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Implementation of Morse-Witten theory for a
polydisperse wet 2D foam simulation

F. F. Dunne ®, J. Winkelmann, D. Weaire and S. Hutzler '\

School of Physics, Trinity College Dublin, University of Dublin, Dublin, Ireland Y

ABSTRACT ARTICLE 'HISTORY,
The Morse-Witten theory provides a formulation for the inter- Recelved'5 Octobef 2018
bubble forces and corresponding deformations in a liquid ACCEpfed 21May 2019
foam, accurate in the limit of high liquid fraction. Here we -
show how the theory may be applied in practice, including K-E_onnlb.s )
~2Dfoams; simulation; wet
allowing for polydispersity in the bubble sizes. The resulting 2N Wi
foams; Morse-Witten theory
equilibrated 2D structures are consistent with direct |
calculations, within the limitations of the theory. The path /
to developing a 3D model is outlined for future work.

1. Introduction

The theory of Morse énd Wltten [1, 2] yields formulae relating forces, distor-
tions and energies-of abubble (01 droplet in the analogous case of an emulsion),
under the actiori of forces due to contacts with walls or other bubbles. It proceeds
from the case of a‘single bubble, pressed against a wall by buoyancy. An exten-
sion to the case of nwltiple contacts (and hence a foam), also in static equili-
brium, was 1nd1cated in the original paper [1]. However, this has never been
fully developed for example, it does not account for polydispersity. Hence,
while there have been some limited trials of the theory [3, 4] they have been
restricted to monodisperse or near monodisperse systems. In this paper, we
take some steps towards a full implementation of the theory of Morse and
Witten allowing for an arbitrary degree of polydispersity.

The theory reduces a foam (or emulsion) to a set of representative points (the
centres of mass of the bubbles) with central forces between them, depending on
their separation but not as simple local relations. Hohler and Weaire [2] have
provided a review of the Morse-Witten theory, to which reference may be
made for a more detailed understanding if necessary.

This paper deals mainly with the case of a 2D foam, for which Weaire et al L(5]
have developed theory analogous to the original 3D case; this is the starting pomt
for the present work.

CONTACT F. F. Dunne € dunneff@tcd.ie
© 2019 Informa UK Limited, trading as Taylor & Francis Group
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The 2D foam, while not completely realised in practical systems (such as that
of bubbles trapped between two plates), is a familiar test ground for the theory of
foams [6]. Generally similar to 3D foam, in terms of its properties, it is simpler in
many respects, and more readily simulated and visualised. We anticipate analo-
gous methods and results for the 3D foam, albeit with some important differ-
ences in detail, and a greater challenge to practical simulation.

Relatively dry (less than 10% liquid) 2D foam has been successfully simulated
in the past with the Plat software [7-12]. It is not based on an energy r}}ir‘;imisk
ation routine, but instead directly implements local equilibrium for a wét 2D
foam. It models the films and liquid-gas interface as circular arcs, constrairied
to meet smoothly at vertices. This makes it quite an accurate modélof 2D
foam; however, the software suffers from a failure to conyerge forliquid fractions
close to the wet limit. Therefore, we seek a method for 2D foams that is success-
ful in that limit. B

f {
I

2. Morse-Witten theory in two dimensions

2.1. Basic theory

In the primitive version of the 2D theory, a.2D bubble is pressed against a fixed
line by a buoyancy force [5]. Just as in the 3D case, the distortion of the bubble
shape from circular may be found in approximate analytic form, by solving a
linearised Young-Laplace equation. This solution can be used to build up a
description of the foafnl:‘of n‘fafiy bubbles and the forces between them. It is
expressed in ternds ;,0% the radius p(#), whose deviation from the unperturbed
value Ry is SR(6),”

(D) Y 8 =R+ BR(6), (M

where 6 is a.polar angle relative to the point of contact.

