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SUMMARY

The development of supervised segmentation algorithms for textured images ex­

isting on three-dimensional (3-D) lattices is the central theme of this thesis. The 

current state of the art in 3-D segmentation has been reviewed, and novel approaches 

have been developed.

The Gaussian Markov Random Field (GMRF) is widely used in modelling of 

spatial systems in image processing and other areas. In this work, its 3-D extension 

is proposed for synthesis and analysis of stationary textures. A textured volumetric 

image is then considered to be a mixture of 3-D stationary GMRFs. The 3-D 

processing is shown to be the only way forward in cases where the correlation between 

intensities at neighbouring image nodes along the third dimension are the only 

features, which discriminate between textures.

A fast algorithm for synthesis of 3-D stationary GMRFs is proposed. It is based 

on the properties of circulant matrices of level three, which can be exploited using the 

Fast Fourier Ti’ansform (FFT). Voxel classification is achieved via a computational- 

volume based analysis, presenting an alternative to Bayesian approaches, which are 

currently popular. These deterministic algorithms offer good performance at a far 

lower com putational cost. The relevant theory for the model param eter estimation 

on these com putational volumes is first presented. Thereafter, the segmentation 

problem in the image space is transformed into classification in the param eter (fea­

ture) space. Fast algorithms for classification of nodes on recursively decimated 3-D 

lattices are then developed.

Shape evolution of three-dimensional structures along the third (^-going) di­

mension affects the quality of 3-D segmentation results. This phenomenon is closely 

related to the motion estimation in image sequence (video) processing, and in image 

registration. However, there are specific difficulties related to volumetric imagery. 

In this work, the difference between slices is estim ated in order to track shape evolu­

tion. Several techniques for estimation and compensation of the difference field are



proposed. They are based either oi prehminary segmentation results or on analysis 

of the original raw grey-level data Successful difference estimation and consequent 

compensation of the proposed statbnary computational volumes results in enhanced 

segmentation. Finally, a unifying fiamework for simultaneous computational volume 

construction, and segmentation on 3-D lattices, is proposed.

Throughout the thesis, extensive simulation studies are reported, using mixtures 

of synthetic textures. Furthermore initial experiments with real 3-D Magnetic Res­

onance Image (MRI) volumes are p'esented to support the theoretical developments, 

and to point to an important prosjective application context.
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Chapter 1

INTRODUCTION

1.1 3-D IMAGE SEGMENTATION

Three-dimensional (3-D) digital image processing, and in particular 3-D segmen­

tation, is a rapidly developing research area with applications in many scientific 

fields such as biomedicine, seismology, remote sensing, material science, etc. 3-D 

segmentation algorithms are sometimes an extension of existing two-dimensional 

(2-D) algorithms. However, certain features specific to 3-D images justify dedicated 

research efforts in the development of 3-D algorithms [61].

There are two main types of 3-D images: image sequences (or video) where the 

third dimension is time, and volumetric images (or still 3-D images) where the third 

dimension is also spatial. These are widely acquired in biosciences, for instance, to 

image intrinsic 3-D objects. In this thesis, we are concerned with segmenting images 

of the latter type.

3-D image segmentation is an analysis operation that aims at dividing the image 

into meaningful 3-D regions. For example, in a Magnetic Resonance Image (MRI) of 

a brain, the regions may correspond to different anatomical structures and tissues 

such as skull, white matter, grey matter, fat, etc. In this work, the grey level 

image intensities are considered to exist on 3-D lattices and their grouping into
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meaningful regions is referred to as 3-D segmentation. In general, the image elements 

in a segmented region share similar properties such as grey-level intensity, colour, 

texture, motion, etc. This work considers the textural property as a basis for 3-D 

texture-based segmentation.

Markov Random Field (MRF) theory provides a consistent way of modelling im­

age elements which form a texture. MRFs have been used widely for 2-D texture clas­

sification and segmentation mainly within a Bayesian framework [13,16,23,46,58,59] 

as well as for motion analysis, segmentation and restoration in image sequence 

processing [9,48,60,82]. Usually, the solution of the tasks formulated within the 

Bayesian framework involves extensive computations. Alternatives, such as the com­

putational volume approach we use in this work, are simpler and give good results 

for a far smaller computational cost [59].

An extension of the MRF model to three dimensions leads to its definition on 3-D 

lattices. 3-D MRFs have already been used successfully for 3-D image reconstruction 

and segmentation [10,15,94]. We define the most used MRF model, namely the 

Gaussian MRF (GMRF), on 3-D lattices.

Difference analysis between 2-D slices is another major topic dealt with in this 

work. It is related to well-researched areas such as motion estimation in video con­

text and registration. Difference analysis for volumetric textured imagery, however, 

has not be considered before in relation to the 3-D segmentation. The contribution 

of the present work is the development of methods for difference estimation and 

compensation in volumetric image segmentation problems.

1.2 THESIS SYNOPSIS

In Chapter 2 the hterature on 3-D segmentation is reviewed. The problem of dif­

ference analysis in volumetric imagery along with its relation to the areas of motion 

estimation and image registration are overviewed. Some specifics of the MRI appli­

cation context are explained.
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The GMRF on 3-D lattices is presented in Chapter 3 for the purposes of mod­

elling volumetric textures. The theory of stationary GMRFs is given and the nota­

tion used in the rest of the thesis is introduced.

Toroidal boundary conditions and symmetric 3-D GMRF topology result in a 

circulant structure of level three for the interaction m atrix within the joint GMRF 

probability density function (p.d.f.). Therefore, Chapter 4 starts with presentation 

of the theory of circulants of level three. The main theoretical result is used to 

develop a fast 3-D FFT-based GMRF synthesis algorithm.

In Chapter 5, least squares estimation of 3-D GMRF param eters is presented. A 

technique for node classification is then developed and its performance is illustrated 

in segmenting mixtures of synthetic 3-D GMRFs.

Fast techniques for segmenting such 3-D mixtures based on recursive decimated 

lattice topology are developed in Chapter 6. They are shown to overcome the 

intrinsic limitations of the technique in Chapter 5. The problem of difference along 

the z-going dimension and its impact on the quality of the segmentation result is 

explored.

In Chapter 7, methods for difference estimation and compensation using an ini­

tial label field from a preliminary segmentation are developed. These methods are 

inspired by techniques from the image registration and motion analysis literature. 

They are modified to cope with the properties of label field data. Their ability to 

improve the results obtained by the recursive methods in Chapter 6 is illustrated.

A novel method for difference estimation and segmentation using he original 

grey-level da ta  and a priori texture codebook information is proposed in Chapter 8. 

A unified technique for volumetric segmentation, based on entropy minimization 

is finally developed. It offers the prospect for optimized choice of computational 

volume size. The methods from Chapters 7 and 8 are tested on both synthetic 

images and real MRI volumes.!

In Chapter 9, the main conclusions are presented and direction for future research 

challenges in the area are suggested.



Chapter 2

SEGMENTATION OF TEXTURED 

IMAGES: AN OVERVIEW

2.1 INTRODUCTION

The goal of image segmentation is to identify homogeneous regions in an image.

The homogeneity can be based on one or more of several properties, such as texture, 

colour, distribution of the densities of the image elements, motion field, etc. The 

result of the segmentation is either an image of labels identifying each homogeneous 

region, or a set of contours which describe the region boundaries.

Image segmentation can be performed on 2-D images, sequences of 2-D images,

3-D volumetric imagery or sequences of the latter. In general, then, we would 

wish to address the segmentation task in the context of images defined on lattices 

of dimension three. Most of the image segmentation research has focused on 2-D 

images. If the da ta  is defined on 3-D lattices, such as obtained from series of cross- 

sectional computed tomography (CT) or MRI images, then typically, each image 

(“shce” ) is segmented individually. The discriminant features of such data exist 

lowever, on any orientation of the slices therefore, encourage the development of 

ntegrated 3-D algorithms.

4
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There is a wide variety of techniques available for segmenting images. Most of 

the approaches have been extended from 2-D to 3-D. A common classification of 

these methods in the literature [61,94] is as follows: thresholding, edge detection, 

clustering, region growing, and active contours. One of the most common approaches 

employs some method of edge detection, after which the segmentation result is 

proposed as a set of detected region boundaries. Another common approach to 

segmentation involves examining the textures present in an image and determining 

regions of homogeneous texture. In this work, we are concerned with the latter 

approach for segmenting volumetric images. The aim is to produce 3-D label maps 

rather than region boundaries, since they can be obtained from the regions, but not 

vise versa.

This chapter gives a brief overview of the main classes of 3-D segmentation 

methods in Section 2.2, followed by discussion of the texture segmentation problem 

in Section 2.3. The relation of difference analysis in volumetric imagery- which is 

used in this work- to motion estimation, image registration, etc. is discussed in 

Section 2.4. Finally, some background material relating to MRI is presented, as a 

prospective application context for the algorithms developed in this work in Section 

2.5. Conclusions are drawn in Section 2.6.

2.2 MAIN CLASSES OF 3-D SEGMENTATION 

METHODS

Mathematically, image segmentation is well-defined. An image consists of an array of 

elements, and the aim is to give each element a label. There are different approaches 

to achieve this goal. Here the main classes of 3-D segmentation are presented.
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2.2.1 Thresholding

The simplest segmentation technique is thresholding. The threshold segmentation 

separates the image elements (pixels in 2-D or voxels in 3-D) based only on their 

intensity. Thresholding has been used in CT images to segment bones and soft 

tissues from background [61]. The success of this approach depends on the successful 

selection of a threshold. If the 3-D image data histogram exhibits two well-defined 

modes, for example, then setting the threshold at the minimum between the modes 

can give satisfactory results. The thresholding methods have many variations: global 

(single threshold) or local threshold (depending on the position in the image), multi­

thresholding, adaptive thresholding, etc [81].

Thresholding is very susceptible to noise in low contrast images. It tends to 

produce scattered groups of pixels rather than coimected regions. Connectivity al­

gorithms are regularly used as a post-processing step. Generally, threshold-based 

methods are not suitable for segmenting textured images. Their perceptual quali­

ties are based on higher order interactions, but not the first-order image intensity 

properties addressed by histogram-based thresholding. It is possible, however, to 

apply thresholding not on the original grey-level data, but, for instance, on the local 

variances computed over 3-D blocks [61]. Gregson [32] uses thresholding to detect 

tissue from the background in 3-D MRI of a heart.

2.2 .2  Edge D etection

Methods of edge detection are not segmentation methods by nature but the result of 

the edge detection can be used as a pre-processing stage in segmentation. The main 

aim is to extract discontinuities (i.e. to identify changepoints). Many operators are 

used to extract edges such as Roberts, Laplacian and Sobel. A full review is available 

in [81]. Often, edges indicate region boundaries and they are useful for segmentation 

but, sometimes regions and edges are not well related. Many edge-hnking methods

exist for inferring connected regions from edge maps solving the problem and for
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performing false edge removal [81,90].

3-D objects can be described by the volume they occupy or by their bounding 

surface. Here, the terms edge and edge detection continue to be used. Just as in 

2-D, edges are defined as discontinuities (changepoints) in a chosen image property, 

be it intensity or a fuller description of the local image statistics [40]. The image 

discontinuity operators puch as the Sobel and Prewitt can be easily extended to 3-D. 

The Marr-Hildreth operator has been extended to three dimensions as well [61].

In [94], Wu reports on the application of 3-D edge detection methods in combina­

tion with matched filters for segmentation of CT and MRI data [95] using Laplacian 

and Gaussian operators.

2.2.3 C lustering Techniques

Clustering refers to the classification of objects into groups according to certain 

properties of these objects. From an image segmentation point-of-view, one aims 

at extracting a feature vector from local areas in the image, which will then form 

clusters in the feature space. The task of segmenting the data represented by multi­

dimensional feature vectors into a finite number of homogeneous regions is equivalent 

to dividing the feature space into this number of partitions, each presumably, oc­

cupied by a closely associated set (cluster) of features. A standard procedure for 

clustering is to assign each voxel to the class of the nearest cluster mean [85]. There 

is a variety of clustering algorithms in the literature, the most popular and simple 

being the /C-means technique [39]. In the case of scalar features (e.g. voxel intensi­

ties) clustering can be seen as a method of determining A' — 1 thresholds in the 1-D 

eature space.

A widely used approach to forming clusters is via neural networks or wavelet 

ransforms. Bor§ and Pitas [7] use a supervised a-trimmed mean Radial Basis 

^unction network (neural network) to segment 3-D microscopy images of blood 

"essels. Each object of the 3-D data is represented as an ellipsoid and their centroids
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are estimated using the extended 3-D Hough Transform [81].

The multi-scale approach to feature extraction using a Gabor filter bank has been 

employed in [68] for pairwise data  clustering in unsupervised texture segmentation.

Chang, Tekalp and Sezan [10] use a Bayesian Maximum a Posteriori (M AP) 

Probability approach for autom atic segmentation of 3-D MRI data. They apply a 

modified /f-m eans algorithm where a priori information about the spatial connectiv­

ity of the segmentation is incorporated via a 3-D Gibbs Random Field (GRF) model. 

They report excellent performance and superior results compared to segmentation 

based on conventional /C-means clustering for each 2-D slice.

2.2.4 R egion G rowing Techniques

To produce spatially connected regions requires a criterion of geometrical proximity, 

in addition to the homogeneity criterion. A simple approach to image segmentation 

is to start with some user-defined voxels [seeds) representing distinct image regions 

and to grow them  until the whole image is covered [67]. In this procedure, each 

region grows until it collides with another region or reaches an area with difi’erent 

properties. Some voxels may remain unclassified. Region growing cannot be used 

for segmenting complex 3-D volumes, but is useful in segmenting volumetric images 

composed of large homogeneous regions.

Most region growing algorithms are based on splitting and merging techniques 

[61,94]. The image, or its regions, are split into smaller regions, or small regions 

are merged together, or sphtting and merging are applied alternatively until the 

homogeneity criteria is satisfied.

Region growing techniques are widely used both for segmenting 3-D medical im- 

igery and image sequences. A 3-D method using a GRF was proposed by Aach [1] 

-0 segment different organs and tissues of a MRI of the human head. 3-D segmen- 

ation as a pre-processing step in volumetric medical image reconstruction, using 

lupervised region-growing 3-D Markov Random Field (MRF) based method, was
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proposed by Choi in [15]. The work was apphed to 3-D images of the femur and 

the knee-joint. Their comparison with a 2-D counterpart reveals the superior per­

formance of the former.

A segmentation and object tracking algorithm for an image sequence is used 

in [33]. It is of a region-growing type, working on the first two frames and using the 

motion as a main feature, combined with colour or intensity.

3-D segmentation of an image sequence by 3-D binary split-and-merge methods 

was proposed by Willemin and Reed in [91]. The criterion for splitting/merging is 

found using a 3-D polynomial approximation of the regions and the most similar 

regions are merged using a region adjacency graph. The result of the segmentation is 

then used for an effective compression and coding scheme eliminating the sequence 

redundancy. Wu [94] uses a similar approach to segment image sequences.

2.2.5 A ctive contours

Deformable models, called active contours or snakes in 2-D and active surfaces or 

active balloons in 3-D, were introduced in [45] and were further developed in [18,86]. 

A deformable surface behaves like an elastic sheet. Initially, it is placed close to an 

object’s boundary and it changes shape to match the shape of the boundary. The 

forces which change the shape are the external (or image) forces- controlled by the 

image attributes- and the internal forces, which control the surface regularity [61].

2.2.6 Bayesian M ethods

Bayesian methods use probability calculus to quantify the plausibility of a hypoth­

esis. In the case of image segmentation, this hypothesis is about the existence of 

a particular “hidden field” (label field realization) along with the data. A priori 

knowledge, which can be exploited to improve the results, is used to regularize the 

inference of the hidden field, given the data. Formal optimization techniques are

then used to work on the posterior inference.
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The Bayes rule states that;

P(L |X ) (X P(X |L )P(L ), (2.1)

i.e. the posterior probability P(L |X ) of the label field given the data is proportional 

to the product of the model probability P(X |L) and the prior probability of the label 

realizations P(L). P(L) is defined using local information about the expected seg­

mentation result (such as shape etc.) and aims at encouraging spatial connectivity. 

For the a priori p.d.f. , GRFs usually are used [10,16,59,85]. The specification of the 

prior is application-dependent and can cover a wide range of applications. Examples 

include robust unsupervised segmentation of noisy non-textural images [16], for un­

supervised segmentation of textured images [58], for Brain MRI segmentation [37].

The MAP approach aims at maximizing P(L |X ), given the model and the prior. 

The identification of the MAP segmentation is an optimization task in a huge number 

of dimensions. It has been attacked via Stimulated Annealing [31], Markov Chain 

Monte-Carlo (MCMC) methods, etc.

The Bayesian methods offer a general framework which can be employed for 

2-D or 3-D image data modelling and can incorporate very complex models. These 

include modelling of spatial and temporal discontinuities, motion and occlusion, 

etc. These phenomena are important in image sequence processing applications 

[48,60,85].

2.3 TEXTURE

Whereas segmentation has at least a formal definition, texture has not. A typical 

definition in the literature is “one or more basic local patterns that are repeated 

in a periodic manner.” [66]. However, it is not clear exactly what a pattern might 

be or how it might repeat. It is not even clear whether texture is an inherent 

property of all objects. Even though texture is an intuitive concept, its definition 

has proven difficult to formalize. Haralick, Shanmugam and Dinstein [35] noted that



CHAPTER 2. OVERVIEW 11

“texture has been extremely refractory to precise definition”. Over the years, many 

researchers have expressed the same statement: “There is no universally accepted 

definition for texture” [21], “Texture ehides precise definition” [66].

Despite this lack of a universally agreed definition, all researchers agree on two 

points. Firstly, there is significant variation in intensity levels between nearby image 

elements within a single texture. Secondly, texture is a homogeneous property at 

some spatial scale larger than the resolution of the image. Some researchers describe 

texture in terms of the human visual system i.e. that textures do not have uniform 

intensity, but are nonetheless perceived as homogeneous regions by a human observer 

[8,12]. However, a definition based on human perception poses problems when used 

as the basis for a quantitative texture analysis algorithm.

It is very hard to define the goal of a texture segmentation algorithm, even 

if the question is restricted to one image taken from the natural world. Texture 

segmentation is not equivalent to object segmentation. Therefore, there is no one 

segmentation of an image that can be considered to be “right.” The “right” segmen­

tation exists only in the mind of the observer, which can change not only between 

observers, but within the same observer at different times.

2.3.1 M ain Texture M odels

Despite the lack of a formal definition, texture does exist and it can be segmented 

to some extent. Researchers have been developing many texture models, with the 

goal of finding the “basic pattern mechanism” and of modelhng it [66]. The main 

computational approaches to the definition of texture are listed briefly.

Non-parametric quantification of texture

statistical texture description is suitable for statistical pattern recognition applica- 

ions. In general, the purpose of a texture model is to provide a means of trans- 

orming a local area of an image into a set of numbers, namely the feature vector.
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The statistical methods exploit the local correlations of the image elements. Some 

of these methods are applied to the raw image data, others are transform-based.

Measuring spatial frequencies is a basis for many texture recognition methods. 

Usually, the frequencies are determined from the autocorrelation function of the 

texture or by applying an optical or discrete image transform [81]. Transforms like 

Fourier, Hamadard etc. can be used. The description of noisy textures becomes a 

difficult task. A joint spatial/spatial frequency approach is recommended [61]. The 

Wigner distribution was used successfully for a variety of synthetic and Brodatz 

textures in [75].

The co-occurrence matrices method describe the texture via the repeated occur­

rence of some grey-level configuration in the texture [35]. Texture classification can 

be based on a criterion derived from the co-occurrence matrices such as energy, en­

tropy, maximum probability, contrast, correlation, etc. Although the co-occurrence 

matrices give good discrimination between textures, the method is computationally 

expensive [81]. A fast algorithm for computation of the co-occurrence matrix is 

given in [2].

Edge frequencies can also be used to describe a texture. These methods are easy 

to implement, but the results are dependent on the choice of the edge detector. A 

texture classification approach, which is robust to noise, has been developed using 

a Canny edge detector in [47].

The grey-level run length method, based on computing the number of neighbour­

ing pixels of the same grey level in different directions, was used to classify terrain 

images [30].

The Laws’ texture energy measures [51,52] are another approach generating tex­

ture features by using local masks to detect various types of textures. This approach 

measures the amount of variation within a fixed-size window. A set of nine 5 x 5  

convolution masks is used to compute texture energy. The 2-D masks are obtained 

via outer product of pair of convolution vectors corresponding to a grey-level, edge, 

spot and ripple. Then a texture energy map is composed from the filtered images
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tbtained using each mask. The final result is nine energy map images which can be 

iewed as a single image with a vector of nine elements per pixel. These attributes 

ihen can be used to cluster an image into regions of uniform texture. The Laws’ 

neasures of texture have been used to classify ultrasonic liver images in [93].

The mathematical morphology approach uses structure primitives and looks for 

tieir statistical repetitiveness in the texture. It has been successful in describing 

granulated materials in [25].

Texture description is highly scale-dependent. Multiscale methods rely on de- 

ompositions that confine particular texture attributes to distinct scales. Wavelets 

cm act as basis functions for this approach [55]. Pyramid structures for wavelet de- 

c)mposition were used for texture classification in [11]. An overview and comparison 

o Gabor and wavelet transform performance is given in [88].

Textures can also be modelled as processes with statistical fractal (or self-similar) 

p'operties [34].

S.ructural quantification of texture

Tie structural approaches are not as widely used as the statistical approaches. They 

develop a description using texture primitives and syntactic rules. The latter exploit 

the analogy between the spatial relations among texture primitives and the structure 

of a formal language. The main approaches are shape chain and graph grammars [63] 

or fractals [12,56]. The/rac^a/-5a5ec? texture description was introduced in [64] using 

the correlation between the texture coarseness and fractal dimension of a texture.

Pcrametric m odels o f texture

Models can be found to explain the nature of texture. Then the image data are used 

to determine the parameters of the model. Parameter estimates may then be used 

is feature vectors for the classification process. The advantage of the model-based 

ipproaches is that they can be used both for texture analysis and synthesis. A good 

.urvey of the usage of random fields in image analysis is given in [26].
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A model that is defined on a space that can theoretically contain any pattern is 

the Markov Random Field (MRF) model. Unlike most models, MRFs are capable of 

generating random, regular and even highly structured textural patterns [66]. The 

MRF approach originates from both the Gibbs distribution in statistical mechanics 

and from Markov probability theory. The model has been used widely since the 

seminal work of Geman and Geman [31]. The theory of MRFs is extensively pre­

sented in [92]. Cross and Jain [21] have shown that MRFs can be used for modelling 

natural scenes. 3-D extensions of the MRF have been used for volumetric medical 

image segmentation and reconstruction in [10,15,37].

A specific MRF model, called the Gaussian MRF (GMRF) has been proposed 

by Chellappa [14]. According to this model, the image element grey-levels have 

a jointly Gaussian distribution. The GMRF is the most widely used process for 

the modelling of various natural and man-made textures. Its effectiveness has been 

shown for classification and synthesis of Brodatz textures in [13,57].

In this thesis the GMRF is defined on 3-D lattices to accommodate volumetric 

textures. Local quantification (estimation) of the GMRF via computational vol­

umes is adopted in preference to Bayesian approaches, particularly in view of their 

relatively high computational load.

2.4 DIFFERENCE ANALYSIS

A major challenge in 3-D image processing, one which does not arise in the 2-D case, 

is the phenomenon of difference between the 2-D frames or slices. This difference 

(known also as disparity [3]) is the result of the change of the scene in video sequences 

(object and /or camera motion) or of the shape evolution of a 3-D object cross- 

section in volumetric imagery.

MRF models obey the Markov property, i.e. the grey-level at a particular image 

element depends on the grey-levels within a neighbourhood of this element. The 

difference phenomenon affects the geometry of the neighbourhood and therefore
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adjustm ent and compensation for this effect is required. 3-D motion-compensated 

neighbourhood geometry for an Autoregressive Model in image sequence processing 

has been used in [48]. The difference between the frames is the displacement of 

the position of corresponding pixels belonging to moving objects, whose images are 

captured in different frames of the sequence corresponding to different moments of 

time. In the video processing context the difference is due to the motion and hence 

can be quantified via the various motion estimation  methods.

In 3-D volumetric imaging, however, the difference between consecutive 2-D slices 

is not motion-induced. It is caused by the 2-D cross-section shape evolution of a 

3-D object (anatomical structure in the medical imaging context) along the third 

dimension. Hence the neighbourhood geometry must not be displacement/motion- 

compensated. However, a simple parallelepiped-shaped com putational volume, which 

spans many slices and overlaps different 3-D textures must address the textural non- 

stationarity problems which arise. Texture stationarity is a required assumption 

within the com putational volume, if model param eter estimation is to be successful. 

Shape evolution in volumetric images often violates this assumption and thus moti­

vates the development of new difference estimation and compensation approaches. 

This is one of the principal goals of this work.

Although it has its own specific requirements, difference analysis in volumetric 

imagery required tools which have been well studied in motion estimation, the image 

correspondence, and registration. These are briefly reviewed now.

2.4.1 M otion  E stim ation  M ethods

The motion of 3-D objects and of the camera projects onto the image plane, and 

induces a 2-D motion. This 2-D motion is called apparent motion or optical flow  [82, 

85]. The optical flow assigns a displacement vector to  each image element and can be 

recovered from analysis of the intensity or colour in an image sequence. The optical 

flow estim ation is an ill-posed problem and so needs a model tha t makes assumptions
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about the structure of the 3-D motion field. Such a model can be classified as 

parametric or non-parametric [85] and the choice is application dependent [82],

Parametric m odels

In many applications, the motion field is described in param etric form using a small 

finite number of parameters. Different models are described and compared in [82], 

They depend on the projection coordinate system, and include as the 6-parameter 

affine model with orthographic projection, and the 8-parameter non-linear model, 

derived from the perspective projection of the 3-D motion into 2-D. The main 

drawback of these methods is tha t they are applicable only in the case of 3-D rigid 

motion.

Non-param etric m odels

Another approach is to impose a non-parametric smoothness constraint over the 2-D 

motion field.

The optical flow equation [38] provides an estim ate of the optical flow in terms of 

spatio-temporal image intensity gradients. These are known as gradient-based meth­

ods. The spatio-temporal smoothness constraint suggests th a t the displacement 

vector varies only slowly over a neighbourhood. Global constraints cause inaccura­

cies and some modifications are required (directional smoothness etc.). A survey of 

the methods is given in [82]. For these methods to be successful, it is necessary th a t 

there be little change between consecutive images [81].

In the block motion  model [48,85], it is assumed th a t the image consists of 

■noving blocks. Then, the matching of the moving blocks can be performed using 

block-matching (BM) or phase-correlation techniques [48]. These techniques han- 

lle translational motion. However, generalized deformable motion models can be 

ncorporated, but these significantly increase the com putational load.

Pel-recursive methods are of the predictor-corrector type. The prediction at a 

)ixel is formed by a linear combination of the motion estimates in a neighbour-
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hood. The update is based on a gradient-based minimization of the displaced frame 

difference. The extension of this approach to block-based estimation is known as 

Wiener-based motion estimation (WBME) [48].

Bayesian methods utilize a probabilistic smoothness constraint, usually a Gibbs 

Random Field (GRF),with a MAP estimate being sought. This is an unifying ap­

proach, from which all the other methods (gradient-based, BM, WBME) can be 

derived [48]. Its main drawback is the heavy computational load.

Differential m otion analysis

An alternative to the aforementioned methods is the one based on a simple subtrac­

tion of images from different frames. A binary difference image is constructed by 

grey-level subtraction and thresholding, where non-zero regions in the result are- in 

large measure- presumed to be a consequence of motion. To detect the direction 

of motion, accumulative difference pictures can be constructed, setting one initial 

frame as a reference [41-43]. This method is very straightforward to implement. It 

works well for scenes where there ia a sufficient number of frames to be processed 

and when an object has been moved eventually from its original position.

2.4.2 T he C orrespondence P roblem

The correspondence problem, in terms of frames of a video, is the process of “estab­

lishing a match between parts of one frame and their counterparts in a subsequent 

frame that represents the same object at a latter time” [87]. Ullman [87] argues that 

the correspondence problem is low-level and autonomous. It is tackled by matching 

between some so-called correspondence tokens, i.e. the basic image elements, which 

have to be matched. These correspondence tokens can be single intensity points, 

sub-regions, edges, corners, etc. The matching is based on a similarity measure 

defined between the correspondence tokens.

There are many disadvantages in using the raw grey level image elements as
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correspondence tokens, so the original data is typically first organized into units, 

such as interest points, edges, line segments or blocks. Thus, the correspondence 

problem matches low level tokens, which represent meaningful items on a higher 

level.

The motion estimation problem can be approached as finding a correspondence 

of Interest Points (IP). The first step is the detection and then the matching of IP 

located in two image frames. An iterative algorithm, which maximizes the global 

probability between all possible correspondences, has been developed in [3]. This 

algorithm has the drawback of assuming rigid body motion.

In [28], a non-rigid assumption has been used for analysis of the cardiac wall 

motion from MRI. IPs were obtained via magnetically applied pulse sequence, which 

result in a rectangular grid of markers in the image, that changed their position 

during the cardiac cycle. The correspondence between these IPs is determined using 

a correlation technique.

2.4.3 Registration

Image registration is a special case of the correspondence problem where the two 

frames are globally shifted in respect to each other [85]. Registering of two data sets 

requires the evaluation of a transformation which, when applied to the first data set 

seeks to align it to the second [61].

A straightforward approach to image registration is to apply some matching 

technique. A widely used method is cross-correlation function computation between 

two windows: a template window in the first image, and a set of candidate windows 

in the second image. The primitives within these windows can be both the original 

grey-levels and some extracted features such as edges, curves, etc. The matching 

strategy can be performed as an extensive search or using a search strategy in one 

or more resolution levels (image pyramids).

The registration problem is closely related to disparity analysis and motion es-
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timation and to the difference analysis treated in this work. In [96], a disparity 

analysis method based on boundary matching was used for the registration of the 

2-D coronal sections of autoradiographic images in 3-D data reconstruction. In [89], 

a motion estimator has been used for medical image registration of brain images. 

It was shown to work for synthetic rigid and affine motion sequences as well as for 

registering 3-D brain datasets. The cross-correlation BM method has been used 

in [62] for the alignment of histological sections of ra t’s brain for the purpose of 3-D 

reconstruction. A good survey of medical image registration techniques is presented 

in [54].

2.5 AN APPLICATION: MRI

Accurate segmentation of volumetric medical imagery is an essential step in many 

applications. It is an important pre-processing step before 3-D rendering, radiation 

therapy and surgery planning, and in the automatic assessment of signal character­

istics from potentially malignant tissues. Magnetic Resonance Imaging (MRI) and 

Computed Tomography (CT) are the main sources of 3-D images in medicine. Here, 

a brief presentation of the specifics of the MRI acquisition process for brain imaging 

is given.

