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A bstract

Accurate modelling of steady-state acoustic and elastic wave phenomena at higher 

frequencies, represents a major challenge for current numerical tools. Due to the 

large amount of computational effort and memory resources involved with the appli

cation of these methods, their use is practically restricted to low-frequency dynamic 

analysis.

The overall objective of this study is to overcome the com putational lim itations 

associated to conventional numerical methods for modelling vibro/acoustic problems 

at higher frequencies. A relatively new approach, known as the Wave Expansion 

Discretisation Method (WED), is comprehensively assessed as a viable alternative 

scheme.

For validation purposes, the method is applied to several acoustic problems in two 

and three dimensions, including homogeneous and inhomogeneous flow conditions 

within the continuum domain. In addition, the accuracy of the WED m ethod for 

modelling linear (isotropic) elastic waves in two and three dimensions and plate 

vibration analysis is also explored.

For the acoustic case, it is shown that accurate results can be obtained near the bi- 

nodal/wavelength limit. Furthermore, the m ethod shows also a comparable accuracy 

for two-dimensional (plain strain) elastic problems and plate vibration analysis. This 

represents a major accuracy improvement in comparison to the existing techniques, 

reducing significantly the size of the model. Under the present formulation, however, 

the implementation for three-dimensional elastic problems faces a serious practical 

lim itation.



N om enclat ure

c speed of sound [m/s]

Cl speed of propagation of elastic dilatational waves [m/s]

ct speed of propagation of elastic equivoluminal waves [m/s]

D  derivative operator

E  modulus of elasticity [Pa]

/  frequency [Hz]

G Green’s kernel function

h maximum nodal spacing in the mesh [m]

zero-order Hankel function of the second kind 

k acoustic wavenumber [1/rn]

k i  elastic dilatational wavenumber [1/m]

k,T elastic equivoluminal wavenumber [1/m]

K  adiabatic bulk modulus [Pa]

rUns torsional moment per unit length about the direction n [N]

A/„ bending moment per unit length [N]

n  normal vector

p acoustic pressure [Pa]

q unit vector oriented in the direction of propagation of the plane wave

Qn plate shear force per unit length [N/m]

u  displacement vector [m]

V fluid velocity vector [m/s]

X general field position vector [m]

X(, general boundary position vector [m]

Z  impedance [kg/m^s]
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5 Kronecker delta

£ n normal strain components

7 strength of a plane wave

7ij tangential strain components

acoustic boundary

Tc clamped elastic boundary (one or more components of the displacement vector 

are zero)

Tz. acoustic boundary surface with a prescribed pressure distribution

Te elastic boundary

Tf free elastic boundary surface (normal and tangential traction forces are zero)

r,v acoustic boundary surface with a prescribed normal velocity

T r acoustic boundary surface with a prescribed normal impedance distribution

T s simple supported elastic boundary surface

L imaginary unit

X wavelength [m]

K second Lame’s elastic constant

p first Lame’s elastic constant [N/m^]

V Poisson’s coefficient

On normal rotational displacement [rad]

PQ ambient mass density of the fluid [kg/m^]

P structural mass density [kg/m^]

^ n normal stress components (related to normal traction forces)

'^ns tangential stress components (related to shear traction forces)

UJ circular frequency [rad/s]

VLa acoustic domain

Q e isotropic elastic domain



V gradient operator 

Laplace operator 

^ generalised pseudo-inverse
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Chapter 1

Introduction

1.1 Im portance of efficient numerical m ethods for 

m odelling vibro/acoustic problems

Numerical modelling methods are, in essence, predictive tools primarily used in 

the design stages of the engineering process. Their use in acoustic applications 

include, for example, traffic noise control, interior car and aircraft cabin insulation 

and turbofan noise simulation. The use of numerical methods for problems related 

to vibration and general elastic wave propagation, may be found for example, in 

the vibration control and fault detection of structures and machinery, seismic wave 

modelling and material property identification.

Numerical methods give always an approximate solution to the real problem. Thus, 

their ultim ate efficiency as predictive tools is assessed in terms of the accuracy of 

the numerical solution and the computational cost required to obtain the desired 

solution. The accuracy will determine the reliability of the method, whilst the 

com putational cost will determine the viability of the numerical scheme. 

Commercial numerical tools for modelling wave phenomena, have failed in many 

cases to provide accurate solutions at a reasonable com putational cost, rendering 

some im portant applications practically unsolvable. Problems such as interior car
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and aircraft cabin insulation can only be efficiently modelled at lower frequencies. 

However, these are often not the frequencies for which the acoustic pressure is max

imum in the real problem, nor those which are the most sensitive to human hearing. 

The research efforts devoted to circumvent the drawbacks associated to standard 

numerical methods, may be traced back over several decades. Over the last few 

years, however, there has been a steadily increasing demand for an efficient simula

tion tool for wave propagation phenomena, in particular for acoustic applications. 

This has been mainly prompted by higher customer requirements regarding acous

tic performance along with new regulations in noise emission. As a consequence, 

solutions over a broad band frequency range in large domains are often required. 

The remarkable advance in the computing technology in recent times, has given 

the opportunity to increase significantly the computational resources, allowing the 

standard commercial packages to solve more problems of interest. These advances 

are nonetheless, insufficient to compensate for the poor efficiency of the conventional 

approaches.

In order to fully incorporate predictive criteria in the design process, there is also 

a strong need for numerical simulation methods to provide insight in the physical 

phenomena which govern the wave behaviour.

1.2 Definition of the acoustic and elastic wave 

problems

1.2.1 Acoustic problems

Assuming only small dynamic perturbations and tha t, the air density p(x) and bulk 

modulus /C(x) where x  is a general position vector, remain relatively constant within 

the continuum, so tha t p(x) =  po> the propagation of acoustic waves is governed by

2



the general wave equation [1]

(1 . 1)

where c is the sound speed and p(x, t) is the acoustic pressure at a time t and

position X.

For modelling purposes, the use of equation 1.1 requires not only a spatial dis

cretisation but also a time step discretisation. An im portant simplification in the 

formulation is obtained if only the steady-state pressure p(x) is considered (see Ap-

where a; =  27t/  is the circular frequency. The ratio /c =  ^ is the wavenumber, which 

gives the spatial phase behaviour of the wave solutions.

A boundary value problem with a unique solution then results, provided th a t one 

boundary condition is specified at each point on the boundary of the problem do

main. Given a general acoustic domain with boundary T a =  roUEj vUr R,  three 

conditions are usually considered:

•  imposed pressure (Dirichlet condition)

w'here p(x) is a prescribed pressure function

• imposed normal velocity (Neumann condition)

v„(xft) =  Xb e  Tiv, (1.4)Pqui on
where l = \ / ^ ,  is a prescribed normal velocity function and n  is the 

boundary outward normal. For a perfectly reflective condition, u =  0.

•  imposed impedance (radiation or mixed boundary condition)

pendix A). Equation 1.1 then reduces to the Helmholtz equation

( 1 .2 )

p ( x b )  = p ( x i ) ,  Xfe G F o , (1.3)

p ( x f e )  =  - i p o W V „ ,  Xfe €  F r (1.5)

where Z  = p /v „  is the normal specific acoustic impedance.
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/Ithough the Helmholtz equation 1.2 is only a steady-state approximation of the 

general (time-domain) differential wave equation, it generally gives a useful insight 

iito the behaviour of the numerical model, whilst avoiding the complications of 

aialysing the transient effects. Nonetheless, it requires a significant computational 

efort as the entire domain must be discretized with the same level of mesh re- 

fiiement. For illustration purposes, consider a point source located in an infinite, 

rdective baffle pulsating at 600i/^. The steady-state linear pressure distribution 

in a homogeneous, two-dimensional square domain of 20m edge length, is shown in 

figure 1.1.

Figure 1.1; Point source in an infinite baffle.

As the frequency /  increases, the spatial variations in the pressure distribution 

decrease proportionally, as defined by the wavelength A =  c / / .

The performance of the numerical methods is usually assessed in terms of the number 

of discretisation points per wavelength ratio (ppw) required to obtain an accurate
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solution. The ppw is defined as

cppw =  , ( 1 -6 )

where h is the maximum nodal spacing in the mesh.

From the Nyquist theory of signal processing analysis it is known that, in order 

to avoid aliasing effects, the sampling rate must be at least twice of the highest 

frequency to sample (see e.g. [2]). Thus a minimum of two points per wavelength is 

required. Standard numerical schemes, like finite differences (FD), finite elements 

(FE) or boundary element (BE) methods require between 6-10 points per wavelength 

in order to give an accurate solution [3].

Consider for example, modelling 20 wavelengths of a lOOOHz sine wave. The number 

of nodal points required by an ‘ideal’ (2 points per wavelength) method and the 

standard approaches mentioned above in one, two and three dimensions is listed in 

table 1.1. As shown, for two and three dimensions the difference in the number of

ID 20 3D

ideal 40 1,600 64,000

standard 120-200 14,400-40,000 1,728,000-8,000,000

Table 1.1: Accuracy comparison between an ‘ideal’ method and the standard nu

merical schemes.

discretisation points is substantial. Note that the actual domain considered in table 

1.1 is relatively small in comparison to most acoustic applications (20 wavelengths 

for a lOOOHz sinusoidal wave cover a distance of 6.8m in each spatial direction). At 

larger domains and/or higher frequencies, the computational requirements of the 

standard methods will rapidly overwhelm current computational resources.

5



1.2.2 Elastic problems

Steady-state elastic waves i i  isotropic m edia, may be also reduced to  a system of 

Helmholtz equations (see Appendix B)

V^u(x) +  A:^u(x) =  0 (1.7)

and

V^u(x) + A:^u(x) =  0, (1.8)

where

u(x)

 ̂ Ul(x) ^
(1.9)U2[yi)

\  ^a(x)

is the vector displacem ent with com ponents ifi(x ), U2{'x.) and us(x), and k i  =  o j / c i  

and k r  =  oj/ c t  are the  d ilataiional and equivolum inal wave num bers, respectively^. 

D ilatational waves are associated w ith com pressional and d ila ta tional changes in the 

volume of the elastic dom ain whilst equivolum inal waves produce a shear displace

ment, where the shape of the domain is changed bu t not its volume. Given a general 

isotropic elastic dom ain CIe  with boundary  =  rc U F i? , two boundary  conditions 

are generally considered

•  clam ped condition

•  free condition

u(xfc) = 0 ,  Xft G Tc (1-10)

On =  Tns = 0  Xb E T f , ( 1 .1 1 )

where cr„ and Tns are the norm al and  tangentia l edge stress com ponents, re

spectively.

'For two-dim ensional problem s, a plain s tra in  condition is assum ed by m aking U3 =  0 . Thus, 

the strain tensor com ponents in the X3 general coordinate direction vanish identically, i.e., 63 =  

7 i 3 =  723 =  0 , w ith (73, ri3, T 2 3  ^  0. A lternatively, a plain stress  solution m ay be obtained by 

restraining the stress com ponents in the a:3-direction, i.e., <73 =  ri3 =  T23 =  0, w ith U3 ^  0.
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Since the  speed of propagation of elastic waves is in general significantly higher than  

th a t of acoustic waves, the efficiency of the s tandard  num erical m ethods a t higher 

frequencies is improved. However, a t each discretisation point, there are two (2D) 

and th ree  (3D) degrees of freedom associated to  the displacem ent vector field. 

Thus, the  overall com putational cost is, in general, even higher than  th a t required 

for acoustic problem s, which imposes severe practical com putational lim itations on 

the size of the  solution dom ain a n d /o r frequency modelling.

1.3 Structure of the thesis

C hap ter 2 gives a detailed review of the numerical m odelling schemes applicable to 

the solution of the Helm holtz equation. A brief discussion on conventional m ethods, 

i.e., the finite differences m ethod (FDM ), the finite elem ent m ethod (FEM ) and 

the boundary  element m ethod (BEM ), is also included for com pleteness (for a more 

detailed  discussion, the reader is referred to, e.g., references [4-6]).

The review is centred in the discussion of the a lternative num erical techniques pro

posed in recent years, which are aimed a t overcome the accuracy problem s associated 

w ith the stan d ard  m ethods. Some of these new schemes have m any a ttrac tiv e  fea

tures, and  have, in general, a b e tte r  accuracy in com parison to  the s tandard  m ethods. 

However, in addition to  the accuracy, there are o ther several im p o rtan t properties 

th a t have to  be considered in order to determ ine w hether a particu la r approach has 

a b e tte r  overall perform ance. Based on th is criteria , a relatively new and unknown 

m ethod, called the Wave Expansion D iscretisation (W ED ), was selected.

T he form ulation and m ethodology of the W ED  is discussed in chapter 3. Following a 

sim ilar procedure as described by C aru thers et al. [7], the accuracy and conditioning 

of the  W ED  for two- and three-dim ensional acoustic problem s is investigated. P ar

ticu lar em phasis is given to the  im plem entation of the  rad ia tion  boundary  condition, 

for which an alternative form ulation is derived.

The application  of the wave expansion technique for two- and three-dim ensional
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acoustic problems is described in chapter 4. The modelling results for several illus

trative examples, including non-uniform inhomogeneities within the com putational 

domain, are also discussed.

Chapter 5 describes the application of the WED method in elastodynamics. For 

validation, the results of the proposed scheme for a two-dimensional (plane strain) 

problem are compared against a finite element model, using similar computer re

sources. The implementation of the WED for three-dimensional problems is also 

explored.

Chapter 6 presents the general conclusions and suggests future work in the devel

opment of the wave expansion discretisation technique, which should lead towards 

a versatile and generally applicable modelling scheme.
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Chapter 2 

R eview  of numerical m ethods 

appHcable to  the Helm holtz 

equation

2.1 Introduction

For most acoustic and elastic wave problems, the solution of the partial differen

tial equations cannot be found in closed analytical form, due to the complexity of 

the geometry and the boundary conditions. Therefore, an approximation of the 

exact solution is searched for by transforming the mathematical model into a set 

of approximated (algebraic) equations, which are amenable to numerical solution 

procedures. These equations have the form

A x = b, (2.1)

where A is a square matrix which can be sparse or dense, and b is the forcing 

vector, determined by the boundary conditions and loadings applied on the physical 

domain.

Numerical commercial tools are usually based on some variation of traditional finite 

differences (FD), finite element (FEM) or boundary element (BEM) schemes. These
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approaches are briefly discussed in sections 2.2 and 2.3. Despite the fact tha t these 

methods have been widely used for many years, their efficiency is limited only to 

lower frequency solutions. At higher frequencies, the com putational cost required 

to obtain accurate solutions rapidly consumes available com putational resources.

In an effort to overcome these drawbacks, a myriad of alternative techniques have 

been developed in recent years. Some of these ‘new’ approaches have incorporated 

the idea of using solutions of the governing differential equation to interpolate the 

pressure field. These numerical schemes, discussed in section 2.4, fall into the group 

of Trefftz methods. The results obtained with these techniques, though still rather 

simple academic problems, have shown a much better accuracy in the solution in 

comparison to the standard  methods.

This chapter does not aim at giving an exhaustive account of every possible numer

ical scheme th a t may give an approximate solution for acoustic and elastic waves. 

The discussion is centred on those approaches th a t have been developed, investigated 

and used for acoustic and elastic wave problems in recent years.

Given the relevance of the implementation of the free field boundary conditions in 

the modelling of acoustic problems, a brief review on the available techniques is 

given in section 2.5. These methods provide the base from which a solution to the 

radiation problem in the Wave Expansion Discretisation (WED) m ethod is derived 

in the subsequent chapters.

2.2 Basic concepts and properties o f FD M  and 

FEM

The Finite Difference Method (FD) and the Finite Element M ethod (FEM) are 

full field domain discretisation techniques. T hat is, the domain is discretized in 

its entirety, unlike boundary discretisation techniques in which the discretisation 

is performed only in the boundary of the com putational domain. These methods
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reduce the problem to a system  of equations

( K  +  j w C  -  w 2 M ) p  =  f ,  (2.2)

where the m atrices K , C  and M  are the acoustic stiffness, dam ping and mass 

m atrices, respectively. T he mass m atrix  M  and K  m atrix  m odel reactive effects. 

The dam ping m atrix  C  results from the im pedance boundary  conditions and other 

losses w ithin the com putational domain.

The stiffness and m ass m atrices, K  and M , as given in equation 2.2, are indepen

dent of the  frequency. This allows the use of s tandard  eigenvalue solvers for the 

calculation of the undam ped n a tu ra l frequencies and m ode shapes of acoustic and 

elastic systems.

The properties of the  finite differences and finite elem ent m ethods are outlined 

below. Though the form ulation in both  cases is re la ted ^  the  concept behind the 

in terpo lation  procedure is different for both  m ethods. A sum m ary of the properties 

related to the FD and FE  m ethods is given in section 2.2.3.

2.2.1 Finite difference m ethod (FD)

The finite difference m ethod is a discrete dom ain technique, in which the governing 

differential equation is approxim ated a t a finite num ber of points located w ithin the 

continuum  dom ain. In the  trad itional form ulation, the derivatives of the governing 

equation  are replaced by finite diflPerence operators form ulated in term s of the field 

values a t neighbouring points. A difference equation a t each point results directly, 

for which the  associated approxim ation error may be readily determ ined.

For first order derivatives, the  finite difference operator m ay be form ulated consid

ering the precedent or th e  following field nodes, in which case, is called backward 

difference and forward difference approxim ation, respectively. For second order 

derivatives, a central difference  approxim ation is generally determ ined using the

' It can be readily demonstrated that the finite element method may be reduced to finite differ

ences should S  (Kronecker delta) interpolating functions are used.
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precedent and following discretisation points, based on the Taylor expansion of the 

differential operator.

To illustrate the concept, consider the Helmholtz equation 1.2 in one dimension

DxxP{x) + k'^p{x) =  0, (2.3)

where D^x is the second order derivative operator. The central difference approxi

m ation of equation 2.3 at a general discretisation point x  then yields

p ( x  +  / . ) - 2 p M + p ( x - A )  ^  ^  ^

where h is the nodal spacing.

Applying the approximation 2.4 for each discretisation point and its neighbours, an 

overlapping stencil then results. The stiffness (K) and damping (C) matrices in the 

system of equations 2.2 are banded, with a band size determined by the number 

of neighbouring nodes in the stencil. The mass m atrix (M) is diagonal. The final 

solution for the unknown nodal values may then be obtained from efficient sparse 

m atrix solvers.

The approximation 2.4 may be readily extended to include also the time variable 

for the solution of the general wave equation [8].

(2.5)

where c is the sound speed.

This form of the finite difference method, known as the finite difference time-domain 

(FDTD), has been applied to radiation and scattering acoustics problems [9-11], 

elastic waves and seismic analysis [12,13] and electromagnetic waves [14]. In this 

methods, time could be discretized by using a central difference expansion of the 

form
d ‘̂ p{x, t) _  p{x, t + A )  -  2p{x, t) + p{x, t -  A )

dt^ ~  A2 ’ ^
where A  is the time step. The finite difference approximation of equation 2.5 then
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yields,

p{x + h,t) -  2p{x,t) + p{x — h,t)  1 / p{x, t  + A)  -  2p{x,t) + p{x, t  — A)
h? \

(2.7)

Unfortunately, equation 2.7 will not be stable so McCormack/Lax predictor/corrector 

forward difference methods are generally used. Other alternatives formulations in

clude, for example, Chebyshev polynomials [15] and Runge-Kutta discretisation 

techniques [16].

The concepts outlined above may be summarised as follows:

• discretisation of the domain into a finite number of points uniformly dis

tributed within the domain.

• approximation of the derivatives of the governing equation by interpolating 

polynomials, formulated in terms of surrounding points in the grid.

• solution of a system of equations of the form A x =  b, where x is the approx

imated field variable at each discretisation point, and A is a banded matrix

formed by the stiffness, mass and damping system matrices.

2.2.1.1 C onsistency conditions and approxim ation errors

The consistency of a finite difference approximation refers to the convergence of the 

approximated algebraic equation to the desired differential equation as the maximum 

nodal spacing /i —> 0. Whilst in general this condition is satisfied, it is possible to find 

approximations that in the limit /i —>■ 0, may not converge to the desired differential 

equation (see, e.g. [17, section 2.8]).

Note that, for the solution of the general (time domain) wave equation using the 

FDTD method, the consistency conditions are significantly more stringent. The 

consistency conditions require not only convergence as h varies at a fixed time, but 

also, that the accumulated error remains bounded for successive steps with h fixed. 

When this situation is present, the solution is said to be stable.

13



The accumulated local errors can produce diffusion effects in the numerical solution, 

i.e. waves of different frequencies will propagate at different speeds through the 

grid [18]. Thus, in order for the finite difference solution to converge to the true 

solution it is essential to determine the nodal distance and the time step accordingly. 

The nodal distance is directly related to the truncation error of the finite difference 

operator. Popular low-order schemes that use five-point stencils (equation 2.4), have 

a local truncation error of 0{h?) for second derivatives [17]. In this case, the general 

‘rule of thumb’ is to use 10 cells per wavelength (A =  c / / ,  where c is the sound speed 

and /  is the frequency). That is, each cell should be A/10 at the highest frequency 

of interest.

A necessary condition for a stable solution of the wave equation is given by [19]

ck < h, (2.8)

where k is the time discretisation step. To understand equation 2.8, called the 

Courant-Friedrichs-Lewy (CFL) condition, consider a plane wave propagating trough 

a finite difference grid. In one time step any point on this wave must not pass through 

more than one cell, because during one time step FDTD can propagate the wave 

only from one cell to its nearest neighbours.

From the discussion above it is clear that, in order to reduce the dispersion error 

to an acceptable level, the size of the model as the frequency increases becomes 

prohibitively large. To circumvent this problem, several high-order finite difference 

methods have been proposed in the literature.

Min et al. [20] derived a high-accuracy difference scheme for elastic wave modelling 

in the frequency domain. Despite the improved accuracy in comparison to the 

standard FD approach, the method is based on a 25-point stencil which severely 

affects the sparsity of the overall assembled matrix. Singer and Turkel [21], proposed 

a five-point stencil central difference operator formulation with fourth-order accuracy 

based on the Fade approximation. The results obtained show that, even when 

the local error is reduced the convergence of higher-order FD approaches is not
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necessarily improved for higher frequencies.

Note also tha t the FD approach based on relationship 2.4, is restricted to a unique 

nodal distance h. Thus, in the standard formulation there is an additional error 

associated with the approximation of the problem geometry (which clearly depends 

on the shape of the domain). It is possible to obtain a five-point stencil approxima

tion for more general types of variable spacing [17]. However, this approximation is 

in general accurate only to 0{h).

Holland [22], generalised the FDTD algorithm (with 0{h'^) accuracy) to general non- 

orthogonal grids for modelling electromagnetic waves. Lee et al. [23] reformulated 

Holland’s method using a series of components of the magnetic field. More recently, 

Botteldooren [9, 24] proposed an alternative FDTD scheme for acoustic simulation 

in non uniform (quasi-Cartesian) grids. The formulation is based on non-uniform 

and non-overlapping finite volumes, usually known as Voronoi cells. Though the 

accuracy of the standard FDTD method is improved, the overall computational 

cost may increase for some applications.

It is worth mentioning th a t new formulations of high-order FDTD in non-uniform 

grids and closely related finite-volume (FV) time-domain simulation (see, e.g. ref

erences [16,25]) tend to become more similar to recently developed finite element 

time-domain approaches. The distinction between finite differences and finite ele

ments becomes rather blurred at this point.

2.2.2 Finite element method (FEM)

The finite element method is the most commonly used numerical modelling tech

nique for solving engineering problems. Due to its adaptability and straightforward 

implementation, the use of finite elements has been extended into many areas of the 

engineering process.

The method is based on the following concepts:

•  transformation of the original problem into an equivalent integral formulation
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(weighted residual or variational).

division of the continuum  into sm aller non-overlapping sub dom ains called 

elements.

•  approxim ation of the field variable distributions  and  the geom etry of the  con

tinuum  dom ain, in term s of a set of shape functions, which are locally defined 

in each element.

•  solution of a system  of equations of the  form A x  =  b , where x  is the approx

im ated  field variable a t each discretisation point, and A  is a sparse m atrix .

An overview of the relevant aspects of the finite elem ent m ethod is given below. A 

detailed discussion of the fundam ental concepts and properties of the m ethod may 

be found in num erous publications, see e.g. references [5,26,27].

Weighted residual approach

T he m ethod of weighted residuals provides a conceptual foundation upon to  which 

construct the  G alerkin finite elem ent m ethod. In th is approach, the field variable is 

approxim ated in term s of a set of known linearly independent functions, called basis 

or shape functions.

For a given field variable, u  say, a trial function  u  is defined as

where the  0 i(x ) are the shape functions, Ui are constants to  be determ ined and <?!>o(x) 

is a function th a t satisfies the boundary  conditions im posed on u (x ).

Since the approxim ation is done considering a finite num ber of term s, u  is generally 

different from  the solution u. Thus, substitu tion  of the  approxim ated solution into 

the  differential governing equation will result in a non-zero residual.

T he objective of the m ethod of weighted residuals is to  select the constants Uj so as to  

minim ise the  residual term  in some sense. This m ay be achieved by m ultiplying the 

residual te rm  by a set of N  weighting functions and setting  to  zero the in tegrand

N

(2.9)
i=l
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of the resulting product. These two procedures force the residual to vanish in a 

weighted-average sense.

The Galerkin weighted residual method is obtained by selecting the shape functions 

as the weighting functions. This method leads for several (but not all) continuum 

problems, to a symmetric matrix equation in the unknown shape function contribu

tions.

The Galerkin finite element method may be regarded as a variant of the Galerkin 

weighted residual method, in that the concept is applied using shape functions that 

are only locally defined. The continuum domain is discretized into smaller sub 

domains (‘finite elements’), and a trial function (equation 2.9 with (po{x) =  0) is 

used to approximate the total number of degrees of freedom at each nodal point in 

the element.

Variational approach

Many problems possess equivalent variational formulations stating that the solution 

to the differential governing equation together with the given boundary conditions 

is a stationary (or “equilibrium”) of some functional. The functional is a scalar 

quantity that results from integrating a function over the continuum domain and 

integrating another function over the boundary surface.

In the Rayleigh-Ritz method, the solution for each field variable is sought as an 

expansion in terms of some prescribed trial or shape functions. The contributions 

of the shape functions to the solution expansion are determined such that the func

tional of the considered continuum problem is stationary. That is, the functional 

value remains unaltered for each infinitesimal variation on one of the shape function 

contributions.

An important property of the functional variation is that it yields always a symmetric 

system equation in the unknown shape function. The finite element method may 

be considered as a special case of the Rayleigh-Ritz method in that the solution 

for each field variable is sought in terms of shape functions, that are locally defined 

within each element.
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2.2 .2 .1  Im p lem en tation

A necessary condition for the implementation of the finite element method is tha t 

global conformity must be satisfied, either directly with the shape functions or in

directly, via a conforming auxiliary scheme.

Conforming elements satisfy two conditions: completeness and compatibility. W hether 

a finite element model is based upon a weighed residual or a variational formula

tion, the nodal degrees of freedom result always from a set of equations, in which 

the coefficients are defined in integral forms. To satisfy the completeness condition, 

all terms in the integration expression evaluated using the trial functions (equation 

2.9), must reach a constant value as the size of the element tends to zero.

The compatibility condition is satisfied if the terms in the integral expression are all 

finite. This condition is always achieved, if the derivatives of the variable expansion 

are continuous along inter-element boundaries (see e.g. [5, chapter II]).

Though, in principle, any conforming function may be used as a shape function, the 

construction of the finite element model becomes particularly simple and straightfor

ward if the element shape functions are obtained from a set of polynomial functions. 

For the solution of problems governed by the Helmholtz equation (either acoustic or 

elastic), the integral expression for the variable expansion involves only first order 

derivatives (see Appendices A and B). Thus, conformity is satisfied with linear poly

nomial shape functions which ensure C°-continuity along inter-element boundaries. 

Each shape function is defined, such tha t it has a value of unity at the actual node 

and tha t it is zero a t all the other element nodes.

The most commonly used elements in acoustic and elastic finite element modelling 

are linear quadrilateral and linear triangular elements for two-dimensional problems 

and linear hexahedral and linear tetrahedral elements for three dimensional prob

lems. Since the continuum domain will have in general a complex shape, a discreti

sation of the domain is often constructed using the concept of parametric mapping, 

which enables the use of elements with more complex, distorted geometries. An
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illustration  of th is concept is given in A ppendix A.

The resulting system  of equations 2.2 has the following properties:

•  The stiffness (K ), mass (M ) and dam ping (C ) m atrices are very sparse, w ith 

only few non-zero entries per row. Furtherm ore, for acoustic problem s, which 

can be form ulated using a variational functional approach, K , M  and C  are

also sym m etric. The final solution for the unknown nodal values may then  be

obtained from efficient m atrix  solvers.

