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Summary

The robustness to perturbations and evolvability of genomes are two major principles 

that govern the emergence of genetic diversity across all forms of life. Functional 

innovations that occur through the genetic diversity cryptically present themselves in 

the populations. The mechanisms underlying the emergence of biological innovations 

from this genetic diversity have been a major question in evolutionary biology. Chief 

among these mechanisms are gene duplication and coadaptation, which are known to 

facilitate the divergence from ancestral functions generating novel ones. How these 

mechanisms interact in a complex biological system remains to be understood. In 

particular, the interplay between these mechanisms, the complexity of the functional 

interactions and the population parameters of an organism are unresolved mysteries.

Here we explore the mechanisms of innovations through the development and 

application of novel approaches and computational tools. In particular, we de­

velop a novel method to identify events of functional divergence, not only between 

paralogues but also among orthologues. We apply this software to a large set of 

bacterial genomes which includes bacteria with different lifestyles, i.e. pathogens, 

mutualists and bacteria living in extreme environments. We identify significant sig­

natures of functional divergence among the different bacterial clades and find that 

these signatures are linked to bacterial lifestyles. We show that micro-events of 

functional divergence take place even between closely related bacterial strains, in­

dicating that evolutionary innovation is a rather more dynamic phenomenon than 

previously thought.

To understand how innovative mutations are fixed in the genomes, we explore the 

interaction between mutations through coevolutionary sources. We add to a previous
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method that identifies signatures of coevolution at the molecular level, improving 

the sensitivity and precision of the identification of structural and functional evolu­

tionary dependencies between amino acid sites in a protein. Our improved method 

outperforms other widely used models in identifying true signatures of coevolution 

and shows promising results for future identification of protein-protein interactions.

We explore mechanisms that confer mutational robustness, namely the buffering 

activity of molecular chaperones. The role played by chaperones in evolvability and 

functional innovation is a topic of contention in molecular evolutionary research. We 

use both the software developed for functional divergence analysis and coevolution 

analysis to investigate the role of a bacterial chaperone, GroEL, in the evolution of 

its client proteins. Previous work demonstrated that GroEL “buffers” the effects of 

slightly-deleterious mutations in their clients enabling the fixation of destabilizing 

mutations, of which a fraction may cause functionally innovative mutations. The 

mechanism by which GroEL buffers the effects of mutations is studied in the context 

of functional innovation and coevolution between amino acid sites. We identify 

lineage specific adaptations to ecological conditions through niche relevant genes, 

which have lead to the emergence of drug resistance and the regulation of toxicity.

To further understand the mutational dynamics under extreme conditions and 

with the mechanisms of mutational robustness in action, we conducted a mutation- 

accumulation experiment in the bacterium E. coli and analyzed the distribution 

of single nucleotide polymorphisms (SNPs) in two strains evolving under strong 

genetic drift or under heat stress. We reveal that accumulations of mutations occur 

at greater frequency in GroEL clients, that there is a bias towards accumulation of 

mutations leading to cysteine amino acids, and that compensatory mutations are 

more likely to occur in interacting proteins under heat-shock. In summary, this 

thesis contributes to the understanding of evolvability in biological systems and the 

description of the mechanisms underlying functional innovations.
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Chapter 1

Introduction

1.1 Historical background

1.1.1 Early evolutionary theory

Scientists have strived to understand the relationships between living organisms for 

hundreds of years. Current evolutionary theory is built upon early pioneering work 

carried out most famously by Cuvier, Lamarck and Darwin. As early as 1796 Cuvier 

announced that his comparisons of fossils and living animals did not represent the 

same species (Cuvier, 1796). This insightful work implied that there had been 

evolutionary changes between the species at that time and those of fossils. In 1809 

Lamarck developed a theory of evolution which proposed that organic life forms 

were spontaneously generated from inorganic matter and proceeded to develop into 

more complex organisms. Lamarck observed that evolutionary change is slow and 

imperceptible, it occurs through adaptation to the environment and that species are 

related by common decent (Lamarck, 1809).

Charles Darwin rode upon the Beagle on an expedition to the Galapagos islands. 

While there he collected and documented many samples of animals which helped 

him develop his theory of evolution which he presented in his book On the origin of 

species (Darwin, 1859). Therein Darwin put forward a theory which advanced evo-
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lutionary theory tremendously for multiple reasons. Firstly, Darwin argued strongly 

for descent with modification, that species do not arise simulteously but rather are 

related to each other by common ancestor. Additionally, he wrote that species un­

dergo natural selection; in an environment with limited resources individuals must 

compete to survive and reproduce. If there are differences in htness of the individ­

uals (relative to their environment) and their offspring can inherit this fitness then 

subsequent generations will have a greater proportion of individuals which are more 

competitive. These findings were extremely profound and far-reaching not least 

because of the simplicity of the theory proposed but also because of the extensive 

levels of evidence that Darwin had accumulated.

1.1.2 Prom early evolutionary theory to modern molecular 

evolution

Whilst Darwin’s theory was extremely insightful, much was still unknown at the 

time about the science of heritable traits. This was one of the greatest obstacles 

for Darwin’s theory; at the time most scientists believed that offspring were com­

posed of a mixture of parental characteristics (Lamarck, 1809). The outstanding 

breakthrough which lead to a greater understanding of heritable traits was made 

by Gregor Mendel. Mendel conducted a multitude of experiments on peas (Mendel, 

1866), noting most famously that one in four were purebred recessive, half were 

hybrid and one in four were purebred dominant. The importance of Mendel’s work 

was not understood fully for many years until it was translated into English in 1901. 

The early to mid 1900s saw the incorporation of Darwin and Mendel’s seminal works 

with new sciences of cytology and genetics (Fisher, 1930; Haldane, 1941).

The 1960s saw the development of protein and DNA sequencing technologies, this
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lead to accelerated development of the theories of evolution and molecular biology. 

With these developments came the ability to tackle many fundamental hypotheses 

which had been largely reliant on subjective traits. The resolution of the tree of life, 

characterization of population dynamics and quantitative analysis of forces which 

underpin genome evolution are all concepts which had until then been impossible. 

This sequence data has many varying properties and can be analyzed in many diverse 

ways to develop a better understanding of life and its evolutionary history. Below I 

will describe some of these properties and analyses.

1.2 Molecular sequence data

Organisms can be large complicated entities or smaller, more simple entities; nonethe­

less all organisms are comprised of one or more cells. A cell is the smallest entity to 

be considered living and contains the genetic information needed for all of the form 

and function of the organism. DNA is biological polymer; the genetic information 

which contains the blueprint for all of the attributes of an organism. There are three 

biological polymers, DNA, RNA and protein. DNA can be considered the informa­

tion storage device of organisms. This information is inherited by each organism 

from its ancestors and is the most stable (Stryer et ai, 2002) of the three poly­

mers making it ideal for this role. DNA is composed of four nucleotide structures 

adenine, cytosine, guanine and thymine with double stranded sugar-phosphate back 

bones. DNA can be “packaged” in different forms, long continuous blocks which are 

wrapped about proteins (histones) called chromosomes, in eukaryotes, and circularly 

as in many prokaryotes.

RNA is a single stranded complement to DNA composed of the same nucleotides, 

replacing thymine with uracil. RNA can be classified into many categories and has
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many uses and roles within the cell. One of these, messenger RNA (mRNA) is a 

chemical template for proteins. mRNA is transcribed as a complement to genes on 

the DNA and carries this coded information to the ribosomes which in turn create 

proteins from amino acids. Whilst DNA and RNA generally act as information 

storers or carriers this is not generally the case with proteins.

DNA sequences contain comparatively small regions called genes which are blocks 

of functional DNA. Genes can code for a functional RNA, a protein coding region 

or in some cases for elements involved in gene regulation, such as enhancer regions. 

Gene structure contains many elements including promotor regions, exons, introns, 

enhancers and stop sites. Much of this information does not include protein coding 

data but is necessary for identification of when a protein is needed or should be 

transcribed.

Proteins are coded for by codons, a set of three nucleotides. The three positions 

in a codon can be filled with any of the four nucleotides, therefore there are 64 

combinations possible for codons. 61 of these codons code for an amino acid and are 

referred to as sense codons and the other three code for a stop codon or nonsense 

codon.

DNA and RNA are somewhat restricted through their involvement in information 

storage. Additionally, the alphabet of nucleotides is comprised of only four different 

molecules and therefore these polymers do not have the ideal properties for carrying 

out all functions of an organism. Proteins on the other hand are polypeptides built 

from the set of 20 amino acids. These amino acids have a vast set of properties; polar, 

non-polar, aromatic, acidic and basic in addition to a varying degree of physical 

size and topology. These compounds and their vast array of properties are better 

suited to carrying out functions within an organism, not least because of the greater
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number of combinations of amino acids but also because of the multiple folding 

combinations they can take. Proteins will provide the majority of data used in the 

scientific analysis in the following chapters.

1.3 Mutation, selection, drift and populations

1.3.1 Mutations

While DNA can be seen as the blueprint for life and has to be maintained, there are 

many conditions under which it can change both in the DNA of a single organism 

but also in terms of the collective DNA of a population. Mutations in the genetic 

code are the source of all of the diversification across all life forms. Mutations 

arise through copying errors during cell division/replication, cross-over events during 

genetic recombination and insertions of extra nucleotides. These mutations are 

identifiable changes in the DNA that can cause a cell or organism to have a different 

function to the ancestral organism or cell.

1.3.1.1 Point mutations

Point mutations are those which cause a change in the nucleotide sequence of the 

genome. These point mutations can arise spontaneously due to chemical changes 

such as altered hydrogen bonds, slipped strand mispairing and deamination.

• Hydrogen bonds pair nucleotides together on opposite sides of the paired back­

bones of DNA. These hydrogen bonds pair adenine and thymine together with 

two bonds and guanine and cytosine together with three bonds. If a hydrogen
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atom’s position is altered in a strand of DNA then a mismatching of nucleotides 

can occur.

• Slipped strand mispairing can occur when one strand of DNA is temporarily 

denatured during the replication process. This denaturing can lead to mis­

matched base pairs. This process can result in the insertion or deletion of 

portions of DNA.

• Deamination is a chemical process which results in the removal of an amine 

group from a molecule. These chemical reactions are spontaneous reactions 

which can result in a change of nucleotide sequence.

1.3.1.2 Chromosomal crossover

Chromosomal crossover refers to the exchange of genetic material between homol­

ogous chromosomes. This process occurs when a break forms in the homologous 

chromosomes resulting in a reconnection of alternative strands.

1.3.2 Allele frequencies and Hardy-Weinberg

Alleles are alternative versions of a gene in the same location in the genome. In a 

population of organisms there may be varying frequencies of these alleles. These 

frequencies are not stationary and can be affected by fitness and hence natural 

selection, genetic drift, the rate of mutation, migration and recombination.

Given a population of size N and two alleles xi and X2. Allele Xi has frequency 

p/N and allele X2 has frequency q/N where

P + Q
N

= 1 (1.1)
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and

p + q=^ N (1.2)

Then if given a diploid genotype there are three combinations of alleles XiXi,X2X2 

and X\X2 (since X1X2 = X2X1). If the mating process in the population is random 

then the respective frequencies will be p^,2pq and q^. Populations which maintain 

these frequencies are said to be in Hardy-Weinberg equilibrium.

1.3.3 Selection

Natural Selection is defined as the differential production of genetically distinct 

individuals or genotypes within a population. Differential reproduction is caused 

by differences among individuals according to factors, such as mortality, fertility, 

mating success and the viability of offspring. These factors are said to confer fitness 

upon the organism. This fitness is a measure of how adept an organism is to its 

environment. The underlying attributes which can be associated with differences 

in fitness are alternate copies of a gene. These copies arise due to mutations. In 

diploid organisms it is necessary to consider the relative affect of the two copies of a 

gene within the organisms. These copies at the same position of a chromosome are 

called alleles (as mentioned in section 1.3.2).

When considering selection in terms of allele frequencies we assign a fitness Wi 

to each of the alleles. The allele frequencies then become p‘^wn,2pqw22 and q^wu- 

There are two models of dominance to consider, codominance and overdominance, 

codominance is the state when the heterozygote has a fitness that is the mean of the 

two homozygotes. Overdominance is when the heterozygote has the highest fitness.
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1.3.4 Drift

Changes in allele frequencies attributed solely to randomness is called random ge­

netic drift. This genetic drift is due to the randomness of nature. An organism may 

by chance encounter a rich food source allowing it time to pass on its genetic infor­

mation. Equally likely is the case of an organism encountering a harsh environment 

which prevents the passing of its genetic material.

For Example, in a diploid population of N individuals reproducing to create a 

new generation there are 2N alleles to pick from. Some of the N individuals will 

be successful in reproducing, these are members of Ne, the effective population, a 

subset of N. Due to random breading (through all factors, such as: food source, 

random encounters and harsh environments) there may be unequal frequencies of 

two alternate alleles in Ng leading to unequal frequencies of alleles in the next gen­

eration. One can therefore envisage a situation in which this happens over multiple 

generations until there are no more variants of one particular allele. This implies 

that one allele has drifted to fixation.

1.3.5 Neutral and nearly neutral theory

The theory of neutral evolution was put forward by Kimura in 1968 (Kimura 1968). 

Kimura postulated that most mutations have no effect on fitness but have simply 

drifted to fixation. A surprising and far-reaching conclusion made by the neutral 

theory is that the rate of evolution is equal to the mutation rate. Given a population 

of size N, the number of new mutations in a genome is equal to the mutation rate 

/r multiplied by the number of alleles in the population, in this case, 2N.

Rnewmutations = 2Nn (1.3)
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Furthermore the rate of evolution must be given by the number of new mutations 

multiplied by the probability of fixation:

Revolution Rnewmutations'Pfixation (1.4)

We discussed in the previous section that if a mutation is neutral then it has a 

probability of fixation Pfixation = Therefore:

Revolution — ft. — ft (1.5)

A corollary of the neutral theory pertains to the extremely conserved nature of 

functionally important sites within proteins. If a site is functional, or moreover 

has a very important function then any mutation that would cause an effect (non- 

synonymous) to the resulting amino acid would not be neutral and would therefore 

not drift to fixation in this manner.

This result, that the rate of evolution relies solely on the mutation rate is very 

profound and elegant. The majority of mutations occur during replication, therefore 

the greater the number of replications the greater the number of mutations that can 

be introduced to a genome and hence have a chance to drift to fixation. This 

implies that organisms with short generation times should evolve more quickly than 

organisms with long generation times. This assumption holds for noncoding DNA 

but does not hold for protein-coding DNA(Ohta, 1972a). For protein coding DNA 

the generation time has little to no effect on the rate of evolution(Ohta, 1972b). 

This suggests that the theory is not quite satisfactory for protein-coding sequence 

evolution.

Until this point in time it was understood that most mutations are neutral to
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the fitness of an organism. This turned out not to be the case and was illustrated 

when Ohta realized that generation time is inversely proportional to population size. 

Since population size increases the effect of selection (both positive and purifying), 

the lack of effect of generation time on the rate of evolution could be explained if 

the level of purifying selection is high. This information identified the fact that that 

the majority of non-synonymous mutations are deleterious. The Kimura model of 

“neutral” evolution was thus extended to the “nearly neutral theory” of evolution.

1.3.6 Selection vs drift

Given the enormous amount of time that life has existed there have been numerous 

changes in the alleles and allele frequencies of all organisms to this date. If a mu­

tation arises in a population it is probabilistically likely that it is deleterious. This 

new allele may take numerous courses: it may be selected out by purifying selection 

or it may randomly drift to either fixation or extinction. In the small number of 

cases where a mutation is advantageous it may be positively selected and become 

fixed in the population if the selection pressure upon that site is strong enough. 

This mutation which causes an increase in fitness may of course also drift to fixation 

or drift to extinction depending on the relative effects of selection pressures in the 

population.

When accounting for selection the probability for fixation of an allele is given by

P =
\ _ Q-iNeSq

1 -iNeS (1.6)

With q, the initial frequency, the effective population size and s the selection 

coefficient. The selection coefficient is a measure of relative fitness of a mutation. A 

mutation which is completely neutral has a selection coefficient of zero, mutations
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which are advantageous are positive and deleterious mutations are negative. The 

implications of equation 1.6 are very profound and merit further discussion, the fol­

lowing sections discuss the both neutral mutations and mutations causing a change 

in fitness.

Neutral mutations:

In the case of a neutral mutation the selection coefficient s —>■ 0. Taking the math­

ematical property:

lim e * ~ 1 — X
x—>0

(1.7)

lim P ^ q
s->0

(1.8)

=> the probability of fixation of a neutral mutation is equal to the initial frequency 

of the allele, then in a diploid population, N, we have 2N alleles making the proba­

bility of fixation of a new mutation:

Pn =
1

27V (1.9)

Therefore the larger the population the lower the probability that a new mutation 

will become fixed.

Advantageous and deleterious mutations:

For simplicity we will set TVg = TV, in this case. We substitute q = 1/27V and
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when |5| is small equation 1.6 becomes

2s
1 - (1.10)

Now when N is large this becomes

P ^ 2s (1.11)

Therefore when the selection advantage is less than 5% and the population is large 

then the chance of fixation is roughly twice the selection advantage. As an example, 

when s = 0.02 then P « 4%.

1.3.7 Measuring selection in multiple sequence alignments

Under the assumption that mutations occur uniformly across sequences, then, ac­

cording to the neutral theory of evolution there should be a homogeneous distri­

bution of synonymous mutations across the sequence. This is the case because 

synonymous mutations do not change the resulting amino acid at the protein level. 

Conversely, amino acids that are non-synonymous do result in a change in amino 

acid composition and have the possibility of being neutral, advantageous or delete­

rious. Furthermore we can quantify the selection pressure by analyzing the ratio of 

the average number of non-synonymous to the average number of synonymous sites 

(Kimura 1983):

U! =
IN

(1.12)

According to equation 1.12 there are three possible outcomes;
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• w = 1 indicates that the gene is under neutral selection since sites which cause 

a change in amino acid are just as likely as those that do not.

• oj > 1 indicates that the gene is under positive selection since amino acid 

replacements are fixed more often than neutral mutations.

• u; < 1 indicates that the gene is under purifying selection since amino acid 

replacements are discarded more often than neutral mutations.

This test is powerful and many groups have developed methods aimed at identifying 

positive selection (Perler et ai, 1980; Miyata and Yasunaga, 1980; Nei and Gojobori, 

1986; Hughes and Nei, 1988; Yang and Nielsen, 2000). There are however numerous 

shortcoming and precautions which should be considered when performing these 

analyses. Firstly, the estimation of synonymous sites can easily be underestimated 

if the divergence times between two sequences is large enough. This is referred to as 

saturation and can be most easily understood by realizing there is an upper bound 

on the number of synonymous substitutions in any finite sequence. Secondly, when 

comparing two sequences the observer cannot distinguish which sequence in the 

pair is undergoing selection; it is possible that both sequences are under selection. 

Thirdly, the requirement that w > 1 over the full length of a sequence is conservative 

in most cases as positive selection can occur on a small subset of amino acids within 

a sequence.

1.3.8 Models of evolution

The majority of evolutionary models are based on Markov chains. A Markov chain 

has the property that given a state X at time t, the only state that it depends on is 

that of state X at time t—1. This implies that there is no memory to the evolutionary
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model. For biological data we can represent the probability of a substitution as a 

transition matrix, P, with elements Pij given by:

Pij = Pr{x^'^^ = j\x^ = i) (1,13)

where x^ is the molecular state at time t. The matrix P is given by a 4 x 4 matrix 

in the case of DNA models and a 20 x 20 matrix in the case of amino acid models.

1.3.8.1 DNA models

The first model of evolution was the Jukes and Cantor (JC)(Jukes and Cantor, 

1969) model. This is a DNA model with no parameters and assumed that all pos­

sible mutations are equally probable. Additionally, the frequencies of the bases are 

assumed to be equal. This model did not fit with biological data and was amended 

to account for differing rates in substitution between transitions and transversions 

(Kimura, 1980). Felsenstein developed a model which accounted for unequal base 

frequencies (Felsenstein, 1981) and this in turn was joined with the Kimura80 model 

by Hasegawa to make the HKY model (Hasegawa et ai, 1985). The most flexible 

and currently most popular DNA model is the generalized time reversible model 

(GTR)(Tavare, 1986). The GTR model has ten parameters, six of those pertain to 

the probability of substitution from one nucleotide to another and four stationary 

frequencies of base composition.

1.3.8.2 Amino acid models

When analysing protein sequences it is difficult to do so in the same manner as 

is carried out in DNA sequences. For example, there are ten (sometimes nine)
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parameters in the GTR model; to implement this model in an amino acid framework 

there would be 190 parameters to estimate. This huge number of parameters makes 

optimization extremely difficult in terms of computation time. As an alternative 

empirical protein evolution models were developed. The first amino acid model was 

developed by Dayhoff and relies on the calculation of transition matrices from large 

training datasets (Dayhoff et al., 1972). The JTT model (Jones et ai, 1992) was 

calculated using an approximate peptide-based sequence comparison algorithm on 

a set of sequences clustered at the 85% identity level. This represented a major 

update on the original PAM matrices calculated by Dayhoff et ai, since thirteen 

years had passed since the last updated PAM matrix. A multitude of matrices 

have been developed since including BLOSUM (Henikoff and Henikoff, 1992) and 

WAG (Whelan and Goldman, 2001), the latter being more appropriate for globular 

proteins.

1.4 Changes in selection pressure

1.4.1 Adaptation and diversification through environmental 

change

According to Darwin’s evolutionary theory individuals within a population undergo 

natural selection, leading to subsequent generations containing a greater proportion 

of individuals with a phenotype of higher fitness. Under this theory the scenario 

continues with each generation slightly fitter than the last, resulting in a population 

which is highly specific to its environment. In this case, the emergence of a mutation, 

in an individual which has evolved to become highly specific to its environment is 

highly likely to be deleterious. There is little scope for change in the organism
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as there is little need for change. If, however, there is a sudden change in the 

environment then this can have extremely detrimental effects upon the population. 

Furthermore if an environment becomes uninhabitable or the abundance of food is 

too small to sustain the population then migration may occur.

In an environment where some selection pressure(s) have changed, many popula­

tions are decimated by: lack of food, harsh conditions (e.g. lack of oxygen) and even 

differential advantages for predators. Those individuals which survive are those that 

have traits which give them a fitness advantage over others. This new population 

again passes on these heritable traits as before, however these traits differ from those 

which conferred high fitness under the previous selection pressures. When a trait 

is no longer beneficial, there are relaxed pressures/constraints upon the region(s) 

of the genome which contained them. These genes can develop new function or be 

removed from the genome. An example of the loss of genes through relaxed con­

straint is that of endosymbiotic bacteria. These bacteria have lost a a large number 

of genes which are necessary for free-living bacteria to obtain nutrients from the 

environment (Moran, 2002; McCutcheon &: Moran, 2007).