The solution of the linearised Young-Laplace equation then results in [5]
cos (6)

2

SR(0) = Mg(ﬁ), with g(6) = (ar — 8) sin (6) — 1. (2)
2y
Here F is the magnitude of the total contact force, y is the line tension and g(0)
encapsulated the deformation of a bubble in response to a force as in Weaire et al p
[5]. In the following, we will often use the dimensionless force f=2F/y.
Equation (2) represents the deformation of the bubble in such a way that its
centroid (or centre of mass), which represents its location, is kept fixed. The
profile p(6) (Equation 1) is shown in Figure 1; it may be considered to represent
a 2D bubble under the action of a point force F at 6 = 0, but can be used more
generally. Real bubbles would not support such a singular deformation. Never-
theless, g(6) can be used to predict the shape of a bubble subjected to realistic
force distributions,
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Figure 1. The profile p(6) of a 2D bubble-in teymls'bf.fﬁe polar angle 6 under the action of a point
force f = F/y =1, and an equal cqmigensatl_pg body force, as calculated using Morse-Witten
theory (Equations 1 and 2), The undeformed circular bubble with radius 1 is indicated by the
dashed line. The part of the profile below-the faint horizontal dashed line is disregarded.

If this modeL is used to desctibe a contact with a straight line, analogous to a
flat hydrophobic wall-in 3D, then only part of this function is used, the profile
being ‘capped* by. a-straight line [2]. This is the only case considered (in 3D)
by Moréeféna Witten, hence the previous restriction to monodisperse foams.
When describing polydisperse foams, we require to deal with contacts with a
curved bourndary, appropriate to contacts between bubbles of different size
(and pressure).

The reader unfamiliar with this subject may wonder why a body force (which
we call buoyancy) has been introduced, while it has no place in the problem
posed (a foam in the absence of gravity). In fact, the solution for a bubble
under the action of several forces in equilibrium may be developed as a combi-
nation of the solution given here for the contacts of each bubble, with the effect

of body forces cancelling out [2].

2.2. Contact between two bubbles of different sizes

Here we provide a generalisation of the Morse-Witten method to account for
contacts between 2D bubbles of different sizes. We require to find the relation
between the contact force and the deformation of each bubble, represented by
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x;, i.e. the distance along the centre-centre line from the undeformed bubble to
the contact point (see the inset of Figure 2). To lowest order, x; is the distance
that the point at the cusp of the contact is displaced, which is

—5R,(0) = 3R,f /A7 3)

from Equation (2). This is indicated in red in the inset of Figure 2. However, this
overestimates the deformation at the contact (see Figure 3). A\

A simple derivation of the required relation between F and x; fo]lows.l‘%ﬂz’s with
many other aspects of the theory, this deals with lowest order expressioh_sg’ only
and can be developed most expeditiously by using these from the outset (and
verifying by a more cautious method if necessary). Thus<we, can talke for the
force between two bubbles, to lowest order, —_—

F=2ibs N (4)

where 21 is the width of the contact (Figure 2)':1\aznd p0}1§§ the mean of the two
(lowest order) bubble pressures p; = y/R;. Hence '

) i G;Ri’)/("';—Rzz); (5)
Y N,

where 26, is the opening angle lof the c"(pfitact, for i=1,2. We can also express x; in
terms of 0;, as ko N’ 5

bl Ry}cos (0p(6) = —8Ri(6) (6)

i

This improve_gl""g;{pﬁeésiﬁn for the deformation of bubble i (= 1 or 2) is then

Figure 2. Two different sized 2D bubbles held in contact with each other by opposed body
forces F, as calculated using Equations (1) and (2). Their undeformed circular form with radii
Ry and R; is again illustrated by the dashed lines. Here we have used a large force for illustrative
purposes; the theory is not accurate for deformations as large as this. Note the significance of the
deformation x; (Equation 7), here illustrated for the bubble of radius R.
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Figure 3. Dimensionless change in separation 1 — Ay, /(2R,) versusforce f-=-F/y between two
2D Morse-Witten bubble profiles (Figure 2) for varying size difference -AR/Ry. Symbols refer to
numerical results from moving overlapping bubbles apart (see text), solid lines to Equation (9).
Up to a normalised force of 0.5 the relative error of the theory is less than 2%.

expanded to O(f?) to give

4’17“ 2(3 ‘f“ Ry /Ry + Ry/Ry)’

x(f) =

which is indicated in thé inset“xfjf Figﬁre 2. The relative deformation x;/R; is the
1 IR . : :
same for each of the MQ_Bubble§{ The centre-centre distance Ay, is then given by

fof‘Aﬁﬁwkl—xdﬁ)+(R2—xﬂﬂl ®

For twg, bubb1e§s W1:th"radii Ry = Ry + AR and R, = Ry — AR, this results in the
dimensidnl_gss change in separation as

