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Abstract: Polyvinyl alcohol (PVA) was utilized as a matrix to host two-dimensional (2D) 
liquid-phase-exfoliated MoSe2 nanosheets. These 2D MoSe2/PVA composite thin films were 
experimentally proven to be preferable for efficient nonlinear optical devices. Our nonlinear 
optical study shows that these composite thin films possess strong saturable absorption (SA) 
over a wide wavelength range from 400 nm to 800 nm under the irradiation of femtosecond 
and nanosecond lasers. The SA property of our films was measured for various laser pulse 
durations, wavelength and linear absorption. Moreover, employing pump-probe, exciton-
exciton annihilation was experimentally observed and studied at 800 nm. Our research gives 
clear insight into the photophysical properties of MoSe2/PVA thin films and shows the 
material’s potential as a photonic device. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

2D materials have been the focus of research in many fields due to their novel physical, 
chemical, optical, and mechanical properties. As a big branch of 2D materials, layered 
transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, WS2, WSe2 and WSn2 etc., 
are reported to possess improved optical performance, such as photoluminescence, when 
compared to their bulk counterparts [1–16]. Particularly, the nonlinear optical experiments 
indicate that 2D liquid-phase-exfoliated MoSe2 has strong saturable absorption [17,18]. But 
the saturable absorption in 2D MoSe2 has yet to be investigated systematically. Monolayer 
MoSe2 was reported to possesses a uniform modulation depth of ~80 ± 3% and a saturation 
intensity of ~2.5 ± 0.4 MW/cm2 excited by femtosecond lasers [17]. Few-laser MoSe2 was 
measured to have different third-order NLO susceptibilities at different wavelengths [18]. It 
would be interesting to study and analyze how the NLO behavior of 2D MoSe2 can be 
affected by irradiated laser pulses. Also, exciton dynamics has been independently reported in 
2D MoSe2 in room temperature [19,20]. Carrier kinetics plays an important role in a saturable 
absorber when it is utilized for passive mode-locking [13]. It is necessary to study the 
saturable absorber behavior and excited carrier dynamics simultaneously in 2D MoSe2. The 
above questions indicate that there is still work to be done on the layered MoSe2 in the field 
of nonlinear optics. 

In this paper, a comparative study was performed to explore the relationship between the 
nonlinear optical behavior of MoSe2/PVA composites and wavelength and, pulse duration. 

                                                                          Vol. 9, No. 2 | 1 Feb 2019 | OPTICAL MATERIALS EXPRESS 483 

#347092 https://doi.org/10.1364/OME.9.000483 
Journal © 2019 Received 8 Oct 2018; revised 20 Nov 2018; accepted 14 Dec 2018; published 10 Jan 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OME.9.000483&domain=pdf&date_stamp=2019-01-11


Liquid-phase exfoliation was employed to fabricate few-layer MoSe2 nanosheets in water 
using sodium cholate as the surfactant. Polyvinyl alcohol powder was dissolved in warm 
water to prepare PVA solutions which were used as a host for MoSe2/PVA composite thin 
films. By changing the concentration of MoSe2 inside the PVA matrix, three composite thin 
films with different linear transmissions were fabricated. The nonlinear optical behavior of 
these composite thin films was investigated via open-aperture Z-scan techniques. Our results 
indicate that the MoSe2/PVA thin films possess saturable absorption behavior in a wide 
wavelength region, 400 nm to 800 nm, under femtosecond and nanosecond pulses. This 
broadband saturable absorption shows an obvious dependence on both the linear absorption 
and irradiation laser wavelength. The nonlinear absorption, αNL, and the third-order nonlinear 
optical susceptibility, Imχ(3)

, are approximately three orders of magnitude larger under the 
irradiation of nanosecond pulses in comparison to femtosecond pulses. As the carrier 
relaxation processes are important when a saturable absorber is used for mode-locking in a 
pulses laser, a degenerate pump-probe technique was employed to study the excited carrier 
dynamics of our MoSe2/PVA thin films. By studying the relationship between excitation 
carrier density and the pump-probe time, exciton-exciton annihilation was verified at a 
wavelength of 800 nm. 

