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Abstract

This dissertation presents a novel methodology for vision-based robot navigation. One 

of the key observations is that navigation systems should be designed through a holistic 

approach, encompassing aspects of sensor design, choice of adequate spatial represen

tations with associated global localisation and local control schemes.

We tackle a number of design issues. Taking inspiration from biology, where wide 

field-of-views are common, we use an omnidirectional camera. This gives us a 360° 

horizontal view of the environment.

An appropriate environmental representation is a key element for successful naviga

tion. We argue tha t emphasis should be placed on building the appropriate represen

tation rather than relying upon highly accurate information about the environment. 

Since our robot is designed to travel long distances, we choose a topological environmen

tal representation. The topological map is encoded by a low-dimensional eigenspace 

obtained via Principal Component Analysis. We detail a local control scheme which 

allows our robot to effectively use the environmental representation for qualitative 

localisation.

Finally, we present a method termed, Information Sampling which calculates the 

most discriminating information within the environment traversed by the mobile robot. 

By developing a method which allows the robot to focus its attention on this data, it is 

better able to make effective use of its (limited) computational resources. This enables 

it to more efficiently handle the complexity of the perception process.

vi



Publications Related to this Ph.D .

[1] Jonrnad Publications

(i) Niall Winters and Jose Santos-Victor, Information Sampling for Vision- 

based Robot Navigation, In Journal of Robotics and Autonomous Systems, 

to appear.

(ii) Jose Caspar, Niali Winters and Jose Santos-Victor, Vision-based Naviga

tion and Environmental Representations with an Omni-directional Camera, 

In IEEE Transactions on Robotics and Automation, Volume 16 Number 6, 

pages 890-898, December 2000.

[2] Conference Publications

(iii) Niall Winters and Jose Santos-Victor, Visual Attention-based Robot Navi

gation using Information Sampling, In Proceedings of the 2001 lEEE/RSJ  

International Conference on Intelligent Robots and Systems, Hawaii, USA, 

October 2001.

(iv) Niall Winters and Jose Santos-Victor, Information Sampling for Appearance 

based 3D Object Recognition and Pose Estimation, In Proceedings of the 

2001 Irish Machine Vision and Image Processing Conference, Maynooth, 

Ireland, September 2001.

(v) Niall Winters and Jose Santos-Victor, Information Sampling for Optimal 

Image Data Selection, In Proceedings of the 9th International Symposium 

on Intelligent Robotic Systems, Toulouse, Prance, July 2001.

(vi) Niall Winters and Jose Santos-Victor, Omni-directional Visual Navigation, 

In Proceedings of the 7th International Symposium on Intelligent Robotic 

Systems, Coimbra, Portugal, July 1999.



(vii) Niall Winters and Jose Santos-Victor, Mobile Robot Navigation using Omni

directional Vision, In Proceedings of the 3rd Irish Machine Vision and Image 

Processing Conference, Dublin, Ireland, September 1999.

[3] International Workshop Publications

(viii) Niall Winters, Jose Caspar, Etienne Grossmann and Jose Santos-Victor, 

Experiments in Visual-based Navigation with an Omnidirectional Camera, 

Proceedings of the IEEE ICAR 2001 Workshop: Omnidirectional Vision 

Applied to Robotic Orientation and Nondestructive Testing, Budapest, Hun

gary, August 2001. Invited Talk.

(ix) Niall Winters, Jose Caspar, Cerard Lacey, and Jose Santos-Victor, Omni

directional Vision for Robot Navigation, In Proceedings of the 1st Interna

tional IEEE Workshop on Omnidirectional Vision at CVPR 2000, Hilton 

Head Island, USA, June 2000.

(x) Niall Winters and Cerard Lacey, Overview of Omni-directional Vision for 

use with a Teleoperated Mobile Robot, In Proceedings of the Joint VIRGO- 

SMART-MobiNet Workshop on Computer Vision and Mobile Robotics, San

torini, Creece, September 1998.

[4] Reports

(xi) Niall Winters, Jose Caspar, Alexandre Bernardino and Jose Santos-Victor, 

Vision Algorithms for Omniviews Cameras, EU 1ST Project: Omniviews - 

Deliverable DI-2, September 2001.

(xii) Claudia Decco, Jose Caspar, Niall Winters and Jose Santos-Victor, Om

niviews Mirror Design and Software Tools, EU 1ST Project: Omniviews - 

Deliverable DI-3, September 2001.



Contents

Acknowledgements iv

Abstract v

List of Tables xiv

List of Figures xv

Chapter 1 Introduction 1

1.1 Camera Geometry: Omnidirectional V ision............................................... 6

1.1.1 Camera-Only S y s te m s .....................................................................  6

1.1.2 Multi-Camera -  Multi-Mirror S y s te m s .........................................  8

1.1.3 Single Camera -  Multi-Mirror S ystem s.......................................... 10

1.1.4 Single Camera -  Single Mirror System s.......................................... 11

1.2 Environmental Representations and Navigation ......................................  12

1.2.1 Topological Navigation...................................................................... 13

1.2.2 Appearance-based Methods for Global L ocalisation .................... 16

1.3 Attention Mechanisms; Handling Complexity .........................................  21

1.4 Original C ontributions.................................................................................. 26

1.5 Dissertation S tru c tu re .................................................................................. 27

ix



Chapter 2 Omnidirectional Vision: Systems, Principals & Camera De

sign 29

2.1 In troduction .......................................................................................................  29

2.2 Omnidirectional Vision: M otivation .............................................................  32

2.3 The Single Centre of P ro jec tio n ...................................................................  34

2.4 Mirror Profiles for Single Camera -  Single Mirror S y s te m s ................... 36

2.4.1 Standard P ro file s .................................................................................  36

2.4.2 Specialised P ro file s ....................................................................  39

2.5 A Unifying Theory for Single Centre of Projection S y stem s................... 41

2.6 Which Design to Use? ...................................................................................  42

2.7 The Single Centre of Projection Revisited ...............................................  43

2.8 Catadioptric Sensor D esig n s .........................................................................  45

2.8.1 Design of a Single Camera -  Single Mirror Catadioptric Sensor

with a Spherical M irror.......................................................................  46

The Spherical Projection M o d e l....................................................... 47

Projection of a 3D P o in t .................................................................... 48

Model Parameter Estimation ..........................................................  49

Obtaining a Bird’s-Eye View of the Ground P la n e .......................  50

2.8.2 Design of a Single Camera -  Single Mirror Catadioptric Sensor

with a Specialised M irror....................................................................  51

Log-Polar S e n s o r .................................................................................  52

Mirror Profile D esign ........................................................................... 53

Constant Vertical Resolution..............................................................  54

2.9 S u m m a ry ..........................................................................................................  56

Chapter 3 Environmental Representations 57

3.1 In troduction ....................................................................................................... 57

3.2 Spatial Knowledge Representation................................................................ 59

X



3.3 Environmental R epresentations................................................................... 60

3.3.1 Geometric Representations................................................................ 61

Grid-Based M apping ........................................................................  61

3.3.2 Topological Representations............................................................. 62

Motivation for the use of Topological M aps.................................... 64

3.3.3 Hybrid Mapping ...............................................................................  65

3.3.4 Our Approach.....................................................................................  65

3.4 Image Eigenspaces as Topological M aps..................................................  • 66

3.4.1 Building the E igenspace................................................................... 69

Prelim inaries....................................................................................  70

How to Compute the Principal Com ponents...............................  70

3.4.2 P roperties...........................................................................................  72

3.4.3 Initial Matching R e s u lts ..................................................................  75

3.5 S u m m a ry .......................................................................................................  77

C hap ter 4 V ision-based N avigation 79

4.1 Introduction....................................................................................................  79

4.1.1 Navigation C om ponents..................................................................  82

4.2 Experimental S e t -u p ..................................................................................... 83

4.3 Qualitative Localisation ..............................................................................  85

4.4 Adding Local Control..................................................................................... 87

4.4.1 Line Tracking using Prediction ....................................................... 90

4.5 Navigation R e s u lts ........................................................................................  92

4.6 Path Distance Versus A ccuracy ................................................................... 94

4.6.1 Integrated Experiments......................................................................  95

4.7 Dealing with Large Illumination Changes...................................................  96

4.7.1 The Hausdorff Distance ...................................................................  99

Eigenspace Approximation to the Hausdorff F ra c tio n ................... 100

xi



4.7.2 Illumination R e s u l ts ............................................................................ 100

4.8 S u m m a ry ...........................................................................................................102

Chapter 5 Information Sampling 104

5.1 Introduction........................................................................................................104

5.2 The Information Sampling M e th o d ............................................................... 106

5.2.1 Image Reconstruction............................................................................ 106

5.2.2 Choosing the Best Data: Information W in d o w s..............................108

5.3 Ranking the Information W in d o w s................................................................110

5.3.1 Searching for the Best In fo rm ation ................................................... I l l

Combinatorial Search............................................................................I l l

Simple Search ........................................................................................ I l l

5.3.2 Ranking Results..................................................................................... I l l

Graphing the Information Content ....................................................115

5.3.3 Reconstruction R esults........................................................................ 117

5.4 Information Sampling for Robot N av igation ............................................... 117

5.4.1 Navigation R e su lts .............................................................................. 120

5.4.2 Navigation Results using Low Resolution Images............................. 123

5.5 Object Recognition...........................................................................................124

5.5.1 Matching R esu lts ..................................................................................126

5.5.2 Results: Non-Uniform Background Change........................................ 128

5.6 Summary ...........................................................................................................130

Chapter 6 Conclusion 131

6.1 Dissertation S u m m ary .....................................................................................131

6.2 Future Research Directions...............................................................................134

Bibliography 136

xii



Appendix A Singular Values and Eigenvalues 156

A.l Singular Value Decomposition......................................................................... 156

A.2 Singular Values and Eigenvalues...................................................................... 156

xiii



List of Tables

2.1 A summary of omnidirectional vision systems and whether or not they

have a single centre of projection (SCP)......................................................  35

3.1 Matching Results using eigenspaces of differing dimensions....................... 75

5.1 Object Recognition Results Summary. ..........................................................129

5.2 Pose Estimation Results Sum m ary.................................................................129

xiv



List of Figures

1.1 Schematic of a rotating camera......................................................................  7

1.2 Camera-only omnidirectional systems: (a) The RingCam uses board 

cameras mounted in pentagonal fashion, (b) Very large resolution images

are obtained using the Dodeca camera.........................................................  8

1.3 Multi-camera -  multi-mirror systems from: (a) FullView Inc. and (b)

the University of North Carolina at Chapel Hill......................................... 9

1.4 Schematic of single camera - multi-mirror systems from (a) Bruckstein

and Richardson and (b) Nayar and Peri......................................................  10

1.5 Schematic of an omnidirectional system with a standard convex mirror. 12

2.1 An omnidirectional image...............................................................................  31

2.2 A panoramic image obtained by remapping Figure 2.1............................... 31

2.3 Hand with Reflecting Globe by M.C. Escher................................................ 33

2.4 Schematic of the Single Centre of Projection, S........................................... 34

2.5 Schematic of a Parabolic Mirror..................................................................... 37

2.6 Schematic of a Hyperbolic Mirror..................................................................  38

2.7 Schematic of a Spherical Mirror.....................................................................  40

2.8 A Unifying Theory for all catadioptric sensors with a single centre of

projection..........................................................................................................  41

XV



2.9 Hicks and Bajesy designed a mirror which approximates a perspective 

projection. In this case, two orthographic views of the ground plane are 

correctly mapped from the same mirror (from [59])....................................

2.10 Two of the omnidirectional cameras built: (a) The camera at TCD and 

(b) the camera at 1ST. Both use a spherical mirror.....................................

2.11 Camera (spherical mirror) projection geometry. Symmetry about the 

z-axis simplifies the geom etry .........................................................................

2.12 (a) The original omnidirectional image, (b) The ground plane remapped 

to a bird’s-eye view image.................................................................................

2.13 The SVAVISCA omnidirectional camera with a specialised mirror . . .

2.14 General view of (a) the SVAVISCA Log Polar Sensor. Detailed views of 

the (b) foveal and (c) retinal regions..............................................................

2.15 Geometry of image formation using a catadioptric sensor with a constant 

vertical resolution mirror profile......................................................................

3.1 A topological map of landmarks in Lisbon, Portugal..................................

3.2 A sequence, from left-to-right and top-to-bottom, of omnidirectional im

ages acquired along a corridor at a full resolution of 516 x 508 pixels. 

Before applying Principal Component Analysis, these were reduced to a 

resolution of 128 x 128 pixels...........................................................................

3.3 A simple example showing how (a) 2D points can be represented by (b) 

a ID line, i.e. dimensionality reduction..........................................................

3.4 The eigenvalue drop-off. Good matching results were obtained using the 

first 10 eigenvectors...........................................................................................

3.5 The first 9 (omnidirectional) eigenimages obtained via Principal Com

ponent Analysis...................................................................................................

45

46

48

51

52

53

54

63

67

68

73

74



3.6 1ST Set: A selection of (a)omnidirectional test images and (b) their 

closest matches obtained by projection into a lOD eigenspace. The a 

priori inter-image distance was 20cm and each image was 128 x 128 

pixels in size................................................................................................. ^6

3.7 CMP Set: A selection of (a) panoramic test images and (b) their closest 

matches obtained by projection into a lOD eigenspace. The a priori 

inter-image distance was 50cm and each image was 252 x 110 pixels in

size..................................................................................................................  77

4.1 (a) The omnidirectional camera with a spherical mirror and (b) the

camera mounted on a Labmate mobile platform.........................................  84

4.2 (a) The SVAVISCA omnidirectional camera with a specialised mirror

and (b) the camera mounted on a SCOUT mobile platform......................  85

4.3 A 3D plot of images acquired at run time, R versus those acquired a 

priori, P. This plot represents the traversal of a single corridor. The 

global minimum is the estimate of the robot’s topological position. . . .  86

4.4 (a) A bird’s-eye view of the corridor and (b) the measurements used in

the control law; the robot heading, (i, the distance, to the corridor 

centre, and the angle, a  towards a point ahead in the corridor central 

path. The error used for controlling the robot orientation is 0..................  88

4.5 Simulated results of the proposed control scheme: (a) Robot trajectory 

and (b) heading direction and translation. Distances are expressed in 

metres and the heading in degrees................................................................ 89

4.6 Ground plane views of the robot’s orientation and translation over time.

The dashes represent the predicted position of each of the bounding box 

extremities...................................................................................................  91

4.7 One of the paths travelled by the robot at 1ST. The total distance trav

elled was approximately 21 metres...............................................................  93

xvii



4.8 A sequence of images of the SCOUT mobile robot navigating in a typical

indoor environment.......................................................................................... 93

4.9 A sequence of images of an experiment combining Visual Path Following

for door traversal and topological navigation for corridor following. . . .  96

4.10 The experiment combining Visual Path Following for door traversal and 

topological navigation for travelling long distances. Trajectory estimate 

from (a) odometry and (b) the true tra jectory ..........................................  97

4.11 Images acquired at (a) 5pm and (b) 11am. (c) Image intensity shows 

large non-uniform deviation in brightness. The thin line represents im

age (a)...............................................................................................................  98

4.12 (a) An omnidirectional image obtained at 11 am, (b) one obtained at 5

pm (c) An edge-detected image and (d) its retrieved image......................... 101

4.13 Position estimation with large non-uniform illumination changes (a) us

ing brightness distributions and (b) the Hausdorff fraction..........................102

5.1 Ranking Results: (a) The 16 non-overlapping Information Windows, (b)

Those windows ranked, according to the amount of information they 

contain, using Simple Search.............................................................................112

5.2 The information windows obtained using panoramic images, ranked, ac

cording to the amount of information they contain, using Simple Search. 112

5.3 Ranking Results: (a) The 16 non-overlapping Information Windows.

(b) These windows ranked, according to the amount of information they 

contain, using Simple Search............................................................................. 114

5.4 The 10 best overlapping Information Windows............................................... 114

5.5 Graphs of the data contained in each Information Window versus the 

window rank when using (a) Simple Search and (b) Combinatorial Search.

The numbers along the graph line are the window numbers.........................116

xviii



5.6 Graphs of the information contained in each Information Window versus 

the window rank using (a) non-overlapping and (c) overlapping windows.

The best (b) non-overlapping and (d) overlapping Information Window

in an image........................................................................................................... 118

5.7 (a) A 32 X 32 omnidirectional image acquired at run-time, (b) Its recon

struction using the most discriminating Information Window, (c) Its 

reconstruction using all of the Information Windows. Each Information 

Window is 8 X 8 pixels in size....................................................................  . 119

5.8 Close-up of the 32 x 32 Information Windows from Set A: (a) unknown 

(b) closest and (c) reconstructed. The position of (d) the unknown and

(e) the closest images in their respective omnidirectional images.................121

5.9 (a) An unknown image, (b) its closest match and (c) the path travelled

by the robot when using entire 128 x 128 images.......................................... 122

5.10 a) An unknown image, (b) its closest match and (c) the path travelled

by the robot when using the best 32 x 32 non-overlapping Information 

Window................................................................................................................122

5.11 a) An unknown image, (b) its closest match and (c) the path travelled 

by the robot when using the 10 best 16 x 16 overlapping Information 

Windows...............................................................................................................123

5.12 Graphs showing images acquired at run-time versus those acquired a 

priori when using (a) 16 x 16 Omnidirectional Images, (b) 4 x 4 In

formation Windows and (c) 8 x 10 Information Windows. Experiments 

were undertaken along a ~7m path..................................................................124

5.13 A selection of images from the COIL-20 database........................................ 125

5.14 A selection of images showing the highest (mid-image) and lowest rank

ing (bottom-right) Information Windows, respectively in a selection of 

images...................................................................................................................127

xix



5.15 Object recognition and pose estimation without background variation. 

When using the most discriminating Information Window, the object 

recognition rate was 95.3% and the pose estimation rate 73.8%.................. 128

5.16 Object recognition and pose estimation with non-uniform background 

variation................................................................................................................ 129

XX



Chapter 1

Introduction

This chapter introduces the research undertaken for this disserta
tion, on autonomous, vision-based robot navigation. The motivation 
fo r  the work is outlined and the proposed method is placed in the 
context of previous approaches to the problem. An extensive and 
detailed literature review of the state-of-the-art is provided. The 
main contributions to the literature are listed and a chapter outline 
is given.

This dissertation addresses the problem of autonomous, vision-based mobile robot 

navigation in structured environments. This topic of research is far from new; a signif

icant amount of work has been done in the past and a vast bulk of literature exists on 

the variety of works and approaches taken to solve the problem. However, as we will 

discuss throughout the course of this dissertation, many questions remain unsolved.

We rely upon vision to sense the environment. The reasons for this choice are mul

tifold. First of all, vision provides high resolution information about the environment, 

which is successfully used by many biological vision systems, to solve a large number of 

different tasks. Another motivation arises from the challenge of understanding visual 

perception and testing solutions on artificial systems. How can images, which convey 

only 2D information, be used in a robust and efficient way to drive the actions of an 

autonomous system, that operates in a three-dimensional space?
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Chapter 1. Iptroduction

Vision allows us to build a representation of the world which is functional. By this 

we mean that the goal of vision (in the context of navigation) may not necessarily 

be that of providing an jiccurate (metric) reconstruction of the world but rather, an 

abstraction of it. Such an abstraction is used as the robot’s internal model of the 

environment. This is a key difference between vision and for example, sonar or laser. 

Using either of the latter sensors, an accurate metric representation (either 2D or 3D) 

of the world can easily be created^. Thus, there is a one-to-one relationship between the 

structure of the environment and the robot’s perception of it. Consequently, navigation 

algorithms which rely on such sensors often focus on using both the measurements and 

metric map to constantly localise the robot, rather than using the available resources 

to actually drive the robot towards the desired configuration.

Even though working navigation systems exist, they often rely upon modifications 

of the environment to facilitate the navigation task. Many fundamental questions, 

which may have a strong impact on the way we design such systems remain, to a large 

extent, unanswered. This dissertation addresses some of these questions, in a holistic 

approach towards the design of autonomous navigation systems;

• What cam era /im age geom etry is the most adequate for a given navigation 

problem?

• What env ironm ental representations should be used? How can they facilitate 

global localisation of the vehicle? How can local visual control be applied to the 

robot, whenever the map is no longer necessary? What are the localisation 

accuracy requirements and how do we combine global and local navigation?

• What kind of a tte n tio n  m echanisms should be used to concentrate the (lim

ited) system resources on the most relevant, in terms of position estimation, 

sensory input?

^Reconstruction can also be achieved using vision. However, such an approach is hardly suitable 
for real-time navigation, both for complexity and robustness reasons.
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Chapter 1. Introduction

Looking at biology again, studies of animal navigation [23, 124] suggest that most 

species utilise a very parsimonious combination of perceptual, action and representa

tional strategies that lead to much more efficient solutions when compared to those of 

today’s robots. Numerous insects, in spite of having limited sensory and computational 

resources, manage to solve complex navigation problems in real-time [149]. In various 

ways, all of these aspects are fundamental to the navigation process. On the one hand, 

only by answering a number of these questions can we really understand the reasons for 

the success of biological navigation systems. On the other hand, progress in addressing 

such fundamental questions may have a dramatic impact on the simplicity, robustness 

and performance of future autonomous navigation systems.

Camera Geometry: OmnidirectionEil Vision One striking observation in biolog

ical vision systems is the diversity of “ocular” geometries. Many animals’ eyes point 

laterally, which may be more suitable for navigation purposes. The majority of insects 

and arthropods benefit from a wide field-of-view and their eyes have a space-variant 

resolution. To some extent, the performance of these animals can be explained by their 

specially adapted eye-geometries.

One possible idea is to design a camera for the specific purpose of autonomous 

navigation. Extending the field-of-view is a step in this direction. For that purpose, in 

our work, we use an omnidirectional camera.

An omnidirectional camera captures a 360° view horizontally and approximately 

110° vertically. In terms of navigation, it offers a number of attractive properties 

including its wide field-of-view, rich information content, simplicity and increased ro

bustness to occlusion. Two camera designs are presented: (i) a conventional camera, 

pointed upwards, viewing a spherical mirror and {ii) a log-polar camera viewing a 
constant vertical resolution mirror.
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Environmental Representations and Navigation The complexity of the navi

gation problem has warranted in-depth and active research over the last three decades. 

While a large body of worthwhile results were obtained, research often focused upon 

building metric representations of the world rather than on tailoring the representa

tions to the navigation task.
Our robot must travel long distances and so to maintain a precise estimate of posi

tion is not only computationally intensive but is not required for successful completion 

of the task. Instead, in line with the navigation scheme used by both humans and an

imals [87], we utilise a topological estimate of position, where the world is represented 

qualitatively by a set of images. As we do not require complex systems to capture 

precise (metric) information, problems of drift and slippage are easily overcome. Fur

thermore, topological maps deal only with proximity and order and so global errors do 

not accumulate.

A disadvantage of building topological maps using conventional, narrow field-of- 

view images is that visually similar places are often indistinguishable. We believe that 

the increased amount of environmental information provided by an omnidirectional 

camera alleviates this problem and thus it is particularly suited to capturing topology.

