
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

A utom ated A pplication o f D esign Patterns:
A R efactoring Approach

A thesis subm itted to the

University of Dubhn, Trinity College,

for the degree of

Doctor of Philosophy.

Mel 6 Cimieide, B.Sc., M.Sc.,

Departm ent of Computer Science,

Trinity College.

Dublin.

October 2000

2 ? APR 2001.
LBftARY OUBLIN J

, .’nt3855^

D eclaration

I, the undersigned, declare th a t this work has not previously been subm itted

as an exercise for a degree at this or any other University, and th a t unless

otherwise stated, it is entirely my own work.

Mel 6 Cinneide

October 2000

Perm ission to lend or copy

I, the undersigned, agree th a t the Trinity College Library may lend or copy

this thesis upon request.

'IThJL c5^
Mel 6 Cinneide

October 2000

T hesis Sum m ary

Software system s have to be flexible in order to cope w ith evolving require

m ents. However, since it is im possible to predict w ith certa in ty w hat fu ture

requirem ents will emerge, it is also im possible to determ ine exactly w hat

flexibility to build in to a system . Design p a tte rn s are often used to build

th is flexibility into a program , so th is question frequently reduces to w hether

or not a particu lar design p a tte rn should be applied to th e program . Tlie

original program m er faces th is dilem m a, and the m aintenance progrannner

nm st work w ith th e consequences of the decision made.

We address th is problem by developing a m ethodology for the construc

tion of au tom ated transform ations th a t introduce design p a tte rn s to an exist

ing program . This enables a program m er to safely postpone the api)lication

of a design p a tte rn im til the flexibility it provides becom es necessary.

O ur m ethodology deals w ith the issues of reuse of existing transform a

tions, preservation of program behaviour, and the application of the tran s

form ations to existing program code. We apply the m ethodology to the

G annna et al p a tte rn catalogue [41], and find th a t in alm ost 75% of cases

a satisfactory transform ation is developed, and th a t considerable reuse of

existing transform ations is achieved.

A cknow ledgem ents

First and foremost I wish to thank my supervisor, Professor Paddy Nixon,

for his clear advice and encouragement during this project. His enthusiasm

for research is infectious and I left every meeting with him full of ideas and

energy for my work.

I am grateful to the other members of the Distributed Systems Group

in Trinity College Dublin who acconnnodated my pursuing a research topic

tangential to the main interests of the group, and especially for contriving to

make ECOOP 2000 in Cannes a very memorable conference!

Much of this work wa.s carried out in the Departm ent of Computer Sci

ence, University College Dublin, and I wish to thank my colleagues there

for creating such a pleasant and stim ulating environment for conducting re

search work. I am especially grateful to the departm ental heads during my

time working on this thesis: Dr. Michael Sherwood-Sniith and Professor

Mark Keane. Both contributed greatly by subventing my fees, and refactor

ing my lecture load at crucial times.

Dr. Nick Kushmerick, Dr. Ronan Reilly and Dr. Neil Hurley proofread

various parts of the final thesis and I thank them for valuable feedback.

Thanks to my friends for either cajoling me into action when I needed it,

or just being totally unaware of my tribulations and being fun to be with!

Finally, thanks to my parents, for everything.

Contents

1 In trod u ction 1

1.1 Evolutionary Approaches to Software D e v e lo p m e n t.................. 2

1.2 Legacy S y s te m s .. 4

1.3 Thesis and C on tribu tions.. 6

1.4 Thesis O u tlin e ... 7

2 Background 9

2.1 Program Restructuring and R efactoring... 9

2.1.1 D efinitions.. 9

2.1.2 A Global View of R e fa c to r in g ... 11

2.1.3 Formal and Informal Approaches to Behaviour Preser

vation .. 13

2.1.4 Existing Work in Automated R efactoring 15

2.1.5 Categorisation of Refactoring Approaches20

2.2 Design P a t te r n s .. 22

2.2.1 Formalisation of Design P a t t e r n s ...24

2.2.2 Automated Detection of Design P a t te r n s25

2.2.3 Patterns in Reengineering, Reverse Engineering and

E v o lu t io n ... 28

2.3 Thesis C o n t e x t .. 30

vi

2.4 Summary .. 31

3 Foundations o f R efactoring: B ehaviour P reservation 32

3.1 Primitive Refactorings and Behaviour Preservation 33

3.1.1 M athematical P reU m in a rie s .. 33

3.1.2 Analysis F m a c tio n s ... 34

3.1.3 Helper F u n c t io n s .. 37

3.1.4 Primitive R e fac to rin g s .. 38

3.1.5 Assumptions and L im ita t io n s ... 39

3.2 Composite Refactorings ... 40

3.2.1 Computing Pre- and Postconditions for a Chain of

R efactorings..42

3.2.2 Computing Pre- and postconditions for a Set Iteration 46

3.2.3 A Wbrked E x a m p le ... 48

3.2.4 Commentary ... 57

3.3 Related W o r k ... 58

3.4 Summary .. 61

4 A M eth od ology for th e D evelop m ent o f D esign P attern Trans

form ations 63

4.1 In tro d u c tio n ... 63

4.1.1 M otivation ... 64

4.1.2 Outline of the M eth o d o lo g y .. 65

4.2 P re c u rso rs .. 67

4.3 M inipatterns and M in itran sfo rm a tio n s .. 71

4.3.1 The A bstra ctio n M in itran sfo rn ia tio n 72

4.3.2 The E n c a psu l a t eC o n stru ctio n M initransformation 74

4.3.3 The A b st r a c tA ccess M initransform ation75

vii

4.3.4 T he P a r t ia l A b s t r a c t io n jM initransforniation . . . 79

4.4 T he Factory M ethod T ra n s fo rm a tio n ...82

4.4.1 A C ategorisation of the P reco n d itio n s84

4.4.2 Assessing the Factory M ethod T ra n s fo rm a tio n86

4.5 R elated W o r k .. 87

4.6 Sum m ary ... 92

A p p ly in g th e M eth od o logy to th e G am m a e t al C ata logu e 93

5.1 C riteria for Selecting a P r e c u r s o r ... 95

5.2 Transform ation N o ta t io n .. 96

5.3 Transform ations for the G am m a et al C reational P a tte rn s . . 97

5.3.1 The Singleton T ra n s fo rm a tio n .. 97

5.3.2 The A bstract Factory T ran sfo rm a tio n 101

5.3.3 The Builder T ra n s fo rm a tio n ..104

5.3.4 The P ro to type T ran sfo rm a tio n .. 109

5.4 Transform ation for a S tructu ral P attern : B r id g e113

5.4.1 Precursor for the Bridge T ra n s fo rm a tio n113

5.4.2 The W r a p p e r M initransform ation114

5.4.3 Specification of the Bridge T ra n s fo rm a tio n 117

5.5 Transform ation for a Behavioural Pattern : S t r a t e g y 119

5.5.1 Precursor for th e S trategy T ra n s fo rm a tio n 119

5.5.2 The D e l e g a t io n M in itra n s fo rm a tio n120

5.5.3 Specification of the S trategy T ra n s fo rm a tio n122

5.6 Precursors and Transform ations for the G am m a et al P a tte rn s

C a ta lo g u e ...124

5.6.1 The G am m a et al C reational P a t t e r n s126

5.6.2 The G annua et al S tructu ral P a tte rns 129

5.6.3 The G am m a et al Behavioural P a tte rn s 136

5.7 Analysis of R e s u l t s ..152

5.7.1 Coinnieiits on the Development of the Transformations 156

5.7.2 Comments on Precondition C o m p u ta tio n 158

5.8 Related W o r k ..159

5.9 Summary .. 159

6 C onclusions 160

6.1 C o n tr ib u tio n s ..160

6.2 Future W o rk ... 162

6.3 To C onclude ...168

A T h e Factory M eth od P a ttern 184

B A n alysis F unctions, H elper F unctions and P rim itive R efac

torings 186

B .l Analysis F u n c t io n s ..186

B.1.1 Relationships between Analysis Functions 195

B.2 Helper F u n c t io n s ... 197

B.3 Primitive R e fa c to r in g s ...200

C L isting o f M initransform ations 225

D A rch itectu re o f th e Softw are P ro to ty p e 227

D .l Tool A rc h ite c tu re ...227

D.2 Sample Operation of D P T ..229

List of Figures

2.1 Graphical Image of R efactorings.. 11

2.2 A Generic S tructure C h a r t .. 12

2.3 A Generic UML Class D ia g r a m .. 13

3.1 Principal Program Entities and their R e la t io n s h ip s 37

3.2 A Comj)osite Refactoring with Pre- and Postconditions 43

4.1 The Design P a tte rn M eth o d o lo g y .. 66

4.2 Possible starting points for a Design Pattern Transformation . 69

4.3 Precursor for the Factory M ethod T ran sfo rm atio n 70

4.4 Application of the A b s t r a c t i o n M initransform ation 74

4.5 Application of the E n c a p s u l a t e C o n s t r u c t i o n Minitrans-

forniation .. 76

4.6 Application of the A b s t r a c t A c c e s s M initransformation . . 79

4.7 Application of the P a r t i a l A b s t r a c t i o n M initransformation 82

5.1 The Precursor for the Builder Design Pattern 105

5.2 The Builder Design P a t t e r n ... 108

5.3 The Precursor for the Bridge Design P a t t e r n113

5.4 The Bridge Design P a t te r n ...118

A .l The Factory Method pattern s t r u c tu r e ... 185

D.l Architecture of the Design Pattern Tool228

XI

Chapter 1

Introduction

Getting a design right first time is impossible. One of the major advances

in software development thinking in the past decade has been the notion

tha t the process of building a software system should be an evolutionary one

[10, 81, 48, 3], Rather than the classical waterfall model where analysis is fully

completed before design, and design fully completed before implementation,

evolutionary approaches are based on building a simple version of what is

required and extending tliis iteratively to build a more complicated system.

As John Gall put it:

“A complex system th a t works is invariably found to have evolved

from a simple system tha t worked.” [40, p.50]

Or in Kent Beck’s inimitable style:

“S tart stupid and evolve.” (c{uoted in [9G])

We are interested in developing a particular type of autom ated transfor

mation to provide support for software evolution. In section 1.1 we explain

more exactly what type of transform ations we will focus on and describe this

in the context of software evolution. In section 1.2 we show how our approach

1

also addresses problems faced in the reengineering of legacy systems. In sec

tion 1.3 we state both the thesis and principle contributions of our work, and

finally, in section 1.4, we provide a road map of this dissertation.

1.1 Evolutionary Approaches to Software D e

velopm ent

In an evolutionary approach to software development, a simple working sys

tem is built which subsequently undergoes many evolutions until the desired

system is reached^ At each stage there is a working system which is to be

extended with a new requirement or set of requirements. It is very unlikely

th a t the design of the initial system will be flexible enough to elegantly sup

port the later requirements to be added in. Consequently, it is to be expected

th a t when the system is to be extended with a new’ requirement, its design

will also have to be made more flexible in order to acconmiodate the new

recjuirement elegantly. Current thinking reconnuends breaking this process

of extending a system into two stages [5, 35, 45], [38, p. 7]:

1. Program Restructuring: This involves changing the design of the pro

gram so as to make it more amenable to the new reciuirement, wdiile

not changing the behaviour of the program.

2. Actual Updating: Here the program is changed to fulfill the new re

quirement. If the restructuring step has been successful, this step will

be considerably simplified.

'A s rem arked in [92], one can never speak of the ‘‘final” system . Useful system s tend

to evolve continiially during their lifetime.

2

This thesis will present a novel approach to providing sophisticated auto

m ated support for the restructuring step.

Let us consider now what type of restructurings a designer may want to

perform in order to make a system more flexible and able to accommodate a

new requirement. A designer usually has an architectural view of how they

wish the program to evolve th a t is at a higher level than, for example, simply

creating a new class or moving an existing method. Probably the most inter

esting and challenging category of higher-level transform ation th a t a designer

may wish to apply comprises those transformations th a t introduce a design

pattern^ [41]. Design patterns typically loosen the coupling between program

components, thus enabling certain types of program evolution to occur with

minimal change to the program itself. For example, the instantiation of a

Product class within a Creator class could be replaced by an application of

the Factory Method pattern^. This would enable the Creator class to be

extended to instantiate a subclass of the Product class without significant

reworking of the existing code.

The restructurings we develop in this thesis will be those th a t autom ate

the introduction of design patterns to an existing object-oriented program.

The scenario we consider is as follows: An existing program is being extended

with a new reciuirenient. After studying the code and the new requirement,

the designer concludes th a t the existing program structure makes the desired

extension difficult to achieve, and th a t the application of some particular

design pattern would introduce the necessary flexibility to the program. It is

at this point th a t we aim to provide autom ated tool support. The designer

selects the design i)attern to be applied and the program components tha t

^See section 2.2 for a more detailed description of design patterns.
■̂ See appendix A for a description the Factory Method pattern

3

are to take part in the restructuring, and our tool applies th a t design pattern

to the given program components in such a way th a t program behaviour is

maintained.

A key aspect of this approach is th a t the intellectual decision of what

design pattern to apply, and where to apply it, remains with the designer.

We are not attem pting to formalise or autom ate quality; our aim is to remove

the burden of tedious and error-prone code reorganisation from the designer.

In this thesis we will present and validate a methodology for the development

of autom ated design pattern transformations.

1.2 Legacy System s

Brodie and Stonebraker provide a widely-accepted definition of a legacy sys

tem:

“[A legacy system is one] tha t significantly resists modification

and evolution to meet new and constantly changing business re

quirem ents.” [12, p.xv]

Legacy systems frecjuently recjuire restructuring in order to make them

more amenable to changes in requirements. This restructuring is performed

either by hand, or through the use of autom ated tools, for example, [G].

In the la tter case, the designer usually specifies certain operations to be

carried out, for example, to extract a method from existing code or to move

a m ethod from one class to another, and the tool handles the mundane details

of performing the transform ation itself.

There are clear similarities between a designer restructuring a program

th a t is still under development as described in the previous section, and the

restructuring of a legacy system. In both cases the following conditions exist;

• A new requirement (or requirements) has arisen tha t the program nuist

fulfill.

• The structure of the program is not flexible enough to accommodate

the new requirem ent (s) easily and elegantly.

• The existing program exhibits useful behaviour th a t must be main

tained by any reorganisation tha t takes place.

The similarity between the forward engineering scenario and the restructur

ing of a legacy system becomes even clearer when the following points are

considered:

• The notion of a legacy system usually evokes an image of an aged

system developed with now-defunct technology. However, in the above

definition there is no mention of age; a week-old program developed

using the latest technology can perfectly fit the definition of a legacy

system.

• An evolutionary-centric development methodology such as Extreme

Progranmiing‘* can be viewed as actually encoiuaging the creation of

a series of legacy systems. Little up-front design is performed, so with

each new requirem ent tha t is added, the program is restructured just

enough to elegantly accommodate the new requirement.

The conclusion is th a t evolutionary software engineering and legacy systems

reengineering are not such different processes. The design pattern transfor

mations described in this thesis are applicable in bo th cases.

‘̂ Extreme Program m ing is discussed further on page CO.

5

1.3 T hesis and C ontributions

In the last two sections we described how introducing design patterns to a

program is part both of forward software engineering and of reengineering

of a legacy system. The fundamental thesis of this wwk can be stated as

follows:

Automating the application o f design patterns to an existing pro

gram in a behaviour preserving way is feasible.

The following are the principle contributions of this thesis:

• A methodology fo r developing design pattern transformations. This is

the essential contribution of this w'ork. The methodology we have de

veloped has been apj)lied with full rigour to seven common design pat

terns^, and a prototype software tool has been built th a t can apply

these seven design patterns to Java programs®. The methodology has

also been applied to the remaining patterns in the G annna et al pat

tern catalogue [41], though these pattern transform ations have not been

prototyped. The essence of our methodology has been published in

sununary form in [74, 72], and more completely in [75].

• A minitransformation librai'y. Design pattern transform ations have a

strong degree of commonality and this has been captured in a set of

six minitransformations. These minitransformations have been imple

mented and dem onstrated to be widely applicable in developing design

pattern transformations.

®The seven design patterns to which the methodology has been fully applied are Ab

stract Factory, Factory Method, Singleton, Builder, Prototype, Bridge and Strategy [41].
*'We have used .Java as the vehicle language for this work. The possibility of language

independent approaches is discussed on page 165 in section G.2.

6

• A model for behaviour-preservation proofs. The transform ations we

develop m ust be invariant w ith respect to program behaviour. In order

to prove th is rigorously for the sophisticated program transform ations

th a t we develop, we have extended existing refactoring work by allowing

the transform ation definition to contain not only simple sequences, bu t

also itera tion and conditional sta tem ents. This model has been applied

in full rigour to several exam ples, and has been published in [76].

1.4 Thesis O utline

This thesis is s tru c tu red as follows:

C h a p te r 1 (th is chapter) in troduces the topic of au tom ated design p a tte rn

transform ations and places it in th e context of evolutionary approaches to

software engineering and legacy system reengineering.

C h a p te r 2 describes in detail the background to th is work, nam ely program

restructu ring and design pa tte rn s. Note th a t research th a t is very directly

rela ted to our w'ork is discussed in th e relevant la ter chapter.

C h a p te r 3 presents our approach to dem onstrating th a t a program tran s

form ation preserves the behaviour of the program and applies it in full rigour

to a realistic exam ple.

C h a p t e r 4 describes our m ethodology for the developm ent of au tom ated

design p a tte rn transform ations by applying it in detail to a single flagship

exam ple.

C h a p t e r 5 applies the m ethodology to the entire G am m a et al design p a t

te rn catalogue [41] and analyses th e results.

C h a p t e r 6 contains our overall conclusions and presents fu ture work in the

area of au tom ated design p a tte rn transform ations.

7

A p p e n d ix A contains a description of the Factory IMethod design pattern,

which is the subject of chapter 4.

A p p e n d ix B contains the complete specification of all analysis functions,

helper functions and primitive refactorings th a t are used in this work.

A p p e n d ix C describes briefly the minitransformations th a t we developed,

and provides a reference to the more detailed description in the main text.

A p p e n d ix D describes the architecture of the software prototype developed

in this w'ork and presents an example of its application.

Chapter 2

Background

In this chapter we explore the background to this research, with the aim of

putting our work in context. We survey the two research fields tha t form

the foundation of this work, namely program restructuring (2.1) and design

patterns (2.2). In section 2.3 we state precisely the gaps our work aims to

fill in the existing literature, and, in section 2.4, the chapter is summarised.

Detailed analyses of very closely related work and comparisons between

our work and others are not covered in this chapter, but appear in later

chapters.

2.1 Program R estructuring and R efactoring

2.1.1 Definitions

In their widely-used taxonomy of reengineering terms, Chikofsky and Cross

define restmcturing in this way:

Restructuring is the transform ation from one representation form

to another at the same relative abstraction level, w'hile preserv-

9

ing the subject system’s external behaviour (functioiiahty and

semantics). [19]

Prvgram restructuring then is a source-to-source restructuring that preserves

the semantics and external behaviour of the program.

The first use of the term “refactoring” in the literature was in the work

of Opdyke and Johnson [78], though the practice was in use well before

this. Opdyke defines refactorings as “behaviour-preserving program restruc-

tm in g s \” which is the definition we use in this work. Fowler uses a similar

definition, though emphasizes that we expect the process of refactoring to

improve the design:

Refactoring is the process of changing a software system in such

a way that it does not alter the external behavior of the code, yet

improves its internal structure. [38, p.xvi]

Roberts changes the definition radically by also i)ermitting “refactorings”

that change program behaviour [84]. While it is valuable to allow program

transformations that are not behaviour-preserving, the redefinition of a stan

dard term seems very unnecessary, especially in a field that is already dogged

by confusing terminology [5].

We have used the term “behaviour preserving” without being specific as

to what is meant. Opdyke defined it in terms of observable behaviour, i.e.,

that the program nuist produce the same externally observable behaviour for

any legal input before and after the refactoring [77]. Roberts correctly points

out that if timing constraints are taken to be part of program behaviour, it

becomes extremely difficult to argue behaviour preservation. Other non

functional properties of a program, for example memory usage or patterns
'T liis is tautological, since restructurings are, by definition, behaviour preserving.

10

Domain of Program BehavioursDomain o f Source Programs

Figure 2.1: Graphical Image of Refactorings

of network access, would also be very difficult to maintain in a refactoring^.

For these reasons, we do not consider in this work programs where timing

constraints or other non-functional recjuirements are part of their specifica

tion.

2.1 ,2 A G lobal V iew o f R efactoring

Figure 2.1 is a graphical depiction of refactoring and what it aims to achieve.

The domain on the left is the set of all source programs (e.g., all legal Java

programs) while the domain on the right depicts the set of all possible pro

gram behaviours. The shaded subset on the left is a set of programs tha t all

exhibit the same behaviour, depicted by their all mapping to the same point

in the behaviour domain.

Refactoring research aims to show how, given a program in the shaded

set, it is possible to transform it to other programs in the same set. Of

^In a practical sense, the behaviour of a program tha t has been optimised to run in a

particular hardware/software environment could be affected by refactoring.

11

processgetlnput

control

output

Figure 2.2; A Generic Structure Chart

coiu'se, it is not interesting to do this in a random fashion^; the aim is to

improve the design of the program according to some criteria. Refactoring

research aims then to build the “train tracks” tha t connect one program

to another program with the same behaviour. In the diagram, applying

a composition of refactorings is equivalent to moving along the track to a

possibly very different program structure, but one th a t nevertheless exhibits

the same external behaviour.

Refactoring research has really only taken place in tlie past decade, and

has been focused on the transform ation of object-oriented programs. To

understand why it never received much attention in the context of structured

programming, consider the generic structure chart dei)icted in figiu'e 2.2, and

what sort of refactorings could be applied to it. It is hard to propose much,

other than tha t data tha t is passed around the chart a lot could be moved

to a shared da ta structure. The problem to be solved has been factored into

a number of functions and these have been fixed in a tight control structure

where little movement is possible.

By way of contrast, consider the generic class diagram of figure 2.3. Even

without any knowledge of the actual application, many possible refactorings

A quirky notion would be to apply refactorings to a program pseudo-randonily, perhaps

using simulated annealing, and use some metrics suite to decide if the design was improved.

12

A

o-----------------
B

X y

foo() foobarO

Figure 2.3: A Generic UML Class D iagram

come to mind. An interface could be added to the class B and the class A

updated to access B only via th is interface. T he m ethod foo could be moved

from the class A to the class B and replaced by a delegating m ethod. Perhaps

foo could be moved to ano ther class entirely and A updated to inherit it from

th a t class. Sim ilar refactorings could be applied to the m ethod foobar. We

could even contem plate replacing the aggregation relationship from A to B

w ith an inheritance relationship in the same direction. T he fact th a t so m any

potential refactorings spring from a simple class diagram is a conseciuence of

the nm ch richer set of abstractions available in the object-oriented approach

when com pared w ith th e s tru c tu red approach.

2 .1 .3 Form al and Inform al A pp roaches to B ehaviour

P reservation

It is theoretically im possible for a refactoring technique to relate all program s

th a t exhibit the same behaviour. In practice, we have to be very m odest in

our aims. Few industria l languages have a formal sem antics. Even rarer are

those th a t have a formal sem antics and a com piler th a t verifiably im plem ents

those sem antics. Even given a formal sem antics for an industrial language,

th e com plexity of the behaviour preservation proofs for non-trivial transfor

m ations will be in tractab le . Approaches based on a formal sem antics of the

program m ing language cannot therefore be currently expected to produce a

13

working software tool*.

Existing refactoring work has generally relied on either a semi-formal

demonstration of behaviour preservation [77], or indeed no dem onstration of

behaviour preservation at all [38]. The former approach is appealing, in that

it mimics to some degree what a disciplined programmer will do in prac

tice when refactoring a program. They will certainly not just change it and

hope for the best; they will reason logically th a t the change they intend to

make is behaviour preserving. This is an interesting middle-ground between

a fully-fornial approach to proving behaviour preservation and ignoring the

issue completely. By constructing a semi-formal proof of behaviour preserva

tion we improve om- confidence th a t the transformations we build are indeed

refactorings. Also, if in testing an error is found in th a t a supposed refactor

ing changes the behaviour of the program it has been applied to, the error

can be traced back to the proof and corrected there.

This notion of behaviom' preservation adm its many simple program refac

torings. Assuming certain i)re-conditions are met by the program being trans

formed, classes, methods and interfaces may be added or removed; invoca

tions of a method may be replaced by invocations of another method; access

to a field may be replaced by a method invocation, and so on. We will see

later in this work how such simple refactorings can be combined to produce

complex transformations th a t have a j)rofound effect on program structure.

‘For an interesting exanii)le of a formal, correctness-preserving apj)roacli to program

restructuring applied to a small-scale software engineering problem, see [42]. This approach

requires significant work in reverse engineering the program, and it is not apparent whether

the transformations used can be automated.

14

2.1 .4 E xisting Work in A utom ated R efactoring

So far we have discussed refactoring in general, but the main focus of this

thesis is specifically automated refactoring. Obviously autom ation is valu

able; once the programmer decides tha t a certain refactoring should take

place, much of what remains is tedious and error-prone work. Such work

should, w'here possible, be autom ated. At the simplest level, the program

mer should be able, for example, to rename a class, and have the refactoring

tool check th a t the new name is not already in use and update all uses of

the old class name to the new class name. At a nuich more complex level,

the programmer should be able to select a number of program elements and

aj)ply a sophisticated, high-level restructuring to them; this is the direction

this thesis will take.

The work of Opdyke and Roberts forms the basis for the autom ated

refactoring approach taken in this thesis. Opdyke defined a set of refactorings

th a t could be ajjplied to a C-t--|- program [77] and in further work showed

lunv they could be used to construct higher-level refactorings, for example,

to convert an inheritance relationship to an aggregation one, and vice versa

[51]. Roberts [84] extended Opdyke’s work by providing a more formal basis

for composing refactorings, and examined the use of dynamic information in

refactoring. This work will be extensively cited throughout this thesis, so it

is not discussed further here. In the following subsections we consider some

of the other approaches th a t have been taken to autom ated refactoring. In

many cases the term refactoring has not actually been used, but the work

nevertheless involves behaviour preserving restructuring of object-oriented

programs.

15

A pproaches to Inheritance H ierarchy R eorgan isation

One of the significant contributions of the object-oriented approach was that

it made inheritance a firm part of mainstream software development. Design

ing a class hierarchy is a difficult task however, so many a ttem pts have been

made to provide autom ated support for this process. Probably the earliest

work th a t addressed this issue was tha t of Pim and W inder [80]. When a

designer adds a class to a hierarchy, the design of the hierarchy may cause

tlie class to inherit unwanted attributes. This indicates th a t the hierarchy

should be reorganised to separate the attributes th a t the designer would like

to be inherited from the undesirable ones. Pun and W inder show how this re

organisation process can be autom ated and partly formalise their work using

an algebraic m anipulation system.

Casais solves the “inheritance of unwanted featm es” problem in a some

what different way, specifying both global and incremental algorithms that

reorganise a class hierarchy so as to remove the inheritance of unwanted fea

tures [16, 17]. This improves on P\m and W inder’s work in th a t it allows

incremental reorganisation of a class library whenever a class is added to it.

Casais also defines how to autom ate this restructuring algorithm precisely

and, in [18], presents the results of applying his restructuring algorithms to

the Eiffel libraries. His restructurings are intended to operate in autom atic

mode, which has the benefit th a t they can be applied to very large hierar

chies, but the disadvantage th a t they will, in some cases, produce a result

tha t is either incomprehensible, or of no software engineering impact.

Lieberherr, Bergstein and Silva-Lepe describe an algorithm th a t learns

a class library from a set of object examples, and minimises the number of

aggregation and inheritance relationships’̂ in this library, while preserving the

^Tliese are the usual in terp re ta tion of the construction and a lternation relationships in

16

set of objects defined by the library [59, 7]. This work is based on the accepted

philosophy th a t abstractions are discovered ra th e r th an invented [50], so it

makes sense to allow a designer to define the concrete objects they want to

use, and then to learn the class hierarchy from these exam ples. More recent

work by Hiirsch and Seiter in the same area describes a set of behaviour-

preserving transform ations th a t can be applied to a class library [45]. This

work has never achieved popularity in m ainstream software developm ent,

probably due to the fact th a t it is tigh tly bound to the seldom -used adaptive

software model, where class s tru c tu re (the class graph) is m odelled separately

from behaviour {propagation patterns). This contrasts strongly w ith the

work of Opdyke and R oberts, and the work presented in th is thesis, th a t

sim ply assumes the class library to be specified in a m ainstream program m ing

language®.

Ivan Moore has developed a tool called G uru th a t can analyse and restruc

tu re an inheritance hierarchy expressed in the Self program m ing language

[67, C9]. The inheritance hierarchy is optim ised in a certa in way, whilst pre

serving program behaviour. O ptim al is taken to m ean th a t duplicate m ethods

are removed, m ethod sharing is m axim ised, and redefinition of m ethods is

avoided. Moore found th a t in general some m anual in tervention was neces

sary to produce a good result, and th a t given an incom petently-developed hi

erarchy as input, the restructu ring could not im prove it (“garbage in, garbage

o u t”). There is also the risk w ith th is sort of au tom ated restructu ring th a t

the essential abstractions th a t the program m er defined in the hierarchy will

be removed by the restructuring , if they have not yet actually been made

use of. In [68] Moore extends th is restruc tu ring algorithm to refactor m eth-

the Demeter notation.
®0pclyke’s refactorings transform ed C + + j)rograms, R oberts developed the Sm alltalk

Refactoring Browser, while th is thesis will focus on transfornuiig .Java program s.

17

ods by moving common expressions to separate m ethods and invoking them

there. W hile th is m ethod-level refactoring can reduce the anioim t of code in

the application and increase reuse, the new m ethods it introduces will not

necessarily appear cohesive to the program m er.

Snelting and T ip propose reengineering class hierarchies using concept

analysis [91]. W hen a designer creates a class hierarchy, they are in effect

describing the ir perception of the key classes and relationships in the dom ain

they are modelling. A program m er who uses th is hierarchy m ay find th a t

the classes provided are not quite w hat are required in the ir application,

and th is will apj)ear as anom alies in the ir code. For exam ple, a class may

not use all the functionality of its superclass, or the application m ay create

several objects of the same class, bu t use different subsets of the class’s

functionality in different contexts. In both these exam ples, the user of the

hierarchy requires different classes (or concepts) from th e ones provided by

the designer of the hierarchy. In th is work a concept lattice is constructed

th a t highlights the concepts th a t th e program m er has actually m ade use of.

This provides valuable guidance in reengineering the class hierarchy; in the

exam ples described above, the classes in question probably need to be split.

The type of transform ations th is analysis produces would have the effect of

m aking the class hierarchy represent more tru ly the progranuners’ view of

the dom ain. In the context of th is thesis, the reengineering described in this

paper could be im dertaken prior to th e in troduction of a design pa tte rn .

Other Approaches

Ducasse, Rieger and Demeyer describe a technique for detecting duplicated

code based on simple string com parisons to detect identical lines of code,

and the use of a scatter plot to visualise the results of the com parisons [28].

18

For a program with n hnes of code, the corresponding scatter plot would be

ail n-hy-n matrix w'here a dot is present at location {i,j) only when line i

in the program is identical to line j . This work is used as a basis in [29],

where a preliminary proposal is made for tool support for refactoring to

remove duplicated code. They suggest that full automation is possible only

in simple cases of exact code cloning, and that programmer intervention will

l)e required in most cases.

Sw'eeney and Tip developed an automated approach to detecting dead

data members in C + + applications [95]. A data member m is defined to

be dead if there is no object in the program that contains m such that the

value of rn can affect the program’s external behaviour. Naturally, detecting

such dead data members paves the way for a simple refactoring that removes

them. This type of refactoring appears unremarkable but the results achieved

were dramatic. On the benchmarks tested, an average of 12.5% of the data

members were found to be dead, and the average occupancy of run-time ob

ject space by dead data was found to be 4.4%. This suggests that refactoring

research is still in its infancy, and that a lot can still be achieved with cjuite

simple techniques.

Maruyama and Shima present an approach to method refactoring based

on the usage patterns of a framework [63]. The basis is that a method in a

framework has dependencies on other franiewwk methods that to a greater or

lesser degree match how programmers using the framework will override the

method. If the method is normally overridden in such a way as to preserve

these dependencies, it suggests that the interaction with the other methods

is invariant and can be captured in a template method. Conversely, if the

method is normally overridden in such a way as to destroy these dependen

cies, it suggests that the method represents a “hot spot” [79] and is better

19

modelled as a hook method. In the first case, the transform ation will mean

th a t a programmer using the framework has less code to write; in the latter

case it will mean th a t the programmer has less code to read. Experimental

results presented in [63] produced a reduction of up to 22% in the num

ber of statem ents a programmer has to write when using the framework to

develop new applications. Because the refactoring process operates in au

tom atic mode, it exhibits the attendant problem of creating new methods

th a t may appear meaningless to the programmer. Nevertheless the results of

this approach seem very valuable, probably because using the modification

histories of the methods in the framework is in effect giving the programmer

indirect control over what refactorings take place.

2 .1 .5 C a teg o risa tio n o f R efactorin g A pp roaches

There are a luunber of a ttributes tha t can be used for categorising approaches

to refactoring. The most significant ones are as follows:

• MeMiod of Application: In a fully-automated approach a software tool

is used tha t applies a large scale restructuring to the program. A serni-

autornated approach also involves a software tool, but involves the user

choosing what refactorings are to be applied. Finally, the user can

simply apply the refactoring by hand.

• Approach to Behaviour Preservation: The simplest approach is where

no proof of behaviour preservation is presented; it is simply taken for

granted or assumed to be obvious. A semi-formal proof means that

some formal model (usually first-order predicate logic) is used to sup

port the behaviour preservation arguments, but the reasoning used is

not limited to syntactic deduction. In a fully formal approach, a formal

20

model is used tha t reflects the semantics of the programming language

sufficiently strongly th a t an entire behaviour preservation proof can be

constructed in the formal domain.

• Method o f Composition-. A refactoring approach th a t provides a suite of

refactorings will usually also provide a method for composing them. In

dynamic composition the user is allowed to combine refactorings freely

as they are working on the code, while static composition approaches

provide the user with a set of higher-level (composite) refactorings.

For example, Fowler presents a catalogue of refactorings [38] th a t are to be

applied by hand, no proof of behaviour preservation is provided, and nothing

is said about composing these refactorings. On the other hand Robert’s

refactorings [84] are apjjlied semi-automatically (the user states where to

apply them), a semi-formal proof of behaviour preservation is provided, and

a dynamic method of refactoring composition is provided.

In general, the fully autom atic method of application has the advantage

that it may be left run in batch mode on a large system without requiring

user intervention. It may however perform refactorings th a t are of little or

no real significance, and the ultim ate results may be hard to comprehend.

As discussed earlier, a behaviour preservation argument is desirable, though

the fully-formal approach is not promising.

As regards composition of refactorings, the dynamic approach is the freer

and more expressive one. However the static approach allows powerful refac

torings to be developed, tested extensively and then presented to the user as

a reliable refactoring option.

The approach we take in this thesis is to statically develop semi-automated,

composite refactorings, and to develop for each one a semi-formal proof of

behaviour preservation.

21

2.2 D esign Patterns

Patterns have been one of the most significant developments in software

engineering in the past decade. The aim of this field is to identify and cat

alogue the knowledge and expertise th a t has been built up over many years

of softw'are engineering. Patterns can be identified in all parts of the de

velopment process: architecture, analysis, design, coding, reengineering, as

well as in specific application areas such as real-time programming or user

interface construction. Patterns are in no way invented; they are discovered

or “mined” from existing systems. The motivation is to uncover proven de

signs th a t experts have already used and reused, and to distill from these

the essence of the solution with domain-specific detail removed. The result

ing nugget of design wisdom can then be docimiented and made generally

available. This pattern can be assimilated by other designers and applied in

other domains.

The notion of a i)attern in softw'are was borrowed from the w^ork of the

architect Christopher Alexander, who described the process of architecting

living space (be it the corner of a room or an entire city) in term s of patterns.

He defined the notion of a pattern in the follcnving way:

Each pattern is a three-part rule, w'hich expresses a relation be

tween a certain context, a problem, and a solution. [1, p .247]

Varying definitions of the term pattern abound, but this “three-part” version

suits our current purposes. Richard Gabriel puts the Alexandrian definition

into a softw'are context in this way:

Each pattern is a three-part rule, which expresses a relation be

tween a certain context, a certain system of forces which occvirs

22

repeatedly in tha t context, and a certain software configuration

which allows these forces to resolve themselves. [39]

This thesis is concerned with the automated application of design pat

terns. We choose to work with patterns at the design level for two reasons:

• It is a richer set than the program-language specific patterns found at

the coding level.

• They are more concrete than those found at the analysis level so au

tom ating their application to source code is realistic.

