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shown to reduce image damage during missing data treatment.
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1. INTRODUCTION

Missing data treatment is an important process in the digital
restoration of archived media. It is concerned with the re-
moval of visible impairments, known as blotches, commonly
present in archived sequences. Also referred to as “dirt and
sparkle,” blotches are caused by either adherence of dirt to the
surface of the film emulsion, or by abrasion of the emulsion.
Consequently, blotches manifest as typically small dark or
bright regions in the digital sequence which obscures the
true image data. Missing data treatment (MDT) algorithms
attempt to detect these blotches and to somehow recover the
true image data.

Most blotch detection algorithms are derived from the
assumption that if a blotch is present at a particular location
in a frame, then no blotches are present at the same point
in neighbouring frames. Blotches are therefore considered
to be a temporally impulsive event due to the change in
intensity from the true intensity to the blotch intensity at
a particular pixel. Detection of blotches can be performed
by searching for sites where temporal discontinuities exist
between the current frame and the previous and next
frames. Consequently, missing data detectors employ a three-

frame window and detect discontinuities by measuring the
displaced frame difference (DFD) between the appropriate
frames. Examples of detectors using a three-frame window
include the deterministic spike detection index (SDI) [1, 2]
and rank order distance (ROD) [3, 4] detectors, which apply
deterministic thresholds to the DFDs to detect discontinu-
ities, and the probabilistic Morris [2, 5] and blotch MRF [6]
algorithms, which allow for the inclusion of prior knowledge
of the result into the decision. Other detectors [1, 7] propose
methods for the estimation of a nonbinary blotch confidence
index.

Motion estimation is a necessary part of the blotch
detection process. It is used to compensate for motion over
the three-frame window, preventing moving objects from
being confused with blotches. Although the state-of-the art
motion estimators can robustly estimate the most com-
mon motion patterns, there are complex motion patterns
which cannot be estimated accurately. This complex motion
is referred to as pathological motion (PM) and can lead to
true image data being detected as a blotch (see Figure 1).
Pathological motion is usually caused by the occlusion and
uncovering of objects in a sequence, or by fast moving ob-
jects (resulting in the phenomenon of motion blur). More
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FIGURE 1: Left: three consecutive frames of a sequence where the
motion of the propellor blades is PM (repetitive occlusion); right:
the images after MDT using [10]. The arrows indicate the removal
of the blades due to the blades being misdiagnosed a blotch.

extensive taxonomies of PM are presented in [8, 9]. PM
affects the robustness of blotch detectors as it can also cause
temporal discontinuities.

In this paper, a new missing data detection algorithm is
presented. The algorithm is made more robust by preventing
PM regions being detected as blotches, thereby preventing
damage to image data during restoration of dirty sequences.
A five-frame window is used instead of the standard three
frames. This allows blotches to be distinguished from long
term forms of PM, since blotches have a temporally impul-
sive intensity profile and PM often causes the intensity to
vary in a periodic manner (see Figure 2). The next section
introduces a review of the existing approaches to improve
the robustness of blotch detection to PM and outlines the
motivation for the new algorithm. The algorithm is then
outlined in Sections 3 and 4. Section 5 presents an evaluation
of the algorithm, including the results of an experimental
comparison of the new detector with existing blotch detec-
tors on two ground truth sequences. The paper concludes
with a discussion of the algorithm, outlining areas for future
development.
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F1GUure 2: This figure illustrates the arrangement of the five frames
window for blotch detection (in blue). The window is centred on
frame n(I,) which is the frame on which blotch detection is to be
performed. Between the five frames, four temporal discontinuity
fields (f.,,) (in red) can be estimated between pairs of consecutive
frames. In this diagram a blotch is present on frame n and the
yellow object is occluded in every second frame (an example of
PM). Due to the pattern of occlusion it is impossible to distinguish
between the blotch and the object when detecting blotches based on
temporal discontinuities over a three-frame window. By extending
the window it is possible to perform a correct diagnosis.

2. REVIEW OF PM DETECTION ALGORITHMS

Previous approaches for dealing with PM have largely fallen
into three categories. The first strategy is to recognise that
PM is associated with the motion of foreground objects.
Therefore, by performing a foreground/background segmen-
tation, likely PM regions can be associated with the estimated
foreground and missing data detection can be made more
conservative in these regions [6]. The second uses the colour
statistics of blotches and PM regions (specifically motion
blur) to distinguish between them [11]. This is possible
as blotches typically manifest as regions of dark or bright
intensity while motion blur is the apparent smearing of a
foreground object over a background.

The final approach is to extend the temporal window for
blotch detection from three to five frames. This approach was
first adopted by van Roosmalen in [12], in which the ROD
detector was modified to operate on a five-frame window.
Another more elaborate algorithm adopting this approach
is outlined by Bornard in [9]. In the Bornard algorithm a
probabilistic framework is used to estimate the four binary
temporal discontinuity fields over a five-frame window (see
Figure 2). This is followed by a deterministic interpretation
step to perform the classification. Missing data is classified if
temporal discontinuities only exist at a site in the two central
discontinuity fields. Sites at which discontinuities also exist
in the two outer fields are classified as PM.

The algorithm proposed in this paper adopts a similar
strategy to the Bornard algorithm with two key modifi-
cations. Instead of having separate temporal discontinuity
detection and interpretation stages, these stages are inte-
grated into a single probabilistic framework which estimates
a blotch and PM mask from the five frames. This allows
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for prior knowledge of the blotch and PM masks as well
as the temporal discontinuity fields (TDFs) to be included
in the framework. The second novelty to algorithm is the
addition of a further decision criterion for PM based on
the smoothness of the motion fields. This follows from the
observation that PM causes the local smoothness assumption
of a motion field to be violated. The vector field divergence is
used as the smoothness measure in the proposed algorithm.

Section 3 outlines the blotch and PM detection model
employed in the algorithm and how this relates to the tempo-
ral discontinuity and motion field smoothness information.
Section 4 describes how the two detection criteria are inte-
grated into the probabilistic framework and subsequently
introduces the new algorithm.