2 .2 .2 .2  C o n v e rg e n c e  o f  th e  G a le rk in  F E  fo r th e  H e lm h o ltz  e q u a t io n  -

a l te r n a t iv e  a p p ro a c h e s

In principle, for a Galerkin finite elem ent m ethod th a t consists of conforming ele

ments, the convergence of the numerical solution tow ard the exact solution is ensured 

by reducing the nodal spacing h (mesh refining), a n d /o r  increasing the  order p  of 

the in terpolating  polynom ial. Using a local Taylor expansion of the unknown field 

variable, the error may be expressed simply as [5].

For the solution of problem s governed by the Helm holtz equation, however, the sit

uation is different. T hrough several studies [28-30], it has been shown th a t the 

accuracy of the  solution obtained w ith the s tandard  G alerkin finite elem ent ap

proach, deteriorates rapidly w ith increasing wave num ber k, no tw ithstand ing  the 

conform ity condition of the finite element model.

T he estim ation of the error is generally achieved by following two m ain procedures 

[31], The first is to  estim ate the error before the  actual solution is com puted, known 

as a priory  error estim ates. This type of estim ates are not com putable because 

they are given in term s of the unknown exact solution. The second broad class of 

error estim ates is a posteriori, which m eans the error estim ate is obtained after the 

solution is known. These type of estim ates are generally used for adap tiv ity  and 

control of solution error.

Ihlenburg and Babuska [32,33] proved th a t an a priori  accurate error estim ator is
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given by

where the constants C\  and C2 are independent oi  k , h  and p.

The first term in the right hand side of equation 2.10 represents the interpolation  

error. The second one is the difference between the interpolant and the finite element 

wave, caused by the indefiniteness of the variational form. N ote that this term, 

usually referred to as the pollution effect, goes to  infinity with increasing wave 

number affecting the stability  of the FEM solution.

A general used ‘rule of thum b’, is to refine the mesh so as to keep n =  X/h  =  

const,  where A =  27r//c is the wavelength and n  is called the resolution of the wave. 

However, from relationship 2.10, it is seen that if only linear elem ents {p =  1) are 

considered (called the h-version  of the FEM ), a system atic refinement of the mesh 

does not necessarily guarantee convergence to the desired solution as k grows [34]. 

In this case, convergence is ensured independently of k, if hk^ is constrained [29].

A posteriori error estim ators proposed for wave problems fall into three main types: 

residual [28], based on sm oothing [35] (known as the Super Convergent  Patch Re

covery)  and based on local com putations of admissible fields  [36].

It has been shown [29,37] that the Super Convergent Patch Recovery and the local 

based com puted error estim ators, can estim ate the approxim ation error but no the 

pollution term. More recently, Irimie and Bouillard [38] proposed an alternative  

residual a posteriori error estim ator procedure. Though the error is more realistically  

estim ated, the quality of the estim ator decreases for increasing wave number.

The effect of the pollution error in the finite elem ent solution is a “phase lag” . That 

is, numerical waves propagate w ith speed =  w/A:^, where is different from 

the speed of sound c. To circumvent this problem, several non-standard FEM  have 

been proposed in the literature. In these m ethods, stabilisation is either attem pted  

directly by m odification of the differential operator or indirectly, via improvem ent of 

approxim ability by the use of solutions of the governing equation as trial functions. 

Some of the m ost relevant techniques based on direct stabilisation are reviewed
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below. Schemes formulated by the use of solutions of the governing equation, which 

fall into the category of Trefftz methods, are discussed in section 2.4.

Galerkin  least-squares  (G LS)

This method appends residuals of the Euler-Lagrange equations in a least-squares 

form to the Galerkin variational form using a local mesh parameter. In [39], an 

estimation of the local mesh parameter that minimises the phase lag, k'  ̂— k, for the 

Helmholtz equation in one dimension was determined. For two and three dimensions, 

however, the determination of the local mesh parameter is cumbersome [40].

An alternative to the GLS is the Galerkin gradient least-squares (GGLS) [41], in 

which the least-squares terms contain residuals of the gradient of the governing 

equation. A recent comparison between these methods and the standard Galerkin 

formulation for elastic waves, shows that only the GGLS gives acceptable accuracy 

in phase and magnitude for longitudinal and transverse waves [42].

Generalised Finite E lem en t M ethod  (G F E M )

Using the phase lag difference k^ — k, Babuska et al. [43], derived a stabilised finite 

element method (SFEM) which has no pollution for one-dimensional problems. They 

also demonstrated that there is no numerical method that can eliminate the entire 

phase error in two dimensions, independently of the direction of the wave.

Based on this result, they proposed a generalised finite element method (GFEM), 

which defines a matrix A and a linear mapping C which maps the prescribed bound

ary values at the external surface of the domain onto the vector of the right hand 

side b. The solution of the linear system

A u =  b (2.11)

is then identified with a finite element function by approximating the unknown field 

variable u using a standard basis function. The matrix A is then individually defined 

for interior, edge and corner points.

The resulting method is in essence a finite difference approach, where each point in 

the grid is associated with one equation. It was shown for two-dimensional acoustic
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problem s, th a t the G FEM  has m inim al pollution error, equivalently m inim al phase 

error. It is not clear, however, w hether th is approach (being in essence a finite 

difference scheme) can be im plem ented in unstructured  meshes and extended to 

three dim ensional problems.

Subgrid Finite Element Method  (SFEM)

In this approach, the  solution is decomposed into a p a rt which is resolvable by the 

grid and a p a rt which is unresolvable, and is solved for analytically. This m ethod 

was first proposed by O berai and Pinsky [44] based on the m ultiscale variational 

form ulation of Hughes [45]. For problem s in two dim ensions, the SFEM  shows less 

pollu tion than  the Galerkin solution but is worse than  the  GLS solution [44]. The 

accuracy of the m ethod is dependent on the direction of propagation of the wave. 

More recently, O berai and Pinsky [46] derived a residual-based approach th a t takes 

into account not only the residual on element interiors bu t on inter-elem ent bound

aries as well. The m ethod is form ulated following a variational m ultiscale scheme. 

However, the precise values of the param eters in the variational form ulation, are 

determ ined from a discrete dispersion analysis. The proposed approach displays 

m inim al phase error in structu red  and unstructured  meshes.

Spectral Element Method

T he spectral elem ent m ethod is a finite elem ent m ethod, in which high order poly

nom ial functions are used as parent element shape functions. In the original for

m ulation introduced by P a te ra  [47], the nodal points in each elem ent are collocated 

using a cosine function, giving a more concentrated nodal density a t the corners of 

the elem ent. Once the nodal points are determ ined, the in terpolation  is perform ed 

using Lagrangian polynomials.

The application of the spectral m ethod in acoustic and elastic waves is m ainly due to 

Seriani et al. [48,49]. They proposed a collocation approach based on the Chebyshev- 

G auss-L obatto  quadratu re rule, and established la ter a som ew hat subjective m ea

sure of accuracy for the m ethod [50]. Zam pieri and Tagliani [51] and K om atitsch 

et al. [52], proposed the use of different location of points and quad ra tu re  rules for
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modelling elastic wave problems. By comparing these approaches, the accuracy was 

shown to depend strongly on the choice of the collocation points.

More recently, Dauksher and Emery [53,54] investigated the dispersion error of the 

m ethod for the solution of the time-dependent acoustic and elastic waves, using the 

phase and group velocities. In comparison to the Galerkin low-order isoparametric 

finite element method, the spectral element method shows a better convergence and 

accuracy.

W aveguide M ethod

The waveguide method, also known as the spectral finite element method [55] (but 

unrelated to the method outlined above), is applicable to continuum problems gov

erned by differential equations in one principal independent spatial variable. Such 

problems may include railway car structure vibrations and pipe vibration, which 

can be discretized using one-dimensional elements.

Since the geometrical discontinuities and external excitations occur only at the in

terfaces between the elements, the field variables within each element are governed 

by homogeneous ordinary differential equations. The exact solutions may then be 

expressed in terms of a finite number of frequency dependent local solutions of these 

equations. The combination of these solutions constitute the base functions.

The waveguide method is a merger of the dynamic stiffness m ethod [56], since a 

dynamic stiffness m atrix can be constructed from the base functions which exactly 

relates the nodal field variables of the element to the nodal excitations, applied at the 

endpoints of the elements. Finnveden [57] and Bilodeau and Doyle [58] applied the 

m ethod to cylindrical pipes. The cross sectional mode shapes were described using 

standard FE (high order polynomials) shape functions, whilst the propagation in the 

axial direction was expressed as a combination of exponential terms. A significant 

reduction in the com putational cost in comparison to standard FE approaches was 

obtained following this procedure.

The waveguide method may be extended to  general two and three dimensional prob

lems, provided th a t the properties of the problem (i.e., material and geometry prop-
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erties) are piecewise constant in one spatial variable and invariant in the other spatial 

variables [59,60].

2.2.2.3 Iterative solution techniques

In order to keep a reasonable accuracy in the numerical solution, high-frequency 

problems governed by the Helmholtz equation require a combination of fine meshes 

and high-order polynomial functions. For such problems, solving equation 2.2 by 

a direct method entails memory and CPU requirements th a t have the capacity to 

overwhelm even the largest resources th a t are currently available.

For this reason several iterative algorithms such as Krylov sub-spaces [61-63], multi

grid [64-66] and domain decomposition (DD) methods [67-69] have been proposed 

for the solution of the m atrix problem 2.2. The optimal application of these tech

niques relies on parallel computing, and distributed memory (a comprehensive re

view is given in reference [70]).

Each of these three classes of methods has its own advantages and disadvantages. 

One attractive feature of, for example, multigrid methods is its mesh-independent 

convergence and optimal scalability [64]. However, full multigrid efficiency can only 

be achieved for problems associated with certain types of partial differential equa

tions, defined on regularly structured domains. Thus, they have a limited applica

bility.

On the other hand, Krylov subspace methods may not be robust. Thus, the major 

difficulty in their implementation resides in the indefiniteness of the m atrix equation 

system (equation 2.2) at large wave numbers. In addition, their convergence depends 

largely on the problem size, in contrast to multigrid schemes. It is well known, that 

the robustness and efficiency of Krylov sub-spaces can be improved dram atically 

by using a suitable preconditioner [71-73]. Hence, multigrid and Krylov subspace 

methods seem to be complementary in which one m ethod’s weakness is a strength 

of the other. Several preconditioning strategies combining multigrid and Krylov 

sub-spaces were recently proposed by Saad and Zhang [63]. Results show th a t a
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robust and efficient iterative solver may result, though further investigation aim to 

thoroughly assess this methods is needed.

Domain Decomposition methods (DD) reduce the global problem to the iterative 

resolution of smaller non-overlapping subdomains allowing the direct solution of 

a smaller problem in each subdomain [74]. This idea leads to an iterative method 

which converges to the solution of the problem if the solutions in the subdomains are 

suitably related by means of the boundary conditions at the inter-element interface 

(67|.

Though in most cases, the subdomains are solved using a finite element m ethod [69], 

a DD scheme based on a finite difference discretisation of the subdomains have been 

also shown to give good results [75]. Farhat et al. [68] proposed a novel regularised 

DD approach in which an auxiliary second-level problem is solved at each iteration, 

obtained by projecting the inter-element interface onto a suitable coarse space. They 

successfully applied the method to the solution of an acoustic scattering problem 

with more than 1,000,000 discretisation nodes.

2.2.3 Sum m ary o f properties for the traditional FD  and 

Galerkin FEM

The resulting system of equations obtained from the conventional finite difference 

m ethod and the finite element method have similar properties. However, since the 

FEM may be readily implemented in non-uniform domain discretisations, it has an 

im portant practical advantage over finite difference approaches.

A summary of the properties for the traditional FD and the Galerkin FE is given 

in table 2.1.
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mesh non-uniform numerical equation

type meshes integration system

FD overlapping difficult no banded

FEM non-overlapping easy yes sparse

Table 2.1: P roperties of the trad itional FD and the G alerkin FE  m ethods.

2.3 Boundary integral m ethods

Owing to the significant efforts in the last three decades, the boundary  element 

m ethod has become one of the m ajor m ethods in numerical analysis for engineering 

problem s (for a review, see e.g. [76]).

The BEM is based on the integral form ulation of the considered problem , which may 

be expressed as a direct or indirect equation [77]. In the more trad itional direct ap

proach, the partia l differential equation is transform ed by m eans of G reen’s theorem  

(or a weighted residual form ulation [78]) into a  Helm holtz integral formula, in which 

the unknowns are the prim itive variables on the boundary (note the sim ilarities 

w ith the  direct Trefftz approach of section 2.4.3). For exterior acoustic problems, 

the Helm holtz integral formula over an acoustic dom ain is expressed as [79]

e p(x) =  /  
J va OTlq Ortq

d r ^ ( x , ) ,  (2.12)

where x  denotes the field point and x^ denotes the source point on the surface of 

the dom ain, F^. The function G( x , x g)  is the G reen’s kernel function

i k j x - x g l

G (x ,x ,)  =  -̂ r, (2.13)
| x - x j

for three-dim ensional problems, and

G ( x , x g )  = -  Xql (2.14)

for two dim ensional problems, where k  is the wave num ber, l =  y / ^ ,  and is 

the zero-order Hankel function of the second kind. In equation 2.12, the coefficient

26



e has the value 0 for x  inside surface F^, the value 47t for x  outside surface and 

the value 47t minus the solid angle of point x  for x  on the boundary surface F^. 

The direct boundary integral formulation for interior acoustic problems is similar 

to the exterior formulation (equation 2.12). Since the direct boundary integral 

formulation requires th a t the boundary surface F^ is closed, it can only represent 

either an interior or an exterior pressure or displacement field, but not a combined 

interior/exterior field. According to the type of boundary conditions of the original 

boundary problem, equation 2.12 results in an integral equation of the first, second 

or mixed kind.

A well-known shortcoming of the Helmholtz integral equation for exterior problems, 

is th a t it does not have a unique solution at certain characteristic eigenfrequencies 

associated with the corresponding interior Dirichlet problem [80]. Beginning in the 

1960s, many researches tried to find an integral equation approach for the solution 

of exterior acoustic problems which holds for all frequencies [81]. Schenk [82] (see 

also references [83,84]) proposed additional constraints of the Helmholtz integral 

representation inside the boundary. He suggested a method of overdetermining the 

system with additional algebraic equations (points located inside the domain) by a 

combined Helmholtz integral representation (CHIEF).

Another formulation to overcome the non-uniqueness problem was proposed by Bur

ton and Miller [85]. This approach combines the surface Helmholtz integral equation 

and its associated normal derivative equation, leading to a hypersingular integral 

formulation. In practise, the hypersingular integral is much more difficult to solve 

than th a t of the CHIEF method but the scheme is more robust at higher frequencies. 

Several authors [86-88], transform the hypersingular integral to reduce the singu

larity order of kernel and improve the scheme of numerical com putation to reduce 

the execution time.

Brakhage and Miller expressed the solution as a combination of single and double 

layer integral solutions of the Helmholtz equation, valid for all wave numbers (see 

e.g. reference [89] and the references therein). This formulation, known as the indi-
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rect integral equation, approxim ates the governing equation in term s of continuous 

distribution of singular solutions over the boundaries of the problem w ith unknown 

fictitious surface densities. T he difference in the pressure and the difference in the 

normal gradient of the pressure across the boundary constitu te the primary vari

ables. Thus, the acoustic or elastic m odel can contain openings and appendages. 

For an acoustic dom ain in which all or part of its boundary surface is 

unbounded, the indirect integral equation is given by [90]

is the difference in the acoustic pressure across the surface of the boundary (double 

layer). In equations 2.16 and 2.17, the subscript “1” is associated with the direction  

opposite to the unit normal on the surface of the boundary , and “2” is associated  

w ith the direction of the unit normal. The formulation of the indirect boundary 

for elastic wave analysis m ay be obtained following a sim ilar procedure (see e.g. 

references [77,91]).

A m ajor difficulty encountered in the indirect integral equation form ulation, is the 

necessity of defining a different form ulation for each type of boundary value problem, 

in order to obtain a uniquely solvable integral equation, which can be used as a basis 

for a robust numerical schem e [89].

Based on the direct or indirect integral form ulation, the boundary elem ent solution  

is obtained following a two-step procedure:

•  solve the boundary integral equation to  obtain the distributions of the bound

ary values.

p (x ) =  f  f  0 ( x .  x „ ) a ( x „ )  — -—^ 5 a ( x ,) ^  o?Fyi(x,), x  G 0 ^ , (2-15)

where
_  ^ p ( x g i )  _  d p j x g , )  

is the difference in the normal gradient of the pressure (single layer), and

(2.16)

Sa{ x)  =  (p (x ,J  - p ( x g j ) . (2.17)

28



•  obtain the field variable at any point in the domain by integrating the product 

of the boundary values and the fundamental solution over the boundary.

2.3.1 D irect boundary elem ent m ethod

In this approach, the acoustic pressure and the acoustic velocity constitute the 

prim ary variables. The determ ination of boundary variable values is based on the 

same modelling concepts as the finite element method. T hat is, the boundary surface 

is discretized in a finite number of non-overlapping subsurfaces, called ‘boundary 

elements’, and some nodes are defined a t particular locations in each element.

The geometry of each element is then approximated by a piecewise polynomial 

shape function, conveniently mapped onto a local coordinate system. By using 

isoparametric elements, the boundary variables are represented by the same set of 

shape functions th a t are used to represent the geometry (equation 2.9).

The problem of determ ining the boundary variable distributions is thus turned into 

a discrete j)roblem of finding the shape function contributions, which represent the 

pressure values p and its normal derivative dpfdn.  This may be achieved using a 

weighted residual or a variational formulation, which involves the (sometimes com

putationally expensive) numerical evaluation of double surface integrals. This draw

back is generally circumvented by using a collocation procedure. In this approach, 

the points p are located at each node location and equation 2.12 is evaluated over 

the entire boundary on an element-by-element basis (this procedure is exhaustively 

described in the literature, see e.g. references [80,92,93]). Each collocation point p 

and boundary element combination produces two element coefficient vectors. Upon 

evaluation over the entire boundary we obtain a m atrix equation of the form

A p =  jpo;Bvn, (2.18)

where, for n„ boundary discretisation points, the Ua x Ua matrices A  and B, relate 

the nodal pressure values to the nodal normal velocity values. Equation 2.18 may 

be rearranged into the known form A x =  b by grouping all the boundary unknowns
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on the left-hand side. Once this equation is solved, the Helmholtz integral equation 

can be integrated to obtain the sound pressure at any point in the acoustic domain.

2.3.2 Indirect boundary elem ent m ethod

In exactly the same 'wa.y as in the direct boundary element method, the solutions for

in each element surface in terms of a prescribed set of shape functions. In this case, 

these functions represent the single layer potentials cTj and double layer potentials 

5ai at the discrete node locations on the boundary surface.

The use of a collocational procedure for determining the unknown nodal degrees of 

freedom becomes more difficult in this case. Thus, the single and double potentials 

are usually obtained from a variational formulation of equation 2.15, which requires 

the solution of double surface integrals [94,95]. The stationary condition on the 

associated functional, yields a symmetric matrix equation for the unknown values

tions, respectively, whilst imposed impedance conditions appear in matrices E and 

F .

At the part of the boundary surface on which a prescribed pressure is imposed, the 

double layer potential is zero. At the part of the boundary on which a prescribed 

velocity is imposed, the single layer potential is zero. At the part of the boundary 

surface on which a prescribed impedance is imposed, a relationship exists between 

the single and the double layer potential [96].

2.3.3 Error and convergence

In the same way as the finite element method (see Section 2.2.2.1), the boundary 

element discretisation of the boundary surface is based on the parametric mapping of

the two boundary variables (single and double layer potentials) are approximated

(2.19)

where the vectors and are the imposed pressure and imposed velocity condi-
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a geom etrically sim ple parent element discretisation, in which the boundary  variables 

are expressed in term s of polynom ial shape functions and of which the convergence 

tow ard the  exact solution is, in principle, ensured.

T he accuracy of the  BEM solution improves as the num ber of elements used to 

d iscretise the boundary  surface a n d /o r the num ber of boundary  nodes inside each 

elem ent increases. However, the im provem ent in accuracy and efficiency th a t can 

be obtained  by following these procedures, entails a greater cost of com putational 

tim e. Lin [89] showed th a t, when the num ber of discretisation points is doubled, the 

com putational tim e increases by a factor of about four.

W hen the  close form solution of the problem  is available, a straightforw ard esti

m ation  of the BEM  solution error can be readily obtained. Tadeu et al. [97,98], 

analysed the perform ance of constant, linear and quadratic  in terpolating  functions 

in a particu la r acoustic scattering  problem. They showed th a t quadratic  elements 

perform  b e tte r as the  frequency increases.

In most applications, however, the analytical solution is not known a priori. Thus, 

an accurate  estim ation  of the BEM error is essential in order to  im plem ent efficient 

adap tive refining techniques. For boundary elem ent m ethods based on a G alerkin 

procedure, the error e can be bounded by the residual of the  boundary integral 

equation  R  as [99]

C i l | f i | | < l | e | | < C 2 | | f i | | ,  (2.20)

where the  constants Ci, C2 >  0 are independent of the boundary  field value a t the 

d iscretisation  points, and || • || denotes the norm  dependent on the  subspace of 

the approxim ate solution. For the direct BEM based on a collocation procedure, 

however, equation 2.20 is not proved rigorously bu t only confirmed by numerical 

exam ples. To overcome th is difficulty, several alternative error estim ation procedures 

have been proposed (a system atic review of these approaches is given by K ita  and 

K am iya [100,101]).

In practise, the estim ation  of the error is alm ost as com putationally  expensive as the 

initial BEM  analysis. Charafi et al. [102] used a local reanalysis to  obtain  a faster
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estim ation of the error. More recently, Rodriguez and Power [103] proposed the 

use of a local error analysis based on a piecewise polynom ial collocation approach, 

m aking the  m ethod consistent w ith the collocation BEM.

Based on these error estim ators, the error may then be reduced by m eans of adaptive 

techniques. Three refinement strategies have gained acceptance, namely, the h- 

adaptive strategy  (e.g. [103,104]), the p-adaptive strategy  (e.g. [105]) and the r- 

adaptive strategy  [101].

Under the /i-adaptive scheme, the mesh is refined by subdividing all or some of its 

elem ents (see section 2.2.2.2). The p-adaptive process increases the order of the 

in terpolation functions, whilst the r-adaptive m ethod keeps the num ber and type of 

elem ents fixed while repositioning their nodes. Feistauer et al. [99], dem onstrated  

th a t the com bined /i-p-adaptive Galerkin BEM converges exponentially, in contrast 

to  the /i-adaptive G alerkin which converges algebraically.

Once the boundary variables have been com puted, the field variable may be esti

m ated  a t any point in the dom ain by in tegrating the p roduct of the boundary values 

and the fundam ental solutions over the boundary (the second step  in the BEM pro

cedure). This process involves the use of quadratu re  in tegration formulae, giving 

rise to  approxim ation errors. Furtherm ore, as the field point is moved close to  the 

surface boundary, the error is significantly increased due to  the singularity  of the 

fundam ental solution. To circumvent this problem , Tornioka et al. [106], proposed 

the use of a  series expansion of the Helm holtz equation, in term s of Hankel functions 

of the zero- and the first-order. This technique requires, however, th a t the argum ent 

of the fundam ental solution be sm aller than  unity.

2.3.4 Iterative solution techniques

As discussed in the precedent sections, the use of integral equations gives rise to 

system s of equations of the form

A x  =  b , (2.21)
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where A is a dense m atrix of dimension {N x  N) ,  N  being the number of surface 

points. Thus, notwithstanding the convergence of the adaptive schemes discussed 

above, the storage requirements of m atrix A  rapidly overwhelm practical com puta

tional storage capabilities as the size of the problem increases.

For a system of linear equations of m oderate dimension, the solution is generally 

obtained using direct solvers which, despite requiring 0 { N^ )  operations, give an 

exact solution except for round-off errors [107]. When the number of equations 

becomes large, however, the use of iterative methods, which does not require storage 

of m atrix A,  seems unavoidable.

For the direct BEM based on collocation, the m atrix A  is additionally non-symmetric. 

The alternative and mathematically attractive Galerkin and variational approaches 

produce symmetric systems of equations, but are much more difficult to implement 

(see e.g. reference [108]). For the indirect BEM, on the other hand, the usual 

procedure is based on a variational formulation giving always a symmetric system. 

The use of iterative solution techniques is intended to overcome not only the storage 

problems, but also to give an approximate solution of equation 2.21 in a reasonably 

small number of iterations. In this context, the difference in the performance of 

iterative solutions for symmetric and asymmetric systems of equations is im portant 

|109],

The iterative methods currently available can be characterised into two groups, 

namely, stationary and non-stationary methods. The stationary iterative m eth

ods refer to classical iterative methods such as Jacobi, Gauss-Seidel and SOR. 

The non-stationary methods can be framed as Krylov subspace methods. They 

include the conjugate gradient square (CGS) [110], generalised minimal residual 

(GMRES) [111], bi-conjugate gradient (Bi-CG) and bi-conjugate gradient stabilised 

(Bi-CGStab) [112],

The convergence rate of these techniques varies for different type of applications. 

For a particular type of problem, an iterative solver may or may not converge, or 

converge more slowly than direct solvers. This situation can be improved greatly
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by the use of a preconditioner [113,114]. As long as a competitive iterative solver 

and a suitable preconditioning scheme can be identified for a particular problem, 

high efficiencies in solving the linear system of equations can be expected over di

rect solvers [115-117]. This, however, may be not a simple task and will depend 

ultim ately on the structure of the system m atrix A for a given problem.

2.4 Trefftz-based m ethods

2.4.1 N ote  on Trefftz-type approaches

It is not easy to establish a clear division between the TrefFtz-based methods and 

other numerical modelling procedures. Historically, integral equations go back at 

least to the work of Green, Poincare and Fredholm (see e.g. references [118,119]). 

The integral approach proposed by Trefftz (based on Green’s second identity) is gen

erally regarded as the first boundary discretisation method. In addition, the method 

was originally proposed using non-singular solutions of the governing equation. 

Thus, boundary methods in general, are sometimes referred to as “Trefftz-type m eth

ods” [5]. However, an approach (not necessarily a boundary solution type) is usually 

classified as a Trefftz method, when the trial functions are non-singular in the prob

lem domain. T hat is the criterion adopted in the present analysis.

Modelling methods based on boundary solutions which are singular in the physical 

domain as, e.g., the Boundary Integral Method (BIM) and the Boundary Element 

Method (BEM) are reviewed in section 2.3.

2.4.2 B rief historical background

In 1926, Trefftz [120] proposed an alternative approach to the Rayleigh-Ritz method 

by using non-singular solutions of the homogeneous equation as the weighting func

tions in a boundary-type solution scheme.

The ideas suggested by Trefftz derived, many years later, in two different boundary
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m ethod form ulations according to  the in terpolation procedure of th e  field variable. 

Namely,

(i) To use an approxim ation scheme based on a com plete (analytically  derived) 

set of non-singular solutions of the homogeneous governing equation

(ii) To use singular solutions as the tria l functions in a boundary  in tegral formu

lation, re lating the unknown param eters w ith some physical properties of the 

problem a t the boundary.

B oundary-type m ethods based on the boundary integral equation are generally for

m ulated locating the  singular sources in the physical boundary  of the  problem  (e.g. 

various versions of the singular BEM [79]). An alternative approach known as the 

M ethod of Fundam ental Solutions [121], is to  move the sources away from the  phys

ical domain, thus obtaining a regular boundary integral scheme [122].

The im plem entation of m odern Trefftz-type m ethods based on com plete solutions 

was in itia ted  only in the late 1970s. An im portan t contribu tion  to  th is end was 

m ade by H errera et al. [123,124], who perform ed a system atic study  on the different 

properties of the  com plete sets of homogeneous solutions, called T(Trefftz)-com plete 

(a brief description of the functions properties is given in [125] and in the  references 

therein).

Trefftz boundary m ethods based on T-com plete functions were subsequently formu

lated as direct and indirect [126]. The indirect Trefftz m ethod (thought to  be the 

original one presented by Trefftz) has been extensively studied and applied in m any 

fields [127]. The direct m ethod, proposed la ter by Jin  et al. [128-130], has received 

in com parison little  a tten tion .

On the other hand, several variational form ulations of Trefftz-type schemes as a

finite element process were also proposed^ [131-133]. This led to  the hybrid Trefftz

and least-squares Trefftz elem ent concepts [134-136], which becam e increasingly

^It should be mentioned that this idea was advanced by Trefftz in his original paper, by showing 

with an example a possible generalisation of the concept to a discretized domain.
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popular in the following years (an exhaustive review is given in reference [137]). 

Recent applications of T-element methods in elastic and acoustic wave modelling 

may be found in references [138-141].

The M ethod of Fundamental Solutions (MFS) was originally introduced by Kupradze 

[121] and investigated later by different authors [142-144] (The method is also 

known by many other names in the literature. Among these are the source function  

method [145], boundary point method [146] and superposition method [147]). 

