
Compositional Modelling and Verification
of Self-Adaptive Cyber Physical Systems

Aimee Borda
bordaa@tcd.ie

under the supervision of Dr. Vasileios Koutavas

Thesis submitted to the School of Computer Science and

Statistics in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

October 22, 2019

ii

Declaration

This thesis has not been submitted as an exercise for a degree at this or any other university. It

is entirely the candidates own work. The candidate agrees that the Library may lend or copy the

thesis upon request. This permission covers only single copies made for study purposes, subject

to normal conditions of acknowledgments.

Aimee Borda

iii

iv

The possession of knowledge does not kill the

sense of wonder and mystery. There is always

more mystery.

—Anais Nin

v

vi

Abstract

Cyber-Physical Systems (CPSs) must often self-adapt to respond to changes in their operating

environment. However, providing assurances of critical requirements through formal verification

techniques can be computationally intractable due to the large state space of self-adaptive CPSs. In

this thesis we propose a methodology to support assurances of such systems, which employs a novel

modelling language, Adaptive CSP, enabling compositional reasoning for tractable verification. The

process language extends Communicating Sequential Processes (CSP) with constructs to reduce

the effort required to model and compositionally verify the adaptation options and events of self-

adaptive CPSs.

Our methodology allows system designers to identify (a subset of) the CPS components that

can affect satisfaction of each given requirement. An adaptation procedure for these components

can then be created to preserve the requirement in the face of changes to the systems operating

environment. Although manual, the task of identifying components relevant to a requirement can

be guided by topological relationships, such as containment and connectivity between system com-

ponents. Adaptive CSP can then be used to model the system including potential self-adaptation

procedures. We propose a modular structure for adaptation procedures which, together with

topology-guided adaptation, allows system designers to compare alternative adaptation procedures,

potentially involving different sets of CPS components.

We show that with this approach, when different requirements involve disjoint sets of com-

ponents, verification of each requirement can be performed against only its relevant components,

in isolation from the rest of the system and other adaptation procedures. When components are

relevant for multiple requirements, we develop a theory of compositionality to identify cases where

interference between adaptation procedures is not possible. We prove that in such cases require-

ment verification can still be performed in isolation from other adaptation procedures and the

rest of the system. In the other cases, the system designer must additionally verify that require-

ment satisfaction is preserved when components with corresponding adaptation procedures from

interdependent requirements are composed.

Our methodology has the benefit of leveraging existing formal verification tools to check re-

quirement satisfaction. We illustrate this through the use of FDR—an existing refinement checker

for CSP, taking advantage of its advanced model minimisation and refinement checking function-

ality. The soundness of using FDR for verification relies on an adequate translation from a subset

of Adaptive CSP to the language of FDR. We also alleviate the onus of modelling and verifying

components in our framework further by providing a concrete syntax to Adaptive CSP, where

we augment the process language with convenient idioms and macros from functional languages,

together with a tool which translates Adaptive CSP code to FDR.

We demonstrate the feasibility of our methodology using a substantive motivating example of

a smart art gallery. We further evaluate it with a case study of a smart stadium. Our results show

that our methodology reduces the computational complexity of verifying self-adaptive CPSs and

vii

viii

can effectively support the design of adaptation procedures in such systems.

Acknowledgements

First of all, I would like to thank my supervisor Vasileios Koutavas. I can’t be more grateful

for his precious guidance throughout the PhD. His keen eye for details, everlasting patience and

technical knowledge left me astounded a good number of times. This work is the product of hours

of discussions and encouragement from him and so I thank Vassilis for all his help in trying to

understand technical matters and the thoughts in my head. I am forever grateful to have been one

of his students.

To Liliana Pasquale and Bashar Nuseibeh, the unofficial co-supervisors of this work from whom I

learnt a lot. I extend my gratitude for the time spent in lengthy discussions and their knowledgeable

feedback. Their insight on the domain and cheerful support kept me motivated throughout this

journey. I like to acknowledge the Lero Research Centre and Trinity College Dublin as the sponsors

of this work.

I like to extend a massive thank you to my family and friends back home. I love each and every

one very dearly. In particular, a special thanks goes to my sister which from Day -9 months has

been by side every step of the way. She has been my ultimate travelling buddy, laughing buddy,

whining buddy and Crossfit buddy. There is nothing I enjoy more in life than drinking a tea and

americano in some small, sunny coffee shop located in the remotest of places talking for hours all

things Crossfit and life plans. I extend my love to all the people I hold close to my heart back

home, which there are too many to mention by name, that remind me everyday what is really

important in life.

I thank the brilliant and witty people that I shared the office with over the last four years. In

the early years, Colm Bhandal has been a steady stream of interesting mathematical puzzles and

Carlo Spaccasassi provided interesting discussions on religion and philosophy. These were slowly

replaced by the co-owners of the coffee club: Artur Gomes and Daniel Flynn, with whom everyday

at 11am I laughed and had to be explained Irish slangs, with the classic remaining ”the man with

the one with the yoke” and the ever lovely Marian Reeves. I am very grateful to have met such

wonderful people through this PhD.

Lastly, I thank the Dublin University Sub-Aqua Club, through which I met some of the most

amazing people in Dublin and filled my thirst for adventure. The jelly-babies fuelled adventures

on a small boat around the coast of Ireland will forever put a smile on my face.

Aimee Borda, Trinity College Dublin, October 22, 2019

ix

x

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Motivating Example: An Art Gallery . 3

1.3 Challenges . 6

1.4 Research Question . 7

1.5 Contributions . 7

1.6 Limitations and Assumptions . 8

1.7 Organisation of the Dissertation . 9

2 Background 11

2.1 Process Languages . 11

2.1.1 Communicating Sequential Processes (CSP) 12

2.1.2 Semantic Models . 13

2.1.3 Algebraic Laws . 14

2.1.4 Tools Available . 15

2.2 Design of Self-Adaptive Systems . 15

2.2.1 Decentralizing the Adaptation Procedure 18

2.2.2 Topology-Aware Self-Adaptive Systems . 20

2.3 Verification of Self-Adaptive Systems . 21

2.3.1 Design-time verification . 21

2.3.2 Runtime verification . 23

2.4 Other Related Work . 25

3 Abstract View of Self-Adaptive Systems 27

3.1 Self-Adaptive Autonomous Vehicles . 28

3.2 Overview of the Modelling Framework . 29

3.3 Self-Adaptive Automata . 30

3.3.1 Adaptation Automata . 32

3.4 Refinement-based Verification . 35

3.4.1 Translation to CSP . 36

3.5 Expressiveness of Self-Adaptive Automata . 42

3.6 Summary . 42

4 A Methodology for Modelling and Verifying Self-Adaptive CPSs 43

4.1 The Methodology . 43

4.2 The Process Language ACSP . 47

4.3 Next Chapters . 52

xi

xii CONTENTS

5 Steps 2 & 3: Exploring Adaptation Procedures and ACSP Encoding 53

5.1 The Cluster . 53

5.1.1 Adaptation Procedures Encoding . 54

5.2 Modelling the Art Gallery Example . 56

5.3 Summary . 63

6 Step 4: Verification of Requirements in Isolation 65

6.1 Theory of the Verification Technique . 65

6.1.1 Well-formed Processes . 65

6.1.2 Translation into CSP . 68

6.1.3 Verification Results for the ACSP Process Language 71

6.2 First Evaluation of the Verification Technique . 74

6.3 Summary . 77

7 Step 5 & 6: Composition and Re-verification of Overlapping

Adaptation Procedures 79

7.1 Examples . 79

7.2 Cluster Composition . 82

7.2.1 The merge Operation . 83

7.2.2 What needs to be re-verified? . 84

7.2.3 Composing multiple overlapping Scopes . 86

7.3 Cluster Composition in the Art Gallery . 87

7.3.1 The Exhibition Area . 87

7.3.2 The Access Point . 90

7.3.3 The Restoration Area . 91

7.3.4 The entire Art Gallery . 92

7.4 Revisiting the Evaluation of the Verification Technique 93

7.5 Summary . 95

8 A Translation Tool from ACSPM to CSPM 97

8.1 The Concrete Syntax for ACSPM . 97

8.2 Environment Generation . 99

8.3 Well-formedness Checking . 100

8.4 Translation . 101

8.5 Tool Validation . 103

8.6 Summary . 104

9 Case Study: A Smart Stadium 105

9.1 Evaluation Criteria . 105

9.2 A Smart Stadium . 105

9.2.1 Challenges . 107

9.3 Step 1: Modelling the CPS . 108

9.4 Step 2-4: Encoding a Section with Adaptive CSP 109

9.5 Steps 5-6: Composing and Reverification of Overlapping Adaptation Procedures . 115

9.5.1 Composition of SA to SG . 122

9.6 Scalability of Verification . 125

9.7 Discussion . 127

CONTENTS xiii

10 Conclusions 129

10.1 Summary . 129

10.2 Future Work . 130

A Proofs for Self-Adaptive Automata 133

B Proofs for Verification Technique 145

C Encoding for the Art Gallery Case-Study 177

D Encoding for the Smart Stadium Case-Study 189

xiv CONTENTS

List of Figures

1.1 Two-floors plan of the Art Gallery. 4

2.1 CSP Operational Semantics (omitting symmetric rules) 11

2.2 Design decision for engineering a self-adaptive systems from [82] 17

3.1 Self-Adaptive Autonomous Vehicles System. 29

3.2 The transition function for A1 (top) and A2 (bottom) 35

4.1 Components of the Art Gallery (partial model). 44

4.2 The application of the Methodology to the art gallery example. 46

4.3 Transition Semantics of ACSP (omitting symmetric rules). 48

6.1 Well-Formed Processes Rules . 67

6.2 Translation into CSP . 69

6.3 Experimental results for topology-guided modelling of the exhibition area require-

ments in isolation . 75

6.4 Experimental results for verifying topology-guided modelling of exhibition area re-

quirements with FDR minimization disabled. 76

7.1 Experimental results for verifying exhibition area requirements when composing

adaptation procedures . 94

7.2 Experimental results for verifying exhibition area requirements when composing

adaptation procedures with FDR minimization disabled. 95

8.1 The translation process from ACSPM to CSPM 98

9.1 The seating plan of Croke Park from [1] . 106

9.2 Component Model for the stadium case-study . 109

9.3 Violations introduced in SpecA from the Composition of SA and SB 116

9.4 Experimental results of verifying the stadium requirements against a single section,

containing the composition of all adaptation procedures 126

A.1 The translation of an SAA to deterministic EM . 137

C.1 Adaptation Procedures for enforcing Req. 2 at different levels of Granularities . . . 177

xv

Chapter 1

Introduction

1.1 Motivation

Computational and communication capabilities are being increasingly embedded into physical en-

tities and processes, resulting in a proliferation of Cyber-Physical systems (CPSs) [18]. Notable

examples include smart buildings (e.g., [48, 121, 120, 52, 128]) and autonomous vehicles (e.g.,

[23, 16, 112, 78, 99, 128]). CPSs exhibit a sophisticated interplay of digital (cyber) processes with

a physical operational environment. An aim for such systems is to be flexible and resilient by

effectively responding to a wide range of changes in their context through dynamic adaptation

of their behaviour [86, 87]. A change in the context of a CPS can be anything from a foreseen

spike in resource usage to a catastrophic natural disaster. CPSs cannot afford to have a manual

process, with a human in the loop, to counteract all changes in their context, as this would be too

disruptive and error-prone. Therefore CPSs often rely on built-in self-adaptation functionality to

fulfill their goals in the face of a changing operational environment.

Self-adaptation is a system’s capability to autonomously, without human input, detect when

the operational environment changes and deploy counter-measures to guarantee the continued

satisfaction of requirements. To engineer a SA system, a system designer needs to automate the

inference of correct functionality in all possible contexts. Only then can an SA system decide

autonomously, at runtime, an optimal behaviour. Moreover, as SACPSs are given autonomy over

a wide range of actions that can affect the physical world, it is important that they are designed

with high reliability in mind, and concrete assurances can be provided to their users. For this

reason, it is crucial we understand the structure of self-adaptive systems and create techniques for

building them and reasoning about their properties and runtime behaviour.

A roadmap produced by the self-adaptive community identifies two main open challenges that

need to be addressed to better understand how to build effective self-adaptive systems [42, 32].

Systematic Software-Engineering Processes: Current research aims to provide a common

framework and systematic software engineering techniques to effectively model SA systems [8]. A

widely accepted view of SA systems is to distinguish their functionality in two parts—the adaptation

procedure and the base system. The former encapsulates all the adaptation functionality: when,

what and how to adapt; the base system contains the system functionality that may be adapted.

This leads to a centralized SA system, where a single adaptation procedure has a global view of

the system and determines all adaptations. In CPSs however, components may potentially be

dispersed over a large area, or the CPS may need to operate in an open environment. This means

that a centralized adaptation procedure that requires global and absolute knowledge of the entire

1

2 CHAPTER 1. INTRODUCTION

system may be impractical [127, 126, 42]. Recent research has been aiming at identifying systematic

software engineering techniques for decentralized SA systems [107, 42]. In a decentralized setting,

adaptation is going to emerge from the implicit composition of adaptation procedures operating

on different parts of the system. A key challenge in this approach is dealing with the case where

system components may need to be adapted by multiple adaptation procedures. In such a case

adaptation procedures may interfere with each other leading to the violation of requirements.

Effective and systematic approaches to localize adaptation to small parts of the systems may

reduce the potential of interference. Yet, approaches to explicitly handle the interference between

adaptation procedures are still needed [127, 126, 42].

Practical Verification Techniques: Self-adaptive CPSs increasingly support critical services.

Errors can indeed be catastrophic. Thus it is important that high-level assurances are provided for

these systems, guaranteeing that key requirements are satisfied in the presence of self-adaptation.

The golden standard for providing such assurances is formal verification. The highly dynamic

nature of SA CPSs, however, makes verification difficult due to the large state space of SA CPSs

models that needs to be verified [107, 42, 32]. There are two challenges that need to be addressed

to attain a tractable verification technique for such systems.

• Firstly, verifying self-adaptive CPSs using explicit state model checking of the entire system

may suffer from the state explosion problem and be computationally infeasible for large-scale

systems (e.g., [120]). Techniques where properties can be verified against a small part of

the system, knowing that, once verified, these properties hold for the whole system are still

lacking. Due to the versatility of CPSs, different groupings of concurrent cyber and physical

components may need to be considered for each property.

• Secondly, verification needs to incorporate a large class of requirements that together define

the overall behaviour of the system. Most existing verification techniques (e.g., [95, 28, 29,

71, 55, 54, 23, 94]) employ a utility function to quantify the satisfaction of multiple require-

ments. However, during the early design phase, we may not yet know appropriate weights

and probabilities to define an effective utility function. A practical qualitative verification

technique for SA CPSs with multiple requirements is therefore needed [5, 126, 26].

In this thesis, we propose to tackle the complexity of modelling and verifying the satisfaction of

safety properties in SA CPSs through systematic and compositional techniques. Compositionality

allows us to prove that the correctness of a verification task on a small part of the system holds

for the entire system. Our approach is based on three key principles.

Topology-driven Modelling: Firstly we use a modelling methodology guided by the topological

layout of CPSs and topological relations, such as containment and connectivity [102]. Consider,

for example a smart building comprising rooms and sensors inside these rooms. In our model,

we map the rooms and sensors to components, whereas the connectivity and containment relation

between the identified components map to the interface between components.

We propose to model the components that result from such an architecture in a novel adaptation-

aware process algebra, where connectivity is encoded as named events and containment as named

locations. We call this language Adaptive CSP (ACSP), and we obtain it by extending Commu-

nicating Sequential Processes (CSP) [70] with locations and self-adaptation functionality. Being

process based (as e.g., [89, 70]) and able to directly express self-adaptation, ACSP can readily

support the definition of decentralized adaptation procedures at different levels of granularity in a

system, as well as compositional reasoning for the system. In this thesis, the term granularity refers

1.2. MOTIVATING EXAMPLE: AN ART GALLERY 3

to a group of CPS components over which an adaptation procedure aimed to ensure a requirement

is defined whereas levels of granularity imply different groupings of components. Our use of the

term granularity differs from the standard definition in computer science research literature [100].

Requirement-driven Adaptation: Secondly, we propose a methodology for modelling requirement-

driven adaptation. The decentralization of adaptation logic in our model is guided by the topology

and requirements. We utilize the topology and topological relations to systematically explore

different grouping of components (levels of granularity) that affect the satisfaction of each require-

ment. We then model and verify an adaptation procedure over the selected group of components

that aims to ensure the satisfaction of the requirement in the face of changes to the operational

environment.

Compositional Verification: Topology-driven modelling and requirement-driven adaptation

can already lead to models where adaptation functionality is distributed throughout the system.

A theory of compositional reasoning guarantees that some verification tasks can be localised,

without considering the entire system, drastically reducing the state explosion problem. When

adaptation procedures are defined over disjoint parts of the system, their composition preserves

the satisfaction of requirements because of the semantic properties of the modelling language,

thus requiring no additional verification at the time of composition. When adaptation procedures

have overlapping scope, there is potential of interference between them. Here, we need to verify

the satisfaction of requirements after composing potentially interfering adaptation procedures. As

we show, however, for certain types of overlaps, interference can be theoretically ruled out (e.g.,

when adaptation procedures only monitor, but not adapt, common components), thus allowing

us to skip certain verification tasks at the time of composition. Our definition of compositional

verification differs from the traditional meaning, e.g., [12, 76, 34], where the term is often used for

approaches that construct system-level correctness proofs hierarchically from proofs of component-

level properties. In this thesis, we leverage compositional verification techniques to safely localize

verification tasks to a small part of the system. Moreover, our approach allows us to leverage

existing, well-developed verification tools. In this dissertation, we use the refinement checker FDR

[59]; however, our technique is general enough to be used with other verification tools such as

(bi-)simulation [89, 108], testing preorders [43, 35], and modal logics [69, 11]..

1.2 Motivating Example: An Art Gallery

Throughout this dissertation we use a motivating example of an art gallery building. The two-

floor plan of the gallery is shown in Figure 1.1. Floor 1 includes a corridor and an exhibition area

(rooms A, B, and D) where paintings are displayed. Floor 2 includes a Restoration Area where

maintenance and restoration of artwork is carried out. A heating, ventilation, and air conditioning

system (HVAC) maintains a predefined target temperature and humidity level in the Restoration

Area. A wireless access point in the Computer Room provides internet connectivity to the devices

located in Floor 2. It is also connected to the HVAC allowing the latter to be monitored and

controlled remotely.

The art gallery would like to promote to the public the skilled work performed in the restoration

area. Nevertheless, a critical security requirement for the art gallery is:

Requirement 1. Visitors should not interfere with the restoration process. ♦

4 CHAPTER 1. INTRODUCTION

C
or

rid
or

 1

A

Restoration Area

B

D

Corridor 2

Computer Room

Access point
Workman

HVAC

Visitor

Fl
oo

r 1
Fl

oo
r 2

Guard

. . .

<= 10

Guard

Figure 1.1: Two-floors plan of the Art Gallery.

This requirement may be violated when a visitor is in the Restoration Area without a staff

member present in Floor 2. However, controlling access to the Restoration Area based on the

presence of restoration staff might not always be desirable. For example, when restoration work

is performed, access to the restoration area should be free of controls to allow efficient movement

of workers. This can lead to the situation where visitors can access the Restoration Area without

the presence of a staff member and interfere with the restoration work.

To avoid violating Req. 1 a system designer can introduce adaptation procedures at different

granularities. Here we examine two such procedures.

Adaptation Procedure 1.1. Adaptation is applied at the granularity of the second floor, allowing

free access to the Restoration Area only in the presence of a guard. �

Ad. Proc. 1.1 and all adaptation procedures defined in this section f match the definition of

a self-adaptive system presented before, where the system can autonomously determine if visitors

should be precluded from entering the restoration area by monitoring the movement of the guard.

However, this adaptation procedure can obstruct the movement of workers by locking the restora-

tion area door when a guard is not present. The following adaptation procedure avoids this by

using a coarser granularity which includes Corridor 1 and the Stairs.

Adaptation Procedure 1.2. The guard from Corridor 1 should escort visitors to Floor 2 as

soon as they start climbing the stairs. This ensures that visitors always reach the Restoration Area

accompanied by a guard. �

A very important painting at the core of the current exhibition is located in Room D. Visitors

can enter this room from Room B and exit to Corridor 1. To maintain integrity of the painting,

the following requirement should be satisfied.

Requirement 2. No more than ten visitors should be in Room D at the same time. ♦

To satisfy this requirement an adaptation can be used at the granularity of Room D.

Adaptation Procedure 2.1. Visitor entrance to Room D is allowed only when there are fewer

than ten people in it. �

However, if there is the possibility of multiple visitors entering Room D simultaneously (e.g., by

tailgating), then the above adaptation may lead to a violation of Req. 2. An adaptation procedure

at a coarser granularity, including Room B in its scope, can avoid this.

1.2. MOTIVATING EXAMPLE: AN ART GALLERY 5

Adaptation Procedure 2.2. The total number of visitors in B, and D does not exceed the

maximum number of people allowed in Room D alone; a guard is also located in Corridor 1 (to

prevent tailgating into Room A). �

Back in Floor 2, a malicious visitor may connect a device to the wireless network and take

control of the HVAC, exploiting security vulnerabilities of the wireless protocol. The following

requirement is designed to prevent this.

Requirement 3. The HVAC should not be controlled remotely by unauthorised users. ♦

To satisfy this requirement an adaptation procedure can be designed at the granularity of Floor

2, which protects the HVAC from attacks while still allowing visitors to connect to the wireless

network.

Adaptation Procedure 3.1. The HVAC is disconnected from the network when an untrusted

device in the second floor is connected to the Access Point. �

Additional requirements for the art gallery may involve overcrowding and emergency scenarios.

Requirement 4. No more than thirty visitors should be in the entire exhibition area at the same

time. ♦

To satisfy this requirement, an adaptation procedure can monitor the movement of people into

Room A and out of Room D—the entrance and exit, respectively, of the exhibition area.

Adaptation Procedure 4.1. A visitor is allowed to enter Room A from Corridor 1 only when

the people who have entered Room A from Corridor 1 minus the people who have exited Room D

into Corridor 1 are no more than thirty. �

This adaptation procedure allows all thirty people to be in the same room of the exhibition

area. Although this is sufficient for Req. 4, the system designer may decide to refine this adaptation

procedure in a way that spreads the people across the different rooms of the area.

Adaptation Procedure 4.2. Monitor visitors in rooms A, B and D and allow visitor movement

between adjacent rooms only when the sum of people in adjacent rooms is less than fifteen. For

example, movement from Room A to B is allowed when the number of visitors in rooms B and

D is less than fifteen. Similarly, movement from Corridor 1 to room A is only allowed when the

number of visitors in rooms A and B is less than fifteen. �

In case of an emergency the following requirement should also be satisfied

Requirement 5. The people in the building should be able to reach the nearest emergency

exit. ♦

This requirement could be enforced at the granularity of the entire system, but this would

require verification for the satisfaction of the requirement over the entire system. Instead, the

following adaptation procedure is sufficient to guarantee the requirement.

Requirement 5 (revised). At each room, movement in the case of an emergency is not restricted—

all doors are open. ♦

Finally, the following requirement should also be satisfied.

Requirement 6. The HVAC is reconnected to the access point when updates are needed. ♦

6 CHAPTER 1. INTRODUCTION

Adaptation Procedure 6.1. To satisfy this requirement, when a new update is available, the

HVAC should connect to the Access Point and install it. This means that visitors should be dis-

connected from the access point so the HVAC can connect and install the update. This adaptation

procedure controls the access point, which is also controlled in the adaptation procedure designed

to satisfy requirement 3. �

1.3 Challenges

In this thesis, we aim to achieve a general tractable verification of the satisfaction of security re-

quirements in SA CPSs such as the art gallery presented in the preceding section, and a stadium

discussed in Chapter 9. We aim to achieve our goal through compositional verification, where ver-

ification tasks proven over a small part of the system also hold for the whole system. For instance,

the verification of Req. 1 can be localized over the restoration area and through compositionality

we have the guarantee the satisfaction of the requirement holds for the whole art gallery. We thus

require a modelling framework and verification approach that supports compositionality. In our

art gallery, we want to verify the satisfaction each requirement by considering only a small subset

of the rooms and digital components knowing that it suffices to verify the satisfaction for the art

gallery.

An important aspect for successfully exploiting compositional verification is identifying which

components are important to include and which to ignore. Requirements for SA CPSs include a fu-

sion of computation capabilities influenced by the physical layout of the system. Thus, identifying

which components to include in verification tasks is not straightforward from the requirements. For

example, even though both descriptions of Requirements 3 and 6 include the HVAC, their adap-

tation procedures focus solely on the access point that has the potential to connect unauthorized

users to the HVAC.

Self-adaptation aims to evert as much as possible degradation in the level of service provided

by an CPS, by adjusting the functionality with respect to a requirement after disruptive changes.

Degradation in functionality may not always be avoidable [48] and the task of encoding effective

adaptation procedures is hard and error prone. Designers of these systems must decide at which

system execution points should adaptation be invoked in order for the system to operate efficiently

and satisfy its requirements. We refer to the execution points where adaptation must be invoked as

the adaptation pattern. These points can be as simple as timing events (e.g., every X seconds), can

be triggered by specific system events, or even have a complex logic taking account the execution

history and state of the system. Existing modelling approaches for SA systems often distinguish

the adaptation decision process from the base system, but encode adaptation points directly in one,

or both, of these components (e.g., [10, 64, 79, 47, 132, 115, 77]). The drawback of this approach is

that the pattern of adaptation events becomes a cross-cutting across the system model. Modifying

this pattern in search for a correct and optimal model often requires significant changes to the

description of the base system and/or the adaptation decision process, which has to be done in

an ad-hoc manner. However, modularising adaptation patterns is not easy [58]. Although some

systems may be able to support such events at every state, others must disallow them during critical

sections of their execution. Moreover, adaptation decision processes may be able to operate only

at a subset of the system states.

At a global level, satisfying requirements in the presence of multiple adaptation procedures

introduces another challenge. Adaptation procedures defined over common parts of a CPS may

potentially interfere with each other and if adaptation is arbitrary, the interference may violate

key requirements. We need to guarantee that the satisfaction of requirements is preserved when

1.4. RESEARCH QUESTION 7

all adaptation procedures are composed together. We need to explicitly and effectively address

potential interference between overlapping adaptation procedures. For example, consider Require-

ments 2 and 4 from section 1.2 asserting the allowed number of visitors in room D and exhibition

area respectively. The adaptation procedures overlap, yet we can verify that the composition of the

adaptation procedures preserves the satisfaction of both Requirements 2 and 4. Consider now we

compose an adaptation procedure that aims to ensure the satisfaction of Req. 5 requiring visitors

to have a clear exit from the building in the case of an emergency. This adaptation procedure

may allow any number of visitors in room D and the exhibition area, which may potentially violate

Requirements 2 and 4. Here, we need to revise the adaptation procedures and potentially the

requirements to resolve the conflict. In this example, we only apply Requirements 2 and 4 in a

non-emergency situation and only apply Req. 5 in an emergency. In some cases, interference is not

possible, e.g., when adaptation procedures are defined over disjoint components or the adaptation

procedures only monitor, without adapting, common components. In these cases, we should be

able to show that the satisfaction of requirements is preserved through compositionality theorems.

The challenge of attaining a compositional modelling framework for the tractable verification

of SA CPSs is because of the complexity of SA CPSs.

1.4 Research Question

The main research question that we address in this thesis is

How can we tackle the complexity of modelling and verifying SA CPSs?

We propose a modelling and verification methodology that enables a system designer to tractably

verify the satisfaction of security requirements in realistic SA CPSs. In particular we focus on smart

buildings, where the layout is static i.e., components, like rooms or access points, are not added and

removed dynamically. This is achieved by proposing a framework that support compositionality.

The methodology , despite being manual, comprises software engineering techniques that guides a

system designer to systematically and effectively attain a compositional model for SA CPSs. As

we shall see in later chapters, the modelling process is based on topology and topological relations.

We also propose a verification process that decomposes the task of verifying the satisfaction of

security requirements in SA CPSs to reduce the complexity of realizing the verification. Finally,

the proposed modelling methodology allow us to leverage existing verification tools and therefore

avail of the years of experience in optimizing and advancing the verification technique.

1.5 Contributions

We answer our research question through two high-level contributions. To achieve the high-level

contributions, we also present a number of technical sub-contributions.

A modelling methodology for SA CPSs This methodology is derived through software

engineering techniques to tackle the complexity of defining a compositional model for SA CPSs.

From this perspective, technical contributions include

1. A novel process language called Adaptive CSP (ACSP) to compositionally model SA CPSs.

The process language extends CSP with high-level constructs for specifying adaptation events

and procedures of CPSs. The process language ACSP reduces the efforts required to verify the

satisfaction of requirements over a subset of the CPS. This extension to CSP also enable us

8 CHAPTER 1. INTRODUCTION

to compose adaptation procedures to propose an iterative verification process for effectively

proving the satisfaction of a number of requirements.

2. We also define a concrete representation for ACSP, which we call ACSPM . The syntax for

ACSPM is inspired from CSPM [59], the machine readable dialect of CSP [70].

3. A requirement-driven adaptation approach that aims to ensures the satisfaction of safety

requirements. In our framework, adaptation emerges from the implicit composition of adap-

tation procedures enforcing each requirement.

4. A CPS topology-driven technique to systematically identify the smallest set of components

that affect the satisfaction of a requirement, over which an adaptation procedure enforcing

the requirement would operate. This work has been published in [17].

5. A modular encoding for adaptation procedures that helps a system designer experiment and

compare alternative adaptation procedures. We also propose generic properties an adaptation

procedure (in our encoding) should possess. This work has been published in [16].

6. An evaluation of our framework through a second case-study: a smart stadium [92].

A practical verification process One of the persistent challenges faced by the SA systems

community is the lack of a practical verification techniques [107, 42, 32]. In this thesis, we present

a compositional verification process to verify the satisfaction of security requirements in SA CPSs

using existing verification tools. The following technical contributions have been implemented to

achieve this goal,

1. A translation for a subset of ACSP to CSP, the input language to FDR. We show this

translation is adequate by showing the translation is a strong bisimulation and that it models

an interesting class of SA CPSs by encoding the art gallery and smart stadium case-studies.

2. A theory of compositionality that guarantees verification results proven over different subsets

of an CPS which localizes adaptation are preserved for the whole system.

3. An extension of this theory to derive a technique to systematically verify the satisfaction of

requirements by the composition of adaptation procedures with potentially overlapping scope.

We identify cases where interference is not possible and prove that requirement satisfaction

in such cases is preserved by composition, thus allowing us to avoid re-verifying the composed

system.

4. The automation of the translation from ACSP to CSP with a prototype tool. This tool

integrates FDR to present a complete verification process. The input language for the tool

is the concrete syntax of ACSP, ACSPM . The concrete syntax augments ACSP with idioms

inspired from functional programming languages to alleviate the task of encoding realistic

problems.

1.6 Limitations and Assumptions

In this thesis, only requirements that can be expressed in the modelling formalism employed by

the methodology can be verified. Our framework does not take into account that the probability

of certain events occurring is known. The utilization of known probabilities can improve the

effectiveness of the verification process. For example, a SA security system might have established

1.7. ORGANISATION OF THE DISSERTATION 9

statistics about the possibility of a hacking or burglar attempt and the probability of bypassing

specific security measures like breaking a password. There are other interesting and relevant classes

of requirements that would be worth exploring as a future research direction of this thesis. This

include time-related requirements, e.g., requiring HVAC updates to be installed within 3 hours, and

constraints on physical parameters, e.g., verifying that the temperature and energy consumption

in a room is always within a pre-defined range.

We also make a number of other assumptions. Firstly, we assume that the structure of the

system, i.e., the rooms and assets, is static. The verification of systems where components can

be added and/or deleted autonomously at runtime is left as future work. Secondly, the mapping

between requirements and specifications cannot be verified in our methodology. The requirement

is the english description of the intended behaviour, whereas the specification is the formal pro-

cesses encoding the intended behaviour. There is always the risk that the specification does not

faithfully encode the requirement. It is the responsibility of the system designer to ensure that the

specifications and requirements are close to each other as much as possible such that the mapping

from the requirements to the specifications is clear. Lastly, we assume that requirements describe

the intended behaviour of a small part of the system only and this enables the effective application

of compositional reasoning that scales our verification approach. The effective verification of global

requirements is left as future work.

1.7 Organisation of the Dissertation

The dissertation is structured as follows.

Chapter 2: In this chapter, we first overview the literature about SA systems, where we discuss

related work regarding the design-time and run-time verification of SA systems. In the second

part of the chapter, we present the main syntax and semantic models of the process language

Communicating Sequential process (CSP) [70].

Chapter 3: We present a high-level model for centralized SA systems, which decouples adap-

tation patterns from the descriptions of base systems and adaptation procedure. A distinct au-

tomaton pinpoints when adaptation must happen. Using this framework system designers can

experiment with different adaptation patterns, without modifying the base system or adaptation

procedure to discover correct and efficient patterns. We provide an adequate translation into FDR

and also prove that self-adaptive systems correspond to standard models of computation. We

illustrate the use of our framework through a use case of a self-adaptive system of autonomous

search-and-rescue rovers.

In the remaining parts of the dissertation, we present a methodology for compositional mod-

elling and verification of SA CPS.

Chapter 4: We first overview our methodology to compositionally model and verify the sat-

isfaction of security requirements in SA CPSs. In this chapter, we summarize the overall process

and expanded on in subsequent chapters]in subsequent chapters we focus on individual steps. We

also present the main syntax and semantic models for our novel process language, which we call

the Adaptive CSP process language. The process language is inspired from CSP but extended

with higher-order communication constructs to concisely model adaptation.

10 CHAPTER 1. INTRODUCTION

Chapter 5: We investigate how the topological layout and relations between components of a

CPS guide a system designer to systematically explore different levels of granularities (i.e., grouping

of components) for satisfying a requirement. We also present a systematic technique for encoding

adaptation procedures that aims to ensure the satisfaction of a requirement. We motivate this

technique through the art gallery example presented in section 1.2 by providing an encoding in

Adaptive CSP.

Chapter 6 We show how the satisfaction of requirements can be verified using FDR by consider-

ing only a relevant subset of the components. In this chapter, we present an adequate translation

where a small subset of the system encoded in Adaptive CSP is translated to CSP, the input

language of FDR to verify the satisfaction of each requirement. We also present the theory of com-

positionality for our verification technique that guarantees verification tasks proven over small,

disjoint subsets of CPS components hold for the entire system.

Chapter 7: In this chapter we discuss the verification of requirements when adaptation pro-

cedures are composed together. We extend our theory of compositionality results to investigate

potential interference between different types of adaptation procedure overlaps. In some cases, in-

terference is theoretically not possible—e.g., when adaptation procedures monitor, without chang-

ing, overlapping components—thus allowing us to skip re-verification tasks for the composition.

We present a systematic approach to compose adaptation procedures, and verify where needed the

relevant system requirements.

Chapter 8: We discuss the development of a tool that implements the translation from ACSPM ,

a concrete syntax for Adaptive CSP, to CSPM , the input language of FDR. The concrete syntax

extends Adaptive CSP with functional programming languages constructs to improve the usability

of our framework in realistic examples.

Chapter 9: We evaluate the applicability of our modelling methodology for SA CPSs and the

practicality of the verification approach through a different case study, that of a smart stadium

[92].

Chapter 10: We conclude the dissertation by summarizing the main results and briefly outline

future research directions that would strengthen the contributions of the thesis.

Chapter 2

Background

2.1 Process Languages

Compositionality entails the divide-and-conquer or decomposition of complex problems into smaller

more-manageable sub-problems. This techniques has been widely-utilized by the software verifi-

cation community to achieve scalable verification. Process algebras like CCS, CSP or π-calculus

have been proposed to compositionally model software and different verification techniques like

refinement-checking [59] and behavioural equivalence [122, 44] have been proposed to compositional

verify process languages. CCS [90], CSP [20] and π-calculus [108] were introduced to investigate

small concurrent systems. The communication of behaviour cannot be concisely encoded in such

languages. This motivated the introduction of a new class of process languages, known as higher-

order process languages, e.g., CHOCS [119] and HOπ [109]. These languages are very powerful and

expressive, but we lack tools to reason about higher-order processes. In this thesis, we identify a

strict subclass of higher-order processes in our novel process language that can be encoded in the

first-order process language CSP.

Here, we overview Communicating Sequential Processes (CSP) and refinement-based verifica-

tion techniques.

CHid

P
e−−−→ P ′ e ∈ X

P \ X τ−−−→ P ′ \ X

CTrue
b = tt

if b then P else Q
τ−−−→ P

CPar

P
e−−−→ P ′ e /∈ X

P ‖
X

Q
e−−−→ P ′ ‖

X

Q

CSyn

P
e−−−→ P ′ e ∈ X Q

e−−−→ Q′

P ‖
X

Q
e−−−→ P ′ ‖

X

Q′

CInt

Q
e−−−→ Q′

P 4 Q
e−−−→ Q′

CRdc

P
e−−−→ P ′

P 4 Q
e−−−→ P ′ 4 Q

CPrf

e→ P
e−−−→ P

CChx

P
e−−−→ P ′

P 2 Q
e−−−→ P

CIcx

P u Q τ−−−→ P

CEsc

P
e−−−→ P ′ e /∈ X

P \ X e−−−→ P ′ \ X
CLet

letX(~y) = P withinX(~e)
τ−−−→ P [~e/~y][letX(~y) = P withinX/X]

Figure 2.1: CSP Operational Semantics (omitting symmetric rules)

11

12 CHAPTER 2. BACKGROUND

2.1.1 Communicating Sequential Processes (CSP)

CSP, introduced in 1978 by CAR Hoare, formally captures the notion of concurrent behaviour,

where the low-level scheduling details of interleaving are abstracted over [20]. The main focus of

the language is the communication between a process and its environment, which is defined in

terms of events over a predefined alphabet. Here, we consider only a subset of the language. We

let P,Q range over CSP Processes, x, y range over variables and e range over events. We let Σ

represent the set of all events. defined as follows:

P,Q ::= e→ P | P 2 Q | P ‖
A

Q | SKIP | STOP | if b then P else Q

| letx(~y) = P withinQ | P [[e2/e1]] | P 4 Q | P \ A | P u Q | x(~e)

The prefix construct e→ P means that the process P is guarded by event e. External (deter-

ministic) choice P 2 Q allows the environment to choose between synchronising with P or Q. In

the case where both choices are enabled, the choice is resolved non-deterministically. The internal

(non-deterministic) choice is written as P u Q. The processes letx(~y) = P withinQ and x(~e)

represent the let and application constructs respectively, e.g.,

letx(y) = ey → x(y + 1) withinx(1)

The processes if b then P else P , P \ A and P [[e2/e1]] represent conditional, action hiding, and

event renaming from e1 to e2. The process and let declaration. The processes SKIP and STOP

represent a successful termination and the deadlocked process, respectively. Interleaving P ‖
A

Q

requires P and Q to synchronise on actions in the set A but requires no synchronisation on events

not in A. An interrupt process, written P 4 Q, propagates any event from P without affecting

the interrupt, but if Q ever performs a visible event then this removes the interrupt and P , and

the entire process behaves as Q.

In fig. 2.1, we outline the operational semantic rules for CSP. The rule CHid hides an event e from

its environment; in rule CEsc such an event is propagated to the environment. The condition rule

CTrue and its (omitted) symmetric rule evaluates a conditional; CPar and its (omitted) symmetric

rule propagates an event e of P over a parallel composition P ‖
E

Q, provided e /∈ E. The rule

CSyn synchronizes such an event. In rule CInt, a process P is interrupted by a process Q; in rule

CRdc the interrupt is propagated forward. CPrf annotates the transition by an event e, CChx

can transition to either a process in P or Q. Finally, rule CLet unfolds a recursion by an internal

transition, during which the formal parameters of the recursive process ~y are replaced by the actual

parameters ~e, and the recursive variable X is replaced with the recursive process itself.

letx(y) = ey → x(y + 1) withinx(1)
τ−−−→ ey → x(y + 1)[1/y][letX(y) = ey → x(y + 1) withinx/x]

=e1 → letx(y) = ey → x(y + 1) withinx(1 + 1)

From the parallel construct P ‖
A

B we derive the alphabetized parallel construct. We write

P A‖B Q to mean P and Q can only perform the events in A and B respectively and they

2.1. PROCESS LANGUAGES 13

synchronize on the set of events A ∩B,

P A‖B Q =

(
P ‖
Events\A

STOP

)
‖

A∩B

(
Q ‖
Events\B

STOP

)

If ev(P) ⊆ A and ev(Q) ⊆ B then the following statement holds,

P A‖B Q = P ‖
A∩B

Q

2.1.2 Semantic Models

The three main semantic models of CSP are trace (T), stable failure (F) and failure-divergence (FD)

models.

Trace Semantic Model (T) Let a trace be a potentially infinite sequence of events denoted by

t = 〈e1, e2, . . .〉 where 〈〉 is the empty trace. We say a process P has a trace t = 〈e1, e2, e3, . . .〉
written as P

t−−−→ iff it can communicate all the events in the trace in order i.e., e1 followed by

e2 and so on. Formally, P
t−−−→ is the reflexive and transitive closure of P

e1−−−→ e2−−−→ We

define the set of traces T for a process P as

traces(P) = {t | P t−−−→ }

The set of traces allows us to define the first semantic model for CSP. We say Q refines P by the

trace model, written as

P vT(CSP) Q iff trace(Q) ⊆ traces(P)

This is useful for specifying safety properties: nothing bad ever happens, i.e., all the traces of

implementation Q are in the traces of the specification P .

Failure Semantic Model (F) was introduced to verify liveness properties, where the violation

is the absence of a suffix leading to a desired state. Here, we also check that both the process and

the specification deadlock on the same state. Consider the following two processes where STOP

denotes a deadlock termination rather than a successful termination (i.e., SKIP),

P = letX = a→ X withinX

Q = (letX = a→ X withinX) u STOP

The trace model does not distinguish the two processes as both define the language a∗. However,

the failure semantic model does distinguish the processes, because Q can deadlock on STOP

whereas P never reaches a deadlock state.

We define the set of refusal of a process P to be the set of events that are not enabled from process

P . This allows us to define the set of failures of a process P . A failure is a pair (t,X) where t is a

trace and X is a set of first-order events refused after P performs t.

refusal(P) = {X ⊆ Σ | P 6 a−−−→ and a ∈ X}

failures(P) = {(t,X) | P t−−−→ Q and X ∈ refusal(Q)}

We say that P refines Q by the failure model iff the failures and traces of Q are contained in the

14 CHAPTER 2. BACKGROUND

failures and traces of P

P vF(CSP) Q iff failures(Q) ⊆ failures(P) and traces(Q) ⊆ traces(P)

Failure-Divergence Semantic Model (FD) is the last semantic model we consider for CSP.

The failure-divergence model also distinguishes between livelock and deadlock process. A process

is livelocked or divergent if the process can perform an infinite sequence of internal events τ but

no observable event.

Q0 ⇑= for all n ∈ N. ∃Qn+1. ;Qn
τ−−−→ Qn+1

div(P) = {t ; t′ | P t−−−→ Q and Q ⇑}

P vFD(CSP) Q = failures(Q) ⊆ failures(P)

and div(Q) ⊆ div(P)

The advantages of all three semantic models presented above are that they are congruent and

transitive. Congruence means that for any context C and semantic model M ∈ {T,F,FD},

P vM(CSP) Q implies C [P] vM(CSP) C [Q]

while through transitivity, we infer that

Spec vM(CSP) Q and Q vM(CSP) Impl implies Spec vM(CSP) Impl

This allows us to have a potentially iterative verification approach from the specification down to

the implementation also known as stepwise refinement.

2.1.3 Algebraic Laws

From [105], we list some of the algebraic laws founded in CSP, that are relevant to this thesis.

Equivalence between two processes means that an external observer cannot distinguish between

the two processes. This is known as strong bisimulation. In CSP, the notion of divergence is

important especially for the failure-divergence semantic model and thus weak bisimulation is not

applicable. In this dissertation, we refer to strong bisimulation as bisimulation.

Definition 2.1.1 (Bisimulation relation in CSP). The relation R on CSP processes P1 and P2 is

said to be a (strong) bisimulation iff P1RP2 and

1. If P1
a−−−→ P ′1 implies there is a P ′2 such that P2

a−−−→ P ′2 and P ′1RP ′2

2. If P2
a−−−→ P ′2 implies there is a P ′1 such that P1

a−−−→ P ′1 and P ′1RP ′2

♦

Two processes are said to be bisimilar P ∼ Q, iff there is a bisimulation relation R that related

them (P,Q) ∈ R. The relation ∼ is the largest bisimulation.

2.2. DESIGN OF SELF-ADAPTIVE SYSTEMS 15

Definition 2.1.2. In later chapters, we assume the following list of equivalence laws for CSP

P = (P ‖
A

P) 〈‖−Identity〉

provided ev(P) ⊆ A

(P X‖Y Q) = (Q Y ‖X P) 〈A‖B−symm〉

(P X‖Y Q) X∪Y ‖Z R = P X‖Y ∪Z (Q Y ‖Z R) 〈A‖B−assoc〉

(P A‖B Q) \ Z = (P \ Z ∩A) A‖B (Q \ Z ∩B) 〈hide− A‖B−dist〉

provided A ∩B ∩ Z = ∅(
P ‖
A

Q

)
\ Z = (P \ Z) ‖

A

(Q \ Z) 〈hide− ‖
A

− dist〉

provided A ∩ Z = ∅

♦

In Section 7.2 in the book [105], Roscoe shows that the relation = is a strong bisimulation

2.1.4 Tools Available

A number of tools have been developed to reason about CSP processes. Here, we provide a non-

exhaustive overview of some of the tools based on CSP:

FDR [59] is an automatic refinement tool for the machine readable dialect of CSP—CSPM [110].

CSPM has been introduced to encourage the use of CSP to verify real-world systems. CSPM

extends CSP with constructs and shorthand idioms from functional programming languages, like

Haskell and Miranda, to alleviate the complexity of encoding real-world processes. We can check

that an implementation refines a specification according to a semantic model. We can also verify

if an implementation is deterministic, deadlock free or livelock free (divergence free). We use this

tool in subsequent chapters to verify our examples.

Process Analysis Toolkit (PAT) [117] is a framework for reasoning about concurrent processes

in CSP, probabilistic concurrent processes (probabilistic CSP) and real-time concurrent processes

(Timed-CSP). PAT implements model-checking techniques to verify deadlock-freedom, refinement-

checking, divergence-freedom akin to FDR. Moreover processes are model-checked against LTL

properties [117] in PAT.

CSP Prover [73] is a theorem-prover for CSP processes utilizing the theorem-prover Isabelle

[97] for reasoning about infinite state-space processes.

2.2 Design of Self-Adaptive Systems

Self-adaptation is a system’s capability to autonomouslydetect when its operational environment

changes and deploy counter-measures to guarantee the continued satisfaction of requirements in

spite of changes, e.g., opening all the doors to and from rooms in the art gallery in the case of an

emergency. The importance of exploded in recent times due to the wide range of knowledge and

devices’ versatility that systems need to manage. Problems that are widely researched regarding

SA systems that are relevant to this thesis include: 1. the verification of SA systems 2. engineering

processes to model SA systems [42, 127].

16 CHAPTER 2. BACKGROUND

An CPS is a system where the behaviour is determined by both the digital processes and the

physical aspects of the environment in which it operates. They rely on self-adaptation to satisfy

requirements.

The definition of a self-adaptive systems is not precise. Cheng et al. define a self-adaptive

system as a system that is able to adjust its behaviour in response to their perception of the

environment and the system itself [32]. Brun et al. [21] argue that the self prefix indicates that the

system decides autonomously (i.e., without or with minimal interference) how to adapt or organise

to accommodate changes in its context and environment; whereas Esfahani et al. emphasise the

”uncertainty in the environment or domain in which the software is deployed as a prevalent aspect

of self-adaptive systems” [51].

A widely accepted view of SA systems is that such systems comprises at least two modules:

the base system and the adaptation procedure. The base system represents the systems core func-

tionality that is adapted autonomously at runtime, whereas the adaptation procedure localizes all

adaptation functionality. The adaptation procedure is sometimes referred to as adaptation man-

ager or control loop. In this dissertation, we use the term adaptation procedure to refer to the

module in the system that implements the adaptation functionality. A prominent well-established

architecture to model an adaptation procedure is known as the MAPE-K feedback loop. [75, 36]

The MAPE-K feedback loop is a closed feedback loop comprising the following four steps: 1. Moni-

tor the base system and context for changes 2. Analyze whether a change requires an adaptation (of

the base system behaviour) 3. Plan the adaptation 4. Execute the adaptation, under a knowledge

base K containing the contextual information. The environment or context contained in K refers

to all the information we know about the system augmenting the systems state. This includes log-

ging information, system topology and resources or assets status. One can view the environment

as the part of the system that cannot be directly altered by the adaptation procedure but can only

be monitored. A change in the environment may still require an adaptation of system’s behaviour,

e.g., a breakdown in a resource would need a fail-over procedure, which is implemented through

self-adaptation.

In fig. 2.2, we present a taxonomy of the characteristics of adaptation procedures presented in

[82].

Adaptation Triggers As summarized in [82], adaptation can be either reactive or proactive. In

reactive adaptations, the adaptation procedure reacts to events or changes after they happen, e.g.,

[10], whereas in a proactive approach, the SA system aims to prevent the occurrence of threats or

change e.g., [93, 94, 120]. The advantage of proactive adaptations is the absence of interruption

for users because adaptation is performed before it is actually needed. This also gives the system

more adaptation options. On the other hand, due to its predictive nature, proactive adaptation

is more complex to implement in comparison to reactive adaptation and may result in suboptimal

system behaviour as a side-effect of minimizing threats. An SA system may opt for a combination

of proactive and reactive adaptation. The difference between the adaptation triggers is localized

in the Analyse step within the MAPE feedback loop.

