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Abstract

This thesis describes a number of theoretical investigations into the electric and mag­

netic properties of one-dimensional and three-dimensional correlated systems. Our 

studies are based on suitable and efficient implementations of different approxima­

tions to the exchange-correlation (XC) energy functional of ground state density 

functional theory (DFT).

Part I is devoted to investigate the accuracy and the applicability of lattice DFT 

(LDFT) to strongly correlated one-dimensional systems. We perform calculations 

within the framework of the Bethe Ansatz local density approximation (BALDA) 

to the LDFT formulation of the Hubbard model. This approximation is capable of 

describing both Luttinger liquids and Mott-insulators. In an attempt to establish a 

general consensus concerning the accuracy of LDFT-BALDA scheme, a set of bench­

mark calculations are performed with numerically accurate methods such as exact 

diagonalization, density matrix renormalization group and Bethe Ansatz techniques.

We validate the capability of the LDFT-BALDA to compute ground state proper­

ties such as total energies and the static linear polarizabilities for the Hubbard model. 

The response of the exact XC potential is found to point in the same direction as an 

external electric field. This is well reproduced by the BALDA approach, although 

the hne details depend on the specific parameterization for the local approximation. 

A numerical proof for the non-locality of the XC functional is also provided.

Furthermore, an expression for the XC energy of the Hubbard Hamiltonian in­

cluding a vector potential is developed and implemented within the BALDA for the



Abstract

first time. This allows us to construct an extention of LDFT to current-LDFT. 

lYansport properties such as persistent current and Drude weight are studied with 

this new scheme. The theoretical method explored in this work is an important and 

promising step forward in the study of large one-dimensional systems. An example 

of these is ultracold fermions on optical lattices, known to be versatile and robust 

for probing fundamental condensed-matter physics problems.

Finally Part II investigates the bandstructures and exchange interactions for a 

number of prototypical correlated materials by using an approximate atomic self­

interaction corrections (ASIC) method to DFT. In general, the ASIC scheme drasti­

cally improves the bandstructure which, for almost all the cases investigated, resem­

ble closely available photo-emission data. In contrast, the results for the exchange 

parameters suffer from similar problems encountered with the LDA. This reflects the 

subtle interplay between exchange and correlation energy, not captured in full by the 

ASIC.
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Chapter 1

General Introduction

Research in condensed matter physics is geared towards understanding the macro­

scopic behaviour of various quantum mechanical systems, beginning from a detailed 

description of the individual particles and how they interact with each other. Quite 

a number of problems in this field have been effectively described within a single 

particle picture [1], i.c. by using the band theory, where each electron moves in 

the periodic potential created by the positive ions and by the average potential of 

all the other electrons (this forms the mean field). Despite the success that single 

particle theory enjoyed in the twentieth century, it was not long before it was shown 

that band theory breaks down for a large number of insulating 3d transition metal 

compounds like NiO and CoO [2]. Band theory in fact predicts them to be metallic 

whereas they are all insulators. The reason for the erroneous band theory description 

was early attributed to neglecting contributions to the repulsive Coulomb interaction 

(going beyond the mean field level) between the electrons in the d-orbitals by Mott 

and Peierls [3]. Later, Mott [4] and Hubbard [5] indeed showed that if the electron- 

electron interaction is larger than the bare electronic bandwidth, the system will be 

indeed an insulator.

Therefore, a proper description of electron correlation, the fact that electrons 

feel the presence of each other’s motion due to the Coulombic force acting between

1
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them, is critical for many different classes of materials in condensed matter. Effects 

due to electron correlation are defined from an operational point of view as any 

purely electronic phenomenon which can not be explained within the independent- 

electron (the mean field) approximation [6]. Thus, material systems whose electronic 

structure cannot be described at a mean field level are conventionally referred to as 

strongly correlated systems.

Studies on these materials have given tremendous insights into phenomena such 

as magnetism, the quantum Hall effect, charge and spin localization, charge order­

ing, metal-insulator transitions and superconductivity, to mention just a few. Also, 

phenomena such as the Kondo effect [7], where magnetic impurities are embedded 

in metals, are dominated by electron correlations. This highlights the important 

role that electron-electron interaction plays in many-body fermionic systems, such 

as transition metal oxides, rare-earth elements and actinides, their compounds and 

alloys and some organic compounds.

A very important theoretical framework that has been employed to understand 

the effects of electronic interactions in material systems is based on Landau’s Fermi 

liquid theory [8]. In this theory, electrons behave qualitatively as quasi-free particles; 

that is, the only effects of any interaction with other electrons are the modification 

of their effective mass and the possibility of being scattered [9]. For many years, the 

theory was used to study electron dynamics in solids with great theoretical success 

until it was realized that some systems completely deviate from predicted results. In 

low dimensional systems, especially one dimension, the Fermi liquid theory breaks 

done and is replaced by a new state of matter known as Luttinger liquid, a concept 

introduced by Haldane [10] after the exactly solvable Luttinger model [11].

There has been much theoretical progress in the description of the Luttinger liq­

uid as well as experimental realization of systems that could be candidates for such 

a one-dimensional physics [12]. Advances in nanotechnology have made it possible
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to fabricate one-dimensional systems such as carbon nanotubes [13], atomic wires 

on insulating surfaces [14], inorganic crystalline nanowires [15] and organic materials 

like Bechgaard salts [12, 16]. Their unique characteristics, as compared to bulk mate­

rials, make them good candidates for several applications in different fields including 

nanoelectronics, pharmaceutical and cosmetics. In addition, a system comprising of 

many parallel one-dimensional chains is considered to be a convenient geometry for 

quantum information processing [17].

More recent experimental studies have shown that some conjugated polymers do 

not behave like two- or three-dimensional materials but as one-dimensional metals 

[9, 18], in contrast to previously held beliefs. These polymers are hopeful candi­

dates in the quest to make electronic devices from organic materials. Although the 

field still presents many challenges, appreciable progress has led to the development 

of promising prototypes of thin-film transistor and photovoltaic devices, and even 

commercialization of organic light-emitting diodes [9]. It is evident that theoretical 

studies on one-dimensional objects will provide a powerful platform for the develop­

ment of new ideas with promising applicability.

In any dimension, simplified models (in contrast to fully quantitative electronic 

structure theories such as density functional theory) are often adopted to obtain 

valuable insights into the behaviour of complicated systems. There are two classes of 

models used in the study of interacting fermions. The first one is formed by lattice 

models, where electrons are tightly bound to the regular sets of spatially defined 

points produced by a lattice of atomic nuclei, while the electrons are able to move 

between adjacent nuclei. The second class of models is populated by continuum 

models. Here, an interacting electron fluid is moving in a uniform background of 

positive charge.

Quite generally, lattice models have a richer phenomenology than the continuum 

ones, since the second can be obtained as a limiting case of the first [19]. For example.
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the peculiarity of some features like the SU(2) symmetry in the Hubbard model - 

a lattice model that will be discussed in detail later - is directly attributed to the 

discreteness of the lattice [19]. Moreover, models that describe itinerant electrons on 

discrete lattices offer a wider range of numerical algorithms to solve them than the 

continuum ones. Nonetheless, the continuum models describe certain aspects of the 

physics of the lattice models and are also interesting in their own right (see reference 

[19] for examples), mostly because some of the solutions can be derived analytically. 

In this thesis, however, we mostly focus on lattice models.

One-dimensional systems are often easier to handle for a theorist than their two- 

or three-dimensional counterparts. In particular, one-dimensional strongly corre­

lated systems modeled by means of effective lattice Hamiltonians, but capable of 

capturing the relevant physical properties arising from electron correlation, are usu­

ally mathematically tractable and general enough to be applied to a variety of prob­

lems. Among the many effective Hamiltonians that one can construct is the Hubbard 

model [20, 21, 22] which has enjoyed a vast popularity since it can capture the subtle 

interplay between Coulomb repulsion and kinetic energy, while remaining simple.

For instance, progress in ultra-cold atom experiments is considered to be one 

of the significant advancement in recent years [23] allowing experimental tests of 

methods in condensed matter. In particular, one can experimentally ascertain the 

Hubbard model and its extentions by using a fermionic quantum gas loaded into 

an optical lattice [24]. Within this atomic approach, the Hubbard Hamiltonian 

is obtained as a direct result of the optical lattice potential created by interfering 

laser fields and short-ranged ultracold collisions. In one-dimension (ID), a sinusoidal 

optical potential are easily created for trapped atoms [25] and thus gives a platform 

to simulate the physics of the Hamiltonian. Theoretical calculations can then be 

compared directly with results obtained from such systems.

Although exact solutions of the Hubbard model are known in particular limits
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[26], a general one for an arbitrary system, which can be finite and inhomogeneous, 

requires a numerical treatment. This however represents a severely demanding task, 

since the Hilbert space associated to the Hubbard Hamiltonian for L sites is 4^ di­

mensional, so that exact (Lanczos) diagonalization (ED) can only handle a relatively 

small number of sites. Other many-body approaches, such as the density matrix 

renormalization group (DMRG) [27, 28], extend the range to a few hundred sites, 

but little is possible beyond that limit. It would be then useful to have a method 

capable of describing accurately the ground state and still having the computational 

overheads of a mean field approach. Such a method is provided by lattice density 

functional theory (LDFT).

LDFT was initially proposed by Gunnarsson and Schonhammer [29, 30] as an 

extension of standard, ab initio, DFT [31, 32] to lattice models. The theory essen­

tially reformulates the Hohenberg-Kohn theorem and the Kohn-Sham construction 

in terms of the site occupation instead of the electron density. Although originally 

introduced with a pedagogical purpose, LDFT has enjoyed a growing success and it 

has been already applied to a diverse range of problems. These include fundamental 

as})ects of DFT and of the Hubbard model, such as the band-gap problem in semi­

conductors [29], the dimerization of ID Hubbard chains [33] and the formation of 

the Mott-Hubbard gap [34]. LDFT has also been employed for investigating effects 

at the nanoscale traceable to strong correlation, like the behavior of impurities [35], 

spin-density waves [36] and inhomogeneity [37], as well as more exotic aspects like 

the phase diagram of harmonically confined ID fermions [38] and that of ultracold 

fermions trapped in optical lattices [39, 40, 41]. More recently LDFT has been ex­

tended to the time-dependent domain [42], to quantum transport [43] and to response 

theory [44].

As in standard DFT, LDFT is also in principle exact. However its practical 

implementation is limited by the accuracy of the unknown exchange correlation (XC)
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functional, which introduces many-body effects into the theory. The construction of 

an XC functional begins with choosing a reference system, for which some exact 

results are known. These impose a number of constraints that the XC functional 

must satisfy, as for example its asymptotic behavior or its scaling properties. The 

functional is then built by interpolating and fitting to known many-body reference 

results. Such a construction for instance has been employed in the case of the local 

density approximation (LDA) in ab initio DFT. The reference system in two and three 

dimensions is usually an electron gas of some kind, since one aims at reproducing a 

Fermi liquid. However in ID the known ground state has a Luttinger-liquid nature 

and so the reference system should be chosen accordingly. In the case of the Hubbard 

Hamiltonian in ID a powerful result is that obtained by Lieb and Wu [45] for the 

homogeneous case by using the Bethe Ansatz (BA). This is the basis for constructing 

an XC functional for the Hubbard model in ID [34, 35].

This thesis investigates both one-dimensional and three-dimensional correlated 

systems using efficient theoretical methods. We divide this work into two rather 

independent parts. The focus of the first one (Chapters 2, 3, 4 and 5) is on one­

dimensional systems while that of the second part (Chapters 6 and 7) is on three- 

dimensional ones.

In the first part, we employ a range of existing approximations to LDFT and 

its corresponding extension to current-LDFT (CLDFT) in our studies. We begin 

by calculating ground state energies of one-dimensional finite-site systems described 

by the homogeneous Hubbard model with different boundary conditions and over a 

broad range of parameters. The results are compared with those obtained with the 

numerically exact methods in order to test the reliability of these approximations to 

the XC potentials. We perform similar calculations for the inhomogeneous Hubbard 

Hamiltonian.

Next, we evaluate the ability of the approximations to the XC functional for
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the ID Hubbard model to predict the electrical response of hnite ID chains to an 

external electric field both far from and in the vicinity of the Mott transition. This 

is relevant, not just as a test for Hubbard LDFT, but also for understanding real 

materials whose electrical response can be mimicked in terms of the Hubbard model 

[46]. In particular the ID case can provide important insights into the nonlinear 

optical properties of polymers [47].

We then provide a scheme to construct a new LDA-based XC potential within 

the CLDFT for one-dimensional Hubbard model. The resulting functional is applied 

to study mesoscopic rings with a view to describe the physics of Ahanorov-Bohm 

(AB) rings and also to test its performance. We calculate ground state properties 

such as ground state energies, persistent current and Drude weight of Hubbard rings 

with repulsive interactions enclosed by a magnetic flux. The accuracy and capability 

of this functional to capture the periodic variation of ground state energy and corre­

sponding persistent current as a function of the magnetic flux is discussed. Finally, 

its limitations compared to other numerical procedures are identified.

The main goal of the second part is to investigate the magnetic behaviour of 

several systems using the computationally efficient atomic self-interaction correction 

(ASIC) scheme in DFT. The aim of this part is to quantitatively describe magnetic 

interactions, namely extracting exchange couplings, J, of important systems like ionic 

insulators and some transition metal oxides. In particular, we map total energy cal­

culations onto a Heisenberg model and compare the calculated exchange constants 

to available experimental data as well as to other values reported in the literature. 

The accurate description of this quantity is useful for evaluating the Curie or Neel 

temperature, the magnetic susceptibility and also to interpret neutron diffraction 

experiments. A number of these systems are becoming increasingly interesting due 

to their modern magnetoelectronic applications, which makes the understanding of 

their magnetic properties crucial. Indeed, theoretical studies in this area are further



General Introduction 8

encouraged, especially for systems where experimental data are not available, in or­

der to explore their potential technological applications.

The thesis is organized in the following way:

In Chapter 2, we give the theoretical background to the many concepts used. 

We begin by introducing various effective lattice Hamiltonians often used to describe 

quantum systems. Next, we discuss the Hubbard model in more detail, being the 

model of interest for the first part of this work. We then briefly introduce the basic 

idea of the Fermi and Luttinger liquids as used in describing interacting systems. 

Since one-dimensional systems are our main consideration, we summarize the BA 

technique for the homogeneous Hubbard model. Finally, the main concepts behind 

DFT, starting from the basic of Hohenberg and Kohn theorems to the various ap­

proximations to the XC potentials are presented.

In Chapter 3, we provide an overview of some numerical methods often used to 

treat low-dimensional strongly correlated systems. We present a very brief intro­

duction to ED by using the Lanczos method, the numerical renormalization group 

(NRG) and the DMRG. In addition, the key idea of LDFT is explained for the one­

dimensional Hubbard model. Finally, the approximations to the XC potential within 

Bethe Ansatz local density approximation (BALDA) in its spin-polarized and non 

spin-polarized forms are outlined. Codes implementing all the various flavours of the 

XC potential within BALDA and those of the self-consistency cycle of the DFT have 

been written by us from the scratch.

In Chapter 4, we report results for the LDFT within the BALDA when applied to 

some ground state properties. Ground state energies of different class of homogeneous 

and inhomogeneous systems are calculated and compared with other numerically 

exact methods. We also present numerical calculations on the linear polarizabilities
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of finite ID chains in the presence of an external electric field. Our strategy is that 

of constantly comparing our DFT results with those obtained with highly accurate 

inany-body schemes. In particular we use ED for small chains and the DMRG 

method for larger systems. We discuss results, hrst for the electrical polarizabilities 

and then for the response of the XG potential to an external electric field. Finally, 

we carry on a numerical investigation on the validity of the local approximation to 

the XC functional.

Ghapter 5 aims at introducing our extension to the existing LDFT formulation 

within the BALD A of references [34, 35, 36] to CLDFT for the one-dimensional Hub­

bard model. The transport properties of mesoscopic Hubbard rings threaded by a 

magnetic flux are the subject of investigation. We begin with analytical solutions 

for non-interacting quantum rings. We outline the BA solutions to a homogeneous 

ring with magnetic flux when Coulomb interaction is switched on within the Hub­

bard model. We have written a code solving the equations of the BA numerically. 

Then we introduce CLDFT and its LDA to the XC potential where we have writ­

ten, from the scratch, codes implementing the formalism. Results for ground state 

energies, persistent current and Drude weight for the repulsive homogeneous and 

inhomogeneous case are reported and compared with other numerically established 

methods.

Chapter 6 introduces the numerical framework of Siesta, an advanced DFT code 

using pseudopotentials. Also, additional functionals to account for self-interaction 

errors in a computationally efficient scheme based on atomic orbitals are presented. 

Finally, the so called DFT-I-U within the LDA, which is important in describing 

strongly correlated electron systems, is briefly outlined.

In Chapter 7, we investigate the performance of the ASIC when calculating ex­

change parameters for interesting solid state systems. We begin with hypothetical 

linear chains of hydrogen and helium often used as a benchmark in quantum chem-
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istry. We then present detailed studies using ASIC on ionic antiferomagnet and 

transition metal oxides.

Finally, results for the two parts are summarized in Chapter 8. We highlight 

perspectives for further theoretical investigations in the subject of LDFT for strongly 

correlated systems. Also we provide outlook for future work in estimating exchange 

parameters.

This thesis has five appendices. Appendix A includes the solution of a non­

interacting fermion gas. The expression for an exact spin-polarized XC potential for 

ID repulsive Hubbard model is derived in appendix B. We give in appendix C the 

BALDA for the CLDFT. Appendix D contains tables to generate the contour plots 

in Chapter 4. Lastly, appendix E gives the list of publications from this work.
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Chapter 2

Theoretical Background

2.1 Lattice model Hamiltonians

As already pointed out in the introduction, model Hamiltonians are often adopted 

as the starting point of developing a quantum theory for correlated electrons instead 

of investigating real quantum many-body systems. Effective Hamiltonians contain 

the essential features of the problem under investigation while integrating out any 

unwanted parts of the Hamiltonian’s spectrum, i.e. eliminating unnecessary compu­

tational overheads. In this section, we will illustrate how this “reduction” of degrees 

of freedom can be done. Let us consider a general Hamiltonian governing the dy­

namics of N electrons with mass nie and charge e.

N r

« = E
i=l

p! + v{Xi)

i<i<j<N \Xi — X

N ^ N

(2.1)

i=l i<j

where Xj denotes the position and p, the momentum of i-th particle. The potential, 

v{xi), has the periodicity of the lattice structure. Here we consider natural units 

h — rrie = 1 and the lattice spacing a is set to unity. In general, T denotes both the 

kinetic energy of the particles and their interaction with the ionic lattice, while V is 

the potential energy of the interaction between particles.

13
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Using the second quantization language, the equation (2.1) becomes

H = + he) + - ^ijklctc]a'Cka'Cla, (2.2)

ij kl era'

where the operator c\^ {ci„) is called the creation (annihilation) operator because 

it creates (destroys) an electron of spin o at the single-particle orbital 4>i located 

at site i. The operators and Ci„ obey the anticommutation rules (see Appendix 

A). The coefficients ty and Vijki are the matrix elements of the operators T and V 

respectively, which are defined as

ty = J dx(f)*{x)f(j)j{x),

yijki=J dx J df'^*(f)0fc(x)U(f,f')(^*(f')^/(f'),
(2.3)

while the indices i,j, k,l run over all the possible lattice sites, L.

Among all the matrix elements Vijki, the following three types carry a particular 

meaning and govern specific physical processes [48]:

• The direct terms, Uyy = Uy3, involve integral over sqnare moduli of orbitals 

and couple density fluctuations at neighbouring sites. This contributes

J2aa' Vijhi„nj„> to the second term of the equation (2.2) (n, = 4^Qcr).

This term is able to induce global instabilities in the charge density distribu­

tion known as charge density wave instabilities observed in materials like the 

magnetite (Fe304) [6].

• The exchange terms, Vijji = Jij^, describe magnetic correlations among the 

electron spins. By using Pauli Matrix identities, the exchange part of the

Wij = JdxJ df'|(?ii(f)p|^^|,^j(f')|2 > 0 
^ > 0
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electron-electron interaction can be written as

22 X/ ,t st (2.4)
CTCT'

From the equation (2.3), > 0 so that the energy is minimized when the spins

point in the same direction. Therefore, this term tends to induce ferromagnetic 

order.

• The on-site Coulomb terms, Vijki = Vhu, where the atoms are very well sep­

arated and the overlap between neighbouring orbitals is weak. The Coulomb 

interaction strengths. Van — 2U^, (factor 2 is from the spin summation), dom­

inate the interaction mechanism.

Let us neglect all the terms mentioned with the exception of nearest neighbour 

contribution in the hopping integral, tij and the on-site Coulomb terms. For identical 

lattice sites, the hopping integral reduces to Uj = —tS^ij) (^ > 0), where {ij) implies 

adjacent sites. The effective Hamiltonian can be finally written in a simplified form 

known as the Hubbard model [21],

flu = X^(Cca ^-hc) + U^ (2.5)

where {ij) denotes summation over nearest neighbour sites. The equation (2.5) does 

not account for multi-band effects and orbital degeneracy which are not included 

within the scope of this work. The Hilbert space needed by the Hubbard Hamiltonian 

is 4^ dimensional, since any site j can be either empty |0)j, singly occupied with an 

electron having up-spin, | t)j, singly occupied with an electron having down-spin, 

I Dj or doubly occupied, | ti)j- The approximation leading to this model was 

justified by Hubbard for 3d-transition metals. He estimated the various parameters

= f dx/df'|(/>i(x)p|j3j7||0i(f')P > 0
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and came up with U ~ lOeK, K ~ 2 — 3eK, and Jjj Ri l/40eV^ [21]. However, other 

terms may be important depending on the system and/or the subject of interest. A 

very good discussion on the importance of all the terms included in the Hubbard 

model and of those neglected can be found in reference [6].

Apart from the Hubbard model, there are several other important model Hamil­

tonians which approximate real quantum systems and we shall briefly outline some 

of them here. We assume single orbital per site throughout the course of our descrip­

tion.

The inclusion of direct terms between nearest neighbours within the Hubbard 

Hamiltonian of the equation (2.5) defines the extended Hubbard model;

// T ^ ^ ^ ^
{ij) aa'

(2.6)

Also, it is not unusual to have a fermion model where the spins of all the electrons 

are forced to be polarized in one direction so that by the Pauli principle they can not 

share the same site. However, these electrons can interact when sitting at nearest 

neighbouring sites via Coulomb interaction, V. The Hamiltonian that describes such 

a model is

// = -t '^(cjcj + he) -hV ^hihj, (2.7)
(iJ) {ij)

and it is known as the spinless fermion Hamiltonian for the t-V model. This has 

been used for investigating problems related to Wigner crystallization [6].

In order to describe the behaviour of magnetic impurities such as Mn, Fe and Co 

dilutely inserted into non-magnetic metals such as Cu, Ag and Au, the Anderson 

model [49] is usually employed. Here, the Coulomb interaction within the local d 

or / shells of the magnetic impurities is the essential ingredient. Its relative strength 

compared to the hybridization strength with the itinerant electrons of the host (i.e. 

the virtual-bound-state broadening) is responsible for the existence of local magnetic
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moments. The Hamiltonian describing the Anderson model is given by

H = E + he) + Ed 'y + U (2.8)
k(7 ka

where Cka{da) is the annihilation operator for the conduction (localized) electrons 

of the host (the impurity), Eka represents the energy of a conduction electron with 

wave-vector k and spin a and Ed is the atomic energy of the localized electrons. The 

degeneracy of the d or f shells is usually neglected. When two electrons occupy 

the localized orbitals, a Coulomb repulsion U acts between them. Finally, V^d is 

the matrix elements describing the mixing between the localized orbitals and the 

conducting electrons.

The study of the Anderson Hamiltonian can be approached by using perturbative 

methods. In the limit where Vkd is very small compared to U and Ed, a second order 

perturbation expansion in the exchange interaction leads to the so-called s-d model 

Hamiltonian, which is usually used to describe the Kondo effect [50, 51]. Within 

this model, the magnetic impurities are replaced by localized spins interacting with 

the conduction electrons through an exchange term. The s-d Hamiltonian can be 

written as

fhd = ^ £kacl„Cku + 2 JS • s, (2.9)
ka

where S = d^Tufjida' denotes the spin of the electron on the impurity d-state, 

s = I Ylkk'aa' c\cT'^aa'Ck'a' IS the Spin density of the itinerant electron band with r 

being Pauli spin matrices. The interaction strength J is a function of the strength 

of the Coulomb interaction between the localized electrons, the atomic energy of 

the localized orbital, the energy of the conduction electrons and the hybridization 

between the impurity and the itinerant bands [50].

Magnetic correlations are often described by models of localized quantum spins, 

either in chains or, more generally, in higher-dimensional quantum spin lattices [48].
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This is achieved by freezing the charge degrees of freedom and only allowing spin 

excitations to remain. A simple model used in the description of lattice spin systems 

is

H = - + J,SfS] + J,s;s]), (2.10)
{ij)

where Jx, Jy and Jz are the components of the exchange coupling constant that 

defines the interaction between localized moments on atoms i and j. Sf, Sf and 

5? represent the components of the quantum mechanical spin vector, S, of the Tth 

atom and obeys the following commutation rule

(2.11)

typical of the quantum mechanical spins commutator algebra, |S| = S. is the 

Levi-Civita tensor'*. S may be either an integer or a half-integer. For example, 

5 = 1/2 for a single electron while the total magnetic moment of electrons bound to 

an atom may be much larger.

It is possible to consider various limits of the equation (2.10) by varying its 

exchange parameters. A short overview of some of these limits, their corresponding 

Hamiltonian and model name is given in Table 2.1. These models are known to 

provide a good description of magnetic insulators like EuO or K2CUF4.

For the purpose of the research carried out in this thesis, we will consider only 

the Hubbard (Part I of this thesis) and Heisenberg (Part H of this thesis) models. 

Therefore in the next section we will discuss the Hubbard model in some details and 

we will introduce some of its most important features and common approximations.

4^xyz jg defined by

( -hi if (a;, j/,z) is (1,2,3), (3,1,2), or (2,3,1);
_i if(x,y,z)is(l,3,2), (3,2,1), or(2,l,3); 

I 0 otherwise: x = y ot y = z ot z = x.
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Limit Hamiltonian Model Name
Jx — Jy — Jxy

-J> E,.,., S‘S‘

XXZ model

Jx — Jy — Jxy Jz «*, = -^.,E«.,i(s”sr + sfSf) XY model
Jz ^^ Jy-) Jx Ising model

Jx Jy Jz J VH = -^E,y,S.S, 3D Heisenberg 
model

Table 2.1: Short summary of the different limits of the equation (2.10). (*,j) denotes
summation over neighbouring sites.

2.2 The Hubbard model

The Hubbard model plays a crucial role in the field of strongly correlated electron 

systems because it offers the chance of achieving qualitative insights into how the 

interactions between electrons can give rise to insulating, magnetic, and even novel 

superconducting phases in a solid. It was introduced independently by Hubbard [21], 

Gutzwiller [20] and Kanamori [22] as a model to include both the localized and band­

like behaviour. It was originally devised to describe correlation effects for electrons 

in transition metal monoxides like FeO, NiO and CoO. These compounds are well- 

known antiferromagnetic insulators, but when treated by mean field methods they 

are predicted to be metallic.

Ever since its introduction, the Hubbard model has been adopted as a prototype 

for many systems involving strongly correlated electrons. In its most elementary 

form, the single orbital case, the Hubbard model could be taken to describe materials 

in which orbital degeneracy has been completely lifted by crystal field. Over the 

years, such a model has been used to explain and acquire insights into [19]

• the electronic properties of solids with narrow bands,

• the Mott metal-insulator transition (MIT),

• electronic properties of high-Tc superconductors like cuprates.
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As written in the equation (2.5), the Hubbard model contains two terms: the 

first term which is usually referred to as the kinetic energy term contains band 

energy originating from both the kinetic energy and the atomic potential. It typically 

describes the hopping process of electrons between two nearest neighbour sites with 

magnitude t. The second term, the potential energy term, describes the electrostatic 

energy of a doubly occupied site (with an interaction strength U). If either t or U 

is set to zero, the Hubbard model has trivial solutions. However, if neither t nor U 

vanishes the model displays a variety of complex properties. While t is responsible 

for the delocalization of electrons, U keeps them apart so that the ratio U/t is the 

only parameter that determines the magnetic and electrical properties of any system 

described by the Hubbard model. By adjusting the U/t ratio, one effectively mimics 

the variation of external parameters like the pressure, the temperature, the material 

composition, etc.

From the derivation of U,

U = J J dx'\(l)i{x)\‘^j^^—\(j)i{x’)\‘^, (2.12)

one immediately realizes that it is always positive, i.e. it describes repulsive inter­

action between two electrons. However, at the model level, U can also be taken as 

negative. A negative-!/, first of all, can be obtained formally by a canonical transfor­

mation which replaces U > 0 with U < 0 [6]. Secondly, one can always construct an 

effective Hamiltonian model (similar to the Bardeen-Cooper-Schrieffer - BCS - model 

Hamiltonian), which describes a net attractive electron-electron interaction due to 

processes not characterized in detail. This is usually referred to as the attractive 

Hubbard model (a review of the attractive Hubbard model can be found in refer­

ence [52]). Some superconductors like Bai_xKj,Bi03 are described by the attractive 

Hubbard model, which is justified on the basis of the second interpretation. In this 

work, we will deal with the repulsive Hubbard model only [U >0).
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2.2.1 Important features of the Hubbard model

The Hubbard Hamiltonian can be solved exactly in two limiting cases:

• Band-limit {U = 0): In this limit, Hy can be exactly diagonalized (See Ap­

pendix A). This gives a band structure for which the electrons energy levels 

disperse in a cosine-like band, as shown in Figure 2.1a. In this case, the elec­

trons do not feel each other (i.e. they are non-interacting) and hence they are 

delocalized for any value of the band filling. The system is metallic at any 

fractional filling.

(a) (b)

Figure 2.1: Two trivial solutions of the Hubbard model (a) Band-limit: cosine dis­
persion and always metallic if the band is not completely filled, (b) 
Atomic-limit: antiferromagnetic Mott-insulator

• Atomic-limit (t = 0): In the opposite limit, there will be only a collection 

of independent sites whose eigenvalues are trivial. Due to the energetically 

expensive price that one pays (by a value of U) for two electrons occupying the 

same site, the ground state configuration at half-filling (n = (n) = 1) consists 

of one electron per site. This uniform distribution of electrons, which remains 

stationary or localized as a result of their repulsive interaction, makes the 

system behaving as a perfect insulator. This is the so called Mott insulator and 

is schematically shown in Figure 2.1b. This limit is believed to be responsible 

for the physical and chemical properties of many 3d transition metal oxides such 

as CoO, antiferromagnetism in MnO, superconductivity in La2-xBaxCu04 and
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so on.

Evidently, there would be a MIT in between the above mentioned two limits 

at half-filling for some value of U/t. In other words, the system will change from 

being metallic for small U/t to insulating for large U/t. This is considered to be a 

very interesting feature of the Hubbard model, i.e. electron correlations can drive a 

metallic system into an insulating phase.

Having solved Hu for the two limiting cases, another common limit is the Strong 

U limit {t « U). In this case, the doubly occupied states (| t|)) are eliminated 

from the basis set used to represent the wavefunction solving Hy- Perturbation 

theory can then be applied to expand the Hubbard model in powers oi t/U up to 

the second order. The resulting model is the so-called t-J model whose Hamiltonian, 

after a canonical transformation of Hy., is given by [48]

//tJ = -t + hc) + J - ^), (2.13)
(o)

where J = AU/U and S,„ denotes an electron spin operator at site m, (|S| = 

1/2). This model is commonly used to explain superconductivity of doped cuprates 

(Ai_,B,C04).

At half-filling, since there are no empty sites, the expression (2.13) reduces to

4 = jV(s,s,--). (2.14)
(o>

The equation (2.14) shows that the Hubbard Hamiltonian at half-filling and for 

strong coupling transforms into a Heisenberg Hamiltonian with an anti-ferromagnetic 

exchange^. This limit reveals that aside from the MIT, an additional feature of the 

Hubbard model is that the insulating state is magnetic.
^Note that the J in equations (2.13) and (2.14) is different from that of the exchange term of 

equation (2.4). The exchange term has not been included into the Hubbard model whose limit of 
strong U led to equation (2.14).
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Despite the simplicity of the Hubbard Hamiltonian, it is in general difficult to 

solve (apart from the limits discussed here). This difficulty arises from the fact that 

the kinetic and potential energies are diagonal in the momentum and real spaces 

respectively but they do not commute. In order to illustrate the complications arising 

when solving Hubbard model for arbitrary U/t, in the next section we calculate the 

spectrum of Hu for a two-site lattice.

2.2.2 Two-site Hubbard model

Since each site, n, can be described by four possible states |n) - vacant, singly occu­

pied by either f or |, or doubly occupied - there will be altogether 4^ multiparticle 

states, where L is the number of sites. In this basis, Hu becomes a 4^ x 4^-matrix. 

It is possible to reduce the size of the matrix by invoking symmetries specific to the 

Hamiltonian or the boundary conditions. Examples of the symmetries include the 

most commonly used ones such as the number of particles and the One can

also use sophisticated (in terms of implementation) symmetries such as translational 

invariance, spin inversion, reflections with respect to lattice axes and so on to further 

beat down the size of the matrix.

|i) = IT,o)

|2) = |o,T)

site 1 site 2
Figure 2.2: Two states retained in a two-site problem with one electron.

Let us start with the two-site one-electron case, a “toy” model for a simplified 

Hj molecule. Since there is no Coulomb interaction, the second term in Hu is zero. 

