l to  apply the  Com posite p a tte rn . This will involve 

replacing the com ponent field w ith a field of a  type th a t represents both  

the  interface to  the  com ponent class itself, and th e  “com posite” interface 

(addComponent, removeComponent etc.).

One issue is the  actual com posite d a ta  s truc tu re  th a t is to  be used. This 

could be any type of generic container structu re , bu t is m ore usually a type of
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list. Let us paranieterise the  transform ation  w ith the  container class th a t is 

to  be used for the  com posite im plem entation , and dem and th a t th is container 

class contains an iteration  interface. The resulting  transform ation  is:

1. A pply A b s t r a c t i o n  to  the  com ponent class to  produce th e  com po

nent interface.

2. E x tend  the  com ponent interface w ith th e  supplied com posite interface.

3. Provide im plem entations for the  com posite operations in the  com po

nent class'^.

4. A dd th e  com posite class and provide it w ith  an implements link to  the 

com i)onent interface. It will contain a private field of type container. 

T he com posite m ethods will be im plem ented by delegating them  to 

the  container field, while the  com ponent m ethods will be im plem ented 

by itera ting  through the  elem ents of th e  container and applying the 

m ethod to  each one.

5. Apply A b s t r a c t A c c e s s  to  ab strac t the  client class from the  com po

nent class, so th a t it now uses the  com ponent interface instead.

The result of th is  transform ation  is th a t th e  client class now uses the  com po

nent class th rough its interface. It is also easy to  extend the  client so th a t it 

uses com positions of com ponents in place of the  single com ponent instances 

it was dealing w ith originally- 

Overall Assessment: Excellent.

^■^Operations like addComponent are uiiiiitiiitive for the com ponent class and m ust be 

im plem ented to  do nothing. However, even if the pattern is being applied by hand, th is is 

necessary to achieve a transparent interface to  both leaves and com posites.
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D ecorator

The intent of the Decorator pattern  [41, p. 175] is to enable the dynamic ad

dition and removal of responsibilities to/from  an object. It allows the func

tionality of an object to be transparently extended at runtime, by wrapping 

the object with the appropriate decorator objects.

A transform ation th a t introduces this pattern  to a C-I--I- program was 

built as part of our earlier work [71]. The starting point for the transforma

tion was taken to be where multiple inheritance had been used to provide the 

multiply-decorated component class. This tends to lead to an explosion of 

subclasses, where each subclass represents a certain combination of decorator 

classes. The application of the Decorator pattern  is valuable here to reduce 

the number of classes in the program and to enable the dynamic creation of 

new combinations of decorators.

Java does not support nniltiple inheritance, so this is not a possible pre

cursor. The alternative precursor is where the component class achieves its 

decoration by storing a list of decorator objects and iterating through them 

whenever it receives a message. This is an implausible precursor, so w'e do 

not consider it further.

The most s\iitable starting point for this transform ation is close to the 

green field situation. There are a number of client classes tha t use a com

ponent class, and there are a number of decorator classes. There is as yet 

no relationship between the component class and the decorator classes, but 

there is commonality between the interfaces they present. Application of the 

Decorator pattern  means th a t this commonality can be exploited to allow 

component objects be dynamically extended with new behaviour, by wrap

ping them  with the appropriate decorator objects.

The transform ation to apply the Decorator pattern  structure is then as

132



follows:

1. Apply A b s t r a c t i o n  to the component class to produce the compo

nent interface and A b s t r a c t A c c e s s  to the client classes to abstract 

them from the concrete component class.

2. Apply W r a p p e r  to a decorator class to create the abstract decorator 

class th a t delegates all messages it receives to its component object.

3. Make each concrete decorator a subclass of the abstract decorator class 

and update each m ethod tha t is declared in the component interface so 

tha t it first invokes the operation of the same name in its superclass.

The clients continue to  use the same component objects as before, but access 

them through the component interface; behaviour preservation is thus simple 

to demonstrate. The Decorator structure is now present, so the client may 

be easily updated to decorate these components as need be.

Overall Assessment: Partial.

Facade

The intent of the Facade pattern  [41, p. 185] is to provide a unified interface 

to an existing set of classes in a subsystem. The natural precursor for this 

pattern  is stated  clearly in the description of this pattern. A set of classes 

(clients) use another set of classes (subsystem classes), and this interaction 

should be encapsulated and directed through a single facade class.

However, apart from adding an empty facade class it is very difficult 

to fvuther autom ate this transform ation in the general case. A client class 

may create nuiltiple instances of a subsystem class and interact with them  

in different ways. The key aspect of the Facade pattern  is tha t these inter

actions nuist be understood in some way, grouped into cohesive units and
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encapsulated in the interface to the facade class. Finding these groupings 

involves sophisticated pattern  recognition tha t is poorly supported by auto

m ated approaches. Packaging these groupings into cohesive methods in the 

facade interface is likely to involve m ethod splitting and low-level analysis 

tha t other transformations do not need^^.

So while a compelling precursor can be identified, our methodology can 

achieve little by way of autom ating this transformation.

Overall Assessment: Impractical.

F lyw eight

The intent of the Flyweight pattern  [41, p. 195] is to use sharing to  support a 

large number of fine-grained objects efficiently. The precursor for this pattern 

is (juite clear from the pattern  description. A class exists th a t has a large 

number instances and part of the state  of these instances never changes after 

construction. The inunutable part of the state can be made intrinsic to the 

flyweight and the mutable part stored in the context of the flyw'eight.

Not nuich of this transform ation can be autom ated using the techniques 

w'e have proposed. The structure of the Flyweight pattern  can be built but 

“populating” it and transforming the existing class into this structure has to 

be done by the progranuner. The number of flyweight objects, their initial 

state, and a key for accessing them  are all crucial aspects of this pattern  

th a t cannot be determined from the program code using our techniques. 

Also, determining how to integrate the extrinsic state into the context of the 

flyweight is an issue requiring considerable design judgement.

^^Bongtssoii and Bosch describe an experience of reengineering the software system for 

a dialysis machine [4]. They report apj)lying the Facade pattern with enthusiasm and 

fincUng that it resulted in unnecessary complexity. This suggests that even applying this 

l)attern by hand is not an easy task.
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Overall Assessment-. Impractical.

P ro x y

The intent of the Proxy pattern  [41, p.207] is allow one object to “stand 

in” or act as a surrogate for another object. There are many reasons why 

it may be desirable to proxy an object: the real object may reside on a 

remote machine (remote proxy), or it may be necessary to restrict access to 

certain operations (protection proxy), or constructing the entire object may 

be expensive and a light proxy can be used in its place until full construction 

becomes necessary (virtTial proxy).

Regardless of the tyi)e of proxy, its essential structure can be achieved by 

the application of the W r a p p e r  minitransformation, to wrap the original 

object with its proxy object. We will consider the transformation for the 

virtual proxy further. The natural precursor is where a class has been de

veloped but the programmer realises th a t the construction of objects of this 

class is time-consuming (e.g., they may access an image across a network). It 

may therefore be beneficial to {postpone construction of the expensive parts 

of this class until they are actually needed.

The param eter to this transform ation is just the class to be proxied. The 

transform ation to apply a virtual proxy is as follows:

1. Apply W r a p p e r  to the given class to create the proxy class.

2. Apply A b s t r a c t i o n  to the given class and add an implements link 

from the proxy class to the new interface.

3. Apply A b s t r a c t A c c e s s  s o  clients of the given class now access it 

through the interface.
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Now the essential pattern  structure is available, the programmer can develop 

the program further to achieve the relevant type of proxying. In the case of 

the virtual proxy, the “cheap” fields of the class may be stored in the proxy 

enabling certain requests to be met by the proxy alone. O ther requests will 

result in the creation of the proxied object and the delegation of the requests 

to  this object.

Overall Assessment: Partial.

5.6.3 The Gamma et al Behavioural Patterns

In this section we consider the application of our methodology to each of the 

behavioural patterns of the Gamma et al catalogue [41], If the pattern  has 

been dealt with before, we simply place the precursor and resulting transfor

mation into one of the three categories listed on page 124. Before considering 

the patterns themselves, we first deal with a difficult problem that arises in 

several of the transformations for behavioural patterns.

Issues in C la ss-sp littin g  T ransform ations

Many of the transform ations in this section involve splitting an existing class. 

In the simple case, e.g.. Strategy, after the class is split one part retains a 

reference to the other part. The relationship is reflected in the object struc

ture in th a t what was originally a single object before the transformation, 

will now become two objects, one with a reference to the other. This does 

not present any particular problem to our approach. Given a reference to an 

object, the i>art th a t has been split off can be accessed by traversing the link 

to tha t object.

A much more serious issue arises when a class is split and the cardinality 

of the relationship between the parts is made 1:N, but the traversal of this
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relationship must only be available from the N side to the 1 side. In this case 

it is lip to the programmer to keep track of which object is related to w'hich, 

i.e., there is no explicit link between the objects. This occurs in a number of 

design pattern  transformations:

•  Iterator. In the precursor the iteration is part of the composite class, 

while in the design pattern  structure it is moved to an object on its 

own. A comj^osite object may have many active iterations, but should 

not know about them.

•  Memento. In tlie precursor the originator class itself stores the me

mento object, while in the design pattern  structure it is stored in an 

object on its own. An originator object may have many mementos, but 

should not know about them.

Here is a concrete example of the problem, based on the design ])attern 

transformation for the Iterator pattern  (see page 142):

Composite x =  new Composite();

Composite y =  new Composite();

Composite z;

x.startlteration();

y.startlteration();

if (someCondition) 

z=x;

else

z=y;

return (z.getNextElem entO);
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The Composite class provides th e  usual m ethods to  add  and remove ele

m ents, as well as m ethods to  ite ra te  through the  elem ents of the  com position. 

The object reference z is assigned one of the  two Composite objects th a t have 

been created  a t the s ta rt of the  block.

In applying the Ite ra to r p a tte rn  to  th is program , th e  itera tion  part of 

Composite will be split off into a  class on its  own. A t points in the code where 

an itera tion  is started , a new ite ra tion  object will be created, param eterised 

w ith th e  com posite object. In the  above code, two new itera tion  objects will 

be created , one for the iteration  over x, and one for the  itera tion  over y. The 

problem  faced here is how to  work out which ite ra to r ob ject should be used 

in the  return statem ent.

In the  original program , the  fact th a t we had a reference to  the  object 

m eant th a t we knew which ite ra to r it was connected to, since the ite ra to r was 

p art of the  object itself. In the transform ed program , the ite ra to r object holds 

a reference to  its com posite object, b u t not vice versa. This m eans th a t code 

in the  original program  th a t accesses the  itera tion  interface of a com jjosite 

object cannot be easily transform ed to  use the  appropria te  itera tion  object. 

In fact, th is problem  is not decidal)le in general, and could be a  problem  for 

a program m er perform ing the  task  by hand.

If an ite ra to r is initialised and  used on a nam ed object, not passed to  

ano ther context and not aliased, it w'ill not be a problem  to  transform . Such 

cases can be transform ed autom atically . More com plicated cases cannot be 

dealt w'ith using our approach.

Chain of R esponsibility

T he in ten t of the Chain of Responsibility  p a tte rn  [41, p .223] is to  decouple 

the sender of a request from the u ltim a te  receiver of the  request. The recjuest
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is passed along a chain of objects until one object finally handles it.

A starting point for this transform ation th a t involves an object sending a 

request to various other objects, and testing if they have handled it, is likely 

to be an antipattern . A more suitable precursor starting point is where the 

receiver object is known to the sender, but a requirement has emerged to 

make this relationship more flexible. For example, in developing an applica

tion a programmer may start with a simple interface where any help request 

from the user is always handled by the same object. As the interface be

comes more complicated, and a full graphical user interface is used, it will 

be necessary to introduce context-sensitive help. In this case, a user help 

request may be passed through several user interface objects until it reaches 

the appropriate one th a t can handle it.

The input to this transform ation is the sender class and the receiver class. 

It proceeds then as follows:

1. Apply W r a p p e r  to the receiver class to i)roduce the chaining class.

2. Make the receiver class a subclass of the chaining class. This has the 

effect of making the default behaviour for any undefined method in the 

receiver class be delegation to the next ol)ject in the chain^®.

3. Apply A b s t r a c t  A c c e s s  to the sender class so it uses the chaining 

class rather than the receiver class.

Any receiver object has now been made part of a null-term inated chain of 

objects of length 1. To add a new receiver class th a t handles any foo requests, 

the new receiver class should be made a subclass of the chaining class, the foo 

m ethod should be removed from the existing receiver class (thus causing the 

^^Tliis is a surprising and vahiable reuse of the class produced by the WRAPPER mini- 

transforniation.
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default delegation behaviour to  come into play), and th e  required  receiver 

object should be constructed  and added to  the end of the  curren t chain of 

objects.

A fter application of th is p a tte rn , the program m er is left w ith  some work 

to  do to  exploit the  flexibility of th e  p a tte rn  structu re . The precursor for th is 

p a tte rn  is nevertheless plausible and  the  transform ation  does not present any 

serious problems^®.