Change This distinguishes between different types of adaptation. Adaptations fall within three

camps: behavioural, structural or contextual change. A behavioural change implies a change in

the system behaviour. Here, an adaptation procedure communicates new behaviour to the base-

system. Structural adaptation implies the addition and/or removal of components at runtime; and

in contextual adaptation, the change is executed on the context itself. Even though the monitoring

of the context is a fundamental step in the MAPE-K feedback loop, changing the context as an

2.2. DESIGN OF SELF-ADAPTIVE SYSTEMS 17

Adaptation
Procedure

Adaptation Trigger
Proactive

Reactive

Why

Change in Context

Change in System

User Preference
Change

Behavioural

Structural

Context
Degree of
Decentralization

Centralized

Decentralized

Hybrid

Decision Criteria

Rules

Utility

Goals

Models
Where

Application

Middleware

Communication

Context
Coupling

External

Internal

Figure 2.2: Design decision for engineering a self-adaptive systems from [82]

adaptation option has not been widely investigated. In this document, we focus on behavioural

changes, where the adaptation procedure communicates algorithms or system behaviour to different

parts of the base-system. Even though our process language can potentially encode structural

changes, our verification approach cannot handle cases where components are added or removed

dynamically. The modelling and verification of structural and contextual changes is left as future

work.

Decision Criteria These criteria help a system designer understand adaptation—why and how a

system adapt. A system designer decides the adaptation outcome, either through a utility function

e.g., [95, 28, 29, 71, 55, 94], a set of rules or goal model e.g., [33]. In this document, we do not

address this criteria. It is left up to a system designer to implement the adaptation decision process.

Where Here, we identify the level at which we implement the self-adaptive capabilities e.g.,

adaptation can be implemented at the network level or application level. These criteria does not

apply in our thesis, because we do not implement the SA system.

Why Adaptation is an approach to ensure the continued satisfaction of requirements in the face

of a changing operational environment. Identifying the source of possible changes is crucial for

the monitoring and planning phases of the MAPE-K feedback loop. A change can be a change in

the environment (events out of the system’s control), a change in available resources (e.g., a server

goes down) or a change in user preferences. For the monitoring phase, foreseeing potential changes

guides the system designer to identify what needs to be monitored; whereas for the planning phase

the type of change guides the adaptation decision. Thus, an SA system needs to adjust its

behaviour to satisfy the requirement when the change occurs.

18 CHAPTER 2. BACKGROUND

Coupling Two approaches are identified for implementing adaptation procedures. One approach

is to have the adaptation functionality intertwined with the system functionality and another

approach is to modularize the adaptation functionality. The former is referred to as an internal

adaptation procedure whereas the latter is known as an external adaptation procedure. One major

disadvantage of the internal approach is that adaptation becomes a cross-cutting concern that may

impede the scalability of the system. The lack of separation of concerns makes the potential system

also hard to understand and maintain. In our approach, we encode external adaptation procedures.

Degree of decentralization Another aspect of adaptation procedures is the degree of decen-

tralization. In a centralized SA system, there is one adaptation procedure that implements all the

adaptation functionality. Such adaptation procedure tends to have a complete view of the system to

determine the most optimal adaptation. This suffices for small-systems, however for large-systems,

a centralized adaptation procedure becomes a bottleneck and a single point of failure. Therefore a

decentralized approach can improve scalability and reliability, where the adaptation procedure is

decomposed and deployed at the level of each component. For CPSs, adaptation may need to be

implemented over a group of components, making a hybrid of the two approaches more desirable.

Our encoding is flexible enough to cater for all three cases. We allow the adaptation procedure to

be placed around different grouping of components.

The website [2] contains a collection of examples of SA systems and model problems that have

been used extensively within the community. Here, we overview a non-exhaustive list of SA systems

found in the literature. Garlan et al. in [57] introduces znn.com which simulates a self-adaptive

web server of a news site. Camara et al. in [29] and Moreno et al. in [94] evaluate their frameworks

using a web-server as a case-study. Another case-study widely used in the literature is the traffic

routing problem introduced in [129]. Authors in [85, 88, 50, 123, 24] evaluate their frameworks

through a variant of the traffic routing problem. Related to transport, SA systems implementing

unmanned autonomous vehicles (UAV) introduced in [77] have been used in the evaluation of

[23, 16, 112, 78, 99, 128]. Smart spaces like warehouse, healthcare centres and buildings have been

studied extensively as case-studies for SA systems in [48, 121, 120, 52, 128]. Assisted living and

the applicability of self-adaptive capabilities in healthcare software systems have been studied in

[27, 95, 104, 116].

2.2.1 Decentralizing the Adaptation Procedure

Today systems are expected to work in an open environment. For SA systems, this means that

adaptation procedures do not have a complete view of the context to plan the most optimal global

adaptation. Adaptation decisions now target a small part of the system and checks are put in place

to make sure that adaptations satisfy both local and global requirements. This class of SA systems

motivates the drive for systematic engineering techniques for building decentralized SA systems.

Even though models for SA systems supporting compositionality are the norm [85, 22, 6, 84, 78, 48].

Such literature neglects to propose techniques to attain a compositional model or address explicitly

the interference caused between different adaptation procedures in a decentralized SA systems

[127, 126, 42].

Weyns et al., in [126], summarise the key challenges for designing decentralized SA systems. The

challenges are motivated through two case-studies—a traffic monitoring application and a quality

of service optimization system. The challenges are grouped under five main umbrella terms:

2.2. DESIGN OF SELF-ADAPTIVE SYSTEMS 19

Uncertainty In a cyber-physical environment, the behaviour of physical components is unpre-

dictable. As a result the system behaviour may become inconsistent with the environment inter-

mittently. The volatility of SA systems is increased due to the lack of a centralized adaptation

procedure that has a complete view of the environment.

Overhead Decentralized adaptation procedures need to co-ordinate with each other to ensure

that global requirements remain satisfied. The co-ordination introduces additional overheads in

terms of computational efficiency that an SA system may not be able to tolerate.

Conflicting Goals The outcome of adaptation procedures, trying to optimize the behaviour of

local components of a CPS, may create interference at a global level. For instance, an adapta-

tion procedure may hog resources from other adaptation procedures or the sub-system behaviour

may conflict with other sub-systems behaviours. Approaches to reason about global goals and

adaptation procedures cooperation in a decentralized systems are still in demand.

Systematic engineering Due to the inherent complexity, design patterns for modelling coor-

dination between adaptation procedures are needed.

Guarantees The challenge for verifying decentralized SA system is increased merely as a by-

product of the above challenges.

In our work, we tackle the last three challenges. We present a modelling process for decentralized

SA CPSs that aims to minimize the coupling between adaptation procedures. We also present a

verification approach to guarantee that adaptation procedures ensures the satisfaction of local

requirements without interfering with the satisfaction of global requirements. We showcase that

our verification approach can be applied to realistic SA CPSs through two case-studies.

Weyns et al., in [127], consolidate structural design patterns for decentralized SA systems.

The authors also present guidelines for choosing a design pattern based on system priorities. For

instance, for a self-optimizing system, a centralized approach may be the most appropriate as

adaptation can be determined with a complete view of the system; for scalable SA systems the

choice of design pattern depends on the volume of information that needs to be shared between

adaptation procedures. The system designer must strive to find a balance between decentraliz-

ing the adaptation procedure and minimizing the communication costs between the adaptation

procedures. In a robustness-oriented SA system, a decentralized adaptation procedure removes

the bottleneck created by having a single centralized control loop and checks are put in place to

guarantee the continued satisfaction of requirements when one of the adaptation procedures cease

to function. Efficient response tends to favour decentralized adaptation procedures, however this

may result in sub-optimal responses due to the partial view adaptation procedures have of the

context. Abuseta et al., in [5], present a design pattern for each step in a MAPE-K feedback loop

for decentralized SA systems. The design patterns target existing systems adding self-adaptation

functionality. The approach is motivated using UML – a semi-formal modelling approach that may

not be suited to verify behavioural properties.

Hachicha et al. [65, 66], propose design patterns for designing decentralized adaptation proce-

dures in Event-B. The work defines two composition operators for overlapping and non-overlapping

adaptation procedures. The authors also overview how different patterns for SA systems (e.g.,

slave-masters, hierarchical presented in [127]) can be composed to preserve the compositionality.

They focus on structural adaptation whereas in this thesis we focus on behavioural adaptation.

20 CHAPTER 2. BACKGROUND

Moreover, the composition guides a system designer to building SA systems bottom-up with scal-

ability and compositionality not being the main concerns. Our model aims to achieve a tractable

verification using existing techniques and thus compositionality within the model is of the utmost

importance.

Calinescu et al. present the DECIDE framework—a runtime quantification verification-driven

approach for decentralized SA systems [26]. The authors evaluate how runtime quantitative verifi-

cation can support the dynamic decentralization of adaptation functionality and provide a practical

verification approach for SA systems. In our approach, we focus on design-time verification and

our decentralization approach is static determined manually by the system designer.

Numerous works to decentralize the adaptation procedure have been proposed from the dis-

tributed systems community e.g., based on multi-agent approaches [46, 56, 118] or service-based

systems [96]. These works aim to alleviate the task of implementing the planning phase of a decen-

tralized adaptation procedure. This goal is different from ours, as our aim is to verify the overall

correctness of SA systems with decentralized adaptation procedures.

2.2.2 Topology-Aware Self-Adaptive Systems

Compositionality is a necessity when modelling and verifying SA CPSs. An approach for decompos-

ing CPSs is system topology. By the topology of CPSs, we mean the structures and characteristics

of both physical and digital components [102, 120]. Topology is the study of structures and spaces

and how different spaces are connected [67]. A space can either be a physical entity like an agent,

container or a digital entity like a connection point, the layout ofaccess domains to valuable infor-

mation. The connections we consider in this document include 1. connectivity which describes

how two spaces are connected e.g., rooms may be connected by a stairs or a door. This allows

us to define other properties like 2. proximity, how quickly can one transition from a space to an-

other space, and 3. reachability, is there a connection between the two spaces. 4. We also consider

containment; for example rooms are contained in floors, and access domains may be contained in

other access domains.

Example 2.2.1. Consider the art gallery from section 1.2. Here the topology consists both

of physical and digital entities. The physical entities are rooms A,B,D in the exhibition area,

connecting rooms like the corridor 1 and the stairs and the upper floor consisting of the restoration

area and computer room. The doors between the rooms represent a connectivity relation between

the rooms. In the art gallery example, we can also define containment relations e.g., rooms A,B,D

are contained in the exhibition area and in turn the exhibition area and corridor 1 are contained in

the lower floor. Containment aids us to decompose the system, first into two floor, then the floors

into different sections and sections into rooms. From the topology we infer that a visitor may go

from room D to room B in at least three steps: room D to corridor 1, then to room A and finally

room B. : the closer an unauthorized user is to an asset, the higher the probability of a violation.]

The art gallery also has a digital access point that the HVAC component connects to. We define

a digital connectivity between the two components. We can also define containment relation where

the HVAC is contained in the restoration area and the access point is contained in the computer

room. Note how CPS blurs the boundary between the digital and physical worlds and how through

topology we can define the same relations for both physical and digital components and naturally

connect digital elements with physical components. ♦

Topological knowledge has been applied by software engineering communities to distributed

systems [37], network structure [124] and engineering SA systems [120, 102, 121, 103]. CPSs rely

2.3. VERIFICATION OF SELF-ADAPTIVE SYSTEMS 21

on the interplay between physical and digital components to achieve its goal. Because the same

topological relations apply to both physical and digital entities, Pasquale et al. overview how

topology provides a natural composition for CPSs [102]. Topological changes, like the movement

of agents or assets, may introduce or eliminate a threat to the satisfaction of a requirement and

an adaptation may be needed to react to the new threat. Topology can guide a system designer

in identifying changes that require adaptation [83].

2.3 Verification of Self-Adaptive Systems

Verification techniques for SA systems may be classified as: design-time or run-time verification.

The main challenge in the former is trying to predict the whole state space for all the changing

components, while runtime verification, even though the verification process focuses on the state

the system is in at that point in time, the verification process has a tight deadline to return results.

In this thesis, we understand runtime verification to mean heuristics based on runtime verification

techniques to infer an adaptation that ensures the satisfaction of a specification, rather than the

standard definition of runtime verification where we check that the execution of our application

satisfies a specificationf. Thus, both approaches aim to reduce the search space of verification to

to be effective. Here, we overview the main literature regarding both design-time and run-time

verification of SA systems and how the complexity of verifying SA systems is addressed.

2.3.1 Design-time verification

The objective of design-time verification is to provide guarantees before a system is deployed and as

such the verification process needs to predict and verify all systems states. For an SA system, such

a state space may be huge and as stated earlier, this may lead to verification being computationally

infeasible. Techniques have addressed this problem through compositional frameworks.

CSP-based approaches [62, 10, 63] discuss how CSP can compositionally model SA systems.

Göthel et al. [62] overview how to model different design patterns for SA systems using CSP.

Bartels et al. [10] study how SA systems can be modelled using CSP. The framework explicitly

separates adaptive and non-adaptive behaviour. The authors discuss the limitation of using CSP

because CSP does not support dynamic processes. The authors simulate dynamic process creation

by identifying all dynamic processes and putting a guard around such processes. The activation of

the process is encoded by setting the appropriate guard to true at runtime. This work is extended

by Göthel et al. [63] to include the notion of time and temporal dependencies. Our process lan-

guage supports dynamic processes, whereas for our verification approach we identify a subset of

the processes where the dynamic behaviour can be modelled in FDR. We guard dynamic processes

by distinguished CSP events instead of boolean expressions. Our work focuses on attaining com-

positional verification, which the above works do not address. Moreover, our framework enables

the effective exploration of adaptation procedures, which can be a valuable tool for designing and

verifying large-scale SA CPSs.

Session types and assume-guarantee reasoning have been used to model adaptation in SA

systems [15, 115, 39]. Bono et al. [15] discuss how global session types can implement adaptation

within a system. This provides a level of modularity for adaptation patterns, similar to our work.

However, adaptation is modelled as a fine-grained communication filter rather than behaviour mod-

ification. It is unclear what class of properties can be enforced with this technique. Our approach

22 CHAPTER 2. BACKGROUND

is different as it is based on a more natural encoding of self-adaptation with higher-order commu-

nications, giving us more flexibility to encode systems. We also use scoped locations, instead of

session types to achieve compositional reasoning, which enables us to leverage existing verification

tools such as CSP. Li et al. [98] extend Schroeder et al. [115] to model SA systems compositionally

using a probabilistic assume-guarantee framework. This requires special-purpose verification tool

which is still to be developed [40, 72]. Our framework leverages existing verification tool – FDR.

However, it would be interesting to explore possibilities of combining the two frameworks.

Automata-based Bruni et al. [23] use Maude to model each step in the MAPE-K feedback

loop as an abstract state machine (ASM), which can be model-checked using PVesta – a statistical

model-checker. Iftikhar et al. [85] use timed automata and timed computational tree logic (TCTL)

to model decentralized SA systems and specify temporal safety and liveness properties. These

properties are model-checked using Uppaal model-checker. Klarl et al. [79] present hierarchical

LTS (H-LTS) which can be model checked with the SPIN model-checker and translated automat-

ically into Java code. Zhao et al. [132] model SA systems using mode-automata and define mode

extended LTL (mLTL); an extension of LTL with context-dependent formulas for the specification

of systems. The semantics of mLTL is derived from that of LTL. Zhao et al. used the NuSMV

model checker as a verification tool. Jalili et al. [3] explore a method to model and verify at runtime

decentralized SA systems based on the HPobSAM framework, taking advantage of decentralisation

to achieve compositionality. In these works, the ability to decompose systems into independently

verifiable components is limited or non-existent. Our work provides a structured method to do this,

when requirements allow it, even in systems with components that are intricately linked with cyber

and physical relationships. In the automata-based models mentioned above adaptation events are

hard-coded in the system automaton. A change in the adaptation pattern requires potentially

significant change in the automaton. In contrast, our modelling methodology allow us to model

the system automaton by specifying may-adapt events at system states where adaptation is pos-

sible. Through composition with a separate adaptation automaton the precise adaptation pattern

is selected. This allows us to model sophisticated patterns such as time-triggered adaptation pat-

terns. More importantly, by localising the adaptation pattern, we can experiment with different

patterns without having to change the main system. Moreover, we present a modelling verification

methodology that through topology alleviates the task of verifying SA CPS. These work do not

tackle the complexity to systematically derive a compositional model and potential interference

cause by overlapping adaptation procedures working on the same part of the CPS.

Higher-order process languages with passivation Passivation has been introduced in pro-

cess calculi to enable the encoding of complex distributed systems with components that can be

stopped and resumed [113]. Bavetti et al. [19] propose the E-calculus, a higher-order calculus

inspired by the Calculus of Communicating Systems (CCS) without restriction and renaming. A

process P which is adaptable and located at a, is denoted as a [P]. The environment can at any time

communicate a context to a, installing the context at the a-location. This context may have holes

which are then filled by copies of P . This results in a highly dynamic language; verification in this

language would require new special-purpose techniques and tools to be developed. Moreover, the

absence of location restriction (scoping) severely limits compositional reasoning in this language.

Our framework is based on a more tamed higher-order language, which enables a translation to

existing verification tools based on first-order languages, as we have shown with our translation

to FDR. We make use of location restriction which allows us to consider parts of the system

where all locations are locally scoped. Such parts can be verified independently from the rest of

2.3. VERIFICATION OF SELF-ADAPTIVE SYSTEMS 23

the system, thus enabling useful compositional verification. We also utilise CSP-style multi-party

synchronisation rather than CCS binary communication, to improve the separation of adaptation

procedures, which must monitor the events in the system, from the system itself. Bavetti et al.

studies the (un)decidability of verifying safety and liveness properties with sub-variants of the lan-

guage. In contrast to these works, our framework is designed to encode adaptation patterns with

must-adaptation events. Moreover, we show that we can translate our encoding of CPSs to FDR

(and we envisage to other established tools), taking advantage of existing and future verification

tools.

Other process languages Debois et al. [45] define the DCR process language, a Turing-

complete declarative process language to model and verify runtime adaptation in a modular fashion.

They define a non-invasive adaptation in a decidable fragment of the language. An adaptation

is non-invasive if a new process is spawned during the adaptation. This sub-language is able to

represent systems where a new resource or new condition is introduced during adaptations. Lochau

et al. [84] define DeltaCCS, an extension of CCS to explicitly model behavioural variability in pro-

cesses. The authors also implemented a DeltaCCS model checker to verify the processes. In our

work, the process language is based on CSP-style synchronisation to achieve a better separation

of concerns as base system components are oblivious to the adaptation procedures that may affect

them. Moreover, our process language, based on higher-order communication can naturally encode

a larger class of systems.

PetriNets Zhang et al. [130] model SA systems as a collection of petri nets. Each petri net

has a single initial and final state. An SA system transition between petri nets through these

states. This work has been extended in [30] to incorporate temporal constraints by considering

the time-based petri nets [14]. In a similar fashion, Context petri Nets (CPN), introduced by

Cardozo et al. [31], allow dynamic reconfiguration of petri nets to model adaptation; CPN can be

then translated automatically into petri nets. Ding et al. [47] explain how neural networks can

be utilised to implement the adaptation function wiring petri nets together. petri nets are not

easily decomposable, and thus compositional verification is hard to achieve. Moreover, they do not

provide a fertile ground to explore alternative adaptation procedures at different granularities of

the system, as precise adaptation procedures are hard to encode and modify independently of the

base system model.

2.3.2 Runtime verification

Runtime verification techniques has been proposed as a heuristic to automatically derive adaptation

outcomes on the fly. The goal is to move the implementation of SA systems to runtime as much

as possible. A (possibly partial) system model is generated automatically at runtime to guide the

adaptation process . Here we overview the main techniques investigated for runtime verification of

self-adaptive systems.

Model-checking exhaustively checks that a model conforms to a temporal logic specification.

Runtime model-checking techniques proposed in [38, 88, 85, 61] investigate how model-checking

can be utilized at run-time to verify adaptation results. Tsigkanos et al. [120] use bigraphical

reactive systems [91] to represent topological relationships of cyber-physical systems. They apply

explicit state model checking to reason about security threats brought by changes in the topological

relationships that may occur at runtime. They also provide an automated planning technique to

identify security controls to prevent or mitigate discovered threats.

24 CHAPTER 2. BACKGROUND

MDP incorporate knowledge about the probability of event occurrences. Probabilistic model-

checking allows us to design a trade-off between accuracy and performance of the verification

process [95, 28, 29, 71, 55, 94]. Filieri and Tamburrelli [54] describe a number of strategies (i.e.

state elimination [41] and algebraic approaches [53]) for using probabilistic model checking at run-

time when the system behaviour is expressed as a Discrete Time Markov Chain (DTMC). These

strategies can only be applied when changes in the system representation can be expressed as dif-

ferent assignments to its parameters (e.g., different probabilities for the transitions of the DTMC)

and cannot cope with changes in the structure or behaviour of the system and its operating envi-

ronment. Sensitivity analysis guiding the adaptation process to determine which adaptation leads

to a more resilient and robust solution has been investigated in [29, 55, 85] . The logic Timed

Computational Tree Logic (TCTL) has been proposed to specify requirements to enable the rea-

soning about timing constraints in [9, 132, 85]. Balasubramaniyan et al. in [9] also discuss how

probabilistic model-checking can handle multiple objectives. Filieri et al. in [54] investigate the

performance of different probabilistic model-checkers to be used as a runtime tool to verify SA

systems. Our approach, unlike all these approaches is intended for design-time verification and we

focus on decomposition techniques for SA systems to optimize the verification process. Calinescu

et al., in [25], present the ENTRUST framework—a methodology for the systematic engineering of

self-adaptive systems with assurances. Their framework leverages existing design-time and runtime

probabilistic verification to ensure the satisfaction of requirements in a changing operational envi-

ronment. They outline a set of generic properties that adaptation procedures should possess (e.g.,

deadlock freedom) and propose a pattern for modelling SA systems that supports the synthesis

of adaptation procedures at runtime. The framework leverages the existing verification tools UP-

PAAL and PRISM to verify the correctness of synthesized adaptation procedures. Johnson et al. in

[74] present the INVEST framework for the compositional reverification of component-based sys-

tems. The framework augments existing assume-guarantee verification approaches with the ability

to reverify results when the structure of components changes with minimal efforts. The framework

focuses on the verification of probabilistic safety properties using PRISM. Akin to our framework,

the INVEST framework outlines a modelling methodology that enables the compositional verifica-

tion of properties with existing verification tools. However, we motivate our methodology using a

design-time verification tool instead of a probabilistic run-time model checking tool and we exploit

the topology of CPSs to attain a compositional model.

UML has been utilized to model structural adaptation and has been studied in [60, 131, 103, 68,

7]. Goldsby et al. [60] propose AVIDA-MDE, a model driven engineering tool that generates UML

of the desired target system. The tool can be utilised to implement advanced adaptation functions.

Zhao et al. [131] outline how UML can be model-checked at runtime against RT-OCL specifications

to implement self-optimisation. Pasquale et al. [103] present SecuriTAS – a tool for deploying

adaptive security measures based on goal models that are updated at runtime. Unlike this work,

we focus on design-time verification. Moreover, we model adaptation patterns independently from

the main system, which allows easier exploration and verification of alternative patterns. Hebig et

al. [68], explain how advanced feedback loops can be modelled with UML to expose problematic

architectural structures. Almorsy et al. [7] model system components and features using UML and

utilise refinement and aspect-oriented programming techniques to infer the security control that

must be enforced at runtime. These models focus on structural adaptation.

2.4. OTHER RELATED WORK 25

2.4 Other Related Work

In this section, we compare our work with the closest literatures [10, 19, 120, 74].

Bartels et al., in [10], present a CSP framework for the verification and implementation SA

CPSs. The authors present a refinement-based approach for specifying, verifying and automatically

implementing SA systems. An SA system is encoded as the parallel composition of adaptable

components. An adaptable component ACi comprises a set of boolean guards Gi = {gi1, . . . , gim},
adaptation events AEi = {aci1, . . . , acim}, such that the event acij implies that the component

ACi requests an adaptation on ACj . The CSP processes Cik represent the system behaviour for

component i that is enabled when guard gik becomes true. The adaptation is determined by

communicating with an event acij values that would set one of the boolean guards to true. An

adaptable components is encoded as

ACi(s) = 2
j∈{1...n}

acij?x→

 2
k∈{1...m}

{
gik(s, x) & (Cik ;ACi(s))


The verification is split into two parts. First, a system designer verifies that the encoding conforms

to a family of adaptation specifications (AS), which check that the system does not unintentionally

diverge or deadlock by utilizing the failure-divergence semantics,

AS vFD (AC1 ‖ . . . ‖ ACn) \ Events

Then the system designer verifies that the encoding refines the functional requirements of what

the system should do.

This framework has a number of differences from ours. Firstly, adaptation is realized by setting

the appropriate parameters—parameter adaptation whereas we extend CSP with higher-order

communication to express adaptation as the communication of behaviour—behaviour adaptation.

In our framework, we also distinguish between a base-system and an adaptation procedure. In our

modelling methodology, we aim to localize adaptation procedures to a small part of the system

to improve compositionality and thus the scalability of our verification approach. In Bartels et

al. framework, adaptation is a cross-cutting concern intertwined within the base-system. In fact,

to verify the adaptation specification, the framework has to hide system events and vice versa

to verify functional specifications the framework hides adaptation events. Moreover, adaptation

is reactive and is only triggered if a component becomes idle. In our framework, adaptation can

occur intermittently, a process is pre-empted and replaced by the communicated process from the

adaptation procedure. This allows us to model more sophisticated adaptation triggers that are

more responsive to the unpredictable behaviour of CPSs.

Tsigkanos et al., in [120], present a topology-driven framework to synthesize adaptation at run-

time. Similar to our approach, their model is built based on the topology and topological relations,

where a topological change, e.g., agent movements between rooms is a transition. However, their

modelling framework utilizes bi-graphs and graph transformation semantics, where transitions have

attached costs that are decided by domain experts. Adaptation is triggered on every transition.

The main focus of the work is on the planning step in the MAPE-K feedback loop. The adaptation

decision processes entails a novel threat analysis to synthesize adaptation. The threat analysis

starts with the most permissive model of the system that allows all behaviour and performs an

exhaustive (bounded) search to prohibit actions that directly transition to a violating state. A

state is violated if it does not satisfy a CTL formula specifying the system behaviour. The system

reuses the threat analysis between adaptations to improve the efficiency of the adaptation process.

26 CHAPTER 2. BACKGROUND

Our work took a lot of inspiration from this work. In particular, both models are guided by

the topology and topological relations. However, our goals are to exploit the topology of CPSs to

localize adaptation procedures to small parts of the CPS to attain a tractable verification approach

for SA CPSs. We motivate our approach through a design-time verification technique. Moreover,

the adaptation decision process in our framework is left up to the system designer. Our encoding

of adaptation procedures enables exploration of execution points where an SA CPS must-adapt.

This technique enables a system to skip the threat analysis where adaptation is clearly not needed.

Johnson et al. in [74] present the INVEST framework that extends existing probabilistic assume-

guarantee verification approaches with the ability to identify the minimal set of components that

needs to be included in the reverification step after a system change and execute the verification at

runtime. The framework presents a set of operations on components that triggers adaptation. The

operations include component addition, removal and modification. These events guide the tool to

identify the components that need to be included in the reverification steps to reduce the state

space of the verification. The applicability of the framework is evaluated though a cloud-deployed

software service case-study. Akin to our methodology, the authors leverage existing compositional

verification techniques to effectively verify SA CPSs, with techniques that exploit compositionality

proposed. In comparison, we motivate our work with a design-time verification technique where

we preclude probabilistic knowledge. Moreover, we exploit the topology of CPSs and different

adaptation procedures scope overlap types to reduce the search state in verification tasks. Both

work present a verification process. In our verification process, we first verify that an adaptation

procedure in isolation satisfies a requirement and then verify that the composition of adaptation

procedures preserves the requirement. In [74], an incremental verification process is presented to

verify each adaptation at run-time.

Bravetti et al., in [19], define a novel process language E-calculus to address the limitations

of standard process calculi (e.g., [89, 70]) for modelling self-adaptive behaviour. The process

language extends CCS with higher-order communication to express adaptation capabilities. Akin

to our process language, the construct l〈P 〉 represents an adaptable process, where other processes

can communicate adaptation over the name l. An adaptation is communicated through the event

l̃{U} where l is the location and U is a context that has zero or more holes •. The synchronization

of the adaptation prefix l̃{U} with the named process l〈P 〉 evolves to U{{P}}, where the process P

replaces the holes in the context. This is more expressive than our process language as the process

communicates a context rather than a process. Our adaptation can be encoded in E-calculus when

U does not contain any holes and therefore U is a closed process. The process language E-calculus,

however, does not support restriction of names needed to capture compositionality.

The authors investigate the decidability of two verification problems for different subsets of the

language. In particular, they investigate the decidability of bounded adaptation, where they check

that there is not an infinite amount of consecutive adaptations; and eventual adaptation, that an

adaptation always returns. They investigate the decidability of the two verification problems for six

subsets of the language: Ed, Es where d stands for dynamic topology where names can be created

and destroyed dynamically and s stands for static topology where the creation and destruction of

names is not permitted. E2
d , E2

s does not allow holes in the context for both dynamic and static

topologies and E3
d , E3

s where exactly one hole is allowed in the context, and thus adaptation can

only extend the functionality of the named process. Our process language is closest to E2
s . The

authors show that for E2
d , E2

s bounded adaptation is decidable but eventual adaptation is not.

The goal of the work is different from ours as we identify a subset of the process language

for which higher-order communication can be encoded in first-order process languages. We also

propose a verification process to tractably verify SA CPSs.

Chapter 3

Abstract View of Self-Adaptive

Systems

A system designer of an SA system must decide at which system execution points should adaptation

be invoked in order for the system to operate efficiently and satisfy its requirements. These points

can be as simple as timing events (e.g., every X seconds), can be triggered by specific system

events, or even have a complex logic taking account the execution history and state of the system.

Existing modelling approaches for SA systems often distinguish the adaptation decision pro-

cess from the base system, but encode adaptation event points directly in one, or both, of these

components (e.g., [10, 64, 79, 47, 132, 115, 77]). The drawback of this approach is that when

searching for a correct and optimal model, modifying the pattern of adaptation events requires

significant changes to the description of the base system and/or the adaptation decision process.

This is because the pattern becomes a cross-cutting concern which is scattered within the model

of the system.

The modularization of the adaptation patterns is not easy [58, 4]. Although some systems may

be able to support such events at every state, others must disallow them during critical sections of

their execution. Moreover, adaptation decision processes may be able to operate only at a subset

of the system states. For example, a collision avoidance system of autonomous vehicles, realised as

an adaptation decision process, may assume that it is invoked at states where vehicles are not too

close to each other, where reasonable direction changes can avoid collisions. These aspects must

be taken into account when adaptation patterns are modelled or implemented, and the maximum

degree of freedom for choosing these patterns should be allowed in each use case.

We propose an abstract model for self-adaptive systems, which we call Self-Adaptive Automata

(SAA). With this automata-based model we abstract away as many implementation details as

possible of self-adaptive systems and focus only on the composition of three main components:

base system, adaptation decision process, and adaptation pattern. This allows us to explore the

design space of these components, keeping the others constant. In particular we can use this

model to identify efficient adaptation patterns in self-adaptive systems. Our model is also useful in

proving system correctness (and thus the correctness of adaptation patterns) against requirements.

We provide an adequate translation from SAA to FDR [59], where we can verify system properties.

This high-level model can be used as an abstract description of self-adaptive systems, where key

system aspects such as adaptation patterns can be explored, and key requirements verified. From

that, a correct and efficient implementation could be derived through refinement, leveraging FDR’s

refinement infrastructure.

27

28 CHAPTER 3. ABSTRACT VIEW OF SELF-ADAPTIVE SYSTEMS

In SAA, adaptation events are exposed in execution traces by a novel, special-purpose ?-

transition. The effect of a ?-transition is the modification of the automaton’s entire transition

function (a modification of its behaviour), according to the adaptation decision process, encoded

as a partial function within the model. This can capture may- and must-adapt events. We use

may-adapt events in the modelling of base systems, exposing the states where the system can in-

voke the adaptation decision process. These events are optional because other transitions from the

same states allow the system to skip adaptation. Must-adapt events are used in the definition of

adaptation patterns, which are distinct automata—potentially implementing complex logic—with

states whose only outgoing transition is an adaptation (?-transition). Composition of a system

model with an adaptation pattern model synchronises adaptation events, in effect enforcing the

adaptation pattern on the system. The benefit of this approach is that we can change the adapta-

tion pattern without changing the model of the whole system.

Our model extends standard automata with a self-modifying feature. Related extensions have

been shown to significantly enhance the base model of computation [106]. Here we prove that this

is not the case with SAA, by showing a correspondence between SAA and the standard model of

execution monitors [114]. This also shows that adaptation in our framework can enforce all safety

properties.

We illustrate the use of SAA through the use case of a self-adaptive system of autonomous

search-and-rescue vehicles, inspired by related work [88, 3, 77, 38]. Using our model, we are able

to encode the base system and the adaptation decision process independently, separating them

from adaptation patterns. We are thus able to explore radically different adaptation patterns, and

prove their correctness through our translation to FDR.

This is the first step towards developing a compositional framework for SA CPSs. In this

chapter, we propose a modular structure for an adaptation procedure and investigate generic

properties adaptation procedures should possess. Through the art gallery example, we discuss how

topology and requirements guide a system designer to localize adaptation procedures over a small

part of the CPS, e.g., the adaptation procedure satisfying Req. 4: at most 10 visitors in room D,

can be localized over room D only. Such adaptation procedure is too simple to motivate this work,

yet having a single adaptation procedure that aims to ensure the satisfaction of all requirements in

the art gallery is too complex to motivate this work. Thus, to better understand SA systems and

the structure of adaptation procedures, we motivate the framework with an auxiliary example,

that of unmanned autonomous vehicles (UAV). Later, in section 5.1.1, we discuss how we can

incorporate the concepts from SAA in our compositional encoding of SA CPSs.

3.1 Self-Adaptive Autonomous Vehicles

Here we consider a simple self-adaptive system for search-and-rescue operations by unmanned

vehicles, inspired by previous work [88, 3, 77, 38]. The system consists of a number of vehicles

moving autonomously in a search area, and a central coordinator responsible for avoiding collisions

between vehicles and vehicles escaping the search area. This is achieved by the vehicles reporting

their position to the coordinator at specific points in their execution, and the coordinator running

a centralised adaptation decision process, changing the behaviour of vehicles through remote com-

mands when a collision is imminent. If two vehicles are closer together than a minimum critical

distance, the coordinator adjusts their behaviour so that they move further apart before continuing

their normal movement. The following basic requirements must be satisfied by the system:

Req. 1: Vehicles must not collide with each other.

3.2. OVERVIEW OF THE MODELLING FRAMEWORK 29

•

•

••

ADAPT

•

•

•

Figure 3.1: Self-Adaptive Autonomous Vehicles System.

Req. 2: All vehicles must remain within the search area.

Req. 3: Every position in the search area must be eventually explored by the vehicles.

The base system here involves the actual vehicle movement, which can be random, or towards

specific coordinates when instructed by the adaptation. The adaptation decision process can take

as input the current coordinates of the vehicles, their speed, and direction, and issue adaptation

commands to the vehicles, nudging them apart, when a possible collision is detected. Both of these

components do not depend on the exact points where adaptation is invoked. It would thus be

desirable to model our base system in a liberal way, allowing adaptation at virtually every state.1

Such a model would allow us to explore different adaptation patterns that ensure system cor-

rectness, and evaluate them in terms of efficiency. Here we consider two such patterns.

Time-Triggered Implementation: A possible adaptation pattern could invoke the adaptation

procedure at predefined time intervals. This means that time must be explicit in the model which,

in an automata-based model, can be done with tock self-loops in every state of the base system.

The adaptation decision process, assuming a minimum frequency of adaptation events, can

compute new positions for vehicles that are in danger of collision or escaping the search area (see

fig. 3.1) It should then be possible to verify that if adaptation events occur with at least that

frequency, then Req. 1 and Req. 2 are satisfied. The third requirement, Req. 3, should also be

satisfied, if vehicle movement is indeed random and the adaptation procedure does not always send

vehicles to the same coordinates.

Event-Triggered Implementation: An alternative implementation approach of the vehicles’

coordinator is to invoke an adaptation procedure when vehicles are closer than a minimum distance

and a collision is possible. With this adaptation pattern, the position of the vehicles must be

monitored and once the minimum distance is reached for a pair of vehicles, an adaptation event

occurs.

In large search areas this event-triggered adaptation pattern can be more efficient, in that it

can achieve the system requirements with fewer invocations of the adaptation decision process.

3.2 Overview of the Modelling Framework

Two main components of a self-adaptive system are the base system and the adaptation decision

process. As we discussed in the introduction, a third, equally important component is the adapta-

tion pattern. In our modelling framework, we use the abstract formalism of automata to express

these components.

The base system is essentially a standard automaton, with states and a labelled-transition

function. This expresses the regular behaviour of the system. To encode the adaptation decision

process, we extend such automata with a special-purpose transition, annotated with a ?. During

1If the adaptation decision manager makes assumptions about the system states it is invoked (e.g., a minimum
distance between vehicles) then this should be taken into account by the allowed adaptation points.

30 CHAPTER 3. ABSTRACT VIEW OF SELF-ADAPTIVE SYSTEMS

this transition, an adaptation function Π, which is part of the definition of our automata, inputs

the current system state and outputs a new transition function and a new state for the system.

The new transition function replaces the existing transition function of the base system, changing

the automaton’s behaviour and encoding adaptation. The new state enables the encoding of

information sent from the adaptation decision process to the base system. Note that Π is partial,

meaning that ?-transitions may not be defined for some system states. This allows us to encode

may-adapt transitions; i.e., the possibility of adaptation at these states.

When a system designer models a self-adaptive system in SAA, the base behaviour of the

system is first identified and encoded as a standard automaton. Then, inspecting the requirements

of the system, a decision procedure is encoded as a function from states to transition functions and

states. The states for which this function is defined get a ?-transition (can-adapt).

The last ingredient of the model is the adaptation pattern: when must the adaptation function

be invoked during the execution of the automaton. In SAA this is encoded as a separate automaton

which we call adaptation automaton, satisfying specific properties (see Def. 3.3.3). After compo-

sition with the base system, the adaptation automaton determines the states where adaptation

must happen, essentially pruning the outgoing transitions of can-adapt states of the base system.

The encoding of adaptation patterns as adaptation automata allows the system designer to en-

code multiple—simple and complex—adaptation patterns, and evaluate them in terms of efficiency.

Once a suitable adaptation automaton is established, the system can be verified for correctness

through a translation to FDR.

3.3 Self-Adaptive Automata

We now present Self-Adaptive Automata (SAA), a formalism for modelling self-adaptive systems,

and use them to model the autonomous vehicles example. Key aspects of SAA are the encoding

of adaptation by dynamic modification of the transition function, and the inclusion of adapta-

tion events in execution traces through a special-purpose ?-action. The latter is important for

adaptation actions to synchronise during SAA composition. The formal definition of SAA is the

following.

Definition 3.3.1 (Self-Adaptive Automata). A Self-Adaptive Automaton (SAA) M is a tuple

〈Q,Σ,∆, q0, δ0,Π〉 where:

• Q is a set of states;

• Σ is a set of symbols; we let a range over Σ;

• ∆ ∈ P(Q×Σ ⇀ Q) is a set of transition functions, partially mapping states and symbols to

states;

• q0 ∈ Q is the initial state;

• δ0 ∈ ∆ is the initial transition function;

• Π ∈ Q ⇀ Q×∆ is the adaptation function, partially mapping states to states and transition

functions.

♦

In SAA, behaviour modification (i.e., adaptation) is an atomic action. It occurs as a single ?-

event. This is a useful simplification when considering high-level models of SA systems, although it

3.3. SELF-ADAPTIVE AUTOMATA 31

may not capture the behaviour of systems where adaptation is propagated non-atomically, perhaps

for performance reasons. Moreover, the definition considers deterministic SAA in order to compare

with Execution Monitors (EMs) (in section 3.5) which are also deterministic. The translation to

CSP, presented in section 3.4, can be adapted to non-deterministic SAAs.

The operational semantics of an SAA is defined as a labelled transition system (LTS) over

configurations containing the current state and active transition function of the automaton. We

use the symbol ? to label adaptation transitions; we let Σ? = Σ ∪ {?} and a? range over Σ?.

〈q, δ〉 a−−−→ 〈q′, δ〉 if δ(q, a) = q′

〈q, δ〉 ?−−−→ 〈q′, δ′〉 if Π(q) = 〈q′, δ′〉

This semantics shows that SAA configurations transition according to the function δ in the con-

figuration, which can change by ?-transitions, modelling adaptation. These adaptation transitions

make SAA an expressive framework for adaptive systems, while still remaining a standard com-

putation model (section 3.5). Note traditional deterministic automata are a special case of SAA,

with no ?-transitions.

Example 3.3.2. We now turn our attention to the example in section 3.1. We can model this

example with an SAA

M1 = 〈Q,Σ,∆, q0, δ0,Π〉

composed of the following elements:

Σ = {goto.p1.p2 | p1, p2 ∈ Loc}

Q = {〈p1, p2〉 | p1, p2 ∈ Loc}

Here we assume a set of locations Loc representing the possible positions of a vehicle, and a distance

function d(p1, p2) which gives the cartesian distance of any two points. We assume that there are

positions every one unit on the horizontal and vertical axes. For simplicity we restrict our attention

to a system with two vehicles, and consequently the transitions goto.p1.p2 change the positions of

these vehicles over time. We use one state for each pair of positions of the two vehicles.

The initial transition function δ0 allows the vehicles to move to any position which is at most

one distance unit away from the current position; in effect vehicles can move one position to the

left, right, up or down, or stay at the same position.

δ0(〈p1, p2〉, goto.m1.m2) =


〈m1,m2〉 if d(p1,m1) ≤ 1

and d(p2,m2) ≤ 1

undefined otherwise

Recall from section 3.1 that if the coordinator deems that the vehicles are too close, it will issue a

command for the vehicles to move further apart. This is captured here with a transition function

where the two vehicles can only move to certain positions, before making any more moves. This

transition function depends on the current positions of the vehicles, p1 and p2, and the positions

that they must move to, l1 and l2, respectively. Thus we have a family of transition functions

32 CHAPTER 3. ABSTRACT VIEW OF SELF-ADAPTIVE SYSTEMS

which depend on these parameters:

δ〈s1,s2〉→〈l1,l2〉(〈p1, p2〉, goto.m1.m2) =
〈m1,m2〉 if m1 = l1,m2 = l2, s1 = p1 and s2 = p2

〈m1,m2〉 (s1 6= p1 or s2 6= p2) and d(p1,m1) ≤ 1, d(p2,m2) ≤ 1

undefined otherwise

This function allows only a single move from 〈s1, s2〉; that to 〈l1, l2〉. From any other 〈p1, p2〉 all

valid moves are allowed.

The model has an adaptation transition from every state.

Π(〈p1, p2〉) =
(〈p1, p2〉, δ〈p1,p2〉→〈p′1,p′2〉) if danger(〈p1, p2〉)

and safe(〈p1, p2〉) = 〈p′1, p′2〉

(〈p1, p2〉, δ0) otherwise

Adaptation relies on the auxiliary predicate danger which identifies the states where vehicles are

too close to each other, and the function safe which, when given a dangerous position, returns a

safe position that the vehicles can move to, as depicted in fig. 3.1.

Although adaptation is possible at every state, the system does not need to adapt after every

move, provided that there is enough distance between vehicles, and between vehicles and the border.

For example if danger(〈p1, p2〉) is true when p1 and p2 are at distance less than six units between

them and less than three units from the border, and assuming safe moves vehicles to positions where

the danger predicate is false, then the system can safely adapt every two transitions, guaranteeing

no collisions.

As we will see in the next subsection, different adaptation automata can be defined indepen-

dently from the base system and adaptation decision process, and be combined with them through

automata composition. ♦

3.3.1 Adaptation Automata

Here we model adaptation patterns as a special class of SAA, which we call adaptation automata.

We also define composition of SAA, used for enforcing an adaptation patterns on system models.

An adaptation automaton pinpoints which adaptation moves must be performed. Consequently,

it can be modelled by an SAA whose adaptation transitions are mandatory. This means that states

with outgoing adaptation transitions have no other outgoing transition.

Moreover, we assume that a single adaptation move is powerful enough to give the system

the desired behaviour. Therefore, adaptation patterns, by definition, have no two consecutive

?-moves.

Definition 3.3.3 (Adaptation Automaton). We say an SAA

M = 〈Q,Σ,∆, q0, δ0,Π〉

is an adaptation automaton when for all q ∈ Q and δ ∈ ∆ the following conditions hold:

1. if 〈q, δ〉 6 ?−−−→ then 〈q, δ〉 a−−−→ , for all a ∈ Σ and;

2. if 〈q, δ〉 ?−−−→ 〈q′, δ′〉 then 〈q, δ〉 6 a−−−→ , for all a ∈ Σ;

3.3. SELF-ADAPTIVE AUTOMATA 33

3. if 〈q, δ〉 ?−−−→ 〈q′, δ′〉 then 〈q′, δ′〉 6 ?−−−→

♦

We will call a state with an outgoing ?-transition, an adaptation state, and any other state a

regular state. The aim of the adaptation automaton is to pinpoint the adaptation points during

a system’s execution. The adaptation automaton should not influence the execution in any other

way or include alternative execution paths which allow a system to bypass an adaptation. These

two properties are respectively enforced by Conditions 1 and 2 in the above definition. Condition 1

ensures that if an adaptation is not to occur from the current state then the adaptation automaton

must enable all Σ-transitions so as not to influence the system’s execution. Condition 2, together

with the fact that SAA are deterministic by definition, ensures that when adaptation automaton

state that an adaptation is to happen, both the adaptation automaton and the base system have

no alternative transition except the adaptation.

One of the benefits of SAAs is that they can be composed by automata intersection. In

particular we will use this to compose models of systems with adaptation automata.

Definition 3.3.4 (SAA Composition). Let

M1 = 〈Q1,Σ,∆1, q
′
0, δ
′
0,Π1〉

and

M2 = 〈Q2,Σ,∆2, q
′′
0 , δ
′′
0 ,Π2〉

be SAA. We define M1 ∩M2 to be the SAA:

〈Q1 ×Q2,Σ,∆, (q
′
0, q
′′
0), δ′0 ∩ δ′′0 ,Π〉

where Q1 ×Q2 is the cartesian product of the state sets and

∆ ={δ1 ∩ δ2|δ1 ∈ ∆1 and δ2 ∈ ∆2}

(δ1 ∩ δ2)(〈q1, q2〉, a) =

〈q′1, q′2〉 if δ1(q1, a) = q′1, δ2(q2, a) = q′2

undefined otherwise

Π(〈q1, q2〉) =

〈(q′1, q′2), δ′1 ∩ δ′2〉 if Π1(q1) = 〈q′1, δ′1〉, Π2(q2) = 〈q′2, δ′2〉

undefined otherwise

♦

Theorem 3.3.5. For any two SAAs M1 and M2:

1. if M1 or M2 is an adaptation automaton then M1 ∩M2 is an adaptation automaton;

2. if M1 and M2 are finite then M1 ∩M2 is finite;

Here we show the proof for 1. The proof for the other clause follow Lemma A.0.2 to A.0.5.

Proof. An automaton is an adaptation automaton when for all q, q′ ∈ Q1 × Q2 and transition

functions δ then 〈q, δ〉 ?−−−→ 〈q′, δ′〉 implies

• there not exists a ∈ Σ such that 〈q, δ〉 a−−−→ 〈q′, δ〉 Proven by contradiction. Assume that

34 CHAPTER 3. ABSTRACT VIEW OF SELF-ADAPTIVE SYSTEMS

there exists q1, q2 ∈ Q1 ×Q2, a ∈ Σ and transition function δ such that

δ((q1q2), a) = (q′1, q
′
2) (3.1)

Π((q1, q2)) = 〈(q′1, q′2), δ′〉 (3.2)

From the definition of the intersection, it must be the case that

δ = δ′′1 ∩ δ′′2 (3.3)

δ′ = δ′1 ∩ δ′2 (3.4)

δ′′1 (q1, a) = q′1 and δ′′2 (q2, a) = q′2 (3.5)

Π1(q1) = 〈q′1, δ′1〉 and Π2(q2) = 〈q′2, δ′2〉 (3.6)

Without loss of generality assume that M1 is a adaptation automaton. A contradiction arise

as it cannot be δ′′1 (q1, a) = q′1 and Π1(q1) = 〈q′1, δ′1〉.

• 〈q′, δ′〉 6 ?−−−→ Proven by contradiction, Assume that M1 is a adaptation automaton. The

transition 〈q, δ〉 ?−−−→ 〈q′, δ′〉 could happen because there exists q1 ∈ Q1 and q2 ∈ Q2 such

that q = (q1, q2)

Π((q1, q2)) = 〈(q′1, q′2), δ′1 ∩ δ′2〉 (3.7)

Π1(q1) = 〈q′1, δ′1〉 and Π2(q2) = 〈q′2, δ′2〉 (3.8)

q′ = (q′1, q
′
2) and δ′ = (δ′1 ∩ δ′2) (3.9)

Similarly, for the second transition 〈q′, δ′〉 ?−−−→

Π((q′1, q
′
2)) = 〈(q′′1 , q′′2), δ′′1 ∩ δ′′2 〉 (3.10)

Π1(q′1) = 〈q′′1 , δ′′1 〉 and Π2(q′2) = 〈q′′2 , δ′′2 〉 (3.11)

A contradiction arise as 〈q′′1 , δ′1〉
?−−−→ contradicts the initial assumption that M1 is a

adaptation automaton.

Returning to the example of section 3.1 we note that a self-adaptive system may satisfy a

requirement only under certain adaptation patterns. For example, the vehicle system modelled in

Ex. 3.3.2 avoids collisions only if adaptation runs at least once every two system transitions.

Example 3.3.6. In section 3.1 we discussed two adaptation patterns for autonomous vehicles.