Our solution for determining the qualitative position of the robot (i.e. global lo

calisation) is appearance-based. Each reference image is associated with a qualitative 

robot position. As detailed in Section 3.4.1 (p. 69), localisation is achieved by directly 

computing the distance, between the current view and the reference images. The clos

est reference image is the best estimate of position. This matching can be efficiently 

achieved in a low-dimensional eigenspace [102], obtained via Principal Component 
Analysis.

Besides using an appropriate environmental representation, there is the need to 

control the robot’s local pose. As an example, when driving, humans make effective 

use of demarcations along the road for guidance. A key point here is that a minimal
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amount of quality information is all that is required to accomplish the task at hand.

Naturally, in indoor environments one can always use simple knowledge about the 

scene geometry to locally control the robot pose. In our case, we remap the omni

directional images to bird’s-eye views'^ of the ground plane and servo upon corridor 

guidelines. Since we use omnidirectional images, these guidelines are always within the 

field-of-view.

Attention Mechanisms: Handling Complexity A related issue to the navigation 

problem is that of determining the most informative data within the environment 

traversed by the mobile robot. Finding this data allows the robot to maximise the use 

of its limited computation resources. In a way, we are talking about the development 

of attention mechanisms which, by focusing the system’s resources on a subset of the 

sensory data, allows it to handle the dramatic complexity, intrinsic to most perceptual 

systems.

Traditionally, “good” information was either provided a priori, in the form of artifi

cial landmarks [85, 111], or could only be determined in highly textured environments 

[130, 131, 166]. More generally, we detail a method, termed Information Sampling, 

for selecting the most discriminating information from an a priori set of images. This 

discriminating information is defined as data which changes significantly from image 

to image. This method is not restricted to the type of images used and is applied on 

a pixel-by-pixel basis. Unlike most previous research in this area, the method is non

feature based, and advantageously, can be used with low textured images. We applied 

the method to robot navigation and object recognition.

^That is, scaled orthographic views
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1.1 Csimera Geometry: Omnidirectional Vision

While the optical properties of conic mirrors have been known since the times of Ancient 

Greece [141] and the idea of the panorama in art became popular in the 18*̂  century 

[8], it was not until 1843 that Joseph Puchberger of Retz, Austria was arguable the first 

to patent a panoramic camera. Throughout the 19‘̂ , and 21®* centuries a large 

number of camera designs followed. Today, the spectrum of application has broadened 

to include such diverse areas as tele-operation [154], video conferencing [114], virtual 

reality [89], surveillance [133], 3D reconstruction [46, 134], structure from motion [20] 

and autonomous robot navigation [18, 32, 48, 152, 153, 157, 164, 168]. For a survey of 

previous work, the reader is directed to [162]. A relevant collection of papers, related 

to omnidirectional vision, can be found in [36] and [37].

Omnidirectional and panoramic images can be generated by a number of differing 

systems. These can be classified into four distinct design groupings:

1. Camera-Only Systems

2. Multi-Camera -  Multi-Mirror Systems

3. Single Camera -  Multi-Mirror Systems

4. Single Camera -  Single Mirror Systems

1.1.1 Camera-Only Systems

A popular method used to generate omnidirectional images is to rotate a standard 

CCD camera about its vertical axis, as shown in Figure 1.1. The captured data, i.e. 

perspective images, are then stitched together so as to obtain panoramic 360° views^. 

High resolution is the primary benefit of this approach, as it does not depend on the 

camera resolution but on the angular resolution of rotation. As explained in [68], range

Vertical line scans [6] have the advantage of not requiring stitching but do exhibit time constraints.
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data can be acquired if the focal point of the camera is kept a given distance away from 

the axis of rotation. Unfortunately, in terms of robot navigation, the rotating camera

r ))
Fig. 1,1; Schematic of a rotating camera.

approach has many disadvantages. Its slow capture speed and inability to view actions 

omnidirectionally and simultaneously make it unsuitable for real-time applications or 

for navigating through dynamic scenes; a moving object shall be viewed multiple times 

in different positions. In addition, its moving parts mean that it is not the most robust 
method detailed here.

Instead of relying upon a single rotating camera, a second camera-only design com

bines cameras pointing in different directions. A number of systems have been built 

including the FlyCam from Xerox Research [43] and the RingCam (see Figure 1.2(a)) 

from Microsoft Research‘d. Here, images are acquired using inexpensive board cameras 

and are again stitched together to form panoramas. In [43], piecewise perspective warp

ing, of quadrilateral regions, was used to correct high lens distortion and to map images, 

obtained from each camera, onto a common image plane, before stitching occurred.

Naturally, one can increase the number of cameras used in order to obtain very high 

resolution images. Such a system, termed the Dodeca camera, is commercially available 

for applications including teleimmersion, simulation and entertainment. Given the 

nature of the images obtained, specialised viewing equipment is required. Multiple 

cameras are arranged in a dodecahedron, as shown in Figure 1.2(b) so as to image 

360° in the horizontal direction and 290° in the vertical direction (or 91.7% of the

‘‘The researcher was contacted for any publications regarding this design. Unfortunately, none were 
available at the time of writing.
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surrounding environment).

(a) (b)

Fig. 1.2 ; Camera-only omnidirectional systems: (a) The RingCam uses board cameras 
mounted in pentagonal fashion, (b) Very large resolution images are obtained using 
the Dodeca camera.

One of the oldest methods utilised to capture a wide field-of-view is to equip a 

camera-only system with a specialised lens. Cao et al. [16] describe a system that uses a 

fish-eye lens [95, 161] for such applications as line following [39] and beacon recognition 

[15]. Fish-eye lenses, because of their short focal length, can view up to a hemisphere 

but the acquired images exhibit large radial distortion which requires modelling [98]. 

Lenses with the advantage of no radial distortion currently cost ~  $12,000.

Finally, Greguss [51] developed a lens, which he termed the Panoramic Annular 

Lens, to capture a panoramic view of the environment. It consisted of a glass block 

with two parabolic mirrors and two refracting elements. Unfortunately, its vertical 

viewing angle was rather limited and so the ground plane near the camera could not 

be viewed, thus affecting its application to vision-based mobile robot navigation.

1.1.2 IVIulti-Camera -  IVlulti-Mirror Systems

This approach consists of arranging a cluster of cameras in a certain manner along with 

an equal number of mirrors. Nalwa [103] achieved this by placing four triangular planar
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mirrors side by side, in the shape of a pyramid, as shown in Figure 1.3(a). A camera 

was then placed under each mirror and the images obtained from all four cameras were 

combined to give a  360° panoramic view of the environment. This approach gives high 

resolution images: 2880 horizontal x 432 vertical lines, with a good depth of field and 

so has found application in multimedia technologies. A six-camera version has also 

been designed.

One significant problem which needs to be addressed when using multi-camera -  

multi-mirror systems is that of geometric registering and intensity blending together 

the images. Creating seamless panoramic views has long been an area of research, 

see for example [14]. This is a difficult problem to solve given that, even with careful 

alignment, unwanted visible artefacts are often found at image boundaries. More re

cently, Majumder et al. [89] have addressed this problem when using multi-camera -  

multi-mirror systems. Achieving real-time results required an SGI 02 with an RIOOOO 

CPU. Figure 1.3(b) shows the system composed of 12 cameras with trapezoidal planar 

mirrors, arranged in a two-tier structure. The field-of-view was 360° in the horizontal 

direction and 90° in the vertical direction. The primary application for the device was 

immersive teleconferencing.

(a) (b)

Fig. 1.3: Multi-camera -  multi-mirror systems from; (a) PulIView Inc. and (b) the 
University of North Carolina at Chapel Hill.
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Somewhat the same approach has been apphed by Kawanishi et al. [73] using six 

cameras and a hexagonal mirror for the real-time generation of omnidirectional stereo. 

Currently, multi-camera -  multi-mirror systems are not the most suitable for robot
i'
f navigation due to their inherit complexity, weight and high power consumption. In 

addition, if bandwidth is a constraint, other systems offer a better solution. As an 

historical aside, Nalwa’s camera [103] was the first system to provide a panoramic live 

view of a scene from a single viewpoint.

1.1.3 Single Camera — Multi-Mirror System s

The main goal behind the design of single camera -  multi-mirror systems (also known 

as Folded Catadioptric Cameras [106]) is compactness. A simple example of such a 

system is that of a planar mirror placed between a light ray travelling from a curved 

mirror to a camera, thus “folding” the ray. A schematic of single camera — multi-mirror 

systems are shown in Figure 1.4(a) and (b).

Mirror 2 Mirror 2

World ^  Point

,World 
PointCCD

Mirror 1

CCDMirror 1

(a) (b)

Fig. 1.4; Schematic of single camera - multi-mirror systems from (a) Bruckstein and 
Richardson and (b) Nayar and Peri.
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Bruckstein and Richardson [12] presented a design, shown in Figure 1.4(a), that 

used two parabolic mirrors, one convex and the other concave. Figure 1.4(b) shows the 

more general design by Nayar and Peri [106], consisting of any two mirrors with a conic 

profile. They noted that such a system reduces the level of field curvature because the 

field curvature introduced by one mirror is compensated for by the other. In practice, 

given th a t the CCD used is small, the resolution of the final image is greatly reduced.

1.1.4 Single Camera — Single Mirror Systems

In recent years, this system design has become very popular and is the approach we 

chose for application to vision-based robot navigation. The basic method is to point 

a CCD camera vertically up, towards a mirror, as shown in Figure 1.5. Significantly, 

in this category there are a number of mirror profiles that can be used to project light 

rays to the camera.

The first, and by far the most popular design, uses a stcu idard  m irro r  profile: 

planar, conical, elliptical, parabolic, hyperbolic or spherical. All of the former, with the 

exception of the planar mirror, can image a 360° view of the environment horizontally 

and, depending on the type of mirror used approximately 70° to 120°, vertically.

The second design involves specifying a specia lised  m irro r  profile  in order to 

obtain a particular, possibly task-specific, view of the environment. In both cases, to 

image the greatest field-of-view, the camera’s optical axis is aligned with that of the 

mirrors’. A detailed analysis of both the standard and specialised mirror designs are 

given in Section 2.4 (p. 36). Prom an historical perspective, the focal properties of 

mirrors with a conic profile were discovered by the Greek geometer Diodes [141]. The 

designs for the omnidirectional systems used in this work are described in Section 2.8 

(p. 45)
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Convex
Mirror

CCD

Fig. 1.5: Schematic of an omnidirectional system with a standard convex mirror.

1.2 Environmental Representations and Navigation

As previously mentioned, the choice of a suitable environmental representation is cru

cial to the design of a navigation system. For instance, the process of determining 3D 

distances or structure using vision alone is somewhat complex and often sensitive to 

noise. Hence, a metric representation may not be the best choice, if vision is the main 

sensor available. Instead, in our approach we have use a topological representation 

of the environment, where relevant places are directly represented by omnidirectional 

images.

Once a suitable environmental representation was chosen, the next (intimately) 

related question, is that of determining a robust manner of localising the robot with 

respect to the global representation/map. Here we adopt appearance-based methods for 

qualitative localisation.

The last question is how can we locally control the robot in order to complete 

the mission? In our case we visually servo upon corridor guidelines, which are always 

within the field-of-view of our omnidirectional camera.

We shall now provide a  literature review of the state-of-the-art. A number of 

related works are relevant to our methodology. It should be emphasised that most are 

concerned with only some of the issues addressed in this dissertation. For example, 

works on topological mapping may use a number of sensors to determine their position.

12
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Alternatively, works on appearance-based matching may not have considered real-world 

navigation. They simply define it as a matching problem, without recourse to a local

j control strategy or appropriate sensor usage.
/S

1.2.1 Topological Navigation

Over the past few years the use of topological maps for navigation has grown in pop- 

L ularity. Notably, some of the research detailed below was inspired by theories aboutI
how humans navigate through their environment (as detailed in Section 3.2 (p. 59)).

Perhaps the first attempts to use topological maps with a  physical mobile robot 

were implemented, separately, by Chatila and Laumond [21] and Crowley [26] in 1985. 

Chatila and Laumond’s thesis was that three world models were necessary: a geometric 

model, a topological model and a semantic model. The key point to note in their work 

was that the topological level was built after acquiring geometric data. Thus, they had 

to overcome the difficulties of geometric modelling when constructing and maintaining 

an accurate world model. Crowley developed a navigation system equipped with a 

rotating ultrasonic range sensor, where a network of pre-learned places allowed for 

global path planning.

The first research work which attempted to go directly to the topological level, 

using a physical mobile robot, was undertaken by Sarachik [123]. While no topological 

map was actually constructed, she did implement a “room finder” . This was achieved 

by determining the dimensions of the room in which the mobile robot was located by 

using two vertically placed cameras. The long-term goal was to combine the room 

finding module with a door finding module and so gain the ability to navigate along a 

topological map.

Mataric developed a robot named “Toto” [91] to act as a testbed for integrating a 

topological map architecture into a subsumption-based [11] mobile robot. Landmarks, 

detected using sonar and compass readings, served a dual purpose: to encode topo-
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logical structure and to act as communicators. When a detected landmark matched 

a node on the topological map, the robot was localised to the position of that node. 

This information was subsequently communicated to all other nodes (landmarks) on 

the map for path planning.

Kosaka and Pan [78] implemented a system which used a neural network to process 

the incoming images from a conventional camera and then applied fuzzy logic to deal 

with the uncertainty in the inferences drawn from the visual data. They termed their 

architecture FUZZY-NAV and used a topological model of corridors for navigation. 

Hallway navigation was possible by transforming images to Hough space and using the 

output from a neural network to keep the robot centred in the corridor. Landmark 

detection, based on recognising door frames from different perspectives, was partially 

implemented. It is not clear how the system would cope with the disappearance of 

corridor guideUnes from the narrow field-of-view images.

Kosecka [79] presented a successful navigation system, where the mobile robot was 

modelled as a point in a 2D configuration space. The environment was represented by 

a place graph and travelling from one node (i.e. landmark) to another was achieved 

by visual servoing. A pan-and-tilt camera was used for tasks including wall following 

and door servoing. It was assumed that landmarks and their feature co-ordinates in 

the global system were known a priori.

As noted in Section 3.3.2 (p. 64), topological maps often have problems differentiat

ing between similar locations, especially when using sonar sensors which are limited in 

range and angular resolution. Kortenkamp and Weymouth [77] addressed this problem 

by characterising distinctive places from sonar and conventional camera data, com

bined using a Bayesian network. Nodes in the environment were termed gateways and 

were classified as such by using sonar sensors. It was only after classification that 

visual information was added to differentiate between gateways. The visual informa

tion consisted of simple vertical edges, and successful recognition of a visual cue relied
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upon its location, direction, distance and length. The visual cues were stored in an 

abstract scene representation (ASR) and eight ASRs were needed at each location in 

. order to account for orientation change. Scale changes were not considered. Chapter
i 5 describes our approach to the problem of finding discriminating information within 

 ̂ the environment.

Franz et al. [44] implemented “view graph” based navigation. A view graph is 

simply defined as a collection of views that describe a relevant path. Inspired by insect 

navigation, their system travelled between nodes on the graph using a homing strategy. 

Homing is the ability to find views which are connected to a start view. They did not use 

views of every spatial position along a route but instead chose to take omnidirectional 

snapshots^ of the environment at particular time intervals determined by the distance 

between neighbouring views. Spatial closeness was defined by the degree of similarity 

between views: problems of occlusion were not addressed. Importantly, snapshots did 

not represent distinctive places in the environment and were not labelled. Moreover, 

experiments were for the most part carried out in simulation. A small experiment was 

implemented on a mobile robot platform, where the robot was able to home over a 

distance of about 1 metre but real-world experimental evaluation was left for future 

work.

In [110], Owen and Nehmzow presented a landmark-based mobile robot navigation 

system. A topological map was constructed by self-organising sonar and compass data 

using a Restricted Coulomb Energy classifier. Essentially, only landmarks which were 

sensed by the robot, over a distance of 10cm, were added to the map, thus attempting to 

alleviate the problem of missing landmarks as navigation proceeded. Since perception 

was affected by the orientation of the robot, the authors chose to mount the sonar 

sensor on a turret and use the on-board compass to ensure that it faced north at all

^Cartwright and Collett [17] developed the snapshot theory of navigation in order to explain how 
bees locate sources of food. As the bee flies, it takes snapshots of the environment, so that, on 
subsequent visits to the same area, it can easily relocate these important sources.
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times. Unfortunately, this made the system invariant to rotation.

Vassallo et al. [122, 144] implemented a topological navigation system. In terms of 

the overall approach to the navigation problem, this research is closely related to ours 

' but the imaging geometry, matching scheme and servoing strategy were different from 

those presented in this work.

Ulrich and Nourbakhsh [143] presented a system quite similar to the one detailed 

here, although published three years after this work began. They too utilised an omni

directional camera but instead of using eigenspaces as topological maps (see Section 3.4 

(p. 66)), their approach used colour histograms and nearest neighbour learning. It was 

not implemented on a real robot and no local control was available. Additionally, since 

histograms axe invariant to rotation, they cannot be used for such tasks as turning at 

a corner, thus hmiting the applicability of this approach.

1.2.2 Appearance-based Methods for Global Localisation

Perhaps the first use of appearance-based methods for navigation was developed by 

Hong et al. [60, 61] in 1990. Although no large-scale navigation was undertaken, the 

idea presented was tha t large-scale navigation tasks could, in principal, be divided 

into a sequence of small-scale tasks. These would then be solved by local image- 

based homing. As implemented, homing was defined as the robot’s ability to find its 

way to a known, local, target location. It was achieved by extrax:ting a 1-D circular 

“location signature” (actually, the horizon line®) from each omnidirectional image and 

subsequently extracting features from these signatures. Matching was done using a 

normalised cross-correlation function. In all, 17 images of a corridor were acquired, 

40cm apart. The robot then homed from one image to the next. Given the small 

distance traversed (6.8m), it is not clear how this approach would scale up to larger

®The horizon line has the property that landmarks projected onto it remain there as the robot 
moves.
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environments. Additionally, relying upon a 1-D circular ring from the omnidirectional 

image, is not very robust.

A similar idea was developed by Hancock and Judd [54] in 1993. They named 

their mobile robot “Ratbot” and a silver Christmas tree bulb decoration was used as 

part of a very simple omnidirectional vision sensor. The image data acquired were 

1-D panoramic image strips extracted at a given height above the ground. While they 

were not of high enough quality to uniquely determine position, they proved useful 

in correcting dead reckoning measurements. Localisation was achieved by matching 

features, simply vertical bars, in the run-time images to those in the database. No 

detailed experimental results were presented. In later work [86], a version of this 

system was placed on a car, again for dead reckoning correction.

Horswill [62] developed a low-cost robot, “Polly”, capable of vision-based naviga

tion. Efficiency was achieved by task specialisation and places in the world were ordered 

using qualitative co-ordinates. Position was estimated by landmark recognition. This 

was the system’s weakest link, given the fact that the robot’s standard camera was 

pointed towards the floor and so landmarks were restricted to corridor intersections. 

The system failed in the presence of occlusion but was a major step forward towards 

the goal of building low-cost robots.

Zheng [168] presented a system which moved along a given route under human 

guidance and autonomously memorised a side-view of that route. To obtain a wide 

field-of-view, two types of images were constructed: panoramic views and generalised 

panoramic views. The first was a projection of a scene onto a cylinder, taken by a 

stationary rotating camera through a vertical slit. The second was acquired along a 

path by a laterally facing camera, again through a vertical slit. These data were then 

used as a basis for route recognition so as the robot could autonomously locate and 

orient itself. Image matching was performed in a coarse-to-fine manner using a dynamic 

programming technique and successful results were achieved. This approach suffered
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from the complexity of using large images, in addition to the necessity of acquiring two 

representations of the environment.

As a first attem pt at efficient memory utilisation, Ishiguro [67] used the Fourier 

Transform of a set of omnidirectional images as an image-based memory of the envi

ronment. The images were acquired in a section of an unknown office environment. 

By using the similarity between images, they were organised so as to reflect the envi

ronmental geometry. An interesting result of this research was that, even though the 

arrangement of images was significantly distorted, the topology remained unchanged. 

Matching was achieved using the sum of absolute differences. Unfortunately, results of 

autonomous navigation were not presented.

A “View Sequence” of images for navigation was proposed by Matsumoto et al. [93] 

and images were captured using a standard narrow field-of-view camera. Localisation 

was achieved by template matching (in hardware), using the central rectangular section 

of each image as a  template. Unfortunately, this led to a qualitative local control 

scheme, where the robot’s displacement was determined by image shift: rotation and 

lateral translation could not be distinguished. Additionally, when large changes in 

appearance occurred, the robot was unable to localise itself. Clearly, this system would 

benefit from the use of an omnidirectional camera. Matsumoto et al. realised this and 

in [94], they presented a system with a hyperbolic mirror. The images acquired were 

transformed by cylindrical projection. Images were acquired every 0.5m - Im  apart or 

according to changes in the scene and thus did not describe important places within 

the environment. Localisation was achieved by using the entire cylindrical image as 

a template, a time consuming task. In addition, to keep the robot moving along a 

straight path, small front and rear template matching was used. If these regions were 

occluded the robot became laterally displaced.

In [92], Matsumoto et al. again extended this system by using a stereo head for free 

space detection and optical flow for junction detection. Unfortunately, this complicated
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the system, given that two vision systems were required for effective navigation.

Continuing along this line, Maeda et al. [88] used the parametric eigenspace ap

proach to image matching [102]. They noted that if one takes a single image from 

a conventional camera, multiple matches could be obtained in environments where 

similar images appeared a distance apart. Thus, robot position could not be reliably 

determined. The proposed solution to this problem was to take another image, close to 

the current one, by moving the robot (or the camera) and projecting this image into the 

eigenspace. Position estimation was considered successful if the difference between the 

estimated pose and the actual pose was less than Im and 20°, a large error estimation 

band. Experiments were only undertaken in straight lines, no corner detection was 

evoked. The disadvantage of this approach was that, when building the eigenspace, 

multiple images had to be acquired at every location, thus increasing complexity. In

deed, this shows that building an appearance-based system with a standard camera 

leads to problems. An additional disadvantage was that the robot’s ability to traverse 

its environment was reduced, since it was required to stop and start again in order to 

overcome ambiguities.

The approach taken to vision-based navigation by Aihara et al. [1] utilised row 

autocorrelated omnidirectional images and eigenspace matching. Autocorrelating the 

omnidirectional images makes them invariant to rotation. This is a nice property when 

undertaking such tasks as corridor following but fails if the rotational information is 

required, for example, when turning corners. Additionally, if their images contained 

any local deviations, matching failed. Since there was no local control strategy, they 

were forced to densely sample the environment and build multiple small eigenspaces (of 

18 images each). Thus, a two-stage approach to localisation was used: first the nearest 

eigenspace had to be detected, followed by the closest image within that space. The 

mechanism for detecting the closest eigenspace was not detailed. Using this method, 

images, from  the a priori set, were recognised in 100% of cases using more than 6
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eigenvectors. More realistically, when localising using images n o t fro m  the a priori 

set, the recognition rate dropped to approximately 65%, when using 6 eigenvectors 

and 85%, when using 18 eigenvectors. A possible reason for the low recognition result 

is that row autocorrelation is not a one-to-one mapping, and so different images can 

match to a single database image.