Overall Assessment:  Excellent.

C om m and

The in ten t of the  Com m and p a tte rn  [41, p .233] is to  encapsulate a request as 

an object. This enables a client to  be param eterised w ith different requests, 

and supports queuing and logging of requests.

This p a tte rn  aims to  loosen the coupling betw'een th e  orig inator of a 

request and the  receiver of the request. The originator is initialised w ith a 

conm iand object th a t sim ply supports the  operation execute. At some point 

the  originator invokes execute on its conunand object and th is sends the 

request to  th e  receiver object.

The precursor is as follows. An instance of the originator class invokes 

th e  paranieterless operation foo on its receiver object. T he receiver object 

is passed to  the  originator class as an argum ent to  its constructo r (if it is 

created  w ithin the  constructor we can use the  parameteriseField refactoring 

to  ex trac t its construction). T he only use th e  originator class m akes of its 

^®Toku(la and Batory state of this pattern [96]: “there is no refactoring-enabled evolu

tionary path which leads to [its] use.” We have nevertheless presented a successful trans

formation for this pattern. The reason is tha t the precursor actually simplifies m atters 

by ensuring tha t the key behavioural abstractions are already packaged into methods so 

what remains is a mainly structural transformation.
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receiver field is to  invoke foo on it. The transform ation  proceeds as follows:

1. The createWrapperClass refactoring is used to  partia lly  w rap the  re

ceiver class. This creates the  concrete com m and class th a t stores a 

reference to  a receiver object and delegates the  foo recjuest to  it.

2. Renam e the  foo m ethod in the  com m and class to  execute.

3. A pply the  A b s t r a c t i o n  m initransform ation  to  the  com m and class to  

produce the com m and interface.

4. The useWrapperClass refactoring is used to  update  all creations of orig

inato r objects to  w rap the  receiver param eter in a concrete connnand 

object. This concrete com m and object is stored in th e  orig inator class 

and any previous invocations of receiver.foo() are changed to  com

mand.execute().

5. Delete the  receiver field from the  originator class.

T he precursor appears valuable, though (^uite constrained, and th e  transfor

m ation is satisfactory.

Overall Assessment:  Partial.

In terpreter

T he in ten t of the In terp re ter p a tte rn  [41, p .243] is to  enable th e  definition 

of the representation  of a gram m ar, along w ith an in terp re te r th a t uses th is 

representation  to  in terp re t sentences in the  language defined by th e  granunar. 

This p a tte rn  is useful when the  program  being developed has to  in terp re t a 

sim ple language th a t can be stored as an ab strac t syntax tree. Each gram m ar 

ru le in the language is represented as a class and an interpret m ethod  is added
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to each class th a t defines how this part of the  sentence is to  be in terp reted  

and processed.

The na tu ra l precursor is w'here a problem  is represented and solved in 

some particu lar way, bu t it becomes necessary to  deal w ith  a more general 

problem, one th a t can be usefully specified as a sim ple language. For exam 

ple, a program  may allow the user to  search for a  string  in a  tex t file. A 

natural evolution of th is facility w'ould be to  allow the  user to  specify a  more 

general p a tte rn  to  search for, and in th is case it would be useful to  specify 

the problem  using a regular expression grannnar.

A lthough the  precursor is plausible, it is too vague to  serve as a  concrete 

stiirting point for an au tom ated  transform ation. Nor does there appear to  be 

any obvious precursor th a t could serve as a s ta rtin g  point for a transform ation  

for this p a tte rn^ '.

Overall Assessm.e.nt: Im practical.

Iterator

The in ten t of the  Ite ra to r p a tte rn  [41, p .257] is to  enable sequential access 

to  the elem ents of an aggregate object w ithout exposing the  underlying rep

resentation  of the  object. It allows nm ltiple concurrent iterations over the  

aggregate object and does not expose the  underlying s truc tu re  of th e  aggre

gation.

The ideal s ta rtin g  point for th is transform ation  w'ould be sim ply an ag

gregate class th a t does not have any ite ra to r yet. However, au tom atically  

ex tracting  the s truc tu re  of the aggregate and how to  ite ra te  th rough it is not 

feasil)le, so we seek a sim pler precursor. A na tu ra l one is w'here th e  ite ra to r 

^'In  his work on au tom ated  p a tte rn  detection, Kyle Brown also classifies th is  p a tte rn  

as too general to  be detectable by an au tom ated  tool [13].
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has been into the aggregate class itself through the use of a cursor.

This is connnon practice when prototyping an aggregate class initially, and 

will allow a single iteration to be active at any one tinie^* .̂ If the aggregate 

class becomes more widely used, the reciuirement for multiple concurrent it

erations w'ill surely arise, and this will require the application of the Iterator 

pattern.

The param eters to this transformation are the aggregate class itself and 

the iteration methods and fields tha t are part of this class. The iteration 

fields should only be accessed by the iteration methods. The transform ation 

works as follows:

1. Copy the iteration methods and fields to the new iteration class, which 

is parameterised with an instance of the aggregate class and delegates 

any internally-generated, non-iterator requests to this instance. A form 

of the D e l e g a t i o n  minitransformation can be used here, but the orig

inal aggregation class should remain unchanged for now'.

2. Apply AF3STRACTI0N to the iterator class to produce an iterator in

terface. Apply E n c a p s u l a t e C o n s t r u c t i o n  to the aggregate class 

with the iterator class as createe. This will add a construction m ethod 

for the iterator class to the aggregate class th a t returns an iterator 

instance initialised with this.

3. Wlierever in the program an instance of the aggregate class is iterated 

over, replace this with access via an iterator object.

4. Delete the iteration methods from the aggregate class.

is also the sohitioii used by Bertrand Meyer to enable iteration though the elements 

of a list [66, p. 192].
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Step (3) may produce a clumsy result. If an aggregate object is partially 

iterated over and then passed as an argument to another method, the iterator 

will have to be passed in as well, and possibly then the aggregate object need 

not be passed. This is an example of the class-splitting problem discussed on 

page 136. A part from this, the precursor for this transform ation is plausible 

and the transformation generally conii)elling.

Overall Assessment: Partial.

M ediator

The intent of the Mediator pattern  [41, p.273] is to define an object th a t en

capsulates how a set of objects connnunicate. By centralising comnninication 

in the mediator object, coupling between the colleague objects is reduced, 

and knowledge of how they communicate is defined in one place rather than 

distributed across the colleague objects. This pattern w'orks best when the 

colleague obj(?cts connnunicate in a w'ell-dehned way.

This pattern  is similar to Facade [41, p. 185], except th a t it allows for 

multidirectional conuiumication between the colleague objects, rather than 

the unidirectional communication tha t Facade supports. As w ith Facade, 

there is little th a t can be done here by way of providing autom ated supi)ort. 

A mediator class can be introduced, but the analysis of the inter-object 

connnunication, so tha t it can be abstracted and centralised in the mediator, 

is a task tha t has to be performed by hand.

Overall Assessment: Impractical.

M em en to

The intent of the Memento pattern  [41, p.283] is to make it possible to  capture 

and externalise the state of an object, and to restore the object to this state
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at, a later time. This must occur without violating the encapsulation of the 

object.

A suitable precursor is as follows. The originator class supports two 

operations, say store and reset. Store requests the originator to make a copy 

of its state and store this internally in a field called state, while reset restores 

the originator to its earlier state. This reflects the intent of the Memento 

pattern, but not the flexibility. For example, a client (caretaker) cannot store 

nniltiple mementos; the originator can only store one. The transform ation 

replaces the store and reset methods with createMemento and setMemento, 

and updates the caretaker classes to use these methods. A green field starting 

point for this design pattern  transform ation is possible as well, and would 

also be a practical starting point.

The input to this transformation is the originator class, the memento 

class, the store and reset methods and the state field.

1. The store and reset methods are copied to methods called createMe

mento and setMemento in the originator class.

2. The createMemento method is updated to  create a local object of the 

class memento and to access this instead of the state field of the origina

tor class. It returns this object at completion of the m ethod’s execution.

3. The setMemento m ethod is similarly updated to take an argument of 

the class memento and to access this instead of the state field of the 

originator class.

4. The memento class is given an empty interface and A b s t r a c t A c c e s s  

is used to update the createMemento and setMemento methods to use 

this interface rather than the memento class.
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5. All caretaker classes th a t use the store and reset methods are updated 

to use createMemento and setMemento and to store the memento object 

locally i^

6. The store and reset methods, and the state field are deleted from the 

originator class.

The precursor is not th a t useful in th a t it assumes th a t the essential memento 

aspects are present. The transform ation then moves from a “one memento 

per originator object” situation to a more flexible “many mementos per origi

nator object” situation. We used a similar precursor for the Iterator pattern, 

but it more likely th a t an aggregation cla^ss will provide an interface for iter

ation than th a t a given class will provide a store/reset interface as we have 

assumed liere.

Overall Assessment: Partial.

O bserver

The intent of the Observer pattern  [41, p .293] is to define a dependency be

tween a subject and a number of observer objects such tha t whenever the 

subject changes state, all the observers are notified of the change and can 

take appropriate action. A reasonable precursor would be where the relation

ship is one-to-one, i.e., there is a single observer object and the dependency 

between the sul)ject and observer has been implemented in an ad hoc fashion. 

This is a reasonable design, though in the presence of a requirement to add 

'^Tliere is ail issue here in th a t we m ust know which reset m atches which store. An 

invocation of reset will m atch the previous invocation of store, and while th is is easy to 

work out in m any cases, it is not decidable in general. This is an exam ple of the  class- 

sp litting  i)ioblein discussed on page 136.
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more observers, it will be necessary to make the relationship more flexible 

by applying the Observer pattern.

Autom ating this transform ation is a problem as the precursor described 

is too vague. The dependency between subject and observer could be imple

mented in many different ways. We could make progress by assuming that 

there is a single observer th a t uses the “attach /no tify” protocol provided 

by the subject, and build a transform ation that allows multiple observers 

to attach  to the subject. We assess th a t this precursor is not a very likely 

structure to occur in practice. It is possible to provide the basic Observer 

structure for tlie programmer to work w'ith, but we have not found a con

vincing precursor and transform ation for this pattern.

Overall Assessm,ent: Impractical.

S ta te

The intent of the State pattern  [41, p.305] is to enable an object to undergo 

a qualitative change in behavioiu' when its internal state changes. Rather 

than  expressing this as extensive and similar case analysis in each method, 

this pattern  defines a class to represent each possible state the object may 

be in. For example, a stream  object will behave very differently depending 

on whether or not the file it is connected to is open or not. R ather than 

having a single stream  class whose methods test whether or not the file is 

open, the State pattern  w'ould model this situation as two separate classes, 

one representing an open file, the other a closed file.

There is a very compelling precursor for this pattern. A class defines 

objects th a t can be in any one of a number of distinct states, and which 

state  an object is in has a qualitative effect on behaviour. This will be 

evident because the methods of the class will contain a sinnlar case analysis

147



structure, e.g..

if (someCondition){

}
else{

}

A class th a t contains several methods tha t have this structure can be split 

into two classes, one where someCondition is true and one where someCondi

tion is false. The if...else statem ent can then be removed and simply replaced 

by the appropriate body of code.

The input to this transform ation is the context class to be split, the 

condition tha t is to be used as a basis for the splitting, and the points in 

the methods of the class where the value of this condition changes. The 

transform ation proceeds as follows:

1. Apply the D elegation  m initransform ation to the context class, so it 

now delegates all requests to a component object of the newly-created 

state class.

2. Apply A bstraction  to the state class and A b s t r a c tA ccess to the 

context class, so the context class now only refers to the state class via 

the state interface.

3. For each interesting value of the given condition, create a subclass of 

the state interface. Simplify all case analysis in the m ethods of these

classes based on the value the given condition is known to have^°.
^°Opdyke presents a detailed description of how to simplify conditionals in [77, p .71].
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4. Add a setState method to the context class th a t sets its local state  field 

to the given instance of one of the state subclasses. At each of the 

points in the methods of the state  subclasses where the given condition 

may change value, add an invocation of the setState method to set the 

new state  object in the context class.

5. Update the creation of context objects to initialise them  with the ap

propriate state object.

6. Delete the original (unsplit) state class th a t was created in step 1.

The structural aspects of this transform ation can be autom ated, but in gen

eral user intervention is needed in assessing where a state change occurs. 

Overall Assessment: Partial.

S trategy

This pattern  has been fully dealt with in section 5.5.3. The precursor and 

transformation are compelling, though a small amount of refactoring work is 

left to the progrannner at the end of the transformation.

Over'dll Assessment: Excellent.

T em plate M eth od

The intent of the Template Method pattern  [41, p.325] is to enable a m ethod 

to be expressed as a skeleton algorithm, thus deferring the details of the 

implementation to subclasses. Each subclass reuses the abstract algorithm 

defined in its superclass, and supplies the details tha t are specific to  itself. 