We can then eliminate from the basis all the other states of the problem except the 

ones in which the electron is localized in one of the sites as shown in Figure 2.2. The
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wavefunction can be expanded as

|4') = ci|l) + C2I2), (2.15)

where |i) and the c’s represent an electron sitting at z-th site and normalization 

constants respectively. The Hamiltonian matrix is

[Hu] =
0 -t 

-t 0

and the eigenvectors and corresponding eigenvalues of the problem are

|H) = ^(11)-12))

|5) = ^(|1) + |2)) =

1
72

1
71

-1

1 

1

Ea —

£b = -t.

(2.16)

|2l) and \B) are called the anti-bonding and bonding states respectively. Note that 

the bonding state is the ground state of the problem (here t is taken positive).

Let us now consider the case of two electrons, i.e. the neutral H2 molecule. If we 

restrict our Hilbert space to the case = 1 and = 1 (singlet state i.e. = 0), 

the wavefunction can be constructed as a linear combination of 4 states only (see 

Figure 2.3). Here |0) is the vacuum state and indicate that the particular site

(either 1 or 2) is empty. The Hamiltonian matrix takes the form

Wu] =

0 0 -t -t

0 0 -t -t

-t -t U 0

—t—to u
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I
I
I

I

11) ~ I Ti i) — |0)

|2) = U,t)=4TCu|0) 

|3) = in,-) = £lici^io) 

|4) = |-,U) = ct^c^^|0)

site 1 site 2
Figure 2.3: Four states retained in a two-site problem with two electrons.

which can be easily diagonalized. The eigenvalues and corresponding eigenvectors 

are

U \/C2 -f 16^2
= IT - ------ , I'&i) = {|1) + |2)} COS0 -b {|3) + 14)} sin0

^2 = - + 

^3 = 0)

£4 = u,

w'here

2 2 
U y/lPTm^

, I'I'z) = -{|1) + |2)}sin0 + {|3) + |4)}cos0 

I'&3) = ^(|1)-|2)) (2.17)

I'I'4) = ^(|3)-|4)),

tan 9 = 4t
U + Vf/2 -f 16t2

The ground state energy is therefore the one given by £1. Up till this point we have 

made use of the symmetries of the Hamiltonian itself to reduce the dimension of the 

matrix to be diagonalized i.e. conservation of (equivalent to Hu] = 0) reduces 

the matrix to a 4 x 4 matrix. We note that it is possible to use spatial symmetries 

by defining a new set of basis in terms of those written in equation (2.17) so that the 

4x4 matrix can be further reduced to a 3 x 3 matrix which can then be manually 

diagonalized. We refer interested reader to reference [53] where this “toy” is dealt 

with.

Here we have solved the 4x4 Hubbard Hamiltonian by direct diagonalization. For 

larger systems (more sites), the Hilbert space associated to Hu grows very quickly. 

In general, the implementation of the Hubbard model involves creating many-body
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wave-functions, represented by which are formed as a product of creation op­

erators;

I'l',) = (nfcDlO). (2.18)

where k is the dimension of the Hilbert space. The Hu matrix elements can then be 

written as

= (2.19)

For a L-site problem with and Ni electrons, k is given by

K =
L 
Nj'

where. m ml
n J n\{m — n)\

(2.20)

In Table 2.2, we present the dimension of the Hilbert space (the number of basis 

functions one should use to expand Ily) for a L-site system at half-filling. This is 

the filling for which the Hilbert space is the largest. In order to generate the table, 

we have only used symmetries associated to the number of electrons and that for 

which = 0. The rapid growth of the Hilbert space as L and N increase makes the 

solution of Hu by exact diagonalization impossible. Of course, making use of other 

symmetries can only reduce the dimension by insignificant fraction. As a result, 

reasonable approximations are often employed to study the model. The most widely 

used approximation that exists is the mean field one.

2.2.3 Mean field approximation

The mean field approximation (MFA) assumes that the fluctuations of the site occu­

pation, Uia, about its mean value are small and thus can be neglected. This makes 

the result not as accurate as that obtained by direct diagonalization but it has the 

advantage of giving rough estimates of average quantities. Within the MFA, the
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L Ni Ni Hilbert Space dimension
2 1 1 4
4 2 2 36
6 3 3 400
8 4 4 4,900
10 5 5 63,504
12 6 6 853,776
14 7 7 11,778,624
16 8 8 165,636,900
18 9 9 2,363,904,400
20 10 10 34,134,779,536

Table 2.2: Hilbert space dimension of the Hubbard model with L sites and and 
electrons.

second part of Hu can be rewritten by using the expansion

where (hia) is the expectation value of fiia so that

nijhii =hi^{nii) + {ni^)nii - {ni^){hii) 

+ {hi^ - {hi^)){nii - {nil)).

(2.21)

(2.22)

If the last term of equation (2.22) is neglected since it is of second order in the 

particle density fluctuations, {hi„ — (fiia)), then the original Hubbard model can be 

replaced with the mean field Hamiltonian

L L

fjMFA ^ J](c|^Cjv + hc) + u Y^{fiii{hii) + {hii)hii - {fin){hn)). (2.23)
(ij)u i

The implication of this approximation is that, instead of considering each electron 

as interacting individually with all the other electrons, as in the case of original 

Hubbard model, the interaction can now be viewed as an effective or a ‘mean field’ 

one generated by all the electrons combined. The neglected term in equation (2.22)
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contains the error of this approximation. Clearly, the mean field Hamiltonian in­

cludes only linear terms in the number operator, which is much more simpler to 

diagonalize than the original Hubbard model.

The MFA is known to be a very good approximation in infinite dimensions but 

its performance is usually not as good for low-dimensional systems. As such, dimen­

sionality plays a crucial role in providing a fully consistent treatment of the Hubbard 

model. Exact solutions of the Hubbard Hamiltonian are known in the one dimension 

and for infinite dimensional systems but for two and three dimensions Hu has not 

been solved exactly. Therefore, in next section we highlight theoretical frameworks 

to describe interacting quantum systems in different dimensions.

2.3 Fermi and Luttinger liquids

As pointed out in the introduction, correlation effects in fermionic systems are due to 

the Coulomb interaction. There are two basic concepts that are used for describing 

these interacting systems: the Fermi liquid and the Luttinger liquid [54]. It is not 

our intention to explain in details these concepts as that has been done in references 

[54, 55, 56] but we will briefly mention a few important aspects.

The Fermi liquid is a generalization of the non-interacting many-fermion sys­

tem (Fermi gas) to its interacting counterpart, whose theoretical description (Fermi 

liquid theory [8]) is approximate but well understood [56]. The idea can be de­

picted by a picture of quasi-particles (elementary single-particle excitations) evolv­

ing from a Fermi gas on adiabatically switching on the Coulomb interaction. These 

quasi-particles can be labelled by the same quantum numbers as the excitations 

in the non-interacting gas and obey Fermi-Dirac statistics. This, therefore, estab­

lishes a one-to-one correspondence between such excitations and the “bare” particles 

{U = 0). There are three main effects that the electron-electron interaction brings to 

the Fermi liquid which modify the non-interacting electron picture: (1) Renormal-
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ization of the kinematic parameters of the quasi-particles such as the effective mass 

{t in the lattice case), and the thermodynamic properties like specific heat and sus­

ceptibility; (2) it provides quasi-particles with a finite lifetime which goes to infinity 

close to the Fermi surface; (3) it induces oscillations in the Fermi liquid, which are 

called zero sound modes [57].

Despite the remarkable success of Fermi liquid theory in explaining the effects 

of the Coulomb interaction in an electron gas in high dimensions, the theory breaks 

down in ID. From the topological point of view, it is not difficult to see that inter­

action has more drastic effects in ID when compared to higher dimensions due to 

the restricted geometry in ID (electrons can hardly avoid each other). Any electron 

that propagates in a ID wire will push all its neighbours because of electron-electron 

interaction. In other words, the individual motion of electron is prohibited and only 

collective excitations are allowed. Even when the interaction between electrons is 

weak, ID wires are still classified as strongly correlated due to effective reduced di­

mensionality which hinders single-particle motion. This is the key difference between 

one-dimensional and higher-dimensional systems. Also the physical properties of the 

one-dimensional electron gas are indeed significantly different from those of the free 

electron gas because of the non-Fermi liquid behaviour. This makes the ground state 

of the interacting system in ID different from the free fermion gas. Such a new 

ground state is often referred to as the Luttinger liquid [10].

A Luttinger liquid is an important metallic phase that is not a Fermi liquid (to be 

more precise, the Fermi liquid state can only correspond to non-interacting fermions 

in ID as any metallic state with interacting fermions must be a Luttinger liquid). 

Thus, the quasi-particles in this new state of matter are no longer fermionic in nature 

but are bosonic where the so-called collective excitations dominate. The Luttinger 

liquid collective excitations behave like the oscillations of a string, which are made up 

from the motions of the infinitely many small pieces of the string. Importantly, many
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of the correlation effects of the Luttinger liquid (the quasi-particle spectrum) can be 

computed exactly [11, 45] so that it is possible to have direct access to physical 

properties of interest. Examples of systems where Luttinger liquid theory can be 

applied include fermionic metals like nanotubes, bosons in optical lattices and also 

spin chains [12].

2.4 Lieb-Wu equations for homogeneous one­

dimensional Hubbard Model

Many properties of one-dimensional structures have been successfully studied through 

the Hubbard Hamiltonian of the equation (2.5) [16]. The Hamiltonian was exactly 

solved by Lieb and Wu using the Bethe Ansatz (BA). We now present an analytic so­

lution for the Hubbard model, valid in the limit of infinite, homogeneous ID systems. 

Let us consider the homogeneous form of the Hubbard Hamiltonian, Ilu, containing 

L lattice sites and N electrons. The Hamiltonian commutes with the spin-resolved 

total number operators:

— 'y ^ — y ] ' cr =T, i (2.24)

where N = JVj + JVi. This implies that the conserved quantities (constants of motion) 

are the total number of electrons per site, n, (electron concentration or band filling) 

and the total magnetization per site, m. These are defined as

n= ^ =n^+ni, m = - ni- (2.25)
i,cr i,a

0<n<l, 0<m<n with = N-^/L and = Ni/L. The electron concentration 

is related to that of the hole concentration, p, through relation p = 1 — n so that
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the limiting cases n — 0 and n — 1 corresponds to empty and half-filled bands 

respectively.

An elegant and quite general method for solving one-dimensional problems with 

correlation is based on the BA [58]. It was introduced by Hans Bethe who first used it 

to solve the Heisenberg model. This method relies on writing the exact wavefunction 

of the interacting system under study and then solving the associated Schrodinger 

equation. The idea is to make a plane-wave ansatz of the form

'^N = y^a(P)exp{2y^ Ap^Xfc}, (2.26)

where the sum is over all permutations of the momenta {Xk}k=i,...,N- Here, Xi, ...,xi\r 

are the positions of the N particles in the system. The equation (2.26) is weighted by 

a prefactor a(F) which depends on the permutation. By applying periodic boundary 

conditions to the wavefunction then one obtains the allowed quantum numbers as a 

set of coupled equations referred to as the Bethe equations. A comprehensive review 

on this subject can be found in reference [59]. The BA has been employed to tackle 

problems like the one-dimensional Bose gas [60], the Heisenberg XXZ magnet [61] 

and the Heisenberg XYZ chain [62].

In 1968, Hu was solved exactly in ID by using this ansatz. The solution is 

expressed via the following Lieb-Wu equations [45]:

N
gifcjL _ i sin kj — iAp — Uf 4 

sin kj — iKfj 4-U/4'
j = i,2,...,yv

N . . ,

ni sm kj lAa - U/4
N

isinkj — lAa + U/4 —iAr + iAa — U/2
=1 ' (3=1 ^

-i-r -iAp -h iAa + U/2 , o J.T11 A , A------a = l,2,...,Afp

(2.27)

where the two sets of variables {kj} and {A^} are quantum numbers typically referred 

to as quasi-momentum and spin rapidities respectively [19]. They are calculated from 

the Lieb-Wu equations. By taking the logarithm of these equations one can derive
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the following transcendental equations [45, 63, 64]:

N,

Lkj = 27r/j+2 tan~
13=1

_i ( h.ji — sin fcj
U/A

N

2 ^ tan" 
j=i

_i f Aa — sin kj
U/4

= 2'KJa + 2 ^ tan" 
^=1

1 [ Aqi Ajj

U/2 ) ’

(2.28)

where {Ij} and {Ja\ are quantum numbers, which can be either integers or half­

integers. The ground state energy is given by [45]

N

E = —2t cos kj.
j=i

(2.29)

In the limit where L —> oo so that = Nj/L and rq = are constant, it

has been shown that the energy per site (energy density) of the system, e, for the 

repulsive case can be written as [65]

rQ
e =—2t / dk cos kp{k), 

J -o
(2.30)

for U] > n|. The function p{k) is determined from the Fredholm coupled integral 

equations:

1p{k) =-—hcosA: / dXa{X)Ki{sin k — X),
27r J_g

rQ
(A)= / dkp{k)Ki{smk-X)- dX'a{X')K2{X - X'), 

J-Q J-B

(2.31)

where
/Fi(sin k — X) = — 

27r
W

K2{X - A') =

f/2 -I- 16(sin k — A)^ 
4U

2tt [U^ + 4{X-X'y

(2.32)
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with normalization conditions determining Q and B,

L
L

p{k)dk =N/L = n = + rii,
Q

B

a{X)dX =NJL = n[ =
n — m

(2.33)

The parameters Q and B generally depend on n, m, U and t.

It is useful to know that by substituting p{k) into (2.33), one can write

/ dkcoskf{smk) = 2 / coskf{smk) = 0.
Jw Jo

(2.34)

There Q = n implies that the band is half-filled

N
T

= / dkp{k) = 1.
TT

(2.35)

Also when B = oo, by combining (2.31) and (2.33), one obtains

/oo \
a{X)dX = 7: I p{k)dk

•00 2 J_Q

n
2’

(2.36)

i.e. the important result that the magnetization, m, of the ground state is zero.

At Q = TV and B = 00, the coupled integral equations can be solved analytically 

to obtain the ground state energy density for the half-filled Hubbard chain as

re = —4f / dx- , . M )Jo x[l+ exp{xU/2t)]
Jo{x)Ji{x) (2.37)

where Jq and Ji are the zero and the first order Bessel functions respectively. Lieb 

and Wu [45] indeed showed analytically that a system will always be in the insulating 

phase for f/ > 0 at half-filling in one dimension.

The BA method only allows us access to properties of the homogeneous Hubbard 

model. An addition of an extra term to the homogeneous model will break its in-
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tegrability and thereby restricts the capability of BA techniqnes to describe many 

physically relevant quantum systems. Nevertheless, the integrability of the homoge­

neous case provides benchmarks for the development of approximate and numerical 

methods. Such numerically approximate method is the LDFT. In the next section, 

we will introduce the basic formalism of DFT, namely the Hohenberg-Kohn theo­

rem and Kohn-Sham scheme, plus its approximate energy functionals. An extensive 

review of ab initio DFT can be found in reference [66].

2.5 Density functional theory

Most of the calculation methods in solid state physics and quantum chemistry aim 

at solving the time-independent, non-relativistic Schrodinger equation

/74>j(Ti, X2,..., xat, i?i, ./?2, •••, Rm) = , XN, Ri, R2, ■ ■ ■, Rm)- (2.38)

Here H is the Hamiltonian for a system consisting of M nuclei and N electrons which 

can be written as

N M N M „ N N ^ MM

^ j=l ^ .4=1 i=l A=1 t=l j>i >1=1 B>A

ZaZb

Rab
, (2.39)

and where the atomic nnits are used i.e. h = rUe = e = A-keo = 1. A and B run over 

the M nuclei, while i and j over the N electrons in the system. The first and the 

second term describe the kinetic energy of the electrons and the nuclei respectively; 

the last three terms represent the attractive electrostatic interaction between the 

nuclei and the electrons, the repulsive potential due to electron-electron interaction 

and the repulsive potential due to the nucleus-nucleus interactions.

By using the Born-Oppenheirner approximation, the electrons can be considered 

to be moving in the field of static nuclei. The inertia of electrons is considered to
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be negligible in comparison to that of the nuclei with the result that their nuclear 

kinetic energy is negligible and their potential energy is just a constant. Thus, the 

electronic part of the Hamiltonian can be written as

N N N M

^ i=l i=\ j>i. i=l .4=1

^ N NN N
(2.40)

i=l 1=1 j>i

= f + bl + V,

where the last term is the potential energy operator of the electrons in the external 

potential generated by the nuclei v{x). The solution of the Schrodinger equation,

?Y|4/) = (2.41)

gives the electronic many-body wavefunction 4'({xi}), where {xj} are the electron 

coordinates and their spins, and electronic energy E.

In principle, equation (2.41) can be solved by expanding the wavefunction in a 

basis of Slater determinants, therefore converting it to a problem of diagonalizing 

matrices. The drawback of this approach is that the dimension of the Slater basis 

grows with the number of electrons as A^! thereby the scheme can only be used for 

very few electron systems. In addition, the true many-body wavefunction may not 

be representable as a single Slater determinant.

Before the advent of DFT, the Hartree-Fock approximation (HFA) was the stan­

dard approach used by solid state physicists and quantum chemists. The HFA uses a 

single Slater determinant that minimizes the total energy instead of the many-body 

wavefunction. However, this method lacks electron correlations, although it captures 

correctly the exchange. It describes electrons as independent of each other, interact­

ing only via an effective field. This has made HFA to inaccurately describe metals as
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insulators or semiconductors. A number of systematic improvements on this method 

have been developed over the years such as perturbation theory, or the configuration 

interaction (Cl) scheme [67], but these are computationally expensive just like the 

ED, thereby only applicable to systems with a relatively small number of electrons.

Another route, which is considered to be the most successful approach in solving 

the Schrddinger equation for the many-body problem, is DFT. The main idea behind 

DFT can be briefly described as follows: since the Hamiltonian is parametrized 

by the external potential v{x), the corresponding energy and many-body electronic 

wavefunction that satisfles the Schrddinger equation (2.41), can be considered as 

functionals of this external potential so that T = Tfy] and E = E[v]. The most 

important innovation of DFT is the replacement of the many-body wavefunction by 

the electronic density n{x) of the system. This is

n{x) = N J ■■■ J \'i{x,Xi,X2, .■.,XN)\‘^dX2...XN, (2.42)

in which the density operator h{x) can be defined as

N

h{x) = ^ S{x — Xi). (2.43)

By using the expression (2.43), the potential energy due to the external potential 

can be written as

V = (»|V|*) = (*| /n(x>(f)df|») = /„(x>(.-)df. (2.44)

The Hohenberg-Kohn theorem, presented in the next section, states that there is a 

one to one correspondence between the external potential v{x) and the ground state 

density n{x). These two quantities can be considered as conjugate variables via a
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Legendre transformation,

SEo[v]

= En\v 5v{x) ('I'oMl^oH) + (^'oHln(f)ld'oM) = n[v]{x),
(2.45)

where the wavefunction 'Lq^] is normalized and the ground state energy of the Hamil­

tonian is Eq. The density can therefore be used as the only fundamental quantity 

by defining a Legendre transform

T[n] = Eo[n] — / n{x)v{x)dx = (ttoMIT -t-Z)/|4'o[u]), (2.46)

where v{x) is a functional of n(x). The proof that this functional is unique relies 

on the one-to-one mapping between the external potential and the ground state 

density. The functional ^'[77.] is defined for the so-called u-representable densities, 

i.e., ground state densities associated to a Hamiltonian with external potential v. By 

differentiating this functional with respect to the electron density, one immediately 

obtains

SEjn]
Sn{x) -J 6Eo[v] 5v{x') 

Sv(x') 6n{x)
dx' n{^) — v{x) = —v{x).

dn{x') (2.47)

2.5.1 Hohenberg-Kohn theorem

Central to DFT are the two theorems derived and proved by Hohenberg and Kohn 

(HK) in 1964 [31]. The first theorem establishes that the electron density 77 of a non­

degenerate ground state uniquely determines the external potential v{x) (up to an 

arbitrary constant), which acts over the many electron system. In other words, the 

electron density n{x) determines the Hamiltonian operator and thus all the electronic 

properties of the ground state of the system. The implication of this first theorem is
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that the total energy of a Coulombic many-electron system in an external potential 

can be written as

E[n]={'i>[n]\n\<l>[n]) = (^[n]|t + + V|^[n])

= (^'[n]|T + fY|^'[n]) + (^'[n]|V’|^'[n]) = E[n\ + J n{x)v{x)dx,
(2.48)

where the functional E[rt\ is independent of the external potential and thus is uni­

versal. This means that if one knows its exact form, any many-electron problem will 

be solved.

The second HK theorem states that the electron density which minimizes the 

energy fur.ctional is the exact ground state electron density, i.e.,

Eo[n] = min{.F[n] + / n{x)v{x)dx},
" J

(2.49)

where Eq[i\ is the ground state energy for the system in an external potential v{x). 

This secor.d theorem can be proved by variational principles. If the functional deriva­

tive of E^i] + f n(x)v(x)dx with respect to n(x) exists and obeys the conservation 

of particle constraint, the theorem will require that the ground state density satisfies 

the Euler-Lagrange equations-

0 = 6n{x)
E[n] -I- /„{fMx)df-.(/dx„(x)-/v)}, (2.50)

where the Lagrange multiplier n ensures particle conservation, i.e. f dxn(x) = N.

DFT reduces exactly the problem of an N interacting electron system to the 

determination of a 3-dimensional function n(x) which minimizes a functional Eo[n]. 

However the exact form of E[n] is unknown. Therefore, the major challenge of DFT 

is to consiruct approximate forms of E[vi\.

It is iistructive to note that a definition of functional was found, in parallel, by 

Levy [68] md Lieb [69] and it is usually known as the Levy constrained-search forrnu-
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lation or Levy-Lieb constrained-search formulation. Here a constrained minimization 

is performed over the all the wavefunction which yield the trial density. This min­

imization is rarely used for practical implementation of DFT. The most commonly 

used scheme is one proposed again by Kohn, this time in collaboration with Sham 

[32].

2.5.2 The Kohn-Sham scheme

The idea is that of mapping a system of interacting electrons onto an auxiliary system 

of non-interacting ones with the same ground state electron density n{x) and ground 

state energy Eq. The mapping forms the starting point for all modern day practical 

implementations of DFT.

Kohn and Sham (KS) introduced an auxiliary single-particle Hamiltonian, Hs, 

written in terms of an effective potential operator, V*,

ns = z + v„ (2.51)

whose ground state density is the same to that associated to the interacting Hamilto­

nian. If the effective potential, Us(x), exists, then its uniqueness is guaranteed by the 

first HK theorem. Thus, an energy functional. Eg similar to the one of the equation 

(2.48) and its Legendre transform. Eg can be written as

Es[vg]={^g[vg]\fg-\-Vg\'^g[vg])

Eg[n] =Eg - J n{x)vg{x)dx = ('LsK]|'7;|'Fs[us]),
[2.52)

with the functional derivatives

="(*).0Vg{x)

SEgln]
6n{x)

= - Vg{x).

2.53)
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The XC energy Exc[n{x)\ can be formally defined by taking the difference between 

Ts[n] a-nd ^[n];

T[n\ - Es[n\ +

=Exc[n{x)] + EH[n{x)],

(2.54)

where the Hartree term £'//[n(x)] is the classical Coulomb repulsion of the electron 

density given as
1 r 'n('tW) (

(2.55)^ 1 f n(x)n(x') .
EH[n{x)] = - I -r-z—zrr^dxdaf.

\x — X'

By taking the functional derivative of the expression (2.54) with respect to n(T), the 

KS effective potential is obtained as

Vs{x) = v{x) + Vxc{x) + Vh{x), (2.56)

where
/' n{x') ^Vh= ]-=—^dx

J \x — x'\
_6Excn{x)

Sn{x)

(2.57)

Given the fact that the state I'I's) is associated to a non-interacting particle 

system, it is possible to write it as a single Slater determinant formed by one-particle 

orbitals, 0i, (the Kohn-Sham orbitals) which satisfy the self-consistent KS equations

1
-f- Vsix) (i)i{x) = ei(i)i{x), (2.58)

where
N

(2.59)

The states (pi are ordered so that the energies Ei are non-decreasing. For degenerate
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eigenstates, fractional occupations fi are to be used so that

N

(2.60)

Within the KS scheme, the XC energy contains several contributions. Firstly, 

it includes the difference between the true kinetic energy and the one of the non­

interacting system calculated via the single-particle KS orbitals. Secondly it includes 

the error of approximating the many-body interaction with the classical Hartree 

interaction. Finally, it includes the fact that the true wavefunction may not be 

a single Slater determinant. Therefore all the many-body effects have now been 

incorporated into the XC functional. This term of the energy functional must be 

approximated since all others can be calculated exactly within the KS scheme.

Clearly the interacting problem is reduced to a set of non-interacting Schrodinger- 

like equations. The formulation of the KS equation is in principle exact. If the exact 

XC functional is known it is possible to obtain the exact ground state total energy 

and density of any interacting A^-electron systems by solving the KS equations self- 

consistently. Given the fact that the exact form of XC term is unknown, the major 

challenge in DFT is therefore deriving suitable approximations for it.

2.5.3 Approximate energy functionals

The local density approximation (LDA) is the simplest approximation to Exc and 

usually the basis of all approximate XC functionals. An homogeneous electron gas, 

in which electrons move on a positive background charge distribution such that the 

total ensemble is neutral, is adopted as the reference for this approximation. The 

XC energy functional of the real interacting system with the local density n{x) is, 

at every point in space, replaced by the XC energy of the homogeneous electron gas
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with the same density

E.LDA n = J n{x)exc{n{x))dx. (2.61)

Here, exc{n{d)) is the XC energy density (per particle) of the homogeneous electron 

gas. This qurntity can be split into the exchange and correlation contributions,

exc{n{x)) = ex{n{x)) + Sc(n(x)}. (2.62)

The exchange part, ex(n(x)), is the exchange energy of an homogeneous electron gas 

at a particulir density and was originally derived by Bloch and Dirac [70]:

(2.63)

However no such explicit expression is known for the correlation part, £c(n(x)). Nev­

ertheless, data from highly accurate numerical methods, such as Quantum Monte- 

Carlo, for th3 homogeneous electrons are used to estimate £c-

The LDA has been successfully used in describing metallic systems and in general 

systems where the electron density is rather uniform, but has failed for systems with 

substantial electron density gradients. The failure of the LDA is also known to be 

related to its inability to satisfy some exact conditions. For instance, ec[?^(^)] does 

not scale properly at the high-density limit [71] and it does not display the derivative 

discontinuitj at integer values of the occupation numbers [72],

The first simple extension to the LDA is the generalized gradient approximation 

(GGA). Here the XC functional is written not only as a function of the local density 

but also of the local gradient of the density;

e:GGA n. (n(x), \Vn{x)\)dx. (2.64)
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One way to further improve on the GGA functional is that of systematically includ­

ing higher derivatives of n{x) like |V^n(x)| or the kinetic energy density (t(x) = 

^ |V(/)i(x)p) into the XC functional. This is the so-called meta-GGAs. However,

the more ingredients one adds to the functional, the more expensive its computational 

cost becomes.

One major class of materials where the LDA/GGA is either not accurate enough 

or even fails dramatically is that of strongly correlated compounds like transition 

metal oxides. Insufficient cancellation of the self-interaction error (SIE) is the promi­

nent reason for this failure. Functionals which attempt to rectify this error are usually 

referred to as hybrid functionals. The SIE originates from the spurious Coulomb in­

teraction of an electron with itself, which is inherent to the LDA/GGA functionals. 

HE methods, in the unrestricted or spin polarized form, are SIE free and so can be 

mixed with GGA functional as proposed by Becke [73] (this is the spirit of the hybrid 

functionals).

Approaches, which use either direct subtraction of the SIE, conventionally called 

self-interaction correction (SIG) [74] or those that mix portions of HE exchange with 

the local approximation (LDA/GGA) of DFT perform better in describing various 

properties of insulating solids (where GGA normally fails) and strongly correlated 

materials like NiO. It is important to note that both methods based on non-local ex­

change or SIG are computationally demanding and thus their application to the solid 

state remains rather limited. An alternative scheme that provides good estimates of 

physical properties for systems where LDA/GGA fails and at the same time is not 

numerically expensive has been implemented in a localized atomic orbital code for 

large-scaling is the atomic-SlC (ASIG) scheme [75, 76]. It has been used to investi­

gate exchange parameters in strongly correlated materials [77] and its performance 

is reported in the second part of this thesis.

The LDA-ht/ approach [78, 79, 80] is another scheme employed to study strongly
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correlated miterials. It is based on the Hubbard model with a U parameter represent­

ing the screened electron-electron interaction. This is added to the LDA Hamiltonian 

and treated :n the HFA thus correcting for the SIE. The U parameter is usually fit­

ted in order to reproduce certain properties like the lattice spacing, band gap, etc of 

the material under consideration. It has proven to give a reasonable description of 

the electronic and magnetic properties of strongly correlated materials like transition 

metal and rare-earth oxides.

2.5.4 Spin-polarized DFT

So far, the electrons are assumed to be unpolarized where the total 2-component 

of spin Sz per electron is zero. The generalization of DFT to a system of unpaired 

electrons has also been developed. Here, both the electron density n{x) and the spin 

density m(xi are the fundamental quantities of the theory. These are defined as

n{x) = ni{x) 4- n|(T), (2.65)

and

m{x) = n|(x) — ni{x). (2.66)

The XC functional now becomes different for the two spin species cr (either f or 1), 

leading to a set of spin-polarized KS equations.

1

1

-I- n] [n, m] (T) 4 =

4 = 44 >-V^ + ni[n,m](x)
(2.67)

where v^^[n,Tn\{x) := (x) for which in general vl^[n,m]{x) 7^ vlJ(n,m]{x).

This gives two sets of KS orbitals, one for each spin. The KS equations are then 

solved by using similar procedures to that of the non-spin polarized case.
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Numerical Quantum Many-body 

Tools

Several numerical methods have been developed and used to study strongly correlated 

quantum systems. This chapter gives a description of four methods usually employed 

to investigate their ground state properties. The first and the most direct method is 

Exact Diagonalization (ED). It allows the access to all the properties of a quantum 

system but at a high computational price. Due to the exponential increase of the 

memory required for a calculation with the system size, the applicability of ED is 

limited to small systems. The advantage of this method is, of course, its exact 

(within the model under investigation) and systematic character, since the lowest 

eigenstates and eigenvalues of any microscopic Hamiltonian can be computed without 

any approximation or intrinsic numerical limitations. Thus, ED results are free of 

any method uncertainty and stand as the benchmark for other numerical approaches.

The next two methods that will be discussed are the Numerical Renormalization 

Group (NRG) and the Density Matrix Renormalization Group (DMRG) schemes. 

NRG was originally developed to investigate the Kondo problem. Although it had 

enjoyed a huge success in solving the Kondo problem, when NRG is applied to other 

effective Hamiltonians like the Hubbard and Heisenberg models, it performs poorly.

45
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The DMRG method was developed later to overcome the inadequacies of the NRG 

method. It possesses an accuracy comparable to ED and has been widely used to 

investigate one-dimensional and quasi one-dimensional quantum systems. DMRG, 

however, is not also free of drawbacks, and it performs best with open boundary 

conditions.

Finally, due to the inherent limitations in the applicability of both the ED and 

DMRG schemes, it is pertinent to explore alternative methods which can overcome 

some of these restrictions. One of such method is the DFT on a lattice. In the last 

section of this chapter, we introduce the Hubbard LDFT and the approximations 

used for constructing the XC functional.

3.1 Exact Diagonalization: Lanczos method

Exact Diagonalization (ED) simply involves diagonalizing the full interacting Hamil­

tonian to determine all its eigenvalues and eigenvectors. For the Hubbard Hamil­

tonian, Hu, of L-sites, we have already seen that the Hilbert space contains 4^ 

elements. Since there is no term in the Hamiltonian that flips the spin, there is a 

sub-Hilbert space with fixed spin up and down electron number, Ni and N^, where 

the Hamiltonian is block diagonal and the calculation can be restricted to these 

subspaces. This then reduces the dimension of the Hilbert space to (^^)-

Another way to further reduce the dimension of the Hilbert space of an interacting 

Hamiltonian is to remove unnecessary states from its basis. This is, for example, 

the case for the t-J model where the doubly occupied states, higher in energy, are 

eradicated from the basis describing Hu- Despite the reduction in the basis set that 

one can achieve by using symmetries, there is still a limit to the system size that 

can be handled by ED. This is essentially due to the fact that the basis set scales 

exponentially with L.

In condensed matter systems, low-energy properties are usually the subject of
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one’s main interest so that only the low-lying eigenstates are required. By using 

iterative diagonalization procedures it is then possible to increase by a few more 

sites the system size tractable with ED with results accurate to almost machine 

precision. The iterative diagonalization method allows one to calculate ground state 

properties as well as it provides access to a few low-lying excited states. A very 

powerful algorithm for iterative ED is the Lanczos method [81]. Detailed reviews on 

this method can be found in reference [82]. The spirit of the algorithm will be briefly 

explained here and we follow the description of reference [83].