3. ALGORITHM OVERVIEW

The goal of the algorithm is to segment the current frame
into regions of PM, missing data, and uncorrupted sites. To
achieve this, a label field, [(x), is defined as follows:

0 nomissing data or pathological motion,
I(x) =141
2 pathological motion.

missing data, (1)

Every pixel in the image is assigned one of the three labels.
Like the Bornard algorithm, a pixel cannot be both a missing
data site and a PM site. Although there is no reason why
a blotch could not occur in a PM region, it would not be
possible to reliably detect a blotch using a purely temporal
discontinuity-based detector. Furthermore, a PM detection
implies that the data at any blotch cannot be interpolated
temporally. Consequently, interpolation must be performed
using spatial rather than temporal information.

3.1. Temporal discontinuity-based detection

Like the Bornard algorithm, the DFD between a pair of
neighbouring frames is used as the measure of temporal
discontinuity. A temporal discontinuity is said to exist at
a given site if the absolute value of the DFD at the site is
sufficiently large. In the five frame window, there are four
pairs of neighbouring frames where the frames are denoted
by I,—»(x), Ii-1(x), [,(X), Ii+1(x), and I,;42(x). A DFD can be
measured between each pair with a binary temporal discon-
tinuity field associated with each DFD. Consequently, four
DFDs (A,—2(x), Ap-1(X), Apt1(x), and A,42(x)) and TDFs
(t(x) = [th2(x), ty_1(X), tas1(X), thr2(x)]) are estimated over
the five-frame window. In the proposed algorithm, all con-
figurations of temporal discontinuity are considered. There
are sixteen possible configurations of the four TDFs and a
state field s(x) is defined which describes the configuration
of a site. Each configuration is directly mapped to a value of
I(x) (Table 1).

Missing data regions are characterised by an impulsive
temporal intensity profile. Therefore, if a blotch exists in
frame n, the absolute values of the DFDs between both
frames n and n — 1(A,_1(x)) and frames n and n +
1(Aps1(x)) will be large but the other two DFDs will have

TasLE 1: The temporal discontinuity model for the framework.

State, s(x) t(x) I(x) State, s(x) t(x) 1(x)
0 0,0,0,0 0 8 1,0,0,0 0
1 0,0,0,1 0 9 1,0,0,1 2
2 0,0,1,0 0 10 1,0,1,0 2
3 0,0,1,1 2 11 1,0,1,1 2
4 0,1,0,0 0 12 1,1,0,0 2
5 0,1,0,1 2 13 1,1,0,1 2
6 0,1,1,0 1 14 1,1,1,0 2
7 0,1,1,1 2 15 1,1,1,1 2

TaBLE 2: The divergence state model for the probabilistic frame-
work.

Divergence state, v(x) I(x) s(x)
0 0,1 0,1,2,4,6,8
1 2 3,5,7,9,10,11, 12, 13, 14, 15

small values (see Figure2). This results in a predictable
temporal discontinuity profile described by s(x) = 6 in
Table 1. On the other hand, the quasiperiodic profile of
long-term PM will result in high absolute values in more
than two DFDs. Consequently, any temporal discontinuity
configuration with two or more temporal discontinuities
present, apart from the missing data case, is considered to
be associated with PM (Table 1). In the table, states 3 and 12
can correspond to missing data in the neighbouring frames.
It is considered here as PM as it is not caused by missing data
in the current frame.

In the Bornard algorithm, all candidate blotch sites are
found (i.e., where t,_1(x) = t,;1(x) = 1) before each can-
didate is classified as either being a blotch site or PM site.
This is performed based on the frequency of discontinuity in
ty—2(x) and t,4,(x) in the neighbourhood of the candidate.
Effectively, this means that not every configuration of tem-
poral discontinuity is detected, distinguishing the Bornard
algorithm from the proposed algorithm.

3.2. Motion field smoothness based detection

The second feature used to detect PM is the smoothness
of the motion field. The vector field divergence is used as
the basis of the smoothness measure. By estimating the
divergences of all the motion fields in the five-frame window,
a smoothness energy term, Egiy(x), can be defined which
describes the smoothness of the motion fields. This measure
of divergence will be large in the presence of long-term PM
and low in other cases. The divergence measure is associated
with a binary field v(x), where a value of 0 corresponds to
a low divergence measure (i.e., when motion is not patho-
logical) and a value of 1 corresponds to a high divergence
measure (i.e., for PM). This relationship is described in
Table 2.

The fields s and v act as auxiliary variables which dictate
the final value of I(x) in the probabilistic framework. For a
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given value of s or v, the value of [ is directly defined through
Tables 1 and 2.

4. PROBABILISTIC FRAMEWORK

The framework derives an estimate of s(x) from the posterior
P(s(x) | A,(x),Eq4y(x)). For convenience of notation, the
four DFDs have been grouped into a vector-valued function
Ay where A (x) = [An-2(%), Ap-1(X), Aps1 (%), Aniz (X)].

The posterior is factorised in a Bayesian fashion as fol-
lows:

P(S | An»EdiV) oc P(S’ An)Ediv)

)
oc Pi(Ay | s) X Pa(Egiv | s) X Py(s),

where the index x has been dropped for clarity. Rather than
considering the unknown variables /(x), v(x), and s(x) as
separate random variables, only one random variable s(x)
is considered. The values of I(x) and v(x) can then be de-
termined from the estimate of s(x) according to Tables 1 and
2.

There are two likelihoods associated with the framework:
P;(-) associated with the DFDs of the window and P;(-)
associated with the divergence measure. The final term is a
prior on the state field s(x). Mathematically, the correct form
of this expansion is P((A, | Egiv,s) X Pq(Ediv | $) X Py(s).
Although it seems likely that some relationship between the
DFDs and divergence measure exists, for the purposes of this
framework it assumed that they are statistically independent.