MFS-based approaches have gained increasing popularity throughout the last two 

decades [148]. Although most of the published work on the MFS seem to be for the 

Laplace’s equation, recent applications on the solution of the Helmholtz equation in

clude inhomogeneous and heterogeneous media [149,150] and eigenvalue calculation 

problems [151].

More recently, Caruthers et al. [7,152] proposed the use of point sources in a fi

nite difference procedure. The method, called the Green Function Discretisation 

(GFD), was shown to have a dram atic computational advantage in comparison to 

conventional modelling methods [153-155].

The point sources were subsequently replaced by plane waves resulting in the Wave 

Expansion Discretisation (WED) method [156,157]. An independent assessment on 

the WED method has been recently made by Ruiz and Rice [182], who also investi

gated the performance of a particular WED scheme for plate vibration analysis [158]. 

The WED method may be considered part of a relatively new and unknown group 

of wave-based methods. These approaches include meshless [159-162] and standard 

[163] FE models and boundary methods [164,165].

2.4.3 B oundary TrefFtz m ethods

There are two main approaches for the formulation of Trefftz boundary solution 

methods using T-complete functions: direct and indirect [127]. The conceptual dif

ference between these techniques resides in the way one fits the boundary conditions
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of the problem.

To be more specific, consider for exam ple, a s teady-sta te  acoustic problem  where 

the pressure p is the field variable in a dom ain w ith boundary  r^i. Dirichlet 

conditions, p = p, and N eum ann conditions q = d p / d n  = q, are prescribed in r£) 

and r j\i, respectively, where r ^  =  r o U r A f -

To solve such a problem  by a Trefftz m ethod one has available^ a T-com plete set of 

solutions, say, {Ui , U 2 , ■ ■ ■}■ For 2D and 3D acoustic problem s, these sets m ay be 

conveniently form ulated in term s of Bessel, Hankel and Legendre functions (see e.g. 

reference [123]).

In the indirect Trefftz m ethod, the pressure field d istribu tion  is approxim ated as a 

linear com bination of the com plete solutions

N

p p =  ^  =  a ^ U , (2.22)

where the  param eters are unknown.

The approxim ation 2.22 satisfies the governing differential equation bu t, in general, 

do not satisfies the prescribed boundary conditions p, g on F/p and F^r. In order to 

satisfy the boundary conditions, the  unknown param eters Oj are determ ined so th a t 

the residuals

are m inim ised simultaneously, using a collocation (TCM ), a G alerkin (TG M ), a 

least-squares (TLSM) or o ther alternative scheme (see, e.g. references [127,167]). In 

practise, the  choice of any particu lar approxim ation m ethod has a critical influence 

on the convergence, accuracy and stab ility  of the indirect Trefftz approach [126]. A 

rigorously investigation on cases of discontinuities in the boundary functions and 

boundary  corner points has been recently carried out by Abou [168].

^When no solutions are already available, different procedures to find a T-complete set of 

functions have been proposed, including the use of “approximate” solutions [166].

Rl  =  p -  p  =  a ^ U  -  p,  X  e  Fd,  
_ dp _

R2 =  q - q  =  ^—  q, x e F A r ,an

(2.23)

(2.24)
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The TrefFtz direct m ethod is sim ilar to the boundary elem ent m ethod, in which the 

unknown variables are the physical quantities such as the pressure and its normal 

derivative over the boundary surface. The m ethod is based on a weighted residual 

form ulation of the governing differential equation, in which the T-com plete function  

2.22 is taken as the weighting function. Using integration by parts, and since the 

weighting function satisfies the governing equation, the problem reduces to find 

an approxim ate expression for the surface integral corresponding to the boundary 

conditions [127]. This is achieved discretising the boundary into a finite number of 

surface elem ents, and using a standard (polynom ial) interpolation procedure as in 

the boundary elem ent m ethod.

T he direct and indirect boundary Trefftz m ethods have been benchmarked against 

the exact solutions in plane elasticity [128] and exterior acoustic diffraction problems 

[129], showing a very sim ilar performance.

2.4.4 T he m ethod of fundam ental solutions

T he single layer potential theory states that for a given volum e H 4 w ith no acoustic  

sources, the potential can be com puted as the surface integral (over the volume 

Q a )  of a continuous function cr(x) with the free-held G reen’s Function (see e.g. 

reference [119, chapter 1]);

4 > { x )  =  ( f  G'(x,Xq)cr(Xq)(iS', X €  V", Xq E  T A  (2.25)

where x  is a general field point in Jl/i, x ,  is a source point in F̂ i and G (x , x^) is the 

G reen’s kernel function (equations 2.13 and 2.14).

By enforcing the desired boundary conditions as x  ^  Xg one obtains an integral 

equation for o'(xg).

The M ethod of Fundamental Solutions (M FS) approxim ates cr(x^) using a discrete  

number of singular point sources w ith unknown coefficients. The required regular 

condition of relationship 2.25, is obtained by locating the sources in an artificial
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boundary surrounding the physical domain. To find the solution two main ap

proaches are usually followed: fixed and adaptive.

In the fixed formulation, the singularities are located a priori and remain fixed 

throughout the calculation process of the unknown parameters. The solution is 

obtained by collocating the boundary conditions at a discrete number of points in 

the physical domain. This leads to a square system of linear algebraic equations 

amenable to be solved directly [143,169]. As shown by Golberg and Chen [170], this 

MFS approach is nothing but a special case of the discrete regular BEM  [122].

The MFS with moving singularities was first proposed by M athon and Johnston

[142]. In this approach, the locations of the singularities are determined along with 

the unknown coefficients. This is usually achieved by a least squares fit of the 

boundary data which leads to a non-linear maximisation problem. Kondapalli et 

al. [171] analysed the MFS with fixed and moving singularities for wave scattering 

in fluids and elastic regions.

The location of the singularities and collocation points in the fixed MFS has a 

critical influence in the convergence and stability of the method [172]. Bogomolny

[143], showed that in the fixed MFS the approximation improves as point sources 

are moved away of the physical boundary. This completely contradicts the fact 

th a t the fixed MFS becomes highly ill-conditioned as this distance is increased. 

The ill-conditioning notwithstanding, the numerical solution is paradoxically largely 

unaffected [170].

Most of the research work on the fixed MFS has been devoted to resolve the ill- 

conditioning problems associated with this method (see e.g. references [173-175]). 

Despite this drawbacks, the fixed MFS has been applied to elastic waves, acoustic 

radiation and scattering [171,176] and inhomogeneous problems [149,150,177]. More 

recently, Karageorghis used a fixed MFS for the calculation of the eigenvalues of the 

Helmholtz equation [151] showing tha t the MFS leads to a much faster convergence 

than standard boundary integral methods.
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2.4.5 T-elem ent m ethod

The basic idea of the T-element method is to divide the domain into subdomains or 

“elements” . A non-conforming approximation of the field variable is independently 

performed in each element in terms of T-complete solutions of the homogeneous dif

ferential equation whose coefficients are undetermined. In addition, any particular 

solution of the governing equation may be also considered by adding the correspond

ing element value.

To enforce inter-element continuity and the external boundary conditions, two main 

strategies are generally adopted [178]: the use of an additional conforming element 

frame which leads to a hybrid formulation and a “frameless” approach using a least- 

squares procedure.

2 .4 .5 .1  H y b r id  T refF tz-e lem en t m e th o d  (H T )

The concept of hybrid elements has been known for decades and used in conjunction 

with boundary integral formulations [131]. The idea of using T-complete functions 

seems to be due to Jirousek and Leon [179] and Jirousek [132].

In this approach, the unknown coefficients in the field variable expansion are related 

to the degrees of freedom (DOF) of the element via a conforming frame which is 

approxim ated in terms of the same DOF [178]. This approximation is done using 

conventional finite element polynomial interpolating functions defined in a local 

element coordinate system.

These interpolating functions may, as in classical finite elements, be of an arbitrary 

order [133]. For linear elements, for example, the frame functions are simply straight 

lines with a value 1 at the actual edge (corner) node and zero at the other one.

The most straightforward formulation is to relate the unknown coefficients with the 

nodal degrees of freedom by making stationary a suitable variational functional. 

This leads to a symmetric system of equations of the form K x  =  b, where the 

integrations are carried out only along the boundaries of the element.
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For elasticity problems, this relationship may be expressed in terms of the nodal 

displacement (HT-D) or by means of a traction frame (HT-T) [178]. The former is 

the best known and most applied [137].

An im portant aspect of the hybrid Trefftz method is th a t it may be readily com

bined with p-adaptive techniques [135], i.e., the possibility of including an arbitrary 

number of DOF associated to fictitious mid side nodes. This enables one to main

tain both the mesh and the number of real nodes, thus circumventing the problems 

associated with the systematic remeshing procedures.

In comparison to conventional finite element p-adaptive models, the H T  p-elements 

have the following principal advantages [180]:

(a) geometry flexibility associated with the FE method.

(b) the ability to provide T-elements with equal ease for and conformity 

problems.

(c) the possibility of accurately representing local effects without mesh adjust

ments.

(d) the capacity to handle various singularities or high gradient solutions without 

mesh refinement.

On the other hand, since the inter-element continuity is enforced by a polynomial 

interpolation, the actual accuracy of the method will be still limited to the accuracy 

of this functions to model the wave spatial (and possibly temporal) variation.

It should be noted also, th a t in order to implement non-refiective (radiating) bound

ary conditions in unbounded domains, this method suffers from the same drawbacks 

associated to classical FE models. T hat is, the infinite domain is truncated by an ar

tificial boundary. A suitable boundary condition scheme (local, global or by infinite 

elements, see section 2.5) must then be implemented.
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2.4.5.2 Least-squares frameless T-elem ents (LST)

As in the HT element approach, a set of homogeneous solutions of the governing 

equation is used to approximate the field variable in each subdomain. In the least 

square formulation, however, the vector of undetermined solution coefficients in each 

subdomain is independently used to conform the final linear system of equations 

[134]. T hat is, these coefficients represent the DOF in each subdomain.

It follows th a t an adaptive h-p approach is obtained simply by refining the mesh 

and /o r increasing the number of solutions in the respective subdomain sets. The 

j9-convergence in particular, has shown to be much faster than the conventional FE 

p-version [137].

The boundary conditions and the inter-element continuity are enforced in the least- 

squares sense [136]. This is performed by minimising a suitable functional in terms 

of the required values (potential, velocity, etc.) on all the subdomain interfaces. 

Since the Sommerfeld radiation condition

is assumed to be satisfied a priori, it is not included in the functional. This gives the 

LST element method an im portant advantage over the HT approach for external 

wave problems [138].

On the other hand, a rather complicate element mesh is required in order to perform 

a standard direct assembly process. This problem was circumvented by Monk and 

Wang [140], who investigated the use of Bessel functions and plane waves using 

an alternative least-square functional. The method suffers, however, from a large 

condition number (a drawback already pointed out in [138] in relation to the Bessel 

functions), rendering it less robust than standard finite elements.

2.4.6 W ave-based m ethods

Several m ethods in which the local basis are constructed using wave functions, have 

been recently proposed. Some of these schemes, as the G FD /W ED  method of

(2.26)
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Caruthers et al. [7,152,156,157] and the Wave-based method (WBM) of Desmet et 

al. [164,165] are variants of the MFS and the boundary Trefftz methods, respectively. 

However, several techniques derived from the finite element formulation have also 

incorporated the use of wave functions in order to circumvent the approximation 

errors outlined in section 2.2.2.2. These include meshless methods [159“ 162] and 

“standard” Galerkin schemes [163].

The use of a conforming set of solutions in each element leads, as seen for the 

T-element methods, to a non-conforming global scheme. To enforce global confor

mity, a suitable alternative is to use a meshless approach, which can overcome the 

difficulties of the least-squares T-element method discussed in the previous section. 

The Partition of Unity Finite Element Method (PUFEM) of Melenk and Babuska 

[159,160] constructs a conforming basis from any function th a t have good local ap

proximation properties [159,160]. Thus, for the solution of the Helmholtz equation, 

the use of plane waves have been proposed as a suitable option^ [160]. This gives 

an im portant reduction in the number of degrees of freedom in comparison to the 

Galerkin, GLS and GFEM approaches for a similar accuracy.

More recently, Bouillard et al. [161,162] proposed an Element-free Galerkin Method 

(EFGM) for the Helmholtz equation, based on the formulation of Belytschko et 

al. [181]. The EFGM is as accurate as the Generalised Finite Element Method 

(GFEM) (see section 2.2.2.2) and can be applied equally well to non-uniform meshes. 

A comparison between the EFGM and the PUFEM has not yet been performed. 

The use of plane waves used in combination to standard polynomial interpola

tion functions in a finite element formulation, has been recently investigated by 

Laghrouche and Bettess [163]. In the proposed approach, the potential at each node 

is expanded in terms of an arbitrary number of plane waves, i.e. each node has an 

arbitrary number of DOF. To enforce inter-element conformity, the wave functions 

are combined with standard piecewise polynomial functions.

^Hence, in this case the PUM may be regarded simply as a (MFS-type) variant of the frameless 

T-element method outlined above
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The increase in the D O F per node has a negative effect on the dim ension of the  local 

elem ent m atrices and the  quadratu re  in tegration rule. However, th is drawbacks are 

apparently  com pensated by the displayed accuracy of the m ethod. To im plem ent the 

rad ia tion  boundary  condition, Laghrouche and B ettess used a wave-envelope infinite 

elem ent scheme, by enforcing the rad ia tion  condition on the plane wave functions 

a t the boundary  nodes.

T he Green Function D iscretisation M ethod (G FD ) was first proposed by C aruthers 

et al. [7,152], as a nearly bi-nodal optim al (2-3 points per wavelength) numerical 

tool for the solution of the Helm holtz equation. The G FD  uses the m inim um  local 

energy com bination of several point sources (G reen’s functions) in a finite difference 

procedure. T h a t is, a solution a t each discretisation point is sought in term s of the 

known values a t the neighbouring nodes.

It is w orth noting th a t the G FD  may be regarded as a  discrete field variant of the 

M ethod of Fundam ental Solutions (MFS) outlined above. Indeed, the subdom ain 

determ ined by each node and its neighbours may be regarded as a MFS dom ain 

in which the equation 2.25 can be applied. The source points are located outside 

the  subdom ain preventing any singular solution, whilst the collocation MFS points 

are the neighbouring points. This relationship between the G FD  and the MFS was 

pointed out by French [153] and French et al. [154,155], who showed the significant 

com putational advantages of the G FD  in com parison to  conventional finite elem ent 

m ethods.

T he G FD  was subsequently reform ulated replacing the point sources w ith plane 

waves, resulting  in the Wave Expansion D iscretisation (W ED) m ethod [157]. The 

W ED has been successfully applied to model a turbofan  engine [156], and extended 

la ter to  p la te  v ibration  analysis [158].

An assessm ent of the W ED approach by Ruiz and Rice [182] showed th a t there are, 

however, some conditioning problem s related to  the im plem entation of the rad ia tion  

boundary  condition th a t need further investigation.
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2.5 The exterior problem

The solution of problem s involving propagating and evanescent waves in unbounded 

dom ains are related  to  a variety of physical phenom ena, including acoustic, elastic 

and electrom agnetic waves. In these cases, a constrain t is required in the “infi

n ite” dom ain to  ensure th a t energy flux propagates in an outw ard direction. The 

Sommerfeld rad ia tion  condition [183] ensures th a t this is the  case provided th a t

where d is the dim ension of the problem.

N um erical solutions to  the wave equation in exterior dom ains have been sought 

prim arily  via techniques th a t are based on the Helm holtz integral equation, known 

as BEM [79]. These techniques have the benefit of a priori satisfaction of equation 

2.27, and the (dubious) advantage of seeking solutions over a dom ain th a t is one- 

dim ension lower than  the original form of the problem.

The m ost straightforw ard BEM form ulation (i.e. the direct BEM) gives non-unique 

solutions a t discrete eigenfrequencies of an associated bu t physically unrelated  Dirich- 

let interior problem . It can be modified, however, to  produce unique solutions a t 

the expense of adding auxiliary points in the interior region [82], or by the use of 

higher-order derivatives of the kernel functions [85] (see Section 2.3).

A lternatively, dom ain-based schemes such as finite differences or finite elements 

may be im plem ented over a trunca ted  (finite) dom ain close to  the rad ia ting  source 

or body [184]. Conditions m ust then be im posed on the boundary  to ensure than  the 

acoustic energy is absorbed, thus avoiding spurious reflections back into the finite 

dom ain.

Significant research efforts have been m ade in the last th ree decades in order to 

obtain  accurate and efficient rad ia tion  conditions for bo th  tim e-harm onic and tra n 

sient problem s (see e.g., references [185,186]). These ‘approx im ate’ conditions can 

be classified into two broad categories: global and local.

(2.27)
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The global boundary conditions [187-189], a ttem p t to  sim ulate the  effect of the exte

rior in an exact sense and are fully coupled in space and tim e. Though th is m ethods 

lead to a sym m etric well-conditioned FE  m atrix , the artificial boundary m ust be 

of a geom etrically simple shape. Furtherm ore, in some im portan t cases, an exact 

ex ternal m apping condition may be not available or is im practical to  im plem ent. 

Local boundary conditions on the other hand, are local in space and tim e, and can 

be used on generally shaped domains. T heir efficiency is m easured in the capacity 

to  absorb waves im pinging on the artificial boundary. T he sim plest im plem entation 

of these type of boundary conditions, is to  use the  specific acoustic im pedance of 

freely propagating  plane waves (PW  dam per) a t the artificial boundary given by

p{x) = poCUnix), (2.28)

where p  is the acoustic pressure, is the norm al particle velocity a t the boundary, 

Po is the  specific fluid density and c is the sound speed. For th is condition to give 

accurate  results, the artificial boundary m ust be sufficiently d is tan t from the source 

of pertu rba tion .

To circum vent th is difficulty, higher-order boundary dam ping elem ents may be used. 

In th e  pioneering work of Engquist and M ajda [190], an asym ptotic set of non

reflecting conditions were form ulated w ith the help of pseudo differential operators. 

T heir use in conventional finite elem ent and finite difference m ethods is, however, 

severely lim ited by the im plem entation of high-order derivatives occurring in the 

h igh-order boundary conditions. Moreover, in the sim plest im plem entation form, 

they lead to  a non-sym m etric and ill-conditioned FE scheme.

Several o ther techniques have been devised based on the form ulation of Engquist and 

M ajda (see e.g., references [191-195]), and by the use of “localised” global conditions 

[196, 197]. Though the philosophy behind these schemes m ight be different, the 

m ajor draw back associated to the Engquist and M ajda conditions rem ains unsolved. 

A num ber of different high-order NRBC m ethods w ithout high-order derivatives 

have been recently reported  in the literature. G uddati and Tassoulas [198] proposed
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a conditioning scheme by using a continued fraction expansion based on the origi

nal sequence of Engquist and Majda. More recently, Givoli and Patlashenko [199] 

proposed yet another NRBC scheme by means of an “optim al” local approximation 

of the exact non-local conditions. A thorough comparison of these techniques has 

not yet been reported.

The use of boundary integrals (BI) as a mesh term ination scheme for finite elements 

m ethods has been also investigated. Mupen and Hulbert [200,201] proposed an off- 

source FE /B I scheme based on the earlier work of Cunefare et. al. [202]. Since the 

system matrices retain the sparsity of the FE method, an im portant reduction in 

the com putational storage cost results in comparison with the classical BEM.

A more radical approach to domain-based techniques is given by the infinite element 

concept [203]. In this method, the near field of the radiating source or body is 

modelled by using conventional finite element techniques only. A single layer of 

special elements, infinite elements, which stretch to infinity are then used to model 

the acoustic far field.

The infinite elements were originally formulated as a standard (finite element) shape 

functions multiplied by a decay function and an oscillatory wave function of the 

form A local mapped (infinite) element was subsequently developed to obtain

a more accurate representation of the radial wave decay.

In these infinite elements formulations, special numerical integration techniques have 

to be used in order to deal with the complex exponential integrand of the system 

matrices. The wave-envelope (WE) method [204] and more recently the mapped 

WE m ethod [205, 206] circumvent this problem by utilising the complex conjugate 

of the shape function as the weighting function in a Petrov-Galerkin scheme, thus 

cancelling all oscillatory terms in the integrand.

Though the mapped WE method show a good radial accuracy, a loss in the resolution 

has been observed between the transverse and radial resolution for three dimensional 

problems as the frequency increases [207].

Chadwick et.al. [208] analysed an iterative infinite element method for short waves.
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They modelled the wave envelope and phase ra th e r th an  the  velocity potential, 

using assumed radial and angle variations for the wave envelope and th e  phase. 

Even though more research still needs to  be done on this technique, the  results 

obtained for a typical two dim ensional problem  are promising.

The extension of the infinite element concept to  elastodynam ics applications has 

been proposed by several au thors (see e.g. references [209,210]). M ost of these 

schemes are based on approxim ations of the displacem ent m otion. P in to  and  Coyette 

[211] proposed a conjugated infinite elem ent scheme based on the  na tu re  of the  elas

tic  wave propagation, using the Stokes-Helm holtz decom position of th e  governing 

equation  in term s of d ila tational and equivolum inal waves. Two in terpo la ting  func

tions are then used to  model the wave am plitudes, the angular d isplacem ent and the 

phase variation. The results obtained for two dim ensional exam ples show' th a t the 

accuracy of this m ethod is com parable to  th a t of Givoli’s D tN  non-local boundary 

condition.

2.6 D iscussion

In the  BEM only the surface of the dom ain has to  be modelled and discretized. 

Thus, the dim ension of the problem  is reduced by one. In addition, the Sommerfeld 

rad ia tion  condition is natu ra lly  satisfied by the fundam ental G reen’s function. Based 

on these two properties, several authors refer to the BEM as the  m ethod of choice 

for wave m odelling in exterior or unbounded dom ains [79,89].

However, a more detailed analysis shows th a t less d iscretisation points does not 

necessarily m eans an overall com putational advantage. H arari and Hughes [212]
I

dem onstra ted  th a t, in com parison w ith the FEM  for interior and exterior acoustic 

problem s, there is no clear computational advantage in the BEM approach.

On the  o ther hand, it is widely known th a t the  perform ance of the  finite elem ent 

i  approach severely deteriorates as the frequency increases. In a recent review of the
I

j FEM  for short wave modelling problem s, Zienkiewicz [3] pointed ou t th a t “Clearly,
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we can consider th a t th is problem  rem ains unsolved and a com pletely new m ethod 

of approxim ation is needed to  deal w ith the very short-wave solutions” .

T h a t is the  idea behind the new alternative approaches, i.e. the use of (more phys

ically related) basis functions th a t can accurately represent the wave behaviour for 

any frequency, thus reducing the num ber of discretisation points. In th is sense, the 

G F D /W E D  m ethod proposed by C aruthers et al. [7,152] is currently  the m ost accu

ra te  m ethod, w ith a nearly optim al (in the Nyquist sense [213]) bi-nodal resolution. 

T he approach developed by Laghrouche and B ettess [163], though only applied to 

sim ple academ ic problem s, shows also a good accuracy, of around four points per 

wavelength.

As seen w ith the boundary element m ethod, however, there are several o ther im

p o rta n t aspects in these form ulations th a t have to be addressed:

•  Is the m ethod easily applicable?

•  Does it give the  same accuracy in 2D and 3D?

•  Can it be applied to  complex geometries?

•  W hat are the com pleteness and convergence characteristics of the m ethod?

•  Are the m atrices sparse and well conditioned?

•  C an the  m ethod be m ade robust and stable?

•  C an the  rad ia tion  boundary condition be natu ra lly  satisfied?

•  C an the  m ethod be generalised to  o ther applications?

T he best m odelling approach will result from th a t which gives the best possible 

com bination  of these requirem ents, providing a t the sam e tim e a  high degree of 

accuracy.

It should be noted also th a t, giving the oscillating natu re  of the  waves, the solution of

large problem s a n d /o r  sufficiently higher frequencies will require eventually (even for
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an ‘ideal’ method) an iterative (possible parallel) solution scheme as those discussed 

in Section 2.2.2.3. Hence, a last im portant feature of the ‘ideal’ method is tha t it 

can be implemented iteratively and in parallel platforms with relative facility.

2.7 Scope of the thesis

The major difficulty in the development of alternative numerical techniques, is to 

obtain not only an accurate approach, but also one th a t performs equally well in the 

other aspects of the implementation process. The overall performance will eventually 

determine the practical efficiency of a given method. In this framework, the wave 

expansion discretisation technique is, among the recently proposed methods, one of 

the most promising.

In order to determine whether the WED method may be considered as an efficient 

alternative technique, further research is required to assess not only the accuracy 

of the m ethod but also the different aspects of the implementation process. This is 

the aim of the analysis presented in this thesis. Throughout the discussion of its 

methodology and its applications for two- and three-dimensional problems, it will 

become apparent tha t this technique provides an adequate way to comply with the 

challenge of extending the applicability of numerical modelling techniques towards 

higher frequencies.
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Chapter 3

The G reen’s function  

discretisation and wave expansion  

discretisation m ethods in acoustic 

fields

3.1 In troduction

The G reen’s Function D iscretisation (G FD ) m ethod was first proposed by Caruthers 

et al. [7,152] as a discrete dom ain Green’s function interpolation m ethod with a 

m inim um  property and naturally applicable to non-uniform grids. For radiation  

problems, they obtained accurate solutions with less than three points per wave

length.

Plane waves were suggested in [152] as a viable alternative to the G reen’s functions, 

and used later for m odelling inlet turbofan noise subjected to a Mach 0.4 flow [156]. 

The resulting approach was then called the Wave Expansion D iscretisation (W ED) 

m ethod, showing a similar accuracy as the G FD  [157].

The m ethodology of the G FD and W ED schemes is detailed below. The fundam ental
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form ulation given in references [7,152] is quite straightforward, and it is included  

here for com pleteness.

3.2 Physical and m athem atical basis 

3.2.1 Problem  definition

The propagation of acoustic waves in hom ogeneous m edia w ithout losses, is governed 

by the wave equation

(3.1)

where is the Laplace operator, p (x , t) is the acoustic pressure at a position vector 

X and tim e t, and c is the sonic speed.

A ssum ing a steady-state tim e harmonic excitation source p  =  p{x,uj) ,  where cu =  

27t/ is the circular frequency. Equation 3.1 then reduces to the Helm holtz equation

where k =  u>/c is the wave number.

Consider solving equation 3.2 in an acoustic dom ain Ha w ith boundary surface 

r ,4 =  Td U Fjv U as shown in figure 3.1.

At the boundary, the following conditions are assumed to apply, nam ely

•  im posed pressure (Dirichlet boundary condition)

+  k^p =  0 , (3.2)

P(x>) =  P, Xt £ To (3.3)

•  im posed normal velocity (Neum ann boundary condition)

(3.4)

•  im posed im pedance (radiation or m ixed boundary condition)

p(Xfc)  =  - L p Q ( j J \ n ,  Xfc G (3.5)

52



X

Figure 3.1; Illustration of the considered problem.

where n  is the normal outward boundary, l =  \ / ^ ,  po is the air density, and v„ 

and Z  are the particle velocity and the specific acoustic impedance in the boundary 

outward normal direction, respectively.

We seek to solve the boundary value problem given by equations 3.2-3.5, by domain 

discretisation. T hat is, a finite number of points are selected, covering the domain. 

The value at each discrete point is obtained following a finite difference procedure, 

such th a t an approximation to the continuous solution surface is represented. Thus, 

the unknown field value at any point is determined in terms of the known values 

at the surrounding points in the domain. These values are approximated as a finite 

combination of fundamental solutions of the governing Helmholtz equation.

It will be shown in the subsequent sections, th a t such an interpolation procedure 

may be derived by a domain generalisation of the single layer potential integral 

equation [153]. Some authors [148], then refer to the GFD as a variant of the 

Method of Fundamental Solutions (MFS).

3.2.2 Discretisation of the single layer potential

Let r  be an ‘artificial’ surface containing the physical domain VLa and surface F^, as 

shown in figure 3.2. If there is no acoustic sources in the single layer potential

53



X

Figure 3.2: Original domain surrounded by an artificial surface f .

theory states that the pressure at any interior point can be computed as the surface 

integral (over the volume) of the single layer potential with the free-field Green’s 

function:

p(x) =  J  G(x, r)cr(r) dTa , x € r e f  (3.6)

where <j(r) is a continuous function defined over the surface F, and

g - t / c | x - r |
G(x, r )  =  —  r,  3 - D

47t |x  — r |

= j H P ( k \ x ~ v \ ) ,  2 - D
(3.7)

is the Green’s kernel function which relates the pressure at a domain point x pro

duced by a unit monopole source located at the surface point r in F.