Here we encode them as adaptation automata as shown in fig. 3.2. The time-triggered adaptation

automaton requires adaptation every two transitions. Let

A1 = 〈Q,Σ,∆, q0, δ0,Π〉

3.4. REFINEMENT-BASED VERIFICATION 35

0 1 2

{goto.m1.m2|m1,m2 ∈ Loc}

{goto.m1.m2|m1,m2 ∈ Loc}

?

0 1

{goto.m1.m2|m1,m2 ∈ Loc, danger(m1,m2)}

{
goto.m1.m2

∣∣∣∣ m1,m2 ∈ Loc
safe(m1,m2)

}

?

Figure 3.2: The transition function for A1 (top) and A2 (bottom)

where

Q = {q0, q1, q2} Σ = {goto.p1.p2 | p1, p2 ∈ Loc} ∆ = {δ0}

δ0(qi, goto.p1.p2) =

qi+1 if i ∈ {0, 1}

undefined otherwise

Π(q) =

〈q0, δ0〉 if q = q2

undefined otherwise

Dually, the event-triggered adaptation automaton discussed in section 3.1 requires an adapta-

tion when the vehicles becoming dangerously close to one another. Let

A2 = 〈Q,Σ,∆, q0, δ0,Π〉

where

Q = {q0, q1} Σ = {goto.p1.p2 | p1, p2 ∈ Loc} ∆ = {δ0}

δ0(q, goto.p1.p2) =


q0 if q = q0 and safe(p1, p2)

q1 if q = q0 and danger(p1, p2)

undefined otherwise

Π(q1) = 〈q0, δ0〉

♦

Note that the conditions of adaptation automata allow us to abstract over the implementation

details of both the system and the adaptation function but pinpoint exactly where the adaptation

must happen. For instance, in A1, only the ?-transition is enabled in q2, in contrast with q0 and

q1 which enable all non-adaptive transitions. The correctness of these solutions is presented in

Ex. 3.4.4

3.4 Refinement-based Verification

Here we give an encoding of SAA into CSP and use the FDR verifier to prove such policies (safety

requirements) in our examples using FDR’s trace model. We also use the encoding to reason

about functional requirements using the CSP failure model, as well as the failure-divergence model.

As we show in this section, our example systems do indeed satisfy the safety requirements, and

the functional requirements under the failure model. However they do not satisfy the functional

requirements with respect to the failure-divergence model. This is because our systems have

36 CHAPTER 3. ABSTRACT VIEW OF SELF-ADAPTIVE SYSTEMS

inherent internal divergences. In the vehicle system, for example, the vehicles may move over the

same positions without exploring the entire search space.

3.4.1 Translation to CSP

Any SAA

M=〈Q,Σ,∆, q0, δ0,Π〉

with finite ∆ can be translated into CSPM by following the following steps:

1. We define a data-type Q̂ representing the set of states Q. We write q̂ for the translated state

q.

2. We define events to represent Σ . We also define low-level adaptation events {?〈q̂〉 | q ∈ Q};
where we attach the state to the adaptation event. For instance ?〈q̂0〉 represents Π(q0).

3. We translate a transition function δ ∈ ∆ as a parametric process δ̂ taking the state and

performing the next transition from that state as defined by δ, i.e.,

δ̂(q̂) =2{e→ δ̂(q̂′) | e ∈ Σ and δ(q, e) = q′}

The SAA semantics allows us to perform a ?-transition if q is an adaptable state (Π(q) is

defined). For each adaptable state, we add the ?-transition to the choice of events that can

be performed,

δ̂(q̂) =?〈q̂〉 → STOP if Π(q) = 〈δ, q′〉

2{e→ δ̂(q̂′) | e ∈ Σ and δ(q, e) = q′}

4. Adaptation is the replacement of one transition function by another. In the translation this is

encoded as the interruption of a process to initiate another process. In our model, adaptation

is defined with respect to the state at the time of the adaptation. We utilise the interrupt

construct in CSP to implement the adaptation functionality. Recall we communicate the

state with an ?-transition. Thus, Π̂ needs to evolve to the correct process according to that

state. Intuitively,

Π̂ =2


?〈q̂1〉 → δ̂′1(q̂′1) if Π(q1) = 〈δ′1, q′1〉

?〈q̂2〉 → δ̂′2(q̂′2) if Π(q2) = 〈δ′2, q′2〉
...

Consider the CSP process P = (e→ P) 2 (?〈q1〉 → STOP) nested in the process P 4?〈 〉 Π̂.

Here P can evolve through the event e, but as soon as the external choice transition to ?〈q1〉,
this event synchronises with one of the events in Π̂ and the process δ̂′1(q̂′1) is initiated instead

of P .

Note that the new processes P1 may need to adapt as well so we recursively include the

interrupt construct in Π̂,

Π̂ =2
{
?〈q̂〉 → (δ̂(q̂′) 4?〈 〉 Π̂)

∣∣∣∣∣ Π(q) = 〈δ, q′〉
and q ∈ Q

}

3.4. REFINEMENT-BASED VERIFICATION 37

5. The final step is to strip state information attached to adaptation events by renaming all

adaptation events to a single distinguished CSP event ?. We initialise the SAA M to the

initial configuration δ0(q0). Recall that this process can be interrupted by an adaptation as

explained in 4. We define M as

M̂ =
(
δ̂0(q̂0) 4?〈 〉 Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

In our model an SA system is defined as the composition of the system and an adaptation

automaton. An adaptation automaton is an SAA and hence can be translated to a CSP process

using the technique explained above. The intersection of the two SAA, A∩M, can be implemented

using the CSP parallel composition construct.

Â ‖
Events

M̂

The next two lemmas we show that

Lemma 3.4.1. Let M = 〈Q,Σ,∆, q0, δ0,Π〉, then for all q ∈ Q and δ ∈ ∆, α ∈ Σ?

〈q, δ〉 α−−−→ 〈q′, δ′〉 implies(
δ̂(q̂) 4{?} Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

α−−−→
(
δ̂′(q̂′) 4{?} Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

Proof. By case-analysis on α

• α = a. From the reduction 〈q, δ〉 α−−−→ 〈q′, δ′〉, we know

δ(q, a) = q′ (3.12)

〈q, δ〉 a−−−→ 〈q′, δ〉 (3.13)

From the other side, we know that

δ̂(q̂) =

 2
(e,q′)∈δ(q)

e→ δ̂(q̂′)

 2 ?(q)→ STOP (3.14)

We know though that a ∈ δ(q). This allows us to construct the reduction,(
δ̂(q̂) 4{?} Π̂

)
a−−−→

(
δ̂′(q̂′) 4{?} Π̂

)
(3.15)(

δ̂(q̂) 4{?} Π̂
)

[[?/?〈q̂〉 | q ∈ Q]]
a−−−→

(
δ̂′(q̂′) 4{?} Π̂

)
[[?/?〈q̂〉 | q ∈ Q]] (3.16)

• α = ?. From the reduction 〈q, δ〉 ?−−−→ 〈q′, δ′〉, we know

Π(q) = 〈q′, δ′〉 (3.17)

From the other side, we know that,

δ̂(q̂) =

 2
(e,q′)∈δ(q)

e→ δ̂(q̂′)

 2 ?(q̂)→ STOP (3.18)

Π̂ = 2
q∈dom(Π)

?(q̂)→
(
Pq 4{?} Π

)
(3.19)

38 CHAPTER 3. ABSTRACT VIEW OF SELF-ADAPTIVE SYSTEMS

where Pq = δ̂q(q̂
′) and Π(q) = 〈q′, δq〉. From

(
δ̂(q̂) 4{?} Π̂

)
, we can construct the reduction

(
δ̂(q̂) 4{?} Π̂

)
?(q̂)−−−→ δ̂q(q̂

′) 4{?} Π (3.20)(
δ̂(q̂) 4{?} Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

?−−−→
(
δ̂q(q̂

′) 4{?} Π
)

[[?/?〈q̂〉 | q ∈ Q]] (3.21)

Lemma 3.4.2. Let M = 〈Q,Σ,∆, q0, δ0,Π〉, then for all q ∈ Q and δ ∈ ∆, α ∈ Σ?,(
δ̂(q̂) 4{?} Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

α−−−→ P implies

• P =
(
δ̂′(q̂′) 4{?} Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

• 〈q, δ〉 α−−−→ 〈q′, δ′〉

Proof. By case-analysis on α

• α = a. We know that,

Π̂ = 2
q∈dom(Π)

{
?〈q̂〉 → (δ̂(q̂′) 4?〈 〉 Π̂) |Π(q) = 〈δ, q′〉

}
(3.22)

δ̂(q̂) =?〈q̂〉 → STOP if Π(q) is defined (3.23)

2{e→ δ̂(q̂′) | e ∈ Σ and δ(q, e) = q′}

This implies that Π̂ cannot reduce through an a event. From
(
δ̂(q̂) 4{?} Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

a−−−→

P , we know this is only possible through a reduction δ̂(q̂)
a−−−→ , we know this implies

P =
(
δ̂(q̂′) 4{?} Π̂

)
[[?/?〈q̂〉 | q ∈ Q]] (3.24)

δ(q, a) = q′ (3.25)

We can, thus, construct the reduction

〈q, δ〉 a−−−→ 〈q′, δ〉 (3.26)

as required.

• α = ?. We know that,

Π̂ = 2
q∈dom(Π)

{
?〈q̂〉 → (δ̂(q̂′) 4?〈 〉 Π̂) |Π(q) = 〈δ, q′〉

}
(3.27)

δ̂(q̂) =?〈q̂〉 → STOP if Π(q) is defined (3.28)

2{e→ δ̂(q̂′) | e ∈ Σ and δ(q, e) = q′}

3.4. REFINEMENT-BASED VERIFICATION 39

This means that the only reduction possible is(
δ̂(q̂) 4?〈 〉 Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

?−−−→ STOP 4?〈 〉
(
δ̂′(q̂′) 4?〈 〉 Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

(3.29)(
δ̂(q̂) 4?〈 〉 Π̂

)
[[?/?〈q̂〉 | q ∈ Q]]

?−−−→
(
δ̂′(q̂′) 4?〈 〉 Π̂

)
[[?/?〈q̂〉 | q ∈ Q]] by structural equivalence

(3.30)

where Π(q) = 〈q′, δ′〉. This allows us to construct the reduction,

〈q, δ〉 ?−−−→ 〈q′, δ′〉 (3.31)

Theorem 3.4.3. For an SAA M = 〈Q,Σ,∆, q0, δ0,Π〉. We show that for all q ∈ Q, δ ∈ ∆,

α ∈ Σ?

1. 〈q, δ〉 α−−−→ 〈q′, δ′〉 implies
(
δ̂(q̂) 4{?} Π̂

)
σ

α−−−→
(
δ̂′(q̂′) 4{?} Π̂

)
σ

2.
(
δ̂(q̂) 4{?} Π̂

)
σ

α−−−→ P implies P =
(
δ̂′(q̂′) 4{?} Π̂

)
σ and 〈q, δ〉 α−−−→ 〈q′, δ′〉

where σ = [[?/?〈q̂〉 | q ∈ Q]],

Proof. Follows from Lemma 3.4.1 and 3.4.2

This theorem shows that the translation is a strong bisimulation. Therefore the trace, failure,

and failure-divergence models of FDR apply to SAA through the translation.

Example 3.4.4. Recall the system in section 3.1, modelled as an SAA in Ex. 3.3.2. We show the

CSP representation of the example with two vehicles.

1. First we define the set of states Q̂ = {〈p1, p2〉 | p1, p2 ∈Loc}

2. We define the set of events as Σ and the low-level adaptation events which incorporate the

system state:

Σ̂ = {goto.m1.m2 | m1,m2 ∈Loc} ∪ {?〈p1, p2〉 | p1, p2 ∈Loc}

3. We have two types of transition functions: the initial transition function δ allowing all

movements and δ(m,n) which initially allows one transition (coordinator’s command) and

then any movement

δ̂0(q̂) =2

goto.m1.m2 → δ̂0(ŷ) δ0(q, goto.m1.m2) = y

?〈q̂〉 → STOP Π(q) = is defined

δ̂m→n(q̂) =

2

goto.m1.m2 → δ̂m→n(ŷ) δm→n(q, goto.m1.m2) = y

?〈q̂〉 → STOP Π(q) is defined

4. The adaptation function Π is implemented as

Π̂ =2
{
?〈p1, p2〉 → (P 4?〈 〉 Π̂)

∣∣∣∣∣ Π(〈p1, p2〉) = 〈δm→n, 〈p1, p2〉〉
and P = δ̂m→n(〈p1, p2〉)

}

40 CHAPTER 3. ABSTRACT VIEW OF SELF-ADAPTIVE SYSTEMS

5. With the above, we implement M̂ in CSP as

δ̂0(〈l1, l2〉) 4?〈 〉 Π̂

We translate also the two adaptation automata presented in Ex. 3.3.6. The adaptation au-

tomaton A1 requires adaptation every two steps. We model A1 in CSP as shown below,

Q̂A1
={0..2}

Σ̂ ={goto.m1.m2 | m1,m2 ∈Loc} ∪ {?〈x〉 | x ∈ 0..2}

δ̂A1
(x) = ifx < 2

then2{goto.m1.m2 → δ̂A1
(x+ 1) | m1,m2 ∈Loc}

else ?〈2〉 → STOP

Π̂ =?〈2〉 → (δ̂A1
(0) 4?〈2〉 Π̂)

Similarly, the trigger-based adaptation automaton A2 requires adaptation when the vehicles’ loca-

tions satisfy the predicate danger . We model A2 as

Q̂A2
={0, 1} Σ̂ = {goto.m1.m2 | m1,m2 ∈Loc} ∪ {?〈0〉, ?〈1〉}

δ̂A2
(0) =2

goto.m1.m2 → δ̂A2
(0) if m1,m2 ∈Loc, safe(m1,m2)

goto.m1.m2 → δ̂A2(1) if m1,m2 ∈Loc, danger(m1,m2)

δ̂A2
(1) =?〈1〉 → STOP

Π̂ =?〈1〉 → (δ̂A2
(0) 4?〈1〉 Π̂)

Finally, Â1 ∩M is

Impl = δ̂A1
(0)[?/?〈q̂〉 | q ∈ QA1] ‖

Σ̂∪{?}
M̂[?/?〈q̂〉 | q ∈ QM]

Note that Â2 ∩M is defined analogously by replacing the adaptation automaton only,

Impl2 = δ̂A2(0)[?/?〈q̂〉 | q ∈ QA2] ‖
Σ̂∪{?}

M̂[?/?〈q̂〉 | q ∈ QM]

Properties Proven using FDR Using FDR, we verify that the system with both adaptation

policies satisfy the requirements Req. 1, Req. 2 and Req. 3 from section 3.1 by proving that the

implementations Impl and Impl2 refine the following three specification processes. The safety

requirement Req. 1 assert that vehicles never collide or stated differently no two vehicles go to the

same location. This can be specified as

Req1 = goto?x: Int?y: {y | y<-Int, d(x,y) > 0} -> Req1

Similarly, we verify that all vehicles remain within the search space (Req. 2) by showing the

implementations refines a specification process Req2 which recursively accepts any goto.m1.m2 for

3.4. REFINEMENT-BASED VERIFICATION 41

m1 and m2 within the search space. We assume Loc to be the set of all locations in the search

space.

Req2 = goto? : Loc ? : Loc -> Req2

We use the trace-semantic model to verify safety properties by checking that any derivable trace

in the implementation is also derivable in the Specification. In particular, through FDR we can

verify the following assertion

assert Req1 [T= Impl assert Req2 [T= Impl

Note that we can verify the second implementation by either doing similar assertions or alterna-

tively show that the implementations are trace equivalent up-to the adaptation automaton. In the

assertions below, we verify that if we hide the ? transitions, the implementation are trace equiva-

lent. The process P |\ A is equivalent to P \ diff(Events,A) where P performs only events not

in A,

assert Impl2 |\{*} [T= Impl |\{*}
assert Impl |\{*} [T= Impl2 |\{*}

For the last requirement Req. 3, we want to verify that all positions in the search area can

eventually be visited. Since this is a liveness property, trace inclusion is not sufficient. We verify

Req. 3 by running the implementation in parallel with a test and check that all possible paths

can be extended to pass the test. For each location l ∈ Locs, we define a test that broadcasts a

success event, signalling that the test passed, when the location l has been visited by a vehicle:

T(l) = goto?x?y -> if d(x,p) == 0 or d(y,p) == 0

then success -> RUN({|goto|})
else T(l)

We run all the tests in parallel with the implementation and hide all the events except the success

events,

Tests =

(([|{|goto|}|] l:Locs @ T(l)) [|{|goto|}|] Impl) |\{success}

The requirement is satisfied if all the tests pass or stated alternatively the number of success

events is the same as the number of locations.

Count(n) = n > 0 & success -> Count(n-1)

n == 0 & ok -> STOP

In the assertion, we check that the ok event is never refused. The verification ensures that from

any path we can eventually broadcast the ok event,

assert ok->STOP [F= (Count(n) [{success}] Tests) |\{ok}
Note that because the vehicles randomly choose the next goto position, the implementation may

diverge and running the assertion using the failure-divergence semantic model would rightfully fail.

For instance, if the vehicles transition indefinitely between the same pair of locations, such trace

can be extended to pass the tests but the test never terminates.

♦

42 CHAPTER 3. ABSTRACT VIEW OF SELF-ADAPTIVE SYSTEMS

3.5 Expressiveness of Self-Adaptive Automata

Our last result is a study on the expressiveness of SAA by translating SAAs to standard automata.

We show that SAA, although dynamically change the transition function, do not alter the model

of computation of traditional automata. We do this by translating SAAs to Execution Monitors

(EM) [114]. Execution Monitors are automata accepting a prefix-closed set of traces (the monitored

traces) which is co-recursively enumerable. This result shows that SAA are unlike other dynamic

automata, such as self-modifying finite automata, which are more powerful than standard finite

automata [106]. Moreover, since EM-enforceable properties correspond to safety properties [114],

it follows that adaptation in our framework can enforce all such properties.

Theorem 3.5.1. SAA precisely enforce the safety properties.

Proof. Details of the proof has been moved to appendix A.

3.6 Summary

We presented SAA, an automata-based approach for abstract modelling of self-adaptive systems. In

our model we decompose a self-adaptive system into three main components: the base system, the

adaptation decision process and the adaptation pattern. The adaptation decision process identifies

the execution points where the system may-adapt, whereas the adaptation pattern selects the

execution points where the system must-adapt. The adaptation pattern allows a system designer to

explore multiple adaptation patterns without changing the base system or the adaptation decision

process.

Applying SAA in a compositional setting is not straightforward. Firstly, we have a single

distinguished adaptation event to model adaptation. We cannot distinguish between adaptations

from different SAAs. A solution for this is to introduce scoping and having adaptation scoped

within an SAA. Moreover, the composition formalized in Def. 3.3.4 synchronizes over all events.

However, two SAAs may need to synchronize on a subset of the events—their interface. A parallel

composition synchronizing on a subset of the events and event scoping are customary in process

languages. We therefore move away from SAAs as our modelling framework and opt for process-

based approach that naturally supports compositional modelling. The SAA model helped us

understand the main questions a system designer needs to answer to model an SA system and

how we can modularise the model to enable the experimentation with different implementations

of adaptation procedures. Thus, in later chapters, we incorporate the key points of the SAA

framework in our compositional encoding for SA CPSs.

Chapter 4

A Methodology for Modelling and

Verifying Self-Adaptive CPSs

4.1 The Methodology

In this chapter we introduce a modelling and verification methodology for SA CPSs, which aims

to provide assurances for such systems, especially when employed in critical domains. Providing

assurances is particularly challenging due to the highly dynamic nature of SA CPSs, which increases

the complexity of these systems. Our main tool for tackling this complexity is by employing

compositionality in both the modelling and verification approach. Compositionality allows a system

designer to potentially localize the verification task to a small number of components, while ignoring

irrelevant parts of the system. This reduces the state space exploration of the verification task,

significantly reducing the effect of the state explosion problem. As we show in this and following

chapters, to attain a compositional model and verification, our methodology takes advantage of

topological relationships naturally present in CPSs, and a requirement-driven approach to encode

self-adaptation. A key ingredient of our methodology is a novel process language, Adaptive CSP,

presented in the second part of the chapter.

Our methodology is organised in the following six main steps.

Step 1 (Modelling the CPS). A system designer first identifies the main cyber and physical

components of a CPS (e.g., rooms and assets). Each component may have containment and

connectivity topological relationships with other components. We represent the components of

the art gallery example and their relationships in fig. 4.1. For example, corridor 2 can contain

agents (e.g., visitors, employees and guards) and it is physically connected to the Stairs and the

restoration area. The access point have connectivity relationships with the HVAC and with other

employees’ and visitors’ devices located in Floor 2 that are connected to the wireless network.

The Computer Room has a containment relationship with the access point and the agents that are

located in it. Similarly, the restoration area has containment relationship with the HVAC and the

agents in it.

Topological relationships can enable execution of system actions. For example, if an agent is

contained in a physical area, she can access other connected physical areas and perform actions in

them. In the art gallery example, if an agent moves from the Stairs to corridor 2, she can connect

a device she is carrying to the access point. Moreover, agents contained in a physical areas can

access and/or control co-located assets, if available. For example, agents in the Computer Room

can switch on/off the access point.

43

44 CHAPTER 4.
A METHODOLOGY FOR MODELLING AND VERIFYING SELF-

ADAPTIVE CPSS

Figure 4.1: Components of the Art Gallery (partial model).

♦

Step 2 (Exploring adaptation procedures). For each requirement, we define an adaptation pro-

cedure that aims to ensure its satisfaction by adapting a subset of the components. In this step,

the system designer examines each requirement, determining the components that can affect its

satisfaction. A component may pose a direct threat to the satisfaction and thus an adaptation

procedure needs to adapt system components behaviour to minimize the threat. Alternatively,

adaptations may depend on the state of the component and an adaptation procedure needs to

monitor its behaviour, without changing, to plan adaptations. The set of adapted and monitored

components make up the scope of an adaptation procedure. Here we consider the task of iden-

tifying the scope of an adaptation procedure to be a manual task, but it can be guided by the

topology of the CPS. Certainly, relevant components include the one the requirement refers to.

They may also include additional components identified considering its containment and connec-

tivity relationships. For example, the components affecting satisfaction of Req. 1 can include the

Restoration Area and those related to it (corridor 2, Stairs and corridor 1). Different adaptation

procedures can be explored starting from the most specific component relevant to the requirement,

and including more components affecting the requirement satisfaction as necessary. For example,

to satisfy Req. 1: Visitors should not interfere with the restoration process, as we discussed in

Ad. Proc. 1.1, an adaptation procedure may consider the restoration area and corridor 2. More

precisely, it may keep track of the presence of a guard in corridor 2, and only allow access/exit

to/from the restoration area if a guard is in corridor 2. However, this may not always be desirable

because when a guard is not in corridor 2, workers may not be allowed to freely access or leave

the restoration area. Alternatively, the adaptation procedure could monitor visitor access to the

Stairs from corridor 1 and notify the guard stationed in corridor 1 to escort visitors in corridor

2, as discussed in Ad. Proc. 1.2. ♦

Step 3 (Encoding with Adaptive CSP). In this step, the system designer manually encodes the

part of the CPS relevant to a requirement in our ACSP language. This includes the adapta-

tion procedure and the components in its scope. Each component can be encoded as a parallel

process or an internal state. In our example, we encode all components except agents as pro-

cesses. Components that are adapted must be modelled as processes. We tag such components

by unique identifiers called locations. Components running in named locations can be adapted

through higher-order communication over the location. On a higher-order communication, the

4.1. THE METHODOLOGY 45

process running in the named location is replaced by the process communicated. In our encoding,

each component representing a physical location has an internal state representing the number of

visitors, guards and workers that are contained in it. System actions, such as agent movements or

access point connections, are implemented as first-order communication events (i.e. transmission

of data). These first-order communication events encode the connectivity relation that connects

two neighbouring components in fig. 4.1. We refer to the family of events that connects a compo-

nent c to the rest of the system as the interface of c – I(c). The last element that we encode is

the adaptation procedure. We encode adaptation procedures as an ACSP process comprises two

parallel processes: an adaptation pattern that listens to the first-order events of components in its

scope and trigger adaptation when needed and an adaptation function that plan and implement

adaptations by issuing higher-order communication events to specific components based on the

system state. This encoding follows the principles described in Chapter 3.

♦

Step 4 (Verifying system requirements). The system designer verifies each requirement. This

is done by translating parts of the self-adaptive CPS, as encoded in our language, to existing

verification tools—here we choose FDR. A compositionality theorem guarantees that successful

verification of a requirement over such a set of components implies the satisfaction of the require-

ment for the entire system. The smallest set of components that need to be translated is easy to

find. For each requirement, only the following elements are translated to FDR:

1. The adaptation procedure that aims to ensure the satisfaction of the requirement

2. The components in the scope of the adaptation procedure that affect the satisfaction of

the given requirement. This include components adapted by the adaptation procedure and

components whose behaviour is monitored by the adaptation procedure.

3. The first-order communication events of the components included in the translation.

In this dissertation, this ACSP process is referred to as the cluster in Def. 5.1.1. In this manner

we translate the smallest set of components that include those relevant to the requirement, and

whose higher-order adaptation events can be entirely internalised (no adaptation event can cross

the boundaries of this set) and encoded as internal transitions in FDR. The requirement itself is

specified using the capabilities of the verification tool; in FDR we use refinement. Specifications

encoding describe the correct behaviour of components in the scope of the adaptation procedure

according to the requirement. This is described in more detail in Chapter 6. If the verification fails

then the requirement and/or adaptation procedure must be re-examined, potentially going back

to Step 2 to consider a different granularity for the adaptation procedure. ♦

Step 5 (Composing adaptation procedure). The system designer, needs to ensure the satisfaction

of requirements is preserved when adaptation procedures are composed together. When adaptation

procedures have disjoint scopes then the verification in Step 4 is sufficient to ensure requirements

satisfaction in the entire system. However, when adaptation procedure scopes overlap, there is the

potential of interference between them. In this case, we need to re-verify that each requirement is

satisfied when all adaptation procedures, and all system components, are composed back together,

if there is a potential of interference. We recommend an iterative approach for verifying the

satisfaction of requirements so violations are identifying early. If a violation is because a proposed

adaptation procedure does not ensure the satisfaction of a requirement, we want to identify the

violations before introducing other adaptation procedures, to alleviate debugging. Similarly, if

46 CHAPTER 4.
A METHODOLOGY FOR MODELLING AND VERIFYING SELF-

ADAPTIVE CPSS

Figure 4.2: The application of the Methodology to the art gallery example. At the top a component
model is constructed which is then used to explore the granularity for adaptation procedures. For
each requirement, the adaptation procedures and the relevant components are encoded using ACSP.
In step 4, we verify that requirements are satisfied locally. After this, we iteratively compose the
parts of the encoding and re-verify the satisfaction of requirements by the composition if necessary
until all parts of the encoding are composed together.

a violation arises from the composition of two adaptation procedures, iterative verification of

compositions localises the source of the violation to the smallest set of adaptation procedures.

♦

Step 6 (Verifying the composition of adaptation procedures). Finally, the system designer verifies

the satisfaction of requirements by the composition of adaptation procedures. This is done by

translating parts of the self-adaptive CPS, as encoded in our language, to FDR – similar to Step 4.

If the verification fails then the last specification and adaptation procedure composed must be re-

examined, possibly going back to Step 2 and considering a different granularity for the adaptation

procedure. ♦

In fig. 4.2, we present at a high-level the application of the methodology to the art gallery

example. We first construct the component model (step 1). We utilize the apparent topological

layout of the CPS and topological relations to derive this model. For each requirement, we explore

levels of granularity and select a subset of the components over which we define an adaptation

4.2. THE PROCESS LANGUAGE ACSP 47

Symbol Meaning

h higher-order communication event

e first-order event

α first-order and higher-order event

l, m, n locations

P, Q, M, N ACSP processes

S, T CSP Processes

Γ set of locations

Γ ` P well-formed check for an ACSP process P with respect to an environment Γ

P � S translation of an ACSP process P to CSP process S

SR̃
M
A

cluster that aims to satisfy requirements R̃ where A and M

are the set of locations adapted and monitored respectively

(parameters are omitted if they are insignificant to the example)

S1 ⊗ S2 merging of clusters S1 and S2

ΠR̃ adaptation procedure that aims to satisfy requirements R̃

Cc the internal state of a component c

PR the adaptation pattern in the adaptation procedure ΠR

FR the adaptation function in the adaptation procedure ΠR

SpecR the specification for requirement R

Table 4.1: Notations and symbols used throughout the rest of the dissertation

procedure that aims to ensure the satisfaction of a given requirement (step 2). We encode the

adaptation procedure and the selected components in ACSP (step 3). Next, we verify the satisfac-

tion of each requirement in isolation using FDR (step 4). Through our theory of compositionality,

it suffices to translate to CSP, the input language of FDR, only the selected components and their

first-order events and the adaptation procedure defined to satisfy the requirement’s satisfaction.

From the compositionality theory, we show that the verification results hold for the whole art

gallery. In step 5, we verify the satisfaction of requirements is preserved when adaptation pro-

cedures are composed together. We develop on our compositionality theorem to infer when this

verification can be skipped. In particular, overlapping adaptation procedures do not change any of

the common components, interference is ruled out and we show that satisfaction follows from our

theory of compositionality. In other cases, we need to verify in FDR that requirements satisfaction

is preserved when adaptation procedures are composed. The details of this figure become clear in

later chapters. In table 4.1 we summarise the notation and symbols used in the remaining chapters

of the dissertation. Similarly, the details of the table become clear in later chapters.

We now present the process language—Adaptive CSP, that is the foundation of our modelling

framework.

4.2 The Process Language ACSP

Our technique is based on a novel process language which we call Adaptive CSP (ACSP). This

language extends Communicating Sequential Processes (CSP) [70] with locations and higher-order

communication. ACSP is defined over a set of first-order events, ranged over by e, and a set of loca-

tion names, ranged over by l. We reserve the special first-order event τ for internal communication,

48 CHAPTER 4.
A METHODOLOGY FOR MODELLING AND VERIFYING SELF-

ADAPTIVE CPSS

Event Transitions:

EvCh
j ∈ I

2
i∈I

ei → Pi
ej−−−→ Pj

EvParL

M
e−−−→ M ′ e /∈ E

M ‖
E

N
e−−−→ M ′ ‖

E

N

EvSync

M
e−−−→ M ′ N

e−−−→ N ′ e ∈ E e 6= τ

M ‖
E

N
e−−−→ M ′ ‖

E

N ′

Rec

σ = [~e, (recX(~y := ~e).P)/~y,X]

recX(~y := ~e).P
τ−−−→ Pσ

EvHide

P
e−−−→ P ′

(νe)P
τ−−−→ (νe)P ′

EvEsc

P
e−−−→ P ′ c 6= e

(νc)P
e−−−→ (νc)P ′

IfTrue
e1 ≤ e2

if e1 ≤ e2 then P else Q
τ−−−→ P

EvLoc

P
e−−−→ P ′

l〈P 〉 e−−−→ l〈P ′〉

Adaptation Transitions:

AdSnd

l!P.Q
l!P−−−→ Q

AdRcv

l〈Q〉 l?P−−−→ l〈P 〉

AdSyncL

M
l!R−−−→ M ′ N

l?R−−−→ N ′

M ‖
E

N
τ−−−→ M ′ ‖

E

N ′

AdParL

M
h−−−→ M ′

M ‖
E

N
h−−−→ M ′ ‖

E

N

AdEsc

P
h−−−→ P ′ c 6∈ h

(νc)P
h−−−→ (νc)P ′

AdLoc

P
h−−−→ P ′

l〈P 〉 h−−−→ l〈P ′〉

Figure 4.3: Transition Semantics of ACSP (omitting symmetric rules).

and use c, d to range over events and location names.

c, d ::= e | l

We also use X for process variables and y for event variables; we let ê range over events and event

variables. We use standard notation for sequences (~·) and the usual syntactic sugar from process

languages.

The abstract syntax of the language is:

P,Q,R,M,N,Π ::= SKIP | 2
i∈I

êi → Pi | if ê1 ≤ ê2 then P else Q

| P ‖
Σ

Q | (νc)P | X(~̂e) | recX(~y := ~̂e).P | l!P.Q | l〈P 〉

Processes, ranged over by P , Q, R, M , N , Π include the standard CSP processes: the inactive

process (SKIP); external choice where the environment can choose between a set of events {ei | i ∈
I}, written as 2

i∈I
ei → Pi, with I being an indexing set; a conditional process (if e ≤ e′ then

P else Q); parallel composition of processes (P ‖
Σ

Q) which synchronise on a set of non-τ events Σ;

scope restriction of events and location names ((νc)P); and recursion (recX(~y := ~e).P) through

process variables (X) and event parameter variables (~y). ACSP processes also include the new

constructs of a higher-order prefix l!P.Q that sends a process P to location l and evolves to

process Q, and named locations (l〈P 〉). Intuitively, a named location l〈P 〉 marks process P with

name l, which can be adapted to l〈Q〉 through a higher-order communication with a prefix l!Q.R,

residing outside of the location.

The operational semantics of ACSP is defined by labelled transitions annotated by: τ , when

the transition is internal; e 6= τ , when it is a first-order synchronisation event; l?P , when location

l is being adapted and becomes P ; l!P , when an external process initiates such an adaptation.

Higher-order transition annotations are ranged over by h; all transition annotations are ranged

over by α.

h ::= l!P | l?P α ::= e | h

4.2. THE PROCESS LANGUAGE ACSP 49

The rules of the transition semantics of ACSP are shown in fig. 4.3. Adaptation transitions

are the main novelty of ACSP; event transitions are similar to CSP. External choice (EvCh) can

transition to one of its residual processes Pj , annotating the transition with the corresponding

action ej . The parallel rule (EvParL) and its (omitted) symmetric rule propagate an event

transition e of P over a parallel composition P ‖
E

Q, provided that e is not mentioned in the set of

events E on which P and Q must synchronise. Rule EvSync synchronises such an event.

Rule Rec unfolds a recursion by an internal transition during which the formal parameters of

the recursive process ~y are replaced by the actual parameters ~e, and the recursion variable X is

replaced with the recursive process itself. Note that substitution of X in processes of the form X(~e′)

preserves ~e′ as the formal parameters. That is, X(~e′)[recX(~y:=~e).P /X] becomes recX(~y = ~e′).P ,

and we can have the following example transitions:

recX(y := 1).(e.y → X(y + 1))
τ−−−→

e.1→ recX(y := 1 + 1).(e.y → X(y + 1))
e.1−−−→ τ−−−→

e.2→ recX(y := 2 + 1).(e.y → X(y + 1))
e.2−−−→ τ−−−→ . . .

Rule EvHide hides an event from the surrounding processes, converting it into τ ; EvEsc prop-

agates an event over a scope restriction, and IfTrue and (omitted) IfFalse evaluate a conditional.

Our language also includes rule EvLoc which propagates event transitions over locations.

We have chosen CSP-style synchronisation for first-order events in our language because they

simplify the encoding of monitor processes, which can be used to keep track of state and encode

adaptation procedures.

Example 4.2.1. Consider corridor 2 (c2) from fig. 1.1, which is connected with a door to the

stairs (s). We can encode the movement of visitors, employees and guards from one space to the

other by a family of first-order events: vis(s,c2) encodes the movement of a visitor from the stairs to

corridor 2, and vis(c2,s) the reverse; similarly, events grd(s,c2) and grd(c2,s) encode the movement

of guards between the two spaces. A process that models visitor movement is the following:

C20 =2

vis(s,c2) → C20

vis(c2,s) → C20

Here we assume that a guard is already in, and not allowed to leave c2. In order to keep track of

the number of visitors in floor 2, entering from the stairs, we can use a monitor process for the

events vis(s,c2) and vis(c2,s):
1

C(v) =2


vis(s,c2) → C(v + 1)

v > 0 & vis(c2,s) → C(v − 1)

cnt.v → C(v)

Note that here we write C(v) = P instead of C = recX(y := v).P , and assume a standard encoding

of natural numbers. Process C(v) keeps the number of visitors in v, which it can report through

the (parametrised event) cntv. We can now compose the two processes

C20 ‖
vis

C(v)

1we use b&P as a shorthand for if b then P else STOP

50 CHAPTER 4.
A METHODOLOGY FOR MODELLING AND VERIFYING SELF-

ADAPTIVE CPSS

such that whenever a visitor enters or leaves corridor 2 from the stairs, the state of C(v) increments

or decrements, accordingly. ♦ ♦

Adaptation is a higher-order transition which has a single sender and a single receiver. The

sender is a process l!P.Q which performs a transition annotated with l!P , according to rule AdSnd

of fig. 4.3. The receiver is a location with name l which performs transition l?P , according to rule

AdRcv. These transitions synchronise with rule AdSyncL (and its omitted symmetric rule),

and are propagated over parallel, scope restriction, and locations according to rules AdParL

(and its omitted symmetric), AdEsc, and AdLoc, respectively. Because of the sender-receiver

communication pattern of adaptation, and since we intend locations to have unique names, we

choose binary communication for these higher-order transitions.

Example 4.2.2. Continuing from Ex. 4.2.1, an adaptation procedure can query the counter after

every visitor move, and change the behaviour of corridor 2, when for example there are no more

visitors in floor 2. To achieve this we consider that process C20, encoding visitor movement in

and out of c2, is inside a location lC2, and can thus be adapted. The following process Π installs

process C21 in this location when all visitors have left c2:

Π = vis(,) → cnt.v → if v = 0 then lC2!C21.Π else Π

Here vis(,) represents any visitor events. Process C21 allows the guard to leave c2 and prevents

further movement into c2, encoding the closing of the space.

C21 = grd(c2,s) → SKIP

The model of corridor 2 is the composition of the above processes.

(ν lC2)(lC2〈C20〉 ‖
vis

C(1) ‖
vis,cnt

Π)

The following execution shows how location lC2 is adapted when the last visitor leaves:

(ν lC2)(lC2〈C20〉 ‖
vis

C(1) ‖
vis,cnt

Π)
vis(c2,s)−−−→

(ν lC2)(lC2〈C20〉 ‖
vis

C(0) ‖
vis,cnt

Π1)
cnt.0−−−→

(ν lC2)(lC2〈C20〉 ‖
vis

C(0) ‖
vis,cnt

Π2(0))
τ−−−→

(ν lC2)(lC2〈C20〉 ‖
vis

C(0) ‖
vis,cnt

lC2!C21.Π)
τ−−−→

(ν lC2)(lC2〈C21〉 ‖
vis

C(0) ‖
vis,cnt

Π)

Here we let Π1 = cnt.v → Π2(v) and Π2(v) = (if v = 0 then lC2!C21.Π else Π). The last transition

is due to the synchronisation of the transitions

lC2〈C20〉
l?C21−−−→ lC2〈C21〉 lC2!C21.Π

l!C21−−−→ Π

Note that in this example we restricted the scope of the lC2 to illustrate that the adaptation of a

location can be localised—no process outside the restriction can adapt lC2. ♦

We now outline a series of definitions that we utilize in later chapters. In Def. 4.2.3, we define

the functions out(P) and in(P) that return the free locations in a process P used in send-prefixes

4.2. THE PROCESS LANGUAGE ACSP 51

and locations, respectively.

Definition 4.2.3. out(P) and in(P) are defined by the rules

out((νc).P) = out(P)− {c}

out(l!P.Q) = {l} ∪ out(P) ∪ out(Q)

in(l〈P 〉) = {l}

in((νc).P) = in(P)− {c}

All other constructs of the language are derived by the union of the recursive calls results to these

functions. ♦

We define three denotational semantic models for ACSP, inspired from CSP [105]. Prior, we

outline important definitions needed for defining the semantic models.

Definition 4.2.4. A trace t is a sequence of first-order and higher-order events, denoted as

〈α1, α2, . . .〉. We say an ACSP process P has a trace t, written as P
t−−−→ iff t = 〈α1, α2, . . . , αn〉

and P
α1−−−→ P1

α2−−−→ . . .
αn−−−→ Pn ♦

We define closed processes. An ACSP process P is closed when all the traces contain only

first-order events. Any adaptation is localized within P .

Definition 4.2.5 (Closed Process). A process P is closed iff traces(P) ⊆ Σ∗ ♦

Definition 4.2.6. The set of traces, failures and divergence of a process P are:

traces(P) = {t | P t−−−→ }

refusal(P) = {X ⊆ Σ | P 6 a−−−→ Q and a ∈ X}

failures(P) = {(t,X) | P t−−−→ Q and X ∈ refusal(Q)}

Q0 ⇑ = for all n ∈ N. ∃Qn+1. ;Qn
τ−−−→ Qn+1

div(P) = {t | P t−−−→ Q and Q ⇑}

♦

Using these definitions, we define three denotational semantic models—trace, failure and failure-

divergence semantic models.

Definition 4.2.7 (Trace Semantic Model). Any trace in process Impl can be matched with a trace

in Spec. This define what a process can do. Trace refinement is synonyms with the verification of

safety properties, where we check that nothing bad ever happens,

Spec vT(ACSP) Impl iff traces(Impl) ⊆ traces(Spec)

♦

Definition 4.2.8 (Failure Semantic Model). This refinement relation allows us to describe safety

and liveness properties. Akin to the trace semantic model, we check that all traces in process Impl

are contained in process Spec and we assert that the process Impl must eventually accept the trace

in Spec or diverges. A violation is the absence of a suffix to a desired state.

Spec vF(ACSP) Impl iff failures(Impl) ⊆ failures(Spec)

and traces(Impl) ⊆ traces(Spec)

52 CHAPTER 4.
A METHODOLOGY FOR MODELLING AND VERIFYING SELF-

ADAPTIVE CPSS

♦

Definition 4.2.9 (Failure-Divergence Semantic Model). This semantic model allows us to dis-

tinguish between deadlocks and livelocks. It adds to the other semantic models the notion of

divergence, where a process does not perform any visible events. Additional to the other semantic

models, the failure-divergence model checks that all divergence in Impl are found in Spec, i.e., he

process Impl does not diverge from any state where the process Spec does not

Spec vFD(ACSP) Impl iff failures(Impl) ⊆ failures(Spec)

and div(Impl) ⊆ div(Spec)

♦

We now define a notion of equivalence for ACSP processes. We identify equivalence between

two process if an external observer cannot distinguish between the two processes. This is the notion

of strong bisimulation.

Definition 4.2.10 (Bisimulation relation). The relation R ⊆ P1 × P2 is said to be a (strong)

bisimulation iff P1RP2 implies the following

1. If P1
a−−−→ P ′1 implies there is a P ′2 such that P2

a−−−→ P ′2 and P ′1RP ′2

2. If P2
a−−−→ P ′2 implies there is a P ′1 such that P1

a−−−→ P ′1 and P ′1RP ′2

♦

Two processes are said to be bisimilar P ∼ Q, iff there is a bisimulation relation R that relates

them (P,Q) ∈ R. The relation ∼ is the largest bisimulation.

These definitions are referenced in later chapters to draw down properties about our ACSP

language from properties in CSP.

4.3 Next Chapters

In the first part of the chapter, we outlined a methodology to compositionally model and verify

the satisfaction of security requirements in SA CPSs. We exploit the topological layout of CPSs

to manually deduce all the components and their connectivity. For each requirement, we system-

atically explore different levels of granularities for encoding an adaptation procedure that aims to

ensure its satisfaction possibly with the aid of a domain expert. An adaptation procedure is the

composition of two sub-processes: one deciding when to adapt and the other what the adaptation

should be. Lastly, we compose the adaptation procedures to ensure the satisfaction of requirements

is preserved in the overall system.

We then presented ACSP a process language inspired from CSP, that we utilize to model SA

CPSs. For the process language, we overviewed the main syntax, transition rules and semantic

models.

In the next chapters, we expand upon each step of our methodology starting with Step 2. In

particular, in Chapter 5, we investigate how the topology guides us to localize the satisfaction of

requirements to small parts of the CPS and how to encode clusters in ACSP language. In Chapter 6,

we present our verification approach that leverages existing verification techniques and supports

compositional verification. Finally, in Chapter 7, we overview a technique to systematically verify

the satisfaction of requirements by adaptation procedures composition. There we highlight cases

where re-verification results follows from the compositionality theory.

Chapter 5

Steps 2 & 3: Exploring Adaptation

Procedures and ACSP Encoding

After the system designer maps the architecture of a CPS, she identifies a subset of these com-

ponents that affect the satisfaction of each given requirement. An adaptation procedure over this

family of components (the adaptation procedure scope) is defined to preserve a given requirement.

Although manual, the task of identifying components relevant to a requirement can be guided by

topological relationships [102] (e.g., containment and connectivity between system components).

For example, in a smart building a valuable physical asset may be contained in a room while a

digital asset, such as data, could be contained in a server. Moreover, physical areas can be con-

nected through doors or digital devices can be connected through an IP network. If a requirement

aims to preserve integrity of digital information stored in a server, the components that can affect

its satisfaction are, for example, the rooms that are connected to the one containing the server as

well as the devices digitally connected to the server.

We model components as parallel processes in ACSP and system actions (e.g., access/exit

to/from a room, connection to the wireless network) as first-order communication (i.e., transmission

of data). The process language ACSP allows representing adaptation procedures which use higher-

order communication (i.e., transmission of processes) to implement adaptation.

5.1 The Cluster

In the verification of a requirement R, the system designer identifies a subset of the components

that affect the satisfaction of R and encodes an adaptation procedure ΠR that monitors and adapts

some of the selected components with the aim to ensure the satisfaction of R. The ACSP process

composing the adaptation procedure and the components in its scope in parallel is referred to as

an unary cluster.

Definition 5.1.1 (Cluster). An ACSP process S~R is a cluster satisfying requirements ~R if it is of

the form

S~R = (ν lm...n)

 ‖
i∈{m...n}

[Ei] li〈Pi〉

 ‖
Em...n

 ‖
r∈~R

Πr


where for every requirement r ∈ ~R, the adaptation procedure Πr is designed to ensure the satisfac-

tion of r, and out(Πr) ⊆ lm...n. A cluster comprises also a subset of the named components in our

53

54 CHAPTER 5.
STEP 2 & 3: EXPLORING ADAPTATION PROCEDURES AND ACSP

ENCODING

system, selected by the system designer, which affect the satisfaction of the requirements ~R. These

components are encoded in the process

(
‖

i∈m...n
[Ei] li〈Pi〉

)
which is the replicated parallel con-

struct. The replicated parallel construct compose the processes li〈Pi〉 in parallel where i ∈ m. . . n

and each process li〈Pi〉 synchronizes with all the other processes in the replicated parallel construct

over the events Ei ∩
⋃

x∈{m...n}\i
Ex. ♦

Definition 5.1.2 (Unary cluster). An ACSP process is a unary cluster if and only if it is a cluster

associated with a single requirement. ♦

To lighten notation, we drop the ~R subscript from a cluster when it is clear from the context.

In later sections, we discuss how the topology guides a system designer to identify components

that affect the satisfaction of a requirement. A component may affect the satisfaction of a require-

ment in two ways. Firstly, a component may pose a threat to the satisfaction of a requirement and

thus an adaptation procedure needs to adapt its behaviour to minimize the threat. Alternatively,

adaptation may depend on the state of the component and an adaptation procedure needs to mon-

itor its behaviour, without changing, to plan adaptations. We distinguish between the adapted

and monitored components from the cluster encoding.

Definition 5.1.3 (Adapted Component). A component at location l is adapted in the cluster S~R
iff l ∈ out(Π~R). We range over A~R for the adapted components for a cluster S~R. ♦

Definition 5.1.4 (Monitored Component). A component at location l is monitored in the cluster

S~R iff l /∈ out(Π~R) but l ∈ in(Π~R). We range over M~R for the monitored components for a cluster

S~R. ♦

When the distinction between monitored and adapted components is important, we include

this information in the cluster definition. We write S~R
M
A

to be the cluster S~R in which the set of

locations A and M are adapted and monitored in the cluster respectively; otherwise we drop the

parameters A and M .

5.1.1 Adaptation Procedures Encoding

In Chapter 3. we present an abstract model for SA systems, which we called SAA. The novel

aspect of the framework is the distinction of execution points where the system may-adapt from

execution points where the system must-adapt. We achieve this by introducing a third component

to the traditional modules of an SA system: the adaptation pattern, that selects the execution

points where an SA system must-adapt. The pattern synchronizes the execution points with the

traditional elements of an SA systems—an adaptation function which determines the adaptation

and when the system may-adapt, and a base-system. The modularization of the adaptation pro-

cedure provides the system designer a technique to feasibly experiment with different adaptation

procedures to pick the most optimal and correct encoding.

This encoding also sits closer to the implementation of adaptation procedures for SA CPSs. In a

CPS, like the art gallery, components are in different physical locations, e.g., rooms. The adaptation

procedures, monitoring a set of components, need to deploy and embed monitoring functionality

close to or on the components being monitored. These monitors communicate intermittently the

state of the components to a (potentially centralized) adaptation function that communicates back

the adaptation. By having the implementation reflect more faithfully the model, it is easier for

the system designer to make changes to the model post-deployment and reduce the gap between

the model and the implementation. Consider for instance in the art gallery example, tail-gating to

5.1. THE CLUSTER 55

room D has been noticed by the security guard and thus the system needs to be adjusted to allow

for a small degree of tail-gating. The system designer identifies that the adaptation procedure

ensuring the satisfaction of Req. 2 needs to be updated. She decides to add more check-points

to detect tail-gating more accurately and thus updates the adaptation pattern. She verifies the

new behaviour and then maps the change to the appropriate monitor inside room D. Alternatively,

she may change the adaptation function to allow fewer visitors in room D and thus updates the

adaptation function. Once the changes are verified, she maps the change to the appropriate process.

Applying the SAA framework in a compositional setting is not straightforward. Consider the

art gallery example, where we define an adaptation procedure for Req. 2, which constraints the

number of visitors in room D to 10. The room D component and the adaptation procedure make

up a single SAA, but this SAA is only one part in the art gallery encoding and we need to compose

it with the other SAAs having their own ?-transitions. The composition needs to be able to

distinguish between different ?-transitions and also synchronize with other SAAs on a subset of

the events—the interface between the components.