4.1. Temporal discontinuity likelihood

Before the temporal discontinuity likelihood can be intro-
duced, the method for calculating the DFDs must be out-
lined. As has been outlined in Section 3.1, there are four
DEDs to be estimated described by the four dimensional
DFD vector A,(x). The DFDs are calculated by first com-
pensating the motion of each frame of the window relative
to the central frame. If the image sequence model is the local
translation model given by

In(x) = Ip-1 (X + dn,n—l(x)) + E(X)
(3)

= Ip+1 (X + dn,n+1 (X)) + E(X),

where dy, is the motion field representing the relative posi-
tion of pixels in the kth frame relative to the hth frame, then

’

the five motion compensated frames (I, _,, 1, i, I, L1, 1,,5)
are given by

L5 (x) = I
L1 (x) = I

L(x) = I(x), (4)
L (%) = L (x + dpur1),
(

I;;+2 (X) = Iy (X + dn,nﬂ + dn+1,n+2 (X + dn,nﬂ ) )

(X + dn,n—l + dn—l,nfz (X + dn,n—l)),
(

X+dn,n—l)a

Consequently, the four DFDs of the window are given by
Ap—a(x) = I, (%) = I »(x),
Ap-1(x) = I, (x) — I (%),
Api(x) = I(x) — I, (%),
Ao (x) = Ly (%) = I (%),

(5)

4.1.1.  Motion estimation

The motion fields used to perform the motion compensation
above are performed as a preprocess to the algorithm. For
every frame of the sequence, a backward and forward motion
field must be estimated (i.e., for motion in the current frame
relative to the previous and next frames of the sequence,
resp.). Any motion estimator can be used to generate the
motion fields. The choice of motion estimator affects the
correct detection and false alarm rate for missing data and
also the PM detection rate. In the tests described in Section 5,
the gradient-based algorithm outlined in [13] is used.

4.1.2. The likelihood expression

The data likelihood P;(A,, | s) constrains each DFD to be low
when a temporal discontinuity does not exist. An expression
for the likelihood of a simple temporal discontinuity detector
is given by

A(x)*
2

20

2
P(A®X) | #(x)) « exp—{ (1 - t(x)) +%t(x)},

(6)

where ¢2 is the variance of the model error e(x) and «
acts as a threshold on temporal discontinuities. In the new
algorithm there are four DFDs and the likelihood expression
is formed by multiplying the expressions for four separate
temporal discontinuity detection likelihoods. The likelihood
expression is given in vector form by

Anlk]®
20?2

o
(1 - tlk]) + Fem ],
%

where k refers to the component index of a vector. For
each component the maximum likelihood condition for a
temporal discontinuity is

Pi(A, |s) o< exp—i{

k=0

(Aulk](x))* > o2az. (8)

The value of the model error variance, 62, is determined
by estimating the variance of the DFDs when s(x) = 0. The
threshold « is allowed to vary for each component of the
likelihood. The a, and a3 thresholds for the central DFDs
(A,—1 and A,1) are linked to a deterministic threshold on
the DFD, &;. The equivalent « threshold to J; can be derived
from (8) and is given by

2
0 == 55 9)
e
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(a) Frame with superimposed mo-
tion

(b) Vector field divergence

F1GURre 3: The motion of the jacket in the left image is an example
of PM. The motion field in this region is not smooth and as a result
the divergence of the motion field in this region has a high absolute
value. The dark colours represent high divergence values.

Detection of missing data is made more conservative by
using a lower « (i.e., for @ and a4) on the outer DFDs
(i.e., A,_» and A,;») than on the central DFDs. The outer
threshold ratio, «,, is defined as the ratio of outer thresholds
a; and ay to the inner thresholds a, and a3. A typical value
of a, 15 0.5.

4.2. Divergence likelihood

The divergence of a vector or flow field measures the rate
at which flow exits a given point of the flow field. The di-
vergence of a 2D motion field, d(x), is defined as

() 04,00

div(d(x)) ™ 5

, (10)

where d, and d,, are the horizontal and vertical components
of the motion field, respectively. When PM occurs, the
smoothness of the motion field is violated and the absolute
value of the divergence is large (Figure 3). By finding the
divergence of the motion fields involved in the motion com-
pensation of the five-frame window, a divergence measure
Eg4iv(x) can be defined as the sum of the absolute divergences
of the four motion fields used for motion compensation.
That is

n+l

n
Egy(x) = > [div(dix-1(x)) | + > [div(dixs1(x)) |.
k=n-1 k=n
(11)
The divergence likelihood constrains Egiy to be low for

either missing data or unaffected states. The expression used
for the likelihood energy in the framework is

—log (Pa(Ediv | 5))
Ag(1 - ¢(Ediv)) ifs = {0,1,2,4,6,8},
oC
0 ifs = {3,5,7,9,10,11,12,1314, 15},
(12)

where Ay is the weight of the divergence likelihood in the
framework and where s = {3,5,7,9,10,11,12,13,14,15}) is
the set of PM states (i.e.,[ = 2,v = 1)ands = {0,1,2,4,6,8})

0 20 40 60 80 100

— r=0.25
— r=0.1
— r=205

FiGure 4: This figure shows three plots of ¢(a) for a € [0,100].
In this example e, = 50. As r increases the drop in energy about e;
becomes the more abrupt.

is the set of unaffected and missing data sites (i.e., [ = {0, 1},
v = 0). ¢(Egiv(x)) is a sigmoidal function defined on the
divergence measure, Egiy, and is given by

1+ee efr(afe[)

er-er 1+ erla—e) ’

¢(a) = (13)
where 7 and e, are positive real numbers (see Figure 4).
Effectively, the divergence likelihood acts as a bias towards
the detection of PM when the divergence measure is large. ¢;
acts as a soft threshold for detecting high divergences.

4.3. The smoothness prior

The prior expression used in the framework is
P (s(x)) = Ps(I(x) | L) (14)

which is a spatial smoothness prior on /(x). The smoothness
prior is enforced on I(x) rather than s(x). This reduces com-
putational complexity since the complexity is proportional
to the number of values a field can hold. As I(x) is the
field of interest the spatial smoothness of the result is not
compromised.