Note that equation 3.6 is non-singular in the physical domain Qa - Thus, we may use 

a standard quadrature rule with nodes and weights to approximate

p(x)  giving
« n

p(x) = /  G(x,  r)a(r) -  p„(x) = J]][ii;ja(rj)]G'(x, rj). (3.8)
Jr j=i

Equation 3.8 may be written simply as
n

Pn(x) =  ^ C jG ( x ,r j ) .  (3.9)
j = i
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In general, p„ will not satisfy the boundary conditions, equations 3.3-3.5, imposed 

on r,4 . Hence, the coefficients need to be chosen to satisfy the boundary

condition in some sense. For any problem for which the Green’s function ^(X jr) 

is a fundamental solution, this procedure can be viewed as a discrete simple layer 

potential method. The representation 3.9 is usually referred to as the Method of 

Fundamental Solutions (MFS) [148].

In the MFS, the coefficients {cj}" are usually obtained by a collocation procedure. 

That is, n points {xfc}^_j are selected on and set

5p(x^)/5n |r^  =  —Lpou>u{xk), n — m  +  1 <  k <  n.

The geometry of the discretized model is shown in figure 3.3

Y

P(xfe)|rc =Pk,
Q { y ^ k )  =  5p(xfc)/(9n|r^

ap(xfc)/an|r  ̂ = - i !

1 < /c < m,

m +  1 <  k <  n ~  m,  (3.10)

X

Figure 3.3: Illustration of the MFS concept.

Following this procedure, we obtain n equations
n

for the determination of the unknown coefficients. Once these coefficients have been 

determined, the approximated solution is obtained from equation 3.9.
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3.2.3 G eneralisation of the concept to the full dom ain

The fundamental concept of the MFS outlined in the precedent section, is to express 

the unknown field variable at any point in the domain, in terms of the known values 

of the field variable at discrete points in the surface of the continuum.

Consider a discretisation of Q4 by a finite number of points which may not, in 

general, be uniformly distributed. A computational cell can then be determined 

considering each node and its neighbours, as shown in figure 3.4.

O O

Y

X

Figure 3.4: Computational molecule.

A similar procedure as described in the precedent section may be applied to the 

sub-domain VLm conformed by Xq and its neighbouring points (see figure 3.4). That 

is, the value at Xq may be approximated as the sum of N  monopole sources located 

outside as
N

p{xo) =  ^ 7 n G ( x o , x „ ) ,  (3.12)
n = l

where G ( xq, x „) is the Green’s function given in equation 3.7, and {7 n}^Li are the 

source strengths.

Following the same procedure at the other points in the cell, we obtain
N

p(xm) =  7 nG’(x^, x„), m =  1, . . . ,  M. (3.13)
7 1 = 1
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Using m atrix  notation ,

p =  G t  (3.14)

where p  and 7  are M  x 1 and N  x  1 m atrices, respectively, and G  =  G (xm ,x„) is 

a M  X N  m atrix . Solving equation 3.14 for the coefficients {7n}^=i we obtain  the 

approxim ate pressure a t Xq from equation 3.12.

3 .2 .3 .1  M in im u m  n o rm  s o lu tio n

If the num ber of hypothetical point sources equals the num ber of surrounding points 

in the cell {N  = M ) ,  then

7 =  G - i p  (3.15)

gives the only solution for 7  which m atch the M  values a t r ^ .  However, G  does not 

necessarily have to  be a square m atrix , and it may be beneficial to under-constrain 

th e  system , i.e. N  > M . The rectangular system may have, in general, dependent 

rows and dependent columns which make the solution for 7  not unique.

The m atrix  G  can then be “pseudo-inverted” in order to  obta in , am ong the infinite 

possible solutions for 7 , the (unique) optimal  one for which Y2n=i 7n ^ minimum . 

It may be shown [214], th a t the optim al solution 7 ^̂  ̂ has always M  non-zero entries 

(i.e. it always lies in the  row space of G ). T he rem aining N  — M  com ponents, called 

the “null space” are zero, thus rendering 7 ^̂  ̂ the m inim um  vector leng th^

As pointed out by C aru thers [152], the pseudo-inverse operation imposes a sm ooth

ness condition on 7 , excluding those solutions w ith high am plitudes and irregular 

variations from source to  source. Noting th a t  the energy of a spherical acoustic wave 

is given by [1]
4:7V R^'y^

n  =  ^ ^ ,  (3.16)2poC
where R  is the  radial distance from the source, the pseudo-inversion then ensures 

tha t:

^For a more rigorous analysis on the algebraic properties of the generalised inverses, the reader 

is referred to references [215,216].
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•  All the constraints are satisfied exactly.

•  The least “energetic” solution otherwise results.

There are a number of different procedures which may be followed to obtain the

minimal length solution to a rectangular system. The most popular approach is

based on the Singular Value Decomposition (SVD) of the m atrix G  as

G  =  Q iE Q j ,  (3.17)

wdiere Q i and Q 2 are any two orthogonal matrices of dimension M  x M  and the 

(J i,. . . ,  cTr (r =  rank G) nonnegative entries in the M  x N  diagonal m atrix E  are 

the singular values of G.

The pseudo-inverse of G , denoted by the ‘-I-’ sign is then given by

G+ =  Q 2 E+Q T (3.18)

where the pseudo-inverse E+ has components 1 /cri , . . . ,  l/cr^.

The pseudo-inverse may be also calculated using a complete orthogonal factorisation 

of G followed by a least squares solution of m m { ||p  —G 7 II} [217]. The main 

advantage of these two approaches, resides in their robustness and applicability to 

badly conditioned systems. On the other hand, these processes require a fair level 

of com putation time^. As shown in table 3.1, for a 4 times increase in the size of the 

m atrix, the com putation time of the pseudo-inverse using the SVD decomposition 

increases 12 times.

Once the pseudo-inverse has been calculated, the solution for the coefficients 7  

(equation 3.14) yields

7  =  G +p. (3.19)

^An alternative method based on an approach originally proposed by Greville has been re

cently assessed by Layton [218]. Despite the fact that the computation of the pseudo-inverse is 

much quicker in comparison to the SVD based approach, the method is not applicable to badly 

conditioned systems.

58



Size (m X n) CPU tim e (5)

8x  25 0.01

16x 25 0.02

27x 60 0.08

32 X 60 0.12

Table 3.1: Typical com putation  tim e for rectangular m atrices of different size, using 

SVD decom position.

L etting g  represent the column vector w ith elem ents g n (x )  =  G ( xq, x „), then

Pa =  g"’G+p, (3.20)

where po =  p(xo)-

Expression 3.20 is referred to  as the G reen’s Function D iscretisation m ethod (GFD) 

[152]. It relates the unknown pressure a t a given point in the dom ain in term s of 

the known pressure values a t a finite num ber of surrounding points.

Given the properties of the pseudo-inversion, boundary conditions may be im ple

m ented by augm enting the row count of the m atrix  G  in equation 3.14, including 

the possibility of m ultiple restrain ts as will occur a t mesh corners. B oundary condi

tions related  to  the norm al derivatives of the pressure (i.e. N eum ann or radiation) 

a t cell points {pk}^=i can be readily com puted by tak ing  the norm al derivative of 

the constrain t equation 3.14

dpk d G k n  1 ^ 1 ^  /Q—  =  7 , 1 < k  < m .  (3.21)

E quation 3.14 thus take the form

i 1 '>' = P 22)dpk /dn  J  y d G kn / dn  J
Thus, the in terpo la ting  form ula so obtained  is not only an exact solution of the

continuum  equation a t all neighbouring points, bu t also satisfies the boim dary con-
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dition at up to N  — M  discrete points along the boundary in the neighbourhood of 

the subject point.

After pseudo-inversion, the augmented matrix Gang be partitioned into

and Then, a modified template (equation 3.20) with a forcing right hand

side may be established as

Po -  g(G+„g)LU =  g(G+„g)fl dpk/dn.  (3.23)

In addition, Dirichlet constraints may be directly imposed on the appropriate degrees 

of freedom in the overall assembled stiffness matrix. Once the templates are formed, 

an overall sparse non-symmetric complex equation system

Kp =  f  (3.24)

may be assembled with each template independently contributing a row.

3.2.3.2  T he use o f  plane waves

In theory, any complete solution of the governing equation may be used to interpo

late the desired field variable. A drawback associated to the use of Green’s functions, 

is that a location for each monopole source has to be determined a priori. Further

more, for acoustic problems in which the coefficients of the governing equation have 

a spatial dependency, as will occur in the propagation of acoustic waves within inho- 

mogeneous flows, it is not possible to determine a single universally valid free space 

Green’s function [156].

To circumvent some of these shortcomings, the infinite radial approximation of the 

Green’s function, i.e. planes waves, may be used. The formulation is otherwise

completely analogous to that outlined above for the GFD scheme. The pressure at

the central point in the cell, may thus be approximated as a combination of plane 

waves
N

p(xo) =  (3.25)
n = l
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where d„ is the  unit propagation direction vector of the plane wave w ith complex 

am plitude 7 „. An illustration  of the pressure field approxim ated by 8 plane waves 

is given in figure 3.5.

l \
J

J
J

kk

X

Figure 3.5; Sound field approxim ated by 8 plane waves.

Using m a trix  no ta tion  we may then write equation 3.25 as

P o  =  h (x o )7 , (3.26)

where po =  p(xo), h (x o ) is a 1 x row vector of plane wave functions evaluated a t xq

and 7  is a colum n vector of the wave strengths. If we apply the same approxim ation

to the o ther nodal positions in the cell we can w rite

P =  H 7 , (3.27)

where p  is a A' x 1 vector of the pressures a t each surrounding node {xm }m =i, and

H m n  =  (3.28)

A com putational tem plate  may then be formed by com bining equation 3.26 and 3.27 

to  give

P o =  h H ’''p  (3.29)
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Equation 3.29 is referred to as the Wave Expansion D iscretisation (W ED ) m ethod  

[156],

3.3 Accuracy assessment

Following a sim ilar procedure as described by Caruthers et al. [7 ,152] for the G FD  

approach, the convergence and conditioning of the wave expansion discretisation  

m ethod for two- and three-dim ensional acoustic problems is evaluated below.

3.3.1 Two dimensional interpolation

Consider a nine node square com putational m olecule of dim ension 2h x  2h immersed 

in a 2D acoustic dom ain as shown in figure 3.6. The acoustic field is produced by

h

,r

Figure 3.6; A 2D square m olecule subjected to an acoustic m onopole source field.

a m onopole source located at radial distance 5h and 15° elevation angle from the 

central node in the cell. If X5 is the source position vector, the pressure at any field
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po in t X 7  ̂ X5  is given by

(3.30)

/o')

where is the zero-order Hankel function of the  second kind. For convenience,

consider the wave num ber norm alised to  the nodal spacing length h, th a t is k = 

uih/c.

T he values a t the x ^  neighbouring points in the cell were fixed according to  equation 

3.30, w hilst the pressure a t the central point p(xo) was determ ined using equation 

3.29. The error a t Xq was thus calculated according to

where -P(xq) was calculated from equation 3.30.

The pressure a t the central point was approxim ated by a com bination of 20 plane 

waves, evaluating two different cases: (a) the fundam ental solutions are uniform ly 

d istribu ted  around the cell and (b) the sources are located only in certain  regions 

of the  space.

Uniform source distribution

The am plitude error and phase error norm alised by the point spacing h a t the central 

point in the cell, are p lo tted  in figure 3.7.

D espite the  fact th a t the acoustic field is clearly not p lanar a t the central point, the 

use of a  plane wave in terpolation scheme gives a very good result. The singularity 

observed occurs a t the first eigenvalue, ki^i =  7t / \ / 2 , of the D irichlet problem  w ithin 

the com putational cell {2h x 2h), where (see, e.g. [1, chapter 9])

This frequency is th a t of a plane wave w ith a wavelength equal to  the diagonal length 

of the cell. It corresponds to  the bi-nodal wavelength lim it, according to  the Nyquist 

theory of d ig ita l signal processing (see e.g. [213]). In th is sense, the wave expansion 

in terpolation  m ethod (as observed for the G FD  [152]), has an optim al accuracy and 

actually  exceeds the Nyquist lim it for rectangu lar cell arrangem ents [152].

E  =  p(xo) -  /"(xo). (3.31)

(3.32)
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Figur 3.7: Error for the WED method at the central point, (a) Amplitude error, 

(b) Piase error.
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For com parison purposes, the problem was solved w ith a s tan d ard  G alerkin finite 

element scheme (an illustration  of the form ulation of the finite elem ent in acoustics, 

is given in the A ppendix A). In this m ethod, the  acoustic field inside the element is 

interpolated by a polynom ial function, known as shape function. The order of the 

in terpolating polynom ial function may be arb itrary , and is determ ined by the num 

ber of nodes in the  elem ent. For this example, a higher-order quadratic  Lagrangian 

element w ith 9 nodes was used.

T he error ob ta ined  using the FE  approach is depicted in figure 3.8. In com parison 

to  the accuracy of the  wave expansion in terpolation, the error difference even for 

small values of k is very significant.

Non uniform source distribution

In principle, there  is no a priori requirem ent in relation to the location of the sources. 

Since the pseudo-inversion process will select th e  optim al solution for any given 

set, restricting the  location of the fundam ental solutions to  a particu lar region will 

exclude others which may have a lesser norm.

Consider the plane wave expansion approxim ation a t the central point in the cell, 

equation 3.25. For tw'o-dimensional problem s, we m ay w rite

N  N
p ( X o )  =  =  ^ ^ . ^ g - ^ f c ( x o c o s 0 „ + y o s i n 0 „ ) ^

n = l  n — l

where is the propagation  angle of the  directional vector d„.

In order to  investigate the effect of the spatia l d istribu tion  of the plane waves on 

the  accuracy of the  m ethod, three non-uniform  vector d istribu tion  sets were used. 

Namely,

•  Case 1: 0 <  <  tt, n =  1, . . . ,  N .

•  Case 2: tt <  <  27t, n  =  1 , . . . ,  Â .

Case 2,- { °  « =  1. • • •. ̂ / 2
57t/4 <  <  37t / 2  n =  N /2  +  \ , . . . , N .
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♦ Case 4: 0 <  <  27t, n =  1 , . . . ,  A'' (uniform source distribution used in figure

3.7).

For illustration, the vector directions for the Cases 1 - 3  are depicted in figure 3.9. 

As shown in the relative error plotted  in figure 3.10, in com parison to the results 

obtcined using a uniform distribution (Case 4) the accuracy of the W ED approach 

deteriorates in the three non-uniform  distribution cases tested. N ote that, according 

the ocation of the source, the directions used in the Case 1 (0 <  <  tt) should

give the best results. However, the m inim um  error is found using the second set 

(tt < ^7 1 <  27t) despite some of th is directions are in the opposite direction as the 

propagating wave field.
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Figure 3.10: Error for the WED method at the central point for different plane wave 

distributions, (a) Amplitude error, (b) Phase error.
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3.3.2 Three dim ensional interpolation

The convergence properties of the plane wave interpolation in three dimensions, 

were evaluated considering a 27 node square computational cell, as shown in figure 

3.11. The acoustic field was assumed to be produced by a monopole source located 

at radial distance bh and 15° and 90® elevation and azimuthal angles, respectively.

m

Figure 3.11: Three dimensional computational cell.

According to the results obtained for the two dimensional case, a combination of 

plane waves uniformly distributed around each cell point should be used in order to 

obtain the best approximation. However, whilst this restriction is easily achievable 

for two dimensional problems, a spherically symmetric distribution of plane waves 

is not possible for an arbitrary number of points [219,220].

A best compromise to this problem is to use a direction set based on the Buckminster 

Fuller geodesic dome, as shown in figure 3.12. Thus 60 “evenly” spaced directions 

may be used (these directional vectors can be conveniently generated, for example, 

by using the © M atlab function “bucky”). Following this approach, matrices h and 

H in equations 3.26 and 3.27, have dimensions 1 x 60 and 27 x 60, respectively. 

The pressure values at the external points in the cell were fixed according to the
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Figure 3.12: 3D wave direction system.

free field Green’s function

P (x )
g - t f c ( l x - x s l )

|X -  Xs|
The error at the central point Xq is thus given by

E  =  p(xo) -  F (xo),

(3.33)

(3.34)

where P ( xq) is calculated from equation 3.33.

As shown in the relative am plitude error and the relative phase error, figure 3.13, a 

prom inent s ingularity is now observed at k  =  \/37r/2. According to  the eigenvalue 

form ula for a cubic cavity o f dimension (2/i)^ (see, e.g., [1, chapter 9])

k,
7T \  ■

( -\ 2 h
V 1/2

(3.35)
,2 /1/  ' \ 2 h J

i t  follows tha t th is frequency corresponds to tha t of the first eigenvalue, of the

D irich le t problem w ith in  the com putational cell. As in the two-dimensional case, 

this frequency is tha t o f a plane wave the wavelength o f which equals the diagonal 

o f the cell. Thus, the form ulation gives also a nearly optim al (in the Nyquist sense)
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accuracy in three dimensions. Finally, a deterioration of the in terpolation  accuracy 

near A: =  0 is also observed. T his behaviour, which is not yet com pletely understood, 

was also reported  by C aru thers et al. [152] for the G FD  approach in two dimensions.

3.4 Boundary condition im plem entation

Owing to  the  flexibility of the  basic form ulation, there will always be a choice of 

m ethods of im posing the boundary  conditions. An assessm ent of the original formu

lation as proposed by C aru thers et al. [7], for a typical th ree dim ensional problem  

is outlined below. The solutions proposed here were chosen because they provided 

stable solutions for a wide range of frequencies and they were the m ost easily im 

plem ented from a meshing viewpoint.

3.4.1 Dirichlet

These were im plem ented by sim ply constraining the appropria te  degrees of freedom 

in the assembled m atrix  equation 3.24.

3.4.2 N eum ann

According to the basic concept of the m ethod, each discretisation point is approx

im ated by a finite num ber of surrounding points. This leads to  h a lf/q u a rte r/e ig h t 

portions of the com putational cell for face/edge/corners points. Consider, for ex

am ple, the  face shown in figure 3.14. At each node on the  face a norm al velocity 

condition
dpM (3.36)

is applied to  augm ent the constrain t equation 3.27 (see equations 3.22-3.23) to

/  r. \
'y (3.37)
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m

Figure 3.14: Face com putational cell.

where is the  direction of the outw ard norm al a t the boundary point xf„. The 

m atrix  in equation 3.37 has now dim ension (17 +  9) x Â .

A pseudo-inversion of equation 3.37 may be now perform ed giving

7  =  H i ,  j  , (3.38)

where q is a 9 x 1 column vector of the forcing nodal loads Qm- S ubstitu ting  and 

left-right partition ing  equation 3.38 into equation 3.26, yields

Po =  h(H+„^)Lp +  h(H+g)KQ. (3.39)

For a perfectly reflective surface surface q =  0, and equation 3.39 yields

p„ =  h (H + „ ) tp ^  (3.40)

Thus, a perfectly reflective condition m ust be always explicitly specified using a

modified tem plate  3.40, as th is is not a “n a tu ra l” boundary  condition as would be

the case in s tandard  finite element m ethods.
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3.4.3 Radiation

For problem s related to  very large or infinite physical dom ains, a non-reflective con

dition m ust be im posed on the boundaries of the hypothetical (truncated) numerical 

dom ain. Physically, th is condition m ust ensure th a t all the  acoustic energy is prop

agating outwardly, and no reflecting energy is being reflected back to the  domain. 

This condition is given by the Sommerfeld rad ia tion  condition

lim ( ^ -  zkp]  =  0,
x->oo y a x  /

where a  is the dim ension of the problem.

It is of great interest th a t the rad iation  condition for a rb itra ry  p ropagating  waves can 

be satisfied exactly in order to  reduce the num erical dom ain close to  the excitation 

source, thus minim ising the com putational cost. At the same tim e, it is desirable 

th a t th is condition can be achieved “natu ra lly” in the form ulation of the m ethod. 

C aruthers et al. [7], proposed to  approxim ate the local near field a t a point x** laying 

in a rad ia ting  boundary, by selecting the directions of the fundam ental solutions 

outside the dom ain determ ined by x* and its neighbours, bu t inside 

the com putational dom ain, as shown in figure 3.15.

A special “rad ia ting” tem plate  equation 3.27 is then constructed  including only 

outw ard propagating directions,

p  =  Hradl- (3.41)

The pressure a t the  subject rad ia ting  point, is then  given by

p„ =  h H + ^ p . (3.42)

N ote th a t in this na tu ra l approach, no far field property  of the rad ia ting  boundary

is im plied. For a two dim ensional problem  of a piston in an infinite wall [221], they

obtained  good results using this technique.

In principle, the directions of the plane waves may lie in the entire angle subtended 

by the  physical dom ain (—7r/2,7r/2 in the figure 3.15), as they will be all rad ia ting
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Figure 3.15: Illustration of the “natural” radiation boundary condition implemen

tation.

outward from the boundary. It will be seen in the subsequent sections, however, 

th a t the overall convergence of the method is particularly sensitive to the way these 

directions are distributed.

An alternative, “non-natural” approach, is to use the specific acoustic impedance of 

freely propagating plane waves ( “poc” or “plane wave dam per” ) defined as

d p { x > ’ ) p q u j  ^
). (3.43)

where x** is any point laying on the radiating boundary, n  is the normal outward 

boundary and po is the air density. For a plane wave of the form p =  with

propagating direction d, we have

dp
—  = —Lk{d ■ n)p  =  — ikp cos 0, (3.44)

where B is the incidence angle of the plane wave at the boundary surface. The
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specific acoustic im pedance Z  in equation 3.43 then results [222]

Z = ^ .  
cos 9

(3.45)

Since the angle of incidence 9 in equation 3.45 is not generally known in advance, a 

normal incidence angle, i.e. Z  =  poc, is usually assumed. This approxim ation, which 

is strictly valid only for plane waves propagating normal to the boundary, returns 

nonetheless a robust equation system  which appears to generate stable solutions  

over the entire frequency range.

Furthermore, its im plem entation is straightforward and follows a sim ilar procedure 

as described previously for the Neum ann condition im plem entation. Thus, to  im 

plement relationship 3.43 at a face (figure 3.14), equation 3.27 is augm ented for the 

half tem plate to

/  .T \
T ^^aug'y)0 ,   .............

\ ' -  /  \  J

where n ,̂, is the direction of the outward normal at the boundary point 

After pseudo-inversion and partitioning, the tem plate 3.46 then reduces to

Po =  h (H +

(3.46)

(3.47)

The deviation from the normal incidence approxim ation, results in spurious waves 

reflected back to the dom ain. The m agnitude of this error depends on the angle 

between the direction of the radiating wave q  and the boundary normal n

£'2 =  11 — cos ^(n • d / | |n | |  • ||d | (3.48)

where || • || denotes vector norm.

Meshing can usually be formulated to ensure that the far field solution approxim ately  

propagates normal to the radiation boundary. In this case, the degree of error 

incurred will be slight. W hen this condition can not be satisfied, however, the error 

of the numerical solution can be significant.
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To restore the accuracy of the solution, a simple iterative procedure is proposed here. 

Once the  solution has been calculated using a norm al incidence approxim ation (by 

augm enting H as in equation 3.46), we may find the am plitudes of the  in terpolating  

plane waves a t any point in the dom ain as

where the  com ponents of the colum n vector p  are the calculated pressure values 

of the neighbouring nodes. For boundary points, p  has a dim ension corresponding 

to  h a lf/q u a rte r/e ig h t portions of the com putational cell for face/edge/corner. Note 

th a t  7  has always th e  sam e dim ension for any point in the domain.

T he pseudo-inversion process selects the com bination of in terpo lating  plane waves 

th a t  gives the least energetic solution. Thus, for points laying in a rad ia ting  bound

ary, the m axim um  com ponent of the vector 7  in equation 3.49 is given by the 

in terpo la ting  plane wave travelling a t the m inim um  distance from the  actual wave 

a t th e  boundary, figure 3.16.

7  =  H+p, (3.49)

k

k

max

in c iden t
w ave

Figure 3.16: Incident wave a t the boundary.
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Denoting the m axim um  am plitude by ^max  ̂ and dmax the propagation vector of the 

associated interpolating plane wave, the previously assumed normal incidence angle 

may be now changed according to cos“ ^(n • d„ iax /l|n || • |ldma2:||). The problem may 

then be solved again with the corrected incidence angles. Though this process may 

be repeated several tim es, one iteration gives in general satisfactory results, with  

little  improvem ent observed for further iterations.

It should be noted that th is iterative procedure, will not work in the case where 

there are two or more dom inant wave directions propagating across the boundary.

3.4.4 C om bination/corners

The Neum ann and radiation boundary condition procedures outlined in the previous 

sections, can be readily com bined should more than one restrain need to be imposed  

at the boundary points, such as may occur at corner points.

If a “poc” approach is used for the radiation boundary condition, then equations 3.37 

and 3.46 may be used in conjunction to augm ent the tem plate m atrix H  according to 

the normal directions. For the natural radiation boundary approach, first a m atrix  

radiating tem plate H^ad is constructed from the correspondent outward directions 

only, and then augm ented using relationship 3.37.

3.4.5 Numerical exam ple

In order to  dem onstrate the boundary condition im plem entation, a three dim ensional 

rectangular dom ain w ith an oblique ending, illustrated in figure 3.17, was m odelled.

T he m esh was set using 27 nodes in each cell w ith a m axim um  nodal spacing of 

0.05m  along the com putational cell edges and 0.087m  along the diagonals. Thus, 

the highest m odelling frequency was placed in the range 1963-3400Hz, assum ing a 

value o f 340m /s for the sonic speed c.

Two excitation  scenarios were considered, a propagating plane wave along the do

m ain (duct problem) and a spherical wave propagating in free-field condition. To
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Figure 3.17: Test model.

implement the natural radiation boundary condition, as originally proposed by 

Caruthers et al. [7], a set of outward propagating directions for the radiating face(s) 

must be determined. In theory, any outward direction can be used. However, after 

experimenting with different outward vector direction arrangements, it was found 

tha t the distribution of these vectors has an im portant influence on the overall con

vergence of the wave expansion solution.

For illustration purposes, the performance of two different outward vector arrange

ments is shown below. The directions in the first set, denoted by SE T l, were ob

tained from the outward directed vectors in the Fuller geodesic dome (figure 3.12). 

The second set, denoted by SET2, is given by 49 directions which fall within an 

optimised 82*̂  cone normal to the radiating boundary, as shown in figure 3.18. Note 

th a t the directions are not uniformly distributed inside the cone, but grouped in 

three cones of 16 directions each with an angle difference of 3.75° between them. 

These directions were determ ined empirically, by modifying the angles of the cones 

until a good convergence was obtained for a wide range of frequencies.
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Figure 3.18: Optimised radiation vector cone.

Finally, a non-natural approach was implemented and the obtained results

were compared to those given by the natural method, by analysing the accuracy of 

the solution and conditioning of the system for the frequencies tested.

3.4.5.1 Plane wave: duct problem

An incoming plane wave (Dirichlet condition) was assumed at the flat end, Neumann 

( |^  =  0) conditions were applied on the domain sides and free radiation condition 

applied to the oblique face. The maximum error was then calculated as

Emax =  max{p{x) -  P(x)}, (3.50)

where p(x) is the wave expansion solution and P(x) =  P{x) =  is a plane

wave of unit amplitude incoming at the flat end (x =  1 plane), and propagating 

towards the the oblique face.

As shown by the maximum amplitude error, plotted in flgure 3.19(a), the natural
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approach using the optimised cone vector configuration (SET2) largely outperforms 

the SE Tl given by the outward bucky ball vectors in the entire range of frequencies 

tested. A loss of stability is displayed at lower frequencies, as the number of nodal 

points per wavelength ratio (ppw )̂ increases, figure 3.19(b). This ill-conditioning, 

wiich is similar for both outward configurations, seems to be inherent to the formu

lation itself without a m ajor effect in the accuracy of the solution.

In comparison to the plane wave dam per technique, the optimised natural approach 

(SET 2) is also more accurate particularly at mid-frequencies (see figure 3.20). 

However, despite the solution in the pqc approach also becomes more ill-conditioned 

a t lower frequencies, this method gives a significantly more stable solution in compar

ison to the natural scheme, with and without the iterative incidence angle correction. 

Note that, at lower frequencies, the error for the natural and the p^c formulations 

becomes comparable. For illustration purposes, the real pressure distribution for 

500//z and 2500i/z using the optimised cone (SET2) and the pqC approach with 

the iterative incidence angle correction procedure, is shown in figures 3.21 and 3.22, 

respectively.

Note tha t, despite the correction of the incidence angle improves the accuracy of 

the PqC formulation, some spurious reflections from the oblique face still affect the 

pressure distribution, particularly at higher frequencies.

3.4.5.2 Point source

A Dirichlet point load was applied at one corner, Neumann conditions ( ^  =  0) were 

applied on the adjacent faces and free radiation conditions imposed on the remaining 

three faces. To apply the radiation boundary condition, the natural radiation for

mulation using the natural SET2 optimised cone distribution and the pac approach 

with 1 iteration for the correction of the incidence angle were implemented.