1.4.2 Gene duplications: a precursor to genetic variability

Gene duplications are those events which result in the duplication of a section of 

DNA containing a gene. Gene duplications can occur as small scale events in the case 

of unequal crossover events or large scale duplications as in the case of polyploidy. 

During meiosis complementary chromosomes undergo recombination. Recombina­

tion involves the breaking and rejoining of the DNA in both complementary chro­

mosomes. This process shuffles the genes in the resulting cell. When this process is 

not carried out perfectly it can result in a deletion of a gene on one chromosome and
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a duplicated gene on the other chromosome. Polyploidy events are drastic events 

result in a duplication which alters the number of chromosomes in the cell. Poly­

ploidy events occur regularly in the evolution of plants but are rare in eukaryotes. 

Polyploidy events occur as a result of errors during cell division.

The long term effects of gene duplication mean that there are relaxed selection 

pressures upon one or both of the duplicates. This relaxed pressure leads to diver­

sification of genes, however, short term effects can be extreme. First and foremost 

gene duplication in most cases leads to an increase in expression (Schuster-Bockler 

et ai, 2010). This increase may be a small effect in many cases but there have been 

studies demonstrating that duplicated genes are selected against due to increased 

gene expression effects (Zhang et ai, 2009). The relative redundancy of one (or 

more) of these copies in addition to negative selective pressures increase the likeli­

hood of mutations with duplicates. A product of this is the theory that it is easier to 

produce a novel function from an existing one rather than a de novo production of 

a gene, not least from a purely statistical point of view. Whole genome duplication 

events are thought to be much more detrimental to the cell and have been observed 

to be followed by extensive gene loss (Scannel et ai, 2006).

1.4.3 Adaptation and diversification through functional di­

vergence

Central to Darwin’s and indeed most evolutionary theories is the common ancestry of 

all diverse organisms. Taking together, the knowledge of common ancestry and the 

diversity of current organisms there is an implied necessity for functional divergence 

of genes whilst simultaneously a necessity for homology. Such divergences in function 

can follow gene duplication or can arise through environmental pressures due to
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an opening of a new ecological niche. Gene duplication can lead to the relaxed 

selective constraint on the genes involved (Stephens, 1951; Nei, 1969; Ohno, 1970; 

Lynch & Conery, 2000). Two or more exact copies of a gene can be at best neutral 

to an organism’s fitness at origin (Conant & Wolfe, 2008; Lynch & Conery, 2000), 

therefore the retention of multiple copies of a gene until such a time as new functions 

can emerge through mutations must itself be a mechanism of evolution.

The emergence of new functions is thought to arise through two processes, sub­

functionalization and neofunctionalization (Force et ai, 1999). In the process of 

subfunctionalization both copies of a duplicated gene accumulate mutations in a 

complementary fashion. Both genes maintain a subset of the functions carried out 

by the pre-duplicated gene, however, between these two new genes all of the original 

functions remain intact. In the process of neofunctionalization one of the two dupli­

cated genes accumulates mutations in functional areas which leads to a gene which 

carries out a different role than that of the original gene. Indeed it is understood 

that subfunctionalization and neofunctionalization need not be mutually exclusive 

mechanisms of evolution (He and Zhang, 2005; Rastogi and Liberies, 2005; Conant 

& Wolfe, 2008). The third possibility when a gene is duplicated is that one becomes 

a pseudogene. One of the copies of the gene maintains all the function of the an­

cestral gene and the second is free to accumulate mutations; it does so until such a 

time as it can be classified as a pseudogene. Figure 1.1 summarizes the emergence of 

new functions following gene duplication. I will discuss the development of a novel 

method for analysis of functional divergence in Chapter 2 and, additionally, I will 

present a case study of proteome-wide functional divergence in chapter 3.
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Duplication

Loss of Function

Subfunctionalization

Figure 1.1: Evolution by gene duplication. This Figure shows the processes 
by which a duplicated gene can lead to a pseudogene, subfunctionalization or ne­
ofunctionalization. After a gene is duplicated there is redundancy. Due to this 
redundancy there is reduced selection pressures upon one of the genes. In the first 
scenario the gene accumulates mutations including insertions and deletions until it 
becomes a pseudogene or possibly not even recognizable as a gene. The second sce­
nario sees one of the duplicates maintain some of the ancestral functions and the 
other duplicate retains the rest of the functions; this is called subfunctionalization. 
The third scenario sees one of the duplicates retain all of the function (s) and the 
second copy accumulates mutations until it has obtained new function, resulting in 
neofunctionalization.
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1.4.4 Molecular chaperones

Molecular chaperones are important molecules involved in the proper folding and 

regulation of newly synthesized proteins. Many proteins can fold correctly inde­

pendent of molecular chaperones, some are however susceptible to misfolding and 

aggregation. Aggregates can be toxic and are known to be involved in disease as 

in the cases of amyloidoses and prion disease. When a protein is released from the 

ribosome and needs “help” to fold, it is delivered by Hsp40 to Hsp70 and trigger 

factor. Hsp70 binds to hydrophobic regions of the polypeptide to prevent aggrega­

tion (Hartl &: Hayer-Hartl, 2009). Hsp70 has two ATP-binding domains which are 

allosterically coupled (Mayer et ai, 2000). The N-terminal domain is activated by 

ATP hydrolysis when Hsp40 delivers a protein. This increases the substrate binding 

affinity of the C-terminal domain (Young et ai, 2003). Hsp70 releases the peptide 

when an exchange factor substitutes the ATP with an ADP molecule again lowering 

the binding affinity of the C-terminal domain. This process is thought to protect 

the hydrophobic regions from aggregation due to interactions with other newly syn­

thesized proteins until partial folding has occurred; on release the protein folds into 

place, burying the hydrophobic regions resulting in a correctly folded protein.

Proteins which are not correctly folded by Hsp70 are delivered to Hsp90 (a molec­

ular dimer) or GroEL/HspGO (a molecular multimer). The method by which Hsp90 

chaperones proteins is analogous to that of Hsp70. Hsp90 is bound by ATP with the 

assistance of co-chaperone proteins. Hsp90 undergoes many conformational changes 

due to ATP binding and hydrolysis, these changes impose conformational changes 

upon the client protein until it folded correctly.

GroEL is a 14-mer composed of 60kDa monomers (shown in Figure 1.2), it is 

located on an operon (groE) alongside GroES which is also involved in the chaperone
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process. The GroEL complex consists of two stacked heptameric rings joined back 

to back in the centre. Each of the rings has a central chamber of 85,000 cubic 

Angstroms (Lund, 2009). Protein folding with the assistance of GroEL occurs in 

a controlled allosteric manner. Hydrophobic regions of unfolded proteins bind to 

a hydrophobic region of the apical domain of GroEL, close to the entrance to the 

folding chamber in one of the rings. GroES and ATP bind to this ring causing 

conformational changes which release the unfolded protein into the folding chamber. 

The protein now folds within the chamber, possibly making use of the fact that it 

is completely protected from destablizing interactions with other proteins (Lund, 

2009). After roughly 10 seconds (Burston et ai, 1995) ATP hydrolysis is complete 

which causes conformational changes that weaken the interaction between GroES 

and GroEL and also prepare the other GroEL ring for another cycle of protein 

folding.

1.4.5 Adaptation and diversification through chaperone buffer­

ing

1.4.5.1 Evolvability

In the broad and diverse held that is molecular evolution there have been some 

challenging features which have arisen that do not (as yet) easily ht with modern 

evolutionary theory. One such example is evolvability, hrst proposed by Wright 

in 1932. Wright noticed that a combination of several mutations could lead to an 

increase in htness where any of those mutations alone would cause a htness decrease. 

These occurrences led to the visualization of sequence space as a series of peaks and 

troughs or “adaptive valleys” which can be explored through mutations. In this 

analogy one mutation brings the htness of the organism down from a htness “peak”
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Figure 1.2: GroEL structure. Pictured is the protein structure of GroEL in 
complex with its co-chaperone GroES. The green section represents one heptameric 
ring of GroEL proteins and the blue/indigo section represents the second ring. The 
lower ring is in complex with GroES which acts as a “lid” sealing off the inner 
chamber to protect the client protein whilst it folds. In the image the lower ring is 
elongated due to conformational changes brought about by the binding of GroES. 
This elongation is both to release the client protein from binding the inner wall and 
also to create extra space for folding to occur. Note: This imagine was created by 
David Goodsell as part of the www.pdb.org molecule of the month series.
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into a fitness “valley”. A second mutation brings the fitness back up a “peak” which 

is higher than that of the original fitness.

There are many examples of evolvability; horizontal gene transfer (HGT), upreg- 

ulated mutation rates and sexual recombination. Horizontal gene transfer is expe­

rienced by bacterial strains; during nutrient deficient times, bacteria activate DNA 

uptake mechanisms to obtain useful DNA from its surroundings (Poole et ai, 2003). 

Upregulated mutation rates occur in some bacteria during starvation; the mutation 

rate is increased in a controlled way in an attempt to accumulate mutations causing 

adaptations beneficial to the current surroundings (Galhardo et ai, 2007). Sexual 

recombination can result in the accumulation of mutations at a greater rate than 

that expected according to the mutation rate alone.

1.4.5.2 Robustness

Robustness is the ability of an organism to accumulate deleterious mutations without 

serious detrimental effects to fitness. As discussed most mutations are deleterious 

according to the nearly neutral theory of evolution, however many mutations arise 

in the population, persist and can even drift to fixation. If mutations continue to 

arise then it is expected that the fitness will slowly decline. At first glance it seems 

as though robustness is a property which acts against evolvability as it reduces or 

smoothes down the fitness landscape upon which selection can act. Wagner proposed 

that there are molecular “capacitors” which facilitate the accumulation of deleterious 

mutations by “buffering” detrimental fitness effects caused by the accumulation of 

deleterious mutations (Wagner, 2008). In addition to molecular capacitors it has 

been proposed that those organisms which are most robust to mutations can do so 

because as an organism, mutations have little impact upon the change of their fitness
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landscape. This has been proposed under the model of “Survival of the flattest”, 

for which evidence has been found (Codoner et. al.\ 2006).

In 1998 Rutherford and Linquist proposed Hsp90 as a capacitor, they had discov­

ered that if Hsp90 was impaired then many morphological changes can develop which 

would normally be suppressed due to Hsp90s activity in mediating protein folding. 

Morphological changes were also discovered in Arabidopsis thaliana. {Queitsch et ai, 

2002). Another molecule which was proposed as a capacitor was GroEL/GroES. It 

was shown that endosymbiotic bacteria over-expressed GroEL (Moran, 1996). It was 

proposed that this was to cope with the accumulation of mutations experienced by 

large levels of genetic drift. Eares et a/..(2002) demonstrated that E. coli exposed to 

evolutionary bottlenecks (and therefore greater genetic drift) could partially recover 

fitness with over-expression of GroEL/GroES.

This extensive research into evolvability and robustness raises some difficult ques­

tions. Eirstly, can robustness lead to adaptation and secondly, whether the pheno­

typic effects of buffering by capacitors is selected for or is it merely a lucky conse­

quence which has been born out of the useful features of protein folding mediators, 

such as Hsp90 and GroEL.

1.5 Coevolution

The theory of Coevolution was proposed under the red queen hypothesis (Van Valen, 

1973), the analogy of alice in Lewis Carrol’s “Through the looking-glass” pertained 

to a race in which alice (the main character) continually ran but always stayed in 

the same position. This analogy lends well to that of constant battle in the animal 

kingdom between a predator and its prey. This theory implies that an adaption in
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one organism which leads to an increased fitness has a negative impact on another 

species in the same ecological niche. Subsequently there is a selection pressure on 

the weakened organism which is intrinsically linked to the increase in fitness of the 

other species. In the case of the predator and prey, if the predator adapts such that 

it is fitter athletically then it will have an adverse affect upon the likelihood that 

the prey can pass on its genetic information; because it may be eaten by the preda­

tor. This scenario implies that as a result of selection, organisms must continually 

change in order to survive. When considering molecules present within organisms 

there is an analogous argument to be made. These molecules are under a similar 

set of selection pressures, a change in one molecule which leads to a fitness change 

can have a detrimental effect on another molecule. This leads to a selection pressure 

on the second molecule to adapt in order to maintain its function. Since organic 

molecules are involved in numerous interactions within a molecular network, it is 

evident that there are coevolutionary signals within this network which act recip­

rocally to conserve the connections/fitness of the organism (Tillier and Charlebois, 

2009) .

A common assumption in current molecular evolution is that functionally impor­

tant residues are considered to be evolving more slowly than non-functional sites. 

This prediction is a direct result of Kimura’s theory of neutral evolution(Kimura, 

1983) and Ohta’s nearly-neutral theory(Ohta, 1972; Ohta 1973). This assumption 

and the work based upon it has proved invaluable to both bioinformaticists and 

experimental scientists alike. The assumption allows for extremely accurate pre­

diction of homologous genes, phylogenetic inference and a host of other statistical 

methods. As a result, it also allows for far more direct experimental procedures, 

such as site-based mutagenesis to be performed to discover the molecular function
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of amino acids in a protein.

In contrast to the usefulness of this assumption and subsequent approaches there is 

a group of residues which are ignored, non-conserved functional sites, i.e. coevolving 

sites. Coevolving sites are those which are observed to have mutated from the 

original residue but the function has been saved by a corresponding mutation at 

another site in the protein or sites which have mutated causing an increase in the 

fitness of the organism and a corresponding mutation boosts this fitness increase. In 

the antagonistic case the initial mutation can be considered deleterious, however may 

not have been removed from the population by selection as the strength of selection 

relies on population size (Ohta, 1973). If there is enough time for a corresponding 

mutation which restores function to the region then this pair is said to be coevolving 

and can be fixed in the population.

Protein interactions define molecular and cellular function. These interactions 

are rarely distinct events but are connected in complicated networks which are of 

huge importance to modern research. Experimental approaches to identify such 

interactions include high throughput screenings using affinity purification (Gavin 

et al., 2006), yeast two-hybrid systems (Uetz et ai, 2000; Ito et ai, 2001) and 

protein chips (Zhu et ai, 2001). These approaches have obvious merits by directly 

identifying and observing interactions. They do, unfortunately have shortcomings 

also. First and foremost levels of false positives have been shown to be very high 

(Sowa et al..). Coupling this with the obvious financial costs associated it is evident 

that robust computational models for predicting interactions is a not only a worthy 

research area but also one which can give significant insight into protein-protein 

interactions and evolution as a whole.

In a review (Lovell and Robertson, 2010) Lovell and Robertson adapt an early
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definition of coevolution (Thompson, 1994) to define coevolution as “the reciprocal 

evolutionary change in evolutionarily interacting loci”. This definition encompasses 

both intra-molecular coevolution and inter-molecular coevolution. Intra-molecular 

coevolution pertains to correlated evolutionary changes within a gene, these cor­

related changes may be to preserve function or alternatively lend stability to the 

complex folds involved in protein structure. Inter-molecular coevolution refers to 

correlated evolutionary changes between two genes. It is interpreted as coevolution 

which maintains interactions due to collective selection pressures on all loci involved 

either directly or indirectly in an interaction or group of interactions. Many stud­

ies have identified site-specific intra-molecular and inter-molecular coevolution from 

historically well understood proteins like myoglobin (Pollock et ai, 1999) to pro­

teins with function of a more illusive nature in HIV-envolope proteins (Travers et 

ai, 2007).

1.6 Thesis structure and aims

This thesis presents an evolutionary analysis of the molecular mechanisms of func­

tional innovation through functional divergence, coevolution and the buffering effects 

of the chaperone GroEL. It is presented in 7 chapters including this introduction and 

a final conclusions chapter. Above I have discussed some of the extensive research 

which has been performed in the area of molecular evolution. More specifically in 

areas which pertain to this thesis, namely functional divergence, coevolution and 

the buffering of deleterious mutations by chaperones. This thesis aims to not only 

investigate some of the remaining unanswered questions in this field but also to de­

velop novel methods of analysis that are far-reaching in effectiveness but also faster 

and more user friendly than existing methods.
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Techniques for the analysis of changes in selective constraints at both the DNA 

(Berglund et ai, 2005; Fares et al, 2002; Goldman &; Yang, 1994; Nielsen & Yang, 

1998; Suzuki, 2004a; Suzuki, 2004b; Suzuki & Gojobori, 1999; Yang &: Bielawski, 

2000; Yang & Nielsen, 2002; Zhang, 2004; Zhang et ai, 2005) and the protein level, 

Gu (Gu, 1999; Gu, 2001; Gu, 2006) have been developed. The most widely used of 

these is Gu’s method DIVERGE. In chapter two we present a novel method for the 

detection of site specific functional divergence; therein we compare and contrast our 

method relative to that of DIVERGE. In chapter 3 we apply our novel method to 

750 bacterial proteomes to identify high-level patterns of functional divergence and 

link these patterns to ecological adaptations.

Whilst the theory of molecular coevolution is not a new topic of research it remains 

poorly understood. There have been many experimental approaches which have 

demonstrated its occurrence (discussed above) and many methods developed to 

detect coevolution in multiple sequence alignments. In chapter 4 we present an 

updated model and software for the analysis of both intra-molecular coevolution 

and inter-molecular coevolution. We administer site-specific bootstrapping in order 

to separate phylogenetic coevolution and functional coevolution.

The effect of chaperone buffering has been studied in some pioneering works but 

still raises awkward and as yet unanswered questions, such as can buffering of mu­

tations by GroEL cause lineage specific adaptations to ecological niches? In chapter 

5 we attempt to address this question with analyses of strains of E. coli subjected 

to evolutionary bottlenecking. In chapter 6 we present an analysis of GroEL and 

its clients which investigates the effect of buffering on molecular coevolution and 

functional divergence in a mutation accumulation experiment.
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Chapter 2

CAFS: Clustering Analysis of 

Functional Shifts

2.1 Related poster accepted for publication.

Williams T.A., Caffrey, B.E., Jiang X., Toft, C., and M. A. Fares. (2009). Phy- 

logenomic inference of functional divergence. BMC Bioinformatics 10(Suppl. 13): 

P4.

This chapter describes the development and expansion of the method for detecting 

functional divergence first presented by Toft et al. (2009). This chapter represents 

collaborative work between B.E. Caffrey, T. A. Williams, X. Jiang and C. Toft. 

BEC and TAW were responsible for expanding the model to incorporate a more ac­

curate test statistic, greater assessment of significance through simulated alignments 

and functional divergence enrichment analysis. BEC wrote all C+-f optimized code 

which allowed for whole proteome analysis. BEC performed all benchmarking, test­

ing and comparisons contained within this chapter. XJ and CT added visualizations 

of results.
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2.2 Introduction

Most new genes, functions, and activities originate through the modification of exist­

ing ones. The evolutionary process that gives rise to functional differences between 

related genes is called functional divergence (Conant &: Wolfe, 2008; Lynch & Con- 

ery, 2000). At the species level, functional diversification is primarily associated 

with adaptive radiations, when a single ancestor differentiates into multiple descen­

dant species, each adapting by natural selection to one of a new set of ecological 

niches (Schluter 2000). Following this theory, environmental variation triggers di­

vergent natural selection, leading to the emergence of niche specialists. In many 

cases, species under the same ecological conditions differ in their ability to adapt 

to new niches, even when they stem from the same ancestor (Gillespie, 2004; Pinto 

et ai, 2008). Therefore, other factors, such as genetic constraints may also play an 

important role in the process of functional divergence.

The process of functional divergence, or departure of a gene from its ancestral 

function, is constrained by the requirement to maintain the original function: mu­

tations that confer a new function are likely to interfere with the ancestral function 

and therefore are eliminated by negative selection. This constraint can be relaxed 

when selection for the ancestral function is weakened, either through gene duplica­

tion (and therefore redundancy), or through changes to the environment inhabited 

by the organism. After gene duplication, one copy of the gene may be free to evolve 

in a new direction if the other continues to perform the ancestral function (neofunc­

tionalization). Alternatively, ancestral functions can be partitioned between the two 

gene copies, potentially leading to later specialization or subfunctionalization (Co­

nant & Wolfe, 2008; Innan &: Kondrashov, 2010; Lynch &; Conery, 2000; Lynch & 

Katju, 2004; Ohno, 1970). Major changes in the environment or ecological niche
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can also lead to a relaxation of selective constraint on ancestral functions, although 

this process is less well characterized. For example, endosymbiotic bacteria have lost 

many of the genes their free-living relatives need to obtain nutrients from the envi­

ronment (Moran, 2002), but have also experienced functional divergence in certain 

genes (Toft et al, 2009).

Although it is known that these processes can drive ecological adaptation in 

prokaryotes, identifying the fraction of genetic variation that is associated with 

these functional changes remains a challenging problem. In the case of bacteria, 

whole-genome analyses must take into account widespread HGT, which means that 

different genes may not agree on an overall species tree (Dagan & Martin, 2006). 

This is a considerable problem for analyses of functional divergence, which require 

a tree in order to determine the branch upon which a particular trait arose. The 

rationale for previous methods, and indeed the new approach described here, derives 

from the neutral theory of Kimura (1983), which predicts that residues important 

for the function of a protein will be under strong functional constraint and therefore 

evolve slowly. These considerations have motivated the development of a number of 

methods for identifying changes in selective constraints on protein-coding genes and 

on single amino acid sites and lineages in a phylogenetic tree (Berglund et al, 2005; 

Fares et al, 2002; Goldman &: Yang, 1994; Nielsen & Yang, 1998; Suzuki, 2004a; 

Suzuki, 2004b; Suzuki &: Gojobori, 1999; Yang & Bielawski, 2000; Yang & Nielsen, 

2002; Zhang, 2004; Zhang et al., 2005). At the protein level, Gu (Gu, 1999; Gu, 

2001; Gu, 2006) developed a Bayesian approach to identify functional divergence, 

which has become the most widely used. Comparisons of amino acid site-specific 

evolutionary rate or residue conservation between two homologous clades can there­

fore be used to identify amino acid sites at which selective constraints have changed, 

potentially indicating functional divergence.
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Recently, we have developed a new distance-based method which explores a bifur­

cating phylogenetic tree, testing for functional divergence at each node by comparing 

the two downstream clades to an outgroup in order to identify sites at which selective 

constraints have shifted (Toft et al, 2009; Williams et al, 2010). Similar to other 

methods, our approach was limited to tests of one gene at a time, unless the phy- 

logeny of all genes could be fixed in advance. In the present study, we have optimised 

our method to (i) handle analyses of functional divergence that include hundreds of 

complete proteomes, (ii) address the fact that the phylogenies of individual proteins 

do not necessarily agree with the true phylogeny, as is often the case with organisms 

that acquire genes through HGT, (iii) provide an intuitive probability assignment 

for each test which takes the underlying phylogeny of the sequences into account 

and (iv) explore all levels of each gene tree, testing for functional divergence at each 

node. This method and analysis was co-developed with Thomas Williams.