The prior on [ is given by

P(I(x) | L) «< exp—{Az Z Ay(1— u(x,y))p(l(x),l(y))},
€N (x)
' (15)

where A; is the weight of the prior in the framework (a
value of 1 is commonly used), where N;(x) is a spatial
neighbourhood of x and where A, is a weight inversely
proportional to [|x — yll. p(I(x),I(y)) is the energy penalty
for neighbours x and y having the labels I(x) and I(y). u(x,y)
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(b) Result with the missing data
bias bias

(a) Result without the missing data

Figure 5: This figure shows the effect of including the missing
data bias in the framework. In the images above a propellor blade
undergoing PM is highlighted by the blue circle. Detected PM is
highlighted in red and detected missing data is highlighted in green.
When the standard smoothness prior is used (i.e., K = 1), the top
part of the blade is incorrectly detected as missing data. Introducing
the PM bias penalises against such a configuration by favouring the
detection of PM over missing data. Consequently, the entire blade
has been classified as PM when the bias is introduced.

is a binary edge value between neighbouring pixels which
turns off smoothness across image edges, allowing sharp
transitions in /(x) across edges [14]. u(x,y) is defined on the
central frame I,,(x).

4.3.1. The PM bias

Usually the value of p(I(x),(y)) is 0 for all I(x) = I(y) and
1 for all I(x) # I(y). However, in this framework a bias is
introduced into p to prevent a part of an “object” being
classified as PM and another as missing data (Figure 5).
This is achieved by increasing the penalty for assigning a
site which has a neighbouring PM site as a missing data
site (p(1,2)). The effect is to make blotch detection more
conservative by favouring PM detection at such sites. The
expression used for p is

0 if (%) = I(y),
p(l(x),1(y)) = 1K ifl(x) = 1, I(y) = 2, (16)
1 otherwise,

where K > 1. A value of 5 is used for K in the experiments
performed in Section 5.

4.4. Solving for[(x)

An estimate for I(x) is found by finding the MAP estimate
of s(x) (see (2)) using the iterated conditional modes (ICM)
algorithm [15]. This process is iterated until the result con-
verges with a maximum of 20 iterations. The pixels are
updated using a “checkerboard” scan.

ICM gives a suboptimal estimate of s. The converged
estimate represents a local maximum in the posterior PDFE.
Consequently, a good initialisation of s is necessary to ensure
that the converged result is close to the global maximum.

A deterministic temporal discontinuity detector is used to
estimate t(x) and is described by

1 ifAx)>0, ke{n—-2,n—1,n+1,n+2},
tr(x) = .
0 otherwise,
(17)

where

t(x) = [tn-2(x), tn-1(X), tns1 (%), L2 (%) ]. (18)

From the initial estimate of t(x), estimates of s(x) and I(x)
can be found.

4.4.1. Multiresolution

A multiresolution scheme [16] is incorporated into the algo-
rithm. Using mulitresolution results in faster convergence
and the state field, s(x), is more likely to converge to the
global maximum of the posterior PDFE.

A hierarchical pyramid of state fields of differing resolu-
tion is constructed with the full resolution field at the bottom
level of the pyramid (level 0) and with fields downsampled
by a factor of two in each dimension at the next level up
in the pyramid. A similar pyramid is constructed for each
of the DFDs and for the divergence measure, with all being
filtered at each level with a gaussian kernel of variance 2.5
before being downsampled.

The algorithm proceeds by initialising the state field,
s(x), at the coarsest level of the pyramid using (17). A new
estimate of s(x) at the coarsest level (four levels are used)
is obtained from the probabilistic framework and the new
estimate is then used to initialise the framework at the level
below. This process continues until s(x) has been estimated
at full resolution.

An adjustment is made to the prior energy expression
when estimating s(x) at the coarser resolution. The weight
Ay is modified to reflect the increased spatial correlation
between a pixel and horizontal and vertical neighbours
relative to its diagonal neighbours. At a level i of the pyramid,
the value of Ay is given by

20+ /22 -1)
for vertical and horizontal neighbours
Ay=11 (19)
V2

for diagonal neighbours.

5. RESULTS

The main contribution of the proposed algorithm is the
introduction of a joint Markov random field (MRF) model
for blotches and PM (the label field I(x)). Pixels can either be
clean, a blotch, or PM. Even though blotches can exist at PM
sites, such sites cannot be detected as blotches. Effectively, the
correct detection rate for blotches is compromised in order
to prevent the false detection of blotches due to PM. Another
feature of the algorithm is the application of a smoothness
prior to the label field I(x) instead of the full state field s(x).
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This allows smoothness to be maximised on the field of in-
terest (i.e., /(x)) while at the same time minimising the
computational cost of estimating the spatial smoothness
energy. This facilitates the introduction of a PM bias, which
penalises the detection of neighbouring blotch and PM sites
by adding an energy penalty K to the assignment of the
site as a blotch for every PM site in its neighbourhood (see
Figure 5). The other significant features of the algorithm are
the divergence likelihood and the outer threshold ratio «,.

This section presents an evaluation of the proposed
algorithm. It compares the performance of the algorithm to
other missing data detectors, including conventional missing
data detectors such as SDIp [1] and also the Bornard missing
data/PM detection algorithm. This is achieved by comparing
the results for /(x) generated by each algorithm against
a ground truth for blotches. Ground truths for dirt are
generated using both infrared scans and by manual detection
of blotches. The correct detection and false alarm rates for
missing data in the sequence are measured and are arranged
in the form of receiver operating characteristics (ROCs), with
the control parameter being the value of the threshold 6.

However, ROCs cannot give a complete picture of the
performance of the detector. Blotch detectors that model
pathological motion will perform poorly in terms of correct
detections as they are typically designed to prevent detection
of blotches in regions of motion estimation failure. Ideally,
it would be desirable to ignore ground truth blotches in
PM regions when estimating the correct detection rates.
However, defining an objective and unbiased ground truth
for PM is not a straight forward task. In order to gain a
complete understanding of the performance of the algorithm
it is necessary to augment the ROC plots with a visual
evaluation of the masks generated by the algorithm and also
examine the detection rates of PM.