When protons in a hydrogen atom (hence in the water within the brain tissues) 

are placed in a magnetic field, they oscillate with a frequency depending on the 

strength of the field. They are capable of absorbing energy from the field and when it 

is switched off they return to their equilibrium by transmitting the absorbed energy. 

This re-radiation of energy is observed as the MRI signal. The intensity of a voxel 

from the MRI data corresponds to averaging the signal over a small area of the brain 

and over an interval of time. Usually, the tissue area is Imm^ in the plane (or slice) 

parallel to the MRI detector. After a slice has been obtained, the detector moves 

along the third axis to acquire another image. The slice thickness is usually 3 — 5 

mm and the gap between slices is usually 2 mm. Therefore, there can be a strongly
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perceptible difference in the  cross-section shape of various anatom ical structu res 

between adjacent 2-D slices. The image volumes are obtained by stacking the  slices 

together along the th ird  dimension. The phrase ‘th ird  dim ension’ denotes th e  axis, 

along which the resolution is lower. However, the  2-D slices defined along the  higher 

resolution can be physically any of the axes. T he 2-D M RI scans can be acquired 

coronally, sagitally or axially (transaxially) (Fig.2.1), bu t are all fundam entally  3-D 

data . An element of a slice is correlated not only to  its spatial neighbours w ithin 

the  same slice, bu t also w ith spatially  adjacent neighbours in nearby slices.

axial plane

a.

W)

coronal plane

Figure 2.1: MRI planes.

The s tandard  slice orientation is transaxial (or axial) (see Fig. 2.2,  left). Slices 

w ith  sagittal and coronal orientation are shown in Fig. 2.2,  middle and right respec­

tively.

Figure 2.2: Axial, sagittal  and coronal views.

The re tu rn  of the hydrogen nuclei to  their equilibrium  s ta te  takes some tim e, and 

is governed by two physical processes. T he first is the  relaxation back to  equilibrium
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of the component of the nuclear magnetization, parallel to the magnetic field, which 

takes time T1 and the second is the relaxation of the perpendicular to the magnetic 

field component which takes time T2. Hence, the strength of the observed MRI 

signal depends on three main parameters: the Proton Density (PD) in the tissue 

(the greater the density, the larger the signal), and the times T1 and T2. For most 

soft tissues in the brain, the proton density is very homogeneous, and therefore does 

not contribute signal differences to the final image. The times T1 and T2, however, 

can be dramatically different for various soft tissues, causing major contrast between 

them  in the resulting image. It is possible to manipulate the MRI signal by changing 

the way in which the nuclei are exposed to the electromagnetic energy. In this way, 

the dependence of the final MRI image on the three parameters can be specified by 

weighting techniques [44]. Figure 2.3 illustrates the same physical slice of the brain 

as a PD (left), Tl-weighted (middle) and T2-weighted (right) image.

Figure 2.3: PD, T1 and T2-weighted axial images o f  a human brain.

W hen selecting the type of weighting, a tradeoff is made between factors such as 

cost, time, signal-to-noise ratio, etc. Considerations about the comfort of the patient 

are also im portant in this selection. For instance, the T1 images give anatomical 

details, but tend to be noisy due to the short acquisition time (<  1000 ms for one 

slice). T2 images possess bigger contrast between the tissues but take longer to 

acquire (3000 — 4000 ms.). The PD images (typical acquisition time: 2000 ms.), 

generally manifest the smallest contrast between the tissues. Hence, PD images 

present the greatest challenges for anatomical segmentation.
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2.6 CONCLUSIONS

22

There exist various techniques for image segmentation. Most methods have been 

extended from 2-D to 3-D, although specific issues such as the presence of differ­

ence along the third dimension are inherent only to the latter. Random field-based 

modelling has been extensively used, due to its suitability both for analyzing and 

synthesizing images.

The result of the texture segmentation task is very difficult to assess autom at­

ically, and usually, the human observer is the final judge of the quality of the seg­

mentation. Texture segmentation of volumetric imagery encourages a model-based 

approach, hence a 3-D extension of the GMRF will be proposed in this work. Estim a­

tion of local properties using a computational volume approach benefits from fewer 

computations in comparison with Bayesian MCMC algorithms, for example. It re­

quires, however, the development of suitable difference estimation and compensation 

techniques. This problem, although related to motion estimation, correspondence, 

and image registration tasks in image sequence analysis, has a different origin and 

effect in volumetric images.

An im portant current source of 3-D images is MR technology in medicine. Iden­

tification of anatomical structures in PD and T2 brain MRI is a challenging task. 

Hence, the anatomical segmentation of such volumetric images offers an im portant 

application context for 3-D texture segmentation and difference analysis algorithms.



Chapter 3 

IMAGE MODELLING ON 3-D 

LATTICES

3.1 INTRODUCTION

For the purposes of image analysis and processing it is efficient to have an underlying 

model for the dominant characteristics of the given data. Although it is often 

difficult to identify the physical mechanism which generated the observed data, 

any analytical expression that captures the statistical properties of the image can 

be used as a model.

Specifically, Markov Random Field (MRF) theory provides a consistent way of 

modelling context-dependent entities [53]. MRFs are useful for image processing 

because they can describe local properties and are capable therefore of representing 

textured areas as well as region sizes, shapes and boundaries. Two-dimensional (2-D) 

MRFs have been used for modeUing 2-D images and other spatial systems [14,60].

When dealing with video sequences and volumetric data it is natural to use the 

information provided by the third spatial or temporal dimension and this has led 

to the extension of the MRF models over three dimensions (3-D). Such MRF-based 

modelling, segmentation and restoration was successfully applied to different types

23
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of 3-D data: volumetric medical imagery [10,15,37] and image sequences [94].

In this chapter the problem of modelling volumetric images via 3-D MRFs is 

treated. Definitions of the basic notions and notation used through the thesis are 

given in Section 3.2. The elements of MRF theory that are drawn on for this work 

are outlined in Section 3.3. The specific model used in the thesis, the 3-D GMRF, is 

presented in Section 3.4 and in Section 3.5 the labelling problem is stated. Finally, 

the main conclusions are given in Section 3.6.

3.2 FINITE LATTICES

Typically image data are represented by grey-level variations defined over a finite 

rectangular or square point lattice.

D efin ition 3.1 >1 la ttice  is a two or three-dimensional finite set of nodes.

A lattice node is a point in 2-D or 3-D Euclidean space. Thus, 2-D lattices are 

often used to represent 2-D images (the image element corresponding to a node is 

called a pixel) and 3-D lattices to represent 3-D data where each node corresponds 

to a voxel.

First, denote a lattice by A, which is of dimensions M  x N  in the 2-D space and 

)f dimensions M  x N  x D in the 3-D space. A lattice node t is uniquely specified 

)y its coordinates t =  (z,j) in the 2-D and t =  {i , j ,k)  in the 3-D case, where i is 

he image row number (along the x  axis), j  is the image column number {y axis) 

ind k is the slice number {z axis) in a volumetric stack. Thus, the 2-D lattice is 

= {t = {i , j)\ l  < i <  M , l <  j  < N}  and the 3-D is A^^ — {t = {i , j , k)\ l  < 

< M , l < j < N , l <  k < D}.  The total number of nodes in the lattice is Nt 

= M N  in 2-D and = M N D  in 3-D). The superscripts will be omitted if 

he dimensionality does not matter or is clear in the context.

The lattice is visualized as an orthogonal grid with nodes lying at the inter­

actions of the grid lines as shown in Fig. 3.1 where the node t is specified by its
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coordinates. O nly the outer nodes are shown for for simplicity.
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N

I

J

M  D

t  =  ( i j , k )

Figure 3.1: Lattice and lattice nodes in 2-D and 3-D respectively.

The image d a ta  elements are encoded as 2-D or 3-D array  entries, usually as 

integers in the  range { 0 , . . . ,  255} for storage and processing via digital com puters. 

Thus, an alternative  representation of the la ttice can also be used, nam ely v ia the 

image array  of size M x N  in 2-D or of M x A ^ x D  in 3-D, where a node is depicted 

as square or cube for an image pixel or a voxel respectively. This is illustrated  in 

Fig. 3.2 where th e  node is located a t row i, colum n j  and on slice k (in 3-D) of the 

array.

II ( i , j )■ / i

,
/

/

J  M  . N . D

Figure 3.2: Image array in 2-D and 3-D respectively.
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3.2.1 N eighbourhood

One of the important characteristics of the image data is the special nature of the 

statistical dependance of the grey level at a lattice node on those of its neighbours

[14].

D efinition 3.2 A neighbourhood jjt of the node t is a subset of lattice nodes 

rjt C A, which satisfies the following two properties:

(i) t  ̂ Tjt, i.e. node t does not belong to its own neighbourhood, and

(ii) i f  sEr/t then tE7]s, i.e. if s is a neighbour of t ,  t must be neighbour of s and 

vice versa.

A neighbourhood system  77 =  {r]t\t € A} is the collection of neighbourhoods of 

all nodes. In this work symmetric neighbourhoods, i.e. for which (ii) holds, are used. 

The neighbourhood rjt{q) depends on its order q and the sequence of neighbourhoods 

is recursive:

r ;t(g + l)  = ? 7( (g ) |J a rg  inin D(^,s),

ivhere D{t, s) is a predefined distance between two nodes. Then, all nodes s belong 

, 0  the neighbourhood rjt if their location is within an area centred at the node 

defined via D{t, s) < R  where R  takes integer values. This rule is known as the 

Viaximum Allowable Square (MAS) rule [77] as R =  MAS{q)  denotes the maximum 

illowable square of the distance of t to any of its neighbours s. The values of q and 

R. are tabulated in Table 3.1 for 2-D and 3-D lattices respectively.

An illustration of the hierarchical nature of the neighbourhood up to the 8-th 

>rder for 2-D and 3-D lattices is presented in Fig. 3.3 and Fig. 3.4 respectively. The 

lumbers indicate the lowest possible order of the neighbourhood of the central node 

denoted in black on the figures), which satisfies the property f]{qi) C r]{q2 ),qi <  9 2 • 

n the 3-D case the neighbourhood geometry over the current (k) and previous 

k — 1, k — 2, k — 3) slices is shown. The notation q\/q2 stands for voxels common to 

loth the Qi-th and q 2- t h  order to illustrate the exact support for each order. The 

lodes denoted in grey have the same i and j  coordinates as the node in black.
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Table 3.1: Neighbourhood order and MAS values.
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Q R =  MAS2d{q) R =  MAS3D{q)

1 1 1

2 2 2

3 4 3

4 5 4

5 8 5

6 9 6

7 10 8

8 13 9

8 7 6 7 8
8 5 4 3 4 5 8
7 4 2 1 2 4 7

6 3 > ■ > 3 6
7 4 2 1 2 4 7

8 5 4 3 4 5 8

8 7 6 7 8

Figure 3.3: 2-D neighbourhood up to eight order.

The geom etry of the 2-D and 3-D first, second and th ird  order neighbourhoods 

s shown in Figures 3.5 and 3.6 respectively. It is derived from the  general neigh- 

)oiirhood geom etry shown in Figures 3.3 and 3.4.
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8

7 5/6 4 5/6 7

5/6 2/3 1 2/3 5/6

8 4 > ■ > 4 8

5/6 2/3 I 2/3 5/6

7 5/6 4 5/6 7

8

6/7 6/7

6116/7 3/4 3/4

6/7 3/4 6/73/4

6/7

/t-2

Figure 3.4: 3-D neighbourhood up to  eight order.

Figure 3.5: 2-D neighbourhood geometry for first, second and third order respectively.

^Igure 3.6: 3-D neighbourhood geometry for first, second and third order respectively.

Because a finite lattice is considered, assumptions about the lattice boundaries 

iiould be made. Often toroidal or free boundary conditions are used in practice [14]. 

"hus, the neighbourhoods at the boundary nodes are modified according to the 

ssumed conditions.
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3.2.2 Sub-lattices

In practical computations it is often necessary to work over a sub-lattice, which is 

a subset of the original lattice. Define a 3-D com putational volume Ut  of size 

m x n x d  (usually m = n = 2l-\-l and d= 2p+ l)  centred around the node t:

Ut = {t + (Ai, A j,  Ak)}, —l < A i <  I, —I < A j  < l \ —p <  A k  < p (3.1)

within A. There are ut  total number of nodes in u)t- The lattice is divided into two 

subsets A =  A} U A b , where A/ is the set of all interior nodes { N n  in total) which 

are used for the processing and A^ is the set of unprocessed boundary nodes. This 

subdivision is necessary because the computational volumes of the boundary nodes 

span over the image borders, thus some nodes are left unprocessed. Analogically, 

one can define a com putational window ui[ of size n x n in 2-D. The concept of 

a computational volume and 2-D cross-section of it (the computational window) is 

illustrated in Fig. 3.7.

Figure 3.7: Computational volume u>t and computational window u)[.

Other types of subsets of A used in this work are sub-sampled or decim ated  

attices. Such will be denoted by a subscript to A related to the name of the 

ilgorithm they were used for. These lattices constitute of a sub-sampled subset of 

lodes and can be specified by the decimation rate parameters in 2—D and d  ̂in the 

hird dimension. It means that only nodes with coordinates {i-\-cn‘̂ ,j-\-cn^, k-\-cd^),
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where c € Z is a constant, are considered. This is illustrated  in Fig. 3.8 where the 

nodes of the decim ated grid w ith =  2, =  4 are denoted in black.

.....

Figure 3.8: Decimated lattice with parameters =  2 and d‘̂ =  4.

3.2.3 Cliques

D e fin it io n  3 .3  A c liq u e  C, defined over a lattice K with respect to a neighbourhood 

syste m r) is a subset o f A (C C A) such that C  is either a single node or a collection 

o f nodes, all o f which are neighbours.

The set of all cliques in a neighbourhood is denoted by C. Let C „,n  G N'*' be the 

set of all cliques containing n  nodes. T he types of 2-D cliques occurring in first and 

second order neighbourhoods containing up to  4 nodes are illustrated  in Fig. 3.9.

The cliques C2 containing only two nodes for first (r^(l)), second { t ] { 2 ) )  and th ird  

77(3 )) order 3-D neighbourhoods are illustrated  in Fig. 3.10. T here are 13 such 

diques indexed as uz,z =  1 . . .  9 for the  vertical and h i , i  = 1 . . .  4 for th e  horizontal 

>nes.

The num ber of possible cliques increases significantly as the la ttice  dim ensions 

.nd the  neighbourhood order increase, so usually C is constrained to  be a  set of 

m r-w ise  cliques [26].
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ri(2)

/m
; \  C ,

□
B)
%

V

a Cs

Figure 3 .9 : 2-D  clique types for 77(1) and 77(2).

vl h i h2

^ ( D -

v 2 v3 J
v5

h3

v4

ri(2)
h4

v6 v7

v9
3 ^

v8

^ ( 3 )

Figure 3.10: 3-D  pair-wise cliques for 77(1), 77(2) and 77(3).
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3.3 RANDOM FIELDS
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Let X  =  { X i , . . . ,  be a family of random variables defined on the lattice A,

in which each random variable Xt  takes a value Xt from the set E. The family X  is 

called a random field. The notation Xt = Xt is used for the event th a t X t  takes the 

value Xt and the notation X  =  x  is used for the joint event, where x  =  { x i , . . .  , xn ^}  

is a configuration of X, corresponding to a reahzation of the field.

In this thesis Xt  is considered to be a random variable representing the grey level 

intensity at the image node t. Typically Xt  takes values from the set { 0 , . . 2 ^  — 1}, 

i.e. the intensity has been encoded by B  bits (usually 5  =  8). The vector x =  {x(, 1 < 

|A|} consists of the realisations of the grey levels of all nodes in A.

In this thesis discrete random fields defined over 2-D or 3-D lattices are considered 

which for brevity shall be called 2-D or 3-D random fields respectively.

3.3.1 G ibbs R andom  Fields

For a finite lattice A with a symmetric neighbourhood structure rj a G ib b s  e n e rg y  

function can be defined as:

(7 (x )=  5 ]  Vc{xt) + Y l  E  M ^ u X s ) ,  (3.2)
teA.ceCi

where Vc(xt) and Vc{xt, Xg) are known as clique potentials such th a t Vc{-) > 0. This 

ensures th a t the Gibbs energy (3.2) is non-negative definite. The clique potentials 

can be defined for cliques of arbitrary size but in practice are limited to cliques 

containing up to two nodes- Ci and C2 . To a Gibbs energy function of form (3.2) a 

probability distribution can be assigned;

P (X  =  x) =  ^ e x p  ^ - ^ C / ( x ) ^  , (3.3)

where Z is a positive normalizing constant known as partition function  and T  is the

“tem perature” of the field. The tem perature controls the sharpness of the distribu­

tion. If the tem perature is high, all configurations tend to be equally distributed.
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Near the zero tem perature, the distribution concentrates around the global energy 

minima.

This family of distributions is known as Gibbs distributions and thus the 

random field X is known as a Gibbs Random  Field (G R F). A GRF is said to be 

homogeneous if the clique potential Vc is independent of the relative position of the 

clique C  in A. The homogeneity is assumed in most vision models for mathematical 

and computational convenience [53].

3.3.2 Markov Random Fields

D efinition 3.4 A random fieldX. is called a Markov Random  Field (M RF) on

the lattice A with respect to the neighbourhood system r) i f  it satisfies the following 

conditions:

(%) Positivity

P(X  =  x) > 0,Vx G ; and 

(ii) Markovianity

p{Xt = Xt\Xy = Xy,\/v e  A\{^}) =  p{Xt = Xt\Xs =  Xs,\/s e  r]t).

According to this definition, all possible realizations x of the MRF should have 

nonzero joint probability -P(x), and the Markov property implies th a t the conditional 

probability density function (p.d.f.) at a particular node depends only on the values 

of the random field within the neighbourhood of this node.

When the positivity condition is met, the joint probability of any random field 

realization is uniquely determined by its local conditional probabilities [4]. The 

Markovianity describes the local characteristics of X. A node interacts with only 

the neighbouring nodes, i.e. only neighbouring nodes have direct interactions with 

mch other. It is always possible to select a sufficiently large r]t so th a t Markovianity 

lolds and the largest neighbourhood consists of all sites. Any X  is an MRF with 

•espect to such a neighbourhood system.

The specification of an MRF via the local conditional probabilities has several
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disadvantages [4]:

(i)There is no direct method for deducing the joint probabihty P(x) from the con­

ditional probabilities p(x(|xs, s G rjt).

(ii)The conditional probabilities themselves are subject to some highly restrictive 

consistency conditions.

(iii)The natural specification of the equihbrium of a statistical process is in terms 

of the joint probability rather than the conditional distribution of the variables.

However, MRFs can always be described by their joint p.d.f., which is a Gibbs 

distribution (Section 3.3.1).

3.3.3 H am m ersley-Clifford Theorem

An MRF is characterized by its local property (the Markovianity) whereas a GRF is 

characterized by its global property (the Gibbs distribution) [53]. The Hammersley- 

Clifford (H-C) theorem establishes the equivalence of these two types of properties. 

The theorem’s relevance in the image processing community was established by 

Geman and Geman [31]. Its original proof was developed in 1971, but was pubhshed 

1990 [17].

rheorem  3.1 The random field X  is an MRF if and only i f  X. is a GRF.

The H-C theorem establishes the important connection between the local and 

global specifications of an MRF. It gives theoretical justification to the design of 

m MRF via local or global properties depending on their availability in a specific 

ipplication context.

The importance of the theorem in practice is that it provides a simple way of 

pecifying the joint probabihty. This can be done by defining the chque potential 

unctions. Thus, any a priori knowledge or preference about the interactions between 

he sites can be embraced. How to choose the forms and parameters of the potential 

unctions for an effective model is a major topic in MRF theory and practice.
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3.4 STATIONARY GAUSSIAN MARKOV RAN­

DOM FIELD MODEL

The Gibbs energy function (3.2) can be specified in different ways and this leads to 

different MRF models. An extensive presentation and comparison of different classes 

of MRFs models can be found in [58]. These include the Auto-logistic, Strauss, 

Multi-level logistic. Auto-binomial, General-spin Ising, Auto-Poisson, Auto negative 

binomial, and the widely used Spatial autoregressive models.

The choice of model is application-dependent. For instance, an auto-logistic 

model is appropriate for modelling binary textures; multi-level logistic (or “colour­

blind”) models are suitable not only for textures but also to model such categories 

as labels on a map [49]. The most widely used models are the Spatial autoregressive 

(AR) models. These appear in a variety of applications such as texture feature 

extraction, classification [13] and segmentation [57].

The subject of this work is the so called auto-norm al model, also called the 

Gaussian M RF (G M R F) [14,53]. Fields defined over 2-D and mainly 3-D lattices 

are considered and they will be referred to as 2-D and 3-D GMRFs respectively.

The GMRF model is a special class of auto-models, for which only cliques con­

taining up to two nodes, i.e. C E C1 UC 2 are used and the Gibbs energy is of form 

(3.2). For discrete problems the clique potentials can be specified by a number of 

parameters.

Defining the clique potentials in the Gibbs energy as

V c M  =  (3.4)

and

Vc{Xt,  Xs) =  -Ot , s------------ 5-----------, S e  T]t, (3.5)

where yU is a mean grey level value, a is grey-level variance and Ot̂ s is the correlation 

between the nodes t and s, leads to specifying the GMRF model.
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The GMRF model is defined for a symmetric neighbourhood system r) (i.e. 

for which additional constraint for a spatial symmetry has been imposed, 

namely 0t,s =  ^ t -s ,  where by ’—s ’ a node with the same, but ‘negative’ coordinate 

offsets from t as s is denoted. Let the coordinate offsets within r]t be Si, Sj  and Sk. 

Therefore, if s =   ̂+  (<5z, Sj, Sk), then —s = t — (Si, Sj, Sk) = t + {—Si, —Sj, —Sk).

Thus, there are n , unique values of the correlation parameters within a neigh­

bourhood consisting of 2rig nodes, rjt is considered to consist of two symmetrical 

halves- a ‘positive’ and a ‘negative’: rjt = \JVt^, i-e. if s 6  —s G rj^. This is 

illustrated for a second order (g =  2) 3-D GMRF with n , =  9 in Figure 3.11.

j-I j  J+I

CD
0

7 0 2 00
CD

CD

i-1

i+1

0. 0.
0 . 0 .

0 0. 0

06

0s 02 0
7

05
k-1 k k+1

Figure 3.11: Parameters for second order 3-D GMRF.

In the figure the node t is denoted by a black square and 9\ is written inside each 

square corresponding to a neighbouring node s E rjt, for which the correlation with 

t has the 9\ value and the param eters for the ‘positive’ half are denoted by black. 

Then, the correlation parameters vector using the adopted ordering can be w ritten 

is:

^ =  [^0) ^1) ^2, ^3i ^4) ^5) ^6) ^7) (3-6)

md the correspondence of each param eter with the cliques from Fig. 3.10 is: 9o 

i2, 6*1 •<-> hi,  02 v l ,  03 M , 04 <->■ h3, 0  ̂ ^  vb, 0q t;4, 0j •«-> w3 and 0^ v2.

For first order (g =  1) 3-D GMRF there are Ug = 3 correlation parameters. Then 

he elements of vector 6 =  [̂ Oi ^2]^ are a subset of the param eters for the second 

irder GMRF as illustrated in Fig. 3.12.
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j-} j  j+J

i-i I 0 „
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0 2

i+1

0 , 0

0 .

0 2

k-1 k+1

Figure 3.12: Parameters for first order 3-D GMRF.

For third order q = 3 3-D GMRF there are n , =  13 param eters and the vector 

can be written as:

^ — [^0 ) ^ 1 ) 2̂ , ^3 ) ^4 ) ^5 ) ^6 ) ^7 ) ^8 , ^9 > ^ 10) 1̂1; 1̂2]

and the ordering within the neighbourhood structure is illustrated in Fig.3.13.

j-1 J j+1

i-1

(3.7)

0 ,2 0 , 0 „

0 , 0 2 O
0
0

CD CD

0 .0

0 3
00 0 .

0 . 0
0 0 . 0

0]O 0a 0 9

CD 00 02 •>0

0 , . 05 0 ,2

k-1 k+1

Figure 3.13: Parameters for third order 3-D GMRF.

The four extra parameters in comparison to the second order correspond to the 

following chques from Fig. 3.10: 9 g  <->■ v6, 9 i q  v7, On ^  ^̂ 9 and 9 i 2  v8.

Thus, the GMRF is defined via a compact parameter vector p e  The

param eter vector can be written as:

P = (3,8)
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vhere 6 = [9i,. . . ,  ^n,]^ is the vector of the ordered correlation parameters within 

tie neighbourhood of order q, i.e. Ug =  |0|. Sometimes it is useful to refer only to the 

‘lorizontal’ subset of the correlation parameters in 2-D (z — j  plane) 6^ = {Ot,s, s € 

rj~ ,s  = t+{-, •, 0)}. Similarly, the subset of the ‘vertical’ correlation parameters along 

tie third dimension can be denoted as 6y = s G rj^, s = t + k), k ^  0}. For

example for the second order 3-D GMRF

=  [ 0̂) 1̂) ^3, ^4]^ (3.9)

aid

=  [̂ 2) ^5) ^6) ^7) (3.10)

a.‘ follows from Fig. 3.11. From Fig. 3.13 for the third order 3-D GMRF the 

expression for Oh is the same as (3.9) and for 6y is:

=  [ 2̂) ^5, 6̂! 7̂) ^8) 9̂; 1̂0) ^11, 012]^- (3-H )

3 4.1 G lobal Specification

Sibstituting the single clique potential functions (3.4) and the double clique poten­

tials (3.5) in the Gibbs energy (3.2) it follows:

^  W  =  ^  ~ ^t)Ot,s{Xs -  (3.12)
teA teA

Thus, the joint probability of all N t  nodes from A is given by:

( x - ^ ) ^ B ( x - / i ) '-ydet(B)
P  X =  y   ̂  ̂ exp

^(27ra2)^T 2^2 (3.13)

where fj, is an N t  x  1 vector of conditional means, and B =  [6 4̂] is the N t  x  N t  

interaction matrix with elements given by:

bst ^

1, if s =  t,

-0s,t, s er]t,

0 , otherwise.

(3.14)
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The probabihty (3.13) is multivariate normal and B is related to the covariance 

matrix by = B/2a^. Thus, the multivariate Gaussian distribution is a special 

case of the Gibbs distribution family (3.3). The necessary and sufficient condition 

for (3.13) to be a valid p.d.f. is that B be symmetric and positive-definite [53]. Such 

a condition (extended for 3-D GMRFs), dictates that the valid parameter subspace 

h e ^ \ e \  < 0.5 [50].

3.4.2 Local Specification

The expression in the exponent of (3.13) can be rewritten as

1
U = - - ^  { x s -  Hs)hst{xt- l t̂)- (3.15)

t€A,s€Tit

By fixing t and completing the square it follows:

U = ^  -  l t̂)Ot,s{Xs -  l̂ s) + ■
s€r]t

ixt ^   ̂^ t,s(^ s /^s) I
V sertt /2a2

S&T}t
2 (3.16)

where . . .  stands for terms that do not depend on Xf. This expression was obtained 

using the assumption of symmetry Ot̂ s = &s,t and implies the following local condi­

tional probability:

I — ;/, — \  f t ,  A ' T  — II \  I
2(j2p{xt\xs, s er]t)== - 7==^  exp

V Zira^
^  ̂ t̂,S i^s /̂ s) j 
serjt J

(3.17)

[t is a Gaussian univariate normal distribution with conditional mean

E { X t \ X s ,  s e T]t) = + Ot, s {^s  -  l^s)  (3.18)
ser]t

ind conditional variance

var{xt\xs, s e  rit) = cr̂  (3.19)

Thus the model defined via Nt conditional probabihties (3.17) is the model 

lefined via the joint distribution (3.13) (satisfying the H-G theorem). The grey



CHAPTER 3. IMAGE MODELLING ON 3-D LATTICES 40

level of node t obeying (3.17) can be expressed as a linear combination of the grey 

levels at the neighbourhood nodes:

Xt  —  ^  ^  ^t , s { Xs  fJ's') ^ ti
serjt

where the correlated Gaussian noise has the following structure:

E[etes]  =

t = s, 

s erit,

0, otherwise.

(3.20)

(3.21)

This leads to a model specified by N t  equations (3.20) with joint p.d.f. which 

can be written in form (3.13), imposing weaker conditions on the B matrix [53]. 

Thus, under the condition ^  |0| < 0.5 the models (3.17) and (3.20) are equivalent 

and are specifying a stationary GMRF with joint probabihty of form (3.13).

3.5 THE LABELLING PROBLEM

Many image processing and computer vision tasks can be posed as labelhng prob­

lems. In this framework the solution to a problem is a set of labels assigned to 

image data nodes. In this thesis the task of labelling data, which is a mixture of 

stationary GMRFs is considered. The original grey level data are seen as existing 

)n the lattice A together with a hidden label field. The image data are assumed to 

)e generated by T  underlying image models (stationary GMRFs) and the task is to 

issign to each node the corresponding label, which is an indicator of suitability of 

he image model.

5.5.1 Label Field

n this work a label field L =  {1 , . . .  is considered to be a discrete set of

abels over the lattice. A label Z G L is an event which may happen to a site. The
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notation It means th a t the label corresponds to  a site t. The labelling problem is 

to assign the set of labels L to each of the nodes in A. The labelling is a mapping 

from A to L. The problem of region labelling can be considered of type mapping 

’’regular sites with discrete labels” [53]. This is illustrated on Fig. 3.14. The task is 

to partition the image da ta  into mutually exclusive regions, each of which has some 

uniform and homogeneous property with significantly different value from those of 

the neighbouring regions.

A L

o T

Figure 3.14: Mapping with discrete label set.

In this thesis, the emphasis is put on the texture property. Then nodes, within 

the same texture region are assigned the same unique label,

3.5 .2  C od eb ook

The labelling can be considered as the inference of L given the observed data  X. 

This inference can be done in a supervised or unsupervised manner. If the number 

of underlying stationary GMRF models T  is known in advance along with their 

param eter vectors p, the task is considered supervised, otherwise it is unsupervised. 

In this work the supervised approach is used.

In a supervised approach knowledge of T  and the representative param eter esti­

mates Cj =  Pi, i =  1 , . . . ,  r  for each of the stationary models is available a priori. The 

param eter estimates become entries in a c o d e b o o k  C =  {ci, C2 , . . . ,  Ct}- Thus, the 

inference of the hidden label field L is performed given the observed da ta  X  and the 

codebook C.
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This chapter presented a model for images existing on 3-D lattices, namely the 3-D 

GMRF. The theoretical framework for 3-D MRF has been given, introducing con­

cepts and notations used through the thesis such as lattice, neighbourhood, cliques 

and clique potentials. The notions of computational volume and decimated lattice 

have been formally defined.