These issues are handled naturally by process languages. We thus propose an encoding of

adaptation procedures in ACSP inspired from the SAA framework, where an adaptation proce-

dure comprises an adaptation pattern—a process that monitors a subset of the components and

determines when the system must-adapt, and an adaptation function that determines when the

system may-adapt and the outcome of the adaptation. We now discuss the encoding of the adap-

tation pattern and adaptation function.

The adaptation pattern: We let PR mean the encoding in ACSP for the adaptation pattern

in the adaptation procedure ΠR defined to ensure the satisfaction of a requirement R. In Def. 3.3.3,

we outline generic properties adaptation patterns should possess. An adaptation pattern should

track the first-order events of the components in the scope. At every execution point, either only

the adaptation ?-event or all the first-order events from the selected components are accepted.

This guarantees that the adaptation pattern only interfere with the behaviour of the system’s

components through adaptation. In our encoding, an adaptation pattern tracks and communicates

the state of the components to an adaptation function, when triggering adaptation. We define a

family of distinguished events to model the ?-transition,1

{|?|} = {?〈s〉 | s ∈ State}

Because an adaptation pattern comprises solely first-order events, we can, using FDR, check that

the patten only comprises the first-order events of the selected components and adaptation events

and if adaptation events are hidden, the pattern does not refuse any first-order events from the

components.

The adaptation function: We let a process FR represent the adaptation function of the

adaptation procedure that designed to ensure the satisfaction of requirement R. The general

structure of adaptation functions accepts an external choice of {|?|} events. Depending on the

state attached with the ?-event, the adaptation function communicates higher-order outputs to

the appropriate locations.

FR = 2
s∈State

{
?〈s〉 → l!Q(s).FR

1Here we make use of enumerate sets: {|goto|} means the set of all goto events

56 CHAPTER 5.
STEP 2 & 3: EXPLORING ADAPTATION PROCEDURES AND ACSP

ENCODING

In the SAA framework, the adaptation function was a stateless, atomic injective map. In

the encoding above, adaptation is non-atomic. One interleaving between the adaptation pattern

and the adaptation function is to synchronize on an ?〈s〉 event but then the adaptation pattern

proceeds to track first-order events delaying the higher-order output. For example, consider the

adaptation procedure Π2, guaranteeing at most 10 visitors in room D, the process consists of an

(parametrised) adaptation pattern P2 that triggers adaptation when the number of visitors is 10

(represented by the number in the parenthesis) and an adaptation function F2 encoding a simple

condition statement. Below, we illustrate one possible trace of execution for an adaptation,

(ν {|?|})

(
P2(10) ‖

{|?|}
F2

)
?〈10〉−−−→ (ν {|?|})

(
P2(10) ‖

{|?|}
if v ≥ 10 then ld!R

′′
D.F2 else ld!R

′
D.F2

)
vis(ED,EB)−−−→ (ν {|?|})

(
P2(9) ‖

{|?|}
if v ≥ 10 then ld!R

′′
D.F2 else ld!R

′
D.F2

)

Here, the adaptation pattern triggers adaptation by broadcasting ?〈10〉 to F2. However, the process

above continues monitoring first-order events from room D, bypassing the adaptation entirely. We

can encode an atomic adaptation function by adding an acknowledge event ack that FR broadcasts

back to PR signalling the completion of adaptation.

PR = ?〈s′〉 → ack → PR for some s′ ∈ State

FR = 2
s∈State

{
?〈s〉 → l!Q(s).ack → FR

The composition: We range over Π for adaptation procedures. We subscript the requirement

that the adaptation procedure is designed to enforce e.g., ΠR ensures the satisfaction of R. An

adaptation procedure composes in parallel the processes PR and FR that synchronizes on the ack

event and {|?|} events. These events are also scoped (and hidden) in the adaptation procedure.

ΠR = (ν {|?|} , ack)

(
PR ‖
{|?|},ack

FR

)

Proposition 5.1.5. In our encodings of adaptation procedures, we know the following

1. An adaptation pattern PR is a well-formed (closed) ACSP process such that loc(PR) = ∅.

2. For an adaptation procedure Π, in(Π) = ∅

5.2 Modelling the Art Gallery Example

Here we discuss how the requirements from the art gallery example can be encoded in ACSP. We

show the encoding for Requirements 1 and 3, the encoding for the remaining requirements can be

found in appendix C.

Following Steps 2 and 3 described in section 4.1, we define adaptation procedures, over a subset

of the cyber and physical components of the system, that aims to ensure the continued satisfaction

of requirements through self-adaptation. Identifying the cyber and physical components of the

5.2. MODELLING THE ART GALLERY EXAMPLE 57

systems is guided by the topology and their topological relationships. A partial component model

for the art gallery is shown in fig. 4.1.

Requirement 1: Visitors should not interfere with the restoration process To satisfy

this requirement we require that when visitors are in the restoration area, the guard stays present.

Here we encode a simple access policy, described in Ad. Proc. 1.1: the door between corridor

2 and restoration area precludes entrance of visitors to the latter, unless a guard is in the corridor

and the door from corridor 2 to the stairs precludes the guard from leaving floor 2 if there are

visitors in the restoration area.

The components relevant to this policy are the restoration area and corridor 2. These compo-

nents are connected in the model of fig. 4.1 through the physical connectivity of a door. We design

a family of first-order events to encode this connectivity: Era = {t(c2,ra), t(ra,c2)} respectively en-

code the movement of agents from corridor 2 (c2) to the restoration area (ra) and vice-versa. Here

t can take the form vis or grd to represent visitor or guard movement, respectively.

The restoration area (including its door) can have one of two functionalities:

1. Visitors are allowed to enter/leave the restoration area, encoded by the process:

R0 = 2
t∈{grd,vis}

t(ra,c2) → R0

t(c2,ra) → R0

We assume that this process models an unlocked door with free movement of agents.

2. Visitors are not allowed to enter the restoration area, encoded by the process:

R1 = grd(ra,c2) → R1 2 grd(c2,ra) → R1 2 vis(ra,c2) → R1

In process R1, the event vis(c2,ra) representing visitor moving from corridor 2 (c2) to the

restoration area (ra) is precluded.

The internal state of the restoration area keeps track of visitors and the guard movements to

make sure that the number of people leaving is smaller than or equal to the number of people

entering the area. We define two processes C(ra,v) which monitor the visitors’ movements and

C(ra,g) monitoring the guard movements.

Cra =C(ra,v)(0) 9 C(ra,g)(0)

C(ra,g)(n) =2

n > 0 & grd(ra,c2) → C(ra,g)(n− 1)

grd(c2,ra) → C(ra,g)(n+ 1)

C(ra,v)(n) =2

n > 0 & vis(ra,c2) → C(ra,v)(n− 1)

vis(c2,ra) → C(ra,v)(n+ 1)

In order for adaptation to take effect, the process responsible for access to the restoration area

should be in a location with name ra. The encoding of the restoration area, initially with no guard

or visitor present in the floor 2,

ResArea =

(
Cra ‖

Era

ra〈R1〉

)

58 CHAPTER 5.
STEP 2 & 3: EXPLORING ADAPTATION PROCEDURES AND ACSP

ENCODING

The corridor 2 component allows movement to/from the restoration area and the stairs. We

encode the movement between corridor 2 (c2) and the stairs (s) by the family of events t(c2,s) and

t(s,c2), where t ∈ {grd, vis}. We assume the set of event Ec2 = {t(c2,ra), t(ra,c2), t(c2,s), t(s,c2)} to

represent the access/exit movement to and from corridor 2 , where t can take the form vis or grd

to represent visitor or guard movement, respectively.

To satisfy Req. 1, the guard should be allowed to leave the upper floor (through the stairs)

only when there are no visitors in the restoration area. Thus corridor 2 can have one of two

functionalities:

1. The guard is allowed to leave corridor 2 as there are no visitors in the restoration area,

encoded as the process C20 where visitors and the guard are allowed to move between corridor

2 and adjacent rooms,

C20 = 2
t∈{vis,grd}



t(s,c2) → C20

t(c2,s) → C20

t(c2,ra) → C20

t(ra,c2) → C20

2. The guard is not allowed to leave, encoded by the process C21 where the event grd(c2,s) is

precluded,

C21 =2



vis(s,c2) → C21

vis(c2,s) → C21

vis(c2,ra) → C21

vis(ra,c2) → C21

grd(s,c2) → C21

The internal state of corridor 2 keeps track of the number of visitors and guard in the space,

which can be expressed as a monitor of the movement events.

Cc2 =C(c2,v)(0) 9 C(c2,g)(0)

C(c2,g)(n) = 2
rm∈ra,s

 grd(rm,c2) → C(c2,g)(n+ 1)

n > 0 & grd(c2,rm) → C(c2,g)(n− 1)

C(c2,v)(n) = 2
rm∈ra,s

 vis(rm,c2) → C(c2,v)(n+ 1)

n > 0 & vis(c2,rm) → C(c2,v)(n− 1)

The encoding of corridor 2 uses location c2 to adapt the functionality of the door connecting

it to the stairs.

Corr2 =

(
Cc2 ‖

Ec2

c2〈C20〉

)

We now define the adaptation procedure Π1 that monitors and adapts the behaviour of the

restoration area and corridor 2 components to guarantee the satisfaction of Req. 1,. The adaptation

procedure Π1 ensures the following two criteria:

5.2. MODELLING THE ART GALLERY EXAMPLE 59

1. The Guard cannot leave upstairs by moving from corridor 2 to the stairs if visitors are in

the restoration area

2. Visitors cannot enter the restoration area through the door connecting the area to corridor

2 if the guard is not in floor 2, i.e., the restoration area or corridor 2

As outlined in section 5.1.1, an adaptation procedure comprises an adaptation pattern that

tracks the state of the components and identifies the execution points where a system must-adapt

and an adaptation function that determines the adaptation outcome and when a system may-

adapt. We define an adaptation pattern P1 that triggers adaptation when a visitor enters an

empty restoration area, when the last visitor exits the restoration area and when a guard moves

to or from floor 2.

P1(v, g) =2



vis(c2,ra) → if v = 0 then ?〈v + 1, g〉 → ack → P1(v + 1, g)

else P1(v + 1, g)

vis(ra,c2) → if v = 1 then ?〈v − 1, g〉 → ack → P1(v − 1, g)

else if v > 0 then P1(v − 1, g)

else P1(v − 1, g)

grd(c2,s) → if g > 0 then ?〈v, g − 1〉 → ack → P1(v, g − 1)

else P1(v, g − 1)

grd(s,c2) → ?〈v, g + 1〉 → ack → P1(v, g + 1)

e→ P1(v, g) where e ∈ Era, Ec2\{vis(c2,ra), vis(ra,c2), grd(c2,s), grd(s,c2)}

At every execution point, either all first-order events from the restoration area and corridor 2

are accepted or the {|?|}-event are accepted.

We now define a process F1 that encodes the adaptation function. The process, through higher-

order outputs, precludes the guard from leaving floor 2 if visitors are in the restoration area and

the visitors from entering the restoration area without the presence of the guard.

F1 = letF ′′1 = ?〈v, g〉 → if g > 0 then ra!R0.ack → F1 else ra!R1.ack → F1

within ?〈v, g〉 → if v > 0 then c2!C21.ack → F ′′1 else c2!C20.ack → F ′′1

The adaptation procedure is encoded as

Π1 = (ν {|?|} , ack)

(
P1(0, 0) ‖

{|?|},ack
F1

)

The unary cluster that we verify to ensure the satisfaction of Req. 1 comprises Corr2 and

ResArea and the adaptation procedure Π1,

S1 = (νra, c2)

((
Corr2 ‖

E(c2,ra)

ResArea

)
‖

Ec2
,Era

Π1

)

where the event set E(c2,ra) = Ec2 ∩ Era represents the connectivity between corridor 2 and

restoration area.

As we explain in the following chapter, we can verify the correctness of S1 above independently

of the rest of the system, through our translation to FDR. We later show that the model above

60 CHAPTER 5.
STEP 2 & 3: EXPLORING ADAPTATION PROCEDURES AND ACSP

ENCODING

trace refines the specification Spec1 below. We specify the requirement as an abstract process

describing the correct behaviour described informally in the requirement. We define the processes

NoGrd and GrdPres to describe the accepted behaviour when the guard is not upstairs and when

the guard eventually moves upstairs respectively,

Spec1 = let

NoGrd =2


grd(s,c2) → GrdPres(0)

vis(s,c2) → NoGrd

vis(c2,s) → NoGrd

GrdPres(n) =2



vis(c2,ra) → GrdPres(n+ 1)

n > 0 & vis(ra,c2) → GrdPres(n− 1)

n = 0 & grd(c2,s) → NoGrd

grd(ra,c2) → GrdPres(n)

grd(c2,ra) → GrdPres(n)

grd(s,c2) → GrdPres(n)

withinNoGrd

We can also encode an alternative policy, described in Ad. Proc. 1.2 in which the door to the

restoration area is rarely locked, improving the movement of restoration workers. To do this, we

extend the adaptation procedure of the restoration area, so that it monitors the entry of visitors

to the stairs and calls the guard from corridor 1 when necessary.

Πr(b) = grd(s,c2) → RA!R0.Πr(tt)

2 grd(c2,s) → RA!R1.Πr(ff)

2 vis(c,s) → if¬b then call guard→ Πr(b) else Πr(b)

2 vis(ra,c2) → Πr(b) 2 vis(c2,ra) → Πr(b)

Note that the rest of the encoding of the system needs no change.

Requirement 3: the HVAC should not be controlled remotely by unauthorised users

An user can get unauthorized access to the HVAC through the access point. This is represented

through a connectivity relation in the component model in fig. 4.1. The HVAC does not need to

be connected to the internet all the time. We therefore satisfy the requirement by disconnecting

the HVAC while visitors are connected to the internet through the same access point, as explained

in Ad. Proc. 3.1. Employees may also connect to internet to conduct sensitive work (through the

access point). As a security measure, visitors are disconnected if there are any employees connected

to the network. Thus, in the presence of an employee connection all visitors are disconnected from

the access point and because no visitor is connected, it is safe to reconnect the HVAC.

The components that affect the satisfaction of this requirement are the HVAC and the access

point. The HVAC component perform connect and disconnect events that synchronize with the

access point, encoding the connectivity relation between the two components. We define a family

of first-order events EH = {connhvac, disconnhvac} where connhvac represent a connect commands

from the HVAC component and disconnhvac represents a disconnect event. The behaviour of the

component is a cycle of connect and disconnect events

H = connhvac → disconnhvac → H

The access point listens for connect and disconnect events from the HVAC, employees and

visitors. We define a family of first-order events to encode this communication: connt and disconnt

5.2. MODELLING THE ART GALLERY EXAMPLE 61

where t ∈ {vis, emp, hvac}. We also encode the visitors disconnect command as disconnect which

states that all visitors are disconnected. We assume Eap to represent the set of events for the

access point.

The HVAC component listens for connect and disconnect commands from the access point.

We thus focus the adaptation procedure on the access point. The process for the access point

component can be in one of the following functionalities

1. The HVAC is connected and the access point is listening for connections from either em-

ployees or visitors. This is the initial state of the access point, where only the HVAC is

connected

A0 = connhvac → 2
t∈{vis,emp}

connt → A0

disconnt → A0

2. The HVAC is disconnected because a visitor has connected to the access point. Other visitors

and employees can connect to the access point thereafter

A1 = disconnhvac → 2
t∈{vis,emp}

connt → A1

disconnt → A1

3. All visitors are disconnected through the disconnect event because an employee connected

to the access point. Since no visitor is connected, the HVAC is re-connected.

A2 = disconnect→ connhvac →2

connemp → A2

disconnemp → A2

4. After the last employee disconnects from the access point, visitors are allowed to re-connect

A3 = 2
t∈{vis,emp}

connt → A3

disconnt → A3

We define a process Cap to track the internal state of the access point to make sure that the

number of connections always exceeds or is equal to the number of disconnections. The process

Cap is the parallel interleaving of three sub-processes, tracking the number of visitors, employees

and HVAC connections respectively.

Cap =C(ap,v)(0) 9 C(ap,e)(0) 9 C(ap,h)(False)

C(ap,v)(n) =2


connvis → C(ap,v)(n+ 1)

n > 0 & disconnvis → C(ap,v)(n− 1)

disconnect→ C(ap,v)(0)

C(ap,e)(n) =2

 connemp → C(ap,e)(n+ 1)

n > 0 & disconnemp → C(ap,e)(n− 1)

C(ap,h)(b) =2

¬b& connhvac → C(ap,h)(T)

b& disconnhvac → C(ap,h)(F)

62 CHAPTER 5.
STEP 2 & 3: EXPLORING ADAPTATION PROCEDURES AND ACSP

ENCODING

We encapsulate the initial process A0 of the access point component in the location ap—ap〈A0〉
to make it adaptable. We define an adaptation procedure Π3 that aims to ensure the satisfaction

of Req. 3. The adaptation procedure monitors the HVAC component and adapts the access point

component.

We define an adaptation pattern that monitors their behaviour as the parallel interleaving of

P ′3 and P ′′3

The process P ′3 tracks the number of visitors connected to the access point. Adaptation is

triggered when the first visitor connects or the last visitor disconnects from the access point. The

number of visitors connected to the access point is communicated to an adaptation function F3,

P ′3(n) =2



connvis → ifn = 0 then ?v〈n+ 1〉 → ack → P ′3(n+ 1) else P ′3(n+ 1)

disconnvis → ifn = 1 then ?v〈n− 1〉 → ack → P ′3(n− 1) else ifn > 0 then P ′3(n− 1) else P ′3(0)

disconnect→ P ′3(0)

update→ P ′3(n)

connt → P ′3(n) where t ∈ {HV AC, emp}

We also define the process P ′′3 that tracks the number of employees connected to the access

point. Adaptation is triggered when the first employee connects or the last employee disconnects

from the access point. The process P ′′3 broadcasts the number of employees connected to the access

point to the same adaptation function F3 over a ?e-event. Note, we use a different ?-event from

P ′3 to differentiate the type of connections

P ′′3 (n) =2



connemp → ifn = 0 then ?e〈n+ 1〉 → ack → P ′′3 (n+ 1) else P ′′3 (n+ 1)

disconnemp → ifn = 1 then ?e〈n− 1〉 → ack → P ′′3 (n− 1) else ifn > 0 then P ′′3 (n− 1) else P ′′3 (0)

disconnect→ P ′′3 (n)

connt → P ′′3 (n) where t ∈ {HV AC,Open}

disconnt → P ′′3 (n) where t ∈ {HV AC,Open}

Both processes P ′3 and P ′′3 monitor all the events from the access point and HVAC components

Eap, EH . At every execution point, each process either accepts all first-order events or triggers

adaptation.

The adaptation function listens for the ?v and ?e- events and communicates adaptation com-

mands to location ap as needed to ensure the continued satisfaction of Req. 3,

F3 =2

?v〈n〉 → ifn = 1 then ap!A1.ack → F3 else ifn = 0 then ap!A0.ack → F3 else ack → F3

?e〈n〉 → ifn = 1 then ap!A0.ack → F3 else ifn = 0 then ap!A2.ack → F3 else ack → F3

Even when F3 decides that no adaptation is needed, the process broadcasts the ack-event

signalling the end of the adaptation.

The adaptation procedure is defined as the composition of the adaptation patterns P ′3, P
′′
3 and

adaptation function F3, synchronizing over the ?v, ?e events and acknowledge ack events,

Π3 = (ν {|?v, ?e|} , ack)

((
P ′3(0) ‖

Eap,EH

P ′′3 (0)

)
‖

ack,{|?v,?e|}
F3

)

The process S3 models CPS, required to verify Req. 3. The process is referred to as the unary

5.3. SUMMARY 63

cluster for Req. 3,

S3 = (ν ap, h)

(((
ap〈A0〉 ‖

Eap

Cap

)
‖

E(ap,h)

h〈H〉

)
‖

Eap,EH

Π3

)

where the event set E(ap,h) = Eap ∩EH represents the connectivity relation—connect and discon-

nect events between the access point and the HVAC components. We later verify that the process

S3 refines the following specification

Spec3 = letT (n) =2



n = 0 & connvis → disconnhvac → T (n+ 1)

n > 0 & connvis → T (n+ 1)

n > 1 & disconnvis → T (n− 1)

n = 1 & disconnvis → connhvac → T (n− 1)

disconnect→ T (0)

connemp → T (n)

disconnemp → T (n)

n = 0 & connhvac → T (n)

within connhvac → T (0)

5.3 Summary

In this chapter, we present a technique to utilize topological relationships to systematically explore

different grouping of components that can affect—independently from the rest of the system—

satisfaction of a given requirement in CPSs. A (self-)adaptation procedure aiming to satisfy a

given requirement can be localized to the components that affect its satisfaction. As the state

space of these components is typically smaller than that of the whole system , we can use formal

verification tools, such as FDR, to check that the components behaviours and the adaptation

procedure identified by the system designer can satisfy a given set of requirements. This process is

referred to as the cluster of a requirement We also present a technique for encoding the adaptation

procedure in our process language ACSP, inspired from the SAA framework that tackles the

complexity of encoding adaptation procedures by modularize the problem into two processes: a

process that decides when the system must-adapt and another process that decides the adaptation.

64 CHAPTER 5.
STEP 2 & 3: EXPLORING ADAPTATION PROCEDURES AND ACSP

ENCODING

Chapter 6

Step 4: Verification of

Requirements in Isolation

Next, the system designer verifies that the adaptation procedures indeed ensure the satisfaction of

the requirement. The model of the adaptation procedure and the components in its scope, making

up the unary cluster can be verified independently from the entire CPS. Because the state space of

such sets of components can be significantly smaller than that of the entire system, it is feasible to

use formal verification tools. In our verification approach, we use FDR [59], a refinement-checking

tool for CSP; however, our technique is general enough to allow the use of other verification tools

for process calculi, such as (bi-)simulation, testing preorders, and modal logic techniques (e.g.,

[89, 108, 69, 43, 35, 11]). If the verification fails, the system designer must explore alternative

adaptation procedures, which can be implemented at a different granularity, i.e. across a fewer or

more CPS components.

6.1 Theory of the Verification Technique

We present an adequate translation for a well-defined subset of our process language ACSP to

CSP. We call this subset the class of well-formed processes. The encodings in the previous chapter

are all contained in this subset and thus can be translated to CSP and verified using FDR.

6.1.1 Well-formed Processes

The language ACSP is powerful enough to support nested locations, adaptation procedures within

locations (which can themselves be adapted) and location redundancy. However for the purposes

of this thesis and to simplify the translation of ACSP processes to existing verification tools, we

restrict the syntax of the language to well-formed processes.

Definition 6.1.1 (Well-Formed Processes). An ACSP process P is well-formed when:

Unique Names: Every location name in P is unique; i.e., every sub-term of P of the form

Q1 ‖
E

Q2 has the property that in(Q1) ∩ in(Q2) = ∅.

Flat Structure: Locations are not nested; i.e., every sub-term of P of the form 2
i∈I

Qi, (if e ≤
e′ then Q else Q′), (e → Q), (l!Q.Q′), (recX(~y := ~e).Q), l〈Q〉 does not contain locations in

Q, Q′, Qi.

65

66 CHAPTER 6. STEP 4: VERIFICATION OF REQUIREMENTS IN ISOLATION

Static Adaptation: Adaptation processes cannot send out processes containing higher-order

events; i.e., every sub-term of P of the form l〈Q〉, l!Q.R does not contain location outputs

(adaptations actions) in Q.

Reasonable Adaptation For every sub-term of P of the form (νL)Q1 ‖
E

Q2, the processes are

encapsulated by (ν L) such that all locations in named processes are in one sub-term and the

higher-order prefixes are in the other sub-term are scoped in L, out(Q1) ∩ in(Q2) ⊆ L and

in(Q1) ∩ out(Q2) ⊆ L. ♦

Remark 6.1.2. The class of well-formed processes presented in a previous iteration of this work

[17] represents a strictly smaller set, where no more than one process could have a higher-order

output to a location. Here, we allow such outputs to appear in multiple processes. This is needed to

handle overlapping adaptation procedures discussed in the next chapter, which was not handled in

[17]. This is done by replacing the condition single adaptation procedure in [17] with the condition

reasonable adaptation. ♦

We say a process is well-formed if we can derive P by the rules in fig. 6.1, starting with an

empty Γ, i.e., there are no free locations in the process.

Definition 6.1.3 (Well-Formed Processes). An ACSP process P is well-formed iff ∅ ` P ♦

The rule wPar follows inductively from its sub-term and a number of side-conditions to ensure

the satisfaction of the unique name and reasonable adaptation constraints. The rule wPar checks

that every location name is unique (unique name): in(Q1)∩ in(Q2) = ∅; and that for all locations

l ∈ L, the higher-order prefixes of l can be localized in one sub-term and the named process in

the other (reasonable adaptation): out(Q1) ∩ in(Q2) ⊆ L, in(Q1) ∩ out(Q2) ⊆ L and out(Q1) ∩
out(Q2) ⊆ Γ (i.e., not in L). Later on in the translation to CSP, we synchronize the higher-order

communications on l ∈ L over the top-level parallel rule Q1 ‖
E

Q2. In the process with the higher-

order outputs Q2, we allow the interleaving (without synchronization) of multiple higher-order

outputs on L. In wLoc, the rule ensures that the process P does not contain nested locations

(flat structure) or perform higher-order prefixes (static adaptation) by checking ∅ ` P . The rule

wSnd is derived from the well-formedness of the communicated process with respect to an empty

environment (static adaptation and flat structure constraint), and for the continuation we check

that the flat structure constraint is satisfied. The rules wRec, wChx and wIf all have the side-

condition in(P) = ∅ to guard the constraint flat structure. Name scoping is restricted to wPar,

whereas we have the rule wScp for first-order events scopes.

The clusters presented in the previous chapter for the art gallery satisfy all the criteria for well-

formed processes. We later show that their encoding can also be translated to FDR for verifying

the satisfaction of requirements.

Example 6.1.4. Recall the encoding S1, which models Req. 1,

S1 = (νra, c2)

((
Corr2 ‖

E(c2,ra)

ResArea

)
‖

Ec2
,Era

Π1

)

The process above satisfies the unique names property: the pairwise intersection of in(Corr2), in(ResArea)

and in(Π1) is empty. We know that this holds because in(Corr2) = {c2}, in(ResArea) = {ra} and

in(Π1) = ∅. Locations are at the top level, which satisfies the flat structure property. Moreover,

all processes communicated through a higher-order output do not contain higher-order outputs

themselves (static adaptation). Only the process Π1 performs higher-order outputs in S1. The

6.1. THEORY OF THE VERIFICATION TECHNIQUE 67

wChx
i ∈ I implies Γ ` Pi and in(Pi) = ∅

Γ `2
i∈I

ei → Pi

wScp
Γ `M

Γ ` (νe)M

wSkp

Γ ` SKIP

wRec
Γ ` P in(P) = ∅
Γ ` recX(~y := ~e).P

wIf
Γ ` P Γ ` Q in(P) = ∅ in(Q) = ∅

Γ ` if e1 ≤ e2 then P else Q

wLoc
l ∈ Γ ∅ ` P

Γ ` l〈P 〉

wApp

Γ ` X(~e)

wSnd
l∈ Γ ∅ ` P Γ ` Q in(Q) = ∅

Γ `l!P.Q
wPar

Γ] L ` Q1 Γ] L ` Q2

in(Q2) ∩ in(Q1) = ∅ out(Q1) ∩ out(Q2) ⊆ Γ in(Q2) ∩ out(Q1) ⊆ L in(Q1) ∩ out(Q2) ⊆ L
Γ ` (ν L)Q1 ‖

E

Q2

Figure 6.1: Well-Formed Processes Rules

process Π1 communicates the processes R0, R1, C20 and C21, where none of them perform any

higher-order outputs. Finally, the reasonable adaptation procedure is satisfied as the adaptation

function within Π1 only performs higher-order outputs. ♦

Example 6.1.5. Consider the simple example,

∅ ` (ν l)
(

(l!P1 ‖ l!P2) ‖ l〈SKIP 〉
)

We check {l} ` l!P1 ‖ l!P2 using wPar, wSnd, wSkp and similarly {l} ` l〈SKIP 〉 using wLoc,

wSkp. Composing the two sub-processes together with wPar follows from four other constraints,

in(Q1) ∩ in(Q2) = ∅ = in(l!P1 ‖ l!P2) ∩ in(l〈SKIP 〉) = ∅

in(Q2) ∩ out(Q1) ⊆ L = {l} ∩ {l} ⊆ {l}

in(Q1) ∩ out(Q2) ⊆ L = ∅ ∩ ∅ ⊆ {l}

out(Q1) ∩ out(Q2) ⊆ Γ = out(l!P1 ‖ l!P2) ∩ out(l〈SKIP 〉) ⊆ ∅

When translating this process to CSP, we can synchronize all the communications over l at the top

level parallel construct between the outputs and named process, but internally on the left process

((l!P1 ‖ l!P2)) the outputs are interleaved. ♦

Example 6.1.6. Consider now the ACSP process

∅ ` (ν l)
(

(l!P1 ‖ l〈SKIP 〉) ‖ l!P2

)
This process is not well-formed. From the structure of the process, we know that only wPar can

be applied. One of the side-condition in wPar is

out(Q1) ∩ out(Q2) ⊆ Γ = out((l!P1 ‖ l〈SKIP 〉)) ∩ out(l!P2) ⊆ ∅

which does not hold because both sides contain the location l. Later on in the translation of this

process, we need to synchronize the communication between the named processes and the process

performing the higher-order outputs. In this example, we do not have a single parallel construct

where we can perform the synchronization between the named process and the interleaving of the

higher-order outputs without changing the structure of the process. ♦

We prove progress for well-formed processes as a corollary of theorem 6.1.7,

68 CHAPTER 6. STEP 4: VERIFICATION OF REQUIREMENTS IN ISOLATION

Theorem 6.1.7 (Well-formed Progress). For a process P , such that Γ ` P , we have:

• P e−−−→ P ′ implies Γ ` P ′

• P l!R−−−→ P ′ implies Γ ` P ′ and ∅ ` R and l ∈ Γ

• P l?R−−−→ P ′ and ∅ ` R implies Γ ` P ′ and l ∈ Γ

Proof. Follows directly from Lem. B.0.1.

Well-formedness is preserved by the transition semantics, presented in fig. 4.3, therefore, start-

ing from well-formed processes we only reach well-formed processes.

Corollary 6.1.8. If P is well-formed and P
α−−−→ P ′ then P ′ is well-formed.

Proof. Follows from the reflexive, transitive closure of theorem 6.1.7.

We show that any well-formed process with no free locations, i.e., an empty environment, is

also closed—its set of traces contains only first-order events.

Theorem 6.1.9. ∅ ` P implies P is closed.

Proof. By theorem 6.1.7, we know that for all t ∈ Σ∗, P
t−−−→ P ′

h−−−→ , then h ∈ Γ. By the

contra-positive of this statement, we know that h /∈ Γ implies ¬(P
t−−−→ P ′

h−−−→). Since we

assume an empty Γ, we deduce that for all h, h /∈ ∅ and thus P 6 th−−−→ for all t.

Proposition 6.1.10. For well-formed process P and Q and first-order events E, P ‖
E

Q is well-

formed.

Proof. P ‖
E

Q is well-formed iff ∅ ` P ‖
E

Q. From the structure of the process, we know that only

wPar can be applied. From the lemma definition, we know that ∅ ` Q and ∅ ` P . From the side-

conditions in(P) ∩ in(Q) = ∅, in(P) ∩ out(Q) = ∅, out(P) ∩ in(Q) = ∅ and out(P) ∩ out(Q) = ∅
hold. From the contra-positive of Pro. B.0.9, we know that

in(P) = in(Q) = ∅ (6.1)

out(P) = out(Q) = ∅ (6.2)

6.1.2 Translation into CSP

In fig. 6.2, we depict the translation of well-formed ACSP processes into CSP processes. This is

defined by structural induction on ACSP terms, and presented by judgments of the form P � S

translating an ACSP process P to a CSP process S.

By a pre-processing step, we can collect all location names used, and all processes inside higher-

order outputs. This is possible because we work with well-formed processes (Def. 6.1.1). We can

thus assume an injective map m mapping from higher-order prefixes to distinguished CSP events.

We trivially extend this mapping to first-order events, such that m(e) = e for all events e. We

also let p be the inverse mapping, taking events back to the process communicated i.e., p(e) = P

if there exists a location l where m(l!P) = e, or e otherwise. Furthermore, a function ch returns

the set of events attached to each location l i.e., ch(l) = {e | ∀P ∈ Proc.m(l!P) = e}.
The rules TChx, tScp, tRec, tIf, tSkp, tApp give a direct mapping to CSP of many ACSP

processes. The adaptation mechanism is encoded in the rules tSnd, tLoc and tPar. Rule tSnd

6.1. THEORY OF THE VERIFICATION TECHNIQUE 69

tChx
i ∈ I implies Pi � Si

2
i∈I

ei → Pi �2
i∈I

ei → Si

tScp
M � S

(νe)M � S \ {e}

tRec
P � S

recX(~y := ~e).P � letX(~y) = S withinX(~e)

tIf
P � S Q� T

if e1 ≤ e2 then P else Q� if e1 ≤ e2 then S else T

tSkp

SKIP � SKIP

tApp

X(~e)�X(~e)

tSnd
m(l!P) = e Q� S

l!P.Q� e→ S

tLoc
P � S

l〈P 〉� S 4 rec(l)

tPar
M � S N � T A = {m(l!R) | R ∈ Proc, l ∈ L}

(ν L)M ‖
E

N � (S ‖
E,A

T) \ A

Figure 6.2: Translation into CSP

translates l!P.Q by prefixing the translation of Q with the event defined in m(l!P). Rule tLoc

translates a location l, which is the receiving side of adaptation of l. We utilise the interrupt

construct to implement the location: the translation of process P can be interrupted by any event

in ch(l). Here we use

rec(l) = 2
e∈ch(l)

e→ (Te 4 rec(l))

where any e ∈ ch(l) translates to CSP process Te by p(e)� Te. This CSP interrupt unfolds rec(l)

with every ch(l) event, guaranteeing the execution of the right (translated) process that should

run after each adaptation of l, and re-establishing the interrupt.

Example 6.1.11 (Adaptation Processes). Assume the map m such that m(l!a → SKIP) = e1

and m(l!b→ SKIP) = e2. Then we have the translation

l〈a→ b→ SKIP〉 � (a→ b→ SKIP) 4 R

where R = e1 → (a→ SKIP 4 R) 2 e2 → (b→ SKIP 4 R)

The process l!a→ SKIP .SKIP initiating an adaptation translates to CSP according to: l!a→
SKIP .SKIP � e1 → SKIP . ♦

Finally, rule tPar translates a parallel composition M ‖
E

N into a CSP parallel composition.

The set of events E is transferred to the CSP parallel, extended with synchronization of events

encoding adaptations between M and N over the set of locations L. This prevents the interruption

of (translated) locations, encoded in tLoc, if there are no corresponding prefix processes.

Example 6.1.12 (Adaptation). The processes in Ex. 6.1.11 can be composed together using tPar

to model a complete adaptable system. Note that the chosen L required by the rule needs to

contain at least l as l ∈ out (l!a→ SKIP .SKIP) ∩ in (l〈a→ b→ SKIP〉). It follows

(νl)

(
l〈a→ b→ SKIP〉 ‖

∅
l!a→ SKIP .SKIP

)
�

(
(a→ b→ SKIP) 4 R ‖

{e1,e2}
e1 → SKIP

)
\ {e1, e2}

♦

We prove that the translation is deterministic,

Proposition 6.1.13 (Translation Deterministic). For a well-formed ACSP process P , P �S1 and

P � S2 implies S1 = S2.

Proof. Follows from Lem. B.0.4.

70 CHAPTER 6. STEP 4: VERIFICATION OF REQUIREMENTS IN ISOLATION

For all well-formed processes P , we show there is a CSP process S derived through the trans-

lation in theorem 6.1.14 and that the translation is a strong bisimulation in theorem 6.1.15.

Theorem 6.1.14. Γ ` P implies P � S

Proof. By rule induction on Γ ` P

wPar

Γ] L ` Q1 Γ] L ` Q2

in(Q2) ∩ in(Q1) = ∅ out(Q1) ∩ out(Q2) ⊆ Γ in(Q2) ∩ out(Q1) ⊆ L in(Q1) ∩ out(Q2) ⊆ L

Γ ` (ν L)Q1 ‖
E

Q2

case From the rule’s premises, we know

Γ] L ` Q1 (6.3)

Γ] L ` Q2 (6.4)

in(Q2) ∩ in(Q1) = ∅ (6.5)

out(Q1) ∩ out(Q2) ⊆ Γ (6.6)

in(Q2) ∩ out(Q1) ⊆ L (6.7)

in(Q1) ∩ out(Q2) ⊆ L (6.8)

By IH with eqs. (6.3) and (6.4), we know

Q1 � S1 (6.9)

Q2 � S2 (6.10)

We construct the set of first-order events A such that

A = {m(l!R) | R ∈ Proc, l ∈ L} (6.11)

Using tPar with eqs. (6.9) to (6.11)

(ν L)Q1 ‖
E

Q2 � (S1 ‖
E,A

S2) \ A (6.12)

wSnd

l∈ Γ ∅ ` P Γ ` Q in(Q) = ∅

Γ `l!P.Q
case From the premises

l ∈ Γ (6.13)

∅ ` P (6.14)

Γ ` Q (6.15)

in(Q) = ∅ (6.16)

By IH eq. (6.15),

Q� S (6.17)

6.1. THEORY OF THE VERIFICATION TECHNIQUE 71

From eq. (6.14), we know that P is well-formed and so m(l!P) is defined. By tSnd with eq. (6.17)

l!P.Q�m(l!P)→ S (6.18)

case

wLoc

l ∈ Γ ∅ ` P

Γ ` l〈P 〉
,

wChx

i ∈ I implies Γ ` Pi and in(Pi) = ∅

Γ `2
i∈I

ei → Pi
,

wRec

Γ ` P in(P) = ∅

Γ ` recX(~y := ~e).P

wScp

Γ `M

Γ ` (νe)M
,

wIf

Γ ` P Γ ` Q in(P) = ∅ in(Q) = ∅

Γ ` if e1 ≤ e2 then P else Q

Here, we show the proof for wLoc, the others are similar. From the premises, we know

l ∈ Γ (6.19)

∅ ` P (6.20)

By IH we know

P � S (6.21)

By tLoc

l〈P 〉� S 4 rec(l) (6.22)

case

wApp

Γ ` X(~e),

wSkp

Γ ` SKIP immediate.

We prove that the translation, depicted in fig. 6.2, is a strong bisimulation, i.e., transitions of

the ACSP term are in loc-step with the corresponding transitions of the CSP translation presented

in fig. 2.1.

Theorem 6.1.15. For a well-formed ACSP process M Let M � S; then:

1. If M
α−−−→ M ′ then there exists S′ such that S

m(α)−−−→ S′ and M ′ � S′

2. If S
e−−−→ S′ then there exist M ′ and α such that m(α) = e, M

α−−−→ M ′ and M ′ � S′

Proof. Follows directly from Lemma B.0.2 and B.0.3

The theorems 6.1.7 and 6.1.15 allow us to conclude that every property of the ACSP is also

a property of the translated CSP processes and vice-versa. Thus reasoning in FDR about the

translated process leads to verification results about the original ACSP processes. Moreover, we

leverage existing algebraic laws defined for CSP to define algebraic laws in our process language

and prove that our verification approach is congruent.

6.1.3 Verification Results for the ACSP Process Language

For well-formed processes, we provide a direct correspondence with traces in CSP. This allows us

to draw down a mapping between semantic models in the process languages.

72 CHAPTER 6. STEP 4: VERIFICATION OF REQUIREMENTS IN ISOLATION

Theorem 6.1.16. We provide a direct correspondence between definitions of traces, failures and

divergences for well-formed (closed) ACSP processes, in Def. 4.2.6 and the corresponding translated

CSP process S such that P � S, presented in section 2.1.2.

traces(P) = traces(S)

initials(P) = initials(S)

refusal(P) = refusal(S)

failures(P) = failures(S)

M ⇑ iff S ⇑

div(P) = div(S)

Proof. From the reflexive, transitive closure of of relations established in theorem 6.1.15 and the-

orem 6.1.9.

Corollary 6.1.17. Consider well-formed processes P,Q where P � S, Q � T . For the semantic

models M ∈ {T,F,FD}, then

P vM(ACSP) Q iff S vM(CSP) T

We show that our verification process is congruent. Proving assertion for a closed part of the

system suffices to show that the same property holds for the whole system. In terms of the gallery

example, this means that if we verify Requirements 2, 4 and 5 for the exhibition area, the assertion

also holds when composing the exhibition area with the rest of the art gallery.

Theorem 6.1.18. For ACSP well-formed processes P,Q,C and a semantic model M ∈ {T,F,FD},

P vM(ACSP) Q implies P ‖
E

C vM(ACSP) Q ‖
E

C

Proof. We know that

P � S (6.23)

Q� T (6.24)

C �G (6.25)

From theorem 6.1.15, P vM(ACSP) Q and eqs. (6.23) and (6.24) we obtain

S vM(CSP) T (6.26)

From CSP’s congruence theorem in [105], we know that for a set of events

S ‖
E

G vM(CSP) T ‖
E

G (6.27)

By Pro. 6.1.10, we know that both P ‖
E

C and Q ‖
E

C are well-formed. This means that there is a

process S′, T ′ such that

P ‖
E

C � S′ (6.28)

Q ‖
E

C � T ′ (6.29)

6.1. THEORY OF THE VERIFICATION TECHNIQUE 73

From the structure of the processes, we know that the rule tPar must have been used and from

Pro. 6.1.13,

S′ = S ‖
E

G (6.30)

T ′ = T ‖
E

G (6.31)

By theorem 6.1.15, we know that

P ‖
E

C vM(ACSP) Q ‖
E

C (6.32)

Example 6.1.19 (Compositionality of Req. 1). Recall, our encoding of ACSP processes S1 and

Spec1 in section 5.2, where S1 comprises the adaptation procedure Π1 that adapts and monitors

the components for corridor 2 and restoration area. We verify that small part of the system trace

refines the specification Spec1.

Spec1 vT (ACSP) S1

Through the compositionality theorem, we infer that the assertion also holds when we consider the

whole gallery,

Spec1 ‖
E(c2,s)

GroundF loor vT (ACSP) S1 ‖
E(c2,s)

GroundF loor

where the process GroundFloor is the encoding for the rest of the art gallery, i.e., the exhibition

area and stairs connecting the two floors and the cyber components—access point and the HVAC

component. From the component diagram in fig. 4.1, we know that the upper floor is connected

to the rest of the gallery through doors between corridor 2 (c2)and the stairs (s) represented by

the event set E(c2,s). We show that for verifying Req. 1 it suffices to verify only upper floor. This

reduces the state space of the verification problem significantly. ♦

The bisimulation relation between well-formed process in ACSP and CSP processes allows us

to define algebraic laws in our process language. From the bisimulation between ACSP processes

and CSP processes and algebraic laws in CSP presented in Def. 2.1.2, we draw down that the

following algebraic laws hold in ACSP processes. Here, we prove that the relation = is a strong

bisimulation over ACSP processes.

74 CHAPTER 6. STEP 4: VERIFICATION OF REQUIREMENTS IN ISOLATION

ACSP Code CSP Code
Upper Floor 66 80

Exhibition Area 123 138
Access Point & HVAC 62 73

Table 6.1: Difference in lines of codes when translating from ACSP to CSP

Corollary 6.1.20. For well-formed ACSP processes P,Q,R the following equivalences hold.

P = (P ‖
A

P) 〈‖−Identity〉

provided ev(P) ⊆ A

(P X‖Y Q) = (Q Y ‖X P) 〈A‖B−symm〉

(P X‖Y Q) X∪Y ‖Z R = P X‖Y ∪Z (Q Y ‖Z R) 〈A‖B−assoc〉

(P A‖B Q) \ Z = (P \ Z ∩A) A‖B (Q \ Z ∩B) 〈hide− A‖B−dist〉

provided A ∩B ∩ Z = ∅(
P ‖
A

Q

)
\ Z = (P \ Z) ‖

A

(Q \ Z) 〈hide− ‖
A

− dist〉

provided A ∩ Z = ∅

6.2 First Evaluation of the Verification Technique

In table 6.1, we depict the change in lines of code between the processes modelled in our language

and the translated code in FDR for the upper floor, exhibition area and cyber components. Trans-

lating the system components of the Restoration Area and Corridor 2, modelled in our language

as process (?) in section 5.2, leads to an FDR file of 80 lines of code. In our example, the difference

is minimal because adaptations alternates between two or three processes.

The verification of (?) was done by encoding simple specification automata in CSP accepting a

language of correct traces, and then showing that the translation of (?) has a subset of these traces

using FDR trace assertions. One of these specification processes does not include traces where a

visitor accesses the restoration area without a guard present. Another shows that the guard does

not leave the Corridor 2 if there are still visitors in the second floor.

We investigate the scalability of our verification approach by measuring the order of growth of

running time in seconds, number of states and transitions for verifying the specifications Spec2, Spec4

and Spec5A. We verify all three assertions by first considering only the selected subset of com-

ponents and then by considering the whole art gallery and see how topology-driven modelling

help us attain a tractable verification approach for SA CPSs. We acknowledge that the standard

verification approach may differ from the one used in the comparison presented in this section,

and further experiments may be required to build a complete picture of the scalability of the new

approach.

We run the three assertions in both contexts independently in FDR for an increasing number

of allowed visitors in room D (Req. 2) and exhibition area (Req. 4). For simplicity, we assume

that the number of visitors in the exhibition area is twice the number of allowed visitors in room

D. For each verification, we measure the running time (in seconds) using Unix time command and

measure the number of visited states and transition from FDR output. We run the experiment on

a personal computer having 8 cores running at 3.4 GHz with 8GB of DDR RAM and on a server

that has 56 cores running at 2.2 GHz with 256GB of RAM. The results match and therefore we

6.2. FIRST EVALUATION OF THE VERIFICATION TECHNIQUE 75

10 20 30 40 50 60 70
0.2

0.3

0.4

0.5

0.6

0.7

No. of Visitors in Rm D

T
im

e
(s

ec
)

10 20 30 40 50 60 70

50

100

150

200

250

300

No. of Visitors in Rm D
V

is
it

ed
S

ta
te

s

10 20 30 40 50 60 70
0

500

1,000

1,500

No. of Visitors in RmD

V
is

it
ed

T
ra

n
si

ti
on

s

Spec2 [T= RmD

Spec5A [F= RmA

(a) Experimental results for verifying Requirements 2 and 5 for room A using FDR including only the
relevant components. In the graphs, the x-axis specify the number of visitors allowed in room D at any
time. FDR minimization is turned on for this experiment.

10 20 30 40 50 60 70

0

500

1,000

1,500

2,000

No. of Visitors in Rm D

T
im

e
(s

ec
)

10 20 30 40 50 60 70

0

1

2

3

4

V
is

it
ed

S
ta

te
s

(1
07

)

No. of Visitors in Rm D

10 20 30 40 50 60 70

0

1

2

3

T
ra

n
si

ti
o
n
s

(1
08

)

No. of Visitors in Rm D

Spec2 ‖
EG

Rest [T= RmD ‖
EG

Rest

Spec5A ‖
EG

Rest [F= RmA ‖
EG

Rest

(b) Experimental results for verifying Requirements 2 and 5 for room A using FDR including all compo-
nents in the art gallery. The green line corresponding to the verification of Spec5A grows slower than the
red line (Spec2)

20 40 60 80 100 120 140

0

100

200

300

400

500

No. of Visitors in Rm D

T
im

e
(s

ec
)

20 40 60 80 100 120 140

0

1

2

3

V
is

it
ed

S
ta

te
s

(1
07

)

No. of Visitors in Rm D

0 20 40 60 80 100 120 140

0

1

2

3

V
is

it
ed

T
ra

n
si

ti
on

s
(1

08
)

No. of Visitors in Rm D

Spec4 ‖
EU

Rest [T= ExhArea ‖
EU

Rest

Spec4 [T= ExhArea

(c) Experimental results for verifying Req. 4 in isolation. The x-axis specify the number of visitors we allow
in the exhibition area. We compare how topology-driven modelling performs in comparison to verifying
the whole model.

Figure 6.3: Experimental results for topology-guided modelling of the exhibition area requirements
with FDR.

76 CHAPTER 6. STEP 4: VERIFICATION OF REQUIREMENTS IN ISOLATION

10 15 20 25 30 35 40

0.25

0.3

0.35

0.4

0.45

No. of Visitors in RmD

T
im

e
(s

ec
)

10 15 20 25 30 35 40

100

200

300

400

500

600

No. of Visitors in RmD

V
is

it
ed

S
ta

te
s

10 15 20 25 30 35 40

200

400

600

800

1,000

1,200

No. of Visitors in Rm D

V
ii
si

te
d

T
ra

n
si

ti
o
n
s

Spec2 [T= RmD

Spec5A [F= RmA

(a) Experimental results for verifying Requirements 2 and 5 for room A when FDR minimization is turned
off and we include only the relevant components. In the graphs, the x-axis specify the number of visitors
allowed in room D at any time. FDR minimization is turned on for this experiment.

10 15 20 25 30

0

1,000

2,000

3,000

4,000

No. of Visitors in RmD

T
im

e
(s

ec
)

10 15 20 25 30

0

2

4

6

8

V
is

it
ed

S
ta

te
s

(1
07

)

No. of Visitors in Rm D

10 15 20 25 30

0

2

4
V

is
it

ed
T

ra
n
si

ti
o
n
s

(1
0

8
)

No. of Visitors in Rm D

Spec2 ‖
EG

Rest [T= RmD ‖
EG

Rest

Spec5A ‖
EG

Rest [F= RmA ‖
EG

Rest

(b) Experimental results for verifying Requirements 2 and 5 for room A when FDR minimization is
disabled and we include all components in the art gallery. The green line corresponding to the verification
of Spec5A grows slower than the red line (Spec2).