The remainder of this section outlines the experiments
used to evaluate the performance of the algorithm. The
algorithm is tested on two sequences with PM for which a
ground truth for blotches was available and also on sequences
for which no ground truth exists. The performance of the
proposed algorithm is compared to other blotch detectors
in Section 5.4, including conventional detection algorithms
and the Bornard algorithm. Finally, a discussion of the results
is presented. Before the evaluation begins, the two ground
truth sequences are introduced and a description of the
experimental procedure is given.

5.1. Ground truth acquisition

The first ground truth sequence is known as the “dance”
sequence (see Figure 6). The motion of the dancer in the
foreground is pathological. As the dancer turns, her arms
become occluded behind the rest of her body. There is also
occlusion of the background.

The blotch ground truth for this sequence is acquired
using an infrared (IR) scanner. The IR scans were provided
by INA [17] as part of the EU Prestospace project [18].
IR scanners are used to produce a transparency map of
each frame, where the intensity of each pixel in the map is
proportional to the degree of transparency of the pixel. A

Ficure 6: The “dance” sequence is the first of the ground truth
sequences. The movement of the dancer in the foreground is patho-
logical. Its motion is self-occluding which also causes occlusion and
uncovering of the background.

(b) Frames with blotches highlighted in white

Figure 7: The second ground truth sequence is the “jacket”
sequence. As the person in the sequence removes his jacket, the
motion of the jacket is pathological and is an example of nonrigid
object motion. This sequence has a higher blotch frequency than
the “dance” sequence.

useful property of dirt is that it is opaque to IR and as a result
is associated with low intensities in the transparency map.
In the “dance” sequence a ground truth is estimated for 125
frames of 720 x 576 pixels. The ground truth is obtained by
applying a threshold of 150 to each 8-bit transparency map.

Using IR scans is a good way to automatically generate
a ground truth for dirt. However, there are a number of
drawbacks to using IR scans. IR scans detect dirt even
when dirt intensities are similar to the true image intensity.
Such dirt cannot be detected by image-based missing data
detectors. IR scans will also detect nonimpulsive dirt such as
line scratches. As a result of these factors, the reported correct
detection rate will be lower than the effective rate.

The second method used to generate a ground truth is to
mark blotches in each frame by hand. Acquiring a ground
truth in this manner ensures that only perceivable dirt is
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TaBLE 3: The experimental parameter values for the algorithm.

Parameter Value
Number of multiresolution levels 4
Number of iterations at each level 20
&, O3 See (9)
Outer threshold Ratio, «, 0.5
Divergence weight, Ay 1
Divergence measure threshold, e 50
Roll-off rate, r 0.5
Spatial smoothness weight, Ay 1
PM bias, K 5

marked, allowing for a more realistic ground truth. A ground
truth for 22 frames of the “jacket” sequence (see Figure 7)
was generated in this manner. The resolution of this sequence
is also 720 x 576. The motion of the jacket is an example of
the erratic motion of nonrigid bodies. This sequence also has
a higher frequency of blotches than the “dance” sequence.

5.2. Experimental procedure

5.2.1. Motion estimation

The gradient-based motion estimator described by Kokaram
in [13] is used to generate motion vectors for all the test
sequences. The block size of vector field is 17 X 17 pixels with
a 2 pixel horizontal and vertical overlap.

5.2.2.  Configuration of the proposed algorithm

The key parameter of the algorithm is the deterministic
threshold &; which is used as the control parameter for the
ROC plots. The chosen values of §; are {5,7,9,11,13,15,
17.5,20,25,30,35,40}. These values are also used for the
equivalent thresholds in the other missing data detectors
used in the comparison outlined in Section 5.4, ensuring
that each detector is detected over an equivalent range. The
model error ¢? is estimated before the first stage at each
multiresolution level by finding the variance of the four
DEFDs when s(x) = 0. The other relevant parameters are
defined in Table 3.

5.2.3. ROCplots

The ROC curves are generated by finding the average correct
detection and false alarm rates over all the frames of the
test sequences for each value of §;. The missing data correct
detection rate, r., and false alarm rate, ry, are estimated for
each frame (and for each &;), and are given by

N begt(x)bdet(x)
‘ Sibg(x)

- Zx(l_bgt(x))bdet(x)
/ S (- bgx)

(20)

(a) Validation image

(b) PM/blotch detection

Ficure 8: This figure shows a validation image and a PM/blotch
detection for the “jacket” sequence (correct detections—green,
missed detections—Dblue, false alarms—red). The PM/blotch (red/
green) images can be used to indicate whether or not a missed
blotch detection occurs to the pixel being detected as PM (blue
circle).

where by (x) is the binary ground truth blotch mask for the
frame and bye¢(x) is the binary output of the blotch detector
under test. The curve is a parametric plot of corresponding

(re, 7f) pairs.

5.2.4. PM rate plots

Plots of PM rate, r), against the DFD threshold &; are eval-
uated by finding the average relative frequency of PM in a
sequence at each threshold. The PM rate is given by

i) =2
L Y R

where PM occurs when [(x) = 2.

(21)

5.2.5.  Visual evaluation

Two types of image are used for the visual evaluation.
They are validation images and PM/blotch detections (see
Figure 8). Validation images compare the estimated blotch
masks to the ground truth and highlight correct detections
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(a) A frame from the “dance” sequ-

(b) Configuration after determinis-
ence tic initialisation

(c) Final field at level 3 (6 iterations
in total)

(d) Field after Ist iteration at Level

2 (7 iterations in total) tions)

(e) Final field at Level 2 (12 itera-

(f) Field after 1st iteration at Level
1 (13 iterations)

(g) Final field at Level 1 (32 itera-
tions)

(h) Field after Ist iteration at full
resolution (33 iterations)

(i) Field after final iteration (52
iterations)

FiGure 9: This figure shows intermediate values of the label field (PM—Red, Blotches—Green) at various iterations of the ICM optimisation
process for a frame from the “dance” sequence. The standard parameter set is used (Section 5.2) and the value of §; is 7. Level 0 corresponds
to the full resolution; the resolution at level 1 is 360 x 288 and so on. At the coarsest resolution (Level 3) the resolution is 90 X 72 pixels.