For example, a search routine in an abstract container class could be described 

as follows:
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boolean search(Element e){  

initSearch(e);

while(!exhausted() !found(e))  

advanceSearch(e); 

return !exhausted();

}

This m ethod is in effect a high-level algorithm  th a t describes searching^^ 

Each concrete subclass of container will define initSearch, exhausted, found 

and advanceSearch in its own way.

T he na tu ra l precursor for th is p a tte rn  is w'here a m ethod has been im

plem ented in term s of th e  o ther concrete m ethods defined in its class. This 

is a norm al situation , bu t in the  face of a requirem ent to  reuse the  algorithm  

contained in the  m ethod, bu t not its detailed im plem entation in term s of 

the o ther m ethods of the  class, the  weakness of th is tigh t coupling becomes 

clear. A pplying the  Tem plate M ethod p a tte rn  in th is situa tion  separates the 

essential algorithm  of the  m ethod from the  m ethods it invokes, and allows 

the algorithm ic abstrac tion  to  be reused.

The input to  th is transform ation  is th e  m ethod to  be tem plated . The 

transform ation  proceeds as follows:

1. Apply p a r t i a l A b s t r a c t i o n  to  the  class of the  m ethod to  produce an 

abstrac t class where the  m ethods used by the  m ethod to  be tem plated  

are defined to  be abstrac t.

2. U pdate clients of th e  given class to  use references to  the  ab strac t class 

instead (uses a form of A b s t r a c t A c c e s s ).

^'h istaiices of the Tem plate M ethod p a tte rn  are also referred as hot spots, as they 

describe a flexible part of the  application  th a t is open to  change. An approach for au to

m atically  detecting hot si>ots is described in [87].
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The transform ation is simple and straightforward. The only weakness is tha t 

the precursor assumes th a t the components of the method to be teniplated 

have been encapsulated as methods. If this is not the case, a refactoring 

similar to Opdyke’s convert_code_segment_to_function [77, p .53] could be used 

to  encapsulate these code segments as methods.

Overall Assessment: Excellent.

V isitor

The intent of the Visitor pattern  [41, p.331] is to enable an operation over an 

object structure to be defined separately from the object structure itself. For 

example, adding a new operation to  a parse tree usually involves adding a 

m ethod to each class of node in the tree, to define how the operation works for 

th a t type of node. This distributes a cohesive algorithm over several classes, 

which is not in general a desirable design. The Visitor pattern  enables such 

an oj^eration to be defined in one class, thus keeping all the details of the 

o])eration in one place^^.

The natural precursor for this pattern  in where an operation has already 

been implemented as part of the object structure, and the programmer now 

wants to switch to a Visitor pattern  solution to enable easy addition of other 

operations. The transform ation can easily create the visitor interface and a 

concrete visitor class for the operation as well as adding the accept method to 

the classes of the object structiu’e. However, the key step of taking the oper

ation th a t has been distributed across the classes of the object structure and 

^^This does not come for free of course; the principle disadvantage of the Visitor pattern 

is that the class that defines the visitor operation must have knowledge of the classes 

defining the object structure. If these classes change, so too must the visitor class itself. 

This problem and the use of subject-oriented programming to resolve it are discussed in 

[2 1 ].

151



centralising this in the concrete visitor subclass cannot be fully autom ated 

using our techniques. The existing definition of the operation will probably 

combine operation-related code with traversal code in various ways. Sepa

rating out this code requires intervention from the programmer. So while 

a small part of this transform ation may be autom ated, the precursor is not 

really being exploited to produce an interesting, behaviour-preserving trans

formation.

Overall Assessment: Impractical.

5.7 A nalysis o f R esu lts

The results from the previous sections of this chapter are presented in com

plete form in table 5.1, and in summary form in table 5.2. These tables 

indicate a very satisfactory result. An excellent transformation was achieved 

for close to half the patterns considered, and in a further 26% of cases a 

workable, though partial, transform ation w'as found.

The methodology worked very well for the creational patterns, but not 

so successfully for the structural patterns or behavioural patterns. It was 

to be expected th a t behavioural patterns would cause problems, but it is 

surprising th a t the results for the structural patterns were not better. Our 

approach is based on static analysis of the program, and so deals more easily 

with concrete program structure than  with dynamic behaviour. The reason 

for this apparent anomaly is th a t although a pattern  is assigned one of three 

categories, it may well contain elements from all three. For example, Ab

stract Factory is a very static, creational pattern  but Builder, although also 

categorised as creational, has a distinct behavioural flavour as the objects in 

question are created in a dynamic “piecemeal” fashion.
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P a t te r n  N am e P u rp o se A ssessm en t

A bstract Factory creational Excellent

Builder creational Excellent

Factory Method creational Excellent

Prototype creational Excellent

Singleton creational Excellent

Adapter structural Excellent

Bridge structural Excellent

Composite structural Excellent

Decorator structural Partial

Facade structural Impractical

Flyweight structural Impractical

Proxy structural Partial

Chain of Responsibility behavioural Excellent

Connnand behavioural Partial

Interpreter behavioural Impractical

Iterator behavioural Partial

Mediator behavioural Impractical

Memento behavioural Partial

01)server behavioural Impractical

State behavioural Partial

Strategy behavioural Excellent

Template Method behavioural Excellent

Visitor behavioural Impractical

Table 5.1: Assessment of Design Pattern  Transformations

A ssessm en t N o. o f  P a t te r n s P e rc e n ta g e

Excellent 11 48%

Partial 6 26%

Impractical 6 26%

Table 5.2: Summary of Assessments
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O ther in itially  surprising resu lts were those for S trategy  (a behavioural 

p a tte rn  th a t worked well) and Facade (a s truc tu ra l p a tte rn  th a t failed). In 

th e  case of the  precursor for S trategy, the  l)ehavioural aspects of the p a tte rn  

are already encapsulated  w ithin  m ethods. The transform ation  therefore ju s t 

has to  deal w ith the  s truc tu re  of th is  p a tte rn , and th is proved straightforw ard 

to  handle. Facade presented the  opposite problem . Its  s tru c tu re  is easy to 

deal w ith, bu t there is also a behavioural elem ent in how the client classes 

in te rac t w ith  the  subsystem  classes th a t are to  be encapsulated, and this 

behavioural elem ent could not be ex tracted  and transform ed.

Reuse of m in ipatterns is ano ther im portan t issvie to  consider. We hoped 

th a t th e  m in ipatterns uncovered during the  developm ent of the  earlier design 

p a tte rn  transform ations would prove useful in la ter developm ents. In table 

5.3 we depict the reuse of m in ipa tte rn s across the design p a tte rn  transfor

m ations. Note th a t for simplicity, when one transform ation  reuses another 

in its en tirety  (e.g.. A bstract Factory uses Singleton), we depict th is as reuse 

of the com ponent m initransform ations. Also, we om it from the  tab le  design 

p a tte rn s  for which no satisfactory transform ation  was found.

It is clear from th is tab le  th a t we have achieved considerable reuse of 

the  set of six m initransform ations th a t were uncovered during developm ent 

of transform ations for the  creational pa tte rn s  and the sam ple s tru c tu ra l and 

behavioural pa tte rn . T he actual reuse achieved is even stronger, as th is table 

only depicts m in itransform ation reuse and ignores the  reuse of refactorings 

such as createExclusiveComponent.
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P a ttern A bs A bsA cc Encap Partial W rap D eleg

A bstract Factory X X X X

Builder X X X

Factory Method X X X X

Prototype X X

Singleton X

A dapter X X X

Bridge X

Composite X X

Decorator X X X

Proxy X X X

Chain of Responsibility X X

Command X X

Iterator X X X

Memento X

State X X X

Strategy X X X

Template Method X X

Table 5.3: Reuse of Miiiitraiisforinations 

The abbreviations in the table are as follows. Abs:ABSTRACTlON, 

A b sA cc:A B S T R A C T A cC E S S, Encap:ENCAPSULATECONSTRUCTION, 

Partial: P a r t i a l  A b s t r a c t i o n , W r a p :  W r a p p e r , D eleg: D e l e g a t i o n .
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5.7.1 C om m ents on the D evelopm ent o f the Transfor

m ations

Developing a transform ation  for a design p a tte rn  is not a triv ial task. In

sight and experience are necessary, and, as w ith any design task, m any ite r

ations were usually required before a  satisfactory solution was reached. O ur 

approach to dem onstrating  behaviour preservation dem ands th a t program  

behaviour be m ain tained  a t every step. This constrains the  type of transfor

m ations we can use, in th a t th e  following s truc tu re  is not perm itted :

transformatiorij / /  program behaviour is changed

transformatioDj / /  program behaviour is reinstated

A lthough th is overall chain is a refactoring and could be perm itted , it will 

be disallowed because the  application of transformation, will be deem ed to 

have changed program  behaviour. It would be desirable to  allow th is type 

of chaining, bu t it would be extrem ely difficult to  extend our approach to  

behaviour preservation so as to  be able argue th a t a program  has changed 

behaviour, and then  changed back to  its earlier behaviour^'^ T he reason why 

we are al)le to  reason about program  behaviour so easily is th a t we need 

never be concerned w ith w hat the behavioTir actually  is, only th a t it has not 

been changed. To weaken th is criterion would lose the  relative sim plicity of 

the approach th a t we have used.

T h a t th is type of erroneous com position is tem p ting  is evidenced in

R oberts’s work. In [84, p .40] he presents a com posite refactoring chain th a t 

^■^Tokucla and B atory  call tliis type of refactoring a transactional refactoring [96]. They 

proi)ose allowing th is type of refactoring bu t dem anding th a t it operates in atom ic mode, 

thus ensuring behaviour preservation. However, producing a semi-formal argum ent of 

behaviour preservation rem ains a problem.
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creates a strategy object. Part of the composition involves the application 

of the moveMethod and moveField refactorings to move the strategy methods 

and fields from the context class to the strategy class. However, a precondi

tion of his moveMethod refactoring is th a t the method must not access any 

fields of its current class. Clearly then, the program will be in an illegal 

state  after the application of the moveMethod refactoring, and will only be 

returned to a legal state when the moveField refactoring has been applied^"^. 

We dealt with this problem by first “abstracting” the m ethod from its class 

so it could be moved away and still access fields in tha t class. See section 5.5 

for more details.

Scanning our catalogue of design pattern  transformations, we observe 

th a t a transform ation generally has three phases:

1. Applying the design pattern structure. This involves adding new classes, 

interfaces, methods etc. to the program. They are just added, not used, 

accessed or invoked, so arguing behaviour preservation for this stage is 

quite trivial. The changes made by this stage typically set the scene 

for the pattern, and would not make sense to perform on their own, 

miless the following step was performed as w'ell.

2. The operoiion-affecting step. This is the “big step” th a t switches the 

program from its old inflexible structure to the more flexible pattern 

structure set up in the previous step. The precondition for this step is 

usually quite sophisticated, but has been largely set up by the previous 

step if all has gone well. It is therefore common th a t the precondition 

for this step does not contribute much to the precondition of the overall 

transformation.

the point in the derivation of the preconditions for the chain [84, p.41] where this 

should become apjjarent, the conflicting concUtion is omitted.
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3. Tidying up. In th is step  any program  elem ents th a t are no longer 

needed are deleted. The postcondition of the previous step  m ust make 

it clear th a t they are no longer recjuired. In m any transform ations, 

there is no need for th is step, as no program  elem ents are m ade redun

dan t by the  transform ation.

T here is a  fractal elem ent in th is s truc tu re , in th a t a design p a tte rn  transfor

m ation may use a m initransform ation th a t itself has th is th ree-part structu re . 

The actual low-level refactorings th a t are the foundation of th is work do not 

have th is s truc tu re  however. T hey typically  fit into one of the  above three 

categories. For exam ple, addClass clearly belongs to  the  first, replaceObjCre- 

ationWithMethlnvocation to  the  second, and deleteClass to  the th ird . Green 

field approaches to design p a tte rn  application need only to  use the  first step, 

th a t of setting  up the  p a tte rn  structu re . The second and th ird  steps are re

quired  in our approach as a d irect resu lt of our using a precursor as a s ta rting  

point for the transform ation, and dem anding th a t the  transform ation be be

haviour preserving.

5.7 .2  C om m ents on P recon dition  C om putation

In th is section we make some general observations about the  process of pre

condition com putation.

•  It is not a simple task.

•  It can be applied rapidly w ith  experience, though doing it step-by-step 

as in chapter 3 is very tedious.

•  Usually earlier refactorings set up the  preconditions for la te r ones, so 

even though the  overall transform ation  can be quite com plicated, the 

precondition is usually not too  extensive.
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•  C om puting preconditions was a  very useful process. Frequently it un

covered aspects of the transform ation  th a t m ight otherw ise have been 

missed. For exam ple, the  fact th a t the  Factory M ethod transform a

tion  cannot be applied if the  C reator class uses a sta tic  m ethod of the 

P roduct class is not obvious in itself. However the  process of com put

ing the  precondition for th is transform ation  brought this aspect to  the 

foregroim d (see section 4.4.1).