2.3 Materials and Methods

Our analysis of functional divergence, the individual steps of which are detailed 

below, is summarized in Figure 2.1.

2.3.1 Sequence Input

The input for the software should be a single multiple sequence alignment in Fasta 

format. Optionally a folder of multiple sequence alignments can be provided as 

input, again in Fasta format. In addition to this, if a phylogenetic tree calculated 

using an alternative method to that implemented in the software is desirable then 

a Newick formatted tree may be used as input.
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Sort genes by 
functional category

Build tree for each gene

/----------------------------------------------------------------------------- s

Calculate
functional divergence

scores

ur

Perform multiple testing 
correction and assess 

significance

Clustering of species by 
co-enrichment of functional 

categories

Figure 2.1: CAFS workflow. Above shows a workflow of the CAPS Analysis, in 
the following sections there is further documentation of each step.

33



2.3. MATERIALS AND METHODS CAFS

2.3.2 Building gene trees

When analyzing entire proteomes for functional divergence, the use of a species tree 

to infer events on each branch is problematic: extensive horizontal gene transfer 

(HGT), particularly among prokaryotes, means that genomes may not be related in 

a tree-like way (Dagan &: Martin, 2006). We therefore calculate a tree for each gene 

(set of homologous sequences) in the dataset using BIONJ (Gascuel, 1997), under 

the JTT model of protein sequence evolution (Jones et al., 1992). Calculations 

for that gene are then made exclusively using the resulting tree. Additional future 

development will include the option to choose a alternative model to be used for 

tree construction.

The CAFS software has the ability to use a pre-calculated tree made using likeli­

hood or bayesian methods. For large analyses, such as those in chapter 3. this may 

not be possible due to the excessive computational time required. It is suggested 

where possible that rigorous trees be used.

2.3.3 Scoring functional divergence

Our method steps through the phylogenetic tree and calculates functional diver­

gence scores at each of the inner nodes. Glades on either side of the bifurcation are 

compared to the closest available outgroup with respect to the BLOSUM62 substi­

tution matrix (Henikoff &: Henikoff, 1992), indeed any substitution matrix can be 

used. Scores for each column are given by:

FD =^ ^score
OX1-X2

(2.1)
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where X are the mean substitution scores for the transition from clades on either side 

of the bifurcation in the phylogenetic tree relative to the outgroup and Sxi — Sx2> 

the standard error for unequal sample sizes with unequal variances is given by:

5Xi-;!:2 -
'21 ^ 21 
ni 712

(2.2)

Where sf refers to the variance in sample i and rii refers to the size of sample i.

2.3.4 Significance testing

For each inner node tested, a simulated sequence alignment is automatically created 

using the JTT model (Jones et ai, 1992) according to the gene-specific phylogenetic 

tree calculated above. That is, the distance matrix for the simulated data is equal 

to that of the real data, but sequences were evolved under a model that represents 

molecular evolution without the specific selection constraints which are upon each 

gene tested, as all amino acid transitions are equally likely. The simulated alignment 

is tested according to equation (1), resulting in a null distribution of the test score 

against which P-values for the real data were calculated. These values are then 

corrected for multiple testing by the False Discovery Rate method (Benjamini & 

Hochberg, 1995) using an alpha value of the users choice as the threshold of signifi­

cance. Following this procedure, branches on the tree that still possess at least one 

significant site are considered to be under functional divergence for the purposes of 

enrichment and clustering. These simulated alignments are created with the use of 

the Bio-I—I- libraries and are hard coded into the software.
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2.3.5 Enrichment analysis

Once all alignments were analyzed, we performed three different enrichment tests 

to ask three different biological questions. These are based on a chi-squared test:

i=l

{0^ - Ejf 
Ei

(2.3)

Where Oj is the observed frequency of genes/alignments under functional divergence, 

Ei is the expected frequency and n is the number of possible outcomes of each 

event. We use the enrichment tests to identify (i) species and (ii) categories of 

genes that experience significantly more (enriched: [Oi — Ei) > T) ox significantly 

less (impoverished: (Oj — Ei) < 0) functional divergence when compared to the 

background level (that is, P < 0.05 in a chi-squared test). We then calculate (hi) 

the enrichment status of each category within each species, in order to identify 

lineage-specific shifts in the pattern of functional divergence. The expected values 

in each of these cases refers to the values obtained when averaging (i) over all species 

and (ii) over all functional categories and (iii) all species in each category.

2.3.6 Hierarchical clustering

We create a heatmap from the enrichment status of functional categories within 

species to help visualize the structure in our large dataset. To do this we used 

the heatmap.2 function from the gplots library in R (R Development Core Team, 

2010). This function performs two-dimensional hierarchical clustering according to 

Euclidean distance and outputs a heatmap together with a corresponding dendro­

gram. Visualizing the results of the analysis in this way allows identifying unusual 

patterns of functional divergence in particular functional categories or convergent
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functional divergence among phylogenetically unrelated sequences. We take this 

chance to remind the user that each cell of this heat map is the outcome of a sta­

tistical test declaring whether a category and species are enriched or impoverished 

for functional divergence.

2.3.7 Implementation

CAFS was implemented in C+-I- and is available under the GNU General Public 

License v.3 for Linux, Mac and Windows. The code was written using the GNU 

Scientific Library and the Bio-I—I- libraries (Dutheil et ai, 2006). The program is 

accompanied by full documentation and enables the user to perform several different 

kinds of analysis, including the identification of lineage-specific functional divergence 

in a gene-of-interest (such as that reported by Williams et ai. (2010)) and the kind 

of multi-proteome investigation reported in chapters 3 and 5. The latest version of 

the code and documentation is available at: 

http: //bioinf. gen. ted. ie / ~faresm/software/software, html.

2.3.8 Assessment of susceptibility to false positives

Given the difficulty of finding definitive positive controls for an analysis of this 

nature we felt it important to demonstrate that this software is not susceptible 

to a large number of false positives. We simulated 20 alignments under a codon 

model with neutral evolution (non-synonymous , d^, to synonymous, ds, rates ra­

tio CO = df^/ds = 1) using the evolver package in PAML. These alignments were 

converted to amino acids and analysed with CAFS under the default alpha value 

of 0.05. With this value the expectation would be 5% of sites being reported as
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functionally divergent. Our software reported an average of 2.3% of sites as func­

tionally divergent. Given this low percentage we are confident that our methodology 

of significance testing and implementation of false discover rate is not susceptible to 

a large number of false positives.

2.4 Results

2.4.1 Analysis of the sensitivity of CAFS to false positives 

due to distance-based phylogenetic tree construction

We have developed this method with the purpose of performing large scale analyses 

upon whole proteomes and hence inferring shifts in functional categories. The larger 

the dataset the less feasible it is to create rigorous phylogenetic trees. After all, that 

would merely be the first step in this analysis. With the statements of the previous 

section in mind we have performed a comparison of our method using the calculated 

distance trees and trees built using RaxML (Stamatakis, 2006). We found that 92% 

of the sites identified using the distance-based trees were identical to those using 

the maximum likelihood method, these data are summarized in Table 2.1. Greater 

differences in the smaller alignments can be accounted for by the test statistic. This 

test statistic (equation 2.1) depends on two characteristics, firstly, the numerator 

will be large (either positive or negative) for a column in an alignment if there is 

a large amount of conservation in each clade whilst the amino acids in each clade 

are radically different. Secondly, the denominator depends on the variance in the 

aforementioned clades. These two factors mean that smaller alignments are subject 

to larger errors.
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Comparison of sites when using Maximum likelihood or BioNJ trees

# Sequences ^of ML FDsites #BioNJ FD sites Overlapping sites %Overlap

10 10 3 3 100%

26 29 8 3 37.5%

34 72 40 23 57.5%

86 256 102 88 86%

204 134 87 82 94%

348 298 226 219 97%

692 293 230 225 98%

881 1092 696 643 92%

Table 2.1: ML vs BioNJ trees. The number of FD sites predicted at the 0.05 

P-value level using BioNJ trees is consistently smaller. This indicates a stricter 

scoring scheme, which potentially reduces false positives. The final column shows 

the percentage of the FD sites detected through BioNJ trees that are also detected 

through ML trees increases. We note that with larger number of sequences in the 

alignment the percentage of overlapping sites approaches 100%. Only the smaller 

alignments show noticeable discrepancies but some of these can be explained by the 

effect of different tree topologies. Overall, the above results confirm the suitability 

of BioNJ for tree construction, particularly for alignments with a large number of 

sequences.

2.4.2 Time comparison: CAFS vs DIVERGE

Table 2.2 details the time taken to run eight sample alignments from the set of all 

alignments of all genes in the OMA database. All alignments were run upon the
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same 4-core machine. It should be noted that the runtimes of the CAPS software 

includes the calculation of a BioNJ phylogenetic tree. The trees used in DIVERGE 

were pre-calculated trees and are not included in the time taken by DIVERGE. It is 

evident from table 2.2 that as the number of sequences in an alignment increases the 

greater the suitability of CAPS. It is also evident from this table that DIVERGE is 

not suitable at all for large alignments.

Comparison of CAPS and DIVERGE runtimes

#Species / Sequences Alignment Length Time(DIVERGE) Time(CAPS)

10 334 NTN NTN

26 510 11s 26s

34 247 10s lm30s

86 316 3m 16s 2m57s

204 492 Bailed* 47m21s

348 550 Palled** 2h21ml2s

692 587 Palled* 9h21m28s

881 1101 Palled* 20h20m54s

Table 2.2: Comparison of CAES and DIVERGE runtimes. Shown here are 

the runtimes of CAPS and DIVERGE for a set of alignments of varying size. It 

is clear that CAPS performs better once any considerable number of sequences is 

used. It should be noted that in each case CAPS is calculating a BioNJ tree which 

accounts for a large portion of the times taken. NTN=no testable nodes. *Denotes 

the software failed constructing a tree or Reading a pre-made tree. **Denotes the 

software failed reading the alignment.
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2.5 Discussion

2.5.1 Differences between our software and others

Given the differences between our software and that of DIVERGE it is very difficult 

to make comparisons in terms of the sites reported by each program. DIVERGE 

compares two clades after a duplication event and our software compares two clades 

and an outgroup. We perform our test in this manner in order to assess events of 

functional divergence at any testable node on a tree and also because our opinion is 

that using an outgroup provides stronger evidence of functional divergence. Another 

widely used piece of software is PAML (Yang 1997). PAML has the functionality 

to search for regions of positive selection. The test that is performed is d^/ds ratio 

in the ynOO and codeml packages of PAML. Whilst not directly comparable since 

PAML analyses nucleotides and CAES analyses protein sequences it is important to 

discuss the differences between our program and that of PAML. As mentioned PAML 

searches for regions or genes which are under positive selection and as described 

in chapter 1 has been used in many analyses to great effect. A drawback of the 

d^/ds ratio is that there is no information pertaining to the amino acid properties. 

Whilst our software is similar to PAML in that they both assess some levels of 

“conservation” down a column of an alignment CAES uses BLOSUMs to assess how 

radical a change is and therefore has an inherent estimation of the probability of a 

change in function. Additionally, our program can easily automate and carry out 

large analyses in addition to the ability to assess divergences on a grander scale 

(whole proteomes) which is not possible using PAML.
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2.5.2 Comparison with DIVERGE

The most widely used program for detection of functional divergence is DIVERGE 

(Gu, 1999). Even though it is well-suited for individual analyses, it can not be 

used for a large-scale study, such as the those presented in chapters 3 and 5. This 

is because the size of alignments dealt with exceeds the limits of the data that 

DIVERGE can handle. It is also designed to be run interactively and can not be 

used in automated pipelines.

2.5.3 Justification for use of BioNJ

There are two main reasons why the use of BioNJ trees was chosen over maximum 

likelihood trees in this software. First of all, it runs much faster, which is critical for 

large-scale applications. Secondly, incorporating a maximum likelihood calculation 

(RaxML or PAML for example) would have a negative impact on both the less 

computer savy users as they would need an in depth knowledge of the ML package 

and also mean that future versions of this software would be constrained by the 

ML package. These elements would affect the automation of large scale analyses 

and also the “out-of-the-box” feel of the program. Additionally, the maximum 

likelihood methods employed in the Bio-b-f libraries which we use in our program 

are significantly slower than RaxML and would not have provided an adequate 

alternative.

2.5.4 A note about testable alignments

It should be noted that since DIVERGE could not run the four largest alignments in 

this subset of our dataset from chapter 3, we predict that at least half of the align-
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merits in our full dataset can not be analyzed by the DIVERGE software. Indeed 

we were unable to run analysis on any alignment over 86 sequences long, however 

DIVERGE would read alignments up to 100 sequences long. Another problem about 

the calculations performed with DIVERGE2.0 is the impossibility to perform anal­

yses collected in Gu2001 which pertains to the method in (Gu and Vander Velden 

2002). This analysis did not work for any of the alignments above. All analyses 

failed with an error message (Please recheck input sequence data and tree informa­

tion), for which we could not find documentation. We were also unable to obtain 

help directly from the author of the software.

2.6 Conclussions

In this chapter we present a novel model for the assessment of site-specific func­

tional divergence. We believe the overall power of this software lies in the speed of 

runtime, flexibility of use and its user friendly nature. The implementation in C -I- -f 

means that there is significant speed increases upon the simplified (both model and 

software) presented in Toft et a/..(2009). This speed increase allowed for much more 

complex calculations, such as simulation of alignments to assess significance along 

with a better estimation of the standard error (equation 2.2).

Further, we understand and acknowledge the value of phylogenetic trees built us­

ing both maximum likelihood and bayesian methods and we condone their use in 

small scale analyses. One of the biggest assets of our program is speed and automa­

tion. With this in mind, we wish to demonstrate to the user that whilst BioNJ trees 

are calculated within the program the results recieved are 92% comparable to those 

returned after the maximum likelihood analysis. Given the high level of similarity 

between the maximum likelihood built trees and those built with BioNJ any the
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conclusions drawn in the results of chapter 3 would hold in either circumstance. It 

is our opinion that analyses on the scale of those detailed in the chapters 3 and 5 

are not possible for many who have limited computational resources.

In reference to the DIVERGE comparisons we justified our calculations by demon­

strating that DIVERGE is not ideal for large scale analyses and can be troublesome 

to the user for even relatively small alignments. In addition to the tests run above 

we would like to say that on large scale analyses all of the information about the 

sites tested are collected and automatically analysed according to any tagging sys­

tem applied to the dataset and statistical tests performed “on the fly” to return the 

most information possible to the user. Large scale analyses are performed in chap­

ters 3 and 5 upon 750 complete bacterial genomes and the clients and non-clients of 

the chaperonin GroEL.
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Chapter 3

Proteome-wide analysis of 

functional divergence in bacteria: 

Exploring a host of ecological 

adaptations

3.1 Related manuscript

Caffrey B. E.*, Williams T. A.*, Jiang X., Toft C., Hokamp K., Fares, M. (2012) 

Proteome-Wide Analysis of Functional Divergence in Bacteria: Exploring a Host of 

Ecological Adaptations. PLoSONE7(4): e35659. doi: 10.1371/journal.pone.0035659

^denotes equal contributions.

3.2 Introduction

Prokaryotes are extraordinarily rich in biological diversity, whether measured in 

terms of number of species (Dykhuizen, 1998; Cans et ai, 2005), habitat range 

(Pikuta et ai, 2007), or the breadth of energy sources and biochemical pathways
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they can exploit in order to survive (Pace, 1997). Even photosynthesis and oxida­

tive phosphorylation, the mainstays of eukaryotic energy metabolism, are bacterial 

inventions acquired by endosymbiosis during early eukaryote evolution (Dyall et ai, 

2004). How did this prokaryotic diversity evolve, particularly when the fixation 

of gene duplications appears to be somewhat more frequent in eukaryotes (Zhang, 

2003)?

Adaptive evolution in prokaryotes is promoted by at least three main factors: first, 

a high strength of selection relative to eukaryotes, on account of their generally large 

population sizes (Lynch &: Conery, 2003); second, their ability to obtain genes by 

horizontal gene transfer (HGT), which enables the sharing of niche-relevant func­

tions between distantly-related microbes living in the same environment (Ochman 

et ai, 2000); and third, their use of stress-induced hypermutation (McKenzie et 

ai, 2000), which may increase the production of adaptive variants as a last gasp 

response to a challenging environment.

To investigate the evolution of prokaryotic diversity, we infer patterns of radi­

cal change for each protein individually, and then cluster species according to the 

functional categories (derived from COG: Clusters of Orthologous Groups; (Tatusov 

et ai, 2003)) in which they exhibit significant functional divergence. We perform 

an analysis of functional divergence on 750 bacterial proteomes using the software 

CAPS (Clustering Analysis of Functional Shifts). This set includes bacteria from 

various different ecological niches and therefore provides a good dataset for identify­

ing ecology-related functional divergence. Our approach (i) reveals striking patterns 

of convergent evolution in phylogenetically distinct but ecologically related groups 

of bacteria, including pathogens, endosymbionts, and thermophiles, (ii) provides ad-
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ditional support for the view that bacteria have a conserved set of core functions, 

with a more variable metabolic layer and (iii) provides a detailed picture of how 

individual species of unusual bacteria have diverged from their closest relatives.

3.3 Materials and Methods

3.3.1 Sequences, orthology, and alignment

The first step in a whole-proteome analysis of functional divergence is the grouping 

of orthologs within the species of interest. We leave orthology assignment, for which 

a number of tools are already in use (Altenhoff &: Dessimoz, 2009), to the user’s 

choice according to their own needs. For the present analysis, we retrieved pair­

wise orthology assignments for 750 completely-sequenced bacterial genomes from 

the OMA database (Roth et ai, 2008; Schneider et al, 2007), representing all bac­

terial data in the October 2009 revision of the database. We chose the OMA project 

for its very broad phylogenetic coverage, as well as the favourable performance of its 

algorithm against other current orthology assignment methods (Altenhoff &; Dessi­

moz, 2009). In addition to providing pairwise orthology calls, the OMA algorithm 

assembles strict orthologous groups in which every member is directly orthologous 

to every other. The rationale for this strict approach to grouping is the exclusion 

of paralogs, which is important for a number of potential applications of the OMA 

database, such as phylogenetic analysis. Unfortunately, these groups are unsuit­

able for functional divergence analysis across large phylogenetic distances because 

lineage-specific gene duplications tend to break up genuine orthologs into multiple, 

overlapping groups (that is, clustering problems arise because pairwise orthologies
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are not necessarily transitive). Using these groups in our analysis would result in 

multiple testing of the same clade, each time with overlapping but incomplete sam­

pling of downstream sequences.

The inclusion of both orthologs and lineage-specific paralogs in the same group is, 

however, of no concern in our per-species comparison of divergence between different 

functional categories of genes, because our method relies on individual gene trees and 

not a single species tree to detect functional divergence (see below). Therefore, we 

decided to build our own groups from the pairwise orthology assignments in OMA, 

with the less stringent requirement that a chain of pairwise orthologies connect all 

members of a group. This strategy produces the most appropriate groups for our 

analysis, where all genuine orthologs (and possibly lineage-specific paralogs) for a 

given gene are included in the same group. However, the approach is vulnerable 

to erroneous orthology calls in the original database, because a single false call will 

cause two unrelated groups of sequences to be merged.

To assess the possible effect of false OMA orthology assignments on our dataset, 

we used the relevant genomic data at NCBl to assign COG ontology tags to each 

sequence (Tatusov et al, 2003; Tatusov et ai, 2001). We then calculated the fre­

quency of the modal COG tag in each group. To avoid ambiguity in the clustering of 

functional categories, we only analyzed those alignments which only had one GOG 

category assigned. We then filtered out poorly-characterized groups (annotated with 

the ambiguous R or S COG categories) and any group containing less than 9 se­

quences, which we chose as the minimum number required for analysis.
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Sequence alignments were built for each group with MUSCLE (Edgar, 2004), us­

ing the default parameters. Data on the ecological niches occupied by the species 

included in the analysis were retrieved from HAMAP (Lima et ai, 2009) and from 

the Genome database at NCBI. A typical alignment of 78 sequences takes 2 minutes 

and 40 seconds to analyze on a standard desktop computer, including NJ tree­

building. At the other extreme, the large-scale analysis reported below (44,416 tests 

of functional divergence/3,813 alignments) took 60 hours on a 40-node cluster.

3.4 Results and Discusion

3.4.1 A conserved functional core and variable crust in the

evolution of bacterial proteomes

After assigning all alignments with a tag according to the COG tagging system and 

placing these into modal groups we found that the largest group (4,788 alignments) 

contained only one COG tag each, validating our approach to grouping homologs. 

Removing those groups with greater than one functional category and those with 

unknown function resulted in a final dataset of 3,813 groups of sequences.

An obvious sign of functional divergence would be a set of homologs that spans 

multiple COG categories. In this study we focus only on those alignments where 

all sequences have the same COG annotation. This represents the majority of ho­

mologs and is a reflection of the relatively broad character of the GOG categories. 

The kinds of functional shifts that we detect on the basis of conserved, radical amino 

acid substitutions are therefore more subtle and not noticeable from simply com­

paring the COG classifications across homologous sequences. We used chi-squared
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Popularity of the modal COG tag in homologous groups
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Figure 3.1: Frequency of modal COG tags. This plot shows a plot of the 
frequency of each modal group for the assignment of COG tags. That is, the x 
axis represents l/(number of COG tags assigned to an alignment) and the y-axis 
represents how many groups had each value. It is evident that the majority of groups 
received only one COG assignment, thus justifying our methodology of groupings of 
homologous genes
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tests to evaluate the differences in functional divergence between COG gene cate­

gories in our dataset (see Figure 3.2). We compared the proportion of positive tests 

for functional divergence within each of the 19 COG categories to the background 

expectation, which was calculated by combining all categories.

If genes in different functional categories have similar propensities to undergo 

functional divergence, we would expect the proportion of positive tests in each cat­

egory to be similar to the mean, resulting in few significant cases of enrichment. 