As shown in figure 3.23, and as previously observed for the duct problem (figure 

3.20(b)), the pqc and the natural (SET 2) radiation formulations become increasingly 

unstable at lower frequencies. Nonetheless, the numerical solution seems to be
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Figure 3.19: Performance of the “natural” solution approach. Duct problem, (a) 
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Figure 3.23: Condition number of the optimised (SET 2) natural approach vs the 

poc (1 iteration) for the point source problem.

indifferent to the ill-conditioning, as shown in figure 3.24 for the pressure distribution 

at bOOHz.

Note that, since in this case the direction of propagation of the spherical wavefront 

is closer to the direction of the normal boundary vector at the radiating faces than 

in the duct example, the use of a poC radiating approach gives comparable results 

to that obtained with the natural method. This is further illustrated in figure 3.25, 

which shows also a good agreement in the pressure distribution for 2b00Hz (2.8 

edge points per wavelength for h =  0.05m nodal spacing) for both methods.
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3.5 D iscussion

In this chapter, the interpolation properties of the GFD and WED methods are 

discussed. By using a simple example, the accuracy of the interpolation formulation 

in these approaches was observed close to the optimal in terms of the nodal points 

per wavelength theory of signal processing.

The plane wave expansion has some implementation advantages over the Green’s 

function discretisation, since no radial source location needs to be determined before

hand further avoiding the use of singular sources. Moreover, no penalty is observed 

in the accuracy of the interpolation procedure. In comparison to a standard finite 

element scheme, these two approaches have an overwhelming superiority in the so

lution error, even for wave numbers th a t are well within the resolution of the finite 

element method.

Dirichlet and Neumann boundary conditions can be readily implemented within the 

formulation of the WED method. For the implementation of the radiation boundary 

condition, the original formulation as proposed by Caruthers et al. [7,221], allows 

the use of outward plane waves without any far field approximation. This approach 

satisfies the radiation condition “naturally” , within the formulation of the WED 

scheme.

It has been found, however, th a t these outward directions should not necessarily be 

evenly distributed. Following a trial-and-error procedure, an optimised cone of 49 

directions tha t gives accurate results for a wide range of frequencies was determined. 

In addition, a non-natural p^c plane wave dam per approach, has also been proposed. 

For a plane wave propagating along a duct, the natural approach was shown to 

give a better performance in comparison to the poC formulation, in particular at 

higher frequencies. However, for a radiating spherical wave the error difference 

between these two approaches at higher frequencies becomes closer. Furthermore, 

the natural approach was shown to diverge in the point source example at very low 

frequencies, though convergence was restored after slightly modifying some of the
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directions in the optimised cone.

These formulations have associated an increasing ill-conditioned system as the nodal 

points per wavelength ratio increases. This effect is more significant in the natural 

(optimised cone) approach. Remarkably, the numerical solution remained largely 

unaffected by the bad conditioning of the system, giving accurate solutions even 

when the system may be regarded as unstable. This property is also found in 

the Trefftz-type boundary element formulations, i.e. direct and indirect Trefftz 

methods, the Method of Fundamental Solutions (MFS) and in the Wave Based 

Method proposed more recently by Desmet [164]. The ill-conditioning in these 

schemes is given by the fact that the plane wave functions set, used for the field 

variable expansions, consist of non-orthogonal functions, which are globally defined 

in the entire continuum domain [126].

However, for some “mildly” ill-conditioned problems, the numerical solution vector 

may still be accurate if the system satisfies the so-called Picard conditions [223]. 

Consider a singular value decomposition (equation 3.17) of the overall assembled 

stiffness matrix K with dimension (n x n), i.e.
n

K =  U S V "  = J2u^■a,■ Vf,  (3.51)

where S  is a diagonal matrix of singular values Ui and Vi are the i-th column 

vectors of the orthonormal matrices U and V, and where the superscript ^ denotes 

Hermitian transpose.

The solution to the equation system (equation 3.24) K p  =  f, may be thus written 

as

The Picard conditions state that accurate numerical solutions for ill-conditioned 

problems can only be obtained,

• if the difference between the amplitudes of two consecutive singular values 

cTj — sorted in descending order sequence, becomes only large at the end 

of the sequence.
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•  and if the coefficients =  Ui ■ i  are sm aller or a t least not very much larger 

than  their associated singular values Gi.

The first 1000 largest singular values for the W ED  solution of the duct and point 

source problem s, using the optim ised directional cone, are p lo tted  in figure 3.26. The 

excitation frequency (freq= 108H z^k= 0 .1 ) corresponds to  th a t which gave the  worst 

conditioning of the  system  for the duct and point source examples. Since it is clear 

th a t the decay of the  singular value curve is very sm ooth and since the coefficients 

j3i are much sm aller than  the associated singular values, the  wave expansion model 

satisfies in general bo th  Picard conditions.

Finally, it should be m entioned th a t the overall assembled system  m atrix  K  in 

the W ED  m ethod is frequency dependent. Thus, the calculation of the undam ped 

n a tu ra l frequencies and mode shapes of acoustic system s (as well as elastic systems 

as will be shown in chapter 5) m ust be found com puting the m inim um  determ inan t 

values of K , and resolving the problem for the frequency range of interest. This 

m ay represent, in principle, a disadvantage in com parison to  s tandard  full dom ain 

discretisation m ethods, such as the FD and FEM , in which the final (undam ped) 

system  of equations is independent of the excitation frequency. The calculation of 

the  na tu ra l frequencies then reduces to  an eigenvalue analysis problem.

However, due to the  poor accuracy of these approaches, the resulting final system  a t 

higher frequencies is very large, rendering the com putation  of the eigenvalues itself 

a very expensive process. The efficiency of the W ED  in com parison to  s tandard  

m ethods will depend, ultim ately, on the com putational cost of solving the same 

problem  several tim es w ith fewer nodes or only once for a significantly larger system  

w ith the  associated cost of the  eigenvalue analysis.
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Figure 3.26; Picard analysis using the optimised directional cone, 108Hz. (a) duct 

problem, (b) point source problem.
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Chapter 4 

Application of the wave expansion  

m ethod in acoustic problems

4.1 Introduction

In this chapter, the wave expansion method, discussed in detail in the preceding 

sections, is applied to several steady-state acoustic problems in two and three di

mensions. To illustrate the adaptability of the interpolation formulation, different 

conditions are applied not only at the boundaries, but also within the continuum 

domain.

A conceptual traffic noise problem is modelled in section 4.2.1. The performance of a 

parallel barrier interference system is briefly discussed. In section 4.2.2.1, the WED 

formulation is readily modified to include uniform and non-uniform flow conditions 

within the continuum domain. A monopole pressure field around a Joukowski aero

foil, subjected to a non-uniform flow is also investigated. Finally, in section 4.3, the 

use of 3D free tetrahedral meshes is explored. A schematic turbofan model subjected 

to a uniform Mach 0.3 flow is then modelled.

In order to dem onstrate the accuracy of the technique, all the validation examples 

included here were solved using a nodal point per wavelength ratio between 2 and
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3.5^

4.2 Two dim ensional exam ples 

4.2.1 Traffic noise barriers

Figure 4.1 shows the possible significant sound propagation paths over fiat reflective 

ground radiating from a line or point source S' to a receiver position R. In the

Receptor

R

Source

d

Figure 4.1; Direct and reflected rays over flat reflective ground.

absence of any obstacle the noise level at point R  resulting from a traffic source at 

S  is the sum of the contributions from the direct path S R  and the reflected path 

SGR.  To illustrate this effect, a monopole source radiating in free-field conditions 

over a flat reflective ground {dp/dn =  0), was modelled (figure 4.2). The acoustic 

source was located at Im  from the bottom face. As shown in figure 4.3, the direct 

and reflected rays interfere over the free field, producing regions of higher and lower 

pressure level.

When a barrier is placed between source and receiver, as shown in figure 4.4, the 

direct contribution is replaced by the diffracted paths over the top of the barrier, 

^An illustration of the computational implementation of the method is given in the Appendix

C
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Figure 4.2: Schematic representation of the problem.

one of which involves a reflection from the ground plane. The interfering reflected 

path SGR, shown in figure 4.1, is prevented by the barrier.

The pressure field distribution for the point source previously depicted in figure 4.3, 

located at 3m from a perfectly reflective barrier of dimensions 3 x 0.4m, is shown 

in figure 4.5. At lOOOHz, the effectiveness of the barrier to produce a shadow zone 

shielding the receiver from the direct noise is increased. It should be noted th a t 

this may not be necessarily the case in all practical situations, as local resonant 

(interference) efTects may affect the overall performance of a barrier.

A conceptual traffic noise problem was then modelled, in which a point source 

simulating a passing vehicle was located between two vertical, perfectly reflective 

barriers of 3 x 0.4m erected on both sides of the road. An schematic of the problem 

is shown in figure 4.6.

The road, barriers, footpath and building were assumed perfectly reflective, whilst 

radiation conditions were imposed on the remaining boundaries. As shown in flgure 

4.7, the reflective condition of the barriers produce a local stationary wave effect, 

giving significant activity between the barriers. The pressure distribution a t 800Hz,
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(b)

Figure 4.3: Pressure distribution in dB scale for a monopole source radiating in free 

field condition with reflective ground, (a) 800Hz. (b) lOOOHz.
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Receptor

Source

Barrier

3

Figure 4.4; Direct, diffracted and reflected rays over a barrier.

figure 4.7(a), shows a similar standing wave effect betw^een the second barrier (B) 

and the building. The reflections from the first barrier (A) reduce the effectiveness of 

the second barrier (B), making the shadow zone hardly noticeable. As the frequency 

increases, however, the effectiveness of the second barrier (B) improves, shielding 

the noise and producing a clear shadow zone between the barrier and the building, 

as shown in figure 4.7(b).

It should be noted that the boundary conditions can be readily modified to include 

absorbent material in the barrier. In addition, different (more efficient) barrier 

geometries could be also modelled [224], with the possibility of increasing the effec

tiveness of the barrier by considering active control solutions [225].

4.2.2 Radiation problems within inhomogeneous media

4.2.2.1 H om ogeneous and inhom ogeneous flow condition

By using interpolating plane waves with different velocity of propagation, the WED 

formulation may be efficiently used to model acoustic problems subjected to inho

mogeneous flow' conditions within the computational domain.

For an arbitrary directed flow of Mach vector M, the pressure at a general field point
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Figure 4.5: Pressure distribution in dB scale for a monopole source, (a) 800Hz. (b) 

lOOOHz.
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Reflected 
ray path

Direct ray path

Diffracted 
ray path

Reflected 
ray path

shadow
zoneTraffic source

' 6 I 6.6 '

Figure 4.6; Illustration of a conceptual traffic problem. — direct and diffracted ray 

p a th s .  reflected ray paths.

xo may be approximated by a combination of uniformly distributed plane waves

= (4.1)
n = l

where i = \ / ^ ,  d„ is the directional vector of the interpolating plane wave, and 

7„ is the am plitude of the wave.

Consider a monopole source radiating in free field condition within a square domain 

of 20m edge length subjected to a uniform flow of M  =  =  0.5, as shown in

figure 4.8. The domain was uniformly meshed using nine noded square cells with a 

nodal distance of 0.1m along the edges and 0.14m along the diagonals.

Since the flow vector field has only one component, then

(1 — M  • d) =  (1 — O.5cos0),

where 6 is the plane wave propagating angle. Equation 4.1 may thus be re-written
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Figure 4.7: Pressure distribution in dB scale for conceptual traffic problem, (a) 

800Hz. (b) lOOOHz.
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M = 0,5

20

Figure 4.8: Point source in free field condition subjected to a =  0.5 flow.

as
N

E / ____
7 „ e ^  1 - 0 . 5 C O S « ;

n = l

t f c d n - X Q  ^

(4.2)

An illustration of the concept for two interpolating plane waves, is shown in figure 

4.9. A com putational tem plate may then be formed by applying the same procedure

Figure 4.9: Illustration of the approximation used for a M  =  =  0.5 flow.
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to each neighbouring point, i.e.

PO =  h H + p , (4.3)

where

Aj = (4.4)

and

(4.6)

For this example, a SOOifz excitation frequency was assumed. In the static case, 

the point per wavelength ratio (ppw) would increase to 5.6 - 4 according to the 

nodal spacing. However, under the present flow condition, the frequency of an 

interpolating plane wave propagating at 0 =  0, yields

where oj is the circular frequency, and c is the sound speed. For this wave, the accu

racy range of the wave expansion method considering the nodal edge and diagonal 

cell spacing is 2.8 - 2 points per wavelength. The numerical solution, depicted in 

figure 4.10, clearly shows the effect of the flow in the contraction and stretching of 

the w'ave fronts at the left and right hand sides of the source, respectively, known 

as the Doppler effect.

The approximation given in equation 4.1 may be readily applied for modelling ra

diation and scattering of acoustic waves within inhomogeneous flows [156]. For 

illustration purposes, consider a Joukowski aerofoil subjected to a flow of 7bms~^ 

with an incidence angle (equivalent elevation of the aerofoil) of 10°, figure 4.11. A 

detailed view of the vector flow field at the front edge and trailing edge of the aerofoil 

is given in figure 4.12.

Using a quadratic (non-uniform) radial mesh as shown in figure 4.13, the acoustic 

pressure distribution produced by a monopole source radiating at lOOOHz was mod

elled. A radiation condition was applied on the external (artificial) computational

( 1 - M )  c ( l - 0 .5 )  c/2
k 27t300\ 27t600 (4.6)
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[m]

Figure 4.10: Point source subjected to a =  0.5 homogeneous flow. Linear 

pressure distribution at 300Hz.

boundary, whilst Neumann condition ( ^  =  0) was applied on the surface of the 

aerofoil. Note that, the boundary normal vector n is not uniquely defined at the 

trailing edge. Though there exist several possibilities to circumvent this drawback 

(as, e.g., truncating the geometry of the aerofoil at the trailing edge, in order to ob

tain a flat face with a well determined normal vector), for the present development, 

the direction of the normal was set according to the direction of the flow field at 

this point.

At each nodal point in the mesh we have a difl’erent Mach vector, either in direction 

and/or magnitude. Following the same procedure as applied for the homogeneous 

flow problem, the pressure value at the central point in the computational cell, may 

 ̂ be then approximated in terms of the known pressure at the neighbouring points,

! equations 4.1-4.5, each one associated with a (possible different) Mach vector. That
] 

i
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Figure 4.11: Flow around a Joukowski aerofoil. Full domain view.

IS,

P o - h H ^ p ,  (4.7)

where
/ij =  (48)

j = i

and
^  ,  i f c d j - X j  ^

=  (4.9)
»=1 j  =  \

It was found, however, that the numerical solution does not converge to the desired 

value unless the Mach number in the surrounding points is assumed constant. The 

magnitude and direction of the Mach vector at the central node in the computational 

cell, Mo, was then used to construct the template matrix H , as

(4.10)
i=l j = l

Thus, the maximum distance between the discretisation points, must be such that 

the variation of the flow remains relatively constant within the computational cell. 

This is easily achievable should the variation of the flow be sufficiently smooth. As
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(a)

(b)

Figure 4.12: Flow around a Joukowski aerofoil, (a) Front edge, (b) Trailing edge.
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Figure 4.13; Mesh grid and point source location for a Joukowski aerofoil.

the inhomogeneities of the flow increase, the mesh must be refined accordingly. For 

higily inhomogeneous flow condition, this may result in a more stringent compu

tational limitation than the one given by accuracy of the method, and gradients of 

the Mach vector should be incorporated into the formulation [156].

Tht numerical solution for the real linear pressure distribution at lOOOHz is shown 

in fgure 4.14. Despite the Mach gradients in the flow vector field, the numerical 

solution was found to converge for a ratio of less than 3 points per wavelength.

The shielding effect of the aerofoil, even in the presence of the flow field, is better 

illustrated using a dB  scale, as shown in figure 4.15. For comparison purposes, the 

homogeneous solution with M  =  0 is plotted in figure 4.16. Note that, due to the 

eff’ect of the flow, the shadow region underneath the wing is reduced and displaced 

towards the trailing edge in comparison to the static solution.
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Figure 4.14: Real pressure distribution assuming a nonuniform flow condition.

4.3 Three dim ensional exam ples 

4.3.1 Tetrahedral meshes

In general, the geometry of the problem for most real life applications may have a 

complex shape including voids in the domain. Because of the limitations imposed 

by standard meshing tools, it is not always possible to perform a quadrilateral (2D) 

or hexahedral (3D) grid mesh in these cases.

For two dimensional problems, this drawback may be circumvented by conveniently 

dividing the original domain into more geometrically simple subdomains and mesh

ing each subdomain separately. However, for three dimensional problems this pro

cess can be significantly more cumbersome. To circumvent this problem, a free 

tetrahedral mesh which may be applied to more general geometries, can be used. 

Since the formulation of the wave expansion method is not restricted to any particu

lar meshing geometry, the use of tetrahedral computational molecules will then only
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Figure 4.15: Logarithmic (dB) pressure distribution assuming a nonuniform flow 

condition.

Figure 4.16: Logarithmic (dB) pressure distribution for the static (no flow) condi

tion.
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modify the number of surrounding points in the interpolation process. Furthermore, 

since the maximum number of surrounding points for free tetrahedral meshes does 

not usually exceed 18, a significant reduction in computation time, particularly in 

the pseudo-inversion process, may be additionally obtained.

Consider, for example, a discretisation of a conical horn of length 0.7m and radii 

0.4m and 0.2m, respectively, using tetrahedral elements with a maximum edge length 

of 0.05m, as shown in figure 4.17.

0.4 

0.2

1 ! 0

- 0.2

- 0.4 
- 0.5

An incoming plane wave of 1600//z was assumed at one end (Dirichlet condition), 

whilst radiation and Neumann ( ^  =  0) conditions were applied at the other end 

and lateral face, respectively. The real pressure distribution is shown in figure 4.18.

Note that, since the fractional change in the cross sectional area of the horn becomes

Figure 4.17: Tetrahedral mesh of a frustum
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Figure 4.18; Real pressure distribution for a 1600Hz plane wave propagating along 

a linear horn.
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Figure 4.19: Real pressure distribution for a 500Hz plane wave propagating along a 

linear horn.
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comparable to the wavelength, diffraction and reflection effects occur. A phase dif

ference is observed between the axial propagation and an annular region closer to 

the cross sectional boundary face. The pressure distribution then becomes increas

ingly non-uniform as the wave propagates along the horn. For lower frequencies, the 

fractional change in the cross sectional area in relation to the wavelength becomes 

smaller, giving a more uniform wave across the horn, as illustrated in figure 4.19 for 

a 500/fz incoming plane wave.

4.3.2 Turbofan noise

The geometry used for the conical horn, was conveniently modified to represent a 

conceptual turbofan engine problem by dividing the original volume into an inlet 

volume and an exhaust volume, as shown in figure 4.20.

The noise produced by the fan was modelled as a Dirichlet condition, as illustrated. 

Neumann condition {dp/dn — 0) was applied to the turbofan wall and the exhaust 

face. A computational domain was then determined embedding the turbofan in a cu

bic computational volume of 8m^, as shown in figure 4.21. The external boundaries 

of the domain were subjected to radiation condition.

The inlet duct and the exterior computational volume was meshed using free tetra

hedral elements with a maximum edge spacing of 0.1m giving a total of 10,147 nodes 

and 52,076 elements. An illustration of the mesh at the axial plane of the turbofan 

is given in figure 4.22.

Two scenarios were considered, namely, a static solution with no flow and applying 

a uniform flow of Mach 0.3 at 0° incidence angle. In both cases, a lOOOHz excitation 

frequency was considered. The static solution is plotted in figure 4.23(a) and 4.23(b) 

for the linear and dB scaled pressure distribution, respectively.

Note that, in the static case, the turbofan acts like a horn transducer, redirecting 

the acoustic energy in the axial direction of the fan, where the maximum pressure 

levels are found. When the flow condition is applied, the frequency of the outgoing
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3p/3n = 0

outgoing wave 

(Dirichlet condition)

exhaust duct 
(void volum e)

Figure 4.20: Schem atic tu rbofan  model.

M = 0.3

void

Figure 4.21: C om putational dom ain.
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[m]

Figure 4.22: Domain discretisation (transversal slice view).

waves it the turbofari inlet is increased as expected. The horn-like radiation pattern 

of the turbofan in the static case is distorted by the flow, as shown in figure 4.24, 

with nore activity in the regions above and below the turbofan.

An infsresting effect of the flow in the pressure distribution is also found at the 

exhaua face of the turbofan, where some sort of constructive cancellation occurs. 

As a onsequence the pressure level in this region is significantly higher than that 

obtaind in the static case.
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Figure 4.23: Static solution (transversal slice view), (a) linear pressure, (b) dB scale.
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Figure 4.24: Uniform Mach 0.3 flow solution, (a) linear pressure, (b) dB scale.
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4.4 Discussion

In this chapter, the flexibility of the wave expansion discretisation method (WED) to 

model linear homogeneous and inhomogeneous acoustic problems, was investigated 

with several applications in two and three dimensions. These problems included 

uniform and non-uniform flow field conditions within the continuum domain. In ad

dition, non-uniform quadrilateral meshes in 2D and 3D and free tetrahedral meshes 

in 3D were also implemented.

The implementation of the WED method for these applications is not only remark

ably simple, but also, no significant penalty was observed in the accuracy of the 

method. A point per wavelength ratio between 2 and 3.5 was used in all these 

examples.

The use of free tetrahedral meshes in 3D applications gives rise to the possibility of 

applying the WED approach to more general geometries. The formulation of the 

method need not be modified, as it is completely general to any nodal distribution. 

In addition, since for tetrahedral meshes the number of surrounding nodal points 

is in general less than th a t for hexahedral meshes, the computation of the pseudo

inverse is faster, reducing the overall computation time.
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Chapter 5 

The wave expansion m ethod in 

elastodynamics

5.1 Introduction

The idea of using fundamental solutions of the governing differential equation as in

terpolating functions is not restricted exclusively to the acoustic case. Any problem 

in which the governing equations may be locally satisfied by a combination of plane 

waves (or any other suitable solution like, e.g. Green’s functions) may, in principle, 

be solved using a similar approach.

Linear elastodynamics problems fall into this category. T hat is, the general dis

placement motion may be decomposed into two uncoupled wave equations, thus 

amenable to be solved by a WED scheme.

Elastic wave modelling represents, even to a greater extent than acoustic analogous,

I  a m ajor challenge to actual computational techniques. Several reasons for this could 

be mentioned, chief among them are the more intricate nature of the elastic wave 

propagation and the high computational cost required to solve even small problems. 

It is therefore of great interest to investigate the performance of the wave-based 

interpolation technique in the elastic case, as it is naturally well-posed to improve
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the accuracy of current available methods. This has been already dem onstrated by 

Rice & Ruiz [158] in the analysis of a square plate vibration under clamped and 

simple supported boundary conditions, obtaining an average accuracy of 4 points 

per wavelength.

In the following section, a detailed description of the formulation of the wave ex

pansion method applied to the simulation of isotropic elastic waves in two and three 

dimensions is given. Though the method follows the same basic principles described 

previously for the acoustic case, it is re-written here in the context of the elastic 

wave modelling. The details of the implementation for two and three dimensions 

(including the square plate analysis), validated with the corresponding test case 

examples, is then outlined. The results obtained are discussed in the final section.

5.2 General form ulation of the W ED m ethod

In analogy with the formulation of the WED method outlined in the preceding 

sections, we seek to solve the governing differential equations by a finite difference 

discretisation. T hat is, to relate the unknowns at each discrete point in the domain 

to the values at a selected set of neighbouring points.

This interpolation process is based on fundamental solutions of the governing differ

ential equations. Unlike the acoustic case, for elastodynamics and plate vibration 

analysis problems the generating functions are given as a combination of two types 

of plane waves. A detailed discussion on the implementation of the wave expansion 

m ethod for two and three dimensional elastic problems, is given in the subsequent 

sections. The remaining details of the procedure which follows are otherwise similar 

as the acoustic WED, with the obvious exception of the boundary conditions. 

Consider for simplicity, a two-dimensional isotropic homogeneous elastic domain Qg. 

A com putational cell may be determined considering a general field point Xq and a 

finite number of surrounding points Xj, as shown in figure 5.1.
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Figure 5.1: General computational molecule.

At each point x =  (x, y), the displacement vector u has two degrees of freedom (dof)

(5.1)

Provided that we have a set of functions that satisfy exactly the governing differential 

equations in Qm (see figure 5.1), we may relate the unknown displacement Uq at Xq, 

in terms of the known displacement values Uj at the surrounding points x  ̂ in the 

cell.

As discussed in the implementation of the WED for two- and three-dimensional 

elastic problems in the following sections, these functions may be conveniently ex

pressed in terms of two types of uniformly distributed plane waves. Assuming that 

a number m  of such plane waves are used, the displacement Uq at the point xq may 

be expressed in vector notation as

uo =  h(xo)7 , (5.2)

where, h  is a 2 x m matrix and 7  is a m x 1 column vector representing the strengths 

of each wave. If we apply the same approximation to the other n nodal positions in
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the cell, we obtain

u =  H 7 , (5.3)

where the 2 n x m  m atrix H  is formed from individual matrices h  evaluated at points

X i .

Imposing the condition m > n and then substituting equation 5.3 into 5.2 yields the 

computational tem plate

Uo -  h(xo)H+u =  0, (5.4)

where superscript denotes the Morse-Penrose pseudo-inverse operation. Thus, 

the locally least L^-norm solution for 7  is obtained whilst still ensuring th a t the 

expansion in equation 5.2 gives consistent results at all the other nodes in the tem 

plate. Therefore, one or more boundary conditions may additionally be imposed by 

augmenting the row count of H  prior to inversion.

After pseudo-inversion, the augmented matrix may be left-right partitioned

into and Then, a modified tem plate with a forcing right hand side

may be established as

Uo -  h(xo)(H+„g)LU =  h(xo)(H+ug)Rf, (5.5)

where f  is a vector with the corresponding loading values (not necessarily restricted 

to the boundary points).

In addition, Dirichlet constraints may be directly imposed on the appropriate degrees 

of freedom in the overall assembled stiffness matrix. Once the tem plates have been 

formed, an overall sparse equation system

K u  =  f  (5.6)

may be assembled with each tem plate contributing two rows.
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5.3 A pplication to linear elastic wave analysis

5.3.1 Description of the physical problem

Let us consider only elastodynamics problems in which body forces are absent and 

wave motions are generated by excitation of the external boundary of a body. In this 

case, the displacement equations of motion form a system of homogeneous partial 

differential equations, given by (see Appendix B)

/iV^u +  (Ae +  /^)VV • u =  pii, (5.7)

where // and Ag are the Lame’s elastic constants, u  is the displacement vector and 

p is the material density.

It can be shown th a t equation 5.7 governs two fundamentally different types of 

displacement waves, given by [226]

V^u =  i i / c |  (5.8)

and

V^u =  u /c4 , (5.9)

wliere
/ A e +  2 / /

Cl =  W  —  (5.10)

and

c .  =  (5.11)

are the corresponding speed of propagation.

Equation 5.8 is a wave equation for u  governing waves in which deformation consists 

of volume change only, i.e. dilatational waves. On the other hand, equation 5.9 is a

wave equation for u  governing waves in which deformation consists of rotation only,

i.e. equivoluminal waves (volume change is zero).

Thus, the nature of the displacement motion is the resulting combination of these

two types of waves propagating at different speed. To illustrate the concept, consider

a three dimensional plane wave propagating along the positive X\ axis, figure 5.2.
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X
3

Figure 5.2: Plane dilatational and equivoluminal displacement waves

As shown, U] is a plane dilatational wave propagating w'ith speed c^, and is directed 

along the propagation direction, or normal to its plane. U2  is a plane equivoluminal 

wave, travelling with speed c^, and directed along the X2 axis. Finally is also a 

plane equivoluminal wave, travelling with speed c t, but directed along its plane in 

the X3 direction.

It should be noted that the components of the displacement vector, form a system of 

waves that propagate in the X\ direction, but are independent of each other^ These 

waves are only coupled at the boundaries of the continuum domain by the boundary 

conditions.

If we assume that only time harmonic displacement waves of the form

are present, w'here l — \ / ^  and to = 2-nf is the circular frequency, then equations 

5.8 and 5.9 become the Helmholtz equations

u(x, t) =

V^u(x) +  A:|u(x) =  0 (5.12)

and

V^u(x) +  k^u{x) =  0, (5.13)

^For plane X \X 2  horizontally oriented, these waves may be identified as the compressional (P) 

horizontal shear (SH) and vertical shear (SV) seismic waves, respectively.
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where k i  =  o j / c i  and  k r  =  ui/ c t  are the d ila ta tional and equivolum inal wave 

numbers, respectively.