The 3-D stationary GMRF model has been considered in detail and it was shown 

how it can represent the 3-D image data via a compact parameter vector p. The 

global and local specifications of the model were given and the important interaction 

Tiatrix B has been introduced]

Finally, the label field and the codebook, as major notions used in a supervised 

abelling problem, were defined.

Thus, the main task of this thesis can be formulated as region labelling of a 

nixture of stationary GMRFs on 3-D lattices in a supervised manner. To solve 

his task it is first important to be able to synthesize and analyze 3-D stationary 

j MRFs, which are the subjects of the following chapters.



Chapter 4

SYNTHESIS OF A STATIONARY 

GMRF

4.1 INTRODUCTION

In applications such as image synthesis, coding and compression, it is very im portant 

to be able to generate GMRF models. For simulation purposes in the current work 

it will be necessary to synthesize GMRFs with desired parameters.

When modelling images on finite lattices, boundary conditions must be adopted 

as explained in Chapter 3. It is argued th a t assuming toroidal conditions leads to 

computationally efficient algorithms and thus are used widely [14]. If such condi­

tions are applied along each lattice dimension, the interaction m atrix in the joint 

probability of a GMRF model (Section 3.4.1) becomes a matrix with a special struc­

ture. For a L-D lattice the structure is known as block-circulant o f level L. The 

theory of circulant matrices of levels one and two has been developed extensively 

in the literature [22,40,65], but this is not the case w ith circulants of higher level. 

This extension is im portant in volumetric imagery processing. For this reason it is 

addressed in this chapter.

Firstly, the theory of the block-circulant matrices of level three is developed

43
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ir. a consistent way in Section 4.2, followed by presentation of a main theoretical 

result, namely the diagonalization theorem in Section 4.3. It is used as a basis 

of several efficient algorithms for calculations with circulant matrices of level three. 

The result is the m athem atical foundation for the development of a novel 3-D GMRF 

synthesis algorithm, presented in Section 4.4. W hat follows is a simulation example 

illustrating all theoretical developments in Section 4.5. Finally, the main conclusions 

are summarized in Section 4.6J

4.2 BLOCK CIRCULANT MATRICES OF LEVEL 

THREE

4.2.1 Definitions

D efin itio n  4.1 A c irc u la n t m a tr ix  (or c irc u la n t fo r  short) o f order m  is a 

square matrix  C having the following structure:

C =

/
Cl  C2 C3 . . .

Cl C2

\

Cm—1
(4.1)

y  C2 C3 C4 . . .  Cl

A  circulant has a t most m  different entries and is determined completely by its 

first row c =  (ci, C2 , C3 , . . . ,  Cm): C =  circ(ci, C2 , C3 , . . . ,  Cm) =  circ(c). The class of 

all circulant matrices of order m  is denoted by C(m), i.e. C e  C{m). Circulant 

matrices are special case of Toeplitz matrices.

The structure of a circulant m atrix is obtained by using a forward shift permu­

tation [22]. This operation can be expressed in a m atrix form by the permutation 

matrix of order m  defined as:

TTm = c irc(0 ,1 , 0 , . . .  , 0 ) (4^2)
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Then, any circulant matrix of order m  can be represented as:

m

C Cl 1̂ 1 ^ 2 '^ m  “I" • • ■ “I" ^   ̂CfcTT, (4.3)
i=l

where is the identity matrix of order m  and is the matrix tt^  on the power

oi k. It can be easily seen that 1^ =

A block-circulant m atrix (or block-circulant for short) consists of circulant 

blocks, but the matrix it is not necessarily a circulant nor Toephtz itself. However, 

for GMRF modelling, a specialization of block-circulants is considered. These are the 

block circulant matrices with circulant blocks. Denote the class of all such matrices 

by C{m,n), i.e. they are constructed from n different blocks each being a circulant 

or order m. Then, the matrix C € C(m, n) is of size ran x mn  and has the following 

structure:
C l C2 C3

C„ C l C2

/ r
' ^ n

C n —1

y C2 C3 C4 ... Cl j
The notation is C =  bcirc(Ci, C2 , . . . ,  C„), where the b in bcirc can be omitted 

when the block structure is clear.

The level at which the block-circularity occurs can increase. Thus, going to the 

third level, there is a matrix which is block-circulant and each block is itself of class 

C(m, n).

A square matrix of order mnp (and of size mnp  x mnp) is of class C{m, n,p) if 

it can be divided into p different blocks of order m n  with block-circulant structure. 

Each of the p blocks can be subdivided into n different blocks, each of which is a 

circulant of order m. Such matrix is known as block-circulant matrix of level three. 

To summarize:

• A circulant of level 1 is an ordinary circulant C G C{m).

• A circulant of level 2 is a block-circulant C of class C{rn, n).

(4.4)
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•  A circulant of level 3 is a block-circulant whose blocks are level 2 circulants, 

C  e  C{m, n,p).

•  In general, a circulant of level / >  2 is a block-circulant whose blocks are 

circulants of level / — 1.

4.2.2 Storage of Block Circulant M atrices

Block circulant matrices with circulant blocks of any level (as well as circulant ma­

trices themselves) have the im portant property th a t all the information is contained 

n the first row (column) and so this, alone, needs to be stored.

To illustrate the concept, consider a circulant m atrix C  of level 3 with m  = 4, 

1 = 3 and p = 2, i.e. C  £ C(4, 3, 2). The structure of the m atrix of size 24 x 24 is 

^resented in Fig. 4.1. Clearly, the matrix is fully specified by the entries of the first 

ow.

o o o o • • • • V V Vo o O o
o o o 0

0 o o o

»|v|vK7 o |o |0 |0

•1.

Figure 4.1: Structure of a block-circulant of level three.
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These entries can be arranged in a 3-D generating tensor T  of size m x n x p  via:

T { i , j , k )  = Ck{ l , i  + {j -  l)m ) =  C (l, {i +  (j -  l)m) + {k -  l )mn) ,  (4.5)

where i = 1, . . .  , m,  j  = 1 , . . . ,  n, k = 1, . . .  ,p and Ck are the circulant of level 2 

blocks. T  simply reads the m atrix subrows into a tensor, compactly representing 

{m npY  elements by the sufficient subset of only m np  elements. The tensor for the 

m atrix from Fig. 4.1 is of size 4 x 3 x 2  and is given in Fig. 4.2.

Figure 4.2: Generating tensor for a block-circulant of level three.

The encircled element in both figures, with entry the smallest ’#■, can be indexed 

via (4.5): T ( l ,  3, 2)= C 2(1 , 9 )= C (1 ,  21).

4.3 DIAGONALIZATION OF CIRCULANTS OF 

LEVEL THREE

4.3.1 T hree-D im ensional D iscrete Fourier Transform

D efinition 4.2 Let ui = exp(—j|^), j =  - \ / ^  be the m -th  root o f unity, m G Z. 

Then the Fourier m atrix of order m  (of size m  x  m ) is defined as:

F =

/ 1 1

1 LJ

1

U)

U)

\

(4.6)
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The matrix of order m  of this kind is denoted by F ^ . The Fourier m atrix is 

unitary, i.e. F^rjF^ =  FJ^F^ =  1^, thus F~^ =  F ^ . The star operation denotes 

conjugate transposition operation. Another square m atrix of order m  is defined as 

well:

The Fourier matrix is hnked directly to the Discrete Fourier Transform (DFT).

D e fin itio n  4.3 Let x  =  (xi,X 2 , . . . , and y  =  {yi , y2 , ■ ■ ■ ,ym )^ be complex 

vectors. The linear transformation:

where F  is the Fourier matrix is known as the D isc re te  F o u rie r  T ran s fo rm  

(D F T ) o /x . Its inverse is given by:

The DFT can be defined in higher dimensions. The 3-D D FT used in this thesis 

is given by the following definition [61]:

D e fin itio n  4 .4  The 3-D  D F T  of a 3-D tensor X  of size m  x  n x  p is a tensor Y  

of the same size with entries:

m n T>

If any two dimensions are I ’s, this reduces to the one-dimensional (1-D) DFT(4.8). 

W ith one dimension equal to 1, it is equivalent to the 2-D DFT. The 3-D DFT 

operation can be denoted for short by: Y  =  DF T { X ) .  In the volumetric processing

fl„ = diag(l,w,u^... ,u”* ■). (4.7)

y = Fx (4.8)

X = F ‘y = F’y. (4.9)

(4.10)

u = l , . . . , m ,  v = l , . . . , n ,  w = l , . . . , p

context, the tensor X  is usually the image da ta  array.
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D e fin it io n  4 .5  The in verse  3 -D  D F T  (ID F T ) of a 3-D tensor Y  of size m x n x p  

is a tensor X  of the same size with entries:

 ̂ m  n p

' '  U = 1  D = 1  W = l

W

exp
' m n p

i =  j  =  k =  l , . . . , p

(4.11)

It can be denoted by X  =  I D F T { Y )  for short.

The 3-D DFT can also be written as a matrix multiplication like the 1-D DFT  

(Definition 4.3). The following matrix of size mnp  x mnp  can be defined:

J^=Fm<8)F„(8)Fp, (4.12)

where (g) denotes Kronecker product.

Then, instead of applying (4.10), Y  can be obtained from X  by using the !F 

matrix, which is the matrix of the 3-D DFT as follows;

1. Compose v e c to r  x  o f s i z e  m n p x l  by read in g  s e q u e n t ia l ly  th e  rows 

o f X .

2. Compute y=J- :x. .

3. Compose Y  from y  by th e  in v e r se  o p era tio n  o f s te p  1.

The matrix is the matrix for the IDFT.

The DFT can be implemented in a computationally efficient manner. In the 1-D 

case, the Cooley-Tukey [19] Fast Fourier Transform (FFT) algorithm requires at 

most N  log2 N  complex multiplications to transform a sequence of a radix-2 length. 

The equivalent matrix multiplication would require complex multiplications.

The 2-D and 3-D DFTs can be seen as a sequence of 1-D transforms applied to 

each dimension. The total number of operations required for the 3-D transform of an 

Â i X A^2 X N s  array is Â 2 ^ 3  log2 (-/Vi-/V2 ^ 3 ) compared with (Â iÂ 2 -/V3 )̂  operations 

involved in the multiplication of a N 1 N 2 NS x N 1 N 2 N 3  matrix by a vector of length 

N,N2N2.
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In order to reduce the number of complex multiplications required, the 3-D FFT 

is used to perform the multiplications of the form ^ x .  Then, the above algorithm 

will be denoted by Y  =  F F T (X ) for brevity.

4.3.2 Diagonalization Theorem

It is known that any circulant matrix of level 1 or 2 can be diagonalized by the 1-D 

and 2-D DFTs respectively [22,40]. The result can be extended as follows:

Theorem 4.1 For a block circulant matrix of level 3 C € C{m, n,p),  the following 

representation applies:

C =  (4.13)

where T  is the matrix defined via (4-12) and A is the diagonal matrix of the eigen­

values ofC.

The derivation of (4.13) is given in Appendix A.

4.3.3 Com putations with Circulants of Level Three

The diagonalization Theorem 4.1 can be used for computing the eigenvalues of C. 

The eigenvalues are used for many operations involving level 3 circulants- determi­

nant evaluation, inverse, matrix-vector product, and quadratic forms.

Computing the Determinant

From (4.13) it follows that =  AJ- and only the first rows of each side of the

expression are considered (using MATLAB notation): ( ^ C ) ( l , :) =  A^( l , :), where

A is the vector of the eigenvalues of C. From (4.12) and (4.6) it follows that:

= (4.14)y/mnp  ^ ^ '
m np

Therefore,

A =  (^C)(l ,  -^jsjrunp. (4.15)
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As explained in Section 4.3.1 the multiplication of a vector, representing a 3-D 

tensor, by the matrix T  is equivalent to taking a 3-D DFT of the tensor. Hence, 

(^ C )( l ,:)  is equivalent to performing a 3-D DFT of the generating tensor of C, 

which is T  defined by (4.5).

This leads to a fast method for computing the eigenvalues of C using the 3-D 

FFT:

1. C onstruct th e  g en era tin g  ten so r  T  of th e  C m atrix  by (4 .5 ) .

2. Take the  3-D FFT (S ection  4 .3 .1 )  of T .

3. M ultip ly  the  r e s u l t  by ^ m n p .

4. Read o ff  the  r e s u l t  row-wise in to  a v ec to r A =  [Aj] of len g th  mnp.

Then the determinant of C is simply given by;

mnp

det(C) =  ]^ A ,. (4.16)
1=1

Q u ad ra tic  Form

For any mnp  x 1 vector x one may wish to compute the quadratic form x ^C x . From 

Theorem 4.1 it follows:

x " C x  =  =  (^x )"A (^x )
mnp (4.17)

=  y^A y =
1= 1

where the A entries are computed by (4.15).

Therefore, the algorithm is as follows:

1. Compute th e  eigenvalues A by (4 .1 5 ).

2. C reate m x n x p  te n so r  X from the  v ec to r x .

3. Taie th e  3-D FFT of X  and c a l l  th e  r e s u l t  Y .

4. Compose th e  complex v ec to r y =  [yi]^ ,i = l , . . . , m n p  by read ing  off 

Y row-wise.

5. Compute th e  q u ad ra tic  form by (4 .1 7 ).
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There are many algorithms for generation of 2-D GMRFs with properties that are 

similar to a chosen image. Both deterministic and probabilistic sampling methods 

can be used. There is a very computationally effective algorithm, proposed by 

Chellappa [14], for synthesis of finite-lattice 2-D GMRFs. This algorithm exploits 

the properties of the circulant matrices of level 2. An extension of this approach, 

yielding an algorithm for generation of 3-D GMRFs is proposed here [70]. It is based 

on the computational properties of the symmetric block-circulant matrices of level 

3.

4.4.1 The Structure o f the G M R F Interaction M atrix

As explained in Section 3.2.1 when working with finite lattices, assumptions about 

the neighbourhood geometry of the nodes from the lattice boundaries must be 

adopted. Chellappa argues in [14] that the adoption of toroidal boundary condi­

tions leads to a special structure of the GMRF interaction matrix (Section 3.4.1).

Toroidal boundary assumption means that the neighbours of a site from the 

lattice boundaries are chosen among nodes which would be spatial neighbours if 

the lattice had been wrapped in a toroidal manner. Formally, consider the lattice 

from Fig. 3.1 and node t located at some of the lattice boundaries. Then, for any

neighbour s G r]'  ̂ of a site t, some of the following inequalities apply: 1 > i + Si,

i + Si > M,  1 > j  + Sj, j  + Sj > N,  1 > k + Sk, k + Sk > D. Then, the corresponding

coordinate offsets of s =  t -f- {Si, Sj, Sk), for which some of the above hold, have to

be updated according to the modulo counting valid for the toroidal geometry:

i + Si = M  + (i + Si),i + Si = {i + Si)modM,

j  + Sj = N  + {i + Si), j  -\- Sj =  {j -|- Sj)modN,  (4-18)

k + Sk = D + {k + Sk), k + Sk = {k + Sk)modD.

Analogically, the expressions for nodes —s G r]  ̂ can be derived.
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To illustrate the toroidal boundary assumption, consider a second order (g =  2) 

3-D GMRF and the location of the neighbours of an internal lattice node according 

to the adopted ordering of the correlation param eters (see Figure 3.11). This is 

summarized in Table 4.1.

Table 4.1: Second order neighbourhood of an internal node t — ( i , j , k) .

So 6i 02 ^3 04 05 06 07 08

(j -  \ 0, k)
(i +  1, j, k) (i, j +  1, k)

(l -  l , j - l , f c )  
(i +  l , j  +  l ,k)

(i+1, {i -  l , j , k - l )  

(i +  1, j ,fc+l) (i -  l,j,fc +  l)
( i , j - l , k - l )  

(i,j +  l, fc+l)
(i , j  +  l , k - l )  

{ i , j - l , k + l )

If a lattice boundary node is considered, for instance the first node of the data  at 

location (1 ,1 ,1), the neighbours with the toroidal assumption imposed are defined 

as given in Table 4.2.

Table 4.2: Second order neighbourhood of the node t =  (1,1,1).

Oo Oi 02 6z 04 05 06 07 08

( M , l , l )

(2 ,1 ,1 ) (1 ,2 ,1 )

{ 1 , 1 , D)  

(1 ,1 ,2 )

(M,  7V,1) 

(2 ,2 ,1)

{ 2 , N , l )

{ M , 2 , l )

{ M , l , D )

(2 ,1 ,2 )

{2,1,  D)  

( M , l , 2 )

{ 1 , N , D )

(1 ,2 ,2 )

{1,2,  D)  

( l , iV ,2 )

Each entry bst of the interaction m atrix B  of the GMRF (Section 3.4.1) corre­

sponds to  the interaction between nodes t  and s. The m atrix has been obtained by 

fixing t =  (1 ,1 ,1) and building the entries by (3.14) using the non-zero elements 

of 6 [26]. The m atrix B  =  B (0) is dependent on the GMRF correlation param eter 

vector defined in Section 3.4. Therefore, the only non-zero entries of the matrix 

are the entries within rjt. Hence, the Markovianity property (Definition 3.4,(ii)) of 

the GMRF implies sparsity of the interaction matrix. The spatial symmetry of the 

neighbourhood geometry implies symmetry of B . And, finally, the toroidal bound­

ary assumption along each lattice dimension implies block-circulant (of level three) 

structure of the matrix.
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For example, a second order 3-D GMRF, has interaction matrix given by:

B =  bc irc (B i,B 2 ,. . .  ,B d ) ,  (4 .19)

where each M N  x M N  block B^ is a block-circulant matrix of level 2 , repre­

senting the interaction between the first and k-th  slice of the 3-D data. Each 

Bfc =  bcirc(Bi_fc, 6 2 ,^ ,. . . ,  Bjv.it), where each block Bj k is an M  x M  circulant matrix, 

which encodes the interaction between the first and j - th  column for all rows in slice 

k. The non-zero circulant blocks  ̂ of size M  x M  are as follows (see Fig. 3 .11):

Bi,i ^ c irc ( l ,-6 > i,0 ,0 ,  . . . , 0 , -6^1),

B2,i =  circ(-6>o, -6*3 ,0 ,0 ,. . . ,  0, -64),

Bjv,i =  circ(-6>o, -O4, 0, 0 , . . . ,  0, -63) = (B2,i)^,

Bi,2 =  circ(-6>2, - 9t, 0 , 0 , . . . ,  0, - 9s),

62,2 =  circ(-6»5,0,0,. . .  ,0),

Bat,2 =  c i rc ( -^ 6 ,0 ,0 , . . . ,0 ) ,

Bi ,d =  (Bi ,2)^,

62,0 =  Byv,2j

^N,D = 62,2-

All other circulants = 0 , 2 < j  < N ,2 < K  < D.

The non-zero block circulants of level 2 of size M N  x M N  are defined as follows:

B i =  bcirc(Bi.i, 82,1, 0 , . . . ,  0, (82,1)^),

B2 =  bcirc(Bi,2, 82,2, 0 , . . . ,  0, Bat,2),

B d =  { B2f .
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All other block-circulants =  0, 2 < A: < D. The whole matrix B is then 

constructed from (4.19).

It can be seen that the matrix B possesses the block-circulant of level three 

structure discussed in the previous sections. It can be seen that B is very sparse, 

due to the relatively small size of the GMRF neighbourhood compared with the 

lattice size, while the size of B is fairly large. Therefore, the effective storage is very 

important. The generating tensor of B is denoted by A, and is obtained via (4.5) 

after the substitutions C = B, T = A, =  B^, m = M , n = N,  and p = D\

k) = Bfc(l,z + {j -  1)M) =  B (l, {i + {j -  1)M) + { k -  1)MN),  (4.20)

where i = 1, . . . ,  M, j  = 1, . . . ,  N  and k = 1, . . . ,  D.

In this way, the very sparse B of size M N D  x M N D  can be stored in the more 

compact 3-D tensor A of size M x N  x D, i.e. it is of the same size as the original 

image lattice.

From the described procedure of constructing the interaction matrix, it follows 

that its first row contain the interactions of the the node (1,1,1) with its neighbours. 

This combined with the toroidal boundary assumption results in the generating 

tensor structure as illustrated in Figure 4.3 for the case of a second order 3-D 

GMRF. All non-specified entries are zero.

By comparing the structure of A and the neighbourhood geometry (Figures 4.3 

and 3.11) it can be observed that there is an easy ‘graphical’ way of constructing 

A. This is done by aligning the central slice of the neighbourhood geometry with 

the A ( l , l , l )  entry, assigning 1 to it and taking all 9s with a minus sign, while 

respecting the toroidality. This is equivalent of applying formulas (3.14) and (4.20).

It is worth noting that in the joint probability expression (3.13) computations of 

both determinant and quadratic form involving the interaction matrix are required. 

Hence, a direct evaluation of it can be computationally unattractive. Due to the 

properties of the block-circulant of level 3 B, however, the fast algorithms developed 

in Section 4.3 using the generating tensor A can be applied. Thus, direct storage and
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manipulation of B  is avoided, making the 3-D GMRF joint probability computations 

feasible even for big lattices.

: -0 :

r.e.
- f t

“0
1

4
-0 , -01 i-08 -02 -07 08 re. -02 -08 -0;

-9o -03 -04 -06

AC,:,2 ) • • • A(:,:,D)

-0n -04 -03 -05

Figure 4.3: The generating tensor A  for a second order 3-D GMRF.

4.4.2 Algorithm

The synthesis algorithm starts with the matrix-vector representation

B x  =  e

x  =  B-^e, (4.21)

related to (3.20) written for a 3-D GMRF of size M  x N  x D, where x is the 

N t  X 1 vector containing the realization of the field a t all nodes. B is the GMRF 

interaction m atrix (Sections 3.4.1 and 4.4.1), and e is the N t  x  1 vector for the 

correlated Gaussian noise.

The algorithm begins with a generation of the vector e aiming to construct x, 

obeying (4.21). Substituting (4.13) in (4.21) it follows:

X =  (4.22)

where A is the diagonal m atrix of eigenvalues of B.

Furthermore, the relationship between the GMRF and the SAR models can be 

used to simplify the procedure starting with a vector n  containing independent and 

identically distributed realizations of Gaussian noise with zero mean and standard
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deviation cr̂  instead of e. Then y /B  should be used instead of B to obtain correct 

model structure [14].

Following the concepts from Section 4.3, fast 3-D FF T  implementation of (4.22) 

is proposed. The following structures are used; X  being a field of original dimen­

sions M  X  N  X  D, encoded in the vector x, N  is a 3-D structure equivalent to n 

and A  is the generating tensor of B. fj, is the mean param eter defined in Section 3.4.

Algorithm :
1. Generate an M  x N  x  D  array N
2. Apply a 3-D FFT on N  and save the result in Y .

3. Compose the M  x N  x  D  tensor A  from 6 using Fig. 4.3.
4. Apply a 3-D FFT to A  and save the result in A .

5. Reassign Y (i, k) {i, j, k ) / y j A (i, j , k ) .

6. Apply a 3-D inverse FFT to Y  and save the result in Y .

7. Y  + / /  is a sample of the GMRF X .

In the case of 2-D GMRFs, Lankshmanan and Derin [50] give a sujficient condi­

tion for 0, so tha t B =  B(0) is positive definite assuring th a t (3.13) is a vahd joint 

p.d.f.: 1̂1 <  0-5- This condition is easy to check, but describes only a subspace

of the valid param eter space. The authors point out th a t the above result can be 

extended for real and complex GMRFs defined over L-D lattices. In the simula­

tions in this thesis, the 3-D GMRFs, generated by the above algorithm, satisfy the 

sufficient condition above.
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4.5 SIMULATION EXAMPLE

58

As an illustrative example consider a 3-D lattice with dimensions M  = N  = A and 

D = 3. Then, the total number of nodes is N t  — 48. A second order 3-D GMRF 

with entries of the correlation param eters vector 6 {q = 2,Uq = 9) given in Table 4.3 

is assumed.

Table 4.3: Correlation parameters for a second order 3-D  GMRF.

^0 O2 O3 04 05 ^6 67 08

- 0 .0 0 2 0.047 - 0 .1 1 0.15 -0 .017 0.044 - 0 .0 2 0.08 -0 .019

Toroidal boundary assumptions have been adopted, thus the following circulant 

matrices (of level 1) Bj,k,j = 1 , . . . ,  4, A: =  1, 2, 3 of size 4 x 4  can be constructed: 

For A: =  1:

Bi_i =  c irc(l,—0.047,0,—0.047)

B2.1 = circ(0.002,-0.15,0,0.017)

63.1 = circ(0 , 0, 0, 0 ) =  0

6 4 . 1  = (6 2 ,1 )^

For the second 2-D slice of the 3-D block {k = 2):

Bi,2 =  circ(0.11,-0.08,0,0.019)

82.2 =  circ(—0.044,0,0,0)

63.2 = 0

64.2 =  circ(0.02,0, 0, 0)

For k = 3: 61^3 =  (Bi 2)^, 82,3 =  8 4 2̂ , 63^3 =  0 , 84^3 =  8 2 ,2-

The three symmetric block-circulant matrices of level 2 B k , k  = 1,2,3 corre­

sponding to the interaction between the 2-D slices in the 3-D da ta  have the following 

form:
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B i  =  b c i r c  ( 8 1 ,1, 6 2 ,1, 0 , ( 6 2 ,1) '^ )

B 2 =  b c i r c  ( 6 1 ,2 , 6 2 ,2 , 0 , 8 4 ,2 )

B 3 =  b c i r c  ( ( 8 1 ,2) ^ ,  8 4 ,2 , 0 , 8 2 ,2) =  ( B 2) ^ .

F o r  e x a m p l e ,  t h e  B i  m a t r i x  o f  s i z e  1 6  x  1 6  is  o f  c l a s s  C ( 4 ,  4 )  a n d  h a s  t h e  f o r m :

(  B i . i 62,1 83,1 B4.1 ^ /
B i . i 62,1 0 ( B 2. i r  ^

64,1 B i . i 62,1 63,1 ( B 2, i ) ^ B i . i B 2,1 0

63,1 64,1 B i , i 62,1 0 ( B 2, l f B i , i B 2,1

\  ^2,1 63,1 64,1 B i , i  / V 62,1 0 ( B 2, i ) ^ B i , i  )

/  1 -0 .047 0 -0,047 0,002 -0 .15 0 0.017 0 0 0 0 0,002 0,017 0

d1

-0 .047 1 -0,047 0 0,017 0.002 -0 ,15 0 0 0 0 0 -0 ,15 0,002 0,017 0

0 -0.047 1 -0,047 0 0.017 0,002 -0 ,15 0 0 0 0 0 -0 ,15 0,002 0.017

-0.047 0 -0,047 1 -0 ,15 0 0,017 0,002 0 0 0 0 0,017 0 -0 ,15 0.002

0.002 0.017 0 -0 ,15 1 -0,047 0 -0,047 0,002 -0 ,15 0 0,017 0 0 0 0

-0 .15 0.002 0,017 0 -0 ,047 1 0,13 0 0,017 0,002 -0 ,15 0 0 0 0 0

0 -0 ,15 0,002 0,017 0 -0,047 1 -0,047 0 0,017 0,002 -0 ,15 0 0 0 0

0.017 0 -0 ,15 0,002 -0 .047 0 -0,047 1 -0 ,15 0 0,017 0,002 0 0 0 0

0 0 0 0 0.002 0,017 0 -0 ,15 1 -0,047 0 -0,047 0,002 -0 ,15 0 0,017

0 0 0 0 -0 ,15 0,002 0,017 0 -0 ,047 1 -0,047 0 0,017 0,002 -0 ,15 0

0 0 0 0 0 -0 ,15 0,002 0,017 0 -0,047 1 -0,047 0 0,017 0,002 -0 ,15

0 0 0 0 0,017 0 -0 ,15 0,002 -0 ,047 0 -0,047 1 -0 ,15 0 0,017 0.002

0,002 -0 ,15 0 0,017 0 0 0 0 0,002 0.017 0 -0 ,15 1 -0,047 0 -0.047

0.017 0,002 -0 ,15 0 0 0 0 0 -0 ,15 0,002 0,017 0 -0 ,047 1 -0,047 0

0 0,017 0,002 -0 ,15 0 0 0 0 0 -0 .15 0,002 0,017 0 -0,047 1 -0,047

1 P 0 0,017 0,002 0 0 0 0 0,017 0 -0 ,15 0,002 -0 ,047 0 -0,047 1 )
( 4 .2 3 )

I n  t h i s  e x a m p l e  t h e  B  m a t r i x  is  a  s y m m e t r i c  4 8  x  4 8  m a t r i x  o f  c l a s s  C{4, 4 ,  3 )  o f  

t h e  f o r m ;

^ B i B 2 B 3  ^ 1"
B i B 2 ( B 2 ) ^  ^

B  = B 3 B i B 2 ( B 2 ) ^ B i B 2 ( 4 .2 4 )

^ B 2 B 3 B .  J \ B 2 ( B 2 ) ^ B i  )
w h e r e  t h e  s u b b l o c k s  a r e  d e f i n e d  a s  g i v e n  a b o v e .
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The corresponding generating tensor A has the following structure (see Fig. 4.3):

/  1 -0 .0 4 7  0 -0 .0 4 7  \

0.002 -0 .1 5  0 0.017

0 0 0 0

y  0.002 0.0017 0 -0 .1 5

f
A (:,:,2) =

0.11

-0 .044

0

0.02

-0.08 0 0.019 \

0 0 0

0 0 0

0 0 0 /

A(:,;,3) =

0.11 

0.02 

0

y  -0 .0 4 4

0.019 0

0 0

0 0

0 0

-0.08

0

0

0 /
(4.25)

The 48 eigenvalues of B can be computed using A and the algorithm, described 

in Section 4.3.3:

A(:,:,2) =

A(:,:,3) =

/ 0.6940 1.1760 1.6580 1.1760 \
1.0040 1.5540 1.4360 0.8860

1.3140 1.2640 1.2140 1.2640

V 1.0040 0.8860 1.4360 1.5540 /
/ 0.6190 1.0895 1.2170 0.7465 \

0.9679 1.5063 1.0339 0.4954

1.0950 1.0335 0.6290 0.6905

\ 0.7461 0.6166 0.8121 0.9417 /
/ 0.6190 0.7465 1.2170 1.0895 \

0.7461 0.9417 0.8121 0.6166

1.0950 0.6905 0.6290 1.0335

V 0.9679 0.4954 1.0339 1.5063 J
010 according to (4.16)

(4.26)

To illustrate the efficiency of the FFT-based computations with circulants of level 

3, several interaction matrices B =  B(0) with different dimensions were constructed 

with 9 given in Table 4.3. The dimensions of the lattice were chosen to be M  =  =

15 and variable D = 3,5, 7, 9,11, because these settings were used in the experiments 

throughout the thesis. The corresponding interaction matrices dimensions were 

N t  X Nt , where Nt  = 675,1125,1575,2025,2475 respectively for each D. The 

corresponding generating tensors A are of size 15 x 15 x D.
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The elapsed times for the calculation of the determ inants of these matrices via 

the standard MATLAB function (on a 500 MHz PC with 130596 KB RAM) and 

via the 3-D FFT-based method described in Section 4.3.3 are plotted versus N t  in 

semilog scale in Figure 4.4.