The notions of formalisation and autom ation are not generally welcomed in

the patterns connnunity. Jim Coplien expressed this distaste clearly:

Patterns aren’t designed to be executed or analyzed by comput

ers, as one might imagine to be true for rules: patterns are to

be executed by architects with insight, taste, experience, and a

sense of aesthetics. [23]

We concur with this position in term s of the first two parts of the Alexan

drian definition. Deciding th a t a context is appropriate for the application

of a pattern and assessing tha t the forces acting in this context will be re

solved by the pattern is a m atter of “insight, taste, experience, and a sense of

aesthetics.” However, the third part of the pattern definition, tha t of apply

ing the software configiu’ation tha t resolves the forces, is clearly a potential

candidate for automation. In chapter 4 we will present a methodology for

the development of autom ated design pattern transform ations where the de

signer defines the context to which the pattern is to be applied and the actual

application of the software structure is autom ated. O ther work in the area

of autom ated pattern application is considered in th a t chapter as well, so in

23

this chapter we focus on other uses of form alisation and aiitom ation in the

context of design patterns.

2.2.1 Form alisation o f D esign P attern s

A nthony Lauder and S tu art K ent argue th a t existing p a tte rn descriptions

suffer from being expressed in inform al language and being overly-dependent

on a specific exam ple to convey the essence of the p a tte rn [56]. T hey conse

quently develop a formal th ree-part model to describe a p a tte rn , viz:

• Role model. This is the most abstrac t representation of the pattern .

The actors involved in the p a tte rn are identified as well as the ir abstract

s ta te and the essential collaborations between them . These definitions

are abstrac t and im ply constrain ts th a t any refinem ent of the p a tte rn

m ust respect.

• Type model. This is a refinem ent of the role m odel where roles are

replaced by domain-specific types th a t define concrete syntax for oper

ations and add to the ab strac t sem antics of the role model.

• Class model. This final refinem ent is the actual deploym ent of the

p a tte rn in term s of concrete classes.

In each model, system dynam ics can be expressed using a variant of the

UML sequence diagram . As each of the three m odels is formalised in term s

of sets and constrain ts, it has the po ten tial to be used in the developm ent of

au tom ated tool support for patterns.

Anm on Eden et al have developed a declarative language called LePUS

th a t is specifically geared tow ards expressing the object-oriented m otifs th a t

typically recur in design p a tte rn s [33, 32]. In LePUS a program is modelled as

24

sets of entities (classes and m ethods) and various relationships/co llaborations

between these en tities (inheritance, m ethod invocation, m ethod forwarchng

etc.). In [33] LePUS is used to describe a set of the G am m a et al design

p a tte rn s [41] and to explore th e relationships between patterns.

LePUS has bo th a graphical form at and a tex tu a l one th a t closely resem

bles Prolog. This la tte r fact m akes it easy to im plem ent a LePUS model as

a Prolog facts database and use it in various p a tte rn activ ities [31]:

• Validation. Testing if a certain set of classes/m ethods fit a certain

p a tte rn can be achieved by executing a cjuery w ith these elem ents as

argum ents to the cillery.

• Discovery. To discover an instance of a certain p a tte rn in a model,

the (juery can be executed w ith variables instead of program elements.

This will a ttem p t to m atch the p a tte rn across the en tire database.

• Application. R ather th a n searching for the p a tte rn in the database,

the assertions representing th e p a tte rn are them selves added to the

d a ta b a s e '.

A formal model of p a tte rn s certainly has po ten tial to serve as a sound

foundation for au tom ated p a tte rn application. W ork in th is area is ongoing,

though as yet few working pro to types have been developed. One exception

is the work of G ert F lorijn and his group, which is discussed on page 87.

2.2.2 A utom ated D etection of D esign Patterns

A utom ated detection of design p a tte rn s is re la ted to au tom ated design p a t

te rn application and has received some a tten tio n by researchers. T he idea is

^Note th a t in our opinion th is work does not fully address the issues involved in p a tte rn

application, a position we outline in section 4.5

25

very tem pting: leave an au tom ated tool roam over a large software reposi

tory and see w hat p a tte rn s it may find. T here is potential to uncover new'

patterns, or to find known j)atterns thus enhancing the com prehension of the

system.

Kyle Brow'n developed a tool th a t reverse engineers Sm alltalk program s

and can recognise certain design pa tte rn s in the code [f3]. In the tests he

conducted, it found several of the G am m a et al p a tte rn s [41] w ith good

success. In each case, the p a tte rn s tru c tu re it detected was la ter verified to

indeed be an instance of the relevant pa tte rn . His case study w'as cjuite small

so it is hard to draw' a firm conclusion from this.

Tonella and A ntoniol use concept analysis to identify groups of classes

sharing com m on p a tte rn s of relationships, both s truc tu ra l (inheritance and

association) and non-structu ra l (m ethod invocation etc.) [98]. T heir claim is

th a t these groupings are likely to rei)resent design jm tterns th a t are present

in the code. In a case study, the ir approach successfully identified several

instances of th e well-known A dapter pa tte rn , and also aided in identifying

a dom ain-specific p a tte rn rela ted to in p u t/o u tp u t. Of course applying this

approach to poorly-w 'ritten code would more likely uncover poor p a tte rn s

ra ther th an good patterns.

Jahnke and Ziindorf propose a m ethod precisely for the identification

of poor p a tte rn s , w ith the in ten tion of transform ing them to good design

patterns*^ [49]. T hey use G eneric Fuzzy Reasoning N ets (G FRN s) to describe

the poor p a tte rn s tru c tu re th a t is to be transform ed. Because it is “fuzzy,”

the descrip tion does not define one precise structu re , bu t a more vague set

of s tru c tu re s th a t ind icate th a t a certain p a tte rn should be applied. The

poor p a tte rn identification tool is in tended to be used interactively: the user

®Their novel approach to pattern application is discussed in section 4.5.

26

identifies where they suspect a poor p a tte rn to be and th e G FR N uses fuzzy

inference to assess if the user is correct. They give an exam ple of using their

approach to detect a set of global variables to which th e Singleton p a tte rn

could be applied, bu t otherw ise th is innovative work does not appear to have

been developed further.

Keller et al have developed th e SPOO L environm ent for the reverse-

engineering of C + + code [52]. This is a collection of off-the-shelf tools

(parsers, browsers, layout generators etc.) th a t are com bined to produce

an environm ent th a t can provide several abstrac t views of a software system.

In [52] SPO O L is used to recognise pa tte rns during th e process of reverse

engineering. They argue th a t ra th e r than sim ply ex tracting a design from

source code, the rationale behind th is design m ust also be uncovered®. Some

pa tte rn s can be recognised in a purely au tom atic way, while some require

user intervention. In [87] SPO O L is also used for th e detection of hot spots

in a framework.

Considering p a tte rn detection in term s of the th ree -p art definition of pa t

te rn given above, we see th a t fully au tom ated approaches can only ever deal

w ith recognition of p a tte rn structu re . P a tte rn s tru c tu re is insufficient in ex

act design p a tte rn recognition as the p a tte rn s tru c tu re m ay be present, but

not dynam ic relationships or the in ten t. Also, several p a tte rn s have the same

p a tte rn structu re , and it is only the non-structural characteristics th a t differ

en tia te between them . A part from the first approach above (th a t of Brown),

all the p a tte rn recognition and detection work operates in a sem i-autom atic

way, where the user is involved in th e process as well. This again brings the

“insight, taste , experience, and a sense of aesthetics” into play and m eans

^E xtracting rationale as well as architecture is also the m ajo r them e in the work of

W oods et al [100].

27

tha t full pattern recognition is possible.

2.2 .3 P atterns in R eengineering, R everse Engineering

and E volution

Autom ated introduction of design patterns has a clear application in reengi

neering. In making a system more flexible to cope with future developments,

introduction of a design pattern is a likely task to undertake. There can also

be patterns in the actual process of evolution and reengineering itself, and it

is this work tha t we look at in this section.

Foote and Opdyke propose a nascent pattern language to describe the

process of developing usable software [37]. The topmost pattern, “Develop

Software that Is Usable Today and Reusable Tomorrow,” gives rise to three

patterns on the next layer;

• “Prototype a First-Paijs Design.”

• “Expand the Initial Prototype.”

• “Consolidate the Program to Support Evolution and Reuse.”

Their work focuses then on further patterns th a t form part of the consoli

dation pattern, ultim ately leading to the low-level refactorings proposed by

Opdyke [77]. Although not explicitly mentioned, the pattern “Apply a De

sign P a tte rn” would be part of consolidation as well, and this thesis provides

autom ated support for this process.

Demeyer, Ducasse and Nierstrasz propose a pattern language for reverse

engineering [24]. They subdivide these patterns into four clusters:

• First Contact: what to do when first approaching an unknown software

system.

28

• Initial Understanding: liow to obtain a preliminary understanding of

the software system, mainly based on class diagrams.

• Detailed Model Capture: how to obtain a detailed understanding of

(part of) the software system.

• Prepare Reengineering: since reverse engineering is normally a precur

sor to reengineering, this cluster of patterns shows how to prepare for

subsequent reengineering.

The patterns developed include the self-explanatory “Read all the Code in

One Hour” and “Recover the Refactorings,” which aims to recover what the

original developers learned during the iterative process of development. This

pattern language expresses the reverse engineering expertise develoi)ed by

the authors over several years of academic and practical experience, and so

reflects a classic use of the pattern approach. In relation to this thesis, the

focus is on reverse engineering rather than software evolution or reengineer

ing.

Stevens et al argue tha t one of the main reasons why software reengineer

ing research has had little impact on software reengineering practice is the

difficulty in communicating the research results to the practicing coninnmity

[92, 26]. They consequently propose system reengineering patterns as an ap

proach to package and transfer this expertise. For example, the Deprecation

pattern captures the well-established practice of updating an unsatisfactory

interface by defining the new' interface but also leaving the existing interface

intact. A “dej)recated” fiag is added to the old interface, advising users to

move to the new one in preference. In time, the imsatisfactory deprecated

interface can be removed. As argued in section 1.2, this thesis can also be

viewed as providing autom ated support for the reengineering process.

29

2.3 T hesis C ontext

Tliis thesis merges the two strands of research described in this chapter.

Program restructuring (section 2.1) is used in order to autom ate the apph-

cation of design patterns (section 2.2) to an existing program. This merging

is timely, as program restructuring research has suffered from the lack of a

firm basis for deciding what sort of structures it should be targetting. De

sign patterns are solutions th a t have proven their w'orth in practice, and so

provide an excellent domain in which to find such target structures.

The existing work in program restructuring is inadequate for our pur

poses. It is only tha t of Roberts [84] tha t deals with a rigorous approach to

refactoring composition. How'ever he only allows compositions tha t are sim

ple secjuences of refactorings, and many design pattern transformations are

too complicated to be described this way. Accordingly w'e have extended his

method in several ways, the principle one being tha t we allow a set iteration

construct in the definition of a composite refactoring.

It is also clear th a t existing design pattern work is not sufficient for our

purposes. Building a restructuring tha t applies a design pattern leads us to

consider questions about the pattern tha t have not been addressed in existing

work. Firstly, it must be decided what the starting point of the transform a

tion should be, i.e., what type of program structure the transform ation can

be applied to. Secondly, the connnonality between design patterns must be

identified and exploited in the development of the transformations, to avoid

the wholesale duplication in the transformation definitions th a t would occur

otherwise.

30

2.4 Sum m ary

In this chapter we have described the two principle research fields upon which

this thesis is founded: program restructuring and design patterns. The aim

of this is to provide a general background to existing and ongoing research

in these areas. In subseciuent chapters we present our own contributions in

more detail, and also present detailed analysis of our approach in comparison

to closely related work.

31

Chapter 3

Foundations of Refactoring:

Behaviour Preservation

111 the previous chapter we described the notion of behaviour preservation and

hinted at the approach tha t w'ill be adopted in this thesis. In this chapter

we i)resent our approach to deinonstrating behaviour preservation in detail

and a])ply it with full rigour to a concrete transformation.

In section 3.1 we describe our approach to defining primitive refactorings,

stating their pre- and postconditions, and arguing behaviour preservation.

In section 3.2 a m ethod for the derivation of the pre- and postconditions of

composite refactorings is presented and applied to a concrete example. In

section 3.3 our api)roach is compared to other w^ork in the field and finally,

in section 3.4, the results of this chapter are summarised. The approach

presented in this chapter has been published in [76].

32

3.1 Prim itive Refactorings and Behaviour Preser

vation

A primitive refactoring is a refactoring th a t is not decom posed into simpler

refactorings. O ur transform ation approach is based upon a layer of prim itive

refactorings. Section 3.1.4 describes how we define a prim itive refactoring,

while in appendix B.3 a list of the actual prim itive refactorings used in this

work is provided.

As sta ted previously, it is necessary in defining a prim itive refactoring to

sta te w hat the precondition of the refactoring is. In defining th is precon

dition, assertions are m ade about the program , for exam ple, th a t a certain

class exists or a given nam e is not already in use. We define a set of analy

sts functions to enable these assertions to be m ade. Analysis functions are

described fu rther in section 3.1.2.

In developing higher-level refactorings we frequently need to ex trac t cer

ta in inform ation from the program , for exam ple, to build an interface from

a class based on th e signatures of its public m ethods. This type of function

does not affect the program in any w ây, bu t perform s a more significant task

th a n w hat an analysis function does. These fiuictions are referred to as helper

functions and are elaborated fu rther upon in section 3.1.3.

C ertain general assum ptions are m ade abou t the program being tran s

formed and these are described in section 3.1.5. Also, the m athem atical

prelim inaries for th is chap ter are described in section 3.1.1.

3.1.1 M athem atical Prelim inaries

W’e use the following nota tion based on [62], also used in [84]. This will be

used extensively in section 3.2 where it will be necessary to be precise about

33

the effect of a refactoring on a j)rogram.

• P\ This is the program to be refactored.

• Jp : Denotes an interpretation of first-order predicate logic where the

universe of discourse comprises the program elements of P, and the

fmictions and predicates of the calculus reflect the analysis functions

as applied to the program P.

• \=ip pre-Ff. Denotes the evaluation of the precondition of the refactoring

R on the program interpretation Xp.

• postii{Tp): Denotes the program interpretation I p , rewritten with the

postcondition of the refactoring R.

• f [^/ y] ' - Denotes an analysis function th a t is precisely the same as the

analysis function / , except tha t it maps the element x to y. This synttix

is used in postconditions to describe the effect of the refactoring on the

analysis fmictions. Note th a t the name of a new analysis function

produced as the result of applying a refactoring is w ritten with a prime

('), so stating th a t an analysis function / is updated with the new

element (x, y) would be w ritten thus: / ' = f [x/y],

• ±: Is used in a postcondition to mean an undefined value. For example,

if a transform ation removes a method called m, the updating of the

c lassO f analysis function to indicate tha t m no longer belongs to any

class would be w ritten thus: c l a s s O f = c la ssO f[v i / l] .

3.1.2 Analysis Functions

Analysis functions serve two related roles in our work. Firstly, they are used

as functions and predicates in the first-order predicate calculus expressions

34

that define the precondition of a refactoring. Secondly, they are implemented

as actual operations that can be applied to a Java program to extract some

information about the program, for example, to test if a method is in a certain

class or to find the signature of a given method. The relationship between

these two roles is that the latter is the implementation of the interpretation

of the former. We will simply speak of “analysis functions” and rely on the

context to make it clear whether we are referring to a fmiction in first-order

predicate logic, or a concrete operation, or both.

The analysis functions used in this work are defined in appendix B.l.

There are also dependencies between the analysis functions and these are

described in appendix B.1.1. For example, if one class inherits from another

class, the type of the former class must also be a subtype of the type of

the latter class. In computing the precondition of a composite refactoring in

section 3.2, it will be necessary to make use of these dependencies.

Some of the analysis functions are obviously easy to evaluate, for example,

the classO f fimction that tests if a method is a member of a class. Others

are more difficult, and a number of them are generally undecidable. In the

latter case, there are three possible ways the situation can be dealt with:

1. An implementation may not be necessary. Some analysis functions

are only used in a precondition when a previous refactoring has al

ready established the condition. This type of analysis function will

appear in precondition specifications, and in behaviour preservation

arguments, but the necessity for an implementation will never arise.

An examj)le of this is the createsSameObject analysis function, that

tests if a given method and constructor return identical objects given

the same arguments. It is necessary to implement a refactoring (in fact

make Abstract, a helper function, see section 3.1.3) that sets up this

35

condition, but this is a straightforward task.

2. A conservative estimation can he made. For some imdecidable analysis

functions a useful conservative estim ation exists. For example, the

uses{m ethodl,m ethod2) analysis function tha t determines if m ethodl

may invoke method2 can only be determined precisely by using an

expensive dynamic analysis of the program. However, a conservative

estim ation tha t probably includes some false positives can be easily

made based on the program text.

3. The programmer 7uay be queried. Asking the programmer to assess

if a given precondition holds is not an luireasonable approach. They

would have to make this assessment anyway were they to perform the

refactoring by hand, so their workload is not being increased. Indeed,

this approach encourages them to think about program conditions tha t

they might otherwise have overlooked.

Program E ntit ies

In describing a refactoring or its precondition, it is necessary to refer to

various program elements: classes, methods, interfaces etc. The principle

elements th a t we make use of, and their interrelationships, are depicted as

a UML class model in figure 3.1. O ther program entities tha t are used in

defining refactorings and analysis functions are: Interface, Argimient, Objec-

tReference, Field, Param eter, Expression, Variable and M ethodlnvocation.

For any entity X, we also define an entity SetOfX th a t represents a set

of entities of the type X. Note th a t for purposes of brevity, a program entity

and its name may be used interchangeably. For example, a refactoring that

operates on a Class may instead be passed a String th a t represents a class

3G

Class ObjectCreationExprnclassCreated

}ins constructorlnvokedcon âins

createsSameObjectMethod Constructor

sigO f

Signature

Figure 3.1: Principal Program Entities and their Relationships

name. getClass(String) could be used to make this relationship precise, l)ut

this adds unnecessary bulk to the descriptions.

3.1.3 Helper Functions

In describing a refactoring it may be necessary to extract richer content from

the program code than is provided by the analysis functions. For example,

we may wish to l)uild an interface from a class based on the signatures of

its public methods. Helper fmictions are vised to perform this type of task.

Because they are not at the prim itive level of the analysis functions, we

provide them with a pre- and postcondition. Helper functions are proper

functions without side-effects on the program, so the postcondition invariably

involves the return value of the helper function itself. The complete list of

helper functions used in this w'ork is presented in appendix B.2.

37

3.1.4 Prim itive Refactorings

The aim of this work is to develop composite refactorings th a t introduce de

sign patterns, not to develop a complete set of primitive refactorings as such.

For this reason, we have not defined refactorings th a t we assessed might tran

spire to be useful; rather we have defined a new refactoring only when the

need for it arose. The complete list of refactorings used in this work is pre

sented in appendix B.3. Some of them are standard and would be part of any

refactoring suite, for example, addClass. Others are idiosyncratic and cjuite

peculiar to the present work, for example, replaceObjCreationWitfiMethlnvo-

cation, which replaces a given object creation expression with an invocation

of a given m ethod using the same argument list.

Each primitive refactoring is described in the following way:

• Name, return type, argument types and informal description'. The re

tu rn and argum ent types may be boolean or void, or one of the program

entities described in section 3.1.2. Name and informal description are

self-explanatory.

• Precondition: This is an assertion, w ritten in first-order predicate logic,

th a t nuist be true in order for the refactoring to be behaviour preserv

ing. If a precondition fails, and the transform ation is nevertheless per

formed, the resulting program may not be legal Java or may behave

differently from the original program.

• Postcondition: This is a mapping from analysis functions to analysis

functions. It describes the effect of applying the refactoring in terms

of changes to the analysis functions defined in appendix B .l.

• Behaviour preservation argument: Opdyke [77] presents behaviour preser

vation argum ents in term s of seven program properties th a t he proposes

38

are easily violated during refactoring^ We take a similar approach, but

rather than limiting the properties th a t are maintained to a fixed few,

we consider what properties can possibly be violated by each individual

refactoring and argue tha t they are not. The arguments are non-formal

in style and cannot guarantee th a t no behaviour violations occur, but

they are rigorous and are intended to be stronger than the argument

a program m er would typically make internally were they to perform

the refactoring by hand. A key advantage to our ap])roach is th a t

the behaviour preservation argument is made only once by the creator

of the prim itive refactoring, and need not be repeated by the many

programmers who will apply the transform ation in practice.

3.1.5 A ssu m p tio n s and L im ita tions

It is assinned th a t certain constraints hold on the Java programs th a t are

transformed in this work. The assumptions we make are as follows:

1. The initial program must compile correctly. If this was not the case,

then, for example, the refactoring adclMethod could change the pro

gram behaviour by causing an illegal program to become a legal one.

2. Reflective programs cannot be transformed safely using the approach

in this w'ork. For example, the following code invokes a method called

foo() on object obj:

obj .ge tClass() .getMethod(” foo” ,null).invoke(obj);

It is clear th a t if the program is transformed to rename the method

'Tokuda and Batory use an approach based oii Opdyke’s, and point out that at least

three more ijrograni properties are necessary to maintain program behaviour [96].

39

foo, this code excerpt will not execute as before, but will throw an

exception.

3. We have assumed that objects are only created using the new operator.

The issues surrounding object cloning have not been dealt with in detail

in this w’ork^.

4. Private classes are not considered. We disallow the creation of a new

class if its name clashes with an existing class, even if the existing class

is private and no real clash exists.

5. Packages are not dealt with in this work, so a class or interface can be

safely identified by just its name.

6. The interface to a method is described by its name, return type, and pa

ram eter types. Exceptions also form part of the interface to a method,

but for simplicity we have ignored them in this work.

The first two constraints are fundamental to our approach, the third involves

an issue tha t we have not yet addressed, while the last three are simplifica

tions tha t would be burdensome to do without, but are not essential to our

approach.

3.2 C om posite Refactorings

The ultim ate goal of this work is to use the refactorings, helper functions, and

analysis functions described in the last section to define behaviour preserving

^For example in a new expression, the class of the created object is given explicitly.

However, in a clone expression, the class of the created object is not known statically,

but depends on the type of the receiving object. This would be an issue when designing

transformations for creational patterns, as they have an impact on how objects are created.

40

design pattern transformations. As will be presented in the next chapter, the

process of constructing a design pattern transformation is essentially a top-

down one, but there is also an element of bottom-up composition of existing

refactorings. In this section we describe the way in which we compose refac

torings, and present a technique for computing the pre- and postconditions

of a composite refactoring. The importance of these techniques lies in the

fact that they allow us to implement a design pattern transformation as a

composition of refactorings and then to check the legality of the composition

and calculate its overall precondition.

We could avoid the necessity of calculating the overall precondition of

a composite refactoring by checking the precondition for each component

refactoring just before it is applied. If a precondition fails, we simply rollback

to the starting point and inform the user. This approach is undesirable

whether the composition is legal or illegal:

• If the composite refactoring is legal, testing its precondition will nor

mally be faster, and never slower, than testing the precondition of each

component refactoring separately.

• If the composite refactoring is illegal, testing its precondition will be

considerably faster than applying several of the component refactorings

and then being obliged to rollback to the starting point. Note that some

refactorings are not undoable, so supporting rollback would involve

checkpointing.

Since we aim to build refactorings statically, the program P is not available

for a “try it and see if it works” approach. No assumptions can be made

about P, other than those described in section 3.1.5.

In our work, we have discovered that there are two ways in which we need

41

to compose refactorings:

1. Chaining.

2. Set iteration.

Chaining is where a sequence of refactorings are apphed one after the other.

For exam ple, the following chain adds m ethods foo and goo to the class c.

addMethod(c,foo)

addMethod(c,goo)

Set itera tion is where a refactoring or a refactoring chain is perform ed on a

set of program elem ents. For exam ple, the following set itera tion copies all

the m ethods of the class a to the class b.

ForAII m:Method, classOf(m)=a {

addMethod(b,m)

}

O ther forms of com jjosition are possible as well of course, the m ost obvious

one being a selection statem ent. A lthough this is straightforw ard to deal

w ith, it is om itted here tis we have found th a t in the construction of design

p a tte rn transform ations in th is work, chaining and set iteration suffice.

3.2.1 C om puting Pre- and P ostcon d ition s for a Chain

o f R efactorings

A chain of refactorings m ay be of any length, bu t we can simplify th e com

p u ta tion of its pre- and postconditions by observing th a t we need only solve

th e problem for a chain of length 2. This procedure can then be iteratively

applied to the rem aining chain until the full pre- and postconditions have

42

been com puted. For a chain of length n, n-1 applications of th is process will

be recjuired.

The two refactorings to be com posed are referred to as R \ and R-2 - For

a general refactoring i?,, its precondition and postcondition are denoted by

pren^ and postR^ respectively. See figure 3.2.

pre, post.

precompositc

Figure 3.2: A Com posite Refactoring w ith Pre- and Postconditions

The naive approach to com puting the precondition is simply to logically

AND the preconditions, i.e.,

]) f ^ c o m p o s i t e P ^ ^ P^

however there are several problem s w ith this. Firstly, postfix may guaran

tee preji^ which m eans th a t an unnecessarily strong precondition results (or

indeed typically a contrad ictory precondition), for exami)le,

addClass(c)

addM ethod(c,m)

ANDing the preconditions produces, am ong o ther clauses, ~'isClass{c) A

isClass{c) , even though th is chain is perfectly correct. T he source of th is

contrad iction lies in th e fact th a t th e two preconditions should be valid a t

different points in th e transform ation.

Secondly a com position may be sim ply illegal, e.g..

43

deleteClass(c)

addMethod(c,m)

ANDing th e preconditions here gives simply isClass{c) even though this

chain is illegal! A lthough the precondition for addMethod is valid at the

s ta rt of the chain, deleteClass breaks it so th is com position of refactorings

can never be legal.

The precondition of the chain is com puted first^. D uring th is com putation

it m ay em erge th a t the chain is in fact illegal. If th e chain is legal, the

postcondition is then com puted. We describe how these com putations are

perform ed in th e following tw'o subsections.

L egality te s t and p recon d ition com p u tation

Assuming th e chain is legal, its precondition is obtained by logically ANDing

preiij w ith w hatever p arts of prefix th a t are not guaranteed by postR^. The

parts of preji.^ th a t are not guaranteed by postn^ are obtained by evaluating:

(Ip) P>'£R2

If a contrad iction arises in th is evaluation, the chain is illegal. T he post

condition of the first refactoring sets up a condition th a t contradicts the

precondition to the second refactoring.

The precondition of th e com plete chain is obtained by evaluating:

preR^A \=postn^{ip) preR^

A contradiction can arise in th is evaluation as well, and th is also means

th a t th e chain is illegal. In th is case the precondition to the first refactoring

■*It is valuable to compute the precondition first, because if the chain requires a stronger

precondition than simply prsR^, it can be useful to use this stronger condition in later

computations.

44

demands a certain condition tha t contradicts the preconchtion to the second

refactoring, and the first refactoring does not change this condition.

P o stcon d ition com p u tation

In our approach"* a postcondition is described as a set of updates to analysis

functions in the following form:

/ ' = f\xlv\
g' = g [p / i]

Any analysis function not mentioned in the postcondition is implicitly not

affected by the refactoring.

The i)ostcondition of a refactoring chain is obtained by concatenating

the function ui)dates described in the postconditions. For example, if postji^

contains the majjping:

d a s s O f = da s s O f [f oo / c\]

and postfix contains the niapi)ing:

d a s s O f = d a s sO f [f oo / C2]

then naturally d a s s O f = dassOf [foo /C 2] becomes part of the postcondi

tion of the chain. Denoting this concatenation operation as | we state the

postcondition of the chain to be;

postR ̂ I postR^

Table 3.1 describes how this operator works in general.

A complete example of the application of this algorithm is given in section

3.2.3.
■'I am grateful to Dr. .lohii Boylaiid of the U niversity of W isconsin for pointing out

problem s in my original approach to postcondition com putation.

45

pOStR^ pOStR^ pOStR^ 1 pOStR^

f = f [x / y] 9' = g[p/(}] f = f [^ / y] g' = g[plq]

f = f [x / y] f = f [p / q] f = f [x/ y] [p/ (i]

f = f [^ / y] f = f [x / z] f = f [x / z]

Table 3.1: C oncatenation of Postconditions

3.2.2 C om puting Pre- and p ostcond itions for a Set It

eration

A set itera tion has the following format:

ForAII x:Ent i ty, P r e d (x , . . .) {

R (x , . . .)

}

where E n t i t y is some type of program entity, P red is some predicate and

denotes the program entities th a t are argum ents to th e predicate an d /o r

argum ents to the refactoring. If the set of x of type E n t i t y th a t satisfies

P r e d {x , . . .) is given as { x i , x 2 , . . . and w riting Hi as a shorthand for

B { x i , . . .), then th is iteration m ay be viewed as the following chain:

/ ? i , R 2 , ■ ■ . , R „

However th is is a set iteration , so th e refactorings could take place in any

order. T h a t is to say, they m ust be able to connm ite and th is fact enables us

to define when a set iteration is legal and w hat its pre- and postconditions

should be.

1. Legality test. A set itera tion is illegal if the precondition of any com po

nent refactoring depends on th e postcondition of another com ponent

46

refactoring. It is also illegal if the postcondition of any component

refactoring contradicts the precondition of another component refac-

toring'\ Both these conditions are captured by requiring th a t for any

refactoring Ri in the set iteration, the evaluation of the precondition is

not affected by the prior application of any sequence of R j , j 7̂ i. We

express this using the notation of section 3.1.1 as:

G { l . . n } , \=jppreR^ = [=1^, p r e /j .

where P' = postR^^^ (. . . postn.^ {postR^^ (2^p)))r

jm e { l..n} - {z}, = j y ^ X = y

Roberts [84] looks at the issue of connnutativity of general refactorings

in detail, however we are only concerned with the constrained case

of set iterations. A very conservative approach to take is to demand

th a t the postcondition of a component refactoring in a set iteration

should not refer to the analysis functions used in its precondition. This

has transpired to be too constraining to be of use, so it will often

prove necessary to examine the semantics of the iteration performed to

ascertain if the above property holds. The legality test performed on

page 50 is an example of this.

2. precondition computation: Any of the /?, could be the first in the chain.

Since the precondition of the first refactoring of a chain must form part

of the precondition for the whole chain, the precondition of the set

iteration nnist be at least the ANDing of the preconditions of each

of the component refactorings. Nothing stronger is required, so the

®The component postconditions could be allowed to contradict each other. However

the postcondition notation would have to be extended to allow disjunction between the

function updates.

47

precondition for the above chain can be expressed as:

i = n
A pren^

i = \

or in a more useful form as:

Vx : E n ti ty , Pred[x) • preR(^x,...)

3. postcondition compxitation: By a similar argument, the postcondition

for the above chain can be expressed as:

postR^ I postR^ I ... I postR^^

We have described how j)re- and postconditions can be computed for refac

toring sequences and set iterations. In the next section we apply these tech

niques to a non-trivial example.

3 .2 .3 A W orked E xam p le

In this section we take a typical composite transform ation tha t involves both

chaining and set iterations and compute its pre- and postconditions. The

calculations are performed in all detail in this example, but in future we will

only sununarise the derivation.

The example we use is the algorithm that describes how to apply the

E n c a p s u l a t e C o n s t r u c t i o n miuitransformation®. The purpose of this

m initransform ation is to loosen the binding between one class (creator) and

another class th a t it instantiates {product). It does this by adding new con

struction methods to the creator class th a t perform the creation of product

objects. Each new m ethod is given the name createP, and all expressions that

®Minitransfonnatioiis are described in detail in section 4.3. For the purposes of the

current ciiapter, they may be thought of simply as composite refactorings.

48

create product objects in the creator class are updated to use the appropri

ate construction method. The impact of applying this m initransformation is

tha t extending the creator class to work with a new type of product class is

simply achievable by subclassing creator and overriding the createP method.

The algorithm for this minitransformation is defined as follows using the

analysis functions, helper functions and refactorings described in earlier sec

tions:

EncapsulateC onstruction(C lass creator, Class product, String createP){

ForAII c:Constructor, c lassOf(c)=product {

Method m = makeAbstract(c , createP);

addMethod(creator , m);

}

ForAII e:ObjectCreationExprn, classCreated(e) = product A

containingClass(e) = creator A

nameOf(containingMethod(e)) ^ createP {

replaceObjCreationWithMethlnvocat ion(e, createP);

}

}

Computing the pre-and postconditions of this composite refactoring proceeds

in several steps:

1. Compute pre and post for the chain in the first set iteration body

2. Compute pre and post for the first set iteration

3. Compute pre and post for the second set iteration

4. Compute pre and post for the overall chain

49

C om puting pre and post for the chain in the first set iteration body

1. Legality test and precondition computation-. This involves first rew riting

the precondition of addMethod(creator, m) w ith th e postcondition of

makeAbstract(c, createP):

Hp o s t „ , a k e A b s t r a c t { I p) a d d M cthod

= isC lass{crea tor) / \ ^de f ines{crea tor , n a m e O f[m / c r e a te P] { m) , s ig O f{ m))

= isClass{creator) A - 'def ines{creator, createP, s i g O f{ m))

and then ANDing this w ith th e precondition for Method m = makeAb-

stract(c). The la tte r is sim ply true, so the final precondition for th is

chain is:

i sC la s s {c r e a to r) f \ ^d e f ines{creator, createP, s ig O f{m)) {3 . l)

No contradiction occurred so the chain is legal.

2. postcondition computation'. There is no analysis function updated in

bo th p o s t a d d M e t h o d p o s t j n a k e A b s t r a c t SO wc cau siniply coucatenatc

the postconditions to obtain:

crea tesSam eO bjec t ' = createsSameObject[{c, m)/ t rue]

n a m e O f = n a m e O f [m / create P]

c l a s s O f = classO f [m / creator]

Va : Class , a ^ creator • e q u a l l n t e r f ace{a, creator) =J>

equal I n t e r face ' = equairnterface[[a , crea tor) / fa lse] (3.2)

Com puting pre and post for the first set iteration

1. Legality test: On first glance the postcondition of the body of this

itera tion (3.2 above) appears to have no im pact on the precondition

(3.1 above). However from appendix B.1.1 we know th a t

50

d a s s O f{ m) = creator A narneOf {rn) = createP

defines{creator, createP, s i g O f {rn))

and this may contradict the second conjunct of 3.1. This would only

occur if there were two methods m with the same signature. However,

m is a m ethod whose signature is derived from iterating through the

constructors of the product class. Since no two constructors in the

same class can have the same signature, neither can two methods in

the set iteration have the same signature. This means tha t the value

for sigOf(rn) will vary on each iteration so there is no risk tha t the

precondition will be violated.

precondition computation: On every iteration, the precondition must

be true, i.e.,

isCIass{creato7') A -idef ines{creator, createP, s igOf{m))

must be valid for every constructor processed. The first conjunct is not

affected by the iteration, so it simply becomes part of the precondition

of the iteration. The second conjimct presents a problem as rn is only

calculated in the body of the iteration and so cannot be used in the

precondition. However, s igO f{m) is the same as the signature of the

constructor being processed, so we can write the precondition as:

isClass[creator) AWc : Constructor, c E product •

^ d e f in e s {ere at or, createP, sigOf{c)) (3.3)

This precondition ensures th a t no m ethod called createP already exists

in the creator class with a signature th a t matches any of the construc

tors of the product class. If for practical reasons we prefer not to allow

51

a method called crea teP to exist in the creator class at all, then this

simpler precondition may be used:

isClass{crea tar) A ~<defines{creator, createP)

3. postcondition computation: The postcondition for the body of this iter

ation is given in (3.2) above. The iteration creates a new rn each time,

so the full postcondition is:

Vc : Constructor, c G product • 3m : Method such that

createsSameObjec t' = createsSa;m.eOhject[{c, m)/ true \

n a m e O f = narneO f [m /crea teP]

c l a s s O f = c l a s s O f [m l creator]

Va : Class , a ^ creator • e q u a l ln t e r f ace{a, creator) =>

equal In ter face' = equaHnterface[{a, crea tor) /fa lse] (3.4)

C om pu tin g p re and p o s t for th e second set iteration

1. Legality test: The postconchtion of the refactoring

replaceObjCreationWithMethInvocation(e, createP)

is that e is deleted, i.e.,

containing Method' = containingMethod[e/ A.].

This can only have an impact on the precondition'

createsSameObject{constructorInvoked{e), createP) A

containingMethod{e) ^ crea teP

^Wliere there is a disjunctive in the jjreconchtion as here, it may be clear tha t only

one of the clisjuncts is relevant and we can safely choose th a t one to work with, hi

this case returnsSameObject{constructorInvoked{e), m) A hasSingleInstance{product)

is dropped in favour of createsSameObject{confitructorInvoked{e),m). The droj)ped

disjunct relates to the very rare case where the product class is only instantiated once.