2. Materials and characterization

As a precursor to the fabrication of MoSe2/PVA composite thin films, two dimensional 
MoSe2 flakes were prepared from bulk MoSe2 in the distilled (DI) water using sodium cholate 
(SC) as a surfactant using a liquid-phase exfoliation technique [14,15,21]. 1g MoSe2 powder 
was dispersed in 20 ml aqueous surfactant solution with a concentration of SC of 10 mg/ml. 
The MoSe2 mixture was first sonicated using a sonic tip for 90 min using a 40% amplitude 
with pulses of 2 s on and 4 s off. After sonication, monolayer, bilayer and few-layer MoSe2 
flakes were obtained from the bulk limit. The sonicated dispersion was then centrifuged at 
2000 rpm for 90 mins to remove large flakes and bulk. A 2D MoSe2 dispersion was finally 
obtained by collecting the top ½ of the centrifuged dispersion. The thickness distribution of 
2D MoSe2 flakes was studied using an atom force microscopy (AFM). Figure 1(a) shows a 
AFM image in a 4 µm × 4 µm area, in which stacked flakes can be seen. Except for these 
stacked flakes, the MoSe2 dispersion was composed of few-layer flakes. As seen in Fig. 1(b), 
the flakes with layer number less than 15 account for ~88% of the dispersion. 

To prepare PVA solutions, 0.5 g of PVA powder was dispersed into 10 ml of DI water, 
following by heating in a water bath on a stirring hot plate. After cooling down to room 
temperature, 10 ml of the resultant PVA solutions were mixed with 50 µl, 100 µl and 150 µl 
of MoSe2 flake dispersions respectively. These mixtures were stirred for 12 hours using 
magnetic stir bars, then subsequently sonicated for 5 minutes at a low power to achieve 
homogeneous mixed solutions. These mixed solutions were cast into petri dishes and dried in 
an oven at 60 °C for 4 days. This produced 3 high-quality MoSe2/PVA composite thin films, 
named α, β and γ from highest to lowest linear transmission, respectively, as shown in Figs. 
1(d)-1(f). The thicknesses of α, β and γ were measured to be 202, 228 and 264 µm, 
respectively. Pure PVA films were also prepared using the same solution cast method to 
exclude the contribution of PVA to the nonlinear optical properties of the composite thin 
films. The ground state absorption spectra of these thin films are plotted in Fig. 1(c). An 
absorption peak can be seen clearly at 800 nm for all of the composite thin films while none 
are observed for the pure PVA film. 
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linear absorption. This is consistent with the dependence of saturable absorption on the 
concentration of the nonlinear materials. The Figure of Merit (FOM) is defined as the Imχ(3) 
value per 1/cm to eliminate the discrepancy of different linear absorption: 

 
(3)

0

Im
FOM

χ
α

=  (2) 

The calculated parameters from Eq. (2) are also shown in Table 1. The calculated FOM 
values all have similar orders of magnitude. 

Table 1. The fitting parameters of Z-scan results and optical nonlinearities of the 
composite thin films α, β and γ with linear transmission of 59.6%, 42.8% and 19.9% 
respectively at 532 nm. The pulse duration of the laser is 6 ns and the pulse repetition 

rate is 10 Hz. 

Laser 
pulse 

Sampl
e 

T0 
(%) 

α0 
(1/cm) 

Energy 
ω0 

(µm
) 

NL
O 

αNL 
(cm/G

W) 

Im χ  (3) 

( × 10−13 
esu) 

FOM 
( × 10−14 esu 

cm) 

532 nm 
6 ns 

10 Hz 

α 59.6 13.5 

2.34 µJ - - - - - 

5.85 µJ 15.4 SA −26.1 −101.4 75.3 
10.34 21.6 SA −44.7 −173.6 128.8 

Averag - −35.4 −137.5 102.0 

β 42.8 24.9 

2.4 µJ - - - - - 

4.9 µJ 18.4 SA −119.2 −462.6 185.5 

10.3 µJ 23.9 SA −1612.6 −6257.0 2509.4 
Averag - −865.9 −3359.8 1347.5 

γ 19.9 39.4 

1.19 µJ 25.7 SA −1612.6 −6257.0 1588.7 

3.95 µJ 23.0 SA −535.4 −2077.3 527.4 
10.09 34.3 SA −732.0 −2840.4 721.2 

Averag - −960.0 −3724.9 945.8 

Table 2. Linear and nonlinear optical parameters of the composite thin films based on a 
pulse laser with a center wavelength of 550 nm, pulses duration of ~100 fs and 100 kHz 
repetition rate. The linear transmission of the samples α, β, and γ at 550 nm are 61.9%, 

41.0% and 26.9% respectively. 