However, seventeen of the nineteen categories were either enriched or impoverished 

for functional divergence, while only two categories failed to deviate significantly 

from the background expectation. To test whether this polarization of our dataset 

was simply due to an artifact, for instance, the use of a non-conservative enrich­

ment test, we performed simulations in which the genes in our original dataset were 

randomly assigned to one of the 19 COG categories before testing for enrichment. 

In these simulations, events of functional divergence were much more evenly dis­

tributed among the categories, so that 93% of categories were neither enriched nor 

impoverished for divergence relative to the background level. This result indicates 

that the probability of functional change is not evenly distributed among the real 

categories: there is a stark division between enriched and impoverished categories. 

These findings are summarized in Table 3.1.

This supports the theory that bacterial proteomes comprise a relatively unchang­

ing core (that is, genes in impoverished categories) coupled with a set of more 

variable functions (enriched categories) (Lake et al, 1999; Makarova et ai, 1999; 

Mushegian &: Koonin, 1996). The impoverished categories are almost exclusively 

those involved with information storage and processing, including DNA replication,
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Figure 3.2: Enrichment of functional categories. This Figure shows the 
relative proportions of each COG category. Bars highlighted in yellow represent 
impoverishment in terms of functional divergence and bars in blue represent en­
richment in functional divergence. The x-axis is centered at the mean proportion of 
FDsites/Totalsites. The colors, however, represent a chi-squared test that has been 
imposed on each of the categories with the aforementioned mean as the expected 
value.
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recombination, and repair (L); transcription (K), ribosome biogenesis (J); and cell 

division (D). Metabolic genes were among those enriched for functional divergence, 

including genes involved in the metabolism of coenzymes (H), secondary metabo­

lites (Q), carbohydrates (G), amino acids (E) and nucleotides (F). Along with these 

metabolic categories, cell wall and envelope genes (M) and cellular defense mecha­

nisms (V) were among the most enriched categories in our analysis, highlighting the 

critical role of the environment in directing lineage-specific episodes of functional 

change.

Taken together, our results agree with a number of previous reports indicating 

that proteins involved in information processing are more conserved across large evo­

lutionary distances than those involved in metabolism (Azuma & Ota, 2009; Lake 

et ai, 1999; Makarova et al., 1999; Mushegian & Koonin, 1996). An additional 

point bears emphasizing here: since our method controls for the level of conserva­

tion at each node on the tree, the significance of a particular substitution pattern 

depends on the background evolutionary rate: in slow-evolving proteins, relatively 

conservative substitutions may be detected as significant events of functional diver­

gence, whereas only very unusual substitution patterns will attain significance in 

fast-evolving proteins. Therefore, our results indicate that information processing 

genes are not only more conserved than others purely in terms of evolutionary rate, 

but that they also experience less functional change, even taking this low rate of 

sequence evolution into account.

Why are informational genes under greater functional constraint than the rest of 

the proteome? One possibility, which follows Cricks concept of the frozen accident 

(Crick, 1968), is that too many other genes depend on the basic functions of trans-
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lation, transcription, and repair: functional changes in these genes would disrupt 

many other systems in the cell.

3.4.2 Host interactions constrain functional change in pathogenic 

and symbiotic bacteria

Does the ecological niche of an organism influence the pattern of functional change 

it experiences? To answer this question, we evaluated the enrichment of functional 

divergence in each species relative to the others in our dataset. To calculate the 

enrichment status of each species, we used the same statistical strategy as employed 

for enrichment by functional category: we calculated a background proportion of 

successful tests for functional divergence over all species, and then compared this to 

the proportion for each species individually using chi-squared tests. We also used 

chi-squared tests to identify associations between these three enrichment patterns 

(enrichment, impoverishment, or neither) and organism lifestyle, as is summarized 

in Table 3.2.

While there was no statistically signiflcant difference between psychrophiles and 

mesophiles in terms of functional divergence (chi-squared = 0.9762, P = 0.6138), 

thermophilic bacteria were significantly more likely to have proteomes enriched for 

functional divergence in comparison to mesophiles (chi-squared — 38.1, P == 1.2 x 10- 

7). This enrichment in the set of phylogenetically scattered thermophiles may reflect 

the convergent adaptation of their proteomes to higher temperatures, a process that 

requires changes in amino acid composition (Singer & Hickey, 2003; Zeldovich et al., 

2007).

Interestingly, we found that all bacteria that interact with a host as an integral
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Enrichment Table
COG Tag Functional Category Enrichment status
L Replication, recombination and repair Impoverished
D Cell cycle control, cell division

and chromosome partitioning Impoverished
A RNA processing and modification Impoverished
J Translation, ribosomal structure and biogenesis Impoverished
K Transcription Impoverished
1 Lipid transport and metabolism Impoverished
T Signal transduction mechanisms Not Enriched
N Cell motility Not Enriched
0 Posttranslational modification, protein

turnover and chaperones Enriched
u Intracellular trafficking, secretion,

and vesicular transport Enriched
H Coenzyrne transport and metabolism Enriched
Q Secondary metabolites biosynthesis, transport

and catabolism Enriched
G Carbohydrate transport and metabolism Enriched
E Amino acid transport and metabolism Enriched
F Nucleotide transport and metabolism Enriched
C Energy production and conversion Enriched
P Inorganic ion transport and metabolism Enriched
M Cell wall/membrane/envelope biogenesis Enriched
V Defense mechanisms Enriched

Table 3.1: Description of functional categories. Presented here are the enrich­
ment levels of the COG functional categories tested using CAFS. There is a stark 
separation between informational genes and energy production genes. The results 
tabulated here show that the analysis performed by CAFS not only returns useful 
information on an amino acid site resolution but also returns information according 
to the tagging system applied.

55



3.4. RESULTS AND DISCUSION Functional divergence in bacteria

Lifestyle Comparison Enriched Neither Impoverished Significance
Psychrophile Mesophile 2/61 6/433 1/66 N.S.
Thermophile Mesophile 7/61 22/433 1/66 N.S.
Pathogen Non-pathogen 22/77 272/294 47/38 =tc=|c>(c

Intracellular
pathogen

Other pathogen 0/22 26/246 4/43 N.S.

Symbiont Non-symbiont 4/95 36/530 13/72 *
* Intracellular 
endosymbiont

All others 4/224 14/360 15/133

All interac­
tors

Free-living 44/55 410/156 70/15

Table 3.2: Enrichment analysis of host-associated bacteria. Associations 
between lifestyle and enrichment for functional divergence: the numbers of genomes 
in each category are given in the form Lifestyle/Comparison. Significance was as­
sessed with Yates-corrected chi-squared tests, or Fisher tests when the expected 
count was lower than 5 for any one cell in the contingency table. Significance codes: 
N.S. = P > 0.05; * = P < 0.05, ** = P < 0.01, *** = P < 0.001. If an association 
was significant, -I- or - denote the direction of the shift associated with the lifestyle 
being tested. For instance, interactors are significantly impoverished (-) compared 
to free-living bacteria
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part of their lifestyle (including pathogens, parasites, symbionts and commensals) 

were significantly impoverished for functional divergence in comparison to their free- 

living relatives (see Table 3.2). This result is somewhat surprising because pathogens 

and symbionts generally experience higher rates of evolution than free-living bac­

teria, although much of the increase can be attributed to heightened genetic drift 

(Moran, 2002).

Our results suggest that once the overall conservation level of proteins is ac­

counted for, these bacteria have undergone less functional change than their free- 

living relatives. This result can be explained by greater ecological constraints on 

host-associated bacteria, which must adapt to the highly specific environment of 

their host. In particular, pathogenic and symbiotic bacteria preferentially lose 

metabolic genes as they no longer require the capacity to exploit as wide a range of 

nutrient sources as free-living bacteria (Moran, 2002). Since these are precisely the 

kind of genes that are most amenable to functional change (Figure 3.2), their loss 

from host-associated bacteria may explain the relative impoverishment of functional 

divergence in these proteomes. Also, the remaining genes may be under strong con­

straints imposed by the specialized environment they live in, limiting therefore any 

opportunity for functional divergence (Toft and Fares., 2009). These enrichments 

are summarized in Table 3.2

Variability in genome size is a complicating factor in this analysis because host- 

associated bacteria tend to have smaller genomes than their free-living relatives. For 

instance, endosymbiotic bacteria of insects underwent substantial reduction in the 

gene content, with genomes sizes ranging between 144 kb and 792 kb depending on 

the host (in comparison, E. coli K12 has a genome size of 4.639Mb) (See for example
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Enrichment of species according to biological properties.
Term Coefficient P-value
Intercept 2.265 8.23* 10-^
Lifestyle (Host-assoc.) -2.536 1.28* 10-13
Genome size (bp.) -1.799* 10"^ 0.0212

Table 3.3: Enrichment of species according to biological properties. We 
used a generalized linear model with binomial errors to assess the impact of lifestyle 
and genome size on the enrichment and impoverishment of genomes for functional 
divergence. The saturated model was fit with the glm function in R, and simplified 
to a minimal adequate model with the step function, which determined that the 
interaction was not significant. Both lifestyle and genome size have a significant 
impact on enrichment status, with host-associated bacteria and bacteria with larger 
genomes more likely to be impoverished for functional divergence.

(Degnan et ai, 2005; Gil et al., 2002; Nakabachi et al, 2006; Perez-Brocal et al, 

2006; Shigenobu et ai, 2000; Tamas et al, 2002; van Ham et al, 2003). Since func­

tional divergence often follows gene duplication (Conant & Wolfe, 2008), it might 

be expected that larger genomes would be enriched for new functions in comparison 

to smaller ones.

Does genome size alone account for the observed differences between host-associated 

and free-living bacteria? To test this possibility, we modeled genome enrichment and 

impoverishment for functional divergence as a function of lifestyle (host-associated 

vs. free-living) and genome size (in nucleotides) using a generalized linear model 

(Table 3.3). Both terms were significant, with host-associated bacteria significantly 

more likely to be impoverished (P = 1.28 x 10-13) and, perhaps surprisingly, a mod­

est tendency towards impoverishment in larger genomes (P = 0.0212). Therefore, 

variation in genome size does not account for the observed differences in functional 

divergence between host-associated and free-living bacteria.

To better define the effect of lifestyle on functional divergence, we identified the
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functional categories with the greatest consistent differences in enrichment status 

between host-associated and free-living bacteria. Interestingly, genes involved in 

vesicular transport and secretion systems (U) were enriched for functional diver­

gence in host-associated bacteria but neither enriched nor impoverished in free-living 

bacteria, while signal transduction genes (T) were impoverished in host-associated 

bacteria but enriched in their free-living relatives. This pattern can be readily 

understood in terms of the lifestyles of host-associated bacteria, as pathogens use 

elaborate secretion systems for delivering toxins and other virulence factors to their 

host (Baron, 2010), while symbionts provision their hosts with nutrients as part 

of their mutually beneficial relationship (Douglas, 1998; Sandstrom et ai, 2000). 

In addition, the impoverishment in host-associated signal transduction genes may 

reflect their adaptation to a relatively constant host environment, which is consid­

erably more stable than the fluctuating conditions experienced by their free-living 

relatives.

3.4.3 Prom proteome-wide to residue-level functional diver­

gence

In order to visualize the results of our functional divergence analysis, we performed 

two-dimensional hierarchical clustering on the enrichment status (enriched, impov­

erished, or neither) associated with each species and functional category, that is, 

we clustered species according to similarities in their enrichment status across the 

19 functional categories, resulting in the heatmap and dendrogram in Figure 3.3a. 

This is a powerful and intuitive way to represent our results because it reveals the 

overall patterns in the data, such as the extreme conservation among informational 

genes, particularly those involved in ribosome biogenesis (J) - while also highlight-
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Comparison of host-associated and free-living 
bacteria with regard to COG categories

COG category Free-living Host-associated
C Enriched Enriched
P Enriched Enriched
M Enriched Enriched
V Enriched Enriched
L Impoverished Impoverished
D Impoverished Impoverished
Q Enriched Enriched
G Enriched Enriched
E Enriched Enriched
J Impoverished Impoverished
U Not Enriched Enriched
T Enriched Impoverished
K Impoverished Impoverished
0 Enriched Enriched
N Not Enriched Not Enriched
I Impoverished Impoverished
H Enriched Enriched
F Enriched Enriched
A Impoverished Impoverished

Table 3.4: Comparison of functional categories for free-living and host- 
associated bacteria. Categories U and T show different levels of enrichment for 
functional divergence when the analysis is run on these groups of bacteria indepen­
dently
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ing individual, lineage-specific exceptions to the general trends. In this section, we 

demonstrate the utility of this approach by using the heatmap to identify species 

that have undergone major functional shifts.

Although top-level bacterial groups (such as the divisions of the proteobacteria, 

the Firmicutes, Actinobacteria, and so on) are not resolved in our dendrogram of 

functional divergence (Figure 3.3), family and genus-level relationships often are, 

perhaps because of close phylogenetic relatedness, shared gene content, and simi­

larity of ecological niche. This allows us to identify individual species with atypical 

patterns of functional divergence. A particularly striking case is that of the Bar­

tonella genus (Figure 3.3b), which are a group of intracellular parasites that infect 

and replicate in erythrocytes (Anderson & Neuman, 1997). Of the four Bartonella 

species in our dataset, only one, Bartonella bacilliformus, is enriched for functional 

divergence in cell motility genes (N), with the others being impoverished (2 species) 

or neither enriched nor impoverished (1 species). Remarkably, this is the only mem­

ber of the genus that possesses flagella (Brenner et ai, 1991).

Since erythrocytes lack an active cytoskeleton, they cannot be induced to take up 

external bacteria by invagination (Dramsi &: Cossart, 1998). Instead, erythrocyte 

invasion by Bartonella species is an active process (Dehio, 2001). The mechanism 

employed by Bartonella bacilliformus involves the use of its flagella (Scherer et al, 

1993) and is more efficient than that of other Bartonella species, with up to 80% 

of erythrocytes infected (Dehio, 2001; Ihler, 1996). This appears to be a clear case 

where our approach has identified an interesting, lineage-specific case of adaptation 

to a specialized ecological niche.

Our heatmap turns up surprises even among relatively well-characterized species
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(Figure 3.3c). As expected, closely related E. coli and Shigella strains cluster to­

gether at the bottom of the dendrogram (Figure 3.3a), with one exception: E. coli 

SMS 3-5, a multidrug-resistant, heavy-metal tolerant strain isolated from a polluted 

industrial environment (Fricke et al., 2008). This bacterium is distinguished from 

other E. coli strains on the basis of an overall relaxed functional constraint, partic­

ularly in the categories of cell motility (N) and protein modification, turnover and 

chaperones (O): most others are impoverished for functional divergence, while SMS 

3-5 is not. This profile correlates well with what is known about the biology of this 

strain, which is unique among sequenced E. coli genomes in possessing a second, 

intact lateral flagellar system called Flag-2, in addition to the normal peritrichious 

flagella found in other E. coli strains (Fricke et ai, 2008; Ren et ai, 2005). This 

system was originally characterized in a different strain, 042, where it has been 

rendered nonfunctional by a frameshift mutation in one of the component genes 

(Ren et ai, 2005), although it appears to be complete in SMS 3-5 (Fricke et ai, 

2008). Interestingly, the Flag-2 gene cluster also contains flagellum-specific chap­

erones and proteins involved in post-translational modification, perhaps explaining 

the functional shift in the O category.

Another E. coli proteome with an unusual pattern of functional divergence is 

017:K52:H18 (strain UMN026), a multidrug-resistant strain that causes urinary 

tract infections (Manges et ai, 2001). Unique among E. coli and Shigella species, 

this strain is enriched for functional divergence among genes involved in secretion 

(U). Investigation of the genes underlying this enrichment revealed functional di­

vergence in the VirB8 and VirB9 genes, which encode core proteins in a Type IV 

secretion system found only in two E. coli strains UMN026 and 018 (EDla), al­

though the latter species is not enriched in this category.
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Figure 3.3: Visualizing high-level patterns of functional divergence. Sec­
tion (a) shows a clustered heat map of all 750 species. Yellow color represents im­
poverishment for functional divergence. Blue represents enrichment for functional 
divergence. Obvious trends include impoverishment for ribosome structure and bio­
genesis (J) and transcription (K) genes. The energy production and metabolism 
genes are enriched (G, E, P, C, H) along with cell wall (M) and much of defense 
mechanisms (V). In sections (b) and (c) show examples of strains with atypical 
spectra of functional divergence.
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In other bacteria, Type IV systems are involved in the exchange of DNA with 

the environment, as well as the delivery of effector proteins to host cells (Cascales 

& Christie, 2003). Since these two proteins are important components of the Type 

IV secretion systems of other bacteria, functional divergence in these genes may be 

involved in adapting the system to an UMN026-specific role (see Figure 3.4). To 

gain further insight into the possible implications of the UMN026-specific changes 

in these proteins, we mapped the specific residues under functional divergence in 

VirBS (also output by CAFS) onto the Agrobacterium tumefaciens crystal struc­

ture (Bailey et ai, 2006).

Of the 15 sites under functional divergence (Table 3.5), six could be mapped onto 

the crystallized region of the protein. Of these six, five are at or close to posi­

tions previously shown to be of functional importance. Thr-194 (residues numbered 

according to the A. tumefaciens sequence), detected as being under functional di­

vergence, is 3.8 Angstroms from Thr-192. Mutating Thr-192 to Met results in a 

variant that is stable, but cannot complement a VirBS deletion mutant (Kumar & 

Das, 2001), indicating that the function of the protein is sensitive to changes at this 

site. In addition, Thr-194, itself moderately conserved among VirBS homologs, is di­

rectly adjacent to two highly conserved sites, Ala-195 and Thr-196. Thr-196, which 

CAFS also detected as being under functional divergence in UMN026, is directly 

involved in the stabilization of the VirBS homodimer (Bailey et al, 2006), as is 

Leu-211, another functionally divergent site. Finally, two additional sites identified 

by CAFS are at positions that suggest they may have an indirect role in dimer­

ization. Val-218 is located between two other residues (Leu-217 and Val-219) that 

are involved in dimer formation, while Phe-127 is adjacent to Ser-128, a conserved 

residue that stabilizes the interaction surface on VirBS. The function of the other
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Summary table of sites under functional divergence in Vir-B9
E. coh UMN026 Agrobacterium tumefaciens
Y116 F127
L176 V183
D189 T196
E206 L211
T213 V218

Table 3.5: Sites of functional divergence in Vir-B9. The left column shows the 
sites found in E.coli UMN026, the column on the right shows the homologous sites 
in Agrobacterium tumefaciens. Sites without a value for Agrobacterium tumefaciens 
represent sites, which have not been crystalised.

site detected under functional divergence, Val-183, is currently unknown.

Taken together, these results indicate that functional divergence in E. coli UMN026 

VirB8 has occurred at residues important in forming the homodimer, which may 

have important implications for the overall structure and function of the complex. 

With no crystal structure available for VirB9, it is more difficult to evaluate the 

functional significance of the sites detected there. Further, we detected functional 

divergence on 19 branches of the VirB9 tree, suggesting that this protein experiences 

a more general pattern of radical change.
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VlrB8

Figure 3.4: Amino acid residues under functional divergence in E. coli 
UMN026 VirBS. Right: the structure of a Type IV secretion system found only 
in two strains of E. coli. CM = cytoplasmic membrane, OM = outer membrane. 
The complex structure is based on that of Baron (2006). In UMN026, the central 
complex proteins VirBS and VirB9 are under functional divergence. Left: Of the 
five sites detected by CAFS that could be mapped to the VirBS crystal structure 
(Bailey et ai, 2006), there is evidence that four are involved in forming the VirBS 
homodimer, suggesting that functional divergence at these positions is involved in 
altering the quaternary structure of the complex.
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Chapter 4

CAPS 2.0: Disentangling 

phylogenetic and functional

coevolution

4.1 Related manuscript

Caffrey, B.E., Hokamp, K, Williams, T.A., M. A. Fares. CAPS 2.0: Disentangling 

phylogenetic and functional coevolution. In preparation.

4.2 Introduction

In his remarkable book On the Origin of Species (Darwin 1859), Charles Darwin 

emphasized his observation on the variation of natural forms and attributed this 

to an underlying force called “natural selection”. By this consideration, he chal­

lenged views at the time following the argument that inherited adaptations and 

coadaptations of species could not be attributed to external environmental condi­

tions. Neither could the merit of coevolution between different forms be adduced 

to forces of creation, claims that he qualified as preposterous. Ever since his first
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observations, Charles Darwin realized the need for uncovering the mechanism and 

means of modification and coadaptation.

The term coadaptation was first used in an ecological context to refer to the 

interaction and the “Evolution together” of interacting ecological entities. Anton 

De Bary broadly classified these interactions within the category called “symbiosis”, 

including mutualists, pathogens and saprophytes (Anton De Bary, 1879). In the 

relationship between two organisms, especially between hosts and parasites, an arms 

race is established, i.e. that the host develops new systems to combat the pathogen 

while the pathogen develop better invading systems and the ability to escape the 

defense system of the host. The co-dependence or co-variation concept was also 

applied to account for co-variation of morphological characters (Pagel et ai. 1994).

In molecules, the concept of coevolution was first used in the understanding of 

covariation using DNA/RNA molecules (Schoniger and von Haeseler 1994; Rzhetsky 

1995). However, we can identify different levels of coevolution that result from the 

fact that proteins do not act in isolation but they form part of complex networks of 

molecular interactions. Determining these interactions and their coevolutionary dy­

namics has been and remains to be a formidable challenge in the fields of proteomics 

and systems biology (Fares, Ruiz-Gonzalez, and Labrador 2011).

Molecular coevolution relies on the idea of covariation proposed by Fitch and 

Markowitz (Fitch and Markowitz 1970). According to their proposal, at any evo­

lutionary time, proteins comprise two types of regions: those that are variable and 

those that are subjected to strong functional and structural constraints and are hence 

conserved. The fixation of changes in variable regions of the molecule can modify 

the fitness landscape of the protein in such a way that the strong constraints in the 

conserved protein regions may change so that they become variable. This idea was
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later completed by Fitch (Fitch 1971) to account for co-dependence between amino 

acid regions.

Proteins rarely function in isolation but they interact in a fine-tuned way with 

other proteins in the cell or between cells to perform a particular task (Albert, 

Jeong, and Barabasi 2000). Those interactions that are important in the cell are 

usually conserved throughout evolution, implying that changes in one of the proteins 

(protein A) of the interaction pair will induce changes in their interacting partner 

(protein B) in a way that will ensure the conservation of the interaction. Recipro­

cally, the evolutionary changes in B will impose constraints on its interaction partner 

A. These reciprocal selective constraints will lead to coevolutionary dynamics of en­

suring the coadaptation of both interacting molecules to become successfully fixed 

in the population.