1— P
2R0 2RO 4 8 Ro

EL}ﬂH@m%i_ﬁﬁ_@ﬂj o
Thus terms of order f? or higher need to be considered in the expansion of
Equation (6) to account for polydispersity. This is in contrast to the situation
in 3D, see Section 6. (Note that, in the monodisperse case, i.e. AR = 0, the cor-
rection term in Equation (9) reduces to f*/8, not to f?/4, as erroneously stated in
the appendix of Weaire et aL [5]. This had no consequences for the results pre-
sented in that paper.)

In order to test the accuracy of Equation (7), we proceed as follows. For a
given force, f, we draw two overlapping bubbles with facing contacts, using
Equations (1) and (2). The centres of these are moved apart until their area of
overlap is zero, giving the separation for that force.
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For the range of normalised force shown (0 <f<0.5), Equation (9) produces a
relative error < 2% (the relative error when considering only its linear part is up
to 25%, see Figure 3).

Equation (7) may also be used to describe the case of a bubble i in contact with
multiple bubbles (of different radii). This results in a set of deformations at its
contacts with its neighbours, j. The deformation x; of bubble i due to its
contact with bubble j is determined by the sum over all the contacts of bubble 4,

A
2 \
R,Fg / \

R,’ X \
= F; ] = : B !
YT (Xk: kg(AB}k)) FETRAFRE) o

Here Afj is the angle between the centre-centre lines ofzbul:)bles‘is to j and
bubbles i to k, where k enumerates all the contacts of bubble 3 (in‘duding ).

Fj; is the force experienced by bubble i at its contact with bubble’j, <=

(The equivalent expression for three dimensigns-is given in’Section 6.

Note however that the linearised theory contains errors of order f> from the
outset which we do not claim to eliminate, Given that, the theory is surprisingly
successful in improving the lowest ordet estimate. The situation is similar to that
which was encountered in the application of Morse-Witten theory to the
pendant drop, although different’in detail [13].

3. Formulation of th{e‘éMors&a;Wittén model
3.1. Description of a fb;;m /)

We will proce'é:dﬁ",tp ’é_ai)ply Equation (10) to find an equilibrium structure of a
polydisperse foam, 1n a numerical simulation. We consider N bubbles in equili-
brium if 4 sqdre box with periodic boundary conditions. The bubbles are rep-
resented by their centroid positions (¢;) and radii R;. A contact between bubbles i
and j has an“associated contact force of magnitude Fj;.

This nonlinear problem is naturally approached by iterative methods. While
its defining equations are simple, its implementation is challenging, because of
the role of the contact network, which needs to be continually monitored and
updated, as explained below.

3.2. Defining equations

We seek an equilibrium configuration which satisfies the conditions A-D below
where the variables to be yielded by iteration are

o the centre positions c¢;,
o the contact force magnitudes Fj;,
e the contact deformations x;;.
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(A) Force-deformation relation. Forces and deformations must be consistent,
that is, satisfy Equation (10).

(B) Deformation-displacement relations. For each contact, the separation of
centres of mass, located at positions ¢; and ¢; must be consistent with the defor-
mations x; and xj, according to

Ri — xy+ Ry — x5 = |e; — gjl. (11)

(C) Action-reaction. \
Fy=Fj T

(D) Equilibrium of forces. The vector net forces on each bub]:;le-_ﬁ" must Satisfy

N

C;—C; 4 AN, Y
Zpij_f..__' = 0. ] / (13)
!Cj —'C,'l ) \

4

3.3. The contact network

As the system approaches equilibrium, the shapes and positions of bubbles
change. The contact network.-""i;s not finally determined until equilibrium is
reached, consistent with the aiqdve conditions. It requires to be updated as the
approach to equilibrium_proceeds, Buzza and Cates [3] applied the Morse—
Witten theory to the ¢ase of ‘ani emulsion where the drops are arranged on a
simple cubic lattice, for wh_i_cﬁ this difficulty does not arise. Hohler and
Cohen-Addad [4]; while including a slight polydispersity, also used crystalline
systems in which Cofitact’changes were excluded. For the disordered foams dis-
cussed here a new methodology is thus needed to deal with bubble rearrange-

ments (to_po'lpgical changes).