52

if e refers to the same object creation expression. However, the set

iteration processes each product creation expression in the class creator,

so e will refer to a different expression on each iteration . This set

itera tion is therefore legal.

2. precondition computation: For each object creation expression processed

in the iteration , there m ust be a su itable m ethod called createP defined

in the creator class:

Ve : O b jec tC rea tio n E xp rn , classCreated{e) = product A

con ta in ingC lass{e) = creator A

n a m e O f {conta in ingM ethod{e)) 7 ̂ crea teP •

3 m : M ethod, n a n i e O f { T n) = createP, d e f ines{creator , m) such th a t

crea tesSam eO bjec t{ccn is truc torInvoked{e) ,m) (3.5)

Note th a t the precondition conjunct con ta in ingM ethod{e) ^ m is

dropped as this is guaranteed by the fact th a t n a m e O f {rn) = crea teP

and n a m e O f {conta in ingM ethod{e)) 7 ̂ createP.

3. postcondition computation: All th e product creation expressions in the

creator class th a t are not in a m ethod called createP have been re

moved:

Ve : O h jec tC rea tio n E xp rn , classCreated{e) = product A

conta in ingC lass{e) = creator A

n a m e O f {containing M ethod{e)) ^ crea teP •

conta in ing M e t hod' = con ta in ing M eth o d [e /1.] (3.6)

53

C om p u tin g pre and post for th e overall chain

1. Legality test and precondition computation: Precondition 3.5 must be

rew ritten with postcondition 3.4 and the remaining conjuncts made

part of the precondition of the whole minitransforniation. Before this

can be performed, postcondition 3.4 must be massaged to a suitable

form.

Postcondition 3.4 makes a universally quantified statem ent about all

the constructors of the class product. For every product creation ex

pression in the creator class there is a corresponding constructor in

the product class. We can therefore safely replace the quantification

over the constructors of the product class with quantification over the

product creation expression in the creator class. If the product class

has constructors tha t are not used in the creator class, this change

will weaken the postcondition. Using a weaker j)ostcondition than is

actually guaranteed is fortunately a safe substitution.

Postcondition 3.4 may therefore be rew ritten thus^:

Ve : ObjectCreationExprn,classCreated{e) = product,

containingClass{e) = creator • 3rn : Method, such that

creates SameObject' =

createsSameObject[{constructorInvoked{e), m)/true \

n a m e O f = nam eO f[rn / create P]

c la s s O f = classO f[m / creator]

The transform ation of the classOf relationship may be replaced by a

similar transformation to the defines relationship (see section B.1.1) to

^The filial p a rt of the postcondition has been dropped as it is clear th a t the effect of

th is refactoring on the equallnterface analysis function is irrelevant in th is context.

54

give:

Ve : ObjectCreat ionExprn, dassCreated{e) = product,

containingClass{e) = creator • 3rn : Method such that

creates SameObject ' =

createsSameObject[{const7'uctorlnvoked{e),m)/true]

n a m e O f = nameO f [m / create P]

de fines ' = defines[{creator,m)/true] (3.7)

This postcondition is now in a suitable format to rewrite precondition

3.5 as follows;

Ve : ObjectCreationExprn, classCreated{e) = product A

containingClass{e) = creator A

narneOf[m/createP]{containingMethod{e)) ^ createP •

3rn : Method, nameOf[m/createP]{m) = createP,

d e f ines[{creator, m)/true]{creator, m) such tha t

createsSarneObject[{constructorrnvoked{e), rn)/true]{constructorInvoked{e), m)

Simplifying this out gives:

Ve : ObjectCreationExprn, classCreated{e) = product A

containingClass{e) = creator A

narneOf [containingMethod{e)) 7̂ createP •

3ni : Method, true

Tliis simplifies to just true, so in fact the precondition for the second

set iteration is fully guaranteed by the postcondition of the first set

iteration. This means tha t the precondition of the second set iteration

does not contribute anything to the overall precondition for this mini-

55

transforinatioii, so the overall precondition is simply the precondition

to the first set iteration, namely precondition 3.3.

2. postcondition computation: The postcondition for the first set iteration

(3.7) and the second (3.6) are combined as follows:

Ve : ObjectCreaticmExprn,classCreated{e) = product,

containingClass{e) = creator • 3rn : M ethod such tha t

creates SameObject' =

createsSameObject[{constructorInvoked{e), m)/true]

n a m e O f — nam eO f[m /crea te P]

d e fines ' = defines[{creator,rn)/t7'ue]

Ve : ObjectCreationExprn,classCreated{e) = product,

containingC lass{e) = creator,

n a m e O f {containingMethod{e)) ^ createP •

containing M et hod' — containing M ethod[e/1.] (3.8)

Note tha t the first set iteration adds a construction method to the

creator class, regardless of whether it used in the product class or not.

Constructors of the product class tha t are not used in the creator class

could be om itted from the transformation, but this was not done as it

is likely tha t a future evolution of the program would make it necessary

to include them again.

It is interesting to observe th a t in the overall precondition the product

class was not required to exist. This is correct, in th a t the E n c a f s u l a t e -

CONSTRUCTION transform ation reduces in this case to the null transforma

tion, which is of course behaviour preserving. How'ever, for this transforma

tion to l)e useful, the product class must indeed exist. For this reason we will

sometimes add such extra conditions to the precondition of a transformation.

56

3.2.4 C om m entary

We have dem onstrated tha t if precondition 3.3 holds in a given program,

then the E n c a p s u l a t e C o n s t r u c t i o n transformation can be safely ap

plied without changing the behaviour of the program. Also, in the final

program state, postcondition 3.8 will be valid.

The argument was non-trivial and required a considerable amount of ef

fort. However this need only be done once, and then the minitransformation

can be added to a library and reused in any mnnber of future design pattern

transformations. The existence of this argument enhances our confidence

tha t the transform ation is indeed behaviour preserving. If during prototype

evaluation it transpires tha t the implemented transform ation is not behav

iour jjreserving, the error can be traced back and, if it is present in the

l)ehaviour preservation argiunent, it may be corrected there.

Constructing the behaviour preservation argmnent also caused us to give

consideration to factors tha t were not innnediately apparent from the mini

transform ation description. For example, the fact tha t the creator' class

might already have methods called createP and th a t this is not a problem

unless the signature of one of them clashes with the signature of a construc

tor in the product class was made very clear during the com putation of the

pre- and postconditions.

Finally, this m ethod of arguing behaviour preservation is not formal®.

First-order predicate logic is used in defining the preconditions and some

of the reasoning performed is formal and based purely on the laws of first-

order logic. However, it was frequently necessary to use our knowledge of

the semantic domain (Java programs) in computing the pre- and postcon

ditions. For example, the transform ation of postcondition 3.4 to the more

^It is for th is reason we avoid using the term “p ro o f’ in th is chapter.

57

useful postcondition 3.7 required this knowledge. Since our purpose is to

provide a m ethod of argument th a t reflects in some way how a programmer

reasons about a program, this is a valid approach. Were we to attem pt to au

tom ate the process of computing the pre- and postconditions for a composite

refactoring, then this approach would of course need to be strengthened.

3.3 R ela ted W ork

Donald Roberts [84, 85] describes a similar approach to computing the pre-

and postconditions of a composite refactoring to the one we have presented

here. However he does not demand th a t a refactoring be behaviour preserv

ing '̂ ̂ [84, p. 19] and so does not argue this for his refactorings. The algorithm

we present differs from his in several ways:

• it tests if the chain is legal rather than assuming it is [84, p.39];

• it allows set iterations over refactorings and chains;

• it makes use of the relationships between analysis functions^

• it computes the postcondition for a composite refactoring, as we intend

to use the composite refactoring in further compositions.

Tokuda and Batory use a set of Opdyke-style refactorings in order to

build higher-level refactorings [96] and to study the use of refactorings in

the evolution of object-oriented programs. A very interesting feature of this

work is th a t they present the first ever case study th a t actually takes an

existing system th a t has been reengineered, and attem pts to perform the

*°Aii u iifortm iate redefinition of an exi.sting term .
'*R ol)erts neglects th is in his work and, for exam ple, does not identify the relationship

between i sClass and isGlobal, i.e., th a t I sClass{class) ^ I sG lo ba l{n am eO f {class)).

58

reengineering th a t took place using a refactoring tool. They estim ate tha t

were they to perform the changes involved in the reengineering by hand,

it would take them approximately ten times longer than it took them to

perform the changes using autom ated refactorings. This improvement is

a ttribu ted to the obvious reduction in the amount of manual work required,

and the fact th a t reliable autom ated refactorings reduce the amount of testing

required. This result has provided some concrete evidence favouring the use

of autom ated refactoring approaches.

Schulz [88] proposes arguing behaviour preservation by first transform

ing a legacy object-oriented program into an adaptive program [61]. This

adaptive program can be reasoned about more easily and the transform a

tions performed on this program. Finally the transformed adaptive program

is converted back to a nou-adaptive program. He does not describe this last

conversion and it is not clear th a t it is feasible. In other work Schulz [90]

proposes using Opdyke’s approach [77, 51] to prove behaviour preservation

of design pattern transformations.

Elbereth is a tool developed for refactoring Java programs [54] th a t uses

the notion of a star diagram. A star diagram allows the progranuuer to

easily view all uses of a construct (method, field etc.) across the entire

program without having to also view unrelated code. Korman describes

how the program m er can be supported in performing a variety of refactoring

tasks, such as adding a new subclass or replacing an existing class with an

enhanced version. W hile these tasks are intended to be refactorings, he does

not address the issue of arguing th a t they are behaviour preserving.

Developing the pre- and postcondition for a composite refactoring bears

an obvious resemblance to the weakest precondition calculus of D ijkstra’s

guarded command language [27]. In tha t approach, if we wish the compo-

59

sitioii of two transform ations T\ and T 2 to leave the program in the s ta te

post composition, then the weakest precondition necessary is given by:

Wp(T\ , Wp(T2, post composition^)

where wp{T, post) is th e weakest precondition th a t will ensure th a t the tran s

form ation T will leave th e program in a s ta te where post is true. The aim

of th is w'ork is th a t given a postcondition, it should be possible to derive an

algorithm (a com position of transform ations) th a t can reach th is postcondi

tion, and work out w'hat precondition m ust hold in the initial state.

The problem we faced in dem onstrating behaviour preservation is differ

ent. We use postconditions to describe the resu lt of api)lying a refactoring

only in sufficient detail th a t it is possible to determ ine w'hat subsequent refac

torings are legal. The refactoring itself has a richer m eaning, bu t th a t is only

described inform ally in th e refactoring description and not cap tured in the

formal postcondition. In com posing these refactorings, we have a notion of

w hat is to be achieved, and th e purpose of the pre- and postcondition com

pu ta tion is to determ ine w hether the com posed refactoring is legal, w'hat

types of program it can be applied to, and w hat subseciuent refactorings

can be legally applied. The possibility of extending th is work to the formal

derivation of the com plete design p a tte rn transform ation will be discussed in

section 6.2.

Refactoring is a key part of K ent Beck’s Extreme Pi'ogramrmng m ethod

ology [3]. E xtrem e progranm iing requires m any rap id iterations through the

developm ent process, each tim e extending the system functionality a little

further. As little up-front design is perform ed, it is necessary to refactor

the program w henever a new' requirem ent makes th e existing design inade-

c^uate. Behaviour preservation is not discussed in th is approach, bu t in effect

it is dem onstrated th rough th e use of au tom ated corrective regression test-

60

ing [58]. After refactoring, the programmer runs an autom ated test suite on

the program. If the program produces the same test results as it did before

the refactoring, it is concluded th a t the behaviour of the program has not

changed. Obviously this approach is dependent on the completeness on the

test suite, and thus can never be fully relied upon.

Test suites are used in a different way to dem onstrate behaviour preserva

tion in the Sm alltalk Refactoring Browser [11]. For example, in the rename Method

refactoring, all methods th a t call the renamed m ethod must also be updated.

However, in Sm alltalk it is impossible to find all the callers of a method sta

tically, so the authors use dynamic analysis to compute this. The program

code is instrum ented, run on a test suite, and it is calculated from the ex

ecution trace what methods called the given method. As in the previous

case, this approach is only as effective as the test suite used in the dynamic

analysis.

Finally, in a recent text on the topic of refactoring by M artin Fowler [38],

only scant atten tion is paid to the topic of behaviour preservation, and that

is in two chapters w ritten by Opdyke and Roberts respectively, whose work

has been extensively cited in this chapter. This tex t does however provide a

detailed listing of low-level refactorings th a t can be performed by hand, and

gives useful informal advice on where they should be ai)plied and what steps

should be taken to achieve a safe refactoring.

3.4 Sum m ary

In th is chapter we presented our approach to defining primitive refactorings

and composing these to create more complicated refactorings. Two methods

of comi)osition were allowed: sequencing (or chaining), and iteration over a

61

set of program elements. A method for computing the pre- and postcondi

tions of such composite refactorings was also described. This approach to

behaviour preservation is undecidable in general, but for the simple precon

ditions we work with this will prove not to be an issue.

In the next two chapters we will show how these forms of composition

can be used to build sophisticated design pattern transformations.

62

Chapter 4

A M ethodology for the

D evelopm ent of Design Pattern

Transformat ions

4.1 Introduction

111 this chapter we describe in detail the methodology we propose for the

development of design pattern transformations. The motivations for our

ai)proach are presented in section 4.1.1 followed by a brief overview of the

entire methodology in section 4.1.2. The approach we take in describing the

methodology is to describe each part in a general way and then to apply it

to one design pattern. The flagship pattern we use is the Factory Method

pattern (see appendix A), as it is sufficiently complicated to exercise the

methodology and yet yields an elegant result. The details of the methodology

appear in sections 4.2 and 4.3, culm inating in the final specification of the

Factory Method design pattern transform ation in section 4.4. In section 4.5

we evaluate related work in the area of design pattern application and finally,

63

in section 4.6, a summary of this chapter is presented.

The essence of the approach presented here has been pubHshed in smn-

niary form in [74, 72], and in more detail in [75].

4.1.1 M otivation

There are several criteria we wish our methodology to fulfill;

1. The design pattern transform ations developed must preserve program

behaviour.

2. The transformations are to be applicable to real programs.

3. Reuse of portions of existing transformations should be feasible and

encouraged.

4. Judging where a pattern should be apjjlied remains the domain of the

programmer.

We ex[)and on these criteria in the following paragraphs.

1. Behaviour Preservation

For any form of autom ated refactoring to be successful in practice, the pro

grammer must have a strong degree of confidence th a t the transformations

being applied do indeed preserve program behaviour [89]. In our approach,

we therefore place a heavy emphasis on dem onstrating th a t the design pat

tern transformations are behaviour preserving. The fomidations of our ap

proach to behaviour preservation were introduced in chapter 2 and presented

in detail in chapter 3. In this chapter we use these foundations to show how

behaviour preservation can be dem onstrated for a complete design pattern

transformation.

64

2. Applicability to real programs

The transform ations developed should be applicable to real programs and be

able to cope with the complexities of source code representation of design

structures. This is especially im portant if they are to be used in practice for

transforming existing legacy systems, where formal design documentation

frequently does not exist. This criterion conflicts to a certain extent with the

previous point, in th a t formally proving complex behavioural properties of

programs w ritten in industrial-strength languages is currently impractical.

We have resolved this by working with an industrial language, Java, and

taking a semi-formal approach to dem onstrating behaviour preservation.

3. Reuse where possible

Design patterns have a lot in common so it is to be expected th a t design p a t

tern transform ations will have a lot in common as well. In our methodology

we seek to decompose the transform ations into reusable units and to make

these units available to later developments of design pattern transformations.

4. Programmer controls quality

One of the pitfalls in attem pting to autom ate patterns is to treat them com

pletely formally and not allow for the fact tha t their “goodness” is some

thing essentially informal [26]. In section 2.2 we described the design insight

necessary to assess what pattern to apply and where to apply it. In our

methodology the programmer remains in control of these issues.

4.1 .2 O utline o f the M ethodology

The complete methodology is depicted as a UML activity chart in figure

4.1. Initially a design pattern is chosen tha t will serve as a target for the

design i)attern transform ation under development. We then consider what

65

A S elect D e s ig n ^
Pattern J

Decfde on Precursor \
for this pattern)

I Define \
minitransformations ^

/ D ecom pose into
Minipatterns j

no

, Do minitransformations
^ x is t?

yes

/JDefine transformation as composition
of minitransformations

Figure 4.1: The Design Pattern Methodology

tlie starting point for this transformation will be, th a t is, what sort of design

structures it may be applied to. This starting j)oint is term ed a precursor,

which is described in more detail in section 4.2. It has now been determined

where the transformation begins, (the precursor) and where it ends (the de

sign pattern itself). This transform ation is then decomposed into a sequence

of minipatterns. A m inipattern is a design m otif th a t occurs frequently; in

this way it is similar to a design pattern but is a lower-level construct.

For every m inipattern discovered a corresponding minitransformation

th a t can apply this m inipattern must also be developed. A minitransfor-

C6

Illation comprises a set of preconditions, an algorithm ic description of the

transform ation , and a set of postconditions. The algorithm is expressed in

te rm s of the prim itive refactorings and helper functions defined in appendix

B. It is built by hand, using the precursor and the design p a tte rn s truc tu re as

a gu ided T he pre- and postconditions are com puted by applying the m ethod

described in chap ter 3 to th is algorithm .

M initransforniations are our un it of reuse, so for any m in ipa tte rn identi

fied we first check if a n iin itransform ation for it has already been built as part

of the developm ent of a previous design p a tte rn transform ation. If so, th a t

n iin itransform ation can be reused now', otherw ise a new niin itransform ation

m ust be developed. Section 4.3 exam ines m in ipatterns and m initransform a

tions in more detail, and in particu la r specifies precisely th e m initransfornia

tions th a t com prise the Factory M ethod transform ation.

The final design p a tte rn transform ation can now be defined as a compo

sition of m initransforniations. T he pre- and postconditions for th is design

p a tte rn transform ation are com puted in the same w'ay as they are com puted

for a iiiiiiitransform ation. In the following sections we describe th is entire

process in full detail, finally providing th e com plete specification of the Fac

tory M ethod transform ation in section 4.4. In particu lar, th e concepts of

precursor, minipattern and minitransformation are discussed in detail.

4.2 Precursors

M uch of the existing w'ork on design p a tte rn transform ations [14, 30, 36,

96, 55, 9] assumes as a s ta rtin g point w hat can be term ed a green field sit-

*By th is we sim ply mean tlia t im plem enting a m initransform ation is sim ilar to the

norm al process of inform al program developm ent, where the program specification has

been given rigorously, though not formally.

67

nation. By this we mean th a t when the design pattern transform ation is

apphed to the program, the components th a t take part in the transforma

tion do not already have any existing relationships pertaining to the pattern.

Conseciuently these approaches do not support the breaking of existing rela

tionships as part of the transform ation process. From a software evolution

perspective this is inadequate because in an existing program the basic in

tent of the pattern may well exist in the code already, but in a way that

is not amenable to further program evolution. For example, in the case of

the Factory M ethod pattern, the Creator class may already create and use

instances of a Product class, but not in the flexible manner th a t allows easy

extension to other Product classes.

At the other extreme there is the antipattern approach [53, 70], which was

investigated in our earlier work [71, 73] and is also used in [25]. In this ap

proach the assumption is made th a t the programmer has failed to appreciate

the need for the pattern in the first instance, and has used some inadequate

design structure to deal with the situation. The philosophy behind this ap

proach is th a t the code may have been developed by a programmer who was

not aware of patterns. For example, in the case of the Factory M ethod pat

tern, the client of the Creator class may have to configure it with a flag to

tell it what type of Product class to create. We discovered several problems

with the an tipattern approach:

• For any pattern there are several variants and for each variant there

can be several antipatterns. The volume of antipatterns rises sharply

and each one has to be dealt with individually.

• The design knowledge encapsulated in design patterns has been de

veloped over many decades of software development. A programmer

who is “not aware of patterns” and chooses an inappropriate solution

68

‘ green field precursor antipattem

No element o f Basic intent o f Corrupt design
pattern present pattern present

Figure 4.2: Possible starting points for a Design Pattern Transformation

to a design problem has really just made a mistake^. The problem of

transforming an antipattern to a design pattern then becomes th a t of

transforming poor design to good design, which cannot of course be

solved generically.

For these reasons we use a different starting point for our transformations.

For a large class of design patterns, the effect of the pattern may be viewed as

making certain program evolutions easier. This suggests tha t in the simple

case the design pattern is not needed, but as future changes in recjuirements

demand greater flexibility from the software, it becomes necessary. For ex

ample, it is frecpiently the case tha t a class A creates an instance of a class

B, but normally this relationship does not require the application of a design

pattern. However a future change in the requirements may well require th a t

the class A have the flexibility to work with any one of a number of differ

ent subclasses of B, and so the need for the Factory Method pattern arises.

The progrannner of the original system did not make an error of judgement;

software systems w'ill always evolve in ways tha t the original creators simply

cannot foresee^. Indeed, applying a design pattern where it is not needed is

highly undesirable as it introduces an unnecessary complexity to the system.

^The author’s position is that a programmer who is faced at some point with the

prospect of using an antipattern solution will baulk, and restructure the design in order

to enable a more elegant soluticjn.
^As Lucy Berlin commented, “Prescience is not an exact science” [8].

69

Creator
creates ►

Product

method 1 — ^ foo
method2

Figure 4.3: Precursor for the Factory Method Transformation

This leads us to our description of a precursor: a precursor is a design

structure tha t expresses the intent of a design pattern in a simple way, but

that would not be regarded as an example of poor design. This is not a formal

definition, but it serves to exclude both the green field situation where there is

no trace of the intent of the pattern in the code, and the antipattern situation

where the progranuner has tried to resolve the problem in an inadeqiiate way.

Figure 4.2 illustrates the relationship between these various starting points.

For example, the precursor we use for the Factory M ethod pattern is

simply this: the Creator class must create an instance of the Product class.

This is specified using an analysis function thus:

creates(creator, product)

Figure 4.3 depicts this precursor in a UML class diagram. This condition

may appear to be trivial, but it is a natural precursor to the Factory Method

pattern. The Creator class creates and uses an instance of the Product class

and while this is adequate for the moment, a new requirement may demand

that the Creator class be able to work with other types of Product class and

this will rec[uire the application of the Factory M ethod pattern.

70

4.3 M in ipatterns and M initransform ations

111 developing a transform ation for a particular design pattern we naturally

wish to reuse our previous efforts as much as possible. To obtain maximum

leverage, this reuse should be at the highest level possible. Examining the

design pattern catalogues [41, 15, 43, 44], it is clear tha t certain motifs occur

repeatedly across the catalogues. For example, a class may know of another

one only via an interface, or the messages received by an object may be dele

gated to a component object for detailed processing. These design motifs, or

m inipatterns, are combined in various ways to produce different design pat

terns. In this way a pattern can be viewed as a composition of m inipatterns.

By focusing on developing transformations for m inipatterns, we are able to

develop a library of useful transform ations tha t can be reused whenever that

m inipattern is identified again in a later development. The transformation

tha t corresponds to a m inipattern is naturally called a minitransformation.

In the case of the Factory Method pattern we can identify four component

m inipatterns:

1. A b s t r a c t i o n : The Product class must have an interface th a t reflects

how the Creator class uses the instances of Product th a t it creates.

2. E n c a p s u l a t e C o n s t r u c t i o n : In the Creator class, the construction

of Product objects must be encapsulated inside dedicated, overrideable

methods, which we term construction methods.

3. A b s t r a c t A c c e s s : A part from within the construction methods de

scribed in (2) the Creator class must have no knowledge of the Product

class except via the interface described in (1).

4. P a r t i a l A b s t r a c t i o n : The Creator class must inherit from an ab-

71

stract class where the construction methods are declared abstractly.

This amounts to a declarative description of the structure of the Factory

M ethod pattern. It is obvious tha t other patterns use some of these m inipat

terns as well. For example, A bstract Factory uses all of them, while many

design patterns make use of the A b s t r a c t i o n m inipattern. In the following

subsections each of the above m inipatterns is taken in turn and processed as

follow's;

1. A minitransformation for this m inipattern is specified in term s of the

primitive refactorings and helper functions defined in appendix B;

2. The pre- and postconditions for this minitransformation are computed

using the method described in chapter 3.

In ai)pendix C a complete list of all the minitransformations developed in

this work is presented, together with a reference to the thesis section where

more detail can be found.

4,3 ,1 T h e A b straction M in itran sform ation

The A b s t r a c t i o n minitransformation is used to add an interface to a class.

This enables another class to take a more abstract view of this class by

accessing it via this interface. This minitransformation is implemented in

the following way as a chain of refactorings:

Abstraction(C lass c, Str ing newName){

Inter face inf = abs t rac tC las s(c , newName)\

addlnter face(inf);

addlmplementsLink(c , inf);

}

72

An interface is first created th a t reflects the public m ethods of th is class‘d.

This interface is then added to the program and an implements link is added

from the class to th is interface.

To dem onstrate legality of th is chain and to com pute its pre- and post

conditions, we apply the m ethod described in section 3.2.1. The com putation

is straightforw ard and produces the following:

p re c o n d i t io n :

The class c exists:

isClass(c)

No class or interface w ith the nam e newName exists:

-'isClass(nei(;A^ame) A - ’isInterface(ne?i»A^ame)

p o s tc o n d i t io n :

A new interface inf called newName exists:

nam eO f = n.a.meOi[inf/newName]

isln terface' = isln terface[in //true]

The class c and the interface inf have the same public interface:

eciuallnterface' = equalIn terface[(c ,m /)/true]

An implements link exists from the class c to th e interface inf\

im plem entsln terface ' = im plem entslnterface[(c, inf) / true]

The effect of applying th is m in itransform ation to th e Factory M ethod pre

cursor (figiue 4.3) is depicted in figure 4.4. An interface has been added th a t

provides an ab strac t view of the P roduct class.

^The new interface created here reflects the entire public interface of the class, even

though all tha t is required are the parts of the public interface that are actually used in

whatever context is going to use this interface. However, if this context happens not to

use an essential part of the class, this transformation would result in the creation of an

unintuitive interface. A consequence of our approach is th a t the declared type of some

variables will be broader than how they are actually used.

73

creates ►
foo

Product

foo

« in t e r f a c e »
Productinf

method 1
method2

Creator

Figure 4.4: Apphcation of the A b s t r a c t i o n Minitransformation

4 .3 .2 T h e E n ca p su la teC o n stru ctio n M in itran sform a

tio n

This minitransformation is used when one class creates instances of another,

and it is required to weaken the binding betw'een the tw'o classes by packag

ing the object creation statem ents into dedicated methods. It was already

considered in great detail in section 3.2.3. The algorithm is given on page

49, so here we simply restate, with some extra supporting text, the pre- and

postconditions.

E n c a p su la te C o n s tru c tio n (C la ss creator^ Class product, String cj'eateProduct)

p re c o n d itio n :

The class creator exists:

isClass(crmio?’)

The creator class defines no methods called createProduct tha t have the

same signature as a constructor in the class product:

V c: Constructor, c G product •

74

-I defines(creator, createProduct, sigOf(c))

postcond ition:

For every product object creation expression in the creator class, a method

called createProduct th a t creates the same object is added to the creator class:

V e:ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator • 3 m:Method such tha t

createsSam eObject' =

createsSameObject[(constructorInvoked(e),m)/true]

nam eO f = ncinieOf[m/ createProduct] A

defines' = defines[(creator,ni)/true]

Every product object creation expression in the creator class tha t is

not contained in a method called createProduct is deleted;

V e:ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator,

nameOf(containingM ethod(e)) ^ createProduct •

containinglVIethod' = containingjMethod[e/_L]

Apj)lying this m initransformation to the structure tlepicted in figure 4.4 re

sults in the structiu'e depicted in figure 4.5. For each constructor of the

Product class, a method of the same signature has been added to the Cre

ator class th a t returns the same object as the corresponding constructor. All

creations of Product objects in the Creator class have been updated to invoke

these methods instead.

4.3 .3 T he A b stractA ccess M initransform ation

The A b s t r a c t A c c e s s m initransform ation is used when one class (context)

uses, or has knowledge of, another class (concrete) and we w'ant the relation-

75

« in t e r f a c e »
Productinf

foo

Creator

method 1
method2
createProductO
; Product \

Product
creates ►

foo

R eplace all
new ProductO ;

w ith
createProductO ;

Product createP roductO {
return new Product();

Figure 4.5: Application of the E n c a p s u l a t e C o n s t r u c t i o n Minitransfor-

niatioii

76

ship Ijetween the classes to operate in a more abstrac t fashion via an interface.

It may well happen th a t there are m ethods in the con text class th a t need

to access the concrete class directly, for exam ple, they may in stan tia te the

concrete class, and these m ethods should be excluded from the transform a

tion. This m initransform ation is im plem ented in the following way as a set

iteration:

AbstractA ccess(C lass context, Class concrete, Interface inf,

SetOfString skipM ethods){

ForAII o:ObjectRef, typeOf(o)=concrete, containingClass(o)=context,

nameOf(containingMethod(o)) 0 skipM ethods {

replaceClassWithlnterface(o,/n^);

}

}

This m initransform ation takes each object reference in th e class context th a t

is of the tyy>e concrete, excluding any references th a t are contained in any

m ethod called sk ipM ethods , and changes the ir existing type from the class

concrete to the interface i n f . A pplying the m ethod described in section

3.2.2, the pre- and postconditions are com puted to be'^:

p re c o n d it io n :

The interface in f and the classes context and concrete exist:

is ln terface(m /) A isClass(coniexi) A isC lass(concrete)

An implements link exists from the class concrete to the interface inf:

in iplem entslnterface(concrete, inf)

Any sta tic m ethods in the concrete class are not referenced through

any of the object references to be updated:

®Tlie isClass{context) j)art of the preconclition is added to avoid the transformation

rechicing to the null transformation, as described on page 56.

77

V in:Metliocl, ui G concrete, isStatic(iii) •

V o:ObjectRef, typeOf(o)=concreie, contaiiiiiigClass(o) = coniexi •

uses(o,ni)

Any public fields in the concrete class are not referenced through any

of the object references to be updated:

V f:field, f G concrete, isPublic(f) •

V o:ObjectRef, typeOi{o) = concrete, containingClass(o) = conie.x^ •

-I uses(o,f)

p o s tco n d itio n :

All references to the concrete class in the context class not in skipMethods

have been changed to refer instead to the interface inf:

V o:ObjectRef, typeOf(o) = concre^e, containingClass(o) = context

nanieOf(containingjMethod(o)) 0 skipMethods •

typeO f = typeOf[o/zn/]

The initial conjuncts of the precondition simply ensure th a t referenced classes

and interface exist and have the proper relationship. The last two conjuncts

ensure that if the concrete class has public fields or static methods, these

are not used by any of the object references to be updated. We {)resent a

complete categorisation of preconditions in section 4.4.1.

Applying this minitransformation to the structure depicted in figure 4.5

resTilts in the structure depicted in figure 4.6. In the Creator class all refer

ences to the Product class have been replaced by references to the Product

interface.

78

« in t e r f a c e »
Productinf

foo

Creator Product
creates ►

method 1
method2
createProductO
:ProductInf

foo

Replace all references to
the class Product with the
interface Productinf

Figure 4.6: A pplication of the A b s t r a c t A c c e s s M initransforniation

4.3 .4 T h e P artia lA b straction M initransform ation

The PyXirriALABSTRACTlON niinitransforniation is used to construct an ab

stract class from an existing class and to create an extends relationship be

tween the two classes. It is related to the A b s t r a c t i o n niin itransform ation

of section 4.3.1, bu t ra ther than building a com pletely abstrac t interface from

the class, it builds an abstrac t class where only certain specified m ethods are

declared abstractly . This m initrausform ation is im plem ented in the following

way:

PartialAbstraction(Class concrete, String newName,

SetOfString abstractM ethods){

Class abstract = createEmptyClass(neivA/ame);

addClass(abstract, superclass(concrete), concrete)'

ForAII m:Method, m e concrete, nameOf(m) G abstractM ethods{

79

Method absMethod = abstractM ethod(m);

addMethod(abstract, absMethod);

}
ForAII m :Method, m € concrete, nameOf(m) ^ abstractM ethods{

pullUpM ethod(m);

}

}

T h is in in itra n s fo rin a tio n creates an em pty class called newNarne and inserts

i t in to the inheritance h ierarchy ju s t above the class concrete. For each

m ethod in abstractMethods, an abstract m ethod is created and added to

th is new class. A n y m ethods not in abstracfMethods are moved from the

class concrete to th is new class. B y inspection we see th a t a lthough the

preconditions fo r the addClass re facto ring and the second set ite ra tio n are

ciuite com plicated, most o f the conjuncts are guaranteed by the fact th a t

the new superclass o f concrete is the em pty class th a t has ju s t been added.

Note also th a t since every m ethod being pu lled up in to th is new class conies

from the same class, there can be no name clashes betw'een these methods.

The same arg iunent applies to the abstract m ethods th a t are added to the

superclass. The pre- and postcond itions are thus com puted to be:

p re c o n d it io n ;

No class or in terface w ith the name newName m ay exist:

-I isClass(neryA^ame) A isInterface('newA'^ame)

The concrete class nm st exist:

isClass(concrete)

A ny fields used by m ethods th a t are to be pu lled up m ust not be pub lic :

V f:F ie ld , m :M e thod , f G concrete, m G concrete, m ^ ahstractMethods •

i f uses(m ,f) then -i isP u b lic (f)

80

postcondition:

A new class called newName exists:

isClass' = isClass[newiVame/true]

An extends link exists from the class concrete to the class called newName,

and from th e class called newName to the former superclass of concrete:

superclass' = supevclass[concrete/newName][newName/s\\perc\ass{concrete)]

The class concrete and its new superclass define precisely the sam e type:

equalln terface' = equallnterface[(concrete, superclass '(concrete))/true]

All m ethods in concrete not in abstractAlethods are moved to the superclass;

V m :M ethod, m G concrete, m ^ abstractMethods •

classO f = classO f[m /superclass'(concrete)]

Any m ethod in abstractMethods will have an abstrac t m ethod declared

in the class called newName:

V m :M ethod, m € abstractMethods •

declares' = declares[(superclass(concr’ete), m, direct)/true]

Any holds used by the moved m ethods are also moved to the superclass:

V m :M ethod, ni G concrete, m ^ abstractMethods •

V f:Field, f E concrete, uses(ni,f) •

c lassO f = classO f[f/superclass(concrete)]

A pplying th is m initransform ation to the s truc tu re depicted in figure 4.6 re

sults hnally in the Factory M ethod s truc tu re depicted in figure 4.7. An

abstrac t C reator class has been added th a t defers the definition of th e con

struction m ethods to its subclasses. T he original C reator class sim ply inherits

th is class and provides definitions for tlie construction m ethods.

We have considered four m initransform ations and shown how they can be

applied in sequence to produce the Factory M ethod design p a tte rn s truc tu re .

We exam ine th is com plete design i)attern transform ation in m ore de ta il in

81

creates ►

foo

ProductCreator

foo

« in t e r f a c e »
Productinf

method 1
method2
createProdiict ()
: Productinf

« a b s tr a c t »
AbsCreator

Figure 4.7: AppHcatioii of the P a r t i a l A b s t r a c t i o n Minitransformation

the next section.

4.4 T he Factory M eth od Transform ation

The transformation that introduces the Factory Method pattern is defined

simply as the secjuential application of the minitransformations defined in

the preceding sections:

applyFactoryMethod(Class creator. Class product, String productinf,

String absCreator, String createProduct){

A b s t r a c t i o n [product, productinf)-,

ENCAPSULATEC0NSTRUCTl0N(creat0r, product, createProduct)-,

ABSTRACTAccESs(creator, product, productinf createProduct)]

PARTlALABSTRACTlON(creafor, absCreator, createProduct)-,

82

}

Applying the m ethod described in section 3.2.1, we compute the precon

dition of this transformation to be;

precondition;

1 . The classes creator and product exist;

isClass(c r e a to r) A isClass(y9ro6?uci)

2. No class or interface called absCreator or productinf exists;

-'isClass(aftsCrea^or) A -■islnterface(a6sCreaior) A

~\sC\ass{productInf) A ~'\slnter{cLce{productInf)

3. In the creator class there are no methods called createProduct that

have the same signature as a constructor in the class product:

V c;Constructor, c G product •

-• defines(crm^or, createProduct, sigOf(c))

4. The creator class can create instances of the product class;

cveatcs{creator, product)

5. Public fields in the product class are not referenced through

any of the product object references in the creator class;

V f;field, f e product • V o;ObjectRef, typeOi{o)=prodxict,

containingClass(o) = creafo?’ • uses(o,f)

6. Any fields in the product class used by methods in tha t class nuist

not be public;

V f;Field, m;Method, f € concrete, m G concrete, uses(ni,f) •

isPublic(f)

7. Any static methods in the product class are not referenced through

any of the product object references in the creator class;

V m;Method, m G product, isStatic(m) •

V o;ObjectRef, typeOf{o)=product, containingClass(o) = creator •

83

uses(o,m)

Note th a t we do not com pute th e postcondition for a design p a tte rn tran s

form ation itself. This may appear to be a useful task, as th e result could help

to cap ture the essence of the p a tte rn in a formal way. However, recall th a t we

are using pre- and postconditions only as an aid to dem onstrating behaviour

preservation. W hile the postcondition for a design p a tte rn transform ation

would provide a notion of w hat is true after a p a tte rn is applied, it would

not be strong enough to provide real insight into the essential na tu re of the

p a tte rn itself. It would however be very useful as pa,rt of a tool th a t m ain

ta ins facts and constrain ts about th e program , and th is is discussed further

in section 6.2.