5.8 R ela ted  W ork

In chapter 4 w'e discussed related  w'ork in the  general area of au tom ated  

design p a tte rn  transform ations. Specific details of how other aj^proaclies 

deal w ith  p articu la r p a tte rn s were considered in this chapter as p a rt of the 

analysis of the  relevant pattern .

5.9 Sum m ary

We have rigorously applied our proposed m ethodology to  the en tire set of 

G am m a et al creational patterns, and to  a sam ple s truc tu ra l and behavioiu’al 

p a tte rn . For th e  rem aining G anuna et al pa tte rns, we assessed if they were 

am enable to  our approach and, where possible, proposed a precursor and 

sketched a transform ation . O ur resu lts were prom ising in th a t for m ost 

p a tte rn s  a workable solution could l>e found, and there proved to  be extensive 

reuse of the  m initransforn ia tions th a t were developed during th is w'ork.
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Chapter 6

Conclusions

This chapter conchules the thesis. In section 6.1 we state  again the contri

butions th a t have been made by this research. In section 6.2 we present a 

number of proposals for future work tha t would extend this research, and 

finally, in section 6.3, we make some concluding remarks.

6.1 C on trib ution s

The principle contributions of this thesis were stated in chapter 1. Here we 

restate them:

•  A methodology for developing design pattern transformations. This is 

the essential contribution of this work. The methodology we have de

veloped has been applied with full rigour to seven conmion design pat

terns^, and a prototype software tool has been built tha t can apply 

these seven design patterns to Java programs. The methodology has 

also been applied to the remaining patterns in the Gannna et al pat- 

^The seven design patterns to wliidi the methodology has been fully applied are Ab

stract Factory, Factory Method, Singleton, Builder, Prototype, Bridge and Strategy [41].
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tern catalogue [41], though these pattern  transform ations have not been 

prototyped. The essence of our methodology has been published in 

summary form in [74, 72], and more completely in [75].

• A rmnitransformation library. Design pattern  transform ations have a 

strong degree of conmionality and this has been captured in a set of 

six minitransformations. These minitransformations have been imple

mented and dem onstrated to be widely applicable in developing design 

pattern  transformations.

• A model for hehaviow'-preservation proofs. The transform ations we 

develop must be invariant with respect to program behaviour. In order 

to prove this rigorously for the sophisticated program transformations 

that we develop, we have extended existing refactoring w'ork by allowing 

the transformation definition to contain not only simple sequences, but 

also iteration and conditional statem ents. This model has been applied 

in full rigoiu’ to several exampk^s, and has been published in [76].

Other contributions are:

• The notion of Precursor. We introduced the notion of a precursor for a 

design pattern, i.e., a design structure tha t expresses the intent of the 

design pattern  in a simple way, but th a t would not be regarded as an 

examj^le of poor design. We dem onstrated the usefulness of this notion 

by developing precursors for the Gamma et al design patterns, and 

using them  as starting points for our design pattern  transformations. 

This set of precursors provides an insight into the type of program to 

which a given pattern  can be applied.

• A refactory fo r  Java. The lowest layer of transform ations is a collection 

of refactorings th a t can be applied to a Java program, and this can
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serve as a basis for otlier transform ation wortc. An extensive set has 

been designed and implemented, and these are described in appendix 

B. Some are naturally similar to existing refactorings, while others are 

peculiar to the development of design pattern  transformations.

• A Pr'econdition Categorisation. In section 4.4.1 we described how each 

clause of the precondition to a design pattern  transform ation can be put 

into one of four categories. We also described how this categorisation 

can be used in practice to decide how to deal with the failure of a 

precondition clause.

6.2 Future W ork

In the following subsections we consider possible future work in the area of 

this thesis.

Practical T ests o f th e  D esign  P a ttern  Tool (D P T )

The software prototyj)e we have built as part of this work, DPT, has been 

tested on several sample programs to establish a base-level confidence tha t it 

operates correctly. Naturally, extensive further testing and updating would 

be required to bring the quality of this prototype to production level.

A more interesting issue in this context relates to progrannner acceptance 

of the type of transformation DPT performs. D PT makes sweeping changes 

to a program when it applies a pattern, and it is an open question wdiether 

a i^rogrammer would be content to allow a large system to be updated in 

this way. Indeed, a software tool can fail in practice for any number of 

reasons [83], and arguing abstractly tha t it is nevertheless useful is futile. 

The author’s position is tha t a programmer will use a software tool only
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if they have a very clear mental model of what the tool does. Compilers, 

debuggers and profilers all fit into this category. As design patterns become 

more established, we can expect progrannners to become more comfortable 

with the type of transformations DPT applies.

One way to aid the program m er’s comprehension of the transformation 

DPT has applied is to  present each of the program changes to them  and 

ensure tha t they are satisfied with each one. If they are not, the whole pro

gram can be rolled back to its pre-transformation state. A more ambitious 

approach is to try  to explain the pattern  to the programmer (depending on 

their pattern  expertise), and put the changes in this context. Note that 

existing work in the area of program comprehension has focused on compre

hension as part of software maintenance (e.g., [86]). The problem described 

here, th a t of presenting the effects of a large refactoring in a comprehensible 

manner, is a future challenge for this field.

Further C onstrviction o f P a ttern  T ransform ations

Our refactorings and minitransformations provide a library of reusable com

ponents for design pattern  transformation development. As with any such 

library, many iterations are required to fully comprehend the domain and 

to provide a stable set of components. W ith each new design j)attern de

velopment, our understanding of the minitransformations w’as refined, and 

frequently this resulted in the refactoring of the library itself. We do not 

claim th a t this process is complete. As more design pattern  transformations 

are developed using this approach w'e can expect more minitransforniations 

to appear and the existing ones to require further work and refinement.
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A u to m a tio n

At present the construction of the behaviour preservation arguments is frag

ile, in th a t any change made to a low-level refactoring or analysis fimction 

requires th a t all proofs th a t use this refactoring or analysis function be 

rechecked. This dependency itself is unavoidable, but autom ated software 

support would be very useful to  help manage it. A repository of refactorings, 

analysis functions and helper functions could be created and this used in 

performing syntax checking and typechecking of the behaviour preservation 

argimients. For example, if testing of D PT reveals th a t the precondition of 

a refactoring is not strong enough, the specification of this refactoring would 

then be updated in the repository. The autom ated assistance software could 

then highlight which minitransformations and design pattern  transformations 

have to be revisited.

More ambitiously, an a ttem pt could be made to autom ate the construc

tion of the behaviour preservation argument. This is a challenging task, as 

we currently use semantic knowledge in building the behaviour preservation 

arguments. To completely formalise this would involve working with a for

mal semantics for Java (e.g., [47, 99]), and this would be likely to run into 

tractability  problems. Partial autom ation is a more promising approach to 

take, and it would be interesting to see what contribution such an approach 

could make to the com putation of pre- and postconditions for a design pat

tern transformation.

P a ttern  M aintenance

Applying a design pattern  changes the program code, and some of these 

changes must be maintained in order for the pattern  to remain intact. This 

means th a t certain constraints are put on the possible future evolutions of
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the program. For example, in a program where the Factory Method pattern  

has been applied, the addition of a new Product class means th a t a new 

m ethod must be added to the Creator class as well.

Developing tool support to manage and check these constraints is a valu

able extension to our work. The postcondition for a design pattern  trans

formation provides a basis from which to develop the constraints associated 

with a design pattern. These constraints can be defined using our analysis 

functions. This enables a software tool to manage the constraints associ

ated with patterns th a t have been applied to the program, and to notify the 

progranuner if they are updating code th a t relates to a pattern. The pro- 

grannner may be advised th a t their updates are violating a pattern-related 

constraint, and informed of what other changes are necessary in order to 

re-establish the pattern  constraints.

Language In d ep en d en ce

In our work w'e focTised on the application of design patterns to Java pro

grams. This raises tlie question of the extent to which our approach is ap

plicable to other progrannning languages. Some refactorings and m initrans- 

forniations are applicable to any class-based, object-oriented language, while 

others are quite Java-specific, for example, those th a t deal with interfaces.

One approach would be to use the Template M ethod pattern  to describe 

abstractly how the design pattern  transform ation operates, and provide the 

language specific details in subclasses. This is certainly possible; whether 

it is actually useful depends on the degree of commonality between a set 

of design pattern  transformations th a t each apply the same pattern , but to 

programs w ritten in different languages. All refactoring work to date has been 

language-specific, so this direction would present an interesting challenge.
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P re-tran sform ation  R efactorin gs

For each design pattern  transform ation we compute its pre- and postcondi

tions, and add its precursor precondition where necessary. This precondition 

characterises the type of program to which the design pattern  transformation 

can be apphed. In section 4.4.1 we categorised the different types of precon

dition th a t a design pattern  transform ation can have. We stated tha t if a 

refactoring precondition fails, the program can be autom atically refactored 

to correct the problem, and the transform ation then applied.

We can view the design pattern  transformation as describing a prototypi

cal transformation. If a refactoring precondition fails, the program has to be 

massaged into a suitable state so th a t the prototypical transform ation can be 

performed. This is an area for future investigation, and has the potential to 

make the transform ations we have developed aj^plicable to a nuich broader 

range of programs.

P attern  A p p licab ility

Our current preconditions simply ensure th a t the design pattern  transforma

tion can be applied without changing jirogram behaviour. It is left up to 

the progrannner to decide if applying the pattern  is a good idea or not. We 

argued strongly in section 2.2 th a t there are aspects of patterns th a t require 

lumian insight, and th a t autom ated attem pts to locate suitable places to 

apply a pattern  are of lim ited value.

However, a software tool could do more in term s of assessing whether 

the pattern  is applicable or not, by asking the programmer certain questions 

about their intention. For example, in applying the Visitor pattern, the tool 

might ask the programmer “Do you expect the classes in the object structure 

to change often?” The answers from the programmer may cause the tool to
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suggest th a t the pattern  is not a suitable sohition, or to configure the exact 

m anner in which the pattern  is apphed.

P a ttern  R em oval

An over-zealous progrannner might apply a pattern  even though it is not 

required, thus obscuring the program rather than enhancing its clarity [84, 

p .23]. It might also be useful to optimise a program prior to  compilation 

by removing any unnecessary patterns, as they typically have a detrim en

tal effect on runtim e performance. An interesting extension to our work is 

therefore to develop transformations th a t remove patterns, rather than apply 

them. In this case, the design pattern  structure is the starting point for the 

transform ation, and the corresponding precursor is the target. The informal 

statem ent of the starting [)oint for this type of transform ation would be “the 

design pattern  structure is present, but its flexibility is not required.”

This is not as simple as defining an inverse for each refactoring, and 

applying them in reverse order. Many refactorings require extra  state  to be 

m aintained in order to define tlieir inverse. For example, the inverse of a 

refactoring tha t deletes an unused class nuist have access to the deleted class 

in order to restore it. Even if this extra  state is maintained, any changes to 

the program between the pattern  being applied and it being removed might 

render the inverse refactorings unusable. This area may be interesting to 

look at, though it is obviously of less impact than  the application of design 

patterns^.

“Unless of course the current interest in design patterns turns to disdain, and the 

software industry starts “reengineering to depatternise.”
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6.3 To C onclude

We stated the fundamental thesis of this work in chapter 1 as follows:

A utom ating the application o f design patterns to an existing pro

gram in a behaviour preserving way is feasible.

The research presented in this dissertation has dem onstrated the validity of 

our original thesis. In section 5.7 we found th a t an excellent transformation 

was constructed for closc to half the patterns considered, and in only 26% of 

cases could no useful precursor or transform ation be foimd. For seven of the 

design patterns considered, a rigorous argument of behaviour preservation 

was also developed. We achieved strong reuse of the minitransformations, as 

is depicted in figure 5.3 on page 155.

Design patterns have been gaining acceptance in the software engineering 

community, though the lack of formalisation or autom ated support has been 

a weakness of this field. Refactoring has also been gaining siipport, though 

again, most of the recent interest has been in non-autom ated approaches. We 

have contributed to the formalisation of the refactoring field, and used our 

contribution to develop a rigorous and practical approach to the autom ated 

application of design patterns.
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A ppendix A

The Factory M ethod Pattern

Design patterns were introduced in section 2.2. In this apj)endix we provide a 

more detailed description of the Factory Method pattern, as a transformation 

tha t introduces this pattern  was developed in detail in chapter 4. For more 

detail see [41], which is also the source of the example we use here.

The Factory M ethod pattern  is used to loosen the coupling between a 

class (Creator) and another class tha t it instantiates (Product). Specifically, 

it enables the Creator class to defer instantiation to a subclass; in this way 

it is easy to extend the Creator class to work with a new type of Product 

class.