For the purpose of th is study, a convenient solution to  equations 5.12 and  5.13 is 

given by plane waves propagating  a t and c t  (though o ther fundam ental solutions 

are also possible as, e.g.. G reen’s functions). We m ay therefore w rite

u (x ) =  7  (5.14)

and

u (x ) =  7  (5.15)

where i  — 7  is the streng th  of the plane wave w ith d irectional vector q

and h i  =  uj/ c l , =  uj/ c t  are the d ila ta tional and equivolum inal wave num bers, 

respectively.

Given an isotropic elastic dom ain VLe  w ith boundary F £: =  F c U F t h e  displacem ent 

field governed by the dynam ic equations 5.12 and 5.13 is uniquely defined, provided 

th a t one boundary condition is specified on F e - In general, two boundary  conditions 

are considered, nam ely

Clam ped condition

Free condition

u(xfc) =  0, Xfc e  F c , (5.16)

=  0, Xfc G F f , (5.17)

where cr„.and are the norm al and tangential edge stress com ponents, respectively. 

By use of the stress-strain  tensor relationship [227], conditions 5.17 m ay be conve

niently expressed in term s of the  displacem ent vector u  as

(2 ^ 1  +  \ e ) d u n / d n  +  A e { d u n s j d n s i  +  d U n s 2 / d n S 2 ) 

d u n / d n s i  +  d u n s i / d n  

dun/dns2 +  d u n s 2 / d n

0, xb  6  F^r, (5.18)
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where the Lame’s constants and may be expressed in terms of the material 

properties u (Poisson’s compressibility ratio) and E  (Young’s modulus) as [227]

5.3.2 Two dimensional problems 

5.3.2.1 Problem  definition

We are interested here in the plain strain elastic solution (i.e, Uz =  0) of a two 

dimensional isotropic domain subjected to boundary conditions 5.16 and 5.17.

The resulting displacement motion is then a combination of dilatational and equivo- 

luminal waves, propagating at ci  and ct respectively int the x - y coordinate plane, 

figure 5.3.

Figure 5.3: Two dimensional dilatational and equivoluminal waves.

The displacement vector Uq at a general field point Xq

E
(5.19)

" (2 +  2i-)

and
i^E

(5.20)
(1 +  z^)(l - 2 i / ) '

y

X
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may thus be w ritten  as

Uo =
cos 6 — sin 0 

sin 6 cos 9

3-tfcx,Xoq

g - t f c iX o q
(5.21)

where 9 is the angle of the propagation direction of the plane wave displacem ent.

I t is useful for the subsequent sections, to  define here the C artesian  com ponents of 

\Xi and Ur into separate  vectors as

=

cos 9 

sin 9
, W t (5.22)

5.3.2.2 N um erical im plem entation

Consider the nine noded com putational molecule shown in figure 5.4, where each 

node has two degrees of freedom given by equation 5.21.

Figure 5.4: Two dim ensional com putational molecule.

The displacem ent a t each node may then be approxim ated by a  set of y  equally 

d istribu ted  fundam ental solutions 5.12 and 5.13, i.e.

and

c o s ( ^ )  e j  = 1
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where the propagation direction vectors are given by

q; = (5.25)

E quation 5.2 then  results

Uo =  h 7 (5.26)

where
ulixo)

is a m atrix  of dim ension 2 x m, and 7  is a vector of dim ension m  x 1. Evaluating h  a t 

all the neighbouring points in the com putational molecule, we obtain  the constrain t 

equation

T he num ber of entries on H  depends on the num ber of surrounding points in the 

cell, each one con tribu ting  w ith two rows. For a 9-node tw o-dim ensional cell, for 

exam ple, H  has dim ension 16 x m.

B o u n d a r y  c o n d i t io n s

To im plem ent the  free trac tion  condition ((t„ =  r„s =  0), the m atrix  H  was aug

m ented using equation 5.18 before the pseudo-inversion operation. This requires 

evaluating the corresponding displacem ent com ponents of u l  and u t  (see figure 

5.3) along the norm al and tangential directions a t the boundary point xg . 

Consider, for exam ple, the norm al and tangential vectors of edge P 2 in the  validation 

m odel shown in figure 5.5 (section 5.3.3.1), expressed in m atrix  form as

u  =  H 7 , (5.27)

where

cos a sin a
N  =

c o s (q ; +  7t / 2 ) sin(o;-I-7t / 2 )
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The dilatational and equivoluminal displacement along the normal and tangential 

vectors is then given by

ul =  N  ■ wl (5.28)

and

ut =  N  ■ w t  (5.29)

where w l̂ and w t  are the Cartesian components of the displacement waves defined 

in relationship 5.22.

Deriving 5.28 and 5.29 with respect to N  yields

d u L  =  - U l  ■ w l  ■ l  k i (5.30)

and

d u x  =  — U t  • W l  • l kx  

where the resulting 2-by-m dimension matrices duL and d u x  are

dUL
du^jdn du^/dns  

du^Jdn du^Jdns

and

dUn
du^/dn du^/dns  

d u lJ d n  du lJdns  

The constraint equation 5.27, may be then augmented as

\

/

" 1 { ^
0 =

0 J i\  ns ' ns

(5.31)

(5.32)

(5.33)

(5.34)

where the values of and are obtained substituting equations 5.32 and

5.33 into equation 5.18 for the dilatational and equivoluminal waves, respectively. 

Thus, equation 5.5 may be written simply as

u o  =  h ( H +  ) l u . (5.35)
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In addition to im plem enting free boundary conditions by adding extra restraints 

as above, clam ped conditions were directly im posed on the appropriate degrees of 

freedom in the overall assem bled stiffness matrix.

For points with free and clam ped restraints, H  was augm ented using 5.18 and then  

direct restraint was added to both degrees of freedom.

5.3.3 Two dim ensional validation exam ple  

5.3.3.1 M odelling  details

To illustrate the im plem entation of the proposed technique in two dim ensional prob

lems, an isotropic dom ain w ith m aterial properties E  =  70G P a , u =  0.3 and 

p  =  277Qkg~^ was analysed. Thus, from equations 5.10 and 5.11, the speed of propa

gation of d ilatational and longitudinal waves is cl =  5832m s“  ̂ and Ct  — 3118m s~^, 

respectively.

As shown in figure 5.5, the geom etry of the problem is given by a polygonal shape 

of side lengths Fi =  0.6m , F 2  =  0.45m , F 3  =  0.4m  and F 4  =  0.4m , where F 2  is at 

a  =  0.464rad from the vertical axis.

The problem was solved considering the following boundary conditions:

(i) Clamped all round.

u ( x b )  =  0 , V Xb G F i  U  F2 U  F3 U  F4. (5.36)

(ii) Edge F 2  free.

u ( x b )  =  0, Xb G r i , r 3 , F 4 . (5.37)

(5.38)(^n — '^ns — 0, Xb G F2.

(iii) Edges  F 2  and  F 3  free.

u ( x b )  = 0 ,  Xb G F i , F 4 . (5.39)

(5.40)<̂ 7i — 0 ) G F2, F3.
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Figure 5.5: Two dimensional example.

To implement the free boundary condition, 5.38 and 5.40, two different formulations 

denoted here as partial edge implementation (FDp) and full edge implementation 

(FDy), were explored.

In the first test, FDp, the computational molecule for each node was constructed 

considering strictly the surrounding points in the mesh. Hence, nine noded, six 

noded and four noded cells were formed for field, edge and corner points respectively. 

Consider for illustration purposes, a corner section of the mesh as shown in figure 

5.6. To construct the local template matrix H at the upper right corner in the mesh, 

a molecule was formed considering surrounding points 13, 15 and 49. To implement 

a free boundary condition, H was augmented by adding the conditions

/ \ I  {2fi  + X e ) d u n / d n  + Xe d u n s j d n s i  \  ^ ,
-  = 0  (5.41)

\  T n s  J  \  d u n / d n s i  +  d u n s j d n  j

for points 8, 13 and 15, according to the edge (or edges for point 8) normal and 

tangential directions. Once Haug was formed, the template calculation was done 

according to equation 5.34.
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Figure 5.6: Boundary condition im plem entation.

In the second test, F D /, the local tem plate  m atrix  H  was constructed  considering 

nine noded com putational cells for every discretisation point in the mesh. Hence, 

for node 8 in figure 5.6 a tem plate  was formed using nodes 12, 13, 15, 16, 43, 44, 

48, 49.

To im plem ent the  free boundary condition, the norm al and tangential edge stress 

com ponents a t node 8 only were considered for augm enting H .

Unlike the acoustic case, for which and optim al meshing spacing in two dim ensions 

was established by C aru thers et al. [152], for the  elastic case the optim al meshing 

using the W ED  m ethod has not yet been determ ined.

Thus, in each test case, the accuracy of the proposed FD schemes was assessed using 

three different mesh densities. The properties of the meshes along w ith the  nodal 

spacing h along the  edge F i, is listed in tab le  5.1.

T he results obtained w ith the  wave expansion m ethod, were com pared w ith a sim ilar 

finite elem ent model using ANSYS w ith t̂ PL A N E 82 quadratic  elements. The FD 

and FE  meshes corresponding to  Table 5.1 are p lo tted  in figure 5.7. T he FD mesh 

is represented by unfilled +  filled nodes, whilst the FEM  mesh is represented by 

unfilled nodes only.

The resonance frequencies were found by searching for the m inim um  values of the
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Figure 5.7: FD and FE meshes, (a) Mesh 1. (b) Mesh 2. (c) Mesh 3.
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FD FE h

(Fi)nodes dof nodes dof

mesh 1 25 50 21 42 0.15

mesh 2 49 98 40 80 0.1

mesh 3 81 162 65 130 0.075

Table 5.1: Properties of FD and FE models

determinant of the stiffness matrix over a frequency range with a frequency step 

of IHz. The corresponding mode shape was then ascertained by enforcing a single 

point Dirichlet condition at a particular resonance frequency (an harmonic analysis), 

at one of the unrestrained field nodes.

As a benchmark for this study, each test case was modelled in ANSYS using a finer 

mesh of 32,821 nodes and 10,800 elements, figure 5.8.

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 5.8: Reference mesh.

This gives a sufficient number of nodes per wavelength to consider it a good ap

proximation of an exact solution. The error was then calculated as the percentage
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difference in H z  between the exact resonant frequencies and those obtained with 

the FE and FDp and FDy methods. T hat is,

E% =  (5.42)

where fn are the natural frequencies calculated with the FD and FE methods, and 

Fn are the exact natural frequencies.

5 .3 .3 .2  R e su lts

The accuracy of the wave expansion method in the results obtained below, is assessed 

in terms of the nodal points per wavelength ratio (ppw) required to obtain the desired 

solution. In general, the ppw is defined as

c
ppw =  (5.43)

where c is the velocity of propagation of the wave, /  is the frequency and h is

the maximum nodal spacing in the mesh. Since the displacement is produced by

a combination of two types of waves, there are two possible values for the ppw,

depending on whether or ct is used in equation 5.43. The minimum value for 

the ppw, used hereafter and referred to simply as ppw, is then obtained using the 

velocity of propagation of equivoluminal waves, ct =  3118ms“ \  in equation 5.43. 

C la m p e d  a ll ro u n d

Since the basic difference between the two approaches resides in the implementation 

of the free boundary condition, no differentiation has been done between the partial 

or the full edge implementation (FDp or FDy )̂ in the resonant frequencies listed in 

table 5.2.

As shown, the wave expansion method is much more accurate than the finite element 

m ethod for all natural frequencies in comparison to the “exact” solution. Note that, 

from the percentage error (equation 5.42), for the mesh 1 the solution for the FD is 

actually more accurate than th a t of the FE using the mesh 2, with nearly twice as 

many nodes, figure 5.9.
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mesh 1 mesh 2 mesh 3 FE reference 

solutionFD FE FD FE FD FE

6797 6979 6794 6818 6791 6795 6783

7696 8255 7723 7830 7727 7758 7722

8314 9026 8260 8397 8236 8258 8198

10476 12003 10379 10667 10354 10441 10312

10809 13483 10755 11700 10727 10998 10678

11492 16848 11286 12134 11327 11586 11352

12780 17987 12141 13310 12126 12485 12105

13971 20013 13378 14364 13292 13616 13206

14298 29486 13523 15574 13495 14693 13443

- - 14122 16097 14129 14780 14092

Table 5.2: Natural frequencies for the all round clamped case
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Figure 5.9: Error for mesh 1. All edges clamped.
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Figure 5.10: Error for mesh 2. All edges clamped.
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Figure 5.11: Error for mesh 3. All edges clamped.

FD
FE

FD
FE

136

i



The error for the FD and FE using mesh 2 and m esh 3 is shown in figures 5.10 and 

5.11, respectively. As illustrated, as the mesh is refined the rate of convergence of 

the FE m ethod to  the exact natural frequencies is faster than that of the FD . For 

the mesh 3, the accuracy between the two m ethods becom es comparable.

One edge free

The resonant frequencies for the FE m ethod and the FDp and FDy m odels are 

detailed in table 5.3.

mesh 1 mesh 2 mesh 3 FE reference 

solutionFDp F D / FE FDp F D / FE FDp F D / FE

4596 4665 4730 4713 4614 4640 4785 4599 4608 4568

65U0 6841 6990 6627 6755 6815 6826 6714 6740 6650

7167 7076 7906 6943 7003 7112 7109 6981 7010 6937

8473 8640 9255 8530 8587 8727 8554 8560 8610 8529

8956 8954 10156 9036 9088 9451 9084 9099 9195 9102

9324 9360 11896 9237 9269 9546 9212 9227 9300 9170

10477 10735 14235 10691 10890 12287 10608 10785 11131 10619

11397 12014 15756 11936 11981 12606 11715 11834 12151 11755

12283 12212 16281 12045 12106 13115 11965 11980 12446 11955

12999 13052 19194 12861 12878 13875 12006 12057 12514 11976

Table 5.3: Resonant frequencies for edge F2 free.

As shown, the process of refining the mesh (i.e. increasing the ppw) does not system 

atically improve the accuracy in the FDp scheme for the entire range of frequencies. 

A loss of convergence is observed at higher frequencies, w ith increasing error when

ever the ppw >  4.5. (For clarity, the frequencies for which the ppw =  4.5 in each 

m esh, are em phasised).

The F D / m odel, on the other hand, has a sim ilar performance behaviour as the FE  

m odel. That is, it converges m onotonically to the exact solution as the number of 

nodal points per wavelength increases. However, the FDp approach is more accurate 

than the F D / for ppw’s <  4.5. As shown in figures 5.12-5.14, in comparison to
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Figure 5.12: Error comparison for mesh 1. One edge free.
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Figure 5.13: Error comparison for mesh 2. One edge free.

the FE model, both FD schemes give overall better results, particularly at higher 

frequencies.
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Figure 5.14: Error comparison for mesh 3. One edge free.

In order to evaluate whether the different behaviour between the FDp and the FD^ is 

related to the conditioning of the final system (equation 5.6), the condition number 

of the overall assembled stiffness matrix K was calculated for each natural frequency. 

As shown in figure 5.15 for the mesh 1, above the third resonant frequency the 

conditioning of the system for the FDp formulation is significantly higher than that 

obtained with the FD / approach.

For meshes 2 and 3, however, the difference in the conditioning of the final system 

between the FDp and the FD/ schemes is reduced, figures 5.16 and 5.17.
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Figure 5.15: Condition number for FDp and FD/. Mesh 1. One edge free.
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Figure 5.16: Condition number for FDp and FDŷ . Mesh 2. One edge free.
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Figure 5.17: Condition number for FDp and FD/. Mesh 3. One edge free.

Two edges free

The 10 lowest resonant frequencies, assuming a free boundary condition in edges Fj 

and Fs for the FDp, FD ; and FE methods, are summarised in table 5.4.

In this case, the FD/ formulation shows a better performance in comparison to the 

FDp for most resonant frequencies. The similar behaviour observed for the FDp in 

the one edge free case is exhibit here, i.e., the method fails to converge whenever 

the number of nodal points per wavelength increase above certain value. Unlike the 

one edge free case, however, this value is not clearly defined.

The FDy method, on the other hand, converges monotonically to the exact solution 

as the mesh is refined. Despite the fact that the rate of convergence is not as fast 

as that shown by the FE, the FD/ approach gives overall a more accurate solution, 

in particular for the mesh 1. For comparison, the error for the three methods is 

plotted in figures 5.18-5.20.

In order to explore the stability of the wave expansion approaches and to compare 

against that shown by these methods for the one edge free case, the condition number
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mesh 1 mesh 2 mesh 3 FE reference 

solutionFDp FD/ FE FDp FD / FE FDp FD/ FE

3480 3488 3491 3499 3485 3483 3504 3484 3481 3476

4043 4210 4215 4222 4182 4176 4251 4175 4169 4165

4938 4997 5073 4953 4956 4941 5007 4922 4915 4900

6524 6906 7319 6693 6772 6865 6845 6743 6778 6722

7948 8082 8916 8103 8027 8307 8039 7996 8079 7961

8279 8290 10095 8292 8361 8583 8334 8351 8416 8330

8966 9124 10575 8929 9040 9456 8978 9012 9158 9017

10006 10043 11487 10050 9878 10066 9745 9833 9888 9794

11305 10515 12478 10790 10471 11263 10270 10343 10591 10257

12501 10877 14211 11230 10847 11616 10787 10837 11022 10799

Table 5.4: Resonant frequencies for edges P2 and Fa free.
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Figure 5.18: Error comparison for mesh 1. Two edges free.

for the FDp and FDj  schemes was calculated for all the resonant frequencies using 

the three mesh densities. The results are plotted in figures 5.21-5.23.
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Figure 5.19: Error comparison for mesh 2. Two edges free.
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Figure 5.20: Error comparison for mesh 3. Two edges free.
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Condition number for FDp and F D /. Mesh 1. Two edges free.
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Figure 5.22: Condition number for FDp and F D /. Mesh 2. Two edges free.
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Figure 5.23: Condition number for FDp and FD /. Mesh 3. Two edges free.

Despite the good convergent behaviour of the FD^ formulation in comparison to the 

FDp, the conditioning of the final system is higher for meshes 2 and 3. As in the one 

edge free case, the accuracy of the FD methods seems to be only partially related 

to the conditioning of the final system. In addition, the condition number shows 

no established pattern  behaviour, as in the acoustic case, increasing and decreasing 

rather randomly.

5.3.4 Three dimensional problems 

5.3.4.1 Problem  definition

In section 5.3.1, the three dimensional displacement motion was described as a com

bination of one dilatational and two equivoluminal waves, moving orthogonally of 

each other with speed of motion c l  and cr, respectively. The Cartesian components 

of each wave are completely defined in terms of the propagating angles 6 and </> 

(known as Euler angles), as shown in figure 5.24 (see e.g. Meriam [228]). Using 

m atrix  notation, we may write
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Figure 5.24: 3D elastic displacement.

cos <j) cos 9 — sin 0 — sin (j) cos 9  ̂ g - i A ; t x q  ^

u = Uy cos (f) sin 9 cos 9 — sin 0 sin 9 p - t f c z , x q

V / sin (j) 0 cos (j) \  /

(5.44)

For convenience, let us define here the Cartesian components of each displacement 

wave separately. T hat is,

^ cos(f>cos6 ^

Wl , W T i  =COS (j) sin 9 

y  sin  0  y

5 .3 .4 .2  N u m e ric a l im p le m e n ta tio n

V

COS0

0

WTa =

^ — s i n ^ i i c o s ^  

— sin (j) sin 9 

cos 6

(5.45)

Consider a 27 noded com putational cell as shown in figure 5.25, where each node 

has three degrees of freedom given by the displacement vector 5.44.

We seek to relate the unknown displacement a t point Xq to the known displacement 

at the 26 surrounding points in the com putational cell. This values are approxi

m ated by a finite combination of m  fundamental solutions (plane waves) uniformly
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Figure 5.25; 3D com putational molecule.

distributed in the three dimensional space.

However, a serious problem in the implementation of these concepts now arises in this 

case. Since the elastic wave motion comprises one dilatational and two equivoluminal 

orthogonal waves, three sets (with a total number of at least 78 directions) of non

repeated, evenly distributed and orthogonal directional vectors are effectively required 

to generate a satisfactory template.

The first drawback is related to the symmetry of the vectors in the three dimensional 

space as previously discussed in section 3.3.2 for the acoustic case. However, even in 

the ideal case scenario of having an arbitrary number of equidistant, non-repeated 

set of vectors it may still not be possible to construct two other sets with the same 

characteristics and, in addition, mutually orthogonal.

Note that, since there is no certainty th a t any particular wave system will give 

good results beforehand, the best distribution must be found by investigating its 

performance with a test case example. Following a trial-and-error procedure, a best 

compromise to this problem was obtained by constructing the orthogonal vector 

sets based on the Buckminster Fuller geodesic dome ( “bucky ball’). Excluding the 

repeated directions, three sets of 58 non-repeated orthogonal vectors were obtained 

(thus, 78x174 tem plates result for the cell shown in figure 5.25). For illustration 

purposes, the wave direction systems are plotted in figures 5.26 and 5.27.
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Figure 5.26: Dilatational wave vector system (bucky ball).

As illustrated, though the orthogonality and non-repeatability conditions are sat

isfied, the resulting directions are not uniformly distributed. Thus, as previously 

discussed in section 3.3.1 for the two-dimensional acoustic case, the interpolation 

method is ordy expected to give accurate solutions whenever the physical displace

ment may be efficiently approximated by these wave systems. Nonetheless, it will be 

shown in the subsequent section that assuming certain boundary conditions these 

wave systems may still give accurate solutions.

Once the dilatational and equivoluminal vector directions have been determined, 

the generating functions may be formulated following a similar procedure as in the 

two-dimensional elastic case. That is.

cos 9j cos (f>j e  ̂ j  — ^

«x(x) =  -i -  sin 6j j  =  f  +  1 , . . . ,

— cos 9j sin (f>j ; j  = ^  + 1, . . .  , m

, (5.46)

2m (5.47)

sin (f)j sin 9 e ; j  = 2m ^  ^ m

148



(b)

Figure 5.27: Equivoluminal wave vector systems.
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and

M^(x)

sin (l)j j  =

+  0, i  =  ^  + (5.48)

+  cos (j)j j  =

where the angles 9 and 0  are obtained from th e  directions given by each vector 

configuration. T he propagating  vectors are then  defined as

q j =  (cos (j)j cos Oj, cos (j)j sin 9j, sin (f)j), j  = 1 , . . .  , m. (5.49)

E quation 5.44 may then  be w ritten  as

u  =  h (x o )7  =

^ Ui(xo) ^

7- (5.50)

V  ^ ^ ( ^ o )

Upon  evaluating m atrix  h  a t all the  surrounding molecule nodes, we ob ta in  the 

constrain t equation

u  =  H 7 , (5.51)

where the 78 x m  m atrix  H  is formed from individual 3 x m  sub-m atrices h  evaluated 

a t neighbouring nodes.

The im plem entation of the free boundary conditions is com pletely analogous to 

th a t outlined for two dim ensional problem s in section 5.3.2.2. Thus, we need to 

evaluate the com ponents of the derivatives of the  displacem ent along the norm al 

and tangentia l vectors a t the boundary.

Let us consider a boundary  face w ith norm al and tangentia l vectors given by

N  - nsi 

\  ns2 j

0 1 0 

1 0 0 

0 0 1

By em ploying equation 5.45, we may w rite the displacem ents in m atrix  no ta tion  as

ul =  N  ■ w l (5.52)
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for the dilatational wave, and

uti =  N ■ w ti (5.53)

and

ut , =  N • w t , (5.54)

for the equivoluminal waves. The derivatives of the above equations with respect to 

N yields

d u L  =  - u l  • W l  ■ N ' ^ i  ki,

and

duxi = kr,
d u x 2  =  - u t 2  • kr,

where the 3-by-m dimension matrices duL, duxj and dux j are given as

du^jdn du^'^/dnsi du^jdns2

dUL = du^s jdn d u t j d s i d u t j d s i

_ dul^s2/9ns2

/  dn /dns'[ /dns2
dUTi = du l \Jdn dul\Jdnsi du l l jdns^

_ d u l l j d n dul l jdnsx dul l jdns2

and
/  dn /dnsi /  dns2

dux j = d u l l j d n d u l l jd n s i d u l l jd n s i

_ d u l l j d n d u l l jd ns i dul l jdns2

The augmented template H, then takes the form

0 

0

\ 0 /

H

7  =  Ha„g7,

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)
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where the values of o  and r  correspond to those of equation 5.18 for the dilatational 

and equivoluminal waves, respectively. Thus, equation 5.5 may be written as

uo =  h (xo)(H :„jL U . (5.62)

5.3.5 Three dimensional validation example 

5.3.5.1 M odelling details

Consider an isotropic bar of dimensions 0.6 x 0.15 x 0.1m and material properties 

E  =  lOGPa, u =  0.3 and p =  2770% “ ,̂ as schematically plotted in figure 5.28.

Z

Z Z

XX

X

Figure 5.28: 3D validation problem.

The bar was uniformly meshed using 27 nodes in each cell with a maximum nodal 

spacing of 0, 025m along the computational cell edges and 0.043m along the diago

nals, respectively (see figure 5.29). The problem was solved considering the following 

boundary conditions:

(i) Clamped all round

u(xb) =  0, V X5 G Te, (5.63)

where is the boundary surface.
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Figure 5.29: Illustration of the mesh.

(ii) Clamped at the end faces

u(x6) =  0 V Xft e  Tc, (5.64)

=  0 V X* e  T/r, (5.65)

where Tc  and F a r e  the clamped (x =  0 and x  =  0.6) and free {y =  0, 

?/ =  0.15, z =  0, -2 =  0.1) faces, respectively.

Though the all clamped condition represents only a fictitious problem, it allows one 

to investigate the performance of the interpolation formulation, as no errors are 

produced by the approximation of the derivatives of the displacement along free 

surfaces. Note that only 78x174 templates will then result as no row count is added 

to matrix H , thus simplifying also the implementation.

In all cases, the resonant frequencies were initially calculated by performing a modal 

analysis using ANSYS “SO LID #95” quadratic elements. These frequencies were 

then compared against those obtained with the wave expansion method, by forcing 

the system at a particular point over a frequency range, and searching for peaks in 

the ensuing frequency response function. The properties of the FE and FD models 

are summarised in table 5.5.
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nodes dof

FE 3165 6330

FD 875 2625

Table 5.5: properties of the FE  and ED models used

5.3.5.2 Results

All clamped condition

To illu stra te  the  perform ance of the proposed ED approach, the  displacem ent dis

tribu tion  for two excitation frequencies, 19246i/z and 22864Hz,  is shown below. 

These frequencies correspond to the first and th ird  resonant m odes for the  all round 

clam ped bar.

According to  the  edge and diagonal nodal distances in the ED model, the nodal 

point per wavelength ratios (equation 5.43) are 3.8-6.5 and 3.1-5.4 for the first and 

th ird  resonant frequencies, respectively.

T he EE reference solution for the first mode shape, is shown in figures 5.30 and 5.31 

for the Ux and Uy displacem ent com ponents, respectively.

T he ED solution, illu stra ted  in figures 5.32 and 5.33, shows a good agreem ent w ith 

the finite elem ent solution.

As shown in figures 5.34-5.37, a good agreem ent is also observed between the  ED 

and the reference solution for the th ird  resonant frequency.

154



Figure 5.30: FE solution for the Ux displacement. All clamped condition; 19,246Hz.

ANS^Sl, ' IAL SOLUTI' . 'H

Figure 5.31: FE solution for the Uy displacement. All clamped condition; 19,246Hz.
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Figure 5.32: FD solution for the Ux  displacement component. All clamped condition; 

19,246Hz.

10.04  

0.03  

■ 0.02

D

Figure 5.33: FD solution for the Uy  displacement component. All clamped condition; 

19,246Hz.
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Figure 5.34: FE solution for the displacement. All clamped condition; 22,864Hz.

Figure 5.35: FE solution for the Uy displacement. All clamped condition; 22,864Hz
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Figure 5.36: FD solution for the Ux  displacement component. All clamped condition; 

22,864Hz.

Figure 5.37: FD solution for the Uy  displacement component. All clamped condition; 

22,864Hz.
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C lam ped  at the end  faces

In this case, the resonant frequencies obtained with the FD method, were not in good 

agreement with those given by the FE model. By driving the bar a t the resonant 

frequencies, discrepancies were also found in the displacement distribution of the 

associated mode shapes.

This was particularly remarkable for those natural frequencies associated to torsional 

modes. These frequencies could not be found by searching for minimum values of 

the determ inant of the overall stiffness matrix, nor the actual mode shape modelled 

using a harmonic analysis (the actual frequency and displacement distribution for 

these modes was known beforehand from the FE solution).

5.4 P late vibration analysis

Despite the drawbacks associated to the implementation of the proposed FD scheme 

for three dimensional elastic problems, the method may be implemented more easily 

in the modelling of plate vibration.