Laser 
pulse 

Sample T0 (%) 
α0 

(1/cm) 
Energy 

ω0 
(µm) 

NLO 
αNL 

(cm/GW) 

Im χ  (3) 

( × 10−13 esu) 

FOM 
( × 10−14 esu cm) 

550 nm 
~100 fs 

100 KHz 

α 61.9 12.8 

2 nJ 

4 nJ 13.6 SA −0.1 −0.6 0.4 

5 nJ 20.2 SA −0.3 −1.2 0.9 

Average −0.2 −0.9 0.7 

β 41.0 25.9 

2 nJ 

4 nJ 20.6 SA 0.4 −1.5 0.6 

6 nJ 17.8 SA 0.4 −1.6 0.6 

Average 0.4 −1.6 0.6 

γ 26.9 36.2 

2 nJ 25.8 SA −2.3 −9.8 2.7 

4 nJ 23.1 SA −1.6 −6.5 1.8 

6 nJ 20.2 SA −1.3 −5.5 1.5 

Ave −1.7 −7.2 2.0 

 
For comparison, the wavelength of the femtosecond laser was tuned to 550 nm, the closest 

wavelength we could achieve. The linear and nonlinear parameters for this wavelength are 
listed in Table 2. FOM of all the thin films was calculated to be of the order of 10−15 esu cm. 
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This is very closed to that in graphene/PVA, indicating the interesting NLO behavior in 
MoSe2/PVA thin films. The linear absorption at 550 nm was measured to be 12.8 cm−1, 25.9 
cm−1 and 36.2 cm−1 for samples α, β and γ, respectively, which are all slightly lower than at 
532 nm, i.e., 13.5 cm−1, 25.0 cm−1 and 39.4 cm−1. This agrees with the fact that MoSe2 
possesses higher linear absorption at shorter wavelengths [18]. It also shows the accuracy of 
the method to measure the linear absorption. Similar to the nanosecond laser, strong saturable 
absorption was also observed under the irradiation of the femtosecond laser. At the same 

time, the nonlinear parameters including NLα  and ( )3Imχ  rise with the level of MoSe2 content 

in the host. This is consistent with the case for the nanosecond laser, shown Table 1. The 
values of αNL were fitted to be −0.2 cm/GW, −0.4 cm/GW and −1.7 cm/GW, and the values of 
Imχ(3) were calculated to be −0.884 × 10−13 esu, −1.6 × 10−13 esu and −7.2 × 10−13 esu for 
samples α, β, and γ, respectively. Both αNL and Imχ(3) for the femtosecond laser are two orders 
of magnitude lower than the values for the nanosecond laser. Similar results were also 
reported in graphene/PVA thin films. Imχ(3) of a graphene/PVA was measured to be ~10−13 
esu for 340 fs pulses 1030 nm and 10−11 esu for 6 ns pulses (1064 nm) [22]. 