This principle, which is the main focus in this thesis chapter is an area of research 

in evolutionary biology which has yet to be fully understood. Identifying pairs of 

coevolving proteins could in principle lead to the identification of protein-protein 

interactions. Describing the interactome has been the focus of high throughput 

experimental approaches, all of which involve high economic and effort expenses. 

Developing computational tools for the in silico identification of protein-protein 

interactions is of justifiable importance. There are many more advantages that 

computational methods can offer against high-throughput approaches: (a) compu­

tational methods are faster to perform; (b) computational methods are cheaper; 

(c) they can provide useful information not contained in experimental approaches, 

such as the amino acid sites involved in the interaction between proteins. Also 

identifying coevolution in molecules is useful from different perspectives: (a) Func­

tional annotation of proteins encoded by unknown genes; (b) revealing interactions 

between amino acids within a protein, hence enabling predictions of protein three-
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dimensional structures and folding dynamics; and (c) understanding how complex 

machineries undergo adaptive changes despite not having meaningful effects on the 

organism’s fitness (Codoner and Fares 2008).

Despite the importance of identifying molecular coevolution for the prediction of 

protein-protein interactions, only one study has been developed and carried out so 

far (Pazos et al. 2008). While this approach has shown promising results, methods 

remain to be far from performing reliably owing to the large amount of false positive 

signals present in the results of coevolution analyses: (a) stochastic coevolution and 

(b) phylogenetic historical coevolution. The remainder of this chapter will therefore 

be devoted to understanding the sources of false positive signals when carrying out 

both intra and inter-molecular coevolution.

When performing coevolution analysis, one needs to bear in mind that there is a 

significant information gap between the number of available protein sequences and 

the number of protein crystal structures. This gap is an important limitation in 

identifying functional coevolutionary relationships because structural amino acids 

proximity can explain their evolutionary dependence through their reciprocal func­

tional and structural constraints. Coevolution methods designed to identify atomic 

interactions between amino acids in a protein are powerful tools that counterbal­

ance the lack of three-dimensional structure information (Gobel et al. 1994; Pazos, 

Olmea, and Valencia 1997). Traditionally, experimental biology has attempted to 

unravel these interactions by directed mutagenesis of single amino acids, which has 

proven frustratingly useless owing to the astronomically large number of combina­

tions needed to characterize such interactions in a small molecule. Alternatively, 

covariation analyses considering a large evolutionary scale (for example, comparing 

the amino acid sequence variation for a protein taking distantly related organisms) 

has provided insightful information that could also be used in more directed muta-

70



4.2. INTRODUCTION CAPS 2.0

genesis experiments (Fares 2006; Fares and Travers 2006; Travers and Fares 2007).

A more approachable problem is the identification of coevolutionary relation­

ships between amino acid sites within a protein. This coevolution is expected if 

we consider that proteins fold according to the complex atomic interactions of the 

constituent amino acids. Since protein folding is essential for protein function, se­

lection will favor the appropriate interaction between the amino acids to optimize 

protein folding. Within-protein amino acid coevolution is therefore the result of the 

complex interactions between amino acids (Fares, 2006; Codoner et ai, BMC Evol. 

Biol. 2007).

There have been many methods to identify the coevolution of amino acid sites, all 

of which can be broadly classified into two main categories: (a) Methods based on 

the measure of mutual information of pairs of amino acids; and (b) methods based 

on the measure of the correlated variation between amino acids (distance methods). 

These methods rely on the assumption that some functionally or structurally linked 

sites or those amino acid sites surrounding important functional or structural regions 

should covary to maintain the main protein features (Taylor and Hatrick 1994; Atwell 

et ai. 1997; Chelvanayagam et al. 1997; Pazos, Ohnea, and Valencia 1997; Martin 

et al. 2005; Codoner, Fares, and Elena 2006; Kim et ai. 2006). Other methods, 

also based on coevolution, have focused on the identification of interactions between 

motifs or proteins (Goh et ai. 2000; Pazos and Valencia 2001; Goh and Cohen 2002; 

Goh, Milburn, and Gerstein 2004; Pazos et ai. 2008).

Covariaton between amino acid sites is due to several factors that can be ex- 

plicitely determined. For example, two amino acids, i and j, can covary due to 

multiple dependencies, including:
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Cij - aphytogeny + 0structure Cfunction interactions + C,stochastic (4.1)

These terms are the main factors to disintangle by coevolutionary analyses and 

remain to be a challenge for most methods developed for this purpose (Atchley et ai. 

2000). Phylogenetic covariation was first proposed by Felsenstein to highlight the 

historical dependence between species (Felsenstein 1985). With regard to the other 

coevolution terms, these usually produce confounding results and are very difficult 

to distinguish from one another. All methods developed to identify coevolution have 

as their main objective an aim to identify each of the terms of Qj.

Methods to identify coevolution can be broadly classified into parametric and 

non-parametric. Of these, the two most widely used methods are those based on 

the calculation of the mutual information content (MIC) of two amino acids, based 

on information theory (Kullback 1959). These methods measure of the amount of 

information (variability) contained in an amino acid site within a multiple sequence 

alignment. This information can be measured using the Shanon entropy (H(i)), 

which determines the probability of one of the 20 amino acid states being present 

at any particular time at a position of the alignment:

(4.2)

Where i is the number of sequences and x is are the transition probabilities. The
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joint probability distribution for amino acids i and j can be written as:

H{i,j) = - P{xi,yi)logP{xi,yi)
xi,yi

Using these two terms, the mutual information can be calculated as:

(4.3)

MI = H{t) + H{j)-H{t,j) (4.4)

MI values range between 0 (no covariation between amino acid sites) and a positive 

value whose magnitude is proportional to the strength of covariation between the two 

amino acid sites considered. Unfortunately, the identification of covariation using 

these methods is highly dependent on the amount of conservation of the multiple 

sequence alignment (Fodor and Aldrich 2004). These methods have been intensively 

used to detect sites of coevolution due to functional constraints and those due to 

protein-protein interactions (Korber et ai. 1993; Clarke 1995; Atchley et ai. 2000; 

Wollenberg and Atchley 2000; Hoffman, Schiffer, and Swanstrom 2003; Tillier and 

Lui 2003; Gloor et ai. 2005; Hummel et ai. 2005; Tillier et ai. 2006; Tillier and 

Charlebois 2009; Gloor et ai. 2010).

At the opposite end of methods to detect coevolution, many other methods have 

been based on the identification of correlations between matrices of amino acid dis­

tances for particular sites of a multiple sequence alignment. Within these methods, 

several authors relied on the matrices being directly extracted from phylogenetic 

contexts, so that the length of branches from a tree built for one amino acid site 

were compared to that of another amino acid site (Neher 1994; Pazos et ai. 1997; 

Goh et ai. 2000; Goh and Cohen 2002; Kim, Bolser, and Park 2004; Pazos et ai. 

2005; Kim et ai. 2006; Pazos et ai. 2008; Pazos and Valencia 2008). These meth-
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ods however present certain limitations owing to the lack of correcting parameters 

that should account for how radical amino acid transitions are (Martin et al. 2005; 

Fares and Travers 2006). These methods rely on the Pearson’s correlation coefficient 

discussed in the Materials and Methods section.

Finally, alternatively to these non-parametric approaches, other authors have de­

veloped parametric methods based on probabilistic approaches to detect coevolution. 

Some of these methods are based on maximum-likelihood approaches (Pollock and 

Taylor 1997; Pollock, Taylor, and Goldman 1999; Choi, Li, and Lahn 2005), on 

Bayesian probabilities (Dimmic et al. 2005), or sequence divergence based approx­

imations (Fares 2006; Fares and McNally 2006; Fares and Travers 2006). Unfortu­

nately, the performance of most these methods remains underwhelming and suffer 

from a large number of false coevolutionary signals between amino acid sites.

In this chapter we present the improvement of a previous method to detect co­

evolution (Fares and Travers 2006) that includes additional biological information, 

largely ignored by the hitherto developed approaches.

4.3 Materials and Methods

4.3.1 Workflow

Figure 4.1 illustrates the workflow of the CAPS 2.0 software. The input for this 

software/analysis is one alignment for intra-molecular analysis and two alignments 

for inter-molecular analysis. Optionally, a crystal structure and phylogenetic tree 

can be submitted for each alignment otherwise a tree will be calculated automatically 

by the software.
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Input

Alignment and optionally a 
phylogenetic relationship and 

crystal structure

Analysis

Output

Figure 4.1; CAPS workflow. The workflow of CAPS 2.0 is shown above. The 
input to this analysis consists of an alignment or group of alignments. Optional input 
data can be given in the form of a crystal structure and phylogenetic relationship. 
CAPS reconstructs ancestral sequences with a maximum likelihood approach and 
using the JTT model. Next correlations are assessed between columns in the input 
data (either intra molecularly or inter-molecularly). Assessment of significance is 
performed by simulating multiple sequence alignments and drawing a distribution. 
Finally, a bootstrapping analysis is performed upon individual sites to separate 
purely phylogenetic signal from functional signal.
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4.3.2 Evolutionary blindspot

One major limitation of CAPS version 1 (and many other programs) is the lack of use 

of evolutionary history. The current methodology is to take an alignment and ana­

lyze it without any assumption of evolutionary history or phylogenetic relationship. 

Consider Figure 4.2, which demonstrates the striking differences in substitutions 

when phylogeny is considered. Firgure 4.2a shows that without use of phylogenetic 

signal there is no option other than to compare all sequences against all others. 

Figure 4.2b shows an example where it is possible that one pair of amino acids had 

a correlated change in the last common ancestor of species 1-5. Figure 4.2c shows an 

example with multiple correlated changes along the collective evolutionary history 

of these proteins. This example is much more likely to suggest a pair of sites that 

are functionally coevolving. It should be noted that there is no reason to assume 

that the example in Figure 2abis not coevolving but rather that the example in 2c 

contains much stronger evidence of coevolution.

4.3.3 Scoring coevolution

Following the parsing/calculation of a phylogenetic tree and ancestral reconstruction 

of sequences at all inner nodes, we first calculate the mean transition parameter 9 

for each column, given by:

(4,5)
5=1

Where 9ij is the transition score given by the weight matrix for an amino acid 

substitution from state i to state j and S sums over transitions on the phylogenetic
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The effect of phylogenetic signal

Column 1 Column 2

Without phylogenetic information an all versus all comparison is necessary

Multiple Radical Substitutions
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Figure 4.2: The necessity of phylogeny and ancestral reconstruction. This 
Figure illustrates the shortcomings of many current softwares for assessing coevo­
lution. In part A we see the arrangement of amino acids and when an alignment 
alone is analyzed. Without knowing the phylogenetic relationships involved there is 
no other course of action than to compare all transitions against all. This leads to 
multiple testing of various sites; additionally, it is impossible to know of the signifi­
cance of each transition. The two images in part B and C illustrate two alternate 
scenarios where phylogenetic relationships can lead to two very different outcomes. 
The first shows the case where there are two paired radical substitutions leading to 
all of the signal in the test whereas the second shows the case of multiple paired 
radical substitutions. The second gives much stronger evidence of coevolution. It 
is clear from these analogies that phylogenetic relationships are necessary in the 
assessment of coevolution.
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tree in each column. Therefore each i-j state is the transition score from a child 

node to its parent. The next step is to calculate the variability of each amino acid 

transition compared to the mean transition parameter. This is given by:

A, = [(% - ef (4.6)

and the mean of D given by:

b = Y.Ds (4.7)
5=1

Correlation coefficients are then calculated according to Pearson’s correlation coef­

ficient pab '■

Pab =

Z) [{Ds)a - Da][{Ds)b — Db]
5=1

Z [{Ds)a - Z [{Ds)b - Db]'^
5=1 V s=l

(4.8)

Where A and B are two amino acid site columns (from the same or different multiple 

sequence alignments) and the summing over the variable S is over the transitions 

from child to parent within each column. These values (pab) are then tested for sig­

nificance against a null distribution drawn from neutrally evolving multiple sequence 

alignments (see below).
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4.3.4 Simulations and significance test

The existing functionality of CAPS depends on the user providong a threshold cut­

off for the correlation coefficient or for the program to decide the cut-off by re­

sampling. Since re-sampling is carried out by sampling the original scores repeatedly, 

the identification of a cut-off value in this manner is flawed as any biases or trends 

which are inherent in the input data will also be inherent in the cut-off value. 

Additionally, the existing software substitution scores are normalized according to 

the relative distances between each pair of sequences. BLOSUM matrices correct 

for this except in cases where the distance between sequences is much greater than 

that of the mean pairwise distance. Therefore in cases where the distances are of 

an acceptable order we have a double correction. The proposed alternative should 

circumvent both this problem and that of the threshold cut-off.

To obtain a more intuitive cut-off value we propose simulating multiple alignments 

repeatedly according to a neutral theory of evolution under the JTT model (JTT, 

1992) and scoring these by the same procedure as the tested data, thus building 

a distribution from which we can obtain a cut-off value. Since we wish to take 

phylogenetic distance into account we simulate the aforementioned alignments with 

the same pairwise distances between species, meaning that the corresponding cut­

off value is scaled according to the distances involved. Neutral evolution here is 

understood as the fixation of amino acid substitutions following a neutral model in 

which coevolution is not parameterized.
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4.3.5 Disentangling phylogenetic signal and functional sig­

nal

Bearing in mind the prior discussion of an evolutionary blind spot, we proposed an 

alternative model, which incorporates a phylogenetic tree and ancestral sequences. 

This new model allows us to search through regions of the tree, which may have lead 

to false positive pairs of sites through phylogenetic relationships alone. We perform 

a bootstrapping step on all sites that are reported as being statistically significant 

according to the simulations and significance testing. To bootstrap a pair of sites in 

an alignment (or pair of alignments) we randomly sample the amino acid substitution 

scores at those columns and then perform the correlation coefficient (given above) on 

these sampled sites. This procedure is performed 10000 times; the bootstrap value 

is calculated by dividing the number of times each of the bootstrap correlations 

still pass the threshold (obtained from the simulations described above) by 10000. 

The assigned bootstrap value can be used to remove results that fall below a user- 

specified bootstrap threshold.

4.3.6 Implementation

CAPS 2.0 was implemented in C + + and is available under the GNU General 

Public License v.3 for Linux and Mac. The code was written using the GNU 

Scientific Library and the Bio++ libraries(citation). The program is accompa­

nied by full documentation and enables the user to perform intra-molecular or 

inter-molecular coevolution analysis under the new model and bootstrapping de­

scribed above. The latest version of the code and documentation is available at 

http://bioinf.gen.tcd.ie/~faresm/software/software.html. Additionally, we have de­

veloped a web interface for GAPS available at http://bioinf.gen.tcd.ie/caps/ which
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includes a Jmol and Cytoscape plugin for advanced visualizations of the results. 

Some screenshots are provided in Appendix B.

4.3.7 Data

All available crystalized protein structures for gamma-proteobacteria were down­

loaded from the Protein Data Bank (PDB, www.rcsb.org/pdb). This comprised 

1090 entries, representing 20-25% of the E. coli. proteome. Protein sequences ho­

mologous to the structure-associated sequence were obtained by reciprocal Blast 

searching of 85 complete gamma-proteobacterial genomes. Hits with an E-value 

smaller than 10“^ were retained. Sets of homologs were aligned with ClustalW 

(Thompson et ai. 1994) using default parameters. The quality of these alignments 

was inspected manually. Cluster of Orthologous Genes (COG) tags were obtained 

from NCBI and assigned to genes for analysis of under- and over-representation of 

functional categories.

In the case of intra-molecular analysis, which included structural analysis, we only 

used columns of the alignments which could be aligned to the structural sequence 

and columns which had fewer than 20% gaps. Models were predicted for each 

alignment using ProtTest (citation) and maximum likelihood trees were constructed 

using RAxML with 100 bootstraps and the thorough maximum likelihood search.
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4.4 Results

4.4.1 Removal of phylogenetic signal

Given the low numbers of well-known and experimentally validated coevolving sites 

it is hard to find a definitive positive control or benchmarking system. To make 

any estimates of coevolutionary signal which is functional, structural or involved in 

interactions, it is critically important to make use of structural information in any 

benchmarking, as it is well known that, while some coevolving sites can be proximally 

distant from each other (Plotnikova et ai, 2004), it is accepted that interacting 

residues generally lie close together in three-dimensional space purely because of 

the physiochemical properties of the various bonds underpinning protein structure. 

Under this reasoning we have chosen the dataset of all gamma-proteobacterial genes 

for which there are many known crystal structures.

We performed intra-molecular analysis of 1090 alignments with their correspond­

ing structures and phylogenetic trees. A range of bootstrap values were used in order 

to demonstrate the relative effect of bootstrapping. The results are shown in Figure 

4.3. We placed the pairs of coevolving sites into bins according to the distance be­

tween the amino acids in three-dimensional space and plotted this against the mean 

bootstrap value for each bin. The three-dimensional distances were calculated from 

the centroid of each amino acid followed by the Euclidian distance between each pair 

of amino acids. Figure 4.3 shows that the higher the bootstrap value the shorter 

the distance between the amino acids. This demonstrates that sites which coevolve 

throughout the phylogeny are more functionally or structurally related than those 

within sub-sections of the phylogeny. We also present the effect of bootstrapping 

in Figure 4.4, showing that there may be an upper bound to the positive affects
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of bootstrapping, i.e. once the bootstrap threshold is set above 0.99 the software 

begins to remove functional signal also.

In order to test the susceptibility of CAPS version 2 to false positives we simulated 

100 alignments using codeml from the PAML package without the effect of natural 

selection (cu =1). CAPS was run in intra-molecular mode with type I error (alpha) 

of 0.05 and with a modest bootstrap threshold of 0.7. We found that only 0.004% 

of all possible pairs of sites were predicted to be coevolving. The previous version 

of CAPS uses a resampling technique which returns 2% of sites coevolving with 

alpha=0.05. We also found setting the threshold bootstrap value higher does reduce 

the number of coevolving pairs, owing to a reduction of false positives (Figure 4.4). 

This Figure also shows that when the bootstrap value is raised sufficiently high there 

is a loss of signal.

4.4.2 Analysis of inter-molecular coevolution

To analyze the accuracy of inter molecular coevolution analysis performed by CAPS 

2.0 we investigate the coevolutionary patterns of the co-complex structures available 

for gamma proteobacteria, i.e. definitive examples of interactions. We downloaded 

all of the co-complex structures from the Protein Data Bank (PDB, www.rcsb.org/pdb). 

We limited our analysis to those complexes which comprised only two different as­

sociated sequences. We eliminating those with multiple sequences because results 

obtained from the analysis of complexes of varying numbers of proteins make inter­

pretation of any results obtained extremely difficult.

As a comparison we used the Mirrortree software (Pazos and Valencia, 2001), 

which is available from the developer in binary format. We ran each alignment 

against all others and then ranked them according to the highest signal. When
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Plot of binned coevolving residues versus mean bootstrap value

Figure 4.3: Plot of binned distances versus mean bootstrap value. This 
graph represents all pairs of intra-molecularly coevolving sites in 1090 proteins from 
the gamma proteobacteria. Pairs of sites were binned according to their structural 
pairwise distance calculated from their corresponding pdb structures. There is a 
clear trend showing that pairs of coevolving sites which are closer together have 
higher bootstrap values, thus justifying our bootstrapping method. Note: This 
graph would have error bars but the standard error is so small that it is not possible 
for the graphing software to show them
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Bootstrap value vs mean pairwise distance between coevolving pairs

Figure 4.4: Plot of bootstrap value versus mean distance. This graph shows 
the average pairwise distance between coevolving pairs. It can be seen here that the 
average pairwise distance decreases as the bootstrapping threshold is increased. This 
suggests that stronger coevolutionary signal under this model is more likely to yield 
functionally important pairs of coevolving sites. Note: This graph would have error 
bars but the standard error is too small for the graphing software to show them.
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Percentage coevolution versus Boot strap value

Figure 4.5: Susceptibility to false positives. This Figure represents the per­
centage of false coevolving pairs of sites detected by CAPS versus increasing boot­
strap value. CAPS was run on 100 alignments simulated without selection pressures. 
The percentages of false positives here are extremely low and are shown to be even 
lower as the bootstrap threshold is increased. Note: The points with bootstrap 
values greater than or equal to 0.9 would have error bars but the standard error is 
too small for the graphing software to show them
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ranking the pairs of alignments we used the percentage of sites coevolving between 

each pair of alignments for the CAPS analysis. In the case of Mirrortree we used 

the correlation coefficient returned by the software. The results are presented in 

Table 4.1, showing that each of the programs performed roughly the same. Again, 

we tested to see if bootstrapping improves the predictions of our software. Figure 

4.7 shows a plot of the average value ranking of each pair of co-crystalized structures 

versus the bootstrap value, ft is evident that bootstrapping improves the predictions, 

but the optimum bootstrap is smaller than that of the intra-molecular coevolution 

value( 0.95).

We performed numerous correlation tests to see if there was a propensity for 

our software to perform better in one evolutionary circumstances over another. We 

tested the correlation of the rankings described in Table 4.1 for both programs versus 

the total distance on the phylogenetic trees, the absolute value of the distance on the 

trees, the number of sequences common to both alignments and the average identity 

of the alignments. The Pearson correlation coefficient which was most significant 

was the absolute value of the differences between the total distances on each tree. 

More clearly this is given by;

e = (T1 - T2) (4.9)

where T1 is the total distance on tree one and T2 is the total distance on tree two.