  —
— o-----

 o-----

10' ^ ■ O ■ standard computation 
FFT-based computation

675 1125 1575 2025 2475

Figure 4.4: Standard vs. FFT-based computation of the determinant of B .

The repetitive computation of the joint GMRF p.d.f. (3.13) involving determi­

nant and quadratic forms evaluations is a principal com putational overhead. Thus, 

the significant speedup achieved is vital for maintaining reasonable computation 

times when working with lattices with increasing dimensions, as required by m eth­

ods presented in later chapters.

Finally, to illustrate the result of the synthesis algorithm, a GMRF of dimensions 

4 x 4 x 3  and generating tensor A  given by (4.25) is shown next.

The GMRF parameters were jj, = 128, cr =  20 and 6 as given in Table 4.3. It 

can be shown that these correlation param eters satisfy the sufficient condition as 

^  \e\ = 0.489.

The three slices of the Gaussian noise array (the grey levels are scaled) E  and 

the resulting X  are shown in Figures 4.5 and 4.6.

More synthetic volumes of size 128 x 128 x 11 used in the experiments in this 

work are given in Appendix C, Section C .l.
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Figure 4.5: The Gaussian noise sequence E.

Figure 4.6; The synthesized GMRF X.

4.6 CONCLUSIONS

In this chapter a novel and effective algorithm for sampling GMRFs over 3-D lat­

tices has been presented. It allows the synthesis of stationary volumes with given 

parameters. The toroidal assumption results in the circulant of level 3 structure of 

the model interaction m atrix B. This structure makes possible the use of fast 3-D 

FFT-based implementation of the algorithm. Thus, a tool for testing the accuracy 

of the stationary GMRF param eter estimation and the labelling of mixture of such 

fields, being subject of the following chapters, has been created.



Chapter 5 

VOXEL-BY-VOXEL 

SEGMENTATION

5.1 INTRODUCTION

As explained in Chapters 2 and 3 image segmentation is a labelling problem. The 

main task of this work is to perform region labelling of a mixture of stationary 3-D 

GMRF da ta  in a supervised manner. Thus, a method is needed for constructing the 

codebook (Section 3.5.2), which carries the information for the number of underlying 

stationary models and their representative parameters.

A technique for estimating the param eters of a stationary 3-D GMRF is devel­

oped. The codebook entries are obtained by off-line processing of selected stationary 

sub-lattices of the original grey-level data  using this technique. These estimates are 

the representative features for each stationary model. Similarly, a feature vector is 

calculated for each lattice node from the non-stationary data. Then given the code­

book, the appropriate label for the node is selected by comparing its feature vector 

with the codebook entries using some distance measure. Therefore, the labelling is 

performed via param eter estimation followed by classification. The classification is 

done in a voxel-by-voxel manner.

63
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In Section 5.2 the technique for param eter estim ation of a stationary GMRF is 

presented. The supervised labelhng of nodes from the 3-D non-stationary data  is 

presented in Section 5.3 and the voxel-by-voxel approach is discussed in Section 5.4. 

Finally, the main conclusions are given in Section 5.5.

5.2 PARAMETER ESTIMATION FOR THE 

STATIONARY GMRF MODEL

The param eters of a 2-D GMRF can be estimated in several ways, such as by Besag’s 

coding scheme [4], by pseudo-likelihood maximization [5], by minimizing the sum of 

square errors (Least Squares (LS)) [14] or by maximum likelihood estimation. The 

LS approach can be extended for L-D GMRFs. In this work, it is used for estimating 

the param eters of a stationary 3-D GMRF.

The estim ation of the param eters is performed under the assumption of the 

stationarity of the GMRF model within a sub-lattice or com putational volume as 

defined in Section 3.2.2. The volume centered at node t  is uit- The to tal number of 

nodes in the volume is tit = mnd.

A zero-mean process within Wt C A/ is assumed (which can be arranged via 

pre-processing, namely, subtraction of the sample mean), i.e. //t =  0 and the model 

equation (3.20) becomes:

To estim ate the parameters of the process X t  at the node t, all the da ta  from ujt 

are used. The aim is to minimize the sum of squared errors, J2reuit between the 

grey level at a node r E uJt and its modelled value, where

(5.1)

(5.2)

Hence;
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where =  [xg +  x_s,s G VrV'y 9r = [^r,s,s ^ VrV-  The latter is assumed 

constant over ujt, i-e. 9r = Ot = [0t,s,s G Vr G u>t. Vectors y^ and 6t are each

equal in length to rig.

Gathering (5.3) into vector-matrix form for all r  G Ut:

obtained by raster scanning across Ut. The matrix is of size nr x riq with rows 

given by y ^ ,r  G

The equations (5.4) are a system of standard normal equations, a solution for 

which can be found using the LS method, as shown in Appendix B.

Thus, using the LS technique, the parameter vector (3.8) pt =  ■ ■ ■ ■, P t , u f Y ~

Ug + 2 for the stationary GMRF model of order q within u>t has been estimated. This 

estimate, pt, is considered to be a vector of representative features f t j  for the model 

and is called the fea tu re  vec to r for the node t G A/, i.e. ft =  p :̂

where the estimates 9t, 'ilt and at are given by (B.8), (B.9) and (B.IO) respectively.

The riy-dimensional feature space $  is a Euclidean space defined as the range of 

possible /(jS. Then, f( can be viewed as a point (ordered n^-tuple) in $  (Fig. 5.1).

Xf — Y  f i t  + (5.4)

where Xf =  [ x r , r  G Ut]'^ and e t =  [e r , r  G u>t]^ are column vectors of length u t

(5.5)

f,,
" fe f

Figure 5.1: Feature vector as a point in the n/-dimensional feature space, $ .
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5.3 SUPERVISED SEGMENTATION OF GMRF 

MIXTURES

The stationary GMRF (Section 3.4) is the model for 3-D homogeneous texture in 

this work. A data volume to be segmented is considered to be a mixture of T  

textures, modelled by T  stationary GMRFs on 3-D lattices. Then, each inferred 

label /t =  i, I G L indicates that the lattice node t belongs to the i-th stationary 

texture model.

As stated in Section 3.5.2 the problem of segmentation, namely the inference of 

L given the data, can be performed in a supervised or unsupervised manner. If the 

codebook C is available a priori then this is a supervised segmentation. Otherwise, 

if it is learned during the segmentation, the problem is unsupervised. The supervised 

segmentation has two distinct parts:

(i) Codebook generation and

(ii) Classification of the nodesj

5.3.1 C odebook G eneration

The codebook may be generated in different ways. For instance, there might be 

a database of all constituent textures available off-line. The codebook generation 

then, is a translation of the off-line knowledge into C. Each codebook vector is 

obtained by averaging of the respective LS estimates at nodes from manually chosen 

sublattices from the grey-level data X:

Here, fr are the feature vectors (5.5) calculated at the representative nodes r which 

are labelled with class i and ric is the number of such nodes. The representative sub­

lattices are chosen carefully to satisfy the texture stationarity assumption necessary 

to obtain the LS estimates as described in Section 5.2.

(5.6)
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5.3.2 Distance Measures

After the codebook has been created, a feature vector for each node is obtained 

via the LS estimation procedure. Therefore, the segmentation task in the image 

space has been transformed into classification in Hence, a measure of similarity 

between the feature vector and the codebook entries is needed.

A general expression of a distance between the two n/-dimensional vectors it and 

Ci is

D(fi,Ci) =  ( f t - C i f S r i ( f t - C i ) ,  (5.7)

where is the inverse of the positive definite distance matrix of size nj x u f .  The 

effect of this matrix is to scale the distance along each feature axis (Fig. 5.1).

In practice, the two most commonly used distance measures for classification 

purposes are:

(i) the simple Euclidean distance, D e , whose distance matrix is the identity matrix 

and

(ii) the Mahalanobis distance [27], D m , whose distance matrix is the inverse covari­

ance matrix for all CiS

The performance of the distance measures for the task of texture classification 

has been tested using the ’leave-one-out’ method on an extensive number of textures 

in [76] and superiority of D m has been shown.

5.3.3 Parameter Estim ation Accuracy

To evaluate the accuracy of the stationary GMRF parameter estimation method, 

the parameters of some synthetic GMRFs have been estimated using the LS tech­

nique presented in Section 5.2. The GMRFs have been generated via the synthesis 

algorithm from Section 4.4.2. The actual parameter values p and their estimates 

(features) / ,  for the first order GMRFs are given in Table 5.1, for the second order 

in Table 5.2, and for the third order in Table 5.3 for illustrative purposes.
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Table 5.1: Parameter and estimate comparisons for first order GMRFs.

m o d e l 1 m o d e l 2

P / P /

122 121.6 120 119.48

a 20 19.833 20 19.994

do 0.3 0.316 0.32 0.332

Oi -0.09 -0.12 -0.09 -0.092

02 0.15 0.136 -0.2 -0.196

Table 5.2: Parameter and estimate comparisons for second order GMRFs.

m o d e l 1 m o d e l 2 m o d e l 3

P / P / P /

122 121.47 120 119.49 124 120.6

a 20 19.729 20 19.648 20 19.793

Oq -0.002 -0.0064 -0.004 -0.0386 -0.04 -0.0039

0.047 0.0469 0.048 0.0471 0.047 0.0474

O2 -0.11 -0.1145 0.084 0.0821 -0.02 -0.0254

3̂ 0.15 0.1491 0.15 0.1495 0.15 0.1389

04 -0.017 -0.0136 -0.017 -0.0218 -0.017 -0.0205

5̂ 0.044 0.0376 -0.013 -0.0188 0.12 0.0224

06 -0.02 -0.0188 0.021 0.0180 0.05 0.0498

O7 0.08 0.0788 -0.09 -0.0942 -0.01 -0.0101

08 -0.019 -0.0208 0.038 0.0359 0.006 0.0127

The reported estim ates are obtained by averaging the LS estimates over the 

mmber of com putational volumes within A/. The com putational volume dimensions 

wre chosen to be n  =  15 and d = 5. It is im portant to note the size of the u>t is a key 

w erating param eter for the success of the segmentation. The n and d parameters
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m ust be chosen big enough to  yield reliable estim ates and  a t the  same tim e small 

enough to  p ro tect the  tex tu re  s ta tionarity  assum ption.

Table 5.3: Parameter and estimate comparisons for third order GMRFs.

m odel 1 m odel 2 m odel 3

P / P / P /

120 119.6 122 121.48 124 123.49

a 20 19.3 22 21.583 24 23.49

00 -0.01 -0.0110 -0.02 -0.024 -0.015 -0.014

Oi 0.13 0.1290 0.13 0.131 0.13 0.13

92 0.02 0.0180 -0.03 -0.035 0.002 0.0009

03 0.012 0.0026 0.01 0.012 0.011 0.009

9a -0.07 -0.0720 -0.06 -0.056 -0.08 -0.083

05 0.014 0.0134 -0.02 -0.026 0.1 0.094

06 -0.002 -0.0004 0.0015 0.0016 -0.3 -0.032

07 -0.007 -0.0087 0.002 0.0028 0.02 0.0137

08 0.015 0.0170 -0.003 -0.006 -0.07 -0.072

09 0.05 0.0420 -0.02 -0.019 0.001 0.0024

010 0.03 0.0327 -0.04 -0.042 -0.007 -0.011

0 n -0.04 -0.0430 0.05 0.046 -0.005 -0.002

012 0.08 0.0780 -0.07 -0.0646 0.009 0.0046

The norm alized Euclidean distance Dne{')  between two vectors x  and y  is a 

simplified version of the M ahalanobis distance, which requires less com putations 

and quantifies effectively the hum an perception of sim ilarity/difference between 2-D 

G M RF textures:

j yj

Since, later, th is will be employed in voxel classification, it is used here to  assess the 

accuracy of the  estim ates in Tables 5.1 to 5.3.
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Specifically, the distance can be calculated between the actual param eter vec­

tors Pi and their estimates (the feature vectors) f| as well as between the vectors 

representing the i-th model. The la tter will be vital in classification. The results 

are shown in Figure 5.2. Although the scale is not exact, the figures illustrate the 

distances between the param eter and feature vectors in $ .

- -  0.01521.4531
1.0253

0.1683 0.4795

0.00054

Figure 5.2: Normalized Euclidian distances between the parameter vectors and their 

estim ates for first, second and third order synthetic GMRFs respectively

The results indicate th a t the estim ation geometry accurately reflects the geom­

etry  of the original param eter vectors. This is a key requirement for the successful 

performance of a classifier in the feature space $.

5.4 VOXEL-BY-VOXEL SEGMENTATION

After constructing the codebook, for each node  ̂ G A/ a feature vector (5.5) is 

com puted using the volume Ut as discussed in Section 5.2. The next stage of the 

supervised segmentation is the classification of nodes.

The task of classification is one of assigning an input (data observation) to a 

category (class) [27]. Thus, it is a labelling problem (Section 3.5), where each class 

is denoted by a unique label. Classification is an im portant part of any pattern  

recognition system [81]. Its aim is to distinguish between different da ta  entries and,
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based on their similarity, to classify them  into predefined classes. In the context of 

the 3-D region labelling we would like to classify single nodes or connected groups 

of nodes, called regions into classes of different textures.

Similar feature vectors form clusters in the feature space. Usually similarity is 

defined in terms of a distance function. Forming the clusters is equivalent to dividing 

the space into sub-spaces, each of which corresponds to a different class. Then the 

task of the classification can be viewed as determining the sub-space of the feature 

space to which the given feature vector and hence its associated node belong.

For a classifier to be successful, it is im portant th a t the classes are separable, 

i.e. th a t discrimination hyper-surfaces between the clusters exist. The surfaces can 

be defined by discriminant functions [81]. Another way to  construct the classifier 

is based on the minimum distance principle [81,90], which is a special case of a 

classifier with discriminant functions, but which is easily implemented on digital 

computers.

An illustration of the minimum distance classifier principle used in this work is 

shown in Figure 5.3.

parameter
estimation

classification

data . feature space ,•

Figure 5.3; M in im u m  d is t a n c e  classif ier.

The output of the minimum distance classifier is the class label assignment:

It = a r g m i n £ ) ( f j , C i ) ,  Vi G {1, . . .  ,T}.
I

(5^9)
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It is the element of the label field L as defined in Section 3.5.1 corresponding to the 

node t e  A/. For the case depicted in the figure, the node t  has been determined 

as belonging to the second class {It =  2), because the distance between the second 

codebook entry C2 and the feature vector fj is the minimal one.

The most straightforward approach is to classify each node in A sequentially. 

The labels, assigned to all nodes represent the result of the classification as a label 

Tiap, which is a realization of the label field. The unprocessed nodes t  ^ A b in the 

abel map are denoted in black. This method shall be called: Voxel-by-Voxel (VBV) 

n the 3-D or Pixel by Pixel (PBP) segmentation in the 2-D case.

To test the classification accuracy and speed of the VBV and PBP schemes, 

lynthetic 3-D data has been generated. Several stationary 3-D GMRFs of order 

( have been synthesized using the algorithm in Section 4.4.2 and a ground truth 

"olumetric mask has been used to compose the mixture of stationary fields, i.e. to 

(btain the non-stationary data.

i.4.1 A two textu re problem

'̂ wo stationary GMRFs of order q =  2 and set of parameters p, given in the columns 

‘nodel r  and ‘model 2’ (denoted by p  in Table 5.2), have each been sampled on a 

^D lattice with dimensions M  =  N  =  128, D  =  11. The volumes are shown slice 

ly slice in Figures C .l and C.2, Appendix C. It should be noted that the values of 

/, a, and the set of 2-D correlation parameters 9h (3.9) are chosen to be very close, 

(n the other hand, the values for the parameters controlling the correlation in the 

tiird dimension, 6y, (3.10) are chosen to be different for the two models.

Figure 5.4: Ground truth mask and grey-level data, two texture problem: slice # 6 .
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The ground tru th  mask and the synthetic data for the middle slice # 6  are shown 

in Fig.5.4 and those for the whole volume are given in Fig. C.7.

The codebook entries have been constructed as described in Section 5.3.1 using 

the two original texture volumes and the values are given in the /  columns ‘model 

r  and ‘model 2’ in Table 5.2. The accuracy of the VBV and PBP scheme has been 

measured by evaluating the percentage of misclassification 5 by comparing the label 

map with the ground truth:

5 =  ^ .1 0 0 % ,  (5.10)
N t i

where is the total number of misclassified nodes in A/. Computational volumes 

with m =  n =  15 voxels and various depths <i =  3, 5, 7, 9 and 11 slices have been used. 

The Ab dimensions are I = 7 voxels and p =  1, 2, 3, 4 and 5 slices respectively (Fig. 

3.7). N ti is a function of d as well. In all cases the Mahalanobis distance D m has 

been used.

The results for all internal nodes are summarized in Table 5.4.

Table 5.4: VBV segm en tation : m isclassification  <5 [%] and elapsed  tim e [s], tw o texture  

problem .

D epth m ean

S

Slice # el.tim e

2 3 4 5 6 7 8 9 10 Tot. Per si.

COII 2.57 2.13 2.73 2.59 3.67 2.17 3.03 2.9 2.29 1.69 209.48 23.28

d =  5 1.46 - 1.67 1.72 1.6 1.49 1.55 0.98 1.24 - 334.23 47.35

11 1.21 - - 1.32 1.29 1.42 1.09 0.95 - - 361.77 72.35

d =  9 1.11 - - - 1.18 1.09 1.06 - - - 290.26 96.75

d = l l 1 - - - - 1 - - - - 121 121

Better performance using deeper computational volumes comes with higher com­

putational cost.

Increasing the depth of the computational volume increases the number of nodes 

riT used for the LS estimates. This produces more accurate features f(,Vt € A/ 

and increases the classification accuracy. Since the 9^ are similar, the accumulation
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of enough data, necessary to estimate correctly the discriminant 9y param eters is 

very im portant. For a better view of the effect of the depth in the VBV scheme, 

consider the middle slice # 6  of the volume. W hen d increases, the misclassification 

5 decreases as shown in Fig. 5.5.

i.0.8

Figure 5.5: VBV segmentation accuracy for the two texture problem: slice # 6 .

The label maps shown in Fig. 5.6 illustrate the perceptual improvement in the 

segmentation with d.

2D 3D, d=3 3D, d=5

Figure 5.6: VBV segmentation results for the two texture problem: slice 7̂ 6.
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The key requirement for 3-D rather than 2-D modelhng of 3-D GMRF mixtures 

is therefore underUned, in those cases where the key discriminant is 6y. The 2-D 

PB P scheme works w ith a 2-D GMRF model, i.e. only the parameters a  and the 

correlation param eters corresponding to the 2-D neighbourhood geometry estimated 

from the 2-D d a ta  are used. For a second order GMRF these are the same as 6h (see 

Figures 3.5 and 3.6). This independent classification of slice # 6  fails {S = 29.9%). 

The PB P execution tim e was 4.12 s. The segmentation results for all slices are given 

in Figures D .l -D.3, Appendix D.

5.4.2 A  three tex tu res problem

Three stationary 3-D GMRFs of order q = 3 have been generated as previously de­

scribed. The actual param eter values and their estimates used for codebook entries 

are given in Table 5.3. The data  volumes are given in Figures C.4 - C.6, Appendix 

C. Similar values have been chosen for fi, a and 6h for the three models and different 

values for 6y (3.11).

Figure 5.7: Ground truth mask and grey-level data, three texture problem: slice # 6 .

The ground tru th  mask and the synthetic d a ta  for the middle slice # 6  are shown 

in Fig.5.7 and those for the whole volume are given in Fig. C.8.

The operational settings are the same as for the two texture problem. The 

misclassification S rates and the elapsed times for all processed slices are reported 

in Table 5.5.
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The same trend as before has been observed. For shce # 6  this trend is depicted 

in Fig. 5.8.

Table 5.5: VBV segmentation; misclassification S [%] and elapsed time [s], three texture 

problem.

D epth m ean

S

Slice # el.tim e

2 3 4 5 6 7 8 9 10 Tot. P er si.

d =  3 10.38 8.73 10.46 10 10.69 8.62 10.75 8.93 11.15 14.13 343.09 38.12

d =  5 4.37 - 4.79 4.56 4.12 4.59 3.89 3.52 5.12 - 535.23 76.46

d =  7 2.55 - - 2.65 2.77 2.49 2.15 2.7 - - 584.47 116.89

d =  9 2.11 - - - 2.11 2.06 2.16 - - - 475.09 158.36

d =  11 2.23 - - - - 2.23 - - - - 204.49 204.49

9

8

7

6

5

4

3

2
3 5 7 9 11

Figure 5.8: VBV segmentation accuracy for the three texture problem: slice # 6 .

It should be noted th a t the values of S increase with the number of textures 

present. The label maps for the central shce are shown in Fig. 5.9 for various d. 

The 2-D P B P  result took only 2.3 s.compared with the elapsed times for the 3-D  

V B V  classification (Table 5.5), but the performance of the former is poor, with 

5 =  42.8%.
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Figure 5.9: VBV segmentation results for the three texture problem: slice # 6 .

It can be noted th a t the  perceptual quality of th e  segm entation m aps increases 

w ith  d.

The segm entation results for all shces are given in  Figures D.4 -D.6.

5.4.3 V B V  limitations

T he same general trends have been observed in m any sim ulation experim ents of 

th e  kind reported  above. To sum m arize, the main conclusions from the  sim ulations 

were:

1. The 3-D VBV scheme is superior to  the 2-D independent P B P  segm entation of 

slices from 3-D data. This is evident in the case where the  key discrim inant between 

different classes are the 6y param eters. This is a  good m otivation for 3-D modelling 

of volum etric images, where it is supposed th a t there are sim ilar 9^ and different dy.

2. W hen the  G M RF sta tionarity  is preserved w ithin tuj, the  classification accuracy 

increases by using deeper com putational volumes.
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3. The VBV scheme is much slower than the PBP one, and its com putational burden 

increases with greater depth.

The three principal limitations of the VBV scheme are:

1. The texture stationarity assumption within Ut- It does not often hold especially 

when the volume overlaps borders between textures.

2. The absence of regularization to encourage connectivity in the inferred label field.

3. The large computational load of obtaining the LS estimates at every voxel in the 

volume.

The first two limitations can be illustrated by comparing the visual quality of 

the classification results. Some label maps for different slices and for depths d = 2> 

and d = b are illustrated in Fig. 5.10. It can be seen th a t despite the relatively 

small values of 5 (Table 5.5), the segmentation at the changepoint areas (borders 

between textures) is not satisfactory, even though it improves with greater depths. 

Note, however, tha t seeking to exploit this improvement by increasing d makes the 

com putational burden even more prohibitive (Tables 5.4 and 5.5).
slice It 2, d«3 slice # 8, d»3

Figure 5.10; Poor VBV segmentation results for the three texture problem.
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In this chapter a generalization of the LS parameter estimation technique has been 

developed for 3-D GMRFs. A simple computational volume-based approach has 

been proposed. The supervised segmentation is performed in two stages: the off-line 

codebook generation and the classification of nodes in VBV manner. The proposed 

method had shown superior performance in comparison to independent PEP seg­

mentation of slices of a GMRF mixture data. This has been specifically pointed 

out for the case when the x — y plane correlations were not enough to discriminate 

between the textures and use of the z-going correlations is the key requirement for 

obtaining meaningful segmentation.

The VBV algorithm, however, has several limitations and thus the resulting la­

bel fields do not satisfy the criteria for good segmentation. Because no constraint 

encouraging connectivity and smoothness in L has been imposed a priori, in com­

parison to the Bayesian methods, these have to be applied a posteriori. Methods 

for overcoming these limitations are considered in the following chapters.



Chapter 6 

SEGMENTATION ON 

DECIMATED LATTICES

6.1 INTRODUCTION

The task of finding homogeneous texture regions in non-homogeneous 3-D da ta  has 

been defined as labelhng of nodes from a mixture of stationary GMRFs. This is 

the approach taken in this work to the difficult problem of texture segmentation of 

volumetric data. The VBV scheme (Section 5.4) presents a  solution to this problem, 

but due to its limitation produces label field of unsatisfactory quality w ith high 

com putational cost. Simultaneous quality and speed improvements can be achieved 

via filtering using the majority principle over decimated lattices geometry.

In Section 6.2 some criteria for evaluation of what is a ‘good’ segmentation are 

given. Different segmentation algorithms based on the VBV scheme followed by a 

m ajority filtering are presented in Section 6.3. Results from segmenting synthetic 

and more reahstic 3-D data are reported. A comparison between the performance 

of the  segmentation algorithms is the subject of Section 6.4.

In most real images the acquisition process and the nature of the 3-D object of 

interest, are sources of rapid change of the borders between textures along the 2 -

80
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going dimension, therefore it requires special attention. The effect of this phenomena 

on the performance of the segmentation algorithms is studied in Section 6.5. Finally, 

the main conclusions of the chapter are given in Section 6.6.

6.2 3-D TEXTURE SEGMENTATION

As explained in Section 2.3 there are formal definitions of segmentation and some 

criteria for segmentation evaluation in the literature. Pavhdis [63] states th a t the 

segmentation process partitions A into disjoint nonempty subsets of nodes. These la­

belled subsets are the segmented regions. Image features such as grey level intensity 

or colour (multispectral data), motion, texture, etc. are used to form these regions. 

This work is concerned with segmentation of data, existing on 3-D lattices, based 

on their textural properties and will be referred to as 3-D texture segmentation. The 

problem of segmentation is the inference of the hidden label field L for each node 

^iven the original grey-level data X. The result of the segmentation tessellates the 

attice into labelled regions. It is consistent with the definition above as all the 

conditions are satisfied.

Because of the lack of strict evaluation criteria and a unifying segmentation the­

ory, the human observer must be the final judge of the quality of the segmentation 

esult. Haralick and Shapiro [36] have estabhshed guidelines for a ‘good’ segmen- 

ation result in their survey of image segmentation techniques. According to them 

he segmented regions should obey the following requirements:

. They should be uniform and homogeneous with respect to some characteristic 

uch as grey tone or texture.

;. Region interiors should be simple and without many small holes.

;. Adjacent regions should have significantly different values with respect to the 

iharacteristic on which they are uniform.

‘. Their boundaries should be simple and must be accurate.

In summary, these rules require the label field to be smooth and connected.
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The label field produced by the VBV algorithm (Section 5.4) do not satisfy these 

requirements. Therefore, to have a proper segmentation algorithm, the inference of 

the label field should be regularized, i.e. spatial connectivity constraints should be 

imposed on it. This can be done a priori or a posteriori.

Very often the MRF-based segmentation is tackled as a Bayesian inference prob­

lem (Section 2.2.6). A priori knowledge about the image and assumptions about 

label field smoothness are encoded in the prior. The maximization of the poste­

rior probability, i.e. the MAP estimation of L is achieved using algorithms such as 

Stimulated Annealing (SA) [49,59], Iterated Conditional Modes [6] and Expectation 

Maximization [29,84].

In this work an alternative approach is used. The connectivity of the label field 

realization, is not achieved a priori, but after the voxel classification (the Major­

ity decision (MD) algorithm presented in Section 6.3.1) or incorporated within the 

classification process (the Unanimity Rule (UR) and the Recursive Unanimity Rule 

'RUR) algorithms presented in Sections 6.3.2 and 6.3.3). These algorithms impose 

connectivity while improving computational efficiency by performing calculations 

)nly at selected nodes from A .

3.3 ALGORITHMS ON DECIMATED LATTICES

Several algorithms based on the VBV scheme are presented. These algorithms elicit 

:onnectivity on L regardless of the labelling algorithm applied at each processed 

lode. This is achieved by exploiting the decimated lattice geometry (Section 3.2.2). 

t leads to computational speedup as the number of nodes to be processed reduces 

ireatly.

They are an extension of the methods for 2-D texture segmentation presented 

n [77]. For the purpose of 3-D texture segmentation 3-D versions were implemented 

vith some modifications taking into account the specifics of the 3-D lattice geometry.
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6.3.1 M ajority D ecision  (M D) Segm entation

In this scheme, a simple nonhnear majority decision filter is applied to the label field 

inferred by the VBV scheme.

The decimated MD lattice is specified by the parameters nfjjj  and 

(Fig. 3.8). To reassign a label to the current node t, consider six nodes, four 

of which are located in the same slice as t = {i , j ,k),  i.e. with coordinates (z± 

n^/£)/2, j±7T^/£,/2,/c), and two located at chosen neighbouring slices, namely, the 

nodes (i,j, k ± d ‘l f^/2).  These nodes are denoted in grey and t in black in Fig. 6.1.

MD

MD

MD

Figure 6.1: The MD lattice.

The label It takes the value of the majority of the labels at these six nodes. If there 

IS ambiguity about the value of It, four additional nodes at locations (z±n^p/2 , j, k) 

ind k) are considered. They are denoted by hashed circles in Fig. 6.1.

[f there is still some ambiguity, the final label decision is taken by choosing randomly 

between the most frequent labels among all nodes from A m d - The algorithm can be 

mmmarized as follows:

Algorithm :

. For every node t =  {i, j ,k)  consider 6 nodes, lo ca ted  a t

and a t { i , j , k±d%j j /2 ) .

1. Assign to  It the  value of th e  m ajo rity  of th e  la b e ls  a t those  nodes.

:f no m ajo rity , consider 4 a d d itio n a l nodes {i±n‘l^ j j /2 , j , k ) , { i , j±n ' l j ^ /2 ,k)
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Repeat step 2.
3. If no majority, assign It randomly from among the jointly most 
frequently inferred labels from these 10 nodes.

T he MD algorithm  strongly encourages spatial connectivity in th e  label field and 

reduces the imprecision caused by the presence of a  border between two tex tu res in 

the  same com putational volume Ut, as sim ulations will now verify.

Consider MD segm entation of two slices of the volume from Fig. C.7, A ppendix 

C. These are com pared to  the  respective VBV results in Fig. 6.2. T he results for 

th e  whole d a ta  set are given in Section D.2, A ppendix D.

VBV, d=3, slice 8 MD, d=3, slice 8

Figure 6.2: MD vs. VBV segmentation for the two texture problem.