It is possible to derive the Lanczos method from different points of view. The most 

popular perspective to construct the method is the reduction of an n x n symmetric 

matrix, //, to tridiagonal form by means of a three-term recurrence formula. Given 

a unit-norm initial vector, ]ui) , the following recursive relation

0i+i\vj+i) = n\vj) - aj\vj) - (3j\vj_i) (3.1)

I It —

\

generates an orthonormal set of Lanczos vectors, |uj), and the tridiagonal matrix 

defined as
ai (32 0

/?2 Oi2 Ps 0 

0 Ps 0C3 Pi 

0 Pi ai '

\

(3.2)
. 0 

■ • • ' •■ Pn

0 Pn Oifi

In the equation 3.1, aj = {vj\H\vj), = {vji.i\H\vj) and Pi = 0. It can be shown 

that the vector ]un+i) is zero, and that the following relation holds

/

HV - VHt = 0, (3.3)
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where V = [ui, V2, In other words, the Lanczos recursion computes a tridiag­

onal matrix, //t^, which is orthogonally similar to H. An equivalent expression for 

f5j+i is= \\H\vj)—aj\vj)—(5j\vj-i)\\. It is often used in practice because it offers 

numerical stability [84], This block diagonal matrix can then be easily diagonalized 

with standard library routines that one can find in LAPACK [85].

The Lanczos method is memory efficient since only the three vectors, |nj_i), juj), 

and |nj+i) need to be stored at once. Another important advantage of the Lanczos 

method is that accurate enough information about the ground state can be obtained 

with a small number, n, typically of the order of one hundred or less. With modern 

computers, it is possible to obtain the ground state properties of up to 20 sites using 

various symmetries present in the Hubbard model.

3.2 The Numerical Renormalization Group method

Historically, the idea of renormalization in solid state physics can be traced back 

to the 60's and the work done by Kadanoff [86], who formulates scaling relations 

for critical exponents by using a blocking procedure for spin clusters. Even though 

Kadanoff’s spin blocking method was not really rigorous, it gave the basic idea of a 

renormalization procedure i.e. that of reducing the number of degrees of freedom of a 

problem without changing the form of the Hamiltonian but by changing its coupling 

constants. By repeating the blocking scheme process, a model numerically easy to 

solve because of the reduced degrees of freedom, which describes the physics of the 

original model, is obtained. In other words, some degrees of freedom are integrated 

out in order to produce a simpler model possessing the same physics.

The Numerical Renormalization Group (NRG) method developed by Wilson [87] 

is a very successful and systematic implementation of the renormalization concept. 

Wilson’s contribution to this field earned him the Nobel prize in Physics in 1982 “for 

his theory for critical phenomena in connection with phase transition”. The NRG is
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a nori-perturbative renormalization group (RG) approach to the quantum impurity 

problem [87, 88], which was first applied to the Kondo problem described by the 

equation (2.9). Systems controlled by this model usually exhibit anomalous transport 

properties. For example, the electrical resistance, instead of decreasing monotonically 

with temperature, shows a minimum at a temperature, Tk (the Kondo temperature), 

characteristic of the system. depends non-analytically {IuTk oc 1/J) on the spin 

exchange coupling, J, between the impurity and the conduction band (CB) of the 

host (for a detailed explanation see reference [50]). In what follows, we will introduce 

the basic concepts of the method as applied to the Kondo model.

3.2.1 Wilson’s NRG applied to the Kondo Hamiltonian

Let us recall that the Kondo model for a spin S interacting locally with a non­

interacting conduction electron sea can be written as

IIKondo ^ ^ JS ' ^ ^ ^cr' i (3.4)
ka

where J is the Kondo coupling, creates a conduction electron of spin a at the 

impurity site and r is the Pauli matrix vector. Since the CB contains a lot of 

redundant information, Wilson’s ingenious idea was to discretize its local density of 

states (DOS), g{w), logarithmically via a discretization parameter. A, (A > 1). Thus, 

he approximately mapped the Hamiltonian (3.4) to a semi-infinite chain:

Ti=0 a n=0 (J

In the equation (3.5), the local spin, S, interact only with the fermion at the end 

of the Wilson’s chain while the on-site energies, and the hopping parameters, 

are solely functions of q{w). The parameters G can be numerically obtained
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in a recursive manner [87]. However, for a flat and symmetric DOS where q{w) = 

1/2D {D being the half-band width of CB), the i„’s have analytical expressions ( 

tn ~ and <^„ = 0 [87]. The longer the chain becomes, the better the description

of the infinite chain.

With the preceding observation, Wilson then solved the equation (3.5) iteratively 

by introducing the operator;

i\ = js-y^ ^0,(TTrcr'Co,(T' T (7^771+1,(7 “1“ (3-6)

m=0 (7 m=0 (7

with the associated recursion relation

^^71+1 — "h Cn,n+1 "^ri+l) (3.7)

where („,„+] = Ea(4,aCn+i,a + he) and Hn+i = .^„+i E<t (see Figure

3.1). The procedure progresses by constructing from the low-energy eigenstates |u)„ 

of the operator //„ approximate eigenstates |^()n+l of the operator //„+!.

Co,l Cl,2 Cn-1,N

'Ho
V___

Hi

Hi
__ 2

H2

H2

Figure 3.1: Schematic representation of Wilson’s iterative procedure of the Hamiltonian 
En as sites are added. Wilson’s chain of length N. The impurity is at the first 
ste represented by a bigger red circle. The impurity Hamiltonian Hq is the 
sime as Hq.

By usinj the above procedure, Wilson described the full crossover from a free
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impurity spin at high temperatures to a screened spin at low temperatures in a 

non-perturbative manner [87], thereby solving the Kondo problem. Ever since the 

method was introduced in the original seminal paper [87], Wilson’s NRG has become 

one of the principal tool in the field of quantum impurity physics (see for example 

reference [89] for its application to the Anderson impurity model).

3.2.2 Failure of NRG for one-dimensional lattice model

Motivated by the successful application of the NRG method to the Kondo problem, 

attempts were made to employ the technique to study other quantum lattice mod­

els such as the Hubbard and the Heisenberg Hamiltonian in ID. However, rather 

poor performances were observed in the computation of the static properties like 

the ground state energy. In the first instance, there is significant difference between 

the Kondo Hamiltonian and ID quantum lattice models setting the pace for the ob­

served failure. The NRG tackled the Kondo problem by rewriting the Hamiltonian 

in a special form consisting of a chain with the impurity at one end and an exponen­

tially decreasing hopping along the chain. On the other hand, the coupling remains 

unchanged between adjacent site all along the chain for the cases of ID quantum 

lattice models.

In addition to the difference in the structure of the Hamiltonians, failure of NRG 

has been attributed to its difficulty in terms of boundary conditions. In order to 

illustrate this particular inadequacy, the NRG has been used to study the case of a 

non-interacting particle on a chain by White and Noack [90].

Let us consider a chain of length, L, with fixed boundary conditions so that 

the eigenfunction of a particle in the chain vanishes at both ends. If the chain is 

constructed from two chains of length, L/2, at an earlier stage in the NRG iteration, 

the ground state wavefunctions of the two half-chains have nodes at their ends. It 

is clear then that by using the ground state solutions of the two half-chains cannot
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obtain a vavefunction with finite amplitude at L/2 for the ground state of the full 

system (cf size L), as shown in Figure 3.2. Therefore, a refined treatment of the 

blocks’ boundaries (in the present case, the two half-chains) making up the entire 

system is vital in formulating a reliable and accurate RG procedure.

T (L/2) 'V (L) T (L/2)

Figure 3.2 Figure illustrating that the ground state wavefunction of a large system (chain 
of length L shown in black) is not at all well represented by the tensor product 
of the ground state wavefnnctions of its smaller systems (two half-chains of 
length L/2 shown in red).

White and Noack [90] solved the boundary conditions problem in the non-interacting 

case by using two types of techniques. The first one combines low lying eigenstates 

of several different block Hamiltonians with different boundary conditions (e.g. fixed 

and free, or periodic and anti-periodic) to form the new truncated basis. This is 

the so-caled combination of boundary conditions (CBC) algorithm, which performs 

well by smulating a sufficiently general set of boundary conditions for the blocks. 

However, the CBC approach turns out to be unsuccessful for interacting systems 

like a Hesenberg ID model. The reason for this failure is due to the difficulty in 

obtaining a set of kept states that comply with a wide range of boundary behaviour 

associated with different particles.

The second technique introduced in order to obviate to the NRG boundary con­

ditions poblem is called the superblock method. It requires a diagonalization of a 

large sysfcm (superblock) comprising of smaller systems (sub-blocks). The truncated
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basis for any of the sub-blocks is then chosen by projecting the eigenfunctions of the 

superblock onto that sub-block. The idea is that, the projection will provide the 

conditions at the boundaries that the sub-block would see as part of the superblock. 

The RG proposed by White [27] is based on selecting the most desirable way of 

carrying out this projection. This will be discussed in the next section.

3.3 The Density Matrix Renormalization Group 

method

The Density Matrix Renormalization Group DMRG is one of the most commonly 

used numerical tools for studying the ground state properties of one-dirnensional 

quantum models. The method was first introduced by White in 1992 [27]. The key 

idea of the DMRG scheme is that instead of keeping the lowest-lying eigenstates of 

a Hamiltonian associated to a sub-block, one keeps the most significant eigenstates 

of the sub-block’s density matrix, obtained from diagonalizing the Hamiltonian of a 

larger section (superblock), which include the sub-block. Next, we will outline how 

this density matrix projection is carried out by following reference [28].

3.3.1 Density matrix projection

Given a large system, obtained as the combination of two sub-systems in contact, 

the concept of density matrix in statistical mechanics gives information on which 

states of the two sub-systems contribute the most to the ground state of the large 

one. We label an entire system as the superblock consisting of two interacting blocks, 

a system block and an environment block as shown in Figure 3.3. Let us assume that 

the superblock has been diagonalized to obtain a particular state, \'ip), e.g the ground 

state. Let |f) be the complete set of states of the system block and |j) the states of 

the environment block (see Figure 3.3). Then the state of the superblock 1-0) can be
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expanded as

= Ii>.

The reduced density matrix for the system block is defined as

iV,
pii' =

j=i

(3.8)

(3.9)

so that normalization ensures Trp = 1. The density matrix has all the information 

needed from the wavefunction |'0), to calculate any quantity within the system block. 

For instance, if an operator A acts on the system block, then

(A) = ^ Aii>pii> = lYpi. (3.10)

{ip) superblock
_________ A

|z) System 
block

\j) Environment 
block

"V

z = l,2,...,iVi J = l,2,...,fV,.

IV.') = Ey V'yl^)«>li)

Figure 3.3: Sketch of the superblock containing a system block and an environment block.

The main task is to find a procedure that will produce a set of states of the system 

block, say, |m“) = Ei’^fl*)) ^ — 1,2, ...,m which are optimal to represent l^p).

To be more precise, one aims at a possible approximate expansion (with the highest
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accuracy) for \'tp) of the form

1^) =

In other words, one wishes to minimize the error

(3.11)

(3.12)

with respect to all a^j and |ri") subject to the constraint that = 5aa', since

|u“) forms a complete orthonormal basis. By defining u" = (jju“) = N^ciaj, with 

Na chosen to set \vf\^ = 1, the error becomes,

S = acuyf]"^ (3.13)
a=l

such that it is minimized over all v°‘ and a“, given a specified value of m,. The 

average of operator A of the equation (3.10) can then be written in terms of the 

eigenvalues Wa and eigenvectors 1^“) of the density matrix

(i) = Yiwa{vA\A\u°‘). (3.14)

Each Wa is the probability of the system block of being in the state 1^“). The sum 

of all the density matrix eigenvalues goes to one and the deviation of this sum from 

unity measures the accuracy of the truncation to m states.

The solution to the above minimization problem can be mirrored to the singular 

value decomposition from linear algebra:

xfj = UMV\ (3.15)

where U and AI are Ni x Ni matrices, V is an Ni x Nj matrix, U is orthogonal, V is
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column-orthogonal, and the diagonal matrix M contains singular values of •0. With 

this decomposition, it is possible to obtain the reduced density matrix [28, 91] such 

that the optimal system block states ju") are the ones corresponding to the largest 

eigenvalues Wa- A rapid decay of the density matrix eigenvalues is important for the 

truncation procedure.

Figure 3.4: Error in the ground state energy calculated with the DMRG scheme as a func­
tion of the number m of density-matrix eigenstates kept for the ID Hubbard 
Hamiltonian comprising of 100-site at half-filling and U/t = 3 with open (cir­
cles) and periodic (squares) boundary conditions (Taken from [92]).

Quite generally, the convergence of the deviation of the sum of the eigenvalues 

from unity with respect to m for periodic boundary conditions is much slower than 

for open boundary conditions. Thus, it is usually better to treat with the DMRG 

scheme systems with open boundary conditions than with periodic systems. As an 

example, the truncation error in the ground state energy for a 100-site Hubbard chain 

at half-filing and U/t = 3 is shown in Figure 3.4. For open boundary conditions (a 

favorable case for DMRG) the error decreases very rapidly with m until it reaches an 

order of 10“^ with m = 500 in 7 minutes on a 3 GHz Pentium 4 machine utilizing 400 

MB merr.ory. On the other hand, for periodic boundary conditions (a less favorable
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case) the error decreases slowly with m and is still significant for the largest number 

of density-matrix eigenstates considered m = 3000 after 13 hours on a 3.4 GHz Xeon 

machine utilizing 6.5 GB memory.

3.3.2 DMRG algorithms

The DMRG algorithm consists of three main components:

1. Determination of the superblock configuration.

2. Decision on how to add new degrees of freedom.

3. Ghoosing the superblock eigenstatc(s) from which the density matrix will be 

constrncted. For ground state properties, only one eigenstate (the ground 

state) is used to form the density matrix. The state used in constructing the 

block density matrix is usually referred to as “target state”.

A typical superblock configuration used in most DMRG calculations is as follows:

Bf

System,
block

Bf,

Environment
block

The system block contains a single site represented by the black circle (•) and a 

block, Bj , comprising of j sites represented by the black square (■). Similarly, the 

environment block contains a single site and a block, Bf, comprising of j' sites. The 

total number L for the above superblock is therefore L = j + j' + 2. This set-up of 

the superblock is used at two slightly different stages of the DMRG algorithm. The 

first stage is the infinite-system algorithm and the second one is the finite-system 

algorithm. A detailed review on these algorithms can be found in [28, 93] but they 

will be briefly highlighted here.
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The infinite-system algorithm

The infinite-system algorithm is usually the starting point of the DMRG scheme. It 

is used to iteratively grow the system size in real space, keeping a given number of the 

most important states represented as m. The iteration is usually terminated when 

a satisfactory system size is reached. Schematically the algorithm can be described 

as follows:

1. Start with a superblock configuration Bj • •Bf so that the number of sites 

in the system block is the same as the environment block. Represent B^ and 

B^ by listing the quantum numbers (e.g. and N) of their states and set up 

matrices for the block Hamiltonians and other operators in that basis.

2. Build the Hamiltonian matrix in sparse matrix form for the superblock. For 

instance, if each site is described by n states, the superblock will be described 

by 11^ basis functions. (For instance, n = 4 and 2 for the Hubbard and the 

5 = 1/2 Heisenberg model, respectively).

3. By using the Lanczos method (or other similar elaborate diagonalization pro­

cedures like Lanczos-Davidson algorithm [97]) diagonalize the super block to 

find the target state, usually just the ground state. At this stage, it is possible 

to measure the expectation value of any operator by using the ground state 

wavefunction, |'0).

4. Form the reduced density matrix for the system block by using the target state.

i.e.

= ® 1^"), (3.16)
i.k

where i and k label the set of basis states on the system block {B^*) and 

environment block {•B^) respectively. As usual, the reduced density matrix
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for the system block can be obtained by tracing over the degrees of freedom 

within the environment block i.e.

(3.17)

5. Diagonalize p to obtain the eigenvectors Ua with the largest eigenvalues Wa,

a = 1,2, Discard the remaining eigenvalues and eigenvectors.

6. Construct system block Hamiltonian, say and any other operator in the

new system block, and transform them to the reduced density matrix eigenbasis 

as H's = OHgs O where O = (ui,U2, The new environment block
'Pfi j+i

is formed by reflecting the system block. Also, new operators at the edges of 

the superblock are rotated by using the same transformation.

7. Start a new iteration by adding a site to the previous system and environment

A+iblocks. The superblock configuration is now

8. Repeat again from step 2 by replacing L with L + 2 (i.e. enlarging the su­

perblock by two sites).

The superblock size grows by two sites at each iteration step. The iterations are 

continued until a desired system size is obtained.

Finite-system algorithm

The infinite-system algorithm is only a “warm-up” procedure for the decisive finite- 

system algorithm. In other words, the infinite-system algorithm builds up a chain of 

length, say (for convenience, L^ax is assumed to be even), and finds an approx­

imate ground state. The finite-system algorithm is then designed to investigate the 

properties of the fixed system size, with better accuracy. The algorithm sweeps from 

one side of the lattice to the other many times until a desired convergence is reached.
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Usually, the convergence criterion is a comparison of the ground state energies in 

successive sweeps.

The finite-system algorithm consists of the following procedures:

1. The first step involves beginning with a superblock configuration Bf • •Bf, 

with Bf and representing single site. Then, one uses the infinite-system 

algorithm to grow the superblock until Lmaj<. is reached (with a superblock

configuration Bf ,, , •

2. Next is the so-called “sweep procedure”, used to enhance the convergence. It 

is a process which enlarges the system block by one site while at the same 

time reduces the environment block by one in order to keep the length of 

the superblock fixed. In other words, the superblock configuration goes from 

Bf /o 1 • •Bf 1 to Bf /o • *13? ic, One continues to increase the
^max/^ -I ^^max/^ f ^max/^ ^-'max/^ ^

system block until it reaches L^ax — 3, with a superblock configuration 

■^fmax-3 * contrast to the infinite-system algorithm that does not

require the block B^ after the formation of all the Lmax — 3 blocks and

the operators on them are stored. These blocks are labelled by their size. At 

each step, the reduced density mmtrix is calculated by tracing out the degrees 

of freedom of the environment block.

3. In the next half of what is referred to as the first sweep, the growth direction 

is reversed. This implies interchanging the role of the two blocks, i.e. the 

old system blocks are now the environment blocks for the opposite growth 

direction and the former environment blocks are the new system blocks. These 

latter are enlarged by one site prior to projection. In essence, the superblock 

configuration from the last step keeps changing until it reaches

Bf At each stage of the iteration, the new blocks formed are written

to disk for use during the next sweep.
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4. The second sweep starts with a superblock configuration • *3 /^max —4 and

similar procedures of steps 2 and 3 are carried out for a complete sweep.

5. These sweeps are continued until the ground state energies in successive sweeps 

satisfy a pre-determined tolerance. Every repeated sweep gives a block wave 

function of better quality so that two or three sweeps are usually sufficient to 

reach convergence in the energy output.

In order to measure physical quantities in the DMRG framework, the expectation 

values of operators are calculated within a state or between states of the superblock, 

which are obtained in the iterative diagonalization step. This measurement is usually 

straightforward provided that the necessary operators are available in the ajipropriate 

basis. If we are interested in a local observable Ai for all site I such as the site 

occupation ni, the single site expectation value of the operator is given by

(3.18)
1,1'J

where ji/;) is a state of the superblock and the matrix representation \Ai\ui is con­

structed when the site I is added to the system block, and must be transformed at 

each subsequent step so that it is available in the basis |f).

Developments in DMRG such as dynamical DMRG and time-dependent DMRG 

have not been discussed since they are beyond the scope of this thesis. For details 

on these extensions of the basis DMRG, we refer the reader to dedicated reviews 

[28, 93] and to the references therein.

3.4 DFT on lattice

From the preceding sections, we have seen that numerical solutions to the Hubbard 

Hamiltonian are either accessible to small system sizes or computationally expensive.
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Over the last decades there have been a variety of elaborate many-body techniques 

designed to study the problem [94], The application of DFT, which is exact in 

principle but limited by the approximations involved in defining the XC functional, 

as a techr.ique to study many-body lattice model has gained attention in the last few 

years. The main reason for this is that it provides an alternative approach to study 

this model in order to gain insights into the physics of correlated electron systems.

The EFT concepts have been extended to lattice models [29, 30]. The underlying 

requirement for LDFT is the reformulation of the HK theorems and the KS equations, 

which we;e developed for the ab initio Hamiltonian and not for model Hamiltonians. 

In LDFT, the local site occupation, becomes the theory central quantity, and it 

plays the same role as the electron density n{x) in ab initio DFT. It is defined as

ni = (4'|ni|'I'), (3.19)

where |T) is a generic many-body wavefunction (spin has been dropped here for 

simpheitj).

The HK version of the LDFT demonstrates that it is possible to express all the 

quantities that can be obtained from the ground-state wavefunction as a function of 

site occupations [29, 30]. In particular;

1. Tho ground state energy and any other ground state observables are unique 

function of the site occupation.

2. Th( site occupation that minimizes the total energy functional is the exact 

gromd state site occupation.

In other vords, the ground state energy is obtained by minimizing the energy func­

tional,

(3.20)
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where ^({n,}) is a universal functional^ of all the site occupations {ui} and i ext IS

a site dependent external potential. The T{{ni]) is written as

.F({na) = (T|r + H,„t|vI'), (3.21)

where T and are the kinetic and interaction part of a lattice Hamiltonian re­

spectively. If the exact form of is known then, the ground state energj' and

site occupation could be obtained by minimizing the energy function with respect to 

Hi to produce the condition

ST{{ni})
Sui

+ Kxt = M- (3.22)

The constant, /x, is the Langrange multiplier enforcing particle number conservation 

(exactly as in standard DFT).

Just as in ab initio DFT, by reformulating the interacting rnany-body lattice 

problem as one for non-interacting particles, possessing same ground state density 

and total energy, one constructs a practical implementation of LDFT. Here the non­

interacting Hamiltonian is of the form

K = V + Y,' (3.23)

where Tf and u* are respectively the non-interacting kinetic energy and local KS 

effective single particle potential, uniquely determined by the ground state site oc­

cupation nj. The KS orbitals satisfy the single-particle Schrodinger like equation.

(3.24)

^Universal functional means that the functional is independent of the external potential and 
for this particular case of ID Hubbard Hamiltonian, it is a [/ dependent functional.
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with the ground state occupation constructed from the occupied orbitals as

n, (3.25)
a,occ

where rre the occupation numbers, which satisfy Y2a ~ ^ ^ being

the total nrmber of electrons.

The single-particle functional is

riiV,, (3.26)

so that 5Ts'8n — —Vg. The XC energy, Exc, can be defined as the difference between 

the interacling and the single-particle functionals,

E{{ni}) - J^s({ni}) = Exciirii}) + EH{{ni}), (3.27)

where Eh h the Hartree energy. By performing a functional derivative with respect 

to the site occupation, one obtains the effective KS potential as

= Kc + + Kxt,

where vjf a^d are the Hartree and XC potential respectively,

i ^ ^Exc

5m

(3.28)

5EH
(3.29)

Sui

Therefore tie original functional minimization problem of DFT is mapped onto the 

diagonaliza:ion of single-particle Hamiltonian augmented with self-consistent solu-
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tion of the effective KS potential. The KS ground state energy is then written as

Eks = Y. + EU{ni]) - EH{{n,}) - Y (3.30)
a,occ

where the first term is the sum of the single-particle energies and the other terms 

are corrections for double counting.

It is also possible to calculate the concentration of the local pairs (or the doubly 

occupied sites) d which a measure of the pairing correlations. It is defined by

d = (3.31)

Fiom equation (2.5), this quantity measures the derivative of the energy with respect 

to U, i.e.
d{Hu) ^ BE 
LdU dU’ (3.32)

where E = {Hu)/L

Even though the KS formalism is exact and so much more easier to solve than the 

original many-body problem, the crucial task is now that of finding a suitable prac­

tical approximation for v].^. Most LDFT employs the LDA-like density functional, 

where the ground state energy of the inhomogeneous system is approximated by the 

energy density of the homogeneous system at the same density. The remaining part 

of this chapter describes the one-dimensional homogeneous Hubbard model and the 

various approximate local functionals that can be constructed.

As this junction, we will like to remark, as already pointed out in references 

[39, 95], that the exchange interactions have been effectively eliminated in the ID 

Hubbard model of equation (2.5) by restricting the model to one orbital per site. In 

order to relate the present description to the standard ab initio DFT formulation, 

Exc and Vxc are conventionally referred to as XC energy and XC potential but it is
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understood that the exchange contribution to these quantities is exactly zero. Also, 

attempts to correct for self-interaction errors in the XC energy for the model have 

been proposed by Capelle [36] and is a work in progress [96]. We, however, have not 

implemented the self-interaction corrections in this work.

3.5 Approximate functional: Bethe-ansatz local 

density approximation

3.5.1 Spin-polarized solution

Within the spin-polarized LDFT described above for a repulsive U, the fundamental 

quantities are the site occupation, rii, and the site magnetization , m,. We then 

define the site occupation for spin a as

rii. a)U(«)|2 (3.33)
a,occ

and rii = rrii = — riii. The spin-dependent site occupation, njo-, can

be calcuhited via the self-consistent solution of KS like equations;

(3.34)
j=l

The elfec'dve KS potential is written as vl^ = + + where is the Hartree

potential is the external potential and is the derivative of the XC energy 

evaluatec at rij^. = N, N being the total number of electrons in the

system.

The local spin density approximation (LSDA) for the XC potential is given by

v'xcIlsda = m, t, U)\ (3.35)
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where the XC potential v^^{n, m, t, U) is that of the homogeneous Hubbard model. 

This is defined by

t, U) = -— [e(n,?77., t, U) — e{n,m, t,U = 0) — ejj{n,m, U)], (3.36)
OTi(j

where e{n,m,t, U) is the ground state energy per site of the ID homogeneous Hub­

bard model with respect to t, U, n = and m = where n| = N^/L,

ni = Ni/L. The Hartree energy is given by

e//(n, m, U) = -U{n + m)(n — m). (3.37)

Finally, e{n,m,t,U) can be obtained by using the BA solutions given in equation 

(2.30). The ground state energy per site for [/ = 0 is

, . 4t /n'K\ nnn\
e{n, m, t, (y = 0) =---- sin j cos j ■ (3.38)

Direct numerical procedures can therefore be used to obtain v^°^{n,m,t,U) as de­

scribed in details in Appendix B following the references [39, 99]. Equations (2.31)- 

(2.33) and those in the Appendix B determine u^°’^(n,m, t, U) for the case of n < 1. 

Then, by using the particle-hole symmetry relation [45, 98], we can obtain the energy 

density from n > 1 as

e(n|, U) — —{I — n)U -f e(l — Uf, 1 — (/), (3.39)

then v^^{n > 1, m, t, U) = — n, —m, t, U).

We have numerically implemented equations (2.31)-(2.33) and those in the Ap­

pendix B to produce the spin-polarized XC potentials of the one-dimensional homo­

geneous Hubbard model for both the majority spin and minority spin as shown in 

Figures 3.5(a) and 3.5(b) respectively. These figures clearly reveal that the poten-
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(a) Majority spin XC potential,

(b) Minority spin XC potential,

Figure 3.; The spin-polarized XC potentials of one-dimensional homogeneous Hubbard 
model for U/t = 4 (The lower plot is a contour (colour) plot of the upper 
profile).
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tials have discontimiity in the derivative at half-filling (n = 1, = L). This reiects

the fact that the underlying homogeneous ID Hubbard model has a metal-insuhtion 

transition for n = 1. Such a discontinuity in the derivative of the potential, as 

in standard ab initio DFT, is responsible for the opening of the energy gap. This 

discontinuity is expected to be an added advantage over other LDA potentials in 

estimating the ground state properties of strongly correlated systems.

3.5.2 Non spin-polarized solution

For the non-spin polarized case, i.e. for spin symmetric systems with equal nurnler of 

spin-up and spin-down electrons {Nj — = N/2), the ground state magnetizition

is zero, and the fundamental quantity of the theory is simply the site occupatioi, n,.

n, (5.40)
a,occ

This is obtained via the self-consistent KS equations

Y^[-Uj + vlSij] (5.41)
j=i

where u* = -f -t- vl^^. The LDA for the XC potential is simply

vic\LDA = v^^{nXU)\\n^ni 1 (5.42)

where the XC potential t, U) of the homogeneous Hubbard model is deined

by

= —[e{n,t,U) — e{n,t,U = 0) -e//(n, f/)], (5.43)

and e{n,t,U) is the ground state energy per site of the ID homogeneous Hub)ard 

model with respect to n = N/L, t and U. Finally, e//(n, U) = Un^/4 is the Hadree
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energy. The e{n,t, U) can be obtained by using the BA solution and can be imple­

mented in two ways:

1. BALDA/LSOC ^ - An analytical parameterization proposed by Lima et. al. 

[35,36],

2. BALDA/FN - This one employs a direct numerical solution of the coupled 

Bethe Ansatz integral equations [39]. (FN = fully numerical)

BALDA/LSOC

In the limits U = 0 and t/ —> oo, e{n, t, U) is analytical and can be expressed as (for 

the less than half-filled case, n < 1) [65]

, , 4t /n7r\e{n, t,U = 0) =---- sm ( — I
TT \ 2

and
2te(n, t,U ^ oo) =---- sin (rnr) .

(3.44)

TT
(3.45)

At half-filling (n = 1) and any interaction U,

i{n, t, U) = —At f
Jo

dx Jo{x)Ji{x)
x[\ -f eyi^{xU/2i)\ (3.46)

where Jq and Ji are zero and first order Bessel functions respectively.

Basec on the similarity of equations (3.44) and (3.45), Lima et al. [36] proposed 

a functional of the form

e[n,t,U) = —^sm ( — ) , (3.47)

where /? is a parameter which depends on U and t and it is fixed by requiring that

^LSOCis after the name of Lima, Silva, Oliviera and Capelle, who proposed the approximation.



71 Chapter 3

equation (3.47) recovers the correct limit of half-filling [n = 1), i.e.

2tp . f ,— sm /'
Jo

dx
Jo{x)Ji{x)

x\\ + exp(a:[//2t)]
(3.48)

For any value of U and t which define a fixed Hamiltonian, the transcendal equation 

(3.48) can be computed easily for [d and has exactly one solution in the physical 

interval {U = 0,U oo), corresponding to the interval {P = 1,0 = 2). This 

calculation takes place outside the KS self-consistent DFT loop (i.e. the XC potential 

is calculated up-front for any U/t).

For the more than half-filled case, due to the particle-hole transformation [45 98],

e{n > l,t,U) = e{2 — n,t,U) + U{n — 1).

where A: = 1 — |n — 1|, and // =sgn(7r — 1).

k-K kn kU
2 cos —— 2 cos---- 1-------

0 2 2

(3.49)

(3.50)

BALDA/FN

The alternative route for constructing the XC potential is that of employing a direct 

numerical solution of the coupled BA integral equations. This is done by observing 

that v^°'^{n,t,U) satisfies [39, 99]

T""(n
/■«

[n,t,U) = ~2t / dkpn{k) c(os k — 4tQnp{Q) cos Q + Avkh 
J-Q

(3.51)

where Avkh = 2fcos(n7r/2) — (7n/2, Pn{k) = dp{k)/dn and (t„(A) = da{\Jdn 

satisfying the integral equations in Ap)pendix A for C = Equations (231)- 

(2.33), (3.51) and those in Appendix A determine v^^{n, t, U) and due to symmetry 

v>ir{n > 1, t, U) = -u^r(2 - n, t, U).

In this work, we have implemented both numerical procedures within BALD.A to
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Figure 3.6: The non spin-polarized XC potential of one-dimensional Hubbard model as 
a function of density for different values of U/t using BALDA/LSOC and 
BALDA/FN

obtain the XC potential. In the case of BALDA/LSOC, (5 = 1.51432,1.31593,1.22182 

and 1.16951 for [//t = 2,4,6 and 8 respectively. In the Figure 3.6, the XC potentials 

as a function of filling for the two schemes are shown for different U/t values. Similar 

to the spin-polarized XC potentials, they also manifest discontinuity at n = 1. We 

also observe that the two parameterizations always coincide by construction at n = 0 

and n = 2 but that their agreement over the entire n range depends on the value 

of U. In particular one can report a progressively good agreement as U/t increases. 

This is not a surprise since the BALDA/LSOC potential is constructed to exactly 

reproduce the U oo limit.

Finally, there are still noticeable differences in the XC potentials obtained from 

the BALDA/LSOC and BALDA/FN at weak interaction strength, perhaps reflecting 

the weakness of the parameterization of LSOC in this regime as we will show later.
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As an example of the inherent weakness present in the BALDA/LSOC at small 

interaction strength, one can show that the gap in the XC potential at n = 1 is [34]

ABALDA/LSOC 
horn {U)/t = f/ + 4cos m) (3.52)

We plot in Figure 3.7 as a function of U. On the same Figure,

the gap obtained numerically for the BALDA/FN is shown. From the plot, the gap 

is negative for very weak interaction strengths revealing already signature of some 

shortcoming of the BALDA/LSOC in this regime. On the contrary, the gap in the 

BALDA/FN is always positive as expected.

u
Figure 3.7: The gap of the homogeneous XC potential at half-filling as a function of U 

within the BALDA/LSOC.
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Chapter 4

Application of LDFT-BALDA to 

ground state and linear response 

properties.

4.1 Ground state total energy comparison

We begin this chapter with a discussion on the ground state energy of the one­

dimensional homogeneous and inhomogeneous Hubbard models. In particular, we 

employ the LDFT-BALDA and compare results for the two approximations to the 

XC potential described in the previous chapter. In order to establish the accuracy of 

these approximations, we further compare results with those obtained with ED and 

DMRG. Note that throughout this work we always stay away from the half-filling 

case, where the derivative discontinuity of the potential makes the LDFT convergence 

problematic.

4.1.1 Homogeneous Hubbard Model

Here we compute the ground state total energy per site, Eq/L, of a finite chain 

described by Hu with L sites and containing N electrons. The system sizes considered

75
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here are restricted to those manageable by ED and are non-spin polarized. Given 

our comprtational resources, we only consider system sizes in the range of 3 < L < 

14 and 2 < < 10. First, we use BALDA functionals to calculate Eq/L and

compare .heir results with ED. The comparison of the BALDA calculations with 

those obtiined by ED is done by calculating the relative error between them.

