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ABSTRACT: Reliability analysis for offshore wind turbine structural fatigue is an effort demanding
task. The new trends in the design of these systems, such as, the usage of alternative computational fluid
dynamics or finite element methods, are expected to further increase the effort required to assess fatigue
in the design phase. There is a growing demand for techniques that enable practical fatigue design
procedures.
The present paper researches on how to use fatigue damage surfaces in order to assess stress-cycle (SN)
fatigue reliability. A Gaussian process predictor model is applied as a surrogate of the fatigue damage,
allowing the interpolation of multiple Gaussian distributed surfaces. Probabilistic SN curves are
considered in the implementation, creating a double surface model where the Gaussian process model is
built on top of the SN curve. Evaluation is performed on a 5MW turbine on a monopile foundation.
Results of the implementation show that there is a significant advantage in using a surrogate of fatigue
damage. These only require a limited number of time domain simulations to be defined. Moreover, the
predictor surrogates accurately the design procedure within different material probabilistic
characteristics, and accounting for loading uncertainty. Fatigue reliability assessment with Gaussian
process models may be performed with approximately 10% to 40% of the computational effort in
relation to the fatigue assessment using binned environmental conditions .
The approach presented can be applied to any component and system, with the only requirement being
the definition of a representative fatigue indicator to surrogate.

1. INTRODUCTION

Reliability analysis for offshore wind turbines
(OWT) fatigue is a resource demanding task. Fa-
tigue design requires the assessment of multiple op-
erational scenarios that depend on different external
conditions that load the OWT. Trends in the simu-
lation of OWT indicate that complexity in the eval-
uation of these systems is expected to increment in
the future. Usage of alternative computational fluid

dynamics and finite element methods will increase
the effort required to design OWT. In the particular
case of fatigue, design techniques that enable prac-
ticable reliability analysis are demanded.

The current paper researches on the usage of
stress-cycle(SN) fatigue damage surfaces in order
to assess structural fatigue reliability. The SN dam-
age surfaces are built using a Gaussian process pre-
dictor model that is capable of enclosing multiple

1



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

Gaussian distributed interpolation surfaces. These
work as probabilistic surrogates of the system’s op-
erational SN fatigue. Implementation of a Gaussian
predictor as an interpolator of SN fatigue allows the
sampling of multiple design surfaces, where each
generated surface encloses a probabilistically fea-
sible full design assessment accordingly to Design
Load Case (DLC) 1.2 of IEC61400 (IEC, 2005,
2009).

The advantage of applying this methodology is
related to the need to perform only a limited number
of time domain simulations, inferior to the expected
number imposed by the standards, in order to assess
the fatigue design. These simulations are mainly
needed to characterize locally the probabilistic be-
haviour of the loading.

The Gaussian process predictor model, jointly
with a probabilistic SN curve, generates designs
considering the probability associated with the ma-
terial characteristics. The inherent probabilistic be-
haviour of the structural fatigue design procedure
is replicated, and the reliability of the studied OWT
component quantified.

In order to enable comprehension on how to ap-
ply Gaussian process predictors to evaluate SN fa-
tigue reliability for OWT, applied to the tower com-
ponent analysis, the following article is organized
as follows; Section 2 presents a major overview on
the usage of Gaussian process predictor models for
reliability analysis discussing, previous works on
reliability analysis, the SN fatigue design procedure
and OWT modelling; Section 3 presents the theo-
retical background of the meta-model studied; and
Section 4 discusses the main findings of the imple-
mentation performed. Finally, the main conclusions
of the work developed are presented in Section 5.

2. META-MODELLING IN RELIABILITY ANALY-
SIS

Gaussian process regression models have recently
gained particular interest on structural reliability
engineering problems (Forrester et al., 2006; Bi-
chon et al., 2008; Echard et al., 2011, 2014; Yang
et al., 2015).