4. Implementation of the Morse-Witten model
4.1. Iterative scheme

We have developed a practical iterative scheme that can produce an equilibrium
structure satisfying the conditions of Section 3. Separate steps of iteration are
designed to bring the configuration closer to satisfaction of the conditions. To
start)a set of bubble centres and radii is required. These can be obtained from
o’flé software, such as Plat [10], Bubble model [14] or Surface Evolver [15].
(A) Force-deformation relation. Given a configuration and deformations of
each bubble contact, the corresponding forces are found by solving Equation
(10) for Fy, for each bubble in turn. This is a nonlinear equation, hence we
solve it iteratively. This difficulty is also to be found in the work of Héhler
and Cohen-Addad [4], and we adopt the same method as was used by them.
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That is, in each iteration , the forces from the previous iteration are inserted in
the quadratic term, leaving a linear equation to be solved. Additionally, we apply
some damping to this procedure, implemented as

F(n+1) aP{n+l) L (1 a)F(n) (14)

where we have found a=0.9 to be a good choice. This helps to prevent oscil-
lations in the forces, without slowing convergence too much.
(B) Deformation-displacement relations. The deformations are updatec{ by

R '
G0 = o % (R =+ Ry =2 o c.l} “(15)
in order to satisfy Equation (11). :

(C) Action-reaction. Fjj and F; are replaced by the1r average

(D) Equilibrium of forces. Each bubble located-at position ¢; is moved in the
direction of the net force acting on it, accmdmg fo "’1 ‘

.!

(-'H'l) — C(”) + bZF(lI+1 Ci - (16)
= C
J

where b = 0.1Ry/7y. As convergence speed is.directly proportional to b, we have
selected as large a b as pos31ble for whuth the algorithm still converges.
The flowchart of the iteration is-shown in Figure 4. Note that it contains
additional steps in wh}ch the. FQntact network is, if necessary, altered.
E‘\ \"_ E I

)
y |

4.2, Updat:'ng .t'he'* contact network

Neganve forces;

A negative: force indicates a spurious contact, i.e. a contact which has arisen from
an overlap while the system is out of equilibrium, and this is removed from the
contact network. In practice, at most one negative force is eliminated for each
bubble in a given iteration to provide stability of the algorithm. This is per-
formed after updating the forces.

Overlapping bubbles
After moving the bubble positions, nominally non-contacting bubbles may
overlap with each other. To detect this we calculate

%= R )+ 00 — gl (17)

For x;; > 0 bubbles i and j overlap. This requires an update of the contact
network, which is performed before updating the forces.
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Centre positions, forces and deformations are taken from the previous equilibrium state if there
is one, otherwise centre positions need to be given, forces and deformations are set to zero

Calculate deformations of existing contacts (Eqn (15)) j«—

I

X ~\\
Check for new overlaps (Eqn (17))
¥
Solve (Eqn (10)) for updated contact forces
{ ‘.
Remove spurious contacts that have npgatfve f_c‘ulr'c‘e.s:' 1
* !ﬁ g;' \ &.‘E i
s 1/
Average forces at contacts (Eqn(12)) [/

Move center positions~”
according-to-net forces (Eqn (16))

"/ Test all forces
for convergence
(Eqn (13))

Not converged

Converged

Figure 4. Iteration scheme for the computation of a 2D Morse-Witten foam. While the test
forces are not converged, deformations, overlaps and contact forces are calculated and the cen-
troid positions moved accordingly. For a given collection of bubbles in a given confinement, this
procedure can be used to find an equilibrium configuration.

4.3. Convergence

The algorithm is terminated when the foam being simulated is close to equili-
brium, satisfying all of the above requirements. This is determined numerically
by calculating the net force on each bubble in the foam using the left-hand side
of Equation (13). We deem this equation to be satisfied for all bubbles if the
largest net force encountered is less than y x 104,
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In this case, the centroid positions given by the recurrence relation, Equation
(16), will have converged, leading also to a convergence of the deformations
(Equation 15). Thus solving the deformation—force relationship Equation (10)
repeatedly will produce the same set of contact forces each time and all the
defining equations will be satisfied.