For example, consider a framework th a t can present multiple documents 

to the user. Two key abstract classes in this domain are Application and 

Document. The designer has to  subclass these classes in order to realise the 

reciuired fTuictionality. Consider for examj)le using these classes to  Iniild a 

drawing ai)plication. The designer would create a subclass of Apj)lication, 

DrawingApplication, and a subclass of Document, DrawingDocument. The 

Application class is responsible for creating and managing Documents, but 

it only knows when it should create a Document; it does not know what kind
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Edits
Document d=createDoc(); 
d.open{):

return new

interface
MyDocument

interface
Document

+createDoc:MyDocument

MyApplication

+createDoc:Document
+newDoc:void
+openDcc:void

Application

Figure A .l: The Factory Method pattern  structure

of Document to create. This is the kernel of the problem; the framework 

must create instances of Docmnent, l)ut it knows nothing of the concrete 

Document classes it should instantiate.

The Factory Method pattern  offers a solution to this problem (see figure 

A .l). It encapsulates the knowledge of which Document to create and de

fers this to a subclass. The abstract Application class invokes an abstract 

method, createDoc, whenever it needs to create a Document object. Each 

concrete subclass of Application must now override the createDoc method to 

create and return  an instance of the appropriate type of Document. In figure 

A .l, the MyApplication class redefines the createDoc method to return an 

instance of MyDocument. The other methods in Application work with this 

instance through the Document interface.
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A ppendix B 

Analysis Functions, Helper 

Functions and Prim itive  

Refactorings

Tliis appendix contains the complete specification of all analysis functions, 

helper functions and primitive refactorings th a t are used in this work. These 

topics were introduced in chapter 3. In section B .l we detail the analysis 

functions we have made use of. In section B.2 the helper functions are listed, 

and finally, in section B.3, the primitive refactorings used in this work are 

specified. As an aid to the reader, an alphabetical listing of all analysis 

functions, helper functions and primitive refactorings, together with relevant 

page numbers, is presented in table B .l on page 187.

B .l  A nalysis Functions

In this section we describe the analysis functions (section 3.1.2) tha t are used 

to extract information from the program being transformed. They serve a
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N am e K ind Page N am e K ind Page

absorbParameter AF 188 isClonable AF 191

abstractClass HF 197 isExclusiveComponent AF 192

addClass PR 204 islnterface AF 192

addGetMethod PR 206 isPrivate AF 192

addlmplementsLink PR 207 isPublic AF 192

addlnterface PR 208 isStatic AF 192

addMethod PR 209 isSubtype AF 193

addSingletonMethod PR 210 localVars AF 193

argument AF 188 makeAbstract HF 200

classCreated AF 188 makeConstructorProtected PR 213

classOf AF 188 methodslnvoked AF 193

constructorlnvoked AF 189 moveMethod PR 214

containingClass AF 188 nameOf AF 193

containingAIethod AF 189 noOfArgunients AF 193

context Free AF 189 noOfParameters AF 193

createEniptyClass HF 198 parameter AF 193

createExclusiveConiponent PR 212 parameteriseField PR 216

createsSameObject AF 189 pullUpMethod PR 218

createWrapperClass HF 198 replaceClassWithlnterface PR 221

declares AF 189 replaceObjCreationWith. .. PR 222

defines AF 190 returnsObject AF 193

ecjuallnterface AF 190 returnsSameObject AF 194

exhibitSameBehaviour AF 190 returnType AF 194

hasSinglelnstance AF 191 sigOf AF 194

implementslnterface AF 191 superclass AF 194

initialises AF 191 superclasses AF 194

isAbstract AF 191 typeOf AF 194

isClass AF 191 useWrapperClass PR 223

Table B.l: Alphebetical Listing of Analysis Fiuictions (AF), Helper Functions 

(HF) and Primitive Refactorings (PR), with relevant page numbers.
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dual role, iu tha t they are used both in specifying the preconditions to the 

refactorings, and as a transform ation progrannner’s view of the program to 

which a design pattern  transform ation is being applied.

Some of the analysis fimctions are obviously easy to evaluate, while oth

ers are more difficult. A number are intractable in the general case, namely 

contextFree, createsSameObject, hasSinglelnstance, isClonable, isExclusive- 

Component, returnsO bject, returnsSam eObject, and uses. In section 3.1.2 

we described the possible ways in which intractable analysis functions can 

be handled.

For each analysis function we specify its name, return type, argument 

types, and provide a brief textual description of what its purpose is. The 

listing is in alphabetical order.

Argiunent argum ent(M ethodlnvocation/O bjectC reationE xprn  invocation, 

int ■/): Returns the argiunent to  the given method invocation or object 

creation expression, or J_ if no such argument exists.

Class c lassC reated (O bjectC reationE xprn  e): Returns the class of the ob

jects th a t can be created by the given object creation expression.

Class c lassO f(C onstructor/M ethod/F ield  a): Returns the class to which the 

given constructor/m ethod/field  belongs. The condition classO f(a)=c is also 

w ritten as a e  c.

Class con tain ingC lass^ (O b jectR ef o): Returns the class th a t contains the 

given object reference.

^V e do not apply the analysis function c l a s s O f  to  an object reference, as th is  would 

suggest its  type ra ther th an  its containing class. The t y p e O f  analysis function is used to 

determ ine the type of an object reference.
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Method con ta in ingM ethod(O bjectR ef/O bjectC reatio iiE xprn  e): Returns 

the method containing the given object reference or object creation expres

sion.

Constructor co n stru c to rInvoked (O b jec tC rea tionE xprn  e): Returns the 

constructor tha t is invoked by the given object creation expression. In Java 

this can be determined based on the static types of the arguments to the 

constructor; a dynamic analysis is not required.

Boolean con tex tF ree(E xpression  e): Returns true iff the expression e has 

the same effect regardless of the context in which it is evaluated. It may 

create a new  ̂ object, or update a global object, but the effect must be the 

same regardless of the method in which it is invoked. The impact of this is 

that if this expression is passed as an argument to a method, we can move 

the evaluation into the method without changing program behaviour.

Boolean crea tes(C lass cl, Class c2): Returns true iff a method in the class 

cl  creates an instance of the class c2.

Boolean c rea te sS am eO b jec t(C o n stru c to r c, M ethod m): Returns true iff 

the method m  creates and returns a new object of the same class and in 

precisely the same state as would be created by c, given the same argument 

list, m nnist have no other side-effects; in particular it nmst neither access 

any variables other than its param eters, nor send a message to  another object. 

See also the weaker condition, returnsSam eObject.

Boolean decIares(C lass c, String n, String s); Returns true iff the class c 

contains a m ethod named n of signature s in its interface. An implementation 

need not be provided, and the declaration of n{s) may appear as an abstract
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m ethod in a superclass or as an element of an interface th a t c (in)directly 

implements. The param eter direct is added if the test is only to  refer to  the 

class c itself, and, for simplicity, a m ethod may be provided as param eter 

instead of the method name and signature. The param eter c may also be an 

interface, with the natural interpretation.

Boolean defines^(Class c. String n. Signature s): Returns true iff a concrete 

m ethod called n of signature s is contained in the class c or one of its su

perclasses. If no signature is provided, it simply tests if a m ethod named n 

is contained in the class c or one of its superclasses. Again, the param eter 

direct is added if the test is only to refer to the class c itself, and, for sim

plicity, a method may be provided as param eter instead of the m ethod name 

and signature.

Boolean eq u a lIn terface(C lass/Iu te rface  cl, Class/Interface c2)\ Returns 

true iff cl and c2 declare precisely the same public methods. Public fields 

and static methods are not included in the comparison.

Boolean ex h ib itS am eB eh av io u r(M e th o d  m i. Method rn2)\ Returns true 

iff m.l and m2  will, if invoked in the same program state, exhibit the same 

external behaviour and lead to  the same resulting program state. Note tha t 

this relationship normally exists only when el and e2 are in a delegation 

relationship^.

^The differentiation we make between declaration and definition is maintained rigor

ously in [93], but is not followed so strongly in Java [2]. For example, page 21 of [2] 

the authors write of an interface defining a method. In this work we need clear terminology

to distinguish between the two situations.
■^Assessing if two methods have the same behaviour is undecidable in general. For

example, in [67] equivalence is based on the very constrained criterion that the parse trees

of the methods must be identical.
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Boolean ex h ib itS am eB ehav io iir(O b jec tC reationE xprn  el, ObjectCreation- 

Exprn e2): Returns true iff el  and e2 will, in the same program state, create 

objects th a t exhibit the same behaviour. Note tha t this condition is normally 

established when el  delegates all requests to a contained instance tha t is 

identical to e2, so the objects need not even be of the same class.

Boolean h asS in g le In stan ce(C lass  c): Returns true iff the program only 

ever creates at most a single instance of the class c.

Boolean im p lem en tsIn te rface (C lass /In te rface  e. Interface i)\ Returns true 

iff there is an implements link from the class/interface e to the interface i.

Boolean in itia lises(M ethod/C oustructor rn. Field/Variable /, Exprn e): Re

turns true iff the m ethod/constructor m  initialises the field/variable /  to the 

expression e.

Boolean isA bstrac t(C lass /M eth o d  x): Returns true iff the class/m ethod x 

is declared to be abstract.

Boolean isC lass(C lass c): Returns true iff c is a class. If given a string as 

argument, it tests if a class of the given name exists in the program.

Boolean isC lonable(C lass c): Returns true iff the class c can be cloned. All 

classes in Java inherit a clone m ethod from the Object class which performs 

a bitwise copy of the object on w^hich it is invoked. This is adequate in some 

cases, but if objects of the class contains references to other objects, the 

progrannner will probably have to implement a class-specific clone method. If 

objects of the class have circular references, or are part of a very complicated 

structure, it may not be feasible to implement a clone method. This can be 

tested autom atically in simple cases, but in general the user must be ciueried
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to  assess if it is safe to  clone a particu la r class.

Boolean isE x c lu s iv e C o m p o n e n t(C la s s  c, Field / ) :  R eturns true  iff /  is a 

field of the  class c and the  object referred to  by /  is an exclusive com ponent 

of c. By th is we m ean a to ta l form of ownership"*:

•  /  is initialised in all constructors of c.

•  T he object referred to  by /  is not referred to  by any other reference in 

the  program .

•  The object reference /  m ay not refer to  any other object during its 

lifetim e, nor may it ever be set to  null.

Boolean is ln te r fa c e ( ln te r fa c e  i)\ R etu rns tru e  iff i is an  interface in the 

program . If given a string  as argum ent, it te sts  if an interface of the  given 

nam e exists in the  program.

Boolean is P r iv a te (M e th o d /F ie ld  e): R eturns true  iff the  m ethod/fie ld  e is 

a private m em ber of its class.

Boolean isP u b lic (A Ie th o d /F ie ld  e): R eturns true  iff the  m ethod /fie ld  e is a 

public m em ber of its class.

Boolean isS ta tic (M e th o d /F ie ld  e): R eturns true  iff the m ethod/fie ld  e is a 

sta tic  m em ber of its class.

"*In term s of the sophisticated categorisation of w hole-part relationship.s described by 

Franco Civello in [20], we are describing a w hole-part relationship th a t is visit)le, encapsu

lated, non-shared, part-w hole inseparable, w hole-part inseparable, im m utable, owned and 

collaborative.
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Boolean isS ub type(C lass/In terface  ei, Class/Interface 62): Returns true iff 

the type defined by the class/interface ei is a subtype of the type defined by 

the class/interface £2- This is based on the normal syntactic notion of subtyp

ing [22], but does not depend on their being an explicit implements/extends 

relationship between the entities. As a shorthand, isSubtype(ei, 62) will 

normally be w ritten ei <  62.

SetOfVariable localV ars(M ethod/C onstructor m): Returns the set of local 

variables th a t are defined within the given m ethod/constructor, regardless of 

the block scope they are in.

SetOfiMethod m ethodslnvoked(lv lethodlnvocation  i)\ Returns the set of 

methods th a t could be invoked by the method invocation i.

String nam eO f(C lass/In terface/M cthod/C onstructor x)-. Returns the name 

of the given class/interface/m ethod/constructor.

int noO fA rgum ents(M ethodInvocation/O bjectC reationE xprn  x): Returns 

the number of arguments to the given method invocation or object creation 

expression.

int n o O fP aram ete rs(M eth o d /C o n stru c to r m); Returns the number of pa

ram eters of the given m ethod/constructor.

Param eter param ete r(M eth o d /C o n stru c to r m, int i)\ Returns the pa

ram eter of the given m ethod/constructor, or _L if the given param eter does 

not exist.

Boolean re tu rn sO b je c t(M e th o d  m, O bjectRef o)\ Returns true iff the 

method rn returns the object referred to by the object reference 0, and has
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no other effects.

Boolean re tu rn sS a m e O b jec t(C o n s tru c to r c, Method m): Returns true iff 

the m ethod m  returns an object of the same class and in precisely the same 

state  as would be created by c, given the same argument list, m nuist have 

no other side-effects; in particular it must neither access any variables other 

than  its parameters, nor send a message to  another object. Note th a t the 

m ethod m need not actually create a new object. See also the stronger 

condition, createsSameObject.