The MD algorithm  produced b e tte r region boundaries and less isolated voxels in 

th e  label maps th an  the VBV.[

6.3.2 Unanimity Rule (UR) Segmentation

This strategy  is closely related to  the  MD approach. Here, the  unanim ity  of the 

abels on the decim ated UR lattice Ayfi is checked a t the  tim e of classification,
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rather than  as a post-processing procedure as w ith the MD. A ur is specified by the 

param eters and as illustrated by the schematic in Fig. 6.3. The processed 

node t is denoted in black and the corners of the UR unit volume in grey.

Algorithm :

1. Evaluate the la b e ls  at nodes loca ted  at the corners of a volume of s iz e

^ ^ ^UR centred around the cu rren tly  processed node t .

2. I f  a l l  8 la b e ls  are unanimous, a ssig n  the same la b e l to  a l l  in te r io r  

nodes fo r  th at volume.

3. E lse use the VBV scheme (S ection  5 . 4 ) .

UR

UR

UR

Figure 6.3: The UR lattice.

The UR algorithm segments homogeneous regions quickly, since unanim ity will 

often be observed at the vertex nodes in such regions. In such cases, all further 

/oxel classification is bypassed by the algorithm, resulting in a major computation 

iaving.

Mmulation results

Co illustrate the performance of the algorithm the same da ta  sets from Section 5.4 

pertaining to the VBV scheme were segmented. The A ur parameters used were 

'^UR ~  ^UR ~  performance parameters, namely the misclassification,

( computed via (5.10), and the elapsed times, for the two texture problem are 

leported in Table 6.1.
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Table 6.1; UR segmentation: misclassification 5 [%] and elapsed time [s], two texture 

problem.

Depth mean

5

Slice ^ el.tim e

2 3 4 5 6 7 8 9 10 Tot. Per si.

d =  Z 2.15 2.04 2.24 2.29 3.11 2.02 2.23 2.62 1.61 1.2 33.77 3.75

d =  5 1.46 j - 1.67 1.72 1.6 1.49 1.55 0.98 1.24 - 125.84 17.98

d =  7 1 .21 - - 1.32 1.29 1.42 1.09 0.95 - - 54.99 10.99

d =  9 1 .11 - - - 1.18 1.09 1.06 - - - 266.55 88.65

d = l l 1 - - - - 1 - - - - 111.37 111.37

The same conclusions about the effect of the computational volume depth can 

be made as with the VBV algorithm, because in some cases they are equivalent (see 

step 2. of the UR algorithm).
d=3 d=5

Figure 6.4: UR segmentation for the two texture problem: slice # 5 .

The deeper the computational volume, the better the segmentation, but the 

onger the computational time is. The visual improvement of the segmentation
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result w ith dep th  is illustrated in Fig. 6.4. The results for the whole volume are 

g.ven in Section D.3.

The expected dependence on d has been observed for the  three tex tu re  problem  as 

well. The perform ance param eters are given in Table 6.2. This is further illustrated  

ir Fig. 6.5 for th e  fifth slice of the  volume.

T ible 6.2: UR segmentation: misclassification 5 [%] and elapsed time [s], three texture 

problem.

Depth mean

S

Slice # el.tim e

2 3 4 5 6 7 8 9 10 Tot. P er si.

c =  3 7.47 7.72 6.93 6.14 7.21 7.7 6.69 4.58 7.38 12.85 123.25 13.7

c =  5 3.84 - 4.45 3.61 3.2 3.43 3.52 3.52 5.12 - 239.75 34.25

0 =  7 2.44 - - 2.6 2.49 2.31 2.11 2.7 - - 95.29 19.06

g  =  9 2.11 - - - 2.11 2.06 2.16 - - - 443.2 147.73

d =  11 2.23 - - - - 2.23 - - - - 185.02 185.02

The poor perform ance in the case d — 3 bo th  for th e  two and three class problems 

is due to  the minim al cot depth, which in this case is even smaller than
d=3 d=5

Figure 6.5: UR segmentation for the three texture problem: slice # 5 .
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6.3,3 Recursive Unanimity Rule (RUR) Segmentation

A further improvement of the UR idea has resulted in the development of a fast 

recursive algorithm, called the Recursive Unanimity Rule (RUR). The initial lattice 

A rur is determined by the parameters and as shown in Fig. 6.6. These 

m ust each be radix-2, because on each iteration there is a division of the dimensions 

of the RUR volume by a factor of 2.

Initially the eight vertices of the RUR unit volume are tested for unanimity, in 

which case the UR policy is adopted. If unanimity fails, the volume is subdivided 

into eight sub-volumes by splitting each dimension in 2. Then, the RUR scheme is 

applied recursively for each subvolume, until unanimity is reached or a single node 

is left. In many real applications, such as in medical imagery, the sampling rate 

along the 2 -going dimension is smaller than within the x  — y plane. This is why the 

choice of parameters satisfies If any RUR dimension reaches 1, the

RUR scheme is applied in the remaining two dimensions.

•RUR

RUR
< U R

RUR

RUR

Figure 6.6: RUR algorithm in 3-D and 2-D  respectively.

The algorithm is illustrated in Fig. 6.6 where the ‘black’ nodes have different 

abels than  the ‘white’ nodes. This is the typical case when a recursion is needed, 

since the border between two 3-D textures falls within the RUR volume. The 3-D 

ecursion is shown on the left of the figure, while the 2-D recursion is illustrated on 

he right.
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If the and d^mji parameters are selected too large, there is a danger of

missing some small 3-D structures. Therefore, if a priori knowledge is not available 

to assist the selection of these parameters, the issue can be tackled by small-step 

shifts of the entire RUR computational grid, and comparison of the segmentations 

yielded for each such grid. This, however, significantly increases the computational 

expense of the algorithm, and is found to be unnecessary in many practical instances. 

Algorithm :

1. If =  1 and =  1 classify the single node as in VBV (Section 

5.4). Stop.

2. Classify the 8 vertices of the current RUR volume of size

^RUR- ^ labels are the same, assign to a l l  internal nodes within

the volume the same label.

3. Set fi =  ■ If ^ ‘r .u r ~ ^ % . u r / ‘̂ -  Goto step 1.
This algorithm achieves significant speedup as homogeneous regions are pro­

cessed very quickly (step 3.). The recursion is invoked only around the borders 

between homogeneous regions, therefore the lattice decimation rates adapt dynam­

ically. The algorithm improves the spatial connectivity in the label field and the 

region borders better than the UR scheme because it invokes the VBV scheme at a 

finer scale or at single nodes.

Simulation results

Again, the performance of the RUR algorithm has been tested on the datasets 

from Section 5.4 as for the VBV and UR schemes. The Krur parameters used 

were = 16 and =  4. For the two texture problem, the performance

parameters for each slice and for different depths of ujt are given in Table 6.3. As 

before, increasing d decreases S and increases the elapsed time.

The label maps for different depths for the seventh slice of the data volume are 

given in Fig. 6.7. All segmentation results are presented in Section D.4.

The performance parameters for the three class problem, for all slices and depths.
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are given in Table 6.4.

Table 6.3: RUR segmentation: misclassification 5 [%] and elapsed time [s], two texture 

class problem.

D epth m ean

5

Slice # el.tim e

2 3 4 5 6 7 8 9 10 Tot. Per si.

d =  3 2.11 2.04 2.24 2.27 3.1 2.08 2.19 2.67 1.35 1.1 9.51 1.06

d = 5 1.49 - 1.61 1.77 1.65 1.55 1.65 1.02 1.22 - 13.69 1.96

II 1.2 - - 1.32 1.28 1.44 1.07 0.92 - - 13.92 2.78

d = 9 1.09 - - - 1.17 1.06 1.04 - - - 13.61 4.54

d = n 0.98 - - - - 0.98 - - - - 29.61 29.68

d=3 d=5

Figure 6.7: RUR segmentation for the two texture problem: slice # 7 .

In a  similar m anner, the segm entation results for the  three tex tu re  problem  for 

different depths of the  seventh slice are given in Fig. 6.8.

T he same observations abou t the  im pact of the Ut dep th  on the  quality  of the 

label field can be made as for the  two tex ture problem .
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Table 6.4: RUR segmentation: nnisclassification 5 [%] and elapsed time [s], three texture 

problem.

D ep th m ean

5
Slice # el.tim e

2 3 4 5 6 7 8 9 10 Tot. P e r  si.

d =  3 7.25 6.89 6.53 6.12 6.84 6.26 7.49 7.12 751 10.48 41.21 4.581 ^II 3.73 - 4.17 3.85 3.58 3.65 3.1 3.2 4.56 - 44.87 6.41' t-II 2.44 - - 2.56 2.59 2.34 2.13 2.56 - - 39.86 7.97

d = 9 2.08 - - - 2.06 2.06 2.14 - - - 32.94 10.98

d = l l 2.21 - - - - 2.21 - - - - 54.851 54.85

d=3 d=5

Figure 6.8: RUR segmentation for the three texture problem: slice # 7 .

6.4 SIMULATIONS

The MD segmentation obtained slightly better label maps than the VBV as illus­

trated  in Section 6.3.1. It is a post-processing step, hence, the overall processing
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tim e increased. Therefore, it is relevant to compare the UR and RUR algorithms 

w ith the VBV. Numerous experiments were designed and carried out with synthetic 

and more realistic data.

6.4.1 Synthetic Data]

For the two texture problem, the UR and RUR algorithms improve the classification 

accuracy slightly, when compared to the VBV technique, but also have the added 

benefit of achieving a significant speedup. This is shown in Figures 6.9 and 6.10, 

where the performance parameters for the middle slice of the data  are depicted as 

functions of d. The RUR algorithm gives the best performance.

-O - VBVto

- B -  RUR

3 115 7 9 d

Figure 6.9: Comparison of the mean misclassification S for VBV, UR and RUR, two 

texture problem.

-  •<)

100
-O - VBV

- e -  RUR

d

Figure 6.10: Comparison of the elapsed time per slice for VBV, UR and RUR, two 

texture problem.
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For a visual illustration of how the limitations of the VBV scheme were overcome 

by the RUR scheme, consider Fig. 6.11 for the two texture and Fig. 6.14 for the 

three texture problem respectively. It can be seen how the amount of isolated ’holes’ 

and the imprecision in the label maps were reduced by the usage of the RUR scheme.

The performance parameters for the three texture problem are illustrated in 

Figures 6.12 and 6.13, where the same conclusions can be drawn.

'5

■ „

F 'crnrp  f i l l -  V R V  \/<; RI IR <;pcrmpntatinn tw n  tpYfiirp nrnhlpm  «;lirp ztLl /7 =  3

to - O  VBV

- e -  RUR

3 5 7 9 11 d

Figure 6.12: Comparison of the mean misclassification 8 for VBV, UR and RUR, three

te x tl 'i 'P  n rn h lp m

- O -  VBV

■■= 150 - e -  RUR

100

3 5 7 9 11
d

Figure 6.13: Comparison of the elapsed time per slice for VBV, UR and RUR, three 

texture problem.
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Figure 6.14: VBV (1st row) vs. RUR (2nd row) segmentation, three texture problem.

The experimental examples presented are illustrative of all simulations per­

formed. The results confirmed the expected behaviour of the algorithms and the 

following conclusions can be made:

1. The 3-D segmentation gives superior classification accuracy in comparison to 

the independent slice by slice 2-D segmentation but incurs a greater com putational 

load. Thus, the usage of a 3-D method is justified only when the 2-D segmentation 

is not performing satisfactorily.

2. The 3-D segmentation algorithms are the only reasonable methods to use when 

the stationary GMRFs possesses similar 9^ (3.9) and differ in their correlations in the 

z-going dimension Oy. In this case, the classification accuracy increases by increasing 

the depth of the computational volume.

3. The MD, UR and RUR segmentation algorithms are superior to the VBV scheme 

(Section 5.4). The label map produced by the RUR algorithm satisfies the criteria 

for ‘good’ segmentation and it is the fastest method. Hence, it is the main algorithm 

used in the remainder of this thesis.
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6.4.2 Temporal Textures

More realistic datasets have been constructed using the MIT natural tem poral tex­

tures database [79]. As explained in [83], temporal textures are image sequences 

of textures with motion, such as wavy water, rising steam  and fire. They are also 

called dynamic textures. In this case, the third dimension of the da ta  is the tempo­

ral dimension. Although in this respect they are similar to video sequences, there is 

no camera or object motion, therefore they can be treated  volumetric imagery.

The two tem poral textures used were the ‘river’ (‘wavy water from far’) as a 

background (Fig. C.16) and the ‘plastic’(‘plastic sheet waving in the wind’) in 

the foreground (Fig. C.15). A synthetic mask is used to combine these temporal 

textures, to produce a sequence of size 84 x 84 x 11, as shown in Fig. C.17.

After the 2-D parameters have been estimated independently for each slice (or 

sequence frame), 2-D RUR segmentation has been performed. Second order 2-D 

GMRF modelling has been used with computational window of size 15 x 15 and 

RUR param eter — 16. The resulting label maps for all shces are given in Fig. 

D.22. It can be observed th a t the method was unable to distinguish between the 

two temporal textures. The poor performance can be explained by the fact th a t the 

textures are characterized by similar 6^ (3.9) values as shown in Table 6.5. For the 

second order 3-D GMRFs these are the same set as 0 for the 2-D GMRF. The table 

gives all the param eter values 9 for the 3-D GMRF model.

Table 6.5: Estimated parameters for the temporal textures, second order 3-D GMRF.

texture (7 Oo 8i O2 03 04 05 Oe 07 6s

'plastic’ 129.3 3.36 0.212 0.485 0.376 -0 .1 0 6 -0 .7 6 -0 .0 2 2 -0 .0 2 5 -0 .1 2 8 -0 .2 2 6

‘river’ 132.52 6.07 0.23 0.524 0.17 -0 .1 2 6 -0 .1 4 0.015 0.0067 -0 .0 4 -0 .1 4

The distances between the textures are = 0.1626 when only the 6h were 

considered and — 0.2259 where the full set 9 was used. The latter value is 

greater due to the difference in the 9y parameters for the two textures.
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Figure 6.15: Ground truth mask, slice # 8  from the sequence and 2-D RUR segmentation 

(1st row). 3-D RUR segmentation results for d = 3, 5 and 7 (2nd row).

The 3-D RUR segmentation with = 16, =  4 and =  15 x 15 x d

is iUustrated in Figures D.23, D.24 and D.25 for different computational volume 

depths. Although the results are not as good as the ones obtained with the syn­

thetic textures, the 3-D segmentation algorithm is able to discriminate between 

the two textures unlike the 2-D independent segmentation. The dependence of 

the classification accuracy on the computational volume depth is confirmed as well 

(Fig.6.15).

6.5 SHAPE EVOLUTION ALONG THE ;^-GOING 

DIMENSION

So far, the synthetic examples used the same 2-D mask over each volumetric slice 

to produce the non-stationary data. This implies th a t the 2-D cross-section of a 

3-D homogeneously textured object remains unchanged. However, this is not true 

w ith most of real volumetric or image sequence imagery. For instance, the sampling 

rates in MRI scans along the x  — y plane and the one along the 2-going dimension
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(perpendicular to the cross-sectional plane) are often different as explained in Section 

2.5. When, furthermore, the anatomical pecuharities of the scanned object are 

considered, two consecutive data  slices can differ significantly due to  the shape 

evolution of some anatomical structures along the z-going dimension. In contrast, 

in the case of an image sequence, shape changes between consecutive frames are 

often due to camera or object motion.

The success of the 3-D segmentation methods above depends on the validity of 

the texture stationarity assumption within the com putational volume. The exper­

iments show th a t an im portant requirement for good param eter estim ation which 

is the basis for good classification and segmentation is a da ta  sample of sufficient 

size. It has been concluded th a t increasing the depth of the computational volume 

increases the segmentation accuracy by providing a  sufficiently large stationary com­

putational volume Ut- However, the presence of rapidly evolving cross-sections in a 

homogeneously textured object greatly endangers these assumptions.

To illustrate the effect of the shape evolution along the z-going dimension, con­

sider a da ta  volume of size 128 x 128 x 11, obtained using the first two stationary 

models in Table 5.2. A circular mask has been used to generate a 3-D ‘skewed’ 

cylinder embedded into a background. This effect was achieved by a constant dis­

placement of the mask from slice to slice. In this simulation, the quantitative mea­

surement of the difference between the data slices is known, and can be used to 

compensate for this effect. The segmentation results without and with the shape 

evolution compensation are shown in Figure 6.16.

•
Figure 6.16: Ground truth generation mask, slice # 6  from synthetic data set, 3-D 

segmentation results without and with compensation for shape evolution, d = 11.
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6.6 CONCLUSIONS
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The decimated lattices segmentation methods presented in this chapter are an al­

ternative to the formal modelhng of spatial dependency via an a priori probability 

density, which would be used in a formal Bayesian segmentation. The advantage 

is th a t the results are obtained for much smaller computational cost. The develop­

ment of these algorithms constitutes a contribution to  the collection of existing 3-D 

segmentation methods.

The 3-D RUR algorithm performs well in segmenting synthetic GMRF mixtures 

and more realistic 3-D data  sets. This is evident especially when the use of 6y is of 

a key importance.

Finally, the big impact tha t the shape evolution along the 2:-going dimension 

on the 3-D segmentation algorithm performance was shown. It is very im portant 

to preserve the texture stationarity assumption for the computational volume, the 

segmentation is based on. Therefore, various novel techniques for estimating and 

::ompensating for this effect are the subject of the following chapters.



Chapter 7 

COMPENSATION OF THE 

COMPUTATIONAL VOLUME 

VIA DIFFERENCE ESTIMATION

7.1 INTRODUCTION

As explained in Section 6.5, the  shape evolution of a  3-D object cross-section along 

th e  z-going dimension induces non-stationarity  in U t -  It is m anifested as differences 

between consecutive 2-D slices of the  3-D volume.

This chapter considers the  problem  of estim ating and com pensating for this 

effect. I t  is a problem similar to  those of object tracking, m otion estim ation and 

im age registration, as explained in Section 2.4. In these applications, typically, two 

2-D frames or slices are used in the  estim ation of th e  difference. Such a  m ethod 

canno t be used directly for tex tu ra l grey level slices as occur in tex tu red  volum etric 

imagery. The 3-D segm entation of m inim um  depth , however, produces a  label field, 

which can be used as an input to  a  difference estim ation procedure. Various known 

m ethods, modified to suit the properties of the  label field data , can be applied to 

estim ating  the  difference between a  pair of 2-D shces. T he m ethods presented in this

99
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work, although related to existing ones, are a contribution to the area of difference 

analysis between slices in 3-D volumes.

In Section 7.2 the main notation needed for this chapter is introduced. What 

follows are various methods for solving the problem, based on estimation of the 

difference between two 2-D shces from the label field realization. These are: (i) 

Interest point detection and matching in Section 7.3, and (ii) the Cross-correlation 

method in Section 7.4. Finally, conclusions are drawn in Section 7.5.

7.2 MODELLING OF THE SHAPE EVOLUTION

In this section, a formal framework for modelling the shape evolution in the ^-going 

dimension is introduced, followed by a simulation example.

7.2.1 M em bership

In simulation, it is possible to measure the degree of violation of the stationarity 

assumption within W(. Consider the simple case of a homogeneously-textured 3-D 

object embedded in a textural background as illustrated in Fig. 7.1. Let t be the 

centre of the object cross-section in the middle frame, k. Denote by no  the number 

of nodes within Ut belonging to the 3-D object. Then the membership rrit of the 3-D 

object, within uit with total voxel count ut is defined as:

mt = — .100[%]. (7.1)
Tlx

Ideally, the membership rrit should be 100%, i.e. the computational volume 

should consist entirely of nodes belonging to the same homogeneous texture object.

In real data, however, this is often not satisfied even for 2-D images and the problem 

is more marked when dealing with 3-D images. For instance, this phenomena is well 

known to arise in MRI where the acquisition sampling rate between consecutive 

slices is bigger than the intra-shce samphng rate [10,78]. The cross-section shape 

evolution of various anatomical structures decreases the membership for nodes of
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a parallelepiped-shaped ujt (Fig. 7.1). Such computational volume shape and the 

related segmentation will be referred to as non-compensated.

r -------- ----------- T

i
k-\-p

«
•

Figure 7.1: Non-compensated computational volume.

7.2.2 Difference Field

Shape evolution phenomena along the third axis can be modelled mathematically 

via a non-linear transformation g between the slices. Then, the node =  ( * z ,  J z i  K), 

k̂ , = k + 2 is the image of the node t after the transform ation — g^it) for slices 

separated by z voxels. Many researchers have been investigating different models 

for the specification of g in relation to object tracking, motion compensation and 

registration, as summarized in Chapter 2. For example, the assumption of rigid 

body motion is often used in estimating object motion in an image sequence. This 

is not applicable for the medical imaging application. Instead of parameterization 

of g, non-parametric estimation of its effect is proposed in this work.

The shape evolution along the z-going dimension results in a difference between 

a pair of slices. Then, the problem of determining g^{t) can be formulated as finding 

the difference vector d((z) which maps the node t onto its image iz =  +  dt(z). 

Therefore:

dt(z) = t , - t .  (7.2)
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D epending on the relative location of slices k  and according to  the  adopted 

ordering, the  difference vector can be defined in a  forward  or backward m anner. If 

z >  0, then  the vector is defined as being forward and if z <  0, then  it is a  backward 

vector. If z =  0, then  iz = i , j z =  j ,  k^ = k, i.e. to — t  and dt (0) =  0. If 1 >  k ± z  > D, 

i.e. if fcz goes beyond the lattice dimensions d((z) =  0 as well. If |z| =  1, then  z can 

be om itted  from the  nota tion  for sim phcity and th e  vector d j is defined between a 

pair of consecutive slices. If the vector direction needs specification, d {  will stand 

for a  forward vector and dj for a  backward vector (Fig. 7.2).

-o k+1

k-1

Figure 7.2: Forward and backward difference vectors.

The difference vector has three com ponents (ciz, rf/, dfc),where di = — i, dj =

jz  — i and dk — k^ — k  = z. Usually z =  ± 1  or it is fixed in advance, so the difference 

vector for a  node t  is fully specified by its tw o-com ponent projection {di,dj).  These 

2-D projections (denoted by dashed lines in F ig .7.2) will be used in schematics.

Difference vectors defined for all nodes of the  la ttice  are elements of a  difference 

field  realization

D  =  { d J , V i G A / .  (7.3)

In an image sequence context, or in registering time-evolving processes in 3-D 

medical imagery, th is corresponds to  a  motion  or displacement field  [48,78,85]. In 

registration of stereoscopic pair of images, it is called a  disparity field [3].
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The problem of evaluating the shape evolution along the z-going dimension can 

be formulated as the problem of estimating D: given the grey-level data  and possibly 

some prior information, one wishes to obtain the estim ate D  =  {dt},Vi G A/.

Providing the difference field is known or estimated, a difference-compensated 

com putational volume u f  centred at node t can be constructed:

— U  +  X ^ d (.( l)  -I- (Az, A j, 0)1 +  U  -I- (Az, A j, 0 ) |
i = 0  ^  j = 0  i = 0  ^  j = o  '

+ t + (Ai, A j ,  0), —l < A i <  I, —I < A j  < I. (7.4)

Compared with the definition of the non-compensated computational volume (3.1) 

it can be seen tha t u>̂ is a stack of =  2p -I- 1 2-D computational windows of size 

n X n, n — 21 + I centred at the sequence of images of t located as indicated by the 

difference vectors.

p - i

An illustration of u f  for the case when

M p) = df
i = l

md

s shown in Fig. 7.3.

M - p )  =

(7.5)

(7.6)
i = - p

d (P) /

/ :  /  d  -P>

m

Figure 7.3: Difference-compensated computational volume.

Segmentation algorithms using compensated volumes will be referred to difference- 

(ompensated algorithms.
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7.2.3 Simulation Example

Consider the example from Section 6.5. The ground tru th  mask used is a  circle 

representing a 2-D object cross-section displaced between each pair of slices by 

(+ 5 ,+ 5 ) pixels (Fig. C.IO, Appendix C). Thus, the volume of a textured object in 

a shape of a ‘skewed’ cylinder within a textural background is created (Fig. C .ll) . 

The mask and the grey-level data  for the middle shce of the volume are shown in 

Figure 6.16.

The deeper the non-compensated u>t, the smaller the membership of the cylindri­

cal texture as shown in Fig. 7.4. The membership is calculated at the centre of the 

circle for each middle slice for all possible computational volumes of size 15 x 15 x d. 

The mean value for each depth is reported.

80

3 5 7 9 11

Figure 7.4: Mean membership of the texture in non-compensated Ut for the ‘skewed’ 

cylinder volume.

The bigger the value of d, the stronger the effect of the shape evolution along 

the 2-going dimension. This in turn  reduces the accuracy of the param eter esti­

mation (Section 5.2) as well as the segmentation accuracy, when the depth of a 

non-compensated Ut increases as illustrated in Fig. 7.5 for the middle slice of the 

volume.
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KS-j;

3D,d=7 3D,d=9 3D,d=11

*

Figure 7.5: 2-D and 3-D RUR non-compensated segmentation with different depths of 

ujt'. slice ^ 6  of the ‘skewed’ cylinder volume.

The result confirms the conclusion from Chapter 6 tha t the 3-D segmentation 

performs better than the 2-D. The latter ultimately fails because the 9^ parameters 

were not enough to discriminate between the 2 textures while the former uses the 

whole vector 9 with 9y values being the key discriminants (see Table 5.2). The 

quality of the 3-D segmentation results, however, deteriorates with the use of deeper 

volumes. This contrasts to the opposite trend observed in previous simulations where 

10 shape evolution was present.

To measure only the effect of the shape evolution, a volume of a textured 

stra igh t’ cylinder embedded within a textured background is created using the 

iame two 3-D textures (Fig.C.9) as before. The same ground tru th  mask as for 

he middle slice of the ‘skewed’ cylinder volume is used for all da ta  slices, i.e. in 

his case inter-slice differences are zero. The radius of the circle is 20 pixels, i.e. the 

nembership rrit for the center of the cylinder is 100% for Ut of size 15 x 15 x d for 

ill d. The 3-D RUR non-compensated segmentation results with =  16 and

ijiUR — 4 for the middle slice of the volume are illustrated in Fig. 7.6.



CHAPTER 7. DIFFERENCE ESTIM A TIO N 106

T his result is consistent w ith the  conclusion from C hapter 6 abou t th e  effect of 

tae deeper com putational volume. Thus, the difference in the results for th e  ‘skewed’ 

and the  ‘s tra ig h t’ cylinder volumes is only due to  the  presence of a  non-zero difference 

field.

3D, d=3 3D, d=5

30, d=7

- >•*

' ■ ■ ....

3D, d=9 3D,d=11

Figure 7.6: 3-D RUR non-compensated segmentation with different depths o f ujt'. slice 

# 5  of the ‘straight’ cylinder volume.

T he two curves showing the dependence of the  percentage of misclassification S 

(eqn. (5.10)) on d for the middle slice of bo th  te st volumes, using non-com pensated 

ojt, are depicted in Fig. 7.7. For the ‘s tra ig h t’ cylinder volume there is lack of 

difference for th e  central node and for the  m ajority  of the cylindrical tex tu re  nodes 

a t each slice in respect to  a non-com pensated 3-D com putational volume. The 

average m em bership for these nodes is constan t and is close to  100%. Therefore, 

increasing the depth  of cot decreases the classification error since it increases the 

estim ation accuracy for the GM RF param eters. On the  o ther hand, for th e  ‘skewed’ 

cylinder volume, increasing d increases the  difference , (decreases rrit) as shown in

Fig. 7.4. Decreasing the membership increases the  misclassification.



CHAPTER 7. DIFFERENCE ESTIMATION 107
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Figure 7.7: Effect of the difference field on tiie 3-D non-compensated segmentation 

accuracy. Mean misclassification for the ‘skewed’ and ‘straight’ cylinder volumes.

The same trend is observed for all slices of both test volumes as summarized in  

Tables 7.1 and 7.2.

Table 7.1: 3-D non-compensated RUR segmentation o f the ‘straight’ cylinder volume; 

mean membership [%], misclassification [%], and elapsed time [s].

Depth mean

m i

mean

S

Slice #  (misclassiflcation) e l.tim e

2 3 4 5 6 7 8 9 10 T ot. P er si.

d =  3 100 2.14 2.5 2.46 2.2 2.15 2.25 1.97 2.48 2.22 1.06 10.83 1.2

1. 
11

,

100 1.57 - 2.02 1.76 1.43 1.28 1.34 1.87 1.31 - 15.41 2.2

d =  7 100 1.37 - - 1.45 1.16 1.38 1.66 1.2 - - 16.72 3.34

d =  9 100 1.23 - - - 1.2 1.36 1.13 - - - 14.67 4.89

d =  11 100 0.99 - - - - 0.99 - - - - 30.94 30.94

Table 7.2: 3-D non-compensated RUR segmentation o f the ‘skewed’ cylinder volume: 

nean membership [%], misclassification [%], and elapsed time [s].

Depth mean mean Slice #  (misclassification) el.tim e

m t S 2 3 4 5 6 7 8 9 10 Tot. P er si.

d  =  3 98.67 2.12 2.9 1.66 2.1 1.75 1.59 1.63 2.9 2.1 2.42 11.45 1.27
d =  5 88.78 2 - 2.65 1.96 1.38 2.0 1.92 2.55 1.95 - 17.18 2.45

d  =  7 75 2.5 - - 2.39 2.04 2.63 2.67 2.86 - - 17.83 3.56

d  =  9 60.5 3.53 - - - 3.51 3.79 3.29 - - - 16.62 3.37
d =  11 49.2 5.64 - - - - 5,64 - - - - 30.1 30.1
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For the ‘skewed’ cylinder data the difference field satisfies equations (7.5) and 

(7.6), and the exact difference is known. Thus, a compensated computational volume 

ujf of the type illustrated in Fig. 7.3 can be constructed using dj =  0 for the nodes 

belonging to the background and df(p) =  (-\-5p,+5p,p), d t (—p) =  (—5p,—5p,—p) 

for the nodes belonging to the object mask.

The results from the 3-D compensated with the known difference field RUR 

segmentation with =  16, = 4 for the middle slice of the volume are

illustrated in Fig. 7.8.
3D,d=3 3D, d=5

Figure 7.8: 3-D RUR compensated with the known difference field segmentation for 

different u>̂ depths: slice # 6  of the ‘skewed’ cylinder volume.

It can be clearly observed tha t increasing the depth of the compensated com­

putational volume increases the segmentation accuracy. This is because follows 

the shape evolution along the z-going dimension, thus protecting the texture sta- 

tionarity assumption by keeping the membership close to 100%. Comparing Figs. 

7.5 and 7.8, the superiority of the compensated approach can be noted. Therefore, 

the same relation between the misclassification and the depth of the com putational 

volume is observed as for the data  where no difference is present. This is illustrated
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by com paring Fig. 7.9 to  Fig. 7.7.