In the case of OWT modelling, the usage of
Gaussian process models in structural analysis is
even more recent. In this context, Maki et al. (2012)

analyses an inland wind turbine using a Gaussian
process model to decrease the effort required to
evaluate the system. Yang et al. (2015) performs
a reliability-based optimization of a Tripod foun-
dation OWT using these as surrogates. In Morató
et al. (2016) the same models are applied to eval-
uate the response of an OWT to extreme loading.
Teixeira et al. (2017b) discusses the application of
Gaussian process models for fatigue design. Teix-
eira et al. (2018b) uses a similar approach, however,
investigating the importance of having a search cri-
teria and a notion of improvement in the character-
ization of the Gaussian process model.

When addressing fatigue calculations, Echard
et al. (2013) was able, with the application of Gaus-
sian process predictors, to reduce the cost of fatigue
assessment by approximately a factor of 265. Yang
and Wang (2012) compared the performance of a
Gaussian process predictors with other meta-model
when addressing fatigue of a bending stiffener.

The current paper discusses how reliability anal-
ysis for OWT towers can be addressed by using
a meta-model, Gaussian process model, that com-
piles information from multiples sources of uncer-
tainty.

2.1. OWT modelling
A 5MW turbine installed on a monopile is con-
sidered for the representative analysis on meta-
modelling of fatigue. This turbine, presented in
more detail in Jonkman et al. (2009), is charac-
terized by its wide applicability in OWT research.
Some of its main generic characteristics are pre-
sented in Table 1.

2.2. Stress-cycle Fatigue assessment for OWT
The most widely applied procedure to design OWT
to fatigue uses the stress-cycle method. IEC (2005,
2009) certification to structural fatigue involves
performing multiple time-domain evaluations of
operation, assessing the operational loads, extract-
ing load ranges and cycles and comparing these
with the support of a specified SN curve by apply-
ing the Palmgren-Miner’s rule, Equation (1).

Dt = ∑
Si

=
nSi

NSi

(1)
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Table 1: NREL’s Monopile OWT model main generic characteristics.

Horizontal axis OWT type 3/63m blades
Rated Power 5MW

Rated wind speed 11.4 m/s
Cut-in and cut-out speed 3m/s, 25m/s

Hub height 87.6m above mean sea level (MSL)
Tower base height 10m above MSL
Seabed foundation -20m below MSL

Foundation Tower interface (TP) Rigid connection
Diameter and Thickness at base of the tower 6m / 0.027m

Control system Variable-speed (variable blade-pitch-to-feather configuration)

where Dt is the damage generated in a specified
period of time t, for which nSi is the recorded num-
ber of cycles, or repetitions, of a Si load/stress range
and NSi is the allowed number of cycles at Si given
by a specified SN curve. As the assessment is per-
formed in a t shorter than the lifetime T , Dt is re-
ferred to as the short term SN damage rate and is
used to approximate the longterm life-time fatigue
(DT ) for a specified design life T .

3. GAUSSIAN PROCESS PREDICTOR MODEL
Gaussian process predictor models, also widely
known as Kriging models, approach a true func-
tion g(x), depending on x⊂ IRd in a d dimensional
space, using an approximate regression function
G(x) that considers uncertainty within the regres-
sion.

Assuming that g(x) can be characterized ∀x,
G(x) can be defined by using a sample of k sup-
port points or observations of the true function.
In the context of the Gaussian process predictors,
these support points are designated as Design of
Experiments (DoE); DoE = [XXX ,YYY == g(X)] with
XXX = [x1,x2, . . .xn] as a vector of realisations of x and
YYY the respective true evaluations of g(x).

The true response function g(x) is then be ap-
proximated with

G(x) = f (βββ ;x)+Z(x) (2)

f (βββ ;x) = β1 f1(x)+ ...+βp fp(x) (3)

where f (βββ ;x) is a deterministic function deter-
mined by a regression model with p (p∈ IN+) basis
trend functions fp(x) and p regression coefficients
β to be defined by the known sample XXX .Z(x) is a

Gaussian stochastic process with zero mean that re-
lates to a covariance matrix C of the support points:

C(xi,x j) = σ
2R(xi,x j;θθθ); i, j = 1,2,3, ...,k (4)

this matrix relates the XXX input points using; a pro-
cess constant variance σ2 and a correlation function
R(xi,x j;θθθ).

For the structural analysis separable form corre-
lations are widely applied (Roustant et al., 2012),
Equation (5). Nevertheless, other types of correla-
tion are available (Rasmussen, 2004) and may be
also applied.