20 30 40 50 60 70 80

0

500

1,000

1,500

No. of Visitors in RmD

T
im

e
(s

ec
)

20 30 40 50 60 70 80

0

2

4

6

8

V
is

it
ed

S
ta

te
s

(1
07

)

No. of Visitors in Rm D

20 30 40 50 60 70 80

0

1

2

3

4

5

V
is

it
ed

T
ra

n
si

ti
on

s
(1

0
8
)

No. of Visitors in Rm D

Spec4 ‖
EU

Upstairs [T= ExhArea ‖
EU

Upstairs

Spec4 [T= ExhArea

(c) Experimental results for verifying Req. 4 when FDR minimization is disabled. The x-axis specify the
number of visitors we allow in the exhibition area. We compare how topology-driven modelling performs
in comparison to verifying the whole model.

Figure 6.4: Experimental results for verifying topology-guided modelling of exhibition area require-
ments with FDR minimization disabled.

6.3. SUMMARY 77

only show the results derived from the execution on the server machine.

In fig. 6.3a for Spec2, Spec5A and fig. 6.3c for Spec4, we show the order of growth of running time

(seconds), number of visited states and transitions in the assertion when the verification comprises

only of the selected subset of components. In fig. 6.3b for Spec2, Spec5A and fig. 6.3c for Spec4, we

show the same order of growths for the same assertions but considering the whole art gallery. From

the figure, it is clear that topology-driven modelling scales more. In particular, consider assertion

Spec2 [T= RmD in which we allow 70 visitors in room D is verified in 0.55 seconds after having

visited 284 states and 777 transitions. When the same assertion is composed in parallel with the

rest of the art gallery, the verification takes 1,877.46 seconds and needs to visit 39,711,720 states

and 334,594,252 transitions. This improvement in running time is because the processes are much

smaller and thus FDR needs to check much fewer states and transitions to verify assertions.

Our verification approach leverages a well-established verification tool—FDR, which allows

us to subsume years of experience in optimizing the verification process. For instance, many of

the transitions are internal transitions encoding adaptation transitions, which FDR eliminates

using a normalization command. We investigate the extent the normalization command helps our

verification approach performance and its impact on the order of growth by running the same

assertions (both considering only the selected subset of components and the whole art gallery) and

disabling any minimization techniques performed by FDR. The results are shown in fig. 6.4. Similar

to the previous figure, we show the assertions verified by considering only the selected subset of

components fig. 6.4a for Spec2, Spec5A and fig. 6.4c for Spec4 and the assertions with whole art

gallery encoded in fig. 6.4b for Spec2, Spec5A and fig. 6.4c for Spec4. Even though the order of

growth is preserved, FDR minimization allows our verification approach to scale more. Consider

the assertion Spec2 [T= RmD again, with no minimization, FDR takes 45.45 seconds to verify 30

visitors in the room D after visiting 1,337,712 states and 5,165,393 transitions. The processes

after minimization are noticeably smaller, which means FDR has fewer states and transitions

to visit in order to verify assertions leading to better running times. This is a clear advantage of

leveraging existing tools that has established optimization techniques to improve the performance of

verification. Moreover, FDR allows us to run the verification in a GUI or command line environment

and also verification is automatically parallelized and commands to distribute the verification task

to distributed clusters are provided.

6.3 Summary

As the state space of clusters is typically smaller compared to that of the whole system, we can use

formal verification tools, such as FDR, to check that the components behaviour and the adaptation

procedure identified by the system designer can satisfy given requirements. We also provide an

adequate translation from a subset of our language to FDR to perform verification of self-adaptive

CPSs. We showcase our approach using a substantive art gallery example. Our results demonstrate

that our approach has the benefit of reducing the memory and time required to verify properties of

the self-adaptive CPSs. Our technique for discovering a good level of granularity for an adaptation

procedure that ensures satisfaction of system requirements can reduce the size of components that

need to be verified.

78 CHAPTER 6. STEP 4: VERIFICATION OF REQUIREMENTS IN ISOLATION

Chapter 7

Step 5 & 6: Composition and

Re-verification of Overlapping

Adaptation Procedures

In our proposed methodology, we have thus far explored the satisfaction of requirements by verify-

ing the correctness of the adaptation procedures designed to enforce them in isolation, considering

each adaptation procedure with only the components in its scope. When adaptation procedures

have disjoint scopes then this verification is sufficient to ensure requirement satisfaction in the

entire system. We have proved this result based on a compositionality theorem (theorem 6.1.18

in section 6.1.3). However, when adaptation procedure scopes overlap, there is the potential of

interference between them. In this case we may need to re-verify that each requirement is satisfied

when all adaptation procedures, and all system components, are composed back together.

In this chapter we develop a theory of compositionality results showing that interference is

not possible in certain types of scope overlaps, thus allowing us to skip re-verification tasks when

composing the system together. We do this by expanding on Step 5 from our proposed methodology

in section 4.1 to systematically merge together clusters and providing theoretical non-interference

results. We summarise these results in table 7.1. Note that S ⊗ S′ denotes the merging of two

clusters, formally defined in Def. 7.2.1.

7.1 Examples

Prior to presenting a general approach for systematically identifying interfering adaptation proce-

dures, we list in table 7.1, different types of overlaps and how each type affects the satisfaction

of the requirements. As a convention in the dissertation, we write ΠM
A to mean the adaptation

procedure Π in which the sets of locations A and M are adapted and monitored by Π respectively.

We adapt the same convention for clusters. In a cluster SMA locations A and M are adapted and

monitored respectively.

The first row, case 0, represents when there are no overlaps between the clusters. This case is

discussed in Chapter 5 where the specifications are independent of each other, e.g., Requirements 1

to 3. For this type of overlap, we later prove that the satisfaction of the two requirements by

the composition follows from the compositionality theorem and thus the verification of the two

requirements in isolation suffices to ensure their satisfaction.

In the next row, Case 1, both adaptation procedures monitor a common component M1 ∩

79

80 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

Case
Clusters

Overlap Type
Assertions that Follow , Need to Reverify /

0
No Overlaps

(A1 ∪M1) ∩ (A2 ∪M2) = ∅

SM1

A1
⊗ SM2

A2
satisfies R1

SM1

A1
⊗ SM2

A2
satisfies R2

−

1

Monitored

A1 ∩ (A2 ∪M2) = ∅

A2 ∩ (A1 ∪M1) = ∅

M1 ∩M2 6= ∅

SM1

A1
⊗ SM2

A2
satisfies R1

SM1

A1
⊗ SM2

A2
satisfies R2

−

2

Adapted & Monitored

A1 ∩ (A2 ∪M2) = ∅

M1 ∩A2 6= ∅

SM1

A1
⊗ SM2

A2
satisfies R2 SM1

A1
⊗ SM2

A2
satisfies R1

3

Adapted & Monitored

A1 ∩M2 6= ∅

A2 ∩M1 6= ∅

A1 ∩A2 = ∅

−
SM1

A1
⊗ SM2

A2
satisfies R1

SM1

A1
⊗ SM2

A2
satisfies R2

4
Adapted

A1 ∩A2 6= ∅
−

SM1

A1
⊗ SM2

A2
satisfies R1

SM1

A1
⊗ SM2

A2
satisfies R2

Table 7.1: Examples of different ways the clusters SM1

A1
and SM2

A2
can overlap and how the compo-

sition of the clusters can affect the satisfaction of requirements. Here, we assume that in Step 4
from our methodology we verified SM1

A1
satisfies R1 and SM2

A2
satisfies R2.

M2 6= ∅. Neither of the adaptation procedures change the behaviour of shared components—

A1 ∩ (A2,M2) = A2 ∩ (A1,M1) = ∅. For this type of overlap, we later prove that the satisfaction

of the two requirements also follows from the compositionality theorem.

Example 7.1.1. Consider the well-formed clusters Sba, S
b
c and ACSP specifications Spec1, Spec2

verified in isolation through the assertions,

Spec1 vM(ACSP) (ν a, b)
(

(a〈A〉 ‖ b〈B〉) ‖ Πb
a

)
= Sba

Spec2 vM(ACSP) (ν c, b)
(

(c〈C〉 ‖ b〈B〉) ‖ Πb
c

)
= Sbc

Neither adaptation procedure change the behaviour at location b. Interference between the over-

lapping adaptation procedures Πb
a and Πb

c is not possible. We later show that the satisfaction of

Spec1 and Spec2 follows from the compositionality theorem. ♦

The next row, case 2, the scopes overlap because A2∩M2 6= ∅. This means that the adaptation

procedure ΠM2

A2
in the cluster SM2

A2
changes the behaviour of location b that is relevant to the

satisfaction of Spec1. We need to verify, using FDR, that the satisfaction of Spec1 is preserved,

when location b is adapted by ΠM2

A2
. Because SM1

A1
does not change the behaviour of any components

relevant to the satisfaction of Spec2, we later prove that the satisfaction of Spec2 when SM1

A1
and

SM2

A2
are composed follows from the compositionality theorem.

Example 7.1.2. Let us now consider Requirements 2 and 4 from the art gallery example in

section 1.2.

7.1. EXAMPLES 81

Requirement 2: No more than 10 visitors should be in Room D at the same time.

Requirement 4: No more than 20 visitors (in total) should be in the exhibition area.

The requirements are meant to be satisfied by Π2 and Π4, respectively, as explained in sec-

tion 5.2. The adaptation procedure Π2 adapts the behaviour of room D whereas the adaptation

procedure Π4 adapts the behaviour of room A and monitors rooms B and D. For the requirements

we verified that the assertions below hold 1

Spec2 vT (ACSP) (ν ld)

(
ld〈R′D〉 ‖

ED

Π2

)

Spec4 vT (ACSP) (ν la, lb, ld)

((
lA〈R′A〉 ‖

E(A,B)

lB〈R′B〉 ‖
E(B,D)

lD〈R′D〉

)
‖

EA,EB ,ED

Π4

)

The verification of Req. 4 assumes that the behaviour of room D does not change. This is not

the case because Π2 adapts the behaviour of room D to ensure the satisfaction of Req. 2. We thus

need to re-verify Req. 4 replacing lD〈R′D〉 with the process lD〈R′D〉 ‖
Ed

Π2 to make sure that Req. 4

is satisfied with the accurate implementation of room D,

Spec4 vT (ACSP) (ν la, lb)

((
lA〈R′A〉 ‖

E(A,B)

lB〈R′B〉

)
‖

E(B,D)

(ν ld)

(
lD〈R′D〉 ‖

Ed

Π2

))
‖

EA,EB ,ED

Π4 (REVERIFY)

The satisfaction of Req. 2 is not affected by the behaviour of room A (the component adapted

by Π4). Its satisfaction when Π2 and Π4 are composed together, follows from the compositionality

theorem. We can define a closed well-formed process such that we can compose it in parallel with

the assertion as a context. The assertion below follows by compositionality,

(ν la, lb)

((
lA〈R′A〉 ‖

E(A,B)

lB〈R′B〉

)
‖

EA,EB

Π4

)
‖

E(B,D)∪Ed

Spec2 vT (ACSP)

(ν la, lb)

((
lA〈R′A〉 ‖

E(A,B)

lB〈R′B〉

)
‖

EA,EB

Π4

)
‖

E(B,D)∪Ed

(ν ld)

(
ld〈R′D〉 ‖

Ed

Π2

)
(FOLLOWS)

♦

In the next row, case 3, the adaptation procedures may potentially interfere with each other.

In this overlap type, both adaptation procedures adapt locations that are monitored by the other.

The satisfaction of R1 needs to be reverified because a component in M1 is adapted by SM2

A2
—

A2 ∩M1 6= ∅. Dually, the satisfaction of R2 needs to be reverified because a component in M2 is

adapted by SM1

A1
.

In the last row, case 4, the adaptation procedures adapt common components. Because adap-

tation is arbitrary we need to ensure that different adaptations do not conflict and/or introduce

violations.

Example 7.1.3. Recall Requirements 2 and 5 for room D in the art gallery example.

Requirement 2: No more than 10 visitors should be in Room D at the same time.

Requirement 5 for room D: In an emergency, all doors should be open

In section 5.2. we define the adaptation procedures Π2 and Π5D and verified that the adaptation

procedures indeed satisfy Requirements 2 and 5 for room D respectively. More precisely, we verified

1For simplicity, we omit the internal state processes for components

82 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

the assertions below,

Spec2 vT (ACSP) (ν ld)

(
ld〈R′D〉 ‖

Ed

Π2

)

Spec5D vF (ACSP) (ν ld)

(
ld〈R′D〉 ‖

Ed

Π5D

)

Because both adaptation procedures Π2 and Π5D adapt the behaviour of the named process at ld,

their composition may potentially introduce interference and/or violations. Using FDR, we can

infer that the composition of Π2 and Π5D violates Req. 5 for room D. In the case of an emergency,

once there are 10 visitors in room D, Π2 closes the entrance to room D, which violates Req. 5. We

resolve the conflict by updating Π2 to suppress adaptation during an emergency.

The specifications of Requirements 2 and 5 in the processes Spec2 and Spec5D also needs to

be updated. Req. 5 is a liveness property, visitors should not be refused exit from any room. This

means that any refusals in the implementation must be present in Spec5D. The specification Spec2

refuses entrance to room D when the number of visitors inside is 10. This refusal, even though

occur in a non-emergency state, still needs to be added to Spec5D. Req. 2 does not specify that it

should only be applied in a non-emergency situation. This is reflected in specification Spec2 where

at most 10 visitors are allowed in room D irrespective of whether there is an emergency. For the

verification to be effective the specification needs to mirror closely the requirements. Here, we need

to update both Req. 2 and specification Spec2 to only apply in a non-emergency. Assume Spec′2

and Spec′5D are the updated specifications and Π′2 is the updated adaptation procedure. Then, we

reverify the composition of adaptation procedures Π′2 and Π5D against bothSpec′2 and Spec′5D.

Spec′2 vT (ACSP) (ν ld)

(
ld〈R′D〉 ‖

Ed

(
Π′2 ‖

Ed

Π5D

))
(REVERIFY)

Spec′5D vF (ACSP) (ν ld)

(
ld〈R′D〉 ‖

Ed

(
Π′2 ‖

Ed

Π5D

))
(REVERIFY)

♦

We now present a technique to systematically compose a number of clusters together and

identifying which specification needs to be reverified when the clusters are composed together and

which follow from the compositionality theorem.

7.2 Cluster Composition

Our art gallery example comprises 6 requirements. As discussed earlier, some of the adaptation

procedures adapt the behaviour of the same components, e.g., Π2,Π5D in Ex. 7.1.3, both adapt

the behaviour of room D. Because of potential interference between overlapping adaptation proce-

dures, we need to verify that the composition of adaptation procedures preserves the satisfaction

of system requirements. In Chapters 5 and 6 we have verified that unary clusters (subset of sys-

tem components together with one adaptation procedure) satisfy specifications, which describe

requirements. Here we define a merge operator that composes together two clusters and returns a

well-formed ACSP process which comprises the two adaptation procedures and the union of their

components, put in parallel; the result is also a cluster. The operator allows us to systemically

compose clusters together and obtain ACSP processes that can still be translated to FDR according

to theorem 6.1.14. We then present a theory of overlaps between clusters, which shows the cases

7.2. CLUSTER COMPOSITION 83

where requirement satisfaction is preserved by the composition and the cases where re-verification

is needed.

7.2.1 The merge Operation

Here, we define the merge operation which composes together two clusters and returns a well-

formed cluster that can still be translated to FDR.

Definition 7.2.1 (Merge Operation). Consider two clusters SM1

A1
and SM2

A2
. The merge operation,

written as SM1

A1
⊗ SM2

A2
, returns a well-formed process that takes the union of the adapted com-

ponents, monitored components and the adaptation procedures. We here overview each element

of the cluster. Firstly, the set of adapted components in a merged cluster is the union of the

individual adapted components,

A⊗ = (A1 ∪A2)

Secondly, the set of monitored components for SM1

A1
⊗ SM2

A2
includes the monitored components

from both adaptation procedures that are not adapted by any of the adaptation procedures. If a

component is monitored by one of the adaptation procedures but is adapted by the other adaptation

procedure, the component becomes part of the adapted components.

M⊗ = (M1 ∪M2) \ (A1 ∪A2)

Finally, the merge operation composes (in parallel) the adaptation procedures, synchronizing them

over first-order events of common components

Π
M⊗
A⊗

= ΠM1

A1
‖

(EA1
,EM1

)∩(EA2
,EM2

)

ΠM2

A2

The cluster of the composition is thus defined as

SM⊗A⊗
= (ν A⊗,M⊗)

((
‖

l∈A⊗,M⊗

ll〈Pl〉

)
‖

EA⊗ ,EM⊗

Π
M⊗
A⊗

)

♦

Example 7.2.2. Recall the clusters S2 and S4 from Ex. 7.1.2,

S2 =(ν lD)

(
lD〈R′D〉 ‖

ED

Π2

)

S4 =(ν lB , lD)

((
lA〈R′A〉 ‖

E(A,B)

lB〈R′B〉 ‖
E(B,D)

lD〈R′D〉

)
‖

ED,EB ,EA

Π4

)

The merged cluster S2 ⊗ S4 is

ΠlB
lA,lD

= Π2 ‖
ED

Π4

S2 ⊗ S4 = (ν lA, lB , lD)

((
lA〈R′A〉 ‖

E(A,B)

lB〈R′B〉 ‖
E(B,D)

lD〈R′D〉

)
‖

EA,EB ,ED

(
ΠlB
lA,lD

))

The adapted components are now locations {lA, lD} and location lB is the monitored compo-

nent. ♦

84 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

Case
Clusters

Overlap Type
Assertions that Follow , Need to Reverify /

0
No Overlaps

(A1,M1) ∩ (A2,M2) = ∅

Spec1 ‖
E

SM2

A2
v SM1

A1
⊗ SM2

A2

Spec2 ‖
E

SM1

A1
v SM1

A1
⊗ SM2

A2

−

1

Monitored

A1 ∩ (A2,M2) = ∅

A2 ∩ (A1,M1) = ∅

M1 ∩M2 6= ∅

Spec1 ‖
E

S
M2\M1

A2
v SM1

A1
⊗ SM2

A2

Spec2 ‖
E

S
M1\M2

A1
v SM1

A1
⊗ SM2

A2

−

2

Adapted & Monitored

A1 ∩ (A2,M2) = ∅

M1 ∩A2 6= ∅

Spec2 ‖
E

S
M1\M2

A1
v SM1

A1
⊗ SM2

A2
Spec′1 v S

M1

A1
⊗ SM2

A2

3

Adapted & Monitored

A1 ∩M2 6= ∅

A2 ∩M1 6= ∅

A1 ∩A2 = ∅

−
Spec′1 v S

M1

A1
⊗ SM2

A2

Spec′2 v S
M1

A1
⊗ SM2

A2

4
Adapted

A1 ∩A2 6= ∅
−

Spec′1 v S
M1

A1
⊗ SM2

A2

Spec′2 v S
M1

A1
⊗ SM2

A2

Table 7.2: Clusters Overlaps and how their composition affect the satisfaction of requirements.
Here, we assume that in Step 4 from our methodology we verified SA1

v Spec1 and SM2

A2
v Spec2.

Composition may require us to update specifications. In cases where the satisfaction is in the
follow column, we have a mechanical way to update the specification, otherwise this is left up to
the system designer.

We show that the merge operator defined in Def. 7.2.1 preserves the well-formed property.

Theorem 7.2.3. Given well-formed clusters S1 and S2, S1 ⊗ S2 is well-formed.

Proof. Follows directly from Lem. B.0.13

Lemma 7.2.4. We show that the following properties holds for well-formed clusters S1, S2 and

S3,

S1 ⊗ S2 = S2 ⊗ S1 〈⊗−sym〉

S1 ⊗ (S2 ⊗ S3) = (S1 ⊗ S2)⊗ S3 〈⊗−assoc〉

Proof. Follows from Lem. B.0.17.

7.2.2 What needs to be re-verified?

In table 7.2, we examine how different types of overlaps between two adaptation procedures scopes

affect the satisfaction of the two requirements. In particular, we analyse different types of overlaps

between monitored and adapted components to identify interfering adaptation procedures. For

overlaps where interference is not possible, we prove that the satisfaction of the requirements

follows from the compositionality theorem. Moreover, the composition of clusters may require us

7.2. CLUSTER COMPOSITION 85

to update the encoding of specifications. For non-interfering composition, where the satisfaction

of specification follows from the compositionality theorem, we outline the encoding of the updated

specification, otherwise for potentially interfering composition, this task is left up to the system

designer.

The first row in table 7.2, case 0, applies when the components in the clusters do not overlap.

Here, the satisfaction of both requirements when the two clusters are composed together follow from

the compositionality theorem. Pro. 7.2.5 also dictates how the specifications are to be updated.

In this type of overlap, the specification composes in parallel the other cluster, e.g., Spec′1 =

Spec1 ‖
E

SM2

A2
and that the parallel composition of clusters is equivalent (up to strong bisimulation)

to the application of the merge operation.

Proposition 7.2.5. Spec1 v SM1

A1
and Spec2 v SM2

A2
such that (A1,M1) ∩ (A2,M2) = ∅ implies

Spec′1 = Spec1 ‖
E

SM2

A2
v SM1

A1
‖
E

SM2

A2
= SM1

A1
⊗ SM2

A2
(FOLLOWS)

Spec′2 = Spec2 ‖
E

SM1

A1
v SM2

A2
‖
E

SM1

A1
= SM1

A1
⊗ SM2

A2
(FOLLOWS)

where E = (EA2
, EM2

) ∩ (EA1
, EM1

) is the set of events that connect components in clusters SM1

A1

and SM2

A2

Proof. Follows directly from Lem. B.0.15

In the next row, case 1, the adaptation procedures monitor common components—M1∩M2 6= ∅.
The satisfaction of both Spec1 and Spec2 is preserved because the adaptation procedures adapt

disjoint components—A1 ∩ (A2,M2) = ∅ and A2 ∩ (A1,M1) = ∅. The adaptation procedure in

SM1

A1
does not change the behaviour of any components that affect the satisfaction of Spec2 and

vice versa.

In Pro. 7.2.6, we prove the satisfaction of both specifications is preserved and also dictate how

the specifications are to be updated as a result of the composition.

Proposition 7.2.6. Spec1 v SM1

A1
and Spec2 v SM2

A2
such that A1∩(A2,M2) = ∅, A2∩(A1,M1) =

∅ implies

Spec′1 = Spec1 ‖
E

S
M2\M1

A2
v SM1

A1
‖
E

S
M2\M1

A2
= SM1

A1
⊗ SM2

A2
(FOLLOWS)

Spec′2 = Spec2 ‖
E

S
M1\M2

A1
v SM2

A2
‖
E

S
M1\M2

A1
= SM1

A1
⊗ SM2

A2
(FOLLOWS)

where E = (EA2 , EM2) ∩ (EA1 , EM1) is the set of events that connect components in clusters SM1

A1

and SM2

A2
. The cluster S

M2\M1

A2
excludes the locations in M1 from its definition to remove duplicate

locations.

Proof. Follows directly from Lem. B.0.15

In the next row, case 2 (and its omitted symmetric case), one of the clusters adapts the

behaviour of a location monitored by the other. In this case, we need to reverify the satisfaction

of Spec1 to ensure its satisfaction is preserved when the locations in A2 ∩M1 are adapted by SM2

A2
.

The cluster SM1

A1
does not change the behaviour of locations that affect the satisfaction of Spec2

and thus we prove in Pro. 7.2.7 the satisfaction of Spec2 follows from the compositionality theorem.

The proposition define how the specification Spec2 changes because of the composition, however

the update of Spec1 is left up to the designer as potential interference may require the requirement

or adaptation procedure to be changed.

86 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

Proposition 7.2.7. Spec1 v SM1

A1
and Spec2 v SM2

A2
such that A1 ∩ (A2,M2) = ∅ implies

Spec′2 = Spec2 ‖
E

S
M1\(M2,A2)
A1

v SM2

A2
‖
E

S
M1\(M2,A2)
A1

= SM1

A1
⊗ SM2

A2
(FOLLOWS)

where E = (EA2 , EM2) ∩ (EA1 , EM1) is the set of events that connect components in clusters SM1

A1

and SM2

A2

Proof. Follows directly from Lem. B.0.15

In the next row, case 3, both clusters adapt the behaviour of a component monitored by the

other. This kind of overlap means that both specifications needs to be reverified.

The last row, case 4, applies when both adaptation procedures adapt and change the behaviour

of common components. We need to verify that the adaptation procedures do not interfere with

each other and introduce conflicting adaptations. In this case, the specifications may need to be

updated but this task is done manually by the system designer.

The conditions in table 7.2 ensures that only one row applies for a single composition.

7.2.3 Composing multiple overlapping Scopes

In the art gallery exhibition area, we may need to compose together clusters corresponding to five

adaptation procedures—{S2, S4, S5A, S5B , S5D}. The merge operator composes two clusters and

returns a new cluster. The returned cluster can again be composed with another cluster using the

merge operator. Therefore, the composition of multiple clusters is derived through the repeated

application of the merge operator. At each composition, we verify the satisfaction of the relevant

specifications. This way, we detect conflicts early on and can resolve conflicts before composing

even more clusters.

The order of composition affects the verification efforts required to verify the satisfaction of

requirements when clusters are composed together. The verification effort is determined by the

number of assertions that needs to be verified, the computational and memory cost of each assertion

and the efforts needed to resolve discovered conflicts.

There is no clear indication which ordering strategy minimizes the verification efforts required.

The investigation of the effect of composition ordering on the verification efforts is left as future

work. A system designer may decide to first compose ”closer” cluster, because closer clusters have

a higher probability of conflicting. This may be determined by some defined distance function.

This approach increases the likelihood that conflicts are detected and resolved early. Alternatively,

a system designer may compose the most distant clusters first because it is computational less

costly.

In this thesis, we consider two case-studies: the art gallery and smart stadium. In each case-

study, we implement a different composition order that minimizes our verification efforts. For the

art gallery case-study, we aim to minimize the number of verification tasks. We acknowledge that

simply counting the number of verification tasks may not necessarily reflect the verification effort

or computation time and hence we leave the definition of a systematic ordering for composition as

future work.f In table 7.3, we depict the number of assertions required to verify the satisfaction

of Requirements 2, 4 and 5 for rooms A,B, D with two different orderings of composition. In

the left table we opt for a natural ordering of composition. This order require us to reverify each

specification with each composition. All compositions overlap over adapted components, which

is case 4 in table 7.2 requiring us to reverify all specifications. In the right table, we minimize

the number of times we verify the same specifications. For example, we do not compose S4 with

7.3. CLUSTER COMPOSITION IN THE ART GALLERY 87

Step Clusters
Overlap

Type
Verification Tasks Count

1 S5A − Spec5A vF (ACSP) S5A 1

2 S5B − Spec5B vF (ACSP) S5B 1

3 S5D − Spec5D vF (ACSP) S5D 1

4 S2 − Spec2 vT (ACSP) S2 1

5 S4 − Spec4 vT (ACSP) S4 1

6 S⊗6 = S2 ⊗ S4 4
Spec′2 vT (ACSP) S⊗6

Spec4 vT (ACSP) S⊗6

2

7 S⊗7
= S5A ⊗ S⊗6

4

Spec′′2 vT (ACSP) S⊗7

Spec′4 vT (ACSP) S⊗7

Spec′5A vF (ACSP) S⊗7

3

8 S⊗8
= S5B ⊗ S⊗7

4

Spec′′2 vT (ACSP) S⊗8

Spec′4 vT (ACSP) S⊗8

Spec′5A vF (ACSP) S⊗8

Spec′5B vF (ACSP) S⊗8

4

9 S⊗9
= S5D ⊗ S⊗8

2

Spec′′′2 vT (ACSP) S⊗9

Spec′4 vT (ACSP) S⊗9

Spec′5A vF (ACSP) S⊗9

Spec′5B vF (ACSP) S⊗9

Spec′5D vF (ACSP) S⊗9

5

Total 18

Step Clusters
Overlap

Type
Verification Tasks Count

1 S5A − Spec5A vF (ACSP) S5A 1

2 S5B − Spec5B vF (ACSP) S5B 1

3 S5D − Spec5D vF (ACSP) S5D 1

4 S2 − Spec2 vT (ACSP) S2 1

5 S4 − Spec4 vT (ACSP) S4 1

6 S⊗6
= S5D ⊗ S2 4

Spec′5D vF (ACSP) S⊗6

Spec′2 vT (ACSP) S⊗6

2

7 S⊗7 = S5B ⊗ S⊗6 0 − 0

8 S⊗8
= S5A ⊗ S4 4

Spec′5A vF (ACSP) S⊗8

Spec′4 vT (ACSP) S⊗8

2

9 S⊗9
= S⊗8

⊗ S⊗7
2

Spec′5A vF (ACSP) S⊗9

Spec′4 vT (ACSP) S⊗9

2

Total 11

Table 7.3: Example of how the ordering affect the number of assertions that needs to be re-
verified. In the table we illustrate how specifications are affected by the composition of adaptation
procedures. Refer to section 7.3 for the encoding of the specifications.

S2⊗S5D because room B monitored in S4 is adapted by S5B . We first compose S5B with S2⊗S5D

before adding S4. This way, we only verify the correctness of S4 once, rather than when composing

S2 ⊗ S5D and again when composing S5B .

As we shall see in a later chapter, adaptation procedures in the stadium case-study are all

defined at the same level of granularity comprising of the same adapted components and mostly

the same monitored components2. Because this matches with case 4 in table 7.2, which requires

us to reverify all specifications with every composition, the ordering there does not impact heavily

the verification efforts required.

7.3 Cluster Composition in the Art Gallery

We now apply our composition approach to the art gallery example. Recall, in section 5.2 we

verify that the unary clusters S1 − S6 satisfies Requirements 1 to 6 respectively. We now ver-

ify that requirements satisfaction is preserved when all adaptation procedures are composed to-

gether. We first group the art gallery specifications into three: the exhibition area which includes

{S2, S4, S5A, S5B , S5D}, the access point with overlaps from {S3, S6} and the restoration area which

includes the clusters {S1, S5RA, S5C2} and then compose the groups of merged clusters together

to infer that all requirements in the art gallery are satisfied when all adaptation procedures and

system components are composed together.

7.3.1 The Exhibition Area

We first discuss the composition of clusters defined over the exhibition area. We adapt the ordering

shown in table 7.3 (right) to reduce the number of reverifications needed.

2refer to table 9.1 for a depiction of overlaps in the stadium case-study.

88 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

Composition of S2 and S5D Here, we verify the composition of S2 and S5D, where both adapt

the component room D. From table 7.2, this matches case 4, which means that we need to re-verify,

using FDR, that both Spec2 and Spec5D are still satisfied by S2 ⊗ S5D.

Spec2 vT (ACSP) S2 ⊗ S5D (REVERIFY)

Spec5D vF (ACSP) S2 ⊗ S5D (REVERIFY)

As explained in Ex. 7.1.3, this composition violates both specifications. We thus need to resolve

the violations before continuing the composition process.

The specification Spec5D is violated because it is a liveness property and all refusals in the

implementation need to be included in the specification. This should include refusals by the adap-

tation procedure Π2 during a non-emergency. We therefore update the encoding of specification

Spec5D to be the cluster S2 in a non-emergency situation and switch to Spec5D on the emergency

event.

Spec′5D = S2 4 (emergency → RUN(ED))

The specification Spec′5D is still violated because the adaptation procedure Π2 refuses further

visitors’ entry to room D if the number of visitors in room D reaches 10, even in an emergency

situation. We thus update the adaptation procedure Π2 to suppress adaptations during an emer-

gency. This change is within the adaptation pattern, where we do not trigger adaptations after an

emergency event.

P ′2(n) =2


vis(EB,ED) → ifn+ 1 ≥ 10 then ?〈n+ 1〉 → ack → P ′2(n+ 1) else P ′2(n+ 1)

vis(ED,c) → ifn− 1 ≥ 9 then ?〈n− 1〉 → ack → P ′2(n− 1) else P ′2(n− 1)

emergency → RUN(ED)

Assume S′2 is the updated cluster which replaces the adaptation pattern in S2 with P ′2. We

verify (in isolation) the updated adaptation procedure satisfies Spec2 as explained in Step 4 in our

proposed methodology. The specification Spec2 is violated because after an emergency event, the

implementation allows more than 10 visitors in room D. Because this is actually correct behaviour,

this points to a conflict in the requirements. Specifications mirror faithfully requirements and any

changes to the specification need to confirmed against the requirements. Here, we update Req. 2

to state

Requirement 2. (revised) In a non-emergency, no more than 10 visitors should be in Room D

at the same time. ♦

We now update Spec2 to only describe the behaviour of room D in a non-emergency situation as

explained in the requirement. After an emergency event, the process encodes the most permissive

process where all events from room D are accepted indefinitely.

Spec′2 = (Spec2 4 (emergency → RUN(ED)))

Using FDR, we now verify that Requirements 2 and 5 for room D are satisfied by the composition

S′2 ⊗ S5D through the assertions below.

Spec′2 vT (ACSP) S
′
2 ⊗ S5D (REVERIFY)

Spec′5D vF (ACSP) S
′
2 ⊗ S5D (REVERIFY)

7.3. CLUSTER COMPOSITION IN THE ART GALLERY 89

Composition of S′2 ⊗ S5D and S5B We next compose S′2 ⊗ S5D and S5B . By looking at the

components in the clusters, we know that room D is adapted by S′2 ⊗ S5D and room B is adapted

by S5B . This means that the two clusters do not overlap which matches case 0 in table 7.2. From

Pro. 7.2.5, the satisfaction of the specifications Spec′2, Spec
′
5D and Spec5B after composition follows

from the compositionality theorem.

Spec′5B =

Spec5B ‖
E(B,D)

emergency

S′2 ⊗ S5D

 vF (ACSP)

S5B ‖
E(B,D)

emergency

S′2 ⊗ S5D

 = S5B ⊗ S′2 ⊗ S5D (FOLLOWS)

Spec′′5D =

Spec′5D ‖
E(B,D)

emergency

S5B

 vF (ACSP)

S′2 ⊗ S5D ‖
E(B,D)

emergency

S5B

 = S5B ⊗ S′2 ⊗ S5D (FOLLOWS)

Spec′′2 =

Spec′2 ‖
E(B,D)

emergency

S5B

 vT (ACSP)

S′2 ⊗ S5D ‖
E(B,D)

emergency

S5B

 = S5B ⊗ S′2 ⊗ S5D (FOLLOWS)

Composition of S5A and S4 We now compose the clusters S5A and S4. Since both clusters

adapt room A, this scenario matches case 4 in table 7.2. This means that both specifications

Spec5A and Spec4 need to be reverified to ensure both are satisfied by S4 ⊗ S5A. We need to

update Spec5A to include rooms B,D so it matches the scope of S4 ⊗ S5A.

Spec5A = Spec5A ‖
E(A,B)

R′B ‖
E(B,D)

R′D

We verify the assertions,

Spec5A vF (ACSP) S4 ⊗ S5A (REVERIFY)

Spec4 vT (ACSP) S4 ⊗ S5A (REVERIFY)

Similar to the composition of S′2 and S5D, both specifications are violated. We need to change

Spec5A to include refusals enforced by the adaptation procedure Π4 in a non-emergency situation,

because Spec5A describes a liveness property.

Spec′5A = (S4 4 (emergency → RUN(EA, EB , ED)))

We also need to update the adaptation procedure Π4 to suppress adaptations after the emergency

event by changing its adaptation pattern,

P ′4(n) =2



vis(c,EA) → if(n+ 1 ≥ 16) then ?〈n+ 1〉 → ack → P ′4(n+ 1) else P ′4(n+ 1)

vis(EA,c) → if(n = 20) then ?〈n− 1〉 → ack → P4(n− 1) else ifn > 0 then P ′4(n− 1) else P ′4(0)

vis(ED,c) → if(n = 20) then ?〈n− 1〉 → ack → P4(n− 1) else ifn > 0 then P ′4(n− 1) else P ′4(0)

vis(EB,ED) → P ′4(n)

vis(EA,EB) → P ′4(n)

vis(EB,EA) → P ′4(n)

emergency → RUN(ED, EB , EA)

90 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

Assume S′4 is the updated cluster, where the adaptation pattern is replaced by P ′4. We verify the

satisfaction of Spec4 by S′4 (in isolation). The specification Spec4 is violated because it does not

account for the emergency state as it is not included in Req. 4. We therefore update both Req. 4

and the specification Spec4 to include the non-emergency prerequisite.

Requirement 4. (revised) In a non-emergency, no more than 20 visitors (in total) should be in

the exhibition areas at the same time. ♦

We now update Spec4 such that it accepts all movements after the emergency event, to mirror

as closely as possible the requirement,

Spec′4 = (Spec4 4 (emergency → RUN(EA, EB , ED)))

Using FDR, we verify that Requirements 4 and 5 for room A are both satisfied by S4⊗S5A through

the following assertions,

Spec′5A vF (ACSP) S
′
4 ⊗ S5A (REVERIFY)

Spec′4 vT (ACSP) S
′
4 ⊗ S5A (REVERIFY)

Composition of S′2⊗S5D⊗S5B and S′4⊗S5A Lastly, we compose all clusters in the exhibition

area together. By looking at the components in each cluster, we infer that S′2 ⊗ S5D ⊗ S5B adapts

rooms B, D, whereas S′4 ⊗ S5A adapts room A and monitors rooms B, D. This matches case 2,

where the satisfaction of specifications Spec′′2 , Spec′′5D and Spec′5B follows from the compositionality

theorem but we need to reverify]AAB[using FDR] the satisfaction of the specifications Spec′4 and

Spec′5A because the components monitored are adapted by the other cluster. We verify that

Spec′4 vT (ACSP) ((S′2 ⊗ S5D)⊗ S5B)⊗ (S′4 ⊗ S5A) (REVERIFY)

Spec′5A vF (ACSP) ((S′2 ⊗ S5D)⊗ S5B)⊗ (S′4 ⊗ S5A) (REVERIFY)

From Pro. 7.2.7, we know that the assertions below follow from compositionality,

Spec′′′2 =

(
Spec′′2 ‖

EB ,ED

S′4 ⊗ S5A
\lB ,lD

)
vT (ACSP)

(
S′2 ⊗ S5D ⊗ S5B ‖

EB ,ED

S′4 ⊗ S5A
\lB ,lD

)
= S′2 ⊗ S5D ⊗ S5B ⊗ S′4 ⊗ S5A (FOLLOWS)

Spec′′′5D =

(
Spec′′5D ‖

EB ,ED

S′4 ⊗ S5A
\lB ,lD

)
vF (ACSP)

(
S′2 ⊗ S5D ⊗ S5B ‖

EB ,ED

S′4 ⊗ S5A
\lB ,lD

)
= S′2 ⊗ S5D ⊗ S5B ⊗ S′4 ⊗ S5A (FOLLOWS)

Spec′′5B =

(
Spec′5B ‖

EB ,ED

S′4 ⊗ S5A
\lB ,lD

)
vF (ACSP)

(
S′2 ⊗ S5D ⊗ S5B ‖

EB ,ED

S′4 ⊗ S5A
\lB ,lD

)
= S′2 ⊗ S5D ⊗ S5B ⊗ S′4 ⊗ S5A (FOLLOWS)

7.3.2 The Access Point

Here, we verify that the satisfaction of Requirements 3 and 6 is preserved by the composition of

the clusters S3 and S6. In Req. 3, we disconnect the HVAC if a visitor is connected to the access

point. In the presence of a pending update, we however temporarily disconnect visitors to give

enough time for the HVAC to install the updates. In section 5.2, we verified the following two

assertions,

Spec3 vT (ACSP)(ν ap, h)

((
ap〈A0〉 ‖

E(ap,h)

h〈H〉

)
‖

Eap,EH

Π3

)

Spec6 vT (ACSP)(ν ap, h)

((
ap〈A0〉 ‖

E(ap,h)

h〈H〉

)
‖

Eap,EH

Π6

)

7.3. CLUSTER COMPOSITION IN THE ART GALLERY 91

Both adapt the access point component and thus their composition matches case 4 from ta-

ble 7.2. We use the merge operator to compose and verify the assertions again.

Spec3 vT (ACSP) (ν ap, h)

((
ap〈A0〉 ‖

E(ap,h)

h〈H〉

)
‖

Eap,EH

(
Π3 ‖

EAP ,EH

Π6

))
= S3 ⊗ S6 (REVERIFY)

Spec6 vT (ACSP) (ν ap, h)

((
ap〈A0〉 ‖

E(ap,h)

h〈H〉

)
‖

Eap,EH

(
Π3 ‖

EAP ,EH

Π6

))
= S3 ⊗ S6 (REVERIFY)

7.3.3 The Restoration Area

Here, we have three overlapping clusters {S1, S5C2
, S5RA}.

Composition of S5C2
and S5RA We first compose the clusters S5C2

and S5RA, where S5C2

adapts corridor 2 and S5RA adapts the restoration area. From table 7.2, this is case 0, where

components do not overlap. From Pro. 7.2.5, we know that the satisfaction of both Spec5C2
and

Spec5RA by S5C2
⊗ S5RA follows from the compositionality theorem.

Spec′5C2
=

Spec5C2 ‖
E(c2,ra)

emergency

S5RA

 vF (ACSP)

S5C2
‖

E(c2,ra)

emergency

S5RA

 = S5C2
⊗ S5RA (FOLLOWS)

Spec′5RA =

Spec5RA ‖
E(c2,ra)

emergency

S5C2

 vF (ACSP)

S5RA ‖
E(c2,ra)

emergency

S5C2

 = S5C2
⊗ S5RA (FOLLOWS)

Composition of S1 and S5C2 ⊗S5RA We now compose the clusters S1 and S5C2 ⊗S5RA. Both

clusters adapt the behaviour of corridor 2 and the restoration area. From table 7.2, this matches

case 4, where all specifications in the two clusters needs to be reverified. We verify, using FDR,

that the assertions below hold,

Spec′5C2
vF (ACSP) S1 ⊗ S5C2 ⊗ S5RA (REVERIFY)

Spec′5RA vF (ACSP) S1 ⊗ S5C2 ⊗ S5RA (REVERIFY)

Spec1 vT (ACSP) S1 ⊗ S5C2
⊗ S5RA (REVERIFY)

Akin to the composition of the exhibition area, the specifications are violated. The specifications

Spec′5C2
and Spec′5RA are liveness properties and thus need to include refusals enforced by other

adaptation procedures in a non-emergency situation.

Spec′′5C2
= Spec′′5RA = (S1 4 (emergency → RUN(Era, Ec2)))

92 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

We also need to update the adaptation procedure Π1 to suppress adaptations after the emergency

event as adaptations from Π5C2
and Π5RA take precedence

P1(v, g) =2



vis(c2,ra) → if v = 0 then ?〈v + 1, g〉 → ack → P1(v + 1, g)

else P1(v + 1, g)

vis(ra,c2) → if v = 1 then ?〈v − 1, g〉 → ack → P1(v − 1, g)

else ifn > 0 then P1(v − 1, g)

else P1(0)

grd(c2,s) → if g > 0 then ?〈v, g − 1〉 → ack → P1(v, g − 1)

else P1(v, g − 1)

grd(s,c2) → ?〈v, g + 1〉 → ack → P1(v, g + 1)

e→ P1(v, g) where e ∈ Era, Ec2\{vis(c2,ra), vis(ra,c2), grd(c2,s), grd(s,c2)}

emergency → RUN(Era, Ec2)

Assume that S′1 is the updated cluster where the adaptation pattern in S1 is replaced by the

process above. Akin to Requirements 2 and 4, the specification Spec1 is violated because Req. 1

does not constraint the requirement to non-emergency state only. We thus update Req. 1 to state,

Requirement 1. (revised) In a non-emergency, visitors should not interfere with the restoration

process ♦

We now update Spec1 to be as permissive as possible after an emergency event, by allowing all

events from the restoration area and corridor 2 indefinitely,

Spec′1 = (Spec1 4 (emergency → RUN(Era, Ec2)))

Using FDR, we verify that Requirements 1 and 5 for corridor 2 and restoration area are satisfied

when all adaptation procedures are composed together, by verifying the assertions below,

Spec′′5C2
vF (ACSP) S′1 ⊗ S5C2 ⊗ S5RA (REVERIFY)

Spec′′5RA vF (ACSP) S′1 ⊗ S5C2 ⊗ S5RA (REVERIFY)

Spec′1 vT (ACSP) S′1 ⊗ S5C2
⊗ S5RA (REVERIFY)

7.3.4 The entire Art Gallery

Lastly, we show that the satisfaction of all requirements hold when all adaptation procedures are

composed together. Here, we compose the adaptation procedures in exhibition area, access point

and restoration area. We show that the satisfaction of requirements by the composition of all

adaptation procedures follow from the compositionality theorem. Assume the following processes,

SEA = S′2 ⊗ S5D ⊗ S5B ⊗ S′4 ⊗ S5A and SAP = S3 ⊗ S6, and SRA = S′1 ⊗ S5C2
⊗ S5RA

Composition of SRA and SAP By looking at the components in each cluster, we know that

the two clusters do not overlap, which matches case 0 from table 7.2.

From Pro. 7.2.5, we infer that

7.4. REVISITING THE EVALUATION OF THE VERIFICATION TECHNIQUE 93

Spec′′1 = SAP 9 Spec′1 vT (ACSP) SAP 9 SRA = SAP ⊗ SRA (FOLLOWS)

Spec′′′5RA = SAP 9 Spec′′5RA vF (ACSP) SAP 9 SRA = SAP ⊗ SRA (FOLLOWS)

Spec′′′5C2
= SAP 9 Spec′′5C2

vF (ACSP) SAP 9 SRA = SAP ⊗ SRA (FOLLOWS)

Spec′3 = Spec3 9 SRA vT (ACSP) SAP 9 SRA = SAP ⊗ SRA (FOLLOWS)

Spec′6 = Spec6 9 SRA vT (ACSP) SAP 9 SRA = SAP ⊗ SRA (FOLLOWS)

Composition of SAP ⊗ SRA and SEA By looking at the components in each cluster, we know

that the two cluster do not overlap and it matches case 0 from table 7.2. From Pro. 7.2.5, we know

that the requirements satisfaction follows from the compositionality theorem, akin to the previous

composition.

Spec′′′1 = Spec′′1 9 SEA vT (ACSP) (SAP ⊗ SRA) 9 SEA = (SAP ⊗ SRA)⊗ SEA (FOLLOWS)

SpecIV5RA = Spec′′′5RA 9 SEA vF (ACSP) (SAP ⊗ SRA) 9 SEA = (SAP ⊗ SRA)⊗ SEA (FOLLOWS)

SpecIV5C2
= Spec′′′5C2

9 SEA vF (ACSP) (SAP ⊗ SRA) 9 SEA = (SAP ⊗ SRA)⊗ SEA (FOLLOWS)

Spec′′3 = Spec′3 9 SEA vT (ACSP) (SAP ⊗ SRA) 9 SEA = (SAP ⊗ SRA)⊗ SEA (FOLLOWS)

Spec′′6 = Spec′6 9 SEA vT (ACSP) (SAP ⊗ SRA) 9 SEA = (SAP ⊗ SRA)⊗ SEA (FOLLOWS)

SpecIV2 = Spec′′′2 9 (SAP ⊗ SRA) vT (ACSP) SEA 9 (SAP ⊗ SRA) = (SAP ⊗ SRA)⊗ SEA (FOLLOWS)

SpecIV5D = Spec′′′5D 9 (SAP ⊗ SRA) vF (ACSP) SEA 9 (SAP ⊗ SRA) = (SAP ⊗ SRA)⊗ SEA (FOLLOWS)

Spec′′′5B = Spec′′5B 9 (SAP ⊗ SRA) vF (ACSP) SEA 9 (SAP ⊗ SRA) = (SAP ⊗ SRA)⊗ SEA (FOLLOWS)

7.4 Revisiting the Evaluation of the Verification Technique

We investigate again the scalability of our verification approach by measuring the time, number

of states and number of transitions for the exhibition area requirements: Spec2, Spec4, Spec5B ,

Spec5D and Spec5A. We measure the running time, number of visited states and transitions to

verify each assertion with increasing number of visitors allowed in room D (in Req. 2) and exhibition

area (in Req. 4). For simplicity, we assume the number of visitors allowed in the exhibition area is

twice the number of visitors in room D. The experiments were run on a personal computer having

8 cores running at 3.4 GHz with 8GB of DDR RAM and on a server that has 56 cores running at

2.2 GHz with 256GB of RAM. The results match and therefore we only show the results derived

from the execution run on the server machine. For each assertion, we measure the running time

(in seconds) using the Unix time command and from FDR output we infer the number of states

and transitions visited.

In fig. 7.1, we summarize the results. Assertions that are localized to one component, i.e.,

Spec2,Spec5A, Spec5B , Spec5D perform better than assertions spanning over the exhibition area,

i.e., Spec4. This affirms that topology-driven modelling is an effective compositional technique.

In fig. 7.1 (top), we show that assertions over single component is approximately 100 times faster

than assertions over the exhibition area shown in fig. 7.1 (bottom). This is because the processes

are smaller in size and can be encoded with far fewer states and transitions, as shown in the states

(middle) and transitions (right) graphs.