This dependence of saturable absorption on the pulse duration can be explained by excited 
carrier dynamics. Few-layer MoSe2 is an indirect bandgap semiconductor. The incident light 
injects excited carriers into the conduction and valence band. Initially these carriers are in a 
non-equilibrium state and will be a thermalized rapidly to a quasi-thermal state via carrier-
carrier scattering in a very short time of ~10 - 200 fs. These quasi-thermal carriers are 
subsequently cooled down via intraband carrier-photon scattering at τr ~1.9 ps and finally 
these excited carriers are annihilated in τ2 ~49.5 ps (see part 4). Hence, the recovery time (τr) 
of the excited carrier in the composite thin films can be approximated by τr = τ1 + τ2 ≈52 ps. It 
is obvious that the pulse duration (τp = 6 ns) of the nanosecond laser is much longer than the 
recovery time (τp >> τr). As a nonlinear material with saturable absorption property, the 
conduction band of MoSe2 can be fully filled by the accumulation of the excited carrier and 
will no longer accept incoming carriers before relaxation. Consequently, the density of the 
excited carrier (N) can be approximately calculated by: N = αIτr/hυ, while it should be 
expressed as: N = αIτp/hυ for a femtosecond laser whose pulse duration (τp = 100 fs) is much 
shorter than the recovery time of the composite thin films. For the same thin film, the density 
of the excited carrier at saturable state are always the same. Therefore, the saturable intensity 
(Isn) for the nanosecond laser is smaller than for the femtosecond laser: Isn < Isf. According to 
equation α(I) = α0 + αNL·I and α(I) = α0 /[1 + (I/Is)], one can have α0 + αNL·I = α(I) = α0 /[1 + 
(I/Is)], where αNL is negative. Hence, the nonlinear optical coefficient of the composite thin 
film obtained by the nanosecond laser is much larger than that the one obtained using the 
femtosecond laser. 
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Table 3. Linear and nonlinear optical parameters of the thin films α, β, and γ obtained 
from 100 fs pulse laser with a center wavelength of 400 nm and a duration of ~100 fs. The 

linear absorption of the samples α, β, and γ at 800 nm are 22.9 cm−1, 34.5 cm−1 and 43.7 
cm−1, respectively. 

Laser 
pulse 

Sample 
T0 

(%) 
α0 

(1/cm) 
E 

ω0 
(µm) 

NL
O 

αNL 
(cm/GW) 

Im χ  (3) 

( × 10−13 esu) 

FOM 
( × 10−14 esu cm) 

400 nm 
~100 fs 

100 
kHz 

α 32.2 22.9 

1 nJ 18.9 SA −2.5 −3.2 1.4 

2 nJ 18.5 SA −2.1 −2.7 1.2 

4 nJ 17.7 SA −2.4 −3.1 1.3 

Ave −2.3 −3.0 1.3 

β 21.0 34.5 

0.2 
J

18.7 SA −84.0 −107.4 31.2 

1 nJ 18.5 SA −17.6 −22.5 6.5 

4 nJ 19.4 SA −5.2 −6.6 1.9 

Ave −35.6 −45.5 13.2 

γ 11.7 43.725 

1 nJ 18.2 SA −3.7 −4.8 1.1 

2 nJ 17.2 SA −2.3 −2.9 0.7 

4 nJ 16.6 SA −6.5 −8.3 1.9 

Ave −4.2 −5.3 1.2 

Table 4. Linear and nonlinear optical parameters of the thin films α, β, and γ at a 
wavelength of 800 nm. 

Laser 
pulse 

Sample 
T0 

(%) 
α0 

(1/cm) 
E 

ω0 
(µm) 

NL
O 

αNL 
(cm/GW) 

Im χ  (3) 

( × 10−13 esu) 

FOM 
( × 10−14 esu cm) 