(green), missed detections (blue), and false alarms (red).
PM/blotch detections display the masks generated by the
proposed algorithm and the Bornard algorithm with PM
regions highlighted red and blotches highlighted green.

5.2.6. Implementation of the algorithm

The tests outlined on the proposed algorithm in this paper
utilised a C++ implementation of the algorithm, incorporat-
ing the IPP libraries [19] where appropriate. The algorithm
was tested on a PC with a 1.4 Giga-Hertz Pentium M proc-
essor with 1 Giga-Byte of RAM.

5.3. Algorithm evaluation

Figure 9 gives an example of the evolution of the label field
configuration for a frame of the “dance” sequence. Detection
of missing data and PM at the coarser resolutions allows large
PM and blotch features to be detected. As the resolution at
which the optimisation occurs increases, the precision of the
result increases, allowing small features to be detected. In

general, convergence at the coarser levels is fast as spatial
information propagates quickly through the field, but as
the resolution increases the speed of convergence decreases.
In the example shown in Figure 9, the convergence occurs
after six iterations at both Level 3 and Level 2. At the finer
resolutions of Level 1 and Level 0, the maximum iteration
limit of twenty iterations is reached. Computation time for
this example is approximately ten seconds.

Applying the algorithm to all the frames of the test
sequences gives the ROC and PM rate curves shown in
Figure 10. Overall, the maximum correct detection rates, r.,
for both sequences are quite low (approximately 25% for
the “dance” sequence and 40% for the “jacket” sequence).
However, there is also a low false alarm rate, r¢, which does
not increase above 0.1% (roughly 400 pixels in a 720 X 576
image) even at low threshold values. The PM rate plots for
both test sequences (Figures 10(b) and 10(d)) show that the
rate of PM detection increases exponentially as §; decreases.

An unusual feature of the ROC plots for the test
sequences is the apparent ceiling on the correct detection
rates at lower values of the DFD threshold &;. The expected
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F1GURE 10: This figure shows ROC and PM rate plots (r, versus §;) for both test sequences obtained from the proposed algorithm using the

standard set of parameters.

trend in an ROC plot of a blotch detector is to have low
correct detection and false alarm rates at higher threshold
values and for the rates to increase as the value of the
threshold drops, tending to a notional correct detection and
false alarm rate of 100% at a zero threshold when every
pixel in the image is detected as a blotch. The lowest value
of the threshold used therefore gives the highest false alarm
and correct detection rate. However, the ROC curves show
that this pattern does not apply to the proposed algorithm.
While the expected pattern is followed at high values of
the threshold &;, at lower values of the threshold a value is
reached, below which the correct detection rate no longer
increases and continues to drop off. Although the rate at
which temporal discontinuities are detected in the five-frame
window continues to increase, an increasing number of
pixels are classified as PM (see Figure 11) since the likelihood
of temporal discontinuities at the same location between

multiple frames greatly increases. This is confirmed by the
exponentially increasing PM rate at lower threshold values.
Consequently, less pixels are detected as missing data and
the correct detection rate decreases. For this detector, the
notional false alarm rate and correct detection rate at the
zero threshold level is 0% as all pixels will be detected as
pathological motion.

5.4. Comparison with other missing data detectors

The proposed algorithm is compared with five existing miss-
ing data detectors. These include four conventional algo-
rithms and the Bornard missing data detection algorithm
[9]. The four other algorithms are the SDIp algorithm [2,
13], the sROD detector [4, 12], the Morris algorithm [2, 5]
and the blotch MRF algorithm [6].
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(b) Validation image for §; = 7

» 3 u
(c) PM/blotch detection for §; =5 (d) PM/blotch detection for §; =7

FiGure 11: This figure illustrates how lowering the DFD threshold
0 results in a lower correct detection rate. The blue circle highlights
a large blotch which is not detected at the lower threshold ((a) and
(b)—correct detections in green, missed detections in blue). At the
lower threshold this blotch is classified as PM ((c) and (d)—red for
PM, green for blotches).

5.4.1.  Detector configuration

Both the SDIp and sROD algorithms have one associated
parameter §; and are implemented directly from the descrip-
tion of the algorithms. The four probabilistic algorithms are
implemented with as similar parameter values as possible. A
multiresolution framework is employed for each algorithm,
with a maximum of twenty iterations per level. An eight-
pixel first-order spatial neighbourhood is used for either
the blotch field (blotch MRF algorithm), the temporal dis-
continuity field (TDFs) (Morris/Bornard algorithms) or the
blotch/PM field (the proposed algorithm). The Bornard
algorithm also employs a two-pixel temporal neighbourhood
linking the TDFs. Like the proposed algorithm, in the Blotch
MREF algorithm a smoothness prior is only enforced on the
blotch field and not on the state field.

The value of the spatial smoothness weight in the Morris
and Bornard algorithms is 1, and the temporal prior weight
of the Bornard algorithm, 35, is —0.1. This reflects the setup
recommended by Bornard in his thesis [9, Section 5.7.1.2],
where the temporal prior weight is roughly one tenth the
size of the spatial weight with a negative value. The search
radius in the interpretation stage is 20 pixels with a temporal
discontinuity threshold of 1. Although less conservative than
the recommended setup (a radius of 38 pixels), PM will be
flagged if a temporal discontinuity exists in one of 2 X 20%7
pixels which is approximately two and a half thousand pixels.
For the proposed algorithm, the standard set of parameters
described in Section 5.2 is applied.
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(b) ROC for the “jacket” sequence

Figure 12: This figure shows the ROC curves for the 6 detectors
under test for each test sequence. The standard parameter set is used
for the proposed algorithm. The set up of each detector is described
in Section 5.2.