Pajdla and Hlavd<$ [112] attempted to overcome this one-to-many mapping problem 

by using what they termed a “Zero Phase Representation”. Here, the phase of the first 

frequency of the Fourier Transform was set to zero, thus gaining a one-to-one mapping 

in the presence of no image deviation. Jogan and Leonardis [70] also tackled this 

problem by using a representation termed, spinning images. In their case, a single 

image was ax:quired at each location and subsequently shifted row-wise by 7.2° in order 

to simulate possible rotations. A disaxdvantage of this approach was that the number of 

images required to represent the environment increased 50-fold, although the dimension 

of the eigenspace did not exhibit such a profound increase.

Yagi et al. [163] presented a route recognition system for a mobile robot using a 

2D Fourier power spectrum of polar panoramic images. Presuming that the density 

of environmental features changed, the frequency component of the power spectrum 

varied. Thus, it was used to differentiate between places in the environment. Matching 

was achieved using cross-correlation and the robot motion was assumed to be constant 

and linear.

Andersen et al. [2] presented an appearance based approach which defined visual 

processes for navigation. Here simple processes were used to transform images into 

commands for displacement and steering. Their system used odometry in association 

with a conventional camera (or a multiple camera configuration) on a distributed sys

tem. Image matching was done using zero mean energy normalised cross correlation. 

Such tasks as navigating along a rectangular 9m x 3m path were successfully achieved.

A method for robot navigation using image sequences was proposed by Rasmussen
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ferential structure. In [127], Schmid and Mohr applied this method to image retrieval

from a large database.

Knapek et al. [75] address the problem of selecting, from a single image, landmarks 

which are both salient (i.e. “pop-out” from the background) and distinctive. Their 

work is based upon, and strongly influenced by, that of Schmid and Mohr [127, 128], 

although their application was mobile robot navigation. Here potential landmarks 

(points) were selected by first applying an interest operator. These potential landmarks 

were then characterised by a feature vector of partial k‘̂ -order derivatives (known as 

a k-jet). Subsequently, the potential landmarks were ordered by distinctiveness, with 

the most distinctive being retained, thus forming landmarks for the robot. When navi

gating through the environment these landmarks were recognised by nearest neighbour 

classification using the Mahalanobis distance. Experiments were undertaken using 

three image sequences: a 2.5m linear trajectory, a 2.5m circular trajectory and rota

tion about the optical axis. It was shown that the most distinctive landmarks are more 

easily recognised from one image to the next. The advantage of this approach is that 

selected landmarks can be recognised under large changes of scale and orientation. Its 

major downfall is that, in order to achieve good results, highly textured environments 

are required. In addition, if viewpoint dependent features (T-junctions, for example) 

are selected by the interest operator, then as the robot moves, errors occur. This is 

due to a change in the interest point characterisation by the k-jet.

Schiele and Crowley [126] used Multidimensional Receptive Field Histograms [125] 

to build a  network of salient points describing an object. In this case, the salient points 

were those which were most unique and maximised the distinctiveness between objects.

Yeh and Kriegman [166] considered the problem of automatically selecting, from 

a set of 3D features, the set (landmark) which was most likely to be recognised in a 

single image. The approach worked as follows: a subset of features were considered as a 

candidate landmark, after which a recognition function was used to find this landmark
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and its associated Bayesian cost. The one with the lowest cost was selected as the most 

discriminating. For their experiments, the set of candidate landmarks were restricted 

■ to 12 vertical line features within an image. From these 12, 4 were selected by the 

I recognition function as the optimal landmark. The goal was to recognise this landmark 

I in 24 images acquired around a  90°circular arc at three depths. The selection of the 

I optimsJ landmeirk assumed that all features were visible and tha t no other vertical lines 

were considered as additional features. This was achieved by manually selecting the 12 

vertical Unes from each of the 24 test images thus giving 12!(12 — 4)! =  11,880 groups 

of possible landmarks. The recognition function was then applied to the 11,880 groups 

of features and those falling within the recognition interval were considered matches to 

the optimal landmark: it was found in 23 out of the 24 test images. Naturally, in order 

to achieve high landmark recognition rates, this approach relies upon highly textured 

environments.

Sim and Dudek [131] presented a method for vision-based robot localisation. As 

part of this work, they proposed an approach to selecting appropriate landmarks which 

were then used to encode images of the environment. Candidate landmarks were se

lected as subwindows of high edge density which exceeded a user-defined threshold. A 

low-dimensional eigenspace representation of these candidate landmarks was built and, 

in order to recognise the landmarks from different viewpoints, they were tracked over 

the configuration space. Position estimation was achieved by matching the landmarks, 

extracted from a test image, to those tracked landmarks in the database. In one ex

periment, database images of a simple structured scene were captured at 2cm intervals 

on a 30cm x 30cm grid. Then 100 test images were taken at random positions. The 

average deviation in position using a landmark set was 3.8mm. In a second experiment 

the grid size was increased to 1.2m x 3m and database images were captured at 20cm 

intervals. The average localisation error was found to be 6.8cm. It is not clear how 

the method would scale up to larger environments. Again, this method relied upon the
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availability of good texture within the environment.

In [137], Thrun described a statistical technique which allowed a robot to automat

ically learn landmarks. Here the robot was presented with a set of sensor readings, 

labelled with the position at which they were acquired. This data was used to train a 

neural network to minimise the expected localisation error after taking a sensor read

ing. After training, the robot could recognise the landmarks which best estimated its 

position.

In the area of tracking, Shi and Tomasi [130] proposed a method for selecting easily 

trackable features which corresponded to real-world physical points. This selection 

was based on the monitoring of the quality of the image features. Each feature’s 

RMS residue between the first frame and the current frame, assuming affine motion, 

was measured and when this value (termed dissimilarity) grew too large, the feature 

was abandoned. The main goal of their work was to discover local problems which 

may occur during trax;king. In an experiment, features were selected from a 26 frame 

sequence of a structured scene acquired with a forward moving camera. Using affine 

motion dissimilarity, discriminating between good and bad features was possible.

A philosophically similar idea to Information Sampling (see Chapter 5) was imple

mented by Dellaert and Collins [33] in the area of real-time tracking. They proposed a 

method, termed Selective Pixel Integration, to select the most informative pixels from 

an image. In their case, they relied upon the fact that the change between any two 

images could be described by a 2D projective transform (or 2D homography [56]). This 

warping is governed by eight parameters. The main idea of Selective Pixel Integration 

was to find the pixels, in the original image, which provided the most information 

about the change in the parameters of the homography.

Our approach was influenced by that of Rendas and Perrone [117]. They addressed 

the problem of current mapping in coastal areas using a priori knowledge of the survey 

area.
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In the area of object recognition, several authors have noted problems when using 

entire standard images to build a low-dimensional eigenspace, including sensitivity to 

occlusion, scale change and illumination. The problem of dealing with partial occlusion 

(in a bin-picking task) was investigated by Ohba and Ikeuchi [108]. Instead of projecting 

the entire image, as is usual, they proposed dividing each image into a number of smaller 

windows which they termed eigenwindows. Eigenspace analysis was then applied to 

each window. Their basic idea was that even if a number of the windows were occluded, 

the remaining ones would contain enough information to perform the bin-picking task. 

As they pointed out, a very large number of image windows need to be stored in order 

to obtain good results. For example, if one had an a priori set of 1000 images of size 

256 X 256 pixels, and each window was 8 x 8  pixels in size, then one would require 1,024 

non-overlapping windows to represent an image or 1,024,000 to represent the entire a 

priori set. Clearly the chances of one window, acquired at runtime being matched to 

a number of images from the a priori set is high. This could be due, for example, 

to having many ambiguous regions within an image. As noted by Colin de Verdiere 

and Crowley [28, 29] this leads to the problem of deciding which eigenwindows contain 

discriminative information and therefore should be used in the recognition task. It is 

highly desirable that only the most effective windows are selected from each acquired 

image, and that only these chosen windows be matched to the a priori set.

As a solution to this problem, Ohba and Ikeuchi proposed using three criteria to 

eliminate the redundant windows, namely: detectability, uniqueness and reliability. 

Colin de Verdiere and Crowley reformulated the problem as a question of whether to 

use the set of eigenwindows selected by a particular interest operator or to use those 

windows selected from a predefined grid. When using a predefined grid, the first task 

was to project all of the eigenwindows into the eigenspace. Since an image contained 

a number of windows, it was represented in the eigenspace as a surface and a set of 

images were represented by a set of surfaces. Naturally, on projection of an eigenwindow
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many matches occurred. Thus, suppression of redundant windows was required. This 

was usually achieved by noting that a search for the closest point in the eigenspace 

produced too many matches. Alternatively, it was noted that suppression could occur 

at the training stage given that a redundant window will be projected many times. 

Nevertheless, this approach still required enough space and computational power to 

store and search for all of the eigenwindows.

1.4 Original Contributions

The original contributions of this dissertation are as follows:

1. We propose a holistic methodology for vision-based navigation, validating two 

different omnidirectional camera designs.

2. We show that by combining (̂ ) a suitable camera geometry, (n) an appropriate 

environmental representation, {in) an adequate localisation scheme and (iv) a 

means of local pose control, successful navigation is possible.

3. We demonstrate how our methodology forms a core part of a larger navigation 

module, which allows a mobile robot to undertake both precise local tasks (dock

ing, for example) and qualitative global navigation.

4. We detail a statistical method, termed Information Sampling, for finding the 

most discriminating pixels from an a priori set of images. A key point of this 

approach is that it is non-feature based and so can be applied to images exhibiting 

low texture.

5. Information Sampling is defined as an extension to a topological representation 

of the environment. In addition, it is shown to be beneficial for both navigation 

and object recognition.
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1.5 D isserta tion  Structure

This dissertation is structured as follows;

C hapter 2 introduces the reader to the field of Omnidirectional Vision. We detail 

the many camera designs available, in particular those based on a mirror-camera com

bination. The designs used in this work, namely a spherical mirror combined with a 

standard camera and a specialised mirror combined with a log-polar camera are pre

sented in detail.

Chapter 3 is concerned with defining an appropriate, easily implemented, environ

mental representation for a mobile robot. This is its internal model of the world. In 

common with what is known about how humans represent large-scale space, we de

scribe how a topological representation can be used for navigation. For completeness, 

other environmental representations are discussed. The topological representation is 

encoded by a low dimensional eigenspace, obtained via Principal Component Analysis. 

Initial matching results proved to be successful.

Chapter 4 details our approach to vision-based navigation using an omnidirectional 

camera. Building upon the information presented in Chapter 3, we show that, in order 

to achieve successful navigation, a synergistic combination of topological navigation 

and local pose control is required. Local control is based on the tracking of guide

lines, extracted from bird’s-eye view images. Navigation results obtained using the 

two omnidirectional camera designs detailed in Chapter 2 are presented. Additionally, 

we provide results from integrated experiments which rely on a path distance/accuracy 

trade-off in order to robustly solve the navigation task. During the many trials of our 

navigation methodology, the distance travelled by the mobile robot varied from 17m 
to 35m.
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Chapter 5 proposes an extension to our topological environmental representation. 

We define Information Sampling as a statistical method for selecting only the most 

discriminating data from the a priori image set. In this way the robot maximises 

use of its computational resources and can effectively handle the complexity of the 

perceptual process. Real-world results show that navigation is possible using only the 

discriminating information. Encouraging preliminary results from navigation experi

ments using very low resolution images, for example 16 pixels in size, are also detailed. 

In an extension of the method, successful object recognition results are presented.

Chapter 6 presents our conclusions and directions for possible future research.
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Chapter 2 

Omnidirectional Vision: Systems, 
Principals Sz Camera Design

This chapter presents the state-of-the-art in catadioptric sensor 
design. Our motivation for using omnidirectional vision is provided.
The camera designs used in this work are presented in detail and 
the differences between them and other sensors are highlighted. The 
single centre of projection is discussed. The method used to remap 
omnidirectional images to scaled orthographic views of the ground 
plane is also described.

2.1 Introduction

Visual systems are designed to collect, with the utmost effectiveness, real-world data. 

These data are subsequently used to derive important information for such everyday 

tasks as: navigation, person-following and recognition. Since many biological and 

artificial systems are endowed with limited computation means, they must utilise their 

resources to the best of their ability.

In nature, one can find a large variety of viewing geometries, or simply eyes, where 

each is “designed” to efficiently process visual information for particular tasks. For
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example, flying insects such as bees have compound eyes with a very large field-of-view 

which is beneficial for 3D motion estimation. Primates have corneal eyes; they view 

the world through high resolution colour imagery. Evidently, these images facilitate 

such tasks as identification, tracking and surveillance.

Biologically speaking, successful eye designs are those which help solve particu

lar tasks quickly and robustly, rather than producing highly accurate images of the 

environment [83]. Indeed, eye geometries have evolved tremendously over time [27].

Until the mid-1990’s the use of standard narrow field-of-view cameras was ubiqui

tous. In recent years, computer vision researchers have gained broad exposure to wide 

field-of-view imaging systems. Within this community they are customarily referred to 

as omnidirectioneil, panorjimic or catadioptric systems. These definitions exhibit 

nuances which are inconsistent with their current technical usage. Omnidirectional, 

in this case, refers, not to a view captured in every direction, but to one captured 

in all horizontal directions, although limited in vertical viewing angle. The degree of 

limitation depends on the particular system. Typically, vertical viewing angles range 

from ~  70° to ~  120°. An omnidirectional image, captured by a system mounted on 

a mobile robot, is shown in Figure 2.1. Here the robot is located in the centre of the 

image. Omnidirectional images can be remapped to panoramic views, as shown in 

Figure 2.2.

Panoramic systems are defined as systems which are constrained to capturing 

panoramas with up to a 360° horizontal field-of-view. They do not possess the capabil

ity of capturing omnidirectional images, such as those shown in Figure 2.1. Typically, 

high resolution panoramas can be imaged by mosaicking with a rotating camera.

The word catadioptric^ refers to the set-up of the actual system. The word is 

derived from a combination of terminology from optics: catoptrics relates to the optics 

of mirrors (reflection) and dioptrics to the optics of lens (refraction). In the context

^The term catadioptrics was first coined by Hecht and Zajac [57] in 1974.
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Fig. 2.1 ; An omnidirectional inaage

Fig. 2.2 : A panoramic image obtained by remapping Figure 2.1.
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of computer vision, the term catadioptric was first used by Nayar [104] in 1997. As 

detailed in Section 1.1 (p. 6), there are other methods for capturing omnidirectional 

images.

Throughout this dissertation, we shall refer to the conventional phrase ommdirec- 

tional vision when signifying research related to wide field-of-view imaging systems. 

When detailing an actual system built to capture omnidirectional images^, we shall use 

the term catadioptric sensor.

2.2 Omnidirectional Vision: M otivation

The main motivation behind the use of omnidirectional vision is that of obtaining a 

wide field-of-view. How this in itself is beneficial depends on the specific application. 

Certainly, in the area of motion estimation, for example, the goal of capturing the 

correspondences between images is significantly aided by using omnidirectional vision. 

This is simply due to the fact that, even though points may be occluded, they re

main in the image rather than disappearing from view altogether, as is the case when 

conventional cameras are used.

The areas of internet streaming and remote reality benefit from the use of omnidi

rectional images primarily because they allow for the transmission of a large amount 

of visual information within a single frame. Tele-operation [154] is another area where 

this is beneficial; an operator can view the remote scene over a low-bandwidth link in 

a more natural manner than if he had to wait for a number of standard images of the 

environment to be transmitted.

It is highly significant that omnidirectional images, captured at a particular point, 

contain enough information to make them distinguishable from other images captured 

nearby. This is not the case with images obtained from a conventional camera, where

^The only exception to this definition are camera-only systems, as presented in Section 1.1.1 (p. 6), 
since by design they are not catadioptric.
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multiple matches can easily occur. A closely related issue is that, implicitly, algorithms 

relying upon omnidirectional visual input can overcome occlusions with significantly 
more ease than those relying upon conventional imagery.

An advantage of catadioptric sensors over standard pan-and-tilt units lie in their 

simplicity; they have no moving parts and therefore exhibit increased reliability. When 

mounted on a  mobile robot, and provided that the camera does not move, the orienta

tion of the sensor is related to that of the robot by a rigid transformation. This imaging 

geometry has a number of properties that can be exploited in various navigation or 

recognition tasks. For example, vertical lines in the environment are viewed as radial 
image lines.

Overall then, as the visual competence of a mobile robot is substantially increased 

by using omnidirectional vision, this imaging modality clearly shows its superiority 

over conventional methods. Many works of art illustrate wide field-of-view imagery. 

Perhaps the most famous of these is Hand with Reflecting Globe by M.C. Escher, as 
shown in Figure 2.3.

Fig. 2.3: Hand with Reflecting Globe by M.C. Escher.
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2.3 The Single Centre of Projection

The single centre of projection, otherwise known as a single effective viewpoint, is a 

defining theoretical characteristic of an omnidirectional vision system. The system is 

said to exhibit such a property if all light rays, captured by a particular design, meet 

at a single point. For example, if one were using a catadioptric sensor, then all rays 

would be reflected from a mirror (or set of mirrors), as if they emanated from a single 

point, located behind the mirror(s).

The single centre of projection is graphically illustrated in Figure 2.4. Here the 

sphere represents a truly omnidirectional view, i.e. 360° x 360°. The single centre of 

projection is denoted by S. If one imagines standing at this point and then looking 

in a particular direction, this is equivalent to looking at the world from a perspective 

point of view. If one looks further in the horizontal direction, the image viewed is a 

panorama.

Panoramic Omnidirectional

Perspective

Fig. 2.4 : Schematic of the Single Centre of Projection, S.

In more precise terms, a panoramic view is generated by a cylindrical projection 

and distortion-free perspective views by a planar projection. Thus, single centre of 

projection systems can be considered equivalent to purely rotating cameras.
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Omnidirectional System SCP? Comments
Camera-Only Systems 

Rotating Camera 
Combined Cameras 
Fish-eye Lens 
Panoramic Annular Lens

Yes
No
Yes
Yes

Focal point on axis of rotation 
Different focal points 

Exhibits radial distortion 
Limited vertical viewing angle

Multi-Camera -  Multi-Mirror Systems Yes Depends on mirrors used
Single Camera -  Multi-Mirror Systems Yes Depends on mirrors used
Single Camera -  Single Mirror Systems 

Planar Mirror 
Elliptical Mirror 
Parabolic Mirror 
Spherical Mirror 
Conical Mirror 
Hyperbolic Mirror

Yes
Yes
Yes
No
No
Yes

Non-practical 
Non-practical 

Requires orthographic lens 
Loci of projection centres 
Loci of projection centres 

Difficult to calibrate

Table 2.1: A summary of omnidirectional vision systems and whether or not they 
have a single centre of projection (SCP).

As cited by [49], a similar idea (related to concave mirrors) was in the mind of 

Zenodorous when he asked Diodes “to find a mirror surface such that when it is placed 

facing the sun the rays reflected from it meet at a point” [141],

We note here that most camera-only systems do obey the single centre of projection 

constraint. The exception is multiple camera-only systems as they view the scene from 

different, depth-dependent, directions. When using planar mirrors, multi-camera -  

multi-mirror systems do have a common single centre of projection. It is located on 

the axis of the mirror structure, where each of the virtual effective pinholes meet. In 

the case of both single camera -  multi-mirror systems and single camera -  single mirror 

systems, whether or not they obey the constraint depends upon the mirror and/or lens 

used. A summary is given in Table 2.1.

Recently, the need for systems with a single centre of projection, for real-world 

application, has come under scrutiny. This point is further analysed in Section 2.7 

(p. 43).
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2.4 Mirror Profiles for Single Camera -  Single Mir

ror System s

The catadioptric sensor designs used in this work were single camera -  single mirror 

systems. We now detail both standard and specialised mirror profiles for use with this 

class of sensor.

2.4.1 Standard Profiles

Baker and Nayar [3, 4] define the complete class of mirrors satisfying the single centre 

of projection constraint. The only practical solutions are as follows: (i) a parabolic 

mirror with an orthographic lens and (ii) a hyperbolic mirror with a standard lens. 

Solutions using planar, conical, elliptical and spherical mirrors only obey the constraint 

in non-practical cases. For example, a planar mirror obeys the constraint but does not 

increase the field-of-view. The strict requirement of a single centre of projection for 

omnidirectional imaging is discussed in Section 2.7 (p. 43). We note here that the 

scope of application can be increased by concentrating on the mirror profile design 

rather than on the importance of the constraint.

We shall now discuss the merits and drawbacks of each mirror when designing a 

single camera -  single mirror catadioptric sensor. We begin with the practical solu

tions.

P a r a b o l i c  M i r r o r : When using a parabolic mirror, light rays are reflected from 

the surface of the mirror in parallel and perpendicularly to the image plane of the 

camera, i.e. an orthographic projection. This is graphically illustrated in Figure 2.5. 

In order to satisfy the single centre of projection constraint, a parabolic mirror must 

be used in conjunction with an orthographic lens.

Calibrating this system is relatively simple, as the optical axis of the mirror, and
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that of the lens, do not have to be in exact vertical alignment; translations can be toler

ated. Additionally, the focal point of the camera can be at any distance from the mirror. 

A catadioptric sensor with a parabolic mirror has been used for such applications as 

video-conferencing [114]. Multiple regions of interest were extracted simultaneously 

and broadcast as if each image was obtained with a conventional camera.

For vision-based robot navigation, this design is not the most suitable. Ortho

graphic lenses are both large and heavy, making for a cumbersome catadioptric sensor. 

Additionally, if the camera to mirror distance shrinks, the lens induces a significant 

amount of self-occlusion.

World Point

Image Plane

Fig. 2.5 : Schematic of a Parabolic Mirror.

H y p e r b o l i c  M i r r o r : Catadioptric sensors built using hyperbolic mirrors have proven 

to be a practical solution to the generation of omnidirectional images [116, 136, 165]. 

A hyperbolic mirror satisfies the single centre of projection constraint only when the 

focal point of a conventional camera (with a standard lens) is precisely positioned at 

one of the foci of the hyperbolic mirror. This is shown in Figure 2.6. Given the high
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cost of manufacturing hyperbolic mirrors, one wants to be confident that a single cen

tre of projection is obtained. Unfortunately, this is extremely difficult; tolerance to 

the manual vertical movement/alignment of the camera, or mirror, is almost negligi

ble. Therefore, invahdating the single centre of projection constraint is highly possible.

World Point

Image Plane'

Fig. 2.6 : Schematic of a Hyperbolic Mirror.

We now move on to discuss the non-practical solutions to the single centre of pro

jection constraint. At this point, we reiterate the biological fact that, throughout time, 

successful eye designs did not necessarily produce optically perfect images of the envi

ronment.