Whenever the thickness of the plate is negligible in comparison to all the other 

dimensions of the plate, the approximation of the desired field variables may be 

obtained using a uniform distribution of bi-dirnensional plane waves. The application 

of the wave expansion method to plate vibration problems was recently proposed 

by Rice and Ruiz [158]. For a homogeneous, simple supported square plate, they 

obtained accurate solutions with four points per wavelength, which represents an 

im portant improvement over standard finite element approaches.

The formulation of the proposed scheme is outlined below. Though the method 

follows a similar procedure as already discussed for two dimensional elastic problems, 

it is re-written here for completeness.
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5.4.1 Description of the physical problem

The dynam ic equation which governs the bending m otion in a thin, flat (hom oge

neous) plate, is given by the biharmonic equation [229]

V^V^u - /3''u =  0 (5.66)

where u (x )  is the com plex transverse deflection at frequency to and position x . The 

param eter P  is related to the plate properties and driving frequency according to

 ̂12(1̂
where E  is the Young’s m odulus, u is the Poisson’s ratio, p is the density and t  is 

the thickness.

Since the dynam ic equation 5.66 is a fourth-order equation, the displacem ent field 

is uniquely defined, should two boundary conditions are specified at each boundary  

point. Consider a plate Q e  w ith boundary F£; =  r 5 U r c U r / r .  D enoting by s and 

n  the coordinates in the tangential and normal directions, the following conditions 

are usually considered [230];

•  Sim ply supported edge (mixed condition)

u =  u on F s, (5.68)

M n - r f i n  on T s, (5.69)

where m is a prescribed transversal displacem ent, and

fd '^V L

is the normal bending m om ent per unit length of a plate w ith flexural rigidity  

D  and is a prescribed bending function.

•  C lam ped edge (kinem atic condition)

u  =  u on F c , (5-71)

^  =  -On  on F c , (5.72)

where On is a prescribed rotation function.
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Free edge (mechanical condition)

Q n  =  -

Mn =  mn on Tk,
d W i n s

ds Q n  o n T F ,

(5.73)

(5.74)

where Qn is the shearing force per unit length, is a prescribed shear force 

function and is the twisting moment per unit length about the direction

n.

Noting that equation 5.66 may be written as

(5.75)

it follows that a convenient set of fundamental solutions of equation 5.66 is given by 

propagating and evanescent waves defined by

(5.76)

where q is an arbitrary unit vector oriented in the direction of propagation of the 

plane wave and 7 is a complex constant representing the strength of the wave.

5.4.2 Num erical im plem entation

Consider the nine noded computational template shown in figure 5.38, where each 

node has three degrees of freedom given by the displacement vector u; as

( “■ "l
Ui =  du /dx i  (5-77)

y du/dy , .

Following the same basic interpolation approach used for two-dimensional elastic 

problems, we may then approximate the displacement Bq at Xq by y  equally dis

tributed fundamental solutions 5.76 as

j = 1 . m/2

g -^ x  cij. j _ +  1 : m
(5.78)
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Figure 5.38: 2D com putational molecule.

with propagation vectors given by

/  47rj . 47rj\
q: =  co s  , s m   ; j  =  1 : m (5.79)

V m  m  J

The transverse displacement (equation 5.77) may then be written as

^  g(xo) ^

Uo = =  h(xo)7, (5.80)dg/dx{yio)
\  dg/dyi^o)

where h(xo) is a 3 x m m atrix of generating functions and their derivatives, and 7 

is a column vector of dimension m x 1 representing the strengths of the individual 

functions. Evaluating h  a t all the surrounding points in the com putational molecule, 

we obtain the com putational tem plate

Uo -  h (x o )H “'‘u  =  0, (5.81)

where “+ ’ denotes pseudo-inverse operation.

5.4.2.1 Boundary conditions

The pseudo-inverse operation, which requires th a t m > 24, ensures th a t the least 

“energetic” combination of generating functions is used to approximate the response 

locally whilst still ensuring th a t the expansion in equation 5.80 gives consistent
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results a t all the boundary nodes in the template. Thus, one or more boundary 

conditions may additionally be satisfied by augmenting H  prior to inversion.

To implement a simple supported edge boundary condition, equations 5.68 and 5.69, 

the m atrix H  may be augmented by the corresponding derivatives of the generating 

functions with respect to the edge normal and tangential directions. T hat is,

u
^ n r

H

(Xb)
(5.82)

where

_  I • Qj)^ 9j{y^b) j  =  1 : m / 2

q j f  gj{xb) j  =  m /2  f  1 : m.
(5.83)

The second order derivative along the tangential direction vector s, may be obtained 

by simply replacing the corresponding direction vector in equation 5.83. Once the 

tem plate calculation is performed according to equation 5.81, direct restraint may 

be applied to the first degree of freedom of the boundary node x̂ ,.

To apply clamped boundary conditions, the appropriate degrees of freedom in the 

overall assembled stiffness m atrix may be directly restrained.

5.4.3 Test case description and modelling details

Two numerical test were performed on a square plate of side length I m  and prop

erties E  =  70GPa,  V — 0.3, t = 0.001m and p = 2770kg~^. In each case, only nine 

noded com putational cells as shown in figure 5.38 were considered.

In the first test the plate was clamped all round, whilst in the second test it was 

clamped along one edge and simply supported on the other three. Thus the results 

from the first case could be compared against the exact solution for a mode p, k 

given by [231]

+ (5.84)

The plate was discretized using 121 equally spaced nodes. In all cases, 30x2 equi- 

directional generating functions 5.78 were used to formulate the com putational tem-
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plates. To implement the boundary conditions, a full edge discretisation (FDy) pro

cedure, as previously discussed in section 5.3.3.1 for two dimensional problems, was 

applied.

For illustration purposes, consider the lower left corner of the plate as shown in 

figure 5.39. A full tem plate was formed around node 1 using all the other nodes

o o o
23 24 25

g o o
12 13 14

• ------------- O------------- O-----------
1 2 3

Figure 5.39: boundary condition implementation.

depicted. Clamping was then implemented by directly restraining all three degrees 

of freedom of node 1 in the overall assembled stiffness m atrix K . To change this 

to simple support, the local tem plate m atrix H  was augmented using relationship 

5.82, before the pseudo-inversion. It should be noted th a t for edges points, only 

rotational restraint to one of the axis is required.

The results for the simply supported cases were compared against two finite element 

models using ANSYS Element #93  quadratic elements (the formulation of the finite 

element method applied to plate vibration analysis is briefly discussed in Appendix). 

The properties of the three models are detailed in table 5.6.

The mesh for the plate is shown in figure 5.40 together with the FE I mesh super

imposed. As shown in table 5.6, the FE I model will have a similar memory and 

computational loading as the present finite difference technique.

164



FD FE I FE II

nodes dof nodes dof nodes dof

121 383 96 280 343 1023

Table 5.6: properties of FD and FE models

Figure 5.40; Plate FD and FE (coarse) meshes.

5.4.4 Results

5.4.4.1 S im ply supported square plate

The symmetric modes over the complete coherent analysis range is included in table, 

where the results are compared to the finite element estimates from the coarse (FE 

I) and fine (FE II) models.

The performance of the finite difference is excellent and outperforms the finite ele

ment model which uses twice as many nodes per wavelength.

5.4.4.2 One clam ped edge and three edges sim ply supported

To illustrate the performance of the proposed wave expansion scheme in a system 

with non-symmetric modes, an analysis of the same plate with one side clamped
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Mode FD Exact FE I FE II

(1,1) 4.753 4.753 4.696 4.734

(2,2) 19.01 19.01 10.02 18.93

(3,3) 42.77 42.78 45.39 42.57

(4,4) 76.48 76.05 89.21 76.54

(5,5) 119.9 118.8 128.1 124.2

Table 5.7: five resonant frequencies for a simply supported plate 

and the other three simply supported was verified.

For comparison purposes, the problem was solved with the finite element model FE 

II, using the fine mesh. As a benchmark for this study, the results obtained were 

compared against a finite element model with 7,701 nodes and 23,103 degrees of 

freedom, as shown in figure 5.41.

E

[m]

Figure 5.41: Reference finite element model.

The results obtained are listed in table 5.8. As illustrated, in comparison to the
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Mode FD FE II Reference (FE)

(1.1) 5.694 5.678 5.722

(1,2) 12.443 12.416 12.505

(2,1) 14.123 14.090 14.194

(2,2) 20.735 20.675 20.841

(1,3) 24.144 24.103 24.269

(2,3) 32.205 32.124 32.373

Table 5.8: lowest resonant frequencies of ss plate with one side clamped.

reference finite element solution, the results obtained with the FD model are more 

accurate than those of the FE II with less than half the number of nodes.

5.5 D iscussion

In the present chapter, the performance of the wave base expansion technique applied 

to the numerical solution of elastic wave propagation in two and three dimensions 

and bending plate vibration has been investigated. For two-dimensional problems, 

a plain strain  condition was assumed throughout the analysis.

Two different implementations of the free boundary condition were evaluated for 

the two dimensional elastic case: a partial edge discretisation, denoted as FDp and 

a full edge discretisation denoted as FD / (it should be noted tha t other schemes are 

also possible, for example, to use a FDp method but considering only the restraints 

of the actual boundary node as in the FD / approach, or vice versa).

A different behaviour was observed between these two boundary implementation for

mulations. W hilst the FD / technique was very stable and converged monotonically 

to the exact solution for all frequencies tested, the accuracy of the FDp approach 

deteriorated in general at lower frequencies. Unlike the acoustic case, where a loss 

of stability was observed at lower frequencies, the conditioning of the system in the 

elastic case shows a more random behaviour. As the mesh was refined, however, the
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conditioning of the system given by the FDp or the FD / formulations became more 

similar.

It should be noted th a t the accuracy (and ultim ately the convergence to the de

sired solution) in the wave expansion method, resides entirely in the possibility of 

obtaining a best combination of solutions from a given set. This task is performed 

by the pseudo-inverse operation. However, if all the interpolating functions give a 

very accurate approximation to the local solution, it may not be possible to clearly 

identify which one, or which combination of them, gives the best result.

In all the validation tests performed, the FD method outperformed the FE method 

using the same number of nodes, and even twice as many nodes for the “all round 

clam ped” test. Furthermore, no penalty in the accuracy was observed by imposing 

mixed restraints at the boundary points.

Under the present formulation, the implementation of the FD method in 3D prob

lems, however, faces a serious lim itation imposed by the requirement to have three 

sets of at least 78 uniform, non repeated and orthogonal vectors. Though for an all 

round clamped bar, the use of a 58 “bucky ball” vector configuration was shown to 

give accurate results, the method did not converge to the desired solution when free 

boundary conditions were applied. Further work is required in order to investigate 

whether this problem is related to the non-uniform distribution of the interpolating 

waves or the actual formulation of the free boundary conditions.

One possible way to circumvent this problem, is to approximate the displacement 

field by using Green’s functions instead of plane waves. Thus, only one set of 

uniformly distributed points is required. However, since the location of the monopole 

sources must be defined beforehand, some additional param eters are involved in the 

formulation.

Though the 3D implementation appears to be inviable under the present formula

tion, an im portant number of other problems (besides the 2D elastic) may still be 

accurately solved. The analysis of a plate vibration shows tha t the FD method is 

also more accurate than FE techniques for this type of problems, using compara-
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blc com putational resources. The application of boundary conditions is extremely 

flexible, particularly in the modelling of corners, where multiple restraints may be 

imposed.

Since the formulation of the wave expansion method directly uses wave models, its 

implementation is very direct and physical in nature. Thus, it is also possible, in 

principle, to extend the method to other applications, like shell vibration analysis, 

Rayleigh surface waves and the use of complex wave numbers for modelling porous 

materials.
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Chapter 6

Conclusions and future work

6.1 Conclusions

6.1.1 The W E D  in acoustics

From the results obtained, it is concluded tha t:

•  The wave-based in terpolation  technique gives a nearly optim al accuracy in two 

and three dim ensions. T h a t is, the in terpolation  form ally breaks down a t the 

N yquist frequency (two nodal points per wavelength) lim it. This conclusion is 

consistent w ith the results in two dim ensions obtained by C aru thers et al. [152],

•  An increasing instab ility  is associated w ith the W ED  m ethod a t lower frequen

cies. However, despite the ill-conditioning the accuracy of the wave expansion 

in terpolation rem ains rem arkably unaffected. This property  is also character

istic of the m ethod of fundam ental solutions (from which the W ED  is derived) 

and other Trefftz m ethods [164]. Thus, in the s tric t sense^ the m ethod is not 

stable a t these frequencies, bu t it is sufficiently robust to  give accurate results.

‘Some authors have suggested the use of a different conditioning test in order to assess this 

methods considering the nature of the interpolation formulation and the structure of the resulting 

system of equations [170].
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•  Dirichlet and N eum ann boundary conditions may be readily incorporated 

w ithin the form ulation of the m ethod. T he use of a ‘n a tu ra l’ rad ia tion  con

dition form ulation based on outw ard rad ia ting  plane waves, as originally pro

posed by C aru thers et al. [7], was found to  be only viable using a more lim ited 

range of outw ard directions. Nonetheless, using these directions the resulting 

form ulation was shown to be accurate and robust for a wide range of frequen

cies.

A lternatively, a (‘non -na tu ra l’) p^c plane wave approach th a t iteratively re

calculates the incidence angle was also proposed. This m ethod gave an ex

trem ely stable solution over all frequencies tested , though a t the  expense of 

iteratively resolving the problem . The accuracy of th is form ulation was dem on

stra ted  to be com parable to  th a t obtained w ith the  ‘n a tu ra l’ approach, when

ever the incidence angle of the wave field a t the boundary was relatively close 

to  the angle of the outw ard boundary norm al.

•  Since the form ulation of the W ED  is com pletely general to  any nodal d istri

bution, the use of non-regular meshes a n d /o r  different elem ent geom etries is 

straightforw ard.

•  The in terpolation form ulation is extrem ely flexible, giving the  opportun ity  to 

easily include, for exam ple, a flow condition w ithin the com putational dom ain, 

w ithout any penalty  in the accuracy of the m ethod.

6.1.2 The W ED in elastodynam ics

From the analysis and results obtained for the wave expansion m ethod applied to 

elastic wave modelling, the following conclusion m ay be drawn:

•  Given the natu ra l physical concept of the wave expansion m ethod, the formu

lation as originally derived for the acoustic case, need to  be only slightly m od

ified in order to include the physical characteristics of the wave propagation
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in elastic media. The resulting approach is straightforward to implement, and 

gives the possibility of including multiple restraints, as will occur a t boundary 

corners.

•  Under the present formulation, however, the m ethod does not appear to be 

viable for general three-dimensional elastic problems with free boundaries. 

Further research is required in order to assess whether this lim itation is re

lated to the formulation of the free boundary condition or the non-uniform 

distribution of the interpolating plane waves.

• For two-dimensional (plane strain) problems, the accuracy and convergence of 

the method was shown to depend strongly on the formulation used to imple

ment the (traction) free boundary condition. According to the problem, the 

most stable formulation was not necessarily the most accurate over the entire 

range of frequencies. Unlike the acoustic case, the conditioning of the resulting 

system of equations is not directly related to the frequency, showing a more 

random behaviour.

•  In comparison to a standard finite element m ethod using similar com putational 

resources, the wave expansion method is much more accurate, resulting in a 

significant reduction in the number of nodal points required to obtain the 

desired solution.

• The method was dem onstrated to be also highly accurate and robust for mod

elling plate vibration under different boundary conditions. The performance 

of the method was not affected by the inclusion of multiple restraints at cor

ner points, giving significantly more accurate results than a comparable finite 

element model.

• The method naturally lends itself to efficient calculation of harmonic responses 

at higher frequencies where non-modal approaches are appropriate.
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6.1.3 Final conclusions

Throughout this study, it has been pointed out th a t the overall effectiveness of a 

given numerical method is not only related to the accuracy of the interpolation 

procedure, but to several aspects related to the numerical solution process.

Since the wave expansion method is a discrete domain technique, the m atrix system 

resulting from the interpolation procedure is very sparse though not symmetric. 

Despite this, the final system is substantially smaller in comparison to th a t given 

by standard numerical methods. The ultim ate effectiveness of the wave expansion 

method for large domain applications will depend on whether the (non-symmetric) 

system may be efficiently solved using iterative solution techniques.

6.2 Future work

In order to obtain a versatile and generally applicable modelling technique, the next 

steps in the development of the wave expansion discretisation technique might focus 

on the following aspects:

1. properties and applicability of the method

• the formulation of the radiation boundary condition needs further inves

tigation, assessing alternative formulations in terms of the stability and 

convergence of the resulting solution,

•  address the convergence and conditioning resulting from the use of trian

gu lar/tetrahedral meshes in a wide range of frequencies,

• solution of three-dimensional problems subjected to non-uniform flow 

conditions,

• use of non-overlapping meshes, following a finite element procedure,

• alternative formulation for three-dimensional elastic problems, using point 

sources instead of plane waves.
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•  extension of tlie WED formulation for modelling Rayleigh surface waves. 

2. com putational efficiency

•  alternative techniques for the com putation of the pseudo-inverse,

•  performance of iterative solution techniques and the use of parallel p lat

forms,

•  domain-decomposition techniques for large domains.
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A ppendix A  

Finite elem ent m ethod for 

acoustic problems

A .l  Helm holtz equation

Acoustic responses in a fluid are usually regarded as small perturbations to an

ambient reference state. For a fluid, the ambient state is characterised by those

values (po, Po> vq) which the pressure, density, and fluid velocity have when the 

perturbation is absent.

The total pressure p, mass density p and velocity vector v  at any time t and any 

position vector x  in the fluid may then be expressed as

p (x ,i)  =  p o (x ,0 + P '(x ,^ )  (A.l)

p(x) =  p o (x , i ) + p '( x , t )  (A.2)

v(x,^) =  vo(x,t) +  v ' ( x ,0 ,  (A.3)

where p ', p' and v' represent the acoustic contributions to the overall pressure and 

density fields.

For the derivation of the dynamic equations tha t govern the acoustic perturbation 

fields, the conservation of mass, conservation of momentum and the pressure-density 

relation are applied to an infinitesimal fluid volume dV — dx dy dz.
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Consider a small rectangular volume element dV,  as shown in figure A .l, which is 

fixed in space and through which elements of the fluid travel. Referring to figure

X

Figure A .l; Mass flow in the x  direction for an infinitesimal fluid volume dv. A 

similar diagram can be drawn for fluid flowing in the y  and 2: directions.

A .l, we see that the net influx of mass into this fixed infinitesimal volume resulting 

from flow in the x direction is

, d{pv )̂ j  
P^x -  1 P^x  H- - - - (A.4)

Using similar expressions for the net influx for the y  and z directions, the total influx 

is given by

' d ( p v ^ )  d { p v y )  5(pvJ'
dV =  - V  ■ (pv) dV (A.5)

dx dy dz

Since the increase per unit time of the mass of the fluid volume dV  must equal the 

net mass entering the volume, we obtain the continuity equation

d{pQ +  p')
dt

+  V ■ ((po +  p')'v') — 0. (A.6)

The conservation of momentum requires a dynamic force balance in the orthogonal 

directions x, y  and z. Assuming an inviscid fluid, the dynamic forces acting on dV  

are depicted in figure A .2.
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X

dx

p dy dz
p dx dy dz

( p + -dp_ dx ) dy dz 
dx

Figure A .2: Dynam ic forces acting in the x-direction.

The conservation of m om entum  in the x-direction then becom es

p dx dy  dz  ^  dx dy  dz,  (A .7)
dt ox

where the total tim e derivative of the x-com ponent of the fluid velocity vector is 

given by

d \ x  d ^ x  , avx d-v^  ( d
(A^8 )

Together with sim ilar expressions for the dynam ic force balances in the y  and 2 - 

direction, the conservation of m om entum  may be expressed as a vector equation

(Po +  p') +  v' • v' — - V  (po +  p') (A.9)

For a gas, e.g. air, with constant specific (per unit mass) heat coefficients Cp and 

Cy at constant tem perature and volume, respectively, and for which the pressure p  

is proportional to the density p  at constant tem perature, sound propagation occurs 

with negligible internal heat flow. That is, it is an adiabatic process. This principle 

leads to a pressure-density relation of the form

p =  T { p )  =  K p \  

where 7  =  Cp/Cy is the specific-heat ratio ( 7  =  1.4 for air).

(A.IO)

204



Equation A. 10, may be also be expressed as a Taylor expansion,

d T . . 1 (fJ .̂ . , 9  /  A 1 1  \
P — -^lp=Po +  “  Po) +  ~  Po) + • • •  ( A . 11)

Using equations A .l and A.2 in equation A. 12 yields

p' =  - p ' + ^ ^ ^ ^ ^ ( p r + . . .  (A.12)Po 2p^

The linear approximation (often referred to as the acoustic approximation) neglects 

second- and higher-order terms, so the linear equations take the form

do'
+ p„V ■ v ' =  0 (A.13)

=  - V p ' (A.14)

p' = —  p' (A. 15)
Po

The wave equation results from the linear wave equations given above if one uses 

equation A. 15 to eliminate p' from the mass-conservation equation and then takes 

the time derivative of the resulting equation. This sequence of steps yields

v V - i f  =  o, (A .ie)

where c denotes the phase speed of an acoustic wave in a fluid.

^ = \ — - (A.17)V Po

Assuming a time-harmonic excitation of the form

P '(x ,i) = p '(x )e^ ‘̂ ‘, (A.18)

the wave equation A .16 transforms into the linear Helmholtz equation^

V V  +  ^ V  =  0, (A. 19)

'also referred to as the reduced wave equation.
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where k =  uj/c  is the acoustic wavenumber, and i =  \ / ^ .  The transform ation  

of the m om entum  equation A. 14 yields the relation between the steady-state fluid 

velocity vector field and the steady-state pressure field,

v' =  — Vp' (A.20)
P q UJ

The primes on the acoustic variables in equations A. 19 and A .20 are usually om itted, 

when there is little  possibility of confusing the total field variables with their acoustic  

perturbations.

A .2 W eighted residual form ulation

Consider a dom ain Q 4  w ith boundary in which the propagation of waves is 

governed by the H elm holtz equation A. 19. Since for each point in 0.^ equation A. 19 

applies, then

[  w { V ^ p + k ^ p )  d^A =  0 (A .21)

is satisfied for any weighting function w,  that is bounded and uniquely defined in 

Jl,4  and on its boundary surface F/i.

We seek to approxim ate the pressure field p  in equation A .21, by a known given 

function, N  say. In order to reduce the continuity order required by the approxi

m ating function, a ‘weak form ’ of equation A.21 may be obtained using integration  

by parts and the divergence theorem. That is,

L [r. +1 (“I) + (”;!)]
f  f  d w  d p  d w  dp  d w  d p \  f  , 2 - / a

jqa  V o y  o z  o z  /  j q ^

A pplying the divergence theorem  to the first integral term in equation A .22, yields

the ‘weak form ’ o f the weighted residual form ulation of the linear H elm holtz equation

J  { V w - V p )  d f l A  — J  ^-^wp^ d ^ A  =  — J  (ipoLowv ■ n) d T a , (A .23)

where n  is the unit normal vector w ith positive orientation away from the volume

n.
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A .3 Im plem entation of the FEM

For any domain in which the propagation of acoustic waves is governed by the 

Helmholtz equation A. 19, a unique pressure distribution is obtained, provided tha t 

one boundary condition is specified at each point on the boundary =  FpUFAfUF;^. 

In general, three types of boundary conditions are applied:

p =  p, o n F ^  (A.24)

V • n  =  tJ on F/v (A.25)

V • n  =  =  on F/e, (A.26)
Zj

where p, v and Z  are prescribed pressure, normal velocity and normal impedance 

functions, respectively.

A .3.1 Definition of the shape functions and parametric map

ping

The finite element method performs an independent approximation of the exact 

solution in smaller sub-domains E called elements. A number of nodes, say 

ng, are defined at some particular locations in each element. The distribution of the 

pressure is interpolated within each element using a set of prescribed shape functions 

N^, only defined within the considered element domain Qg)
Up

p(x) ^  p =  ^  N-{x.)pi, x e Q e  (A.27)
t = i

Each shape function is defined such th a t it has a value of unity at node i of 

the element and th a t it is zero at all other element nodes. In general, two basic 

interpolation techniques are used: serendipity and Lagrangian. These techniques 

are developed considering local element coordinates {^,r)) in 2D and in 3D,

called normalised coordinates, as shown in figure A.3.

In the serendipity interpolation technique, the physical conditions are assumed con

stan t throughout the element. The shape function is then dependent only on nodes
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Ay

Figure A .3: Normalised local coordinates.

values located along the boundary  (fourth-order serendipity  elem ents have an inte

rior node only to  have a com plete fourth-order polynom ial in terpolation  function). 

An illustration  of the first four order quadrilateral serendipity elem ents is shown in 

figure A .4.

The shape functions for two-dim ensional quadrila teral serendipity elem ents are de

fined as follows:

•  linear elem ent

N ^  =  \ { ^  +  U ) { ^  +  m )  (A.28)

•  quadratic  elem ent 

vertex nodes

=  ^(1  +  +  m v  -  1), (A.29)

edge nodes

e. = o, Af' = i(i-a(i + >(i'().
'7. = o, A'' = i(i+e.o(i-i)")

•  cubic elem ent 

vertex nodes

N :  +  ^ { 1 +  ^ ,0 (1  +  V ^ v ) [ - ^ 0  +  H e  +  V %  (A.30)
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Figure A.4; Serendipity elements: (a) lineal, (b) quadratic, (c) cubic, (d) fourth- 

order.

edge nodes

=  ±1, Vi =  ig,
= ^ ( 1  + 6 0 ( 1  -  ^^)(i + ^vzv)

Triangular serendipity elements are defined following an analogous procedure (see, 

e.g. [5]).

Whenever a given (serendipity) element discretisation fails to give an accurate so

lution, a non-constant physical condition is present in some or all the elements. 

The size of the elements is then reduced in size (mesh refinement) until a constant 

physical condition is (approximately) reached.

In the Lagrangian elements, shown schematically in figure A.5, the boundaries as
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well as the interior of the element are discretized. Hence, this interpolation tech

nique is often referred to as ‘high-order interpolation’ technique. In the Lagrangian 

interpolation approach, the physical conditions are assumed to vary in the interior 

of the element. Thus, a refinement of the mesh is, in principle, not necessary should 

the interpolation order and element size used give an inaccurate solution. In this 

case, a higher order function is used, maintaining the same size of the element, 

o--------------------- o o----------o----------o

(b)

Q O O Q

9 O

0 O

6

6

O O O O

(C) (d)

o——o——o——o——o

o o o o o

o o o o o

o o o o o

o——o——o——o——o

Figure A.5: Lagrangian elements: (a) lineal, (b) quadratic, (c) cubic, (d) fourth- 

order.

For any arbitrary variable a , the Lagrangian functions are defined as 

{ a  -  a 2 ) { a  -  a 2 )  . . . { a  -  a i _ i ) { a  -  ctj+i)... (a -  «„)
(A.31)

(offc -  ai){ak -  a2) . . .  {ak -  o;fc-i)(Q: -  ftfc+i) •.. (ctfc -  a„) ’ 

giving a unit value at ak and zero at n points. That is, the total number of nodes 

along the a  coordinate is n-|-1. For two-dimensional quadrilateral elements, as those
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shown in figure A.5, we have

N ’ = N , j  = I ' H O C M ,  (A.32)

where I, J  denote the row and column position of each node in the element and n, m  

the number of subdivisions in the ^ and rj directions, respectively.

Based on the element shape functions N[,  some global shape functions Ni defined 

in the entire domain may be constructed. For each element domain fie, to which 

node i belongs, we have

I Nf,  if i = j,  
iV. -  '  (A.33)

I  0, otherwise.

Using this notation, a global pressure expansion may then be expressed as

U f

j5 =  ^  N^{x)p^ = N p, XE9.A.  (A.34)
i= l

where ny is the total number of nodes in the discretisation, N is a 1 x n / vector of 

global shape functions and p is a ny x 1 vector of unknown nodal pressure values. 

Whether serendipity or Lagrangian elements (linear or of higher order) are used 

in the expansion formulation, an isoparametric mapping procedure is usually per

formed in order to define the geometry of the elements^. That is, a one-to-one 

correspondence is defined between a point in the parent element (in the local coor

dinate system) and a point in the mapped element (in the global coordinate system). 

This relation is expressed as an expansion in terms of the same shape function. The

contributions of each shape function to the expansion are the desired global coordi-

 ̂Lagrangian elements have been shown to give better results than serendipity elements for 

curved-edge and angular element distortions, see e.g. [232].
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nates of the elem ent nodes, i.e.,

ne

X =  ^  7], C ) Xi  =  N " x ,

i = l
Tie

y  =  Vi =  N"y*
i~\
Tie

(A.35)

(A.36)
i = l

A ccording to  the chain rule of partia l differentiation, the derivatives of the  shape 

functions N f  w ith  respect to  the local coordinates (^, ry, Q  m ay be expressed in term s 

of the global coordinates (x,?/, z) by m eans of the  Jacobian m atrix  J  as

/ d N f \ ~dx dy dz-
w ar

dNt dx dy dz
dr] dr]' dr]' dr]

ONf dx dy dz
\  dC J d C

/ d N f \
dx

( d N f \
dx

dNt T dNf
dy

—  J
dy

>

dNf  
 ̂ dz  )

Each elem ent in the Jacobian m atrix  J  is a function in the local coordinates (^, r/, ^), 

which is obtained from the m apping relationship A.35. A volume elem ent for 

exam ple, is m apped as =  dx dy dz  =  det(J)(i^  drj d^.