109

6

5
n o n -c o m p e n sa te d  

- O -  c o m p e n sa te d  with the  known d ifference field4

3

2
~  - o -  -

1 -  - e - -o
0

5 7 113 9 d

Figure 7.9: Compensating for the difference field effect on the 3-D segmentation accu­

racy. Mean misclassification for the 'skewed' cylinder volume with and without compen­

sation.

Table 7.3: 3-D RUR segmentation of the of the ‘skewed’ cylinder volume, compensated  

with the exact difference field; mean membership [%], misclassification [%], and elapsed 

time [s].

D e p th m ea n

m t

m ea n

6

S lice  # e l.t im e

2 3 4 5 6 7 8 9 10 T ot. P e r  si.

d =  3 100 2 2.24 1.48 1.4 1.74 1,85 1.73 2.72 2.36 3.18 11.24 0 .5 9

d — 5 100 1.26 - 1.42 0.76 0.72 1.18 1.42 1.7 1.65 - 21.05 3 .0 0 7

11 100 0 .9 - - 0.61 0.42 0.9 1.12 1.46 - - 23.49 4 .6 9

d =  9 100 0 .7 9 - - - 0.83 0.68 0.88 - - - 21.9 7.3

t / =  11 100 0 .7 - - - - 0.7 - - - - 30.1 31 .2 1

The perform ance param eters of the 3-D RU R com pensated segm entation for all 

slices of the ‘skewed’ cylinder volume are given in Table 7.3.

The difference-compensated approach takes the  sam e tim e to  execute (excluding 

th e  tim e for estim ating the difference field if unknow n) as the  non-com pensated one, 

while the  m ean classification accuracy increases noticeably (Tables 7.2 and 7.3).

In conclusion, there is a definite dem and for difference estim ation and com pen­

sation. The following sections present various solutions to  this problem.
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7.3 INTEREST POINTS DETECTION AND 

MATCHING

The problem of difference field estimation is closely related to the correspondence 

problem arising in motion analysis, as explained in Section 2.4.2. Estimating the 

difference between two slices of a volumetric image can be considered as finding the 

correspondence between 2-D object cross-sections in these slices.

The process of finding correspondence is known as matching. Direct matching 

between slices from 3-D mixture of stationary fields with similar 0*, is not a feasible 

task. In such data, it is extremely difficult to determine suitable correspondence 

tokens, hence, a simplification is needed.

Approximate texture segmentation, which transforms the raw data into label field 

realization (map), can be used as a pre-processing step. Different grey levels are used 

for different labels, thus a label map consists of regions of uniform grey level (the 

label encoding a texture class). Then, the matching between such regions would be 

based only on the similarity between their shapes. As concluded from the 3-D texture 

analysis so far, the 2-D segmentation cannot be used for this purpose. A 3-D non­

compensated segmentation of minimum depth d = 3 (‘thin-plate’ segmentation), 

however, is least affected by the difference present in the original data. Hence, it 

can be used to produce the initial label maps, which can be used as source for 

selection of the correspondence tokens. A subsequent match between these tokens 

can produce an estimate of D. This estimate D can be used for construction of a 

deeper uj ,̂ which will give the final enhanced result of the difference-compensated 

segmentation algorithm.

7.3.1 M oravec O perator (MO)

The first step of such an approach is to find correspondence tokens in the slices for 

which the correspondence is sought. Significant or interest points IPs are often used
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for that purpose. IPs are centres of highly variable areas, which are likely to be 

found in both slices. In this work the IPs are located on the border between two 

regions in the label map.

More formally, an interest point is a node from The IP corresponding to

the label It at node t, is denoted by a; =  ihj ) ,  x  G

The Moravec, Kitchen-Rosenfeld or Zuniga-Haralick operators are based on a 

local vicinity and are able to locate corners or vertices in images. A corner is 

defined as a junction point of two or more straight lines or as an intersection of two 

edges, oriented in different directions, which are not 180° apart [81]. The interest 

operators find excessive number of corners if applied to raw grey-level textural data, 

but are expected to work very well in an image consisting of several uniform grey 

level regions such as a label map.

In this work a modified colour-blind Moravec operator (MO) is used as an 

interest-point detector. The original MO is the simplest interest point operator 

which takes an image as input and gives as an output the likelihood that a pixel is 

a corner.

Consider the k-th 2-D slice of the grey-level volume X. Let the corresponding 

label field slice obtained after a 3-D ‘thin-plate’ non-compensated segmentation of 

Xfc be Lfc. The MO works on a local 8-pixel area, producing a probabihty map 

where the maximum values correspond to the corners in the processed image:

, i+l J+1

MO{i , j )  = ^  |Lfc(i,j)-Lfc(z,;)|. (7.7)
i= i- i j= j_ i

Because it is applied to a label map several modifications of the original MO 

were implemented, namely:

1. There are only few unique grey levels in a label map and it is assumed that an in­

terest point lies on the border between two regions. Then, the modified MO detects 

a diff'erence between two labels, rather than the actual values, i.e. it is colour-blind.

2. Not all label map pixels are considered, but only some from a decimated A^^. If 

the four corners of a block from such a lattice have the same value, the interior of
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such a block is left unprocessed.

3. Only a percentage of all corners above a certain probability threshold thresh are 

selected. Thus, x  is chosen as an IP if MO{ i , j )  > thresh. To ensure an even dis­

tribution of interest points over the segmentation classes, this percentage is divided 

equally between the classes.

7.3.2 M atching A lgorithm
si)

The second step in the procedure of estimating D is the matching of the sets of IPs 

detected independently for the two slices of interest and in the first step.

A modification of Barnard and Thompson’s algorithm [3] for computing a ve­

locity field between frames in an image sequence via matching of interest points 

is proposed. The modifications are necessary to reflect the specifics of matching 

IPs from slices of the label field, obtained after 3-D ‘thin-plate’ non-compensated 

segmentation.

Let X  =  {xm} be the set of all IPs in the first slice and y  =  {t/n} be the 

set of all IP in the second slice of interest Generally \X\ ^  |3^|. Let dm,n be 

a 2-D vector connecting =  (?m,jm) with y„ =  ( injn) ,  i.e. yn =

d m , n  (^n ^ mi  jn  J m )  •

The two points Xm and can be considered potentially corresponding if their 

absolute distance satisfies the assumptions of maximum possible difference

l ^ m  2/n|  ^

where c?max is the maximum distance a t which a point can have its image within the 

slice. The correspondence between the points is based on a local similarity within 

a 2-D vicinity V.  The similarity is measured by the sum of the squared differences 

between the nodes within the vicinity of the two interest points to be matched:

S m , n  =  ^   ̂ ~  Lfc^(y)] (7-9)
a:e Vinti
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A weight is associated to each correspondence by:

= i  . P-10)

where K  is a predefined constant and Sm,n is computed via (7.9). Let [xm,y„] denote 

that Xm and t/n form a correspondence pair and pm,n be the probabihty of [Xmil/n]- 

The correspondence with the biggest weight should be the correct one, hence the 

initial probability that is not matchable (has no correspondence with any y^) is 

given by:

Pm°n =  1 -  maxi(;^,n, [â m,yn] 7̂  V*, (7.11)n

where v* is a special indicator that no potential correspondence was found and p* 

is the probability for that.

Two correspondences of points [a:m,yn] and [x\ ,̂y\\ are said to be consistent if

|dm,n — dkjl <  C?dif, (7-12)

where djif is a preset constantj

The algorithm is iterative, starting from an initial correspondence between all 

possible pairs of IPs. A probability that the correspondence is correct is assigned 

to each pair. These probabilities are then updated iteratively to get the globally 

optimum set of correspondences, subject to the local smoothness assumption (7.12). 

The modifications of the original algorithm [3] are as follows:

1. The algorithm is adapted to work on label maps rather than grey levels as 

intended originally. The similarity evaluation is based not on the actual grey levels, 

but on the observation if these labels are different or not. Instead of (7.9) the 

following expression is used:

■5m,n ■ P) (7.13)

where and Vy„ differ in p pixels.

2. To determine (imax the differential image analysis principle [42,43] is used, i.e.

dma.x is selected to be equal to the width of the largest region in the difference image
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|L/c ~  LfcJ.

3. To avoid the ‘rigid motion’ constraint the value of c?dif is chosen to be different

than 1. Correspondences are considered to be consistent, only if the two grey levels 

in 3'i'e equal to the same grey levels from The search space for comparison

of consistency is determined by a large value R.

Algorithm :

1. D etect a l l  p o te n tia l  correspondences [xm,2/n]> Vxm G c i n d  E y .

2. For each p o in t x„, G c re a te  a d a ta  s tru c tu re  con ta in ing  th e  v ec to rs  

dm,n and th e  p r o b a b i l i t ie s  Pm,n fo r  a l l  ?/n G 3 :̂

3. Compute th e  i n i t i a l  p ro b a b i l i t ie s  Pm,n of each correspondence [xm,2/n]:

(7.15)

using  (7.10) and (7 .1 1 ). F i l l  the  d a ta  s tru c tu re  from s te p  2.

4. I t e r a t e  N tim es updating th e  p ro b a b i l i t ie s  by:

(7.16)

(7.17)

where A and B are co n stan ts .

The q u a li ty  of the  correspondence [xm,yn] i s  computed by:

(7.18)

fo r  a l l  correspondences [x\ ,̂y\] c o n s is te n t w ith  [xm,yn]-

Normalize
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The algorithm finds the optimum set of correspondences, defined via the dm,n 

vectors. These vectors are used to construct a sparse (only for the points in X )  

estim ate D. dm,n is the 2-D projection of the difference vector estimate d(„(z) for 

the node im =  whose image is t„ =

The advantage of the proposed algorithm is th a t it can find difference vectors 

generated by very general intra-slice transform g. Only a sparse estim ate of the 

difference field is produced a5 a result, which fits well within the decimated lattices 

philosophy of algorithms such as RUR. A disadvantage is the large number of pa­

rameters and constants, which have to be set in advance. An additional ta^k of 

finding a difference vector at a specific node, given the sparsity of D, has also to be 

solved in order to perform the compensated segmentation.

7.3.3 Sim ulation R esults 

M o d ified  M O

The performance of the modified MO (Section 7.3.1) is illustrated in Fig. 7.10. Two 

128 X 128 artificially generated label field reahzations of a three class problem with 

curved boundaries are selected for testing.

Figure 7.10: Modified Moravec operator. Original images (1st column), all corners 

detected (2nd column) and the selected IPs (3rd column).
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For the first test image, the MO detected initially 126 corners within 0.67 s, and 

then  a threshold was set to select the top 20% (29) of the them as IPs. For the 

second test image, the MO detected initially 147 corners within 0.8s and again the 

top 20% (30) of them were selected as IPs.

More results illustrating the MO performance are given in Section E.1.1.

M atching algorithm

The matching algorithm (Section 7.3.2) is able to detect large differences generated 

by an arbitrary image transformation g.

This is illustrated in Fig. 7.11 for the masks from Fig. 7.10 where the sparse D 

is shown in relation to the IPs detected in both images.

■ i

Figure 7.11; Matching algorithm. Original images (1st row) and the difference vectors 

with the respective IP sets (2nd row).

The algorithm parameters used were as follows: c?max =  15 allowing up to 15 

pixels displacement, d^if = 2, in the consistency condition (7.12) allows for non-rigid 

displacements. The values of the constants K  = 10, R  = 10, A  = 0.3, and B  = 3
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vere proposed in [3]. The evaluation of the difference vectors took 6.64 s. for N =  10 

iterations.

More results of the performance of the matching algorithm are given in Section 

1 . 1 . 2 .

D ifference e s tim a tio n  a n d  c o m p e n sa tio n

Ih e  IP detection and matching approach was tested on the ‘skewed’ cylinder data 

v)lume (Fig. C .ll) . The label maps obtained by 3-D non-compensated ‘thin-plate’ 

segmentation of the original data  were used as a source of correspondence tokens. 

The modified MO was used to find sets of IPs in the slices # 2 , # 6  and #1 0  of L. The 

prior information tha t obeys (7.5) and (7.6) and is of the shape illustrated in Fig. 

7.3 was used by considering only these three slices of L, instead of all possible pairs 

of consecutive shces. The matching algorithm was able to estimate the difference 

between L 2 and Le for some IPs (Fig. 7.12).

' ■ % .  , ,  .-J ,  ‘ ■
^  ^  i  ‘  ^  I

Figure 7.12: Original images and superimposed IPs (in white): 3-D non-compensated  

‘thin-plate’ segmentation of slices # 6  and ^10 and the estimated sparse difference field 

between them.

The parameters used were: dmax =  40, <idif = 2, K  = 10, R  = 10, A  = 0.3 and 

B  = 3 and it took 3.21 s. to execute. The estimate of the difference vectors between 

L 2 and Le is given in Fig. E.7.|

To obtain a dense (for all nodes of the slice) difference field estim ate from the 

sparse D, interpolation of the missing vectors for the pixels, which are not among
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the set A’ of IPs is needed. It is assumed th a t nodes in the vicinity of each IP 

undergo the same local transform g. The interpolation is illustrated in Fig. 7.13.

Figure 7.13: Construction of the dense D from the sparse between slices # 6  and #  10.

The to tal elapsed time was 9.33 s for all IPs. The interpolation of the remaining 

vectors within the whole volume was performed assuming that (7.5) and (7.6) hold. 

The elapsed time for the interpolation between L 2 and Lg was 9.98 s Thus, the dense 

D  was obtained and was used to construct u f  for segmentation of the original grey 

level volume.

3D, d=3 3D, d=5

Figure 7.14: 3-D RUR compensated segmentation for different wf depths: slice # 6  of 

the ‘skewed’ cylinder volume. IP detection and matching for estimation of the difference 

field.
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The object shape has been preserved as a result of the compensated segmentation 

wth different depths as shown in Fig. 7.14.

The performance of the compensated segmentation using D follows the trend of 

tie theoretical result obtained using the known D  as shown in Fig. 7.15.

 ̂ 5to

4 

3 

2 

1 

0

Figure 7.15; Mean nnisclassification for the ‘skewed’ cylinder volume with and without 

ccnpensation. Difference field estimation via IP detection and matching.

The mean misclassification is bigger than  with the known difference field, but the 

esimation procedure was able to produce D which enabled to follow the shape 

evtlution. This can be noted by comparison of Figs. 7.5, 7.8 and 7.14.

The algorithm performance parameters for all slices and depths are given in 

Ta^le 7.4 and the segmentation results in Section E.1.3.

Ta)le 7.4: 3-D compensated with the estimated difference field RUR segmentation of  

th( ‘skewed’ cylinder volume: misclassification, [%] and elapsed time, [s].

D ;pth m ean

5

S lice  ^ el. t im e

2 3 4 5 6 7 8 9 10 T ot. P er  si.

C
OII 2.11 2.58 1.8 1.69 1.79 1.69 1.59 2.92 2.15 2.79 9.58 1.06

d = 5 1.84 - 2.32 1.73 1.16 1.2 1.96 2.39 2.09 - 16.904 2.41

d = 7 1.98 - - 2.55 1.62 1.35 1.84 2.55 - - 18.74 3 .7 4

II 1.77 - - - 2.09 1.39 1.82 - - - 18.25 6.08

11 1.53 - - - - 1.53 - - - - 36.01 36.01

- O -  n o n -co m p en sa te d
•  com p en sa ted  with th e known difference field 

co m p en sa ted  with th e estim ated  d ifference field
- o '

11
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Some more results from the IP detection and matching approach were published 

in [71|.

7.4 CROSS-CORRELATION

As explained in Chapter 2, there is a close relation between the difference field 

estimation problem and motion estimation in video sequences, template matching or 

2-D registration. An important technique in these applications is the so called block- 

based approach [48,78,90]. In this approach, the assumption is that the difference 

(motion, displacement) is the same within a region of the image called block. Then, 

a block centred around the pixel of interest in the first image is compared with 

candidate blocks centred at possible candidate pixels for matching in the second 

image within a search area. A measure of similarity between the two blocks is 

computed and the candidate block which maximizes the similarity is considered to 

be the best match. The difference vector is constructed between the centres of the 

original block and the best match. The difference with the previous approach is 

that there is no IP detection step, hence the dense field can be obtained at once if 

applied to all pixels of the processed slice.

7.4.1 2-D Block Matching

Denote by Bij a 2-D block of size Nb x Nb, Nb = 2Li + 1 centred at node t from 

L. A candidate block for matching of the same size is denoted by centred at 

{u, v) in slice and the best match is the block B*̂ ĵ  centred around Define the 

blocks Bij and B'̂ ^̂  as follows:

Bij =  hk{i +  \,j  +  j),

~  +  j)> (7.20)

—Lb < i < Lb, —Lb < i < Lb
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The candidate locations (u, v) are limited by a search space specified by the maxi­

mum difference d^ax- The search accuracy is controlled by the resolution parameter 

A. If A =  1 this is equivalent to an exhaustive search. This is illustrated in Fig. 

7.16.

max

Figure 7.16: 2-D Block-based matching.

The best match is the one which maximizes a similarity measure =  S{Bij, B!^^) 

)etween blocks and B'^ \̂

K h  =  a rg rn p 5 (B ij, (7.21)
^ u v

u = i-\- Ai, V = j  + Aj,  

dmax ^  m̂eix — A j  ^  <̂ max-

"^hen, the components of the 2-D projection of df(z) are the values di = Ai  and 

q — A j  for the best match

This method does not limit the generality of the transformation between the 

a n  didate blocks. Rather than looking for an exact pattern matching, textural 

smilarity is sought between blocks centred on texture border nodes.

The similarity measure can be defined in different ways; sum of squares dif- 

ftrences of grey levels, cross-correlation, mutual information [81,90]. The normal- 

i^d cross-correlation known as correlation coefficient has been shown to be a good 

cioice [62],
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7.4.2 2-D Correlation Coefficient

The correlation coefficient = C{Bab, B'^^) between two 2-D blocks Bab and B^^ 

is given by:

If one expands the expressions for aab and (7̂  ̂ in (7.22) the following formula 

applies;

The correlation coefficient is known as well as Zero-mean Normalized Cross- 

Correlation (ZNCC).

7.4.3 Fast Computation

Although, ZNCC is faster than other similarity measures [62], it is calculated at great 

number of nodes, especially when dense D is required. Therefore, it is important to 

investigate ways for computational speedup.

In this work an even faster implementation of the calculation on the ZNCC is

C:! =  -  B'„] (7.22)
Lb L),

(^a b O p q

where Bab and B'pg are the mean grey level values and aab and are the standard

deviations of the data within the blocks Bab and B^^, i.e.:

(7.23)

and

(7.24)

(7.25)
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proposed. If the variance from (7.24) is considered it follows:

(i,j) -  2Bab(i,i)Bab +  B̂ i,]
j

Then, substitu ting  (7.23) into (7.26):

=E E j) -
j

(7.27)

The same can be applied to  a p g  leading to  the final expression for the  ZNCC:

Com paring (7.25) w ith (7.28) it can be seen th a t th e  sums of squared grey-level 

values a t the nodes w ithin the block can be calculated a t  the  same step  as calculating 

th e  m eans for the latter.

7.4.4 Simulation Results 

2-D  C orrelation coefRcient

T he ZNCC can produce good estim ates of the difference between label m aps w ith 

sm ooth  boundaries as illustrated in Fig. 7.17. T he difference field shown has been 

estim ated  on a  decim ated grid a t each 5-th node of th e  absolute difference image 

|Lfc — LfcJ, in a com putational tim e of 28.43 s. The param eters used were: d ^ a x  —  15,

(7.28)
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Figure 7.17: Grey-level masks and the estimated difference field between them.

When used in 3-D non-compensated ‘thin-plate’ segmentation, the ZNCC is 

affected by the region borders imperfections as illustrated in Fig. 7.18.

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Figure 7.18: 3-D non-compensated ‘thin-plate’ RUR segmentation results for slices # 5  

and # 6  of the ‘skewed’ cylinder volume and the estimated difference field between them.

The same parameters were used as before except d^ax — 5. More illustrations of 

the performance of the ZNCC are given in Section E.2.1.

Fast computation

To compare the performance of the fast (7.28) and the standard com putations (7.25) 

of the ZNCC, the grey level masks shown in Fig. 7.17 were resampled to  different 

sizes and both formulae were applied for the dense difference field estimation. The 

param eters used were =  5, A =  1 and various values of dmax as specified in 

Table 7.5. The absolute elapsed times are given in Table 7.5. The fast com putation 

approach outperforms the standard one by an order of 10, which is an im portant 

factor when the size of the image increases.
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Cable 7.5; Elapsed times, [s] for the dense difference field estimation using standard and 

ast ZNCC computations for different data resolutions and c?„iax [pixels]

R esolution Ĉ max Standard Fast

16 X 16 2 0.65 0.16

32 X 32 4 16.86 2.99

64 X 64 8 308.67 50.6

128 X 128 16 5826.7 857.76

C om pensa ted  seg m e n ta tio n  re su lts

'The difference field for the ‘skewed’ cylinder volume (Fig. C .ll)  was estimated using 

tie fast ZNCC technique between each pair of consecutive slices of the label field 

p-oduced by the 3-D ‘thin-plate’ non-compensated segmentation.

3D, d=3 3D, d=5

Figure 7.19: 3-D RUR compensated segmentation for different depths, slice # 6  of  

tht ‘skewed’ cylinder volume. Difference field estimation by ZNCC.

The 3-D  RUR compensated segmentation using the obtained estim ate D  for 

th( middle slice is visually better than  the non-compensated one. Although the
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tendency for the classification accuracy to decrease with increasing depth is still 

present (Fig. 7.19). The segmentation results for all slices of the volume are given 

in Section E.2.2.

The mean percentage misclassification reported in Table 7.6 is slightly better 

than  the non-compensated case for small depths and is smaller for bigger depths, but 

the quality of the segmentation still follows the non-compensated trend as illustrated 

in Fig. 7.20.

Table 7.6: 3-D RUR segmentation of the ‘skewed' cylinder volume compensated via 

ZNCC estimated difference field; misclassification [%], and elapsed time [s].

D epth m ean

(5

Slice # el.tim e

2 3 4 5 6 7 8 9 10 Tot. Per si.

d =  3 2.11 2.58 1.8 1.69 1.79 1.69 1.59 2.92 2.15 2.79 10.93 1.22

d =  5 2.15 - 2.54 2.1 1.6 1.95 1.9 2.8 2.15 - 19.83 2.83

d =  7 2.53 - - 2.57 2.45 2.76 2 2.9 - - 19.07 3.81

d =  9 2.88 - - - 2.85 3.18 2.61 - - - 18.57 6.19

d = l l 3.53 - - - - 3.53 - - - - 39.771 39.77

6

5 -O - non-compensated
•  ■ compensated with the known difference field 

compensated with the estimated difference field4
-O '

3

2

1

0
3 5 7 9 11

Figure 7.20: Mean misclassification for the ‘skewed' cylinder volume with and without 

compensation. Difference field estimation by ZNCC.

This result can be explained by looking at the expression (7.28) for the ZNCC. 

The correlation coefficient performs well as a difference estimator providing the
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ZNCC for the best block has a distinct maximum over other potential candidates. 

W hen working with L, the block variances are greatly affected by the geometry 

of the region borders. Thus, a poor non-compensated result produces a poor D. 

Hence the performance for o? > 3 is poor because the  inaccuracy of the estim ate 

accumulates over depth.

In comparison with the IP detection and matching scheme, no extra information 

about D was provided a priori which also affected the final performance.

S e n s itiv ity  to  th e  n o n -c o m p e n sa te d  se g m e n ta tio n  a ccu racy

The dependence of the ZNCC performance on the quality of the 3-D ‘th in-p late’ 

non-compensated segmentation results can be illustrated using the results published 

in [72]. The same ‘skewed’ cylinder mask was used, b u t different stationary GMRFs 

to compose the GMRF mixture (Fig. C.12). The textures were synthesized with 

similar 9^ and different 9y resulting in unsatisfactory 2-D RUR segmentation, as seen 

in Fig. 7.21.

. V
■s'-

Figure 7.21: Slice #  6 from synthetic data set and 2-D RUR segmentation (1st row); 3-D 

segmentation results: non-compensated and compensated with the estimated difference 

field (2nd row).



CHAPTER 7. DIFFERENCE ESTIMATION 128

The stationary fields properties, however, were different, which had influence on 

the better quahty of the 3-D non-compensated ‘th in-plate’ segmentation result in 

comparison to the other dataset. This can be noted by comparing the first rows of 

Tables 7.2 and 7.7.

For this data  set the compensated segmentation using D  obtained by 2-D ZNCC 

block matching is closer to the result using the known D. This is illustrated in Figs. 

7.21 and 7.22 and Table 7.7.

The actual segmentation results for all depths are given in Section E.2.2.

Table 7.7: Supervised segm entation;[%] m isclassification and elapsed tim e [s]

A lgorithm

D epth M ean

5

Slice # E l.tim e

2 3 4 5 6 7 8 9 10 Tot. P er si.

N on-com pensated  segm entation

d = 3 1.21 1.32 0.9 1.85 1.45 1.29 1.32 1.38 1.18 1.24 40.43 4.49

d = 5 1.45 - 1.33 1.52 1.2 1.43 1.36 1.88 1.45 - 40.19 5.74

d = 7 2.17 - - 2.14 1.64 2.2 2.4 2.47 - - 37.77 7.55

d = 9 3.17 - - - 2.7 3.5 3.32 - - 32.7 10.9

d = l l 5.56 - - - - 5.56 - - - - 44.83 44.83

C om pensated  w ith  the known difference field

P
i­ ll CO 1.27 1.63 1.45 1.38 1.49 1.33 1.16 1.04 0.95 1.04 9.9 1.1

d = 5 0.99 - 1.09 1.02 1.22 1.07 0.96 0.8 0.74 - 19.58 2.79

11 0.75 - - 0.98 0.83 0.73 0.7 0.49 - - 22.20 4.44: 
11

1

0.6 - - - 0.71 0.66 0.44 - - - 20.61 6.87

11 0.69 - - - - 0.69 - - - - 43.29 43.29

C om pensated  w ith  th e estim ated  difference field

CO!l 1.25 - 1.4 1.39 1.5 1.34 1.16 0.98 0.95 - 29.59 4.21

d =  5 1.14 - - 1.34 1.49 0.9 0.94 1.01 - - 41.3 8.26

d = 7 1.06 - - - 1.3 0.98 0.89 - - - 43.29 14.43

d = 9 1.16 - - - - 1.16 - - - - 55.88 55.88
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Figure 7.22: Mean misclassification for the ‘skewed’ cylinder volume with and without 

compensation.

Similar performance of the difference estimation methods have been observed on 

different synthetic datasets where various types of shape evolution were modelled.

7.5 CONCLUSIONS

The difference estimation methods, presented in this chapter, namely the IP detec­

tion and matching and the ZNCC, can model general slice-to-slice shape evolution. 

The estimated difference field obtained improved the quality of the compensated 

segmentation of synthetic data  with shape evolution along the z-going dimension.

These methods, however, have the disadvantage of using 2-D da ta  blocks and 

features drawn from L instead of X  to be used as correspondence tokens. The 

information provided by the third 2 -going dimension, incorporated in L, is obtained 

in the pre-processing stage by the 3-D ‘thin-plate’ non-compensated segmentation. 

Thus, the methods are dependant on the accuracy of this pre-processing stage and 

the total elapsed time is composed of the times necessary for the pre-segmentation, 

for the difference estimation and for the final compensated segmentation. A desirable 

characteristic of a difference estimation method would be to obtain D  based directly 

on the original grey level data X ,  and using a single unified procedure. Approaches 

for solving this problem are presented in the next chapter.



Chapter 8 

3-D METHODS FOR 

DIFFERENCE ESTIMATION

8.1 INTRODUCTION

The techniques in Chapter 7 present a solution to the difference estimation problem 

based on the comparison of preliminary obtained slices of a label field reahzation. 

These techniques avail of the 3-D nature of the original grey-level data only to the 

extent available from the ‘thin-plate’ segmentations. The accuracy of the difference 

estimator depends strongly on the quality of this pre-segmentation. Since the total 

procedure consists of several stages, it is unattractive in real-time applications. The 

success of each stage depends on that of the previous one, and so error propagation 

is a problem.

This chapter presents novel approaches for difference estimation based on the 

original grey-level data. They involve fewer stages than the label-field-based meth­

ods, as illustrated in Fig. 8.1.

130
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Figure 8.1: Label field (a) and grey level-based (b) difference estimation and compen­

sation.

The 3-D cross-correlation (Section 8.2) and the Kullback-Leibler D istance (KLD) 

minimization (Section 8.3) m ethods are 3-D block m atching techniques. T hey cal­

culate and minimize a sim ilarity m easure between 3-D blocks of grey-level d a ta  in 

Drder to  estim ate the difference between nodes of in terest. These m ethods are shown 

:o be suitable for MRI segm entation (Section 8.4). Finally, an elegant framework 

'or sim ultaneous difference estim ation  and com pensated segm entation via entropy 

ninim ization is presented in Section 8.5.

i.2 3-D CROSS-CORRELATION

'i’his m ethod is a natu ra l extension of the 2-D cross-correlation technique presented 

n Section 7.4. Here, 3-D blocks of d a ta  centred a t th e  current and the  candidate 

lodes are considered.
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8.2,1 3-D Block M atching

Denote by Bt a 3-D block of size Ni, x Nb x db, Nb =  2Lb +  1 centred at t. A

3-D candidate matching block (of the same size) is denoted by Bt> centred at t' =

^z) and the best match is the block centred around Usually db =  3, i.e.

‘thin-plate’ blocks are used, as denoted in Fig. 8.2.

i  d(z)

max

Figure 8.2: 3-D Block-based matching.

The blocks are formally defined as:

=  X(z 4 - i, j - I - j, A:-(-k), (8.1)

-S('=  X ( i'- t - i , / - I - j ,  f c j . k) ,  (8.2)

- L b < \ <  Lb, -L b  <  j < -1  <  k <  1

The matching is performed by examining candidate blocks centred on nodes at 

ilice =  k z within some search space specified by dmax and A as in the 2-D

(ase (Figs. 7.16, 8.2). The best match is the block, which maximizes the similarity

neasure

B* =  arg msix S{Bt ,  Bf ) ,  (8.3)
B j /

i' =  i-{- Az, f  =  j  +  Aj ,  k' =  fcz

dmax — A i ^  Ĉmajc) <̂ max — A j ^  <̂ max-

Ihen, the difference vector estimate is dt{z)  — tz — t.
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8.2.2 3-D Correlation Coefficient

The 3-D correlation coefficient C® =  C(Br, Bg) between two 3-D blocks Br and Bs, 

centred at nodes r and s, in analogy to (7.22) and using (8.1) is given by:

Cr = — y 2 i  E  j - k )  -  B,\ (8.4)
I ,  . r  ■ rk——1 i—

where Br and Bg are the mean grey level values and and Gs are the standard 

deviations of the data within the blocks Bj. and Bg respectively, db is assumed to 

be 3.