In appendix D, we present an exam ple of the Factory M ethod transfor

m ation being applied to a sam ple Java program.

4.4 .1 A C ategor isa tion o f th e P recon d it ion s

T he preconditions for the Factory M ethod transform ation can be divided

into four categories. T he first th ree preconditions sim ply ensure th a t the

classes referred to in the param eters to th is transform ation exist and th a t the

nam es for the new program en tities to be introduced by th is transform ation

do not clash w’ith any existing nam es. These preconditions are trivial bu t

are necessary to ensure th a t the transform ation operates correctly. If one of

them fails the program m er need only be requested to choose a different nam e

to replace the offending choice.

The fourth precondition is the key precursor' precondition. This describes

the essence of the s ta rtin g point for th e transform ation, as depicted in figure

4.3. It im plies th a t there is a tigh t binding between the C reator class and the

84

P roduct class and th is is w hat the application th is p a tte rn is to am eliorate. In

general, if a precursor precondition fails, it is of ciuestionable value to continue

w ith th e transform ation. In the Factory M ethod exam ple, the transform ation

can continue, bu t it is effectively a green field beginning then , and some of

th e transform ations perform ed will be needless. Note th a t th is precursor

precondition was added by hand ra th e r th a n being the result of com puting

the precondition of the chain of m initransform ations.

T he fifth and six th preconditions are exam ples of refactoring precondi

tions. Failure of one of these indicates th a t there are minor problem s th a t

prevent the transform ation from being applied. The P roduct class has public

d a ta fields, which are a w ell-established exam ple of poor class design [82].

This prevents the transform ation from being perform ed as public fields can

not be accessed through an interface. If the progranuner agrees, th is class

can be refactored automatically® to make th is d a ta private or pro tected and

instead to provide access to the offending fields via public accessor and nui-

ta to r m ethods. This then removes th is obstacle to the application of the

transform ation. See section 6.2 for fu rther consideration of the possibility of

such pre-transform ation refactorings.

The final precondition is term ed a contraindication and failure here indi

cates th a t there is a more serious problem in applying the Factory M ethod

pa tte rn . T he P roduct class has a s ta tic m ethod th a t is used by the C reator

class. This implies th a t the C reator class depends on the actual class of the

P roduct it uses and th is cannot be replaced by access via an ab strac t in ter

face. This is an inherent problem in the design of the program th a t prevents

the application of the p a tte rn transform ation . In th is case the design nuist

‘'T he refactoring u.sed here would be an autom ated version of the EncapsulateField

refactoring described in [.38, p.206].

85

be revisited by th e progranm ier to determ ine if it is possible to resolve this

issue.

4.4.2 A ssessing the Factory M ethod Transform ation

We already sta ted th a t we regard the transform ation for th e Factory M ethod

p a tte rn as valuable. In th is section we highlight why it is good, th a t is, w hat

c riteria we used in m aking th is assessm ent:

1. T he precursor is plausible. By th is we m ean th a t it is likely to occur

in practice. It is not a bizarre structu re , bu t is one th a t a program m er

would typically use in developing an in itia l prototype, w'hen the ir focus

is more on correct operation th an reuse.

2. The precursor is strong in th a t it cap tures the essence of w'here this

transform ation should be applied. The transform ation also m ade good

use of the precursor in term s of providing a behaviour-preserving tran s

form ation. T he precm ’sor s ta tes th a t one class in stan tia tes ano ther and

the transform ation m ade the na tu re of the in stan tia tion more flexible

while not affecting its behaviour.

3. T here w'as significant reuse of m initransform ations. This transform a

tion sim ply used four m initransform ations and required no o ther in ter

vening refactorings. We will see in chap ter 5 th a t th is is an unusually

sim{)le result. In the general case we can expect to have to add some

“glue” refactorings betw een the m initransform ations, in order to ensure

th a t the preconditions for each m initransform ation are valid.

4. T he transform ation is elegant and compelling. This is a m a tte r of

judgem ent of course, bu t the transform ation is certain ly straightfor-

86

ward and it is not difficult to see tha t its effect is indeed to apply the

Factory Method pattern.

4.5 R elated Work

In the previous chapter related work in the area of behaviour preservation

was evaluated. In this section we consider other work specifically in the area

of the autom ated application of design patterns.

Florijn, Meijers and van Winsen have developed a patterns tool th a t

provides a broad range of support for a progrannner working with patterns

[36, 64]. Their focus is on the representation of design patterns within the

tool itself, and the maintenance of the constraints associated with a design

pattern, i.e., checking tha t changes to the program do not violate any of

the design patterns present in the code. Their work also deals with p a t

tern application, but the starting point of their transform ations is the green

field situation, so the issues of behaviour preservation and reorganisation of

existing relationships as part of the transform ation process do not arise.

Recent work by Tokuda and Batory has shown how design patterns can

be automatically applied to a C + + program [96, 97]. They use a set of refac

torings similar to Opdyke’s set and show how they can be used to construct

design pattern transformations. W hereas we build static composite refactor

ings and compute the full precondition for the composition, their approach

assumes th a t the programmer is inspecting the code and applying each refac

toring in turn. M initransformations are not used in their w'ork and a green

field starting point is assumed. As in the previous w'ork cited, this la tter

point means th a t behaviour preservation is not a significant issue in their

work, and their transformations have quite a different flavour from ours.

87

Yehiiclai, Gil and Eden [30] have developed a prototype tool called the

patterns wizard th a t can apply a given design pattern to an Eiffel program.

This work is related to ours in th a t it takes a metaprogramniing approach

and organises the transformations into four levels: design pattern, micro

pattern (similar our m inipatterns), idioms (our refactorings) and abstract

syntax tree. The starting point they use is the green field situation, rather

than attem pting to deal with a precursor as we do. This makes the patterns

wizard unsuitable for reengineering certain types of program th a t our ap

proach can handle. If the progrannner has already partially introduced the

intent of the pattern to the code, using the patterns wizard to apply this

pattern will leave an amount of manual work for the programmer to do in or

der to bring the program to a consistent state. A s a consequence of taking a

green field approach, behaviour preservation is not so im portant and is more

or less ignored in their work. The m icropatterns developed in their work are

used in the specification of several design pattern transformations. However,

they are at a lower-level tha t the ones w'e have identified; for example, of

the four m inipatterns we used to define the Factory M ethod transformation,

only one. A b s t r a c t i o n , appears in Eden’s catalogue [34]. This is partly a

consequence of our taking a precursor as the starting point for our transfor

mations: certain m inipatterns are necessary in oiu' approach th a t would not

be needed otherwise.

Yehudai, Gil and Eden have also developed a declarative language called

LePUS for formally specifying the structural and behavioural aspects of de

sign patterns [33]. They propose th a t this can be developed into a tool that

apj^lies a design pattern by adding the required LePUS pattern definition to

the program specification. This is true in the abstract LePUS domain, but

there are many issues to be resolved in transforming this abstract specifica-

tioii in to executable code. A t the tim e of w riting practical results in th is area

are not evident in the ir published work.

A utom atically apj)lying design pa tte rn s to a UML model has been ex

plored by Sunye, Le G uennec and Jezequel [94]. The approach described

here takes a m etaprogram niing approach as we do, and also argues th a t it

is th e program m er th a t should decide on th e application of a p a tte rn while

a software tool is best used to help in perform ing the actual transform ation.

This work natu ra lly focuses on the design level, so issues of code transfor

m ation do not occur and behaviour preservation is not em phasized. The

paper m entions the notion of a com posite refactoring, bu t describes neither

how com position can take place, nor a m ethod for com puting the pre- and

postconditions for a com posite refactoring.

The work of Schultz and Zim m er is also rela ted to w hat we have presented

here [89, 101]. They merge O pdyke’s refactoring work w ith so-called design

p a tte rn operators to produce behaviour-preserving transform ations th a t in

troduce design patterns. Their published work to date presents only their

initial ideas.

.lahnke and Ziindorf describe an approach to detecting poor design p a t

terns and transform ing them to good design p a tte rn s [49]. The detection

asj)ect of the ir work is discussed in chap ter 2, so here we focus on the p a t

te rn application part. T hey also use a notion sim ilar to our precursor (a

“naive solution” they te rm it) as a s ta rtin g point, based on the suggested

naive solutions in the G annna et al catalogue [41]. T hey only present one

exam ple, the Singleton pa tte rn , and choose th e sam e s tarting point as we

do on page 128, nam ely a collection of global variables^. In the ir work the

' We also present a Singleton transform ation th a t uses a different precursor in section

5 . 3.1

89

design i)attern structure is stored at a conceptual level, together w ith a pro

totypical implementation of the pattern, a scheme that is similar to that

used by Florijn [36]. This scheme is more flexible than ours, in th a t the

transform ation tool can be easily configured with a new pattern. However

our approach, by developing a collection of minitransformations, effectively

builds a high-level language for describing design pattern transformations.

This allows a pattern transform ation to be described abstractly, without

having to explicitly store its structiu'e. Pattern application in their approach

is achieved using a rewriting scheme, where, for example, there is a rule that

show's how' a naive Singleton structure should be replaced with the Singleton

pattern structure. Each rule can have subrules tha t deal w'ith various aspects

of the transformation. The essential difference Ijetween this work and ours is

the use of a rule-based approach versus a metaprogramming approach. One

can regard a minitransforniation as a rule, and view' the precondition as the

predicate th a t fires this rule. The difference then is th a t in their work the

rule is autom atically fired when part of the program matches the predicate,

whereas in ours the programmer defines the program components to w'hich

the rule is to be applied. The notion of a rule containing subrules is similar

to how' a design pattern transform ation uses other minitransform ations and

refactorings in its transform ation logic. One can certainly imagine a com

plicated design pattern transform ation th a t could be more easily described

as a set of rules than as a complex algorithm with many conditionals and

iterations. We conclude th a t this approach is certainly of interest, though it

does not appear to have been taken further than this original paper

The FAMOOS project (Framework-based Approach for M astering Object-

Oriented Software Evolution) also made a contribution in this area, though

their single publication th a t deals explicitly with design j)attern transforma-

90

tioiis only presents the ir initial ideas [25]. They con trast the notion of a

generic model of the program being transform ed w ith a specific model of the

program . A generic model is one th a t can be abstrac ted directly from the

code, while a specific m odel requires th a t the user add some domain-specific

inform ation to the model. T hey argue strongly th a t while a specific model

is of course harder to build, th e ex tra inform ation it provides is essential in

perform ing in teresting program transform ations. A lthough we use a generic

m odel of the program (see appendix D) in our work, it is left up to the user to

decide w'hat design p a tte rn to apply and w hat program com ponents are to be

transform ed, and th is in effect brings domain-specific knowledge to bear ui)on

th e transform ation. In th is way w'e achieve the benefits of bo th m ethods: an

au tom atically -ex tracted m odel and rich transform ation possibilities.

In the paper under discussion [25], the s tarting point used for the trans

form ations is an an tip a tte rn . T he A bstract Factory p a tte rn is given as an

exam ple, and the s ta rtin g point is where case analysis has been used to de-

te rnnne w hat type of widget to create. In section 4.2 we have presented our

argum ents against allowing for an tii)a tterns in general, though in th is case

th e problem seems to be such a com mon one th a t it is w orth j^roviding an

au tom ated solution.

Lauder and K ent describe a i)attern-based approach to legacy system

reengineering th a t also deals w ith an tip a tte rn s [57]. T heir work focuses on

th e concrete an tip a tte rn s th a t occur in legacy system s and the positive p a t

te rn s th a t can be applied to replace them . Six an tip a tte rn s and the ir positive

resolving p a tte rn s are described. T he p a tte rn s they consider are a t an ar

ch itectu ral level ra th e r th a n a design level and so are too abstrac t to be

considered as candidates for th e au tom ated approach we have described.

There is a stronger argum ent in favour of transform ing arch itectu ral an-

91

tip a tte rn s th an design-level an tipa tte rn s. A n tipa tte rn s a t an arch itectu ral

level can occur, for exam ple, when m any new features are added to a system

w ithout the system being given an arch itectu ra l overhaul. W hile th is is not

desirable, it can easily occur on a pro ject given the deadline-driven na tu re of

th e software industry. It is considerably less acceptable th a t a program m er,

working on the ir own, should in troduce an an tip a tte rn a t the design level.

Note th a t we did not argue th a t an a n tip a tte rn s ta rting point is a bad idea,

ra th e r th a t the precursor s ta rting point is more logical and valuable in the

contex t of program evolution.

Budinsky t t al describe a tool bu ilt in IBM th a t can generate code au

tom atically for a given design p a tte rn [14]. The focus of th is work is quite

different from ours in th a t it ignores the problem of in tegrating the p a tte rn

w ith com ponents already existing in the program . The sta rting point for

them is therefore the green field s itua tion so, as e laborated in section 4.2,

th e ir transform ations can l)e much simi)ler and behaviour preservation is not

an issue. A sim ilar connnent applies to existing industrial software tools th a t

claim to provide support for design pa tte rn s, for exami)le [9].

4.6 Sum m ary

In th is chap ter we presented our approach to developing design p a tte rn tran s

form ations by taking one pa tte rn , the Factory M ethod pa tte rn , decom posing

in to its constituen t m inipatterns, developing a m initransform ation for each

m in ip a tte rn , and finally specifying th e com plete transform ation as a sequen

tia l com position of these m initransform ations. In the next chapter we apply

th is m ethodology to several o ther p a tte rn s and assess its applicability to the

en tire G am m a et al p a tte rn catalogue.

92

Chapter 5

Applying the Methodology to

the Gamma et al Catalogue

To fully apply and evaluate this methodology would involve designing trans

formations for a large numljer of design patterns, building a tool th a t imple

ments these transformations, and evaluating the tool in a practical context.

Such a route however would move this project from proof of concept valida

tion to serious industrial softw’are development. We apply the methodology

in a more limited w'ay therefore, but one th a t nonetheless dem onstrates the

valiflity of our approach and the range of its application'.

In section 5.1 we discuss the criteria we use in choosing a precursor for

a design pattern. This is an im portant process, as a transform ation will not

be useful if its starting point does not occur in practice. Section 5.2 contains

some more detail on the notation we use to describe the transformations. In

section 5.3 transformations are developed for a collection of creational pat-

*Our apjji'oach to validation is in keeping with other approaches in this area. Lauder

and Kent, for example, in validating their work on pattern formalisation, satisfied them

selves by applying their technique to three sample design patterns [56],

93

terns from the G am m a et al catalogue [41]. This illustrates the applicability

of th e methodology, and shows th a t the m initransform ations identified in

the developm ent of one design p a tte rn transform ation are indeed reusable in

o ther transform ation developm ents. The leaves in question the applicability

of th is approach to s tru c tu ra l pa tte rn s, and especially to behavioural pa tte rns

where the s tru c tu re of th e p a tte rn is less im portan t th a n its dynam ic aspects.

This question is addressed in sections 5.4 and 5.5 where transform ations for

a s truc tu ra l p a tte rn and a behavioural p a tte rn are developed.

In section 5.6 we take the rem aining p a tte rn s in the G am m a et al ca ta

logue and assess the applicability of our approach to each design pa tte rn . We

a ttem p t to find a com pelling precursor for each p a tte rn and sketch a tran s

form ation for th a t design pa tte rn . The results of this work are analysed in

section 5.7. In section 5.8 we point to where related work on th e topic of de

sign p a tte rn application is considered, and finally, in section 5.9, a sununary

of th is chap ter is presented.

All the p a tte rn transform ations listed in sections 5.3, 5.4 and 5.5 have

been fully pro to typed so we are very confident of th e value of the results

presented there. For details of the p ro to type tool we have developed, see

appendix D. T he precursors and transform ations proposed in section 5.6

have not been pro to typed, bu t are based on a study of the p a tte rn itself cou

pled w ith th e experience we have gained from proto typing the o ther p a tte rn

transform ations.

The reader is advised th a t the m ateria l of th is chap ter is very detailed

in places, and assum es a working knowledge of the design p a tte rn s in the

G annna et al catalogue [41].

94

5.1 C riteria for S electing a Precursor

The notion of precursor described in the last chapter is supported by the

work of Foote and Opdyke [37]. They break the software lifecycle into three

phases: prototyping, expansionary and consolidatory. At the end of the pro

totyping phase a working system has been built th a t matches the initial set

of requirements. As new requirements appear, the system will have to be

expanded. However, it will inevitably transpire tha t the existing design is

not flexible enough to support the new requirements th a t appear. In this

case a consolidation must take place, where the software is reorganised and

refactored to enhance its flexibility in preparation for accommodating the

new requirements.

Our work clearly aims to help in the consolidation phase. Thus the pre

cursors we use as starting points for the design pattern transform ations are

structures tha t are likely to be built during the prototyping phase. We ex

pect them to be simple structiu'es th a t are adecjuate for the purposes of

building a working system rapidly, but inadequate in terms of supporting

future evolution and reuse.

We arrive at a precursor for a design pattern by studying the description

of the design pattern and attem pting to find the structure th a t a program

mer would be likely to have used during the prototyping phase, when the

flexibility and power of the pattern were not yet required. This is naturally

a m atter of judgement. In some cases w'e are able to find a very likely and

compelling precursor, in other cases it less clear how' useful the precursor will

be. In section 5.6 ŵ e provide an assessment of the value of each precursor

and the transform ation it gives rise to, and in section 5.7 these results are

sunmiarised and analysed.

95

5.2 Transform ation N otation

We have already vised our simple no ta tion for describing com posite refactor

ings in chapters 3 and 4. In th is chapter the same no ta tion is used, bu t some

shortcu ts are taken which we describe here:

• In some cases we do not give the full param eter list for a transform ation

as it may sim ply be too long. For exam ple, the Builder transform ation

creates more th an a dozen new program entities (classes, variables etc.)

and it would be confusing to paranieterise the transform ation to this

ex ten t. R ather, we sim ply choose su itable nam es for the new ly-created

program elem ents w ithin the transform ation algorithm itself.

• In some transform ations (for exam ple. A bstract Factory) a set iteration

creates a num ber of program elem ents th a t m ust be referred to la ter on,

so we make some assum ptions abou t names: for a class nam ed Widget,

Widgetlnterface is a new' interface created from th is class, absWidget

is a new abstrac t class created from th is class, and createWidget is a

new m ethod th a t creates and re tu rns an instance of th is class. W here

need be, these nam es are referred to as interfaceName(c), abstractClass-

Name(c) and constructionMethodName(c) respectively^.

• allClasses is used to denote all the classes of the program.

^Being jjrecise at)out the.se issues is not a technical challenge, but the verbosity it

would add to the transformations would only serve to obfuscate the important issues in

the transformation.

96

5.3 Transformations for the Gamma et al Cre

ational Patterns

In the previous chap ter the transform ation for the Factory M ethod p a tte rn

was presented in detail. In the following subsections transform ations are

developed for the rem aining G am m a et al creational pa tte rn s, nam ely Sin

gleton, A bstract Factory, Builder and Prototype.

5.3.1 The Singleton Transform ation

The in ten t of the Singleton p a tte rn [41, p. 127] is to constrain a class to having

only a single instance, and to provide a global point of access to th is instance.

The Singleton p a tte rn prevents nuiltiple instan iations of a class by m aking

the constructor of the class pro tected , and m aking the class itself responsible

for its own instan tia tion . Access to th is instance is then provided using a

sta tic m ethod, the getlnstance m ethod, th a t creates the instance only when

required to do so.

As explained in [41], the constructo r is m ade p ro tec ted ra th e r th a n pri

vate, in order to allow the class to be subclassed. T here are, however, prob

lems w ith th is ai)proach th a t are not resolved in th a t tex t. T he singleton

class nuist be able to in s tan tia te any of its subclasses, and th is requires the

constructors of the subclasses to be public^. This m eans however th a t a

client is not prevented from creating m ultiple instances, so the principle aim

of th e p a tte rn is not enforced. T here are several possible ways of resolving

th is issue;

1. T he singleton subclass is m ade an inner class of th e singleton class

■^Overriddiiig tiie getlnstance method in the subclass to create and return an instance

of the subclass is not j)ossible as static methods cannot be overridden in .Java.

97

itself'. External instantiation is thus not possible, and the singleton

constructor can in fact be made private. However the singleton class has

explicit knowledge of its subclasses, and switching to a new singleton

subclass dynamically is not possible.

2. Each subclass is given a static register method tha t instantiates the

class itself and registers this instance with the singleton superclass. The

singleton superclass has no knowledge of its subclasses, and a client can

install a new singleton dynamically by invoking the register method on

the recjuired class.

The second solution is more flexible and therefore preferable. In our work

however we have used the original, imperfect solution presented in [41, p. 133],

where the constructor of each subclass is required to be public.

Precursor for th e S in g leton T ransform ation

There are two compelling starting points to use for this transformation:

1. A class exists tha t is only instantiated once, or is instantiated many

times but each instance is identical and does not subsequently change

state. Applying the Singleton pattern here has the benefit of enforcing

the implicit “single instance” constraint, and of improving the clarity

of the program.

2. A collection of global variables is used in the program. By collecting

these into a singleton class, access to these variables is granted in a
■*Aii inner class is known only to its enclosing class, but has access to this class and its

superclasses. They are commonly used when one object needs to send another object a

chunk of code that can access the first object’s methods and fields. The manner in which

they are used here, where the inner class is also a subclass of its enclosing class, can be

conceptually confusing [46].

98

flisciplined way through m ethod invocation, ra ther th a n ad hoc variable

accesses spread across the program .

B oth of these possibilities are useful. The second one has a very clear applica

tion in tidy ing up code th a t was w ritten w ithout full a tten tion being paid to

ciuality guidelines. We work w ith the first one here, because, as will become

apparent in section 5.3.2, it is also used in applying the A bstract Factory

pa tte rn . Later in th is chapter (page 128) we develop a transform ation th a t

deals w ith the second case.

S p ecification o f th e S in g leton T ransform ation

The transform ation th a t introduces the Singleton p a tte rn is defined as fol

lows:

applySingleton(Class concreteSingleton, String newAbstractSingleton){

PARTIAL A BSTRACTlON(concreteS/ng'/eton, newAbstractSingleton);

addSingletonMethod(netv/AbsfractS/ng/efon, concreteSingleton)-,

ForAII e:ObjCreationExprn, classCrested(e)=conc/'eteS/>7^/efon,

e ^ newAbstractSingleton {

replaceObjCreationWithMeth Invocation (e,

newAbstractSingleton.get\nstance{))]

}

makeConstructorProtected{newAbstractSingleton)\

}

Initially p a r t i a l A b s t r a c t i o n is applied to make a new ab strac t class th a t

provides the same interface as the class to be singletonised. T he singleton

m ethod and field are then added to th is ab strac t class. The object re tu rned

by the singleton m ethod getlnstance is an instance of the concrete singleton

99

class. All object creation expressions tha t create an instance of this class

are then updated to invoke the singleton method instead. At this point, the

constructors of the abstract singleton class are made protected. As explained

earlier, the constructors of the concrete singleton class must remain public.

Applying the algorithms of section 3.2, we compute the precondition of

this transformation to be:

precondition:

1. No class or interface may have the name newAbstractSingleton:

isC\ass{newAbstractSmgleton) A

-I \slntevface{newAbst7'actSingleton)

2. The concreteSingleton class must exist:

isClass(concreteSingleton)

3. concreteSingleton cannot define a m ethod called “getlnstance” :

-^(\e^\\C'a{concTeteSingleton, “getlnstance”)

4. concreteSingleton cannot contain a field called “instance” :

V f: Field, concreteSingleton • nameOf(f) ^ “instance”

5. A non-private field called “instance” cannot be defined in any

superclass of concreteSingleton-.

if f:Field G els, els G supevc\cisses{conc7'eteSingleton),

nameOf(f) = “instance” th en isPrivate(f)

6. concreteSingleton must have only one constructor and it must

require no parameters:

V c:Constructor G concreteSingleton • noOfParam eters(c)=0

7. Only a single instance of concreteSingleton is ever created:

hasSingleInstance(concreteS'zn£?/eton)

The first two preconditions are trivial, simply ensuring th a t the concreteSin

gleton class exists, and th a t the name newAbstractSingleton does not clash

100

w ith any existing name.

T he next three preconditions are refactoring preconditions. For sim phcity,

we have reserved the nam es “ge tln stance” and “instance” for use in the

S ingleton pa tte rn . If they are ah’eady in use in the class to be singletonised,

a renam ing refactoring should be applied. A field nam ed “instance” m ay be

defined in a superclass of the concrete singleton class, bu t it m ust be private,

otherw ise it could be accessed by a subclass of the concrete singleton class

and th is link would be broken by the addition of a field of th e sam e nam e to

th e concrete singleton class.

Precondition 6 is a contrciindication. If a class has m ore th a n one con

s truc to r, we can expect th a t it is in stan tia ted in different places to different

in itia l states, and th is makes it unsuitab le for the application of th e Single

ton p a tte rn . Also, its constructor should be the no-arg constructor, since

the class in stan tia tes itself only once and la ter invocations of the getlnstance

n \ethod m erely re tu rn th is instance, bu t do not recreate it.

T he final precondition is b o th a contraindication and the precursor. If the

singleton class has m ultiple instances, applying this p a tte rn will surely have

a d isastrous effect on program behaviour, and th is is an inherent p roperty

of th e program . The notion of a single-instance class also represents the

precursor we have used for the Singleton pattern .

5.3 .2 The A bstract Factory Transform ation

T he in ten t of A bstract Factory p a tte rn [41, p .87] is to allow a program th a t

works w ith a family of classes (e.g., an interface toolkit) to be easily ex

tended to work w ith a different, b u t related , family of classes. It is clearly

closely rela ted to the Factory M ethod pa tte rn , even though th e im plem enta

tion struc tu res of these two p a tte rn s are ciuite different [41], It is therefore

101

very satisfying tha t the transformations we develop for these two patterns

transpire to be quite similar. Interestingly, Anmon Eden et al reported a sim

ilar result in their formalisation of these two patterns using the declarative

language LePUS [33].

In the following sections the precursor for this transformation is described

followed by the specification of the transform ation and its preconditions.

P recursor for th e A b stract Factory T ransform ation

W'e can extend the precursor for the Factory M ethod pattern to produce

a related precursor for the A bstract Factory transformation. We assume

that the program being transformed creates and uses concrete instances of a

family of Product classes. Again, this is not a poor structure of itself, but

if a reciuirement arises for the program to work with a different family of

Product classes, this structure will prove to be too inflexible. Applying the

Abstract Factory pattern in this case results in a system where a new family

of classes can be plugged in with a mininuun of difficulty.

S p ecification o f th e A b stract Factory T ransform ation

The transform ation tha t introduces the A bstract Factory pattern is defined

as follows:

applyA bstractFactory(S etO fC lass products, String newFactoryName,

String newAbsFactoryName){

addClass(createEmptyClass(netvFacforyA/ame));

ForAII c:Class, c G products {

ABSTRACT!ON(nameOf(c));°

ABSTRACTAccESs(allClasses, nameOf(c));

ENCAPSULATEC0NSTRUCTl0N(/7eivFacf0ryA/ame, nameOf(c));

102

}
APPLYSlNGLEl'ON{newFactoryName, newAbsFactoryName)]

ForAII e:ObjCreationExprn, classCreated(e) G products {

replaceObjCreation With Meth Invocation (e, neM//46sFacforyA/ame-|-

“getlnstance().create” -t-classCreated(e));

}
}

First the empty concrete factory class is added to the program. Then the

product classes are processed by adding an interface to each one, redirecting

all accesses to the product classes to go via the corresponding interface, and

adding construction methods for each product class to the concrete factory

class.

The Singleton pattern is applied at this stage to produce the abstract

factory class, and to impose the single-instance constraint on the concrete

factory class. Finally, the existing object creation expressions th a t create

instpjices of the product classes are updated to use the corresponding con

struction method in the abstract factory class.

We apply the algorithms of section 3.2 to compute the following precon

ditions for this transformation:

precondition:

1. All the classes in products must exist, and for each class its

interface name nuist not be in use:

V c G products • isClass(c) A

-iisClass(interfaceName(c)) A -■isInterface(interfaceName(c))

2. No class or interface may have the name newFactorxjName or

^For .simplicity, the full argum ent lists for the m initrau.sform ations in the body of this

loop are not given. See section 5.2 for an explanation of this.

103

new AbsFactoj'y Name:

-> isClass{newFactoryName) A -> islntevia.ce{newFactoryName) A

isClass{newAbsFactoryName) A islnteria,ce{newAbsFactoryNaTne)

3. The classes in products have no public fields:

V fifield, V ciClass, f € c, c G products • isPublic(f)

4. The classes in products have no static methods:

V m:Method, V c:Class, m G c, c G products • -• isStatic(m)

Given th a t this is a more complex transform ation than the related Factory

M ethod transformation, it is at first sight curious th a t the preconditions

transpire to be considerably simpler. This is because we create completely

new abstract and concrete factory classes, rather than adding methods to

existing classes. For example, using A F PL y S i n g l e t o n would normally add

a number of new preconditions to a refactoring chain, but in this case it is

applied to a class that just been created, and from this we were able to show

th a t all the Singleton transform ation preconditions were satisfied.

The categorisation of these preconditions is similar to Factory Method.

The first two are trivial, the th ird is a refactoring precondition and the last

one is a contraindication. Note tha t there is no j)recursor precondition for this

pattern: it may be applied to any set of classes in the program. However, if

the set of product classes chosen does not form a logical family, the resulting

program will naturally be more complicated than the original program, for

absolutely no benefit.

5.3 .3 The B uilder Transform ation

The intent of the Builder pa ttern [41, p.97] is to separate the construction of a

complex object from its representation, so th a t the same construction process

104

director product

getProductO : Product
constructO

c re a tes > , , , , ,
^ constructl ()

construct2()

Figure 5.1: The Precursor for th e Builder Design P a tte rn

can create different representations. This p a tte rn is therefore useful when a

j)roduct object has a complex, step-by-step construction process and it is

desirable th a t th e object th a t d irects th e construction be able to construct

other, rela ted p roduct objects as well. By adding a builder object betw een

the d irector and the product, it becom es easy to configure the d irector w ith

another type of builder th a t will construct th e desired product object.

Precursor for th e B uilder T ransform ation

The precursor for the Builder transform ation is depicted as a UML diagram in

figure 5.1. The d irector class in stan tia tes th e p roduct class and then invokes

a series of m ethods on th is p roduct ob ject (constructl and construct2 in the

figure) to bring it to its fully-constructed s ta te . T he chent can then ob ta in

the p roduct ob ject by invoking getProduct on th e director. An exam ple of

th is s tru c tu re is where a parser ob ject (d irector) creates an em pty parse tree

object (product) and then invokes a series of addNode operations on th e parse

tree to bring it to a s ta te where it represents th e inpu t being parsed. W hen

parsing is com plete, a client of the parser ob ject m ay recjuest it to re tu rn the

parse tree th a t has ju s t been constructed .

T his s truc tu re , where the d irector class connnunicates w ith the p roduct

class directly, will prove inadequate if th e d irec to r class has to be ex tended

to construct ano ther type of p roduct object, one th a t has a different con-

105

structioii process. T he adchtion of a level of indirection through a builder

class makes th is type of extension easy. We assum e for now th a t the interface

to the new builder class is the same as th a t of the curren t product class, so

all the builder class does is to delegate d irectly to th e product class. In the

general case the builder receives construction requests from the d irector class

and transla tes them into the appropria te requests to th e p roduct class. O ur

transform ation assumes th is translation to be sim ply th e identity transla tion ,

as this produces th e desired behaviour-preserving result. The program m er

may of course la ter update th is translation to perform som ething more so

phisticated.

Specification o f th e B uilder T ransform ation

In considering th is transform ation it is clear th a t there is a them e involved

th a t has not been encountered thus far, nam ely th a t of delegation. A new'

builder class is to be added between the existing d irector class and th e prod

uct class, and the du ty of the builder is to delegate the recjuests it receives

from the d irector to the product object. It is tem p tin g to develop a m ini

transform ation th a t takes an existing class and delegates its responsibilities

to another class. However, arguing behaviour preservation for such a mini-

transform ation is cliunsy, so we choose another perspective where we w rap an

existing class w ith a delegation/w rapper class. T h is wTapper class delegates

its responsibilities to the w rapped class, so program behaviour is preserved.

T his n iin ipattern is called W r a p p e r and is described in full detail in section

5.4.2 in the context of the Bridge pattern .

The transform ation th a t introduces the Builder p a tte rn can now' be de

fined as follows:

applyBuilder(C lass director, Class product, Str ing bu ilderN am e){

106

ARSTRACTlON{product, product Interface);

\VRAPPER{director, productlnterface, builderName)',

ABSTRACTAcCESs(allClasses, product, productlnterface);

ForAII c:Constructor, c e builderNam e{

absorbParameter(c, 1);

}
parameteriseField(cy/rector, builderName)-,

}

First A[}STRACTI0N is used to add to the program an interface to the given

prochict class. This enables the WRAPPER m initransform ation (see section

5.4.2) to be used to create the builder class and to set it up to delegate to

the product class the construction requests it receives from the director class.

A i j s t r a c t A c c e s s is now used to dissolve the dependency of the program

on the concrete product class®. At th is point the essential s tru c tu re of the

Builder p a tte rn has been introduced, but there is still some w'ork to be done.

The builder class curren tly takes the product it is to construct as a])ara-

nieter, so the absorbParameter refactoring is used to push th e creation of the

I)roduct object in to the builder class where it belongs. T he opposite problem

exists between d irector and ljuilder, in th a t the d irector object creates the

builder it is to use and th is does not fit the norm al p a tte rn solution. The pa-

rameteriseField refactoring is thus api)lied to enable the clients of th e director

class to pass it the builder object th a t it is to use. This com pletes the ap

plication of the Builder p a tte rn '. T he effect of applying th is transform ation

'^Gaiiinia et al suggest th a t th is is noniially not useful as the products produced by

concrete builders tend to differ considerably [41, p .101]. We choose to follow the solution

described by G rand [43, p. I l l] , and provide an interface for the product class.
^Further refactorings could be applied now, so th a t clients would get the constructed

{iroduct object from the builder object, ra ther th an from the director object.

107

client

< < ln te r fa c e »
productlnterface

construct1()
construct2()

crea tes

director

getProductO : absProduct
« c o n str u c to r » Director(: Builder)

o -

builder

getProduct{): absProduct
construct1()
construct2()

crea tes >

product

constructIO
construct2()

Figure 5.2: T he Builder Design P a tte rn

to the Builder precursor (figure 5.1) is depicted as a U jML d iagram in figure

5.2.

A pplying the algorithm s of section 3.2, the preconditions of th is transfor

m ation are com jjuted as follows:

p recond ition:

1. The director and product classes m ust exist and the nam e

builderNam,e m ust not be in use:

mClcins{director) A iaClciSs{product) A

-<isC\i\ss{ builder N am e) A -'isInterface(6?/zWerA^ame)

2. T he product class m ust not have sta tic m ethods:

V m :M ethod, m € product • -iisS tatic(m)

3. The product class m ust not have public fields:

V f:field, f e product • ->isPublic(f)

4. The product class m ust have only one constructo r and th is

constructor m ust recjuire no param eters:

V c:C onstructor, c 6 product • noO fParam eters(c)= 0

108

The transform ation for the Builder p a tte rn is one of the most complex of

all the transform ations developed in th is work, though much of the com

plexity is hidden inside its constituen t m initransform ations and refactorings.

The preconditions for the transform ation are quite simple, again because

most of the preconditions of its constituen t m initransform ations and refac

torings are guaranteed by earlier parts of the transform ation. For example,

the W r a p p e r m initransform ation can only be applied if the director class

only uses m ethods of the product class th a t are declared in the interface

productlnterface. This condition does not appear in the precondition to the

transform ation above, since it has already been set up by the aj)plication of

the A b s t r a c t i o n m inipattern .