C lass/Interface re tu rn T y p e (M e th o d  m): Returns the class/interface th a t 

is the return  type of the m ethod m.

Signature sigO f(M ethod/C onstructor x): Returns the signature of the given 

m ethod or constructor.

Class su perc lass(C lass  c): Returns the direct superclass (based on the ex

tends relationship) of the class c, or ±  if none exists. It can be also applied 

to a constructor, method or field, in which case the superclass of the class of 

the given element is returned.

SetOfClass su p erc lasses(C lass c): Returns the set of (in)direct superclasses 

(based on the extends relationship) of the class c. Note th a t the class c itself 

is not a member of the set of classes returned.

Class/Interface typeO f(O bjectR ef o): Returns the Class or Interface of the 

given object reference (field, param eter or local variable).

Boolean uses(]Method m. Field / ) :  Returns true iff the m ethod m  directly 

references the field /.
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Boolean u ses(M etliod  m i, M ethod m2): R eturns true  iff the  m ethod m2 may 

be directly  invoked by the  m ethod rn\^ .

Boolean u ses(O b jec tR e f o, M ethod m): R eturns tru e  iff the  m ethod m may 

be directly  invoked through th e  object reference 0.

Boolean u ses(O b jec tR e f 0, Field / ) :  R eturns true  iff the  field /  is directly 

accessed through the  object reference o.

B .1 .1  R elationsh ips betw een A nalysis Functions

T he analysis functions are not com pletely orthogonal and th is is unavoidable. 

For exam ple, it is im portan t to  know if one class defines a subtype of another 

class, as th is affects w hat type of refactorings are possible involving these 

classes. It is also im portan t to  be able to  determ ine if one class has an 

extends link to  another class. If we determ ine th a t the class B extends the 

cla^ss A, then  we know th a t B nm st also be a subtype of A. It is im portan t 

to  note these relationships and to  use them  in proofs as necessary. The 

relationships betw een the analysis function we use are as follows:

If a m ethod is in a class, th a t class defines the  m ethod directly, and vice versa:

V c:Class, m :M ethod, classO f(m )=c 

defines(c, nam eO f(m ), sigOf(m ), direct)

If a class defines a m ethod, it declares it as well:

V c:Class, m :M ethod, defines(c, nam eO f(m ), sigOf(m)) =4> 

declares(c, nam eO f(ni), sigOf(m))

®For this analysis function and the next, some false positives may be returned since 

a static analysis cannot determine exactly what methods a particular method invocation 

may bind to.
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A class tha t defines a method of a given name and signature must also define 

a method of tha t name:

V c:Class, n:String, s:Signature, defines(c, n, s) =̂> 

defines(c, n)

If a method and constructor return the same object, they nuist have the 

same signature:

V m:Method, c:Constructor, returnsSam eObject(c, m) ^  

sigOf(m)=sigOf(c)

Two classes/interfaces have the same interface iff each one is a subtype of 

the other:

V ei:Class/Interface, e2:Class/Iuterface, equallnterface(ei, 62) 

ei <  62 A 62 <  Cl

If a class/interface implements another interface, it must be a subtype of 

that interface:

V e:Class/Interface, i:Interface, implementslnterface(e, i) ^  e <  i 

If a class extends another class, it nnist be a subtype of tha t class:

V r.'i:Class, C2:Class, superclass(ci)=c2 => Ci < C2

If a class is abstract, it must declare a method tha t it does not define:

V c:Class, isAbstract(c) El m:Method such tha t 

declares(c, m) A -1 defines(c, m)

One class creates another iff there is an ol)ject creation expression contained 

in the first class (or any superclass) tha t creates an instance of the second class: 

creates(c'i, C2) o  3 o:ObjectCreationExprn, ni:M ethod such that 

classCreated(o)=C2 A containingM ethod(o)=m  A 

classOf(m) G {ci} U superclasses(ci)

If a method creates and returns the same object as a constructor, it also 

just returns it:
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V c:Constructor, m:Methocl, createsSameObject(c, m) ^  

returnsSaiiieObject(c, in)

B.2 Helper Functions

In describing a refactoring it may be necessary to extract richer content 

from the program code than  is provided by the analysis functions. Helper 

functions are used to perform this type of task. As they are not at the 

primitive level of the analysis fimctions, we provide them  with a pre- and 

postcondition. Helper functions (3.1.3) are proper functions w ithout side- 

effects on the prograin, so the postcondition invariably involves the return  

value of the helper function itself.

Interface ab strac tC la ss (C la ss  c, String newName): Construct and return 

an interface called newNarne tha t reflects all the public methods of the given 

class c.

p reco n d itio n :

The class c must exist: 

isClass(c) 

p o s tco n d itio n :

The returned interface inf  declares the same public methods as the class c; 

islnterface' =  islnterface[zn//true] 

equallnterface' =  equalInterface[(c,m /)/true]

The name of the retiu'ned interface is newName: 

nanieOf =  nameOi[mf/newName]

M ethod a b s trac tM e th o d (M e th o d  m): Construct and return  an abstract

m ethod that has the same name and signature as the given m ethod m. 
p re c o n d itio n :
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The m ethod m  must exist: 

isM ethod(m ) 

p o s tc o n d itio n :

The returned method meth is abstract and has the same name and signature as 

the given m ethod m:

isA bstract' =  isAbstract[m ei/i/true] 

nam eO f =  nameOf[mei/i/nameOf(m)] 

sigO f =  sigOf[me^/i/sigOf(m)]

Class c re a te E m p ty C la ss (S tr in g  name): Construct and return  an empty

class called name. 

p re c o n d itio n :

This may be used in any state: 

true

p o s tc o n d itio n :

An empty class called name is returned:

nam eO f =  immeOf[returned /  name]

V e:i\Ietliod/F ield/C onstructor •  -■ classOi{e)=returned 

where returned is the class returned by this fimction.

Class c re a te W ra p p erC la ss(In te rfa ce  iface. String wrapperName, Sthngfield-

Name): Creates a class called wrapperName tha t provides the same interface

as iface and implements all its m ethods by delegating them  to a private field

of the type iface, called fieldName. The class is given a constructor that

accepts an object of the type iface and initialises the field fieldName to this

object. A m ethod called get” +  fieldName is also added that returns the

contents of this field (i.e., returns the wrapped object), 

p re c o n d itio n :

The given interface nmst exist:
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islnterface( z/ace)

The name of the class to be added is not in use:

isC\ass{wrapperName) A -> isluteria,ce{wrapperName) 

p o s tc o n d itio n :

A class called wrapperName is returned:

nam eO f =  ivd.meOi[returned/wrapperName]

The returned class has a field of type i f  ace called fieldNarne:

3 f: Field, such tha t

classOf=classOf[f/returnee?] 

typeO f'= typeO f[f/i f  ace] 

nam eO f=nam eO f[f/fieldNarne]

The constructors of returned initialise this field with the first parameter:

V c:Constructor, c\assOf{c)=returned •

initialises'=initialises[c, f, param eter(c,l)]

The class wrapper has a m ethod called '"get” +fieldName:

3 m:M ethod such tha t

classO f=class()f [m /  wrapper] 

nam eO f=nam eO f[ni/“get”+/ie/(iiVame]

This method returns the contents of the field fieldName: 

returnsO bject'= returnsO bject[n i/fieldNarne]

Any object of a concrete subclass of iface will exhibit the same behaviom’ 

as an instance of returned th a t has been given this object as its construction 

argument:

V c:Class, implenientslnterface(c,z/ace) •

V e:ObjectCreationExprn, classCreated(e)=c •

exhibitSameBehaviour' =

exliibitSameBehaviour[(e, new wrapperName{e))/ tn\e]
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Method m akeA bstract(C onstructor c, String newName): Returns a method 

called newName that, given the same arguments, will create the same object 

as the constructor c. The method signature is obtained by copying that of 

the constructor®, and the method is given a body that is simply an object 

creation expression that invokes the given constructor, using the arginnents 

to the method as its own arguments, 

p recond ition :

This may be used in any state: 

true

postcond ition :

A method called newName is returned that, given the same argument list, 

creates the same object as the constructor c:

createsSanieObject' =  createsSameObject[(c,rei?xrnerf)/true] 

nameOf = nameOf[returned /  newNarne] 

where returned is the returned method.

B .3 P rim itive  R efactorings

The primitive refactorings (section 3.1.4) that are used in this work are de

tailed in this section. As with the helper functions, a pre- and postcondition 

is given in each case, and these may range over the arguments to the refac

toring and the program itself that is being transformed. An argument that 

the refactoring does not change the behaviour of the program is presented in 

each case.

®This does not actually  iie(!cl to  be s ta ted  explicitly in the postcondition, as from section 

B.1.1 we know it can be derived from the  first conjunct of tiie postcondition.
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void absorbParam eter"(M ethod/C onstructor m, int paramNumber): Re

move the specified parameter from the method/constructor m (assume method 

from here on), converting the parameter into a local variable in the method, 

and initialising it with the expression given for the argument, 

p reco n d itio n :

The parameter exists in the given method: 

noOfParameters(m) > paramNumber 

All invocations of m take the same expression (which must be independent 

of context) as an argument for the specified parameter:

3 exprn:Exprn, contextFree(exprn) such that

V i:MethodInvocation, m  £ methodslnvoked(i) • 

argument(i, paramNumber) =  exprn

po stco n d itio n :

The parameter list for rn has been reduced by 1:

noOfParameters' =  noOfParameters[m /  noOfParameters( m)-1] 

m now defines a new local variable of the same name and type as the 

parameter that has been removed:

localVars' =  localVars[m/localVars(m) U v ] where 

nameOf(v) =  nameOf(parameter(m, paramNumber)) A 

typeOf(v) = typeOf(parameter(rn, paramNumber))

This new local variable is initialised to the expression that was previously 

passed in as an argimient:

initialises'=initialises[(m, v, exprn)/true]

B eh av io u r p reservation :

The expression that was originally passed as an argument is context free, 
^This is sim ilar to, but more flexible th an , the removeParameter refactoring described 

by Fowler in [38, p .277). Fowler assumes the  param eter is not in use; we allow it to  be in 

use once it is always i)assed the same argum ent.
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so it evaluates to the same result for each method invocation, and will also 

evaluate in the same ŵ ay after being moved into the method itself. The 

param eter it was originally bound to has been removed, and instead this 

expression is evaluated and stored in a local variable of the same name and 

type as the removed parameter. The m ethod thus executes in the same 

context, except th a t previous references to  the removed param eter now' bind 

to the new variable. Since the new variable has been given the same initial 

value, program behaviour will remain the same.
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void abstractM ethodFrornC lass(A Iethod m): Makes public aity method 

or field that is (i) a member of the same class that m belongs to, or a 

superclass, and (ii) is used by 

p recondition :

The class referred to exists and m is a member of this class: 

isClass(classOf(m)) A m € classOf(m) 

postcondition :

All methods/fields defined directly or indirectly in classOf(m) that m uses 

have been made public:

V x:Field/Method, defines(classOf(m), x), uses(77t, x) » 

isPublic'=isPublic[x/true]

B ehaviour p reservation :

Making a private or protected field/method public cannot affect compilation 

or behaviour. It may appear that making a private member of a class public 

or protected might cause a reference in a subclass to bind to the new public 

member rather than one defined in a superclass. However in Java an over

riding method cannot reduce the access level dehned in its superclass, so if 

a method is private in a class, making it public cannot cause it to override 

a method in a superclass. Also, a reference to a field that is defined to be 

protected in a superclass will not compile if there is a private definition of a 

field of the same name in an intervening superclass, so again making a field 

public cannot interfere in the binding of references in subclasses.

^Tlii.s refactoring is usually used as a preparation for moving the method m to a com

ponent of its current class. Prior to pulling out m, everything it refers to in its current 

class nnist be made public. If m is in fact a cohesive member of its class, this refactoring 

is likely to severely damage the encapsulation of the class and its superclasses.
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void addC lass(C lass c, Class super, SetOfClass subclasses)'. Add the class 

c to the j)rogram. If a superclass is given, an extends link is added from the 

class c to this superclass. If subclasses are given, an extends link is added 

from each one to  the class c. 

p re c o n d itio n :

The name of the class to be added is not in use:

isClass(nameOf(c)) A -> isInterface(nameOf(c))

Any given subclasses nuist exist:

V s G subclasses •  isClass(s)

If the superclass exists, it must be a superclass of all the subclasses: 

if isClass(s«;;er) then V s G subclasses •  superclass(s) =  super 

If c is a concrete class, then any abstract methods declared in super 

or its superclasses nuist be defined in c: 

if -1 isA bstract(c) then

V m:Method, declares(swper, m) A -i defines(super, m) • 

defines(c, nameOf(m), sigOf(m))

The class c must not contain any m ethod tha t overrides one declared 

(in)directly in the superclass:

V n:String, s:Signature •  if declares(swpe7’, n, s) then 

-'defines(c, n, s, direct)

The class c nmst not contain any field th a t redefines one declared in 

any of its (in)direct superclasses:

V f:Field, fGc, -iisPrivate(f) •

V g:Field, gGsup, where supGsuperclasses(c), -iisPrivate(g) • 

nameOf(f) 7̂  nameOf(g)

p o s tc o n d itio n : 

c is a class in the program:
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isClass' =  isClass[c/true]

An extends link exists from the class c to the class super: 

superclass' =  superclass [c/swper]

All the given subclasses are now subclasses of c:

V s G subclasses, superclass' =  superclass[s/c]

Behaviour preservation:

The class c did not exist, so no references can exist to this class. Consequently 

the only th reat to behaviour preservation is tha t a subclass may refer to a 

m ethod or field in a superclass, and this reference is now bound to a method 

or field of c. The final two conjuncts of the precondition prevent this by 

disallowing the class c from redefining any field or method tha t is already 

defined in any of its superclasses®.