\

5. Tests and typical results %i‘ ‘1\
We have run tests of the above scheme for systems of up to 200 bubbles (th‘_é'r:un
time of the program scales quadratically with the number of bubbles), in a square
box with periodic boundary conditions. The computations.‘converﬂged‘,sétisfac-
torily for liquid fraction exceeding around ¢ = 0.12,7a liquid ‘fraction where
at least 80% of the Plat simulations fail [11]. We haye. not identified the
reason for non-convergence beyond that point, but it.is Mhardly surprising in a
nonlinear problem of this kind, and may be réctified in) due course. In order
to validate the method, we have compared, it with simulations using the Plat soft-
ware, as introduced in Section 1. .~ ~ g

To begin, a system of ten. bubbles with a polydispersity of
V(R /(R — 122 0.12 was gﬁnerated using the Plat software and the liquid
fraction ¢ increased until a hard disk ‘packing was achieved (Figure 5a, top).
A hard disk packing corresponds t6 /a foam in the wet limit (at ¢ = ¢,)
where all of the degrees 'of__fx;eedorri are exactly taken up by the contacts
between bubbles, anc{»,_\ there are no additional constraints. In this case the
average number o‘_f q‘oxrlt'acts is. Zc = 4(1 — 1/N) = 3.6 [16]. Ten bubbles consti-
tute a small enough $ystem that, despite the general failure of Plat to converge in
the wet limit; the-cost of repeating simulations until it is found to be successful is
sufficiently small so-as to make it feasible. The centre positions of the bubbles
were extraéied and used to create a Morse—Witten simulation of the same
system. The li(i'uid fraction of both simulations was then decremented in parallel,
down to a liquid fraction of approximately 0.12. The Morse-Witten simulation
produced almost the same contact changes as the Plat simulation, although at
values of ¢ shifted by roughly A¢ = 0.01 higher. In looking at this comparison,
it should be borne in mind that the Morse-Witten formalism is inherently
approximate.

We next consider the excess energy of a Morse-Witten foam, defined (in

dimensionless form) by

1 N
x;iFii 18
iy L 2 (19)

where j enumerates the contacts of bubble i.
For ordered monodisperse, foam, Princen calculated &(¢) exactly [17, 18].
This presents a good test for/the Morse-Witten model, which can be solved

(e Aoggornl )



405

410

415

420

425

430

435

440

PHILOSOPHICAL MAGAZINE (&) 11

¢ =10.145

¢ =0.125

(b) Plat

Figure 5. Comparison of polydisperse 2D foam as computed using the Plat simulation software
[10] and the Morse-Witten formulation. Each structure is derived from the same hard disk
packing (a), by gradually decreasing the liquid fraction in steps of A¢h = 0.001. The two simu-
lation methods produce almost the same sequence of contact changes.

exactly in this case. Figure 6(a) shows excellent agreement between Princen’s
exact result and the analytic solution of the Morse-Witten model in the wet
limit (A¢p < 0.02). Our numerical simulation results match the analytic solution
of the Morse-Witten model.

Also shown is a simple approximate solution of the Morse-Witten model,
which can be obtained as follows. The energy per contact is given by elementary



445

450

455

460

465

470

475

480

[Colour online, B/W in print|

12 (&) FF.DUNNEETAL.

0.002 T T T T
Princen Exact |
0.0018 MW Analytic -
MW simulation  x A
0.0016 MW approx. -—---- ¢
. 0.0014
5‘5 0.0012
& 0001 f
w
§ 0.0008 |
= 0.0006 |
0.0004 +
0.0002 -
e
0 MIR'T""X 1 1 1 1
0 0.0056 0.01 0.015 0.02 0.025 0.03
(a) Aqﬁ:@,’chﬁ
102 o D g ;
-3 L EhCY T -]
10 :.n.;.g.gg.-.,«
T 104
X 107% ¢ E
&
g 105 | / ]
=
é v
¢ 107 L 4
€3]
1077 i
10-8 - :
3 0.0001 0.001 0.01 0.1
{b) W N Adp=d.— ¢