The verification of Req. 5 for room A is the least favourable to our technique. The verification

of Req. 5 for room A by the composition of adaptation procedures exhibits the biggest increase

in process size and running time between the two verification steps. This is because in the re-

94 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

0 50 100 150 200

0.5

1

1.5

No. of Visitors in RmD

T
im

e
(s

ec
)

0 50 100 150 200

0

200

400

600

800

1,000

1,200

No. of Visitors in RmD
V

is
it

ed
S
ta

te
s

0 50 100 150 200

0

1,000

2,000

3,000

No. of Visitors in RmD

V
is

it
ed

T
ra

n
si

ti
on

s

Spec2’ [T= RmD (S′2 ⊗ S5D)

Spec5B’ [F= RmB (S5B)

Spec5D’ [F= RmD (S′2 ⊗ S5D)

0 50 100 150 200

0

2

4

6

T
im

e
(s

ec
)(

10
4
)

No. of Visitors in RmD

0 50 100 150 200

0

2

4

6

V
is

it
ed

S
ta

te
s

(1
08

)

No. of Visitors in RmD

0 50 100 150 200

0

0.5

1

1.5

2

2.5

V
is

it
ed

T
ra

n
si

ti
on

s
(1

0
9
)

No. of Visitors in RmD

Spec5A’ [F= ExhArea (S2 ⊗ S5D ⊗ S5B ⊗ S4 ⊗ S5A)

Spec4’ [T= ExhArea (S2 ⊗ S5D ⊗ S5B ⊗ S4 ⊗ S5A)

Figure 7.1: Experimental results for verifying exhibition area requirements when composing adap-
tation procedures. Here, we enable FDR minimization.

verification step the scope of verification had to be increased to include four other adaptation

procedures and two other rooms

In fig. 7.2, we run the same experiment but disabling FDR minimization to investigate the extent

FDR optimization improves the performance of our verification approach. Most of the transitions

in our encodings are internal transitions encoding adaptation transitions. These transitions are

removed by FDR through its normalization process. Comparing the graphs in figs. 7.1 and 7.2,

one notices that the input size varies drastically, with minimization we are able to verify up to

200 visitors in room D, whereas without minimization we are only able to verify up to 80 visitors

before the process runs out of memory. Consider, the assertion Spec4 [T= ExhArea, in which

we allow 80 visitors in room D (and 160 visitors in the exhibition area), with minimization the

verification takes 131.45 seconds and visits 34,658,711 states and 135,496,258 transitions, and with

no FDR minimization, the verification takes 9,499.39 seconds and visits 364,019,512 states and

1,174,704,700 transitions. Because minimization reduces the size of processes, we exhibit better

performance. This is a benefit of exploiting established, robust verification techniques that have

years of experience in optimization.

We now compare the results in fig. 7.1 with the results derived in fig. 6.3c. The specifications

Spec5A and Spec4 scale much less in this verification step. In particular, the assertion Spec5A

[F= RmA no longer scales (approximately) linearly. For 70 visitors, in the previous verification step

the task is completed in 0.67 seconds after visiting 284 states and 1,413 transitions but now takes

3.08 seconds and FDR visits 20,873 states and 142,565 transitions. This is because we extend its

scope in the verification as explained earlier. Partially overlapping adaptation procedures may

impact the scalability of our verification approach negatively but topology-driven modelling and

our theory of compositionality minimizes the extent to which adaptation procedures overlap. In

7.5. SUMMARY 95

20 40 60 80

0.2

0.4

0.6

0.8

No. of Visitors in RmD

T
im

e
(s

ec
)

20 40 60 80

200

400

600

800

1,000

1,200

No. of Visitors in RmD

V
is

it
ed

S
ta

te
s

20 40 60 80

500

1,000

1,500

2,000

2,500

No. of Visitors in RmD

V
is

it
ed

T
ra

n
si

ti
on

s

Spec2’ [T= RmD (S′2 ⊗ S5D)

Spec5B’ [F= RmB (S5B)

Spec5D’ [F= RmD (S′2 ⊗ S5D)

20 40 60 80

0

0.5

1

1.5

2

T
im

e
(s

ec
)(

10
4
)

No. of Visitors in RmD

20 40 60 80

0

2

4

V
is

it
ed

S
ta

te
s(

10
8
)

No. of Visitors in RmD

20 40 60 80

0

0.5

1

1.5

V
is

it
ed

T
ra

n
si

ti
o
n

s(
10

9
)

No. of Visitors in RmD

Spec5A’ [F= ExhArea (S2 ⊗ S5D ⊗ S5B ⊗ S4 ⊗ S5A)

Spec4’ [T= ExhArea (S2 ⊗ S5D ⊗ S5B ⊗ S4 ⊗ S5A)

Figure 7.2: Experimental results for verifying requirements against the composition of adaptation
procedures. Here, we disable FDR minimization.

our art gallery example, requirements are split into three non-overlapping areas - exhibition area,

restoration area and access point, whose composition does not require verification efforts.

7.5 Summary

An SA CPS consists of a large and diverse collection of requirements. It is the responsibility of

the system designer to present a model that satisfies all requirements. In this chapter, we discuss

how the composition of adaptation procedures may affect requirements satisfaction and hence the

need to verify satisfaction is preserved when all adaptation procedures and systems components

are composed together. We identify overlap types where interference is not possible, e.g., when

adaptation procedures scopes are disjoint or they only monitor common components, and for such

cases, we develop on our theory of compositionality to prove that satisfaction in such cases follow

from the compositionality theorem (theorem 6.1.18 in section 6.1.3). Requirements satisfaction

still holds when adaptation procedures and previously ignored systems components are composed

together. This minimizes the verification efforts required in Step 5 of our proposed methodology.

This chapter concludes our presentation of the proposed methodology to compositionally model

and verify the satisfaction of security requirements in SA CPSs, motivated by an art gallery exam-

ple. In our methodology, we propose a correspondence between requirements, specifications and

adaptation procedures, which we called requirement-driven adaptation. We utilize the apparent

topology of CPSs and topological relations to a systematic explore levels of granularity (i.e., differ-

ent grouping of components) to define adaptation procedures that aims to ensure a requirement

satisfaction. We also present an encoding for adaptation procedures that together with topology

enables a system designer to experiment with different adaptation approaches to enforce a require-

96 CHAPTER 7.
STEP 5 & 6: COMPOSITION AND REVERIFICATION OF OVER-

LAPPING ADAPTATION PROCEDURES

ment. We discuss how overlaps between adaptation procedure scopes may potentially affect the

satisfaction of requirements and that a system designer needs to reverify requirements when adap-

tation procedures are composed. For our methodology, we present a theory of compositionality

that reduces the verification efforts required to enable tractable verification of SA CPSs. We also

highlight how for our encoding of CPSs we leverage existing, robust verification tools. Here, we use

FDR [59], a refinement-checker for CSP.

Chapter 8

A Translation Tool from ACSPM

to CSPM

We now overview an implementation of a tool that automates the translation to CSP at the core of

our verification approach. Through this tool we aim to improve the usability of our framework by

alleviating the task of encoding realistic SA CPSs. In line with the evolution of CSP, we first define

a concrete syntax for our process language, which we call ACSPM . ACSPM is a machine readable

dialect of ACSP, where shorthand constructs and idioms inspired from functional programming

languages, like Haskell and Miranda, have been added to expedite the task of encoding realistic

problems [111]. The translation process is depicted in fig. 8.1, where for an ACSPM input file,

we first construct the in and out functions required by the well-formed proof rules. With these

functions, we then define a checker for ACSPM to verify if the input is well-formed, as defined

in Def. 6.1.3. For well-formed inputs, we provide a translation to CSPM , realizing the rules

in fig. 6.2. The translation produces a CSPM file that is both saved on the user machine and

launched automatically into FDR. The tool is developed using the parser generator Antlr [101].

In this chapter, we first overview the concrete syntax ACSPM and then discuss each main step

in the translation process.

8.1 The Concrete Syntax for ACSPM

We extend ACSP with a subset of the CSPM constructs. In our implementation, we started from

the CSP grammar found in [49] and appended both ACSP constructs and a subset of the CSPM

constructs. The full listing of the ACSPM grammar can be found online1. Here, we discuss the

main constructs inspired from CSPM that have been included in ACSPM .

Definitions

At the most basic level, FDR runs a series of assertions that checks if a process refines a specification

or if a process is deterministic, deadlock-free or livelock-free for trace, failure and failure-divergence

semantic models. An input file of ACSPM contains a sequence of process definitions and assertions.

We allow the input file to reference other files through the include command. This command

acts as a macro with the source code of the reference file being copied into the main file.

1Code for the translator is available at https://github.com/AimeeBorda/ACSP-Compiler. The repository also
contains the full encoding in ACSPM for the Art Gallery example and the second case-study to be presented in the
next chapter, a smart stadium.

97

https://github.com/AimeeBorda/ACSP-Compiler

98 CHAPTER 8. A TRANSLATION TOOL FROM ACSPM TO CSPM

Well-formed?Generate Env.ACSPM File

Translate
to CSPM

CSPM File

Launch FDR

Figure 8.1: The translation process from ACSPM to CSPM

Events Encoding

A notable difference between CSP and CSPM that has been incorporated in ACSPM , is the rich

syntax for encoding events. In CSPM , events are defined as channels with types. Recall the goto

events from the art gallery example. A typical goto communicates not only that an agent moved

from one room to another but also states the type of the agent, the source and destination of the

movement, e.g., vis(EA,EB) broadcasts that a visitor moved from room A to room B. In ACSPM ,

we define the data-types for agent types and rooms,

datatype Room = EA | EB | AP | ...

datatype Agent = Vis | Emp | Grd

A goto event comprises an agent a : Agent and rooms f, t : Room. We then define a

channel goto such that

channel goto : Type.Room.Room

We encode the event vis(EA,EB) as goto.Vis.EA.EB.

Expressions

CSPM also supports a rich syntax for set generation and boolean and numerical expressions. We

incorporate this rich syntax in ACSPM . In ACSPM , we support enumerated sets, e.g., {|goto|} and

{|goto.x | x <- {Grd,Emp}|} which returns all possible goto events and all employee movements

respectively. In ACSPM , was also assume a standard encoding of natural numbers and boolean

expressions.

Processes

The goal of CSP is to verify concurrent processes. In CSPM and ACSPM , a richer syntax for

process definition is introduced. We include in our tool a subset of the process definitions found

in CSPM . In comparison with ACSP, processes in ACSPM also include the interrupt, timeout,

sequential, internal choice and boolean guard. An addition that we already assumed throughout

this dissertation is that of named processes P (~x) as a shorthand notation for recursive definitions.

This helps us decompose and better understand the encoding of complex processes.

The prefix process, e→ P , supports pattern matching. Consider, the process,

8.2. ENVIRONMENT GENERATION 99

goto? : Agent $f: {x | x <- Room, x != EA}?t: diff(Room,EA) -> C(f,t)

Here, we pattern match the three parameters in a goto event. In this example, the continuation is

independent of the type of the agents—underscore implies that the parameter is not bound to a

variable. For the second and third parameters, the parameters are bound to f and t respectively

and for both f and t we accept any room other than EA.

This is equivalent to composing the individual events with the (external) choice construct.

Higher-order Communication

In ACSP, we extend CSP with higher-order communication to concisely express adaptation. In

the process Example below, we scope the location l around the process that composes in parallel

a named process l[A0] with a process that performs a higher-order output on l, l!<SKIP> and

evolves to process P. The two processes synchronize over the set of first-order events Ev,

Example = (new l)(l[A0] [| Ev |] l!<SKIP>.P)

Excluded CSPM Constructs

The implementation is a proof of concept for the translation and thus we did not incorporate all the

constructs from CSPM . In particular, we omit advanced hybrid constructs and replicated process

definitions. CSPM also provides a richer syntax for data definition, which includes tuples, maps

and lambda expressions. These have not been included in ACSPM .

We now look at the three passes we perform on the input to generate the CSPM output:

environment generation, well-formedness checking and translation.

8.2 Environment Generation

The rules for checking if a process is well-formed, depicted in fig. 6.1, depend on the definition of

the in and out functions. These functions, given a process P , to return the free locations in named

processes in P and the free locations in higher-order prefixes found in P respectively. Consider the

example,

Example = (new l)(PA [| Ev |] PB)

PA = l[A0]

PB = PA ||| l!<SKIP>.A1

assert Example :[deterministic]

where we assume the definition of processes A0 and A1. Here, inferring the in and out result for the

Example process depends on the results from the processes PA and PB, which a parser, parsing from

top-to-bottom, have not encountered yet. As a workaround to this problem, we construct a map

map that for all process definitions P returns a tuple containing: the set of bound locations inside

P , the set of locations in named processes inside P , the set of locations in higher-order prefixes

inside P and all referenced processes inside P . Subsequent steps in the translation process infer

the result of the in and out functions by the union of the recursive calls results of the referenced

processes. For instance, for the input above, the map is

Example PA PB

inExp ∅ {l} ∅
outExp ∅ ∅ {l}

calls {PA, PB} ∅ {PA}
bound {l} ∅ ∅

100 CHAPTER 8. A TRANSLATION TOOL FROM ACSPM TO CSPM

In the next step, the check for well-formedness, we infer the results of in(Example) and out(Example)

by the union of the recursive calls results from the calls processes removing bound locations.

in(Example) = inExp(PA,PB,Example)− bound(PA,PB,Example)

= {l} − {l}

The implementation employs memoization techniques to handle circular process calls, e.g., the tool

is able to check well-formedness of the processes below

J = (new l)(l[SKIP] ||| K)

K = (new h)(h[SKIP] ||| J)

8.3 Well-formedness Checking

In fig. 6.1, we define a set of rules to identify the class of well-formed processes. A process P is

well-formed iff ∅ ` P . Here, the input is a sequence of named processes and assertions. Consider

the input,

Example = (new l)(PA [| Ev |] PB)

PA = l[A0]

PB = PA ||| l!<SKIP>.A1

assert Example :[deterministic]

Checking that all named processes at the top level of the file(s) are well-formed is too restricting.

In this example, the processes PA and PB are named processes at the top level that are not well-

formed, but we only intend to use the processes as part of another process, the Example process.

We know this because there are no assertions about either PB or PA directly. For this reason, we

instead check that all processes in assertions are well-formed.

For the process Example to be well-formed, the side-condition of wPar, in fig. 6.1, needs to

be satisfied. The side-conditions require that PA and PB are well-formed with respect to the

environment {l}. For every bound location, one of the sub-processes has the named process and

the other the higher-order output. These side-conditions are determined by the PA and PB processes,

which we have not encountered yet in our parsing. Recall in the previous pass over the code, we

generate a map that implements the in and out for all named processes in the input. When

parsing Example, we reference the map to check the satisfaction of the side-conditions of wPar.

The example above is ruled out, because in(PA) = {l} and in(PB) = {l}. Consider, a different

encoding of the process PB,

PB = l!<SKIP>.SKIP ||| PB

In this example, the process Example is well-formed, because in(PB) = ∅. This satisfies the side-

condition in wPar, even though we have a recursive call that performs higher-order outputs on l.

All higher-order outputs on l are on the right-hand side of the interleaving in Example and the

named location is on the left-hand side of the interleaving.

The checker also implements the rules wLoc and wSnd. The rules require the process P at

a named location, e.g., l[P], or in a higher-order output, e.g., l!<P>, to be well-formed with

respect to the empty environment. The process P should not contain any free named locations or

higher-order outputs. Consider the example,

8.4. TRANSLATION 101

G = (new l)(l!<H>.SKIP ||| l[P])

H = SKIP ||| I

I = l!<SKIP>.SKIP

assert G:[deterministic]

This example is ruled out because the process H has an higher-order output on l nested in I. Note

also that the process P is undefined. For the purpose of this check, we assume that undefined

identifiers are well-formed processes, because the identifier can be a reserved word or method in

CSPM , e.g., normal. The last example to highlight the functionality of the checker is

(new l,m,n)(l[P] ||| m!<R>.SKIP)

The above process is well-formed even though n is not used in the process, m does not have a named

location and l is never adapted.

Limitations This tool is a proof-of-concept and thus error handling leaves much to be desired.

Even though, the tools outputs to the console which construct or assertion violates the well-formed

check, the tool does not indicate from which line the error originated. For this reason, we delay as

many checks as possible to FDR, to exploit its rich error handling mechanisms.

We also require processes in parallel composition to be enclosed within brackets. Consider

Example = normal(l[P] ||| l!<R>.Q)

Here, the associativity of the interleaving is non-ambiguous. However, we still require the compo-

sition to be enclosed within another set of brackets. The new keyword, however, can be omitted if

no locations are bound in the interleaving process.

8.4 Translation

Once, we verify that the input is well-formed, the tool produces a CSPM file containing the

translated encoding. The translation follows the rules in fig. 6.2. Here, we must construct the

injective map m from higher-order prefix to distinguished CSP events. Recall the process above

Example = (new r, l)(PA [| Ev |] PB)

PA = l[A0] ||| r[A0]

PB = l!<SKIP>.P ||| r!<SKIP>.SKIP

assert Example :[deterministic]

The first process Example contains the composition of PA and PB. From the rule tPar in fig. 6.2,

the two processes synchronize on all encoded higher-order communications A = {m(l!R) | R ∈
Proc, l ∈ L}. This information is not known until the end of the translation phase, when we have

parsed all possible higher-order prefixes. We utilize the CSPM enumerated set construct to avoid

having to explicitly list all the identifiers communicated on a location l. For each location l ∈ L, we

assume a channel l that will be defined at the end of the translation after all prefixes over location

l have been identified. For the Example process, we only need to state that the processes PA and

PB synchronize and hide the set of events {|r, l|}. We optimize the evaluation of the input (as

recommended on the FDR website[59]) by encapsulating the hide process under a normal function.

The process Example is translated to

102 CHAPTER 8. A TRANSLATION TOOL FROM ACSPM TO CSPM

normal((PA [| union(Ev, {|r,l|}) |] PB) \ {|r,l|})

We now translate the next process, PA = l[A0] ||| r[A0]. From tLoc in fig. 6.2, the processes

l[A0] and r[A0] translate to A0 4 rec(l) and A0 4 rec(r) respectively where

rec(l) = 2
e∈ch(l)

e→ (Te 4 rec(l)) such that p(e)� Te

rec(r) = 2
e∈ch(r)

e→ (Te 4 rec(r)) such that p(e)� Te

Similarly, we cannot infer all the distinguished CSP events in ch(l) and ch(r) until the end of

the translation. Once again, we utilize CSPM rich syntax for process definition to avoid having to

explicit list all possible values of ch(l) and ch(r). We translate the processes rec(l) and rec(r) to

rec(l) = let R = l?id -> map(l,id) /\ R

rec(r) = let R = r?id -> map(r,id) /\ R

The process map will be defined at the end of the translation, which given a location and identifier

returns the process communicated p(l.0). We translate the processes l[A0] and r[A0] to

let R = l?id -> map(l,id) /\ R within A0 /\ R

let R = r?id -> map(r,id) /\ R within A0 /\ R

The process PA is translated using tPar to

normal((let R = l?id -> map(l,id) /\ R within A0 /\ R ||| let R = r?id -> map(r,id) /\ R

within A0 /\ R)

We now translate the process PB. The processes l!〈SKIP 〉.P and r!〈SKIP 〉.SKIP translate

to

l.0 -> P

r.0 -> SKIP

The events l.0 and r.0 are the distinguished CSP events encoding the higher-order outputs

l!SKIP and r!SKIP respectively. We track all higher-order outputs in an order-preserving set

m. The identifier communicated on l is the index of the process in the map. Using a set as our

data-structure allow us to reuse identifier when the same processes are communicated multiple

times. In our example, the map is ,

m =l→ [SKIPCSPM]

r → [SKIPCSPM]

At the end of the translation, the map m contains all higher-order prefixes and their distinguished

CSPM event. We use this, to define the map process assumed in the translation of a named process

l〈P 〉 which given a channel and identifier returns the communicated process. For our example

input,

map(ch, id) = if ch == l and id == 0 then SKIP

if ch == r and id == 0 then SKIP

else SKIP

The last task of the translation is to define the channels that in the original encoding were

locations. Here we only have the location l. From the mapping, we infer the range that will be

communicated on l from the size of the set m(l). This allows to define a refined data-type for the

locations,

channel l : {0..0}

channel r : {0..0}

8.5. TOOL VALIDATION 103

Input Output Valid

Example = (new l)(PA [| Ev |] PB)

PA = l[A0]

PB = PA ||| l!<SKIP>.A1

assert Example :[deterministic]

l are in left in and right in

�

Test = (new l,m,n)(l[P] ||| m!<R>.SKIP)

assert Test :[deterministic]

transparent normal

Test = normal((let R = l?id -> (map(l,

id) /\ R)

within (P/\ R)[|{| l,m,n|}|] m!0 ->

SKIP) \ {| l,m,n|})

assert Test :[deterministic]

channel l : {0..0}

channel m : {0..0}

channel n : {0..0}

map = \ chName,id @ if chName == m and

id == 0 then R

else SKIP

�

Test = (new l)(l[A] [| E |] m!<SKIP>.P)

assert Test [T= SKIP

error in assertion assert

Example[T=SKIP is not well-formed

�

Table 8.1: Some Validation Tests performed

Limitations

The Let construct may introduce scoped variables. Consider the example,

let x = 5 within l!<P(x)>.SKIP

The higher-order output l!<P(x)> is replaced by a distinguished event l.0 and we define a global

process map that given l.0 returns P(x). However, because we removed the process P(x) from the

let context, the variable x becomes undefined in the new scope inside the map process, resulting

in a syntax error. In this case, the translation still produces the CSPM file and still launches FDR

but FDR will state that there is a syntax error because x is undefined.

8.5 Tool Validation

We validate the correctness of the tool in two steps: first we validate that the check for well-

formedness is correct and then we validate the correctness of the translation.

We validate the well-formedness check using a series of unit tests that target different key points

of the well-formedness check.

We validate the correctness of our translation through a serious of simple examples. We show

104 CHAPTER 8. A TRANSLATION TOOL FROM ACSPM TO CSPM

three such examples in table 8.1. We also manually verified the translation of the two case-studies

presented in this thesis that of a smart art gallery and a smart stadium to be presented in the next

chapter.

8.6 Summary

In this chapter, we overviewed the implementation of a translation tool from ACSPM to CSPM .

ACSPM is the concrete representation of ACSP. This extension is in line with CSP where CSPM

has been introduced to promote the use of CSP for verifying realistic problems. Here, we outline

the main extensions inspired from CSPM that we included in ACSPM . We discussed the well-

formed checking algorithm which realizes the proof rules in fig. 6.1. For well-formed processes, we

define a translation to CSPM following the proof rules in fig. 6.2. The outcome of a translation is

a CSPM file that is launched into FDR. In the next chapter, we evaluate the applicability of our

methodology through a second case-study. There, we also use this tool to implement the check for

well-formedness and translation to CSPM for the second case-study.

Chapter 9

Case Study: A Smart Stadium

In this chapter, we evaluate our modelling and verification methodology for SA CPSs through a

second case-study, that of a smart stadium inspired from [92]. We outline the goals of the evaluation

and then overview the case-study and its requirements. For the evaluation, we follow our proposed

methodology, presented in section 4.1, to model and verify the satisfaction of all requirements.

9.1 Evaluation Criteria

The goal of this evaluation is to investigate the applicability of our verification approach for realistic

systems. In particular, we look to investigate the following criteria

Applicability of requirement-driven adaptation We address this criterion by modelling an

alternative case-study, inspired from SA CPSs. We investigate how our modelling methodology for

SA CPSs tackles the complexity of attaining a compositional model.

Applicability of topological knowledge and relations to systematically explore adapta-

tion procedures. Topology guides the system designer to not only identify the main cyber and

physical components of CPSs but also to systematically explore different grouping of components,

that adaptation procedures control to optimally and correctly ensure the satisfaction of a require-

ment. We investigate how the topology and topological relations alleviate the task of identifying

the components that affect the satisfaction of requirements.

Scalability of our verification technique. In our framework, we utilize FDR, an existing

refinement-checker for CSPM . By default, we have a GUI, that improves the usability of our

verification technique, and enhanced performance, stemming from FDR parallel and distributed

refinement-checking. We also investigate how the concrete syntax of our process language and the

automated translation further improves the usability of our framework.

9.2 A Smart Stadium

The case study is inspired from a real-world IOT project on Croke Park in Dublin presented in

[92]. We model a smart stadium that can host up to 86,000 visitors. The stadium is split into three

areas: VIP, Upper area (U) and lower area (L). Each area is further split into sections numbered

from 0 . . . 35. We write L0 to be section 0 in the lower area. Each section has a capacity of 800

visitors. As shown in fig. 9.1, sections are connected to a common corridor that leads to an exit

105

106 CHAPTER 9. CASE STUDY: A SMART STADIUM

Figure 9.1: The seating plan of Croke Park from [1]

and adjacent sections e.g., the section L0 is connected to the corridor, section L1 and section L35.

Ticket holders have access to a single section e.g., a ticket holder L0 has access to section L0.

For the purpose of this evaluation, we consider the following requirements.

Requirement A. Before a match, only ticket holders and employees have access to a section. ♦

Adaptation Procedure A.1. We satisfy this requirement by implementing a simple access con-

trol that before a match starts ensures only ticket holders and employee access each section. �

Requirement B. After a match, visitors should be directed to the nearest exit to avoid congestion.

♦

Adaptation Procedure B.1. Exits can be reached from the corridor. We implement an access

control that allows visitors to move from a section to the corridor and precludes visitors from

moving to non-empty adjacent sections, as it increases congestion. If however an adjacent section

is empty, then visitors are allowed to exit through the empty section. �

Requirement C. In the case of a fire alarm within a section, the section should be evacuated. ♦

There is a fire-alarm installed in each section.

Adaptation Procedure C.1. During an evacuation, no visitor should be able to enter the section.

Visitors are also allowed to exit the section by moving to the corridor leading to an exit or to an

adjacent section, provided it is not evacuating as well. �

The evacuation of the stadium is modelled by triggering the fire alarm in all the sections.

During a match, the following requirements also apply.

Requirement D. To have a non-intrusive access control, visitors are allowed to roam to other

non-empty sections. ♦

Visitors attending a match would likely be seated before the match starts and thus empty seats

are free to be taken by other visitors aiming to get a better view of the stadium. Empty sections

in the lower and upper areas should however be closed to reduce energy usage across the stadium.

Adaptation Procedure D.1. To satisfy the requirement, we define an adaptation procedure

that changes the access control to allow visitors to enter if the section is not empty, otherwise

access control is limited to ticket holders. �

Requirement E. On a windy day, the system should attempt to empty the upper area. ♦

9.2. A SMART STADIUM 107

Adaptation Procedure E.1. The system should immediately change the access control such that

only ticket holders and employees can enter exposed sections. The system should also attempt to

open an empty lower section, so visitors (in exposed sections) can find another more sheltered seat.

If an alternative section (in the lower area) is identified, the exposed section is closed to visitors

and visitors are directed towards the alternative section. However, as is often the case in a sold-out

match, if there is not an empty lower section, only ticket holders can enter the upper area for the

remainder of the match. �

Requirement F. During a match, the system should aim to keep noise levels below a threshold.

♦

The threshold is determined according to the length of exposure and the time of the day. The

threshold is lower after 10pm and during the resting period between 2pm and 3pm. Noise level in

a section is measured through a noise-detector. The stadium has a noise-detector installed in each

section. Noise may be reduced by allowing visitors to distribute themselves more evenly around

the stadium. This only applies during a match because before and after a match, crowd control

takes precedence over noise control.

Adaptation Procedure F.1. When noise levels are above the threshold, the system should try

to gradually open empty sections and preclude non-ticket holders from entering the noisy section.

�

Requirement G. A section may be re-opened as a backup section if it is not noisy, not exposed

to strong wind, empty and its fire alarm is off. ♦

Adaptation Procedure G.1. To satisfy this requirement, a section should only allow visitors to

enter if another section is either too noisy, exposed to strong winds, not empty or the fire-alarm is

on and none of these conditions are true for the section be opened. �

Requirement H. To minimize energy usage, noise level sensors are switched off before and after

match or if the section they are in is empty. ♦

Adaptation Procedure H.1. To satisfy this requirement, we switch off sensors before and after

a match or if a section is empty during a match. Sensors should be switched on when during a

match, visitors enter an empty section, i.e., the section is not longer empty. �

Requirement I. Floodlights should be switched off during the day and if a section is empty. ♦

Each section has a floodlight that can be controlled remotely.

Adaptation Procedure I.1. To satisfy this requirement, we switch off all floodlights during the

day when there is sunlight and a section’s floodlight if the section remains empty by the start of

a match. Unlike the noise sensor, if a section becomes temporarily empty during a match,which

may happen if a section is scarcely filled, the lights should not be switched off as this may affect

user experience. �

9.2.1 Challenges

The stadium comprises 108 homogeneous sections. This regular structure of the stadium poten-

tially allows us to replicate verification results achieved for a single section to the whole stadium.

This may not necessarily be obvious because requirements may be defined at different levels of

granularity. For instance, Req. E distinguishes between the upper area and lower area, Req. B

108 CHAPTER 9. CASE STUDY: A SMART STADIUM

may include adjacent sections to fully capture congestion in a section and Requirements D to G

may request alternative sections to be opened to visitors, which may require us to define a global

adaptation procedure. These may affect how compositional our model is and how much we can

reuse verification efforts. In the worst-case scenario the verification of some requirements may

encompass the whole stadium.

Our approach entails having an adaptation procedure for each requirement. In a single section,

we have seven requirements that together define the access control to a section. This dense level

of overlap between adaptation procedures may highlight a potential limitation of our proposed

requirement-driven adaptation. Moreover, the composition of seven adaptation procedures may

drastically increase the potential of overlaps of adaptation procedures that require reverification.

This is amplified if some components are globally defined, e.g., the wind monitor may be shared

between all sections in the stadium.

Moreover, each section hosts up to 800 visitors. If all adaptation procedures need to track the

number of visitors. The size of processes (number of states and transitions) is going to increase

drastically which may lead to the verification approach becoming computationally infeasible.

Finally, in this example, we introduce a broader range of sensors and components, e.g., wind

monitor, noise detectors and the notion of time. The sensors need to be encoded in our process

language ACSP. Unlike the art gallery example, most components are cyber components, whose

topology and topological relations are not obvious.

9.3 Step 1: Modelling the CPS

The stadium comprises 108 sections—36 upper sections (U), 36 lower sections (L) and 36 VIP

sections (VIP), numbered from 0 to 35.

Each section has a physical connectivity with the corridor and adjacent sections, represented

by the set of first-order events {|goto|}. A goto event has three parameters: the agent and the

section from where the agent is leaving and to where the agent is going. An agent can be either an

employee emp or ticket holder represented by the section identifier to which the ticket is valid. A

section ranges over the corridor Corr or a section identifier. The event gotoL0,U0,Corr represents

a visitor that has a ticket to section L0 moving from section U0 to the corridor. The component

also broadcasts an empty event to other components in the same section once a section is empty.

A section is also digitally connected to all other sections in the stadium as it may requests another

section to be opened as backup and vice versa other sections may request the section to be reopened

as backup. We define a family of events open(s,t) to represent a section s requests section t to be

opened. We let Ea = {|goto, open, empty|} represent the set of first-order events from the access

controller component .

The stadium has installed in each section the cyber components: a noise detector, fire alarm

and floodlights controller. Each component has a well-defined interface. The noise detector, fire

alarm and floodlights controller broadcasts the events noiseb, alarmb, lightsb where b can be T |F
respectively. We let En, Ef and El to be the set of first-order events in the components respectively.
1

Globally, we assume the cyber components match status and a wind monitor. The match status

component broadcasts the set of first-order events Em = {before, during, after} to represent the

status of the match: just before a match starts, when a match starts and once a match finished

respectively. The wind monitor broadcasts a wind event when strong wind is detected. We refer

1For presentation reasons, we abbreviate True and False to T and F respectively

9.4. STEP 2-4: ENCODING A SECTION WITH ADAPTIVE CSP 109

Figure 9.2: The component model for the stadium case-study. The model comprises 108 sections,
a wind monitor and match status components and a corridor.

to this singleton set of events of the component as Ew. We depict the component model for the

stadium in fig. 9.2.

9.4 Step 2-4: Encoding a Section with Adaptive CSP

In this section, we overview the next 3 steps of the methodology, where for each requirement we

explore the space of the components to identify a grouping of components over which we encode

an adaptation procedure that aims to ensure the satisfaction of the requirement. We verify using

FDR that this encoding, which we call the unary cluster, refines, according to a semantic model, a

specification process that describes the requirement. In this section, we show the encoding for the

first three requirements, the encoding for the remaining requirements can be found in appendix D.2

In our encoding, we assume Visitors and SectionID to be the set of all ticket holders for the

stadium and the set of sections identifiers respectively. We range over v for the set of ticket holders

and s, s′ for sections. For a section s, we also assume the set of adjacent sections is represented by

adj, e.g., for a section L0, the set adj = {Corr, L35, L1}. We range over a for adjacent sections.

For simplicity, we omit the identifiers, i.e., subscripts from first-order events, when the event is an

external choice over all identifiers, e.g., we write goto→ P to mean

2
v ∈ V isitors, Emp

a ∈ adj

gotov,s,a → P

gotov,a,s → P

Moreover, employees are free to roam any section and thus for simplicity we omit employee move-

ments in our encoding. In the subsequent encodings, the section being modelled and verified is

represented by the place holder s.

Requirement A: Before a match, only ticket holders have access to a section We

define an adaptation procedure ΠA to guarantee the satisfaction of this requirement for section s.

For satisfying this requirement, we adapt the access controller to preclude non-ticket holders

from entering s and monitor the match status controller to identify when a match is about to start.

The access controller can be in one of two functionalities

2The full listing of the encoding in ACSPM for this case-study and the Art Gallery case-study can be found in
https://github.com/AimeeBorda/ACSP-Compiler/tree/master/Examples

https://github.com/AimeeBorda/ACSP-Compiler/tree/master/Examples

110 CHAPTER 9. CASE STUDY: A SMART STADIUM

1. If a match is not taking place, visitors are not allowed to enter any section. This is the default

(initial) behaviour of the access controller. Note how we do not include the event gotov,a,s

that encodes a visitors entrance into s, either through the corridor or an adjacent section,

SExit = 2
v ∈ V isitors

{
gotov,s,Corr → SExit

2. Only ticket holders can enter section s. Note how we only accept gotos, , ,

SOpen = 2
a∈adj

gotos,a,s → SOpen

gotos,s,a → SOpen

The internal state of a section keeps track of the visitor movements to make sure that the

number of visitors leaving a section is less than or equal to the number of visitors entering the

section. We define a process Beh that monitors the movement of visitors. The process broadcasts

an empty event once s becomes empty. This relieve subsequent adaptation patterns from having

to track the movement of visitors to determine when a section is empty.

Beh(n) = 2
a ∈ adj

v ∈ V isitors


n > 0 & gotov,s,a → Beh(n− 1)

gotov,a,s → Beh(n+ 1)

n = 0 & empty → Beh(n)

For an adaptation to take effect, we encapsulate the access controller component in the named

location ac. An adaptation procedure adapts the behaviour of the access controller by performing

a higher-order output to ac. The (adaptable) access controller for a section s is encoded in the

ACSP process,

AccessController = ac〈SExit〉 ‖
{|goto|}

Beh(0)

We now define an adaptation procedure ΠA as the composition of an adaptation pattern PA

determining when to adapt and the encoding of an adaptation function FA determining how to

adapt. To satisfy this requirement, we adapt on the before event that marks the start of a match

and arrival of visitors.

PA =2



before → ?→ ack → PA

during → PA

after → PA

goto → PA

open → PA

empty → PA

Adaptation pattern comprises solely first-order events. We can check using FDR that the adapta-

tion pattern PA only monitors the behaviour of the access controller and match status components

and does not affect the execution of the components other than through adaptation. We verify

that the adaptation pattern does not, unless adaptation is in progress, refuses any events from the

9.4. STEP 2-4: ENCODING A SECTION WITH ADAPTIVE CSP 111

components eq. (9.1) or introduces events not in the interface of the components eq. (9.2),

RUN(Eac, Em) vF (ACSP) PA \ {|?, ack|} (9.1)

PA \ {|?, ack|} vT (ACSP) RUN(Eac, Em) (9.2)

On an ?-event, the adaptation function, encoded in the process FA below, adapts the behaviour

at location ac to the process SOpen,

FA = ?→ ac!SOpen.ack → FA

The adaptation procedure ΠA is defined as the composition of the processes FA and PA synchro-

nizing on the first-order ?- and ack events,

ΠA = (ν ?, ack)

(
FA ‖
{?,ack}

PA

)

The adaptation procedure also monitors the match status component. This component is not

adaptable and is encoded as,

status = before→ during → after → status

We encapsulate the process status in location ms,

MatchStatus = ms〈status〉

The unary cluster for a section s is encoding as,

SA = (ν ac,ms)

(
(AccessController 9MatchStatus) ‖

Eac,Em

ΠA

)

We now discuss the specification for Req. A. On the before event, the behaviour of s is described

by the process BefEvt that precludes non-ticket holders from entering s or the section from being

used as a backup (note we preclude the open events). During or after a match, the behaviour is

described by process R which encodes the most permissive behaviour, i.e., accepts all events from

the components in the unary cluster.

SpecA = let

R =2



goto → R

before → BefEvt

during → R

after → R

open → R

empty → R

BefEvt = 2
a ∈ adj

v ∈ V isitors



gotos,a,s → BefEvt

gotov,s,a → BefEvt

during → R

after → R

before → BefEvt

empty → BefEvt

withinR

We verify using FDR that for a section s, the cluster SA trace refines the specification SpecA,

SpecA vT (ACSP) SA

112 CHAPTER 9. CASE STUDY: A SMART STADIUM

Requirement B: After a match, visitors should be directed to the closest exit to avoid

congestion We satisfy this requirement by adapting the access controller to preclude visitors

from entering a section that is being cleared after a match and monitoring the match status com-

ponent to determine when a match has ended. To reduce congestion, the access controller may

also request empty adjacent sections to be reopened so visitors can also exit through them. If the

adjacent section is not empty, visitors are precluded from moving between sections as this tends

to increase congestion.

The access controller can be in one of two functionalities

1. Visitors can only move from a section to the corridor and the controller also polls adjacent

sections to see if they are empty, through the events opens,a. The process SExit has been

defined in Req. A,

AC1 = SExit 9 2
a∈adj\corr

{
opens,a → SKIP

2. Once s is empty, visitors from (non-empty) adjacent sections can exit through it to further

reduce congestion if needed. The process broadcasts the event opena,s to signal to adjacent

sections that it is empty and can thus be used as a backup

AC2 = SExit 9 2
a∈adj\corr

{
opena,s → SKIP

We utilize the process Beh from Req. A to track the number of visitors entering and leaving s to

ensure that the number of visitors leaving is less than or equal to the number of visitors that entered

a section. The initial process for the access controller system is the ACSP process AccessController

defined in the previous requirement, where an adaptation procedure can communicate through

higher-order outputs to ac new behaviour to the component.

We now define an adaptation procedure ΠB that guarantees the satisfaction of Req. B for a

section s. The adaptation procedure comprises an adaptation pattern PB and the encoding for an

adaptation function FB that determines when and how to adapt respectively.

The adaptation pattern monitors the access controller and match status components. We

trigger adaptation on two events: on the after event and when the section is empty after a match.

We communicate a boolean variable with the ?-event to specify if the section is empty.

PB = let

B(b) =2



after → ?〈F 〉 → ack → B(T)

goto→ B(b)

before→ B(F)

during → B(F)

open→ B(b)

empty → if a then ?〈T 〉 → ack → B(b) else B(b)

withinB(F)

We check using FDR that the adaptation pattern PB only monitors the behaviour of the access

controller and match status and only affects the execution of components through adaptation. We

9.4. STEP 2-4: ENCODING A SECTION WITH ADAPTIVE CSP 113

verify that the adaptation pattern does not, unless adapting, refuse any events from the components

eq. (9.3) or introduce events not in the interface of the components eq. (9.4),

RUN(Eac, Em) vF (ACSP) PB \ {|?, ack|} (9.3)

PB \ {|?, ack|} vT (ACSP) RUN(Eac, Em) (9.4)

The adaptation function adapts to AC1 where visitors are directed to the corridor, when the

section is not empty and to AC2 once emptied.

FB = ?〈b〉 → if b then ac!AC2.ack → FB else ac!AC1.ack → FB

The adaptation procedure aimed at guaranteeing the satisfaction of Req. B is defined as the

composition of the processes PB and FB

ΠB = (ν {|?|} , ack)

(
PB ‖
{|?,ack|}

FB

)

The unary cluster for Req. B is defined as the composition of the access controller, match status

and the adaptation procedure ΠB

SB = (ν ac,ms)

(
(AccessController 9MatchStatus) ‖

Eac,Em

ΠB

)

We now discuss the specification for Req. B, SpecB . The process R below encodes the most

permissive behaviour by allowing all events from the access controller and match status. We use this

process to describe the behaviour of the section before and during a match, when the requirement

does not apply. On the after event, the process AftEvt describes the behaviour enforced by the

requirement, where visitors are only allowed to leave s. Once the section is empty, visitors from

adjacent sections can exit the stadium through s.

SpecB = let

R =2



goto → R

after → AftEvt(F)

before → R

during → R

open → R

empty → R

AftEvt(emp) = 2
v ∈ V isitors

a ∈ adj \ Corr



during → R

before → R

after → AftEvt(F)

gotov,s,Corr → AftEvt(emp)

empty → AftEvt(T)

emp & gotov,a,s → AftEvt(emp)

emp & opena,s → AftEvt(emp)

¬emp & opens,a → AftEvt(emp)

withinR

We verify using FDR that for a section s, the cluster SB trace refines the specification SpecB ,

SpecB vT (ACSP) SB

Requirement C: In the case of a fire alarm in a section, the section should be evacuated

For this requirement, we preclude visitors from entering a section that is being evacuated. For the

safety of visitors, we also allow visitors to exit to empty adjacent sections. Allowing visitors to

exit through non-empty sections may lead to further congestion. We satisfy this requirement by

114 CHAPTER 9. CASE STUDY: A SMART STADIUM

adapting the behaviour of the access controller and monitoring the fire alarm.

On a fire alarm, the section is closed to visitors and system polls adjacent sections to check if

they are empty so visitors can also exit through them,

AC1 = SExit 9 2
a∈adj

{
opens,a → SKIP

We now define an adaptation procedure ΠC that comprises an adaptation pattern PC that

triggers adaptation on the alarm〈T 〉 event and an adaptation function FC that adapts the access

controller behaviour to facilitate evacuation.

The process PC monitors the fire alarm and access controller and triggers adaptation on the

fire alarm event,

PC =2



alarm〈F 〉 → PC

alarm〈T 〉 → ?→ ack → PC

goto → PC

open → PC

empty → PC

Akin to previous requirements, we can check using FDR that an adaptation pattern only monitors

the behaviour of the components without influencing it. We verify that the adaptation pattern

does not, unless adapting, refuses any events from the components eq. (9.5) or introduces events

not in the interface of the components eq. (9.6),

RUN(Ev) vF (ACSP) PC \ {|?, ack|} (9.5)

PC \ {|?, ack|} vT (ACSP) RUN(Eac, Ef) (9.6)

On an ?-event, the adaptation procedure adapts the behaviour of the access controller to the

process AC1 through a higher-order output on ac

FC = ?→ ac!AC1.ack → FC

The adaptation procedure is defined as the composition of the processes FC and PC

ΠC = (ν ?, ack)

(
FC ‖
{?,ack}

PC

)

The fire alarm component is modelled as a stream of alternating alarm events. We encapsulate

the process in location f

Alrm(b) = alarm〈b〉 → Alrm(¬b)

AlarmPanel = f〈Alrm(T)〉

The unary cluster for Req. C for a section s is defined as

SC = (ν ac, f)

(
(AccessController 9AlarmPanel) ‖

Eac,Ef

ΠC

)

We now discuss the specification for Req. C. We verify that on the alarm〈T 〉 event, visitors are

9.5. STEPS 5-6: COMPOSING ANDREVERIFICATION OF OVERLAPPING ADAPTATION PROCEDURES115

Unary Access Noise Fire Wind Match
cluster Control Floodlight Detector Alarm Monitor Status
SA ∆ M
SB ∆ M
SC ∆ M
SD ∆ M
SE ∆ M M
SF ∆ M M
SG ∆ M M M M

SH M ∆ M
SI M ∆ M

∆: Adapted Component, M : Monitored Component

Table 9.1: Overlaps in a section

precluded from entering the section. This behaviour is described in process Evac. The process R

applies when the fire alarm is off and thus encodes the most permissive behaviour.

SpecC = let

R =2



goto → R

alarm〈T 〉 → Evac

alarm〈F 〉 → R

open → R

empty → R

Evac = 2
a ∈ adj

v ∈ V isitors



alarm〈T 〉 → Evac

gotov,s,a → Evac

opens,a → Evac

empty → Evac

alarm〈F 〉 → R

withinR

With our verification approach, we verify that for a section s, the process SC trace refines the

process SpecC

SpecC vT (ACSP) SC

9.5 Steps 5-6: Composing and Reverification of Overlap-

ping Adaptation Procedures

We now proceed to Step 5 from our methodology presented in section 4.1, where we verify that

the composition of adaptation procedures preserves the satisfaction of requirements.

In table 9.1, we summarize the adapted and monitored components for each unary cluster.

Requirements A to G all adapt the behaviour of the access controller and thus their composition

matches case 4 in table 7.2. We need to reverify, using FDR, the satisfaction of the requirements

by the composition of adaptation procedures ΠA−ΠG. The cluster SH overlaps over the noise

detector and access controller components. Its overlap with the clusters in SA − SG matches case

3 in table 7.2 which also require us to reverify all requirements. Since the overlaps all require us

to reverify all the assertions, their order does not impact the number of reverification we need to

perform. However, the adaptation procedures ΠA−ΠG are very close to each other and thus it

make sense to compose them together first to identify and resolve more likely conflicts early. The

cluster SI overlaps but does not adapt any components monitored in SA − SH . This means that

116 CHAPTER 9. CASE STUDY: A SMART STADIUM

Figure 9.3: Violations introduced in SpecA from the Composition of SA and SB

for the composition of SI with the other clusters, we only need to reverify SI , because it matches

case 2 in table 7.2. We compose clusters in a section s alphabetically.

Composition of SA and SB

We compose the unary clusters SA and SB . We use the merge operation defined in Def. 7.2.1,

SA ⊗ SB = (ν ac,ms)

(
(AccessController 9MatchStatus) ‖

Eac,Em

(
ΠA ‖

Eac,Em

ΠB

))

We translate the process above to CSPM using the tool presented in Chapter 8 and using FDR

we verify that the specifications SpecA and SpecB are both trace-refined by SA ⊗ SB , i.e.,

SpecA vT (ACSP) SA ⊗ SB (REVERIFY)

SpecB vT (ACSP) SA ⊗ SB (REVERIFY)

Composition of SA ⊗ SB and SC

We now compose the clusters SA ⊗ SB with SC . Using the merge operation, we know that

SA ⊗ SB ⊗ SC =

(ν ac,ms, f)

(
(AccessController 9MatchStatus 9AlarmPanel) ‖

Eac,Em,Ef

((
ΠA ‖

Eac,Em

ΠB

)
‖
Eac

ΠC

))

We need to update all three specifications SpecA, SpecB and SpecC because the scope of the

merged adaptation procedure above contains the fire alarm, access controller and match status

components and thus we extend the specification processes with first-order events from the missing

components, i.e.,

9.5. STEPS 5-6: COMPOSING ANDREVERIFICATION OF OVERLAPPING ADAPTATION PROCEDURES117

Spec′A = let

R =2



goto → R

before → BefEvt

during → R

after → R

open → R

empty → R

alarm〈b〉 → R

BefEvt = 2
a ∈ adj

v ∈ V isitors



gotos,a,s → BefEvt

gotov,s,a → BefEvt

during → R

after → R

before → BefEvt

empty → BefEvt

alarm〈b〉 → BefEvt

withinR

Spec′B = let

R =2



goto → R

after → AftEvt(F)

before → R

during → R

open → R

empty → R

alarm〈b〉 → R

AftEvt(emp) = 2
v ∈ V isitors

a ∈ adj \ Corr



during → R

before → R

after → AftEvt(F)

gotov,s,Corr → AftEvt(emp)

empty → AftEvt(T)

emp & gotov,a,s → AftEvt(emp)

emp & opena,s → AftEvt(emp)

¬emp & opens,a → AftEvt(emp)

alarm〈b〉 → AftEvt(emp)

withinR

Spec′C = let

R =2



goto → R

alarm〈T 〉 → Evac

alarm〈F 〉 → R

open → R

empty → R

before → R

during → R

after → R

Evac = 2
a ∈ adj

v ∈ V isitors



alarm〈T 〉 → Evac

gotov,s,a → Evac

opens,a → Evac

empty → Evac

alarm〈F 〉 → R

before → Evac

during → Evac

after → Evac

withinR

We verify the assertions below

Spec′A vT (ACSP) (SA ⊗ SB)⊗ SC (REVERIFY)

Spec′B vT (ACSP) (SA ⊗ SB)⊗ SC (REVERIFY)

Spec′C vT (ACSP) (SA ⊗ SB)⊗ SC (REVERIFY)

The specifications Spec′A and Spec′B above are both violated.

The screen-shots in fig. 9.3 depicts the information we get from FDR for the violation in Spec′A.

On the left side, FDR shows a violating trace—the specification at the top and the implementation

at the bottom, whereas on the right side, FDR provides information about selected events or

states in the trace. In fig. 9.3, we see that the translated CSPM process for (SA ⊗ SB) ⊗ SC

(the trace at the bottom) can perform the trace alarm〈L0〉, before, openL0,L5
but the specification

(the trace at the top) cannot. On clicking on the internal τ events, we see which adaptation

events were performed and hidden to view the scheduling of adaptation commands that led to

118 CHAPTER 9. CASE STUDY: A SMART STADIUM

Adaptation
Procedure

Adaptation
Trigger

Before During After

ΠC alarm AC1 AC1 AC1

ΠE wind − AC4 or SExit −
ΠF noisy − AC5 −
ΠG empty − AC3 SExitAdj

ΠA,ΠB ,ΠD SOpen SRoam AC1

Priority
(restricting access)
high

low

Table 9.2: Expected behaviour of the access controller of a section when all adaptation procedures
are composed together.

the violation. In our encoding, adaptations comprises the ?-event between the adaptation pattern

and adaptation function, potential higher-order outputs from the adaptation function and the ack-

event acknowledging the end of adaptation between the pattern and function. In this example,

by clicking on the fifth τ event, FDR shows in the ”selected event” panel at the bottom right of

the window details about the τ event. The event ac.1 originating from the process FC has been

hidden. We cross-reference this event with the translated CSPM code to infer that the event ac.1

encodes the higher-order output ac!AC1 from the adaptation procedure ΠC . By probing the other

τ events, we know that an adaptation from ΠA (the first three τ events) was overwritten by an

adaptation from ΠC .