R(xi,x j;θθθ) =
d

∏
i=1

R(hi;θi), θθθ ∈ IRd (5)

The correlation function depends on
h = [h1, . . . , hd], a set of incremental values
of type x− xi type and θθθ hyperparameters.

For a given sample of support points the problem
of prediction can then be solved through a gener-
alised least squares formulation, where the estima-
tors for βββ and σ2 depend on θθθ .

The prediction for the true realisation g(u) in a
point u in the space is then given based on the Krig-
ing expected value µG and variance σ2

G:

µG(u) = f (u)T
βββ + c(u)T C−1(YYY −Fβββ ) (6)

σG(u)2 = σ
2[1+D(u)T (FT C−1F)−1D(u)

−c(u)T C−1c(u)]
(7)

D(u)≡ FT C−1c(u)− f (u); (8)

with c(u) = c(u,xi), i = 1,2, . . . ,k is the corre-
lation vector that relates the realisation to be evalu-
ated with the known points and f (u) is the vector of
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trend functions evaluated at u. D(u) is introduced
for the sake of brevity.

One particularity of G(x) is that of the determin-
istic prediction in X .

In order to account for the uncertainty in the DoE
a τττ2 component may be introduced in the formula-
tion of C.

C(xi,x j) = C(xi,x j)+δδδτττ.2 (9)

where τττ2 is the vector of variance σ2
Y of the realiza-

tions of YYY ∈ g(x) used to define the surrogate model.
δδδ is the identity matrix of size k.

4. SN FATIGUE REALIABILITY ANALYSIS US-
ING META-MODELS

A SN damage surface consists in an interpolation
model where SN fatigue indicators and their un-
certainty are defined through the application of a
Gaussian process predictor model. Results for the
implemented approach are discussed in the present
section.

SN fatigue analysis and its uncertainty, in re-
gard of the loading characterization, is a problem of
mean. Sutherland (1999) highlighted before the sta-
tistical behaviour of the SN fatigue when analysing
wind turbines. SN fatigue design requires the cu-
mulative responses to short-term operational condi-
tions. These are commonly characterized by a load-
ing spectra and, due to their repetitive and random
character, a Dt probability distribution. As the op-
erational conditions repeat, the cumulative distribu-
tion gets in-filled by sample of Dt both above and
below its short term mean value. The result is that
the cumulative behaviour of the short-term damage
rates approaches a sum of the mean value. There-
fore, uncertainty in the SN fatigue calculations is
highly related to the uncertainty in characterization
of the mean Dt at a specified operational conditions.
This probabilistic behaviour of the SN fatigue is of
interest for the application of meta-models as sur-
rogates of SN fatigue.

A Latin Hypercube Sampling (LHS) scheme is
applied in order to define the DoE. The LHS is
one of the most widely applied techniques to gener-
ate support points for meta-modelling. It allows to
efficiently cover the DoE, accounting for the DoE

probability distributions. Recorded oceanographic
data, presented in Teixeira et al. (2018a), supported
the definition of the LHS sampling space. The cor-
relation of the LHS space was considered using the
method presented in Iman and Conover (1982).

Figure 1 presents an example of a meta-model for
fatigue calculations that predicts DT for the tower
component.

Figure 1: (I) - Surface of damage indicators define by
the short term SN fatigue. (II) - Operational prediction
points to evaluate the DT .

In I a meta-model is created using a sample of
support points (black markers). The expectation is
for the definition of surrogate to be more efficient
since only a limited subset of operational points
need to be fully assessed. The meta-model acts then
as a surrogate of the Dt for all different operational
conditions. Combined with II the lifetime DT can
be estimated without the need to perform exhaus-
tive evaluations of the OWT model.