A = \W^\ X 100%. (4.1)

Similar comparison has already been reported in the literature for close to and at 

quarter fi ling [36] but we have extensively considered wide range of system sizes.

In th( upper panels of Figure 4.1(a), we display the Eq/L contour plots as a 

function of L and N for open boundary conditions (OBC) and U/t = 4 for both 

BALDA :unctionals. In the lower panels are their corresponding contour plots for 

A. We note that the results obtained for both of these functionals match quite well 

the ED ones. We obtain discrepancies of less than 5% over the range of combinations 

of L and V considered, except those very close to the MIT where difficulties arise for 

convergeice in the self-consistent KS equations. The contour profile for A shows that 

BALDA/FN suffers large deviation when compared with ED for small lattice sites. 

The reason for this is the full numerical exact thermodynamic limit built into the 

constructon of the potential, in contrast to the BALDA/LSOC which interpolates 

some kncwn analytical limits. However, as the system size increases BALDA/FN 

gives a reisonably close values to that of ED over most combinations investigated.

Next, we investigate the ability of the two approximations to XC at differentiating 

between lifferent boundary conditions. In the upper panels of Figure 4.1(b), we 

present tie Eq/L contour plots as a function of L and N for periodic boundary 

conditions (PBC) and [//t = 4 for both BALDA functionals. It is clear that the 

upper paiels of 4.1(a) and those of Figure 4.1(b) are distinctively different for both 

functionals. The lower panels of 4.1(b) are their corresponding A contour plots
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(a)

(b)

BALDA/LSOC BALDA/FN

6 10 14

BALDA/LSOC BALDA/FN

3 6 10 14

Figure 4.1; Contour plots of total energy per site, Eq/L, and percentage deviation, A, 
from the ED with respect to L sites and N electrons for CZ/t = 4 with different 
boundary conditions (a) Open boundary condition (OBC) and (b) Periodic 
boundary condition (PBC) (see tables D.l and D.2 for data set)

which shows deviations of not more than 6% in the spectra. This unambiguously 

indicates that LDFT within BALDA is a suitable technique applicable to both OBC 

and PBC without any limitation. Thus, unlike the DMRG method, it can tackle 

problems involving PBC with reasonable accuracy. This property will be very useful
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(a)

(b)

BALDA/LSOC BALDA/FN

— \o ^

36 10 14 3 6 10

BALDA/LSOC BALDA/FN Eo/L
-0.8

10 14 36 10 14
A%

10

36 10 14 36 10 14

Figure 4.2: Contour plots of total energy per site, Eq/L^ and percentage deviation, A, from 
the ED with respect to L sites and N electrons for open boundary condition 
but different U/t (a) U/t = A and (b) U/t — Q (see tables D.l and D.3 for data 
set).

in the next chapter where we will study mesoscopic Hubbard rings penetrated by an 

external magnetic flux with LDFT.

Further, we look at the capability of BALDA approximations to LDFT to capture 

the effects of electron-electron interactions. We observe an increase in Eq/L as
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the interaction strength increases from U/t = 4 [upper panels of Figure 4.2(a)] to 

U/t = 6 [upper panels of Figure 4.2(b)] for both BALDA/LSOC and BALDA/FNb 

For the Hubbard Hamiltonian, an increase in U/t will raise the total ground state 

energy, an effect reliably captured by both functionals with errors of much less than 

8% in a wide range of parameter space [lower panels of Figures 4.2(a) and 4.2(b)]. 

Again, the deviation of the calculated values for Eq/L from the exact results reduces 

as the system size increases with BALDA/FN consistently following this pattern. 

This clearly demonstrates that both approximations to Hubbard LDFT are able to 

describe the effects of electron-electron interaction properly.

Finally, it is very illuminating to consider the computational advantage of the 

LDFT within BALDA over ED. As an example, a calculation of Eq/L for L = 20 

and A = 10 with OBC and U/t = 4 on our Core(TM)2 Quad 2.66 GHz machine 

takes about sixty minutes in computational time and requires 3GB computer mem­

ory with ED. Meanwhile same calculation done by BALDA for both flavours on the 

same machine only takes less than one minute and utilizes less than 10MB com­

puter memory. This shows that the computational resources needed by BALDA 

are of orders of magnitude smaller than those of ED thus highlighting the compu­

tational efficiency of these functionals. Therefore BALDA can be used to compute 

total energy and energy related properties of large system sizes which would have 

been computationally expensive and sometimes impossible to access using other well 

established numerical techniques.

^Note the difference in the scale used for figures 4.1 and 4.2.
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4.1.2 Inhomogeneous Hubbard model

Here, we consider the one-dimensional Hubbard model with various degrees and 

patterns of inhomogeneity. The Hamiltonian is now

^u\ = + he)+ Y^ Uihi^h^i +
{ij)a i ia

(4.2)

and spatial variations are introduced in the on-site Coulomb interactions, Ui, and/or 

on-site energies, Uj. Inhomogeneity can be the result of in-equivalent sites in the 

natural unit cell, modulation of system parameters in artificial heterostructures, or 

self-consistent modulations in local system properties due to formation of charge- 

ordered states [100]. Interestingly, such superlattices have been recognized to exhibit 

complex ground states and transport properties [100, 101, 102].

In view of this, we calculate the ground state energies of various superlattices 

which consist of a repeated pattern of interacting sites with repulsive interac­

tion U and Lo non-interacting {U — 0) sites. We focus on the case Uj = 0. Table 

4.1 shows results for a 200-site system with OBC, different number of electrons and 

different correlation strength obtained by DMRG, BALDA/LSOC and BALDA/FN 

while taking = Lq = 10 (thus this superlattice has 10 bi-layers). We have already 

explained in Chapter 2 that the most commonly used method to obtain numerically 

the ground state energies for large systems with an accuracy comparable to ED is 

the DMRG [28, 93]. It usually performs best with open boundary conditions and 

its computational demands depend on the number of states kept in the calculation. 

Our DMRG calculations are performed by employing the widely used Algorithms 

and Libraries for Physics Simulations (ALPS) [103] package for strongly correlated 

quantum mechanical systems. The DMRG results are obtained by retaining dom­

inant density matrix eigenvectors such that the truncation error is of the order of 

0(10“^°). Prom the table, it is easy to see that the LDFT-BALDA results are in
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U
N METHOD 1 2 4 6
50 DMRG -96.312 -95.892 -95.562 -95.433

LSOC -96.879(0.59) -96.549(0.69) -96.134(0.60) -95.910(0.50)
FN -96.330(0.02) -95.939(0.05) -95.647(0.09) -95.535(0.11)

80 DMRG -146.449 -144.893 -143.464 -142.837
LSOC -147.667(0.83) -146.397(1.04) -144.830(0.95) -143.998(0.81)

FN -146.468(0.01) -144.954(0.04) -143.599(0.09) -143.021(0.13)
100 DMRG -174.864 -172.034 -169.132 -167.779

LSOC -176.423(0.89) -174.032(1.16) -171.029(1.12) -169.426(0.98)
FN -174.881(0.01) -172.089(0.03) -169.290(0.09) -168.021(0.14)

120 DMRG -198.310 -193.843 -189.083 -186.745
LSOC -200.056(0.88) -196.114(1.17) -191.254(1.15) -188.647(1.02)

FN -198.330(0.01) -193.905(0.03) -189.232(0.08) -186.974(0.12)
150 DMRG -222.992 -215.192 -206.314 -201.841

LSOC -224.612(0.73) -217.366(1.01) -208.487(1.05) -203.811(0.98)
FN -223.013(0.01) -215.260(0.03) -206.500(0.09) -202.113(0.14)

180 DMRG -233.675 -221.654 -207.641 -200.438
LSOC -234.703(0.44) -223.132(0.67) -209.255(0.78) -201.992(0.78)

FN -233.695(0.01) -221.725(0.03) -207.819(0.09) -200.679(0.12)
200 DMRG -232.523 -217.379 -199.114 -189.695

LSOC -233.030(0.22) -218.234(0.39) -200.210(0.55) -190.960(0.67)
FN -232.548(0.01) -217.445(0.03) -199.305(0.10) -189.973(0.15)

Table 4.1: Table showing total energy, £'o/t, for different U and N with OBC obtained by 
DMRG, BALDA/LSOC and BALDA/FN. L = 200 and L„ = Lq = 10. The 
percentage deviation, A, from the DMRG is given in the parenthesis.

very good agreement with the DMRG ones. The relative errors of both the BALDA 

functionals from the DMRG results are shown in parenthesis and are always of the 

order of 1%. The accuracy of BALDA/FN is again particularly good over the entire 

range of U and N investigated.

In table 4.2, we report results for similar calculations performed on a 100-site 

chain with increased modulation strength, Lu = Lq = 2. The agreement for energies 

computed with the local functionals are within 2% from the DMRG values within our 

parameter space. Glearly the performance of LDFT-BALDA for slowly modulated 

lattices is slighly better but generally the qualitative agreement is impressive. This is 

consistent with similar calculations done by using only the BALDA-LSOC functional
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N METHOD
U

1 2 4 6
20 DMRG -38.889 -38.689 -38.484 -38.380

LSOC -39.127(0.61) -39.013(0.84) -38.846(0.94) -38.745(0.95)
FN -38.912(0.06) -38.753(0.17) -38.615(0.34) -38.557(0.46)

40 DMRG -73.036 -72.149 -71.191 -70.693
LSOC -73.684(0.89) -73.039(1.23) -72.227(1.46) -71.786(1.55)

FN -73.084(0.07) -72.307(0.22) -71.589(0.56) -71.275(0.82)
60 DMRG -99.010 -96.912 -94.678 -93.558

LSOC -99.906(0.91) -98.139(1.27) -96.037(1.44) -94.941(1.48)
FN -99.057(0.05) -97.064(0.16) -95.068(0.41) -94.148(0.63)

80 DMRG -113.813 -109.384 -104.282 -101.629
LSOC -114.609(0.70) -110.562(1.08) -105.738(1.40) -103.248(1.59)

FN -113.865(0.05) -109.558(0.16) -104.773(0.47) -102.413(0.77)
100 DMRG -115.948 -108.571 -100.272 -96.222

LSOC -116.289(0.29) -109.365(0.73) -101.703(1.43) -97.997(1.85)
FN -116.016(0.06) -108.839(0.25) -101.038(0.76) -97.337(1.16)

Table 4.2: Table showing total energy, £^o/t, for different U and N with OBC obtained by 
DMRG, BALDA/LSOC and BALDA/FN. L = 100 and = Ln = 2. The 
percentage deviation, A, from the DMRG is given in the parenthesis.

by Silva et al. [37].

Finally, in the same spirit of a typical density profile of a superlattice investigated 

in reference [37], we show in Figure 4.3 the site occupation profile of a 80-site chain 

at quarter filling with L„ = 3, Lq = 2 and U/t = A for the LDFT-BALDA methods 

and DMRG. From the graph, we see that the results of both functionals reproduce 

quite well, both in qualitative and quantitative terms, those of DMRG. We observe 

a deviation of not more than 3% and 1% for the BALDA/LSOG and BALDA/FN 

respectively from the DMRG calculations around the centre of the chain. These 

deviations are slightly higher at the edges since they are cases where LDA fails 

badly.

To summarize this section, we have employed the two approximations to the XG 

potential of the LDFT to investigate the energetics of homogeneous and inhomoge­

neous Hubbard models. We compared results from these approximations with those
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Figure 4.3: Density profile of L = 80 at quarter filling with = 3, Lq = 2 and Uji
The inset shows a magnification of site occupation for lAth and \bth sites. The 
lines are a guide for the eye.

obtained with ED and DMRG over extensive range of parameters. We observed 

that there is a substantial agreement between the numerically exact schemes and 

LDFT-BALDA. Also, the computational efforts, both in time and memory, of the 

LDFT-BALDA are orders of magnitude less than ED and DMRG. Of particular note 

is that effects such as the role of electron-electron interactions, boundary conditions 

and diverse range of inhomogeneity are well reproduced by LDFT-BALDA. Hence, 

we propose its application to linear response properties like polarizability.

4.2 Polarizabilities

Generally, the constituent atoms of a material under the influence of an external 

electric field develop an oscillating separation of charges that tend to counteract the
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field. This field make the material to undergo distortion and then becomes polarized 

with an induced dipole moment. The molecular composition of the material acts as 

a dipole with dipole moment Pi so that the polarization (dipole moment vector per 

unit volume), P, is given as

p=Pi, (4-3)
i

where i is over the dipoles in the unit volume. The strength of the external field, E, 

determines the induced polarization in a material. For a weak field,

P = XE, (4.4)

where x is the polarizability of the medium.

In relation to an atoui or molecule, the electric field distorts their electron dis­

tribution so that the molecular polarization is also proportional to the external field 

with a constant of proportionality, a, corresponding to the polarizability an atom or 

molecule. The polarizability of a system depends on the number of charges present 

in it so that for atoms or molecules polarizability increases with their size. It is one 

of the fundamental electronic properties used by the experimentalists to characterize 

the nature of different materials and it is a field of growing interest for researchers 

[104, 105]. For example, Ishihara et. al. [46] have studied electron covalency contri­

butions to electronic polarizability in important transition metal oxides (TMO) and 

dielectric compounds using the Hubbard model. In particular, for one-dimensional 

systems where quantum confinement as a result of reduced dimensionality can lead 

to enhanced linear and non-linear susceptibilities of these systems, as compared to 

their three-dimensional counterparts. Rojo and Mahan have studied the response of 

interacting fermionic systems to an electric field in small ID systems using ED [47]. 

The knowledge of this property is critical for the development of different class of 

strongly correlated materials in low dimensional systems.
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We calculate the electrical polarizability of linear chains with the finite difference 

method, i.e. as numerical derivative of calculations performed at different external 

electric fields. An external electric field enters into the problem by adding to the 

Hubbard Hamiltonian Hyj the term

Hs = e£x = e£ — x)c|q , (4.5)
i=l

where x = |(L + 1) is the middle site position of the chain, e is the electronic charge 

(e = —1) and £ is the electric field intensity (the electric field is applied along the 

chain). Note that in equation (4.5), x is not a unit vector but an operator. In general 

the electrical dipole, P, induced by an external electric field can be calculated simply 

as the expectation value of the dipole operator over the ground state wave-function 

l'I'o(^)) (note that this is a general definition so that |\I'o(^)) is not necessarily the 

Kohn-Sham ground-state wave-function), i.e.

P = e('I'o(f )| J](^ - x)c|ci|4'o(^))
i=l

dEo{£) 
d£ ’ (4.6)

where Eo is the ground state energy. For small fields P can be Taylor expanded 

about 5 = 0 so that the linear polarizability, a, is defined as

Pr^a£ + j£^ + 0{£^) , a =
d^E^{£)

dT^ (4.7)

Our calculation then simply proceeds with evaluating Eq{£) for different values of 

£ and then by fitting the first derivatives with respect to the field to the equation 

(4.7), as indicated in reference [47]. We have also performed a number of numerical 

tests and verified that the polarizabilities calculated from the site occupation [inter­

mediate formula in equation (4.6)] essentially coincides with those obtained from the 

total energy. We note that our finite difference scheme is not accurate enough for
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calculating the hyper-polarizability, 7, which then is not investigated here.

As we have shown in the last section and have also been already extensively 

reported that BALDA-LDFT gives a substantially good agreement with exact cal­

culations in terms of ground state total energy [34, 35]. The polarizability however 

offers a more stringent test for the theory since it involves derivative of Eq. Hence 

it is important to compare the various approximations with exact results. For small

U/t U/t
Figure 4.4: Linear polarizability, a, as a function of the Coulomb repulsion U/t. Results 

are presented for BALDA/LSOC and BALDA/FN and they are compared with 
those obtained with either exact diagonalization (ED) or DMRG calculations. 
In the various panels we show: (a) L = 12 at qnarter filling (n = 1/2), (b) 
L = 16 at quarter filling, (c) L = 60 and N — 20, and (d) L = 60 at qnarter 
filling.

chains, L < 18, these are obtained by simply performing ED. However for the longer 

chains ED is no longer feasible and we employ instead the DMRG scheme [28, 93]. 

The DMRG results are obtained by using a cutoff of m = 350, i.e. by retaining the
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dominant 350 density matrix eigenvectors.

Let us start our analysis by looking at the polarizability as a function of the 

energy scale U/t. Representable results for quarter-filling, n = 1/2, and for n = 1/3 

are presented in the various panels of Figure 4.4. As a test of our numerical accuracy 

in the panel (a) of the figure we also report results obtained by calculating a from the 

site occupation instead then from the total energy (these calculations are labeled with 

“BALDA/FN(b)”). One can then observe that the two methods return practically 

indistinguishable polarizabilities.

In general we find that the polarizability decreases monotonically with increasing 

the on-site repulsion U. This is indeed an expected result since an increase in on-site 

repulsion means a suppression of charge fluctuations and consequently a reduction 

of a. Away from U = 0 the dependence of a on U/t can be fitted with

'fj\ ~UL,n)
a{U/t- L, n) = ao(L, n) { — (4.8)

where all the parameters have a dependence on the length of the chain and on the 

band filling. The results of such a fitting procedure are reported in table 4.3. Note 

that in the fit we did not impose any constraints and we have included only points 

with U/t>l.

From the fit and from Figure 4.4 one can immediately note that both the BALDA 

flavors of the exchange and correlation functional reproduce rather well the exact re­

sults, in good agreement with previously published calculations [142]. The agreement 

is particularly good for the FN functional, which matches the ED/DMRG results al­

most perfectly over the entire range of U/Vs and filling investigated. A quantitative 

assessment of goodness of the BALDA results is provided in Figure 4.5 where the 

relative error, 5, from the reference exact calculations is presented. In general, and 

as expected, we find that the error grows with U/t, i.e. with the system departing 

from the non-interacting case. However, there is also a saturation of the error as the
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Method L N n 0^0 e
ED 12 6 1/2 59.69 0.23

balda/lsoc 62.06 0.27
balda/fn 59.50 0.25

ED 16 8 1/2 142.88 0.27
balda/lsoc 135.07 0.31

balda/fn 143.56 0.30
DMRG 60 30 1/2 8939.5 0.32

balda/lsoc 8673.1 0.33
balda/fn 8837.8 0.31

DMRG 60 20 1/3 6931.6 0.29
balda/lsoc 6401.0 0.30

balda/fn 6920.7 0.29

Table 4.3: Scaling parameters for a{U/t-,L) as obtained by fitting the data of Fig. 4.4 to 
the expression of equation (4.8). Note that the fit has been obtained without 
any constraints and by including data only for tZ/t > 1.

interaction strength increases, reflecting the fact that both the BALDA potential are 

exact in the limit of U —* oo. As a further consequence of the U ^ oo limit, we also 

observe that the relative error between BALDA/LSOC and BALDA/FN reduces as 

U grows.

Another important aspect is the computational advantage of LDFT-BALDA over 

ED. For example, in the calculations each data point for L = 12 takes about 6 hours 

in computational time and requires 200MB computer memory while that of L = 16 

takes about 8 hours in computational time and requires 3GB in computer memory 

with ED. Meanwhile calculations done by BALDA for both flavours take only few 

seconds thus highlighting the computational efficiency of these methods.

Given the accuracy of the BALDA/FN scheme we have decided to use the same to 

investigate in greater detail the scaling properties of a{U/t\ L). First we look at the 

scaling as a function of the interaction strength U/t. In this case we always consider 

a chain containing L = 60 sites for which the deviation from the DMRG results is 

never larger than 2%. Furthermore this is a length which allows us to explore a rather



Figure 4.5: Relative error between BALDA calculated polarizabilities and those obtained 
with exact methods (either ED or DMRG). In the panels we show: (a) L = 12 
at quarter filling (n = 1/2), (b) L = 16 at quarter filling, (c) L = 60 and 
N = 20, and (d) L = 60 at quarter filling.

large range of electron filling, so that it allows us to gain a complete understanding 

of the scaling properties. Our results are presented in Figure 4.6 where we show a 

as a function of U/t for different filling factors, we list the values of ^ obtained by 

fitting the actual data for U/t > 1 to the expression in equation (4.8) and we provide 

(inset) the dependence of ^ on n.

In general the fit to our data is excellent, suggesting the validity of the exponential 

scaling of the polarizability with the interaction strength (away from half filling). In 

particular we find that ^ decreases monotonically with n for n > 0.2 but it increases 

for smaller values. This means that ^(n) has a maximum just before n = 0.2, which 

appears rather sharp (see inset of Figure 4.6). We are at present uncertain about the



0
U/t

Figure 4.6: Polarizability as a function of U/t for a chain of 60 sites and various filling 
factors, n. The Figure legend reports the fitted values for the exponent ^ [see 
equation (4.8)]. The symbols represents the calculated data while the solid 
lines are just to guide the eyes. In the inset we present the exponent ^ as a 
function of the filling factor n.

precise origin of such a non-monotonic behavior. However, as we will see in details 

later on, we notice that the response of the exchange and correlation potential to the 

external electric field has an anomaly for small U and n. We believe that such an 

anomaly might be the cause of the non-monotonic behaviour of

Next we turn our attention to the scaling of a with the chain length. In Figure 

4.7 we present a{L) for two different filling factors (n = 1/3 and 1/2) and different 

values of U/t. Data are plotted both in linear and logarithmic scale, from which 

a clear power-law dependence of a on L emerges. A fit to our data provides the
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following scaling

a{U/t]L) = aiL^ (4.9)

Importantly this time we find essentially no dependence of both ai and 7 on either 

U/t or n. The fit reveals a value for the exponent of 7 ~ 3 (the range is from 

7 = 2.93 to 7 = 2.98). This is what expected for free electrons in ID [47], and it is 

substantially different from the predicted linear scaling at n = 1. Our results thus 

confirm that away from n = 1 the electrostatic response of the Hubbard model is 

similar to that of the non-interacting electron gas. Going in more details we find a 

rather small monotonic dependence of 7 on U/t. This however depends also on n 

since for n = 1/3 we find that 7 reduces as U/t is increased (from 2.98 for U/t = 0.5 

to 2.93 {ox U/t = 100), while the opposite behavior is found for n = 1/2 (7 = 2.94 

for U/t = 0.5 and 2.96 for U/t = 100).

4.3 Response of the BALDA potential to the ex­

ternal field

In ab initio DFT the failures of local and semi-local XC functionals in reproducing 

accurate linear polarizabilities are related to the incorrect response of the XC poten­

tial to the external electric field [106, 107], which in turn originates from the presence 

of the self-interact ion error [108, 109]. In particular for ab initio DFT the exact XC 

potential should be opposite to the external one, while the LDA/GGA (generalized 

gradient approximation, GGA) returns a potential which responds in the same di­

rection. In order to investigate the same feature for the case of the Hubbard model 

LDFT we calculate the potential response

(4.10)
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L
Figure 4.7: Scaling of the polarizability as a function of the chain length, L. Panel (a) 

and (b) are for n = 1/3 while (c) and (d) for n = 1/2. Note the linear 
dependence of the a{L) curve when plotted on a log-log scale, proving the 
relation ol{L) = aiL^

where v^^{ni) is the exchange and correlation potential at site i in the presence of an 

electric field S. Also in this case we adopt the finite difference method and we use 

£ = 0.01, after having checked that the trends remain unchanged irrespectively of 

the field strength.

In order to provide a benchmark for our calculations we also need to evaluate the 

potential response for the exact Hubbard model. We construct the exact potential 

by reverse engineering, a strategy introduced first by Almbladh and Pedroza [110] 

and by von Barth [111] and then applied to both static and time dependent LDFT 

by Verdozzi [42]. This consists in minimizing about the Kohn-Sham potential the
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functional T (in reality here this is just a function) defined as

(4.11)

where is the exact site occupation at site i as obtained by either ED or the

DMRG method, while nf^ is the Kohn-Sham one. For clarification purpose, the 

reverse engineering idea emanated from Almbladh and Pedroza [110] and von Barth 

[111] but they did it in a way different from the equation (4.11).

Our results are summarized in Figures 4.8 and 4.9, where we show Av^c as a 

function of the site index for a 60 site chain occupied respectively with 10 (n = 1/6) 

and 30 (n = 1/2) electrons. The external electrostatic potential here decreases as the 

site number increases, i.e. it has a negative slope. Results are presented for DMRG, 

BALDA/LSOC and BALDA/FN and for different values of U/t.

In general and in contrast with ah initio DFT, we find that the response of the 

exact Hubbard-LDFT XC potential is in the same direction of the external pertur­

bation for both the filling factors investigated and regardless of the magnitude of 

U/t. The response however becomes larger as U/t is increased (the slope of Awxc 

is more pronounced), a direct consequence of the fact that for large f7’s small de­

viations from an homogeneous charge distribution produce large fluctuations in the 

potential. Such a behaviour is well reproduced by both the BALDA functionals, with 

the BALDA/FN scheme performing marginally better than the BALDA/LSOC one, 

and reflecting the same trend already observed for the polarizabilities.

There is however one anomaly in the potential response for the BALDA/LSOC 

functional, namely at n = 1/2 and for small U/t (respectively 2 and 4) the poten­

tial response is actually opposite (positive slope) to that of the DMRG benchmark. 

This means that in these particular range of filling and interaction strength the 

BALDA/LSOC potential erroneously opposes to the external perturbation. The
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Figure 4.8; The difference, Auxo between the XC potential calculated at finite electric field 
and in absence of the field as a function of the site index. Results are presented 
for a 60 site chain with A = 10 (n = 1/6). The dots are the calculated data 
while the lines are a guide to the eye. The external potential has a negative 
slope.

anomaly originates from the particular shape of the BALDA/LSOC potential as a 

function of n for small U/t (see Figure 3.6). In fact, for BALDA/LSOC has a 

minimum for both U/t = 2 and U/t = A at around n = 1/4, which means that its 

slope changes sign when the occupation sweeps across n = 1/4. Therefore for those 

critical interaction strengths the response is expected to be along the same direction 

of the external potential for n < 1/4 and for 3/4 < n < 1 and opposite to it for 

l/4<n<3/4 (atn~3/4 there is a second change in slope).

In the case of the BALDA/FN functional such an anomaly is in general not ex­

pected, except for small U/t and n close to the discontinuity at ra = 1 (see Figure 3.6). 

This, however, is in the range of occupation not investigated here. Nevertheless we
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Figure 4.9: The difference, Auxc, between the XC potential calculated at finite electric field 
and in absence of the field as a function of the site index. Resnlts are presented 
for a 60 site chain with = 30 (n = 1/2). The dots are the calculated data 
while the lines are a guide to the eye. The external potential has a negative 
slope.

note that for n = 1/2 and U/t = 2 the BALDA/FN Uxc is almost flat. This feature 

is promptly mirrored in the potential response of Figure 4.9, which also shows an 

almost flat Auxc, although still with the correct negative slope.

Given the good agreement for both the polarizability and the potential response 

between the exact results and those obtained with the BALDA (in particular with 

the FN flavour), one can conclude that the local approximation to the Hubbard- 

LDFT functional is adequate. Still it is interesting to assess whether the remaining 

discrepancies have to do with the particular local parameterization of or

with the fact that the exact XC functional may be intrinsically non-local. In order 

to answer to this question we have set a numerical test. We consider a 60 site chain
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with n — 1/2 (this should be long enough to resemble the infinite limit) and we 

introduce a local perturbation in half of the chain. This is in the form of a reduction 

of the on-site energy of the first 30 sites by S. We then calculate the deviation of the 

XC potential per site, 6v/L, as a function of the deviation of the total energy SEq. 

These two quantities are defined respectively as

Sv 1^ lYl l4cK) - 4c = Eo{6) - Eo(0) , (4.12)
i=l

with Vxc and Eo(S) respectively the XC potential at site i and the total energy 

calculated for 5 7^ 0. One then expects for a local potential that > 0 as SEq —> 0.

Our results are presented in figure 4.10. These have been obtained for a relatively 

small f//t = 2 by varying 5 in the range 0 < < 0.1 in steps of 10~^ (this range

is used only for small S, while a coarse mesh is employed for large 5). Interestingly 

we note that, after a steady decrease of Sv/L with reducing JEq, the deviation of 

the potential starts to fluctuate independently on the size of SEq. We have carefully 

checked that such fluctuations are well within our numerical accuracy, so that they 

should be attributed to the breakdown of the local approximation.

In order to rule out possible local effects we have evaluated Sv/L by: i) summing 

over all the site in the chains (Case A in figure 4.10), ii) summing only over the first 

three sites in the left-hand side of the chain and the last three in the right-hand side 

(Case B), iii) summing over the first three sites on each side adjacent to the potential 

discontinuity (Case C). We find the rather remarkable result that, although for large 

SEo the three methods give a rather different Sv/L, they provide the same deviation 

as the total energy differences approaches zero.

We then conclude that part of the failure of BALDA/FN in describing the polar­

izability of finite ID chains must be ascribed to the violation of the local approxima-
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Figure 4.10; Variation of the XC potential per site, SyfL, as a function of the variation of 
the total energy, 6Eq, for a 60 site chain in which the first 30 sites have an 
on-site energy lower by 6 with respect to the remaining 30. The variation are 
calculated with respect to the homogeneous case. Three methods have been 
adopted to evaluate 6v/L: Case A, summing over all the site in the chains; 
Case B, summing only over the first three sites in the left-hand side of the 
chain and the last three in the right-hand side; Case C, summing over the 
first three sites on each side adjacent to the potential discontinuity. The inset 
shows a magnification of the data for small SEq.

tion. We note that this feature does not seem to be specific of the one-dimensional 

case and that a similar numerical test has been already provided in three-dimensions 

[112].

4.4 Summary

In this chapter, we report a systematic study of the energetics and the electrical re­

sponse properties of one-dimensional metals described by the Hubbard model. This 

is solved within LDFT and local approximations of the exchange and correlation 

functional. Whenever possible the calculations are compared with exact results ob-
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tained either by exact diagonalization or with the density matrix renormalization 

group approach. Our calculations indicate that the ground state energies extracted 

are in very good agreement with the ones computed by ED and DMRG over a broad 

range of parameters and are applicable to both the PBC and OBC. In general we find 

that BALDA functionals perform rather well in describing the electrical polarizabil­

ity of finite one-dimensional chains. The agreement with exact results is particularly 

good in the case of numerically evaluated functionals. A similar good agreement is 

found for the exchange and correlation potential response. In this case we obtain 

the interesting result that the potential response is always along the same direction 

of the perturbing potential, in contrast to what happens in ab initio DFT. Further­

more for small electron filling and weak Coulombic interaction the commonly used 

LSOC parameterization is qualitatively incorrect due to a spurious minimum in the 

potential as a function of the site occupation.

We expect our results to be largely maintained even in the presence of impuri­

ties, i.e. when the external potential (the on-site energy) is not uniform across the 

chains. In this case deviations between the exact results and LDFT are expected 

for small U/t, where the potential has a qualitative incorrect response and for any 

U/t at an average site occupation close to half-filling, where the potential derivative 

discontinuity appears.

Finally we provide a numerical test of the breakdown of the local approximation 

being the source of the remaining errors.



Chapter 5

Current-lattice density functional 

theory for the one-dimensional

Hubbard model

5.1 Introduction

Quantum dots, routinely made by electrostatically confining a two-dimensional elec­

tron gas [113], have been extensively studied in recent years [17]. The interest in 

these low-dimensional structures stems from the fact that their physics is controlled 

by quantum effects. Furthermore, while sharing many similarities with real atoms, 

quantum dots manifest intriguing low-energy quantum phenomena specific to them. 

This is because their properties can be influenced by external factors such as the 

geometry, the shape of the confining potential and the application of external fields, 

which are not accessible in real atoms. Research in the past has been motivated 

by the possibility of developing novel quantum dot based devices in both the fields 

of quantum cryptography/computing [114] and spintronics [115], as well as by the 

simple curiosity of exploring the properties of many-electron systems in reduced di­

mensions.

99



Current-lattice density functional theory for the one-dimensional Hubbard modelOO

Quantum rings represent a particular class of quantum dots [116, 117], where 

electrons are confined in circular regions [118, 119]. The circular geometry can sustain 

an electrical current, which in turn can be induced by threading a magnetic flux across 

the ring itself. Such a magnetic flux produces exciting effects like Ahanorov-Bohrn 

(AB) oscillations [120, 121] and persistent currents [122]. The effects were anticipated 

as early as the late 1960s [123, 124]. In one dimension the persistent current has been 

thoroughly studied [122, 125]. This, as well as many other physical properties of the 

ring, are a periodic function of the magnetic flux quantum, 4>o = hc/e [h is the 

Planck’s constant, c the speed of light and e the electron’s charge).

A number of earlier theoretical studies [126, 127, 128, 129, 130] on persistent 

current focused on unveiling the role of electron correlations and disorder over the 

electron transport. This is justified by the fact that electronic correlation in one- 

dimension (ID) always leads to non-fermionic low-energy quasiparticle excitations. 

In fact, even in the presence of weak interaction, ID fermions behave differently from 

a Fermi liquid and their ground state is generally referred to as Luttinger liquid. This 

possesses specific collective excitations [131].

There are two theoretical frameworks commonly used to study finite ID rings 

[132]. The first is based on the continuum model, where electrons move in a uniform 

neutralizing positive background and they interact via standard Coulomb repulsion 

{e^/^-KEor, £o is the vacuum permittivity). The second is populated by lattice mod­

els, where the electronic structure is written in a tight-binding form and electron- 

electron interaction is commonly described at the level of Hubbard Hamiltonian [21]. 