Figure 6. Variation of normalised excess energy & (Equation 18 as a function of excess liquid
fraction A¢ = ¢, — ). (a) In the case of an ordered monodisperse foam the Morse-Witten
theory reproduces the exact result first derived by Princen [17, 18] (data points: simulation,
dashed line: analytic). Also shown is a simple analytic approximation obtained from Morse—
Witten theory (Equation 20) (dot-dashed line). (b) For disordered foams, our simulations of
1000 systems of 100 bubbles each show that the excess energy is propprtional to A¢?*?. An
example of one of the simulated foams is shown in the inset. Z

L (prrapsih,
methods as 0.5F8R/(yR,) and using the relation

F  6Z6R
S \aaiviian (19)
y 7R

from Weaire et al [5], along with the affine compression relation

c?«/a)
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wo ot N[, = —Ag ("47 pad Aekrr  ? 7
8R/Ry = Ad/2(1 — ¢), we obtain

_ (3 Ag Y
s(hg) = (mm n cbh) ’ 20

where ¢, = 7/2+/3 is the critical packing fraction for a hexagonal disk arrange-
ment. This relation (shown in Figure 6a) is in excellent agreement with the result
of Princen for A¢ < 0.015. ( \

In order to study the variation of excess energy ¢ as a function of hquld frac-
tion of polydisperse foams, 1000 foams of 100 bubbles each were prepared with
an average polydispersity of 0.21 + 0.02. These simulations were run fora range
of liquid fraction from 0.18 to 0.12 in steps of 0.001. They { were started deliber-
ately higher than the expected value of ¢, ~ 0.16 so_that-the transition from
unjammed collection of disks to jammed foams will not be missed. The critical
value ¢, marks the onset of the excess energy. , \

Our simulations show that, similar to results%ft‘om Plat [11], close to ¢,, the
energy varies roughly quadratically with, the distance. Aqb ¢, — ¢ from ¢,.
Therefore, the values for ¢, were calctlated individually for each 100 bubble
system by fitting a straight line to the. 10West eight points of the square root of
the energy curve that were above 10_4 The average value obtained from this
procedure is 0.843 + 0.003, conmstent with previously published values for
o, [9, 14, 16, 19-21]. The enelgy cmvés for these simulations were shifted by
their respective ¢, values; -and"then averaged with a bin width of 0.001 in A¢
to smooth the data. Fégure 6(b) shows that, based on our 1000 simulations,
e(Adp) oc Ag™?,, :

A further quantlty ofvinterest in the context of random packings is the vari-
ation of the average’ coordmatlon number, Z, with liquid fraction. A log-log plot

) ’,‘
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—
T

Excess Coordination Number, AZ” -~

0.1 L
0.001 0.01 0.1

Ap=d— ¢

Figure 7. In the case of disordered foams, our simulations show an increase in the excess coordi-
nation number with excess liquid fraction of the form AZ oc A¢**2, consistent with previous
simulations using the bubblq model.
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of our data (Figure 7) reveals a scaling\of Z — 7, = AZ oc A¢®>?, consistent with
lesuh%ar packings using the soft disk model [22]. Such a scaling was recently
disputed'based on extensive computer simulations with Plat which resulted in
AZ o< Adpy and it was argued that “thi§ was due to the deformability of soft
bubbles [16]. The results presented here appear to put some doubts on this argu-
ment. Further simulations with Plat and the Surface Evolver software [15] (cur-

rently restricted to finite contact angles in two dimensions [18]) would—-be’ are- /

required to determine whether the reported linear scaling with Ag n}lght be
due to some inherent bubble-bubble attraction that arises from the algorithms.

In the study of granular matter it is common to compute the contact fotce
network [23, 24]. Granular packings are characterised by a'very. slow decay of
the distribution of forces greater than the mean. Whether’ this_is"exponential
or faster than exponential depends on the details of the mmulatmns/expenments,
such as dimensionality, solid friction, and partlal size distribution [25-27].