P l a n a r  M i r r o r : A planar mirror satisfies the single centre of projection constraint 

but, as the camera view is not enhanced, it is a non-practical solution. We note here 

that if multiple mirrors are used, each has its own single centre of projection, and so 

to maintain the constraint, a camera must be associated with each mirror.

E l l ip s o id a l  M i r r o r : An ellipsoidal mirror satisfies the single centre of projection
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constraint if the pinhole of the camera is located at one of the foci of the ellipsoid. 

While this solution increases the field-of-view, the increase is minimal and so, in prac

tice, this mirror is not used.

C o n ic a l  M i r r o r : The conical mirror is a popular choice of mirror for catadioptric 

sensor design [18, 32, 164]. It only satisfies the single centre of projection constraint if 

the apex of the cone is placed at the pinhole of the camera. This is obviously impracti

cal since objects within the environment cannot be viewed. By moving the mirror the 

environment becomes visible but the single centre of projection is lost.

S p h e r ic a l  M i r r o r : A spherical mirror satisfies the single viewpoint constraint if 

the pinhole of the camera lies at the centre of the sphere. This is a non-practical solu

tion to the constraint. If the mirror is placed a distance from the camera we obtain a 

loci of projection centres. Images obtained from a spherical mirror have a higher reso

lution in the centre of the image but are distorted at the periphery. They do have the 

distinct advantage of yielding the widest field-of-view of all the sensors using convex 

mirrors. As with conical mirrors, real world vertical lines appear as radial lines origi

nating from the image centre. Spherical mirrors have been used for robot navigation 

[48, 61, 153, 156, 157], (see Section 4.5 (p. 92)). A schematic is shown in Figure 2.7.

2.4.2 Specialised Profiles

As an alternative to using a standard mirror, one can design a profile suited to par

ticular tasks, for example, imaging a scene at a constant vertical resolution. This idea 

of utilising specialised mirror profiles has become more common in the literature over 

the past few years. Hicks and Bajcsy [58] designed and constructed a mirror which 

directly imaged a bird’s-eye view of the environment, without the need for remapping 

software. In [59] they went on to present two families of surfaces which provided a wide
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World Point

Image Plane

F ig . 2. 7: Schematic of a Spherical Mirror.

field-of-view, while approximating a perspective projection. Chahl and Srinivasan [19] 

produced a mirror which ensured tha t a change in the elevation angle was proportion

ally mapped to a  change in radial distance from the centre of the image. In [24], Conroy 

and Moore built on this work to  produce a stereo resolution invariant mirror. Gachter 

et al. [45] had a similar design goal to  Chahl and Srinivasan when they designed a 

mirror which, when used with a log-polar sensor, produced a uniform cylindrical pro

jection. Thus, at a  given distance from the camera, an object was the same size in the 

image, independent of its height in the real-world. This design was again improved 

upon by Decco et al. [31]. A number of different mirror designs were produced, includ

ing a constant horizontal resolution mirror, for use with both standard and log-polar 

cameras, and a so-called mixed mirror design. Here, a single mirror profile was designed 

so th a t the outer part of the sensor imaged a scene with constant vertical resolution, 

while the inner part produced a constant horizontal resolution image.

More details on a constant vertical resolution mirror, combined with a log polar 

sensor, and its application to  vision-based robot navigation, can be found in Sections 

2.8.2 (p. 51) and 4.5 (p. 92), respectively.
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2.5 A Unifying Theory for Single Centre of Projec

tion System s

Recently, Gayer and Daniilidis [50, 49] presented a unifying theory for all catadioptric 

systems with a single centre of projection. They showed that these systems (parabolic, 

hyperboUc, elliptical and perspective^) can be modelled by a two-step mapping, M s  

via the sphere. This mapping of a point in space to the image plane is graphically 

illustrated in Figure 2.8. The two steps of the mapping are as follows:

P=(x,y,z)

m

image plane Pj -  (u,v)

Fig. 2.8: A Unifying Theory for all catadioptric sensors with a single centre of projec
tion.

1. Project a 3D world point, P  =  (x, y, z) to a point Pg on the sphere surface, such

that the projection is normal to the sphere surface.

2. Subsequently, project to a point on the image plane, P i =  (u, v) from a point, O 

on the vertical axis of the sphere, through the point Pg.

The mapping, M s  is mathematically defined by Equation 2.1:

parabolic mirror with an orthographic lens and all of the others with a standard lens. In the
case of a perspective camera, the mirror is virtual and planar.
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u I + m X

V I • r — z
. y .

, where r = y/x^ + y^ + /  ■^s (2 .1)

As one can clearly see, this is a two-parameter, (/ and m) representation, where I 

represents the distance from the sphere centre, C to the projection centre, O and m  

the distance from O to the image plane. Modelling the various catadioptric sensors 

with a single centre of projection is then just a matter of varying the values of I and 

m in Equation 2.1. As an example, to model a parabolic mirror, we set / =  1 and 

m =  0. Then the image plane passes through the sphere centre, C and O is located 

at the north pole of the sphere. In this case, the second projection is the well known 

stereographic projection. We note here that the Unifying Theory can model standard 

perspective cameras (i.e. the pinhole model) when I = 0 and m = 1. In this case, O 

converges to C and the image plane is located at the south pole of the sphere.

In terms of camera self-calibration, it was shown that the image centre, the effective 

focal length (and the mirror eccentricity, when using a hyperbolic mirror) of non

perspective catadioptric sensors can be calculated from lines in a single image without 

the need for metric information"^. It was assumed that that aspect ratio was one and 

the skew zero. In the parabolic case, three lines were required, while in the hyperbolic 

case, self-calibration was possible with just two.

2.6 W hich D esign to Use?

Omnidirectional images obtained with single camera catadioptric designs are, compar

atively speaking, of medium resolution. This is because, when compared to a con

ventional camera, each pixel images a larger portion of the environment and so the 

ability to differentiate between environmental details is lessened. If one’s application

^In the perspective case, when using Unes and no metric information, the number of unknowns 
always exceeds the number of constraints and so calibration is not possible.
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necessitates high resolution image capture (for example, surveillance or personal iden

tification) then either multiple camera -  multiple mirror or camera-only designs offer 

a better solution.

However, if one’s objective is to use a catadioptric design that: (i) views a dy

namic scene omnidirectionally, (ii) is the least likely to fail, (Hi) has the lowest power 

consumption and, (iv) obtains adequate image resolution, then the best solution is 

given by the single camera -  single mirror catadioptric design. Our motivation for us

ing particular single camera -  single mirror catadioptric designs for vision-based robot 

navigation is outlined in Section 2.8.1 (p. 46).

2.7 The Single Centre of Projection Revisited

As outlined in Section 2.3 (p. 34), the single centre of projection is an important 

theoretical property of a catadioptric sensor. When research into the design and use of 

catadioptric sensors first became widespread, the single centre of projection was viewed 

as the primary design parameter. Very recently, for many applications, this idea has 

come under scrutiny.

It is our belief that catadioptric sensors should be designed to facilitate the particu

lar task at hand. The application of omnidirectional vision in this work is visual-based 

robot navigation and so we designed a catadioptric system with this objective in mind. 

Naturally, there are applications where the need for a single centre of projection is un

questionable: omnidirectional stereo or 3D reconstruction, for example. Nevertheless, 

in each case application drives sensor design, not the quest for optical perfection.

As related by Baker and Nayar in [3, 4], the only designs which adhere to the single 

centre of projection constraint are rotations of conic sections. If this constraint is 

relaxed, the number of possible designs, and thus applications, increases. For example, 

one can design a sensor with a constant vertical field-of-view or one which gives an



Chapter 2. Omnidirectional Vision: Systems, Principals & Camera Design

orthographic view of the ground plane.

A secondary question related to the use of non-single centre of projection sensors 

is the quality of the image obtainable from such systems. What is the degree of error 

induced by a loci of viewpoints? Caspar and Santos-Victor [46] have studied this 

problem using a catadioptric sensor with a spherical mirror. As outlined in Section 

2.5 (p. 41), the Unifying Theory covers all catadioptric sensors with a single centre 

of projection. A projection model governing a catadioptric sensor with a spherical 

mirror, termed the Spherical Projection Model is given in Section 2.8.1 (p. 47). 

If the Unifying Theory can approximate a non-single centre of projection camera, one 

would expect that - using both models - the error between projecting 3D points to the 

image plane would be small. It turns out that for real-world points further than 2m 

away from the catadioptric sensor the error in the image plane is less than 1 pixel.

Derrien and Konolige [34] also approximated a single centre of projection but used 

a concept they termed iso-angle mapping. They constructed a virtual system by dis

placing all incoming rays, each having a unique Euler angle, so as they converged at a 

single point. Thus, their method produced a camera with a single centre of projection, 

imaging a distorted scene. Since they did not derive an analytical expression for the 

distortion, it was measured as a change in the height of a small object, given a change 

in its elevation angle and remained less than 2.5%.

In [59], Hicks and Bajcsy described a mirror design which approximated a perspec

tive projection, i.e. a single centre of projection system. Their mirror design directly 

produced an orthographic view of the ground plane. For such a mirror to approximate 

a single centre of projection, an orthographic view of planes - other than the ground 

plane - should also be produced. Indeed, this was the case, as shown by Figure 2.9 

(from [59]). Here a checkered pattern was placed on the floor and another on a table 

top. As can clearly be seen, both are nicely mapped, and although the exact error 

was not detailed, the result indicates a qualitative approximation to a single centre of
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projection.

Fig. 2,9 ; Hicks and Bajcsy designed a mirror which approximates a perspective pro
jection. In this case, two orthographic views of the ground plane are correctly mapped 
from the same mirror (from [59]).

2.8 Catadioptric Sensor Designs

For this work, two catadioptric sensor designs were used. Both were of the single 

camera -  single mirror class. In the following sections, we detail the design of each 

sensor.

The first (older) design used a spherical mirror with a conventional camera [48,

153, 157]. Two systems were built and each was mounted on a Labmate mobile robot

platform^. Details of the design are given in Section 2.8.1 (p. 46).

The second design utilised a specialised mirror with a log-polar camera [31, 135]. A

number of systems were built, with one being mounted on a Scout mobile robot base.

More details on this design can be found in Section 2.8.2 (p. 51).

^Identical set-ups were implemented at the Computer Vision Lab, Instituto de Sistemas e Robotica, 
and at the Computer Vision and Robotics Group, Department of Computer Science, University of 
Dublin, Trinity College.
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2.8.1 Design of a Single Camera -  Single M irror  Catadiop- 

tric Sensor with a Spherical Mirror

The first catadioptric sensor designed utiHsed a spherical mirror. Primarily, this was 

due to the fact that having a non-single centre of projection system is not a drawback for 

vision-based robot navigation. Additionally, this work did not require the generation 

of geometrically correct perspective views. The omnidirectional view given by the 

spherical mirror was ample for our needs. A secondary issue was the relative ease of 

calibration of a spherical system compared to that of a hyperbolic one. Finally, the 

inexpensive cost and easy availability of spherical mirrors [25] proved an effective lure. 

Spherical mirrors have previously found application in areas of autonomous navigation 

[48, 61], and tele-operation [5, 154].

(a) (b)

Fig. 2.10: Two of the omnidirectional cameras built: (a) The camera at TCD and (b) 
the camera at 1ST. Both use a spherical mirror.

We term our projection model the Spherical Projection Model. Essentially, 

we model the projection of a 3D point to the image plane, reflected via a point on 

a spherical mirror. The three key design parameters to be kept in mind are: {i) the

46



Chapter 2. Omnidirectional Vision: Systems, Principals & Camera Design ______

mirror radius, (n) the camera-to-mirror distance and (in) the vertical viewing angle. 

For example, we can specify a certain viewing angle and determine the mirror radius 

and camera-to-mirror distance required to achieve that viewing angle. Naturally, we 

must also keep in mind that the entire mirror should fill as much of the CCD as possible, 

thus giving good resolution. Additionally, the camera’s optical axis and the axis of the 

mirror should be aligned.

The camera design presented below was developed at the Instituto Superior Tecnico, 

Lisbon, Portugal. Preliminary work on catadioptric sensors with spherical mirrors was 

also done at the University of Dublin, Trinity College.

The Spherical Projection M odel

The geometry of image formation is obtained by relating the co-ordinates of a 3D point, 

P, to the co-ordinates of its projection on the mirror surface, Pm, and finally to its 

image projection p. Figure 2.11 shows the most relevant parameters of the geometric 

model for image formation.

A point Pm =  (rjn, Zm) on the mirror surface has to fulfill the following equations:

rm =  (zm +  L) t&np

=  z i  +  r i  (2.2)

7r = 7i -2 a rc tan  [rm/Zm) = ct -  p

where (3 is the radial angle, R  is the mirror radius, L is the distance to the camera 

projection centre and a is the elevation angle defining the size of the camera’s vertical 

view. Naturally, the angle of incidence, 7 i equals the angle of reflection, 7 .̂
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Spheric
Mirror

Image Plane

Center" ^ Projection Center

Fig. 2.11: Camera (spherical mirror) projection geometry. Symmetry about the z-axis 
simplifies the geometry.

These equations are reduced to a vertical plane containing the vertical z axis, since 

the system is rotationally symmetric around that axis. The last equation can be 

expressed as a function of the vertical viewing angle, a, or expressed using the co

ordinates of a 3D point, P  =  (r,z). Some of the parameters involved in Equations 

(2.2) are fixed by the physical setup (R, L), whereas (a,l3) depend on the co-ordinates 

of an observed 3D point.

P ro jec tio n  of a  3D P o in t

The projection of a 3D point, P =  [x y is a two-step process; {i) project the 

3D point onto the mirror, (m) project this mirror point. Pm onto the image plane. 

P ~  [x y z]’̂  can be expressed in cylindrical co-ordinates as:

(p r z &TCtan{y/x) \ /x^  +  y'̂  z
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Noting that the vertical viewing angle, a  for P  can be expressed as:

ap = arctan +
7T

we can replace a  in Equations (2.2) and solve the resulting non-linear system of equa

tions to determine (r^, Zm)- This allows us to determine the value of

All that remains to be done is to project the mirror point. Pm =  onto

the image plane, p =  {u,v). Using the perspective projection model and taking into 

account the camera’s intrinsic parameters, we get:

r n COS( f - U*
U* u f u 0 Uq

= tan/? and — V*
V* V 0 f v Vo

1simp

where /„, /„ denote the focal length expressed in (vertical and horizontal) pixels; and 

Mo, Vq is the position of the principal point on the image co-ordinate system®.

Model Parameter Estimation

Points in 3D space, P , are projected as image points, p, by means of a projection 

operator, V\ p = V{P,9), where 6 contains all the intrinsic and extrinsic parameters 

of the catadioptric panoramic camera: 9 =[L f  Ug Vo] .̂

While the mirror radius can be measured easily, the camera-mirror distance, L, 

focal length, /  and principal point, {uq, Vo), can only be determined up to some error: 

69 = [6L S f  6uo

Thus, to estimate 59 we use a set of known 3D points, P*, and the corresponding 

image projections p*, then minimise the following cost function:

66 = a r g m in ^  || p* — V { P \  9q -I- 69) 

At this point we have:

(2.3)

We assume that the pixel aspect ratio is known and use /  =  /«  =  /v as the focaJ length expressed 
in pixels.
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1. defined the projection operator needed to obtain omnidirectional images with a 

conventional camera/spherical mirror set-up.

2. described  a procedure to estimate the model parameters, starting from initial 

nominal settings.

For successful navigation, a mobile robot needs a module to estimate and control 

its pose (i.e. position and orientation) as it travels through an environment. It would 

be ideal if there was an easy method of obtaining this information visually. Bird’s- 

eye views of the ground plane offer such a solution. Here, omnidirectional images are 

remapped to scaled orthographic views of the ground plane, thus greatly facilitating 

the measurement of distances and angles directly from the image.

Obtaining a Bird’s-Eye View of the Ground Plane

Due to the geometry of the mirror, the images acquired with our omnidirectional 

camera are naturally distorted. For instance, a corridor appears as an image band 

of variable width. In contrast, the bird’s-eye view preserves all shapes on the ground 

plane (up to a scale factor).

To obtain a bird’s-eye view [47], we rewrite the projection operator, Vp to relate 

radial distances, Pgrcmnd, measured on the ground plane, and radial distances, pimg, 

measured in the image:

Pimg — 'Ppi,Pground) )̂

Then, using this information, we build a look up table which maps radial distances 

from the ground plane to their respective image co-ordinates. Since the inverse function 

cannot be expressed analytically, once we have an image point, we search the look up 

table to determine the corresponding radial distance on the ground plane. In this way, 

image remapping to a bird’s-eye view is efficiently achieved.
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Figure 2.12 shows an example of ground plane remapping to obtain the bird’s-eye 

view. The ground pattern shown in the original image becomes a rectangular pattern 

in the bird’s-eye view, as desired.

(a) (b)

F ig . 2.12: (a) The original omnidirectional image, (b) The ground plane remapped 
to a bird’s-eye view image.

2.8.2 Design of a Single Camera -  Single M irror  Catadiop- 

tric Sensor with a Specialised Mirror

The second camera design utilised a specialised mirror to image the scene around the 

robot [31, 151]. The difference between this mirror profile and the design utilising the 

spherical mirror is th a t the vertical dimension, at a given distance from the camera, is 

linearly mapped to the radial distance from the centre of the image plane. In addition, 

the sensor used was of a log-polar design. This system was developed as part of the 

EU 1ST project OMNIVIEWS involving three partners: DIST - University of Genova, 

CMP - Czech Technical University and ISR - Institu te  Superior Tecnico. It is shown 

in Figure 2.13.
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Fig. 2.13: The SVAVISCA omnidirectional camera with a specialised mirror 

Log-Polar Sensor

The rotational symmetry of the omnidirectional images immediately suggests the ade

quacy of using a polar pixel distribution. In this design the SVAVISCA log-polar sensor 

was used. For detailed information on the sensor, see [135]. By using this image sensor 

we gain the following:

• Panoramic images can be directly read out from the sensor without the need 

for any geometric transformations. Thus, we gain a speed increase over current 

omnidirectional camera designs.

• Panoramic images have constant azimuthal resolution due to the fact that the 

log-polar sensor is organised in concentric rings with a constant number of pixels.

The log polar sensor is shown in Figure 2.14.

Inspired by the resolution of the human retina, the log-polar sensor is divided into 

two parts: the fovea and the retina. The fovea is the inner part of the sensor and 

1 consists of 42 rings, with a uniform pixel density and a radius of po =  0.027273cm. 

I The retina is the outer part of the sensor, consisting of a set of 110 concentric circular
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Fig. 2,14; General view of (a) the SVAVISCA Log Polar Sensor. Detailed views of 
the (b) foveal and (c) retinal regions.

rings, with 252 pixels each, whose resolution decays with a logarithmic law towards the 

image periphery.

In the retinal part of the sensor, the relationship between the linear distance, p, as 

measured on the sensor’s surface, and the corresponding pixel coordinate, p is specified 

by the following equation:

P =  log;t(p/po) (2.5)

where po and k stand for the radius of the fovea and the rate of increase of pixel size 

towards the periphery, respectively.

Mirror Profile Design

The image formation process is determined by the trajectory of rays that begin at a 

3D point, are reflected by the mirror surface and finally intersect with the image plane. 

These reflections are governed by a projection function that specifies the SVAVISCA 

sensor. Overall, we want to define the mapping between some world distances, y, and 

corresponding distances measured in the image sensor, p. For the case of the log-polar 

sensor, the simplest mapping is to impose a linear relationship between 3D distances, 

y, and the logarithm of the distances measured on the SVAVISCA sensor, to account 

for the logarithmic pixel distribution:

y{p) = alogkip/Po) + b.

Here a and b mainly determine the visual field.
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Fig. 2.15: Geometry of image formation using a catadioptric sensor with a constant 
vertical resolution mirror profile.

We now describe a mirror profile which images the world with constant vertical 

resolution.

Constant Vertical Resolution

Due to the rotational symmetry of the system we need only consider the design of 

the mirror profile. The geometry of the image formation of our catadioptric sensor is 

shown in Figure 2.15.

We aim to preserve the relative vertical distances of points placed at a fixed distance, 

d, from the camera’s optical axis. In other words, if we consider a cylinder of radius, d, 

aligned with the optical axis, we want to ensure that the ratios of distances, measured in 

the vertical direction, along the surface of the cylinder, would remain unchanged when
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measured in the image. Such invariance should be obtained by adequately designing 

the mirror profile, yielding a constant vertical resolution mirror.

We start by deriving the relationship between the elevation angle, 4>, the mirror 

profile, F{t)  and the height, h{t):

tan(0) =  — — -—  (2.6)

which can be rewritten as:

hit) =  F{t) — cot(0)(d — t) (2.7)

Equating the angles of the incident and coincident rays on the mirror surface, we

obtain:

 ̂  ̂  ̂  ̂ 2F{t)F'{t) +  t ( l  -  F' { t f )   ̂  ̂  ̂  ̂ ^
This equation relates the derivative of the mirror profile, F'(t),  to a given evolution

of the height, h(t). Solving this equation for F'{t) we have:

F' i t y
t {d - 1) +  F{t){F{t) -  h{t)) 

' F { t ) { d - t ) - t { F { t ) - h { t ) ) '
t { d - t )  +  F{ t ) { F{ t ) - h{ t ) ) 2

+  1 =  0 (2.9)
_ F { t ) { d - t ) - t { F { t ) - h { t ) ) _

We can now relate the co-ordinate along the mirror profile, t, with the radial dis

tance on the image plane, p, by introducing the perspective projection equation:

o - W )
Finally, we can now introduce the constraint of invariance of vertical resolution 

by specifying that h(t) must be an affine map of the radial pixel co-ordinates. Now, 

considering the radial log-polar distribution of pixels, we have:

h{p) =  alog^(p/po) +  b (2.11)

Hence, the procedure to determine the mirror profile is to integrate Equation (2.9), 

while t  varies from 0 to the mirror radius and replace h{t) by Equations (2.10) and 

(2.11). The numerical integration was performed using MatLab’s ode45 function.
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The initialisation of the integration process was done by computing the value of 

F{0) that would allow the mirror rim to occupy the entire field-of-view of the sen

sor, while neglecting the thickness of the mirror shape (which is not available during 

initialisation). Prom Equation (2.10), we then have;

F ( 0 ) ^ F Q  =  i ^ ^  ( 2 . 12)
Pmax

where and p^ax represent the mirror and sensor radius, respectively.

2.9 Summary

This chapter presented the state-of-the-art in catadioptric sensor design. The designs 

used in this work were detailed: a standard camera with a spherical mirror and a log- 

polar camera with a specialised mirror. Our motivation for using omnidirectional vision 

was provided and the single centre of projection was discussed. The method used to 

remap omnidirectional images to scaled orthographic views of the ground plane was 

also presented.