T he first precondition is trivial. T he second is a contraindication, though

as pointed out in the footnote on page 107, the A b s t r a c t A c c e s s m ini

transform ation th a t gave rise to th is precondition could be om itted from

the transform ation. The th ird condition is a straightforw ard refactoring pre-

conchtiou, while the final condition is also a refactoring precondition bu t is

of more in terest. In absorbParameter the construction of product objects is

moved from the d irector class to the builder class. Each such object cre

ation expression nm st l>e the same and not be dependent on its context. The

only likely way for th is to happen is if the p roduct class only adm its no-arg

construction. Bearing in m ind th a t th is p a tte rn is applicable where product

objects are constructed in a step-by-step fashion, it is not im reasonable to

re([uire th a t the constructor for the p roduct class itself takes no param eters.

5.3.4 T he P roto typ e Transform ation

The in ten t of th e P ro to type p a tte rn [41, p. 117] is to specify the kind of

objects to create by using a prototypical instance, and to create new objects

109

by cloning this instance. The appUcabihty section for this pattern proposes

three situations where it may be applied:

1. to achieve dynamic loading of classes, or

2. to avoid building a hierarchy of factory classes, one for each product

class, or

3. when instances of a class can have an initial state th a t is one of only a

few possible combinations.

Although these criteria are stated to be disjunct, in fact the Prototype pat

tern could not be applied if only the second were true and not the third.

If objects of the product class can be constructed in a wide range of initial

states, apj)lying the Prototype pattern is not possible. Note that a precursor

for the first criterion is very likely to be an antipattern , so we do not look

further at this possibility.

Precursor for th e P r o to ty p e T ransform ation

The precursor we consider is therefore where the programmer has explicitly

instantiated the product class at several points in the client class before

realising tha t all these instances are identical*^. The updating of the object

creation statem ents to use a cloned prototype object is possible only if the

argiuneuts to the object creation statem ents have the same values in every

case. This is highly unlikely to occur unless the client class only instantiates

the product class using its no-arg constructor. For this practical reason we

limit the precursor for this pattern by enforcing this precondition.

more general .sohitioii is also possible, where the initial state of the objects created

fits into one of several categories.

110

S p ecifica tion o f th e P ro to ty p e T ransform ation

T he transform ation th a t introduces the P ro to type p a tte rn is defined as fol

lows:

applyPrototype(Class client, Class product, String productlnterface){

createExclusiveComponent(c//enf, product, “prototype”);

A b s t r a c t i o n {product, productlnterface)]

ABSTRACTAccESS(c//ent, product, productlnterface)',

ForAII e:ObjCreationExprn, c\assCreated{e)=product, e G client {

replaceObjCreationWithMethlnvocat ion(e, "prototype.clone()”);

}
}

Using createExclusiveComponent a field called “p ro to type” is added to the

client class to store the prototypical object of the p roduct class. A b s t r a c -

riON is now applied to the p roduct class and A b s t r a c t A c c e s s to ab strac t

the client class from the product class. F inally replaceObjCreationWithMe-

thlnvocation is applied to change all creations of p roduct ob jects to invoke

th e clone m ethod on the pro to typical product object instead. The invocation

of th e clone m ethod on the p roduct class assumes th a t th is class is indeed

clonable; see the definition of isClonable on page 191 for more detail.

A m inim alist approach was taken in building th is transform ation. A more

sophisticated approach was also possible, by binlding a p ro to type m anager

th a t would handle prototypes for a collection of classes and allow th e collec

tion to grow and contract dynam ically.

We apply the algorithm s of section 3.2 to com pute the following precon

ditions for the above transform ation:

precondition:

111

1. The given classes must exist:

isClass(c/^en^) A \sC\eLSs{p7'oduct)

2. No class or interface with the name productlnterface exists:

-^isClass{productInterface) A -^ishitevface{productInterface)

3. The client class cannot contain a field called “prototype” :

V f:Field, {^client • nameOf(f) ^ “prototype”

4. A non-private field called “prototype” cannot be defined in any

superclass of client:

if f:Field G els, els G superclasses(c/ieni),

nam eO f(f)=“prototype” th en isPrivate(f)

5. The product class must not have public fields:

V f:field, f G product • -'isPublic(f)

6. The pr'oduct class must not have static methods:

V m:Method, m G product • -iisStatic(m)

7. The product class nuist be clonable:

isClonable (product)

8. The client class creates product objects only using the no-arg

constructor:

V e:ObjectCreationExprn, e G client, classCreated(e)=profi?ic^ •

noOfArgunients(e)=0

The categorisation of these preconditions is as follows. The first two are

trivial, the third, fourth and fifth are refactoring preconditions, the sixth and

seventh are contraindications, while the final one is a precursor precondition

th a t we assumed in order to ease the specification of the transformation.

This completes the application of our methodology to the Gamma et al

creational patterns. We postpone analysing the results until section 5.7 after

112

« ln te rface»
client iface

<J ^

implementationi implementation2

Figure 5.3: The Precursor for the Bridge Design Pattern

the entire catalogue has been considered. In the following sections 5.4 and

5.5, we dem onstrate the broader application of this methodology by applying

it to a structural pattern and a behavioural pattern.

5.4 Transform ation for a Structural Pattern:

Bridge

The intent of the Bridge pattern [41, p. 151] is to decouple an abstraction

from its implementation so tha t the two can vary independently. It is useful

when an abstraction needs to be implemented in several ways, and also needs

to be open to extension using inheritance.

5.4.1 Precursor for the B ridge Transform ation

The precursor for this pattern follows naturally from the description of the

pattern given in [41]. It is depicted graphically as a UML diagram in figure

5.3. We see tha t there is a client class th a t makes use of an interface tha t has

been implemented in several different implementation classes. The weakness

113

of th is s tru c tu re becom es apparen t if the progrannner la te r w ants to extend

th e interface in some way: for each existing im plem entation class, a new class

will have to be added. For exam ple, a client class m ight use a queue interface

th a t is im plem ented in one subclass as a s ta tic array and in another as a

dynam ic linked-list structu re . If we need to extend the client to work w ith

a dequeue® as well, it is na tu ra l to add th is as a subinterface of th e queue

interface. However, now the dequeue interface m ust itself be provided w ith

two subclasses to provide a s ta tic and a dynam ic im plem entation. The appli

cation of th e Bridge p a tte rn to th is s itua tion will enable the queue interface

to be ex tended separately from its im plem entation.

In considering th is transform ation it is clear th a t th e them e of delegation

is involved again. A new bridging class is to be added betw een the existing

client classes and the im plem entation classes. The d u ty of th is class is to

delegate all the recjuests it receives from the client to th e appropria te im ple

m entation object. In the following section we describe th is m in ipa tte rn in

detail, and in section 5.4.3 th e Bridge transform ation itself is dealt with.

5.4.2 The W rapper M initransform ation

The W r a p p e r m initransform ation is used to ‘Svrap” an existing receiver

class w ith ano ther class, in such a way th a t all requests to an object of the

wrapj)er class are passed to the receiver ob ject it wraps, and sim ilarly any

results of such requests are passed back by the w rapper object. This re

quires th a t all existing instan tia tions of th e receiver class be also w rapped

w ith an instan tia tion of the w rapj)er class itself. The overall effect of this

m initransform ation is to add a certain flexibility to the relationship between

a client ob ject and the receiver object it uses. All com m im ication now goes

double-ended queue.

114

via th e w rapper object, which m eans th a t run-tim e replacem ent of the re

ceiver object becomes possible w ithout the client object being aware of the

change. In a certain regard, th is m in ipa tte rn is the dynam ic equivalent of

the A b s t r a c t A c c e s s m initransform ation.

An issue th a t m ust be dealt w ith is where one or more of the client classes

provide a “g e tte r” m ethod th a t re tu rn s an instance of a receiver object. If

the receiver classes are to be w rapped from all o ther classes in the program,

it m akes sense to re tu rn the w rapped receiver object. However, it is only

the client classes th a t should see th e w rapped receiver class; o ther classes in

the program should deal d irectly w ith the receiver classes as before. T here

fore, to allow for a client th a t provides direct access to its receiver object,

createWrapperClass adds a ge tte r m ethod to the w rapper class to re tu rn this

object, while useWrapperClass updates th e ge tte r m ethod in the client class

to delegate to the getter m ethod to the w rapper class*”.

W’e have assm ned in the description of th is m in itransform ation th a t there

is a single receiver cla^ss to be w rapped. In the more general case there will

be a set of receiver classes to be w rapped. In th is case, the set of receiver

classes is given by an interface th a t reflects how the receivers are used in the

client classes. For our curren t purposes of building a transform ation for the

Bridge pa tte rn , it is the la tte r version th a t is of in terest, so it is th e one we

specify here.

This m initransform ation is im plem ented in term s of refactorings in the

following way:

i°Thi s issue resulted in a lot of complexity in the detailed design and iniplenientatiou of

tills minitransformation. It is interesting therefore to note th a t this could be avoided were

the assumption to be made tha t the initial program complies with the Law of Demeter

[60]. In a program that observes this law, an object would not extract a subobject from

another object, and send a message to it.

115

WRAPPER(SetOfClass clients, Interface iface, String wrapperName){

Class wrapper = createWrapperClass(/Yace, w/rapperA/ame, "receiver”);

addClass(wrapper);

ForAII c:Class, lmplementslnterface(c, iface) {

useWrapperClass(c//enfs, wrapper, c, "getReceiver”);

}

}

In it ia l ly the w rapper class is created and added to the program . Then i t

is used to w rap each o f the receiver classes and, correspondingly, any c lients

th a t use these receiver classes are updated to w rap each construction o f a

receiver class w ith an instance o f the w rapper class.

To dem onstra te leg a lity o f th is chain and to coni])ute its pre- and post

conditions, we app ly the a lgorithm s o f section 3.2. The com puta tion is

s tra igh tfo rw a rd , especially since most o f the p recond itions for useWrapper-

Class are p rovided by createWrapperClass. The fo llow ing pre- and postcond i

tions are produced:

p re c o n d it io n :

The given in terface m ust exist:

is ln terface (i/ace)

The name for the new w rapper class is no t in use:

isC lass(wrapperNam e) A -> isInterface(w;rap;;e7Wame)

The c lien t classes on ly use m ethods o f the receiver classes th a t are

declared in the in terface iface:

V o :()b jec tR e f, conta in ingC lass(o) G clients,

in ip lem ents In te rface (typeO f(o), iface) •

V m :M ethod , uses(o,m) • declares(?/ace, m)

p o s tc o n d it io n :

116

The w rapper class has been added to the program:

isCIass' = isClass[w;7-apj9er/true]

(Further properties of the wrapper class are given on page 198.)

All object references to receiver classes in clients have been changed

to wrapper:

V o:O bjectRef, containingC lass(o) G clients,

im plenientsInterface(typeO f(o), i f ace) •

ty p e O f= ty p e O f[o /wrappei']

All creations of receiver ob jects in the clients have been updated:

V e:O bjectC reationE xprn , im plenientsInterface(classC reated(e),

iface), containingC lass(e) G clients •

classC reated '=classC reated[e/?orapper]

Any receiver ob ject will exhibit the sam e behaviour as an instance of

the class called wrapperNa.nie th a t has been given th is object as its

construction argiunent:

V c:Class, im plem entslnterface(c, ?/ace) •

V e:O bjectC reatiouE xprn , c lassC rea ted(e)= c •

exhibitSam eB ehaviour' =

exhibitSam eBehaviour[(e, new wrapperName{e))/true]

5 .4 .3 Specification o f th e B r id ge T ransform ation

T he transform ation th a t introduces the Bridge p a tte rn can now be defined

very simi)ly as follows:

applyBridge(SetOfClass clients, Interface iface, String bridgeName){

WRAPPER(c//enfs, iface, bridgeName)',

}

117

clien t
>

bridge
O

« ln t e r f a c e »

---------- > iface

A Pv.

im p le m e n ta tio n i im p le m e n ta tio n 2

Figure 5.4: The Bridge Design P attern

The W r a p p e r niinitransforniation does all of the work here, setting up

the bridge class and ensuring tha t it delegates requests from the client classes

to the classes th a t implement the given interface. The effect of applying this

transform ation to the Bridge precursor (figure 5.3) is depicted as a UML

diagram in figure 5.4.

Once the structure of the Bridge j)attern has been reified in the program

code, the programmer can exploit this. The bridge class can be subclassed

and new methods added. If need be, the implementation of methods in

the bridge class can be changed to do more than simply delegate to the

implementation classes. These changes are facilitated by the introduction of

the Bridge pattern, but cannot be made j^art of the transform ation itself, as

they are dependent of the intention of the programmer and are not in general

behaviour-preserving.

The precondition for this transform ation is naturally just the precondition

for the W r a p p e r minitransform ation given in section 5.4.2 above, so it is

not restated here.

118

5.5 Transform ation for a B ehavioural Pattern:

Strategy

Behavioural patterns have the possibility of challenging our approach very

strongly. Since we transform one type of program structure (a precursor)

into another one (the desired design pattern structure), it is unclear how a

pattern th a t has little structure will be handled. In this section we address

this question by applying the proposed methodology to a behavioural pattern

and assessing the result.

The intent of the Strategy pattern [41, p .315] is to enable several related

algorithms to be encapsulated into their own respective classes, so th a t a

client can be dynamically configured with an object of one of these classes.

For example, a tree class might incorporate a traversal algorithm th a t returns

the nodes of the tree in some order. Rather than hardcoding one particular

traversal algorithm into the tree class itself, the Strategy pattern encapsulates

the traversal algorithm into its own class and allows a tree object to be

configured with different traversal algorithms. This makes it easy to achieve

in-, pre- and post-order traversals of the same tree object.

5.5.1 Precursor for th e S trategy Transform ation

The natural precursor for this pattern is w^iere a class incorporates a number

of methods and fields tha t are all related to some particular algorithm. W'hile

this cannot be regarded as a bad structure, its inadequacies become apparent

if a requirement arises th a t the class be configurable to use a one of a number

of related algorithms.

As with the Bridge and Builder patterns, there is a form of delegation

taking place here as w'ell. The strategy methods will be moved to their own

119

class and the original class will delegate to them . T he W R A P P E R m inipattern

th a t was used earlier is not so suitable here: nothing is being “w rapped,”

ra th e r p a rt of the original class is being split off into a new class and behaviour

is being preserved by the original class delegating to the new one. In the

following section we describe th is m in ipa tte rn in detail, and in section 5.5.3

the S trategy transform ation itself is dealt with.

5,5.2 The D elegation M initransform ation

The D e l e g a t io n m initransform ation is used to move p a rt of an existing

class to a com ponent class, and to set up a delegation relationship from the

existing class to its com ponent.

This m initransform ation is defined as follows^

Delegation(Class context, SetOfM ethod moveMethods,

String delegation Name) {

addClass(createEmptyClass(c/e/egaf/onA/ame));

createExclusiveComponent(coA7fext, delegationName, "delegation”);

ForAII nniMethod, m G m oveM ethods {

abstract Method FromClass(m);

move Met hod (con text, “delegation” , m);

}

}

T he em pty delegation class is first added to the program and an exclusive

''R o b e rts deals with this transfoniiatioii as well [84. p.40]. Since he does not use a

precursor, he can ignore the problem of initialising the component object that is being

delegated to. Also, he does not abstract the method to be moved from its class, so he

only permits the moving of a method tha t does not access any fields or methods in its own

cla.ss or any of its superclas.ses.

120

component of this class is added to the context class. Now each of the

methods to be moved can be processed. A method to be moved must first be

“abstracted” from its class, th a t is, everything it refers to in the class must

be made public. At this point, the moveMethod refactoring may be invoked

to move the method to the delegation class.

Using the algorithms of section 3.2, the pre- and postconditions for this

minitransformation are computed as follows:

precondition:

The given context class must exist:

isClciss{ context)

The name for the delegation class must not be use:

-'isClcisii{delegntionName) A ~'islnteTfsice{dele(jationNnm,e)

The methods to be moved must belong to the context class:

V m G rnoveMethods • m € cojitext

The context class cannot contain a field called “delegation” :

V f:Field, {^context • nameOf(f) ^ “delegation”

A non-private field called “delegation” cannot be defined in any

superclass of context:

if f:Field G els, els G s\ipevclasses{context),

nameOf(f) = “delegation” th en isPrivate(f)

p ostcond ition:

A new class called delegationName has been added to the program:

isClass' = isClass[de/e^ationA'’am e/true]

The class context has a field called “delegation” of type deleg ationName\

3 f: Field, f G context such tha t

typeO f= typeO f[f/deleg ationN ame]

nam eO f=nam eO f[f/“delegation”]

121

“delegation” refers to an exclusive component of context.

isExclusiveConiponent'=isExclusiveComponent[(con<ea:^, “delegation”)/true]

All methods/fields defined directly or indirectly in context tha t are

used by a method in moveMethods are now public:

V m;M ethod e moveMethods •

V x:Field/M ethod, deRnes{context, x), uses(m,x) •

isPublic'=isPublic[x/true]

The given methods have been moved to the delegation class:

V ni:AIethod G moveMethods •

classOf=classOf[m /delegationN ame]

The class context delegates invocations of moved methods to methods

th a t exhibit the same behaviour in the delegation class:

V ni:M ethod G moveMethods • 3 n:Method, classOf (n) = con<ea;t,

nam eO f (n)=nam eOf(ni), sigOf (n)=sigOf(m) such that

uses'=uses[(n,m)/true]

exhibitSameBehaviour'=exhibitSameBehaviour[n/m]

5.5 .3 Specification o f the S trategy Transform ation

The transform ation tha t introduces the Strategy pattern can now be defined

very simply as follows:

applyStrategy(Class context, SetOfMethod strategyMethods,

String strategyName){

DELEGATION (context, strategyMethods, strategyName)

ABSTRACTlON(sfrategyA/ame, strategylnterface);

ABSTRACTAcCESS(context, StrategyName, strategylnterface);

122

At the com pletion of th is transform ation, th e strategy m ethods have all

been moved to the strategy class. Each one takes its context ob ject as an

argum ent, and refers back to th is context for any fields it needs access to.

If th e program m er has chosen a cohesive set of stra tegy m ethods, it is to

be expected th a t most of these fields can be moved to the strategy class as

well, and then some or all of th e strategy m ethods will not need the context

argum ent anym ore. This p a rt of the transform ation can be au tom ated quite

straightforw ardly, bu t for clarity we have om itted it.

A pplying the algorithm s of section 3.2, the preconditions for th is tran s

form ation are com puted as follows:

p re c o n d i t io n :

1. The given context class nuist exist:

isClass(con^erri)

2 . The nam e for the stra tegy class nm st not be use:

~'isC\ciSs{strategyNarne) A -'islutQvicLce{st7-ategyName)

3. T he nam e for the stra tegy interface m ust not be use:

^isC\&as{strategyInterface) A -^\sluteTiace{st7'ategyInte7'face)

4. The strategy m ethods m ust belong to th e context class:

V m e strategy Methods • m G context

5. The context class cannot contain a field called “delegation” :

V f:Field, {^context • nam eO f(f) 7 ̂ “delegation”

6 . A non-private field called “delegation” cannot be defined in any

superclass of context:

i f f:Field 6 els, els G swpevcla,sses{context),

nam eO f(f) = “delegation” th e n isP rivate(f)

7. No stra tegy m ethod m ay be static:

V m e strategy Methods • -•isStatic(m)

123

T he first four preconditions are triv ial, the next two are refactoring precondi

tions while the last one is a contraindication. T he contraindication is derived

from the use of the A b s t r a c t A c c e s s n iin ipattern , since moving a static

m ethod to the stra tegy class would make it subsequently inaccessible when

th e strategy interface is added.

In spite of initial concerns th a t our approach would have problem s dealing

w'ith a behavioural p a tte rn , a com pelling precursor was found for th e S trategy

p a tte rn and the transform ation to apply th is p a tte rn did not prove to be

particu larly difficult to work out. In section 5.7 we provide an explanation

for th is phenom enon.

5.6 Precursors and Transformations for the

Gamma et al Patterns Catalogue

In th is section the rem aining p a tte rn s of the G am m a et al catalogue [41] are

analysed w ith a view' to finding a suitable precursor, assessing if th e transfor

m ation is workable, and determ ining the m initransform ations th a t are likely

to be used. Please note th a t th e transform ations offered in th is section have

not been p ro to typed and w'orked out in as m uch detail as those in previous

exam ples. O ur aim here is to make a global assessm ent of the applicability of

th e methodology, w ithout applying the full rigour of the approach to every

exam ple. In each case we assess the result we achieve and place it in one of

the following categories:

1. Excellent: T he m ethodology worked very w'ell. A plausible precursor

was found and a com pelling transform ation was built, m aking use of

some of the m initransform ations already identified.

124

2. Partial: There is some problem with the result (see list below) tha t

means a usable transformation can be developed, but it is not complete.

3. Impractical: There is a serious problem with the result (see list below)

tha t makes it impossible to build a transformation, or produces one

that is so constrained th a t it is of no practical value.

There are a mnnber of w'ays in which a design pattern can be found to

be less suitable for the application of our methodology. We describe them

l)elow.

• A convincing and useful precursor cannot be foimd. Sometimes there

is no compelling way a programmer might have partially ini])lemeuted

the intent of the pattern without either using a poor design (an an

tipattern), or going the whole way and implementing the full pattern

structure. We may in this case be able to work with a weak precursor

tha t is very close to the green field starting point. This is a workable

solution, but not very satisfactory, as there is little need for behaviour-

preservation proofs in this case. Examples; Decorator and Observer.

• There is a compelling precursor, but it is not a structure th a t can easily

l)e pointed to and identified in code, even by a programmer who knows

the code well. It may, for example, contain behavioural elements tha t

are dispersed around the code. The problem here is tha t this type

of precursor is too inexact to be used to drive a behaviour-preserving

transform ation, and so is useless as a starting point for an autom ated

approach. In some cases dynamic analysis or sophisticated pattern

recognition might provide a solution, but this is beyond the scope of

this work. Examj)les: Facade, M ediator, Interpreter and Flyw^eight.

125

• Even if a com pelling and easily identifiable precursor can be found, it

may be th a t the resulting transform ation still leaves a certain am ount

of work for the program m er to do in order to com plete the application

of the pa tte rn . N ote th a t if the am ount of work to be done is small,

we m ay still categorise the result as excellent. Examples: A dapter,

Builder, Bridge, C hain of Responsibility, Proxy and S tate.

A word on the precision of th e specification of the precursor is useful here.

If we were searching for the precursor in th e code, its specification would

have to be com pletely precise. However, in our approach, the progrannner

identifies exactly where the design p a tte rn is to be applied. This m eans th a t

the au tom ated tool need only identify the aspects of the existing s truc tu re

th a t need to be restructured , and th is is th e purpose of the precursor. For

exam ple, in the case of the Factory M ethod p a tte rn , the tool only has to

identify the places in the class where a p roduct object is created. The “ex tra”

part of the precursor, the fact th a t th is is a good spot to apply the Factory

M ethod])attern, has been provided by the program m er.

In general th e applicability section of a design p a tte rn description suggests

the precursor [41]. If there are several d istinc t applicability clauses (i.e., if

they are disjunctives) th is may give rise to several precursors. In the case of

the P ro to type p a tte rn , for exam ple, there are th ree applicability clauses, bu t

we find th a t one of them is natu ra l to choose as the basis for the precursor.

5.6.1 The Gamma et al Creational Patterns

In th is section we consider the application of our m ethodology to each of

the creational p a tte rn s of the G am m a et al catalogue [41]. Since w'e have

dealt w ith these pa tte rn s already, we sim ply place th e precursor and resulting

transform ation into one of the th ree categories listed on page 124.

126

A b stract Factory

This p a tte rn has been fully dealt w ith in section 5.3.2. T he precursor is a

s truc tu re th a t is likely to occur during the evolution of a software system

and the transform ation is compelling.

Overall Assessment: Excellent.

B uilder

This p a tte rn has been fully dealt w ith in section 5.3.3. The precursor and

transform ation are com pelling, though they lack the sim plicity and elegance

of, for exam ple, the Factory M ethod transform ation. We explained on page

106 th a t a small am ount of work is left to the program m er a t the end of the

transform ation, bu t it is nevertheless a very valuable result.

Overall Assessment: Excellent.

Factory M eth od

Due to the elegance of its solution, th is p a tte rn was chosen as our flagship

exam ple and was presented in detail in chap ter 4.

Overall Assessment: Excellent.

P ro to ty p e

This p a tte rn has been fully dealt w ith in section 5.3.4. T his solution has

weaknesses in th a t th e precursor is som ew hat more constrained th an th a t

for the o ther creational i)atterns, and the construction of the clone m ethod

is not au tom atab le in every case. However, the transform ation is generally

straightforw ard, and constructing the clone m ethod could be a problem even

for a program m er applying th is p a tte rn by hand.

Overall Assessment: Excellent.

127

S in g leton

This pa ttern has been fully dealt with in section 5.3.1. The precursor used

there (a single-instance class) is not a very compelling one and cannot be

verified automatically. However, ŵ e chose this precursor because it made it

possible to reuse the entire transform ation in developing the A bstract Factory

transform ation. As already stated, a more generally applicable precursor is

where there is a set of global variables to be packaged into a singleton class^^.

This gives rise to the following transformation:

]. Add an empty class to the program and use a p p l y S i n g l e t o n from

section 5.3.1 to make it a singleton class.

2. For each global variable to be encai)sulated, add a field of this type to

the singleton class, along with “getter” and “setter” methods for this

field.

3. Replace every reading of a global variable with an invocation of the

corresponding “getter” method, and every writing of a global variable

with an invocation of the corresponding “setter” method.

4. Delete all the (now imused) global variables.

This is both a practical precursor and a straightforward transformation.

Overall Assessment. Excellent.

*^This was also the precursor used by Jalinke and Ziindorf [49], the only other api^roach

to design pattern transformations that uses a similar notion to that of a precursor. See

page 89 for a more detailed description of this work.

128

5.6.2 The Gamma et al Structural Patterns

In th is section we consider the appUcation of our m ethodology to each of the

s tru c tu ra l pa tte rn s of th e G am m a et al catalogue [41]. If the p a tte rn has been

dealt w ith before, we sim ply place the precursor and resulting transform ation

into one of the th ree categories listed on page 124.

A dapter

T he in ten t of th e A dapter p a tte rn [41, p. 139] is to convert the interface of an

existing class in order to make it com patible w ith the interface th a t its clients

expect. T his allows classes to work together th a t could not otherw ise do so,

due to m inor inconipatabilities in the interface provided and the interface

expected. Fully au tom ating th e application of th is p a tte rn poses a problem in

th a t the m apping from the new adap ter interface to the existing adajjtee class

should be specified by the program m er. Developing a language to specify th is

m apping is non-trivial and beyond the scope of th is work.

We take a simple approach and assiune th is m apping to be the identity

m apping. This allows the construction of a transform ation th a t applies the

A dapter s tru c tu re in a behaviour-preserving fashion, bu t leaves an am ount

of work for the program m er to do. T he precursor is sim ply where a client

class uses a supplier (adaptee) class and a recjuirem ent is in troduced th a t the

client be able to work w ith any one of a fam ily of supplier classes, each one

j)roviding essentially th e same functionality as the existing one, bu t w ith a

different interface.

The transform ation then becomes:

1. A pply W r a p p e r to the supplier class to produce the concrete adap ter

class.

129

2. A pply A b s t r a c t i o n to th e concrete adap ter class and A b s t r a c t A c

c e s s to abstrac t the client class from the concrete adap ter class.

This application of th ree m initransform ations produces th e A dapter struc

ture, where the adap ter class sim ply delegates each request to the existing

supplier class. The progranm ier m ay now update th e adap ter class to per

form a more sophisticated adap tation , and add new supplier classes.

Overall Assessment: Excellent.

B ridge

This p a tte rn has been fully dealt w ith in section 5.4.3. As explained on page

118, a small am ount of work m ay be left to the program m er a t th e end of the

transform ation, bu t overall the precursor and transform ation are compelling.

Overall Assessment: Excellent.

C om p osite

The in ten t of the Com posite p a tte rn [41, p. 163] is to enable a client class to

trea t a single com ponent object and a com position of com ponent objects in a

imiform fashion. T he m ost na tu ra l precursor here is where the program m er

has identified a 1:1 relationship between a client class and a com ponent class,

and has im plem ented th is by giving the client class a field of type com ponent.

If it la ter trans{)ires th a t the card inality of th is relationship m ust be extended

to 1:N, it may be n a tu ra l to apply the Com posite p a tte rn . This will involve

replacing the com ponent field w ith a field of a type th a t represents both

the interface to the com ponent class itself, and th e “com posite” interface

(addComponent, removeComponent etc.).

One issue is the actual com posite d a ta s truc tu re th a t is to be used. This

could be any type of generic container structu re , bu t is m ore usually a type of

130

list. Let us paranieterise the transform ation w ith the container class th a t is

to be used for the com posite im plem entation , and dem and th a t th is container

class contains an iteration interface. The resulting transform ation is:

1. A pply A b s t r a c t i o n to the com ponent class to produce th e com po

nent interface.

2. E x tend the com ponent interface w ith th e supplied com posite interface.

3. Provide im plem entations for the com posite operations in the com po

nent class'^.

4. A dd th e com posite class and provide it w ith an implements link to the

com i)onent interface. It will contain a private field of type container.

T he com posite m ethods will be im plem ented by delegating them to

the container field, while the com ponent m ethods will be im plem ented

by itera ting through the elem ents of th e container and applying the

m ethod to each one.

5. Apply A b s t r a c t A c c e s s to ab strac t the client class from the com po

nent class, so th a t it now uses the com ponent interface instead.

The result of th is transform ation is th a t th e client class now uses the com po

nent class th rough its interface. It is also easy to extend the client so th a t it

uses com positions of com ponents in place of the single com ponent instances

it was dealing w ith originally-

Overall Assessment: Excellent.

^■^Operations like addComponent are uiiiiitiiitive for the com ponent class and m ust be

im plem ented to do nothing. However, even if the pattern is being applied by hand, th is is

necessary to achieve a transparent interface to both leaves and com posites.

131

D ecorator

The intent of the Decorator pattern [41, p. 175] is to enable the dynamic ad

dition and removal of responsibilities to/from an object. It allows the func

tionality of an object to be transparently extended at runtime, by wrapping

the object with the appropriate decorator objects.

A transform ation th a t introduces this pattern to a C-I--I- program was

built as part of our earlier work [71]. The starting point for the transforma

tion was taken to be where multiple inheritance had been used to provide the

multiply-decorated component class. This tends to lead to an explosion of

subclasses, where each subclass represents a certain combination of decorator

classes. The application of the Decorator pattern is valuable here to reduce

the number of classes in the program and to enable the dynamic creation of

new combinations of decorators.

Java does not support nniltiple inheritance, so this is not a possible pre

cursor. The alternative precursor is where the component class achieves its

decoration by storing a list of decorator objects and iterating through them

whenever it receives a message. This is an implausible precursor, so w'e do

not consider it further.

The most s\iitable starting point for this transform ation is close to the

green field situation. There are a number of client classes tha t use a com

ponent class, and there are a number of decorator classes. There is as yet

no relationship between the component class and the decorator classes, but

there is commonality between the interfaces they present. Application of the

Decorator pattern means th a t this commonality can be exploited to allow

component objects be dynamically extended with new behaviour, by wrap

ping them with the appropriate decorator objects.

The transform ation to apply the Decorator pattern structure is then as

132

follows:

1. Apply A b s t r a c t i o n to the component class to produce the compo

nent interface and A b s t r a c t A c c e s s to the client classes to abstract

them from the concrete component class.

2. Apply W r a p p e r to a decorator class to create the abstract decorator

class th a t delegates all messages it receives to its component object.

3. Make each concrete decorator a subclass of the abstract decorator class

and update each m ethod tha t is declared in the component interface so

tha t it first invokes the operation of the same name in its superclass.

The clients continue to use the same component objects as before, but access

them through the component interface; behaviour preservation is thus simple

to demonstrate. The Decorator structure is now present, so the client may

be easily updated to decorate these components as need be.

Overall Assessment: Partial.

Facade

The intent of the Facade pattern [41, p. 185] is to provide a unified interface

to an existing set of classes in a subsystem. The natural precursor for this

pattern is stated clearly in the description of this pattern. A set of classes

(clients) use another set of classes (subsystem classes), and this interaction

should be encapsulated and directed through a single facade class.

However, apart from adding an empty facade class it is very difficult

to fvuther autom ate this transform ation in the general case. A client class

may create nuiltiple instances of a subsystem class and interact with them

in different ways. The key aspect of the Facade pattern is tha t these inter

actions nuist be understood in some way, grouped into cohesive units and

133

encapsulated in the interface to the facade class. Finding these groupings

involves sophisticated pattern recognition tha t is poorly supported by auto

m ated approaches. Packaging these groupings into cohesive methods in the

facade interface is likely to involve m ethod splitting and low-level analysis

tha t other transformations do not need^^.

So while a compelling precursor can be identified, our methodology can

achieve little by way of autom ating this transformation.

Overall Assessment: Impractical.

F lyw eight

The intent of the Flyweight pattern [41, p. 195] is to use sharing to support a

large number of fine-grained objects efficiently. The precursor for this pattern

is (juite clear from the pattern description. A class exists th a t has a large

number instances and part of the state of these instances never changes after

construction. The inunutable part of the state can be made intrinsic to the

flyweight and the mutable part stored in the context of the flyw'eight.

Not nuich of this transform ation can be autom ated using the techniques

w'e have proposed. The structure of the Flyweight pattern can be built but

“populating” it and transforming the existing class into this structure has to

be done by the progranuner. The number of flyweight objects, their initial

state, and a key for accessing them are all crucial aspects of this pattern

th a t cannot be determined from the program code using our techniques.

Also, determining how to integrate the extrinsic state into the context of the

flyweight is an issue requiring considerable design judgement.

^^Bongtssoii and Bosch describe an experience of reengineering the software system for

a dialysis machine [4]. They report apj)lying the Facade pattern with enthusiasm and

fincUng that it resulted in unnecessary complexity. This suggests that even applying this

l)attern by hand is not an easy task.

134

Overall Assessment-. Impractical.

P ro x y

The intent of the Proxy pattern [41, p.207] is allow one object to “stand

in” or act as a surrogate for another object. There are many reasons why

it may be desirable to proxy an object: the real object may reside on a

remote machine (remote proxy), or it may be necessary to restrict access to

certain operations (protection proxy), or constructing the entire object may

be expensive and a light proxy can be used in its place until full construction

becomes necessary (virtTial proxy).

Regardless of the tyi)e of proxy, its essential structure can be achieved by

the application of the W r a p p e r minitransformation, to wrap the original

object with its proxy object. We will consider the transformation for the

virtual proxy further. The natural precursor is where a class has been de

veloped but the programmer realises th a t the construction of objects of this

class is time-consuming (e.g., they may access an image across a network). It

may therefore be beneficial to {postpone construction of the expensive parts

of this class until they are actually needed.

The param eter to this transform ation is just the class to be proxied. The

transform ation to apply a virtual proxy is as follows:

1. Apply W r a p p e r to the given class to create the proxy class.

2. Apply A b s t r a c t i o n to the given class and add an implements link

from the proxy class to the new interface.

3. Apply A b s t r a c t A c c e s s s o clients of the given class now access it

through the interface.

135

Now the essential pattern structure is available, the programmer can develop

the program further to achieve the relevant type of proxying. In the case of

the virtual proxy, the “cheap” fields of the class may be stored in the proxy

enabling certain requests to be met by the proxy alone. O ther requests will

result in the creation of the proxied object and the delegation of the requests

to this object.

Overall Assessment: Partial.

5.6.3 The Gamma et al Behavioural Patterns

In this section we consider the application of our methodology to each of the

behavioural patterns of the Gamma et al catalogue [41], If the pattern has

been dealt with before, we simply place the precursor and resulting transfor

mation into one of the three categories listed on page 124. Before considering

the patterns themselves, we first deal with a difficult problem that arises in

several of the transformations for behavioural patterns.

Issues in C la ss-sp littin g T ransform ations

Many of the transform ations in this section involve splitting an existing class.

In the simple case, e.g.. Strategy, after the class is split one part retains a

reference to the other part. The relationship is reflected in the object struc

ture in th a t what was originally a single object before the transformation,

will now become two objects, one with a reference to the other. This does

not present any particular problem to our approach. Given a reference to an

object, the i>art th a t has been split off can be accessed by traversing the link

to tha t object.

A much more serious issue arises when a class is split and the cardinality

of the relationship between the parts is made 1:N, but the traversal of this

136

relationship must only be available from the N side to the 1 side. In this case

it is lip to the programmer to keep track of which object is related to w'hich,

i.e., there is no explicit link between the objects. This occurs in a number of

design pattern transformations:

• Iterator. In the precursor the iteration is part of the composite class,

while in the design pattern structure it is moved to an object on its

own. A comj^osite object may have many active iterations, but should

not know about them.

• Memento. In tlie precursor the originator class itself stores the me

mento object, while in the design pattern structure it is stored in an

object on its own. An originator object may have many mementos, but

should not know about them.