This trace highlights two problems with our encoding that lead to a violation when the adap-

tation procedures are composed.

Precedence of Adaptations: In this example, the access to s is influenced by both Require-

ments A and C as it is before a match starts and also the fire alarm is on. The adaptation

communicated to location ac by the adaptation procedures ΠA and ΠC conflicts. The adaptation

procedure ΠA allows ticket holders to enter s, whereas ΠC looks to evacuate s. The safety of

visitors is of utmost importance and therefore in this case access to s should follow Req. C, where

a section should be evacuated. This also applies for the other components in s, if the fire alarm

is on and a wind event or noisy〈T 〉 are observed in s, the access should not be changed and the

system should proceed to evacuate s.

In table 9.2, we outline all the adaptations on the access controller before, during and after a

match. The rows are ordered by priority, the rows at the top take precedence over lower rows. For

instance, if the alarm in section U0 is on, and thus the access controller is adapted to process AC1

and then the wind became too unpleasant for visitors to be in the upper area; the section should

not adapt and should stay with AC1 because the alarm takes precedence over the wind event.

We thus update adaptation procedures ΠA−ΠG so that adaptation patterns suppress adap-

tations if a higher precedence event has already been observed. For instance, we change the

adaptation pattern PE (reacts to the wind event) to monitor as well for the alarm event and delay

adaptation if the fire alarm is on. In this case, the pattern PE delays adaptation until the event

alarm〈F 〉 is observed, i.e., the section is no longer in an emergency state. Similarly, the adaptation

pattern PD, which determines the default behaviour of the access controller during a match, must

track the noise detector, wind monitor and fire alarm as they all take precedence over the default

behaviour. From the table, we know that ΠC does not need to change as it is the highest priority

adaptation procedure. Moreover, ΠA is not affected by the other adaptation procedures as the

before event marks the start of a match and thus happens before all other events.

Higher priority access controls are always stricter. For instance, when there is a strong wind, the

access to upper sections is more restricting than if the section is noisy. Both only allow ticket holders

to enter the section and both attempt to open an alternative section, but the wind adaptation

9.5. STEPS 5-6: COMPOSING ANDREVERIFICATION OF OVERLAPPING ADAPTATION PROCEDURES119

procedure closes the section once an alternative section is identified. This means that, we do not

need to change specifications or requirements definitions to include precedence information.

Adaptation is not step-wise: The second problem highlighted in fig. 9.3 is that adaptation

does not happen immediately after an important event. In the trace, we see that after the alarmL0

event, which should trigger adaptation from ΠC , the system continues to listen to first-order events

and adaptation is delayed until after the before event. This happens because the cluster SC does

not monitor for events in the match status component and thus adaptation from ΠC is interleaved

with the first-order events from the match status component. We require that all adaptation

procedures adapting the access controller to monitor all sensors in s, i.e., wind monitor, noisy

detector, fire alarm and match status components. This ensures that adaptation in a section is

step-wise with the execution of components and the section stops accepting first-order events until

adaptation is complete. This also requires us to update the specifications to include the behaviour

of any of the missing components.

To summarize, we must update the adaptation procedures ΠA−ΠG to monitor all first-order

events from the fire alarm, wind monitor, noise detector and match status components to ensure

that adaptation happens step-wise with the execution. We also need to update the adaptation

patterns to delay adaptations if a higher priority events has already been observed. Finally, we

need to update the specifications to include the first-order events for the extended adaptation

procedures scopes.

Recall that the adaptation procedures ΠA and ΠC do not need to be updated. We show how

the encoding for Requirements D and E are updated. The others are similar.

Requirement D: During a match, visitors are allowed to roam in non-empty sections

Here, we update the adaptation pattern PD to monitor first-order events from the other controllers

and delay adaptation if the access control is determined by a higher priority adaptation procedure,

in this case ΠC or ΠE , but then trigger adaptation once all preceding events are switched off, e.g.,

adaptation should be triggered once the events noisy〈F 〉 or alarm〈F 〉 are observed. We define

below a function applies, that returns true if the existing access control in the section is stricter

than what is being proposed by the adaptation procedure We also update the pattern to also track

the state of noisy, alarm,wind levels in the section.

120 CHAPTER 9. CASE STUDY: A SMART STADIUM

P ′D = let

applies(w, n, a, ev) = (s /∈ {|H|} ∨ ¬w) ∧ ¬n ∧ ¬a ∧ ev = during

B(w, n, a, emp, ev) = 2
v ∈ V isitors

a ∈ adj



gotov,a,s → if applies(w, n, a, ev)

then ?〈F 〉 → ack → B(w, n, a, F, ev)

else B(w, n, a, F, ev)

gotov,s,a → B(others, emp, dur)

before → B(F, F, F, T, before)

after → B(w, n, a, emp, after)

opens,s′ → B(w, n, a, emp, ev)

opens′,s → B(w, n, a, F, ev)

during → if applies(w, n, a, ev) then ?〈emp〉 → ack → B(w, n, a, emp, during)

else B(w, n, a, emp, during)

empty → B(w, n, a, emp, ev)

noisy〈b〉 → if applies(w, b, a, ev) then ?〈emp〉 → ack → B(w, b, a, emp, ev)

else B(w, b, a, emp, ev)

alarm〈b〉 → if applies(w, n, b, ev) then ?〈emp〉 → ack → B(w, n, b, emp, ev)

else B(w, n, b, emp, ev)

wind → B(T, n, a, emp, ev)

withinB(F, F, F, T, F)

The adaptation function remains unaltered. We assume Π′D replaces the adaptation pattern in

ΠD with P ′D, The cluster for Req. D is

S′D = (ν ac, np,ms, f)

(
(AccessController 9MatchStatus 9AlarmPanel 9NoisePanel) ‖

Eac,Em,En,Ef

Π′D

)

We update the specification SpecD to include the missing first-order events from the noise

detector, wind monitor and alarm controllers.

Spec′D = let

R(emp) = 2
a ∈ adj

v ∈ V isitors



before → R(T)

during → D(emp)

after → R(T)

gotov,s,a → R(emp)

gotov,a,s → R(F)

open → R(emp)

empty → R(emp)

noisy → R(emp)

wind → R(emp)

alarm → R(emp)

D(emp) = 2
a ∈ adj

v ∈ V isitors

s′ ∈ SectionID \ s



gotov,s,a → D(emp)

emp&gotos,a,s → D(emp)

¬emp&gotov,a,s → D(emp)

before → R(T)

after → R(T)

during → D(emp)

opens,s′ → D(emp)

emp & opens′,s → D(emp)

empty → D(emp)

noisy → D(emp)

wind → D(emp)

alarm → D(emp)

withinR(T)

Requirement E: On a windy day, the system should attempt to empty the upper sec-

tions Similar to the previous requirement, we update the adaptation pattern PE to monitor

events from the other controllers and delay adaptation if the access control is determined by a

more preceding adaptation procedure, in this case ΠC .

9.5. STEPS 5-6: COMPOSING ANDREVERIFICATION OF OVERLAPPING ADAPTATION PROCEDURES121

The adaptation pattern PE also tracks the state of the fire alarm. Adaptation is suppressed

on the wind event if the section is already being evacuated due to a fire alarm. Once the alarm

is switched off encoded by the alarm〈F 〉 event, the pattern (if there are strong wind) triggers

adaptation as it is the second preceding access control after the alarm. We define a function

applies that returns true if the alarm is off and a match is ongoing. We also include in the

adaptation pattern, the first-order events from the noise detector component to ensure adaptation

occurs step-wise with the execution.

P ′E = let

applies(a, ev) = ¬a ∧ ev = during

B(a,w, ev, bu) = 2
a ∈ adj

s′ ∈ SectionID \ s



goto → B(a,w, ev, bu)

before → B(F, F, before, F)

during → ifw ∧ ¬others

then ?〈F 〉 → ack → B(a,w, during, bu)

else B(a,w, during, bu)

after → B(a,w, F, bu)

opens,s′ → if applies(a, ev) ∧ w ∧ s′ /∈ {|H,V IP |}

then ?〈T 〉 → ack → B(a,w, ev, T)

else B(a,w, ev, T)

opens′,s → B(a,w, ev, bu)

empty → B(a,w, ev, bu)

wind → if applies(a, ev)

then ?〈F 〉 → ack → B(a, T, ev, F)

else B(a, T, ev, F)

noisy → B(a,w, ev, , bu)

alarm〈b〉 → if applies(b, ev) ∧ w

then ?〈F 〉 → ack → B(b, w, ev, bu)

else B(b, w, ev, bu)

withinB(F, F, F, before)

The adaptation function remains unaltered. We assume Π′E replaces in ΠE the adaptation

pattern with P ′E . The cluster for Req. E is

S′E = (ν ac, np,ms, f)

(
(AccessController 9MatchStatus 9AlarmPanel 9NoisePanel) ‖

Eac,Em,En,Ef

Π′E

)

We update the specification SpecE to include the missing events from the noise and alarm

components,

122 CHAPTER 9. CASE STUDY: A SMART STADIUM

Spec′E = let

R(w) =2



goto → R(w)

wind → R(s ∈ {|H|})

open → R(w)

before → R(F)

during →W (w,F)

after → R(w)

empty → R(w)

noisy → R(w)

alarm → R(w)

W (w, backup) = 2
v ∈ V isitors

a ∈ adj

s′ ∈ SectionID



w ∧ & gotos,a,s →W (w, backup)

¬w&gotov,a,s →W (w, backup)

gotov,s,a →W (w, backup)

empty →W (w, backup)

after → R(w)

before → R(F)

during →W (w,F)

wind →W (s ∈ {|H|} , F)

opens,s′ →W (w,w ∧ s′ /∈ {|H|})

¬w & opens′,s →W (w, backup)

noisy → R(w)

alarm → R(w)

withinR(F)

We once again, using FDR, verify that the composition of the updated adaptation procedures

satisfies the updated specifications Spec′A, Spec
′
B , Spec

′
C

Spec′A vT (ACSP) (S′A ⊗ S′B)⊗ S′C (REVERIFY)

Spec′B vT (ACSP) (S′A ⊗ S′B)⊗ S′C (REVERIFY)

Spec′C vT (ACSP) (S′A ⊗ S′B)⊗ S′C (REVERIFY)

9.5.1 Composition of SA to SG

After implementing the changes discussed in the previous section in the other adaptation pro-

cedures. We verify using FDR that the composition of adaptation procedures ΠA−ΠG satisfies

Requirements A to G. The overlap matches case 4 in table 7.2, because all adaptation procedures

adapt the behaviour of the access controller. We reverify the following assertions,

Spec′A vT (ACSP) SA ⊗ . . .⊗ SG (REVERIFY)

Spec′B vT (ACSP) SA ⊗ . . .⊗ SG (REVERIFY)

Spec′C vT (ACSP) SA ⊗ . . .⊗ SG (REVERIFY)

Spec′D vT (ACSP) SA ⊗ . . .⊗ SG (REVERIFY)

Spec′E vT (ACSP) SA ⊗ . . .⊗ SG (REVERIFY)

Spec′F vT (ACSP) SA ⊗ . . .⊗ SG (REVERIFY)

Spec′G vT (ACSP) SA ⊗ . . .⊗ SG (REVERIFY)

Composition of SA ⊗ . . .⊗ SG and SH

The cluster SH overlaps with the cluster SA⊗ . . .⊗SG over the match status, access controller and

noise detector component. We know that SH monitors the access controller that is adapted by

SA⊗ . . .⊗SG and in turns the cluster SA⊗ . . .⊗SG monitors the noise detector component that is

adapted by SH . This matches case 3 in table 7.2, where we need to reverify all the specifications

Spec′A − SpecH ,

9.5. STEPS 5-6: COMPOSING ANDREVERIFICATION OF OVERLAPPING ADAPTATION PROCEDURES123

Spec′A vT (ACSP) SA ⊗ . . .⊗ SH (REVERIFY)

Spec′B vT (ACSP) SA ⊗ . . .⊗ SH (REVERIFY)

Spec′C vT (ACSP) SA ⊗ . . .⊗ SH (REVERIFY)

Spec′D vT (ACSP) SA ⊗ . . .⊗ SH (REVERIFY)

Spec′E vT (ACSP) SA ⊗ . . .⊗ SH (REVERIFY)

Spec′F vT (ACSP) SA ⊗ . . .⊗ SH (REVERIFY)

Spec′G vT (ACSP) SA ⊗ . . .⊗ SH (REVERIFY)

The specification SpecH need to include the behaviour of the fire alarm and wind monitor

components as these are now included in composed cluster,

Spec′H = let

B(n, emp) = 2
a ∈ adj

v ∈ V isitors



before → B(n, T)

during → B(n, emp)

after → B(n, T)

¬emp &noisy〈¬n〉 → B(¬n, emp)

emp ∧ n &noisy〈F 〉 → B(F, emp)

gotov,a,s → B(n, F)

gotov,s,a → B(n, emp)

open → B(n, emp)

empty → B(n, T)

alarm〈b〉 → B(n, T)

wind → B(n, T)

withinB(F, T)

We verify using FDR that the assertion below holds,

Spec′H vT (ACSP) SA ⊗ . . .⊗ SH (REVERIFY)

Composition of SA ⊗ . . .⊗ SH and SI

The last cluster in section s to compose is SI that adapts the floodlights component and monitors

the match status and access controller components. This overlaps with SA ⊗ . . . ⊗ SG because it

monitors the access controller, whose behaviour is changed by the other adaptation procedures.

The overlap matches case 2 in table 7.2, where only the satisfaction of SpecI may be affected by

the composition, the satisfaction of Spec′A − Spec′G follows from the compositionality theorem.

124 CHAPTER 9. CASE STUDY: A SMART STADIUM

Spec′′A = Spec′A 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
vT (ACSP) (SA ⊗ . . .⊗ SH) 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
= SA ⊗ . . .⊗ SI (FOLLOWS)

Spec′′B = Spec′B 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
vT (ACSP) (SA ⊗ . . .⊗ SH) 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
= SA ⊗ . . .⊗ SI (FOLLOWS)

Spec′′C = Spec′C 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
vT (ACSP) (SA ⊗ . . .⊗ SH) 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
= SA ⊗ . . .⊗ SI (FOLLOWS)

Spec′′D = Spec′D 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
vT (ACSP) (SA ⊗ . . .⊗ SH) 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
= SA ⊗ . . .⊗ SI (FOLLOWS)

Spec′′E = Spec′E 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
vT (ACSP) (SA ⊗ . . .⊗ SH) 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
= SA ⊗ . . .⊗ SI (FOLLOWS)

Spec′′F = Spec′F 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
vT (ACSP) (SA ⊗ . . .⊗ SH) 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
= SA ⊗ . . .⊗ SI (FOLLOWS)

Spec′′G = Spec′G 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
vT (ACSP) (SA ⊗ . . .⊗ SH) 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
= SA ⊗ . . .⊗ SI (FOLLOWS)

Spec′′H = Spec′H 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
vT (ACSP) (SA ⊗ . . .⊗ SH) 9 (ν lp)

(
LightPanel ‖

El

ΠI

)
= SA ⊗ . . .⊗ SI (FOLLOWS)

We update the specification SpecI to include the behaviour of the noise detector, wind monitor

and fire alarm because these are now in the scope of the composed cluster,

Spec′I = let

B(l, emp, ev) = 2
a ∈ adj

v ∈ V isitors



before → B(l, T, before)

during → B(l, emp, during)

after → B(l, emp, after)

¬emp ∧ ¬l & floodlights〈¬l〉 → B(¬l, emp, ev)

¬l ∧ e = before & floodlights〈T 〉 → B(T, emp, ev)

emp ∧ l ∧ ev 6= before & floodlights〈F 〉 → B(F, emp, ev)

gotov,a,s → B(l, F, ev)

gotov,s,a → B(l, emp, ev)

opens′,s → B(l, F, ev)

opens,s′ → B(l, emp, ev)

empty → B(l, emp ∨ ev = after, ev)

noisy〈b〉 → B(l, emp, ev)

alarm〈b〉 → B(l, emp, ev)

wind → B(l, emp, ev)

withinB(F, T)

We verify, using FDR, that the specification Spec′I is satisfied by the composition of adaptation

procedures in a section,

Spec′I vT (ACSP) SA ⊗ . . .⊗ SI (REVERIFY)

Here, we verified that the composition of all adaptation procedures in a section s satisfies all the

requirements.

Composition of Sections in the Stadium

The satisfaction of the requirements for s also hold for the whole stadium. This follows from

the compositionality theorem. From the component model in fig. 9.2, we know that sections

overlap over the wind monitor and match status components. Because none of the adaptation

9.6. SCALABILITY OF VERIFICATION 125

procedures adapt their behaviour, the overlap between sections matches case 1 in table 7.2. As

proven in Pro. 7.2.6, the satisfaction of requirements by the composition of this type of overlap is

preserved. The stadium comprises 972 adaptation procedures, 9 adaptation procedures in each of

the 108 sections, the composition of all the adaptation procedures would lead to computationally

infeasible verification tasks. Even though the sections overlap, by making a distinction between

the adapted and monitored components, we infer that interference is not possible, allowing us to

derive the satisfaction from the compositionality theorem.

9.6 Scalability of Verification

We validate the tool presented in Chapter 8 by translating the ACSPM encoding for the stadium

case-study to CSPM . The tool produces a CSPM file with 229 lines of code, from the original 203

lines with ACSPM encoding.

We also investigate the scalability of our verification approach for the stadium example. Here,

we consider the verification of requirements by the composition of all adaptation procedures. We

verify each requirement presented in section 9.2 with an increasing number of section sizes. For each

verification, we measure the running time (in seconds) using Unix time command and the number

of visited states and transitions from FDR output. This allows us to measure the order of growth

of our verification approach. We run the experiment on a server that has 56 cores running at 2.2

GHz with 256GB of RAM. Here, we only show the results derived from the execution performed

on the server machine.

In fig. 9.4a, we summarize the results when we verify each requirement independently after

composition. We see that the model size grows linearly with the number of visitors, so verification

time does the same. This is because adaptation procedures are all defined at the same level

of granularity comprising all controllers and sensors found in a section. We verify the order of

growth is not affected by FDR minimization by verifying the same assertions again with FDR

minimization turned off. In fig. 9.4b, we attain the same order of growth, however the verification

does not scale as well. In particular, for the assertion ReqA [T= Section with 200 visitors, with

minimization FDR takes 120.73 seconds after visiting 18,309 states and 2,140,891 transitions and

with no minimization the same assertion takes 117.48 seconds after visiting 531,416 states and

2,655,360. Note that the running time with no minimization is faster, however the process verified

is much bigger in size and it because of the process size and the memory required to store such

processes that the verification with no minimization does not scale. The minimization, in the

stadium example, takes a considerable amount of the running time but reduces the size of the

processes considerably, which allows us to verify bigger examples before memory runs out. The

minimization removes internal transition that in our encoding represent adaptation commands. In

this case-study, adaptation over a single section happens more frequent due to more requirements

overlapping on the access controller in a section and thus the minimization is more effective.

In fig. 9.4c, we investigate how the number of sections in the stadium affect the order of growth,

despite the verification performed against a single section. Recall, the open event is a global event

between pairs of sections. We see that the number of states is independent from the number of

sections in the stadium, but the number of transitions is related to the number of sections and

thus we observe a growth in the number of transitions that also results in an increase in running

time for verifying the requirements in a single section.

126 CHAPTER 9. CASE STUDY: A SMART STADIUM

200 400 600 800 1,000

100

200

300

400

No. of visitors in a section

T
im

e
(S

ec
)

200 400 600 800 1,000

0

0.5

1

1.5

2

V
is

it
ed

S
ta

te
s

(1
05

)

No. of visitors in a section

200 400 600 800 1,000

0

0.5

1

1.5

2

2.5

V
is

it
ed

T
ra

n
si

ti
on

s
(1

0
7
)

No. of visitors in a section

ReqA ReqB ReqC ReqD
ReqE ReqF ReqG

(a) Experimental results for verifying the stadium requirements against a single section containing the
composition of all adaptation procedures. Here, FDR minimization is enabled and the number of sections
in a stadium area is set to 35.

100 150 200 250 300

100

120

140

No. of visitors in a section

T
im

e
(s

ec
)

100 150 200 250 300
0.2

0.4

0.6

0.8

1

1.2

V
is

it
ed

S
ta

te
s

(1
06

)

No. of visitors in a section

100 150 200 250 300

2

4

6

8

V
is

it
ed

T
ra

n
si

ti
on

s
(1

0
6
)

No. of visitors in a section

ReqA ReqB ReqC ReqD
ReqE ReqF ReqG

(b) Experimental results for verifying the stadium requirements in a singe sections against the composition
of all adaptation procedures. Here, FDR minimization is disabled and the number of sections in an area
is set to 35. Note the varying scale on the x-axis, when compared with the graphs in fig. 9.4a.

10 20 30 40
0

100

200

300

400

500

No. of sections in an area

T
im

e
(s

ec
)

10 20 30 40

0.8

1

1.2

1.4

1.6

1.8

V
is

it
ed

S
ta

te
s

(1
05

)

No. of sections in an area

10 20 30 40

0.5

1

1.5

2

V
is

it
ed

T
ra

n
si

ti
on

s
(1

0
7
)

No. of sections in an area

ReqA ReqB ReqC ReqD
ReqE ReqF ReqG

(c) Experimental results for verifying the stadium requirements against a single section with the composi-
tion of all adaptation procedures for an increasing number of sections in an area. The section size for this
experiment is set to 800 and FDR minimization is enabled.

Figure 9.4: Experimental results of verifying the stadium requirements against a single section,
containing the composition of all adaptation procedures

9.7. DISCUSSION 127

9.7 Discussion

The purpose of this evaluation is to investigate the applicability of our modelling methodology and

verification process for SA CPSs through a second case-study—a smart stadium inspired from

[92]. In this chapter we follow the methodology presented in section 4.1 to model and verify the

satisfaction of requirements defined in section 9.2.

In this case-study, we show how topology-driven modelling, discussed in Chapter 5, guides

us to exploit the regularity in the physical layout of a stadium to reduce the state space for

verification tasks. In total, there are 434 controllers installed in the stadium and including all

controllers in verification tasks is not computationally feasible. Topology and topological relations

guides the system designer to systematically explore different grouping of controllers that affect

the satisfaction of a requirement.

In our framework, we also propose requirement-driven adaptation. We model an adaptation

procedure for each requirement spanning over a subset of the components in a section. An adap-

tation procedure comprises an adaptation pattern that determines when a system must-adapt and

adaptation function that plan and execute adaptations. This modularization is helpful when de-

bugging violations, as the system designer can check whether a violation occurs due to the absence

of adaptation or an ineffective adaptation. Given the nature of the process language, an adapta-

tion procedure may potentially block or interfere with the execution of components by refusing

to accept first-order events. The encoding for adaptation procedures enables us to check (using

FDR) that this is not the case. First-order events are monitored by the adaptation pattern and

since this process does not contain higher-order communication, we can using FDR, check that the

adaptation pattern does not refuse or introduce first-order events.

Our methodology breaks down the verification process into two steps. We first verify that

adaptation procedures do indeed satisfy system requirements. This is done over a small subset

of the components that a system designer identify to affect the satisfaction of the requirement,

independent from other adaptation procedures and the rest of the CPS. Once we determine that

all adaptation procedures are correct (in isolation), we verify the composition of all adaptation

procedures leads to a correct system. In this case-study, in comparison with the art gallery, we

have more adaptation procedures overlapping on the same components—the access controller of a

section in the stadium is adapted by 7 different adaptation procedures and monitored by 2 other

adaptation procedures whereas room A in the exhibition area, which is the most adapted compo-

nent in the art gallery is adapted by 3 adaptation procedures. As discussed in this chapter, this

concentration of adaptation procedures over the access controller introduces a series of violations,

e.g., unsynchronized and conflicting adaptations. This lead us to extend the scope of adaptation

procedures to include all components in s and all the assertions over a section s needed to be

reverified for each composition. However, the violations in the adaptation procedures were similar

reducing the efforts required to resolve conflicts. Two observations are that requirement-driven

adaptation helps us understand a problem better as we abstract away a lot of unnecessary details

and the two step verification process force us to identify and resolve conflicts early. Moreover,

through compositionality, we are able to replicate verification results for all sections and verify the

satisfaction of requirements for the whole stadium with minimal verification efforts, even though

the scope of adaptation procedures in different sections overlap over the wind monitor and match

status components.

As discussed previously, the order of composition affects the verification efforts needed in the

second step of the verification process. The order has to be decided by the system designer as there

are different criteria that affect the efforts required for reverification. A systematic way to identify

128 CHAPTER 9. CASE STUDY: A SMART STADIUM

the order requires further exploration of case-studies and maybe also new theoretical results.

We verify the satisfaction of requirements by leveraging FDR, an existing refinement checker.

We present an adequate translation from a subset of the ACSP processes to CSP. This approach

allows us to leverage the theory established for CSP in the ACSP process language, e.g., compo-

sitionality. This also includes the tool FDR that provides a GUI to improve the usability of the

verification approach, algebraic laws proven in CSP and semantic models for ACSP processes. To

further improve the usability of our framework, we also develop a concrete syntax for our process

language and a tool that automatically translates the concrete syntax into CSPM , the input lan-

guage of FDR. The constructs introduced in the concrete syntax has undoubtedly improved the

usability of the process language e.g., the enumerated sets and processes definition make the code

more understandable. As future work, we intend to implement the functionality for the inclusion of

parameters in communicated processes (over higher-order outputs) to further improve the frame-

work application in realistic systems. In this case-study, the section identifier was set as a global

variable. An alternative would be to have the section identifier passed as a parameter.

A limitation of this verification approach, and formal verification in general, is the mapping

between requirements and specifications. The requirement is the English description of the intended

behaviour, whereas the specification is the formal process encoding the requirement. With any

formal verification approach, there is always a risk that the specification does not faithfully encode

the requirement. It is the responsibility of the system designer to ensure that the specifications

and requirements are close to each other as much as possible such that the mapping from the

requirements to the specifications is obvious. This led us to require a single specification for each

requirement that encodes at a very high-level of abstraction the requirement.

Another limitation is the encoding of the sensors. Once again this is not specific to our verifica-

tion approach but to formal verification in general. We encode the detection of strong winds, fire

alarm and high noise level as non-deterministic events that can occur intermittently. Verification

is usually performed at a high-level of abstraction and thus cannot capture this low-level detail.

We verify models of the system and if the model does not reflect faithfully the implementation

then violations may still occur at runtime.

A threat to the validity of the evaluation, is the similarity to the art gallery example. However,

as highlighted in section 9.2.1, this example is not only much larger in scale but also the overlapping

of adaptation procedures is more dense e.g., access controller and in some cases global e.g., match

status. In the art gallery, the overlaps involved mostly monitored components, whereas in this

case the overlap involved the adapted components. In this example, we were able to leverage the

regular structure that is typically found in large buildings to reuse most of our verification efforts.

Finally, topology-based modelling can potentially allow us to infer the correctness of even big-

ger case-studies. Consider a smart city, which contains an art gallery, two smart stadiums and

autonomous vehicles that transport people between the buildings. From the topological layout

of the city, we can potentially infer that the elements do not overlap and can thus be verified

independently. With the overall correctness following from the compositionality theorem, it suf-

fices to verify the art gallery, a stadium (assuming the two stadiums are homogeneous) and an

autonomous vehicle (also assuming homogeneity) independently. In this dissertation, we already

discuss the verification of an art gallery and a stadium and therefore show that we can leverage

existing verification techniques to prove the correctness of complex realistic SA CPSs.

Chapter 10

Conclusions

We conclude the dissertation by summarizing the main contributions and outlining future research

directions.

10.1 Summary

Cyber-Physical Systems (CPSs) must often self-adapt to respond to changes in their operating

environment. However, providing assurances of critical requirements through formal verification

techniques can be computationally intractable due to the large state space of self-adaptive (SA)

CPSs. In this thesis, we tackle the complexity of modelling and verifying the satisfaction of security

requirements in SA CPSs through compositionality.

We first propose a novel modelling language, which we call Adaptive CSP, to model and support

compositional verification of SA CPSs. The process language extends Communicating Sequential

Processes (CSP), with constructs that support the modelling of self-adaptation at a high level.

Being process-based (as e.g., [89, 70]) and able to directly express self-adaptation, ACSP can readily

support the definition of decentralized adaptation procedures at different levels of granularity in a

system, as well as compositional reasoning for the system.

We also provide a requirement-driven methodology to model and verify such systems, and

explore in ACSP alternative adaptation procedures for each requirement. This methodology al-

lows the designer to leverage the topological structure [102] of CPSs and topological relations e.g.,

containment and connectivity, to explore different levels of granularity (i.e., grouping of CPS com-

ponents) to encode adaptation procedures. The methodology—guided by the apparent topological

structure and the requirements—offers a a systematic approach of how to effectively model such

complex CPS behaviour.

We present a verification technique for SA CPSs encoded in ACSP that supports compositional

reasoning and leverages existing verification tools. Here, we use the refinement-checker FDR [59],

however the underlying principles of our technique is general enough to allow the use of other

verification tools for process calculi. We highlight how our approach reduces the state space in

verification tasks and thus provides a computationally tractable verification solution for realistic

SA CPSs.

When different requirements involve disjoint sets of components, verification of each require-

ment can be performed against only its relevant components, independently from the rest of the

system. A compositionality theorem guarantees that successful verification of a requirement over

such a set of components implies the satisfaction of the requirement for the entire system. When

components are relevant for multiple requirements, we need to explicitly address the potential of

129

130 CHAPTER 10. CONCLUSIONS

interference created when the overlapping adaptation procedures are composed together and may

require additional verification tasks. Due to compositionality results in ACSP, these verification

tasks are needed only in certain types of overlaps (e.g., when two adaptation procedures modify

the same components) and unnecessary in others (e.g., when the two adaptation procedures only

monitor the same components), thus reducing the needed verification effort.

We showcase and evaluate our methodology using a running example of a smart art gallery.

Moreover, we evaluate it by a case study of a modern sports stadium, where we use a prototype

tool to translate the ACSP model to FDR and perform compositional verification. Our results

show that our technique reduces the computational complexity of verifying self-adaptive CPSs.

10.2 Future Work

Our verification approach can be extended to incorporate known probability of certain events oc-

curring. For example, an SA security system might have established statistics about the possibility

of hacking or burglar attempts or the probability of bypassing specific security measures such as

breaking a password. The probability of all events may not be known, e.g., human behaviour is

considered to be non-deterministic, however utilizing knowledge of known probabilities in the ver-

ification process can improve its effectiveness [125]. The proposed extension can thus incorporate

both probabilistic and non-deterministic behaviour. Once again, being entirely transition-based,

a potential probabilistic extension can leverage established trace and testing equivalence theories

and tools. Behavioural equivalence, in particular trace equivalence, is an effective technique for

verifying safety properties of non-deterministic and probabilistic processes. Different definitions

of trace equivalence for non-deterministic and probabilistic processes modelled by means of an

extended LTS have been proposed [13].

Alternatives to CSP refinement can be explored as verification techniques, and potentially new

ones may be developed for Adaptive CSP directly. Here our verification approach is applied only in

parts of the system where all higher-order communications are internalized and hidden. The benefit

of this was the ability to translate such system parts to FDR (a purely first-order process language)

and reuse its advanced verification techniques. However, verification of adaptation procedures that

span over many system components may still prove computationally hard. Recall how we change

Req. 5 in the art gallery example, requiring visitors to have a clear exit from the building in the

case of an emergency, because the original requirement spanned over the whole building and could

not take advantage of our compositionality infrastructure. This may be overcome if reasoning

techniques for higher-order events are developed, similar to those in [80, 81], which would allow us

to define compositional reasoning for more refined parts of the system. Of course such techniques

would require novel verification tools.

FDR allows us to reason about timing-constraints [59]. In our case-studies, we abstract over

the notion of time. It would be an interesting direction of future work to extend the ACSP process

language to express time and reason, using FDR, about time-sensitive requirements and timed

events.

Our verification approach relies on the premise that requirements can be expressed easily with

closely related CSP specifications. Any discrepancy between the two may potentially introduce

errors and can negatively affect the effectiveness of verification. In Chapter 7, we discuss how the

satisfaction of requirements may be affected when adaptation procedures are composed together.

There, some specifications needed to be updated to incorporate behaviour of other requirements

(see Ex. 7.1.3). This task is manually performed by the system designer and may introduce uninten-

tional discrepancy between requirements and specifications when performed repeatedly. Systematic

10.2. FUTURE WORK 131

software-engineering techniques guiding system designers to derive specifications from requirements

are needed and would provide stronger assurances that requirements are indeed satisfied.

132 CHAPTER 10. CONCLUSIONS

Appendix A

Proofs for Self-Adaptive Automata

Lemma about SAA Composition

Lemma A.0.1 (Intersection Determinism). For the SAAsM1 = 〈Q1,Σ,∆1, q1, δ1,Π1〉 andM2 =

〈Q2,Σ,∆2, q2, δ2,Π2〉
M1 ∩M2 is deterministic

Proof. Proven by contradiction. Assume there is t such that

〈(q1, q2), δ1 ∩ δ2〉
t−−−→ 〈(q′1, q′2), δ′〉 (IA.1)

〈(q1, q2), δ1 ∩ δ2〉
t−−−→ 〈(q′′1 , q′′2), δ′′〉 (IA.2)

such that (q′1, q
′
2) 6= (q′′1 , q

′′
2) or δ′ 6= δ′′. By Lem. A.0.7

〈q1, δ1〉
t−−−→ 〈q′1, δ′1〉 and 〈q2, δ2〉

t−−−→ 〈q′2, δ′2〉

〈q1, δ1〉
t−−−→ 〈q′′1 , δ′′1 〉 and 〈q2, δ2〉

t−−−→ 〈q′′2 , δ′′2 〉

such that δ′ = δ′1 ∩ δ′2 and δ′′ = δ′′1 ∩ δ′′2 for some transition functions δ′1, δ
′
2, δ
′′
1 and δ′′2 . Since M1

and M2, it can never be the case that q′1 6= q′′1 and δ′1 6= δ′′1 (similarly for M2).

Lemma A.0.2 (Intersection Commutative). For SAAs M1 = 〈Q1,Σ,∆1, q1, δ1,Π1〉 and M2 =

〈Q2,Σ,∆2, q2, δ2,Π2〉 then

M1 ∩M2 =α M2 ∩M1

Proof. Proven by structural induction on traces derived by each automata.

Lemma A.0.3 (Intersection Associative). For i ∈ {1, 2, 3} and SAAs Mi = 〈Qi,Σ,∆i, qi, δi,Πi〉
then

(M1 ∩M2) ∩M3 =α M1 ∩ (M2 ∩M3)

Proof. Proven by structural induction on traces derived by each automata.

Lemma A.0.4 (Intersection Idempotent). Let M = 〈Q,Σ,∆, q0, δ,Π〉 be an SAA then

M ∩M =α M

Proof. Proven by structural induction on traces derived by each automata.

133

134 APPENDIX A. PROOFS FOR SELF-ADAPTIVE AUTOMATA

Lemma A.0.5 (Intersection Id). Let M> = 〈{⊥},Σ, {δ},⊥, δ,Πid〉 where δ = fn(⊥, a) ⇒ ⊥ for

any a ∈ Σ and Πid = fn(⊥)⇒ 〈⊥, δ〉, then for all SAA M = 〈Q,Σ,∆, q0, δ0,Π〉 implies

M> ∩M =αM

Lemma A.0.6 (Intersection Id 2). Let M = 〈Q,Σ,∆, q0, δ0,Π〉 be an SAA then

M ∩ ∅ =α ∅

Proof. The empty automaton is defined as 〈Q2,Σ, q2, ∅, ∅〉 where the transition function and adap-

tation function are undefined for all q ∈ Q2.

We define M ∩∅ = 〈Q×Q2,Σ, (q0, q2), δ1 ∩∅,Π〉. Note that δ0 ∩∅ = ∅ as a transition has to be

in both. Similarly Π = ∅ because the adaptation function has to be defined in both automata.

Lemma A.0.7. Assume M1 = 〈Q1,Σ,∆1, q1, δ1,Π1〉 and M2 = 〈Q2,Σ,∆2, q2, δ2,Π2〉 and M1 ∩
M2 = 〈Q1 ×Q2,Σ,∆, (q1, q2), δ1 ∩ δ2,Π〉 be SAAs then

〈(q1, q2), δ1 ∩ δ2〉
t−−−→ 〈(q′1, q′2), δ〉 implies

〈q1, δ1〉
t−−−→ 〈q′1, δ′1〉 and 〈q2, δ2〉

t−−−→ 〈q′2, δ′2〉

such that δ = δ′1 ∩ δ′2 for some transition functions δ′1 and δ′2

Proof. Proven by structural induction on t

case t = ε This means that (q1, q2) = (q′1, q
′
2). Result follows by reflexivity of the reduction

semantics.

case t = t′.a? By transitivity, 〈(q1, q2), δ1 ∩ δ2〉
t−−−→ 〈(q′1, q′2), δ′〉 can be decomposed into

〈(q1, q2), δ1 ∩ δ2〉
t′−−−→ 〈(q′′1 , q′′2), δ′′〉 (IA.3)

〈(q′′1 , q′′2), δ′′〉 a?−−−→ 〈(q′1, q′2), δ′〉 (IA.4)

By IH, eq. (IA.3) implies

〈q1, δ1〉
t′−−−→ 〈q′′1 , δ′′1 〉 (IA.5)

〈q2, δ2〉
t′−−−→ 〈q′′2 , δ′′2 〉 (IA.6)

δ′′ = δ′′1 ∩ δ′′2 (IA.7)

By case-analysis on the structure of a

• a? = ? This means that

Π(q′′1 , q
′′
2) = 〈(q′1, q′2), δ′〉 (IA.8)

From the definition of Π,

Π(q′′1 , q
′′
2) = 〈(q′1, q′2), δ′1 ∩ δ′2〉 where (IA.9)

Π(q′′1) = 〈q′1, δ′1〉 (IA.10)

Π(q′′2) = 〈q′2, δ′2〉 (IA.11)

135

This allows us to extend the reductions eq. (IA.5) and eq. (IA.6)

〈q1, δ1〉
t−−−→ 〈q′′1 , δ′1〉 (IA.12)

〈q2, δ2〉
t−−−→ 〈q′′2 , δ′2〉 (IA.13)

where δ′ = δ′1 ∩ δ′2.

• a? 6= ? Note that eq. (IA.4) is define as δ′′(〈q′′1 , q′′2 〉, a) = 〈q′1, q′2〉 where δ′′1 (q′′1 , a) = q′1 and

δ′′2 (q′′2 , a) = q′2. This allow us to construct the next reduction steps in eq. (IA.5) and eq. (IA.6)

〈q1, δ1〉
t−−−→ 〈q′′1 , δ′′1 〉 (IA.14)

〈q2, δ2〉
t−−−→ 〈q′′2 , δ′′2 〉 (IA.15)

Lemma A.0.8. Assume M1 = 〈Q1,Σ,∆1, q1, δ1,Π1〉 and M2 = 〈Q2,Σ,∆2, q2, δ2,Π2〉 and M1 ∩
M2 = 〈Q1 ×Q2,Σ,∆, (q1, q2), δ1 ∩ δ2,Π〉 be SAAs then

〈q1, δ1〉
t−−−→ 〈q′1, δ′1〉 and 〈q2, δ2〉

t−−−→ 〈q′2, δ′2〉 implies 〈(q1, q2), δ1 ∩ δ2〉
t−−−→ 〈(q′1, q′2), δ′1 ∩ δ′2〉

Proof. Proven by structural induction on t

case t = ε immediate.

case t = t′.a? By transitivity, we know that the reductions can be decomposed

〈q1, δ1〉
t′−−−→ 〈q′′1 , δ′′1 〉 (IA.16)

〈q′′1 , δ′′1 〉
a?−−−→ 〈q′1, δ′1〉 (IA.17)

〈q2, δ2〉
t′−−−→ 〈q′′2 , δ′′2 〉 (IA.18)

〈q′′2 , δ′′2 〉
a?−−−→ 〈q′2, δ′2〉 (IA.19)

By IH with eq. (IA.16) and eq. (IA.18)

〈(q1, q2), δ1 ∩ δ2〉
t′−−−→ 〈(q′′1 , q′′2), δ′′1 ∩ δ′′2 〉 (IA.20)

By case-analysis on the structure of a?

• a? = ? This means that the reductions eq. (IA.17) and eq. (IA.17) happen because

Π1(q′′1) = 〈q′1, δ′1〉 (IA.21)

Π2(q′′2) = 〈q′2, δ′2〉 (IA.22)

This allows us to extends the reduction in eq. (IA.20)

〈(q1, q2), δ1 ∩ δ2〉
t′.?−−−→ 〈(q′1, q′2), δ′1 ∩ δ′2〉 (IA.23)

• a? 6= ? This means that

δ′′1 (q′′1 , a?) = q′1 and δ′1 = δ′′1 (IA.24)

δ′′2 (q′′2 , a?) = q′2 and δ′2 = δ′′2 (IA.25)

136 APPENDIX A. PROOFS FOR SELF-ADAPTIVE AUTOMATA

This allows us to extends the reduction in eq. (IA.20)

〈(q1, q2), δ1 ∩ δ2〉
t′.a?−−−→ 〈(q′1, q′2), δ′′1 ∩ δ′′2 〉 (IA.26)

Expressiveness of Self-Adaptive Automata

Here, we prove that SAA have the same power as EM by providing a bidirectional translation

between the two models. This means that adding self-adaptation to automata, as we do in SAA,

does not change the computational model. As shown in previous work for self-modifiable automata

[106], this is not always the case.

Execution Monitors is a specific sub-class of Büchi automata. An EM M is formally defined

as a tuple M = 〈Q,Σ, q0, δ〉 where

• Q is a potentially infinite set of states

• Σ is a potentially infinite set of actions

• q0 ∈ Q is the initial state

• δ : Q× Σ ⇀ Q is a (partial) transition function.

We write q
a−−−→
δ

q′ to represent a single transition δ(q, a) = q′, and q0
t−−−→
δ

to denote the

transitive application of δ, where t ranges over a potentially infinite sequence of symbols a0, a1, . . .;

i.e., q0
a0−−−→
δ

q1
a1−−−→
δ

. . ..

Translating Self-Adaptive Automata into Execution Monitors

Intuitively, the transformation is a union of all instances of the SAA obtained by adaptations where

the ?-transitions are forced whenever they are enabled.

The resulting automaton is the combination of all transition functions δ ∈ ∆ linked by Π. The

transformed states q0(q1) give us enough information to map back to the original state in SAA ;

in this case q0(q1) asserts that we are in state q0 where the last adaptation was on state q1.

In fig. A.1 we present two examples of this translation. The SAA at the top left is translated to

the EM at the bottom left of the figure. Note that in this EM we force and hide the ?-transition,

when enabled (grey state). The SAA at the top right of fig. A.1 is not an adaptation automaton

because q1 has both a ?- and an a-outgoing transition. Through the translation, the resulting

automaton is not deterministic (state q1(q1) has two outgoing transitions), and thus it is not an

EM.

We show that for an adaptation automaton the translation accepts the same set of traces,

modulo the ?-events. For a trace t, we let t− be the trace t stripped of the ?-events.

Definition A.0.9. For an SAAM = 〈QA,Σ?,∆, q0, δ0,
∏
〉, we write JMK for the EM 〈Q,Σ, q0, δ〉

137

for which

Q =QA] {q(p) | q, p ∈ QA }

δ(q, a) =



y′(y) if q = x(p), Π(x) = 〈y, δ′〉 and y′ = δ′(y, a)

y′(p) else if q = x(p), Π(p) = 〈y, δ′〉 and y′ = δ′(x, a)

y′(q) else if q ∈ QA, Π(q) = 〈y, δ′〉 and δ′(y, a) = y′

y′ else if q ∈ QA, δ0(q, a) = y′

♦

The following theorem shows that JMK and M accept the same set of traces, and that JMK is

an EM , provided that M is deterministic.

Theorem A.0.10. Suppose a SAAM = 〈QA,Σ?, q0, δ0,Π〉 has adaptation automaton and JMK =

〈Q,Σ?, q0, δ〉; then

1. 〈q0, δ0〉
t−−−→ iff q0

t−−−−→
δ

2. JMK is deterministic

3. M is finite implies JMK is finite

Proof. It follows directly as a corollary from Lem. A.0.11—Lem. A.0.13 below.

Lemma A.0.11. For an SAA M = 〈QA,Σ,∆, q0, δ0,Π〉 and EM JMK = 〈Q,Σ, q0, δ〉 such that

for all σ ∈ Σ∗

〈q0, δ0〉
t−−−→ 〈q′, δ′〉 implies ∃ q′′ ∈ Q.q0

t−−−−→
δ

p′

where the structure of p′ can be one of the following

1.
(
p′ = q′, δ0 = δ′

)
or

2.
(
∃x ∈ QA.p′ = q′(x) and 〈 , δ′〉 = Π(x)

)
or

3.
(
∃x ∈ QA.p′ = x() and 〈q′, δ′〉 = Π(x)

)
or

4.
(
∃ p′ ∈ QA.〈q′, δ′〉 = Π(p′)

)
.

Proof. Proven by structural induction on t

case t = ε follows by reflexivity such that q0 = q′ = q′′ and δ0 = δ′.

q0 q1 q1

q0

b

c ?

a

b

q0 q1 q1

q0

b

c

a
?

a

b

q0 q1(q1)

q0(q1)

c

b
a

b

q0 q1(q1)

q0(q1)

c

a

b
a

b

Figure A.1: The translation of an SAA to deterministic EM

138 APPENDIX A. PROOFS FOR SELF-ADAPTIVE AUTOMATA

case t = t′.a?

By transitivity, 〈q0, δ0〉
t−−−→ 〈q′, δ′〉 can be broken down into

〈q0, δ0〉
t′−−−→ 〈q′′, δ′′〉 (IA.27)

〈q′′, δ′′〉 a?−−−→ 〈q′, δ′〉 (IA.28)

By IH and eq. (IA.27)

q0
t′−−−−→ p′′ (IA.29)

By case-analysis on the structure of a? and q′′

• a? = ? and
(
p′′ = q′′, δ0 = δ′

)
. eq. (IA.28) could only happen if Π(q′′) = 〈q′, δ′〉. Result

follows from IH, such that p′′ = q′′() and Π(q′′) = 〈q′, δ′〉 as required.

• a? = ? and
(
∃x ∈ QA.p

′′ = q′′(x) and 〈 , δ′′〉 = Π(x)
)

eq. (IA.28) could only happen if

Π(q′′) = 〈q′, δ′〉. This contradicts the initial assumption that M is a adaptation automaton

as from x we can derive the transition 〈x, 〉 ?−−−→ 〈q′′, δ′′〉 ?−−−→ 〈q′, δ′〉

• a? = ? and
(
∃x ∈ QA.p′′ = x() and 〈q′′, δ′′〉 = Π(x)

)
—analogous to the prev case.

• a? = ? and
(
∃ p′′ ∈ QA.〈q′′, δ′′〉 = Π(p′′)

)
eq. (IA.28) could only happen if Π(q′′) = 〈q′, δ′〉.