If the same idea as developed in Section 7.4.3 is used, the following formula for 

fast computation of the 3-D cross-correlation on image blocks applies:

Ei Ej k) -  M,S?]) (lEk Ei Ej k) -

where Mb =

The 3-D correlation coefficient will be referred to  as 3-D ZNCC. The performance 

of the fast method of computing the 3-D ZNCC is shown in Fig. 8.3. Two blocks 

of d a ta  of size Nb x Nb x  3 were generated with random  entries and the 3-D cross 

correlation between them was computed using the equations (8.4) and (8.5). The 

corresponding elapsed times on a logarithmic scale are plotted versus in Fig. 8.3.

_ •  10

■ e  standard computation 
fast computation

10' ^
64 128 256 512 1024

Figure 8.3: Standard vs. fast computation of the 3-D ZNCC.
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It can be seen th a t the bigger the data  dimensions, the bigger computational 

soeedup when using the fast approach is achieved.

The advantage of using 3-D ZNCC instead of 2-D ZNCC is illustrated on Fig. 8.4.

20 40 60 80 100 120 20 40 60 80 100 120

Figure 8.4: Slices # 3 2  and # 3 3  from the PD MRI volume (1st row) and the difference 

vectors estimates between them obtained by 2-D and 3-D ZNCC (2nd row.)

The grey-level da ta  shown are two shces from the MRI PD volume given in Fig. 

C.21, Appendix C. When apphed on the actual grey-level intensities, the 2-D ZNCC 

(7.28) although took only 2.54 s to compute did not provide good estimates of the 

diference between the slices. While the 3-D ZNCC (8.5), although slower (11.29 

s.) produced better vector estimates. The parameters used were Nb — 5, c?max =  5, 

A =  2 and db — 3 for the 3-D blocks. The vectors in Fig. 8.4 are shown on a 

decimated lattice for every second node of the first image.

Block-based methods are widely used for motion estimation in video sequences. 

They are primarily based on two consecutive frames only [48,85]. While estimating 

differences between nodes from an intrinsically 3-D da ta  based on their grey-level

intensities benefits from the usage of 3-D ‘thin-plate’ {db =  3) blocks.
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8.3 KULLBACK-LEIBLER DISTANCE (KLD) 

MINIMIZATION

All the difference estimation methods presented so far are unable to detect differ­

ences between sHces of textural mixtures, especially when the 6^ parameters of the 

stationary textures are similar. So far the a priori information available in a su­

pervised segmentation context, namely the codebook, has not been referred to. It 

can be used, however, to calculate a probability mass function (p.m.f.), over the 

class variables for a grey-level 3-D block. Then, a measure of similarity between two 

p.m.f.s of two 3-D blocks, can be defined. In this way the difference estimation is 

based on the grey level data and the codebook.

Hence, a 3-D block-based method which uses the Kullback-Leibler Distance 

(KLD) as a similarity measure between the class p.m.f.s is proposed.

8.3.1 Class Probability Mass Function

As stated in Section 3.4.1 any block X of stationary GMRF can be specified by 

its joint probabihty (3.13). Given the codebook C (Section 3.5.2) the conditional 

probability of X, given that it belongs to the homogeneous texture class c is given 

by: _̂_____
r (X-M.)^B,(X-AiJln / v i  N \ / d e t  Be

\/(27rCT2)^T 2a2

where the c-th codebook entry is ®ci depending on 0ci is the in­

teraction matrix (3.14) for class c. Under the toroidal boundary assumption, the 

evaluation of the conditional probability (8.6) can be performed efficiently using 

the level three circulant algorithms given in Section 4.3. This is a very important 

computational saving in a block-matching technique where the similarity measure 

computation is needed for all candidates within a extensive search.

The conditional probabihty of c given the data, i.e. the class p.m.f., p(c|X), can
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be defined from normalization of the F (X |c) quantities across all classes c 6 { 1 , . . . ,  T}:

p(c|X) ^A p{yi\c)
Ec^(x|c)-

(8.7)

A uniform prior on C  is assumed.

8.3.2 Kullback-Leilbler Similarity M easure

The Kullback-Leibler Distance (KLD)- also known as the relative entropy- between 

two p.m.f.s, has been successfully used as a texture similarity measure [24]. The 

KLD between the p.m.f.s /  and h is evaluated as [20]:

(8 .8 )

The KLD is not commutative. For our purposes, /  represents the current, and h- 

the candidate block p.m.f.s.

To find the best match for the node of interest t  among all candidates t' in 

slice = k + z, the class p.m.f.s p = {pc}, c G { 1 ,. . .  T} and p' = {p'c}, c G { 1 ,.. .  T} 

for the 3-D blocks centred at t and t' respectively are computed for all classes via 

(8.7). The KLD{p\\p') measures the similarity between the class p.m.f.s as shown 

in Fig. 8.5. For the example shown in the figure, the KLD will reach its minimum 

for the p.m.f. denoted by p*.

P

Figure 8.5; Comparing the class p.m.f.s
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Therefore, the best match is selected to be the one which minimizes the KLD 

between p and the p.m.f.s for all N b possible candidate blocks (Fig. 8.5). The best 

m atch for the node t  is given by:

= aTgmmKLD{p\\p'). (8.9)

8.3.3 Simulation Results 

Difference estim ation

The KLD method is able to  estimate the difference for the synthesized textured 

volumes directly by working on the grey level data, unlike the methods in Chapter 

7. This is illustrated in Figs. 8.6, 8.7 and E.20 (Appendix E).

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

Figure 8.6: Grey level data and the estimated difference field between them, using KLD 

minimization. Slices # 2  and #  3 from the ‘skewed’ cylinder volume (Fig .C .11).

The difference is estimated for every second node of the image lattice. The 

parameters used were Li, — 7 db = 3, =  5, A =  1. Com putational time was

23.77 s.

A volume th a t is quite difficult to segment was created using three classes masks 

given in Fig. C.13. The grey level volume of size 128 x 128 x 11 obtained using 

third order GMRFs is given shce by shce in Fig. C.14. The param eters of the 

stationary textures used are given in Table 5.3. The estim ated difference using the 

KLD minimization between slices # 6  and # 7  of the volumes is shown in Fig. 8.7.
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20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

Figure 8.7; Grey level data and the estimated difference field between them, using KLD 

minimization. Slices # 6  and # 7  from the three textures volume.

The param eters used were as in the previous exam ple and the com putational 

time tim e was 47.09 s

Com pensated segm entation results

The 3-D com pensated RUR segm entation for the m iddle slice of the ‘skewed’ cyhnder 

/olume, composed of two second order tex tures w ith  similar 6^ and different 6y is 

ihown in Fig. 8.8.

3D. d»3 3D̂  cl=5

ligure 8.8: 3-D RUR compensated segmentation for different u f  depths, slice # 6  o f  

tie  ‘skewed’ cylinder volume. KLD minimization-based difference field estimation.
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The KLD minimization approach was used to produce D. The difference vectors 

were estimated backwards and forwards using 3-D blocks of size 7 x 7 x 3 for all 

possible pairs of slices k and k^, z =  ±1. Hence, the maximum possible depth for 

for slice # 6  is d — 9. The quality of the compensated segmentation for the middle 

slice is similar for all depths and the object cross-section shape has been preserved as 

illustrated in Fig. 8.8. The compensated results using the KLD-based estimation D 

for all shces are given in Figs. E.21 -E.23. The performance parameters for all slices 

of the volume are listed in Table 8.1, confirming the superiority of the compensated 

RUR algorithm over the non-compensated one.

Table 8.1; 3-D compensated RUR segmentation of the ‘skewed’ cylinder volume: mis- 

classification 6 [%], and elapsed time [s]. Difference field estimation via KLD minimiza­

tion.

D e p th m ean

(5

S lice  # e l.t im e

2 3 4 5 6 7 8 9 10 T ot. P er  si.

d =  3 2 2.24 1.48 1.4 1.74 1.85 1.73 2.73 2.36 3.18 11.05 1 .23

d =  5 1.34 - 1.37 0.98 0.99 1.12 1.3 1.84 1.75 - 19.73 2 .82

II 1 .28 - - 1.13 0.87 1.13 1.32 1.93 - - 23.34 3.81

d =  9 1.5 - - - 1.16 1.57 1.78 - - - 22.24 7.41

The performance measured by the mean percentage misclassification for each 

depth of is close to the performance of the compensated segmentation using 

the exact difference field and marks an improvement over the non-compensated 

segmentation (Fig. 8.9).
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Figure 8.9: Mean misdassification for the ‘skewed' cylinder volume with and without 

compensation. Difference field estimation via KLD minimization .

Next, the th ird  order three textures volume was segmented via the non-compensated 

RUR approach, and then via compensated segmentation using the known and the 

estim ated via KLD minimization difference field algorithms. The non-compensated 

segmentation fails to segment the data, particularly at the borders between the 

stationary textures due to the presence of inter-slice differences (Figs. E.24-E.26). 

The difference field estimated via the KLD minimization technique is used to com­

pensate for these differences. It results in more accurate boundaries between the 

segmentation areas in L as illustrated in Fig. 8.10 for the middle slice of the volume.

Figure 8.10; Ground truth generation mask, slice # 6  from the data set, 3-D non- 

compensated (depth 11) and 3-D compensated segmentation. Difference estimation via 

KLD minimization.

The segmentation results for all slices and depths are given in Figures E.27 - 

E.29 using the known difference field and in Figures E.30 - E.32 using the estim ated
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difference field respectively. The elapsed times and the misclassification of each 

method and for each processed shce are listed in Table 8.2.

T able  8.2: RUR segm entation: misclassification 5 [%], and elapsed tim e per slice [s]

A lgorithm

D epth mean

5

Slice # el.tim e

2 3 4 5 6 7 8 9 10 Tot. P er si.

N on-com pensated  segm entation

II CO 8 9.14 6.49 8.37 8.7 6.28 9 8 8.5 8.2 55.39 6.15

d = 5 4.58 - 5.1 4.4 4.7 4.25 5.23 4.76 3.6 - 57.1 8.15

d = 7 4.37 - - 4.28 4.45 5.16 4.25 3.7 - - 58.54 11.71

d =  9 5.34 - - - 4.95 5.56 5.5 - - - 53 17.67

d =  l l 6.69 - - - - 6.69 - - - - 63.5 63.5

C om pensated w ith  th e  known difference field

d = 3 8 8.9 8.59 8.12 8.2 5.6 7.9 7.15 8.9 8.7 42.1 4.67

d —  5 3.13 - 4 2.9 2.47 2.35 3.6 3.56 3 - 55.9 7.98

d =  7 1.24 - - 1.12 0.98 1 1.58 1.52 - - 54.7 10.94

d = 9 0.79 - - - 0.7 0.78 0.9 - - - 46.9 15.63

d =  n 0.62 - - - - 0.62 - - - - 64.7 64.7

C om pensated  w ith  th e estim ated  difference field

d =  Z 8.03 8.98 8.58 8.12 8.15 5.64 7.96 7.15 8.9 8.76 40.51 4.5

d =  5 4.84 - 5.39 3.85 4,64 3.57 4.67 5.99 5.74 - 63.5 9.07

II 3.87 - - 3.1 3.67 3.48 3.9 5.22 - - 61.38 12.28

d =  9 3.8 - - - 3.58 3.24 4.6 - - - 55.26 18.42

d =  l l 3.33 - - - - 3.33 - - - - 67.84 67.84

The mean misclassification for each depth of u>̂ (Fig. 8.11), using the presented 

method, decreases when using deeper volumes. Thus, it follows the trend of the 

compensated segmentation with the exact D unlike the deteriorating trend with the 

non-compensated algorithm. Note th a t in order to build a full d -  11 compensated 

computational volume, the unavailable estimates for the difference from slice #1  

to 7^2 and, again, from #10 to # l l ,  were assumed zero.
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Figure 8.11: Mean misclassification for the three textures volurrie with and without 

compensation. Difference field estimation via KLD minimization.

Tlie KLD minimization metliod was able to estim ate and successfully compensate 

for the inter-slice variations in the texture mixture, using only X  and C . The KLD- 

based method was reported in [73].

8.4 CASE STUDY: MAGNETIC RESONANCE 

IMAGING (MRI)

3-D block-based methods for difference estimation were tested on real 3-D MRI 

volumetric images. As explained in Section 2.5, the T2-weighted and PD modahties 

present the most challenging data  for the anatomical segmentation problem. The 

original T2 and PD volumes of size 512 x 512 x 9, being transverse MRI scans 

of a  normal human brain, were downloaded from the Whole Brain Atlas web site 

[80]. They are shown in Figs. C.18 and C.19 respectively, where the original slice 

numbering is preserved. The samphng resolution is 1 mm in each shce and the 

slice thickness is 5 mm. The poorer resolution in the third dimension encourages 

strong inter-slice non-stationarity, and therefore, a significant inter-slice difference. 

Subvolumes of size 128 x 128 x 9 were selected (Figs. C.20 and C.21) and a two class 

problem defined: namely segmentation of the ventricles by discrimination between 

the white and grey m atter tissues.
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A second order 3-D GMRF model for each tissue was assumed and the codebook 

for the two test volumes were estimated (Section 5.2) from manually selected regions 

cf size 16 X 16 X 5 for the white and 32 x 32 x 9 for the grey m atter. Note tha t 

cnly relatively small samples of nominally stationary texture were available for the 

parameter estimation procedure, thus affecting the estimation accuracy.

The codebook entries listed in Tables 8.3 and 8.4 provide im portant information 

for the choice of a difference estimation and segmentation method.

Table 8.3: Codebook entries for the T2 MRI test volume.

IJ- a 00 Si 62 63 04 06 07 0s
247.76 1.3015 0.4231 0.4974 0.06 -0.1889 -0.2218 -0.0047 -0.0216 -0.0450 -0.0165
100.02 1.7671 0.5029 0.4878 0.0339 -0.2376 -0.2529 -0.0171 -0.0127 -0.0083 -0.0041

Table 8.4: Codebook entries for the PD MRI test volume.

a 00 01 02 03 04 05 06 07 08
197.82 1.3065 0.4847 0.4971 -0.0687 -0,2262 -0.2613 0.0298 0.0167 0.0303 0.0169
152.11 1.6103 0.4908 0.4959 0.0244 -0.2238 -0.2625 -0.0103 -0.0021 -0.0079 -0.0091

The normalized Euclidean distances between the codebook entries are £is follows: 

for the T2 data D n e  = 0.3616 using the whole 6 and D ^ e — 0.3595 when only the 6^ 

were used. For the PD data these are D n e  = 0.0656 and D ^ e = 0.0551 respectively. 

For the two tissue types using T2 modality, it can be observed (Table 8.3) th a t the 

most significant difference is contributed by the mean parameter. This suggests th a t 

a 2-D segmentation, or even a simple thresholding of single 2-D shces, will perform 

very well. On the other hand, in a 3-D non-compensated segmentation, the inter­

slice difference would affect the quality of the result. To estim ate this difference, a 

simple 2-D ZNCC will be able to track the ventricle cross-section shape evolution.

The codebook entries for the PD data  (Table 8.4) also differ significantly in 

the mean value, but the difference is not as great as for the T2 data, which can
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be observed by comparison of the grey-levels for both test volumes and also the 

respective Dat^s with the use of 0. Hence, segmenting this volume would be a 

more difficult task than the T2 one. This fact, combined with the observation 

th a t the two tissue models possess similar 9^ and differ more markedly in their 0  ̂

parameters, suggests that a 3-D segmentation is worth considering in this case. The 

data properties suggest that a 3-D block matching should be favoured in comparison 

to a 2-D one.

To verify these hypotheses, the test volumes were segmented using 2-D and 3-D 

non-compensated approaches. 2-D, 3-D ZNCC and KLD methods were applied to 

difference estimation and the resulting D was used for 3-D compensated segmenta­

tion.

8.4.1 N on-com pensated 2-D and 3-D R U R  Segm entation

The T2 data were segmented slice by slice independently using the 2-D RUR al­

gorithm with =  16, a second order GMRF, and a computational window size 

of n  =  15. The segmentation was quite satisfactory as illustrated by Fig. E.39, 

although some small areas were not segmented well, for example the left area of 

white matter in slices #28-#31 and #36.

The 3-D non-compensated ‘thin-plate’ RUR segmentation results capture the 

shape of the ventricle cross-sections better (Fig.E.41). The operational parameters 

used were: 2nd order 3-D GMRF, n = 15, d = 3, = 4, = 4. Increasing

the depth of u>t results in deterioration of the segmentation results (Figs. E.42 and 

E.43).

The results for slices #31 and #32 are illustrated in Fig. 8.12 and Fig. 8.13 

respectively.

The PD data volume was segmented independently shce by slice, via the 2-D 

RUR algorithm with =  16, g =  2 and n =  15. The segmentation results obtained 

were good (Fig.E.40), although small regions of the white matter were missing, for
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hstance in slices #29, #30, #33  and #36.

145

bH p

Figure 8.12: Non-compensated RUR segmentation of slice # 3 1  from the T2 MRI vol- 

une.

Figure 8.13: Non-compensated RUR segmentation of slice #32  from the T2 MRI vol­

ume.

The 3-D RUR non-compensated results w ith q — 2, a, 3-D GMRF, n  =  15, 

d = 3, =  16 and — A were able to detect correctly some missing regions, but
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ir.creasing d resulted in the appearance of some holes in the label maps (Fig.E.44 - 

E46).

data 20 3D, d»3

30, d=5 30, d=7 30, d»9

Figure 8.14: Non-compensated RUR segmentation of slice # 3 2  from the PD MRI 

voiume.

data 30, d=3

3D, d«5 3 0 ,d-7

Figure 8.15: Non-compensated RUR segmentation of slice # 3 3  from the PD MRI 

volume.
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These observations are illustrated for slices #  32 and #  33 in Figs. 8.14 and 

8.15 respectively.

8.4.2 Difference Estimation

To estimate the shape evolution along the third dimension, block m atching tech- 

niques were used to obtain D. For both the T2 and PD volumes, the 2-D and 3-D 

ZNCC method as well as the KLD technique, were tested. The results for the for­

ward difference estimates between slices #32  and # 3 3  are shown in Figs.8.16-8.18 

for the T2 modality, and in Figs.8.4 and 8.19 for the PD modality. More results are 

given in Section E.4.1.

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100120

figure 8.16: T2 MRI: slices 32 and 33 and the difference field between them, estimated 

'ia 2-D ZNCC.

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100 120

'’igure 8.17: T2 MRI: slices 32 and 33 and the difference field between them, estimated 

'ia 3-D ZNCC.
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20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100120

Figure 8.18: T 2  MRI: slices 32 and 33 and the difference field between them, estimated  

via KLD minimization.
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100 
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Figure 8.19: PD MRI; slices 32 and 33 and the difference field between them, estimated  

via KLD minimization.

Table 8.5: Difference field estimation between slices #3 2  and #33 from the MRI volume: 

elapsed time, [s].

A lgorithm T2 PD

2-D ZNCC 2.54 0.82

3-D ZNCC 11.29 5.2

KLD 10.64 8.30

The block parameters used were Lb — 5, d^ax =  5 and A =  2 and every fourth 

node from A was considered. The elapsed times for this pair of slices for both 

modalities using the three algorithms are summarized in Table 8.5.

The 2-D ZNCC technique produces good quality results for the T2 data  for the 

shortest computational time, therefore it was used to obtain D for the whole volume 

in the T2 modality. This method did not work very well for the PD data, while the 

3-D ZNCC worked well, even for a higher com putational cost.
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8.4.3 Compensated Segmentation

The estimated difference field was used to construct ui^ and compensated RUR 

segmentation was performed. All label maps are given in Figs.E.47- E.49 for the T2 

and in Figs. E.50- E.52 for the PD data. The results for slices #  31 and #32  from 

the T2 volume are given in Fig.8.20 and Fig.8.21 respectively.

data 3D, d=3 3D, d=5 3D, d=7

Figure 8.20: Compensated RUR segmentation of slice # 3 1  from the T2 MRI volume. 

D  estimated via the 2-D ZNCCJ

Figure 8.21: Compensated RUR segmentation of slice # 3 2  from the T2 MRI volume. 

D  estimated via the 2-D ZNCCJ

Figures 8.22 and 8.23 illustrate the compensated results for slices #3 2  and #33 

from the PD volume.
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Figure 8.22: Compensated RUR segmentation of slice # 3 2  from the PD MRI volume. 

D  estimated via the KLD minimization.

Figure 8.23: Compensated RUR segmentation of slice # 3 3  from the PD MRI volume. 

D  estimated via the KLD minimization.

The elapsed times for both non-compensated and compensated results are sum­

marized in Table 8.6. Note th a t the times reported for the T2 include the difference 

estimation via the 2-D ZNCC, while the times for the PD are only for the compen­

sated segmentation after ID was obtained via the KLD minimization, which took 

about 15 s per pair of slices.
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Table 8.6: Supervised segmentation of the MRI data. Elapsed times [s].

A lgorithm

M odality T2 P D

D epth el.tim e el.tim e

Tot. Per si. Tot. P er si.

N on-com pensated  segm entation

d = 3 48.05 6.86 20.53 2.9

d = b 50 10 24.68 4.9

d = 7 69.91 23.3 24.17 8.06

d = 9 91.96 91.96 26.20 26.20

C om pensated  segm entation

d = 3 143.28 20.47 23.24 3.32

II 153.02 30.6 34.52 6.9

II 155.63 51.88 34.48 11.49

d = 9 299.94 299.94 36.58 36.58

These results lead to the following conclusions:

1. The label maps, after segmenting PD MRI data, are worse than those for the T2 

data. The task of segmenting PD is more difficult than  T2 data as underlined by 

the respective D^^e using 6.

2. The 2-D segmentation results are already of good quahty especially for the T2 

data, where the contrast between the two tissues is bigger. There are some small 

areas from the images, however, which are not segmented well.

3. 3-D segmentation performs better for segmenting these small areas due to the ex­

tra da ta  available, which increases the param eter estim ation accuracy. The benefit 

of using 3-D processing is realized at small depths, while for greater the segmenta­

tion accuracy deteriorates.

4. The 3-D non-compensated segmentation is affected substantially by the presence 

of 3-D shape evolution effects.

5. Fast 2-D block-based techniques (ZNCC) for difference estimation work well for 

the T2 data, but give unsatisfactory results for the PD data. Computationally more
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expensive 3-D methods (KLD minimization) are applicable for the latter.

6. The compensated segmentation is able to preserve the quality of the label field 

obtained using deeper . Thus, it outperforms the non-compensated segmentation 

at greater depths, especially in segmenting small anatomical structures. It provides 

more stationary data for the GMRF parameter estimation step by successfully track­

ing the ventricles’ shape evolution.

8.5 GUIDED COMPUTATIONAL VOLUMES 

VIA ENTROPY MINIMIZATION

A disadvantage of the difference estimation and compensation methods presented 

so far is the inabihty to determine optimal depth for It has been concluded that 

generally the bigger d, the better. The protection of the texture stationarity, how­

ever, is necessary only for those non-compensated computational volumes Ut, where 

it is not valid. For some nodes, stationary ‘thin-plate’ Ut is enough to obtain rehable 

GMRF estimates, which leads to a satisfactory non-compensated segmentation. The 

D obtained by these methods had many zero entries for such nodes belonging to 

large homogeneous texture volumes, but this sparsity has not been exploited. The 

algorithms considered so far use fixed d for all while in reality the depth should 

be responsive to the local changepoint activity. It should be generally greater in 

areas of high activity, while minimal {d =  3) elsewhere. Using with the optimal 

depth for each node can lead to significant computational speedup.

We propose a block-matching scheme for estimating of the optimal d and con­

struction of u)̂ , which embraces this principle.
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8.5.1 Entropy

The method is based on the requirement to keep the entropy associated with the 

c!ass p.m.f. of a growing 3-D block to a minimum.

The (Shannon) entropy of a discrete random variable X  is defined as:

H{ X)  = -Y^p{x)log2\p ix)] ,  (8.10)
x ex

where p{x) is the probability that X  is in the sta,te (realization) x. The entropy of 

the class p.m.f. (8.7) is given by:

T

H{C\X.) =  -  5 ^ p (c |X ) log,[p{c|X)]. (8.11)
C = 1

8.5.2 Difference Compensation

V\’ithin the proposed entropy minimization framework, difference estimation and 

compensation are performed simultaneously.

Consider a block Bt of size Nb x Nh x db, Nb =  2Lb + 1 centred at t defined by 

(see eqn.(7.4)):

( d t - l ) / 2 - l  ,  i

Btidb) = ( J  I  ̂ dt- (1) +  (Az, Aj, 0)
i = o  ^  j = 0

( 4 - i ) / 2 - i  .  iU j  ̂+ X /d t_ .( - l)  +  (Az, A;, 0)
i = 0  ^  j = 0

+  t + (Az, Aj,  0), -Lb  < A i <  Lb, -L b  < A j < Lb, (8.12)

where dfi(l) is the difference vector at each center of the ‘stacked’ 2-D blocks of size 

N b  X Nb- It is equivalent to the difference vector estimate used in previous methods. 

Note that this estimate does not need to be obtained a priori to the construction 

of the block. Instead, it can be computed from the minimum entropy trajectory as 

shown next. t\ =  {ii,j\, k\) and i\ = i + 5i, j\ = j  + Sj, k\ = k ± l .

This block is the current best block of depth db for t. Let the class p.m.f. entropy 

for t based on the data from the block Bt{db) be Hd^,{C\Bt{db)). Initially db — 3,
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and dt are zero., i.e. the initial block is a ‘thin-plate’ non-compensated

difTerence compensation is achieved in two stages:

1. Search for a better block with a smaller entropy

If no better block is found, stop. Else:

2. Find the best block

Bf  =  argminif^®* (̂C|Sf** )̂

at depth dl-

The block at each iteration is obtained from the block from the previous 

iteration via incrementing the depth by two +  2). This is

done by adding 2-D blocks of size Ni, x Nt, in alternating forward and backward 

ncianner. The centres of these 2-D blocks lie within the search area, i.e. —dmax < 

<  dmax, —c?max < Sj < d^^x and 6k = k ±  {db — l)/2 . Each 3-D block B̂ ^̂  ̂ is 

constructed to give smaller class p.m.f. entropy than i.e. H^'^^\C\B^^'^) <

This is equivalent to the estimation of the difference vectors 

df(it-i) =  but is derived from the obtained minimum entropy trajectory

r =  . . . , The procedure stops when the maximum possible depth being

limited by the data dimension has been explored. The resulting best block B l  

with depth d*̂ is the compensated computational volume for the node t, where 

m — n — Nb and d = dl-

Stage 1. detects the presence of difference and necessity for compensation and 

stage 2. provides the optimum depth for a successful compensated segmentation. 

This procedure is being invoked only for the nodes of the ensuring texture

stationarity protection with the minimum of computation. Fewer nodes implies 

faster execution of the overall procedure.

154 

. The
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8.5.3 Simulation Results

The entropy minimization technique is mostly suitable for highly textured data, 

where no clear 3-D object structure is present and all other methods for difference 

estim ation when applied to the grey level data fail. Therefore, it has been tested on 

the ‘skewed’ cyUnder and the three texture data  volumes.

The performance of the 3-D entropy-based RUR algorithm is illustrated in Fig.8.24 

for the middle slice of the ‘skewed’ cylinder volume. It is compared with the non­

compensated and compensated versions with given D  segmentation results with 

maximum depth. The algorithm parameters were n = lb, q = 2, n ‘̂ = 16, = A

and the depth of has been estimated autom atically for each S.rur node, thus 

adapting dynamically in order to maximize the membership (7.1) of the dominant 

texture class.

To compare the entropy-based method with compensated algorithm with a  fixed 

d, an averaging along all possible depths for each slice is performed. The mean 

misclassification for each slice is compared with the values obtained from a single 

execution of the entropy method in Fig.8.25. Segmentation of all slices of the volume 

are given in Fig. E.53.

mrnm

Figure 8.24: 3-D RUR segmentation o f  the two texture problem: slice ^ 6. Non­

com pensated, compensated with the exact difference field {d =  11) and with the entropy 

nninimization (variable d).
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Figure 8.25; Average misclassification for the 'skewed cylinder'volume with and without 

compensation. Entropy-based construction

Figure 8.26: 3-D RUR segmentation of slice # 6  with superimposed mask: non­

compensated, compensated with the exact difference field (d =  5) and with the entropy 

minimization (variable d).
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Figure 8.27: Average misclassification for the three textures volume with and without 

compensation. Entropy-based construction ofc jf.

I t  can be seen that the entropy method provides good quality results. Similar 

performance was reported in [74] for the task of segmenting the three texture th ird
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Older synthetic data. An illustration of the middle slice of the volume is given in 

Fig.8.26 and the misclassification curves are given in Fig.8.27. Segmentation of all 

slices of the volume are given in Fig. E.54.

The entropy-minimization method presents a unifying framework for simultane­

ous compensation and provides an automatic robust specification of the optimum 

depth d based only on the original grey-level data. It achieves good segmentation in 

highly textured volumes, which are extremely hard to segment using either 2-D or 

3-D non-compensated segmentation. A disadvantage of the method is its relatively 

high computational complexity, even when the fast 3-D FFT based techniques for 

computations with circulants of level three (Section 4.3) are used. It requires com­

puting the joint p.d.f of a 3-D block of data with progressively increasing dimensions.

8.6 CONCLUSIONS

This chapter presented novel methods for difference estirnation and compensation 

of textured volumes. They use the properties of the original 3-D grey level data, the 

underlying GMRF model, and the codebook available in a supervised framework. 

These models are shown to segment the data without the prehminary ‘thin-plate’ 

segmentation used by the label-field-based methods (Chapter 7). Their performance 

has been demonstrated on synthetic volumes and real MRI data. Finally, a unifying 

framework which uses optimally compensated computational volumes without the 

explicit estimation of the difference field was presented. It is based on finding a 

trajectory through the node to be labelled, which has the property of minimal 

entropy. This framework has the ability to segment robustly textured volumes where 

the 3-D object structures cannot be captured by other methods.



Chapter 9

CONCLUSIONS AND FUTURE 

WORK

9.1 MAIN CONCLUSIONS

The development of supervised segmentation algorithms for textured images on 3-D 

lattices was the central theme of this thesis. Results demonstrating their effec­

tiveness in segmenting a variety of computer generated and real MRI images were 

presented.

The overview of the methods for texture segmentation of volumetric imagery 

presented in Chapter 2 identified the areas where research efforts were needed. The 

task of segmentation is too complex and diverse and therefore, no universal solution 

is found yet. The area of 3-D segmentation, specifically, is a new and dynamically 

developing area with demands in various areas such as biomedicine, geology, material 

science, etc. Much research has been done in the area of image sequence processing; 

segmentation, restoration, retrieval etc. for many years, while the processing of 

3-D still imagery has been developing only since recent years. Specifically, the 

segmentation of textured images on 3-D lattices was identified as an important 

task.