5.4.2. Comparison with the conventional detectors

ROC curves are plotted for each detector, with the same set
of values of §; as before (6; = {5,7,9,11,13,15,17.5,20,
25,30,35,40}). Comparison (Figure 12) of the missing data
detectors shows that both the proposed algorithm and the
Bornard algorithm achieve a significantly reduced false
alarm rate when compared to the four standard missing data
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(a) Validation image for the blotch MRF
detector (green—correct detections, red—
false alarms, blue—missing data)

rithm

(b) Validation image for the proposed algo-

(c) PM/blotch detection for the proposed
algorithm (red—PM, green—blotches)

Ficure 13: This figure consists of validation images for the blotch MRF algorithm and the proposed algorithm for a frame from the “jacket”
sequence. The value of the DFD threshold, &, is 15. Also shown is the PM/blotch detection for the proposed algorithm. The blue square
highlights the region of the image where the proposed algorithm eliminates false alarms caused by pathological motion. The yellow circles
highlight missed blotch detections in the proposed algorithm, which have been wrongly detected as PM.

(a) Validation image for the blotch MRF (b) Validation image for the proposed algo-

detector (green—correct detections, red— rithm

false alarms, blue—missing data)

(c) PM/blotch detection for the proposed
algorithm (red—PM, green—blotches)

FiGure 14: This figure consists of validation images for the blotch MRF algorithm and the proposed algorithm for a frame from the “dance”
sequence, as well as the corresponding PM/blotch detection for the proposed algorithm. The value of the DFD threshold, d;, is 15. Using the
proposed algorithm reduces the number of false alarms in the region of the head of the female dancer.

1
e
y

s

(a) A frame from the “dance” se- (b) A PM/blotch (red/green) de-
quence tection for the frame (8; = 11)

FiGgure 15: This blue circle in the two images highlights a blotch
located near a region of motion blur. Due to its location the blotch
is detected as PM by the proposed algorithm.

detectors, although the correct detection rates are also
reduced. At higher values of the DFD threshold §; (ie.,
before the maximum correct detection rate is reached), the

false alarm rate of the proposed algorithm is 75% to 90%
less for the “dance” sequence and 50% to 80% less for the
“jacket” sequence. On the other hand, both the Bornard
and proposed algorithms have an upper limit on the rate
of correct blotch detections. The average maximum correct
detection rate of the proposed algorithm is two to three times
less than the correct detection rates at the lowest threshold
tested (8¢ = 5), although the false alarm rate is 30 to 50 times
lower.

Figures 13 and 14 visually highlight the difference in
performance between the proposed algorithm and the blotch
MREF algorithm, the standard blotch detector most closely
related to the proposed algorithm. In the highlighted frames,
the proposed algorithm reduces the number of false alarms
in the pathological motion regions (i.e., the jacket and the
female dancer), preventing damage to image data. The drop
in blotch detections can mainly be attributed to two factors.
Firstly blotches which are located near objects undergoing
PM are likely to be missed (Figure 15). This is an intended
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13

(b) PM/blotch detection for the
Bornard detector (red—PM, gre-
en—Dblotches)

(a) Validation image for the Bor-
nard detector (green—correct de
tections, red—false alarms, blue
—missing data)

(d) PM/blotch detection for the
proposed algorithm

(c) Validation image for the pro-
posed algorithm

Figure 16: This figure illustrates the superior blotch detection
rate of the proposed algorithm over the Bornard algorithm in the
“jacket” sequence. The highlighted regions of the frame indicate
blotches missed by the Bornard algorithm (image (a)) that are
detected by the proposed algorithm (c). The blotches missed by the
Bornard algorithm are detected as PM (b). The value of §; used to
generate the images in this figure is 15.

consequence of the algorithm design, which is encouraged
to maintain image quality rather than remove the maximum
number of blotches. The second major cause of missed detec-
tions occurs because of a high frequency of blotches over
a number of frames. A fundamental assumption made by
missing data detectors is that blotches are rarely located at
the same spatial location in neighbouring frames. However,
if there is a high frequency of blotches in a sequence, then
the probability of blotches occurring at the same location in
neighbouring frames increases. In such situations, a blotch is
likely to be incorrectly classified as pathological motion.

5.4.3.  Comparison with the Bornard algorithm

The missing data ROC curves in Figure 12 also highlight the
variable performance of the proposed algorithm when com-
pared with the Bornard algorithm. The Bornard algorithm
generally performs better on the “dance” sequence. At high
thresholds, the false alarm rate, ry, of the Bornard algorithm
is lower for similar correct detection rates, r.. However,
at lower threshold values the difference in the false alarm
rates decreases and the proposed algorithm achieves a higher
maximum correct detection rate. On the other hand, the
proposed algorithm is much more effective on the “jacket”
sequence and achieves a much higher blotch detection rate.

The maximum correct detection rate is approximately 40%,
roughly twice the maximum correct detection rate of the
Bornard algorithm.

The poor correct detection rates of the Bornard algo-
rithm on the “jacket” is clearly visible in the frame from
the “jacket” sequence highlighted in Figure 16. Many of the
blotches in the frame are detected as PM by the Bornard
algorithm, caused by the high frequency of visible blotches in
the sequence. The proposed algorithm is less prone to missed
detections in such circumstances.

It is reasonable to conclude that the Bornard detector is
more conservative than the proposed algorithm. The inter-
pretation stage of the Bornard is more conservative than the
cumulative effect of the divergence likelihood, the PM bias,
and the outer threshold ratio. The interpretation stage acts
as a “maximum caution” classifier, rejecting any candidate
blotch site if a single temporal discontinuity exists within
a radius (20 pixels) of the candidate in either of the outer
temporal discontinuity fields. The ultra-cautious nature of
the interpretation allows the Bornard detector to achieve
lower false alarm rates. However, it also results in more
missed detections at lower threshold values or when there is
a high frequency of blotches in a sequence.