56



Chapter 3 

Environmental Representations

This chapter defines an appropriate and efficient representation of 
the environment, suitable for use by a vision-based mobile robot. 
This representation should meet the criteria that it: (a) is easy to 
build, (b) requires a small amount of memory and (c) can be used for 
real-time localisation. Our motivation for choosing a topological 
approach is detailed, as are alternative environmental representa
tions. A brief introduction to how humans model large-scale space 
is given. Our representation of the environment is omnidirectional 
image-based and is encoded by a low-dimensional eigenspace. The 
approach to building this subspace by using Principal Component 
Analysis is detailed and initial results are presented.

3.1 Introduction

An essential component of a successful navigation system is an appropriate environ

mental representation, i.e. an internal model of the world stored by the mobile robot. 

Defining a successful system as one which can accomplish its given task, one can con

sider endowing a mobile robot with an environmental representation tailored to achiev

ing the task. This is an important but subtle point: many previous research works chose 

to concentrate valuable computational resources on building an accurate representa-
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tion of the environment, whether it was required or not. The building of full or partial 

3D maps [167] is a case in point. In this work, we argue that shifting the emphasis 

from thinking about appropriate representations to the process of building these 3D 

maps, explains why most existing systems require large computational resources, but 

still lack the robustness required for many real-world applications.

Motivation for looking at the appropriate representation problem comes from stud

ies of how humans store knowledge of large-scale spaces. From the available research, 

it seems that very parsimonious representations are memorised. This point is further 

addressed in Section 3.2 (p. 59).

A review of the current research shows two main environmental representations; 

Geometric Maps and Topological Maps. There are a number of benefits and short

comings to each representation, which are detailed in Section 3.3 (p. 60). Naturally, 

geometric maps model the environment to a high degree of precision while topological 

approaches use a more functional representation. Considering that we wish to build a 

simple and efficient navigation system, the environmental representation we chose was 

topological in design. Our motivation for choosing a topological approach is detailed 

in Section 3.3 (p. 60) and the exact implementation details are presented in Section 

3.4 (p. 66).

A secondary issue related to the use of any environmental representation is whether 

the robot should be required to build the representation or be provided with it. In the 

early days, robots were often loaded with detailed CAD models (i.e. maps) which 

specified both the structure and layout of the world. Needless to say, such maps 

did not deal well with dynamic environments. Additionally, they were often used in 

conjunction with sonar or laser data. Therefore, the robot’s observation of the world, 

at a given instant, needed to easily fit within the map. Often, achieving this required 

overcoming sensor noise by using robust matching methods.

In order to provide any detailed a priori model to the robot, it first has to be
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acquired. This is a difficult and time consuming task, primarily because effective 

localisation necessitates the extraction of relevant landmarks from the axiquired data.

In our case, in order to build a map, the robot first traverses through the envi

ronment, simply acquiring images as it goes. These form the basis for the robot’s 

representation of the environment.

3.2 Spatial Knowledge Representation

As previously stated, one of the key navigation components is knowledge of the envi

ronment. Given that humans and animals need to maintain an internal representation 

of the environment, inspiration can be taken from what is known about how they do 

so. Thus, before detailing how robots may represent their environment, we shall first 

give a brief overview of what is known about how humans and animals do so.

It is acknowledged that humans represent the world, internally, as a Cognitive 

Map. The development of this concept is widely credited to Tolman [140], who in 1948 

suggested that stimuli from the world are '̂"worked over and elaborated in the central 

control room into a tentative, cognitive-like map of the environm ent.

W hat exactly is the cognitive map? The answer is still unknown. One can say that 

this term is often associated with (what Kuipers describes as) the “Map in the Head” 

metaphor [81]. At a very basic level, this metaphor suggests that the way in which we 

store spatial information has a direct, isomorphic relationship to the everyday graphical 

map. Kuipers argued that while this metaphor is of some use, the implied, exact map

like qualities do not exist. In essence, if they did, then there would be a single central 

region in the brain where all information relating to large scale spaces is stored. This 

has been shown not to be the case. Therefore, it is highly probable that metric and 

topological information are stored separately. In 1960, Lynch [87] described results from 

experiments concerning how people navigate through urban environments. He clearly
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3.3.1 Geometric Representations

In the hterature, geometric representations are often referred to as Geometric Maps. 

Given that a scene is mapped in a detailed manner, expensive and accurate sensors (for 

example a laser scanner or a stereo head) are used to measure distances and angles from 

the robot to various objects within the environment. The key idea to keep in mind 

when talking about geometric mapping is that the world is represented in a metric 

manner. Thus, when navigating through an environment, accurate and reliable sensor 

measurements are required at each time instant.

Much of the earliest work in visual navigation concerned the geometric mapping 

of structured environments. Moravec’s [96, 97] seminal work on the subject used a 

binocular set of cameras to recover the structure of an indoor scene. The position 

of cones on the floor was modelled by a 2D region on the ground plane. Thus, the 

environment was segmented into regions of free and occupied space allowing the robot 

to traverse a path from its current position to a goal point.

A particularly important case of geometric mapping is the Grid-based paradigm.

Grid-Based Mapping

Possibly, the most popular approach to geometrically mapping the environment is to 

build a grid-based map. One of the earliest methods was that proposed by Elfes and 

Moravec [38]. Here, the environment was divided into evenly spaced grids, termed 

Occupancy Grids. Each cell, within the grid, had an associated value which related 

information as to whether the cell was occupied or not. Initially, all values were set to 

0.5, i.e. an equal probability that a cell was occupied or unoccupied.

It should be noted that the intrinsic geometric nature of grid-based maps directly 

corresponds to the structure of the robot’s environmental surroundings. Thus, large 

amounts of memory and search time are required to store the information demanded 

to accurately capture this structure. In order to maintain this degree of accuracy.
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real-world problems such as slippage and drift need to be overcome. The data received 

from the sensor(s) must also be integrated over time in order to keep the map up to 

date.

Grid-based mapping has been used in many research works, including [13, 139]. 

It obtains particularly successful results when navigating in cluttered environments. 

Although trap situations may occur, current research focuses upon overcoming such 

local minima [69].

A major problem with geometric approaches is that they tend to contain a large 

amount of irrelevant information. In particular, specific environmental cues which lead 

to effective means of navigating, are not explicitly represented; thus they are difficult 

to find. Clearly, this leads to an increase in the size of the search space; therefore, the 

computational cost of searching is high.

3.3.2 Topological Representations

In the last section, we noted that geometric representations are particularly suited to 

obtaining precise robot pose estimates. Given that this is not always a requirement 

for successful navigation [87], a second approach to map design was developed. This 

approach is topological in nature and was pioneered by Kuipers [80, 82] with his TOUR 

model. Essentially, it evolved from the available knowledge regarding how humans 

represented details of large-scale spaces (see Section 3.2 (p. 59)). It is the mapping 

scheme used in this work.

When using a topological map, the robot’s environment is represented as a graph. 

Nodes in the graph correspond to recognisable scenes (distinctive landmarks) where 

specific actions may be elicited, such as entering a door, turning left, etc. Links con

necting nodes in the topological map correspond to regions where some environmental 

structure can be used to control the robot.

A simple analogy can be made with human behaviour when walking around a city.
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Figure 3.1 shows various landmarks in Lisbon, Portugal. In order to get from one 

particular locale to another, we do not have to think in precise metric terms. For 

example, to go from the city centre, Rossio, to Saldanha square, we may go forward 

until we reach the statue of Marques Pomhal in Rotunda, turn right in the direction 

of Picoas and carry on until we finally reach Saldanha Square.

In order to reach the final goal, the navigation problem is decomposed into a suc

cession of subgoals that can be identified by recognisable landmarks. The required 

navigational skills are the ability to follow roads, make turns, etc., and recognise that 

we have reached a landmark.

C0LB3K> MOJTAK

C.UNIVERSITARIA

ROMA

LARANJEKAS ENTRBCAMPOS

CAMPOPEQUENO

5.SSA5TIAO

PARQUE

AVHNIDA

RE8TAURAD0RBS

Fig. 3.1: A topological map of landmarks in Lisbon, Portugal.

In this work, a similar approach to robot navigation is adopted in order to accom

plish missions such as go to the third office on the left-hand side of the second corridor.
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Motivation for the use of Topological Maps

Topological Maps exhibit a number of advantageous properties. As already detailed, 

cognitive scientists [129] have shown that a cognitive map is made up of successive 

layers and thus it has been suggested that a topological map is a natural description 

of the  environment.

In [10], Brooks notes the advantages of topological maps over traditional geometric 

approaches. Given tha t uncertainties in measurement always occur, his idea was to 

utilise navigation algorithms which explicitly represented the uncertainties encountered 

in the  real-world. He dropped the assumption that a map should be represented in 

a 2D co-ordinate system and stated that only relationships between parts of the map 

should be stored in a  graph structure. Thus, while not using the word, topological, 

the aim was to  produce a  “relational map, which is rubbery and stretchy'”. In this 

way, when metric errors do occur, the location of certain places can still be correctly 

estimated. Thus, it is clear from the qualitative nature of topological maps th a t the 

inevitable problems of movement uncertainty are significantly reduced. One need only 

deal with proximity and order; since the robot navigates between nodes, global errors 

do not accumulate. Inherently, this means that the robot shall be able to overcome 

problems of drift and slippage more easily than if a geometric approach were used.

In addition, topological maps offer a parsimonious representation of the environ

ment since their resolution is only dependent upon the complexity of their surroundings.

Lastly, the computational cost of path planning is significantly reduced by using 

topological maps. This was most strikingly demonstrated by Thrun and Biicken [138]. 

They generated 23,881,062 paths and found that when generating shortest paths, topo

logical maps produced a performance loss of just 1.82% but th a t planning using a  metric 

map was 4.9 x 10^ times more expensive.

Conversely, topological maps can suffer from the sometimes ambiguous nature of 

scenes within the environment, especially when using sonar sensing. However, the
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correct estimate of position can usually be determined by taking into account the 

robot’s travel history. Traditionally, topological approaches have been sensitive to the 

camera’s point of view, although this particular disadvantage is significantly reduced by 

the use of an omnidirectional camera. We believe that this camera design is particularly 

suited to capturing topology.

3.3.3 Hybrid Mapping

Hybrid mapping is the name given to the extraction of topological information from a 

geometric map. Thrun [137] presented a system which used sonar to sense the environ

ment and learnt grid-based maps using neural networks and Bayesian integration. The 

key idea of the approach to extracting topological information is as follows; free space 

on the geometric map is partitioned into a smaller number of regions; each region is 

then separated by a link, or critical line. This partitioned map is then projected onto 

an isomorphic graph.

Fabrizi and Saffiotti [41] extracted what they termed “topology maps” from grid- 

based maps. Using the discipline of digital topology, they defined topological properties 

in a discrete space, as opposed to mathematical topology which relies upon continuous 

space. Primarily they defined nodes as large open spaces and used fuzzy mathemat

ical morphology to extract them. They did not deal with localisation and were only 

concerned with map-building.

3.3.4 Our Approach

Our approach to building a topological representation of the environment uses an 

omnidirectional camera: no other sensing modality is required. The robot directly 

builds a topological representation of the environment, with no intermediate geometric 

mapping by simply traversing through the environment, acquiring images as it goes. 

This a priori information forms the basis of its internal representation. On subsequent
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runs through the same environment, all that is required for q u a lita tiv e  localisation 

is that the current image be matched to one acquired a pviovi.

As input, we use gray level images, although naturally other types of images: edge 

detected or gradient intensity, for example, can be used. A typical sequence of omnidi

rectional images, acquired in a corridor environment, is shown in Figure 3.2. Here the 

robot is in the centre of each image. The corridor lines appear curved in the images 

due to reflection by the spherical mirror.

For the successful application of appearance-based techniques, matching must be 

reliable. It is clear that matching may fail if similar regions in the environment cannot 

easily be distinguished. As noted in Section 1.2.2 (p. 16), this problem was encountered 

in some previous research works. By using an omnidirectional camera the probability of 

an incorrect classification is significantly reduced, given the fact that the robot acquires 

visual information in 360° about the vertical.

3.4 Image Eigenspaces as Topological Maps

In general, sizeable learning sets are required to map the environment and so matching 

using traditional techniques, such as correlation, would incur a very high computa

tional cost. If one considers the images as points in space, it follows that they shall 

be scattered throughout this space, only if they differ significantly from one other. 

However, many real-world environments (offices, highways etc.) exhibit homogeneity 

of structure, leading to a large amount of redundant information within the image set. 

For example, in Figure 3.2 the robot is common to all images and many show white 

corridor walls. Consequently, the images are not scattered throughout a high dimen

sional space but - due to their similarity - lie in a lower dimensional subspace. This 

subspace is often termed an eigenspace.

To present this idea in an informative manner, let us take an elementary example.
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Fig. 3.2: A sequence, from left-to-right and top-to-bottom, of omnidirectional images 
acquired along a corridor at a full resolution of 516 x 508 pixels. Before applying 
Principal Component Analysis, these were reduced to a resolution of 128 x 128 pixels.
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Figure 3.3(a) shows points in the 2D xy co-ordinate system. Notice that the data
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Fig. 3.3: A simple example showing how (a) 2D points can be represented by (b) a 
ID line, i.e. dimensionality reduction.

is highly correlated. Given this fact, Figure 3.3(b) shows there is a more compact

way to represent them: the projection of the data points along the line, p i  is a good

approximation of the original 2D data.

The only remaining question to be answered is how to implement the actual process

of dimensionality reduction, given a set of images. The curse of dimensionality has long

been addressed by the statistics, communication and signal processing communities.

A classical procedure to solve it is Principal Component Analysis (PCA)^ [71], or as

it is sometimes known, the application of the Karhunen-Loeve transform [109, 147].

Simply put. Principal Component Analysis reduces th e  d im ensionality  of a set of

linearly independent input variables, while still accurately representing most of the

original data. The reconstruction of this original data is optimal in the sense that the

mean square error between it and the original data is minimised.

Perhaps the first use of Principal Component Analysis in the field of computer vision

was by Murase et al. in 1981 when they used it for hand-written character recognition

^The idea of principal components was first put forth in 1901 by Pearson [113] but was developed 
by Hotelling [63] in 1933.
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[100]. In 1987, Sirovich and Kirby brought the technique to a wider audience by using 

it for the characterisation of human faces [132], This work was followed, in 1991, by 

Turk and Pentland, who are widely cited as popularising the technique in the area 

of face recognition [142], Other applications include visual inspection [105] and object 

recognition [102]. Recent work has focused upon tracking [9], position estimation using 

laser [145, 146], motion and gesture recognition [9, 22, 90].

Subspaces have been used in other information domains to represent structured in

formation. For Kohonen [76] to explain the properties of the optimality of associative 

mappings, subspaces proved essential. Subspaces and logic have been linked by Watan- 

abe [148], where a subspace was assigned to each proposition of a modular lattice. It 

was this connection that prompted Watanabe to put forward the idea of a subspace 

method of pattern recognition.

3.4.1 Building the Eigenspace

Let us now formally address the mathematical details of constructing the low-dimensional 

subspace. Imagine that we represent images as L-dimensional vectors in Due to 

the similarity between images (data redundancy) these vectors will not span the en

tire space of but rather, they will be confined (or close, to be more precise) to a 

lower-dimensional subspace, where M  «  L. Hence, to save on computation, we 

can represent our images by their co-ordinates in such a lower-dimensional subspace, 

rather than using all of the pixel information. Each time a new image is acquired, its 

capture position can easily be determined by projecting it into the lower-dimensional 

subspace and finding its closest match from the a priori set of points (images).

The only question which remains to be answered is that of determining the lower

dimensional subspace from the original input data. A basis for such a linear subspace 

can be found through PC A, where the basis vectors are denominated principal com

ponents. They can be computed as the eigenvectors of the covariance matrix of
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the normalised set of images acquired by the robot. The number of eigenvectors that 

can be computed in such a way is the same as the number of images in the input data, 

and the eigenvectors are the same size as the images.

Preliminaries

The input data are composed of N images, where each image, 1 ,̂ is arranged as a 

single column vector of size L. We start by determining the average of all images, I 
and subtract it from each image:

Subtracting the average image, I ensures that the first eigenvector captures most

images, i.e. N  << L, from Equation 3.2, it follows that R will, at most, be of rank N. 

Hence, we only need to compute the first N  eigenvectors which are those representing 

the used data.

The input images can only be exactly represented by the entire set of eigenvectors. 

In general, however, the first few eigenvectors account for most of the information 

available within the input image set. Hence, we can use a small number of these 

eigenvectors as an orthonormal basis for a lower dimensional eigenspace, that is an 

efficient approximation to the larger input image space.

How to Compute the Principal Components

There are a number of methods by which we can obtain the eigen-structure of R. 

Conjugate Gradient [109] takes an iterative approach and finds the eigenvector that

1 N

where (3.1)

of the variance of the set of images. An estimate, R of the covariance matrix of the 

set of images Ijt can now be determined as follows:

R = BB^ where B = Ii I2 ■ ■ In (3.2)

where the columns of B are the input images I^. As we usually have a small number of
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maximised a scalar function thus giving the corresponding eigenvalue. The covariance 

matrix is then updated and the process begins again until the eigen-structure has been 

determined. Singular Value Decomposition (SVD) [74] is a well-known and powerful 

method for determining the eigen-structure. It is the method we chose due to its easy 

implementation, efficiency and numerical stability. The Spatial Temporal Adaptive 

algorithm [101] is faster than SVD, as it works on blocks of image data.

By using the SVD we can determine the eigenvectors, ej, and eigenvalues, Aj, of R.^ 

These eigenvectors (actually only the first N are meaningful), form an orthonormal basis 

that can represent the entire input image set. Each eigenvector contains components 

from all of the images and thus an eigenvector is sometimes referred to as an eigenimage.

Unfortunately, computing the SVD of R  is highly computationally intensive. One 

solution [99] to this problem lies in computing the SVD of R  =  B'^B. Thus, we ob

tain the eigenvectors, e and eigenvalues, A which are then converted to the required 

eigenvectors, e and eigenvalues, A by the equations:

~  3̂

Bj -  A“^^^Be,- j e l . . N .  (3.3)

The next stage is to build a lower dimensional subspace using only the first M N  

eigenvectors. This lower dimensional eigenspace has the advantage of accounting for 

most of the variance in the images. The coefficient vector, Ck = [ci • • • c^]^, that 

represents the projection of an image, Ife, into the eigenspaxie is obtained as follows;

(3.4)

For our navigation experiments (see Section 4.5) we keep the 10 eigenvectors with 

the highest eigenvalues, which are denominated, the Principal Components. Images are

^As R  is symmetric and positive definite its eigenvalues are the same as its singul£ir values. A 
proof is given in Appendix A.
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coded by a vector of 10 coefficients that represent the projection of each input image 

along the principal components of the reduced-order manifold (eigenspace). These 

coefficients can be used to approximately reconstruct the input image using only the 

reduced-order manifold:

M

(3.5)
i=i

Each reference image, Î ; is associated with a qualitative robot position (e.g. half 

way along the corridor). To find the robot position in the topological map, we have to 

determine the reference image that best matches the current view, I .

The distance, between the current view and the reference images can be com

puted directly using their projections, C and C^, in the lower dimensional eigenspace:

dl = {C - & f A { C  -  C*) (3.6)

where A is a diagonal matrix containing the (ordered) eigenvalues which express the 

relative importance of the various directions in the eigenspace. Notice that d | is com

puted between M-dimensional coefficient vectors (10 in our case), as opposed to image 

size vectors (128 x 128). The position of the robot is that associated with the reference 

image, having the lowest distance,

3.4.2 Properties

The first question we wish to address is: how many eigenvectors to use as a basis for the 

low-dimensional eigenspace? This information can be garnered from the eigenvalues of 

R , associated with each of the eigenvectors. The largest eigenvalues correspond to the 

eigenvectors which capture most of the variance within the image set. The Frobenius 

norm (which quantifies the signal energy) of R  can be determined by the sum of its 

eigenvalues. Hence, by taking the first 10 eigenvalues, we see that their associated
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eigenvectors capture 84.9% of that norm, while the first 20 eigenvectors capture 93.3%. 

Thus, the first 10 capture a great portion of the variance within the omnidirectional 

image set and so high matching rates can be achieved using a lOD eigenspace. Figure 

3.4 shows a graph of the eigenvalue drop-off.

Eigenvalues drop-off (20 cm  inter-lm age d istance)0.01

0.008

0.007

o.ooe

£ 0.005

0.004

0.003

0.002

0.001

Number o f Eigenvectors

Fig. 3.4 : The eigenvalue drop-off. Good matching results were obtained using the first 
10 eigenvectors.

Figure 3.5 shows the first 9 eigenimages (eigenvectors) computed from 50 omnidi

rectional images, representing one corridor. They are shown in descending order, from 

left-to-right and top-to-bottom, in accordance with their eigenvalues. Here, we can 

easily see that the most general information (i.e. that common to all images) is stored 

by the first eigenvector, while more specific details are stored by those of a lower rank. 

Thus, for example, information only seen in one image of the a priori data set will not 

be captured by the low-dimensional eigenspace.

An important property of the eigenspace is that it is optimal in the correlation 

sense; points in the eigenspace which are closely related correspond to similar images 

in terms of the Pnorm.

There is an additional benefit to building a low-dimensional eigenspace representa

tion of topological structure using omnidirectional images: the same eigenspace can be
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20 40 60 80 100120 20 40 60 80 100120

20 40 60 80 10012020 40 60 80 100120 20 40 60 80 100 120

Fig. 3.5 : The first 9 (omnidirectional) eigenimages obtained via Principal Component 
Analysis.
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D istance 20cm 30cm 40cm 50cm
Dimension

2D
5D
lOD
20D

73.7% (42/57) 
100% (57/57) 
100% (57/57) 
100% (57/57)

84.2% (32/38) 
100% (38/38) 
100% (38/38) 
100% (38/38)

82.1% (23/28) 
100% (28/28) 
100% (28/28) 
100% (28/28)

47.8% (11/23) 
91.3% (21/23) 
100% (23/23) 
100% (23/23)

Table 3.1: Matching Results using eigenspaces of diflFering dimensions.

used along both the forward and return trajectories, simply by rotating, in real-time, 

the acquired omnidirectional images by 180°.

3.4.3 Initial Matching Results

We now go on to detail some initial matching results. For these experiments, no robot 

navigation took place: the goal was to assess the applicabihty of our approach. Real- 

world navigation results are presented in Chapter 4.

A sequence of 115 omnidirectional images were acquired at 10cm intervals along a 

corridor environment. A selection of these images are shown in Figure 3.2. Each was 

acquired at full resolution, then filtered and subsampled to a resolution of 128 x 128 

pixels in size. The odd numbered images, 58 in all, were used to construct a number 

of topological representations of the environment, i.e. a number of low-dimensional 

eigenspaces. The other 57 even numbered images were used as a test set for matching. 

Significantly, two parameters required consideration: (i) the image sampling density 

and (n) the number of eigenvectors.

Given these parameters, a number of solutions were tested, with differing inter

image distances: 20cm (57 images), 30cm (38 images), 40cm (28 images) and 50cm (23 

images), respectively. For each image density, four associated eigenspaces - 2D, 5D, 

lOD and 20D - were constructed. The matching results achieved are summarised in 

Table 3.1.