®This refactoring is an exam ple of where our requirem ent for behaviour preservation 

forces us to  be very stric t in defining preconditions. In the work of bo th  R oberts [84, p. 103] 

and Sunye et al [94, p .57], the last two conjuncts of the precondition for th is refactoring 

are om itted . O ur approach is nevertheless conservative, since the class c can redefine fields 

and m ethods in its superclasses once these are not u.sed in any of the subclasses.
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void a d d G e tM e th o d (C lass  concrete, String fieldName): Add a “getter” 

method to the concrete class tha t retiuns the contents of the field called 

fieldName. 

p re co n d itio n ;

The class concrete exists and has a field called fieldName: 

isClass(concrete) A cla.ssOi{fieldName)== concrete 

The class concrete does not declare a m ethod called ^"get” + fieldName:

V m:Method, declares(concreie, m) •  nanieOf(m) ^  “geV' + fieldName 

p o s tco n d itio n :

The class concrete has a method called ‘'get'" + fieldName:

3 ni:Method such tha t

classOf=classOf[m/c<7rtcrei^e] 

nameOf'=nanieOf[m /  “get” +  fi.eldName]

This method returns the contents of the field fieldName: 

rcturusObject'=retm'nsObject[m//ie/rf7Vame]

B eh av io u r p re se rv a tio n :

Since a method with the same name as the m ethod being added does not 

already exist in the class, there can be no name clashes and no existing 

invocations of this method.
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void ad d Im p lem en tsL in k (C la ss  concrete, Interface inf): Add an imple

ments link from the class concrete to  the interface inf. The class concrete 

must not be abstract, i.e., it must implement all the abstract methods that 

are declared in in f 

p re c o n d itio n :

The class concrete and the interface in f must exist: 

isClass(concreie) A islnterface(m /)

The class concrete must be a subtype of the interface inf: 

concrete < in f

The class concrete must implement all the methods th a t are declared in m f:

V ni:IMethod, declares(*n/, m) • defines(concrete, m, direct) 

p o s tc o n d itio n :

An implements link had been added from the class concrete) to the interface inf: 

implenientslnterface' =  implementslnterface[(concrete, zn/)/true] 

B e h a v io u r p re se rv a tio n :

Adding a implements link from a class to an interface may affect the legality of 

the program, but cannot cause it to change its runtime behaviour. From the 

precondition, we see th a t the class fully implements the interface'*’, so this 

refactoring nnist result in a legal program and consequently it is behaviour 

preserving.

the case of an abstract class, this part of the precondition could be safely weakened.
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void addln terface(ln terface i)\ Adds the interface i to the program. A

class or interface with this name must not already exist.

p recond ition :

No class or interface with the name nameOf(z) exists:

-iisClass(nameOf(i)) A -iisInterface(nameOf(«)) 

p o s tco n d itio n :

i is a new interface in the program:

islnterface' =  islnterface[i/true]

B eh av io u r p reservation :

Adding an inn’eferenced interface to the program cannot affect its behaviour. 

If a reference to the interface did exist before the refactoring, then the original 

program would not be legal.
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void a d d M e th o d (C la ss  c, M ethod m): Adds the m ethod rn to the class 

c. A m ethod with this signature must not already exist in this class or its 

superclasses. This refactoring extends the external interface of the class, 

p re c o n d itio n :

The class c exists and does not define any method with the same name 

and signature as m:

isClass(c) A -'defines(c, nameOf(m), sigOf(m)) 

p o s tc o n d itio n :

The method m has been added to the class c: 

classOf =  classOf[m/c]

Any class or interface th a t previously had the same interface as c does not 

have the same interface anymore:

V a:Class, a^^c, if equallnterface(a,c) then 

equallnterface' =  equallnterface[(a,c)/false].

B eh a v io u r p re se rv a tio n :

Since a m ethod with the same name and signature as the method being 

added does not already exist in the class, there can be no name clashes and 

no existing invocations of this method.
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void a d d S in g le to n M e th o d (C la ss  singletonClass, Class concreteSingleton, 

String rnethodNarne, String fieldName): Adds a static field named fieldName 

of type singletonClass to the class singletonClass. Also adds a static m ethod 

named methodName th a t gives access to this field and instantiates it lazily 

as a concreteSingleton object when necessary (See [41, 43], both pp 127-133 

for more detail). If the last two param eters are om itted, we assume them  to 

be named “getlnstance” and “instance” respectively, 

p re c o n d itio n :

The first two param eters must be classes and the class singletonClass nnist 

be a superclass of concreteSingleton:

smgletonClass € superclasses(concreie^zn^/eion)

The class singletonClass can have no field called fieldName:

V f:Field, i^singletonClass •  nameOf(f) 7  ̂ fieldName 

A non-private held called fieldName cannot be defined in any superclass 

of singletonClass:

if  f:Field G els, els G snpevclcLSses{singletonClass), 

nameOi{i)= fieldName th e n  isPrivate(f)

A method called methodName cannot be defined in the class singletonClass: 

^dehnes{smgletonClass, methodName)

The class concreteSingleton must have a no-arg constructor;

3 c:Constructor G concreteSingleton such th a t noO fParam eters(c)=0 

p o s tc o n d itio n :

A new m ethod m has been added to the class smgletonClass, with certain 

properties:

classOf =  c\cissOi[m /  singletonClass]

The name of m is methodName:

nanieO f =  methodName]
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The inethod in returns an object of the class concreteSingleton, in the same 

state as would be returned by the no-arg constructor:

returnsSam eO bject' =  returnsSanieO bject[(c,in)/true] 

where c:Constructor G concreteSingleton A noO fParam eters(c)=0 

B eh a v io u r p re se rv a tio n ;

A new method and field are added to the class singletonClass. Since nei

ther already exist, nor are they referenced in the existing program, program 

behaviour cannot be affected.
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void c re a te E x c lu s iv e C o m p o n e n t(C la ss  context, Class component, String 

fieldName)-. Add a new component to the class context, called fieldName, of 

type component. All constructors in context are updated to instantiate this 

field as well, 

p re c o n d itio n :

The classes must exist:

isCla.ss{context) A isciaiss{component)

Neither the class context nor any of its superclasses may have a non-private 

field called fieldNam,e:

V f:Field, fGsup, where sup G superclasses(coniexi) U context, 

-'isPrivate(f) • nameOf(f) ^  fieldName

p o s tc o n d itio n :

The class context has a field called fieldName of type component:

3 f; Field, f £ context such tha t

typeO f'= typeO f [f /  component] 

nam e()f=nam eO f[f/fieldName]

All constructors of context initialise this field:

V c:Constructor, c G context •

i n i t i a l i s e s ' = i n i t i a l i s e s [ ( c , “new componeni()” )/tru e  ] 

fieldName refers to an exclusive component of context:

isExclusiveComponent'=isExclusiveComponent[(coniexi, fieldName)/ tiwe] 

B e h a v io u r  p re se rv a tio n :

The name fieldName does not clash with any field defined in context, or any of 

its superclasses, so it may be added to context safely. fieldName is initialised 

in the constructor of context using the no-arg constructor of the component 

class, so th is has no observable effect on external program behaviour^^

assum e th a t the  iio-arg constructor of the component class only initiahses its own 

in ternal d a ta  fields.
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void m a k e C o n s tru c to rP ro te c te d (C la s s  c): Makes all constructors of the 

class c protected. If the class has no explicit constructors, a no-arg one is 

added and made protected, 

p re c o n d itio n :

The class c exists; 

isClass(c)

Creations of objects of the class c occur only in c and its subclasses:

V e:ObjectCreationExprn, classCreated(e) =  c • 

e & c \/ c E. superclasses(containingClass(e))

p o s tc o n d itio n :

The m ethod m has been added to the class c: 

classO f =  classOf[m/c]

Any class or interface th a t previously had the same interface as c does not 

have the same interface anymore:

V a:Class, a^^c, if equallnterface(a,c) then 

equallnterface' =  equallnterface[(a,c)/false].

B eh a v io u r p re se rv a tio n :

The behaviour of the constructors of the class c is not changed, and objects of 

the class c are only created within c itself or its subclasses. Therefore, making 

these constructors protected will have no effect on program behaviour.
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void m o v e M e th o d (C la s s  context, F ield component, M ethod meth)-. Moves 

the m ethod meth  from th e  class context to  the class of the field component. 

The existing m ethod is replaced by one th a t delegates the  same request to  

the  component field. T he moved m ethod is given an ex tra  param eter th a t 

refers to  th e  context ob ject it has been moved from, and any references it 

makes to  this (im plicitly or explicitly) are sent back to  th is context object, 

p re c o n d i t io n :

The classes referred to  exist:

isC\ajss{context) A isClass{typeOi{component))  

mvCth is a m ethod of the  class context: 

meth  €  context

Every m ethod/fie ld  in context th a t is used by meth  nm st be public:

V x :M ethod /F ield , x G context, \ises{meth, x) •  isPublic(x)

The held component refers to  an exclusive com ponent of context:

isExclusiveCom ponent ( component, context)

A sim ilar m ethod to  m.eth cannot be defined in the  component class:

V m :M ethod G typeO f(com ponent),  nam eO f(m ef/i)=nanieO f(m ) •

sigO f(m e^/i)^sigO f(m )

p o s tc o n d i t io n :

The m ethod meth  is now a m em ber of the class of the  com ponent field: 

classO f=classO f[m ei/i/classO f( component)]

The class context delegates invocations of the  moved m ethod to  a m ethod 

th a t exhibits the  same behaviour in the  class of the  component field:

3 m :M ethod such th a t

classO f =  classO f[ni/context] 

nam eO f =  nam eO f[m /nam eO f(m ei/i)] 

sigO f=sigO f[m /sigO f(m ei/t)]
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uses'=uses[(m,mei/i)/trTie]

exhibitSameBehaviour'=exhibitSameBehaviour[m/mei/j] 

B ehav iou r p reserva tion :

The moved method is replaced by one of the same name and signature, so 

compilation will not be affected. The replacement method delegates to the 

moved method, and passes the context object as an extra argument. Any 

references to the context object itself in the moved method are invoked on 

the context object (from the precondition they must be public) and so will 

bind in the same way as before.
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void p a ra m e te rise F ie ld (C la ss  client, Class/Interface product): Moves the 

initiahsation of the field of type product in the class client outside the con

structor of the class, so the initial value for this field is now passed as an

argument to  the client class constructor, 
p re c o n d itio n :

The given interface/classes exist:

isClass(c/zen<) A {\sC\ass{product) V isInterface(jDrodwci))

The client class has a single field of type product:

3! f:Field, f e  client such tha t typeOf(f)=proc?uc^

This field is initialised to a context free expression, exprn, in all constructors: 

3 ea:prn:Exprn, context Free (exprn) such tha t 

V c:Constructor, c G client • 

initialises(c, f, exprn)

p o s tc o n d itio n ;

Each client constructor has a new param eter of type product:

V c: Constructor, c G client •

noO fParam eters'=noO fParam eters[c/noO fParam eters(c) +  l] 

typeOf=typeOf[parameter(c,noOfl^arameters(c)-|-l)/j97'orfuci] 

The held f is initialised with this param eter rather than  exprn: 

initialises'=initialises[(c, f, exjyrn)/false]

initialises'=initialises[(c, f, param eter(c,noOfParam eters(c) +  l))/true] 

All creations of client objects now take the expression exprn as an extra 

argument:

V e:ObjectCreationExprn, classCreated(e) =  c/ien^ •

noOfArguments'=noOfArguments[e/noOfArguments(e) +  l]

argum ent'=argum ent[(e,noOfArgum ents(e) +  l)/e2:p7’n] 
B e h a v io u r  p re se rv a tio n :

Initially the product field in the client class was set to the expression exprn
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ill the constructor of the client class. After applying this transformation, 

the expression exprn is evaluated outside the client class and passed in as a 

param eter to the constructor. W ithin the constructor it is used to initialise 

the field as before. Since exprn is context-free, it will evaluate the same way 

in both cases, so the product field in the client class gets initialised to  the 

same value and program behaviour is therefore maintained.
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void p u llU p M eth o d (M etlio d  m): Move the method rn from its current 

class to its superclass^^. All fields directly referenced by m  are moved to  the 

superclass as well. An abstract method declaration is added to the super

class for any method referenced by m th a t is not (in)directly declared in the 

STiptrclass. 

p reco n d itio n :

The method m must exist: 

isMethod(m)

The class must have a superclass to which to move the method: 

supcrclass(m) 7̂  _L 

rn n.ust not be defined in the superclass:

defines(superclass(m), nameOf(m), sigOf(m))

Any fields m uses nmst not be pubhc and must not clash with fields in the superclass:

V f: Field, f G classOf(m), if uses(m,f) then

(-■ isPublic(f) A V g:Field, g G superclass(m), nameOf(f) 7̂  nameOf(g)) 

p o s tco n d itio n :

m is moved from its existing class to its superclass: 

classOf =  classOf[m/superclass(m)]

Any methods m  uses th a t are not declared in its superclass are declared there now:

V n:Method, n G classOf(ni), uiT^n,

if uses(m,n) A -■ declares(superclass(m),n) then

declares' =  declares[(superclass(m), n, direct)/true]

Any fields m  uses are moved to the superclass:

V f:Field, f G classOf(m) if uses(m,f) then

'^Although it appears natural to decompose this refactoring into a chain of refactorings, 

this is not useful for om- present purposes. Opdyke [77] provides a partial solution, but 

does not deal with the details of moving the referenced fields up to the superclass and 

adding new abstract method declarations to the superclass for each referenced method.
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classOf =  classOf[f/superclass(m)]
B eh aviour preservation:

The uiethod rn and the fields it uses have been moved, but not changed, so 

the behaviour of the program could change in three possible ways:

1. An existing invocation of  this method fails or invokes another method: 

The existing method m could only be invoked on an object of the class 

d a ssO f{n i )  or a subclass of this class. In either case the search for the 

m ethod attem pts to find it in the class classOf{m)  and then moves to 

the class superclass{m).  Tlie method m  has been moved to this class 

so it is found here.