On the other hand, the proposed algorithm tries to make
an informed decision and as such is less indiscriminate than
the Bornard algorithm. For a site to be detected as PM rath-
er than a blotch, the proposed algorithm requires either a
temporal discontinuity to exist in at least one outer tem-
poral discontinuity field at the same location or spatial prop-
agation from neighbouring PM sites by means of the smoo-
thness prior. The divergence likelihood, the PM bias, and
the outer threshold are all intended to make the proposed
algorithm more likely to detect PM. The divergence likeli-
hood increases the probability of sites with high motion field
divergences being detected as PM, the PM bias encourages
the spatial propagation of PM states and the outer threshold
ratio increases the likelihood of temporal discontinuities
being detected in the outer fields.

5.5. Blotch restoration using the proposed algorithm

The critical design criterion of the proposed algorithm is
that it eliminates image damage during missing data treat-
ment. A primitive missing data treatment algorithm was im-
plemented that takes a blotch mask from any detector and
interpolates detected blotches with the mean motion com-
pensated intensity of the previous and next frames.

Figure 17 compares images restored using both the
blotch MRF algorithm and the proposed algorithm (8; =
15). Frames from four sequences are shown. The first is
the “jacket” sequence used in the ground truth experiments,
in which the motion of the jacket is an example of self-
occluding and nonrigid object motion. The second sequence
shown is called the “vj” sequence and is an example of
repetitive occlusions, as the aircraft propellors appear and
disappear in alternative frames. The third sequence is the
“birds” sequence. This sequence contains another example
of repetitive occlusion (the bird’s wings), however, in this
case, the region of PM is moving across the frame. The final
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(a) From left to right, frames from the “jacket,

» «

vj,” “birds,” and “chopper” sequences

(d) Frames restored with the proposed algorithm

FiGure 17: This figure shows frames from four sequences restored using the Blotch MRF and proposed algorithms as blotch detectors. The
highlighted frames show image damage present if the Blotch MRF is used instead of the proposed algorithm.

sequence (the “chopper” sequence) contains an example of
motion blur. The rotation of the rotors is also an issue, as
the motion estimator employs a purely translational motion
model.

The four examples shown in Figure 17 highlight the
effectiveness of the proposed algorithm. Using the proposed
algorithm prevents significant damage to each of the four
images shown. However, the proposed algorithm is not al-
ways able to prevent all image damage, especially in cases
where the region of PM is undergoing a translation (i.e., the
motion of an object is the sum of PM and a nonpathological
translation (see Figure 18)). The assumption is made that
motion compensation can be performed accurately, even
in regions of PM. Consequently, the algorithm is prone to
failure as it involves the motion compensation of four frames
with respect to the central frame. However, it should also be

noted that while some image damage may occur, any damage
will be much less than the damage caused by performing
missing data treatment without detection of PM.

5.6. Computational complexity

Estimation of the prior energy and estimation of the MAP
state at each pixel is the most computationally intensive
aspect of the algorithm, amounting to approximately 90% of
the execution time for a single frame. The upper bound for
the complexity of the ICM optimisation is @ (# iterations X
# pixels X # states X # neighbours) where the number of states
is 16 and the number of pixels in a given neighbourhood
is eight. The actual order of complexity is slightly reduced
as the smoothness prior is enforced on the label field (three
states) rather than the full state field (16 states). The number
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(a) A frame from the “birds” seq-
uence

(b) Restored frame

FiGure 18: This figure shows an example from the “birds” sequence
where the proposed algorithm fails to prevent damage to image
data (the highlighted regions). In this example, the object (the bird)
undergoing PM is also undergoing a translation. This motion causes
the algorithm to fail on some frames but not others.

of iterations necessary for convergence also depends on the
number of states and the size of the neighbourhood, with
a higher number of states and greater neighbourhood size
requiring more iterations for convergence. From observation
of the algorithm, the size of the §; threshold also impacts on
the number of iterations required. The average number of
iterations performs decreases as §; increases. Computation
time varies between 5 and 15 seconds per frame, depending
on the number iterations performed.

Further reductions in computation would be possible
by reducing the complexity of the probabilistic model. For
example, the model could be approximated by reducing the
number of labels in [(x) to two (i.e., missing data or not
missing data) and by using a mixture model to approximate
the data likelihood distributions. This would also allow a
graph cuts [20] based segmentation to be performed.

6. FINAL COMMENTS

This paper has presented a new robust missing data detection
algorithm that aims to reduce false alarms due to patho-
logical motion. It uses a probabilistic framework to detect
regions of PM, preventing them from being detected as
blotches. A quantitative comparison of the algorithm was
presented, comparing the algorithm against four standard
blotch detectors and the Bornard PM detection algorithm.
The comparison showed that the proposed algorithm gives
a significantly reduced false alarm rate when compared with
the standard detectors. Although a lower false alarm rate can
be obtained with the Bornard algorithm at high thresholds,
higher correct detection rates are possible with the proposed
algorithm. A further visual evaluation of the algorithm shows
how the algorithm can prevent image damage when used as
a detector in a missing data treatment framework.

However, the proposed algorithm does not address how
the image is to be restored in PM regions. The missing data
algorithms outlined in this paper will fail in these regions.
Restoration in PM regions has been a topic touched on by
Rares in [11] in which an alternative metric for detecting
blotches in PM was proposed. As temporal reconstruction of
missing data in PM regions is unreliable, spatial reconstruc-

tion techniques are necessary such as image inpainting [21]
or texture synthesis [22].

The major area of further development in this area
would be to integrate the algorithm into a missing data
treatment framework. The algorithm outlined in this paper
is presented as a stand-alone blotch detector which operates
independently of a missing data interpolation stage. Previous
work in missing data treatment [10, 23, 24] has shown
that integrating the detection, interpolation, and motion
estimation stages into a single Bayesian framework allows
for a more visually pleasing restoration. A new missing data
treatment algorithm along the lines of the JONDI algorithm
[24] using the proposed algorithm for the detection stage
could result in an integrated framework resistant to patho-
logical motion.
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