Clearly, these results show that in our indoor office environment, a lOD eigenspace
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(a) (b)

Fig. 3.6 : 1ST Set: A selection of (a)omnidirectional test images and (b) their clos
est matches obtained by projection into a lOD eigenspace. The a priori inter-image 
distance was 20cm and each image was 128 x 128 pixels in size.

was required to correctly match images in all cases. This result is also borne out by 

the eigenvalue drop-off graph shown in Figure 3.4. A higher dimensional eigenspace 

yields the same results. Naturally, as the inter-image distance increases, the similarity 

between images decreases. Thus, if an eigenspace of a very low-dimension is used to 

encode topological information, incorrect matches occur. This is particularly evident 

when using a 2D or 5D eigenspace with an inter-image distance of 50cm. A selection 

of image matches are shown in Figure 3.6. For the real-world navigation experiments 

outlined in Chapter 4, a 10-dimensional eigenspace was used.

In order to test the method in a different environment, images were acquired at
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so too ISO 200 290 SO 100 150 200 2S0

(a) (b)

Fig. 3.7; CMP Set: A selection of (a) panoramic test images and (b) their clos
est matches obtained by projection into a lOD eigenspace. The a priori inter-image 
distance was 50cm and eeich image was 252 x 110 pixels in size.

the Center for Machine Perception in Prague^. Here the SVAVISCA camera design, 

outlined in Section 2.8.2, was used to capture a set of 64 images of 252 x 110 pixels 

in size. The inter-image distance was 50cm. The 32 odd-numbered images were used 

to build a low-dimensional eigenspace representation of the environment, while the 32 

even-numbered images were used for testing. Using a lOD eigenspace, correct matching 

was achieved in 100% of cases. Figure 3.7 shows a selection of image matches.

3.5 Summary

This chapter presented a solution to the problem of building an appropriate environ

mental representation for an indoor mobile robot. The key idea presented was that any 

®My thanks to T. Pajdla & B. Micusik for acquiring the image set.
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representation should be specifically tailored to the task at hand. Since our robot was 

designed to navigate globally, we used a topological approach. When constructed with 

input from an omnidirectional camera, this environmental representation produced ini

tial matching results which were very encouraging. We presented a low-dimensional 

eigenspace, obtained from Principal Component Analysis, as an effective method of 

encoding the topological map.

We now go on to address the vision-based navigation problem in detail. Our ap

proach to global navigation relies upon the environmental representation detailed in 

this chapter. For local pose control, we visual servo upon bird’s-eye views of the ground 

plane.
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Chapter 4 

Vision-based Navigation

This chapter concerns vision-based robot navigation using an om
nidirectional camera. Our topological environmental representation 
is built upon with the addition of local pose control. This control 
mechanism visually servos on environmental features, extracted 
from  bird’s-eye view images. Real-world navigation results are 
presented using the camera designs detailed in Chapter 2. We 
identify the path distance/accuracy trade-off as being crucial to the 
success of any overall navigation scheme and results from integrated 
experiments are presented. Finally, we detail navigation results 
obtained in areas exhibiting strong non-uniform illumination change.

4.1 Introduction

In Chapter 3, we detailed how to build an appropriate environmental representation 

for a vision-based mobile robot. Endowing a robot with this representation is critical 

to its ability to navigate, but note that sole reliance upon the representation does 

not solve the navigation problem. This is because successful navigation requires three 

components [84]: (i) the availability of an environmental representation, {ii) the ability 

to localise and [Hi) the ability to path plan. These issues are further addressed in 

Section 4.1.1 (p. 82).
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One of the strengths of our technique hes in the fact that we closely relate nav

igation components (i) and (ii). This allows our robot to make effective use of the 

environmental representation for qualitative localisation. This effectiveness is guar

anteed by the use of a local control strategy which is visually based and allows the 

robot to maintain its position and orientation as it travels through the environment. 

Pose is controlled by visually servoing upon corridor guidelines, extracted from bird’s- 

eye views of the ground plane, which simplifies the task. These views are obtained 

by the remapping of omnidirectional images. Details of the remapping method were 

presented in Section 2.8.1 (p. 50). Additionally, the close coupling of components (i) 

and {ii) allows for actions initiated by the robot to be directly linked to its perception 

of the world. For example, in order to effectively use the image eigenspace, images 

captured by the camera should be similar to those in the eigenspace. This similarity is 

ensured by implementing an action to keep the robot centred in each corridor, where 

perception closely matches the environmental representation.

The vision-based navigation method presented in this work is undertaken by com- 

bining appearance-based methods and visual servoing.

Appearance-bzised methods axe defined as those which rely upon direct image 

matching techniques. In many research works this involves feature extraction or tem

plate matching, rather than matching the actual images themselves. In cases where 

actual images are used, often they are from narrow field-of-view cameras and so are 

less appropriate for topological mapping. More details about previous research in this 

area and how it relates to this work were presented in Section 1.2.2 (p. 16).

Visual servoing [40, 64, 150] is defined as the ability to control the position of a 

robot, relative to some feature in its environment, and within its field of view. Suitable 

examples include corridor guidelines, door frames or table edges.

Navigation represents a core research area of interest to the robotics community 

worldwide. Indeed, one may say that independent and autonomous robot navigation
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represents their “Holy Grail”. Ongoing work seeks to design a robot that can function 

autonomously in real-world environments. Given that these include both indoor and 

outdoor scenes, the prevailing research is delineated along these same lines: methods 

that work well outdoors may not do so inside. Moreover, it is usual that outdoor 

navigation requires large and expensive robots, equipped with a diverse range of sensing 

capabilities: sonar, laser, GPS, vision, gyroscopes etc. Such commercially available 

robots can cost in the region of $40,000 - $60,000, while designs built in-house cost 

significantly more.

Given the difficult nature of navigating in outdoor environments, complex solutions 

were often adopted. The general approach used was to generate the maximum amount 

of information about the structure of the environment and then to furnish the robot 

with significant computation power in order to integrate, and then, quickly process 

information from the sensors. By using this approach, successful results were achieved, 

including rough terrain traversal [53] and highway navigation [7, 35].

Research into indoor mobile robot navigation has been undertaken for approxi

mately the last 25 years, often using complex navigation algorithms which relied upon 

multifax^eted sensory information. In this work, we view the problem from the oppo

site end of the spectrum: we wish to obtain information from the environment in the 

simplest manner possible while reUably achieving the navigation task. Both robustness 

and an efficient usage of computational and sensory resources can be achieved by using 

visual information in closed loop to accomplish specific navigation tasks or behaviours 

[120, 121). However, this approach cannot deal with global tasks or co-ordinate sys

tems (e.g. going to a distant goal), because it lacks adequate representations of the 

environment. Hence, a challenging problem is that of extending these local behaviours, 

without having to build complex 3D representations of the environment. We address 

this problem by combining an omnidirectional camera, presented in Chapter 2, an 

3-Ppropriate environmental representation, presented in Chapter 3 and a local control
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strategy, presented in this chapter.

In this work, we do not aim to integrate information from a number of sensors: our 

goal will be successful if we show that it is possible to navigate through structured 

environments using the visual input from each of the camera designs, respectively, 

outlined in Chapter 2.

4.1.1 Navigation Components

The ability to navigate is vital to the successful application of mobile robot technologies. 

Broadly speaking, mobile robot navigation requires three components:

•  An Environmental Representation

•  Position Estimation (also known as Localisation)

• Path Planning

Simply put, the robot is required to: (i) possess knowledge of the environment, 

encapsulated in an internal representation (or map) (ii) know its current position on 

the map and (Hi) be able to plan a route from one point on the map to another. There 

are a number of sub-issues related to each of these requirements. Chapter 3 dealt with 

environmental representations; we shall now detail sub-issues related to position esti

mation and path planning.

P o s it io n  E stim a tio n : The main issue to be considered here is the degree of locali

sation required for the task at hand. We note that when travelling long distances, one 

does not need an extremely accurate estimate of one’s position in the environment; it 

is sufficient to know one’s qualitative position. Alternatively, for tasks undertaken over 

a short distance (passing through a door, for example) a far more accurate estimate of 

position is usually required. While the approach outlined in this work is suitable for
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qualitative localisation during global navigation, tasks requiring very precise measure

ments are not dealt with. On the other hand, in a large-scale experiment, we show how 

our methodology forms part of an overall navigation scheme encompassing both qual

itative and precise navigation tasks [48]. This observation of a path distance/accuracy 

trade-off is further addressed in Section 4.6 (p. 94), and associated experimental results 
are presented in Section 4.6.1 (p. 95).

Path Plfinning: Path Planning involves determining how to get from one point to 

another, usually in the shortest manner possible. In this work, we do not deal with 

this problem explicitly, although the topological map produced can be used as input 

to any standard graph planning (search) algorithm, A* for example. In our case, the 

robot’s destination is simply specified by selecting an image of the goal location and if 

required, comers along the route.

4.2 Experimental Set-up

For the real-world experiments outlined in this dissertation, two robots and omnidi

rectional cameras were used. The first was a TRC Labmate from HelpMate Robotics, 

Inc. It was equipped with an omnidirectional vision system as shown in Figure 4.1.

The design of this camera was detailed in Section 2.8.1 (p. 46). The system con

tained a Cohu CCD camera pointed upwards, viewing a spherical mirror. Grayscale 

images were captured with a full resolution of 768 x 576 pixels and subsequently sub

sampled to images of 128 x 128 pixels in size. PCA was then applied to build image 

eigenspaces, representing topological information. In order to visually servo upon cor

ridor guidelines, bird’s-eye view images of 600 x 600 pixels in size were used. All the 

processing was carried out on-board the mobile platform by a Pentium II 350MHz PC 

with 160MB of RAM. This system ran Matlab 5.3 under Windows 95 and achieved a
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(a) (b)

Fig. 4.1: (a) The omnidirectional camera with a spherical mirror and (b) the camera 
mounted on a  Labmate mobile platform.

sampling frequency of 2Hz.

The second set-up was a SCOUT mobile platform from Nomadic Technologies, as 

shown in Figure 4.2. It too was equipped with an omnidirectional camera but this 

design was th a t outlined in Section 2.8.2 (p. 51). It has a specially designed mirror 

profile combined with a log-polar camera. Panoramic images were obtained directly 

from this camera. Images were captured at a resolution of 252 x 110 pixels and PC A 

was directly applied to them. Visual servoing was undertaken using bird’s-eye view 

images of only 200 x 200 pixels in size. The on-board processing power available was 

limited to a  Pentium 166MHz with 64MB of RAM. This system ran Matlab 5.1 under 

Red Hat Linux 6.0 and achieved a sampling frequency of iHz. A challenging problem 

was to determine if such limited processing power, along with low resolution images, 

allowed for successful navigation.

84



Chapter 4. Vision-based Navigation

(a) (b)

Fig. 4.2 • (^) SVAVISCA omnidirectional camera with a speciaUsed mirror and 
(b) the camera mounted on a SCOUT mobile platform.

4.3 Qualitative Localisation

As previously stated, we use a topological representation of the environment for global 

navigation. Each reference image is associated with a qualitative robot position. As 

detailed in Section 3.4.1 (p. 69), localisation is achieved by directly computing the dis

tance, between the current view and the reference images by using their projections, 

C and C^, into the low-dimensional eigenspace:

4  = {C - & f A { C  -  C^) (4.1)

where A is a diagonal matrix containing the (ordered) eigenvalues which express the 

relative importance of the various directions in the eigenspace. The position of the 

robot is that associated with the closest reference image.

The first real-world tests show that appearance-based methods can reliably provide 

qualitative estimates of the robot’s position in the world, using a single corridor as an 

example. For this purpose we acquired an a priori set of images, P , and subsequently
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ran the robot in the corridor to acquire a different set of run-time images, R. A lthough 

the a priori images and test sets used for the initial matching results, detailed in 

Section 3.4.3 (p. 75) were different, they were captured on a  single run through the 

environment. The advantage of this approach was that similarity between images was 

easy to guarantee. As can be seen from previous research, o th e r  appearance-based 

techniques relied upon this approach. This is not so in our case: for navigation we 

wish to use the a priori set of images as our topological representation over multiple 

runs.

Figure 4.3 shows the distance, between the a priori and run-time images, P  and

Global Minimum

Prior images

Fig. 4.3: A 3D plot of images acquired at run time, R versus those acquired a priori, 
P. This plot represents the traversal of a single corridor. The global minimum is the 
estimate of the robot’s topological position.

It can be seen that the global minimum, at each time instant, is the correct estimate 

of the robot’s current topological position. The error surface degrades gracefully in the 

neighbourhood of the correct estimates: the valley is smooth and relatively wide. Local 

minima appear, as side lobes of this surface, because some distant areas of the corridor
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look very similar. These local minima are easily avoided by restricting the search 

space to images close to the previously estimated position, since images are captured 

sequentially according to the direction of motion.

In the vast majority of cases we have always obtained the correct estim ate for the 

robot position, even in the presence of occlusions. If an incorrect classification occurs, 

the results are always in the vicinity of the correct answer, due to  the sm ooth nature 

of the error function.

4.4 Adding Local Control

In this section, we detail our local control strategy to aid in the process of navigation. 

We wish to  emphasise th a t it should easily combine with our topological environmental 

representation, thus forming a core part of our holistic approach to navigation.

In order to  effectively navigate using the topological map, we must define a suitable 

vision-based behaviour for corridor following (links in the topological map). The goal 

is to  control the  robot in an efficient manner and thus inspiration is again taken from 

humans. As an example, when driving, humans make effective use of demarcations 

along the road for guidance. Similarly, since most corridors have parallel guidelines, 

we can exploit this information to drive the robot along the corridor. As we use an 

omnidirectional camera, these guidelines are always identifiable and so our corridor 

following behaviour can be easily implemented. Significantly, in different environments 

one can always use simple knowledge about the scene geometry to define other similar 

behaviours.

To keep the  robot centred in the corridor, we control the heading direction by using 

visual feedback from the omnidirectional camera. The use of b ird’s-eye views of the 

ground plane significantly simplifies the servoing task, because the  images become a 

scaled orthographic projection of the ground plane co-ordinates (i.e. no perspective
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effects). Figure 4.4 (a) shows a bird’s-eye view of the corridor, while Figure 4.4 (b) 

shows a top view of the corridor guidelines, the robot and the trajectory to follow in 
the centre of the corridor.

/ a

e /

W

(a) (b)

Fig. 4.4 : (a) A bird’s-eye view of the corridor and (b) the measurements used in the 
control law: the robot heading, /3, the distance, to the corridor centre, and the angle, 
a towards a point ahead in the corridor central path. The error used for controlling 
the robot orientation is 0.

From the images we can measure the robot heading, (j, with respect to the corridor 

guidelines, and the distance from the robot to the central reference trajectory, ê . 

Driving p  to zero ensures that the robot moves parallel to the corridor, but is not 

necessarily centred.

We use a simple kinematic planner to control the robot position and orientation in 

the corridor, using the angular velocity as the single degree of freedom. We consider 

a look-ahead distance, D, that defines, at each instant, the goal point that the robot 

should aim for. This goal point can be translated into an angular error, a  as follows:

a -  arctan (^ )
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The value of D can be increased or decreased to control the influence of the dis

placement on the overall control scheme and may be a function of velocity. For our 

purposes, it was set to 7.5% of the image width, which corresponds to about 1 metre. 

Finally, the robot angular velocity, oj, is driven by an angular error that combines both 

the robot heading error, (3 and the angle, a which represents the position error,

( j J  - —/C(/?i +  Qj)

where the proportional gain K, was set to 0.45, thus ensuring a smooth trajectory back 

to the centre of the corridor (in general, it depends on the sampling period). Figure 

4.5 shows a simulation of applying this control scheme to our navigational problem. 

The left plot shows the trajectory of the robot (starting from the bottom of the plot), 

while the right plot shows the change in the robot’s heading and displacement over the 

same period.

i

I

i

i

.......... ............ .................. .̂........ ...........

: V

J .

-30

(b)

Fig. 4.5 : Simulated results of the proposed control scheme; (a) Robot trajectory 
and (b) heading direction and translation. Distances are expressed in metres and the 
heading in degrees.

Notice that by using the bird’s-eye view of the ground plane to extract the corri

dor guidelines, it becomes much simpler to translate that information into the robot
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position and orientation errors with respect to the central path in the corridor. In the 

following subsection, we discuss the method to track the corridor guidelines over time.

4.4.1 Line Tracking using Prediction

Tracking the corridor guidelines is simplified because we only deal with scaled ortho

graphic views of the ground plane. Hence, it is easy to determine projective-planar 

transformations (homographies) [56] that predict points and lines from one image to 
the next.

The corridor lines are extrax t̂ed by, first finding edges within pre-definable bounding 

boxes, and then using a robust line fitting procedure based on RANSAC [42]. Predicting 

the position of these bounding boxes is a determinant for the robustness of the tracker, 

which could otherwise start tracking door frames and other image lines. In the  following 

paragraphs we will describe the prediction process.

When a camera observes a plane under perspective projection, it induces a one-to- 

one projective-planar transformation that can map image points to the ground plane 

directly, and vice-versa. Similarly, one can map corresponding image points at two 

time instants by using inter-image homographies.

The homography, Hiw, that determines the image projection, of a ground plane 

point, "P, encapsulates the projection model, the camera’s intrinsic parameters and 

the world-robot-camera co-ordinate changes:

V =  with V = ^ 1]̂ > and '“P = [x  y 1]^

where 7 is a projective scale factor. Similarly, if we know the homography that relates 

two consecutive images, 'Him, we can predict where an image point %  will appear in 

the following frame, ^pt+i-

^Pt+l ~  P t
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Since the bird’s-eye view images are equivalent to a scaled orthographic projec

tion of the ground plane, Hiw basically contains a scale factor and the inter-image 

homographies, 'Him can be computed reliably using differential odometric information. 

Future improvements to our vision processing algorithm will eliminate the need for this 

odometric information altogether.

We can go even further by applying this prediction process directly to the corridor 

guidelines. If 'Him maps points in the 2-dimensional projective space, the inverse 

transpose of this transformation can be used to map lines directly:

Ht+i = 'HiHt with 'Hi - 'H~^

where are the projective co-ordinates of a line on a plane.

Figure 4.6 shows a sequence of bird’s-eye view images acquired during tracking. 

The dashes represent the predicted positions of the central point of the bounding box 

extremities. The prediction is very accurate and vastly improves the probability of 

extracting the corridor guidelines rather than erroneous data such as door frames.

Fig. 4.6 : Ground plane views of the robot’s orientation and translation over time. 
The dashes represent the predicted position of each of the bounding box extremities.
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4.5 Navigation Results

The experiments described in this work were undertaken in a typical indoor environ

ment with corridors, offices and laboratories. A series of experiments were conducted to 

test the navigation behaviours required to perform global missions using the topological 

representation of the environment. As previously stated, the topological representa

tion was built with omnidirectional images. For navigation experiments these were 

captured every 50cm along the corridors. Reference positions were ordered according 

to the direction of motion, thus maintaining a causality constraint. As detailed in 

Section 4.3 (p. 85), localisation was achieved by comparing the current view to those 

reference images acquired a priori.

To drive the robot along a central trajectory in the corridor, we used the behaviours 

described in Section 4.4 (p. 87). This was accomplished by using bird’s-eye views of 

the ground plane to track the corridor guidelines and determine the robot’s heading 

and position errors, relative to the desired path. This information was then used in a 

closed loop control scheme, which was designed to keep the robot moving in a straight 

line trajectory down the centre of the corridor.

Figure 4.7 shows results obtained with the Labmate mobile platform when naviga

tion along a  section of the 7*̂  floor at the Institute for Systems and Robotics. The 

distance travelled was approximately 21 metres. Odometry was used to display the 

path graphically.

Figure 4.8 shows a  sequence of images of the SCOUT mobile robot navigating in a 

corridor environment. It began navigating outside an office, travelled down the corridor 

and turned 180°, before returning to its start position. The total distance travelled 

was approximately 17 metres.

These results show that the proposed control scheme can successfully drive the robot 

along the designated route. Additionally, they illustrate that when the robot arrives 

at the end of a corridor, it can switch to a different behaviour. In these examples, the
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Fig. 4.7 ; One of the paths travelled by the robot at 1ST. The total distance travelled 
was approximately 21 metres.

Fig. 4.8 : A sequence of images of the SCOUT mobile robot navigating in a typical 
indoor environment.
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behaviour launched a t the end of each corridor is simply to perform either a 90°, in 

order to  proceed to the next corridor or a 180° turn, so as to travel back down the 

same corridor.

Overall, the holistic combination of a suitable camera geometry, an appropriate 

environmental representation, a means of qualitative localisation and a local control 

scheme provided an autonomous system with the ability to successfully achieve the 

goal of navigation.

4.6 Path Distance Versus Accuracy

We have just detailed successful global navigation results for a visually guided mobile 

robot. Here a topological environmental representation was used for navigating be

tween distant environmental sites, using only qualitative and topological properties of 

the environment. Thus, we can characterise this approach by its ability to cover large 

distances to a  given accuracy. This accuracy is specified by the distance between im

ages in the a priori acquired set. Significantly, notice tha t the goal of reaching the final 

destination specifies the success of this task: whether very high accuracy is achieved 

or not is of secondary concern.

However, a  different approach and success criterion are necessary when precise 

guidance or localisation are required for tasks such as docking or navigating in cluttered 

environments. For these precise navigation problems, Caspar and Santos-Victor [47] 

proposed an approach they termed Visual Path Following. Visual P ath  Following 

allows a robot to follow a pre-specified path to a given location, relying upon the 

visual tracking of features (landmarks) [30, 47]. Here the approach is highly accurate 

but only suitable for local navigation; therefore it should be seen as complementing 

our topological approach to navigation.

This observation of a path distance/accuracy trade off between long-distance/low-
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precision and short-distance/high-accuracy mission segments plays an important role in 

finding efficient solutions to the overall robot navigation problem. Indeed, integrating 

these two approaches is a powerful approach that leads to an overall system  which 

exhibits improved robustness, scalability and simplicity, with respect to traditional 

approaches. In the next Section, the results obtained using this integrated approach 

are presented.

4.6.1 Integrated Experiments

In this experiment global and local navigation tasks are integrated by combining the 

topological approach to navigation with Visual Path Following. The robot used was 

the TRC Labmate.

The mission started in the Computer Vision Lab. Visual Path Following was used 

to navigate inside the Lab, traverse the Lab’s door and drive the robot out into the 

corridor. Once in the corridor, control was transferred to the topological navigation 

module, which drove the robot all the way to the end of the corridor.

At this position, a new behaviour was launched, consisting of the robot executing 

a 180° turn, after which the topological navigation mode drove the robot back to the 

Lab entry point. During this backward trajectory, we used the same image eigenspaces 

as during the forward motion by simply rotating, in real-time, the acquired omnidirec

tional images by 180°. Once again, the use of an omnidirectional camera proved highly 

advantageous.

Finally, and once the robot was approximately located at the lab entrance, control 

was passed to the Visual Path Following module. Immediately it located appropriate 

visual landmarks and drove the robot through the door. It followed a pre-specified 

path until the final goal position, well inside the lab, was reached.