Here is a concrete example of the problem, based on the design])attern

transformation for the Iterator pattern (see page 142):

Composite x = new Composite();

Composite y = new Composite();

Composite z;

x.startlteration();

y.startlteration();

if (someCondition)

z=x;

else

z=y;

return (z.getNextElem entO);

137

The Composite class provides th e usual m ethods to add and remove ele

m ents, as well as m ethods to ite ra te through the elem ents of the com position.

The object reference z is assigned one of the two Composite objects th a t have

been created a t the s ta rt of the block.

In applying the Ite ra to r p a tte rn to th is program , th e itera tion part of

Composite will be split off into a class on its own. A t points in the code where

an itera tion is started , a new ite ra tion object will be created, param eterised

w ith th e com posite object. In the above code, two new itera tion objects will

be created , one for the iteration over x, and one for the itera tion over y. The

problem faced here is how to work out which ite ra to r ob ject should be used

in the return statem ent.

In the original program , the fact th a t we had a reference to the object

m eant th a t we knew which ite ra to r it was connected to, since the ite ra to r was

p art of the object itself. In the transform ed program , the ite ra to r object holds

a reference to its com posite object, b u t not vice versa. This m eans th a t code

in the original program th a t accesses the itera tion interface of a com jjosite

object cannot be easily transform ed to use the appropria te itera tion object.

In fact, th is problem is not decidal)le in general, and could be a problem for

a program m er perform ing the task by hand.

If an ite ra to r is initialised and used on a nam ed object, not passed to

ano ther context and not aliased, it w'ill not be a problem to transform . Such

cases can be transform ed autom atically . More com plicated cases cannot be

dealt w'ith using our approach.

Chain of R esponsibility

T he in ten t of the Chain of Responsibility p a tte rn [41, p .223] is to decouple

the sender of a request from the u ltim a te receiver of the request. The recjuest

138

is passed along a chain of objects until one object finally handles it.

A starting point for this transform ation th a t involves an object sending a

request to various other objects, and testing if they have handled it, is likely

to be an antipattern . A more suitable precursor starting point is where the

receiver object is known to the sender, but a requirement has emerged to

make this relationship more flexible. For example, in developing an applica

tion a programmer may start with a simple interface where any help request

from the user is always handled by the same object. As the interface be

comes more complicated, and a full graphical user interface is used, it will

be necessary to introduce context-sensitive help. In this case, a user help

request may be passed through several user interface objects until it reaches

the appropriate one th a t can handle it.

The input to this transform ation is the sender class and the receiver class.

It proceeds then as follows:

1. Apply W r a p p e r to the receiver class to i)roduce the chaining class.

2. Make the receiver class a subclass of the chaining class. This has the

effect of making the default behaviour for any undefined method in the

receiver class be delegation to the next ol)ject in the chain^®.

3. Apply A b s t r a c t A c c e s s to the sender class so it uses the chaining

class rather than the receiver class.

Any receiver object has now been made part of a null-term inated chain of

objects of length 1. To add a new receiver class th a t handles any foo requests,

the new receiver class should be made a subclass of the chaining class, the foo

m ethod should be removed from the existing receiver class (thus causing the

^^Tliis is a surprising and vahiable reuse of the class produced by the WRAPPER mini-

transforniation.

139

default delegation behaviour to come into play), and th e required receiver

object should be constructed and added to the end of the curren t chain of

objects.

A fter application of th is p a tte rn , the program m er is left w ith some work

to do to exploit the flexibility of th e p a tte rn structu re . The precursor for th is

p a tte rn is nevertheless plausible and the transform ation does not present any

serious problems^®.

Overall Assessment: Excellent.

C om m and

The in ten t of the Com m and p a tte rn [41, p .233] is to encapsulate a request as

an object. This enables a client to be param eterised w ith different requests,

and supports queuing and logging of requests.

This p a tte rn aims to loosen the coupling betw'een th e orig inator of a

request and the receiver of the request. The originator is initialised w ith a

conm iand object th a t sim ply supports the operation execute. At some point

the originator invokes execute on its conunand object and th is sends the

request to th e receiver object.

The precursor is as follows. An instance of the originator class invokes

th e paranieterless operation foo on its receiver object. T he receiver object

is passed to the originator class as an argum ent to its constructo r (if it is

created w ithin the constructor we can use the parameteriseField refactoring

to ex trac t its construction). T he only use th e originator class m akes of its

^®Toku(la and Batory state of this pattern [96]: “there is no refactoring-enabled evolu

tionary path which leads to [its] use.” We have nevertheless presented a successful trans

formation for this pattern. The reason is tha t the precursor actually simplifies m atters

by ensuring tha t the key behavioural abstractions are already packaged into methods so

what remains is a mainly structural transformation.

140

receiver field is to invoke foo on it. The transform ation proceeds as follows:

1. The createWrapperClass refactoring is used to partia lly w rap the re

ceiver class. This creates the concrete com m and class th a t stores a

reference to a receiver object and delegates the foo recjuest to it.

2. Renam e the foo m ethod in the com m and class to execute.

3. A pply the A b s t r a c t i o n m initransform ation to the com m and class to

produce the com m and interface.

4. The useWrapperClass refactoring is used to update all creations of orig

inato r objects to w rap the receiver param eter in a concrete connnand

object. This concrete com m and object is stored in th e orig inator class

and any previous invocations of receiver.foo() are changed to com

mand.execute().

5. Delete the receiver field from the originator class.

T he precursor appears valuable, though (^uite constrained, and th e transfor

m ation is satisfactory.

Overall Assessment: Partial.

In terpreter

T he in ten t of the In terp re ter p a tte rn [41, p .243] is to enable th e definition

of the representation of a gram m ar, along w ith an in terp re te r th a t uses th is

representation to in terp re t sentences in the language defined by th e granunar.

This p a tte rn is useful when the program being developed has to in terp re t a

sim ple language th a t can be stored as an ab strac t syntax tree. Each gram m ar

ru le in the language is represented as a class and an interpret m ethod is added

141

to each class th a t defines how this part of the sentence is to be in terp reted

and processed.

The na tu ra l precursor is w'here a problem is represented and solved in

some particu lar way, bu t it becomes necessary to deal w ith a more general

problem, one th a t can be usefully specified as a sim ple language. For exam

ple, a program may allow the user to search for a string in a tex t file. A

natural evolution of th is facility w'ould be to allow the user to specify a more

general p a tte rn to search for, and in th is case it would be useful to specify

the problem using a regular expression grannnar.

A lthough the precursor is plausible, it is too vague to serve as a concrete

stiirting point for an au tom ated transform ation. Nor does there appear to be

any obvious precursor th a t could serve as a s ta rtin g point for a transform ation

for this p a tte rn^ '.

Overall Assessm.e.nt: Im practical.

Iterator

The in ten t of the Ite ra to r p a tte rn [41, p .257] is to enable sequential access

to the elem ents of an aggregate object w ithout exposing the underlying rep

resentation of the object. It allows nm ltiple concurrent iterations over the

aggregate object and does not expose the underlying s truc tu re of th e aggre

gation.

The ideal s ta rtin g point for th is transform ation w'ould be sim ply an ag

gregate class th a t does not have any ite ra to r yet. However, au tom atically

ex tracting the s truc tu re of the aggregate and how to ite ra te th rough it is not

feasil)le, so we seek a sim pler precursor. A na tu ra l one is w'here th e ite ra to r

^'In his work on au tom ated p a tte rn detection, Kyle Brown also classifies th is p a tte rn

as too general to be detectable by an au tom ated tool [13].

142

has been into the aggregate class itself through the use of a cursor.

This is connnon practice when prototyping an aggregate class initially, and

will allow a single iteration to be active at any one tinie^* .̂ If the aggregate

class becomes more widely used, the reciuirement for multiple concurrent it

erations w'ill surely arise, and this will require the application of the Iterator

pattern.

The param eters to this transformation are the aggregate class itself and

the iteration methods and fields tha t are part of this class. The iteration

fields should only be accessed by the iteration methods. The transform ation

works as follows:

1. Copy the iteration methods and fields to the new iteration class, which

is parameterised with an instance of the aggregate class and delegates

any internally-generated, non-iterator requests to this instance. A form

of the D e l e g a t i o n minitransformation can be used here, but the orig

inal aggregation class should remain unchanged for now'.

2. Apply AF3STRACTI0N to the iterator class to produce an iterator in

terface. Apply E n c a p s u l a t e C o n s t r u c t i o n to the aggregate class

with the iterator class as createe. This will add a construction m ethod

for the iterator class to the aggregate class th a t returns an iterator

instance initialised with this.

3. Wlierever in the program an instance of the aggregate class is iterated

over, replace this with access via an iterator object.

4. Delete the iteration methods from the aggregate class.

is also the sohitioii used by Bertrand Meyer to enable iteration though the elements

of a list [66, p. 192].

143

Step (3) may produce a clumsy result. If an aggregate object is partially

iterated over and then passed as an argument to another method, the iterator

will have to be passed in as well, and possibly then the aggregate object need

not be passed. This is an example of the class-splitting problem discussed on

page 136. A part from this, the precursor for this transform ation is plausible

and the transformation generally conii)elling.

Overall Assessment: Partial.

M ediator

The intent of the Mediator pattern [41, p.273] is to define an object th a t en

capsulates how a set of objects connnunicate. By centralising comnninication

in the mediator object, coupling between the colleague objects is reduced,

and knowledge of how they communicate is defined in one place rather than

distributed across the colleague objects. This pattern w'orks best when the

colleague obj(?cts connnunicate in a w'ell-dehned way.

This pattern is similar to Facade [41, p. 185], except th a t it allows for

multidirectional conuiumication between the colleague objects, rather than

the unidirectional communication tha t Facade supports. As w ith Facade,

there is little th a t can be done here by way of providing autom ated supi)ort.

A mediator class can be introduced, but the analysis of the inter-object

connnunication, so tha t it can be abstracted and centralised in the mediator,

is a task tha t has to be performed by hand.

Overall Assessment: Impractical.

M em en to

The intent of the Memento pattern [41, p.283] is to make it possible to capture

and externalise the state of an object, and to restore the object to this state

144

at, a later time. This must occur without violating the encapsulation of the

object.

A suitable precursor is as follows. The originator class supports two

operations, say store and reset. Store requests the originator to make a copy

of its state and store this internally in a field called state, while reset restores

the originator to its earlier state. This reflects the intent of the Memento

pattern, but not the flexibility. For example, a client (caretaker) cannot store

nniltiple mementos; the originator can only store one. The transform ation

replaces the store and reset methods with createMemento and setMemento,

and updates the caretaker classes to use these methods. A green field starting

point for this design pattern transform ation is possible as well, and would

also be a practical starting point.

The input to this transformation is the originator class, the memento

class, the store and reset methods and the state field.

1. The store and reset methods are copied to methods called createMe

mento and setMemento in the originator class.

2. The createMemento method is updated to create a local object of the

class memento and to access this instead of the state field of the origina

tor class. It returns this object at completion of the m ethod’s execution.

3. The setMemento m ethod is similarly updated to take an argument of

the class memento and to access this instead of the state field of the

originator class.

4. The memento class is given an empty interface and A b s t r a c t A c c e s s

is used to update the createMemento and setMemento methods to use

this interface rather than the memento class.

145

5. All caretaker classes th a t use the store and reset methods are updated

to use createMemento and setMemento and to store the memento object

locally i^

6. The store and reset methods, and the state field are deleted from the

originator class.

The precursor is not th a t useful in th a t it assumes th a t the essential memento

aspects are present. The transform ation then moves from a “one memento

per originator object” situation to a more flexible “many mementos per origi

nator object” situation. We used a similar precursor for the Iterator pattern,

but it more likely th a t an aggregation cla^ss will provide an interface for iter

ation than th a t a given class will provide a store/reset interface as we have

assumed liere.

Overall Assessment: Partial.

O bserver

The intent of the Observer pattern [41, p .293] is to define a dependency be

tween a subject and a number of observer objects such tha t whenever the

subject changes state, all the observers are notified of the change and can

take appropriate action. A reasonable precursor would be where the relation

ship is one-to-one, i.e., there is a single observer object and the dependency

between the sul)ject and observer has been implemented in an ad hoc fashion.

This is a reasonable design, though in the presence of a requirement to add

'^Tliere is ail issue here in th a t we m ust know which reset m atches which store. An

invocation of reset will m atch the previous invocation of store, and while th is is easy to

work out in m any cases, it is not decidable in general. This is an exam ple of the class-

sp litting i)ioblein discussed on page 136.

146

more observers, it will be necessary to make the relationship more flexible

by applying the Observer pattern.

Autom ating this transform ation is a problem as the precursor described

is too vague. The dependency between subject and observer could be imple

mented in many different ways. We could make progress by assuming that

there is a single observer th a t uses the “attach /no tify” protocol provided

by the subject, and build a transform ation that allows multiple observers

to attach to the subject. We assess th a t this precursor is not a very likely

structure to occur in practice. It is possible to provide the basic Observer

structure for tlie programmer to work w'ith, but we have not found a con

vincing precursor and transform ation for this pattern.

Overall Assessm,ent: Impractical.

S ta te

The intent of the State pattern [41, p.305] is to enable an object to undergo

a qualitative change in behavioiu' when its internal state changes. Rather

than expressing this as extensive and similar case analysis in each method,

this pattern defines a class to represent each possible state the object may

be in. For example, a stream object will behave very differently depending

on whether or not the file it is connected to is open or not. R ather than

having a single stream class whose methods test whether or not the file is

open, the State pattern w'ould model this situation as two separate classes,

one representing an open file, the other a closed file.

There is a very compelling precursor for this pattern. A class defines

objects th a t can be in any one of a number of distinct states, and which

state an object is in has a qualitative effect on behaviour. This will be

evident because the methods of the class will contain a sinnlar case analysis

147

structure, e.g..

if (someCondition){

}
else{

}

A class th a t contains several methods tha t have this structure can be split

into two classes, one where someCondition is true and one where someCondi

tion is false. The if...else statem ent can then be removed and simply replaced

by the appropriate body of code.

The input to this transform ation is the context class to be split, the

condition tha t is to be used as a basis for the splitting, and the points in

the methods of the class where the value of this condition changes. The

transform ation proceeds as follows:

1. Apply the D elegation m initransform ation to the context class, so it

now delegates all requests to a component object of the newly-created

state class.

2. Apply A bstraction to the state class and A b s t r a c tA ccess to the

context class, so the context class now only refers to the state class via

the state interface.

3. For each interesting value of the given condition, create a subclass of

the state interface. Simplify all case analysis in the m ethods of these

classes based on the value the given condition is known to have^°.
^°Opdyke presents a detailed description of how to simplify conditionals in [77, p .71].

148

4. Add a setState method to the context class th a t sets its local state field

to the given instance of one of the state subclasses. At each of the

points in the methods of the state subclasses where the given condition

may change value, add an invocation of the setState method to set the

new state object in the context class.

5. Update the creation of context objects to initialise them with the ap

propriate state object.

6. Delete the original (unsplit) state class th a t was created in step 1.

The structural aspects of this transform ation can be autom ated, but in gen

eral user intervention is needed in assessing where a state change occurs.

Overall Assessment: Partial.

S trategy

This pattern has been fully dealt with in section 5.5.3. The precursor and

transformation are compelling, though a small amount of refactoring work is

left to the progrannner at the end of the transformation.

Over'dll Assessment: Excellent.

T em plate M eth od

The intent of the Template Method pattern [41, p.325] is to enable a m ethod

to be expressed as a skeleton algorithm, thus deferring the details of the

implementation to subclasses. Each subclass reuses the abstract algorithm

defined in its superclass, and supplies the details tha t are specific to itself.

For example, a search routine in an abstract container class could be described

as follows:

149

boolean search(Element e){

initSearch(e);

while(!exhausted() !found(e))

advanceSearch(e);

return !exhausted();

}

This m ethod is in effect a high-level algorithm th a t describes searching^^

Each concrete subclass of container will define initSearch, exhausted, found

and advanceSearch in its own way.

T he na tu ra l precursor for th is p a tte rn is w'here a m ethod has been im

plem ented in term s of th e o ther concrete m ethods defined in its class. This

is a norm al situation , bu t in the face of a requirem ent to reuse the algorithm

contained in the m ethod, bu t not its detailed im plem entation in term s of

the o ther m ethods of the class, the weakness of th is tigh t coupling becomes

clear. A pplying the Tem plate M ethod p a tte rn in th is situa tion separates the

essential algorithm of the m ethod from the m ethods it invokes, and allows

the algorithm ic abstrac tion to be reused.

The input to th is transform ation is th e m ethod to be tem plated . The

transform ation proceeds as follows:

1. Apply p a r t i a l A b s t r a c t i o n to the class of the m ethod to produce an

abstrac t class where the m ethods used by the m ethod to be tem plated

are defined to be abstrac t.

2. U pdate clients of th e given class to use references to the ab strac t class

instead (uses a form of A b s t r a c t A c c e s s).

^'h istaiices of the Tem plate M ethod p a tte rn are also referred as hot spots, as they

describe a flexible part of the application th a t is open to change. An approach for au to

m atically detecting hot si>ots is described in [87].

150

The transform ation is simple and straightforward. The only weakness is tha t

the precursor assumes th a t the components of the method to be teniplated

have been encapsulated as methods. If this is not the case, a refactoring

similar to Opdyke’s convert_code_segment_to_function [77, p .53] could be used

to encapsulate these code segments as methods.

Overall Assessment: Excellent.

V isitor

The intent of the Visitor pattern [41, p.331] is to enable an operation over an

object structure to be defined separately from the object structure itself. For

example, adding a new operation to a parse tree usually involves adding a

m ethod to each class of node in the tree, to define how the operation works for

th a t type of node. This distributes a cohesive algorithm over several classes,

which is not in general a desirable design. The Visitor pattern enables such

an oj^eration to be defined in one class, thus keeping all the details of the

o])eration in one place^^.

The natural precursor for this pattern in where an operation has already

been implemented as part of the object structure, and the programmer now

wants to switch to a Visitor pattern solution to enable easy addition of other

operations. The transform ation can easily create the visitor interface and a

concrete visitor class for the operation as well as adding the accept method to

the classes of the object structiu’e. However, the key step of taking the oper

ation th a t has been distributed across the classes of the object structure and

^^This does not come for free of course; the principle disadvantage of the Visitor pattern

is that the class that defines the visitor operation must have knowledge of the classes

defining the object structure. If these classes change, so too must the visitor class itself.

This problem and the use of subject-oriented programming to resolve it are discussed in

[2 1].

151

centralising this in the concrete visitor subclass cannot be fully autom ated

using our techniques. The existing definition of the operation will probably

combine operation-related code with traversal code in various ways. Sepa

rating out this code requires intervention from the programmer. So while

a small part of this transform ation may be autom ated, the precursor is not

really being exploited to produce an interesting, behaviour-preserving trans

formation.

Overall Assessment: Impractical.

5.7 A nalysis o f R esu lts

The results from the previous sections of this chapter are presented in com

plete form in table 5.1, and in summary form in table 5.2. These tables

indicate a very satisfactory result. An excellent transformation was achieved

for close to half the patterns considered, and in a further 26% of cases a

workable, though partial, transform ation w'as found.

The methodology worked very well for the creational patterns, but not

so successfully for the structural patterns or behavioural patterns. It was

to be expected th a t behavioural patterns would cause problems, but it is

surprising th a t the results for the structural patterns were not better. Our

approach is based on static analysis of the program, and so deals more easily

with concrete program structure than with dynamic behaviour. The reason

for this apparent anomaly is th a t although a pattern is assigned one of three

categories, it may well contain elements from all three. For example, Ab

stract Factory is a very static, creational pattern but Builder, although also

categorised as creational, has a distinct behavioural flavour as the objects in

question are created in a dynamic “piecemeal” fashion.

152

P a t te r n N am e P u rp o se A ssessm en t

A bstract Factory creational Excellent

Builder creational Excellent

Factory Method creational Excellent

Prototype creational Excellent

Singleton creational Excellent

Adapter structural Excellent

Bridge structural Excellent

Composite structural Excellent

Decorator structural Partial

Facade structural Impractical

Flyweight structural Impractical

Proxy structural Partial

Chain of Responsibility behavioural Excellent

Connnand behavioural Partial

Interpreter behavioural Impractical

Iterator behavioural Partial

Mediator behavioural Impractical

Memento behavioural Partial

01)server behavioural Impractical

State behavioural Partial

Strategy behavioural Excellent

Template Method behavioural Excellent

Visitor behavioural Impractical

Table 5.1: Assessment of Design Pattern Transformations

A ssessm en t N o. o f P a t te r n s P e rc e n ta g e

Excellent 11 48%

Partial 6 26%

Impractical 6 26%

Table 5.2: Summary of Assessments

153

O ther in itially surprising resu lts were those for S trategy (a behavioural

p a tte rn th a t worked well) and Facade (a s truc tu ra l p a tte rn th a t failed). In

th e case of the precursor for S trategy, the l)ehavioural aspects of the p a tte rn

are already encapsulated w ithin m ethods. The transform ation therefore ju s t

has to deal w ith the s truc tu re of th is p a tte rn , and th is proved straightforw ard

to handle. Facade presented the opposite problem . Its s tru c tu re is easy to

deal w ith, bu t there is also a behavioural elem ent in how the client classes

in te rac t w ith the subsystem classes th a t are to be encapsulated, and this

behavioural elem ent could not be ex tracted and transform ed.

Reuse of m in ipatterns is ano ther im portan t issvie to consider. We hoped

th a t th e m in ipatterns uncovered during the developm ent of the earlier design

p a tte rn transform ations would prove useful in la ter developm ents. In table

5.3 we depict the reuse of m in ipa tte rn s across the design p a tte rn transfor

m ations. Note th a t for simplicity, when one transform ation reuses another

in its en tirety (e.g.. A bstract Factory uses Singleton), we depict th is as reuse

of the com ponent m initransform ations. Also, we om it from the tab le design

p a tte rn s for which no satisfactory transform ation was found.

It is clear from th is tab le th a t we have achieved considerable reuse of

the set of six m initransform ations th a t were uncovered during developm ent

of transform ations for the creational pa tte rn s and the sam ple s tru c tu ra l and

behavioural pa tte rn . T he actual reuse achieved is even stronger, as th is table

only depicts m in itransform ation reuse and ignores the reuse of refactorings

such as createExclusiveComponent.

1.54

P a ttern A bs A bsA cc Encap Partial W rap D eleg

A bstract Factory X X X X

Builder X X X

Factory Method X X X X

Prototype X X

Singleton X

A dapter X X X

Bridge X

Composite X X

Decorator X X X

Proxy X X X

Chain of Responsibility X X

Command X X

Iterator X X X

Memento X

State X X X

Strategy X X X

Template Method X X

Table 5.3: Reuse of Miiiitraiisforinations

The abbreviations in the table are as follows. Abs:ABSTRACTlON,

A b sA cc:A B S T R A C T A cC E S S, Encap:ENCAPSULATECONSTRUCTION,

Partial: P a r t i a l A b s t r a c t i o n , W r a p : W r a p p e r , D eleg: D e l e g a t i o n .

155

5.7.1 C om m ents on the D evelopm ent o f the Transfor

m ations

Developing a transform ation for a design p a tte rn is not a triv ial task. In

sight and experience are necessary, and, as w ith any design task, m any ite r

ations were usually required before a satisfactory solution was reached. O ur

approach to dem onstrating behaviour preservation dem ands th a t program

behaviour be m ain tained a t every step. This constrains the type of transfor

m ations we can use, in th a t th e following s truc tu re is not perm itted :

transformatiorij / / program behaviour is changed

transformatioDj / / program behaviour is reinstated

A lthough th is overall chain is a refactoring and could be perm itted , it will

be disallowed because the application of transformation, will be deem ed to

have changed program behaviour. It would be desirable to allow th is type

of chaining, bu t it would be extrem ely difficult to extend our approach to

behaviour preservation so as to be able argue th a t a program has changed

behaviour, and then changed back to its earlier behaviour^'^ T he reason why

we are al)le to reason about program behaviour so easily is th a t we need

never be concerned w ith w hat the behavioTir actually is, only th a t it has not

been changed. To weaken th is criterion would lose the relative sim plicity of

the approach th a t we have used.

T h a t th is type of erroneous com position is tem p ting is evidenced in

R oberts’s work. In [84, p .40] he presents a com posite refactoring chain th a t

^■^Tokucla and B atory call tliis type of refactoring a transactional refactoring [96]. They

proi)ose allowing th is type of refactoring bu t dem anding th a t it operates in atom ic mode,

thus ensuring behaviour preservation. However, producing a semi-formal argum ent of

behaviour preservation rem ains a problem.

156

creates a strategy object. Part of the composition involves the application

of the moveMethod and moveField refactorings to move the strategy methods

and fields from the context class to the strategy class. However, a precondi

tion of his moveMethod refactoring is th a t the method must not access any

fields of its current class. Clearly then, the program will be in an illegal

state after the application of the moveMethod refactoring, and will only be

returned to a legal state when the moveField refactoring has been applied^"^.

We dealt with this problem by first “abstracting” the m ethod from its class

so it could be moved away and still access fields in tha t class. See section 5.5

for more details.

Scanning our catalogue of design pattern transformations, we observe

th a t a transform ation generally has three phases:

1. Applying the design pattern structure. This involves adding new classes,

interfaces, methods etc. to the program. They are just added, not used,

accessed or invoked, so arguing behaviour preservation for this stage is

quite trivial. The changes made by this stage typically set the scene

for the pattern, and would not make sense to perform on their own,

miless the following step was performed as w'ell.

2. The operoiion-affecting step. This is the “big step” th a t switches the

program from its old inflexible structure to the more flexible pattern

structure set up in the previous step. The precondition for this step is

usually quite sophisticated, but has been largely set up by the previous

step if all has gone well. It is therefore common th a t the precondition

for this step does not contribute much to the precondition of the overall

transformation.

the point in the derivation of the preconditions for the chain [84, p.41] where this

should become apjjarent, the conflicting concUtion is omitted.

157

3. Tidying up. In th is step any program elem ents th a t are no longer

needed are deleted. The postcondition of the previous step m ust make

it clear th a t they are no longer recjuired. In m any transform ations,

there is no need for th is step, as no program elem ents are m ade redun

dan t by the transform ation.

T here is a fractal elem ent in th is s truc tu re , in th a t a design p a tte rn transfor

m ation may use a m initransform ation th a t itself has th is th ree-part structu re .

The actual low-level refactorings th a t are the foundation of th is work do not

have th is s truc tu re however. T hey typically fit into one of the above three

categories. For exam ple, addClass clearly belongs to the first, replaceObjCre-

ationWithMethlnvocation to the second, and deleteClass to the th ird . Green

field approaches to design p a tte rn application need only to use the first step,

th a t of setting up the p a tte rn structu re . The second and th ird steps are re

quired in our approach as a d irect resu lt of our using a precursor as a s ta rting

point for the transform ation, and dem anding th a t the transform ation be be

haviour preserving.

5.7 .2 C om m ents on P recon dition C om putation

In th is section we make some general observations about the process of pre

condition com putation.

• It is not a simple task.

• It can be applied rapidly w ith experience, though doing it step-by-step

as in chapter 3 is very tedious.

• Usually earlier refactorings set up the preconditions for la te r ones, so

even though the overall transform ation can be quite com plicated, the

precondition is usually not too extensive.

158

• C om puting preconditions was a very useful process. Frequently it un

covered aspects of the transform ation th a t m ight otherw ise have been

missed. For exam ple, the fact th a t the Factory M ethod transform a

tion cannot be applied if the C reator class uses a sta tic m ethod of the

P roduct class is not obvious in itself. However the process of com put

ing the precondition for th is transform ation brought this aspect to the

foregroim d (see section 4.4.1).

5.8 R ela ted W ork

In chapter 4 w'e discussed related w'ork in the general area of au tom ated

design p a tte rn transform ations. Specific details of how other aj^proaclies

deal w ith p articu la r p a tte rn s were considered in this chapter as p a rt of the

analysis of the relevant pattern .

5.9 Sum m ary

We have rigorously applied our proposed m ethodology to the en tire set of

G am m a et al creational patterns, and to a sam ple s truc tu ra l and behavioiu’al

p a tte rn . For th e rem aining G anuna et al pa tte rns, we assessed if they were

am enable to our approach and, where possible, proposed a precursor and

sketched a transform ation . O ur resu lts were prom ising in th a t for m ost

p a tte rn s a workable solution could l>e found, and there proved to be extensive

reuse of the m initransforn ia tions th a t were developed during th is w'ork.

159

Chapter 6

Conclusions

This chapter conchules the thesis. In section 6.1 we state again the contri

butions th a t have been made by this research. In section 6.2 we present a

number of proposals for future work tha t would extend this research, and

finally, in section 6.3, we make some concluding remarks.

6.1 C on trib ution s

The principle contributions of this thesis were stated in chapter 1. Here we

restate them:

• A methodology for developing design pattern transformations. This is

the essential contribution of this work. The methodology we have de

veloped has been applied with full rigour to seven conmion design pat

terns^, and a prototype software tool has been built tha t can apply

these seven design patterns to Java programs. The methodology has

also been applied to the remaining patterns in the Gannna et al pat-

^The seven design patterns to wliidi the methodology has been fully applied are Ab

stract Factory, Factory Method, Singleton, Builder, Prototype, Bridge and Strategy [41].

160

tern catalogue [41], though these pattern transform ations have not been

prototyped. The essence of our methodology has been published in

summary form in [74, 72], and more completely in [75].

• A rmnitransformation library. Design pattern transform ations have a

strong degree of conmionality and this has been captured in a set of

six minitransformations. These minitransformations have been imple

mented and dem onstrated to be widely applicable in developing design

pattern transformations.

• A model for hehaviow'-preservation proofs. The transform ations we

develop must be invariant with respect to program behaviour. In order

to prove this rigorously for the sophisticated program transformations

that we develop, we have extended existing refactoring w'ork by allowing

the transformation definition to contain not only simple sequences, but

also iteration and conditional statem ents. This model has been applied

in full rigoiu’ to several exampk^s, and has been published in [76].

Other contributions are:

• The notion of Precursor. We introduced the notion of a precursor for a

design pattern, i.e., a design structure tha t expresses the intent of the

design pattern in a simple way, but th a t would not be regarded as an

examj^le of poor design. We dem onstrated the usefulness of this notion

by developing precursors for the Gamma et al design patterns, and

using them as starting points for our design pattern transformations.

This set of precursors provides an insight into the type of program to

which a given pattern can be applied.

• A refactory fo r Java. The lowest layer of transform ations is a collection

of refactorings th a t can be applied to a Java program, and this can

161

serve as a basis for otlier transform ation wortc. An extensive set has

been designed and implemented, and these are described in appendix

B. Some are naturally similar to existing refactorings, while others are

peculiar to the development of design pattern transformations.

• A Pr'econdition Categorisation. In section 4.4.1 we described how each

clause of the precondition to a design pattern transform ation can be put

into one of four categories. We also described how this categorisation

can be used in practice to decide how to deal with the failure of a

precondition clause.

6.2 Future W ork

In the following subsections we consider possible future work in the area of

this thesis.

Practical T ests o f th e D esign P a ttern Tool (D P T)

The software prototyj)e we have built as part of this work, DPT, has been

tested on several sample programs to establish a base-level confidence tha t it

operates correctly. Naturally, extensive further testing and updating would

be required to bring the quality of this prototype to production level.

A more interesting issue in this context relates to progrannner acceptance

of the type of transformation DPT performs. D PT makes sweeping changes

to a program when it applies a pattern, and it is an open question wdiether

a i^rogrammer would be content to allow a large system to be updated in

this way. Indeed, a software tool can fail in practice for any number of

reasons [83], and arguing abstractly tha t it is nevertheless useful is futile.

The author’s position is tha t a programmer will use a software tool only

162

if they have a very clear mental model of what the tool does. Compilers,

debuggers and profilers all fit into this category. As design patterns become

more established, we can expect progrannners to become more comfortable

with the type of transformations DPT applies.

One way to aid the program m er’s comprehension of the transformation

DPT has applied is to present each of the program changes to them and

ensure tha t they are satisfied with each one. If they are not, the whole pro

gram can be rolled back to its pre-transformation state. A more ambitious

approach is to try to explain the pattern to the programmer (depending on

their pattern expertise), and put the changes in this context. Note that

existing work in the area of program comprehension has focused on compre

hension as part of software maintenance (e.g., [86]). The problem described

here, th a t of presenting the effects of a large refactoring in a comprehensible

manner, is a future challenge for this field.

Further C onstrviction o f P a ttern T ransform ations

Our refactorings and minitransformations provide a library of reusable com

ponents for design pattern transformation development. As with any such

library, many iterations are required to fully comprehend the domain and

to provide a stable set of components. W ith each new design j)attern de

velopment, our understanding of the minitransformations w’as refined, and

frequently this resulted in the refactoring of the library itself. We do not

claim th a t this process is complete. As more design pattern transformations

are developed using this approach w'e can expect more minitransforniations

to appear and the existing ones to require further work and refinement.

163

A u to m a tio n

At present the construction of the behaviour preservation arguments is frag

ile, in th a t any change made to a low-level refactoring or analysis fimction

requires th a t all proofs th a t use this refactoring or analysis function be

rechecked. This dependency itself is unavoidable, but autom ated software

support would be very useful to help manage it. A repository of refactorings,

analysis functions and helper functions could be created and this used in

performing syntax checking and typechecking of the behaviour preservation

argimients. For example, if testing of D PT reveals th a t the precondition of

a refactoring is not strong enough, the specification of this refactoring would

then be updated in the repository. The autom ated assistance software could

then highlight which minitransformations and design pattern transformations

have to be revisited.

More ambitiously, an a ttem pt could be made to autom ate the construc

tion of the behaviour preservation argument. This is a challenging task, as

we currently use semantic knowledge in building the behaviour preservation

arguments. To completely formalise this would involve working with a for

mal semantics for Java (e.g., [47, 99]), and this would be likely to run into

tractability problems. Partial autom ation is a more promising approach to

take, and it would be interesting to see what contribution such an approach

could make to the com putation of pre- and postconditions for a design pat

tern transformation.

P a ttern M aintenance

Applying a design pattern changes the program code, and some of these

changes must be maintained in order for the pattern to remain intact. This

means th a t certain constraints are put on the possible future evolutions of

164

the program. For example, in a program where the Factory Method pattern

has been applied, the addition of a new Product class means th a t a new

m ethod must be added to the Creator class as well.

Developing tool support to manage and check these constraints is a valu

able extension to our work. The postcondition for a design pattern trans

formation provides a basis from which to develop the constraints associated

with a design pattern. These constraints can be defined using our analysis

functions. This enables a software tool to manage the constraints associ

ated with patterns th a t have been applied to the program, and to notify the

progranuner if they are updating code th a t relates to a pattern. The pro-

grannner may be advised th a t their updates are violating a pattern-related

constraint, and informed of what other changes are necessary in order to

re-establish the pattern constraints.

Language In d ep en d en ce

In our work w'e focTised on the application of design patterns to Java pro

grams. This raises tlie question of the extent to which our approach is ap

plicable to other progrannning languages. Some refactorings and m initrans-

forniations are applicable to any class-based, object-oriented language, while

others are quite Java-specific, for example, those th a t deal with interfaces.

One approach would be to use the Template M ethod pattern to describe

abstractly how the design pattern transform ation operates, and provide the

language specific details in subclasses. This is certainly possible; whether

it is actually useful depends on the degree of commonality between a set

of design pattern transformations th a t each apply the same pattern , but to

programs w ritten in different languages. All refactoring work to date has been

language-specific, so this direction would present an interesting challenge.

165

P re-tran sform ation R efactorin gs

For each design pattern transform ation we compute its pre- and postcondi

tions, and add its precursor precondition where necessary. This precondition

characterises the type of program to which the design pattern transformation

can be apphed. In section 4.4.1 we categorised the different types of precon

dition th a t a design pattern transform ation can have. We stated tha t if a

refactoring precondition fails, the program can be autom atically refactored

to correct the problem, and the transform ation then applied.

We can view the design pattern transformation as describing a prototypi

cal transformation. If a refactoring precondition fails, the program has to be

massaged into a suitable state so th a t the prototypical transform ation can be

performed. This is an area for future investigation, and has the potential to

make the transform ations we have developed aj^plicable to a nuich broader

range of programs.

P attern A p p licab ility

Our current preconditions simply ensure th a t the design pattern transforma

tion can be applied without changing jirogram behaviour. It is left up to

the progrannner to decide if applying the pattern is a good idea or not. We

argued strongly in section 2.2 th a t there are aspects of patterns th a t require

lumian insight, and th a t autom ated attem pts to locate suitable places to

apply a pattern are of lim ited value.