This test returns +0.35 for CAPS and conversely -0.35 for Mirrortree. This sug­

gests that CAPS performs better than mirrortree when the distances on the trees 

are very different and Mirrortree performs better than CAPS when the distances 

are similar. We show a graph in Figure 4.5 that displays bins of the ranking of each
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Locus ID Locus ID pair CAPS ranking Mirrortree ranking Rule ranking
BOOM B26M 13 19.5 13
B0032 B0033 2 2 2
B0185 B2316 10.5 3.5 3.5
B0407 B0462 14 15 14
B0728 B0729 6 9 6
B0912 B1712 4.5 1 1
B1602 B1603 20.5 4.5 4.5
B1709 B1711 7.5 1.5 1.5
B1891 B1892 19.5 9 9
B2572 B2573 5.5 18 5.5
B3731 B3733 7.5 3.5 3.5
B3734 B3735 6 15.5 6
B4259 B4372 11 14.5 11

Average 9.8 8.9 6.2

Table 4.1: A comparison of the CAPS and Mirrortree programs. The 
columns represent the average pairwise ranking of each gene with the definitive 
interactors. For example CAPS ranked B2614 as the 15th most highly coevolving 
protein for BOOM; CAPS ranked BOOM as the 11th most highly coevolving protein 
with B26M, therefore the average of these values is 13. Of these definitive pairs 
of interacting proteins CAPS ranks 6 interacting pairs higher than Mirrortree and 
Mirrortree ranks 6 interacting pairs higher than CAPS. Both programs rank 1 pair 
equally. This Table illustrates that both programs are not very accurateunder certain 
conditions. We have proposed a method of drastically improving the predictions of 
protein-protein interactions by preferentially using one over program over the other 
depending on the rule proposed in section 4.4.3. The final column shows the scores 
obtained when implementing this rule.
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pair of co-complexed proteins versus the experimentally verified partner. The graph 

shows results from CAPS, Mirrortree and a set of columns which is constructed by 

using the following rule: take the CAPS score if e > 5 the and Mirrortree if e < 5 , 

where is the average value of . This rule drastically affects the prediction of interac­

tions. It eliminates the worst predictions (the fifth column) and is an improvement 

on the prediction from either program. The assignment of an exact numerical value 

for which software should be used is not ideal. It would be much more pleasing 

to declare a rule which is grounded within an evolutionary context, however, we 

are not, as yet able to do so. This may be possible with the emergence of greater 

numbers of co-crystalized structures. In lieu of this we have presented this rule as a 

rough estimation of when to use CAPS or Mirrortree.

4.4.3 The effect of bootstrapping on inter-molecular coevo­

lution

Figure 4.7 shows the effect of bootstrapping upon inter-molecular coevolution. The 

graph shows the average ranking of pair of co-complexed proteins in the data set 

under different runs of CAPS with altered bootstrap values (See average value given 

in Table 4.1). It shows that there is a steep decrease in the accuracy of predictions 

followed by a steep incline. This suggests that an ideal bootstrap cut-off exists (at 

least for this data set) which will optimize the results. This is not surprising since 

there is only so much phylogenetic signal that can be removed before all functional 

signal is removed also.
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Software Comparison

c
o
CC
CD

(/)
CD

CD>

(D

E
ID

CVJ

(» -

CD

—

CM

O -J

■ 0-5
■ 6-10
□ 11-15
□ 16-20
□ 21-25

caps mirror rule

Figure 4.6: Graphical representation of PPI predictions in bins. Shown are 
the profiles of predictions of interactions through coevolution analysis. The ranking 
of each co-complex relative to its corresponding pair is binned into five categories. 
The CAPS software shows fewer predictions in the worst bins relative to Mirrortree 
but also fewer predictions than mirror tree in the best bins. According to the rule 
proposed above the third distribution eliminates those predictions in the very worst 
bins and pushes the distribution towards better predictions.
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Boot strap value vs average pairwise ranking

Figure 4.7: The effect of bootstrapping on PPI predictions. Shown is a 
graph that illustrates a possible ideal bootstrap value for inter-molecular coevo­
lution. Six separate runs of CAPS were performed upon the data altering the 
bootstrap threshold. A bootstrap value of 0.9 is shown to be best.
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4.5 Discussion

We have presented a novel model of analysis of molecular coevolution which can be 

applied either intra-molecularly or inter-molecularly. This method along with all 

other models which have been presented previously have aimed at disentangling the 

different parameters contained in Equation 4.1. Although two sites in a multiple 

sequence alignment have high numbers of correlated sites, it has been shown here 

that this can largely consist of stochastic and phylogenetic signal as opposed to 

functional, structural or interaction signal.

Our aim has been to remove the effects of Cphyiogeny and CstochasUc from our model 

so as to address the remaining terms. In Section 4.3.3 we present an alteration to 

current methodologies which calculates ancestral sequences and uses these to cir­

cumvent any evolutionary blind spots which may be present without considering 

phylogeny. Our opinion is that the major contribution this step makes is removing 

CstochasUc signal as is evident in Figure 4.4. This Figure shows that prior to boot­

strapping there are extremely small levels of false positives. For obvious reasons the 

removal of stochastic signal is of utmost importance.

Removal of signal from phylogenetic sources is a somewhat more controversial 

problem. Mirrortree analyses are, after all based purely on phylogenetic signal 

and it has been shown both here and in other studies (Pazos and Valencia, 2008; 

Pazos et al.., 2005) that it can be extremely useful. The basis of these models is 

grounded in a theory that if two genes have extremely similar evolutionary history 

then they are most likely related. This assumption does indeed work in many cases, 

however, we propose two cases that illustrate this view is oversimplified. Firstly, 

many interacting proteins do so through binding domains which are small relative 

to the entire protein; this suggests that other regions of these proteins are free to
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evolve under a separate set of selection constraints. Secondly, if a duplicated gene 

undergoes subfunctionalization in one region and now has the ability to interact with 

a new partner; this pair of interacting proteins are now constrained (theoretically) 

under similar conditions. In this case the newly evolved section of the gene may 

have a similar pattern of coevolution but the remaining section of this gene may 

have an extremely different evolutionary history.

In Section 4.4.3 we compared the results of analyses carried out by both CAPS and 

Mirrortree on a set of 13 experimentally confirmed interactors. We found that nei­

ther software can reproduce acceptable results all of the time. We propose a method 

to choose which software should be used dependent on the difference between the 

total distances on the phylogenetic trees considered; this rule drastically improves 

predictions. We have shown that CAPS performs better than Mirrortree in cases 

when the total length of the two phylogenetic trees involved are very different; cor­

respondingly Mirrortree performs better when the lengths of the phylogenetic trees 

involved are very similar. This is compelling evidence that our method is indeed 

removing the effects of phylogenetic coevolution.

The identification of both site specific intra-molecular and inter-molecular coevo­

lution have lead to discoveries in diverse areas including, myoglobin (Pollock et al., 

1999), ribosomal RNA (Dutheil et al, 2005) and HIV (Travers et ai, 2007). These 

studies represent excellent examples of the insights that coevolution analysis can 

have into important proteins in the biological sciences. Our new model will provide 

further insight into the effects molecular coevolution has upon organisms and their 

diversity. Our CAPS web interface also offers an excellent resource to the research 

community.
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Chapter 5

Investigation of the effect of 

chaperone buffering upon its

clients

5.1 Introduction

Evolvability is the ability of an organism to undergo adaptive evolution. Wagner 

defines evolvability thus: a system is evolvable if mutations in it can produce heri­

table phenotypic variation (Wagner, 2008). From this definition we can extrapolate 

that certain systems can be more evolvable than others depending on the selection 

constraints acting on the system. In cases of relaxed selection pressure we can pos­

tulate that there is greater evolvability. Evolvabillity is not restricted, however, to 

point mutation accumulation. Indeed a bacterium can be said to be highly evolvable 

because of its ability to acquire genes according to lateral gene transfer, upregulated 

mutation rates and sexual recombination. These can all lead to the evolution of 

heritable phenotypic variation.

Robustness is the ability of an organism to accumulate change without fitness ef­

fects. It is therefore intrinsically linked with evolvability. Wagner defines robustness 

thus: a biological system is mutationally robust if its function or structure persist
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after mutations in its parts. This definition implies that some genes or genomes may 

be more or less susceptible to the deleterious effects of accumulated mutations. Why 

are some genes more susceptible or less susceptible to mutations? The answer has 

been proposed to lie in molecular “capacitors” which buffer the effects of deleterious 

mutations. The effect of buffering of deleterious mutations was first demonstrated by 

Rutherford and Lindquist (1998). While working on Drosophila they reported that 

reduced Hsp90 activity causes developmental abnormalities. They concluded that 

Hsp90 was “buffering” the effects of deleterious mutations in the genome. A similar 

effect was noted by Queitsch et ai, (2002) when studying Arabidopsis thaliana and 

additionally, in Saccharomyces cerevisiae by (Cowen and Lindquist, 2005).

In addition to the seminal work presented by Lindquist and others on Hsp90 there 

have been many studies carried out on the chaperonin GroEL. This heat shock pro­

tein assists in the folding of proteins. GroEL heis been shown to allow endosymbiotic 

bacteria cope with the high levels of genetic drift through over-expression (Moran, 

1996), to recover the fitness of E. coli subjected to evolutionary bottlenecks by over­

expression (Fares et ai, 2002) and also to buffer its clients (Williams and Fares, 

2010). Even though there have been many excellent studies carried out in the area 

of buffering of mutations it remains unclear whether these buffering effects can lead 

to functional innovations.

Here we present an analysis of 85 complete genomes from gamma-proteobacteria 

which are systematically separated into groups according to client class (Kerner 

et ai, 2005) and essentiality ((Hashimoto et ai, 2005; Kato and Hashimoto, 2007). 

These genomes were selected, firstly, because they represent a class of bacteria which 

is well represented both in numbers of sequenced genomes but also in terms of the 

variety of phenotypic traits. We perform functional divergence and coevolution 

analysis upon this data set making use of GAFS (Glustering Analysis of Functional
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Shifts) and CAPS 2.0 (Coevolution Analysis of Protein Sequences), described in 

Chapter2 and 4, respectively. Here we aim to develop an understanding of the 

dynamics by which GroEL clients and non-clients evolve. We contrast the different 

selection pressures and highlight possible lineage specific adaptations which may 

have arisen through chaperone buffering.

5.2 Materials and methods

5.2.1 Data

All available crystalized protein structures for gamma-proteobacteria were down­

loaded from the Protein Data Bank (PDB, www.rcsb.org/pdb). This comprised 

1090 entries, representing 20-25% of the E. coli proteome. We chose this dataset 

with the explicit intention of presenting results on a structural level though the 

results from these data have not yet proven useful. Protein sequences homologous 

to the structure-associated sequence were obtained by reciprocal Blast searching of 

85 complete gamma-proteobacterial genomes. Hits with an E-value smaller than 

10~'^ were retained. Sets of homologs were aligned with ClustalW (Thompson et 

ai. 1994) using default parameters. The quality of these alignments was inspected 

manually. We assigned categories to each of the alignments according to essentiality. 

Essentiality data was obtained from the SHI-GEN profiling of E. coli chromosome 

database (Hashimoto et ai, 2005; Kato and Hashimoto, 2007) where essentiality is 

assigned if strains carrying a null mutation cannot grow under any conditions. We 

also assigned tags of GroeEL client classes, which have been identified by Kerner et 

ai, (2005). There were 252 client proteins, 85 of which were found to be obligate 

clients for which GroEL was absolutely necessary to fold. These clients are split into
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three classes (I, II, III). Class one and two clients are only partially dependent on 

GroEL, class three proteins are described as obligate clients.

5.2.2 Chi-squared analyses

In this study we perform multiple chi-squared tests. The chi-squared statistic is 

given as:

t=l
E, (5.1)

Where Oi is the observed frequency of the quantity being tested, Ei is the expected 

frequency and n is the number of possible outcomes of each event (in our case it 

was always 2). This test is a “goodness of fit test”, it analyses whether an observed 

distribution differs from that of an expected distribution. The result from either of 

these methods is compared against a chi-squared distribution for the assignment of 

a P-value.

5.2.3 Coevolution and functional divergence analyses

Analysis of intra-molecular coevolution was performed with an alpha threshold (type 

I error) of 0.05 and a site-based bootstrap threshold of 0.99 as we discovered to be 

associated with the best functional results in Chapter 4. Functional divergence 

analysis was performed with the use of the CAES software presented in Chapter 2 

with an alpha (type I error) of 0.05. Phylogenetic trees for both of these analyses 

were constructed using RAxML (Statamakis, 2006) with 100 bootstraps and models 

chosen according to those predicted by Prottest (Abascal et al., 2005).
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5.3 Results

Functional divergence and intra-molecular coevolution analysis were performed upon 

1090 multiple sequence alignments of gamma-proteobacteria. Below we present the 

results of these analyses contrasting the relative effects of GroEL buffering on clients 

versus non clients, the affect of essentiality upon protein evolution and special cases 

of lineage specific functional divergence.

5.3.1 GroEL buffering of mutations in clients versus non­

clients

GroEL buffers mutations in its clients as described in the introduction above. Fig­

ure 5.1 presents the difference between site-specific functional divergence events in 

GroEL clients and non-clients. These analyses were carried out with the CAES soft­

ware presented in Ghapter 2. The length of GroEL clients is significantly greater 

than that of non-clients and we therefore normalized the number of functional di­

vergence sites by the length of each protein in all of the subsequent tests. Figure 5.2 

presents the differences in levels of intra-molecular coevolution analysis performed 

using the GAPS software presented in Ghapter 4. The profile is similar but perhaps 

more striking than that of the functional divergence graph. We performed a t-test 

upon these data to assess significance. We found that there is evidence to suggest 

that GroEL clients have both significantly more sites under functional divergence 

(P-value = 0.02) and a modest significance that there are also greater levels of 

intra-molecular coevolution (P-value = 0.0516). Taken together this implies that 

the buffering effects of GroEL are allowing for functional adaptation. We analyzed 

whether there were differences in the profiles of obligate clients versus clients with
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only partial dependence. We found that there was a trend observed but statistical 

tests performed using a series of chi-squared tests did not return significance. We 

have included some of these graphs in supplementary materials (Appendix B).

5.3.2 Comparison of functional divergence and coevolution 

between essential and non-essential genes

Essential genes are expected to evolve slower and that any mutations therein will be 

highly deleterious thus they will undergo strong levels of purifying selection. Figure

5.3 and 5.4 compare levels of functional divergence and intra molecular coevolution 

between essential and non-essential genes. We found that after a t-test there was 

a significantly greater number of functionally divergent (P-value = 0.0149) sites 

in essential genes. There were greater levels of coevolution but the significance 

was marginal (P-value = 0.12). At first this may seem slightly contrary to the 

expectation, one expects very few mutations to accumulate in essential genes. When 

essential genes pick up a mutation which is beneficial, however, it is likely to have 

a large effect on fitness. This fitness effect may be fixed very quickly in a lineage 

through strong positive selection. The lower significance of the coevolution analysis 

may be explained by the fact that a slightly deleterious mutation is sometimes 

needed prior to a second mutation which restores (or even improves) the fitness of 

a gene.

5.3.3 Clustering analysis of functional divergence events

We performed a full functional divergence analysis upon all sequences in our dataset 

using the CAES software described in Chapter 2. We tagged each of the alignments
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Functional Divergence Anaiysis
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Figure 5.1: Buffering of functional divergence sites by GroEL. This Figure 
shows the profile of site specific functional divergence in GroEL clients versus non 
clients. This profile and a corresponding t-test (P-value == 0.018761) suggests that 
GroEL is buffering site specific functional divergence in clients.
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Coevolution analysis of client and non-client proteins
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Figure 5.2: Buffering of coevolving sites by GroEL. This Figure shows the 
profile of site specific intra-molecular coevolution analysis in GroEL clients versus 
non clients. This profile and a corresponding t-test (P-value = 0.0516) suggests that 
GroEL is buffering intra-molecular coevolution in clients
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Functional Divergence Analysis
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Figure 5.3: Profile of functional divergence sites in essential and non- 
essential genes. This table shows the profile of site specific functional divergence 
in GroEL essential genes versus non essential genes. This profile and a corresponding 
t-test (P-value = 0.0149) suggests that there are significantly more sites of functional 
divergence in essential genes. This is somewhat surprising but may be explained by 
the fact that in the very rare occasions when a mutation in an essential gene is 
advantageous it is fixed in the population very quickly by high levels of positive 
selection.
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Coevolution analysis of essential and non-essential proteins
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Figure 5.4: Profile of coevolving sites in essential and non-essential genes. 
This table shows the profile of intra-molecular coevolution analysis in GroEL essen­
tial genes versus non essential genes. This profile is similar to that of the functional 
divergence analysis, however, it is less pronounced and the corresponding t-test (P- 
value = 0.12) reflects this. This suggests that similarly to the functional divergence 
conjecture this may be explained by rare occasions of coevolving sites which are 
beneficial. In the case of coevolution, however, a slightly deleterious mutation is 
sometimes needed prior to a second mutation which restores (or even improves) the 
fitness. In this case only deleterious mutations which are extremely slight in fitness 
effects would be tolerated, hence the less significant profile.
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with a level of dependency (I-III) of client proteins and whether the protein was 

essential or not. Figure 5.5 shows the heat map created using the R software package 

using the output from CAPS. In the heat map blue represents impoverishment for 

functional change and red represents enrichment for functional divergence. Each cell 

of the heat map represents a “goodness-of-fit” chi-squared test where the expected 

values are obtained by getting the average value of functionally divergent sites over 

all cells.

A clear division into two groups is visible: the top half of the Figure is domi­

nated by functional divergence enrichment and the lower half is impoverished. The 

lower half represents E. coli, Shigella and Salmonella strains. These strains are 

mostly host-associatiated and were discussed in Chapter 3 as being impoverished 

for functional divergence. We performed a chi-squared test upon the numbers of 

host-associated bacteria in the lower half versus the upper half to test if there is 

a propensity for change in host-associated bacteria. As in Chapter 3. this was 

significant again (P-value< 0.0001) with an even higher P-value. Whilst this is un­

surprising it is confirmation of previously known data and hence reassurance that 

our tagging system has not been erroneous.

Firstly, the area marked in green is comprised of five Acinetobacter and two 

Psychrobacter and one Cellvibrio strains. The striking profile here is that these 

strains are the only strains enriched for functional divergence in the essential and 

client class I group. Acinetobacter strains are pathogenic and cause pneumonia 

and urinary tract infections. These bacterial species are known to be multi drug 

resistant but the full extent of resistance is unknown (Adams et al., 2008). Many 

of these species gained drug resistance from laterally transferred genes but it has 

been shown that this is not their only mechanism for drug resistance (Adams et 

ai, 2008). Investigation into the Psychrobacter and Cellvibrio strains within this
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section reveals that all but one are drug resistant. We found eight genes which are 

responsible for the enrichment of functional divergence in this category. One of these 

genes (rpoA) is part of an RNA polymerase which is the target of Rifampicin.

Mutations in rpoB (binding partner of rpoA) have been shown to cause resistance 

to rifampicin (Jin & Gross 1988). Of the other seven genes which caused this 

enrichment, two pairs of interacting proteins were found. Little is known of specific 

functions of these genes within Acinetobacter, indeed the only citation of significance 

to be found for one strain was the initial sequencing project. Since this group is 

composed of all (bar one) drug resistant strains and shows the greatest levels of 

functional divergence in this category, we propose that GroEL may be buffering 

mutations which lead to drug resistance in the genes involved, especially considering 

the information describing rhoB. Interestingly the Cellvibrio japonicus strain was 

alone in this group in having functional divergent sites in grpE, another heat-shock 

protein but also a client of GroEL.

5.3.4 Zooming in on functional divergence profiles

Since the majority of signal in the heat map in Figure 5.5 is drowned out by phy- 

logeny we chose to create two further heat maps, one from the top portion of the 

graph representing the highly functionally divergent species and one from the bot­

tom portion representing mostly host-associated bacteria. This approach allows us 

to describe some of the finer details of these strains in terms of functional divergence.

Figure 5.6 represents the top half of Figure 5.5. Here we have recalculated all 

chi-squared tests involved in Figure 5.5 upon the strains in the top portion of the 

heat map only. This allows us to see a gradient of differences between the strains 

in this subset. Firstly, in Figure 5.5 it can be observed that some Psuedomonas
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E = Essential 
C = GroEL client 
1 /2/3 class level

EC1 EC3 NC Cl C2 C3 EC2

Class

Figure 5.5: Heat map of functional divergence profiles tagged with clien­
t/essential categories. Presented here is a heat map of all species tested in the 
study. Each cell represents a chi-squared test which was either significant and over 
expectation (red), significant and under expectation (blue) or not significant (grey). 
It can be seen that there is a stark division between the top and bottom sections. 
This division mainly represents phytogeny with the E. coli, Shigella and Salmonella 
strains on the bottom half (magenta) of the heat map and Pseudomonas, Acineto- 
bacter, and Yersinia species on the top half (yellow). The section marked in green 
represents a group of Acinetobacter, Psychrobacter and Cellvibrio strains, seven of 
these eight species are drug resistant suggesting a role for GroEL buffering of class 
1 clients.
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(marked with a purple triangle) strains are enriched for functional divergence whilst 

others are not. Investigation of the underlying genes reveals that genes tpx and rbsB 

are responsible. Somprasong et a/..(2012) showed that Psuedomonas aeruginosa is 

protected against hydrogen peroxide toxicity by tpx. The gene rbsB, was found to 

be differentially expressed in lung tissue of cystic fibrosis patients infected with the 

strain Pseudomonas aeruginosa (Sriramulu et ai, 2005). This explains differences 

between the functionally divergent patterns of Pseudomonas aeruginosa but strains, 

such as Pseudomonas fluorescens also have this profile and do have differing genes 

but we are yet to assign biological relevance to these.

Figure 5.7 represents the bottom portion of Figure 5.5. Again we have recalculated 

the chi-squared tests associated with Figure 5.5; this time removing species from the 

top half of the heat map. This heat map shows many more subtle differences. Firstly, 

the strain Shigella sonnei Ss046 (marked with a pink triangle) is the only Shigella 

strain which is enriched for essential clients (class II). This strain is the cause of the 

enteric infectious disease shigellosis and is drug resistant bacteria. Genes involved in 

the enrichment of functional divergence in this strain were gyrA and acrE. Mutations 

in gyrA have been implicated in the resistance to quinolones (Dimitrov et ai, 2010). 

Sites discovered here did not correspond with the sites identified by Dimitrov et ai, 

however theirs was not a fully exhaustive study. The protein acrE has been shown 

to inhibit lipophilic inhibitors and was shown to affect drug susceptibilities (Ma et 

ai, 1993).

Shigella flexneri 5 str. 8401 (marked with a yellow triangle) is the only strain 

of Shigella which has essential class I and non-essential class II genes enriched for 

functional divergence. Shigella flexneri cause disentry and pose a significant threat 

to human health. The enrichment in essential class I genes is caused by sites detected 

as functionally divergent in the gapA gene. This gene codes for the protein gapdh,
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E = Essential 
C = GroEL client 
1 /2/3 class level
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Figure 5.6: Sub heat map of top portion of Figure 5.5. This heat map 
represents the top half of Figure 5.5 reanalyzed with the bottom half removed. This 
shows an asymmetric profile between Pseudomonas and Acinetobacter (cyan) species 
on the top and mostly Yersinia (orange) species on the bottom. Interestingly there 
are some species of Pseudomonas which are not enriched for client class I genes while 
the remaining are, these are identified with purple triangles. We attribute this to 
two genes, tax and rbsB.
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a protein which exhibits some heat-shock characteristics (Charpentier et ai, 1994), 

additionally, under conditions causing low growth rates cells may need gapdh activity 

to metabolize glucose from an alternative carbon source, such as lactose or sucrose 

(Toyoda et ai, 2008).