Figure 4.9 shows an image sequence of the robot during this experiment. The total 

path traversed was approximately 34m. Figure 4.10 shows the robot trajectory during
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Fig. 4.9 ; A sequence of images of an experiment combining Visual Path Following for 
door traversal and topological navigation for corridor following.

the experiment, and its estimate using odometry. Interestingly, when returning to the 

laboratory, the uncertainty in odometry was approximately 0.5m. Thus, door traversal 

would not be possible without the use of visual control.

This integrated experiment shows the successful application of our methodology 

for navigating between distant environmental points and Visual Path Following for 

accurate path traversal. The resulting system can robustly solve various navigation 

problems and makes parsimonious use of the available computational resources.

4.7 Dealing with Large Illumination Changes

Our approach to building a topological representation of the environment works well 

in indoor environments, where the illumination can be relatively easily controlled. 

Unfortunately, if large non-uniform deviations in illumination occur (see Figure 4.11) 

as happens, for example, when a scene contains direct sunlight, the robot is prone to
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Fig. 4.10: The experiment combining Visual Path Following for door traversal and 
topological navigation for travelling long distances. Trajectory estimate from (a) odom- 
etry and (b) the true trajectory.
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miscalculating its location.
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Fig. 4.11: Images acquired at (a) 5pm and (b) 11am. (c) Image intensity shows large 
non-uniform deviation in brightness. The thin line represents image (a).

This problem can be overcome by using edge images to represent the environment. 

M atching is achieved by using an eigenspace approximation to the Hausdorff fraction 

[66]. Previous research using this method concerned object recognition when faced 

w ith minor occlusions [65]. As an alternative implementation, one could build a  larger 

learning set to represent the illumination variability. The disadvantage of this approach 

is the degradation in performance due to the extra cost of memory and computation.
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4.7.1 T he Hausdorff Distance

In this Section, we present a brief overview of the Hausdorff distance. The Hausdorff 

distance [118] (of which the Hausdorff fraction is a subset) is a technique whereby 

one can measure the distance between two sets of points, in our case edge images. A 

number of Hausdorff distance measures are defined by the following equations;

H{A,B) = max{h{A,B),h{B,A))  (4.2)

where

h{A, B) = maxmin 11 a — 11 (4.3)
a e A  b eB  " " ^

Here A and B represent sets of points. h{A, B)  measures the distance from each

point in A  to the nearest point in B. These distances are ranked and the largest

distance is termed the directed distance from A  to B. In the same manner, h{B, A)  

measures the undirected distance from B  to A. H{A,B)  is the maximum of both. 

Unfortunately, the general Hausdorff distance H{A, B)  is highly sensitive to outlining 

points and in practice, the max in Equation 4.3 is replaced by a quantile:

hk{A, B) = k%A mm I I  « -   ̂ I I  (4-4)

where 0 < A: <  1. For example, the maximum is defined by the 1®̂ quantile and the 

median by the quantile.

Now, let us suppose that we wish to determine the fraction of points in E,  where 

0 < £■ <  1 that are within a distance, d of points in F,  where 0 < F  < 1. This is 

termed the Hausdorff fraction, hf.

h,{E,F) = ^ : :^  (4,5)

where En and Fm are the number of points in E  and F, respectively. Here the points in 

F  are dilated by d. If they were not so. Equation 4.5 would simply represent normalised
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correlation.

We now proceed to discuss the method used to build an eigenspace approximation 

to the Hausdorff fraction. This forms the environmental representation for our mobile 

robot in areas of large non-uniform illumination change.

Eigenspace Approximation to the Hausdorff Fraction

The eigenspace approximation [66] is built as follows; Let Im be an observed edge 

image and 1^ be an edge image from the topological map, arranged as a column vector. 

The Hausdorff fraction, h{Im, /^), which measures the similarity between these images, 

can be written as follows:
j T r d

t j t j  f d \  _
'n -'T O ) ^ n )  ~  \ \ T  112

An image, Ik can be represented in a low-dimensional eigenspace by a coefficient vector, 

Ck =  [ci, • • • , ^  follows:

4  = -  I).

Here, I  represents the average of all the intensity images and can be also used with 

edge images. Thus, the eigenspace approximation to the Hausdorff fraction can be 

efficiently computed as:

p̂ ||2

4.7.2 Illumination Results

To test this eigenspace approximation we collected a sequence of images, acquired at 

different times, 11am and 5pm, near a large window. Importantly, this method was 

not required for the small changes in illumination which usually occur indoors. The 

image set acquired exhibited large non-uniform illumination change. Figure 4.12 shows 

the significant change in illumination, especially near the large window at the bottom 

left hand side of each omnidirectional image.
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Fig. 4,12: (a) An omnidirectional image obtained at 11 am, (b) one obtained at 5 pm 
(c) An edge-detected image and (d) its retrieved image.
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Even so, the eigenspace approximation correctly determined that the unknown 

image shown in Figure 4.12(a) was closest to the reference image shown in Figure 

4.12(b), while PCA based on brightness distributions failed. For completeness. Figures 

4.12 (c) and (d) show a run-time edge image and its corresponding retrieved image 

using the eigenspace approximation to the Hausdorff fraction.

Figure 4.13 shows the robot’s qualitative position estimated over time, using both 

(a) gray-level distributions and (b) the Hausdorff fraction. Images for topological 

localisation were acquired at 11am and experiments were conducted at 12pm and 5pm. 

The x-axis represents traversal from a region of small illumination change to a region 

of large non-uniform illumination change. As shown in Figure 4.13(a), in the area 

of large illumination change, the robot miscalculated its position when relying upon 

intensity images. Figure 4.13(b) shows that only when using the Hausdorff fraction was 

qualitative localisation possible, independent of the changing illumination conditions.

100 100
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100100
timetime

(a) (b)

Fig. 4.13: Position estimation with large non-uniform illumination changes (a) using 
brightness distributions and (b) the Hausdorff fraction.

4.8 Summary

This chapter was concerned with the problem of vision-based mobile robot naviga

tion. It built upon the topological environmental representation described in Chapter
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3. From the outset of this work, the goal was to build a system which could solve 

the navigation problem by applying a holistic combination of omnidirectional vision, 

a topological environmental representation, appearance-based methods and visual ser- 

voing. This approach was shown to be successful.

We showed that by applying the eigenspace approximation to the Hausdorff frac

tion, when building the environmental representation, large non-uniform changes in 

illumination could be overcome.

Finally, results from an integrated experiment involving both global and very pre

cise navigation were detailed. This approach relied upon the observation of a path 

distance/accuracy trade-off in order to robustly solve various navigation problems.
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Information Sampling

This chapter presents an extension to the environm ental repre
sentation component of our holistic approach to navigation. In 
order to handle the complexity of the perception process while 
increasing computational efficiency, our robot focuses its  attention  
on the image data points, from the a priori set, which contain  
the m ost discrim inating information. The discrim inating pixels 
are selected by a statistical, non-featured based m ethod term ed  
Inform ation Sampling. In particular, we show how to use the 
selected data fo r  robot navigation. As a further extension of the 
Inform ation Sampling method, object recognition results are detailed.

5.1 Introduction

The last three chapters explained in detail our approach to vision-based robot naviga

tion. This methodology required the synergistic combination of omnidirectional vision, 

a topological representation of the environment, appearance-based methods and visual 

servoing for local pose control.

As previously detailed in Chapter 3, an appropriate environmental representation 

is a key component of a successful navigation system. For the navigation experiments 

outlined in Section 4.5 (p. 92), entire omnidirectional or panoramic images were used
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as a basis for the environmental representation and successful results were achieved.

Images usually convey a large amount of information and, as a consequence, the 

the perception and navigation systems must find ways of handling such a complex 

data flow. One way to overcome the complexity problem consists of focusing the 

system’s attention (resources) upon the most relevant parts of the visual data. This 

chapter presents a method of achieving this by determining the pixels, from the a priori 

image set, which yield the most information, in terms of position estimation, about 

the environment. We term this approach Information Sampling [155, 159, 160]. 

Since we no longer require entire images, there is an obvious computational saving. 

Information Sampling was also applied to another problem domain within computer 

vision: object recognition, thus broadening the applicability of our work.

One can view Information Sampling as a “landmark” selection process, although 

not in the traditional sense. We shall back up this claim by using a simple example. 

A landmark is a significant, easily identifiable structure which contrasts greatly with 

the background. Therefore, one’s attention is naturally drawn to it: a stop sign on a 

road, for example. Indoors, researchers have tended to use artificial or easily identifiable 

natural landmarks for localisation. Information Sampling approaches the problem from 

a diflFerent perspective. It relies upon the intensity changes between images from the 

a priori dataset. Therefore, a “landmark” is defined as a set of pixels which vary 

significantly from one image to the next, i.e. those which exhibit the most information 

change. For example, if a highly textured region is in all of the images, it is not 

a discriminating landmark and so shall not be chosen by the Information Sampling 

method. A major benefit of this approach is that it is non-feature based and so can be 

applied to images exhibiting low texture.

When navigating from one area to another, the mobile robot now has the ability to 

identify and focus upon highly discriminating regions within the environment. These 

are then periodically memorised for future reference, thus mimicking the approach to
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navigation naturally adopted by humans and some animal species.

As an aside, we shall see how the same methodology can be applied to object 

recognition, by selecting the areas which can most easily distinguish between a set of 

objects.

5.2 The Information Sampling M ethod

As previously noted, our approach requires the use of a priori image data. Theoret

ically, it can be applied on a pixel-by-pixel basis, independent of image type. For 

the navigation experiments outlined in this chapter, images were acquired from an 

omnidirectional camera with a spherical mirror. Once the images were captured, we 

determined which regions contained the most relevant information, i.e. which were the 

most discriminating for position estimation, by applying Information Sampling. Sig

nificantly, our approach is non-feature based and was applied to images of low texture; 

the environment consisted of plain white walls and brown doors. As a first step in 

explaining the Information Sampling method. Section 5.2.1 outlines the procedure for 

reconstructing an image, given only a small amount of data.

5.2.1 Image Reconstruction

We assume that the images captured by the robot’s camera can be modelled as a 

random vector I, characterised by a Gaussian distribution with mean I  and covariance 

S/:

Usually, one can take an ensemble of images of the environment [7i. . .  7^], which 

can be utilised for computing I  and E/, so that p{I) can be computed a priori. When 

the robot is navigating, we assume that the observations, d, consist of a selection of 

(noisy) image pixels (or sub-regions), rather than the entire image. Accordingly, the
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observation model can be expressed as:

d = S I  + T] (5.1)

where d stands for the observed data and the measurement noise, r] is assumed to 

follow a Gaussian distribution with zero mean and covariance, We further assume 

that I  and rj are independent. The selection matrix, S  is composed of a series of ones 

and zeros, the ones correspond to the data points extracted from an image. We select 

a number of pixels to test by moving the set of ones in the selection matrix.

Having prior knowledge of I, in the form of a statistical distribution, p(I),  the 

problem now consists of estimating the (entire) image based on partial (noisy) obser

vations of a few pixels, d e  M” . This problem can be formulated as a Maximum a 

Posteriori estimation of I. The posterior probability can be determined from Bayes 

rule as follows;

pm  = (5.2)

where p{d\I) is the likelihood of the observation of a pixel value (or set of pixels) given 

a  known image, I. From Equation (5.1) we can determine p{d\I) as follows:

p{d\I) =  ^ .. .] ' e x p (-i(d  -  -  S'/)] (5.3)
27T2^det(S„) ^

The prior distribution, p{I) is assumed to have been learnt a priori and is given by the 

following Equation:

Finally, p{d) is given by;

Now, taking C{I) =  -  ln(j9(/|c/)) and removing all terms th a t do not depend on / ,  

yields the following equation;

C{I) DC [(/ -  -  I) + { d -  S l f E ~ \ d  -  SI)] (5.6)
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Hence, maximising the posterior probabihty is equivalent to minimising the criterion 

C(J). Therefore, from Equation (5.6), we can compute the maximum a posteriori 

estimate of I  [119] as follows;

I m a p  = argmaxp(/|o?) =  I  + S^E~^d)  (5.7)

Thus, I m a p  is the reconstructed image obtained using the pixel (or set of pixels), d .  

Notice that by combining the prior image distribution with the statistical observation 

model, we can estimate the entire image based on the observation of a limited number 

of pixels.

5.2.2 Choosing the Best Data: Information Windows

Once we have reconstructed an image using the selected data, we can compute the 

error associated with this reconstruction. Prom Equation (5.7), the error covariance 

matrix, Sgrror is given by:

=  Cov(7 -  I m a p )  = (S/-' +  (5.8)

Of course, the quahty of the estimate and the “size” of 'Egrror depend not only 

on the observation noise, rj but also on the observed image pixels, as described by the 

selection matrix, S. Equation (5.8) quantifies the quality of an estimate obtained using 

a particular set of image pixels. In theory, we can evaluate the information content of 

any individual image pixel or combination of pixels, simply by selecting an appropriate 

selection matrix, S, and determining the associated Sgrror-

This problem can be formulated as an experiment design process [119], in which 

we look for the optimal selection matrix, S* that minimises (in some sense) the error 

covariance matrix. Taking the determinant of Egrror as an indication of the “size” of 

the error, the optimal selection of image pixels is given by:

S* =  argmin{ det{{T>J  ̂+ S)~^) } (5.9)
s
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In practice, to avoid computing the inverse we define the following equivalent opti

misation problem in terms of a modified uncertainty metric, U:

t / = - l o g { d e t ( S 7 ^ + 5 ^ S ; ' 5 ) } ;  5* =  argmin C7 (5.10)
s

So far, we have described Information Sampling as a process for (i) reconstructing 

an entire image from the observation of a few (noisy) pixels and (n) determining the 

most relevant image pixels, S*.

Unfortunately, determining S* is computationally impractical since we would have 

to compute Serror for all possible combinations of pixels scattered throughout the 

image^. Instead, we partition the image into non-overlapping square windows of {I x I) 

pixels. We term these regions Information Windows, denoted by w =  [?z;i. . .  iWn].

By using Equation (5.10), we can rank Information Windows or combinations of 

such windows, in terms of their information content. Again, as searching for all possible 

combinations of windows within the image, in order to minimise Equation (5.10), would 

be computationally intensive, we instead use two sub-optimal (greedy) algorithms. 

These algorithms are described in Section 5.3.

Again, we reiterate that the information criterion is based on the entire set of images 

and not, as with other methods, on an image-by-image basis. For instance, a highly 

textured image region is defined as a good “landmark” only if it varies significantly 

from one image to the next. In other words, data common to all images have a large 

reconstruction error and so are unreliable for position estimation. On the other hand, 

data which varies throughout the image set are associated, at any instant, with a single 

image and so allow for reliable position estimation.

Îf we wished to compute all possible subsets of m pixels from n, the number of pixels in an image, 
then the number of subsets =  binomial(m n) with m ~  10® and n ~  10 .̂
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5.3 Ranking the Information Windows

Information Sampling was applied to two sets of omnidirectional images acquired by 

the Labmate mobile robot in an indoor office environment. We show th a t by using 

Information Sampling to focus upon attentive regions within the environment, effective 

navigation is possible. Real-world experiments verify this thesis.

An image set, consisting of 89 omnidirectional images, was acquired every 10cm in 

an indoor environment. Each image was acquired at a resolution of 768 x 576 pixels, 

low pass filtered^ and subsampled to an image resolution of 128 x 128 pixels. These 

formed the database set, T i 2 s- In order to perform Information Sampling these images 

were further low pass filtered and subsampled to a set of images, T 3 2 , 32 x 32 pixels in 

size. The reason for such a small image size relates to the complexity of determining 

the error covariance matrix, T̂ error in Equation (5.8). To find the most discriminating 

Information Windows, over T 3 2 , we found and ranked the 16 non-overlapping windows 

of size 8 x 8  pixels. We then calculated the equivalent 32 x 32 Information Windows 

(extracted from the 128 x 128 training images, T i2s) to the 8  x 8  windows (extracted 

from the 32 x 32 images, T 3 2 ) .  For the initial set of experiments, the 32 x 32 size 

windows were used.

Additionally, we improved the process by finding and ranking the 225 overlapping 

windows of size 4 x 4  pbcels in T 3 2 . The overlapping windows were generated by shifting 

each window in the horizontal and vertical direction by 2  pixels, thus generating an 

overlap of 50%. We then calculated the equivalent 16 x 16 Information Windows 

(extracted from the 128 x 128 training images, Tias) to the 4 x 4 windows (extracted 

from the 32 x 32 images, T 3 2 ) .

^An average filter was used.
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5.3.1 Sezirching for the Best Information

As previously noted, finding the set of pixels to select (from the a priori set of images) 

as the best information is a highly computationally intensive problem. In order to 

overcome this problem, we implemented two greedy search algorithms: Combinatorial 

Search and Simple Search. These were used to find and rank the best Information 

Windows.

Combinatorial Search

We first search for the best Information Window. Then, the search for the next best 

window is made keeping the first window fixed, thus locating the best pair of windows. 

As the method continues it determines the best triplet of windows, etc. If we denote 

n  as the number of windows within an image, this method requires the evaluation of 

Equation (5.10), n! times. The method automatically groups the Information Win- 

dow(s) into a single window, a pair of windows, a triplet of windows etc. Notice that 

this method is not a true combinatorial search, which would require the evaluation of 

all possible combinations of windows.

Simple Search

This is a faster search algorithm. We rank each of the information windows indepen

dently. In this case. Equation (5.10) has only to be evaluated n  times. As distinct 

from Combinatorial Search, if we wish to group the best (single, pair, triplet etc. of) 

window(s) we must do it manually based on the initial ranking.

5.3.2 Ranking Results

Figure 5.1(a) shows the Information Windows available for selection and Figure 5.1(b) 

these Information Windows, individually ranked from the most (number 1) to the least
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discriminating (number 16) using Simple Search. Figure 5.2 shows the ranking when 

using panoramic images.

Fig. 5.1: Ranking Results: (a) The 16 non-overlapping Information Windows, (b) 
Those windows ranked, according to the amount of information they contain, using 
Simple Search.

so 
too 
ISO

Fig. 5.2 ; The information windows obtained using panoramic images, ranked, accord
ing to the amount of information they contain, using Simple Search.

The following example provides an intuitive idea of the Information Sampling 

method. All of the omnidirectional images in this dissertation show the robot in the 

centre of each image^. Any Information Window which contains the robot is not a 

discriminating one and so it follows that such a window should have a relatively low 

ranking. As shown in Figure 5.1(b), this proves to be the case: the four Information 

Windows which contain the robot are ranked from numbers ten to fifteen. Additionally,

^All omnidirectional images acquired by the catadioptric sensor with a spherical mirror show the 
robot. The mirror of the SVAVISCA sensor was designed so as this was not the case.

200 400 SOO 800 1000 1200 1400
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the four windows at the periphery of the image also have a  low ranking, since they only 

contain a portion of the omnidirectional image. It should be noted th a t the corridor in 

which the a priori set of images were acquired had a number of offices on one side (the 

top half of the omnidirectional images) and only a single door and notice-board on the 

other (the bottom half of the omnidirectional images). Thus, as the robot travels down 

the corridor more information change occurs in the top half of the omnidirectional im

ages. Again, this is borne out by the window ranking, where the three highest ranking 

Information Windows are all in the top half of the omnidirectional image.

A second set of 53 (as opposed to 89) omnidirectional images, obtained every 20cm 

(as opposed to 10cm) were acquired in the same corridor but from a different s ta rt

ing position. Figure 5.3(a) shows the Information Windows available for selection and 

Figure 5.3(b) the window ranking when using non-overlapping windows. The four In

formation Windows which contain the robot are ranked from numbers seven to twelve. 

Additionally, the four windows at the periphery of the image have the lowest ranking. 

Significantly, the same highest ranking Information Window (window 8) is selected 

from both sets. The other Information Windows are ranked in a different order, but 

note that, Information Sampling chooses the same six top ranking windows from both 

sets.

To further test the technique, we found and ranked the 225 overlapping windows 

of 16 X 16 pixels in size. The advantage of this approach is that we can focus upon 

smaller areas of the omnidirectional image. Naturally, relevant information contained 

within the image received a high ranking and, advantageously, portions of the image 

which were close to the background, and relevant, were highly ranked. As expected 

the dark background received the lowest ranking. An image of the 10 best overlapping 

Information Windows is shown in Figure 5.4.
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Fig. 5.3: Ranking Results; (a) The 16 non-overlapping Information Windows, (b) 
These windows ranked, according to the amount of information they contain, using 
Simple Search.

Fig. 5.4; The 10 best overlapping Information Windows.
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Graphing the Information Content

Figure 5.5 shows the graphs of the Information Windows, obtained from omnidirec

tional images, ranked using (a) Simple Search and (b) Combinatorial Search. In both 

cases, the a;-axis corresponds to the window ranking, from first to sixteenth and the y- 

axis corresponds to the uncertainty metric, U, calculated using Equation (5.10) (p. 109). 

The numbers along the graph line correspond to the 16 non-overlapping Information 

Windows per omnidirectional image. For example, using Simple Search, Figure 5.5(a) 

tells us that the eighth Information Window exhibits the lowest uncertainty value and 

so is individually ranked in first position, while the third window, having a higher 

uncertainty value, is individually ranked in second position etc.

Using Combinatorial Search, Figure 5.5(b) tells us that the eighth window is ranked 

in first position. This window is then fixed and the best pair of windows, in this case 

the eighth plus the third, are found. Thus, the third window contains the next best 

amount of information and is ranked in second position. Using Combinatorial Search 

the next best window added at each stage matches the window rank chosen by Simple 

Search.

Combinatorial Search continues until all windows have been combined. As can be 

seen from Figure 5.5 (b) each combination of Information Windows exhibits a lower 

uncertainty measure than the previous one. Intuitively, this makes sense as the more 

information available, the better the image reconstruction (see Equation 5.7) should be. 

However, the payoff for using many Information Windows is not significant, as can be 

seen from the small drop in uncertainty. This result is also borne out by Figure 5.7, as 

detailed in Section 5.3.3 (p. 117). Clearly, the fact that the highest ranking Information 

Window is not only the most relevant, but is the most relevant by a significant factor, 

is the reason why we need use only it for reconstruction.

In terms of computation time. Simple Search took an average of 6.2 seconds to rank 

the Information Windows while Combinatorial Search took an average of 63.9 seconds
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Using each of the  16 information windows a tone
-1 9 3 5 .5

>.55

-1935.<

-1 8 3 5 .f

s:; -1 9 3 5 .7

71 -1 9 3 5 .7 5

-1935.1

-1935-j

-1 9 3 5 .9 5

-1 9 3 6

Infonnation Window Rank

(a)
Using a  combination of the 16 information windows together

-1 9 3 5 .5

-1 9 3 6 .5

¥ -1 9 3 7

-1 9 3 7 .5

-1 9 3 8

lnfonnatk)n Window Rank

(b)

Fig. 5.5; Graphs of the data contained in each Information Window versus the window 
rank when using (a) Simple Search and (b) Combinatorial Search. The numbers along 
the graph line are the window numbers.
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to determine the same information. The trade-off is accuracy versus computational 

power.