Two important considerations when characteriz-
ing the surrogate model are to, focus on the most
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important variables that influence the response, and
to define the extension of the space of variables to
be assessed. Teixeira et al. (2017a) showed that
the tower SN fatigue, for the turbine considered, is
mostly influenced by the wind components. These
are the mean wind speed (U) and the turbulence in-
tensity (I). This occurs due to the relatively high
stiffness of the tower component for the turbine
considered, allied to the fact that it has no direct
interaction with the waves. Additional considera-
tions on the definition of the LHS sample are re-
lated to the extent of the sampling space. At low
U , computing I at the maximum value above the
rated speed (U=11.4 m/s), did not resulted in rele-
vant loss of accuracy on the long term predictions.
Most of the SN fatigue life decreases at operational
U above the rated speed. If no points are defined
in specified x regions, G(x) predictions may be un-
certain (have large σ2

G or inaccurate µG). This is
a particular concern when overfitting occurs due to
the usage large p values.

In order to implement a Gaussian process pre-
dictor for reliability analysis, a representative SN
curve from DNV (2014) was considered for vali-
dation. A full one-year operational SN fatigue cal-
culation was considered to validate the prediction
given by the surrogate. A value of 0.83746 for the
R2 statistic was computed for the cross-validation
between the predictions given by G(x) and the full
one-year simulated operational data. The DT pre-
diction given by G(x) diverged with an error of
4.8% when comparing with the value given by the
full one-year assessment. In Figure 2 it can be
seen that most of the cross-validation divergence in
mean value occurs at low Dt values. These have a
smaller contribution to DT . It is important to high-
light that, despite R2 being a good measure of the
fit, it does not account for the relative importance
between evaluated points. Therefore, the absolute
DT error is a more comprehensive measure to eval-
uate the fit. Nonetheless, it is noted that only in very
rare occasions a big dataset is available for cross-
validation.

The uncertainty quantification model for the
stress-cycle curve presented in Sørensen et al.
(2008) was adopted in the current study to replicate

Figure 2: Cross validation of the tower SN fatigue pre-
diction given by G(X) in comparison to a full one year
assessment given by 51240 Dt evaluations at different
operational conditions. LHS of 25 points was applied
to define the surrogate DoE.

the randomness of the SN curve. In order to merge
the SN curve probabilistic behaviour with the un-
certainty given by the SN fatigue design process
(related to the procedure and loading estimation),
a double surface approach is implemented.

Two main types of uncertainty are enclosed in the
DoE points, the uncertainty in the mean value of Dt
due to the SN curve uncertainty, and the uncertainty
in the Dt due to the sample size used to converge the
loading distribution. It is noted that further sources
of uncertainty may be considered in the analysis,
such as the ones described in Sørensen et al. (2008).
These should be quantified when defining the indi-
cators that support the characterization of the surro-
gate.

IEC (2005, 2009) recommends 6 simulations
with different seeds to estimate the SN contribu-
tion from loading at each operational environmen-
tal conditions. In the current assessment, 10 seeded
simulation were used. The increase of the number
of seeded simulations is a direct benefit of using
G(x), which reduces the computational effort of the
assessment. It allows a more accurate characteriza-
tion of Dt .

Figure 3 presents the cumulative density func-
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tion (CDF) that characterizes the probabilistic be-
haviour of DT . As the number of samples increases
the density in the tail region also increases, and rel-
atively large values of DT may be expected (when
comparing with the mean value). Despite the SN
curve uncertainty being modelled with a Gaussian
distribution, DT is better approached with a lognor-
mal model. Nevertheless, the lognormal approxi-
mation is not very accurate for tail region predic-
tions. It may be of interest to truncate the data-set
in the tail region in order to improve the accuracy in
the probability of failure calculations. This may be
particularly relevant for low probability of failures
that are challenging to characterize.

Figure 3: Cumulative density function for DT , SN curve
considered from DNV (2014) with logK1 = 12.164 and
logK2 = 15.606. Distribution function was character-
ized using 10000 samples.

Table 2 presents the probabilistic SN curve
model applied.

The conversion from load to stress was assumed
to be linearly dependent on the tower section. A
finite-element model may be applied to define Dt .
In alternative, the fatigue curve can be specified
as a load-cycle curve (Freebury and Musial, 2000).
To simplify the analysis, an uncertainty coefficient
may be also considered to account for load stress
conversion.