800 
nm 

~100 
fs 

100 k 
Hz 

α 89.2 3.6 

10 
J

- - - - - 

20 
J

38.3 SA −0.06 −0.4 1.1 
30 

J
38.3 SA −0.06 −0.4 1.1 

Ave −0.06 −0.4 1.1 

β 74.5 11.1 

4 nJ 37.3 SA −1.4 −9.1 8.2 

10 
J

42.3 SA −0.8 −5.3 4.7 
20 

J
49.2 SA −0.7 −4.2 3.8 

Ave −1.0 −6.2 5.6 

γ 58.6 20.5 

1 nJ 38.4 SA −6.0 −38.0 18.6 

4 nJ 41.8 SA −3.3 −20.7 10.1 
10 

J
45.8 SA −2.0 −12.7 6.2 

Ave −3.8 −23.8 11.6 

3.3 Dependence of SA on linear transmission and wavelength 

From both Fig. 3(a)-3(c) and Fig. 3(e)-3(g), we can see that the maximum normalized 
transmission rises with the linear absorption for 400 nm and 800 nm, respectively. This is 
clear when the comparative Z-scan curves of samples α, β, and γ for the same experimental 
parameters are plotted together, as seen in Fig. 4. Figure 4(a) shows the Z-scan results of the 
three samples under the irradiation of 6 ns pulses at 532 nm and ~5 nJ. Larger saturable 
absorption exists in the composite thin films with higher linear absorption. This dependence 
of optical nonlinearity of the MoSe2/PVA thin films on the MoSe2 concentration is also true 
for the ~100 fs pulses at 400 nm, 550 nm and 800 nm, as shown in Figs. 4(c), 4(b) and 4(d), 
respectively. This is related to the wavelength-dependent saturable absorption. Under the 
radiation of 100 fs laser pulses with an energy of 4 nJ, the maximum normalized transmission 
for 400 nm, 550 nm and 800 nm are measured to be 1.662, 1.057 and 1.042, see Fig. 3(c), Fig. 
2(f) and Fig. 3(g) respectively. The linear transmission of the thin film γ is 11.7%, 26.9% and 
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Based on Eq. (6), one can convert the differential transmission at t  to photoinduced 
carrier density, tn , and hence obtain tn  as a function of t  from the initial pump-probe traces. 

The inset of Fig. 6(b) shows a measured pump-probe trace of MoSe2/PVA composite thin 
films with an excited photon density of 4.17 × 1017 cm−3. Using Eq. (6) to transform the 
differential transmission to excited carrier density, the mechanism of recombination of 
excited carriers in MoSe2/PVA can be investigated via the rate equation. To determine if it 
was dominated by second-order kinetics: -dn/dt = βn2, was employed to analyze the data. By 
assuming the photoinduced electrons and holes are equivalent and integrating this equation, 
the rate equation to describe the second-order carrier dynamics is given by [19,23–25]: 

 0
01

t

n
vn t

n
− =  (7) 

Here υ  is the second-order recombination rate constant. The experimental n0/nt - 1 as a 
function of the pump-probe delay time at initial photoinduced carrier density of 4.17 × 1017 
cm−3 is plotted in Fig. 6(b) using green solid circles. From the experimental data, n0/nt – 1 is 
proportional to the pump-probe delay time. This agrees with the rate equation of the second-
order carrier dynamics. As no photoluminescence was observed from the few-layer samples, 
we exclude the free-carrier recombination. Consequently, this second-order recombination 
can be attributed to exciton-exciton annihilation. This is in agreement with the static exciton 
spectra as shown in Fig. 1(c). From linear fit from Eq. (5) to the converted excited carrier 
density, the exciton-exciton annihilation rate was obtained to be (5.22 ± 0.089) × 10−6 cm2/s, 
which is much slower than that in monolayer MoSe2 (0.33 ± 0.06 cm2/s) [19]. This could be 
attributed to the higher exciton density generated in monolayer than few-layer. In contrast, the 
rate in MoS2 monolayer is much slower ((4.3 ± 1.1) × 10−2 cm2) and there is very little to 
report on the exciton-exciton annihilation in other few-layer materials in room temperature 
[25]. This indicates that 2D MoSe2 has large potential applications in valleytronics. 

5. Conclusion 

In summary, a comparative study on the dependence of NLO properties of MoSe2/PVA 
composites on laser wavelength, pulse duration, filler concentration, and linear absorption 
was carried out systematically. The NLO study was carried out using the open-aperture Z-
scan technique with laser pulses with a 6 ns duration at the centeral wavelength of 532 nm 
and ~100 femtosecond laser pulses at the wavelengths of 400 nm, 500 nm and 800 nm. The 
MoSe2/PVA thin films possess broadband saturable absorption behavior in a wavelength 
region from 400 nm to 800 nm under femtosecond, and nanosecond pulses. This saturable 
absorption is stronger in a composite thin film with higher linear absorption. Exciton-exciton 
annihilation was observed by the pump-probe study on the relationship between excitation 
carrier density and the pump-probe delay time at the wavelength of 800 nm, and their 
annihilation rate was obtained to be (5.22 ± 0.089) × 10−6 cm3/s. 
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