Figure 5.6 shows the ranking results when using (a) non-overlapping and (c) over

lapping windows from the second set of images. Again, when using (a) non-overlapping 

Information Windows, the eighth exhibits the lowest uncertainty value and so is ranked 

in first position. When using (c) overlapping windows, window number 74 is ranked 

in first position. Figure 5.6 shows (b) the best non-overlapping and (d) overlapping 

Information Windows in an image.

5.3.3 Reconstruction Results

The reconstruction results obtained using Information Windows of size 8 x 8  pixels 

and omnidirectional images of 32 x 32 pixels in size are shown in Figure 5.7. Figure 

5.7(a) shows an omnidirectional image from the a priori set, Figure 5.7(b) its recon

struction using only the most discriminating 8 x 8  Information Window and 5.7(c) 

its reconstruction using all of the Information Windows. Reconstruction was achieved 

using Equation (5.7). As can be seen from the images, a good reconstruction is ob

tained using only the best Information Window. This is an indication of the power of 

Information Sampling.

5.4 Information Sampling for Robot Navigation

In Chapter 4, we presented our vision-based mobile robot navigation results obtained 

when using entire omnidirectional images. As detailed in Section 1.2.2, previous 

appearance-based approaches also used entire images for position estimation. In con

trast to other areas of computer vision, (tracking, for example) no attempt was made 

to select informative regions from the images. In Section 5.2, we outlined our approach 

to this problem.
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Window Ranking using 16 non-overtapping windows

Window 8

Information Window Ranking

(a)
Window Ranking using 225 overlapping windows

(c)

Window 74

Infonnatlon Window Ranking

(d)

Fig. 5.6; Graphs of the information contained in each Information Window versus 
the window rank using (a) non-overlapping and (c) overlapping windows. The best (b) 
non-overlapping and (d) overlapping Information Window in an image.
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Fig. 5.7: (a) A 32 x 32 omnidirectional image acquired at run-time, (b) Its recon
struction using the most discriminating Information Window, (c) Its reconstruction 
using all of the Information Windows. Each Information Window is 8 x 8 pixels in size.

Building a Local Appearance Space Using Information Sampling Informa

tion Sampling selects the most informative data from an a priori image set. This was 

defined as the most discriminating 32 x 32 non-overlapping Information Window, i.e. 

just 6.25% of the original amount of information. When applied to the second image 

set, we used the 10 most discriminating 16 x 16 overlapping Information Windows, i.e. 

just 10.93% of the original amount of information.

Conceivably, navigation could be achieved by matching the reconstructed image, 

Imap to the set of omnidirectional images, although this would be computationally 

expensive. Thus, as before, this matching is achieved in real-time by projection into a 

low-dimensional eigenspace built using Principal Component Analysis (PCA). In this 

case, the key difference (i.e. the extension to the environmental representation compo

nent of our holistic approach to navigation) is that we use only the most discriminating 

information obtained by Information Sampling to build a local appearance space 

(low-dimensional eigenspace). In this way, we directly project the best information, 

significantly reducing the number of projected windows and therefore, the level of pos

sible ambiguity. The local appearance space has an orthonormal basis of eigenvectors 

of size (P X 1), where I is the length of the side of a square Information Window. It is 

our topological environmental representation.
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5.4.1 Navigation Results

So far we have outlined our procedure to:

1. Select the best Information Window using Information Sampling, thus focusing 

the robot’s attention on the most discriminating information.

2. Build a local appearance space using only the best Information Windows from 

each image in the a priori set.

As a first test of the method, we ran our Labmate mobile robot in a corridor 

environment. Only the best Information Window, from each image, was projected 

into the local appearance space. The images in Figure 5.8(a), (b) and (c) show the 

results obtained using windows of 32 x 32 pixels in size. The top row shows (a) the 

most relevant Information Window from an unknown image, (b) its closest match from 

the a priori set of best Information Windows and (c) its reconstruction using PCA. 

Figure 5.8 shows (d) the best Information Window in the unknown 128 x 128 image 

and (e) its closest match from the a priori set, obtained by projecting only the most 

relevant Information Window. We note here that we could in principal, given enough 

computing power, use Equation (5.7) to reconstruct a 128 x 128 image using only the 

most relevant window.

To further test the applicability of the Information Sampling technique, we ran 

three more position estimation experiments along a corridor. The first experiment used 

entire 128 x 128 images for matching, the second the most informative non-overlapping 

32 X 32 Information Window and the third the 10 most informative overlapping 16 x 16 

Information Windows.

Figure 5.9 shows (a) an unknown image, (b) its closest match from the a priori 

set of entire images and (c) the distance travelled (~10.5m) by the robot under closed 

loop control. Figures 5.10 and 5.11, respectively, show navigation experiments using 

non-overlapping and overlapping Information Windows. Significantly, in these latter
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(a) (b) (c)

(d) (e)

Fig. 5.8 ; Close-up of the 32 x 32 Information Windows from Set A: (a) unknown (b) 
closest and (c) reconstructed. The position of (d) the unknown and (e) the closest 
images in their respective omnidirectional images.
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Fig. 5.9: (a) An unknown image, (b) its closest match and (c) the path travelled by 
the robot when using entire 128 x 128 images.

Fig. 5.10: a) An unknown image, (b) its closest match and (c) the path travelled by 
the robot when using the best 32 x 32 non-overlapping Information Window.
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Fig. 5.11: a) An unknown image, (b) its closest match and (c) the path travelled by 
the robot when using the 10 best 16 x 16 overlapping Information Windows.

cases the number of pixels used for position estimation was 6.25% of the total, when 

using non-overlapping windows, and 10.93% in the case of overlapping windows, thus 

allowing the robot to maximise the use of its limited computational resources. Clearly, 

vision-based navigation in a corridor environment was successfully completed in each 

case.

5.4.2 Navigation Results using Low Resolution Images

As a final test of our holistic approach to navigation, we undertook preliminary exper

iments using low resolution images. Use of these may prove beneficial for large scale 

experiments, although our experiments were performed over a short distance (~7m) in 

a single corridor environment. The input data for three experiments consisted of ( i i )  

low resolution 16 x 16 omnidirectional images, (ii) the best 4 x 4  information window, 

extracted from the 16 x 16 omnidirectional images and {in) the best 8 x 10 infor-
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mation window, extracted from 8 x 80 panoramic images, respectively. Figure 5.12 

shows the results obtained. Each graph shows the distance, (if., between the prior and 

run-time images. While the local minima are different, significantly the global min

imum is maintained in each case: the robot can determine a qualitative estimate of 

its position. Although requiring further testing and validation, our results show that 

navigation can be undertaken using extremely limited amounts of data, only 16 pixels 

representing 6.25% of the original 256 pixels. This allows the robot to concentrate its 

resources on other tasks.

Olobal Minjiiium Global Mioiinum

(a) (b) (c)

Fig. 5.12: Graphs showing images acquired at run-time versus those acquired a priori 
when using (a) 16 x 16 Omnidirectional Images, (b) 4 x 4 Information Windows and 
(c) 8 X 10 Information Windows. Experiments were undertaken along a ~7m path.

5.5 O bject Recognition

In order to test further applications of the Information Sampling method, we applied 

it to the object recognition problem [158]. The object set used was the well known 

COIL-20 database [107] from Columbia University. A selection of images from the 

database are shown in Figure 5.13.

Each image is 128 x 128 pixels in size. Experiments were undertaken using 36 evenly 

spaced views of 20 objects as the database set and a different 36 evenly spaced views 

of the same 20 objects as the test set.
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Fig. 5.13: A selection of images from the COIL-20 database.
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We ran our Information Sampling method on the COIL-20 database, to determine 

the most discriminating Information Windows. Due to  computational constraints, 

each 128 X 128 image was first subsampled to 32 x 32 pixels in size. Each Informa

tion Window was chosen to be 8 x 8 pixels in size, thus giving 16 non-overlapping 

Information Windows per image, ordered from left-to-right and top-to-bottom . Once 

the Information Windows were ranked, corresponding 32 x 32 Information Windows 

in the 128 x 128 sized images were found. For our navigation experiments only data 

corresponding to the best Information Window were used to build a local appearance 

space. In the case of object recognition, six local appearance spaces were built, each 

termed an Informative Local Appearance Space (ILAS). They are numbered from one 

(the most informative) to six (the least informative), i.e. they correspond to the six 

highest ranking Information Windows. Recognition was achieved by using the first 

Information Window (only 6.25% of the pixels in an image) projected into the asso

ciated lOD local appearance space, ILAS 1. If the best window was occluded, or had 

a significant amount of non-uniform background change, recognition was achieved by 

jumping to the neoct best local appearance space and so on. Results are presented in 

Section 5.5.2 (p. 128).

Figure 5.14 shows six objects from the database in a number of differing poses along 

with their associated most (shown mid-image) and least (shown a t the bottom-right 

of the images) discriminating Information Windows, as yielded by the Information 

Sampling method. Notice tha t each Information Window discriminates over the entire 

set of images, not on an image-by-image basis.

5.5.1 Matching Results

Object recognition and pose estimation experiments were first undertaken on unper

turbed images using only ILAS 1, i.e. the highest ranking appearance space. The 

images in Figure 5.15 show the results obtained. Here, Figures 5.15 (a) and (d) show
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Fig. 5.14: A selection of images showing the highest (mid-image) and lowest ranking 
(bottom-right) Information Windows, respectively in a selection of images.

the best Information Window, extracted from two unknown objects (Figures 5.15 (b) 

and (e)) which we wish to recognise. Figures 5.15 (c) and (f) show the closest match, 

from the database set, in the correct pose. Results obtained using a large set of 720 un

known images reveal that the correct object was determined in 95.3% of cases and the 

correct pose in 73.8% of cases. Thus, the recognition results compare very favourably 

to those using entire images but utilise significantly less image data. In order to test 

the discriminating power of each Information Window we compared matching results 

using the P* and 3'"'̂  most discriminating Information Windows. In this case, ILAS 3 

yielded a correct object recognition rate of 82.5% and a pose estimation rate of 65.3%. 

Thus, as expected the discriminating power of ILAS 1 is superior. Naturally, the lower 

the ILAS level, the more our approach degraxies.

Importantly, if regions, other than the Information Window used for recognition, 

were occluded the recognition results did not deteriorate. On the other hand, if an 

Information Window was occluded then the method outlined in the next Section was 

used to overcome the problem.
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Fig. 5.15: Object recognition and pose estimation without background variation. 
When using the most discriminating Information Window, the object recognition rate 
was 95.3% and the pose estimation rate 73.8%.

5.5.2 Results: Non-Uniform Background Change

As a further test of our method we decided to run it on images with non-uniform 

background variation. This is a particularly difficult problem, as PCA is well known 

to be susceptible to such changes. Since an Information Window may contain some 

background data or may be partially occluded, we wish to minimise the effect of such 

aberrations. Thus, we added an additional step to our method. Once we determined 

each Information Window, we subdivided it into 16 sub-regions. These sub-regions were 

then used to build each Informative Local Appearance Space. Background variation 

was dealt with by associating a confidence level to each Information Window. If a 

high percentage of the sub-regions identify the same object we trust the result. If 

this is not the case, i.e. if most of the sub-regions fall on the background region and 

not on the object itself, then object recognition can be achieved by jumping to the 

next ILAS, and repeating the process. This is shown in Figure 5.16, where the most
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Image Change Correct False Positive No ID(6)
Unperturbed (ILAS 1) 95.3% 4.7% -
Unperturbed (ILAS 3) 82.5% 17.5% -

Non-Uniform Background Change 87.6% 5.5% 6.9%

Table 5.1: Object Recognition Results Summary.

Image Change Correct False Positive
Unperturbed (ILAS 1) 73.8% 16.2%
Unperturbed (ILAS 3) 65.3% 34.7%

Non-Uniform Background Change 50% -

Table 5.2: Pose Estimation Results Summary.

discriminating Information Window is identified as containing a large amount of non- 

uniform background variation. In this case, object recognition and pose estimation were 

successfully achieved using ILAS 3. For Information Windows with less background 

variation, jumping to the next ILAS was not necessary. Using 612 test cases and the 

first six Information Windows, the correct object was identified in 87.6% of cases, with 

a false positive rate of 5.5%. An object was unidentifiable in 6.9% of cases. Tables 5.1 

and 5.2 summarise the results obtained.

Fig. 5.16: Object recognition and pose estimation with non-uniform background vari
ation.
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5.6 Summary

This chapter presented improvements to the topological navigation aspect of our holis

tic approach to mobile robot navigation. Information Sampling was detailed as a 

method to select the most discriminating information from an a priori image set. This 

allowed the mobile robot to effectively use its (limited) computational resources. We 

showed how to use the data selected by Information Sampling for successful navigation 

and associated experimental results were presented. Furthermore, the applicability of 

Information Sampling was broadened by applying it to the domain of object recogni

tion.
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Conclusion

This chapter concludes the dissertation. The main contributions and 
results obtained are summarised. Finally, possible future avenues of 
research are suggested.

6.1 Dissertation Summary

This dissertation presented a novel holistic methodology for vision-based robot navi

gation using an omnidirectional camera. One of the key observations is tha t successful 

navigation systems should result from the synergistic combination of a set of funda

mental principals:

•  A suitable camera geometry.

•  An appropriate environmental representation which relates closely to a method 

for global (qualitative) localisation and a means of local pose control.

•  An attention mechanism for handling the complexity of the perception process, 

thus allowing for an efficient use of (limited) computational resources.

The way in which these fundamental aspects have been solved in nature explains 

both, the diversity of (specialised) solutions encountered in biological navigation sys-
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terns, as well as their performance, even when using relatively modest resources. Our 

approach focused on these various aspects, proposed a number of promising solutions 

and demonstrated how their integration may lead to simple, but yet, flexible and robust 

navigation systems.

We used an omnidirectional camera to sense the environment. Two designs were 

presented: (i) a conventional camera, pointed upwards, viewing a spherical mirror and 

(it) a log-polar camera viewing a constant vertical resolution mirror. Neither of these 

systems exhibited a single centre of projection but this did not limit the applicability 

of our approach. Indeed, the opposite was true: by dropping the constraint we were 

able to utilise systems which broaden the usefulness of an omnidirectional camera. In 

addition, calibrating such systems was easier than if we had used a hyperbolic mirror, 

for example. The simplicity and increased reliability of these designs proved highly 

advantageous.

An important contribution of this work was to define an appropriate environmental 

representation as a key element of a robot’s ability to navigate. In many previous 

works this aspect was often overlooked. We argued that the emphasis should be placed 

on building appropriate representations rather than always relying upon highly accu

rate information about the environment. Therefore, given the fact tha t our robot was 

designed to travel long distances within the environment, we chose a topological rep

resentation. The decision to use this representation was partly inspired by the way in 

which humans and animals model spatial knowledge.

This topological representation was required to meet the criteria th a t it: (a) was 

easy to build, (b) utilised a small amount of memory and (c) could be used for real

time localisation. The robot acquired omnidirectional images of the environment which 

were then used to build a low-dimensional eigenspace representation, obtained via 

Principal Component Analysis. For the navigation results provided in this dissertation, 

eigenspace matching proved effective for qualitative localisation.
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We noted that sole reliance upon the representation does not solve the navigation 

problem. Thus, another of the strengths of our holistic approach lies in the fact that 

we presented a method whereby the environmental representation could be easily com

bined with a local control strategy. This allowed for our robot to make effective use 

of the environmental representation to significantly aid its ability to navigate. Control 

was visually based and the robot maintained its position and orientation as it trav

elled through the environment. Pose was controlled by visually servoing upon corridor 

guidelines, extracted from bird’s-eye views of the ground plane.

We showed that the above holistic approach to navigation, which combined omnidi

rectional vision, a topological environmental representation, appearance-based methods 

and visual servoing achieved successful navigation in structured environments. In or

der to undertake both global (qualitative) and local (precise) navigation we presented 

results from a large-scale experiment where the robot travelled from the Computer Vi

sion Lab, traversed the door, travelled down the corridor, turned around and travelled 

back to  its starting position. This showed that our approach to navigation could be 

easily integrated into an overall navigation methodology. Additionally, navigation re

sults obtained in areas of strong non-uniform illumination change, using an eigenspace 

approximation to the Hausdorff fraction, were presented and shown to be successful.

Finally, an attention mechanism, termed Information Sampling, was developed to 

allow a mobile robot to focus upon discriminating information, contained within an 

image set, acquired a priori. This reduced the computational load upon the robot, 

allowing it to maximise use of its limited resources. Information Sampling was a 

statistical, non-featured based method and theoretically, could be applied on a pixel- 

by-pixel basis to any type of image. Navigation was shown to  be possible using only 

the data  contained within Information Windows. In an effort to broaden the scope of 

application, object recognition results were detailed.
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6.2 Future Research Directions

A number of topics can be viewed as viable directions for further research:

1. Camera Design: One could certainly investigate other camera geometries which 

could have a positive impact on the navigation system design. For the case 

of catadioptric sensors, what other mirror shapes and sensor layout could be 

utilised? Also, a number of optical aberrations affect the quality of the omni

directional images obtained from our systems. These include astigmatism and 

field curvature. Modelling these would allow for corrective measures to be taken. 

A second goal is to minimise the design in order to widen the potential fields of 

application for omnidirectional cameras.

2. Autom atic Knowledge Extraction: In the current implementation, nodes 

within the environment must be specified by a human. Thus, while our robot is 

autonomous, it is not independent. An extension of the approach would allow 

the robot to use various criteria to evaluate a particular scene’s importance.

3. Construction of the Environmental Representation: In this work, the en

vironmental representation was built with images acquired a priori. An interest

ing area of future research would be to endow the robot with the ability to extend 

its representation online, as it traverses through the environment. Information 

Sampling is a useful first step in this process as it allows one to build a highly 

compact environmental representation. Thus, given the size of the eigenvectors, 

real-time rebuilding of the low-dimensional eigenspace is possible.

4. Teleoperation: As detailed in [46, 52] it is relatively simple to build a 3D 

representation of the environment traversed by the robot. Each image in this 

model could be associated to an image in the topological map. Thus, a user 

could easily select a target for the robot to reach autonomously.
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5. Information Window Selection: As it stands, Information Sampling is com

putationally constrained to finding the best subwindows within a set of images. 

It would be beneficial to enhance this approach by randomly sampling an image 

to find the uncertainty associated with the selected data.

6. Object Recognition: A short term research goal would entail finding objects 

in large cluttered scenes. All this would require is searching for the Information 

Window(s) which define a particular object. Additionally, Information Windows 

could be found per object, rather than over the entire object database.
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Appendix A 

Singular Values and Eigenvalues

A .l  Singular Value Decomposition

The Singular Value Decomposition (SVD) [74] oi an M  x N  matrix A is a factorization 

of the form A = UEV'^. Here the columns of the M  x M  orthogonal matrix U and 

of the N  X  N  orthogonal matrix V  are known as the left and right singular vectors, 

respectively. The diagonal entries of the M  x N  matrix S are non-negative and are 

known as the singular values of the matrix A. They are not the same thing as eigenval

ues: the singular values of A  are the square-roots of the eigenvalues of A. However, 

if A ^A  is symmetric and positive definite, its eigenvalues are real and non-negative. 

Consequently, the singular values are real and non-negative [56].

A .2 Singular Values and Eigenvalues

We now present a proof that singular values of A, <7(̂ 1) are equal to the eigenvalues of 

A, A(^), if A  is symmetric and positive definite.
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Appendix A. Singular Values and Eigenvalues

Hypothesis: A is symmetric and positive definite:

A = A^

>1 = UEV^, with Sii > 0

Since A^ = A, we have that the SVD must follow the following property:

A = UEV'^

Â  = VTFU  ̂= A 

^ A  =

By definition, we have that a{A) = Using the SVD of A, we have:

\{A^A) = A(C/SC/^[/St/^) 

= XiUL^U )̂

= A(E^), because U is unitary 

= A (̂E).

Since U is orthogonal, = U~^. Using the SVD of A, we then have:

A = UEU^ ^  A = UEU-^ 

^  a u  = uj:

which defines E as the eigenvalues of A (A(S) = A(A)). Using this result we complete 

the proof that we need:

a(A) = VXiA^A)

=  V ^ )
= |A(A)(, and since A is positive definite 

= A(yl) which concludes the proof.
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Chapter 1. Introduction

and Hager [115]. Stable features were visually servoed upon and used to guide the 

robot. In order to be successfully applied, good features had to be in the field-of- 

view. This was not always the case, for example at turns and throughout long corridor 

stretches, thus impacting on the results obtained.

Kato et al. [72] detailed an environmental representation termed a T-Net. Here an 

omnidirectional camera was used to capture images of the environment and matching 

was achieved using templates. Sub-goals were defined by targets.

1.3 Attention Mechanisms: Handling Com plexity

While navigating, the computational load on a robot can be reduced if it has the 

ability to identify, and focus its attention, upon highly discriminating regions within 

the environment. This is a real need when considering the complexity of the input 

imagery. In this way, the robot can concentrate its (limited) system resources on the 

most relevant sensory input. This input is then periodically memorized for future 

reference, thus mimicking the approach to navigation naturally adopted by humans 

and some animal species. One may classify such input as a “landmark”. Our approach 

is to define discriminating regions as the pixels (within a set of images) which vary 

significantly from one image to the next, i.e. those which exhibit the most information 

change. Our review of related research shall only concentrate upon work which looks 

at the problem of selecting informative features (or landmarks) from image data.

A good starting point for selecting effective points is to use an interest operator, 

which defines an interest point as a location where the signal changes two-dimensionally, 

at comers, for example. In the literature, one can find many operators: Schmid et al. 

[128] carried out a comparison of different detectors and concluded tha t the OurHar- 

ris detector, an improvement over the original Harris [55] detector, provided the best 

results. Each of the points selected by the detector were characterised by their dif-
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Chapter 3. Epvironmeptal Representations

showed that the correct topological relationships between locations were maintained, 

even when completely incorrect metric knowledge was remembered. This again suggests 

the separate storage of each. Additional support for the separation theory comes from 

the fact that we find bi-directional navigation in unknown environments highly difficult. 

For example, when a tourist in a city, finding one’s way back to one’s hotel is often 

confusing.

We shall now detail the available schemes a mobile robot can use to represent its 

environment. In deciding which to implement, we kept the above points in mind. To 

meet our goals successfully, a topological approach was chosen.

3.3 Environmental Representations

Clearly, the ability of a mobile robot to locate itself within its environment requires the 

availability of an appropriate environmental representation. Current representations 

can be placed into three distinct categories. These are as follows:

1. Geometric Representations

2. Topological Representations

3. Hybrid Representations

This categorisation is based on the level of environmental detail provided to the robot 

by each representation. Each class has its own particular merits and drawbacks, par

ticularly when related to the task the robot is required to solve. Naturally, the greater 

the amovmt of information provided, the more precisely the robot can determine its 

position. How this aids in the navigation process shall be dealt with in the following 

sections.
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