In both frameworks Exact Diagonalization (ED) has been the preferential solving 

strategy for small systems (small number of sites and electrons) [129, 133]. Addi­

tional methods used to study quantum rings include, for the lattice models, Bethe 

Ansatz (BA) [58, 45], renormalization group (RG) [134] and density matrix renor­

malization group (DMRG) [135]. In contrast the continuum model has been tackled
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with self-consistent Hartree Fock techniques [136], Bosonization schemes [137], con­

formal field theory [138], current-spin density functional theory [139] and quantum 

monte carlo (QMC) [140].

Many of the methods developed for solving lattice models for interacting electrons 

suffer from a number of intrinsic limitations connected to either the large computa­

tional overheads or to the need of using a drastically restricted Hilbert space. Density 

functional theory (DFT) can be a natural solution to these limitations. In Chapter 

4, we have demonstrated that LDFT within the local approximation is a powerful 

and efficient scheme. Such a scheme was applied successfully to a wide range of 

situations [35, 37, 38, 39, 40, 41, 141].

LDFT can be further extended to include the action of a vector potential, i.e. it 

can be used to tackle problems where a magnetic flux is relevant. This effectively 

corresponds to the construction of current-lattice DFT (CLDFT). Such an extension 

of LDFT was proposed recently for one-dimensional spinless fermions with nearest- 

neighbor interaction [142] and it is here adapted to the repulsive Hubbard model. 

The newly constructed functional is then used to investigate total energies, persistent 

current and Drude weight of a mesoscopic repulsive Hubbard ring threaded by a 

magnetic flux.

We begin the chapter by reviewing the concepts of persistent current and Drude 

weight in a one-dimensional mesoscopic systems. We then outline analytical solutions 

of the Schrodinger equation of a ring in a magnetic flux, neglecting electron-electron 

interactions and spin. Next we review the tight binding approach of a ring with a vec­

tor potential both for the non-interacting and interacting cases in the lattice models. 

The BA technique is summarized for the homogeneous Hubbard ring and how this 

can be used to obtain charge stiffness. Finally, the theoretical foundations leading 

to the construction of CLDFT and to its LDA are reviewed. Our results for both 

homogeneous and defective rings are presented, highlighting the main capabilities
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and limitations of our scheme.

5.2 Persistent current and charge stiffness of a ID 

mesoscopic system

In mesoscopic physics, the interesting phenomenon of persistent current is displayed 

by a metallic ring threaded by AB magnetic flux. A schematic representation of 

the system is shown in Figure 5.1. In general, an electron passing through a ring 

structure but not entering the region of the magnetic flux moves round the ring 

without any (classical) force during its motion. The quantum wave representing the 

state of the electron is, however, affected by the magnetic field threading around the 

ring. The electron’s wavefunction, T, experiences a phase shift as a result of the 

enclosed field, $, so that by a gauge transformation the magnetic field is eliminated 

from the Hamiltonian leading to a modification of its boundary condition:

+ 27r) = T($)ei27r4>/$o (5.1)

$0 is usually set to unity. This is the so-called twisted boundary condition responsible 

for the oscillation of both thermodynamic and kinetic properties with the magnetic 

flux. At absolute temperature (T = 0), the persistent current, j, can be measured as 

the response of the ground state energy, Eq, to the finite AB flux for a finite system 

on a ring of length L. It is usually calculated from the expression [144],

J = L
dEoi^) (5.2)

Due to the twisted boundary condition, the ground state energy has a periodicity 

of 2n in $, i.e.

£:o(4> + 27r) = Eo{^) = Eo{-^). (5.3)
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Figure 5.1: Schematic representation of one-dimensional ring threaded by a magnetic flux 
A persistent current j is generated in the ring.

The energy shift in the ground state can be written, using perturbation theory, as 

[145, 146]

Eo{^) - £;o(0) = (5.4)

where
La2ii;o(4>),

iJ — ———|<I.=0 (5.5)
2

is called the stiffness constant or the Drude weight [151]. For small values of the 

flux, D and j are related as

j = 2D$. (5.6)

The inclusion of higher order terms in equation (5.4) will be crucial when the energy 

shift is comparable to the mean energy level spacing in the spectrum of the many- 

body system. In particular, for a finite ID metallic system, the gaps are of the order 

of 0(1/L) and thus non-quadratic corrections occur when 4> is 0[l). Therefore level 

crossing would occur and perturbation theory would break down for 4> of order tt 

[146, 148].

There are 2 degrees of freedom possible when the AB flux is spin dependent in a 

system. In the case where up spin and down spin AB flux are equal i.e. = 4>c,

the shift in energy gives the charge stiffness, Dc- For zero magnetization (m = 0), 

the other possibility is when <I>| = —<I>| = 4>s/2 in which the energy shift gives the
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spin stiffness, Dg- Charge and spin current can therefore be written as

jv —

D,= 2 d^l
(5.7)

l'I>t;=0l

V = c,s.

In this work, we will only consider the former case. This is because Dc defines 

the magnitude of the real part of optical conductivity, ai{w), in the long wave­

length limit [145, 148]. For finite systems, the real part of the conductivity is usually 

separated as the sum of a zero frequency delta peak and a finite frequency regular 

part. Dc is the weight of the zero frequency delta peak:

(Ji{w) = 2Tr DcS{w) + aY'^{w), (5.8)

where h = e = c = 1 and cr[®®(uj) is the “regular” part of the conductivity.

5.3 The Hamiltonian of a quantum ring with a

vector potential

The non-interacting one-dimensional (spinless) electron gas on a ring is a system 

whose equation of motion has a known analytical solution. Its Schrodinger equation 

is written as

2m 'Ipnix) = Enlpnix)- (5.9)

Using PBC, i.e ipix) = + L), the solutions are plane waves with wave vectors

= ^ given by
9ar

(5.10)kn =

where n is an integer.
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In the presence of a vector potential, A, the momentum operator, p —>■ p + 

and A is related to a constant magnetic field, B, perpendicular to the ring as follows:

^ Br BL 
~ T “ 4^'

(5.11)

L (27rr) is the length of the ring and r is its radius. The magnetic flux is given as

<!>
= J Adi = AL==

47r ’
(5.12)

so that
27r e 27r <I>

(5.13)

The energy levels = f{^k'^/2m are therefore a set of translated parabolas which 

are periodic in $ with period 4>o = hc/e.

In general a vector potential, A, enters into a lattice model via Peierls substitution 

[149, 150], where the matrix elements of the T-dependent Hamiltonian, i/(r, p+^y4), 

can be written in terms of those for = 0 as

{^\H{Bp + -A)\R) = {B!\H{Bp)\R)e-^^^^ 
c (5.14)

where \R) is the generic orbital located at the position R and belonging to the basis 

set (orthogonal) used to construct the tight-binding Hamiltonian.

When Peierls substitution is applied, the kinetic energy T is modified. This takes 

the form
L-l

f = -t^{e i + hc) , (5.15)
<7, /=1

where we have considered a system comprising L atomic sites. In equation (5.15) 

i (C(T,;) is the creation (annihilation) operator for an electron of spin a {a =t, J,) at 

the /-site, t is the hopping integral and is the phase associated to the l-th bond.
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which effectively describes the action of A.

The inclusion of the interaction term defines the homogeneous ID Hubbard

Hamiltonian:

//^ = T + [/, (5.16)

where the Coulomb repulsion term is U = U npuii, with U being the Coulomb 

repulsion energy and = c\iCai. In order to extract transport properties, the 

functional form of the ground state energy as a function of the flux is investigated. 

We then study this functional form using the BA technique and CLDFT. In this work, 

we do not use the DMRG scheme because it is well known that DMRG performs 

poorly for periodic boundary conditions [28, 93].

5.3.1 BA technique for a homogeneous Hubbard ring 

a magnetic flux

with

The addition of to Hu of equation (2.5) does not affect its integrability via the BA 

equations. Here the flux can be gauged out of the Hamiltonian so that the solution to 

the Schrodinger equation in the presence of the flux with periodic boundary condition 

is the same as that in the absence of the flux but with a twisted boundary condition 

for the wavefunctions [152], i.e.

(5.17)

The solutions to using the BA for any given are similar to the transcendental 

equations of (2.28) with additions of appropriate $cr [148]:

M

Lkj = 2TTlj -t- -I- 2 tan ^ (
^=1

1. A/3 — sin kj
U/A

), (5.18)
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N

2 tan ^ (i Aq — sin kj M

U/A = 2'KJa + — <I>| + 2 tan ^ (_j^Aq ^/9 \
f//2

(5.19)
j = l ' i3=l

where M is the number of spin down electrons and N is the number of electrons. 

The quantum numbers {Ij} and {Jq} are connected with charge and spin degrees 

of freedom respectively [45] and are integers or half-odd integers depending on the 

parity of N and M. For example, at zero magnetic field they have the following 

form; when N = 2K (an even number), then

hK — — 1),...,—1,0,1,...,A' — 1

Ji,..., Jm = ~ 1)- ~2’ 2’ ■■■’ 2^^^ ~
(5.20)

where M is also an even number; and

h,...,l2K K + ^,..., 2

Ju-Jm = -^(M- !),...,-!,0,1,..., ^(M- 1)
(5.21)

where M is also an odd number, li N = 2K \ (an odd number) then

A, •••, hK+i — —K,—1,0,1,K

Ji,..., Jm = ~2^’ •••’“^>*^>^>■••’2^” ^
(5.22)

when M is an even number, and

Ii,..., In — ~2^'"''~2'2'"''2^

Ji,..., Jm = ~2^’ ■■■’~2’2’”’’2^
(5.23)

when M is an odd number. However, in the presence of magnetic flux these numbers 

can be shifted by an integer. The optimal set is determined from the minimum of 

the total energy of N electrons with M down spins [153]. The ground state energy.
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Eq, is therefore given by
N

£'o(d>) = —2t cos kj 
j=i

(5.24)

In the thermodynamic limit, many physical properties of the Hubbard model 

in ID can be solved by using the quasi-particle dispersions of the BA formalism 

[19, 154]. This was first described by Frahm and Korepin [154] where they expressed 

the integral equations for these dispersions as

,QP(

tQP!

\k) =e^°\k) + / (iAe^^(A)A'i(sin A: - A),
J-B

rQ pB
’(A) = e:^°^(A)-I- / d/c cos(A:)e:^^(A;)A'i(sin A; — A) — / d\'ef^{X')K2{X — X'),

J-Q J-B

(5.25)

where the bare energies ef}{k) are

= ■“ M ~ 2tcos{k),

(t) =0
(5.26)

and fi is the chemical potential while A'i(sin k — X) and K2{X — X') are as defined in 

(2.32). In order to fix the values of B and Q for any filling.

=e?q<3)
sf(-B) =eT{B),

and the chemical potential is determined from the condition

(5.27)

max[£f^(A:)] = 0. 
{*:}

The ground state energy can be calculated from the dispersion using

Eo - ptN dk

(5.28)

(5.29)
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Also, the velocity of the charge excitation is given by

Vr = 2ttp{Q) i^rriQ) (5.30)

where

{ernQ)= (5.31)

and p{k) is defined by (2.31).

In order to describe transport properties, a useful quantity called the dressed 

charge function, ^c{k), [19, 154] is needed. It is defined via the following coupled 

integral equations:

Uk)=l+ f dA6(A)Ai(sinA:-A),
J-B

rQ fP
dkcos{k)^c{k)Ki{smk-X)- dX'^s{^')K2{X - X').

J-Q J-B

For instance, the charge stiffness, Dc, can be written [155] as

(5.32)

Dc = ^[UQ)?Vc. (5.33)

This equation will be used to construct the XC potential within the CLDFT frame­

work in the following section.

5.3.2 Current-lattice density functional theory

We begin by outlining a general theoretical foundation of the current-density func­

tional theory (CDFT) and then describe its lattice counterpart for a one-dimensional 

homogeneous Hubbard model.

In the presence of an external vector potential A{x) (related to an external mag­

netic field by B{x) = V x A(T)), the non-relativistic Hamiltonian for N electrons



Current-lattice density functional theory for the one-dimensional Hubbard model 10 

contains both linear and quadratic terms of the potential i.e.

i j>i *•
(5.34)

Equation (5.34) is gauge-invariant i.e. if A{x) is changed to A{x) + VA(x), where 

A(x) is an arbitrary smooth function of position and simultaneously multiply the 

wavefunction by a phase factor exp[—f A(xj)], then all the physically observable 

properties of the system would remain unchanged [156]. This is intuitively valid 

because the transformation does not alter the magnitude of the magnetic field. Due 

to this additional potential, there is an additional density introduced in the ab initio 

DFT, namely the paramagnetic current density jp{x). The main idea of CDFT 

is therefore to use the expectation values of the charge density and paramagnetic 

current density as the fundamental quantities.

It has been shown by Vignale and Rasolt [157, 158] that it is possible to extend 

Hohenberg-Kohn (HK) theorems and establish a one-to-one mapping between the 

potentials v{xi) and A{x) and the ground state densities n{x) and jp{x) respectively. 

Thus, the ground state densities uniquely determine the ground state wavefunction 

of the system. Consequently, any observable of a system in its ground-state is a 

functional of the these densities. It is then possible to define an energy functional

E[n,jp] = T[n,jp] 4- J dxn{x) J dxjpA{x), (5.35)

where the universal functional T[n{x),jp[x)\ is given as

T[n,jp] = min(4'|T
71 Jp

(5.36)

where T and U are as defined by equation (2.40).

Equally important is the fact that the standard Kohn-Sham construction can
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be also employed for CDFT, so that the many-body problem can be mapped onto 

a fictitious single-particle one, with the two sharing the same ground state n and 

jp [157, 158]. The XC energy functional can be written in terms of an auxiliary 

single-particle universal functional jFs[n(T), jp(x)] as follows:

= E[n{x),jp] - Es[n{x),jp(x)] - £i/[n(f)] (5.37)

One then seeks effective potentials Vs{x) and /ls(x) that yield the correct ground 

state density and current via the solution of the single particle equation:

$a(f,a) = ea^a{x,a). (5.38)

where

(5.39)

n{x) = J]] |<f>«(T,cr)|^
Q,<T

jp{x) =Q^<f>;(f,(7)Vd>„(f,a).
a,<7

The single-particle vector potential, /ls(T)) and effective potential, Vs{x) are defined

as
^^(f) =A{x) -I- A^cix)

Vs{x) =v{x) + Vh{x) + Va:c{x) + f{A^c{x),jp{x),n{x)),
(5.40)

where
Axc{x)

Xxc{x)

5Exc[n{x),jp{x)]

^Jp{x)
SExc[n{x),jp{x)]

5n{x)

(5.41)

and f{Axc{x),jp{x),n{x)) is a function that depends on the Axc{x),jp{x) and n{x). 

The difficult step in the CDFT formalism is as always constructing a good approx­

imation to both Axc{x) and Vxc{x). Once those are constructed, one just solves the 

self-consistent KS-type equations of (5.38) the same manner as done for DFT.
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The scope of this work is to describe how ab initio CDFT can be translated to 

lattice models and how a suitable approximation for the ID Hubbard Hamiltonian 

can be constructed. Our description follows closely the one previously given by 

Dzierzawa et. al. [142], The one-dimensional Hamiltonian we shall consider is 

represented by
L

= + (5.42)
I

where Hy is given by the equation (5.16) and is the external potential.

•Ft

Throughout this work we always consider the non-spin polarized case so that 

; = <I>|/ = and n-ii = n^i = ni. The first step in the construction of a CLDFT is

the formulation of the problem in a functional form. The basic variables of the theory 

are the site occupation ni = ('k|n;|4') and bond paramagnetic current, ji = 

where |4') is the many-body wavefunction and the paramagnetic current operator is 

defined as

Ji ^1(7 /tC) (5.43)

In complete analogy to ab initio CDFT we can write the total energy, E, of the 

Hamiltonian (5.42) as a functional of the local external potentials and phases

E = E + Y^vr^ni + Y,^di, (5.44)

so that
ni = {hi) =

ji = {ji) =

dE
^^ext >

d^i ■

(5.45)

is a (7 dependent universal functional, whose functional derivatives with
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respect to {rii} and {ji} satisfy the following two equations

,,ext

$, =-

dni

dji'

(5.46)

Note that equations (5.44) through (5.46) follow directly from the properties of the 

Legendre transformation.

In order to make the theory practical we have now to introduce the auxiliary 

single-particle Kohn-Sham system. This is described by a single-particle Hamilto­

nian, IP, whose ground state site occupation and paramagnetic current are identical 

to those of the interacting system [equation (5.42)]. IP reads

ip = f^ + J2vthi, (5.47)

where T® = —t ^^e associated local effective poten­

tials and phases are uf and 4>| respectively. The single-particle Schrodinger equation 

is then

IP\K) = ^a\K), (5.48)

and the site occupation is defined as

n] (5.49)

where fa is the occupation number. An analogous expression can be written for jf.

The energy functional associated the Kohn-Sham system, can be constructed 

by performing again a Legendre transformation

(5.50)



Current-lattice density functional theory for the one-dimensional Hubbard model 14 

where is the total energy of the single-particle system and the following two 

equations are valid
V, = dn\ 

' dfi

(5.51)

The crucial point is that in the ground state the real and the Kohn-Sham system 

share the same site occupation and paramagnetic current, i.e. ni = n® and ji = jf.

Thus we are now in the position of defining the XC energy, E^'^, as the usual dif­

ference between E for the interacting and the Kohn-Sham systems, after the classical 

Hartree energy E^ has also been subtracted,

= E[ni, ji] - E^[ni,ji\ - E^[ni] . (5.52)

Note that for all functionals in equation (5.52) we took the short notation {n^}

Til and {ji} —> ji, i.e. the functionals depend on all the on-site occupations and 

paramagnetic currents. This allows us to define the single-particle effective potentials 

and phases. One in fact just needs to take the functional derivative of equation (5.52) 

with respect to n/ and ji, and use the equations (5.46) and (5.51) to obtain

vt =vr+,
(5.53)

where

$xc

dEf'^
dni

dEf^
dji

(5.54)

and vf = dEf jdni {— Uni/2) is the Hartree potential.

Finally we can re-write E^^ in terms of the expectation values of the original 

Hamiltonians. In fact by substituting the functional forms of E and E^ into the
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equation (5.52),

E-- = E-E^ + - v^ni + - E^[ni] , (5.55)

by using the equations (5.42) and (5.47),

^(nf - vr^)ni = E^ - E - + (4'|f + , (5.56)

and again substituting equation (5.56) into equation (5.55), we obtain

E-c ^ ^ _ E^lm], (5.57)
i

Now that the theory has been formally established we need to find an appropriate 

approximation to E^^. As for the case of standard LDFT [34, 35], the strategy here 

is that of considering the BA solution for the homogeneous limit of Hmb (this is 

defined in equation (5.42) by setting Vi = v and (h; = 4>) and then take its local 

density approximation n ni, 4> —> 4>/ [142], i.e.

(5.58)

where = E^'^[n,j]/L is the XC energy density (per site) of the homogeneous 

system. The first term of the equation (5.57) can be calculated exactly using the BA 

procedure [148]. This will provide the ground state energy as a function of n and 

^>, so that one still needs to re-express it in terms of n and j. However the phase 

variable $ can be eliminated from the ground state energy by using

3 =
dE{n,^) (5.59)

Thus one can finally explicitly write e^^(n,j') (the full derivation for the ID Hub-
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bard Hamiltonian is presented in Appendix C)

e-(n,J)=e-(n,0) + ^A-(n)i^ (5.60)

where
e^‘^(n,0)

E^^{n,0) - E^{n,0) - E^\n)
L

A^^(n) = 1 (5.61)

D?(n) £>“{n)J '

In the equations above E’^{n,0) and D^{n) are respectively the non-interacting 

ground state energy and charge stiffness, while E^^{n,0) and Df^{n) are the same 

quantities for the interacting case as calculated from the BA. Finally, the XC contri­

butions to the Kohn-Sham potential can be obtained by simple functional derivative 

(in this case by simple derivative) of the exchange and correlation energy density 

with respect to the fundamental variables n and j, i.e.

dn
(5.62)

and
(r)

dj
(5.63)

where BALDA, as usual, stands for Bethe Ansatz Local Density Approximation.

In the two panels of Figure 5.2 we present e^‘^(n, 0) and A^^{n) as a function of 

the electron density, n, for different interaction strengths U/t. As in the case of 

standard LDFT also for CLDFT there is a divergence in the n-derivative of both 

e^^{n,0) and A^^{n) at half-filing (n = 1). This is in correspondence of the metal- 

insulator-transition present in the ID Hubbard model for finite U/t. In the case of 

A^'^(n) the divergence is due to the vanishing limit of at half-filling.

The solution of the Kohn-Sham problem proceeds as follows. First an initial guess 

for the site occupation is used to construct the initial local paramagnetic current den-
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Figure 5.2: The XC energy density (per site) for a homogeneous ID Hubbard ring threaded 
by a magnetic flux as a function of the electron density and for different values 
of interaction strength U/t: (a) e^‘^(n,0) and (b) A^^(n).

sity. Then, the functional derivatives of equations (5.62) and (5.63) are evaluated 

at these given n and j so that the Kohn-Sham potential is constructed. The Kohn- 

Sham equations are then solved to obtain the new set of Kohn-Sham orbitals from 

which the new orbitals occupations are evaluated via the equation (5.49). The pro­

cedure is then repeated until self-consistency is reached, i.e. until the potentials (or 

the densities) at two consecutive iterations vary below a certain threshold. After 

convergence is achieved the total energy for the interacting system is calculated from

E = Y^ faec + E^^[ni,ji] - E^[ni] (5.64)

where the first term is the sum of single-particle energies and the other terms are 

the so-called double counting corrections.
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5.4 Results and Discussion

We now discuss how CLDFT performs in describing both the energetics and the 

transport properties of ID Hubbard rings in presence of a magnetic flux. For small 

rings our results will be compared with those obtained by diagonalizing exactly the 

Hamiltonian of equation (5.42), while CLDFT for large rings will be compared with 

the BA solution. First we will consider homogeneous rings and then we will explore 

the single impurity problem.

5.4.1 Homogeneous Ring

In this section we focus our attention on discussing the general features of CLDFT 

applied to homogeneous Hubbard rings threaded by a magnetic flux, i.e. on the per­

formance of CLDFT in describing the Ahanorov-Bohm effect. We start our analysis 

by comparing the CLDFT results with those obtained by ED. Since ED is numerically 

intensive such a comparison is limited to small systems.

In figure 5.3 we present the first low-lying energy levels, E, calculated by ED as a 

function of the magnetic flux, <i>, for a small 12-site ring at quarter Ailing {n = 1/2). 

In particular we present results for the non-interacting case [panel (a)] and for the 

interacting one at three different interaction strengths: (b) U/t = 2, (c) U/t = A and 

(d) U/t = 6. Exact results (ED) are in black, while those obtained with CLDFT in 

red. In general the ground state energy is minimized at $ = 0 when the number of 

electrons is N = Am -I- 2 and at $ = tt for A^ = 4m, with m being an integer [159]. 

Here we consider the case N = Am -I- 2 where the ground state is a singlet [145].

For non-interacting electrons the ground state is a singlet and the total energy is a 

parabolic function of $. Also the various excited states have a parabolic dependence 

on <I> and simply correspond to single-particle levels with different wave-vectors. As 

the Coulomb interaction is turned on, the non-interacting spectrum gets modified in



Figure 5.3: The low lying energy spectrum, E, of a 12-site ring at quarter filling (n = 1/2) 
as a function of the magnetic flux, $, and calculated for different interaction 
strengths Ujt. The red dashed line is the ground state energy. ED results are 
in black while the dashed red lines are for CLDFT. (a) Ujt — (b) U/t = 2,
(c) U/t — A and (d) U/t = (i. In panel (b) the blue arrows indicate the region 
where the triplet state becomes the ground state.

two ways. Firstly there is a second branch in the ground state energy as a function 

of $ appearing at around ?> = ±7r (see the blue arrows in panel (b) of Fig. 5.3). This 

originates from the degeneracy lifting between the singlet and the triplet solution at 

$ = ±7r, with the triplet being pushed down in energy and becoming the ground 

state. The $ region where the ground state is a triplet widens as the interaction 

strength increases. The second effect is the expected increase in the ground state 

total energy as U/t increases.

Since CLDFT is a ground state theory, it provides access only to the ground 

state energy, Eq. This is calculated next and plotted in Figure 5.3 in the interval 

—TT < <f> < TT for different U/t. As one can clearly see from the Figure the performance 

of CLDFT is rather remarkable, to a point that the CLDFT energy is practically
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0/71

Figure 5.4: Persistent current profile, j, for a 12-site ring at quarter filling obtained with 
both ED and CLDFT for different U/t. The full lines are the j calculated with 
ED while the dashed ones are for CLDFT.

identical to that calculated with ED. However CLDFT completely misses the cusps 

in the E'o(^) profile arising from the crossover between the singlet and the triplet 

state. Level crossing invalidates the BA approximation leading to the breakdown 

of the interacting XC energy [see equation (C.5) in appendix C] and so failures are 

expected [146]. This observation is in agreement with earlier studies [132] in which 

the inability of CDFT to reproduce level crossing was already noted. Nevertheless, 

as long as the singlet remains the ground state, the agreement between CLDFT 

and ED results is remarkable, even if this small ring is rather far from being a 

good approximation of the thermodynamic limit (the BA solutions) upon which the 

functional has been constructed.

Having calculated the total energies with both ED and CLDFT, the corresponding 

persistent currents, j, can be obtained by taking the numerical derivative of 

with respect to <1>. In Figure 5.4 we show results for the quarter-filled 12-site ring 

whose total energy was presented in Figure 5.3. In particular we plot j only over
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a period —vr < $ < tt, since all quantities are 27r periodic. The Figure confirms 

the linearity of the persistent currents with the magnetic flux for all the interaction 

strengths considered. The same is also true for other fillings (not presented here 

for the 12-site ring) away from half-filling. We also observe that the magnitude of 

persistent currents reduces with increasing U/t for both ED and CLDFT and that 

the precise dependence of j on U/t is different for different fillings. This is in good 

agreement with previous calculations based on the BA technique [147].
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Figure 5.5: Ground state energy, EQ{^),as a function of the magnetic flux, 4*, calculated 
with both the BA technique (black line) and CDFT (dashed red line). Calcu­
lations are carried out for L = 20, U/t = A and different numbers of electrons: 
(a) A = 2, (b) A = 6, (c) A = 10 and (d) A = 14.

ED is computationally demanding and cannot be performed beyond a certain 

system size. For this reason, in order to benchmark CLDFT for larger rings, we 

have calculated the ground state energy with the BA method. An example of these 

calculations is presented in Figure 5.5, where once again we show £'o(4>) for L — 20, 

U/t = A and different numbers of electrons. Also in this case the agreement between
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the BA results and those obtained with CLDFT is remarkably good as long as the 

ground state is a singlet. Interestingly we note that the agreement is better for low 

filling but it deteriorates as one approaches the half-filling case {N = 20 in this 

case). This is somehow expected given the derivative discontinuity of the CLDFT 

XC potentials at half-filling, leading to the Mott transition.

The final quantity we wish to consider is the Drude weight, D^, defined using 

(5.7). This is essentially the slope of the persistent current as a function of $ calcu­

lated at <I> = 0 and defines the magnitude of the real part of the optical conductivity 

in the long wave-length limit. Dc determines both qualitatively and quantitatively 

the transport properties of the ring. Importantly in the limit of large rings it expo­

nentially vanishes for insulators, while it saturates to a finite value for metals. Many 

studies have been devolved to calculating Dc in interacting systems. Romer and 

Punnoose have studied Dc for finite Hubbard rings using an iterative BA technique 

[146]. Eckern et. ai, for spinless fermions, related Dc to the so-called phase sensi­

tivity, AE, which is the difference in the total energy calculated at <I> = 0 (periodic 

ground state) and that at 4> = tt (antiperiodic ground state) [44, 161]. Recently, a 

DMRG algorithm has been developed to deal with complex Hamiltonian matrices 

and used to calculate Dc for spinless fermions [135].

Since the agreement between CLDFT and ED is proved for small rings (the 

slopes of the persistent currents as a function of calculated with CLDFT and ED 

are essentially identical in figure 5.4) we concentrate here on a larger system, namely 

a homogeneous 60 site ring at quarter filling. Our results for the Drude weight as 

a function of U/t are presented in figure 5.6. Again the CLDFT data are compared 

with those calculated with the BA in the thermodynamic limit (L —>■ oo) and the 

agreement is rather satisfactory. We note that, as for the ground state energy, also 

for the Drude weight the CLDFT seems to perform less well as U/t increases, i.e. as 

the interaction strength becomes large.
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Figure 5.6: Drude coefficient Dc as a function of the interaction strength U/t (top panel) 
and of the number of sites in the ring, L (bottom panel). All the calculations are 
for quarter filling and the results in the top panel are for a 60-site ring. In the 
figure we compare CLDFT results (dotted black lines) with those obtained by 
the BA technique in the thermodynamic limit (dashed red lines). Calculations 
in the lower panel are for C//t = 2..

Then in the lower panel of figure 5.6 we illustrate the scaling properties of 

as a function of the number of sites in the ring, L (we consider quarter filling and 

Ujt = 2). Clearly does not vanish at any lengths demonstrating that the system 

remains metallic. Furthermore it approaches a constant value already for L > 40. 

In the picture we also report the asymptotic value predicted by the BA in the ther­

modynamic limit L ^ cxD for this set of parameters. We find that the calculated
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CLDFT value is only 0.06% larger than the BA one, i.e. it is in quite remarkable 

good agreement.

5.4.2 Scaling properties

Next we take a more careful look at the scaling properties of the persistent currents 

and the Drude weights as a function of both the ring size and the interaction strength. 

It is well known that j is strongly size dependent, since it originates from electron 

coherence across the entire ring [135]. For a perfect metal one expect j to scale as 

1/L [133]. In Figure 5.7 the value of the persistent currents as a function of the 

ring size are presented for different electron fillings and for the two representative 

interaction strengths of /7/t = 2 (a) and U/t = 4 (b). Calculations are performed 

with both the exact BA and CLDFT. As a matter of convention we calculate the 

persistent currents at $ = 7r/2.

(b)A

W 
W.

\\ xK

n=0.3, BA 
■■ n=0.5, BA 

n=0.7, BA 
-A n=0.3, CLDFT 

11=0.5, CLDFT 
-* n=0.7, CLDFT

\

I I . . I . . . r~

0.08

0.06 

0.04 J 

0.02

L
40 80 120

L
160

Figure 5.7: Persistent current, j, as a function of the number of site in the ring, L, and 
for different electron occupations, n: (a) U/t = 2, (b) U/t = 4. Results are 
obtained with both the exact BA technique and CLDFT. In the figure the 
persistent currents are calculated at 4> = 7r/2, i.e. j = j(7r/2).

In general we find a monotonic reduction of the persistent current with L and an
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overall excellent agreement between the BA and the CLDFT results over the entire 

range of lengths, occupations and interaction strengths investigated. A non-linear fit 

of all the curves of figure 5.7 returns us an almost perfect 1/L dependence of j with 

no appreciable deviations at any n or U/t. This indicates a full metallic response of 

the rings in the region of parameters investigated, thus confirming previous results 

obtained with the BA approach [147].

Then we look at the dependance of j and Dc on the interaction strength. In 

this case we consider a 60 site ring and three different different electron fillings. In 

general for small fluxes one expects j = 2Dc^ and our numerical results of Fig. 5.4 

demonstrates that this is approximately correct also for our definition of persistent 

currents [j = j(4> = 7r/2)] over the entire U/t range investigated. We And that both
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H 0.285 
0.28

Figure 5.8: Persistent current, j, and Drude weight, Dc as a function of interaction strength 
U/t for a 60 site ring at different fillings. Results are obtained with both the 
exact BA technique and CLDFT.

j ar.d Dc monotonically decrease as a function of the interaction strength, essentially 

meaning that the predicted long-wavelength optical conductivity is reduced as the
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electron repulsion gets larger.

Also in this case the agreement between the BA and the CLDFT results is sub­

stantially good, although significant deviations appear in the limit of large U/t and 

electron filling approaching half-filling. This again corresponds to a region of the 

parameter space where the XC potential approaches the derivative discontinuity.

It was numerically demonstrated in the past [147] that the persistent current 

(and so the Drude weight) at half-filling follows the scaling relation j ~ with

^ ~ 1. However, to the best of our knowledge, no scaling relation was ever provided 

in the metallic case. We have then carried out a fitting analysis (the fit is limited to 

values of j and Dc ior U/t > 2) and found that our data can be well represented by 

the scaling laws

j = jo{U/t)->^, Dc = DoiU/t)-'^ . (5.65)

In general and as expected we find /3 = 7 and a quite significant dependence of 

the exponents on the filling. In particular table 5.1 summarizes our results and 

demonstrates that the decay rate of both the persistent currents and the Drude 

weights increases as the filling approaches half-filling. Furthermore the table also 

quantifies the differences between the BA and the CLDFT solutions, whose exponents 

increasingly differ from each other as the electron filling gets closer to n = 1 (for 

n = 0.7 we find (3^^ ~ 2/?cldft)

n ^CLDFT

0.3 0.036 0.036
0.5 0.085 0.104
0.7 0.151 0.246

Table 5.1: Exponents for the empirical scaling laws of equation (5.65) as fitted from the 
data of figure 5.8.

Finally, by combining all the results of this section we can propose a scaling law 

for both the persistent currents and the Drude weights, valid in the metallic limit of
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the Hubbard model, i.e. away from half-filling. This reads

Join)
t (5.66)

where both the constant jo and the exponent (3 are function of the electron filling n. 

Note that an identical equation holds for D^..