5.4 Discussion

The buffering of deleterious mutations by GroEL has been the focus of many studies 

(as discussed in the introduction), both experimentally (Moran, 1996; Fares et ai, 

2002) and computationally (Williams and Fares, 2010; Warnecke and Hurst, 2010). 

Williams and Fares have shown that GroEL does indeed buffer mutations in its 

clients; and in the case of Warnecke and Hurst they have shown that GroEL buffering 

and codon usage may be two ways in which organisms may limit misfolding errors. 

On undertaking this analysis we wanted to build on this work by identifying lineage 

specific adaptations and the types of mutations which GroEL buffers.

In section 5.3.1 we showed differential profiles of site-specific functional divergence 

and intra-molecular coevolution analysis in GroEL clients versus non-clients. These 

profiles suggest that GroEL is buffering this type of mutations. In the case of 

functional divergence there is strong evidence that the buffering of clients by GroEL 

is a driver of functional innovation and therefore lends to the evolvability of the 

organisms involved. The buffering of coevolving sites suggests that sites within a 

protein which are functionally constrained have the possibility of exploring sequence 

space mediated by GroEL.

The essentiality of proteins makes them an extremely interesting group to study; 

when a null mutation is performed upon one of these genes it is known to have
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E = Essential 
C = GroEL client 
1/2/3 class level
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Figure 5.7: Sub heat map of bottom portion of Figure 5.5. Here we present 
the bottom half of Figure 5.5 in a heat map which has been reanalyzed without 
the strains from the top half of the original. The green triangle represents E. coli 
and Shigella strains. The blue triangle represents Salmonella strains. The yellow 
triangle represents the Shigella flexneri 5 sir. 8401 strain a virulent strain. The 
pink triangle represents the Shigella sonnei Ss046 a drug resistant strain. Genes 
involved in the enrichment of Shigella sonnei are known to confer drug resistance 
to the strain.
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fatal effects upon the organism. The initial expectation is that mutations within 

essential genes could result in fatality. We found that these genes were significantly 

more likely to exhibit site specific functional divergence. This somewhat surprising 

result can be explained as follows: if a gene is extremely important and it gains 

a deleterious mutation then it will most likely be removed from the population 

by purifying selection. On the other hand, in the extremely rare occasions that 

a mutation is advantageous this will impart a large fitness advantage upon the 

organism which may be fixed in the population through high positive selection. The 

profile of coevolution analysis upon essential and non-essential genes is similar but 

somewhat “dampened”. This could be due to the lower statistical probability of a 

pair of coevolving sites in essential genes. Molecular coevolution involves a pair of 

correlated mutations. The first of these mutations may be neutral but in most cases 

it is slightly deleterious. A second mutation may restore or improve on the initial 

fitness. In the case of essential genes, however, even slightly radical mutations could 

have a significant fitness decrease resulting in purifying selection. Therefore any 

increases in fitness that coevolution may be able to facilitate through coadaptive 

mutations are more rare events.

Profiles of functional divergence events in tagged proteins proved a rich source 

of evidence for functional innovation through chaperone buffering. Our clustering 

analysis which makes use of multiple chi-squared tests, visualized as a heat map, re­

turns evidence of site specific mutations in Acinetohacter strains which are essential 

class I clients of GroEL. One of the genes {rhoA) which was identified with sites un­

der functional divergence was responsible for imparting Rifampicin drug resistance 

upon the strains. In Cellvibrio japonicas we found sites under functional divergence 

in grpE another heat-shock protein but also a client of GroEL. Another heat shock 

related protein (gapA) was found to cause enrichment of functional divergence en-
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richment in Shigella flexneri. This protein is a class I essential client which has been 

shown to facilitate glucose metabolism through alternative food sources. This raises 

the question: is GroEL buffering mutations within another heat shock mechanism 

which allows that system adapt to add new clients? This theory, while an interesting 

thought is, however, at this moment merely conjecture. An analysis of functional 

divergence could possibly be performed with two functional classifications. The first 

classification being GroEL client tags and another which assigns tags according to 

clients of other heat shock proteins, such as Hsp70 and Hsp90.

Fine tuning our functional divergence analysis in Section 5.3.4 revealed more 

interesting profiles with peculiar biological properties. We discovered genes in Pseu­

domonas under strong levels of functional divergence. These genes have been shown 

to protect these species from toxicity (tax) and have been implicated in the adapta­

tion to inhabiting lung tissue through differential gene expression in cystic fibrosis 

patients. These unusual profiles of functional divergence enrichment have uncovered 

biological adaptations in important genes through the application of statistical tests 

and protein classification. We feel that these examples are excellent evidence of 

buffering of client genes leading to functional innovation.
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Chapter 6

Investigating the evolution of 

slightly deleterious mutations in a

mutation-accumulation

experiment: The role of molecular 

chaperones in evolution

6.1 Related manuscript

Investigating the evolution of slightly deleterious mutations in a mutation-accumulation 

experiment; The role of molecular chaperones in evolution. Mario X. Ruiz-Gonzalez*, 

Christina Toft*, Brian E. Caffrey* and Mario A. Fares. In preparation.

*denotes equal contributions.
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6.2 Introduction

Understanding the forces which dictate microbe evolution is a complex problem 

rooted within the comprehension of the mutation rate, gene duplication, robust­

ness, evolvability and all other attributes which affect evolution. Advances in our 

understanding of these areas has lead to much sought-after knowledge of how mi­

crobes adapt to new ecological niches and the relative effects these properties have 

on population genetics. Pioneering long-term experimental evolution carried out by 

the Lenski lab over the last twenty years have shed much light upon the evolution 

of new traits. Among their observations they have discovered the gain in ability of 

an E. coli strain to metabolize citrate (Blount et ai, 2008), measured the mutation 

rate (Wielgoss et ai, 2011) of E. coli and have estimated that fewer than 100 point 

mutations reached fixation in a population after 20,000 generations (Lenski, 2004). 

These advances sparked the interest of many scientists and opened the door to new 

questions and further exciting research that can be carried out on the ever-present 

E. coli bacteria.

Much evolutionary research has focus upon molecular chaperones. Chaperones are 

ubiquitous proteins which assist in the assembly of oligomeric complexes, transporta­

tion, and mediate the proper folding of proteins. Many proteins follow Anfinsen’s 

dogma (Anfinsen, 1973) and fold independently of chaperones but some aggregate 

after leaving the ribosome and can be toxic to the cell. Many chaperones buffer the 

effects of environmental stress (e.g. heat-shock proteins) but have also been shown 

to buffer the effects of deleterious mutations (Fares et ai, 2004; Rutherford, 2003; 

Williams & Fares, 2010). GroEL has also been shown to rescue heat-sensitive mu­

tants (Van Dyk et ai, 1989) and genes subjected to evolutionary bottlenecks (Fares 

et ai, 2002). Furthermore, the buffering capacity of molecular chaperones has been
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proposed as facilitator of adaptive evolution (Rutherford and Lindquist, 1998; Fares 

et at 2002; Tokuriki and Tawfik; Lindquist, 2010).

Rutherford and Lindquist (1998) demonstrated that deleterious mutations in sig­

naling proteins could be buffered by the effect of Hsp90. When Hsp90 activity 

was lowered Drosophila species developed abnormalities. The cornerstone of this 

work was to demonstrate that when artificial selection of abnormal phenotypes were 

placed together in populations to create a genome with multiple abnormalities the 

restoration of Hsp90 function could no longer suppress all variants.

The chaperonin GroEL/GroES is an extensively studied complex and was pro­

posed to be buffering the effects of high levels of genetic drift (Moran, 1996) in 

endosymbionts. Moran proposed that the over-expression of GroEL/GroES in en- 

dosyrnbionts enabled the cell to maintain function despite the increase in deleterious 

mutations. This theory garnered support in the above mentioned study (Fares et 

ai, 2002) where E. coli was subjected to strong genetic drift which resulted in loss 

of fitness. This fitness was restored by over-expression of GroEL. In addition to 

these experimental approaches there have been computational analyses which have 

shown that GroEL clients experience weaker selection than non-clients for transla- 

tionally optimal codons suggesting less need to finely regulate the mistranslation of 

clients (Warnecke and Hurst 2010). The expected corollary to the pioneering work 

by Rutherford and Lindquist (1998), Moran (1996) and others suggests that the 

evolutionary rate of GroEL clients should be higher than that of non-clients. This 

was initially found to not be the case, however, when accounting for the relative im­

portance of the GroEL client proteins agreement was found with these early studies 

by Williams and Eares, (2010) and in this thesis (Chapter 5).

Here we present a computational analysis and comparison of two E. coli strains
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which have been subjected to increased mutation rate through the deletion of the 

mutS gene and also to increased genetic drift due to evolutionary bottlenecks. Addi­

tionally, one strain was grown at 37 degrees and the second was constrained to grow 

at constant heat-shock of 48 degrees. We analyze the asymmetric profiles of mu­

tations accumulated in both strains with respect to disparities between transitions 

and transversions, preferential codon substitutions, GC bias, functional categories 

of affected genes and GroEL clients versus non-clients.

6.3 Materials and methods

6.3.1 Experimental design

We evolved an ancestral E. coli K-12 strain under genetic drift and two conditions 

(37 and 48 degrees of temperature) to understand the fixation dynamics of slightly 

deleterious mutations in the bacterium genome. A strain lacking the repair gene 

mutS was used to increment the fixation rate of mutations. Strains lacking the 

mutS gene are predicted to have an increased mutation rate of between 100 and 

1000 fold compared to wild-type. Two mutation accumulation (MA) lineages of the 

strain were serially passaged onto YPD by repeated streaking, each passage resulting 

from re-streaking a single colony. Re-streaking was carried out every 24 h for 100 

days. Each lineage was passaged 100 times, which resulted in an estimated 2200 

generations in total. (~ 22 generations per passage for 100 passages). A glycerol 

stock of each lineage was prepared every 10 passages (~ 220 generations) and stored 

at — 80°C. Growth assays were performed for the two different evolved strains and 

their ancestral (parental strain) at 37 and 48 degrees of temperature.
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6.3.2 Sequencing

Shotgun sequencing and 8kb PE 454 data was used for the parental strain. De 

novo assembly of the two sets of 454 data, using GS Data Analysis Software v2.6 

(newbler)(http://454.com/products/analysis-software/index.asp) with default set­

tings, were conducted. Mauve v2.3.1(Darling et ai, 2010) was used to compare this 

de novo assembly to the E. coli K-12, this showed that the parental strain had two 

plasmid genes inserted into its genome (size of insertion 3559 bp). Correcting for 

indels and SNPs were done by mapping the 454 data onto Ecoli kl2 (NC-000913) 

using ssaha2 (http://www.sanger.ac.uk/resources/software/ssaha2/) - due to the er­

ror rate of 454 in homopolymer reagents, any indels or SNPs occurring here were 

discarded. Construction of the parental genome was done from the consensus of 

ssaha2, with manual addition of the 3.5kb insertion. A second check of the fasta 

sequence was done using breseq vO.16 available at:

http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing. Anno­

tation of NC_000913 and AJ277653 were added to the nucleotide sequence, using 

RATT (Otto et ai, 2011)

Sequences were quality trimmed using Sickle available at: 

https://github.com/najoshi/sickle. The minimum length used was 85 and minimum 

quality was 30 which removed around 30% of all reads. This left 10.5 and 11.8 million 

read pairs in the 37 degrees and 48 degrees sample, respectively. Only half of the 

data was use for the mapping (~250 X coverage) against the parental genome.

Indels, SNPs, larger deletion and junctions were predicted using breseq v0.16 

from the Barrick Lab. Breseq v0.16 uses ssaha2 to map reads against the reference 

genome. Breseq carries out the following steps:

1. Searches for mosaic read alignments, which could indicate new junctions in
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the new genome compared to the reference genome.

2. Base substitution mutations and small indels are called by examining each 

position in the pileup of mapped reads to the reference, genome.

3. When reference regions has missing and low coverage, breseq would predicts 

deletions.

6.3.3 Chi-squared analyses

In this study we perform multiple chi-squared tests. These tests rely upon genetic 

information obtained from the whole genome of the E. coli. We obtained the full 

genome and associated data/annotations from NCBI (http://www.ncbi.nlm.nih.gov/genomes 

The chi-squared statistic is given as:

i=l E,. (6.1)

Where Oi is the observed frequency of the quantity being tested, Ei is the expected 

frequency and n is the number of possible outcomes of each event (in our case it 

was always 2). This test is a “goodness of fit test”, it analyses whether an observed 

distribution differs from that of an expected distribution. In section 6.3 we use a 

“independence” test using the chi-squared test statistic, consider the Table below 

(6.1). In this Table we ask whether category 1 and category 2 differ significantly, in 

our analyses. Category 1 and category 2 were represented by the 37 degree and 48 

degree strains of E. coli. In this case the chi-squared statistic is given by:

X
{ad — bcY{a + b + c + d)

{a -I- b){c + d){b + d){a + c) (6.2)
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where a, b, c, and d are elements of a contingency Table as in Table 6.1. The result 

from either of these methods is compared against a chi-squared distribution for the 

assignment of a P-value.

Variable Data 1 Data 2
Category 1 a b
Category 2 c d

Table 6.1: Example of contingency table. Example of a 2-way contingency 
Table analyzed in section 6.3

6.4 Results

After the 2200 generations growth tests showed an improved adaptation of the strain 

evolved under heat-shock conditions to 48 degrees, indicating possible fixation of 

temperature-advantageous mutations in the genome of this evolved strain. The 

strain grown at 37 degrees had lower fitness at 48 degrees than the adapted strain 

and, surprisingly, the adapted strain had lower fitness when returned to the 37 

degree environment.

6.4.1 Transitions and transversions

There were 136 single nucleotide polymorphisms (SNPs) in the strain which evolved 

at 37 degrees; of these 128 (94.1%) were transitions and 8 were transversions (5.9%). 

There were 193 mutations in the strain which evolved at 48 degrees; of these 190 

(98.4%) were transitions and only 3 (1.5%) were transversions. This not only demon­

strates the high level of purifying selection on transversions but when these values 

were analyzed using a chi-squared test to assess a goodness of fit to the Tamura
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& Nei(citation) model of evolution both were found to be hugely significant (both 

P-values< 0.0001). Both strains were subjected to high levels of genetic drift by 

evolutionary bottlenecking. The expectation in this scenario is that there would be 

greater than normal levels of transitions as bottlenecking relieves some of the power 

of purifying selection.

In addition to the comparisons to expected levels of transitions we performed a 

contingency Table analysis between the profiles of transitions/transversions of the 

two strains to test whether there is an even greater level of purifying selection on 

the strain evolved under heat-shock conditions. Using a chi-squared test we found a 

significant asymmetric profile (P-value = 0.0293) between the categories of regular 

evolution and heat-shock evolution.

Table 6.2 shows that of the 128 and 190 transitions in the 37 degree and 48 

degree E. coli respectively we found an asymmetric profile which favored mutations 

which lead to the fixing of a change from adenine (A) or thymine (T) to guanine 

(G) or cytosine (C). It is known that the nucleotides guanine and cytosine lend 

greater stability to DNA because of the greater number of hydrogen bonds between 

the two nucleotides. When chi-squared tests were performed upon these data we 

found no significant difference between the frequency of each type of transition when 

comparing the two strains.
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Initial nucleotide Final substitution 37 degree 48 degree
A G 32.35% 34.19%
T C 36.02% 29.53%
G A 9.56% 19.19%
C T 16.17% 15.54%

transitions Any 5.88% 1.55%

Table 6.2: Purifying selection on transversions and GC bias. These data 
show that there is a large level of purifying selection upon mutations which result 
in transversions. It also shows that there is an asymmetric proportion of mutations 
resulting in GC content.

6.4.2 Pressures upon initial and resultant nucleotides

6.4.2.1 Initial nucleotides

To determine whether there are greater stresses upon each nucleotide being main­

tained or eliminated from the population we performed chi-squared tests upon the 

frequencies that each nucleotide is mutated. To perform a “goodness of fit” chi- 

squared test an expected value is needed, we generated the frequency of each nu­

cleotide in the original strain {E. coli K-12). The GC content of this strain is 

50.8%, therefore the expectation value for guanine and cytosine was 25.4% of the 

mutations and the expectation value for adenine and thymine was 24.6% of the 

mutations. We found that adenine was statistically more likely to be mutated in 

both strains, thymine was more likely to be mutated in the 37 degree strain and 

that guanine and cytosine were statistically less likely to be mutated in both strains. 

These data are summarized in Table 6.2.

6.4.2.2 Resultant nucleotides

To determine whether there are greater probabilities of each base pair being the 

resultant nucleotide in a mutation we again performed chi-squared tests, in this

121



6.4. RESULTS Mutation accumulation analysis

Initial nucleotide 37 degree 48 degree
A 33.8% * (P-value = 0.0125) 34.7% ** (P-value=0.0011)
T 39.7% *** (P-value = 0.0001) 30.05% Not significant
G 9.55% *** (P-value = 0.0001) 19.17% *(P-value = 0.0468)
C 16.91% * (P-value = 0.023) 16.06% ** (P-value = 0.0029)

Table 6.3: Preferential accumulation of mutations in AT sites. These data 
show the percentage of each nucleotide prior to mutation in both strains. We per­
formed a chi-squared test for each nucleotide. We calculated the expected frequency 
by calculating the percentage of each nucleotide in the whole genome. All but one 
of these tests were significant. There was a higher than expected number of adenine 
and thymines and a lower than expected number of guanine and cytosines.

case upon the frequencies of each nucleotide after a mutation. Again we required 

an expectation value, in this case we used the assumption that if the selection 

pressures were equal upon each nucleotide then each has an equal likelihood of 

being the resultant mutation. We make this assumption in order to test if the 

converse is true. Table 6.3 summarizes these analyses and is represented graphically 

in Figure 6.1. We found that in both the strain evolved at 37 degrees and the strain 

evolved under heat-shock there were significantly more guanines as the resultant 

nucleotide and significantly fewer thymines as the resultant nucleotide. In the strain 

evolved at 37 degrees there were significantly more cytosines and significantly fewer 

adenines as the resultant nucleotide. There was a higher percentage of cytosines and 

a lower percentage of adenines in the strain evolved in heat-shock but these were not 

significant. We also performed chi-squared tests to compare the categories of the 

heat-shock strain versus the strain evolved at 37 degrees using an “independence” 

chi-squared analysis. This test returned no significance.
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Comparison of percentages of nucleotides prior to mutations and 
^ after mutations in strains evolving at different temperatures

37 degree 48 degree

Begining nucleotide

37 degree 48 degree

Resulting nucleotide

Figure 6.1: Preferential accumulation of mutations in AT sites in heat- 
shock strain resulting in higher GC content. Part (A) shows the proportion of 
sites comprised of each nucleotide prior to each mutation. The group of columns on 
the left shows the proportions of nucleotides from the strain evolving at 37 degrees 
and the group of columns on the right represents the proportion of nucleotides from 
strain evolving at 48 degrees. Part (B) shows the proportion of sites comprised of 
each nucleotide after each mutation. There is a clear preference in both strains 
for a loss of adenine and thymine and a retention of guanine and cytosine in both 
strains. 2^23
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Resultant nucleotide 37 degree 48 degree
A 11% *** (P-value = 0.0002) 20% Not signihcant
T 16.9% * (P-value = 0.0295) 15.78% ** (P-value = 0.0021)
G 35.29% ** (P-value = 0.0056) 35.26% ** (P-value = 0.002)
G 36.76% ** (P-value = 0.0015) 30.53% Not significant

Table 6.4: Preferential gain of GC content. These data show the percentage 
of each nucleotide after mutation in both strains. We performed a chi-squared test 
for each nucleotide. We calculated the expected frequency by assuming there is an 
equal probability of a mutation to each other nucleotide. All but two of these tests 
were significant. There was a higher than expected number of adenine and thymines 
and a lower than expected number of guanine and cytosines.

6.4.3 Analysis of the location of mutations

If a mutation lies within an important region it is likely to be deleterious. Genes 

are extremely important regions as they code for the proteins and RNA which carry 

out the functions of the cell. Intergenic regions are less important; they do have 

function in regulation through transcription factor binding sites but much of inter­

genic regions is assumed to be non-functional. We investigated whether there was 

an asymmetry in the accumulation of mutations in intergenic regions by performing 

a chi-squared test. We tested those mutations within intergenic regions versus those 

within genes. To obtain an expected value for the calculation we calculated the pro­

portion of the genome which is intergenic. We found that there were almost twice as 

many mutations in intergenic regions than is expected by random mutations. This 

number was significant according to the chi-squared test in both strains (P-value < 

0.0001). When tested for differences between the distribution of the two strains it 

was found that there was a modest (P-value = 0.08) difference between the strains; 

the strain which evolved at high temperature was more likely to pick up mutations 

in coding regions. This modest tendency for increased levels of mutations in the 

heat-shock strain is possible evidence of the buffering of mutations by chaperones
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since chaperones are upregulated during heat shock.

6.4.4 Assymetric amino acid changes

We sought to identify whether codons which code for any amino acids are more or 

less susceptible to being lost and gained in bacterial protein coding regions under 

prolonged heat-shock exposure relative to those under normal conditions. We found 

that there were 97 non-synonymous changes in the strain evolved at 37 degrees and 

117 non-synonymous changes in the strain evolved at 48 degrees.

6.4.4.1 Amino acid loss

Firstly, we investigated whether some amino acids are lost more readily than others 

in each strain. We performed chi-squared tests upon all amino acids, with expec­

tation values calculated by the total amino acid composition in the whole genome 

of the strain. The results are summarized in Table 6.4. We found that both strains 

were significantly more likely to accumulate a mutation in a codon coding for valine 

or threonine. Both strains were also less likely to accumulated a mutation within a 

codon coding for leucine. The strain which evolved under heat-shock conditions was 

found to be more likely to accumulate mutations within codons coding for tyrosine 

but this was not the case in the strain evolved under normal conditions.