In Figure 8(a), we show the contact force netWork foria‘n equilibrated Morse-
Witten foam of 100 bubbles at a liquid fraction of b.=0! 13. The width of each
line in the contact network is proportional to the force magmtude In addition,
the bubbles are shaded according to their individual excess energies. Also shown
in Figure 8 is a preliminary normalised distribution of contact forces. This is
broadly similar to that found by Hohler ‘and Cohen-Addad [4], however,
further simulations are requlred to analﬁrse its shape.

l \ \
6. Extension to, a 3D foam ;
The methodology developed above for the simulation of a 2D foam based on the
Morse-Witter,model lends itself to application also for 3D. As in 2D the foam
will be Lepleseljited by the centroid of all bubbles and a network of contacts. In
3D, the pl:oﬁle is expressed analogously to Equation (1) and Equation (2)

50

{f;)=0.064

Number of contacts
N w -
o =] o

[
(=]

0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
£il(F)

Figure 8. (Left) Wet foam (¢ = 0.13) with 100 bubbles showing the contact force network. The
thickness of the lines is proportional to the force magnitude and the grey scale is proportional to
the individual excess energy of a bubble. (Right) Normalised distribution of the forces. This is in
qualitative agreement with that found by Héhler and Cohen- Addad [4].
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becomes
—F
OR(0) = — G(6) (21)
YRo
where
1 (1 4 .5 \
G(6) = ——{ =+ =cos O+ cos O1n [ sin® (6/2)] 1 (22)
472 3 3l

from [1]. The expression for the deformation of bubble i, equ1valent to Equatlon
(10) and derivable in the same way, is given by \ .

F [11 2R, R V]
x1(F) =——|—— + In 23
1(F) 417R1y[6 R+ R, (47TR1’Y(R1+R2))} 22)

%\

{ { \
to lowest order in F. The relative change in separation (equivalent to Equation
(9)) between two bubbl@where R = Rq{_él— AR and R, = Ry — AIDis

k1 . 24
2R, AmyRy (6 5 -n(sto)) @1

i \ ) §

Again, symmetry tells us not-to expect any terms of odd orders of AR in the sep-
aration. Equation (23), would need to be expanded to order I to give terms of
AR?. Taking for example MR # (} 1Ry, F = 0.57yRy, the relative error that would
result from using a fovmula for monodlsperse foam would be of order 10~*. This
explains the success by Héhler and Cohen-Addad [4] in using an expression
derived for the monodisperse case in treating a slightly polydisperse case.

In ofder to model’a 3D foam, an equivalent to Equation (10) is required. This
is obtained by adding a non-local term to Equation (23) (see [4]) giving

F [11 2R FR;
xy(F) = —_— +In
4‘?TR iY 6 R' + R' 47TR,”)/(R,' + Rj)

+y G(Aejk)i (25)

k#j

Similar to the procedure of Section 2.2, we determined the separation of two 3D
Morse-Witten bubbles at their point of contact, for a given force F. We find that
Equation (24) is reasonably accurate up to F/(Ry) ~ 0.5 (corresponding to the
dry limit) for low polydispersity, and F/(Ry) ~ 0.05 (corresponding to
¢ ~0.24) for high polydispersity. The appearance of a non-linear Fln (F)
term makes the 3D case somewhat different from the 2D one presented here:
nevertheless we hope that further improvement of the 2D methods will assist
in the greater computational task of implementation in 3D.
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7. Conclusion

We have shown how polydispersity can be accommodated in the Morse-Witten
theory, in such a way as to give satisfactory results for a typical disordered poly-
disperse foam that is close to the wet limit. The extension of the theory to 3D is
quite natural, although the implementation becomes conceptually more difficult
to visualise and check, and there is an obvious increase in computational
demands. The transparency of the theory and its direct relation to(a force
network (Figure 8) is attractive. However, it should be noted that\ 1t has
proven a computational challenge that was hardly anticipated, and is wor{;hy
of further attention. 4

In the polydisperse foam the bubble-bubble interfaces haye pronounced cur-
vature: this is accounted for in the present formulation, being: related to differ-
ences in bubble sizes. One might well ask what is the case.in a monodisperse
disordered foam? (Despite some doubts in the past this\can.indeed exist, even
in 2D). Since the bubbles are not equivalent, surely then pressures are slightly
different, hence the interfaces are curved? This is cotrett in principle, but the
effect is surely very small, and of h1ghe1 0rde1 in the forces than what is con-
sidered here.
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