5.4.3 Scattering to a single impurity

Having established the success of the BALDA to CLDFT for the homogeneous case 

we now move to a more stringent test for the theory, namely the case of a ring 

penetrated by a magnetic flux in the presence of a single impurity. This is a problem, 

which has received already considerable attention in the past [139, 160, 144]. Note 

that, as in ab initio DFT, this is a situation different from the reference system 

used to construct the BALDA (since it deals with a non homogeneous system) and 

therefore one might expect a more pronounced disagreement with exact results. As 

the BA equations are integrable only for the homogeneous case we now benchmark 

our CLDFT results with those obtained by ED. This however limits our analysis to 

small rings.

The single impurity in the ring is described by simply adding to the Hamiltonian 

of equation (5.42) the term

■^Amp j (5.67)

where ej^p is the modification to the on-site energy at the impurity site i. The in­

clusion of an impurity produces in general electron backscattering so that we expect 

the persistent currents to get reduced. In figure 5.9 we present the general trans­

port features for this inhomogeneous system. Calculations have been obtained with 

CLDFT for a ring comprising 53 sites and N = 26 and U/t = 4. Again the persistent 

currents are calculated at = 7r/2.
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Figure 5.9: (a) Persistent current, j, as a function of single impurity strength, eimpj ob­
tained from the CLDFT for L = 53, N = 26, U/t = 4 and 4* = ^. In (b) we 
show a typical site density profile for a positive single impurity site potential.

Panel (a) shows j as a function of the impurity on-site energy. As expected 

from standard scattering theory the current is reduced as the the impurity potential 

increases, thus creating a potential barrier. The electron density profile for this 

situation is presented in panel (b), where one can clearly observe an electron depletion 

at the impurity site and Priedel’s oscillations around it.

A quantitative assessment of our CLDFT results is provided in Fig. 5.10 where 

they are compared with those obtained by exact diagonalization for a 13 site ring 

close to quarter filling {N = 6). In particular we present j as a function of the 

impurity potential, eimp, for both U/t = 2 and U/t = A. In general we find a rather 

satisfactory agreement between CLDFT and the exact results in particular for small 

ejmp and U/t. As the electron scattering becomes more significant deviations appear 

and the quantitative agreement is less good. Importantly we notice that the ED 

results systematically provide a persistent current lower than that calcnlated with 

CLDFT, at least for the values of electron filling investigated here. This seems to be
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a consistent trend also present for the homogeneous case (see figure 5.8), although 

the deviations in that case are less pronounced (for the same electron filling and in­

teraction strength). Therefore we tentatively conclude that most of the errors in the 

impurity problem have to be attributed to the errors already present in the homoge­

neous case. We then expect that CLDFT provides a good platform for investigating 

scattering problems at only minor computational costs. As such CLDFT appears 

as the ideal tool for investigating the interplay between electron-electron interaction 

and disorder in low dimensional structures.
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Figure 5.10; Comparison between the persistent currents calculated with CLDFT (black 
symbols and dotted line) and by ED (red symbols and dashed line) for a 13 
site ring and N = 6. The j’s are obtained at ^> = 7r/2 for two different values 
of the interaction strength, namely U/t = 2 (a) and U/t = 4 (b).

We remark here that our XC functionals (both the static and dynamic ones) 

in the presence single impurity could, in principle, be used to investigate locality or 

otherwise of the CLDFT as previously done for LDFT. Such investigation is currently 

under study.
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5.5 Summary

In this chapter, we have presented an extension of the BALDA for the one-dimensional 

Hubbard problem on a ring to CLDFT. Then we have investigated the response of 

interacting rings to an external flux both in the homogeneous and inhomogeneous 

case, and we have compared our results with those obtained by exact techniques. Our 

analysis has been confined to the metallic limit, i.e. away from half-filling, where 

the Hubbard model has a metal to insulator transition. In general we have found 

that CLDFT performs rather well in calculating both the persistent currents and 

the Drude weights in the homogeneous case. Furthermore a similar level of accuracy 

is transferred to the impurity problem. With these results in hands we propose to 

use CLDFT in the study of AB rings where the combined effect of electron-electron 

interaction and disorder can be addressed for large rings, so that a numerical eval­

uation of the various scaling laws proposed in the past can be accurately carried 

out.
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Chapter 6

The Siesta code and beyond LDA 

functionals

6.1 Siesta code

In Chapter 2, we described the basics of DFT and the various approximate XC po­

tentials that are most commonly used. There are many packages available containing 

a practical implementation of KS DFT. The choice of a package depends on many 

parameters such as cost, functionality, efficiency, ease of usage and robustness.

Calculations in this part of the thesis are based on the DFT code Siesta (Spanish 

Initiative for the Estimation of Systems with Thousands of Atoms) [162, 163]. Siesta 

is an advanced DFT code using pseudopotentials and efficient numerical atomic 

orbital basis sets. In this section a brief overview of the package is given while for 

detailed descriptions one can refer to references [162, 163, 164, 165]. Together with 

being a very efficient code, it is readily available and its source is distributed in such 

a way that it allows academic license users to make modifications depending on their 

interests.

133
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6.1.1 Pseudopotential

Solid state properties are mainly determined by the outermost (valence) electrons of a 

given atom, while the core electrons are ‘frozen’ in their atomic state. This is because 

the core electrons do not participate in the chemical bonding, being placed in the 

fully occupied inner shells. Only the electronic properties of the valence electrons 

are influenced strongly by the chemical environment. This simple consideration 

underpins the so called pseudopotential method. The idea is to replace the individual 

nuclear and core electron potentials by an effective potential which takes into account 

their net effects on the valence electrons. This effective potential (often referred to 

as pseudopotential [166]) provides a convenient way of reducing both the electronic 

states and basis required for any calculation.

A pseudopotential is required for each atomic species in any simulation. To 

generate a pseudopotential, two steps are required: Firstly, the true wavefunctions 

calculated for the atom by an all-electron DFT approach are modified in the core 

region to remove rapid oscillations of the wavefunctions near the nucleus, due to the 

very strong potential in that region and the orthogonality condition between different 

states. Next, the pseudopotential that will reproduce the pseudo wavefunctions is 

then calculated by inverting the Schrodinger equation. The pseudo wavefunctions 

corresponding to this modified potential possess smoother beha.viour than the true 

wavefunctions (see Figure 6.1), which in turns dramatically reduces the number of 

basis functions required to describe the wavefunction.

Usually, the following conditions must be satisfied when pseudopotentials are 

generated:

• The corresponding pseudo wavefunctions and the all-electron agree beyond a 

chosen core radius Tc (see Figure 6.1).

Pseudo and all-electron eigenvalues agree for a chosen atomic reference con-
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Figure 6.1: A sketch illustrating all-electron potential (solid line) and psendopotential 
(dashed line), and their corresponding wavefunctions. The radius, rc, rep­
resents the radius above which the all-electron and pseudopotential values are 
equal. Picture is taken from [167].

figurations. In other words, the pseudopotential must describe the valence 

properties in a different environment including atoms, ions, molecules and con­

densed matter.

• The logarithmic derivatives of the pseudo and the all-electron wavefunctions 

agree at Vc-

• The integrated charge inside Tc for each wavefunction agrees i.e. the pseudo 

and the all-electron wavefunctions have the same norm [norm-conserving pseu- 

dopotential).

Siesta uses nonlocal [168], norm-conserving [169] fully separable Troullier-Martins 

pseudopotentials. This means that the pseudopotentials are built from a smooth local
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part, identical for all the angular momentum channels, plus a non-local part.

6.1.2 Basis set

Practical DFT calculations expand the density matrix and all the operators over 

a basis set. There are two classes of basis set most commonly used in electronic 

calculations. The first class consists of basis functions that resemble the exact eigen­

states of the system (e.g. pseudoatomic orbitals or gaussians) whereas the second are 

system-independent (e.g. plane waves or wavelets). Siesta package utilizes a basis of 

localized pseudoatomic orbitals (PAOs) [170]. For each atom / positioned at Rj a 

set of PAOs are defined as the product of a numerical radial function and a spherical 

harmonic [170]

(pl,bnn{f^ = ^Iln{ri)yim{ri). (6.1)

Here, f[ = fi — Rj and the angular momentum is labeled l,m. The numerical ra­

dial functions defined in the equation (6.1) are made strictly zero beyond a certain 

cut-off radius Vc [171]. This confinement of PAOs is very important for making the 

Hamiltonian and overlap matrices in sparse form and crucial for efficiency of the 

package. Unlike the plane-wave basis, the PAOs basis enables faster and larger cal­

culations, mainly due to the strict cutoff at I'c in the basis functions, which increases 

locality, and enables even linear scaling for large systems. On the other hand, the 

method provides no systematic way to obtain convergence (such as the plane-wave 

cutoff energy), so that many parameters must be optimized to achieve reliable re­

sults and required level of accuracy. Example of such parameters in Siesta include 

pseudopotentials, k-mesh and mesh-cutoff. The convergence test then proceeds by 

choosing relevant quantity of the problem (e.g. total energy) and then start the 

calculation with a reasonable minimum value for each of the parameters to obtain 

the chosen quantity. By gradually increasing the parameter in question, one finds 

that the relevant property for the study will converge.
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Generally, there will be several orbitals (labelled by the index n) possesing the 

same angular dependence, but different radial dependence. These are the so-called 

multiple-^ basis functions. They are constructed by using the split-valence method 

[172]. For example, the second-(^ is a function whose radial part has the same tail 

as that of the corresponding first-C beyond a split-radius rf and a polynomial of the 

form

.2C _ r^{ai — bir^) if r < rf

dC if r > rf
(6.2)

(P/ /

where a; and bi are determined by imposing the continuity of the wavefunction and 

of its first derivative at rf. The quality of the basis set can be further enhanced 

by including the so-called polarization functions. These are obtained by introducing 

a small external electric field to the PAOs. Such perturbation accounts for the 

deformation induced by bond formation and produces basis functions corresponding 

to angular momenta not present among the valence states. Such a procedure enlarges 

the variational freedom in the minimization scheme.

6.1.3 Self-consistent iteration

Within the nonlocal pseudopotential approximation, the standard KS single-particle 

Hamiltonian in Siesta is written as

(6.3)

where T, Vh, and v^c are the kinetic energy, the Hartree potential and the XC 

potential operators respectively. The local and nonlocal parts of the pseudopotential 

operator of atom / are represented by and respectively. The eigenstate, T, 

of the Hamiltonian is expanded over PAO basis set, so that KS equations can
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then be written as
H'l' = E'it with

A*

where ja denotes set of indices [Inlm]. By defining the overlap matrix

(6.4)

(6.5)

the Hamiltonian matrix is obtained by computing the following integrals

= J dr(t)l{= / df(j)l{r)H(l)f,{f). (6.6)

The size of these matrices is a function of the basis set used in the simulation. The 

electron charge density is given by

^(0 =
2 5 (6.7)

where fi € [0,1] is the occupation number of the state j and energy Ei. By using the 

PAO basis set, the real space representation of the electron charge density becomes

(6.8)

I^/i

where is the density matrix expressed as

n,T'/X (6.9)
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with g{Ei) being the Fermi-Dirac distribution. The total number of electrons, Ng, 

in the valence band can be expressed in terms of the density and overlap matrices

Ng = = Tr[n5']. (6.10)

I//i

In order to eliminate the long range interaction of in the equation (6.3), it is 

screened with a neutral atom (NA) potential created by a NA charge density

nNA The NA potential is short range since the core attraction and the electron

Coulomb repulsion of the NA charge cancel each other beyond Vg and is defined as 

[165]

+ J
so that the equation (6.3) becomes

df (6.11)

n = f + ^2^7'"" + + SvH + ' (6.12)

where

6vH
« = / dE dnif)

\r — f'\ with Sn{f*) = n{f*) — (6.13)

The matrix elements of the first three terms in the equation (6.12) and the overlap 

matrix are calculated in reciprocal space and tabulated as a function of interatomic 

distances since the operators are independent of n{f) [162]. On the other hand, the 

operators 6vh and v^c depend on n{f) and thus their matrix elements are calculated 

on a real space grid whose fineness is determined by single energy cutoff (mesh-cutoff) 

equivalent to the highest energy of the planewaves can be represented on the same 

grid.

Since the Hamiltonian depends on the electron charge density and vice-versa, a 

self-consistent solution is sought for. An initial density matrix, n*"**, is used to con­

struct an initial Hamiltonian, ?f[n*"**]. From this Hamiltonian a new density matrix,
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^out _ is calculated corresponding to the solution of the KS equation

from This new density matrix (usually part of the new density matrix is

mixed with the initial density matrix in order to achieve fast convergence) is then 

used as the initial density matrix i.e. = rr*"®* to construct a new Hamiltonian. 

This procedure is repeated until a convergence criteria is fulfilled. In other words, 

the matrix norm of n®"®‘ and must be less than a predetermined tolerance:

<<5. (6.14)

Accelerated and better convergence is reached with more sophisticated algorithms 

mixing input and output density matrices. Siesta uses one those algorithms called 

Pulay mixing [173], which mixes the density matrices collected from several preceding 

iterations.

6.1.4 Brillouin-Zone sampling and the total energy

For periodic systems, the real space integration over the (infinitely extended) system 

is replaced by integrating over the (finite) first Brillouin-Zone (BZ) in reciprocal 

space via the Bloch’s theorem. Since Siesta assumes periodic boundary conditions, 

the real Hamiltonian matrix elements can be written, following Bloch’s theorem, at 

a given /c-point k (= kx,ky,kz) in the form

ik(R^i —R-it) (6.15)

where {u' = i/) means that 0^/ and are equivalent orbitals under lattice translation 

noting that (t)y_ and (pi, are centred on a unit cell. This yields a complex N x N 

eigenvalue problem, where N is the number of orbitals in the unit cell, which is then 

solved at every sampled A:-point in the BZ.

For any given A:-vector in the BZ, the wavefunction can be expanded over the
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localized orbitals as follows;

(6.16)

where the band index is labelled by i, if (//' = /r), and is normalized

in the unit cell. The electron charge density is

K'if)4>A^, (6.17)

and

n = Y^I dkci{k)u{kA{k)A^^^-^-^
, Jbz

(6.18)

is the density matrix which is real and such that = n^j^'y if (/x, u) = (/x', u'). The 

fc-points for the integration of the equation (6.18) are typically chosen according to 

the scheme of Monkhorst and Pack [174].

The KS total energy can then be written as

Fjks = I dfvH{f)n{f)+ I dr{eA^-Vxcir))n{f)+^
iiu -k I<J

ZiZj
R (6.19)

ij

where I, J are atomic indices, Rjj = |i?/—i?j|, Z/, Zj are the valence ion pseudoatom 

charges and ExciF) is the XC energy density.

6.2 Beyond LDA functionals in the Siesta code

As remarked in Chapter 2, the inadequacies of the DFT stems from the approximate 

nature of commonly used functionals. This include the self-interaction error (SIE), 

i.e. the fact that an electron experiences the Hartree and XC potentials generated 

by its own charge density. The reason for this error is attributed to only a partial 

cancellation of the SI contained in the classical Coulomb energy with that in the XC
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term [74, 175]. The presence of SIE is reflected in the wrong asymptotic behaviour 

of approximate functionals for finite systems. For example, the KS potential, in­

stead of having a — 1/r decay as r —>■ oo for neutral systems (like an atom), decays 

exponentially with the distance in both the LDA and GGA. One major effect of 

this behaviour is that the eigenvalue of the highest occupied KS orbitals does not 

correspond to the negative of the ionization potential as it should. Quite a number 

of works have been carried out in order to construct SI free functionals [176], how­

ever there is no known exchange functional that is completely SI free apart from the 

direct self-interaction correction (SIC) formalism of Perdew and Zunger [74]. This is 

an approach which uses a KS orbital-dependent XC potential, whose practical imple­

mentations are computationally demanding. Therefore its applications are restricted 

to small systems. In view of this, various attempts have been made to develop more 

computationally undemanding SIC schemes. The atomic SIC (ASIC) is a recent 

development in this direction and has been implemented in Siesta package.

Another computationally inexpensive feature added to Siesta is the LDA-f-f/ 

scheme [177]. It consists in correcting the LDA XC energy to give a better description 

of electronic correlations. Here, the LDA XC energy is replaced with the Hubbard-f/ 

energy which depends on the orbital occupations. Typically the correction is done 

for the more localized orbitals like the d and / orbitals.

In this section, we give a brief description of the ASIC starting from a general 

overview of the SIC and the LDA-ft/ algorithms. References [75, 76] give a complete 

description of ASIC and LDA-|-f/ scheme and their implementation in Siesta.
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6.2.1 Self-interaction correction

The seminal work of Perdew and Zunger [74] pioneered the modern theory of SIC. 

Let us rewrite the spin-polarized form of the KS total energy as

EKs[n\n'^] = %[n\ + Enin] J drn{r)v{r) + E:,cW (6.20)

where n n' + nL The first term is the kinetic energy of the non-interacting

system, the second is the Coulomb interaction and the third is the interaction be­

tween electron charge density n[f) and an external potential v{r). These three terms 

are all known exactly, however the last term is unknown and therefore is usually 

approximated by some functional form.

The main idea of the Perdew and Zunger SIC is that of subtracting directly the 

spurious SI for each Kohn-Sham (KS) orbital The SIC-LDA [178] XC energy 

thus writes
occupied

„ (6.21)
occupied

where E^^^[n\n^\ is the LDA-XC energy and is the sum of the self-Hartree 

and self-XC energy associated to the charge density nf = ['i/'f ]^ of the fully occupied 

KS orbital xjjf

5f^ = EHK] + E^^^[nl0]. (6.22)

Here Eh is the Hartree energy and cr =|, ]. is the spin index.

The search for the energy minimum is not trivial, since E^l^ is not invariant under 

a unitary rotation of the occupied KS orbitals. As a consequence the KS method 

becomes either non-orthogonal or size-inconsistent. These problems however can 

be avoided [179, 180, 181] by introducing a second set of orbitals 0^ related to the
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canonical KS orbitals by a unitary transformation M.

(6.23)

The functional can then be minimized by varying both the orbitals ■0 and the 

unitary transformation M.. This leads to a system of equations

//rv'f = (Ho" + (6.24)

(6.25)

(6.26)

where is the LDA Hamiltonian, Pfipfir) = and = VH{[ni];f) +

0]; r), with Vn and the Hartree and LDA-XC potential respectively.

In equation (6.24) we have used the fact that at the energy minimum the matrix
<7 SICof SIC KS-eigenvalues is diagonalized by the KS orbitals Importantly such 

minimization scheme can be readily applied to extended systems, without loosing 

the Bloch representation of the KS orbitals [182, 183].

6.2.2 Atomic SIC scheme

The ASIC method consists in taking two drastic approximations in equation (6.24). 

First we assume that the orbitals (j)j, that minimize the SIC functional are atomic-like 

orbitals (ASIC orbitals) thus

(6.27)
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where and are the SIC potential and the projector associated to the

atomic orbital 4>J. Secondly we replace the non-local projector with its expecta­

tion value in such a way that the final ASIC potential reads

^Asic(^ , (6.28)

where pj is the orbital occupation (essentially the spin-resolved Miilliken orbital 

population [184]) of <I>j.

Note that in the final expression for the potential a factor a appears. This is an 

empirical scaling term that accounts for the fact that the ASIC orbital <I> in general 

do not coincide with those that minimize the SIC functional (6.21). By construction 

Of = 1 in the single particle limit, while it vanishes for the homogeneous electron 

gas. Although in general 0 < a < 1, extensive testing [75, 76] demonstrates that a 

value around 1 describes well ionic solids and molecules, while a value around 1/2 is 

enough for mid- to wide-gap insulators. In the following chapter we will label with 

ASIC 1/2 and ASICi calculations obtained respectively with a = 1/2 and a = 1.

Finally we make a few comments over the total energy. The present theory 

is not variational since the KS potential cannot be related to a functional by a 

variational principle. However, since typical LDA energies are more accurate than 

their corresponding KS potentials, we use the expression of equation (6.21) as suitable 

energy. In this case the orbital densities entering the SIC are those given by the 

ASIC orbital <I>. Moreover, in presenting the data in the following chapter, we will 

distinguish results obtained by using the SIC energy (6.21) from those obtained 

simply from the LDA functional evaluated at the ASIC density, i.e. without including 

the 5n corrections (6.22).
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6.2.3 LDA+[/ scheme

The LDA+f/ [78, 79, 80] is another extension to the LDA where a generalized Hub­

bard model is introduced in order to treat localized electrons. The scheme is not 

computationally demanding and is considered to be an efficient approach for the 

description of large scale correlated systems. The LDA-f(7 total energy functional, 

Elda+u, is usually given by adding the energy of a generalized Hubbard model, Eu, 

for the localized electrons to the LDA functional, Elda, and then subtracting a dou­

ble counting energy, Epc, of the localized electrons described in a mean-field sense, 

i.e.

Elda+uI'iT''^ ,p'^] = Eloa['>E'] + Eu\p'^] — EdcIp'^], (6.29)

where Ey and Eqc are

Eu PmiPm2 + '^) Y
mi,m2,<T mi ^7712 ,0"

Edc = - 1) - ~
(6.30)

Pa = Tr(Pmi,m2) = 'LmPmm, P = HaPa, P^ = p'^mm and are the elements

of an occupation number matrix, p^, which is calculated self-consistently within the 

scheme. The screened Coulomb and exchange parameters U and J respectively are 

assumed to be independent of the magnetic quantum number m but depend on the 

quantum number 1. These approximations correspond to neglecting the possible non- 

spherical character of the effective interactions. Additionally, the parameters U and 

J are usually redefined into an effective parameter Ue/f = U — J

Knowledge of the occupation numbers is important in order to determine correla­

tion effect. The occupation matrix p^. can be evaluated by introducing a projection 

operator as

= (6.31)
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where (f)^ are the KS eigenvectors for the a state with spin a and is their oc­

cupation. The index a contains the band and momentum indices while m index 

includes the site, angular momentum and multiplicity of basis function indices. For 

non-orthogonal basis orbitals, different sets of occupation number matrices are ex­

pected to arise from different choice of the projection operators, P^. The effective 

non-local potential in terms of the projectors is now

rr» ' '

(6.32)

such that the KS potential and the orbital energy are respectively

'^LDA+u — ^Ida
m ' '

dE
^m[LDA+U] dp.

- ^mlLDA] + ^eff ( ^ “ Pm

(6.33)

The major difference between ASIC and LDA-l-t/ arises from the way unoccupied 

states are treated. While LDA+f/ has the capacity to correct the unoccupied states 

by shifting their orbital energies upward, ASIC only acts on the occupied orbitals 

which are shifted towards lower energies. This, therefore, leads to two different 

mechanisms in which the opening of the band gaps of electronic structure is handled. 

Since ASIC only acts on the occupied states, corrections are not expected for covalent 

systems where conduction and valence bands are bonding and antibonding states 

from the same atomic orbitals. However, for ionic systems ASIC will be effective due 

to the difference in the orbital contents of the valence and conduction bands.

Many-body perturbation theory in Hedins GW approximation [185] has become 

a method of choice in quantitatively describing quasiparticle excitations in solids as 

measured by direct and inverse photoemission spectroscopy (PES/IPES) or optical 

absorption. Here, the self-energy in the Hedin’s approximation is calculated to lowest 

order in the screened interaction W. The method has, over the last decade, been
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applied to d- or /- electron systems though not as successful as anticipated because 

it suffers from similar pathologies of the LDA being its starting point [186]. Since 

the method is yet to be implemented in Siesta, we do not wish to discuss it in detail 

but just to mention that LDA+f/ has been shown to be an approximate GW scheme 

for localized d/f states [78, 186].



Chapter 7

Performance of ASIC functional in

computing exchange parameters of 

selected systems

7.1 Introduction

Theoretical studies based on density functional theory (DFT) [31, 32] have given re­

markable insights into the electronic and magnetic properties of both molecules and 

solids [187]. In particular, a number of these studies attempt to quantitatively de­

scribe the magnetic interaction in a broad range of systems including transition met­

als [188], hypothetical atomic chains [189, 190], ionic solids [191, 192, 193], transition 

metal oxides [194, 195] and transition metal polynuclear complexes [196, 197, 198]. 

DFT uses an effective single-particle picture where spin symmetry is generally bro­

ken. For this reason exchange parameters J are conventionally extracted by using a 

mapping procedure, where total energy calculations are fitted to a classical Heisen­

berg Hamiltonian [188, 199]. This is then used for evaluating the Curie or Neel 

temperatures, the magnetic susceptibility and for interpreting neutron diffraction 

experiments [200].

149
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Notably, the accuracy and reliability of the numerical values of the J’s de­

pend on the XC functional used, being the only approximated part of the DFT 

total energy [175]. Calculations based on local and semi-local functionals, namely 

the local density approximation (LDA) and the generalized gradient approxima­

tion (GGA), are successful with itinerant magnetism in transition metals [188], but 

largely over-estimates the Heisenberg exchange parameters in many other situations 

[191, 192, 193, 195, 198]. Additional corrections based on the kinetic energy den­

sity (metaGGA) [201] marginally improves the agreement with experiments [193], 

although an extensive investigation over several solid state systems has not been 

carried out so far.

This Ghapter, therefore, is a contribution towards computing the exchange in­

teraction for a number of prototypical materials, critical to local exchange and cor­

relation functionals using the ASIC scheme. Despite the simplicity of the method, 

it has been applied with success to a number of interesting physical systems includ­

ing , transition metal monoxides [202, 203], silver halides [204], noble metal oxides 

[205], ferroelectric materials [202, 206, 207], high-k materials [208], diluted magnetic 

semiconductors [209, 210] and also to quantum transport [211, 212].

As already pointed out in the previous Chapter, the method is strictly speaking 

not variational, in the sense that an energy functional generating the ASIC potential 

via variational principle is not available. However, since typically the LDA energy 

is a good approximation of the exact DFT energy, although the LDA potential is 

rather different from the exact KS potential, a “practical” definition of total energy 

can be provided. In this work we evaluate the ability of this approximated energy in 

describing exchange parameters for a variety of magnetic systems.
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7.2 Results

All our results have been obtained with an implementation of the ASIC method 

[75, 76] based on the DFT code Siesta [162, 163, 164, 165]. In order to compare 

the exchange parameters obtained with different XC functionals we consider the 

LDA parameterization of Ceperly and Alder [213], the GCA functional obtained by 

combining Becke exchange [214] with Lee-Yang-Parr correlation [215] (BLYP), the 

nonempirical Purdew, Burke and Ernzerhof (PBE) GGA [216], and the ASIG scheme 

as implemented in reference [75, 76].

Galculations are performed for different systems critical to LDA and GGA, rang­

ing from molecules to extended solids. These include hypothetical H-He atomic 

chains, the ionic solid KNiFa and the transition metal monoxides MnO and NiO. 

DFT total energy calculations are mapped onto an effective pairwise Heisenberg 

Hamiltonian

JnmSn ‘ Sm , (7.1)
{nm)

where the sums runs over all the possible pairs of spins. In doing this we wish to stress 

that the mapping is a convenient way of comparing total energies of different magnetic 

configurations calculated with different functionals. In this spirit the controversy 

around using the spin-projected (Heisenberg mapping) or the non-projected scheme 

is immaterial [189, 217, 218].

7.2.1 H-He chain

As an example of molecular systems, we consider H-He monoatomic chains with an 

inter-atomic separation of 1.625 A (see Figure 7.1). This is an important benchmark 

for DFT since the wave-function is expected to be rather localized and therefore to be 

badly described by local XC functionals. In addition the system is simple enough to 

be accessible by accurate quantum chemistry calculations, so that theoretical bench
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marks exist.

As basis set we use two radial functions (double-C) for the s and p angular mo­

menta of both H and He, while the density of the real-space grid converges the 

self-consistent calculation at 300 Ry. Here we consider all possible Heisenberg pa-

H

^111111^ He

f/2

(b)

Jn---------------^
Jii

^;;;...^.r.................A.................^
Figure 7.1: H-He-H chains at an inter-atomic distance of 1.625A.

rameters. Thus the triangular molecule (Figure 7.1a) has only one nearest neighbour 

parameter Jj2, the 5-atom chain (Figure 7.1b) has both first 3^2 and second neighbour 

parameters, and the 7-atom chain (Figure 7.1c) has three parameters describing 

respectively the nearest neighbour interaction with peripheral atoms Jf2, the nearest 

neighbour interaction between the two middle atoms and the second neighbour 

interaction Jfg. We have used the procedure proposed by Ruiz et. al. [196] for the
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Method ja>^12 ■^12 Jb■^13 ■^12 '^23 ■^13 S{%)

CASPT2 -24 -74 -0.7 -74 -79 -0.7 0
SIC-B3LYP -31 -83 -0.2 -83 -88 -0.3 16
LDA -68 -232 -6 -234 -260 -6 210
PBE -60 -190 -1.8 -190 -194 -1.6 152
BLYP -62 -186 -2 -186 -200 -1 147
ASICi -36 -112 -1 -no -122 -0.6 51
ASICi/2 -44 -152 -1 -152 -168 -1.4 101
ASICt -40 -128 -0.6 -128 -142 -1.0 73
ASICt/2 -50 -170 -1.4 -170 -190 -1.8 127

Table 7.1: Calculated J values (in meV) for the three different H-He chains shown in 
Fig.7.1. The CASPT2 values are from reference [196], while the SIC-B3LYP are 
from reference [189]. The last two rows correspond to J values obtained from 
the LDA energy calculated at the ASIC density.

theoretical estimation of with 5„ = 1/2 in this case.

Following reference [189], accurate calculations based on second-order perturba­

tion theory (CASPT2) [196] are used as comparison. The quality of each particular 

functionals is measured as the relative mean deviation of the nearest neighbour ex­

change parameters only (J“2, J\2i ■^23)1 since those are the largest ones

\Ji JCASPT2| 

IJCASPT21 (7.2)

Our calculated J values and their relative 5 are presented in table 7.1, where 

we also include results for a fully self-consistent SIC calculation over the B3LYP 

functional (SIC-B3LYP) [189]. It comes without big surprise that the LDA system­

atically overestimates all the exchange parameters with errors up to a factor 6 for 

the smaller J (Jfg and Jjg) and an average error 6 for the largest J of about 200%. 

Standard GGA corrections considerably improve the description although the J’s 

are still systematically larger than those obtained with CASPT2. Note that the re­

sults seem rather independent of the particular GGA parameterization, with PBE 

and BLYB producing similar exchange constants. This is in good agreement with
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previous calculations [189].

SIC in general dramatically improves the LDA and GCA description and our 

results for ASICi are reasonably close to those obtained with the full self-consistent 

procedure (SIC-B3LYP). This is an interesting result, considering that our ASIC 

starts from a local exchange functional, while B3LYP already contains non-local 

contributions. We also evaluate the J parameters by using the LDA energy evaluated 

at the ASIC density (last two rows in table 7.1). In general this procedure gives J’s 

larger than those obtained by using the energy of equation (6.21), meaning that the 

contributions reduce the J values.

It is then clear that the ASIC scheme systematically improves the J values as 

compared to local functionals. The agreement however is not as good as the one 

obtained by using a fully self-consistent SIC scheme, meaning that for this molecular 

system the ASIC orbitals are probably still not localized enough. This can alter the 

actual contribution of (5^^^ to the total energy and therefore the exchange parameters.

....---.....•

^Nl

i Fi
!•:I j

...A I
i

-4-^

A
Figure 7.2; Cubic perovskite structure of KNiFs. Color code: Green=Ni, Red=F, Blue=K.
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7.2.2 Ionic antiferromagnets: KNiFs

Motivated by the substantial improvement of ASIC over LDA, we then investigate 

its performances for real solid-state systems, starting from KNiFa. This is a proto­

typical Heisenberg antiferromagnet with strong ionic character, a material for which 

our ASIC approximation is expected to work rather well [75]. It is also a well studied 

material, both experimentally [219, 220] and theoretically [221, 222, 191, 192], allow­

ing us extensive comparisons. The KNiFs has cubic perovskite-like structure with 

the nickel atoms at the edges of the cube, fluorine atoms at the sides and potassium 

atoms at the center (see Figure 7.2). At low temperature, KNiFa is a type II antifer­

romagnetic insulator consisting of ferromagnetic (111) Ni planes aligned antiparallel 

to each other (see Figure 7.3 for the schematic representation of type II and type I 

antiferromagnetic ordering). For our calculations we use a double-^ polarized basis 

for the s and p orbitals of K, Ni and F, a double-^ for the 3d of K and Ni, and a 

single-^ for the 3d of F. Finally, we use 5x5x5 /^-points in the full Brillouin zone and 

the real-space mesh cutoff is 550 Ry. Note that the conflguration used to generate 

the pseudopotential is that of Ni^"^, 4:S^3dJ.

Figure 7.3: Unit cell of KNiFs for (a) type II and (b) type I antiferromagnetic phases. 
Black and white small spheres represent spin up and down Ni ions.

We first consider the band-structure as obtained with LDA and ASIC. For com­

parison we also include results obtained with LDA-hf/ [78, 80] as implemented in 

Siesta [177]. In this case we correct only the Ni d shell and we fix the Hubbard-
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U and Hund’s exchange-J parameters by fitting the experimental lattice constant 

(ao = 4.014 A). The calculated values are U=8 eV and J=1 eV. The bands obtained 

with the three methods and the corresponding orbital projected density of states 

(DOS) are presented in Figures 7.4 and 7.5 respectively. From the bands, the LDA 

introduces many more bands in the energy window considered when compared with 

those of ASIC and LDA+f/. This is due to the way ASIC and LDA+f/ treat the 

unoccupied states as we already mentioned in last section of Chapter 6. LDA+f/ is 

able to correct the unoccupied states by shifting their orbital energies upward while 

ASIC only acts on the occupied orbitals which are shifted towards lower energies.

10
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Figure 7.4: Band structure for type II antiferromagnetic KNiFa obtained with a) LDA, b) 
ASICi and c) LDA+f/ (f7=8 eV and J=1 eV). The valence band top is aligned 
at E=Ep=0 eV (horizontal line).