However, a software tool could do more in term s of assessing whether

the pattern is applicable or not, by asking the programmer certain questions

about their intention. For example, in applying the Visitor pattern, the tool

might ask the programmer “Do you expect the classes in the object structure

to change often?” The answers from the programmer may cause the tool to

166

suggest th a t the pattern is not a suitable sohition, or to configure the exact

m anner in which the pattern is apphed.

P a ttern R em oval

An over-zealous progrannner might apply a pattern even though it is not

required, thus obscuring the program rather than enhancing its clarity [84,

p .23]. It might also be useful to optimise a program prior to compilation

by removing any unnecessary patterns, as they typically have a detrim en

tal effect on runtim e performance. An interesting extension to our work is

therefore to develop transformations th a t remove patterns, rather than apply

them. In this case, the design pattern structure is the starting point for the

transform ation, and the corresponding precursor is the target. The informal

statem ent of the starting [)oint for this type of transform ation would be “the

design pattern structure is present, but its flexibility is not required.”

This is not as simple as defining an inverse for each refactoring, and

applying them in reverse order. Many refactorings require extra state to be

m aintained in order to define tlieir inverse. For example, the inverse of a

refactoring tha t deletes an unused class nuist have access to the deleted class

in order to restore it. Even if this extra state is maintained, any changes to

the program between the pattern being applied and it being removed might

render the inverse refactorings unusable. This area may be interesting to

look at, though it is obviously of less impact than the application of design

patterns^.

“Unless of course the current interest in design patterns turns to disdain, and the

software industry starts “reengineering to depatternise.”

167

6.3 To C onclude

We stated the fundamental thesis of this work in chapter 1 as follows:

A utom ating the application o f design patterns to an existing pro

gram in a behaviour preserving way is feasible.

The research presented in this dissertation has dem onstrated the validity of

our original thesis. In section 5.7 we found th a t an excellent transformation

was constructed for closc to half the patterns considered, and in only 26% of

cases could no useful precursor or transform ation be foimd. For seven of the

design patterns considered, a rigorous argument of behaviour preservation

was also developed. We achieved strong reuse of the minitransformations, as

is depicted in figure 5.3 on page 155.

Design patterns have been gaining acceptance in the software engineering

community, though the lack of formalisation or autom ated support has been

a weakness of this field. Refactoring has also been gaining siipport, though

again, most of the recent interest has been in non-autom ated approaches. We

have contributed to the formalisation of the refactoring field, and used our

contribution to develop a rigorous and practical approach to the autom ated

application of design patterns.

168

Bibliography

[1] Christopher Alexander. The Timeless Way o f Building. Oxford Uni

versity Press, 1979.

[2] Ken Arnold and James Gosling. The Java Programming Language.

Addison-Wesley, Reading, Massachusetts, first edition, 1996.

[3] Kent Beck. Extreme Programming Explained. Addison Wesley Long

man, Reading, Massachusetts, first edition, 2000.

[4] PerOlof Bengtsson and Jan Bosch. Haemo dialysis software architec

ture design experiences. In Proceedings o f the International Confer

ence on Software Engineering, pages 516-525, Los Angeles, 1999. ACM

Press.

[5] Keith Bennett and Vaclaw Rajlich. Software maintenance and evo-

hition: A roadmap. In Anthony Finkelstein, editor, The Future o f

Software Engineering, New York, 2000. ACM Press. Produced as part

of ICSE 2000, Limerick, Ireland.

[6] Keith H. Bennett. Do program transform ations help reverse engineer

ing? In Proceedings o f the International Conference on Software M ain

tenance, Maryland, November 1998. IEEE Press.

169

[7] Paul Bergsteiii. Object-preserving class transformations. In Object-

Oriented Programming Systems, Languages and Applications Confer

ence, pages 299-313, Phoenix, Arizona, 1991. ACM Press. SIGPLAN

Notices, Vol. 26, 11 (November).

[8] Lucy M. Berlin. W hen objects collide: experiences with reusing mul

tiple class hierarchies. In Object-Oriented Programming Systems, Lan

guages and Applications Conference, pages 181-193, Ottawa, Canada,

October 1990. ACM Press.

[9] Blueprint Technologies, McLean, VA. Fi'amework Studio 1.5, 2000.

[10] Grady Booch. Object-oriented analysis and design with applications.

Benjamin/Cumm ings, Redwood City, California, second edition, 1994.

[11] John Brant, Brian Foote, Ralph Johnson, and Don Roberts. W rappers

to the rescue. In Eric Jul, editor. Proceedings o f the European Confer

ence on Object-Oriented Programming, Brussels, July 1998. LNCS.

[12] Michael L. Brodie and Michael Stonebraker. Migrating Legacy Systems:

Gateways, Interfaces and the Incremental Approach. Morgan Kaufman,

San Francisco, 1995.

[13] Kyle Brown. Design reverse-engineering and autom ated design p a t

tern detection in Smalltalk. M aster’s thesis. North Carolina State

University, Computer Engineering Department, 1996. available from:

h ttp ://hom etow n.aol.eom /kgbl001001/A rticles/TH ESIS/thesis.htm .

[14] F. J. Budinsky et al. A utom atic code generation from design patterns.

IB M Systems Journal, 35(2), 1996.

170

[15] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Soninierlad,

and Michael Stal. A System o f Patterns: Pattern-Oriented Software

Architecture. John Wiley & Sons, Chicester, first edition, 1996.

[16] Eduardo Casais. Managing Evolution in Object Oriented Environ

ments: an Algorithmic Approach. PhD dissertation, University of

Geneva, Faculty of Economic and Social Sciences, 1991.

[17] Eduardo Casais. An incremental class reorganization approach. In

(). Lehrmann Madsen, editor. Proceedings of the Exiropean Conference

on Object-Oriented Programming, pages 114 131, Utrecht, June 1992.

LXCS.

[18] Eduardo Casais. Automatic reorganization of object-oriented hierar

chies: a case study. Object Oriented Systems, 1(2):95-115, December

1994.

[19] E. J. Chikofsky and J. H. Cross. Reverse engineering and design re

covery - a taxonomy. IE EE Software, pages 13-17, January 1990.

[20] Franco Civello. Roles for composite objects in object-oriented analysis

and design. In Object-Oriented Programming Systems, Languages and

Applications Conference, Washington, September 1993. ACM Press.

[21] Siobhan Clarke, W'illiam Harrison, Harold Ossher, and Peri Tarr.

Subject-oriented design: Towards improved alignment of rec[uirements,

design and code. In Object-Oriented Programming Systems, Languages

and Applications Conference, Denver, November 1999. ACM Press.

[22] J. Craig Cleaveland. An introduction to data types. Addison-Wesley,

Reading, Massachusetts, 1986.

171

[23] James O. Coplien. Software design patterns: Common questions &

answers. In Proceedings of Object Expo New York, pages 39-42, New

York, June 1994. SIGS Publications.

[24] Serge Demeyer, Stephane Ducasse, and Oscar Nierstrasz. A pattern

language for reverse engineering. In Fifth European Conference on Pat

tern Languages o f Programs (EuroPLoP), Irsee, Germany, July 2000.

[25] Serge Denieyer, T.D. IMeijler, and M atthias Riegler. Towards de

sign pattern transformations. In ECOOP Workshop Object-Oriented

Software Evolution and Re-Engineering, Finland, June 1997. Springer-

Verlag LNCS 1241.

[26] Rick Dewar et al. Identifying and communicating expertise in sys

tems reengineering: a patterns apjjroacli. lE E Pi'oceedings - Software,

146(3):145-152, 1999.

[27] E.W. Dijkstra. A Discipline o f Programming. Prentice-Hall, Englewood

Cliffs, N .J., first edition, 1976.

[28] Stepliane Ducasse, M atthias Rieger, and Serge Demeyer. A language

independent approach for detecting duplicated code. In Hongji Yang

and Lee W hite, editors, Proceedings o f the International Conference on

Softiuare Maintenance, pages 109-118, Oxford, September 1999. IEEE

Press.

[29] Stephane Ducasse, M atthias Rieger, and Georges Golomingi. Tool sup

port for refactoring duplicated oo code. In Ana Moreira and Serge

Demeyer, editors, Object-Oriented Technology: EC O O P’99 Workshop

Reader', number 1743 in LNCS, Lisbon, June 1999. Springer Verlag.

172

[30] A. H. Eden, J. Gil, and A. Yeliudai. Precise specification and autom atic

application of design patterns. In Proceedings o f the Twelfth IE EE In

ternational Automated Software Engineering Conference, Nevada, No

vember 1997. IEEE.

[31] A. H. Eden, Yossi Gil, Y. Hirslifeld, and A. Yehudai. Motifs

in object oriented architecture. Technical report, Uppsala Univer

sity, Departm ent of Information Technology, 1999. Available from:

http; / / www.cs.concordia.ca/faculty/eden.

[32] A. H. Eden, Y. Hirshfeld, and K. Lundqvist. LePUS - symbolic logic

modeling of object oriented architectures; A case study. In Proceedings

of the Second Nordic Workshop on Software Architectw'e (N O S A ’99),

Ronneby, Sweden, August 1999.

[33] A. H. Eden, Y. Hirshfeld, and A. Yehudai. Towards a m athem atical

foundation for design patterns. Technical report 1999-004, Uppsala

University, De])artment of Information Technology, 1999.

[34] A. H. Eden and A. Yehudai. Tricks generate patterns. Technical report

324, Tel Aviv University, Departm ent of Computer Science, 1997.

[35] R. Fanta and V. Rajlich. Removing clones from the code. Journal of

Software Maintenance, 11 (4); 113-243, July 1999.

[36] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support in

design patterns. In M. Aksit and S. Matsuoka, editors. Proceedings

of the European Conference on Object-Oriented Programming, pages

472-495. LNCS vol. 1241, June 1997.

173

[37] Brian Foote and William Opdyke. Lifecycle and refactoring patterns

th a t support evolution and reuse. In J.O. Coplien and D.C. Schmidt,

editors, Pattern Languages o f Programming, Monticello, Illinois, 1995.

[38] M artin Fowler. Refactoring: improving the design of existing code.

Object Technology Series. Addison-Wesley Longman, Reading, Massa

chusetts, first edition, 1999.

[39] Richard Gabriel. P attern definitions. Available from:

http: / /hillside, net/patterns/defin ition .htnil, 1995-I-.

[40] John Gall. Systemantics: How systems work and especially how they

fail. Quadrangle/New York Times Book Company, New York, first

edition, 1977.

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. Design Patterns: Elements o f Reusable Object-Oriented Soft

ware. Addison-Wesley Professional Computing Series. Addison-Wesley,

Reading, Massachusetts, first edition, 1995.

[42] J. Paul Gibson, Thomas F. Dowling, and Brian A. Malloy. The applica

tion of correctness preserving transformations to softw'are maintenance.

In Lionel Briand and Jeffrey M. Voas, editors, Proceedings o f the In

ternational Conference on Software Maintenance, San Jose, October

2000. IEEE Press.

[43] Mark Grand. Patterns in Java, volume 1. Wiley, New York, 1998.

[44] Mark Grand. Patterns in Java, volume 2. Wiley, New York, 1999.

[45] W alter L. Hiirsch and Linda M. Seiter. Autom ating the Evolution

of Object-Oriented Systems. In International Symposium on Object

174

Technologies for Advanced Software, pages 2-21, Kanazawa, Japan,

March 1996. Springer Verlag, Lecture Notes in Computer Science.

[46] Atsushi Igarashi and Benjamin C. Pierce. On inner classes. In Elisa

Bertino, editor. Proceedings o f the European Conference on Object-

Oriented Programming, pages 129-153, Sophia Antoplis and Cannes,

June 2000. LNCS.

[47] Bart Jacobs, Joachim van den Berg, IMarieke Huisman, and M artijn van

Berkuni. Reasoning about Java classes (prelimary report). In Object-

Oriented Programming Systems, Languages and Applications Confer

ence, Vancouver, October 1998. ACM Press.

[48] Ivar Jacobson, M artin Griss, and Patrik Jonsson. Software Reuse:

Architecture, Process and Oi'ganization for Business Success. Addison-

Wesley, Reading, Massachusetts, 1997.

[49] Jens Jahnke and Albert Ziindorf. Rewriting poor design patterns by

good design patterns. In Serge Demeyer and Harald Gall, editors,

E SE C /F SE Workshop on Object-Oriented Reengineering, Zurich, Sep

tem ber 1997. University of Vienna technical report.

[50] Ralph Johnson and Brian Foote. Designing reusable classes. Journal

of Object-Oriented Programming, l(2):22-35, June/Ju ly 1988.

[51] Ralph Johnson and William Opdyke. Refactoring and aggregation.

In S. Nishio and A. Yonezawa, editors, Pi'oceedings o f the J S S S T In

ternational Symposium on Object Technologies fo r Advanced Software,

Kanazawa, Japan, November 1993. LNCS vol. 742.

[52] Rudolf K, Keller, Reinhard Schauer, Sebastien Robitaille, and Patrick

Page. Pattern-based reverse-engineering of design components. In Pro-

175

ceedings of the International Conference on Software Engineering, Los

Angeles, 1999. ACM Press.

53] Andrew R. Koenig. Patterns and antipatterns. Journal o f Object-

Oriented Programming, April 1995.

54] Walter F. Kornian. Elbereth; Tool support for refactoring Java pro

grams. M aster’s project, University of California, San Diego, Depart

ment of Computer Science and Engineering, June 1998.

55] Alexej Kupin. Design and development of program transformation

tool. M aster’s thesis. University of Munich, Departm ent of Computer

Science, August 2000.

56] Anthony Lauder and Stuart Kent. Precise visual specification of design

patterns. In Eric ,Jul, editor. Proceedings o f the European Conference

on Object-Oriented Programming, Brussels, .luly 1998. LNCS.

]57] Anthony Lauder and Stuart Kent. Legacy System A nti-Patterns and

a Pattern-O riented Migration Response. In P. Henderson, echtor. Sys

tems Engineering for Business Process Change. Springer Verlag, Jan

uary 2000.

[58] H.K.N. Leung and L. W hite. A study of integration testing and soft

ware regression at the integration level. In Pj'oceedings o f the Confer

ence on Software Maintenance, pages 290-301, San Diego, November

1990.

[59] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From ob

jects to classes: algorithms for optimal object-oriented design. Journal

of Software Engineering, 6(4);205-228, July 1991.

176

[60] Karl J. Lieberlierr, Ian Holland, and A rthur Riel. Object-oriented pro

gramming: An objective sense of style. In Norman K. Meyrowitz,

editor, Object-Oriented Programming Systems, Languages and Appli

cations Conference, San Diego, September 1988. ACM Press.

[61] Karl J. Lieberherr and Cun Xiao. Minimizing depenency on class struc

tures with adaptive programs. In S Nishio and A. Yonezawa, editors.

International Symposium on Object Technologies fo r Advanced Soft

ware, Kanazawa, Japan, April 1993. Springer Verlag.

[62] Jaques Loeckx and K urt Sieber. The Foundations o f Program Verifi

cation. Wiley&Sons, 1987.

[63] Katsuhisa M aruyama and Ken ichi Shima. Automatic method refac

toring using weighted dependence graphs. In Proceedings o f the In

ternational Conference on Software Engineering, pages 236-245, Los

Angeles, 1999. ACM Press.

[64] Marco Meijers. Tool support for object-oriented design patterns. Mas

te r’s project, Rijksuniversiteit Utrecht, Departm ent of Computer Sci

ence, August 1996.

[65] M etaniata, Fremont, CA. JavaCC - The Java Parser Generator, 2000.

Available from: h ttp ://w w w .m etam ata.con i/JavaC C /.

[66] Betrand Meyer. Object Oriented Software Construction. Prentice Hall,

Hemel Hempstead, first edition, 1988.

[67] Ivan R. Moore. Guru - a tool for autom atic restructuring of self in

heritance hierarchies. In TOOLS USA, pages 267-275. Prentice-Hall,

1995.

177

[68] Ivan R. Moore. Automatic inheritance hierarchy restructuring and

method refactoring. In Object-Oriented Programming Systems, Lan

guages and Applications Conference, pages 235-50, San Jose, October

1996. ACM.

[69] Ivan R. Moore and Tim P. Clement. A simple and efficient algorithm

for inferring inheritance hierarchies. In TOOLS Europe, pages 173-184,

Paris, February 1996. Prentice-Hall.

[70] Thomas Mowbray et al. AntiPatterns: Refactoring Software, Archi

tectures, and Projects in Crisis. The Art of Computer Programming.

John Wiley Sz Sons, March 1998.

[71] Mel O Cinneide. Towards autom ating the introduction of the decorator

pattern to avoid subclass explosion. In OOPSLA Object-Oriented Evo

lution and Re-engineering Workshop, San Jose, October 1996. ACM

Press. Available as TR-97-7, Departm ent of Computer Science, Uni

versity College Dublin, Ireland.

[72] Mel O Cinneide. A utom ated refactoring to introduce design patterns.

In Jeff Magee and Mauro Pezze, editors. Proceedings o f the Interna

tional Conference on Software Engineering (Doctoral Workshop), pages

722 724, Limerick, June 2000. ACM Press.

[73] Mel O Cinneide and Paddy Nixon. Program restructuring to introduce

design patterns. In Serge Denieyer and Jan Bosch, editors, Object-

Oriented Technology: E C O O P ’98 Workshop Reader, number 1543 in

LNCS, Brussels, July 1998. Springer Verlag.

[74] Mel 0 Cinneide and Paddy Nixon. Autom ated application of design

patterns to legacy code. In Ana Moreira and Serge Demeyer, edi-

178

tors, Object-Oriented Technology: EC O O P’99 Workshop Reader, num

ber 1743 in LNCS, Lisbon, June 1999. Springer Verlag.

[75] Mel O Cinneide and Paddy Nixon. A methodology for the autom ated

introduction of design patterns. In Hongji Yang and Lee W hite, editors,

Proceedings of the International Conference on Software Maintenance,

pages 463-472, Oxford, September 1999. IEEE Press.

[76] Mel O Cinneide and Paddy Nixon. Composite refactorings

for Java programs. In S. Drossopoulou, S. Eisenbach, B. Ja

cobs, G. T. Leavens, P. Kliiller, and A. Poetzsch-Heffter, editors,

ECOOP Workshop on Formal Techniques fo r Java Programs. Tech

nical Report 269, Fernuniversitat Hagen, 2000. Available from

WWW. in fo r m a t ik . fe rn u n i-h a g e n . d e /p i5 /p u b l i c a t io n s .h tm l.

[77] William F. Oi)dyke. Refactoring Object-Oriented Frameworks. PhD

dissertation. University of Illinois at Urbana-Chanipaign, Departm ent

of Com puter Science, 1992.

[78] W'illiam F. Opdyke and Ralph E. Johnson. Refactoring; An aid in de

signing application frameworks and evolving object-oriented systems.

In Proceedings o f the Symposium, on Object-Oriented Programming Em-

phasizing Practical Applications, New York, September 1990.

[79] WWfgang Pree. Design patterns fo r object-oriented software develop-

ment. ACM Press books. Addison-Wesley, Wokingham, 1995.

[80] Winnie Pun and Russel Winder. Autom ating class hierarchy graph

construction. Research note RN /89/23, University College London,

Deptnient of Computer Science, March 1989.

179

[81] Trygve Reenskaiig. Working with Objects: The OOram Software Engi

neering Method. Manning Publications Co., Greenwich, Connecticut,

1995.

[82] A rthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley,

Reading, Massachusetts, first edition, 199G.

[83] Don Roberts and John Brant, “good enough” analysis for refactoring.

In Stephane Ducasse and Joachim Weisbrod, editors, ECOOP Work

shop on Experiences in Object-Oriented Re-Engineering, Brussels, July

1998. FZI Karlsruhe report.

[84] Donald Roberts. Eliminating Analysis in Refactoring. PhD disserta

tion, University of Illinois at Urbana-Champaign, Departm ent of Com

puter Science, 1999.

[85] Donald Roberts, John Brant, and Ralph Johnson. A refactoring tool

for Smalltalk. Theory and Practice o f Object Systems, 3(4), 1997.

[86] Sebastien Robitaille, Reinhard Schauer, and Rudolf K. Keller. Bridging

program comprehension tools by design navigation. In Lionel Briand

and Jeffrey M. Voas, editors, Pi'oceedmgs o f the International Confer

ence on Software Maintenance, San Jose, October 2000. IEEE Press.

[87] Reinhard Schauer, Sebastien Robitaille, Rudolf K. Keller, and Frangois

Martel. Hot spot recovery in object-oriented software with inheritance

and composition tem plate methods. In Hongji Yang and Lee W hite,

editors, Proceedings o f the International Conference on Software M ain

tenance, pages 220-229, Oxford, September 1999. IEEE Press.

[88] Benedikt Schulz. Behaviour preserving reorganisation of object-

oriented systems and adaptive progrannning. In Serge Denieyer and

180

Harald Gall, editors, E SE C /F SE Workshop on Object-Oriented Reengi

neering, Zurich, September 1997. University of Vienna technical report.

[89] Benedikt Schulz. Design patterns as operators implemented with refac

torings. In Stephane Ducasse and Joachim VVeisbrod, editors, ECOOP

Workshop on Experiences in Object-Oriented Re-Engineering, Brussels,

July 1998. FZI Karlsruhe report.

[90] Benedikt Schulz, Thomas Genssler, Berthold Mohr, and W alter Zim

mer. On the computer aided introduction of design patterns into object-

oriented systems. In Proceedings of the 27th TOOLS conference. IEEE

CS Press, 1998.

[91] Gregor Snelting and Frank Tip. Reengineering class hierarchies using

concept analysis. In Proceedings of the Sixth International Symposium

on the Foundations of Software Engineering (FSE-6), pages 99-110,

Lake Buena Vista, Florida, November 1998. ACM Press.

[92] Perdita Stevens and Rob Pooley. Systems reengineering patterns. In

Proceedings of the Sixth International Symposium on the Foundations

o f Software Engineering (FSE-6), pages 17-23, Lake Buena Vista,

Florida, November 1998. ACM Press.

[93] Bjarne Stroustrup. The C-h-h Program,mmg Language. Addison-Wesley,

Reading, Massachusetts, th ird edition, 1997.

[94] Gerson Sunye, Alain Le Guennec, and Jean-Marc Jezequel. Design

patterns application in UML. In Elisa Bertino, editor. Proceedings of

the European Conference on Object-Oriented Programming, pages 44-

62, Sophia Antoplis and Cannes, June 2000. LNCS.

181

[95] Peter F. Sweeney and Frank Tip. A study of dead data members in

C + + applications. In Proceedings o f the AC M SIG P LA N Conference

on Programming Language Design and Implementation (PLDI), pages

324-332, Montreal, June 1998. ACM Press.

[96] Lance Tokuda and Don Batory. Evolving object-oriented designs with

refactorings. In Proceedings o f the 14th IEEE International Confer

ence on Automated Software Engineering, Florida, October 1999. IEEE

Press. An extended version will appear in the Journal of Autom ated

Software Engineering.

[97] Lance Aiji Tokuda. Evolving Object-Oriented Designs with Refactor

ings. PliD dissertation. Departm ent of Computer Sciences, University

of Texas at Austin, September 1999.

[98] Paolo Tonella and Giulio Antoniol. Object oriented design pattern in

ference. In Hongji Yang and Lee W hite, editors. Proceedings o f the In

ternational Conference on Software Maintenence, pages 230-238, Ox

ford, September 1999. IEEE Press.

[99] David von Oheinib and Tobias Nipkow. Machine-checking the Java

specification: Proving type-safety. In Jim Alves-Foss, editor. Formal

Syntax and Semantics o f Java, volume 1523 of LNCS, pages 119 15C.

Springer, 1999.

[100] Steven Woods, S. Jeromy Carriere, and Rick Kaznian. A semantic

foundation for architectural re-engineering and interchange. In Hongji

Yang and Lee W hite, editors, Proceedings o f the International Con

ference on Software Maintenance, pages 391-398, Oxford, September

1999. IEEE Press.

182

[101] W alter Ziiuiner. Frameworks und Entwurfsmuster. PhD dissertation,

Forschungszentruni Informatik Karlsruhe, 1997.

183

A ppendix A

The Factory M ethod Pattern

Design patterns were introduced in section 2.2. In this apj)endix we provide a

more detailed description of the Factory Method pattern, as a transformation

tha t introduces this pattern was developed in detail in chapter 4. For more

detail see [41], which is also the source of the example we use here.

The Factory M ethod pattern is used to loosen the coupling between a

class (Creator) and another class tha t it instantiates (Product). Specifically,

it enables the Creator class to defer instantiation to a subclass; in this way

it is easy to extend the Creator class to work with a new type of Product

class.

For example, consider a framework th a t can present multiple documents

to the user. Two key abstract classes in this domain are Application and

Document. The designer has to subclass these classes in order to realise the

reciuired fTuictionality. Consider for examj)le using these classes to Iniild a

drawing ai)plication. The designer would create a subclass of Apj)lication,

DrawingApplication, and a subclass of Document, DrawingDocument. The

Application class is responsible for creating and managing Documents, but

it only knows when it should create a Document; it does not know what kind

184

Edits
Document d=createDoc();
d.open{):

return new

interface
MyDocument

interface
Document

+createDoc:MyDocument

MyApplication

+createDoc:Document
+newDoc:void
+openDcc:void

Application

Figure A .l: The Factory Method pattern structure

of Document to create. This is the kernel of the problem; the framework

must create instances of Docmnent, l)ut it knows nothing of the concrete

Document classes it should instantiate.

The Factory Method pattern offers a solution to this problem (see figure

A .l). It encapsulates the knowledge of which Document to create and de

fers this to a subclass. The abstract Application class invokes an abstract

method, createDoc, whenever it needs to create a Document object. Each

concrete subclass of Application must now override the createDoc method to

create and return an instance of the appropriate type of Document. In figure

A .l, the MyApplication class redefines the createDoc method to return an

instance of MyDocument. The other methods in Application work with this

instance through the Document interface.

185

A ppendix B

Analysis Functions, Helper

Functions and Prim itive

Refactorings

Tliis appendix contains the complete specification of all analysis functions,

helper functions and primitive refactorings th a t are used in this work. These

topics were introduced in chapter 3. In section B .l we detail the analysis

functions we have made use of. In section B.2 the helper functions are listed,

and finally, in section B.3, the primitive refactorings used in this work are

specified. As an aid to the reader, an alphabetical listing of all analysis

functions, helper functions and primitive refactorings, together with relevant

page numbers, is presented in table B .l on page 187.

B .l A nalysis Functions

In this section we describe the analysis functions (section 3.1.2) tha t are used

to extract information from the program being transformed. They serve a

186

N am e K ind Page N am e K ind Page

absorbParameter AF 188 isClonable AF 191

abstractClass HF 197 isExclusiveComponent AF 192

addClass PR 204 islnterface AF 192

addGetMethod PR 206 isPrivate AF 192

addlmplementsLink PR 207 isPublic AF 192

addlnterface PR 208 isStatic AF 192

addMethod PR 209 isSubtype AF 193

addSingletonMethod PR 210 localVars AF 193

argument AF 188 makeAbstract HF 200

classCreated AF 188 makeConstructorProtected PR 213

classOf AF 188 methodslnvoked AF 193

constructorlnvoked AF 189 moveMethod PR 214

containingClass AF 188 nameOf AF 193

containingAIethod AF 189 noOfArgunients AF 193

context Free AF 189 noOfParameters AF 193

createEniptyClass HF 198 parameter AF 193

createExclusiveConiponent PR 212 parameteriseField PR 216

createsSameObject AF 189 pullUpMethod PR 218

createWrapperClass HF 198 replaceClassWithlnterface PR 221

declares AF 189 replaceObjCreationWith. .. PR 222

defines AF 190 returnsObject AF 193

ecjuallnterface AF 190 returnsSameObject AF 194

exhibitSameBehaviour AF 190 returnType AF 194

hasSinglelnstance AF 191 sigOf AF 194

implementslnterface AF 191 superclass AF 194

initialises AF 191 superclasses AF 194

isAbstract AF 191 typeOf AF 194

isClass AF 191 useWrapperClass PR 223

Table B.l: Alphebetical Listing of Analysis Fiuictions (AF), Helper Functions

(HF) and Primitive Refactorings (PR), with relevant page numbers.

187

dual role, iu tha t they are used both in specifying the preconditions to the

refactorings, and as a transform ation progrannner’s view of the program to

which a design pattern transform ation is being applied.

Some of the analysis fimctions are obviously easy to evaluate, while oth

ers are more difficult. A number are intractable in the general case, namely

contextFree, createsSameObject, hasSinglelnstance, isClonable, isExclusive-

Component, returnsO bject, returnsSam eObject, and uses. In section 3.1.2

we described the possible ways in which intractable analysis functions can

be handled.

For each analysis function we specify its name, return type, argument

types, and provide a brief textual description of what its purpose is. The

listing is in alphabetical order.

Argiunent argum ent(M ethodlnvocation/O bjectC reationE xprn invocation,

int ■/): Returns the argiunent to the given method invocation or object

creation expression, or J_ if no such argument exists.

Class c lassC reated (O bjectC reationE xprn e): Returns the class of the ob

jects th a t can be created by the given object creation expression.

Class c lassO f(C onstructor/M ethod/F ield a): Returns the class to which the

given constructor/m ethod/field belongs. The condition classO f(a)=c is also

w ritten as a e c.

Class con tain ingC lass^ (O b jectR ef o): Returns the class th a t contains the

given object reference.

^V e do not apply the analysis function c l a s s O f to an object reference, as th is would

suggest its type ra ther th an its containing class. The t y p e O f analysis function is used to

determ ine the type of an object reference.

188

Method con ta in ingM ethod(O bjectR ef/O bjectC reatio iiE xprn e): Returns

the method containing the given object reference or object creation expres

sion.

Constructor co n stru c to rInvoked (O b jec tC rea tionE xprn e): Returns the

constructor tha t is invoked by the given object creation expression. In Java

this can be determined based on the static types of the arguments to the

constructor; a dynamic analysis is not required.

Boolean con tex tF ree(E xpression e): Returns true iff the expression e has

the same effect regardless of the context in which it is evaluated. It may

create a new ̂ object, or update a global object, but the effect must be the

same regardless of the method in which it is invoked. The impact of this is

that if this expression is passed as an argument to a method, we can move

the evaluation into the method without changing program behaviour.

Boolean crea tes(C lass cl, Class c2): Returns true iff a method in the class

cl creates an instance of the class c2.

Boolean c rea te sS am eO b jec t(C o n stru c to r c, M ethod m): Returns true iff

the method m creates and returns a new object of the same class and in

precisely the same state as would be created by c, given the same argument

list, m nnist have no other side-effects; in particular it nmst neither access

any variables other than its param eters, nor send a message to another object.

See also the weaker condition, returnsSam eObject.

Boolean decIares(C lass c, String n, String s); Returns true iff the class c

contains a m ethod named n of signature s in its interface. An implementation

need not be provided, and the declaration of n{s) may appear as an abstract

189

m ethod in a superclass or as an element of an interface th a t c (in)directly

implements. The param eter direct is added if the test is only to refer to the

class c itself, and, for simplicity, a m ethod may be provided as param eter

instead of the method name and signature. The param eter c may also be an

interface, with the natural interpretation.

Boolean defines^(Class c. String n. Signature s): Returns true iff a concrete

m ethod called n of signature s is contained in the class c or one of its su

perclasses. If no signature is provided, it simply tests if a m ethod named n

is contained in the class c or one of its superclasses. Again, the param eter

direct is added if the test is only to refer to the class c itself, and, for sim

plicity, a method may be provided as param eter instead of the m ethod name

and signature.

Boolean eq u a lIn terface(C lass/Iu te rface cl, Class/Interface c2)\ Returns

true iff cl and c2 declare precisely the same public methods. Public fields

and static methods are not included in the comparison.

Boolean ex h ib itS am eB eh av io u r(M e th o d m i. Method rn2)\ Returns true

iff m.l and m2 will, if invoked in the same program state, exhibit the same

external behaviour and lead to the same resulting program state. Note tha t

this relationship normally exists only when el and e2 are in a delegation

relationship^.

^The differentiation we make between declaration and definition is maintained rigor

ously in [93], but is not followed so strongly in Java [2]. For example, page 21 of [2]

the authors write of an interface defining a method. In this work we need clear terminology

to distinguish between the two situations.
■^Assessing if two methods have the same behaviour is undecidable in general. For

example, in [67] equivalence is based on the very constrained criterion that the parse trees

of the methods must be identical.

190

Boolean ex h ib itS am eB ehav io iir(O b jec tC reationE xprn el, ObjectCreation-

Exprn e2): Returns true iff el and e2 will, in the same program state, create

objects th a t exhibit the same behaviour. Note tha t this condition is normally

established when el delegates all requests to a contained instance tha t is

identical to e2, so the objects need not even be of the same class.

Boolean h asS in g le In stan ce(C lass c): Returns true iff the program only

ever creates at most a single instance of the class c.

Boolean im p lem en tsIn te rface (C lass /In te rface e. Interface i)\ Returns true

iff there is an implements link from the class/interface e to the interface i.

Boolean in itia lises(M ethod/C oustructor rn. Field/Variable /, Exprn e): Re

turns true iff the m ethod/constructor m initialises the field/variable / to the

expression e.

Boolean isA bstrac t(C lass /M eth o d x): Returns true iff the class/m ethod x

is declared to be abstract.

Boolean isC lass(C lass c): Returns true iff c is a class. If given a string as

argument, it tests if a class of the given name exists in the program.

Boolean isC lonable(C lass c): Returns true iff the class c can be cloned. All

classes in Java inherit a clone m ethod from the Object class which performs

a bitwise copy of the object on w^hich it is invoked. This is adequate in some

cases, but if objects of the class contains references to other objects, the

progrannner will probably have to implement a class-specific clone method. If

objects of the class have circular references, or are part of a very complicated

structure, it may not be feasible to implement a clone method. This can be

tested autom atically in simple cases, but in general the user must be ciueried

191

to assess if it is safe to clone a particu la r class.

Boolean isE x c lu s iv e C o m p o n e n t(C la s s c, Field /) : R eturns true iff / is a

field of the class c and the object referred to by / is an exclusive com ponent

of c. By th is we m ean a to ta l form of ownership"*:

• / is initialised in all constructors of c.

• T he object referred to by / is not referred to by any other reference in

the program .

• The object reference / m ay not refer to any other object during its

lifetim e, nor may it ever be set to null.

Boolean is ln te r fa c e (ln te r fa c e i)\ R etu rns tru e iff i is an interface in the

program . If given a string as argum ent, it te sts if an interface of the given

nam e exists in the program.

Boolean is P r iv a te (M e th o d /F ie ld e): R eturns true iff the m ethod/fie ld e is

a private m em ber of its class.

Boolean isP u b lic (A Ie th o d /F ie ld e): R eturns true iff the m ethod /fie ld e is a

public m em ber of its class.

Boolean isS ta tic (M e th o d /F ie ld e): R eturns true iff the m ethod/fie ld e is a

sta tic m em ber of its class.

"*In term s of the sophisticated categorisation of w hole-part relationship.s described by

Franco Civello in [20], we are describing a w hole-part relationship th a t is visit)le, encapsu

lated, non-shared, part-w hole inseparable, w hole-part inseparable, im m utable, owned and

collaborative.

192

Boolean isS ub type(C lass/In terface ei, Class/Interface 62): Returns true iff

the type defined by the class/interface ei is a subtype of the type defined by

the class/interface £2- This is based on the normal syntactic notion of subtyp

ing [22], but does not depend on their being an explicit implements/extends

relationship between the entities. As a shorthand, isSubtype(ei, 62) will

normally be w ritten ei < 62.

SetOfVariable localV ars(M ethod/C onstructor m): Returns the set of local

variables th a t are defined within the given m ethod/constructor, regardless of

the block scope they are in.

SetOfiMethod m ethodslnvoked(lv lethodlnvocation i)\ Returns the set of

methods th a t could be invoked by the method invocation i.

String nam eO f(C lass/In terface/M cthod/C onstructor x)-. Returns the name

of the given class/interface/m ethod/constructor.

int noO fA rgum ents(M ethodInvocation/O bjectC reationE xprn x): Returns

the number of arguments to the given method invocation or object creation

expression.

int n o O fP aram ete rs(M eth o d /C o n stru c to r m); Returns the number of pa

ram eters of the given m ethod/constructor.

Param eter param ete r(M eth o d /C o n stru c to r m, int i)\ Returns the pa

ram eter of the given m ethod/constructor, or _L if the given param eter does

not exist.

Boolean re tu rn sO b je c t(M e th o d m, O bjectRef o)\ Returns true iff the

method rn returns the object referred to by the object reference 0, and has

193

no other effects.

Boolean re tu rn sS a m e O b jec t(C o n s tru c to r c, Method m): Returns true iff

the m ethod m returns an object of the same class and in precisely the same

state as would be created by c, given the same argument list, m nuist have

no other side-effects; in particular it must neither access any variables other

than its parameters, nor send a message to another object. Note th a t the

m ethod m need not actually create a new object. See also the stronger

condition, createsSameObject.