2. An existing access to a m.oved field fails or finds another field: The 

arginnent is similar to the previous case. The method m will find the 

field in its own class as normal. O ther references to  a moved field can 

only come from the class classOf{w)  or its subclasses, and these will 

bind correctly to the field in the superclass. Note tha t this argument 

would fail if a field accessed by rn w'as public.

3. An method invocation or field access in this m,ethod is hound to a dif

ferent method/field: The existing method m. was not defined in any 

superclass of classOf{m),  so it may only be invoked on an object of 

classOf{n})  or one of its subclasses. The search for a m ethod invoked 

ill rn will therefore commence at the same class as before, and w'ill 

find the same method (if the search somehow^ began at superclass{m),  

a failure could occur). To highlight this, consider the following code 

sketch:

c lass  A {

public void f o o b a r ( ) { . . . }
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}
class B extends A{

public void foo(){

foobar();

}
public void foobar(){...}

}

It m ay appear th a t moving foo from B to  A will cause a problem  in 

th a t the  invocation of foobar will now bind to  the  im plem entation of 

foobar in A ra th e r than  th a t in B. However, since we have disallowed 

situations where foo is defined in A or a superclass, invocations of foo 

on an object of class A cannot exist. Invocations of foo on objects of 

class B will now result in the foo in A being executed, bu t by dynam ic 

binding the  subsequent invocation of foobar will bind correctly to  the 

im plem entation in B.
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void re p la c e C la s s W ith In te r f a c e (O b je c tR e f  o, Interface inf):  Change the

type of th e  object reference o to  th e  interface i n f .

p re c o n d i t io n :

The interface inf  exists: 

is ln te rface(m /)

The class of the  object reference o m ust have an implements  link to  the 

interface inf:

inip lem entsInterface(typeO f(o), inf)

Any s ta tic  m ethods or fields in the  class of the object reference o are not 

accessed th rough  the  object reference o:

V m :M ethod, classO f(m )= typeO f(o), if isS tatic(m ) then  -• uses(o,ni) A

V f:field, classO f(f)= typeO f(o), uses(o,f) 

p o s tc o n d i t io n :

The type of the  object reference o is inf: 

ty p e O f =  typeO f[o /m /]

B e h a v io u r  p re s e rv a t io n :

Changing the  type of an object reference from a class to  an  interface may 

affect the  legality of the program , bu t cannot cause it to  change its runtim e 

l:)ehaviour. From the  precondition we see th a t the  class of the  object reference 

im plem ents the  interface, and th a t no sta tic  m ethods or fields are accessed 

through th is  reference, so th is refactoring nnist result in a legal program  and 

consequently it is behaviour preserving.
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void rep la ce O b jC re a tio n W ith M e th In v o c a tio n (O b jec tC re a tio n E x p rn  e,

Method m): Replace the given object creation expression e with an invoca

tion of the m ethod m using the same argument list, 

p re c o n d itio n :

The object creation expression e and the m ethod m  nnist both, given the 

same argimient list, create and return  the same object, OR they must both 

simply return  the same object, and this must be the only instance of the class: 

createsSam eObject(constnictorInvoked(e),m ) V 

(returnsSanieObject(constructorInvoked(e),m ) A 

hasSingleInstance(classCreated( e)))

The object creation expression e nuist not be in the method m: 

containingM ethod(e) 7̂  m 

p o s tc o n d itio n :

Tlie object creation expression e has been removed: 

containingM ethod' =  containingM etliod[e/±]

B e h a v io u r p re se rv a tio n :

The new method invocation returns the identical object to the same point 

in the program as was returned by the original object creation expression 

(the m ethod either creates a new’ object or returns the only instance of the 

class). The only risk to behaviour preservation therefore is tha t of an infinite 

recursion occurring. The expression e is not contained in m so a direct 

recursion cannot take place. The createsSameObject  precondition demands 

that rn has no side-effects; in particular it cannot send any messages itself, 

so an indirect recursion is also impossible.
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void u s e W ra p p e rC la s s (C la s s  client, Class wrapper, Class receiver, String 

getterMethod)-. U pdates th e  client class so th a t any construction of the re

ceiver class is replaced by a construction of th e  wrapper class, taking the 

corresponding receiver ob ject as an argum ent. All variables of type receiver 

in the client classes are also renam ed to  wrapper. Any m ethods in client 

whose re tu rn  type is receiver are updated  to  re tu rn  th e  w rapped receiver

object by delegating to  th e  getterMethod  in wrapper. 

p r e c o n d i t io n :

The specified classes exist:

isClass(c/zeni) A \sc\?iss{iurapper) A isClass(recezijer)

The classes wrapper and  receiver support the same interface:

e(iuallnterface( receiver)

Any object of the  class receiver will exhibit the same behaviour as an

instance of wrapper th a t has been given the  corresponding receiver object

as its construction arginnent;

V e:O bjectC reationE xprn , classCreated(e)=recezi'er- •

exhibitSam eB ehaviour(e, new wrapper(e))

The m ethod getterMethod  in wrapper re tu rns the  w rapped receiver object: 

re tu rnsO bject((new  wrapper{e)).getterMethod{), e) 

p o s tc o n d i t io n :

All object references to  receiver in client have been changed to  wrapper-.

V o:O bjectR ef G client, tyi^eOi{o)=receiver •

ty\yeOi'=tyY>eOi[o /  wrapper)

M ethods in client th a t re tu rn  a  receiver object are u pdated  to  re tu rn  the 

w rapped receiver object by delegating to  the  getter Method:

V ni:M ethod, m ^clien t,  re tu rnT ype(m )= recew er •

u ses '= u ses[m /getterMethod]

B e h a v io u r  p re s e rv a t io n :
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The wrapper class has the special property th a t when it is instantiated with 

an instance of receiver, it stores this receiver object and delegates all the 

requests it receives to this object. Thus the updating of the object creation 

expressions does not affect behaviour^^. The object references th a t store 

these new objects are also updated to be of type wrapper, so they match the 

type of the updated object creation expressions. Finally, since the receiver 

and wrapper classes support the same interface, no type mismatch errors can 

occur.

'̂^The new objects are of a different type however, so any existing downcasts will fail.
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A ppendix C 

Listing of M initransform ations

Six ininitrausfonnations were identified in the development of the design 

j)attern transforniations. Eacli one has been analysed in detail in the body 

of this thesis. In this appendix we describe each niinitransforniation briefly, 

and provide a reference to the more detailed description in the main text.

1. The A b s t r a c t i o n  minitransformation is used to add an interface to 

a class. This enables another class to take a more abstract view of this 

class by accessing it via this interface. See section 4.3.1.

2. The E n c a p s u l a t e C o n s t r u c t i o n  minitransformation is used when 

one class creates instances of another, and it is reciuired to w'eaken 

the binding betw'een the two classes by packaging the object creation 

statem ents into dedicated methods. See section 4.3.2.

3. The A b s t r a c t A c c e s s  minitransform ation is used when one class 

uses, or has knowledge of, another class, and we want the relation

ship between the classes to operate in a more abstract fashion via an 

interface. See section 4.3.3.
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4. The P a r t i a l A b s t r a c t i o n  m initransforniation is used to  construct 

an ab strac t class from an existing class and to  create an extends rela

tionship  betw een th e  two classes. See section 4.3.4.

5. T he W r a p p e r  m initransform ation  is used to  “w rap” an existing re

ceiver class w ith  ano ther class, in such a way th a t all requests to  an 

object of th e  w rapper class are passed to  the  receiver object it wraps, 

and  sim ilarly any resu lts of such requests are passed back by the w rap

per object. See section 5.4.2.

6. The D e l e g a t i o n  m initransform ation  is used to  move part of an ex ist

ing class to  a com ponent class, and to  set up a delegation relationship  

from the  existing class to  its com ponent. See section 5.5.2.
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A ppendix D  

A rchitecture of the Software 

Prototype

We liave constructed a prototype software tool, DPT (Design Pattern  Tool), 

that implements seven of the design pattern  transformations th a t have been 

discussed in this thesis. In section D .l we describe the architecture of this 

prototype, while in section D.2 an example of the application of the prototype 

to a Java program is presented.

D .l  Tool Architecture

DPT has a 4-tier architecture (see figure D .l) th a t matches the layers defined 

in the structure of the behaviour preservation arguments:

1. Design Pattern  transformations.

2. M initransformations.

3. Analysis functions, helper functions and primitive refactorings.

4. AST operations.
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A bstract Syntax Trees, 
Visitors

Design Pattern 
Transform ations

M initransform ations

H elper functions, analysis 
functions, refactorings

Figure D.l: Architecture of the Design Pattern  Tool

The top layer implements the design pattern  transformations we have 

discussed ̂  The next layer comprises the implementations of the six mini- 

transform ations th a t emerged during the development of the design pattern  

transformations. The third layer is the implementation of the supporting 

analysis functions, helper functions and prim itive refactorings described in 

appendix B.

The bottom  layer implements the actual changes to the program code by 

performing surgery directly on the parse trees generated from the Java source 

files. Visitors [41] are frequently used at this level to perform operations 

tha t involve an entire parse tree. The parsing of the source files and the 

construction of the parse trees were implemented using the parser generator 

JavaCC [65].

'Seven design pattern transformations have been prototyped, namely. Abstract Factory, 

Factory Metliod. Singleton. Builder, Prototype, Bridge and Strategy.
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D P T  does not ex trac t an ab strac t model from th e  Java source code. This 

would have m ade th e  high-level transform ations such as addClass nuich easier, 

hu t would have m ade the  subsequent code regeneration much more difficult. 

T he program  being transform ed is stored in ternally  as a set of parse trees, and  

it is the  operations provided in the top  th ree layers of the  architecture th a t 

provide an ab strac t view of th is  program . A program m er building a design 

p a tte rn  transform ation  need only be concerned w ith th e  m initransform ation 

layer, and some refactorings and helper functions, in order to  com plete the ir 

task.

D .2 Sam ple O peration o f  D P T

We provide an exam ple of th e  application of the  Factory M ethod transfor

m ation to  a generic program:

class Creator {

public void dolt() {

Product p =  new P rod u ct(“som e tex t” );

Product q =  new Product(1234);

p.foo();

q.foo();

}

}

class Product {

public Product(int x ) { . . .  } 

public Product(String s ) { . . .  } 

public void foo() { . . .  }

}
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The Factory M e thod  tra iis fo r iiia t io ii (section 4.4) is now appHed to  the above 

program  as follows:

applyFactoryMethod("Creator” , "Product” , "absProduct” ,

"absCreator” , "createProduct” )

D P T  applies the tra ns fo rm a tio n  and ou tpu ts  the  fo llow ing  code:

abstract class absCreator { 

public void dolt ( ){

absProduct p =  createProduct( "some text” ); 

absProduct q =  createProduct(1234); 

p.foo(); 

q.foo();

}

public abstract absProduct createProduct (int x); 

public abstract absProduct createProduct (String s);

}

class Creator extends absCreator {

public absProduct createProduct (int x) { 

return new Product(x);

}

public absProduct createProduct (String s) { 

return new Product(s);

}

}
interface absProduct { 

public void foo ();
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