According to Sørensen et al. (2008), it is com-
mon to consider in fatigue design a value of T = 60

Table 2: Random variables considered for the stress-
cycle curve. logK1 and logK2 are fully correlated. ∆SN

is the point of slope change for the double slope SN
curve. For the implementation considered, this load
range was expected to occur at 5×106

Variable Distribution E[ ] σ

mh D 3 -
logK1 N f (∆SN) 0.20

ml D 5 -
logK2 N f (∆SN) 0.25

D - Deterministic; N - Normal

years. Therefore, a T = 60 is used to characterize
the limit state for which fatigue failure is expected
to occur. Failure occurs when DT in 60 years is
larger than 1.

The probability of failure was calculated consid-
ering as a function of the SN curve characteristics.
As the SN curve model applied is dependent on
δSN , this variable was applied to research on the
variability of the reliability index (β ) for different
curves. Figure 4 presents the results for tower’s β

depending on the ∆SN .

Figure 4: Reliability index of the tower function of ∆S
considering a T of 60 years. 100000 samples were
applied to converge the DT distribution for each value
of ∆SN . β = 3.8 is equivalent to a probability of failure
of 1 in 10000.

The β presented should be interpreted as fol-
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lows; the DoE of G(x) is defined considering mul-
tiple SN curves accordingly to the probabilistic SN
curve model, G(x) is characterized using the mean
and the standard deviation of the DoE output, re-
liability calculations consider sampling of design
surfaces. The design surfaces are sampled from
G(x)∀x and used to predict operational DT . Each
design surface is a deterministic realisation of G(x).
As the surrogate encloses uncertainty due to the SN
curve and the loading sample, the damage surfaces
sampled and used to predict DT replicate its un-
certainty. This sampling approach is no different
than designing to SN fatigue accordingly to (IEC,
2005, 2009). Every sampled damage surface real-
isation replicates a design procedure, as if the de-
signer would perform 10 simulations at each envi-
ronmental loading conditions and assess SN fatigue
using one of the potential SN curves within the un-
certainty considered.

Other variables of interest could be applied in or-
der to characterize β . The sample size applied to
defined the DoE points is an example of ab indepen-
dent variable within the model build that could be
considered. In alternative, the presented example
could be extended to consider other environmental
variables. In the performed evaluation, the main in-
terest was to present how G(x) may be applied for
efficient reliability assessments.

The notorious advantage of using the G(x) pre-
dictor for reliability analysis is mainly related to
the computational cost. For the space considered,
if bins of value 1 were used to divide the envi-
ronmental conditions for U and I, 253 load cases
would be needed to characterize the SN fatigue de-
sign. With bins of value 2, this number would de-
creases to 72 load cases. For the current applica-
tion, only 25 load cases were assessed to design the
OWT tower component to SN fatigue, 10% to 40%
of the binned cases. Moreover, all the probabilis-
tic information about the problem is compiled on a
model that is able to predict operation while enclos-
ing uncertainty.

To conclude, it is of relevance to highlight the
universal character of the approach presented. It
may be applied to design any component of any
system. It is not exclusive to OWT. The only re-

quirement is to be able to define a representative
indicator to build the meta-model, such as Dt .

5. CONCLUSIONS

Application of Gaussian process predictor models
as surrogates of stress-cycle fatigue was researched.
These models were applied before as meta-models
to mitigate the cost of the stress-cycle fatigue anal-
ysis. In the present implementation they are also
applied to enable efficient reliability assessments.
Their capability to account for uncertainty is of in-
terest for probabilistic calculations.

Two main probabilistic variables were consid-
ered in the characterization of the meta-model.
These relate to the material resistance and loading
spectra definition. The main purpose of the assess-
ment was to present how Gaussian process predic-
tor models could be applied in probabilistic fatigue
calculations. In addition, it is important to highlight
that other sources of uncertainty may be considered
in further applications.

Results showed that Gaussian process predictor
models are efficient and accurate surrogates of the
fatigue design. Their implementation allowed to
reduce the computational time of the assessment
from 251, and 72, to 25 load cases with minimum
loss of accuracy. Moreover, their definition may
enclose uncertainty in the design of experiments
points, which can be interpolated over all the op-
erational points allowing efficient reliability assess-
ments. With the meta-model definition it is possible
to sample the long-term fatigue cumulative distri-
bution with limited computational cost. Research
on the design variables and on the probability of
failure can then be performed to enable comprehen-
sive designs.
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