158
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The advantages of using a model for homogeneous texture were shown. The 

problem of difference estimation in volumetric imagery was identified. While its 

relation to the problems of motion estimation, correspondence, pattern recognition 

ind image registration is evident, the need for developing specific methods was con­

cluded. Looking at potential applications, the nature of MRI data sets recommended 

:hem as a good real-world context for the methods.

A model-based approach was chosen for the segmentation algorithms in this 

vork. The model for images on 3-D lattices, namely the 3-D GMRF, was presented 

n Chapter 3 as a systematic extension of the 2-D GMRF [14]. The flexibility for 

defining an MRF model via the local or global properties, established by the H-C 

theorem, enabled the selection of model with simple specification. The compact 

representation of a stationary 3-D GMRF via a parameter vector has been shown 

to suit the representation of a homogeneous texture. The model depends on a 

simple 3-D symmetric neighbourhood geometry within the image lattice. Selecting 

only pair-wise cliques, while restricting the generality of the model, has the ability to 

analyze and synthesize a large class of textures combined with the desirable property 

of simple and fast algorithmic implementation.

An elegant algorithm for synthesis of 3-D stationary GMRFs was developed in 

Chapter 4. The thyroidal boundary assumption and the 3-D GMRF neighbourhood 

topological properties yielded in a special structure of the joint interaction matrix 

of the model. The main theoretical results for circulant matrices of level three were 

presented. In particular, the diagonalization theorem has provided a basis for the 

development of the fast synthesis algorithm via the 3-D FFT. It has allowed the 

generation of many 3-D textures used for testing of the algorithms throughout the 

thesis. Synthesizing various textures with similar 6^ and different Oy parameters was 

of a special benefit when studying the potential gain of a 3-D processing of such 

volumetric data in comparison to 2-D independent slice by slice one. While it had 

led to a very efficient method for generating samples from 3-D GMRFs, it has the 

disadvantage of being able to produce textures, which are not necessarily valid fields.
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Therefore special attention had to be paid when selecting the GMRF parameters, 

50 that the generated model had valid interaction matrix, necessary for the analysis.

In Chapter 5 the estimation of the parameters of a 3-D stationary GMRF via 

I LS technique, within a computational volume, was derived. The estimation ac- 

:uracy was studied, and the applicabihty of the method for the task of classifying 

attice nodes belonging to a predefined texture class was concluded. A 3-D segmen­

tation method based on parameter estimation followed by a classification for each 

lode of the lattice, namely the voxel-by-voxel (VBV) scheme, was proposed. The 

ample idea of using computational volume for that purpose has shown the benefit 

of an easy implementation producing good results on a smaller computational price 

in comparison to the popular Bayesian methods. The algorithm was shown to suc­

cessfully segment volumetric images, for which the 2-D independent slice by slice 

tegmentation failed. The main algorithm drawbacks, however, namely the increas- 

iig computational load with the data dimensions and the lack of connectivity in the 

resulting label field, has led to the development of improved methods.

Segmentation methods based on the VBV scheme, but working on decimated 

littices was proposed in Chapter 6. These were the Majority Decision (MD), Una­

nimity Rule (UR) and the recursive UR (RUR). The simple idea of imposing con- 

r.ectivity in the label field a posteriori independently of the way it was produced 

has manifested itself as a successful alternative to the MRF priors or double MRF 

models used within the Bayesian framework [58]. The decimated lattice methods 

had overcome the VBV limitations and were able to produce better connected label 

maps for a smaller computational cost. The methods were tested on 3-D synthetic 

aid  more realistic temporal textures. It was concluded that the RUR method was 

tlie best method in respect to classification accuracy and speed. Hence, it was used 

ir. all later work.

A disadvantage of using simple parallelepiped shaped computational volume, 

however, in the case when third dimension shape evolution is present was identified. 

It has led to the motivation and development of compensated computational volume
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methods.

These methods for evaluation of this phenomena and compensation of the com­

putational volume were presented in Chapters 7 and 8. A formal framework of 

modelling the third dimension shape evolution by introducing the difference field 

was developed in Chapter 7. Approaches originating from the related areas was 

modified and used for enhanced segmentation. These are the interest points detec­

tion and matching, and 2-D cross-correlation of blocks from an initial label field 

obtained after a ‘thin-plate’ non-compensated RUR segmentation. These methods, 

although based on ideas from related areas, were adapted to reflect the specifics of 

3-D label field input data. The resulting compensated segmentation was shown to 

improve the quality of the results obtained by the non-compensated approaches in 

Chapter 6. The initial ‘thin-plate’ segmentation and estimation stages were shown 

to be sources of accumulating error. Hence, new 3-D methods based solely on the 

image data and the pre-determined texture codebook were developed in Chapter 8. 

3-D cross-correlation and Kullback-Leibler Distance (KLD) minimization methods 

were shown to work well on both synthetic and real MRI images. Finally, a uni­

fied approach for simultaneous difference estimation and compensation via entropy 

minimization was presented and applied.

9.2 DIRECTIONS FOR FUTURE WORK

The GMRF model-based algorithms discussed in this work involve the selection of 

some parameters in advance of the processing, such as the GMRF order and the 

computational volume size. The automatic choice of the depth parameter was con­

sidered in the entropy-minimization approach, but automatic selection is an unsolved 

task for the other parameters. For instance, investigation of the optimum model or­

der, depending on the application, is an important task. The GMRF synthesis 

algorithm’s potential for synthesizing natural looking 3-D textures (the temporal 

textures, for instance) via selecting the right order is worth investigation.
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The main concern addressed in this work was to protect the texture stationarity 

assumption within the computational volume via adapting it in the third dimension. 

The non-stationarity existing within each slice was addressed by the decimated 

lattice approaches in methods like the RUR scheme, but the 2-D cross-section of 

the computational volume (the computational window) is restricted to be a square 

of a given size. Therefore, it would be worthwhile to implement the automatic 

selection of another important parameter, namely the size or even the shape of the 

computational window in 2-D. This would be suitable for incorporation within the 

adaptive volume construction in the entropy-based minimization method. Such a 

method would be extremely powerful in segmenting small 3-D structures, where 

correct parameter estimation can be obtained only via the accumulation of more 

stationary data along the third dimension. This is particularly true in cases where 

a fixed-size stationary computational window w'ithin a 2-D slice is hard to find. 

Another step in this direction, would be to incorporate more prior knowledge on the 

shape of the 2-D cross-sections into the computational window shape to encourage 

particular shape evolutions. For example, such an approach would be useful in 

identifying blood vessels in MRI or other image modalities.

More work can be done on pre-processing, based either on the data or using anal­

ysis information. For example, the experiments with the MRI showed the sensitivity 

of the methods to the image modality. Also, previous work on 2-D window-based 

segmentation [77], suggests that a post-processing techniques such as the ICM al­

gorithm can be used to enhance the segmentation result.

The entropy minimization method offers the flexibility of determining the optimal 

computational volume depth, but the current implementation is based on exhaustive 

search and entropy computations for all possible depths. An immediate improvement 

would be to  develop an automatic stopping rule based on the entropy variations 

dependancie on depth.

Superviised segmentation finds application in medical image analysis, for in­

stance, Avbere anatomical knowledge is a source for codebook generation. In many
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real applications, however, an automatic unsupervised segmentation is the task to 

be solved. Methods based on 2-D computational windows have been extended to 

the unsupervised case. Therefore, a natural step forward would be the extension of 

the developed 3-D methods to serve the unsupervised segmentation demands.

The methods were shown to give impressive results for synthetic 3-D textures 

where the z-going correlations are the key discriminant between texture classes. 

These methods, however, are shown to be unnecessary for segmenting real images 

like T2 MRI, where simpler 2-D approaches give satisfactory results. It is important 

to investigate real-world applications where the abilities of the compensated meth­

ods are vital for success. One such application could be 3-D electron or confocal 

microscopy [61]. MRI datasets of high resolution would also probably be amenable 

to the 3-D techniques presented in this thesis, since they would manifest a sufficient 

number of textured voxels per tissue type.

The entropy minimization framework has been a step towards a parameter-free 

one-step segmentation method. A drawback is its computational cost. The local 

repetitive nature of the computations involving the GMRF neighbourhood, parame­

ter estimation on the RUR grid and recomputing of the entropy of a growing matrix 

suggest a parallel implementation would be suitable. Some initial experiments [69] 

have shown that a High Performance Computing approach is a direction for future 

research.
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Appendix A 

DIAGONALIZATION OF 

CIRCULANTS OF LEVEL 

THREE

Here is the proof of Theorem 4.1 from Section 4.3.

In [22] it is proven that any block matrix M  with n circulant blocks can be 

represented by
n

M  =  (A.l)
J =  1

where each is a circulant of level 1 of order m, 7T„ is the permutation matrix from 

(4.2) of order n and 0  denotes the Kronecker product.

Let C be a level 3 circulant of class C{m,n,p).  Hence, from (A.l) it follows:

p

C =  ^ 7 rJ - i® C fc , (A.2)
fc=i

where the blocks are block-circulants of level 2 of class C{m, n).

Hence, (A.l) can be applied again to yield:

n

j = i
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where each Cj k̂ is a circulant of level 1 and from (4.3) it follows:

m

(A-4)
i=l

The entry Cj is at location in the matrix C, i.e. is the entry C{i , j ,k) .

Substituting (A.4) into (A.3) and then into (A.2) gives

p n m

^  =  (A-5)
k = l  j = l  i = l

Since 7T„ =  F*l^^Fu [22], where F„ is the Fourier matrix (4.6) and flu is the 

matrix from (4.7) of order u, it follows that:

p n m

c = E  E  E  C(i> ® ® F;n‘-‘FJ
k = l  j = l  i= l  

m ,n,p

= Y. (F„ ® F„ ® ® F„ ^  Fp).
t= i , j= i , f c= i

Hence

C =  (A.6)

where T  s defined by (4.12) and A =  YlZ^kti C{i, j,  (g) <8) ^p~^)



Appendix B 

LEAST SQUARES ESTIMATION 

OF GMRF PARAMETERS

This is the derivation of the result in Section 5.2. Starting from (5.4):

et =  X (-Y ,0 t. (B.l)

Hence, the sum of the squared errors becomes:

ejet = {-xt -  y A f  {-xt -  YtOt)
=  x j x t -  x j Y A  -  e jYjXt  +  e j Y j Y A .  (B.2)

(B.2) is quadratic with respect to so there is a unique optimum of the function. 

Furthermore, since Y j Y f  is in Cholesky form, then

=  Y j Y ,  > 0. (B.3)

Hence, the optimizer locals the unique minimum. Re-writing (B.2):

ejet  =  {Ot -  a t fY jY t {Ot  -  â ) + Pu (B.4)

where

at =  {YjY, ) -^Yjx , ,  (B.5)

Pt =  x [ x t -  x lY t {Y jY t ) -^Y lx t .  (B.6)
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From (B.4) it is clear th a t the minimum is reached when $t =  at  i.e.

e, =  ( Y j Y , r 'Y jx , . (B.7)

Using the definition of the m atrix Y( =  [yj],r G uit'

e , = E
jr€ujt

YrYr E YrXr
jr&uJt

where Xr =  Xr — % is the zero-mean realization.

= - E71 m  ■ ^
fit /  Xr

riT
r€uit

(B^8)

(B.9)

is the arithm etic mean in u>t- Finally at =  |. :

= — X] [̂ r -  yjo,riT Lrewt
(B.io)



Appendix C 

TEST DATA

c . l  3-D  SYNTHETIC STATIONARY GMRFs

slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 11

Figure C .l: 3-D grey level data: second order stationary GMRF, model 1 (Table 5.2).
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slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 11

Figure C.2: 3-D grey level data: second order stationary GMRF, model 2 (Table 5.2).

slice 1 slice 2 slice 3 slice 4

Figure C.3: 3-D grey level data: second order stationary GMRF, model 3 (Table 5.2).
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slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 11

Figure C.4: 3-D grey level data: third order stationary GMRF, model 1 (Table 5.3).

slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 11

Figure C.5: 3-D grey level data: third order stationary GMRF, model 2 (Table 5.3).
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s lice  1 slice 2 s lice  3 slice  4

s lice  5 s lice  6 slice  7 slice 8

slice  9 s lice  10 slice  11

Figure C.6: 3-D grey level data: third order stationary GMRF, model 3 (Table 5.3).

C.2 3-D SYNTHETIC GMRF MIXTURES
slice 1 slice 2 slice  3 slice 4

slice 5 slice 6 slice  7 slice 8

slice 9 slice 10 s lice  11 m ask

Figm - 0  C.7: 3-D grey level data: non-stationary volume, obtained by the s ta tionary 

fields from Figs. C .l  and C.2 and the ground truth mask.
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Figure C.8: 3-D grey level data: non-stationary GMRF volume, obtained by the  s ta­

tionary fields from Figs. C.4, C.5 and C.6 and the ground t ruth mask.

slice 1 slice 2 s lice  3 slice 4

slice 5 slice 6 slice  7 s lice  8

Figure C.9: 3-D grey level data: ‘s t ra ight’ cylinder volume, obtained by the stationary 

fields from Figs. C . l  and C.2 and the ground t ruth mask.
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m ask 1 m ask 2 m ask 3 mask 4

183

m ask 5 m ask 6 m ask 7 m ask 8

m ask 9 m ask 10 m ask 11

Figure C.IO: Ground truth masks for the  ‘skewed’ cylinder volume.

slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 11

Figure C .ll :  3-D grey level data: ‘skewed’ cylinder volume, obtained by the stationary 

fields from Figs. C .l  and C.2 and the ground truth masks from Fig. C.IO.
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slice 1 slice 2 slice 3 slice 4

slice 5 slice 7

slice 9 slice 10 slice 11

Figure C.12: 3-D grey level data: ‘skewed’ cylinder volume.

mask 1 mask 2 mask 3 mask 4

20

• * T 60
L ' * ’ " ' i j rT L  ' ^  100

F uss j;^  120

mask 5 mask 6 mask 7

20 40 60 80100120 

mask 8

mask 9 mask 10 mask 11

Figure C.13: Ground truth masks for the three textures volume.
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slice 9 slice 10 slice 11

Figure C.14: 3-D grey level data: three textures volume, obtained by the stationary 

fields from Figs. C.4, C.5 and C.6 and the ground tru th  masks from Fig. C.13.

C.3 TEMPORAL TEXTURES
slice 1 slice 2 slice 3

slice 4 slice 5 slice 6 slice 7

slice 8 slice 9 slice 10 slice 11

Figure 0.15: 3-D grey level data: the  ‘plastic’ temporal texture sequence.
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Figure C.16: 3-D grey level data; the ‘river’ temporal texture sequence.

mask

Figure C.17: Temporal textures mosaic using the ground truth mask and the data from 

Figs. C.15 and C.16.
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C.4 MRI VOLUMES

187

slice 28 slice 29 slice 30

Figure C.18: Original grey level da ta ;  transverse  T2-w eighted  slices of  hum an brain.

slice 28 slice 29 slice 30

Figure C.19: Original grey level da ta :  transverse  PD -w eighted slices of  hum an brain.
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slice 28 slice 29 slice 30

slice 31 slice 32 slice 33

slice 34 slice 35 slice 36

Figure C.20: Gray level data: region from transverse T2-weighted slices o f human brain.

S lice  28

slice 31

slice 29 slice 30

slice 34 slice 3 5 slice 36

Figure C.21: Gray level data: region from transverse PD-weighted slices of human brain.



Appendix D 

NON-COMPENSATED 

SEGMENTATION RESULTS

D .l VOXEL-BY-VOXEL
s lice 2  s lice  3  slice 4

slice  5 s lice  6 s lic e  7  slice 8

Figure D .l: 3-D VBV segmentation results for the volume from Fig. C.7, rf =  3.
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slice 3

mm
slice 4

slice 5 slice 6 slice 7 slice 8

slice 9

Figure D.2; 3-D VBV segmentation results for the volume from Fig. C.7, d =  b.

slice 4

d = 7

slice 5 slice 6 slice 7 s lice!

slice 5 slice 6 = 9 slice 7 slice 6

d = 11

Figure D.3: 3-D VBV segmentation results for the volume from Fig. C.7, d =  7,9,11.
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s lice  4slice 2 slice  3

slice 6 slice  7 s lice  8slice  5

s lice  9 slice  10

Figure D.4: 3-D VBV segmentation results for the  volume from Fig. C.8, d =  3.

slice  3  slice 4

slice  5 s lice  6 slice  7  slice 8

s lice 9

Figure D .5: 3-D VBV segmentation results for the  volume from Fig. C.8, d =  5.
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slice 4

d = 7
slice 5  slice 6 slice 7 slice 8

Figure D.6: 3-D VBV segmentation results for the volume from Fig. C.8, d =  7 , 9 , 11.

D.2 MAJORITY DECISION
s lice  2 s lice  3  s lice  4

Figure D.7: 3-D MD segmentation results for the volume from Fig. C.8, d =  3.
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s lic e  3 slice 4

slice  5 slice 6 s lice  7 slice 8

slice  9

Figure D.8: 3-D MD segmentation results for the volume from Fig. C.8, d =  5.

slice 4

slice 5 slice 6 slice 7  slice 8

d = 11

Figure D.9: 3-D MD segmentation results for the volume from Fig. C.8, d =  7 , 9 , 11.
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D.3 UNANIMITY RULE
slice 2  s lic e  3  slice 4

Figure D.IO: 3-D UR segmentation results for the  volume from Fig. C.7, d

s lic e  3 slice  4

Figure D . l l :  3-D UR segmentation results for the  volume from Fig. C.7, d
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slice 4

6  =  7
slice 5 slice 6 slice 7 slice 8

Figure D.12: 3-D UR segmentation results for the volume from Fig. C.7, d =  7,9,11.

slice 5 slice 6 slice 7 slice 8

Figure D . 13: 3-D UR segmentation results for the volume from Fig. C.8, d =  3.
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slice 4s lice  3

s lice 8s lice  6 s lice  7s lice  5

s lice  9

Figure D.14: 3-D UR segmentation results for the volume from Fig. C.8, d =  5.

slice 4

slice 8slice 7slice 6slice 5

slice 7slice 6slice 5

Figure D.15: 3-D UR segmentation results for the volume from Fig. C.8, d =  7, 9,11.
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D.4 RECURSIVE UNANIMITY RULE
slice 2 slice 3 slice 4

[ | [ | [ |
slice 5 slice 6 slice 7 slice 8

[][]
slice 9 slice 10

F igure  D.16: 3-D RUR segmentation results for the volume from Fig. C.7, d

slice 3 slice 4

01
slice 5 slice 6 slice 7 slice 8a ij
slice 9

[ |

197

=  3.

F igure  D.17: 3-D RUR segmentation results for the volume from Fig. C.7, d = 5.
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slice 4

d = 7
slice 5 slice 6 slice 7 slice 8

Figure D.18; 3-D RUR segmentation results for the volume from Fig. C.7, d =  7,9,11.

slice 2 slice 3 slice 4

Figure D.19: 3-D RUR segmentation results for the volume from Fig. C.8, d =  3.
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s lice  9

Figure D.20: 3-D RUR segmentation results for the  volume from Fig. C.8, d — 5.

slice 4

Figure D .2 ^  3-D RUR segmentation results for the  volume from Fig. C.8, d =  7, 9,11.



APPENDIX D. NON-COMPENSATED SEGMENTATION RESULTS 200

D.5 TEMPORAL TEXTURES
slice # 1 slice # 2 slice # 3

slice # 4 slice # 5 slice # 6 slice # 7

slice # 8 slice # 9 slice # 10 slice # 11

Figure D.22: 2-D RUR segmentation of the temporal textures sequence from Fig. C.17

slice # 2 slice # 3

slice # 4 slice # 5 slice # 6 slice # 7

slice # slice # g slice # 10

Figure D.23: 3-D RUR segmentation of the temporal textures sequence from Fig. C.17,

d =  3
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slice  #  3 slice  # 4 slice  #  5 slice  #  6

s lice  #  7 s lice  #  8 s lice  #  9

Figure D.24: 3-D RUR segmentation of the temporal textures sequence from Fig. C.17,

d =  5

d = 11

Figure D.25: 3-D RUR segmentation of the temporal textures sequence form Fig. C.17, 

=  7 , 9 , 1 1



Appendix E 

DIFFERENCE COMPENSATED 

SEGMENTATION

E .l INTEREST POINTS DETECTION 

AND MATCHING

E.1.1 Modified MO

F ig u re  E . l :  Modified MO. Original image: th ree  class mask, all corners de tec ted  and 

th e  selected IPs.
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Figure E.2: Modified MO. 3-D non-compensated ‘th in-plate’ RUR segmentation for 

slice # 5  from the volume in Fig. C . l l ,  all corners detected and the selected IPs.

Figure E.3: Modified MO. 3-D non-compensated ‘th in-plate’ RUR segmentation for 

slice 7̂ 6 from the volume in Fig. C . l l ,  all corners detected and the selected IPs.

Table E .l: Number of IP detected by the modified MO and elapsed time [s].

Fig. # Total #  corners #  IPs E l.tim e

E .l 92 24 0.53

E.2 69 13 0.46

E.3 73 16 0.41
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E.1.2 M atching Algorithm

l a u a o w M t O T O W w i o a t i o  i o » M « M K 7 o * o « < e o n o

Figure E.4: Circular object masks displaced by (3,2), the  difference vectors estimated 

in respect to  IP l  and IP2 respectively.

10 20 30 40 so M re
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Figure E.5: Original images: slices # 5  and # 6  from a test volume, the difference 

vectors estimated in the set of  IPs.

10 a  M 40 so (0 70 M to 100 110 20 90 40 so (0 70 K  n  lOO 110

too 110 7020

Figure E.6: Original images: slices # 8  and # 9  from a test volume, the difference 

vectors estimated in the set of IPs.

Figure E.7: Original images and superimposed IPs: 3-D non-compensated ‘thin-plate' 

segmentation of slices #  2 and #  6 from the volume in Fig. C .ll and the estimated  

sparse difference field between them.
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E.1.3 Compensated Segmentation Results
slice 2 slice 3 slice 4

! ' J i l

’

r f f lL

slice 5 slice 6 slice 7 slice 8

C Ipf ' - ̂ • fc-

slice 9 slice 10

Figure E.8: 3-D RUR compensated segmentation results for the  ‘skewed’ cylinder volume 

(Fig. C . l l ) ,  d = 3. Difference field estimated via IP detection and matching.

s l ic e s slice 4

slice 5 slice 6 slice 7 slice 8

*|R S-^mf$i

wmm

•

k:. ̂ t.fii
'' . r  • * \ ^ '

slice 9

Figure E.9: 3-D RUR compensated segmentation results for the  ‘skewed’ cylinder volume 

(Fig. C . l l ) ,  d = 5. Difference field estimated via IP detection and matching.
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m
d = 11

Figure E.IO: 3-D RUR compensated segmentation results for the  ‘skewed’ cylinder 

volume (Fig. C . l l ) ,  d =  7 ,9 ,11 . Difference field estimated via IP detection and 

matching.

E.2 CROSS-CORRELATION

E.2.1 2-D Correlation Coefficient
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Figure E . l l :  Original grey level images and the difference vectors estimated via ZNCC 

between them.
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i|BEaHiH£au?mS«ug|HmfeOTiig îi l l i j i ; *■’• • • • ‘ V-,‘ *

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Figure E.12; 3-D non-compensated RUR segmentation results, d — 3, for slices ^ 2  

and of the  ‘skewed’ cylinder volume (Fig.C.11) and the  difference field estimated via 

ZNCC between them.
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Figure E.13: 3-D non-compensated RUR segmentation results, d =  3, for slices # 8  

and # 9  of the  ‘skewed’ cylinder volume (Fig.C.11) and th e  difference field estimated via 

ZNCC between them.
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E.2.2 Compensated Segm entation Results
slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

s lic e s  slice 10

Figure E.14: 3-D RUR compensated segmentation results for the ‘skewed’ cylinder 

volume (Fig. C . l l ) ,  d =  3. Difference field estimated via ZNCC.
slice 3 slice 4

slice 5 slice 6 slice 7 slice 8
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Figure E.15: 3-D RUR compensated segmentation results for the ‘skewed’ cylinder 

volume (Fig. C . l l ) ,  d =  5. Difference field estimated via ZNCC.
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Figure E.16: 3-D RUR compensated segmentation results for the ‘skewed’ cylinder 

volume (Fig. C . ll) ,  d =  7,9,11. Difference field estimated via ZNCC.
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Figure E.17: 3-D RUR compensated segmentation results for the ‘skewed’ cylinder 

volume (Fig. C.12), d = 3. Difference field estimated via ZNCC.
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Figure E.18: 3-D RUR compensated segmentation results for the ‘skewed’ cylinder 

volume (Fig. C.12), d = 5. Difference field estimated via ZNCC.
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Figure E.19: 3-D RUR compensated segmentation results for the ‘skewed’ cylinder 

volume (Fig. C.12), d = 7,9. Difference field estimated via ZNCC.
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E.3 KULLBACK-LEIBLER MINIMIZATION
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E .3.1 D ifference E stim ation

Parameters: = 5 db = 3, step =  2; d m a x  =  5, A =  1. Elapsed time; 25.32s..
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Figure E.20: Slices # 5  and # 6  from a ‘skewed’ cylinder volume of  textu res  with different 

mean and th e  difference field es t imated via KLD minimization between them .

E .3 .2 C om pensated Segm entation  R esu lts
slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10

Figure E.21: 3-D RUR com pensa ted  segmenta t ion  results for th e  ‘skewed'  cylinder 

volume (Fig. C . l l ) ,  d — 3. Difference field es t imated via KLD minimization.
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slice 2 slice 4
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Figure E.22: 3-D RUR compensated segmentation results for the ‘skewed’ cylinder 

volume (Fig. C.12), d =  5. Difference field estimated via KLD minimization.
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Figure E.23: 3-D RUR compensated segmentation results for the  ‘skewed’ cylinder 

volume (Fig. C.12), d =  7,9. Difference field estimated via KLD minimization.
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Figure E.24: 3-D RUR non-compensated segmentation results for the three textures

volume (Fig.C.14), d = 3.
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Figure E.25: 3-D RUR non-compensated segmentation results for the three textures 

volume (Fig.C.14), d = 5.
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slice 4

Figure E.26: 3-D RUR non-compensated segmentation results for the three textures 

volume (Fig.C.14), d = 7,9.

slice  2  s lic e  3 slice 4

Figure E.27; 3-D RUR compensated segmentation results for the three textures volume 

(Fig.C.14), d = 3. Exact difference field.
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Figure E.28: 3-D RUR compensated segmentation results for the three textures volume 

(Fig.C.14), d =  5. Exact difference field.

slice 4

Figure E.29: 3-D RUR compensated segmentation results for the three textures volume 

(Fig.C.14), d — 7 , 9 , 11. Exact difference field.
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slice 2 slice  3 slice 4

Figure E.30: 3-D RUR compensated segmentation results for the three textures volume 

(Fig.C.14), d — 3. Difference field estimated via KLD minimization.

Figure E.31: 3-D RUR compensated segmentation results for the three textures volume 

(Fig.C.14), d =  5. Difference field estimated via KLD minimization.
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s l ic e  4

Figure E.32: 3-D  RUR compensated segmentation results for the three textures volume 

(Fig.C.14), d = 7 ,9 , 11. Difference field estimated via KLD minimization.

E.4 MRI SEGMENTATION

E.4.1 Difference Estim ation

i= ispsjp jijsgj

Figure E.33: Slices 30 and 31 from the volume in Fig. C.20 and the difference vectors  

estimated via ZNCC between them.
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Figure E.34: Slices 30 and 31 from the volume in Fig. C.20 and the difference vectors 

estimated via 3-D ZNCC between them.
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Figure E.35: Slices 30 and 31 from the volume in Fig. C.20 and the difference vectors 

estimated via KLD between them.
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Figure E.36: Slices 30 and 31 from the volume in Fig. C.21 and the difference vectors

estimated via ZNCC between them.
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Figure E.37: Slices 30 and 31 from the volume in Fig. C.21 and the difference vectors 

estimated via 3-D ZNCC between them.
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Figure E.38; Slices 30 and 31 from the volume in Fig. C.21 and the difference vectors 

estimated via KLD between them.
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E.4.2 Segm entation

% m w
slice 34 slice 35 slice 36
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Figure E.39: 2-D RUR segmentation results for the T2 MRI volume (Fig.C.20).

Figure E.40; 2-D RUR segmentation results for the PD MRI volume (Fig. C.21).
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Figure E.41; 3-D RUR non-compensated segmentation results for the  T2 MRI volume 

(Fig. C.20), d =  3.

slice 30

Figure E.42: 3-D RUR non-compensated segmentation results for the T2 MRI volume 

(Fig. C.20). d =  5.
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slice 31 slice 32 slice 33
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Figure E.43: 3-D RUR non-compensated segmentation results for the T2 MRI volume 

(Fig. C.20), =  7,9.

slice 29 slice 30

Figure E.44: 3-D RUR non-compensated segmentation results for the PD MRI volume 

(Fig. C.21), d =  3.
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Figure E.45: 3-D RUR non-compensated segmentation results for the PD MRI volume 

(Fig. C.21), d = 5.
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Figure E.46: 3-D RUR non-compensated segmentation results for the PD MRI volume
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slice 29 slice 30

Figure E.47: 3-D RUR compensated segmentation results for the T2 MRI volume (Fig. 

C.20), (i =  3. Difference estimation via 2-D ZNCC.

slice 30

Figure E.48: 3-D RUR compensated segmentation results for the T2 MRI volume (Fig. 

C.20), (i =  5. Difference estimation via 2-D ZNCC.
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d  = 9

Figure E.49: 3-D RUR compensated segmentation results for the  T2 MRI volume (Fig. 

C.20), d =  7,9.  Difference estimation via 2-D ZNCC.
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Figure E.50: 3-D RUR compensated segmentation results for the  PD MRI volume (Fig. 

C.21), d =  3. Difference estimation via KLD.
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slice 30

Figure E.51: 3-D RUR compensated segmentation results for the PD MRI volume (Fig. 

C.21), d =  5. Difference estimation via KLD.
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Figure E.52: 3-D RUR compensated segmentation results for the PD MRI volume (Fig. 

C.21), d =  7,9. Difference estimation via KLD.
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E.5 ENTROPY MINIMIZATION
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Figure E.53: 3-D RUR compensated segmentation results via entropy minimization for 

the ‘skev\/ed’ cylinder volume (Fig. C .ll) .
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Figure E.54: 3-D RUR compensated segmentation results via entropy minimization for 

the three class volume (Fig. C.14).
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