6.4.4.2 Amino acid gain

We investigated whether there is any asymmetry in the rates of introduction of 

amino acids into the genome by performing chi-squared tests upon the frequency of
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Initial amino acid 37 degree 48 degree greater or
lower than 
expected

T 18.5% *** (P-value < 0.0001) 14.5% *** (P-value < 0.0001) greater
V 11.3% ** (P-value = 0.0095) 12.8% ** (P-value = 0.0021) greater
L 2.1% ** (P-value = 0.0061) 1.7% (P-value = 0.0029) lower
Y 5.9% * (P-value = 0.0458) greater

Table 6.5: Preferential accumulation of mutations in threonine and valine 
codons. These data summarize the chi-squared tests performed upon the accumula­
tion of mutations in codons. We performed a chi-squared test for each set of codons. 
We calculated the expected frequency by finding the percentage of occurrence of 
codons which code for each amino acid in the genome. It was found that a greater 
number of mutations accumulate in the codons which code for threonine and valine 
in both strains. There were fewer than expected mutations in leucine codons in both 
strains. There were greater than expected numbers of substitutions accumulated in 
tyrosine codons in the heat-shock species only.

occurrence of codons for each resultant amino acid. Table 6.5 shows that there was 

greater than expected level of accumulations of alanine in both strains. In the strain 

subjected to high temperature conditions there was greater than expected accumu­

lations of cysteine, serene and histidine at significant levels. For the strain evolved at 

37 degrees there were greater accumulations of proline and glycine. There were lower 

than expected levels of leucine codons accumulated. Cysteine is the only amino acid 

which forms disulphide bonds; these bonds lend stability to proteins making them 

less susceptible to denaturation. Since denaturation can occur more easily at high 

temperatures it is unsurprising that the strain which evolved at high temperature 

has an enrichment in mutations leading to cysteine codons. The argument could be 

made that the propensity to accumulate mutations in codons coding for tyrosines 

may merely underlie the fact that tyrosine codons are AT rich and the exchange 

to cysteine is merely a reflection of GC bias. We investigated, this, however and 

discovered that half of the polymorphisms which resulted in a cysteine were from 

argenine and involved transitions from A/T to G/C. This provides further evidence
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Resultant 
amino acid

37 degree 48 degree greater or 
lower than 
expected

A 26.8% *** (P-value < 0.0001) 26.48% *** (P-value < 0.0001) greater
C 5.1% ** (P-value = 0.0001) greater
S 14.52% ** (P-value = 0.0001) greater
H 5.1% * (P-value = 0.039) greater
P 26.8% (P-value < 0.0001) greater
G 14.43% (P-value < 0.0109) greater
L 3%(P-value < 0.0214) lower

Table 6.6: Preferential gain of alanine codons. These data summarize the chi- 
squared tests performed upon the resultant codons after a mutation. We performed 
a chi-squared test for each set of codons. We calculated the expected frequency 
finding the background percentage of occurrence of each codon in the genome. There 
are greater than expected numbers of mutations leading to alanine codons in both 
species. There are greater than expected mutations leading to cysteine, serene 
and histidine in the heat-shock strain. There are greater than expected mutations 
leading to proline and glycine codons in the 37 degree strain and fewer than expected 
mutations leading to leucine codons.

that this is a heat-shock dependent shift as this trend was not evident in the strain 

evolving at 37 degrees. Interestingly none of the genes which gained cysteine codons 

are clients of GroEL and therefore cannot make use of the benefits of chaperone 

buffering. These data along with the data in section 6.4.4.1 represent two sides of 

the same coin. The loss of tyrosine codons in the previous section are somewhat a 

precursor for the gain of cysteine codons in the 48 degree strain.

6.4.5 Analysis of GroEL clients

We sought to identify whether genes which are clients of the chaperonin GroEL ac­

cumulated a greater number of mutations than non-clients of GroEL. In the strain of 

E. coli evolving in normal conditions we observed that there were 5 (3%) mutations
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37 degree 48 degree
Mutations/indels 
in clients of 
GroEL

5 (3.1%) 155

Mutations/indels 
in non clients of 
GroEL

11 (8%) 126

Ghi-squared 
versus expecta­
tion

P-value = 0.08 (below expected) P-value = 0.3 (above expected)

Chi-squared 
test against
each other

P-value = 0.062 P-value = 0.062

Table 6.7: GroEL buffering of mutations in client proteins at 48 degrees.
These data show that there are fewer than expected mutations, insertions or dele­
tions in genes which are clients of GroEL at 37 degrees suggesting that these genes 
are under high purifying selection. In the strain at 48 degrees this high level of 
purifying selection is absent. When a chi-squared test is performed between the two 
strains there is modest significance.

(including insertions and deletions) within GroEL client genes and 155 mutations in 

non-client genes. In the strain of E. coli which was evolved at 48 degrees we found 

11 (8%) mutations within GroEL client genes and 126 mutations in non-client genes. 

To determine whether these numbers are greater or less than expected we calculated 

the percentage length of the E. coli genome which comprises clients. We then per­

formed a chi-squared test on each strain. We found, when testing the 37 degree 

strain that there was modest significance (P-value = 0.08) of below expected num­

bers of mutations in GroEL clients. There was no significance in the 48 degree strain 

suggesting that during heat-shock (when the expression levels of GroEL are greater), 

there is a buffering effect upon mutations accumulated in GroEL genes. We also per­

formed a chi-squared test between the strains which supported the conjecture that 

the profiles of mutations accumulated in client genes is different between strains 

evolving at high temperatures and those evolving at mesophilic temperatures.

128



6.4. RESULTS Mutation accumulation analysis

6.4.6 Analysis of functional categories

Function underpins phenotype and as it is necessary to analyze whether there was 

a mutational bias towards one function over others. We took the COG functional 

categories (obtained from NCBI) and assigned them to each of the genes. We cal­

culated the frequency of nonsynonymous mutations in each functional category. We 

tested these frequencies against the expected number of mutations in the genome. 

Due to the random nature of mutations there is an expectation that mutations will 

be evenly distributed throughout the genome. We performed chi-squared tests upon 

each functional category for both the 37 degree and 48 degree strains. Table 6.8 

shows a summary of the results obtained. We found that both strains were enriched 

for mutations in coenzyme transport and metabolism (H) genes.

The 37 degree strain was enriched in cell wall/membrane (M) genes and tran­

scriptional (K) genes. The advent of high numbers of mutations in cell wall/mem­

brane genes is not surprising, it is known that these genes experience high levels of 

functional divergence relative to other functional categories (Caffrey et al, 2012). 

What is somewhat surprising is the enrichment of mutations in transcriptional genes. 

These genes are known to be less likely to experience evolutionary change (Caffrey 

et ai, 2012), possibly because they represent a relatively small number of genes but 

are responsible for the regulation of a very large number of genes.

The 48 degree strain was enriched for mutations accumulating in Energy produc­

tion and conversion ( C) and interestingly under represented in Replication, recom­

bination and repair genes (L). This strain was under imposed heat-shock and hence 

experienced high levels of stress. Chaperones can buffer mutations (as mentioned 

in introduction) this result suggests that mutations which hinder the DNA replica­

tion/repair mechanisms cause too much instability in the genome when combined
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COG functional 
category

37 degree 48 degree greater or 
lower than 
expected

H (Coenzyme 
transport and 
metabolism)

26.8% *** (P-value < 0.0001) 26.48% *** (P-value < 0.0001) greater

C (energy pro­
duction and
conversion)

** (P-value = 0.0001) greater

L (Replication 
recombination 
and repair)

** (P-value = 0.0001) lower

M (cell wal­
l/membrane)

(P-value < 0.0001) greater

K (transcrip­
tion)

(P-value < 0.0109) greater

Table 6.8: Accumulation of mutations in functional categories. These data 
compare functional categories of genes in two strains of E. coli, one evolved at 37 
degrees and one at 48 degrees. Both species were subjected to evolutionary bottle­
necking and therefore experience greater genetic drift. Both species are enriched for 
mutations in coenzyme transport and metabolism, this suggests that the increase 
in genetic drift experienced by both strains causes a selection pressure that favors 
coenzyme transport and metabolism. The strain evolved at 37 degrees experiences 
enriched mutations in cell wall/membrane genes, this is not surprising as these are 
known to adapt more than others. The strain evolved at 48 degrees is enriched for 
mutations in energy production genes and impoverished for mutations in replication, 
recombination and repair genes. This suggests that mutations in replication/repair 
genes are extremely deleterious during the added stress of heat-shock and experience 
strong purifying selection.

with heat-shock.

6.4.7 Analysis of the relative importance of genes involved 

in mutations

6.4.7.1 Analysis of interacting proteins

Of the non-synonymous mutations there were 92 and 106 genes in the 37 degree and 

48 degree strain respectively for which there was interaction data on the bacteri-
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ome.org database. Of these genes there were 2 interacting genes in the 37 degree 

strain and 5 interacting genes in the 48 degree strain. To see if this was significant 

we needed an expected value of interacting genes from a distribution of this size in 

order to carry out a “goodness of fit” test. To retrieve this we randomly selected 100 

genes from the whole genome of E. coli and assessed how many were interacting. We 

repeated this 1000 times to get an unbiased distribution. The expected percentage 

was 2%. We performed the fisher exact-test and found that the 48 degree strain 

had modest significance (P-value = 0.027) accumulate more mutations in interact­

ing genes. One of the genes oppA was actually involved in two interactions. This 

gene is a client of GroEL. These data suggest that the buffering effect of GroEL 

(and possibly other Hsps) are buffering mutations within clients which is leading to 

coadaptation.

6.4.7.2 Analysis of expression levels

We analyzed the expression intensities of genes involved in mutations in both strains 

of E. coli using microarray data from the study by Govert et al. (2004). This expres­

sion study reported dChip-normalised mean mRNA expression values across three 

replicates of wild-type E. coli cells growing in aerobic conditions. We only included 

genes which had expression intensities in all three replicates in the experiment. In 

an attempt to remove genes that were not expressed we plotted a histogram (Figure 

6.2) and manually chose a cutoff to impose on the dataset. We removed all expres­

sion values below an intensity of 250. Figure 6.3 shows a graph of the comparison of 

the average expression level of genes which have accumulated mutations in the two 

strains studied. We performed a t-test on these and found that there was marginal 

significance (P-value = 0.19).
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Histogram of bins of expression level values in E. coli
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Figure 6.2: Histogram of gene expression. Displayed here is a histogram of 
expression level of all genes in the E. coli data set. We used these data to obtain a 
threshold of background genes for our analysis of differences in expression levels of 
genes involved in mutations in the strains grown at 37 degrees and those grown at 
48 degrees.
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Differences in expression of genes which accumulated mutations
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Figure 6.3: Profile of gene expressions in mutated genes. This graph illus­
trates the difference in mean expression values of genes involved in mutations in the 
37 degree and 48 degree E. coli strains. This trend is small but it should be noted 
amongst the other analyses documented in this chapter.
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6.5 Discussion

The multiple analyses documented above highlight two separate areas of discussion: 

Firstly, the effect which heightened genetic drift has upon E. coli strains irrespective 

of other evolutionary conditions and, secondly, the relative effects of mutations be­

tween strains of E. coli evolving under heat-shock versus those evolving at mesophilic 

temperatures.

6.5.1 Heightened genetic drift effects

We observed that E. coli undergoing strong effects of genetic drift have high puri­

fying selection on transversions when compared to values expected by the Tamura 

Nei evolutionary model. We observed a significant preference for substitutions from 

adenines and thymines to guanines and cytosines. We found, contrary to work by 

Hildebrand et ai, that there was no evidence to suggest that there is any selective 

pressure upon the accumulation of synonymous substitutions which resulted in GC 

content. Hildebrand et al.. investigated the ratio of AT to GC versus GC to AT 

polymorphisms and concluded that there was a signifiant shift. When we compared 

these transitions in both synonymous and non synonymous sites we found there 

was no difference. This suggests that GC content bias could be due to periods of 

heightened genetic drift as opposed to a property of synonymous sites. We also 

found, as expected, that intergenic regions had significantly greater accumulations 

of mutations owing to their relative lack of function.

Additional similarities of asymmetric profiles were found in the relative loss and 

gain of codons. Both strains had a propensity to accumulate mutations in codons 

which coded for threonine and valine in place of alanine codons. The loss of these
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codons can possibly be attributed to the greater GC content of alanine codons. Both 

strains were also statistically less likely to accumulate mutations in leucine codons 

which is somewhat surprising considering these codons are AT rich (56%).

6.5.2 Heat-shock specific variation

When contrasting the differences between the strain evolving under mesophilic con­

ditions to that of the strain evolving at heat-shock we found a number of differences. 

We found significant evidence that the levels of purifying selection upon transver­

sions in the 48 degree strain was greater than that of the 37 degree strain, despite 

the fact that the 37 degree strain had significance itself. This suggests that the 

added genome instability due to transitions coupled with heat shock is very highly 

deleterious to the cell.

Assymetric codon accumulations were observed in the 48 degree strain. Cysteine 

coding codons were enriched after heat-shock conditions. This could have resulted 

from the added stability of disulfide bonds and occurred in genes which cannot 

benefit from the buffering effects of GroEL. Other asymmetries in amino acid gain 

were a higher probability of gain of serine and histidine by the 48 degree strain and 

glycine by the 37 degree strain. Attempts at understanding a functional basis for 

these results have not as yet been fruitful. GroEL buffering of client proteins has 

been heavily studied as discussed in the introduction to this chapter. We found 

evidence that there was modest significance between the two strains in support of 

previous evidence that GroEL buffers mutations in its clients. This evidence lends 

significant weight to the theory that the buffering of mutations by GroEL can drive 

functional innovation and ecological adaptation. Furthermore it demonstrates the 

robustness of the E. coli genome to accumulated mutations and that robustness is

135



6.5. DISCUSSION Mutation accumulation analysis

a facilitator of evolvability during environmental change. The implications of these 

results along with those in chapter 5 show that we have shown that GroEL actually 

buffers mutations in its clients during stress conditions as opposed to GroEL being 

a chaperone for proteins which accumulate greater numbers of mutations.

On a whole these results demonstrate the slow moving nature of evolution. Many 

effects of mutations are hard to detect even in cases where the rate of mutations 

is accelerated as in these data. We have presented a clear picture of the effects of 

heightened genetic drift upon E. coli along with a thorough contrast of the effects of 

heat-shock versus mesophilic environments. These results represent a clear example 

of ecological adaptation emphasized by the shift in environmental suitability of the 

strain grown under heat-shock conditions. In addition to the growth rate exper­

iments performed the sequence data which accompanies it represents an excellent 

data source where a set of mutations are definitively known to have caused ecological 

adaptation.

We conclude that though the effects of heat-shock are small when taken separately 

the accumulation of these effects can cause phenotypic responses which are reflected 

in ecological adaptations.
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Chapter 7

Conclusions

7.1 Functional divergence analysis

The inspirational breakthroughs made by Kimura (1968) and Ohno (1972a and 

1972b) in developing the neutral and nearly neutral theories of evolution have laid 

the way for other excellent additions to evolutionary theory over the past forty 

years. The emergence of new sequencing technologies along with the computational 

advancements has seen the development of evolutionary theory to include topics, 

such as subfunctionalization, neofunctionalization (Force et ai, 1999), evolvability 

and robustness (Wright, 1932; Poole et al., 2003; Wagner 2008). The emergence 

of new functions through these differing sources of variability is a topic of interest 

not limited to the field of molecular evolution but rather to the field of molecular 

biology as a whole.

The software presented in Chapter 2 aims at discovering amino acid sites which are 

evidence of functional divergence. This software can analyze single proteins but can 

be used to perform whole proteome analysis. In Chapter 2 we demonstrate the merit 

of whole proteome analyses by analyzing all proteins from 750 bacterial genomes. 

We identify specific amino acid sites of significant importance, such as those found in 

the VirB8 and VirB9 secretion system proteins in E. coli. In addition, we illustrated 

that with an ever increasing number of genomes available, whole proteome analyses
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can shed significant light upon the diversification of genomes by demonstrating that 

host-associated strains are less functionally divergent than free-living strains. This 

suggests that the evolvability of these genomes has decreased.

7.2 Coevolution analysis

Much of molecular evolutionary research has been focused upon the importance of 

conserved sites in multiple sequence alignments. Sites which are highly conserved 

are known to be of importance. The theories of evolvability and robustness however 

allow for small changes to be acceptable in a genome. These small changes can lead 

to compensatory mutations which allow organisms to explore sequence space. This 

exploration can lead to increased fitness and niche specialists through functional in­

novation. Atchley et ai. (2000) described coevolution as composed of phylogenetic, 

structural, functional, interaction and stochastic signal. The separation of these 

variables is necessary to explore the role provided by coevolving sites in functional 

innovation.

The CAPS 2.0 software described in Chapter 4 demonstrates that ancestral se­

quence reconstruction removes almost all false positives from neutrally evolved align­

ments, implying that stochastic signal is removed. We have also demonstrated that 

site specific bootstrapping leads to the report sites that are closer in three dimen­

sional structure for intra-molecular coevolutionary analysis. In the case of inter- 

molecular coevolutionary analysis we have shown that bootstrapping increases the 

reliability of predictions of interactions. In Section 7.3 I discuss the use of CAPS in 

identifying functional innovation in bacteria.
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7.3 Phenotypic variation through chaperone buffer­

ing

Chaperons are ancient proteins found across all domains of life. Their role in the 

evolution of organisms is still poorly understood. It has been shown in many studies 

that chaperones buffer mutations in their clients (Rutherford and Lindquist, 1998; 

Queitsch et ai, 2002; Fares et al, 2002; Williams and Fares; 2010) and therefore they 

increase the robustness of the organism. Though these studies have demonstrated 

chaperone buffering occurs there has not been much evidence of the increase in 

evolvability and specific cases of functional innovation facilitated by chaperones.

In Chapter 5 we presented an analysis of both functional divergence and coevo­

lution upon a set of 85 gamrna-proteobacteria. This analysis made use of both 

programs presented in Chapter 2 and Chapter 4. We assigned categories of GroEL 

client class and essentiality to the alignments. Results from this chapter included 

that GroEL buffers both mutations leading to sites of functional divergence and 

pairs of coevolving sites. We also found that essential genes are more likely to report 

functionally divergent sites along with higher levels of coevolution. We concluded, 

however, that levels of coevolution may be less significant because a lowered statis­

tical likelihood of occurrence in essential genes. Most importantly, the clustering 

analysis of functional divergence performed uncovers evidence of phenotypic vari­

ability due to GroEL buffering. Sites in functionally important genes are identified 

in species with atypical lifestyles. Moreover, the genes predicted to be functionally 

divergent are those that have been experimentally verified as functionally relevant 

to their niche speciality.
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7.4 Analysis of experimental evolution

The emergence of new function and phenotype is well accepted to arise from pos­

itive selection according to Darwin’s theory. On a molecular basis the source of 

most (not all, e.g. LOT, polyploidy) functional innovations are point mutations 

within the genome. The relative effects of differing selection pressures, such as heat- 

shock, increased mutation rate, increased genetic drift and alternative food sources 

is of great interest to develop a better understanding of genome evolution and the 

diversity of life.

In Chapter 6 we analyzed the various asymmetries of accumulated mutations 

in two strains of E. coli. Both strains were subjected to increased mutation rate 

and genetic drift but differed in the fact that one was grown under continual heat- 

shock and the other under normal conditions. We found that genetic drift caused 

heightened purifying selection upon mutations resulting in transversions and caused 

a bias towards the accumulation of GC content. We found in the strain evolved at 

heat-shock that there was significant pressure upon the accumulation of mutations 

in cysteine coding codons. We also observed that GroEL clients were more likely 

to accumulate mutations when evolving under heat-shock. In addition to this we 

found that in the 48 degree strain interacting genes were more likely to accumulate 

mutations.

Taken together, these results build a picture of the mechanisms by which bacterial 

genomes can evolve to be niche specialists. After all, the strain of E. coli grown at 

48 degrees had lower fitness at 37 degrees after 2200 generations. The preference 

for stabilizing cysteine residues along with buffered mutations in GroEL clients and 

mutations in interacting proteins gives us a greater understanding of the mechanisms 

of innovation. We conclude that these are subtle changes but they are measurable.
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7.5. PERSPECTIVE Conclusions

7.5 Perspective

In this thesis I have developed two novel methods of analysis of evolutionary events; 

functional divergence and molecular coevolution. These methods have been de­

signed to form a better understanding of these two phenomena but also to aid in 

the understanding of the molecular mechanisms by which proteins, such as chaper­

ones, affect the robustness and evolvability of organisms. There remain many open 

questions in both molecular evolution and biological research as a whole. Some of 

those which could be investigated through analyses of functional divergence and 

coevolution are (i) what are the effects of coevolution and functional divergence in 

molecular signaling pathways, (ii) what is relative importance of coevolution and 

functional divergence in the phylogenetic “tree of life”, (iii) how do coevolution and 

functional divergence shape effect the genome following whole genome duplication 

with a focus upon gene loss and genome instability due to the deleterious effects of 

copy number variation and gene expression.
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Chapter 8

Appendix A

Some images are provided here which pertain to the CAPS server in Chapter 4.
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Conclusions

Figure 8.1: Example of CAPS web interface cityscape output. Depicted 
above is a cityscape layout of the output from the CAPS server. Pairs of sites are 
joined together with a line. Sites which are coevolving with more pairs are given a 
larger node. It can be seen in this example that there were two distinct groups. One 
group where there was a lot of coevolution within the group and a second group 
which had one central hub connecting the others. On the server these graphs are 
interactive.
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Conclusions

Figure 8.2: Structure of TLRl with groups of coevolving amino acids 
mapped. Intra-molecularly coevolving groups are mapped to the three-dimensional 
structure of TLRl. It is shown that these residues are close geometrically.
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Chapter 9

Appendix B

Some graphs are provided here which pertain to chapter 5.
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Functional Divergence Analysis

m

woc<D
05

O
x:
■4—»D)
Co
03
CD
O)

c
CD
03
CD>
-o

"cBco
c3

CD
XI
E3

O
CD

U3O

O
O -1
CD

Client Non Client Essential Client Essential

Category

Figure 9.1: Graph of client versus essential genes. Here are contrasted the 
levels of functional divergent sites in clients, non-clients, essential and non-essential 
genes.
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Functional Divergence Analysis
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Figure 9.2: Graph of client classes. Presented here is a graph of the average 
number of functional divergence sites per position in alignment. There is clearly 
a trend; increasing from class I to class III, statistical tests do not find this trend 
significant suggesting chaperone buffering is a subtle effect.
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Chapter 10

Appendix C

Data which pertains to this thesis can be found on an optical disc with this thesis:

File
cafs-src.tgz

Data
All source code pertaining to Chapter 2.

outputs.zip All output files from functional divergence analysis in Chapter 3
caps-src.tgz All source code pertaining to Chapter 4.

c nc data.tgz Data set for Chapter 5
SNPs.tgz All SNP data for Chapter 6

Table 10.1: Table listing all files in the supplementary DVD.
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