All the three functionals describe KNiFa as an insulator with bandgaps respec­

tively of 1.68 eV (LDA), 3.19 eV (ASICi), and 5.0 eV (LDA+f7). An experimental 

value for the gap is not available and therefore a comparison cannot be made. In 

the case of LDA and ASIC the gap is formed between Ni states, with conductance 

band bottom well described by Cg orbitals. These are progressively moved upwards



157 Chapter 7

in energy by the SIC, but still occupy the gap. Such feature is modified by LDA+f/ 

which pushes the unoccupied Cg states above the conductance band minimum, which 

is now dominated by K 4s orbitals.

£(eV)

Figure 7.5: DOS for type II antiferromagnetic KNiFs obtained with a) LDA, b) ASICi 
and c) LDA+{7 ({7=8 eV and J=1 eV). The valence band top is aligned at 
E=0 eV (vertical line). The experimental UPS spectrum from reference [223] 
is also presented (thick green line). The relative binding energy is shifted in 
order to match the K 3p peak.

In more detail the valence band is characterized by a low-lying K 3p band and by 

a mixed Ni-3d/F 2p. While the K 3p band is extremely localized and does not present 

substantial additional orbital components the amount of mixing and the broadening 

of the Ni-3d/F 2p varies with the functionals used. In particular both LDA and ASIC 

predict that the Ni 3d component occupies the high energy part of the band, while 

the F 2p the lower. For both the total bandwidth is rather similar and it is about 

9-10 eV. In contrast LDA-|-f/ offers a picture where the Ni-F hybridization spread
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across the whole bandwidth, which is now reduced to less than 7 eV.

Experimentally, ultraviolet photoemission spectroscopy (UPS) study of the whole 

KMF3 (M: Mn, Fe, Co, Ni, Cu, Zn) series [223] gives us a spectrum dominated by 

two main peaks: a low K 3p peak and broad band mainly attributed to F 2p. These 

two spectroscopical features are separated by a binding energy of about 10 eV. In 

addition the 10 eV wide F 2p band has some fine structure related to various Ni 

d multiplets. An analysis based on averaging the multiplet structure [223] locates 

the occupied Ni d states at a bounding energy about 3 eV smaller than that of the 

F 2p band. In Figure 7.5, we superimpose the experimental UPS spectrum to our 

calculated DOS, with the convention of aligning in each case the sharp K 3p peak.

It is then clear that ASIC provides in general a better agreement with the UPS 

data. In particular both the Ni-3(i/F 2p bandwidth and the position of the Fermi 

energy {Ep) with respect to the K 3p peak are correctly predicted. This is an 

improvement over LDA, which describes well the Ni-3d/F 2p band, but positions the 

K 3p states too close to Ep. For this reason, when we align the UPS spectrum at 

the K 3p position, this extends over Ep. Finally in the case of LDA+f/, there is 

a substantial misalignment between the UPS data and our DOS. LDA+[/ in fact 

erroneously pushes part of the Ni d mainfold below the F 2p DOS, which now forms 

a rather narrow band.

We now turn our attention to total energy related quantities. In table 7.2 we 

present the theoretical equilibrium lattice constant Uq and the Heisenberg exchange 

parameter J for all the functionals used. Experimentally we have J=8.2 ± 0.6 meV 

[219]. The values of ao and J are calculated for the type II antiferromagnetic ground 

state, by constructing a supercell along the (111) direction. Importantly values of J 

obtained by considering a supercell along the (100) direction, i.e. by imposing antifer­

romagnetic alignment between ferromagnetic (100) planes (type I antiferromagnet), 

yield essentially the same result, confirming the fact that the interaction is effectively
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Method uo Ah pth Ax pex

LDA 3.951 46.12 (53.1) 1.829 40.4 1.834
PBE 4.052 33.98 (37.0) 1.813 36.48 1.808
BLYP 4.091 31.10 (37.6) 1.821 36.72 1.812
ASICi/2 3.960 40.83 1.876 36.14 1.878
ASIGi 3.949 36.22 1.907 30.45 1.914
ASIGt/2 3.969 43.44 1.876 38.57 1.878
ASICt 3.949 39.80 1.907 33.56 1.914
LDA±U 4.007 12.55 10.47 1.940

Table 7.2: Calculated J parameters (in meV) and the Miilliken magnetic moment for Ni 
3d {Pd) in KNiFa- The experimental values for J and ao are 8.2 ±0.6 meV and 
4.014A respectively while the values in brackets are those from reference [193]. 
In the table we report values evaluated at the theoretical (Jth and P^) and 
experimental (Jex and P|*) lattice constant. ASIC*^2 ASICj are obtained 
from the LDA energies evaluated at the ASIC density.

only extending to nearest neighbors. Furthermore we report results obtained both at 

the theoretical equilibrium lattice constant (Jth) and at the experimental one (Jex)- 

Here, we have used the energy difference, AP, between the ferromagnetic and the 

antiferromagnetic state to extract J by using the following relation [221]:

AE = 225V, (7.3)

where 2 is the number of Ni second neighbours with opposite spin (6 and 2 for type 

I and type II antiferromagnets respectively) and 5 is the total spin moment (5=1 

in this present case).

Also in this case local XC functionals largely overestimate J, with errors for Jgx 

going from a factor 8 (LDA) to a factor 4.5 (GGA-type). ASIG improves these 

values, although only marginally, and our best agreement is found for ASIGi, while 

ASIGi/2 is substantially identical to GGA. Interestingly the ASICi performance is 

rather similar, if not better, to that of meta-GGA functionals [193]. The situation is 

however worsened when we consider J parameters obtained at the theoretical lattice 

constant. The ASIG-calculated uq are essentially identical to those from LDA and
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about 2% shorter than those from GGA. Since J depends rather severely on the 

lattice parameter we find that at the theoretical lattice constant GGA-functionals 

perform actually better than our ASIG. Finally, also in this case the J’s obtained by 

simply using the LDA energies are larger than those calculated by including the SIC 

corrections (see equation 6.21).

In general the improvement of the J parameters is correlated to a higher degree 

of electron localization, in particular of the Ni d shell. In table 7.2 the magnetic 

moment of the Ni d shell, Pa, obtained from the Miilliken population, is reported. 

This increases systematically when going from LDA to GGA to ASIG approaching 

the atomic value expected from Ni^+.

Our best result is obtained with LDA+f/, which returns an exchange of 10.47 meV 

for the same U and J that fit the experimental lattice constant. This is somehow 

superior performance of LDA+[/ with respect to ASIG should not be surprising and 

it is partially related to an increased localization. The Ni ions d shell in octahedral 

coordination splits into t2g and Cg states, which further split according to Hund’s 

rule. The t2g states are all filled, while for the Cg only the majority are. By looking 

at the LDA DOS one can recognize the occupied orbitals (we indicate majority 

and minority spins respectively with f and J.) at -3 eV, the ej at -2 eV and the at 

about 0 eV, while the empty are at between 1 and 3 eV above the valence band 

maximum.

The local Hund’s split can be estimated from the separation. The ASIG 

scheme corrects only occupied states [224], and therefore it enhances the local ex­

change by only a downshift of the valence band. From the DOS of Figure 7.5 it is 

clear that this is only a small contribution. In contrast the LDA-|-f/ scheme also 

corrects empty states, effectively pushing upwards in energy the band. The net 

result is that of a much higher degree of localization of the d shell with a conse­

quent reduction of the Ni-Ni exchange. This is similar to the situation described by
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the Hartree-Fock method, which however returns exchange parameters considerably 

smaller than the experimental value [221, 222, 225, 226]. Interestingly hybrid func­

tionals [191] have the right mixture of non-local exchange and electron correlation 

and produce J’s in close agreement with the experiments.

We further investigate the magnetic interaction by evaluating J as a function 

of the lattice constant. Experimentally this can be achieved by replacing K with 

Rb and Tl, and indeed de Jongh and Block [227] early suggested a d~°‘ power law 

with a = 12 ib 2. Our calculated J as a function of the lattice constant d for LDA, 

GGA, ASICi and LDA-t-ft {U=8 eV and J—1 eV) are presented in Figure 7.6. For

Figure 7.6: J as a function of the lattice constant for LDA, GGA, ASICi and LDA-ft/ 
({7=8 eV and J=1 eV). The symbols are our calculate value while the solid 
lines represent the best power-law fit.

all the four functionals investigated J varies as a power law, although the calculated 

exponents are rather different: 8.6 for LDA, 9.1 for GGA, 11.3 for ASICi and 14.4 for 

LDA-I-LL This further confirms the strong underestimation of the exchange constants 

from local functionals. Clearly the relative difference between the J obtained with
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different functionals becomes less pronounced for small d, where the hybridization 

increases and local functionals perform better. Note that only ASICi is compatible 

with the experimental exponent of 12 ± 2, being the one evaluated from LDA+[/ 

too large. Importantly we do not expect to extrapolate the LDA+f/ value at any 

distance, since the screened U and J parameters change with the lattice constant.

In conclusion for the critical case of KNiFs the ASIC method appears to im­

prove the LDA results. This is essentially due to the better degree of localization 

achieved by the ASIC as compared with standard local functionals. However, while 

the improvement over the bandstructure is substantial, it is only marginal for energy- 

related quantities. The main contribution to the total energy in the ASIC scheme 

comes from the LDA functional, which is now evaluated at the ASIC density. This 

is not sufficient for improving the exchange parameters, which in contrast need at 

least a portion of non-local exchange.

7.2.3 Transition metal monoxides

Another important test for the ASIC method is that of transition metal monoxides. 

These have been extensively studied both experimentally and theoretically and they 

are the prototypical materials for which the LDA appears completely inadequate. 

Here we consider MnO and NiO, which have respectively half-filled and partially- 

filled 3d shells. They both crystallize in the rock-salt structure and in the ground 

state they are both type-H antiferromagnetic insulators. The Neel’s temperatures are 

116 K and 525 K respectively for MnO and NiO. In all our calculations we consider 

double-C polarized basis for the s and p shell of Ni, Mn and 0, double-^ for the Ni and 

Mn 3d orbitals, and single-C for the empty 3d of O. We sample 6x6x6 A:-points in the 

full Brillouin zone of both the cubic and rhombohedral cell describing respectively 

type I and type H antiferromagnetism. Finally the real-space mesh cutoff is 500 Ry. 

The calculated band structures obtained from LDA, ASIC1/2 and ASICi are
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shown in Figures 7.7 and 7.8 for MnO and NiO respectively. These have been already 

discussed extensively in the context of the ASIC method [202, 75] and here we report 

only the main features. For both the materials LDA already predicts an insulating 

behavior, although the calculated gaps are rather small and the nature of the gaps 

is not what experimentally found. In both cases the valence band top has an almost 

pure d component, which suggests these materials to be small gap Mott-Hubbard 

insulators. The ASIC downshifts the occupied d bands, which now hybridize with 

the 0-p manifold. The result is a systematic increase of the band-gap which is more 

pronounced as the parameter a goes from 1/2 to 1. Importantly, as noted already 

before [75], the experimental band-gap is obtained for a 1/2.

Figure 7.7: Calculated band structure for the type II anti-ferromagnetic MnO obtained 
from a) LDA, b) ASIC1/2 ^'i^d c) ASICi. The valence band top is aligned at 
0 eV (horizontal line).

We then moved to calculating the exchange parameters. In this case we extend 

the Heisenberg model to second nearest neighbors, by introducing the first (A) and 

second (J2) neighbor exchange parameters. These are evaluated from total energy
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Figure 7.8: Calculated band structure for the type II anti-ferromagnetic NiO obtained from 
a) LDA, b) ASICi/2 and c) ASICi. The valence band top is aligned at 0 eV 
(horizontal line).

calculations for a ferromagnetic and both type II and type I antiferromagnetic align­

ments. It has been shown [194] that the Heisenberg Hamiltonian of the equation 

(7.1) reduces to
^FM =(6Ji +3J2)52

=(-2 Ji + 3J2)S^ (7.4)

= - 3J25^

where E^^, E^^^ and E^^"^ are the ground state total energies of the ferromagnetic, 

type I antiferromagnetic and type II antiferromagnetic ordering respectively. The 

magnitude of the spin S is 5/2. Our calculated results, together with a few selected 

data available from the literature are presented in table 7.3.

Let us first focus our attention to MnO. In this case both the J’s are rather 

small and positive (antiferromagnetic coupling is favorite), in agreement with the 

Goodenough-Kanamori rules [228] and the rather low Neel temperature. Direct
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Method MnO NiO

Ji J2 Pd Ji J2 Pd

LDA 1.0 2.5 4.49 (4.38) 13.0 -94.4 1.41 (1.41)
PBE 1.5 2.5 4.55 (4.57) 7.0 -86.8 1.50 (1.59)
ASICi/2 1.15 2.44 4.72 (4.77) 6.5 -67.3 1.72 (1.77)
ASICi 0.65 1.81 4.84 (4.86) 3.8 -41.8 1.83 (1.84)
asic;/2 1.27 2.65 4.72 (4.77) 7.1 -74.6 1.72 (1.77)
ASICt 0.69 2.03 4.84 (4.86) 4.4 -47.9 1.83 (1.84)
SE1“ 0.86 0.95
HE" 0.22 0.36
B3LYP" 0.81 1.71
PBEO" 0.96 1.14
B3LYP‘^ 2.4 -26.7
HE'' 0.8 -4.6
SIC-LDA^ 2.3 -12
Expt.-^ 1.4 -19.8
Expt.® 1.4 -17.0

Table 7.3: Calculated Ji and J2 in meV for MnO and NiO. Pd is the magnetic moment 
of the d shell calculated from the type II antiferromagnetic phase. Values in 
bracket are for Pd evaluated from the ferromagnetic ground state. ASIC*y2 and 
ASIC* are obtained from the LDA energies evaluated at the ASIC density, a) 
Ref. [229], b) Ref. [230], c) Ref. [231], d) Ref. [195], e) Ref. [232], f) Ref. [234], 
g) Ref. [235]

experimental measurements of the exchange parameters are not available and the 

commonly accepted values are those obtained by fitting the magnetic susceptibility 

with semi-empirical methods [229]. Importantly this fit gives almost identical first 

and second nearest neighbour exchange constants. In contrast all the exchange func­

tionals we have investigated offer a picture where J2 is always approximately twice 

as large as Ji. This gives us a reasonably accurate value of Ji for LDA and GGA, 

but J2 is overestimated by approximately a factor 2, in agreement with previous 

calculations [194].

ASIC systematically improves the LDA/GGA description, by reducing both Ji 

and J2. This is related to the enhanced localization of the Mn d electrons achieved
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by the ASIC, as it can be seen by comparing the Mn d magnetic moments (P^) 

calculated for different functionals (see table 7.3). Thus ASICi, which provides the 

largest magnetic moment, gives also J’s in closer agreement with the experimental 

values, while ASIC1/2 is not very different from LDA.

Importantly for half-filling, as in MnO, the ASIC scheme for occupied states is 

fundamentally analogous to the LDA-|-f7 method, with the advantage that the U 

parameter does not need to be evaluated. Finally, at variance with KNiFs, it does 

not seem that a portion of exact exchange is strictly necessary in this case. Hartree- 

Fock [230] results in a dramatic underestimation of the J parameters, while B3LYP 

[231] is essentially very similar to ASICi. Curiously the best results available in the 

literature [230] are obtained with the PBEO functional [233], which combines 25% of 

exact-exchange with GGA.

The situation for NiO is rather different. The experimentally available data 

[234, 235] show antiferromagnetic nearest neighbour and ferromagnetic second near­

est neighbour exchange parameters. The magnitude is also rather different with 

IJ2I > 10 |Ji|. Standard local functionals (LDA and GGA) fail badly and overesti­

mate both the J’s by more than a factor 5. ASIG in general reduces the exchange 

constants and drastically improves the agreement between theory and experiments. 

In particular ASICi gives exchange parameters only about twice as large as those 

measured experimentally.

A better understanding can be obtained by looking at the orbital-resolved DOS 

for the Ni d and the O p orbitals (Figure 7.9) as calculated from LDA and ASIC. 

There are two main differences between the LDA and the ASIC results. First there is 

an increase of the fundamental band-gap from 0.54 eV for LDA to 3.86 eV for ASIC1/2 

to 6.5 eV for ASICi. Secondly there is change in the relative energy positioning of 

the Ni d and O p contributions to the valence band. In LDA the top of the valence 

band is Ni d in nature, with the O p dominated part of the DOS lying between 4 eV
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Figure 7.9; Calculated orbital resolved DOS for type II anti-ferromagnetic NiO obtained 
with a) LDA, b) ASIC1/2 and c) ASICi- The valence band top is aligned at 
0 eV.

and 8 eV from the valence band top. ASIC corrects this feature and for ASIC1/2 the 

O p and Ni d states are well mixed across the whole bandwidth. A further increase 

of the ASIC corrections (a = 1) leads to a further downshift of the Ni d band, 

whose contribution becomes largely suppressed close to the valence band-top. Thus, 

increasing the portion of ASIC pushes NiO further into the charge transfer regime.

Interestingly, although ASIC1/2 gives the best bandstructure, the J’s obtained 

with ASICi are in better agreement with the experiments. This is somehow sim­

ilar to what observed when hybrid functionals are put to the test. Moreira et al. 

demonstrated [195] that J’s in close agreement with experiments can be obtained by 

using 35% Hartree-Fock exchange in LDA. Moreover, in close analogy to the ASIC
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behaviour, as the fraction of exact exchange increases from LDA to purely Hartree- 

Fock, the exchange constants decrease while the band-gap gets larger. However, 

while the best J’s are obtained with 35% exchange, a gap close to the experimental 

one is obtained with B3LYP, which in turns overestimates the J’s. This remarks 

the subtile interplay between exchange and correlations in describing the magnetic 

interaction of this complex material. Finally, it is worth remarking that a fully self- 

consistent SIC [232] seems to overcorrect the J’s, while still presenting the erroneous 

separation between the Ni d and O p states.

7.3 Summary

Here, the approximated ASIC total energy is put to the test in calculating the ex­

change parameters of a variety of materials, where local and gradient-corrected XC 

functionals fail rather badly. This has produced mixed results. On the one hand, 

the general bandstructure and in particular the valence band, is considerably im­

proved and resembles closely available photo-emission data. On the other hand, 

the exchange constants are close to experiments only when the magnetism origi­

nates from half-filled shells. For other fillings, as in the case of NiO or KNiF3 the 

ASIC improvement over LDA is less satisfactory, suggesting that a much better XC 

functional, incorporating a portion at least of exact exchange, is needed. Impor­

tantly ASIC seems to be affected by the same pathology of hybrid functional, i.e. 

the amount of ASIC needed for correcting the J is different from that needed for 

obtaining a good bandstructure.



Chapter 8

Summary and Outlook

8.1 Summary

Electronic correlation is an important feature of condensed matter systems responsi­

ble for fascinating physics in any dimension. In this dissertation, we have presented 

a range of theoretical methods to investigate electric and magnetic properties of one­

dimensional and three-dimensional correlated systems. The first part was devoted 

to one-dimensional systems while the second focused on three-dimensional ones

8.1.1 Part I

The interest in one-dimensional structures stems from their possible practical realiza­

tion with potential applications in molecular electronics. Indeed, carbon nanotubes 

and other quasi one-dimensional material exist and have already shown much promise 

in fields such as nanotechnology, electronics, optics, materials science, and architec­

ture. Theoretical simulations are vital tools to investigate these systems as they can 

lead to a deeper understanding of the physics involved.

Experimentally observed properties of real systems are often described by theories 

based on underlying model Hamiltonians. For one-dimensional strongly correlated 

systems, the Hubbard model is usually adopted as a prototype. Here, the interplay

169
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between Coulomb repulsion and kinetic energy produces an enormous variety of 

properties. In this work we have used lattice density functional theory (LDFT) 

within the Bethe Ansatz local density approximations (BALDA) to tackle Hubbard 

problem in ID. Also, we have extended LDFT to current-LDFT (CLDFT), where 

a vector potential is included in the Hubbard Hamiltonian. We constructed a new 

exchange-correlation (XC) functional for a Hubbard ring enclosing a magnetic flux 

within the BALDA.

In contrast to other numerical techniques, the LDFT/CLDFT-BALDA offers the 

following advantages;

• Easy to implement - The simplicity of its implementation is striking. Im­

mediately after the formalism is understood, the implementation of the code is 

straight forward.

• Speed and resources - LDFT/CLDFT-BALDA is an extremely fast method 

and does not require a huge amount of computer memory. It is well-suited to 

perform calculations over a wide range parameter space and system size.

• Flexibility - It is possible to describe the homogeneous and inhomogeneous 

cases by LDFT/CLDFT-LDA unlike the conventional BA that can only tackle 

homogeneous systems. Furthermore, both open and periodic boundary condi­

tions can be efficiently explored.

Disadvantages include:

• Approximate nature - Due to the approximations in defining the unknown 

XC energy in the formulation of LDFT/CLDFT, the method still remains 

approximate.

• Convergence issues close to the Mott-Insulator transition (MIT) -

Self-consistent convergence is difficult to reach for systems close to or at half-
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filling as a result of the phase transition present in the homogeneous one­

dimensional Hubbard model for that particular filling. This scenario means 

that the half-filling case must always be avoided in numerical calculations.

Despite these limitations, LDFT/CLDFT-BALDA is a very promising method to 

study zero-temperature properties of one-dimensional strongly correlated systems.

We have applied LDFT-BALDA to calculate the ground-state energies of the 

one-dimensional Hubbard model with both open and periodic boundary conditions. 

We used the two existing schemes in constructing an XC potential at the LDA 

level, namely BALDA/FN and BALDA/LSOC, and investigated a broad range of 

parameters such as the length of the chain, the number of electrons, the band fillings, 

the interaction strength and inhomogeneity. The ground state energies obtained by 

both the XC functionals are quite accurate and compare well with the results of 

well-established numerical methods like ED and DMRG. We find that the accuracy 

and convergence of the KS equations are not affected by the boundary conditions of 

the systems.

Consequently, we investigated two different physical properties with the DFT- 

BALDA functionals. The first one involves the response of one-dimensional metals 

to an external electric field. By using the ground state energy, we perform calcula­

tions for the linear polarizabilities, a, of ID chains. The BALDA calculated values 

for a are compared with those obtained by ED and the DMRG, over a broad range 

of parameters. In general BALDA linear polarizabilities are in good agreement with 

the exact results. This agreement is particularly good in the case of BALDA/FN. 

Similarly, we show that the response of XG potentials are best described by the 

BALDA/FN where we obtain the interesting result that the potential response is 

always along the same direction of the perturbing potential, in contrast to what hap­

pens in ab initio DFT. We have also addressed the possible source of remaining error 

in the functionals which we attributed to the breakdown of the local approximation.
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Secondly, with our extended scheme for the XC potential to CLDFT, we have 

studied a one-dimensional Hubbard ring threaded by a magnetic flux. We have calcu­

lated the ground state energy profile with the flux, from which equilibrium transport 

properties were estimated. The ground state energies of such a homogeneous Hub­

bard ring studied by CLDFT-BALDA have accuracies comparable to the BA and 

ED methods. We examined the performance of CLDFT-BALDA in predicting well 

known characteristics of persistent current and Drude weight with respect to the ring 

length, the band filling, the interaction strength and inhomogeneity. In all cases, the 

qualitative features are well reproduced while the results are as good as other many- 

body methods. However, the method encounters convergence problems close to the 

MIT or with significantly strong interactions which makes accuracy in those cases 

less satisfactory. Altogether, the comparison of ED and BA results proved that the 

CLDFT-BALDA captures the physics of Ahanorov-Bohm (AB) rings.

8.1.2 Part II

In this part, we have presented a systematic study of systems where correlations are 

important, by using an approximate self-interaction correction (SIC) scheme, namely 

Atomic SIC (ASIC) to DFT. In general, we have calculated the bandstructures of 

these systems by using the ASIC method. More specifically, exchange parameters, 

J, are extracted and compared to those calculated with other available theoretical 

methods as well as available experimental data. The bandstructures calculated by 

ASIC show that the quality of the valence band is enhanced and resembles closely 

available experimental data. In contrast, the exchange constants compare well to 

experiments only when magnetism arises from half-filled shells. We conclude that 

in order to obtain satisfactory estimates of J, a portion of exact exchange must be 

added to the XC functional.
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8.2 Future work

Our calculations of the static linear polarizability have been carried out for a ID 

Hubbard Hamiltonian in an electric field. One possible area of application for these 

calculations is in the field of ultracold fermions in optical lattices [25]. These sys­

tems bear close resemblance to correlated electron systems in condensed matter and 

have received considerable attention both experimentally and theoretically over the 

last decade. We plan to address the response of such systems in the presence of 

a harmonic confining potential. Numerical studies of the one-dimensional fermion- 

Hubbard model in harmonic traps within the LDFT [39, 41] and time-dependent 

LDFT [236] already exist in the literature. Our work will likely stimulate further 

interesting activity along the same lines.

In an attempt to correct for self-interaction errors in the XC energy, Vieira and 

Capelle have proposed three different approaches for the one-dimensional Hubbard 

model within the LDFT-BALDA [96]. One can, therefore, consider to include such 

a correction into the XC energy of the CLDFT-BALDA in order to offer much op­

portunity for improvement.

As we have mentioned in the introduction, the LDFT for strongly correlated 

systems has also been extended to time-dependent DFT (TDDFT) as pioneered by 

the work of Verdozzi [42]. This area however is still in an early stage (See references 

[42, 43]). While CLDFT, as we have discussed in Chapter 5, and TDDFT are 

two different theories that can be used to study strongly correlated one-dimensional 

systems, merging them into a single scheme, will be novel. A development in this 

direction would be the natural extension of this aspect of this thesis. This is of 

immediate interest for our future study.

Implementation of XC potentials which include full SIC and exact exchange into 

Siesta is currently in progress. It will be then interesting to observe their effects 

when estimating exchange parameters in future investigations. The only drawback
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is that such methods are orbital dependent and so they are highly computationally 

expensive.



Bibliography

[1] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Brooks Cole, 1976.

[2] J. Zaanen and O. Gunnarsson, Phys. Rev. B. 40, R7391 (1989).

[3] N. F. Mott and R. Peierls, Proceedings of the Physical Society of London 49, 

72 (1937).

[4] N. F. Mott, Proceedings of the Physical Society of London Series A 62, 416 

(1949).

[5] J. T. Devreese, R. P. Evrard and V. E. van Doren, (eds) Highly Conducting 

One-Dimensional Solids (Plenum, New York, 1979).

[6] P. Fazekas Lecture Notes on Electron Correlation and Magnetism (World Sci­

entific, Singapore 1999).

[7] A. R. Moodenbaugh, Youwen Xu, and M. Suenaga, T. J. Folkerts and R. N. 

Shelton, Phys. Rev. B 38, 4596 (1988).

[8] L. D. Landau, Sov. Phys. JETP, 3, 920 (1957), 5, 101 (1957), 8, 70 (1958).

[9] A. Troisi, Nature Mater. 8, 538 (2009).

[10] F. D. M. Haldane, J. Phys. C. 14, 2585 (1981); Phys. Rev. Lett. 47, 1840 (1981).

[11] J. M. Luttinger, J. Math. Phys. 4 609 (1963).

[12] T. Giamarchi, Chem. Rev. 104, 5037 (2004).

175



BIBLIOGRAPHY 176

[13] M. Bockrath, D. Cobden, J. Lu, A. Rinzler, R. Smalley, L. Balents, and P. 

McEuen, Nature 397, 598 (1999).

[14] P. Segovia, D. Purdie, M. Hengsberger and Y. Baer, Nature 402, 504 (1999).

[15] L. Venkataraman, Y. S. Hong, and P. Kim, Phys. Rev. Lett. 96, 076601 (2006).

[16] S. Kagoshima, H. Hasegawa and T. Sambongi, One Dimensional Conductors 

(Springer, Berlin, 1987).

[17] See for example T. Giamarchi, Quantum Physics in One Dimension, First Edi­

tion, (Oxford University Press, 2004).

[18] J. D. Yuen, R. Menon, N. E. Coates, E. B. Namdas, S. Cho, S. T. Hannahs, D. 

Moses and A. J. Heeger, Nature Mater. 8, 572 (2009).

[19] F. H. L Essler, H. Prahm, F. Gohmann, A. Kliimper and V. E. Korepin, 

The One-Dimensional Hubbard Model, (Cambridge University Press, Cambridge 

(UK), 2005).

[20] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1962).

[21] J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963), 277, 237 (1964).

[22] J. Kanamory, Prog. Theor. Phys. 30, 275 (1963).

[23] 1. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008); S. 

Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 80, 1212 (2008).

[24] L. Pezza, L. Pitaevskiil, A. Smerzi, S. Stringari, G. Modugno, E. de Mirandes, 

F. Ferlaino, H. Ott, G. Roati, and M. Inguscio, Phys. Rev. Lett. 93, 120401 

(2004); M. Kohl, H. Moritz, T. Stdferle, K. Gunter, and T. Esslinger, Phys. 

Rev. Lett. 94, 080403 (2005).



177 BIBLIOGRAPHY

[25] P. D. Drummond, J. F. Corney, A. J. Liu and H. Hu, J. Mod. Opt. 52, 2261 

(2005).

[26] F.H.L. Essler, H. Frahm, F. Gohmann, A. Kliimper and V.E. Korepin, The One- 

Dimensional Hubbard Model, (Cambridge University Press, Cambridge, 2005).

[27] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[28] U. Schollwock, Rev. Mod. Phys. 77, 259 (2005).

[29] O. Gunnarsson and K. Schonhammer, Phys. Rev. Lett. 56, 1968 (1986).

[30] K. Schonhammer, O. Gunnarsson and R. M. Noack, Phys. Rev. B. 52, 2504 

(1995).

[31] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[32] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[33] R. Lopez-Sandoval and G. M. Pastor, Phys. Rev. B. 67, 035115 (2003).

[34] N. A. Lima, L. N. Oliviera and K. Capelle, Euro. Phys. Lett. 60, 601 (2002).

[35] N. A. Lima, L. N. Oliviera and K. Capelle, Phys. Rev. Lett. 90, 146402 (2003).

[36] K. Capelle, N. A. Lima, M. F. Silva and L. N. Oliviera, in The Fundamentals 

of Electron Density, Density Matrix and Density Functional theory in Atoms, 

Molecules and Solids, Kluwer series, “Progress in Theoretical Chemistry and 

Physics,” edited by N. 1. Gidopoulos and S. Wilson (Kluwer, Dordrecht, 2003).

[37] M. F. Silva, N. A. Lima, A. L. Malvezzi, and K. Capelle, Phys. Rev. B. 71, 

125130 (2005).

[38] V. L. Campo, Jr. and K. Capelle, Phys. Rev. A. 72, 061602(R) (2005).



BIBLIOGRAPHY 178

[39] G. Xianlong, M. Polini, M.P. Tosi, V. L. Campo, K. Capelle and M. Rigol, Phys. 

Rev. B. 73, 165120 (2006).

[40] G. Xianlong, M. Rizzi, M. Polini, R. Fazio, M.P. Tosi, V. L. Gampo, and K. 

Capelle, Phys. Rev. Lett. 98, 030404 (2007).

[41] G. Xianlong, Phys. Rev. B. 78, 085108 (2008).

[42] C. Verdozzi, Phys. Rev. Lett. 101, 166401 (2008).

[43] S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi and E. K. U. Gross, Phys. 

Rev. Lett. 104, 236801 (2010).

[44] S. Schenk, M. Dzierzawa, P. Schwab and U. Eckern, Phys. Rev. B. 78, 165102 

(2008).

[45] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968), E. H. Lieb and F. 

Y. Wu, Physica A 321, 1 (2003).

[46] S. Ishihara, M. Tachiki and T. Egami, Phys. Rev. B 49, 16123 (1994); S. Ishi- 

hara, M. Tachiki and T. Egami, Phys. Rev. B 53, 15563 (1996).

[47] A. G. Rojo and G. D. Mahan, Phys. Rev. B 47, 1794 (1993); G. D. Mahan and 

A. G. Rojo, Phys. Rev. B 50, 2642 (1994).

[48] A. Altland and B. Simons Condensed Matter Field Theory (Cambridge Univer­

sity Press, 2006).

[49] P. W. Anderson, Phys. Rev. 124, 41 (1961).

[50] See for example A. C. Hewson, The Hondo Problem to Heavy Fermions. Cam­

bridge University Press, New York, N. Y.,(1993).

[51] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).



179 BIBLIOGRAPHY

[52] R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).

[53] S. Akbar Jafari, Iranian Journal of Physics Research 8, 113 (2008),

arXiv;0807.4878.

[54] G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cam­

bridge University Press, 2005).

[55] G. D. Mahan, Many Particle Physics (Plenum: New York, 1981).

[56] P. Nozieres, Interacting Fermi Systems, (W. A. Benjamin Inc, New York 1964).

[57] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Quantum Field Theo­

retical Methods in Statistical Physics (Pergamon Press, Oxford, 1965).

[58] H. A. Bethe, Z. Phys. 71, 205 (1931).

[59] V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum Inverse Scattering 

Method and Correlation Functions (Cambridge University Press, 1993).

[60] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963), E. H. Lieb, Phys. Rev. 

130, 1616 (1963).

[61] C. N. Yang and C. P. Yang, Phys. Rev. 150, 327 (1966), Phys. Rev. 151, 258 

(1966).

[62] R. J. Baxter, Phys. Rev. Lett. 26, 834 (1971).

[63] T. B. Bahder and F. Woynarovich, Phys. Rev. B. 33, 2114 (1986).

[64] F. Marsiglio, Phys. Rev. B. 55, 575 (1997).