A .3.2 Galerkin finite element

In a G alerkin weighted residual approach, the weighting function w is expanded in 

term s of the sam e shape functions as used for the pressure expansion. E quation 

A .23 then takes the form

J  ( V N ^ - V N )  d f l A P - u j ^ J  d ^ A P  =

— LLO I  N^po d r  N V — Luj I  d r  ft p , (A .37)
J T n Z  /

212



Using m atrix notation, equation A.37 may be expressed as

[K — +  LU)C] p  =  —LLoSv. (A.38)

where K  is the (ny x nj)  acoustic stiffness m atrix, with components

Ji}A V 9x dx dy dy dz dz )  ^

where rriij is the number of elements, to which both node i and node j  belong. 

Similarly, the {uf  x nj)  mass and damping matrices are defined as

(A.40)
= 1(1

rric

C« = ^  (poiA'.-v,) = (poiiv'iv;) rfr^j. (a.41)

where rriĉ . is the number of elements faces F{, on which both node i and node j  

are located and th a t are part of the boundary surface Fr . The specification of the 

prescribed normal impedance is usually restricted to a constant value per element 

in Fii.

Since each node belongs to common elements with only a few, adjacent nodes, only 

a few m atrix elements in the stiffness, mass and damping matrices are non-zero. 

Thus, K , M  and C  are sparsely populated.

Finally, the (n / x 1) vector S is defined as

re
n Jvi  {  P

Sm = /  {N^p,v) dTA = T Y . \  ^r.4 , (A.42)
J T n  e = l  l J r (  J

where rriyi is the number of elements, for which node i is located on their /®j element 

faces r{ , th a t are part of the boundary surface F
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A .3.3 Properties of the acoustic finite elem ent model

From the element expressions, the following properties of the stiffness, mass and 

damping matrices may be derived;

• The approximation results in system of equations th a t is sparse, due to the 

local character of the shape functions.

•  The matrices are symmetrical. Moreover, the stiffness and mass matrices are 

also real (though not definite for acoustic problems).

• Since the expansion in each element is performed regardless the excitation 

frequency, the stiffness and mass m.atrices K  and M  are frequency independent.
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A ppendix B 

Finite elem ent m ethod in 

elastodynam ics

B .l  Wave m otion equations for linear isotropic

solids

B . l . l  The strain tensor

In discussing the deformation of an elastic body it will be assumed th a t there are 

enough constraints to prevent the body from moving as a rigid body so th a t no 

displacements of particles of the body are possible without a deformation of it.

As a direct implication of the notion of continuum, the deformation of the medium 

can be expressed in terms of the gradients of the displacement vector

f
Ux

U =  U2 

Us

> . (B.l)

W ithin the restrictions of the linearised theory^ the deformation is described in a

^The spatial gradients of the displacement components are assumed to be much smaller than 

unity.
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very simple m anner by the small strain tensor e, with components

1 /  dui duj
-I] 2 V dxj dxi

(B^2)

where Xi denotes a general coordinate system.

It follows th a t £ij — Eji, i.e., e is a symmetric tensor of rank two. The usual 

convention notation is to express the normal strain tensor components as e and the 

tangential strain components as 7, i.e.

duj
£ i  - dxi

(B.3)

(B.4)
_ 1 /  dui duj \

2 \  dxj dxi /

B .1.2  T he stress tensor and the general equation of m otion

Let us consider a section from an elastic body in the form of a tetrahedron as shown 

in figure B .l. The surface of the section is subjected to the traction t(x ,t) . In

X

X 3

Figure B .l: Stress components and the stress vector T on a tetrahedron.

addition, the body of volume may be subjected to a body force per unit volume, 

f(x ,t). Since in equilibrium the sum of the forces acting on the body must vanish, 

we have

j  t  drE + I i  dO,E = I pu dflE,  (B.5)
J te
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where p  is the mass density of the elastic m edium , and ii =  d ^ u { x , t ) / d t^ .  Hence, 

the in stan taneous ra te  of change of the linear m om entum  of the  body is equal to 

the resu ltan t ex ternal force acting on it a t the particu la r in stan t of time.

In th e  lim it 0, we ob ta in  the Cauchy’s stress formula

t i  =  Tj i Hj ,  (B.6)

where are the  stresses on the surface w ith un it norm al ij, as shown in figure B .l. 

Substitu tion  of equation B.6 into B.5 yields

I E I f i  — I  P^i d^E'  (^*^)

The surface integral can be transform ed into a volume integral by G auss’s theorem , 

leading to  the C auchy’s f irst  law of motion

j  +  f i -  =  0. (B.8)

E quation  B.8 is the general equation of m otion, from which the  elastic wave equa

tions are derived.

In general, a  is used to represent the norm al stresses, w hilst r  is used to  represent 

the  shear stresses, i.e.

ti =  aiUj, i =  j  (B.9)

ti =  TijUj, i ^  j .  (B.IO)

It may be dem onstrated  (see e.g. reference [233, pp. 14-15]) th a t the stress tensor 

is also sym m etric. Hence,

'^km —  '̂ mk

B .l .3 H ooke’s law

In general form, the  linear relation between the com ponents of the  stress tensor and 

th e  com ponents of the stra in  tensor (Hooke’s law) is

(B.12)
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where

^ i j k l  —  C j i k l  —  C k i i j  C i j l k -

The solid is hom ogeneous if the coefficients Cijki are constants. It is isotropic when 

there are no preferred directions. It can be shown that in this case, the constants 

Cijki may be expressed as

Cijkl — "I" l-f'i îk ĵl (B .13)

where &ij is the Kronecker delta {6ij =  0, if z 7  ̂ j ) ,  and A and /i are known as Lam e’s

elastic constants, which can be written in term s of the readily m easurable constants,

the m odulus of elasticity  E ,  and Poisson’s ratio u as

E  v E

Equation B.12 then assum es the form

— ^^kk^ij (B.15)

For three-dim ensional Cartesian coordinates { x , y , z ) ,  equation B.15 yields

'■■■»(%- S '  '“ >
T he equations for the stress-strain relationship in the y  and 2  coordinates are com 

p letely analogous.

B .1.4 Displacem ent equations of motion

If the strain-displacem ent relations B.2 are substituted into Hooke’s law equation  

B .15, we obtain

=  +  +  (B.18)
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Substituting equation B.18 in the stress-equation of motion B.8, yields the displace

ment equations of motion

+ +  + = (B19)

Equation B.19 along with the strain-displacement relations, Hooke’s law and the 

stress-equations must be satisfied at every interior point of the undeformed elastic 

body O.E.

For any elastic domain Qf; in which the propagation of elastic waves is governed 

by the displacement equation of motion B.19, a unique solution at fig  is ensured, 

provided that one boundary condition is defined at each point in the boundary 

surface F£; =  r c U r F .  The following conditions may be applied:

•  Displacement boundary conditions: some or all components Ui are prescribed 

on the boundary.

•  Traction boundary conditions: some or all components Tij are prescribed on 

the boundary.

•  A combination of the above two, where displacements are defined on part F c of 

the boundary and traction boundary conditions are defined on the remaining 

part Fp.

Boundary conditions must be complemented with initial conditions. In 17£; at time 

t =  0, we have

Mi(x, 0) =  Uj(x) 

u,(x, 0+) =  Vi(x).

B.2 Waves of dilatation and waves of distortion

In the absence of body forces (f =  0), we can express equationB.19 in vector notation 

as

/xV^u +  (A - I -  / i )  V V  • u =  pii, (B.20)
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where is the Laplace operator

^ 2  9^V  = --------1---------- 1--------
dxj dxl dxl

The first term  on the right hand side of equation B.20 represents a zero volume

expansion deform ation, i.e. d istortion  and ro ta tion  only, while the second term  is

related  to  the irro ta tiona l deform ation. Consider a decom position of the displace

m ent vector of the  form [234]

u  =  +  V X i/>, (B.21)

where and i/’ are a scalar and vector potentials, respectively. Substitu ting  equation 

B.21 into equation B.20 yields

+  V X i/;] +  (A +  //)V V  • [V(/p +  V X i/>] =  p — [V(p +  V x i/>]. (B.22)

Since V • V<  ̂ =  and V • V  x =  0, we obtain

V[(A +  2ax)VV -  P<̂ ] +  V  X [/xV2-0 -  p^ ] =  0. (B.23)

Equation B.21 satisfies the equation of m otion if

V V  =  (B.24)
ci

and
1

(B.25)cf
These are uncoupled equations for dilatational and equivoluminal waves respectively.

where c i  and ct are the wave velocities given by

Ci =  ^  (B.26)

and

4  =  - .  (B.27)
P
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W hen solutions are found to  equations B.24 and B.25, u  can be obtained  from 

relationship  B.21. N oting th a t the C artesian  form of equation B.21 is

Ui - (B.28)

it follows from th is equation th a t planes waves of ui will have the  character of the 

planes waves of (p and  ipk,j, i-e., it will be com posed in general of planes waves th a t 

p ropagate w ith cl and c t -

Assuming a s teady-sta te  harm onic excitation of the form

u (x , i) =  u (x , (B.29)

and su bstitu ting  into equation B.23, yields the Helm holtz equations

V^(p +  k l ip  =  0 (B.30)

and

vV  + 4 ^  = 0,
where u  = 2 n f  is the  circular frequency, and =  u ) /c i  and h r  

d ila ta tional and equivolum inal wavenumbers, respectively.

B.3 W eighted residual form ulation

T he weighted residual finite elem ent form ulation in a continuum  elastic dom ain Q,e

w ith boundary surface T e , is derived from the  general stress-equation of m otion B.8.

Using vector no ta tion , we have

[  ( L V  +  f - p i i )  d Q ^ - 0 ,  (B.32)
J ue

(B.31) 

— uj/ ct are the
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where (using Cartesian coordinates)

K J y

CTz

T~xy

Tx z  

\  /

is the stress tensor, and L is a differential operator defined as

i  0 0
0 i  0
0 0 f

A  A  0dy dx

—  0 —dz dx

(B.33)

L =

0 A. A
dz dy _

(B.34)

If a steady-state harmonic excitation (equation B.29) is assumed, equation B.32 may 

be re-written as

f  (L^(T + fi + u!^pu) dflE = 0- (B.35)

Since for each point in VLei equation B.35 applies, then

/  w  (L^ +  / i  +  w ^pu) dO,E =  0,
JnE

(B.36)

is satisfied for any arbitrary weighting function w, th a t is bounded and uniquely 

defined in and on its boundary surface Qe- Equation B.36 may be conveniently 

expressed in terms of the displacement vector u, by means of the stress-strain rela

tionship B.15. Using vector notation, the stress tensor components can be expressed 

as

cr =  D e =  DLu, (B.37)

222



where D is the elasticity matrix, and e is the stress tensor defined as (using equations 

B.3 and B.4)

'ILn

\ U z  /

= Lu. (B.38)
' ) x y  

' ) x z

\  J
The definition of the elasticity matrix D varies for two-dimensional problems, de

pending on whether the stress-strain relationship is defined in terms of a plain stress 

or a plain strain condition (see, e.g. [5]). For three-dimensional problems, the com

ponents of the matrix D are defined as

D E { l - u )
(1 + i^){l -  2u)

1 (1-̂ .) (1-^) 
1 (I-, /)

1

0

0

0

0

0

0

0

0

0

0

0

0

(B.39)

Substituting equation B.37 into equation B.36 yields

/  w (L^DL + fi + uj^p) u dflE =  0. (B.40)

Applying integration by parts and the divergence theorem [235], we obtain the ‘weak 

form’ of the weighted residual equation for elastic problems

/  w'D\j)u dO,E — uP‘ /  [pwu) dVlE+ /  wf  = ~  /  wcr-ndFE,  (B.41)

where n is the unit normal vector with positive orientation away from the volume

i l .E-
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B .4 Im plem entation of the FEM

Consider a th ree dim ensional elastic, isotropic dom ain Qe  w ith boundary F ^  =  

F c  U F/r, in which the  propagation of elastic waves is governed by the  displacem ent 

(and general) equations of m otion B.19. The resulting displacem ent d istribu tion  

produced by an exterior force, is uniquely defined should one condition is defined 

a t each point on the boundary  surface. In general, two types of boundary condition 

are applied:

Note th a t the boundary  conditions outlined above, allow the possibility of restrain ing 

only some of the displacem ent a n d /o r the stress com ponents, as will occur, for 

exam ple, in simple supported  conditions.

The im plem entation of the finite elem ent in elastodynam ics follows a sim ilar pro

cedure as previously outlined for acoustic waves in the  A ppendix A. T h a t is, the 

volume Qe  and its  boundary  surface F e  are discretized into a finite num ber of sub- 

dom ains Qg, called ‘elem ents’, and a num ber of nodes are defined a t some particu lar 

locations in each element.

T he displacem ent u  w ithin each element, is expanded in term s of a prescribed set of 

shape functions N^,  defined in each elem ent (the form ulation and properties of the 

shape functions com m only used in the s tandard  finite elem ent m ethod are briefly 

outlined in the A ppendix A (for a more detailed discussion, the reader is referred 

to  [236]). T h a t is.

where Up is the num ber of shape functions used in the in terpolation  process. 

A global in terpolation  expression may thus be w ritten  as

n f

u =  ^  Ni{x.)ui =  N u , X e  ^Ie ,
i=l

(7 =  (T, on F f .

u  =  u , on F c (B.42)

(B.43)

(B.44)

224



where n / is the total number of nodes in the discretisation, p is a (n/ x 1) vector of 

unknown nodal pressure values, and N  is a (1 x ny) vector of global shape functions, 

defined such that Ni =  N f  in the subdomain Qe to which node i belongs, and zero 

in all the others.

Substituting the approximate displacement u in the weighted residual equation B.41, 

yields

/  (L^ u)DLN)u dCls — I  {pwN)u (IVLe + I  w i  dQ.E — — j  w a  ■ n dTs-

(B.46)

B.4.1 Galerkin finite element m ethod

In the Galerkin finite element approach, the shape functions N  are used as weighting 

function in equation B.46. That is,

I (L'^'N^''DLN)udQE-uJ^ f  (pT<^N)u d Q E + [  N^f = -  /  N '^ a -n d T p .
(BAT)

Defining

B =  LN =

ON,
dx 0 0

0 dN,
dy 0

0 0 dNj
dz

dNj
dy

dN,
dx 0

0 dNj
dz

dNj
dy

dN,
dz 0 dNj

dx

(B.48)

and substituting into equation B.47, yields

I (B'^DB)u d^E [  (pN'^N)u d^E + [  N^f dCt
" ^ E  ^ E  J Q-e

Using matrix notation, equation B.49 may be expressed as

[K -  u}^M]u = b.

E -n dr p. 

(B.49)

(B.50)
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where the {uf xr i f )  stiffness m atrix K  and the (ny x ny) mass m atrix M  are defined

as

K  =  /  B ^D B  cIQe (B.51)
JnE

M  = [  N' ^pNdQE-  (B.52)
J oe

The {uf  X 1) force vector b is defined as

h  = -  [  N ^ f dnE + [  dTp,  (B.53)
J Q-e  J V p

If the body forces (like gravity) are negligible, f =  0, and the first term  in equation

B.53 vanishes. Note also tha t, for a free boundary condition cr =  0, and b =  0.

Thus, the free boundary condition is ‘naturally’ satisfied within the formulation of 

the finite element formulation, if no constraints are defined at the boundary points.

B.4.2 Properties of the elastic finite element m ethod

The properties outlined for the acoustic finite element method in the Appendix A 

are completely general and applicable for the elastic case. T hat is,

• The approximation results in system of equations th a t is sparse, due to the 

local character of the shape functions.

• The matrices are symmetrical. Moreover, the stiffness and mass matrices are 

also real.

• Since the expansion in each element is performed regardless of the excitation 

frequency, the stiffness and mass matrices K  and M  are frequency indepen

dent. Thus, the calculation of the modal frequencies and mode shapes may be 

performed using standard eigenvalue solvers.
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A ppendix C

Program m ing the wave expansion  

m ethod

The computational implementation of the WED method, as used throughout this 

thesis, is based in a general program structure that was conveniently changed ac

cording to the different applications, as outlined in chapter 4.

According to the formulation of the WED for acoustic problems, for each discreti

sation point we need to calculate two template matrices, namely, h and H, defined 

as
N

/i, =  (C.l)

where h is a vector of dimension {1 x N)  which approximates the pressure value at 

the central point in the computational cell, and

M N

= (C.2)
j=l i=l

where H is a matrix of dimension (M x N),  which approximates the pressure values

at a discrete number M  of neighbouring points in the cell. The pressure at the

central point in the cell, po, is then given as

Po = hH+p, (C.3)
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where p  is a (M x 1) vector of pressure values at the neighbouring nodes, and the 

superscript ‘+ ’ denotes pseudo-inverse operation.

In order to compute the matrices h and H, it is necessary to know the coordinates of 

the nodal points in the computational molecule and their numbering order, generally 

referred to as the ‘connectivities’ of the central node.

The next step is the computation of the pseudo-inverse of the matrix H. This 

procedure gives the best possible approximation among all the plane wave solutions 

in equation C.2, provided that N  > M.  For nine-noded two-dimensional molecules 

{M =  8), accurate results were obtained for N  =  20, with negligible improvement 

for larger values.

For boundary nodes, Neumann and/or radiation conditions can be imposed by aug

menting the template matrix prior to the pseudo-inversion operation. This

procedure involves the computation of the derivatives of the equation C.2 along the 

direction normal to the boundary. Once H'*" (or has been calculated, the

resulting matrix is used to fill the overall stiffness matrix (and the right hand side 

force vector if the matrix was augmented).

The procedure outlined above, is repeated for each discretisation point in the mesh. 

Once the overall stiffness matrix has been fully assembled, Dirichlet constraints can 

be directly applied in the appropriate degrees of freedom of the stiffness matrix. A 

flow diagram, detailing the structure of the program, is shown in figure C.l.

For illustration purposes, a ©MATLAB program, based on the flow diagram shown 

in figure C.l for two-dimensional acoustic applications, is shown below.
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Figure C .l: General structure of the wave expansion program.
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*/, MATLAB script to implement the WED method in 2D acoustic problems 
'/, author: Gabriel Ruiz, Trinity College Dublin, 2002.

7. Input information:

*/, conn -> connectivity data 
7, nodes -> nodal coordinates 
7. Boundary matrices:
7. neucs = [node_number normal_angle value flag] -> Neumcinn/radiation
70 dircs = [node_number value] -> Dirichlet 
7. rest -> restraint information

71 Program variables aind matrix allocation 
npts = size((nodes),1);
conn = size((conn),1); 
nneucs = size((neucs),1); 
ndircs = size((dircs),1);
ndir = 20; 7. number of directional plane waves 
w = 2*pi*freq; 
k = w/340;
stiff = sparse(npts,npts); 
force = sparse(npts,1);
7. Assembling 
for i = l:npts
7. construct template matrix H 
tnodes = conn(i,find(conn(i,:))); 
tlen = length(tnodes);
H = gplane(nodes(tnodes, :) ,k,ndir); 7i H is (MxN)
7t augment H if necessary 
if rest(i,l)

bnodes = rest(i,find(rest(i,:))) ; 
blen = length(bnodes);
dHdn = dgplane(nodes(neucs(bnodes,1),:),k,ndir,neucs(bnodes,2)); 
H = [H;dHdn];

end
7. central node approximation 
h = gplcine(nodes(i, :) ,k,ndir); 7# h is (IxN)
7. pseudo-inversion 
Hplus = pinv(H);
7. fill the stiffness matrix according to po-h*Hplus*p=0 
stiff(i.i) = 1;
stiff(i,tnodes) = -(h * Hplus(:,1:tlen));
7. apply Neumann and/or radiation boundary conditions 
if rest(i,l)
tmp = h * Hplus(:,tlen+l:blen); 
for ig = 1:blen
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if neucs(bnodes(ig),4) == 1 
*/, Neumann
force(i,l) = f o r c e d , 1) + tmp(ig) * neucs (bnodes (ig) , 3); 

else
’/, radiation
stiff(i,neucs(bnodes(ig),1)) = stiff(i,neucs(bnodes(ig),1)) + \

j * k ♦ tmp * neucs(bnodes(ig),3);
end

end
end

end
y, Apply Dirichlet condition 
if isempty(dircs) == 0 

for i = l;ndircs
stiff(dircs(i,1),:) = 0; 
stiff(dircs(i,1)jdircs(i,1)) = 1; 
force(dircs(i,1)) = dircs(i,2); 

end 
end
y. Solve the system 
p = stiff\force;

y. Plane wave generating function 
function g = gplane(nodes,k,ndir) 
dt = 2*pi/ndir; 
theta = dt:dt:2*pi;
g = e x p ( - j ( n o d e s (:,1)*cos(theta) + nodes(:,2)*sin(theta)));

y. Derivatives along boundary normal direction 
f\inction dgdn = dgplane(nodes,k,ndir,normal) 
dt = 2*pi/ndir; 
theta = dt:dt:2*pi;
dn = -j*k*(cos(norm)*cos(theta) + sin(norm)*sin(theta)); 
dgdn = dn .* gplane(nodes,k,ndir);

As illustrated, the input information is given by five matrices: nodal coordinates 

(nodes), connectivities for each node (conn), Neumann and radiation conditions 

(neucs) and Dirichlet condition (dircs). The matrix ‘rest’ is used to implement the 

Neumann and radiation boundary conditions as outlined in section 3.4, augmenting 

the row count in the template matrix H.

Each discretisation point (whether it is a Neumann/radiation boundary point or
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not) has associated one row in the ‘rest’ m atrix, which is initially zero. For Neu

mann and /o r radiation boundary points, the corresponding (non-zero) row in the 

‘rest’ m atrix has the location of these points in the ‘neucs’ m atrix, and th a t of the 

(N eum ann/radiation) neighbouring points in the cell th a t need also to be restrained. 

For illustration, consider for example, a corner region in an 2D acoustic domain 

with boundary along which a radiation condition is imposed. An schematic 

illustration is given in figure C.2.

 o  0 - - 0 - - 0

n a

Figure C.2: Illustration of a radiation condition implementation.

Referring to the figure, the connectivities for the nodes 15 — 20 in the m atrix ‘conn’, 

are given as

conn

/

row 20

\

8 9 16 0 0 0 0 0

8 9 10 15 17 0 0 0

9 10 11 16 18 0 0 0

10 11 12 17 19 0 0 0

11 12 13 18 20 0 0 0

12 13 14 19 21 0 0 0
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Since one boundary point may have more than one normal angle, type of boundary 

condition and boundary value associated, it may occur th a t a given nodal point is 

repeated in the ‘neucs’ matrix. For nodes 15 — 20, the ‘neucs’ m atrix is constructed 

as
(

row 15 -

neucs =

row 21

15 ^na 1 2

15 K 1 2

16 G na 1 2

17 1 2

18 1 2

19 ^ n a 1 2

20 d u a 1 2

V /
where and 6n̂  are the angles associated to normals ria and nb, respectively. 

From the neucs matrix, the restraint m atrix is then constructed as

rest

/ \

row 15

row 20

15 16 8 17 0

17 15 16 8 18

18 17 19 0 0

19 18 20 0 0

20 19 21 0 0

21 20 22 0 0

V
Assuming  th a t a prescribed pressure p =  1 is directly imposed on nodes 15 — 20, a
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Dirichlet m atrix ‘dircs’ is determined as

/

dircs =

row 15

row 20

15 1

16 1

17 1

18 1

19 1

20 1

Also note th a t the matrices described above, can be autom atically constructed from 

standard finite element meshing programs, using the nodal coordinates and the 

(finite element) meshing connectivity information.

C .l CH—h im plem entation

For large domain applications, with a large number of discretisation points, a high 

performance programming language is necessary in order to minimise the compu

tation time. The use of a high-level programming language, like C or Fortran, has 

the disadvantage th a t no in-built functions are provided to store and operate sparse 

matrices. To circumvent this drawback, a number of different storage methods have 

been devised (see e.g. [237,238]).

Alternatively, an object-oriented language, like C-f-l-, may be used [239]. The allo

cation and algebraic m anipulation of sparse matrices may be efficiently performed 

through the use of an array of ordered-linked-lists^ An illustration of the concept 

is shown in figure C.3.

As illustrated, each linked-list has a ‘head’, initialised to zero, and linked to the first

element in the list. Since each linked list is allocated at one position in the array,

the search for the heads in the array is performed very efficiently. Each entry in

the list has assigned a location value, an actual value and a link to the next entry

Hhis type of structure may be also used in C [240], though it is not as straightforward to 

implement as in C + +  .
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head

head

head

head

array

HI

HI

H2

H4

H3

H3H2

H2

Figure C.3: An array of linked-lists.

(zero by default). The search along the list is finished whenever a zero link is found. 

Below is an exam ple of a C + +  tem plate  class ‘node’, which defines the functions 

required by each link in the list.
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// Node template class
11 author; Gabriel Ruiz, Trinity College Dublin, 2002.

// It creates a new entry in a linked list in position ‘index'
// with a general type (char, float, double or complex) value.

template <class T> 
class Node {

// public f\mtions 
public:

Node(Node<T>* p = 0, int i = 0, T val = 0){ // constructor 
link = p; 
index = i; 
data = val;

};

~Node(){ // destructor 
delete link;

};

Node<T>* link; // link to next node in the list

void addafter(int, T){ // tag on a node after this one 
link = new Node<T>( link, i, value );

>:

// accessor functions

int get_index(){return index;}; // returns node index
T& get_data(){return data;}; // returns node data
Node* get_link(){return link;}; // returns link to following node

// in the list

private:

int index;
T data;

};

Note that the link to the next node in the list is a pointer to a node. Thus, by 

assigning the memory address of the next node to the variable link in the class
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function ‘node’ above, the nodes in the list are connected. In order to allocate a 

new entry in an ordered fashion, the preceding node in the list is ‘re-linked’ to the 

new entry, whilst the new entry is linked to the following node in the list. Using 

such a procedure, the allocation and filling process of the overall stiffness m atrix 

may be efficiently performed.

Once the stiffness m atrix  has been assembled, a standard sparse solver package may 

be used to obtain the desired solution. For the present analysis, the © PET Sc solver 

package [241-243], was found to give a suitable interface to which the C + +  linked- 

list can be exported, with a minimum com putational penalty (the package provides 

a full interface to Fortran and © M atlab).

C.1.1 Solution techniques

Numerical methods reduce the problem to a system of equations

A x = b, (C.4)

where, for discrete domain techniques such as the FEM, WED and finite differences, 

the square m atrix A  is very sparsely populated.

The techniques for solving equation C.4 fall into two main categories: direct and 

iterative. Direct methods solve equation C.4 exactly, obtaining a solution in a fixed 

am ount of time, according to the size of the m atrix A. This methods, which are 

very robust and stable, are usually based on a LU  or Cholesky decomposition of 

A  follow by back-substitution. However, this process requires not only to store the

entire m atrix, but produces new entries in A  affecting the original sparsity of the

matrix.

Iterative methods give as approximate solution of equation C.4 by iteratively min

imising the residual error

r = b — Ax,  (C.5)

until a (given) minimum residual value is reached.
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These methods do not require to store the m atrix A, taking full advantage of its 

sparsity. On the other hand, the convergence of the solution to the desired residual, 

depends strongly on the conditioning and diagonal dominance of the final system 

matrix.

The iterative solution algorithms implemented in © Petsc, are preconditioned Krylov 

solvers (see, e.g. [244]). In these methods the system C.4 is multiplied by another 

m atrix in order to accelerate the convergence of the iterative algorithm. T hat is

=  M -^6, (C.6)

where M i  and indicate preconditioning matrices (or matrices from which a 

preconditioner is to be constructed). If M i  =  / ,  where I  is the identity matrix, 

then right preconditioning results, and the residual r

r = b - A x  = b -  M^HdRX,  (C.7)

is preserved. In contrast, the residual is altered for for left [ M r  =  I) and symmetric 

preconditioning, as given by

n  = M l ' b  -  M [ \ A x  = M~^r.  (C.8)

For symmetric systems with a clear diagonal dominance, there are well established 

algorithms, such as conjugate gradients (CG), which converge to the desire residual 

after a few number of iterations. For uon-symmetric systems or systems for which 

the diagonal values are not dominant, variants of the CG m ethod must be used 

[245], such as the bi-conjugate gradient (BiCG) or the generalised minimal residual 

(GMRES). The convergence of a given iterative algorithms depends strongly on the 

selection of a right preconditioner.
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