C lass/Interface re tu rn T y p e (M e th o d m): Returns the class/interface th a t

is the return type of the m ethod m.

Signature sigO f(M ethod/C onstructor x): Returns the signature of the given

m ethod or constructor.

Class su perc lass(C lass c): Returns the direct superclass (based on the ex

tends relationship) of the class c, or ± if none exists. It can be also applied

to a constructor, method or field, in which case the superclass of the class of

the given element is returned.

SetOfClass su p erc lasses(C lass c): Returns the set of (in)direct superclasses

(based on the extends relationship) of the class c. Note th a t the class c itself

is not a member of the set of classes returned.

Class/Interface typeO f(O bjectR ef o): Returns the Class or Interface of the

given object reference (field, param eter or local variable).

Boolean uses(]Method m. Field /) : Returns true iff the m ethod m directly

references the field /.

194

Boolean u ses(M etliod m i, M ethod m2): R eturns true iff the m ethod m2 may

be directly invoked by the m ethod rn\^ .

Boolean u ses(O b jec tR e f o, M ethod m): R eturns tru e iff the m ethod m may

be directly invoked through th e object reference 0.

Boolean u ses(O b jec tR e f 0, Field /) : R eturns true iff the field / is directly

accessed through the object reference o.

B .1 .1 R elationsh ips betw een A nalysis Functions

T he analysis functions are not com pletely orthogonal and th is is unavoidable.

For exam ple, it is im portan t to know if one class defines a subtype of another

class, as th is affects w hat type of refactorings are possible involving these

classes. It is also im portan t to be able to determ ine if one class has an

extends link to another class. If we determ ine th a t the class B extends the

cla^ss A, then we know th a t B nm st also be a subtype of A. It is im portan t

to note these relationships and to use them in proofs as necessary. The

relationships betw een the analysis function we use are as follows:

If a m ethod is in a class, th a t class defines the m ethod directly, and vice versa:

V c:Class, m :M ethod, classO f(m)=c

defines(c, nam eO f(m), sigOf(m), direct)

If a class defines a m ethod, it declares it as well:

V c:Class, m :M ethod, defines(c, nam eO f(m), sigOf(m)) =4>

declares(c, nam eO f(ni), sigOf(m))

®For this analysis function and the next, some false positives may be returned since

a static analysis cannot determine exactly what methods a particular method invocation

may bind to.

195

A class tha t defines a method of a given name and signature must also define

a method of tha t name:

V c:Class, n:String, s:Signature, defines(c, n, s) =̂>

defines(c, n)

If a method and constructor return the same object, they nuist have the

same signature:

V m:Method, c:Constructor, returnsSam eObject(c, m) ^

sigOf(m)=sigOf(c)

Two classes/interfaces have the same interface iff each one is a subtype of

the other:

V ei:Class/Interface, e2:Class/Iuterface, equallnterface(ei, 62)

ei < 62 A 62 < Cl

If a class/interface implements another interface, it must be a subtype of

that interface:

V e:Class/Interface, i:Interface, implementslnterface(e, i) ^ e < i

If a class extends another class, it nnist be a subtype of tha t class:

V r.'i:Class, C2:Class, superclass(ci)=c2 => Ci < C2

If a class is abstract, it must declare a method tha t it does not define:

V c:Class, isAbstract(c) El m:Method such tha t

declares(c, m) A -1 defines(c, m)

One class creates another iff there is an ol)ject creation expression contained

in the first class (or any superclass) tha t creates an instance of the second class:

creates(c'i, C2) o 3 o:ObjectCreationExprn, ni:M ethod such that

classCreated(o)=C2 A containingM ethod(o)=m A

classOf(m) G {ci} U superclasses(ci)

If a method creates and returns the same object as a constructor, it also

just returns it:

196

V c:Constructor, m:Methocl, createsSameObject(c, m) ^

returnsSaiiieObject(c, in)

B.2 Helper Functions

In describing a refactoring it may be necessary to extract richer content

from the program code than is provided by the analysis functions. Helper

functions are used to perform this type of task. As they are not at the

primitive level of the analysis fimctions, we provide them with a pre- and

postcondition. Helper functions (3.1.3) are proper functions w ithout side-

effects on the prograin, so the postcondition invariably involves the return

value of the helper function itself.

Interface ab strac tC la ss (C la ss c, String newName): Construct and return

an interface called newNarne tha t reflects all the public methods of the given

class c.

p reco n d itio n :

The class c must exist:

isClass(c)

p o s tco n d itio n :

The returned interface inf declares the same public methods as the class c;

islnterface' = islnterface[zn//true]

equallnterface' = equalInterface[(c,m /)/true]

The name of the retiu'ned interface is newName:

nanieOf = nameOi[mf/newName]

M ethod a b s trac tM e th o d (M e th o d m): Construct and return an abstract

m ethod that has the same name and signature as the given m ethod m.
p re c o n d itio n :

197

The m ethod m must exist:

isM ethod(m)

p o s tc o n d itio n :

The returned method meth is abstract and has the same name and signature as

the given m ethod m:

isA bstract' = isAbstract[m ei/i/true]

nam eO f = nameOf[mei/i/nameOf(m)]

sigO f = sigOf[me^/i/sigOf(m)]

Class c re a te E m p ty C la ss (S tr in g name): Construct and return an empty

class called name.

p re c o n d itio n :

This may be used in any state:

true

p o s tc o n d itio n :

An empty class called name is returned:

nam eO f = immeOf[returned / name]

V e:i\Ietliod/F ield/C onstructor • -■ classOi{e)=returned

where returned is the class returned by this fimction.

Class c re a te W ra p p erC la ss(In te rfa ce iface. String wrapperName, Sthngfield-

Name): Creates a class called wrapperName tha t provides the same interface

as iface and implements all its m ethods by delegating them to a private field

of the type iface, called fieldName. The class is given a constructor that

accepts an object of the type iface and initialises the field fieldName to this

object. A m ethod called get” + fieldName is also added that returns the

contents of this field (i.e., returns the wrapped object),

p re c o n d itio n :

The given interface nmst exist:

198

islnterface(z/ace)

The name of the class to be added is not in use:

isC\ass{wrapperName) A -> isluteria,ce{wrapperName)

p o s tc o n d itio n :

A class called wrapperName is returned:

nam eO f = ivd.meOi[returned/wrapperName]

The returned class has a field of type i f ace called fieldNarne:

3 f: Field, such tha t

classOf=classOf[f/returnee?]

typeO f'= typeO f[f/i f ace]

nam eO f=nam eO f[f/fieldNarne]

The constructors of returned initialise this field with the first parameter:

V c:Constructor, c\assOf{c)=returned •

initialises'=initialises[c, f, param eter(c,l)]

The class wrapper has a m ethod called '"get” +fieldName:

3 m:M ethod such tha t

classO f=class()f [m / wrapper]

nam eO f=nam eO f[ni/“get”+/ie/(iiVame]

This method returns the contents of the field fieldName:

returnsO bject'= returnsO bject[n i/fieldNarne]

Any object of a concrete subclass of iface will exhibit the same behaviom’

as an instance of returned th a t has been given this object as its construction

argument:

V c:Class, implenientslnterface(c,z/ace) •

V e:ObjectCreationExprn, classCreated(e)=c •

exhibitSameBehaviour' =

exliibitSameBehaviour[(e, new wrapperName{e))/ tn\e]

199

Method m akeA bstract(C onstructor c, String newName): Returns a method

called newName that, given the same arguments, will create the same object

as the constructor c. The method signature is obtained by copying that of

the constructor®, and the method is given a body that is simply an object

creation expression that invokes the given constructor, using the arginnents

to the method as its own arguments,

p recond ition :

This may be used in any state:

true

postcond ition :

A method called newName is returned that, given the same argument list,

creates the same object as the constructor c:

createsSanieObject' = createsSameObject[(c,rei?xrnerf)/true]

nameOf = nameOf[returned / newNarne]

where returned is the returned method.

B .3 P rim itive R efactorings

The primitive refactorings (section 3.1.4) that are used in this work are de

tailed in this section. As with the helper functions, a pre- and postcondition

is given in each case, and these may range over the arguments to the refac

toring and the program itself that is being transformed. An argument that

the refactoring does not change the behaviour of the program is presented in

each case.

®This does not actually iie(!cl to be s ta ted explicitly in the postcondition, as from section

B.1.1 we know it can be derived from the first conjunct of tiie postcondition.

200

void absorbParam eter"(M ethod/C onstructor m, int paramNumber): Re

move the specified parameter from the method/constructor m (assume method

from here on), converting the parameter into a local variable in the method,

and initialising it with the expression given for the argument,

p reco n d itio n :

The parameter exists in the given method:

noOfParameters(m) > paramNumber

All invocations of m take the same expression (which must be independent

of context) as an argument for the specified parameter:

3 exprn:Exprn, contextFree(exprn) such that

V i:MethodInvocation, m £ methodslnvoked(i) •

argument(i, paramNumber) = exprn

po stco n d itio n :

The parameter list for rn has been reduced by 1:

noOfParameters' = noOfParameters[m / noOfParameters(m)-1]

m now defines a new local variable of the same name and type as the

parameter that has been removed:

localVars' = localVars[m/localVars(m) U v] where

nameOf(v) = nameOf(parameter(m, paramNumber)) A

typeOf(v) = typeOf(parameter(rn, paramNumber))

This new local variable is initialised to the expression that was previously

passed in as an argimient:

initialises'=initialises[(m, v, exprn)/true]

B eh av io u r p reservation :

The expression that was originally passed as an argument is context free,
^This is sim ilar to, but more flexible th an , the removeParameter refactoring described

by Fowler in [38, p .277). Fowler assumes the param eter is not in use; we allow it to be in

use once it is always i)assed the same argum ent.

201

so it evaluates to the same result for each method invocation, and will also

evaluate in the same ŵ ay after being moved into the method itself. The

param eter it was originally bound to has been removed, and instead this

expression is evaluated and stored in a local variable of the same name and

type as the removed parameter. The m ethod thus executes in the same

context, except th a t previous references to the removed param eter now' bind

to the new variable. Since the new variable has been given the same initial

value, program behaviour will remain the same.

202

void abstractM ethodFrornC lass(A Iethod m): Makes public aity method

or field that is (i) a member of the same class that m belongs to, or a

superclass, and (ii) is used by

p recondition :

The class referred to exists and m is a member of this class:

isClass(classOf(m)) A m € classOf(m)

postcondition :

All methods/fields defined directly or indirectly in classOf(m) that m uses

have been made public:

V x:Field/Method, defines(classOf(m), x), uses(77t, x) »

isPublic'=isPublic[x/true]

B ehaviour p reservation :

Making a private or protected field/method public cannot affect compilation

or behaviour. It may appear that making a private member of a class public

or protected might cause a reference in a subclass to bind to the new public

member rather than one defined in a superclass. However in Java an over

riding method cannot reduce the access level dehned in its superclass, so if

a method is private in a class, making it public cannot cause it to override

a method in a superclass. Also, a reference to a field that is defined to be

protected in a superclass will not compile if there is a private definition of a

field of the same name in an intervening superclass, so again making a field

public cannot interfere in the binding of references in subclasses.

^Tlii.s refactoring is usually used as a preparation for moving the method m to a com

ponent of its current class. Prior to pulling out m, everything it refers to in its current

class nnist be made public. If m is in fact a cohesive member of its class, this refactoring

is likely to severely damage the encapsulation of the class and its superclasses.

203

void addC lass(C lass c, Class super, SetOfClass subclasses)'. Add the class

c to the j)rogram. If a superclass is given, an extends link is added from the

class c to this superclass. If subclasses are given, an extends link is added

from each one to the class c.

p re c o n d itio n :

The name of the class to be added is not in use:

isClass(nameOf(c)) A -> isInterface(nameOf(c))

Any given subclasses nuist exist:

V s G subclasses • isClass(s)

If the superclass exists, it must be a superclass of all the subclasses:

if isClass(s«;;er) then V s G subclasses • superclass(s) = super

If c is a concrete class, then any abstract methods declared in super

or its superclasses nuist be defined in c:

if -1 isA bstract(c) then

V m:Method, declares(swper, m) A -i defines(super, m) •

defines(c, nameOf(m), sigOf(m))

The class c must not contain any m ethod tha t overrides one declared

(in)directly in the superclass:

V n:String, s:Signature • if declares(swpe7’, n, s) then

-'defines(c, n, s, direct)

The class c nmst not contain any field th a t redefines one declared in

any of its (in)direct superclasses:

V f:Field, fGc, -iisPrivate(f) •

V g:Field, gGsup, where supGsuperclasses(c), -iisPrivate(g) •

nameOf(f) 7̂ nameOf(g)

p o s tc o n d itio n :

c is a class in the program:

204

isClass' = isClass[c/true]

An extends link exists from the class c to the class super:

superclass' = superclass [c/swper]

All the given subclasses are now subclasses of c:

V s G subclasses, superclass' = superclass[s/c]

Behaviour preservation:

The class c did not exist, so no references can exist to this class. Consequently

the only th reat to behaviour preservation is tha t a subclass may refer to a

m ethod or field in a superclass, and this reference is now bound to a method

or field of c. The final two conjuncts of the precondition prevent this by

disallowing the class c from redefining any field or method tha t is already

defined in any of its superclasses®.

®This refactoring is an exam ple of where our requirem ent for behaviour preservation

forces us to be very stric t in defining preconditions. In the work of bo th R oberts [84, p. 103]

and Sunye et al [94, p .57], the last two conjuncts of the precondition for th is refactoring

are om itted . O ur approach is nevertheless conservative, since the class c can redefine fields

and m ethods in its superclasses once these are not u.sed in any of the subclasses.

205

void a d d G e tM e th o d (C lass concrete, String fieldName): Add a “getter”

method to the concrete class tha t retiuns the contents of the field called

fieldName.

p re co n d itio n ;

The class concrete exists and has a field called fieldName:

isClass(concrete) A cla.ssOi{fieldName)== concrete

The class concrete does not declare a m ethod called ^"get” + fieldName:

V m:Method, declares(concreie, m) • nanieOf(m) ^ “geV' + fieldName

p o s tco n d itio n :

The class concrete has a method called ‘'get'" + fieldName:

3 ni:Method such tha t

classOf=classOf[m/c<7rtcrei^e]

nameOf'=nanieOf[m / “get” + fi.eldName]

This method returns the contents of the field fieldName:

rcturusObject'=retm'nsObject[m//ie/rf7Vame]

B eh av io u r p re se rv a tio n :

Since a method with the same name as the m ethod being added does not

already exist in the class, there can be no name clashes and no existing

invocations of this method.

206

void ad d Im p lem en tsL in k (C la ss concrete, Interface inf): Add an imple

ments link from the class concrete to the interface inf. The class concrete

must not be abstract, i.e., it must implement all the abstract methods that

are declared in in f

p re c o n d itio n :

The class concrete and the interface in f must exist:

isClass(concreie) A islnterface(m /)

The class concrete must be a subtype of the interface inf:

concrete < in f

The class concrete must implement all the methods th a t are declared in m f:

V ni:IMethod, declares(*n/, m) • defines(concrete, m, direct)

p o s tc o n d itio n :

An implements link had been added from the class concrete) to the interface inf:

implenientslnterface' = implementslnterface[(concrete, zn/)/true]

B e h a v io u r p re se rv a tio n :

Adding a implements link from a class to an interface may affect the legality of

the program, but cannot cause it to change its runtime behaviour. From the

precondition, we see th a t the class fully implements the interface'*’, so this

refactoring nnist result in a legal program and consequently it is behaviour

preserving.

the case of an abstract class, this part of the precondition could be safely weakened.

207

void addln terface(ln terface i)\ Adds the interface i to the program. A

class or interface with this name must not already exist.

p recond ition :

No class or interface with the name nameOf(z) exists:

-iisClass(nameOf(i)) A -iisInterface(nameOf(«))

p o s tco n d itio n :

i is a new interface in the program:

islnterface' = islnterface[i/true]

B eh av io u r p reservation :

Adding an inn’eferenced interface to the program cannot affect its behaviour.

If a reference to the interface did exist before the refactoring, then the original

program would not be legal.

208

void a d d M e th o d (C la ss c, M ethod m): Adds the m ethod rn to the class

c. A m ethod with this signature must not already exist in this class or its

superclasses. This refactoring extends the external interface of the class,

p re c o n d itio n :

The class c exists and does not define any method with the same name

and signature as m:

isClass(c) A -'defines(c, nameOf(m), sigOf(m))

p o s tc o n d itio n :

The method m has been added to the class c:

classOf = classOf[m/c]

Any class or interface th a t previously had the same interface as c does not

have the same interface anymore:

V a:Class, a^^c, if equallnterface(a,c) then

equallnterface' = equallnterface[(a,c)/false].

B eh a v io u r p re se rv a tio n :

Since a m ethod with the same name and signature as the method being

added does not already exist in the class, there can be no name clashes and

no existing invocations of this method.

209

void a d d S in g le to n M e th o d (C la ss singletonClass, Class concreteSingleton,

String rnethodNarne, String fieldName): Adds a static field named fieldName

of type singletonClass to the class singletonClass. Also adds a static m ethod

named methodName th a t gives access to this field and instantiates it lazily

as a concreteSingleton object when necessary (See [41, 43], both pp 127-133

for more detail). If the last two param eters are om itted, we assume them to

be named “getlnstance” and “instance” respectively,

p re c o n d itio n :

The first two param eters must be classes and the class singletonClass nnist

be a superclass of concreteSingleton:

smgletonClass € superclasses(concreie^zn^/eion)

The class singletonClass can have no field called fieldName:

V f:Field, i^singletonClass • nameOf(f) 7 ̂ fieldName

A non-private held called fieldName cannot be defined in any superclass

of singletonClass:

if f:Field G els, els G snpevclcLSses{singletonClass),

nameOi{i)= fieldName th e n isPrivate(f)

A method called methodName cannot be defined in the class singletonClass:

^dehnes{smgletonClass, methodName)

The class concreteSingleton must have a no-arg constructor;

3 c:Constructor G concreteSingleton such th a t noO fParam eters(c)=0

p o s tc o n d itio n :

A new m ethod m has been added to the class smgletonClass, with certain

properties:

classOf = c\cissOi[m / singletonClass]

The name of m is methodName:

nanieO f = methodName]

210

The inethod in returns an object of the class concreteSingleton, in the same

state as would be returned by the no-arg constructor:

returnsSam eO bject' = returnsSanieO bject[(c,in)/true]

where c:Constructor G concreteSingleton A noO fParam eters(c)=0

B eh a v io u r p re se rv a tio n ;

A new method and field are added to the class singletonClass. Since nei

ther already exist, nor are they referenced in the existing program, program

behaviour cannot be affected.

211

void c re a te E x c lu s iv e C o m p o n e n t(C la ss context, Class component, String

fieldName)-. Add a new component to the class context, called fieldName, of

type component. All constructors in context are updated to instantiate this

field as well,

p re c o n d itio n :

The classes must exist:

isCla.ss{context) A isciaiss{component)

Neither the class context nor any of its superclasses may have a non-private

field called fieldNam,e:

V f:Field, fGsup, where sup G superclasses(coniexi) U context,

-'isPrivate(f) • nameOf(f) ^ fieldName

p o s tc o n d itio n :

The class context has a field called fieldName of type component:

3 f; Field, f £ context such tha t

typeO f'= typeO f [f / component]

nam e()f=nam eO f[f/fieldName]

All constructors of context initialise this field:

V c:Constructor, c G context •

i n i t i a l i s e s ' = i n i t i a l i s e s [(c , “new componeni()”)/tru e]

fieldName refers to an exclusive component of context:

isExclusiveComponent'=isExclusiveComponent[(coniexi, fieldName)/ tiwe]

B e h a v io u r p re se rv a tio n :

The name fieldName does not clash with any field defined in context, or any of

its superclasses, so it may be added to context safely. fieldName is initialised

in the constructor of context using the no-arg constructor of the component

class, so th is has no observable effect on external program behaviour^^

assum e th a t the iio-arg constructor of the component class only initiahses its own

in ternal d a ta fields.

212

void m a k e C o n s tru c to rP ro te c te d (C la s s c): Makes all constructors of the

class c protected. If the class has no explicit constructors, a no-arg one is

added and made protected,

p re c o n d itio n :

The class c exists;

isClass(c)

Creations of objects of the class c occur only in c and its subclasses:

V e:ObjectCreationExprn, classCreated(e) = c •

e & c \/ c E. superclasses(containingClass(e))

p o s tc o n d itio n :

The m ethod m has been added to the class c:

classO f = classOf[m/c]

Any class or interface th a t previously had the same interface as c does not

have the same interface anymore:

V a:Class, a^^c, if equallnterface(a,c) then

equallnterface' = equallnterface[(a,c)/false].

B eh a v io u r p re se rv a tio n :

The behaviour of the constructors of the class c is not changed, and objects of

the class c are only created within c itself or its subclasses. Therefore, making

these constructors protected will have no effect on program behaviour.

213

void m o v e M e th o d (C la s s context, F ield component, M ethod meth)-. Moves

the m ethod meth from th e class context to the class of the field component.

The existing m ethod is replaced by one th a t delegates the same request to

the component field. T he moved m ethod is given an ex tra param eter th a t

refers to th e context ob ject it has been moved from, and any references it

makes to this (im plicitly or explicitly) are sent back to th is context object,

p re c o n d i t io n :

The classes referred to exist:

isC\ajss{context) A isClass{typeOi{component))

mvCth is a m ethod of the class context:

meth € context

Every m ethod/fie ld in context th a t is used by meth nm st be public:

V x :M ethod /F ield , x G context, \ises{meth, x) • isPublic(x)

The held component refers to an exclusive com ponent of context:

isExclusiveCom ponent (component, context)

A sim ilar m ethod to m.eth cannot be defined in the component class:

V m :M ethod G typeO f(com ponent), nam eO f(m ef/i)=nanieO f(m) •

sigO f(m e^/i)^sigO f(m)

p o s tc o n d i t io n :

The m ethod meth is now a m em ber of the class of the com ponent field:

classO f=classO f[m ei/i/classO f(component)]

The class context delegates invocations of the moved m ethod to a m ethod

th a t exhibits the same behaviour in the class of the component field:

3 m :M ethod such th a t

classO f = classO f[ni/context]

nam eO f = nam eO f[m /nam eO f(m ei/i)]

sigO f=sigO f[m /sigO f(m ei/t)]

214

uses'=uses[(m,mei/i)/trTie]

exhibitSameBehaviour'=exhibitSameBehaviour[m/mei/j]

B ehav iou r p reserva tion :

The moved method is replaced by one of the same name and signature, so

compilation will not be affected. The replacement method delegates to the

moved method, and passes the context object as an extra argument. Any

references to the context object itself in the moved method are invoked on

the context object (from the precondition they must be public) and so will

bind in the same way as before.

215

void p a ra m e te rise F ie ld (C la ss client, Class/Interface product): Moves the

initiahsation of the field of type product in the class client outside the con

structor of the class, so the initial value for this field is now passed as an

argument to the client class constructor,
p re c o n d itio n :

The given interface/classes exist:

isClass(c/zen<) A {\sC\ass{product) V isInterface(jDrodwci))

The client class has a single field of type product:

3! f:Field, f e client such tha t typeOf(f)=proc?uc^

This field is initialised to a context free expression, exprn, in all constructors:

3 ea:prn:Exprn, context Free (exprn) such tha t

V c:Constructor, c G client •

initialises(c, f, exprn)

p o s tc o n d itio n ;

Each client constructor has a new param eter of type product:

V c: Constructor, c G client •

noO fParam eters'=noO fParam eters[c/noO fParam eters(c) + l]

typeOf=typeOf[parameter(c,noOfl^arameters(c)-|-l)/j97'orfuci]

The held f is initialised with this param eter rather than exprn:

initialises'=initialises[(c, f, exjyrn)/false]

initialises'=initialises[(c, f, param eter(c,noOfParam eters(c) + l))/true]

All creations of client objects now take the expression exprn as an extra

argument:

V e:ObjectCreationExprn, classCreated(e) = c/ien^ •

noOfArguments'=noOfArguments[e/noOfArguments(e) + l]

argum ent'=argum ent[(e,noOfArgum ents(e) + l)/e2:p7’n]
B e h a v io u r p re se rv a tio n :

Initially the product field in the client class was set to the expression exprn

216

ill the constructor of the client class. After applying this transformation,

the expression exprn is evaluated outside the client class and passed in as a

param eter to the constructor. W ithin the constructor it is used to initialise

the field as before. Since exprn is context-free, it will evaluate the same way

in both cases, so the product field in the client class gets initialised to the

same value and program behaviour is therefore maintained.

217

void p u llU p M eth o d (M etlio d m): Move the method rn from its current

class to its superclass^^. All fields directly referenced by m are moved to the

superclass as well. An abstract method declaration is added to the super

class for any method referenced by m th a t is not (in)directly declared in the

STiptrclass.

p reco n d itio n :

The method m must exist:

isMethod(m)

The class must have a superclass to which to move the method:

supcrclass(m) 7̂ _L

rn n.ust not be defined in the superclass:

defines(superclass(m), nameOf(m), sigOf(m))

Any fields m uses nmst not be pubhc and must not clash with fields in the superclass:

V f: Field, f G classOf(m), if uses(m,f) then

(-■ isPublic(f) A V g:Field, g G superclass(m), nameOf(f) 7̂ nameOf(g))

p o s tco n d itio n :

m is moved from its existing class to its superclass:

classOf = classOf[m/superclass(m)]

Any methods m uses th a t are not declared in its superclass are declared there now:

V n:Method, n G classOf(ni), uiT^n,

if uses(m,n) A -■ declares(superclass(m),n) then

declares' = declares[(superclass(m), n, direct)/true]

Any fields m uses are moved to the superclass:

V f:Field, f G classOf(m) if uses(m,f) then

'^Although it appears natural to decompose this refactoring into a chain of refactorings,

this is not useful for om- present purposes. Opdyke [77] provides a partial solution, but

does not deal with the details of moving the referenced fields up to the superclass and

adding new abstract method declarations to the superclass for each referenced method.

218

classOf = classOf[f/superclass(m)]
B eh aviour preservation:

The uiethod rn and the fields it uses have been moved, but not changed, so

the behaviour of the program could change in three possible ways:

1. An existing invocation of this method fails or invokes another method:

The existing method m could only be invoked on an object of the class

d a ssO f{n i) or a subclass of this class. In either case the search for the

m ethod attem pts to find it in the class classOf{m) and then moves to

the class superclass{m). Tlie method m has been moved to this class

so it is found here.

2. An existing access to a m.oved field fails or finds another field: The

arginnent is similar to the previous case. The method m will find the

field in its own class as normal. O ther references to a moved field can

only come from the class classOf{w) or its subclasses, and these will

bind correctly to the field in the superclass. Note tha t this argument

would fail if a field accessed by rn w'as public.

3. An method invocation or field access in this m,ethod is hound to a dif

ferent method/field: The existing method m. was not defined in any

superclass of classOf{m), so it may only be invoked on an object of

classOf{n}) or one of its subclasses. The search for a m ethod invoked

ill rn will therefore commence at the same class as before, and w'ill

find the same method (if the search somehow^ began at superclass{m),

a failure could occur). To highlight this, consider the following code

sketch:

c lass A {

public void f o o b a r () { . . . }

219

}
class B extends A{

public void foo(){

foobar();

}
public void foobar(){...}

}

It m ay appear th a t moving foo from B to A will cause a problem in

th a t the invocation of foobar will now bind to the im plem entation of

foobar in A ra th e r than th a t in B. However, since we have disallowed

situations where foo is defined in A or a superclass, invocations of foo

on an object of class A cannot exist. Invocations of foo on objects of

class B will now result in the foo in A being executed, bu t by dynam ic

binding the subsequent invocation of foobar will bind correctly to the

im plem entation in B.

220

void re p la c e C la s s W ith In te r f a c e (O b je c tR e f o, Interface inf): Change the

type of th e object reference o to th e interface i n f .

p re c o n d i t io n :

The interface inf exists:

is ln te rface(m /)

The class of the object reference o m ust have an implements link to the

interface inf:

inip lem entsInterface(typeO f(o), inf)

Any s ta tic m ethods or fields in the class of the object reference o are not

accessed th rough the object reference o:

V m :M ethod, classO f(m)= typeO f(o), if isS tatic(m) then -• uses(o,ni) A

V f:field, classO f(f)= typeO f(o), uses(o,f)

p o s tc o n d i t io n :

The type of the object reference o is inf:

ty p e O f = typeO f[o /m /]

B e h a v io u r p re s e rv a t io n :

Changing the type of an object reference from a class to an interface may

affect the legality of the program , bu t cannot cause it to change its runtim e

l:)ehaviour. From the precondition we see th a t the class of the object reference

im plem ents the interface, and th a t no sta tic m ethods or fields are accessed

through th is reference, so th is refactoring nnist result in a legal program and

consequently it is behaviour preserving.

221

void rep la ce O b jC re a tio n W ith M e th In v o c a tio n (O b jec tC re a tio n E x p rn e,

Method m): Replace the given object creation expression e with an invoca

tion of the m ethod m using the same argument list,

p re c o n d itio n :

The object creation expression e and the m ethod m nnist both, given the

same argimient list, create and return the same object, OR they must both

simply return the same object, and this must be the only instance of the class:

createsSam eObject(constnictorInvoked(e),m) V

(returnsSanieObject(constructorInvoked(e),m) A

hasSingleInstance(classCreated(e)))

The object creation expression e nuist not be in the method m:

containingM ethod(e) 7̂ m

p o s tc o n d itio n :

Tlie object creation expression e has been removed:

containingM ethod' = containingM etliod[e/±]

B e h a v io u r p re se rv a tio n :

The new method invocation returns the identical object to the same point

in the program as was returned by the original object creation expression

(the m ethod either creates a new’ object or returns the only instance of the

class). The only risk to behaviour preservation therefore is tha t of an infinite

recursion occurring. The expression e is not contained in m so a direct

recursion cannot take place. The createsSameObject precondition demands

that rn has no side-effects; in particular it cannot send any messages itself,

so an indirect recursion is also impossible.

222

void u s e W ra p p e rC la s s (C la s s client, Class wrapper, Class receiver, String

getterMethod)-. U pdates th e client class so th a t any construction of the re

ceiver class is replaced by a construction of th e wrapper class, taking the

corresponding receiver ob ject as an argum ent. All variables of type receiver

in the client classes are also renam ed to wrapper. Any m ethods in client

whose re tu rn type is receiver are updated to re tu rn th e w rapped receiver

object by delegating to th e getterMethod in wrapper.

p r e c o n d i t io n :

The specified classes exist:

isClass(c/zeni) A \sc\?iss{iurapper) A isClass(recezijer)

The classes wrapper and receiver support the same interface:

e(iuallnterface(receiver)

Any object of the class receiver will exhibit the same behaviour as an

instance of wrapper th a t has been given the corresponding receiver object

as its construction arginnent;

V e:O bjectC reationE xprn , classCreated(e)=recezi'er- •

exhibitSam eB ehaviour(e, new wrapper(e))

The m ethod getterMethod in wrapper re tu rns the w rapped receiver object:

re tu rnsO bject((new wrapper{e)).getterMethod{), e)

p o s tc o n d i t io n :

All object references to receiver in client have been changed to wrapper-.

V o:O bjectR ef G client, tyi^eOi{o)=receiver •

ty\yeOi'=tyY>eOi[o / wrapper)

M ethods in client th a t re tu rn a receiver object are u pdated to re tu rn the

w rapped receiver object by delegating to the getter Method:

V ni:M ethod, m ^clien t, re tu rnT ype(m)= recew er •

u ses '= u ses[m /getterMethod]

B e h a v io u r p re s e rv a t io n :

223

The wrapper class has the special property th a t when it is instantiated with

an instance of receiver, it stores this receiver object and delegates all the

requests it receives to this object. Thus the updating of the object creation

expressions does not affect behaviour^^. The object references th a t store

these new objects are also updated to be of type wrapper, so they match the

type of the updated object creation expressions. Finally, since the receiver

and wrapper classes support the same interface, no type mismatch errors can

occur.

'̂^The new objects are of a different type however, so any existing downcasts will fail.

224

A ppendix C

Listing of M initransform ations

Six ininitrausfonnations were identified in the development of the design

j)attern transforniations. Eacli one has been analysed in detail in the body

of this thesis. In this appendix we describe each niinitransforniation briefly,

and provide a reference to the more detailed description in the main text.

1. The A b s t r a c t i o n minitransformation is used to add an interface to

a class. This enables another class to take a more abstract view of this

class by accessing it via this interface. See section 4.3.1.

2. The E n c a p s u l a t e C o n s t r u c t i o n minitransformation is used when

one class creates instances of another, and it is reciuired to w'eaken

the binding betw'een the two classes by packaging the object creation

statem ents into dedicated methods. See section 4.3.2.

3. The A b s t r a c t A c c e s s minitransform ation is used when one class

uses, or has knowledge of, another class, and we want the relation

ship between the classes to operate in a more abstract fashion via an

interface. See section 4.3.3.

225

4. The P a r t i a l A b s t r a c t i o n m initransforniation is used to construct

an ab strac t class from an existing class and to create an extends rela

tionship betw een th e two classes. See section 4.3.4.

5. T he W r a p p e r m initransform ation is used to “w rap” an existing re

ceiver class w ith ano ther class, in such a way th a t all requests to an

object of th e w rapper class are passed to the receiver object it wraps,

and sim ilarly any resu lts of such requests are passed back by the w rap

per object. See section 5.4.2.

6. The D e l e g a t i o n m initransform ation is used to move part of an ex ist

ing class to a com ponent class, and to set up a delegation relationship

from the existing class to its com ponent. See section 5.5.2.

226

A ppendix D

A rchitecture of the Software

Prototype

We liave constructed a prototype software tool, DPT (Design Pattern Tool),

that implements seven of the design pattern transformations th a t have been

discussed in this thesis. In section D .l we describe the architecture of this

prototype, while in section D.2 an example of the application of the prototype

to a Java program is presented.

D .l Tool Architecture

DPT has a 4-tier architecture (see figure D .l) th a t matches the layers defined

in the structure of the behaviour preservation arguments:

1. Design Pattern transformations.

2. M initransformations.

3. Analysis functions, helper functions and primitive refactorings.

4. AST operations.

227

A bstract Syntax Trees,
Visitors

Design Pattern
Transform ations

M initransform ations

H elper functions, analysis
functions, refactorings

Figure D.l: Architecture of the Design Pattern Tool

The top layer implements the design pattern transformations we have

discussed ̂ The next layer comprises the implementations of the six mini-

transform ations th a t emerged during the development of the design pattern

transformations. The third layer is the implementation of the supporting

analysis functions, helper functions and prim itive refactorings described in

appendix B.

The bottom layer implements the actual changes to the program code by

performing surgery directly on the parse trees generated from the Java source

files. Visitors [41] are frequently used at this level to perform operations

tha t involve an entire parse tree. The parsing of the source files and the

construction of the parse trees were implemented using the parser generator

JavaCC [65].

'Seven design pattern transformations have been prototyped, namely. Abstract Factory,

Factory Metliod. Singleton. Builder, Prototype, Bridge and Strategy.

228

D P T does not ex trac t an ab strac t model from th e Java source code. This

would have m ade th e high-level transform ations such as addClass nuich easier,

hu t would have m ade the subsequent code regeneration much more difficult.

T he program being transform ed is stored in ternally as a set of parse trees, and

it is the operations provided in the top th ree layers of the architecture th a t

provide an ab strac t view of th is program . A program m er building a design

p a tte rn transform ation need only be concerned w ith th e m initransform ation

layer, and some refactorings and helper functions, in order to com plete the ir

task.

D .2 Sam ple O peration o f D P T

We provide an exam ple of th e application of the Factory M ethod transfor

m ation to a generic program:

class Creator {

public void dolt() {

Product p = new P rod u ct(“som e tex t”);

Product q = new Product(1234);

p.foo();

q.foo();

}

}

class Product {

public Product(int x) { . . . }

public Product(String s) { . . . }

public void foo() { . . . }

}

229

The Factory M e thod tra iis fo r iiia t io ii (section 4.4) is now appHed to the above

program as follows:

applyFactoryMethod("Creator” , "Product” , "absProduct” ,

"absCreator” , "createProduct”)

D P T applies the tra ns fo rm a tio n and ou tpu ts the fo llow ing code:

abstract class absCreator {

public void dolt (){

absProduct p = createProduct("some text”);

absProduct q = createProduct(1234);

p.foo();

q.foo();

}

public abstract absProduct createProduct (int x);

public abstract absProduct createProduct (String s);

}

class Creator extends absCreator {

public absProduct createProduct (int x) {

return new Product(x);

}

public absProduct createProduct (String s) {

return new Product(s);

}

}
interface absProduct {

public void foo ();

230