[65] C. Yang, A. N. Kocharian and Y. L. Chiang, J. Phys.: Condens. Matter 12, 

7433 (2000).

[66] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).



BIBLIOGRAPHY 180

[67] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New 

York, 1989).

[68] M. Levy, Proc. Natl Acad. Sci. USA, 76, 6062 (1979). See also M. Levy, Phys. 

Rev. A 26, 1200 (1982)

[69] E. Lieb, Int. J. Quantum Ghem. 24, 243 (1983).

[70] F. Block, Z. Physik 57, 545 (1929), P. A. M. Dirac, Proc. Gambridge Phil. Soc. 

26, 376 (1930).

[71] M. Levy, J.P. Perdew, Phys. Rev. A 32, 2010 (1985).

[72] J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

[73] A. D. Becke, J. Ghem. Phys. 98, 5648 (1993).

[74] J. P. Perdew and A. Zunger, Phys. Rev. B. 23, 5048 (1981).

[75] G. D. Pemmaraju, T. Archer, D. Sanchez-Portal and S. Sanvito, Phys. Rev. B 

75, 045101 (2007).

[76] G. D. Pemmaraju, PhD Thesis, University of Dublin Trinity College (2007).

[77] A. Akande and S. Sanvito, J. Ghem. Phys. 127, 034112, (2007).

[78] V.I. Anisimov, F. Aryasetiawan and A. 1.Lichtenstein, J. Phys.: Condens. Matter 

9, 767 (1997); V. 1. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B. 44, 

943 (1991); V. 1. Anisomov, M. A. Korotin, J. A. Zaanen, and O. K. Anderson, 

Phys. Rev. Lett. 68, 345 (1992).

[79] C. Tablero, J. Phys.: Condens. Matter 20, 325205 (2008).

[80] M. T. Czyzyk and G. A. Sawatzsky, Phys. Rev. B 40, 14211 (1994).

[81] C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950).



181 BIBLIOGRAPHY

[82] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[83] V. Hernandez, J. E. Roman, A. Tomas and V. Vidal, SLEPc Technical Report 

STR-5, (Universidad Politecnica de Valencia, 2006).

[84] C. C. Paige, J. Inst. Maths Applies, 18, 341 (1976.).

[85] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green- 

baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LA- 

PACKs users guide. Society for Industrial and Applied Mathematics, Philadel­

phia, PA, USA, 1992. Also available from http://www.netlib.org/lapack/.

[86] L. P. Kadanoff, Physics (Long Island City, N.Y.) 2, 263 (1966).

[87] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

[88] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).

[89] H. R. Krishnamurthy, J. W. Wilkins and K. G. Wilson, Phys. Rev. B 21, 1003 

(1980)

[90] S. R. White and R. M. Noack, Phys. Rev. Lett. 68, 3487 (1992).

[91] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical 

Recipes: The Art of Scientic Computing (Cambridge University Press, Cam­

bridge, 1987).

[92] E. Jeckelmann, Lecture note on Introduction to the density-matrix renormal­

ization group (DMRG) (2006).

[93] Density-Matrix Renormalization, A New Numerical Method in Physics, edited 

by 1. Peschel, X. Wang, M. Kaulke and K. Hallberg (Springer, Berlin, 1999).

[94] P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1991).



BIBLIOGRAPHY 182

[95] W, Li, G. Xianlong, C. Kollath, and M. Polini, Phys. Rev. B. 78, 195109 (2008).

[96] D. Vieira and K. Capelle, arXiv:0807.2816.

[97] E. R. Davidson, J. Comp. Phys 17, 87 (1975); Computers in Physics 7, No. 5, 

519 (1993).

[98] P. Schlottmann, Int. J. Mod. Phys. B 11, 355 (1997).

[99] A. N. Kocharian, C. Yang, and Y. L. Chiang, Phys. Rev. B. 59, 7458 (1999).

[100] M. F. Silva, N. A. Lima, A. L. Malvezzi and K. Capelle, Phys. Rev. B. 71, 

125130 (2005).

[101] J. Silva-Valencia, E. Miranda and R. R. dos Santos, J. Phys.: Condens. Matter 

13, L619 (2001).

[102] T. Paiva, M. El. Massalami and R. R. dos Santos, J. Phys.: Condens. Matter 

15, 7917 (2003).

[103] F. Albuquerque et ah, J. Magn. Magn. Mater. 310, 1187 (2007).

[104] K. D. Bonin and V. V. Kresin, Electric-dipole Polarizability of Atoms, 

Molecules and Clusters, (World Scientific, Singapore, 1997).

[105] G. Maroulis, Atoms, molecules and clusters in electric fields: Theoretical ap­

proaches to the calculation of electric polarizability, (Imperial College Press, 

2006).

[106] S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, J. 

G. Snijders, B. Champagne, and B. Kirtman, Phys. Rev. Lett. 83, 694 (1997).

[107] S. Kihmel, L. Kronik and J.P. Perdew, Phys. Rev. Lett. 93, 213002 (2004).

[108] T. Korzdorfer, M. Mundt and S. Kiimmel, Phys. Rev. Lett. 100, 133004 (2008).



183 BIBLIOGRAPHY

[109] C. D. Pemrnaraju, S. Sanvito and K. Burke, Phys. Rev. B 77, 121204(R) 

(2008).

[110] C. O. Almbladh and A. C. Pedroza, Phys. Rev. A. 29, 2322 (1984).

[111] U. von Barth, in Many Body Phenomena at Surfaces, D. Langreth and H. Suhl 

eds.. Academic Press (1984)

[112] D. Karlsson, A. Privitera and C. Verdozzi, arXiv; 1004.2264

[113] J. H. Davies, The Physics of Low-Dimensional Semiconductor, (Cambridge 

University Press, Cambridge, 1998).

[114] E. Zipper, M. Kurpas, M. Szelag, J. Dajka, and M. Szopa, Phys. Rev B 74, 

125426 (2006).

[115] P. Foldi, O. Kalman, M. G. Benedict, and F. M. Peeters, Phys. Rev. B 73, 

155325 (2006).

[116] A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia and P. 

M. Petroff, Phys. Rev. Lett. 84, 2223 (1999)

[117] A. Fuhrer, S. Lusher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider and M. 

Bichler, Nature (London) 413, 822 (2001)

[118] J. M Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, 

J. Kotthaus and P. M. Petroff, Appl. Phys. Lett. 71, 2014 (1997).

[119] A. Lorke and R. J. Luyken, Physica B 256, 424 (1998).

[120] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485, (1959).

[121] L. P. Levy, G. Dolan, J. Dunsmuir and H. Bouchiat, Phys. Rev. Lett. 64, 2074 

(1990).



BIBLIOGRAPHY 184

[122] M. Biittiker, Y. Imry and R. Landauer, Phys. Lett. A 96, 365 (1983).

[123] F. Bloch, Phys. Rev. 137, A787 (1965).

[124] F. Bloch, Phys. Rev. 166, 415 (1968).

[125] M. Biittiker, Phys. Rev. B 32, 1846(R) (1985).

[126] G. Queeroz-Pallegrino, J. Phys.: Gondens. Matter 13 8121 (2001).

[127] S. Kirchner, H.G Evertz and W. Hanke, PRB 59 1825 (1999).

[128] R.A. Molina, D. Weinmann, R.A. Jalabert, G. Ingold and J. Pichard, Phys. 

Rev. B 67 235306 (2003).

[129] S. K. Maiti, J. Chowdhury and S.N. Karmakar Phys. Lett. A 332 497 (2004).

[130] T. Giamarchi and B. Sriram Shastry, Phys. Rev. B. 51, 10915 (1995).

[131] E. B. Kolomeisky and J. P. Straley, Rev. Mod. Phys. 68, 175 (1996).

[132] S. Viefers, P. Koskinen, P. Singha Deo, M. Manninen, Physica E 21, 1 (2004).

[133] G. Bouzerar, D. Poiblanc and G. Montambaux, Phys. Rev. B 49, 8258 (1994).

[134] V. Meden and U. Schollwock, Phys. Rev. B 67, 035106 (2003).

[135] F. C. Dias, 1. R. Pimentel, and M. Henkel, Phys. Rev. B 73, 075109 (2006).

[136] A. Gohen, K. Richter and R. Berkovits, Phys. Rev. B 57, 6223 (1998).

[137] A. O. Gogolin and N. V. Prokofev, Phys. Rev. B 50, 4921 (1994).

[138] S. Jaimungal, M. H. S. Amin and G. Rose, Int. J. Mod. Phys. B 13, 3171 

(1999)

[139] S. Viefers, P. Singha Deo, S. M. Reimann, M. Manninen and M. Koskinen, 

Phys. Rev. B 62, 10668 (2000).



185 BIBLIOGRAPHY

[140] F. Pederiva, A. Emperador, and E. Lipparini, Phys. Rev. B 66, 165314 (2002).

[141] A. Akande and S. Sanvito, Phys. Rev. B 82, 245114 (2010).

[142] M. Dzierzawa, U. Eckern, S. Schenk, and P. Schwab, Phys. Status Solidi B 

246, 941 (2009).

[143] Q. P. Li and X. C. Xie, Phys. Rev. B. 49, 8273 (1994).

[144] H-F. Cheung, Y. Gefen, E. K. Riedel and W. H. Shih, Phys. Rev. B 37, 6050 

(1988).

[145] C. A. Stafford and A. J. Millis, Phys. Rev. B 48, 1409 (1993).

[146] R. A. Romer and A. Punnoose, Phys. Rev. B 52, 14809 (1995).

[147] B.-B. wei, S.-J. Gu and H.-Q. Lin, J. Phys.: Condens. Matter 20, 395209 

(2008).

[148] B. S. Shastry and B. Sunderland, Phys. Rev. Lett. 65, 243 (1990).

[149] R. Peierls, Z. Phys. 80, 763 (1933).

[150] M. Graf and P. Vogl, Phys. Rev. B 51, 4940 (1995).

[151] W. Kohn, Phys. Rev 133 A171 (1964).

[152] N. Byers and C. N. Yang, Phys. Rev. Lett. 7 46 (1961).

[153] F. V. Kusmartsev, J. Phys.: Condens. Matter 3 3199 (1991).

[154] H. Frahm and V. E. Korepin, Phys. Rev. B 43, 5653 (1991).

[155] N. Kawakami ans S-K Yang, Phys. Rev. B 44, 7844 (1991).

[156] G. F. Giuliani and G. WignaXe,Quantum Theory of the Electron Liquid, (Cam­

bridge University Press, Cambridge (UK), 2005).



BIBLIOGRAPHY 186

[157] G. Vignale and M. Rasolt, Phys. Rev. lett. 59, 2360 (1987).

[158] G. Vignale and M. Rasolt, Phys. Rev. B. 37, 10685 (1988).

[159] F. Nakano, J. Phys. A: Math. Gen. 33, 5429 (2000).

[160] P. Koskinen and M. Manninen, Phys. Rev. B. 68, 195304 (2003).

[161] P. Schmitteckert, T. Schulze, G. Schuster, P. Schwab, and U. Eckern, Phys. 

Rev. Lett. 80, 560 (1998).

[162] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and 

D. Sanchez-Portal, J. Phys.: Gondens. Matter 14, 2745 (2002).

[163] E. Artacho, E. Anglada, O Dieguez, J. D. Gale, A. Garcia, J. Junquera, R. 

M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-Portal and J. M. Soler, J. 

Phys.: Gondens. Matter 20 064208 (2008).

[164] P. Ordejon, Comput. Mater. Sci. 12, 157 (1998).

[165] P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. B 53, 10441 (1996).

[166] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, 

(Gambridge University Press, Gambridge (UK), 2004).

[167] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, 

Rev. Mod. Phys. 64, 1045 (1992).

[168] L. Kleinman and D. M. Bylander, Phys. Rev. lett. 48, 1425 (1982).

[169] N. Troullier and J. L. Matins, Phys. Rev. B 43, 1993 (1991).

[170] E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia a,nd J.M. Soler. Phys. 

Status Solid! B, 215, 809 (1999).

[171] O. F. Sankey and D. J. Niklewski. Phys. Rev. B, 40, 3979 (1989).



187 BIBLIOGRAPHY

[172] S. Huzinaga, ed., Gaussian Basis Sets for Molecular Calculations (Elsevier 

Publishing Company, Amsterdam, 1991), 1st ed.

[173] P. Pulay, Chem. Phys. Lett. 73, 393 (1980)

[174] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[175] R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules., 

(Oxford University Press, New York 1989).

[176] J.P. Perdew, S. Kurth, A. Zupan and P. Blaha, Phys. Rev. Lett. 82, 2544 

(1999).

[177] M. Wierzbowska, D. Sanchez-Portal and S. Sanvito, Phys. Rev. B 70, 235209 

(2004).

[178] Note that here we use “LDA” also to refer to the local spin density approxi­

mation (LSDA), i.e. to the spin unrestricted version of the theory.

[179] J.G. Harrison, R.A. Heaton and C.C. Lin, J. Phys. B: At. Mol. Phys. 16, 2079 

(1983).

[180] M.R. Pederson, R.A. Heaton and C.C. Lin, J. Chem. Phys. 80, 1972 (1984).

[181] M.R. Pederson, R.A. Heaton and C.C. Lin, J. Chem. Phys. 82, 2688 (1985).

[182] A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).

[183] Z. Szotek, W.M. Temmerman and H. Winter, Phys. Rev. B 47, 4029 (1993).

[184] R. S. Miilliken, J. Chem. Phys. 23, 1833 (1955), F.M. Bickelhaupt, N. J. R. 

van Eikema Hommes, C. Fonseca Guerra and E.J. Baerends. Organometallics 

15, 2923 (1996).

[185] L. Hedin, Phys. Rev. 139, A796 (1965).



BIBLIOGRAPHY 188

[186] H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. B 82, 

045108 (2010).

[187] W. Kock and M. C. Holthausen, A Chemist’s Guide to Density Functional 

Theory, (Wiley-VCH, Weinheim, 2000).

[188] I. Turek, J. Kudronovsky, V. Drchals and P. Bruno, Phil. Mag. 86, 1713 (2006).

[189] E. Ruiz, S. Alvarez, J. Cano, and V. Polo, J. Cliein. Pliys. 123, 164110 (2005).

[190] E. Ruiz, J. Cano, S. Alvarez, and P. Alemany, J. Comput. Chem. 20, 1391 

(1999),

[191] R. L. Martins and F. Bias, Phys. Rev. Lett. 79, 1539 (1997).

[192] F. Illas and R. L. Martins, J. Chem. Phys. 108, 2519 (1998).

[193] 1. Ciofini, F. Illas and C. Adarno, J. Chem. Phys. 120, 3811 (2004).

[194] J. E. Pask, D. J. Singh, 1. 1. Mazin, C. S. Hellberg and J. Kortus, Phys. Rev. 

B 64, 024403 (2001).

[195] 1. de P. R. Moreira, F. Illas, and R. Martin, Phys. Rev. B 65, 155102 (2002).

[196] E. Ruiz, A. Rodriguez-Fortea, J. Cano, S. Alvarez and P. Alemany, J. Comput. 

Chem. 24, 982 (2003).

[197] J. Cabrero, N. Ben Amor, C. de Graaf, F. Illas and R. Caballol, J. Phys. Chem. 

A 104, 9983 (2000).

[198] A. Bencini, F. Totti, C. A. Daul, K. Dodo, P. Fantucd, and V. Barone, Inorg. 

Chem. 36, 5022 (1997).

[199] L. Noodleman, J. Chem. Phys. 74, 5737 (1981).



189 BIBLIOGRAPHY

[200] K. Yosida, Theory of Magnetism, Vol. 122 Springer Series in Solid State Sci­

ences (Springer, Heidelberg, 1992).

[201] J. Tao, J.P. Perdew, V.N. Staroverov and G.E. Scuseria, Phys. Rev. Lett. 91, 

146401 (2003).

[202] A. Filippetti and N. A. Spaldin, Phys. Rev. B 67, 2435 (2003).

[203] A. Filippetti and V. Fiorentini, Phys. Rev. Lett. 95, 086405 (2005).

[204] D. Vogel, P. Kruger and J. Pollmann, Phys. Rev. B 58, 3865 (1998).

[205] A. Filippetti and V. Fiorentini, Rev. B 73, 035128 (2005).

[206] A. Filippetti and N.A. Spaldin, Phys. Rev. B 68, 045111 (2003).

[207] B.B. Van Aken, T.T.M.A. Palstra, A. Filippetti and N.A. Spaldin, Nature Mat. 

3, 164 (2003).

[208] P. Belugas, V. Fiorentini and A. Filippetti, Phys. Rev. B 71, 134302 (2005).

[209] A. Filippetti, N.A. Spaldin and S. Sanvito, Chem. Phys. 309, 59 (2005).

[210] A. Filippetti, N.A. Spaldin and S. Sanvito, J. Magn. Magn. Mater. 290, 1391 

(2005).

[211] G. Toher, A. Filippetti, S. Sanvito and K. Burke, Phys. Rev. Lett. 95, 146402 

(2005).

[212] C. Toher and S. Sanvito, Phys. Rev. Lett. 99, 056801 (2007).

[213] D.M. Geperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

[214] A. D. Becke, Phys. Rev. A 38, 3098 (1988).

[215] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785 (1988).



BIBLIOGRAPHY 190

[216] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[217] C. Adamo, V. Barone, A. Bencini, R. Broer, M. Filatov, N.M. Harrison, F. Bias, 

J.P. Malrieu, and 1. de P.R. Moreira, J. Chem. Phys. 124, 107101 (2006).

[218] F. Ruiz, S. Alvarez, J. Cano, and V. Polo, J. Chem. Phys. 124, 107102 (2006).

[219] M. F. Lines, Phys. Rev. 164, 736 (1967).

[220] L. J. de Jongh and R. Miedema, Adv. Phys. 23, 1 (1974).

[221] R. Dovesi, J. M. Ricart, V. R. Saunders and R. Orlando, J. Phys.: Condens. 

Matter 7, 7997 (1995).

[222] 1. de P. R. Moreira and F. Idas, Phys. Rev. B 55, 4129 (1997).

[223] H. Onuki, F. Sugawara, M. Hirano and Y. Yamaguchi, J. Phys. Soc. Jpn. 49, 

2314 (1980).

[224] The ASIC method is not completely self-interaction free and therefore some 

spurious corrections to the unoccuplied KS states are present.

[225] J. M. Ricart, R. Dovesi, C. Roetti and V. R. Saunders, Phys. Rev. B 52, 2381 

(1995).

[226] R. Caballol, O. Castell, F. Idas, 1. de P. R. Moreira and J. P. Malrieu, J. Phys. 

Chem. A 101, 7860 (1997).

[227] L.J. de Jongh and R. Block, Physica 79B, 568 (1975).

[228] J. Goodenough, Magnetism and the Chemical Bond, (John Wiley and Sons, 

New York, 1963).

[229] M. F Lines and F. D. Jones, Phys. Rev. 139, A1313 (1965).



191 BIBLIOGRAPHY

[230] C. Franchini, V. Bayer, R. Podloucky, J. Paier and G. Kresse, Phys. Reb. B 

72, 045132 (2005).

[231] X. Fenf, Phys. Rev. B 69, 155107 (2004).

[232] D. Kodderitzsch, W. Hergert, W.M. Temmerman, Z. Szotek, A. Ernst and 

H. Winter, Phys. Rev. B 66, 064434 (2002).

[233] M. Ernzerhof and G.E. Scuseria, J. chem. Phys. 110, 5029 (1999).

[234] M. T. Hutching and E. J. Samuelsen, Phys. Rev. B 6, 3447 (1972).

[235] R. Shanker and R. A. Singh, Phys. Rev. B 7, 5000 (1973).

[236] D. Karlsson, C. Verdozzi, M. M. Odashima and K. Capelle, Europhysics Letters 

93, 23003 (2011).



BIBLIOGRAPHY 192



Appendix A

The non-interacting fermion gas

In the case of U = 0, the Hy reduces to

/7[/=o = + he), (A.l)
(ij)

where L represents the total number of lattice sites. The operators c]^ and Ci„ obey 

anti-commutation relations for fermions, i.e.

{4.sV'} = 0

{Cicrj Cjcr'} ~^iahja' T = 0 (A.2)

{CicrjC £,■'} —-b Cj^iCifj — ^ijhaa'■, At A.

We can expand these operator in form of a new set of operators, c\^ and Cka-,

^ja

Vl

-YIT
p-ikj

(A.3)

where the quasi-momentum k takes L in-equivalent values in the Brillouin zone 

—TT < k < Ti. This expansion is nothing but a Fourier transformation from the real
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to reciprocal space. The new operators also satisfy the canonical anti-commutation 

relations (A.2). The relations (A.3) can be inverted;

^ka vTrr jL^ oikj
(A.4)

By substituting equation (A.3) into (A.l) and by using

= L6kk' and ^ e^U-r)^ = iSjj,,
keBZ

Hu=o then becomes diagonal:

(A.5)

£{k)cl^Cka.
a k

where

e{k) = —2tcosk.

(A.6)

(A.7)

The expression (A.7) describes a single electron band in the tight-binding approxi­

mation. For a one-dimensional lattice of L sites with periodic boundary condition, 

k = 27rn/L where n = —Lj^ + 1,..., 0,..., L/2.



Appendix B

Exact spin-polarized XC potential 

for ID repulsive Hubbard model

The XC potential of the homogeneous HM is written as

dE dE dn dE dm
dn„ dn dn^ dm dn^ ’

(BJ)

where E = e(rr, m, t, U) — e(n, m,t,U = 0) — e//(n, m, U). and are determined

by
dP—— = —2t / dkp(^{k) cos k — AtQ(^p{Q) cos Q + (B.2)

J-Q

C being either n or m. P(^{k) = dp{k)/dQ and cr^(A) = da{X)/dQ satisfy the following 

integral equations:

fB
P(^{k) = cos k / dXa(^{X)Ki{smk — X)

J-B

+ COS A:[/fi(sin k — B) + A'i(sin k + B)]a{B)B^, 
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Qnfl
J p^{k)dk + 2p{Q)Q^ = —,

[ ac^{\)d\ + 2a{B)B(^ = 

J-B
d[{n — rn)/2]

ac
FYom equations (B.5) and (B.6), one can write

Qc. —
1 / 9n rQ

/ p(^{k)dk
J-Q

acBr

2p{Q) \dC j-Q 

1 ( d[{n — m)/2]
2a{B)

196

rQ pB
a^{X) = / dkp^{k)Ki{sm k - X) - / dX'a{X')K2{X - A') 

J-Q J-B

+ [Ki(sinQ - X) + Ki{-smQ ~ X)]p{Q)Qt^

- [K2{X -B) + K2{X + B)]a{B)B^, 

and Q(^ = dQ/dC, and B^ = dB/dC, are determined from the relations,

(B.4)

(B.5)

(B.6)

(B.7)

Substituting equation (B.7) into (B.3) and (B.4) gives two coupled integral equations 

which can be solved to obtain the full numerical computation of the spin dependent 

XC potential. Finally,

„ /nTTN fm'K\ Un =2tcos(-)cos

„ . /n7r\ . /m'K\ UmAV,,„ = -2(s.„(-)sm (^) + —.
(B.8)



Appendix C

Local Density Approximation for 

the CLDFT

We will use the BA solutions of Ily to estimate the XC energy and then locally 

approximate the densities and currents, i.e.

(C.l)

where e^^{= jg t;he XC energy per site in the homogeneous system. The first

term of the equation (5.57) can be calculated exactly using the BA procedures [148] 

to obtain the ground state energy as a function of n and $. The phase variable 

can be eliminated from the ground state energy to contain the current via

J =
dE{n,^) 

”5$
(C.2)

The full flux dependence of the ground state energy of the Mott insulator (n = 1) 

in the thermodynamic limit has been shown [145] to be

E{n, <1>) — E{n, 0)
2Dc{n)

L (1 — cos $), (C.3)
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while for the non-half filled case and L oo, the flux dependence is

E{n, <h) — E{n, 0) = Dc{n).2
L (C.4)

Dc{n) is the charge stiffness.

We denote E^^^ubaj^ba) and E°{no,^o) as the ground state energies for the 

interacting system (first term in equation (5.57)) and non-interacting system (second 

term in equation (5.57)) respectively. Since we deal with the away from half-filling 

cases, we write

E‘^^{nBA,^BA)=E^^{nBA,0) +BA/ D^insA)

£;°(no,4>o) =E°{no,0) +

L
2 

L

*2^BA
(C.5)

and
f^{nBA,<^BA) =2^^^^^P^^ba

Ij

/(no,$o)
(C.6)

The fundamental requirement of the KS mapping is that uba = = n and =

jO = j while noting that ^ba = and 4>o = in equation (5.57). Substituting 

equation (C.5) and expressions for and <i> obtained from equation (C.6) into 

equation (5.57) gives

E^%n,j) = E^^{n,0) - F;"(n,0) - E"(n) + ^A^"(n)r,Hi L (C.7)

where

A^"(n) = - ^ ’ 2 .Z)O(n) Df^(n) 

D^{n) is the non-interacting charge stiffness defined by

(C.8)

nO/ ^ . /riTTXOc(n) = -sm(-) (C.9)
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for L ^ cx) and D^^{n) is calculated using (5.33). Therefore,

e-(n,i) = e-(n,0) + ^A-(n)/, (C.IO)

so that
„.xc ^ _ de^‘^{n,j) ^
'^BALDAX^li 3l) ~ (C.ll)

and
Ti 'I)1>BALDAini,3i) = g.'^’ = {C.12)



Local Density Approximation for the CLDFT 200



Appendix D

Data used to generate the colour 

plots in Chapter 4

The tables shown below contain the data used to produce the colour plots of Figures 

4.1 and 4.2 in Chapter 4.
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L BALDA
Number of electrons

2 4 6 8 10
3 LSOC

FN
-0.651(2.3)
-0.636(4.7)

4 LSOC
FN

-0.658(0.3)
-0.641(2.4)

5 LSOC
FN

-0.605(0.9)
-0.589(1.7)

-0.662(3.3)
-0.653(4.6)

6 LSOC
FN

-0.545(1.1)
-0.531(1.4)

-0.736(0.1)
-0.720(2.3)

7 LSOC
FN

-0.491(1.2)
-0.479(1.2)

-0.740(1.1)
-0.721(1.5)

-0.649(3.4)
-0.643(4.3)

8 LSOC
FN

-0.444(1.1)
-0.434(1.0)

-0.716(1.6)
-0.696(1.1)

-0.736(0.8)
-0.724(2.3)

9 LSOC
FN

-0.404(1.1)
-0.396(0.9)

-0.681(1.8)
-0.662(0.9)

-0.768(0.6)
-0.752(1.5)

-0.638(3.2)
-0.633(3.9)

10 LSOC
FN

-0.370(1.0)
-0.363(0.7)

-0.643(1.9)
-0.626(0.8)

-0.771(1.4)
-0.752(1.1)

-0.722(1.1)
-0.714(2.3)

11 LSOC
FN

-0.340(0.9)
-0.335(0.5)

-0.606(1.9)
-0.591(0.7)

-0.757(1.8)
-0.738(0.9)

-0.766(0.2)
-0.753(1.5)

-0.629(3.0)
-0.625(3.5)

12 LSOC
FN

-0.315(0.8)
-0.311(0.6)

-0.572(1.8)
-0.558(0.6)

-0.736(2.0)
-0.716(0.7)

-0.785(1.0)
-0.768(1.1)

-0.708(1.3)
-0.701(2.2)

13 LSOC
FN

-0.293(0.8)
-0.289(0.5)

-0.539(1.8)
-0.527(0.6)

-0.711(2.1)
-0.691(0.7)

-0.787(1.5)
-0.768(0.9)

-0.756(0.2)
-0.746(1.5)

14 LSOC
FN

-0.274(0.7)
-0.271(0.9)

-0.510(1.7)
-0.498(0.5)

-0.684(2.2)
-0.665(0.6)

-0.779(1.8)
-0.759(0.7)

-0.783(0.66)
-0.769(1.14)

Table D.l: Total energy per site, Eq/L, for different L and N for OBC and Ujt — A.. The 
percentage deviation, A, from the ED in parenthesis.
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L BALDA
Number of electrons

2 4 6 8 10
3 LSOC

FN
-1.068(2.6)
-1.052(1.0)

4 LSOC
FN

-0.879(2.8)
-0.858(0.4)

5 LSOC
FN

-0.736(2.6)
-0.718(0.2)

6 LSOC
FN

-0.629(2.4)
-0.614(0.1)

-0.735(6.2)
-0.718(8.3)

7 LSOC
FN

-0.547(2.1)
-0.536(0.0)

-0.752(3.2)
-0.732(5.8)

-0.788(1.5)
-0.782(0.8)

8 LSOC
FN

-0.484(1.8)
-0.475(0.0)

-0.732(1.6)
-0.711(4.4)

-0.848(1.7)
-0.837(0.3)

9 LSOC
FN

-0.433(1.6)
-0.426(0.0)

-0.698(0.7)
-0.678(3.5)

-0.860(2.1)
-0.844(0.2)

-0.662(3.6)
-0.658(4.2)

10 LSOC
FN

-0.392(1.4)
-0.386(0.0)

-0.659(0.2)
-0.641(2.9)

-0.847(2.5)
-0.827(0.1)

-0.750(1.9)
-0.742(3.0)

11 LSOC
FN

-0.357(1.2)
-0.353(0.0)

-0.621(0.2)
-0.605(2.4)

-0.821(2.7)
-0.800(0.1)

-0.795(0.7)
-0.782(2.3)

-0.709(1.0)
-0.706(0.5)

12 LSOC
FN

-0.328(1.1)
-0.325(0.0)

-0.584(0.4)
-0.570(2.1)

-0.789(2.8)
-0.768(0.1)

-0.812(0.2)
-0.796(1.9)

-0.780(1.0)
-0.773(0.3)

13 LSOC
FN

-0.304(1.0)
-0.301(0.0)

-0.550(0.5)
-0.538(1.8)

-0.756(2.8)
-0.735(0.0)

-0.813(0.8)
-0.794(1.6)

-0.820(1.4)
-0.810(0.2)

14 LSOC
FN

-0.283(0.9)
-0.280(0.0)

-0.519(0.5)
-0.508(1.6)

-0.722(2.8)
-0.703(0.0)

-0.803(1.2)
-0.783(1.3)

-0.840(1.80)
-0.826(0.10)

Table D.2: Total energy per site, Eq/L, for different L and N for PBC and U/t 
percentage deviation, A, from the ED in parenthesis.
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L BALDA
Number of electrons

2 4 6 8 10
3 LSOC

FN
-0.582(5.6)
-0.568(7.7)

4 LSOC
FN

-0.623(1.3)
-0.607(3.7)

5 LSOC
FN

-0.584(0.2)
-0.570(2.5)

-0.560(6.5)
-0.551(7.9)

6 LSOC
FN

-0.532(0.2)
-0.520(1.9)

-0.667(1.8)
-0.654(3.8)

7 LSOC
FN

-0.482(0.4)
-0.472(1.6)

-0.692(0.1)
-0.676(2.4)

-0.532(6.3)
-0.526(7.4)

8 LSOC
FN

-0.437(0.5)
-0.430(1.3)

-0.681(0.7)
-0.665(1.7)

-0.646(2.5)
-0.636(4.0)

9 LSOC
FN

-0.399(0.5)
-0.393(1.1)

-0.655(1.0)
-0.640(1.4)

-0.700(0.6)
-0.686(2.5)

-0.512(5.7)
-0.507(6.7)

10 LSOC
FN

-0.366(0.5)
-0.361(0.9)

-0.624(1.2)
-0.609(1.2)

-0.717(0.4)
-0.702(1.8)

-0.620(2.7)
-0.612(4.0)

11 LSOC
FN

-0.338(0.5)
-0.333(0.8)

-0.591(1.3)
-0.578(1.0)

-0.715(1.0)
-0.699(1.4)

-0.683(1.0)
-0.672(2.6)

12 LSOC
FN

-0.313(0.5)
-0.309(0.7)

-0.560(1.3)
-0.548(0.9)

-0.702(1.3)
-0.686(1.1)

-0.716(0.0)
-0.703(1.8)

-0.597(2.8)
-0.590(3.9)

13 LSOC
FN

-0.291(0.4)
-0.288(0.6)

-0.530(1.3)
-0.519(0.8)

-0.683(1.5)
-0.667(1.0)

-0.730(0.7)
-0.715(1.4)

-0.662(1.3)
-0.653(2.7)

14 LSOC
FN

-0.273(0.4)
-0.270(0.6)

-0.502(1.2)
-0.492(0.7)

-0.661(1.6)
-0.646(0.8)

-0.732(1.1)
-0.715(1.1)

-0.703(0.29)
-0.692(1.85)

Table D.3: Total energy per site, Eq/L, for different L and N for OBC and U/t = 6. The 
percentage deviation, A, from the ED in parenthesis.
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work

• Exchange parameters from approximate self-interaction correction scheme, A. Akande 

and S. Sanvito, J. Chem. Phys. 127, 034112, (2007). Also cond-mat/0704.1572.

• Electric field response of strongly correlated one-dimensional metals: a Bethe- 

Ansatz density functional theory study, A. Akande and S. Sanvito, Phys. Rev. B. 

82, 245114 (2010). Also cond-mat/1010.2860.

• Persistent current and Drude weight for the one-dimensional Hubbard model from 

current-lattice density functional theory, A. Akande and S. Sanvito, Submitted to 

Phys. Rev. B. Also Also cond-mat/1012.5908.

Other works not included in this thesis

• Energetics of 2D and 3D repulsive Hubbard model from their ID counterpart using 

dimensional scaling for arbitrary fillings, A. Akande and S. Sanvito, (in preparation).
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Electronic structure of Quantum Dot in the Coulomb Blockade regime, A. Akande.