This contradicts the initial assumption that M is adaptation automaton as from p′′ we can

derive the transitions 〈p′′, 〉 ?−−−→ 〈q′′, δ′′〉 ?−−−→ 〈q′, δ′〉

• a? 6= ? and
(
p′′ = q′′, δ0 = δ′

)
eq. (IA.28) could only happen if δ0(q′′, a) = q′. Result follows

from translation δ(p′′, a) = δ0(q′′, a) = q′

• a? 6= ? and
(
∃x ∈ QA.p

′′ = q′′(x) and 〈 , δ′′〉 = Π(x)
)
eq. (IA.28) could only happen if

δ′′(q′′, a) = q′ and δ′ = δ′′. Result follows from translation δ(p′′, a) = q′(x)

• a? 6= ? and
(
∃x ∈ QA.p

′′ = x() and 〈q′′, δ′′〉 = Π(x)
)

eq. (IA.28) could only happen if

δ′′(q′′, a) = q′ and δ′ = δ′′. Result follows from translation δ(p′′, a) = q′(x)

• a? 6= ? and
(
∃ p′′ ∈ QA.〈q′′, δ′′〉 = Π(p′′)

)
eq. (IA.28) could only happen if δ′′(q′′, a) = q′ and

δ′ = δ′′. Result follows from translation δ(p′′, a) = q′(p′′)

Lemma A.0.12. For anadaptation automatonM = 〈QA,Σ,∆, q0, δ0,Π〉 and EM JMK = 〈Q,Σ, q0, δ〉
such that for all t ∈ A∗

q0
t−−−→
δ

p′ implies ∃ q′ ∈ QA, δ′ ∈ ∆.〈q0, δ0〉
σ−−−→ 〈q′, δ′〉

for some σ ∈ Σ∗ such that σ = t−. The structure of p′ can be either
(
p′ = q′, δ0 = δ′

)
or(

∃x ∈ QA.p′ = q′(x) and 〈 , δ′〉 = Π(x)
)

Proof. Proven by structural induction on t

case t = ε follows by reflexivity such that q0 = q′ = q′′ and δ0 = δ′.

case t = t′.a

139

By transitivity, q0
t−−−→
δ

p′ can be broken down into

q0
t′−−−→
δ

p′′ (IA.30)

p′′
a−−−→
δ

p′ (IA.31)

By IH and eq. (IA.30)

〈q0, δ0〉
σ′−−−→ 〈q′′, δ′′〉 (IA.32)

for some σ′ ∈ Σ∗ such that σ′− = t′. By case-analysis on the structure of p′′ and δ(p′′, a)

•
(
p′′ = q′′, δ0 = δ′

)
, δ(p′′, a) = y′(y) such that Π(p′′) = 〈y, δ′〉 and δ′(y, a) = y′ We can

construct the derivation

〈q0, δ0〉
σ′−−−→ 〈p′′, δ0〉

?−−−→ 〈y, δ′〉 a−−−→ 〈y′, δ′〉

•
(
p′′ = q′′, δ0 = δ′

)
, δ(p′′, a) = δ0(p′′, a) = p′ such that Π(p′′) is undefined. We can construct

the derivation

〈q0, δ0〉
σ′−−−→ 〈p′′, δ0〉

a−−−→ 〈p′, δ0〉

•
(
∃x ∈ QA.p′′ = q′′(x) and 〈 , δ′′〉 = Π(x)

)
, δ(p′′, a) = y′(y) such that Π(q′′) = 〈y, δ′〉 and

δ′(y, a) = y′ We can construct the derivation

〈q0, δ0〉
σ′−−−→ 〈q′′, δ′′〉 ?−−−→ 〈y, δ′〉 a−−−→ 〈y′, δ′〉

•
(
∃x ∈ QA.p

′′ = q′′(x) and 〈 , δ′′〉 = Π(x)
)
, δ(p′′, a) = y′(x) such that Π(q′′) is undefined

and δ′′(q′′, a) = y′ We can construct the derivation

〈q0, δ0〉
σ′−−−→ 〈q′′, δ′′〉 a−−−→ 〈y′, δ′′〉

Lemma A.0.13. For a deterministic SAA M = 〈QA,Σ,∆, q0, δ0,Π〉 and EM JMK = 〈Q,Σ, q0, δ〉

δ(q, a) = q′ and δ(q, a) = q′′ implies q′ = q′′

Proof. By case-analysis on δ(q, a)

case δ(q, a) = y′(y) such that q = x(p), Π(x) = 〈y, δ〉 and y′ = δ(y, a) Result follows from

determinism of Π and δ

case δ(q, a) = y′(p) such that q = x(p), Π(x) is undefined, Π(p) = 〈y, δ〉 and y′ = δ(x, a) Result

follows from determinism of Π and δ

case δ(q, a) = y(q) such that q ∈ QA, Π(q) = 〈y, δ〉 and δ(y, a) = y′ Result follows from

determinism of Π and δ

case δ(q, a) = y′ such that q ∈ QA, Π(q) is undefined, δ0(q, a) = y′ Result follows from

determinism of Π and δ0

140 APPENDIX A. PROOFS FOR SELF-ADAPTIVE AUTOMATA

141

FDR Code for Vehicles Example

-- Configurations

size = 7

Pos = {(a,b) | a <- {0..size+1}, b<-{0..size+1}}

GoodPos = {(a,b) | a <- {1..size}, b<-{1..size}}

loc1 = (2,2)

loc2 = (4,5)

channel g,s : Pos.Pos

channel adapt

Loc = {(a,b) | a <- Pos, b<- Pos}

-- Wiring

Sys(strategy,buff) =

let

adaptation = s?x: GoodPos ?y :GoodPos -> Adapt(x,y,buff)

Mach = (V(loc1,loc2) /+ {|s|} +\ adaptation)

abstractMach = Mach [[s.x.y <- adapt | x <- GoodPos, y <- GoodPos]]

within

abstractMach [| {|g,adapt|} |] strategy

-- Adaptation Function

Adapt(x,y,t) =

let

(a,b) = fix(x,y,t)

continuation = V(a,b) /+ {|s|} +\ s?a:GoodPos?b:GoodPos -> Adapt(a,b,t)

within

g!a!b -> continuation

-- Transition Functions

V(p1,p2) = let

correctMoves = \p @ {q1 | q1 <- Pos, dis(q1,p) <= 1}

within

(g?q1 : correctMoves(p1) ?q2 :correctMoves(p2) -> V(q1,q2))

[] (s!p1!p2 -> STOP)

142 APPENDIX A. PROOFS FOR SELF-ADAPTIVE AUTOMATA

-- Adaptation Strategies

-- adapts when the vehicles are b units apart

close(b) = let

correctMoves = \x @ {y | y<-GoodPos, goodLoc(x,y,b)}

wrongMoves = \x @ diff(GoodPos, correctMoves(x))

within

(g?x : GoodPos ?y : correctMoves(x) -> close(b))

[] (g?x : GoodPos ?y : wrongMoves(x) -> adapt -> close(b))

-- adapts every 2 steps

--(we skip the first g after adapt as that is from the co-ordinatoor)

every2Steps = let

correctMoves = \p @ {q1 | q1 <- Pos, dis(q1,p) <= 1}

within

g?x : GoodPos ?y : GoodPos

-> g?x2 : correctMoves(x) ?y2 : correctMoves(y)

-> adapt

-> g?x : GoodPos ?y : GoodPos

-> every2Steps

-- adapts every other step

--(we skip the first g after adapt as that is from the co-ordinatoor)

everyStep = g?_ : GoodPos ?_ : GoodPos -> adapt

-> g?x : GoodPos ?y : GoodPos -> everyStep

transparent sbisim, wbisim, diamond,normal

-- Helper Functions

fix(p1,p2,buffer) =

if (not goodLoc(p1,p2,buffer))

then getLoc(p1,p2,buffer)

else (p1,p2)

goodLoc(q1,q2,buffer) = dis(q1,q2) > buffer and not outOfBound(q1,buffer) and not

outOfBound(q2,buffer)

max(x,y) = if(x > y) then x else y

min(x,y) = if (x > y) then y else x

minPos(x,y) = if x < y then True else False

disA(x,y) = max(x,y) - min(x,y)

getLoc2(p1,p2,d,buf) =

let

q1 = min(p1,p2)

q2 = max(p1,p2)

d1 = disA(q1,q2)

t1 = moveLeft(q1,buf -d1 -d + 1,buf+1)

143

d2 = disA(t1,q2)

t2 = moveRight(q2,buf -d -d2+1,size-buf)

within

if(p1 <= p2) then (t1,t2) else (t2,t1)

moveToBuffer(p1,buf) = min(max(p1,buf+1),size-buf)

moveLeft(x,dist,min) =

if(x == min or dist <= 0) then x else moveLeft(x-1,dist-1,min)

moveRight(x,dist,mx) =

if(x == mx or dist <= 0) then x else moveRight(x+1,dist-1,mx)

collide((a,b),(c,d), (x,y),(w,z)) =

minPos(a,c) != minPos(x,w) or minPos(b,d) != minPos(y,z)

outOfBound((x,y),buff) = (x + buff > size)

or (x - buff <= 0) or (y + buff > size) or (y - buff <= 0)

getLoc((x1,y1),(x2,y2),buf) =

let

x3 = moveToBuffer(x1,buf)

x4 = moveToBuffer(x2,buf)

y3 = moveToBuffer(y1,buf)

y4 = moveToBuffer(y2,buf)

d1 = max(disA(y3,y4)-1,0)

(p1,p2) = getLoc2(x3,x4,d1,buf)

d2 = max(disA(p1,p2)-1,0)

(q1,q2) = getLoc2(y3,y4,d2,buf)

within

((p1,q1),(p2,q2))

-- Assertions

SEveryStep = Sys(everyStep,2)

-- Safety Properties

NoCollision = let

correctMoves = \x @ { y | y <- Pos, dis(y,x)>0}

within (g?x : Pos ?y : correctMoves(x) -> NoCollision)

[] (adapt -> g?x : Pos ?y : correctMoves(x) -> NoCollision)

WithinBounds =

let correctMoves = \x @ { y | y <- GoodPos}

within (g?x : GoodPos ?y : correctMoves(x) -> WithinBounds)

[] (adapt -> g?x : GoodPos ?y : correctMoves(x) -> WithinBounds)

assert NoCollision [T= SEveryStep

144 APPENDIX A. PROOFS FOR SELF-ADAPTIVE AUTOMATA

assert WithinBounds [T= SEveryStep

-- Adaptation strategy and composed automata are strongly adaptable

StronglyAdaptable =

(g?_ : GoodPos ?_: GoodPos -> StronglyAdaptable)

|~| (adapt -> g?x :GoodPos ?y:GoodPos -> g?_: GoodPos ?_:GoodPos ->StronglyAdaptable)

assert StronglyAdaptable [T= everyStep

assert StronglyAdaptable [T= SEveryStep

-- Composition follows the adaptation strategy

assert everyStep [T= SEveryStep

-- Composition yields a deterministic, deadlock and livelock free system

assert SEveryStep :[deterministic [F]]

assert SEveryStep :[deadlock free [F]]

assert SEveryStep :[divergence-free [FD]]

-- We show that changing the strategy is still safe

assert Sys(close(2),2) \ {|adapt|} [T= SEveryStep \ {|adapt|}

-- Eventually reaches every location

channel success,ok

Eventually =

let

correctMoves = {(g.a.b) | a<- GoodPos,b <- GoodPos,dis(a,b) > 0}

testCases = ([| correctMoves |] p : GoodPos @ T(p,correctMoves))

SuccessProc = (SEveryStep [| correctMoves |] testCases) |\ {success}

OkProc = (; i : seq(GoodPos) @ success -> SKIP); (ok -> STOP)

within

(SuccessProc [| {success} |] OkProc) |\ {ok}

T(p,correctMoves) = g?x : GoodPos ?y : { y | y<- GoodPos, member(g.x.y,correctMoves)}

-> if(x==p or y == p) then success-> RUN(correctMoves) else T(p,correctMoves)

assert ok -> STOP [F= Eventually

assert ok -> STOP [T= Eventually

-- Because the vehicles choose the next goto position at random, the implementation

contains divergences

-- These assertions rightfully fail

assert Eventually :[divergence-free]

assert ok -> STOP [FD= Eventually

Appendix B

Proofs for Verification Technique

Bisimulation and Progress Theorems

Lemma B.0.1 (Well-Formed Progress). Γ ` P then

• P e−−−→ P ′ implies Γ ` P ′

• P l!R−−−→ P ′ implies Γ ` P ′ and ∅ ` R and l ∈ Γ

• P l?R−−−→ P ′ and ∅ ` R implies Γ ` P ′ and l ∈ Γ

Proof. By rule induction on Γ ` P

case

wPar

Γ] L ` Q1 Γ] L ` Q2

in(Q2) ∩ in(Q1) = ∅ out(Q1) ∩ out(Q2) ⊆ Γ in(Q2) ∩ out(Q1) ⊆ L in(Q1) ∩ out(Q2) ⊆ L

Γ ` (ν L)Q1 ‖
E

Q2

We know that

Γ] L `M (IB.1)

Γ] L ` N (IB.2)

in(M) ∩ in(N) = ∅ (IB.3)

out(M) ∩ out(N) ⊆ Γ (IB.4)

in(N) ∩ out(M) ⊆ L (IB.5)

in(M) ∩ out(N) ⊆ L (IB.6)

By case-analysis on (ν L)M ‖
E

N
α−−−→ T ,

• evEsc which implies

M ‖
E

N
e−−−→ T ′ (IB.7)

T = (ν L)T ′ (IB.8)

e /∈ L (IB.9)

By case-analysis again on M ‖
E

N
e−−−→ T ′, there are three sub-cases (omitting their symmet-

ric cases)

145

146 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

– evParL: M
e−−−→ M ′ such that e /∈ E. By IH with eq. (IB.1) we infer

Γ] L `M ′ (IB.10)

By Lemma B.0.5 and B.0.6 and the transitivity with eqs. (IB.3) to (IB.6) implies

in(M ′) ∩ in(N) = ∅ (IB.11)

out(M ′) ∩ out(N) ⊆ Γ (IB.12)

in(N) ∩ out(M ′) ⊆ L (IB.13)

in(M ′) ∩ out(N) ⊆ L (IB.14)

By wPar and eqs. (IB.2) and (IB.11) to (IB.14), we infer

Γ ` (ν L)M ′ ‖
E

N (IB.15)

– evSync: M
e−−−→ M ′ and N

e−−−→ N ′ such that e ∈ E—analogous to the previous case.

– adSyncL: M
l!R−−−→ M ′ and N

l?R−−−→ N ′ such that e = τ

By IH with eq. (IB.1)

Γ `M ′ (IB.16)

l ∈ Γ] L (IB.17)

∅ ` R (IB.18)

By IH with eqs. (IB.2) and (IB.18)

Γ ` N ′ (IB.19)

l ∈ Γ] L (IB.20)

By Lemma B.0.5 and B.0.6 and the transitivity with eqs. (IB.3) to (IB.6) implies

in(M ′) ∩ in(N ′) = ∅ (IB.21)

out(M ′) ∩ out(N ′) ⊆ Γ (IB.22)

in(N ′) ∩ out(M ′) ⊆ L (IB.23)

in(M ′) ∩ out(N ′) ⊆ L (IB.24)

By wPar eqs. (IB.21) to (IB.24), we infer

Γ ` (ν L)M ′ ‖
E

N (IB.25)

• adEsc (this is analogous to the previous sub-case) which implies

M ‖
E

N
h−−−→ T ′ (IB.26)

T = (ν L)T ′ (IB.27)

h /∈ L (IB.28)

147

By case-analysis on M ‖
E

N
h−−−→ T ′: only AdParL (and its symmetric rule) is applicable

where

M
h−−−→ M ′ (IB.29)

By IH with eqs. (IB.1) and (IB.29) we infer

Γ] L `M ′ (IB.30)

h ∈ Γ] L (IB.31)

By Lemma B.0.5 and B.0.6 and the transitivity with eqs. (IB.3) to (IB.6) implies

in(M ′) ∩ in(N) = ∅ (IB.32)

out(M ′) ∩ out(N) ⊆ Γ (IB.33)

in(N) ∩ out(M ′) ⊆ L (IB.34)

in(M ′) ∩ out(N)) ⊆ L (IB.35)

By wPar eqs. (IB.2) and (IB.32) to (IB.35), we infer

Γ ` (ν L)M ′ ‖
E

N (IB.36)

By eqs. (IB.28) and (IB.31), we infer that h ∈ Γ.

case

wLoc

l ∈ Γ ∅ ` P

Γ ` l〈P 〉
We know

l ∈ Γ (IB.37)

∅ ` P (IB.38)

By case-analysis on l〈P 〉 α−−−→ T , there are three sub-cases

• evLoc where we also know

P
e−−−→ P ′ (IB.39)

T = l〈P ′〉 (IB.40)

By IH with eqs. (IB.38) and (IB.39)

∅ ` P ′ (IB.41)

result follows from wLoc and eq. (IB.37).

• adLoc Let’s consider the case h = l?R for some location l and process R such that ∅ ` R, by

IH and eq. (IB.38) and P
h−−−→ P ′ we know

∅ ` P ′ (IB.42)

l ∈ ∅ (IB.43)

148 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

contradiction as we do not allow nested locations or processes with higher-order communica-

tion to be adaptable—static adaptation.

• adLoc Let’s consider the case h = l!R for some location l and process R - analogous to the

previous case as locations can perform higher-order outputs as described in the constraint

static adaptation.

• adRcv where l〈P 〉 l?R−−−→ l〈R〉, We assume that ∅ ` R and then result follows from wLoc and

eq. (IB.37).

case

wSnd

l∈ Γ ∅ ` P Γ ` Q in(Q) = ∅

Γ `l!P.Q
We know that

l ∈ Γ (IB.44)

∅ ` P (IB.45)

Γ ` Q (IB.46)

in(Q) = ∅ (IB.47)

By case-analysis on the l!P.Q
l!P−−−→ Q. The only applicable rule in AdSnd. Result follows

fromeqs. (IB.44) to (IB.46)

case

wChx

i ∈ I implies Γ ` Pi and in(Pi) = ∅

Γ `2
i∈I

ei → Pi
,

wRec

Γ ` P in(P) = ∅

Γ ` recX(~y := ~e).P
,

wIf

Γ ` P Γ ` Q in(P) = ∅ in(Q) = ∅

Γ ` if e1 ≤ e2 then P else Q

These cases are analogous. Here we only show the case for wChx. By case-analysis on 2
i∈I

ei →
Pi

e−−−→ P ′, only evCh can be applied such that there exists a j ∈ I, where

2
i∈I

ei → Pi
ej−−−→ Pj (IB.48)

Γ ` Pj follows from the premises.

case

wScp

Γ `M

Γ ` (νe)M

From the structure of (ν e)M , there are three sub-cases

• EvHide where M
e−−−→ M ′. By IH and the premise Γ `M , we infer that

Γ `M ′ (IB.49)

Result follows from wScp

• EvEsc analogous to the previous case.

• AdEsc M
h−−−→ M ′ such that c /∈ h. By IH, we know that depending on the structure of h

– P
l!R−−−→ P ′ implies Γ ` P ′ and ∅ ` R and l ∈ Γ

– P
l?R−−−→ P ′ and ∅ ` R implies Γ ` P ′ and l ∈ Γ

Result follows by IH and wScp

case

wSkp

Γ ` SKIP ,

wApp

Γ ` X(~e) are vacuously true because these processes do not reduce.

149

Lemma B.0.2 (Bisimulation reduction). For a well-formed process Γ ` P and CSP process S

such that P � S and P
α−−−→ P ′ implies P ′ � S′ and

• α = e implies S
e−−−→ S′

• α = l!R implies S
e−−−→ S′ and e = m(h)

• α = l?R and ∅ ` R implies S
e−−−→ S′ and e = m(h)

Proof. Proven by rule induction on M � S

case

tPar

M � S N � T A = {m(l!R) | R ∈ Proc, l ∈ L}

(ν L)M ‖
E

N � (S ‖
E,A

T) \ A

From tPar, we know that

M � S (IB.1)

N � T (IB.2)

A = {m(l!R) | l ∈ L,R ∈ Proc} (IB.3)

From Γ ` (ν L)M ‖
E

N , we also know

Γ] L `M (IB.4)

Γ] L ` N (IB.5)

in(M) ∩ out(N) ⊆ L (IB.6)

in(N) ∩ out(M) ⊆ L (IB.7)

out(M) ∩ out(N) ⊆ Γ (IB.8)

in(M) ∩ in(N) = ∅ (IB.9)

By case-analysis on (ν L)M ‖
E

N
α−−−→ T (omitting symmetric cases)

• evEsc where we also know

M ‖
E

N
α−−−→ T ′ (IB.10)

T = (ν L)T ′ (IB.11)

α /∈ L (IB.12)

By case-analysis on M ‖
E

N
α−−−→ T ′

– AdSyncL where we know that

M
l!R−−−→ M ′ (IB.13)

N
l?R−−−→ N ′ (IB.14)

α = τ (IB.15)

150 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

By IH with eqs. (IB.1), (IB.4) and (IB.13) and eqs. (IB.2), (IB.5) and (IB.14)

S
e−−−→ S′ (IB.16)

M ′ � S′ (IB.17)

e = m(l!R) and e′ = m(l?R) (IB.18)

N ′ � T ′ (IB.19)

T
e′−−−→ T ′ (IB.20)

But from the definition of m, we know that e = e′ and from Lemma B.0.7 and B.0.8

l ∈ out(M) and l ∈ in(N) (IB.21)

which means that l ∈ L and e ∈ A, which by CSync

S ‖
E,A

T
e−−−→ S′ ‖

E,A

T ′ (IB.22)

(S ‖
E,A

T) \ A τ−−−→ (S′ ‖
E,A

T ′) \ A (IB.23)

Using tPar, we can infer (ν L)M ′ ‖
E

N ′ � (S′ ‖
E,A

T ′) \ A

– EvParL where we know that

M
α−−−→ M ′ (IB.24)

α /∈ E (IB.25)

α ∈ Σ (IB.26)

By IH with eqs. (IB.1), (IB.4) and (IB.24)

S
e−−−→ S′ (IB.27)

M ′ � S′ (IB.28)

By evParL, we infer

S ‖
E

T
e−−−→ S′ ‖

E

T (IB.29)

and by tPar with eqs. (IB.2), (IB.3) and (IB.28)

(ν L)M ′ ‖
E

N �

(
S′ ‖

E,A

T

)
\ A (IB.30)

– EvSync analogous to the previous cases.

• AdEsc, which means

M ‖
E

N
h−−−→ T ′ (IB.31)

T = (ν L)T ′ (IB.32)

h /∈ L (IB.33)

151

By case-analysis on M ‖
E

N
h−−−→ T ′ only AdParL is applicable. where we know that

M
h−−−→ M ′ (IB.34)

By IH with eqs. (IB.1), (IB.4) and (IB.34)

S
e−−−→ S′ (IB.35)

e = m(h) (IB.36)

M ′ � S′ (IB.37)

By tPar by eqs. (IB.2), (IB.3) and (IB.37)

(ν L)M ′ ‖
E

N � S′ ‖
E,A

T \ A (IB.38)

We know that the co-domain of m is disjoint from Σ and hence e /∈ E. We also know that

h /∈ L and this means that e /∈ A. By CPar

S ‖
E,A

T
e−−−→ S′ ‖

E,A

T ′ (IB.39)

(S ‖
E,A

T) \ A e−−−→ (S′ ‖
E,A

T ′) \ A (IB.40)

case

tRec

P � S

recX(~y := ~e).P � letX(~y) = S withinX(~e)

We know that

P � S (IB.41)

We infer that the only reduction rule that applies from fig. 4.3 is Rec

recX(~y := ~e).P
τ−−−→ P [~e, (recX(~y := ~e).P)/~y,X] (IB.42)

The translated process

letX(~y) = S withinX(~e)
τ−−−→ S[[~e/~y]][[letX(~y) = S withinX(~e)/X]] (IB.43)

Result follows by Lem. B.0.12.

case

tChx

i ∈ I implies Pi � Si

2
i∈I

ei → Pi �2
i∈I

ei → Si

From the rule, we know that

i ∈ I implies Pi � Si (IB.44)

From the structure, we know that the only reduction rule that applies is through EvCh, i.e.,

152 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

there is a j ∈ I

2
i∈I

ei → Pi
ej−−−→ Pj (IB.45)

From tChx’s premises, we know that Pj � Sj, we can also construct the reduction

2
i∈I

ei → Si
ej−−−→ Sj (IB.46)

case

tIf

P � S Q� T

if e1 ≤ e2 then P else Q� if e1 ≤ e2 then S else T

From the rule we know

P � S (IB.47)

Q� T (IB.48)

From the structure, we know the only reduction rule that applies is through IfTrue or IfFalse

depending on b. Here we show the case when b evaluates to true i.e., the reduction IfTrue is

applied, the other case is similar. This allow us to construct the CSP reduction

if e1 ≤ e2 then S else T
τ−−−→ S (IB.49)

Result follows from eqs. (IB.47) and (IB.49).

case

tLoc

P � S

l〈P 〉� S 4 rec(l)

From the rule we know

P � S (IB.50)

rec(l) = 2
R∈Proc

m(l!R)→ (TR 4 rec(l) where R� TR) (IB.51)

We also know that Γ ` l〈P 〉 which means

∅ ` P (IB.52)

l ∈ Γ (IB.53)

By case-analysis on l〈P 〉 α−−−→ T , we know that there are three applicable rules

• AdRcv where we know

l〈P 〉 l?R−−−→ l〈R〉 (IB.54)

T = l〈R〉 and α = l?R (IB.55)

From the lemma definition, we assume that ∅ ` R which by theorem 6.1.14, we know there

exists a TR such that R � TR. Hence, there is an event e = m(l!R). This allows us to

153

construct the reduction by CInt

S 4 rec(l)
e−−−→ TR 4 rec(l) (IB.56)

Result follows from tLoc with R� TR

• AdLoc where we know

P
h−−−→ P ′ (IB.57)

T = l〈P ′〉 (IB.58)

By IH with eqs. (IB.50), (IB.52) and (IB.57), we infer

S
e−−−→ S′ (IB.59)

P ′ � S′ (IB.60)

e = m(h) (IB.61)

Result follows follows from tLoc.

• EvLoc—analogous to the previous case.

case

tSnd

m(l!P) = e Q� S

l!P.Q� e→ S

From rule, we know that

m(l!P) = e (IB.62)

Q� S (IB.63)

By case-analysis on l!P.Q
α−−−→ T , we know only the reduction rule AdSnd is applicable,

l!P.Q
l!P−−−→ Q (IB.64)

The translated process can only resolve the prefix operation,

e→ S
e−−−→ S (IB.65)

Result follows from eqs. (IB.63) and (IB.65).

case

tScp

M � S

(νe)M � S \ {e}
From rule we know that

M � S (IB.66)

From Γ ` (ν e)M and wScp, we know

Γ `M (IB.67)

By case-analysis (ν e)M
α−−−→ M ′, there are three sub-cases

154 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

• EvHide where we know

M
e−−−→ M ′ (IB.68)

By IH with eqs. (IB.66) to (IB.68), there exists S′ such that

S
e−−−→ S′ (IB.69)

M ′ � S′ (IB.70)

From eq. (IB.69), we construct the reduction S \ {e} τ−−−→ S′ \ {e} and from eq. (IB.70)

with tScp we infer

(ν e)M ′ � S′ \ {e}

• EvEsc where we know

M
e′−−−→ M ′ (IB.71)

e 6= e′ (IB.72)

By IH with eqs. (IB.66), (IB.67) and (IB.71), there exists S”

S
e′−−−→ S′ (IB.73)

M ′ � S′ (IB.74)

We can use tScp, to infer

(ν e)M ′ � S′ \ {e}

• AdEsc analogous to the prevoius case.

case

tApp

X(~e)�X(~e)

tSkp

SKIP � SKIP are vacuously true because these processes do not reduce.

Lemma B.0.3 (Bisimulation reduction). For all Γ ` M , CSP processes S, S′ and CSP events e

such that S
e−−−→ S′ and M � S implies there exists M ′ such that M ′ � S′ and

• e ∈ Σ or e = τ implies M
e−−−→ M ′

• e = m(h) implies M
h−−−→ M ′

Proof. Proven by rule induction on M � S

case

tChx

i ∈ I implies Pi � Si

2
i∈I

ei → Pi �2
i∈I

ei → Si

155

From tChx we know

M = 2
i∈I

ei → Pi (IB.75)

S = 2
i∈I

ei → Si (IB.76)

i ∈ I implies Pi � Si (IB.77)

From the structures of both S and M , we know that the only reduction rule that applies is to

resolve the external choice, i.e.,

2
i∈I

ei → Si
ej−−−→ Sj (IB.78)

for a j ∈ I, which allow us to construct the reduction

2
i∈I

ei → Pi
ej−−−→ Pj (IB.79)

Result Pj � Sj follows from eq. (IB.77).

case

tScp

M � S

(νe)M � S \ {e}
From tScp, we know

M � S (IB.80)

From Γ ` (ν e)M and wScp, we also know

Γ `M (IB.81)

By case-analysis on S \ {e} e′−−−→ S′ \ {e}

• CHid, where we know

S
e−−−→ S′ and e′ = τ (IB.82)

By IH with eqs. (IB.80) to (IB.82)

M
e−−−→ M ′ (IB.83)

M ′ � S′ (IB.84)

By evHide, we construct the reduction (ν e)M
τ−−−→ (ν e)M ′. By tScp with eq. (IB.84), we

infer (ν e)M ′ � S′ \ {e}

• CEsc where we know

S
e′−−−→ S′ and e′ 6= e (IB.85)

156 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

By IH with eqs. (IB.80) to (IB.82)

M
α−−−→ M ′ (IB.86)

M ′ � S′ (IB.87)

m(α) = e′ (IB.88)

By evEsc or adEsc, we construct the reduction (ν e)M
α−−−→ (ν e)M ′. By tScp with eq. (IB.87),

we infer (ν e)M ′ � S′ \ {e}.

case

tRec

P � S

recX(~y := ~e).P � letX(~y) = S withinX(~e)

From Γ ` recX(~y := ~e).P ,

(IB.89)

in(P) = ∅ (IB.90)

Γ ` P (IB.91)

From recX(~y := ~e).P � letX(~y) = S withinX(~e), we know that

letX(~y) = S withinX(~e)
τ−−−→ S[~e/~y][letX(~y) = S withinX(~e)/X] (IB.92)

By Rec, we construct the reduction

recX(~y := ~e).P
τ−−−→ Pσ (IB.93)

σ = [~e/~y][(recX(~y := ~e).P)/X] (IB.94)

Result follows by eq. (IB.91) and Pro. B.0.11.

case

tIf

P � S Q� T

if e1 ≤ e2 then P else Q� if e1 ≤ e2 then S else T

From tIf, we know

P � S (IB.95)

Q� T (IB.96)

From the structure of S and M , we infer that the only applicable reduction rule is to resolve

the if statement. Here we show the case where e1 ≤ e2 where if e1 ≤ e2 then P else Q
τ−−−→ P ,

then by ifTrue, we can perform the reduction,

if e1 ≤ e2 then S else T
τ−−−→ S (IB.97)

Result follows from eq. (IB.95) and wIf.

case

tSnd

m(l!P) = e Q� S

l!P.Q� e→ S

157

From tSnd, we know that

m(l!P) = e (IB.98)

Q� S (IB.99)

From the structure of both M and S we know that the only reduction rule that applies is CPrf

where e→ S
e−−−→ S. With AdSnd, we can reduce to

l!P.Q
l!P−−−→ Q (IB.100)

From wSnd, l!P implies

l ∈ Γ (IB.101)

∅ ` P (IB.102)

Γ ` Q (IB.103)

in(Q) = ∅ (IB.104)

Result follows from eqs. (IB.98) to (IB.100).

case

tLoc

P � S

l〈P 〉� S 4 rec(l)

From tLoc, we know that

P � S (IB.105)

rec(l) = 2
R∈Proc

m(l!R)→ (TR 4 rec(l) where R� TR) (IB.106)

From Γ ` l〈P 〉, we know

∅ ` P (IB.107)

By case-analysis on S 4 rec(l)
e−−−→ S′,

• cInt where rec(l)
e−−−→ S′′. From the structure of rec(l), where CChx must have been applied.

There is a process R ∈ Proc such that

e = m(l!R) = m(l?R) (IB.108)

R� TR (IB.109)

S′′ = TR 4 rec(l) (IB.110)

By tLoc with eq. (IB.109)

l〈R〉� TR 4 rec(l) (IB.111)

By AdRcv, we construct the reduction l〈P 〉 l?R−−−→ l〈R〉 as required.

158 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

• cRdc where S
e−−−→ S′. By IH with eqs. (IB.105) and (IB.107),

P
α−−−→ P ′ (IB.112)

P ′ � S′ (IB.113)

m(α) = e (IB.114)

Depending on the structure of α, we use either AdLoc or EvLoc

l〈P 〉 α−−−→ l〈P ′〉 (IB.115)

By tLoc with eq. (IB.113),

l〈P ′〉� S′ 4 rec(l) (IB.116)

Result follows from eqs. (IB.114) to (IB.116).

case

tPar

M � S N � T A = {m(l!R) | R ∈ Proc, l ∈ L}

(ν L)M ‖
E

N � (S ‖
E,A

T) \ A

From tPar, we know

M � S (IB.117)

N � T (IB.118)

A = {m(l!R) | R ∈ Proc, l ∈ L} (IB.119)

By wPar,

Γ] L `M (IB.120)

Γ] L ` N (IB.121)

in(N) ∩ in(M) = ∅ (IB.122)

out(M) ∩ out(N) ⊆ Γ (IB.123)

in(N) ∩ out(M) ⊆ L (IB.124)

in(M) ∩ out(N) ⊆ L (IB.125)

By case-analysis on (S ‖
E,A

T) \ A e−−−→ P ′

• cHid where

S ‖
E,A

T
e′−−−→ P ′ (IB.126)

e′ ∈ A (IB.127)

e = τ (IB.128)

By case-analysis on S ‖
E,A

T
e′−−−→ P ′

159

Since we know that e ∈ A, then only cSync applies

S
e′−−−→ S′ (IB.129)

T
e′−−−→ T ′ (IB.130)

e′ ∈ A (IB.131)

By IH with eqs. (IB.117), (IB.120) and (IB.129) and eqs. (IB.118), (IB.121) and (IB.130)

M
α−−−→ M ′ (IB.132)

N
α′−−−→ N ′ (IB.133)

M ′ � S′ (IB.134)

N ′ � T ′ (IB.135)

By tPar with eqs. (IB.119), (IB.134) and (IB.135), we infer

(ν L)M ′ ‖
E

N ′ � S′ ‖
E,A

T ′ \ A (IB.136)

By case-analysis on α

1. α = h and α′ = h′. From the definition of m, we know that an unique location l and

process R are mapped to e. However the events might be encoding higher-order prefixes

or named processes, i.e., m(l!R) = m(l?R) = e. By case-analysis

– h = l!R and h′ = l!R: by Lem. B.0.7, we know that

l ∈ out(M) (IB.137)

From eq. (IB.123) and l ∈ L, we know

l /∈ out(N) (IB.138)

– h = l?R and h′ = l?R: analogous to the previous case.

– h = l!R and h′ = l?R: We use AdSyncL to infer

M ‖
E

N
τ−−−→ M ′ ‖

E

N ′ (IB.139)

– h = l?R and h′ = l!R: analogous to the previous case.

• cEsc where

S ‖
E,A

T
e−−−→ P ′ (IB.140)

e /∈ A (IB.141)

By case-analysis on S ‖
E,A

T
e−−−→ P ′

160 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

– cPar where

S
e−−−→ S′ (IB.142)

e /∈ A,E (IB.143)

By IH with eqs. (IB.117), (IB.120) and (IB.142)

M
α−−−→ M ′ (IB.144)

M ′ � S′ (IB.145)

such that α ∈ Σ implies α = e otherwise m(α) = e. Depending on the structure of α we

use adParL or evParL to infer

M ‖
E

N
α−−−→ M ′ ‖

E

N (IB.146)

By tPar with eqs. (IB.118), (IB.119) and (IB.145), we infer

(ν L)M ′ ‖
E

N � S′ ‖
E,A

T \ A (IB.147)

From eqs. (IB.119) and (IB.143), we infer that α /∈ L and hence by adEsc or evEsc

depending on the structure of α

(ν L)M ‖
E

N
α−−−→ (ν L)M ′ ‖

E

N (IB.148)

– cSync—analogous to the previous sub-case but since we know that e /∈ A, α must be in

Σ and e ∈ E.

case

tApp

X(~e)�X(~e)

tSkp

SKIP � SKIP are vacuously true because these processes do not reduce.

Lemma B.0.4 (Translation Deterministic). For a well-formed ACSP process P , P�S1 and P�S2

implies S1 = S2.

Proof. Proven by rule induction on P � S1.

case

tPar

M � S N � T A = {m(l!R) | R ∈ Proc, l ∈ L}

(ν L)M ‖
E

N � (S ‖
E,A

T) \ A
In this case, we know that

P = (ν L)M ‖
E

N (IB.149)

S1 = (S ‖
E,A

T) \ A (IB.150)

M � S (IB.151)

N � T (IB.152)

A = {m(l!R) | R ∈ Proc, l ∈ L} (IB.153)

161

From the structure of P , we know that tPar is the only rule that can be applied and thus,

S2 = (S′ ‖
E,A2

T ′) \ A2 (IB.154)

M � S′ (IB.155)

N � T ′ (IB.156)

A2 = {m(l!R) | R ∈ Proc, l ∈ L} (IB.157)

By IH the translations eqs. (IB.151), (IB.152), (IB.155) and (IB.156) imply that

S = S′ (IB.158)

T = T ′ (IB.159)

From the set definition, we can assume that A = A2. This means that S1 = S2

tLoc

P � S

l〈P 〉� S 4 rec(l)

case We know that

P = l〈Q〉 (IB.160)

S1 = S 4 rec(l) (IB.161)

Q� S (IB.162)

From the structure of P , we know that tLoc is the only applicable rule and thus

S2 = S′ 4 rec(l) (IB.163)

Q� S′ (IB.164)

By IH, we know that S = S′ and similarly the process rec(l) is deterministic by IH. These allow

us to infer that S1 = S2.

tSnd

m(l!P) = e Q� S

l!P.Q� e→ S

case We know that

P = l!P.Q (IB.165)

S1 = e→ S (IB.166)

m(l!P) = e (IB.167)

Q� S (IB.168)

From the structure of P we infer that the only rule applicable is tSnd and thus,

S2 = e′ → S′ (IB.169)

m(l!P) = e (IB.170)

Q� S′ (IB.171)

162 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

By IH and eqs. (IB.168) and (IB.171), we know that S = S′. We also know that the mapping

m is deterministic and hence e = e′. This allows us to infer that S1 = S2 as required.

case

tApp

X(~e)�X(~e),

tSkp

SKIP � SKIP vacuously true.

case

tRec

P � S

recX(~y := ~e).P � letX(~y) = S withinX(~e)
,

tChx

i ∈ I implies Pi � Si

2
i∈I

ei → Pi �2
i∈I

ei → Si
,

tScp

M � S

(νe)M � S \ {e}
,

tIf

P � S Q� T

if e1 ≤ e2 then P else Q� if e1 ≤ e2 then S else T

Here, we only show the case for tScp. We know that

P = (ν e)M (IB.172)

S1 = S \ {e} (IB.173)

M � S (IB.174)

From the structure of P , we know that the only rule applicable is tScp and hence

S2 = S′ \ {e} (IB.175)

By IH we know that S = S′ and hence we infer that S1 = S2.

Properties of the Process Language

Lemma B.0.5. Γ `M and M
α−−−→ M ′ implies in(M) ⊆ in(M ′)

Proof. Proven by rule induction on M
α−−−→ M ′

Lemma B.0.6. Γ `M and M
α−−−→ M ′ then out(M ′) ⊆ out(M)

Proof. Proven by rule induction on M
e−−−→ M ′

Lemma B.0.7. Γ `M and M
l!R−−−→ M ′ implies l ∈ out(M)

Proof. Proven by rule induction on M
l!R−−−→ M ′

Lemma B.0.8. Γ `M and M
l?R−−−→ M ′ implies l ∈ in(M)

Proof. Proven by rule induction on M
l!R−−−→ M ′

Proposition B.0.9. For an ACSP process P and environment Γ such that Γ ` P then

l ∈ in(P) implies l ∈ Γ

l ∈ out(P) implies l ∈ Γ

Proof. Proven by rule induction on Γ ` P .

Proposition B.0.10. For an environment L ∩ loc(P) = ∅ then Γ ` P iff Γ] L ` P

163

Proposition B.0.11. For all P , S and σ : V ar ⇀
⋃
{Event, V ar, Proc} such that Γ ` P implies

Γ ` Pσ

Proof. Proven by rule induction on well-formed derivation.

Lemma B.0.12. For all P , S and σ : V ar ⇀
⋃
{Event, V ar, Proc} such that P � S implies

Pσ � Sσ

Proof. Proven by rule induction on P � S,

case

tPar

M � S N � T A = {m(l!R) | R ∈ Proc, l ∈ L}

(ν L)M ‖
E

N � (S ‖
E,A

T) \ A

We know that

M � S (IB.176)

N � T (IB.177)

A = {m(l!R) | l ∈ L,R ∈ Proc} (IB.178)

By IH and eqs. (IB.176) and (IB.177)

Mσ � Sσ (IB.179)

Nσ � Tσ (IB.180)

We may infer that (ν L)M ‖ Nσ = (ν L)Mσ ‖ Nσ. This means that from the structure only

tPar can be applied, where

(ν L)Mσ ‖
E

Nσ � (Sσ ‖
E,A

Tσ) \ A (IB.181)

Note that the set of events E,A are unaffected by the substitution as they do not contain free

variables.

case

tRec

P � S

recX(~y := ~e).P � letX(~y) = S withinX(~e)

From IH we know that P � S implies that

Pσ � Sσ (IB.182)

We know that the substitution maps free variables and so (recX(~y := ~e).P)σ = recX(~y := ~e).Pσ.

Result follows from tRec.

case

tLoc

P � S

l〈P 〉� S 4 rec(l)

By IH, we know that Pσ � Sσ. We also know that l〈P 〉σ = l〈Pσ〉. We also know that

rec(l) = 2
e∈ch(l)

e→ (Te 4 rec(l)) (IB.183)

where any e ∈ ch(l) translates to CSP process Te by p(e)� Te.

164 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

case

tSnd

m(l!P) = e Q� S

l!P.Q� e→ S

case

tChx

i ∈ I implies Pi � Si

2
i∈I

ei → Pi �2
i∈I

ei → Si
,

tIf

P � S Q� T

if e1 ≤ e2 then P else Q� if e1 ≤ e2 then S else T
,

tScp

M � S

(νe)M � S \ {e}

case

tApp

X(~e)�X(~e)

tSkp

SKIP � SKIP are vacuously true because these processes do not have free

variables.

Merge Operation

Lemma B.0.13. For well-formed processes SM1

A1
and SM2

A2
then SM1

A1
⊗ SM2

A2
is well-formed.

Proof. We know that

SM1

A1
⊗ SM2

A2
= (ν A⊗,M⊗)

((
‖

l∈A⊗,M⊗

l〈Pl〉

)
‖

EA⊗ ,EM⊗

Π
M⊗
A⊗

)

where

A⊗ = (A1, A2) and M⊗ = (M1,M2) \ A⊗ (IB.184)

Π
M⊗
A⊗

= ΠM1

A1 EA1
,EM1
‖EA2

,EM2
ΠM2

A2
(IB.185)

From the structure of SM1

A1
, we know that wPar must have been applied to infer well-formed,

i.e.,

A1,M1 ` ‖
l∈A1,M1

l〈Pl〉 (IB.186)

A1,M1 ` ΠM1

A1
(IB.187)

in(ΠM1

A1
) ∩ in(‖

l∈A1,M1

l〈Pl〉) = ∅ (IB.188)

out(ΠM1

A1
) ∩ out(‖

l∈A1,M1

l〈Pl〉) ⊆ ∅ (IB.189)

out(ΠM1

A1
) ∩ in(‖

l∈A1,M1

l〈Pl〉) ⊆ A1,M1 (IB.190)

in(ΠM1

A1
) ∩ out(‖

l∈A1,M1

l〈Pl〉) ⊆ A1,M1 (IB.191)

165

Similarly from the structure of SM2

A2
,

A2,M2 ` ‖
l∈A2,M2

l〈Pl〉 (IB.192)

A2,M2 ` ΠM2

A2
(IB.193)

in(ΠM2

A2
) ∩ in(‖

l∈A2,M2

l〈Pl〉) = ∅ (IB.194)

out(ΠM2

A2
) ∩ out(‖

l∈A2,M2

l〈Pl〉) ⊆ ∅ (IB.195)

out(ΠM2

A2
) ∩ in(‖

l∈A2,M2

l〈Pl〉) ⊆ A2,M2 (IB.196)

in(ΠM2

A2
) ∩ out(‖

l∈A2,M2

l〈Pl〉) ⊆ A2,M2 (IB.197)

From the structure of processes in eqs. (IB.186) and (IB.192), we can infer that

out(‖
l∈A1,M1

l〈Pl〉) = ∅ (IB.198)

out(‖
l∈A2,M2

l〈Pl〉) = ∅ (IB.199)

in(‖
l∈A1,M1

l〈Pl〉) = A1,M1 (IB.200)

in(‖
l∈A2,M2

l〈Pl〉) = A2,M2 (IB.201)

From Pro. 5.1.5, we know that

in(ΠM1

A1
) = ∅ (IB.202)

in(ΠM2

A2
) = ∅ (IB.203)

out(ΠM1

A1
) = ∅ (IB.204)

out(ΠM2

A2
) = ∅ (IB.205)

(IB.206)

From Pro. B.0.10, the well-formed is preserved if we include the locations not mentioned in each

process such that

A⊗,M⊗ ` ‖
l∈A1,M1

l〈Pl〉 (IB.207)

A⊗,M⊗ ` ‖
l∈A2,M2

l〈Pl〉 (IB.208)

We split eq. (IB.208) into two parallel processes, those that are contained in (A1,M1)-A′′2 =

A2 ∩ (A1,M1), M ′′2 = M2 ∩ (A1,M1) and those that are not in (A1,M1)-A′2 = A2 \ (A1,M1) and

166 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

M ′2 = M2 \ (A1,M1). This means that eq. (IB.184)

A⊗ = A1]A′2 and M⊗ = M1]M ′2 (IB.209)

Through wPar,

A⊗,M⊗ ` ‖
l∈A′2,M ′2

l〈Pl〉 (IB.210)

A⊗,M⊗ ` ‖
l∈A′′2 ,M ′′2

l〈Pl〉 (IB.211)

in(‖
l∈A′2,M ′2

l〈Pl〉) ∩ in(‖
l∈A′′2 ,M ′′2

l〈Pl〉) = ∅ (IB.212)

out(‖
l∈A′2,M ′2

l〈Pl〉) ∩ out(‖
l∈A′′2 ,M ′′2

l〈Pl〉) ⊆ A⊗,M⊗ (IB.213)

out(‖
l∈A′2,M ′2

l〈Pl〉) ∩ in(‖
l∈A′′2 ,M ′′2

l〈Pl〉) ⊆ ∅ (IB.214)

in(‖
l∈A′2,M ′2

l〈Pl〉) ∩ out(‖
l∈A′′2 ,M ′′2

l〈Pl〉) ⊆ ∅ (IB.215)

From A′2]A1, we know that

in(‖
l∈A1,M1

l〈Pl〉) ∩ in(‖
l∈A′2,M ′2

l〈Pl〉) = ∅ (IB.216)

out(‖
l∈A1,M1

l〈Pl〉) ∩ out(‖
l∈A′2,M ′2

l〈Pl〉) = ∅ (IB.217)

out(‖
l∈A1,M1

l〈Pl〉) ∩ in(‖
l∈A′2,M ′2

l〈Pl〉) = ∅ (IB.218)

in(‖
l∈A1,M1

l〈Pl〉) ∩ out(‖
l∈A′2,M ′2

l〈Pl〉) = ∅ (IB.219)

Then with wPar with eqs. (IB.207) and (IB.210)

A⊗,M⊗ ` ‖
l∈A⊗,M⊗

l〈Pl〉 (IB.220)

From Pro. B.0.10 and eqs. (IB.187) and (IB.193), we add the missing (disjoint) names to the

environment,

A⊗,M⊗ ` ΠM1

A1
(IB.221)

A⊗,M⊗ ` ΠM2

A2
(IB.222)

From eqs. (IB.202) to (IB.205), (IB.221) and (IB.222) and wPar

A⊗,M⊗ ` ΠM1

A1 EA1
,EM1
‖EA2

,EM2
ΠM2

A2
(IB.223)

167

From wPar and eqs. (IB.198), (IB.199), (IB.220) and (IB.223)

∅ ` (νA⊗,M⊗)

(
‖

l∈A⊗,M⊗

l〈Pl〉

)
‖

EA⊗ ,EM⊗

(
ΠM1

A1 EA1
,EM1
‖EA2

,EM2
ΠM2

A2

)
(IB.224)

Lemma B.0.14. For well-formed processes SM1

A1
and SM2

A2
such that A2 ∩ (A1,M1) = ∅

SM1

A1
⊗ SM2

A2
= SM1

A1
‖

(EA1
,EM1

)∩(EA2
,EM2

)

S
M2\(A1,M1)
A2

Proof. From Lem. B.0.13, we know that SM1

A1
⊗SM2

A2
is also well-formed, therefore by theorem 6.1.14

there exists CSP processes P1, P2 and P , such that

SM1

A1
� P1 (IB.225)

SM2

A2
� P2 (IB.226)

SM1

A1
⊗ SM2

A2
� P (IB.227)

From the structure of SM1

A1
, we know that tPar was used to derive eq. (IB.225)

E′1 = {e | m(l!P), P ∈ Proc, l ∈ A1,M1} (IB.228)(
‖

l∈A1,M1

l〈Pl〉

)
� JBS1K (IB.229)

ΠM1

A1
�JΠ1K (IB.230)

P1 =

(
JBS1K ‖

EA1
,EM1

,E′1

JΠ1K

)
\ E′1 (IB.231)

From the structure of SM2

A2
, we know that tPar was used to derive eq. (IB.226)

E′2 = {e | m(l!P), P ∈ Proc, l ∈ A2,M2} (IB.232)(
‖

l∈A2,M2

l〈Pl〉

)
� JBS2K (IB.233)

ΠM2

A2
�JΠ2K (IB.234)

P2 =

(
JBS2K ‖

EA2
,EM2

,E′2

JΠ2K

)
\ E′2 (IB.235)

168 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

From the structure of SM1

A1
⊗ SM2

A2
, we know that tPar to derive eq. (IB.227)

SM1

A1
⊗ SM2

A2
= (ν A⊗,M⊗)

((
‖

l∈A⊗,M⊗

l〈Pl〉

)
‖

EA⊗ ,EM⊗

(
ΠM1

A1
‖

EA1
,EM1

∩EA2
,EM2

ΠM2

A2

))

(IB.236)

A⊗ = A1]A2 and M⊗ = (M1,M2) \ (A1, A2) (IB.237)

E′ = {e | m(l!P), P ∈ Proc, l ∈ A⊗,M⊗} (IB.238)(
‖

l∈A⊗,M⊗

l〈Pl〉

)
� JBSK (IB.239)(

ΠM1

A1
‖

EA1
,EM1

∩EA2
,EM2

ΠM2

A2

)
� JΠK (IB.240)

P =

(
JBSK ‖

EA⊗ ,EM⊗ ,E
′
JΠK

)
\ E′ (IB.241)

We split the process BS2 into two processes-the locations that intersect with (A1,M1)-M ′′2 =

M2 ∩ (A1,M1) and the locations that do not: A2 and M ′2 = M2 \ (A1,M1). From eq. (IB.233), ‖
l∈A2,M ′2

l〈Pl〉

� JBS′2K (IB.242)

 ‖
l∈M ′′2

l〈Pl〉

� JBS′′2 K (IB.243)

JBS2K = JBS′2K ‖
EA2

,EM2
∩EM′′2

JBS′′2 K (IB.244)

eq. (IB.237) can be restated as M⊗ = M1]M2 \ (A1,M1) = M1]M ′2. By eq. (IB.239) and

Pro. 6.1.13

BS =

(
‖

l∈A1,M1

l〈Pl〉

) ‖
l∈A2,M ′2

l〈Pl〉

 (IB.245)

JBSK = JBS1K ‖
EA1

,EM1
∩EA2,EM′2

JBS′2K (IB.246)

From eqs. (IB.240), (IB.241) and (IB.246), we infer the structure of P ,

P =

((
JBS1K EA1

,EM1
‖EA2

,EM′2
JBS′2K

)
‖

EA⊗ ,EM⊗ ,E
′

(
JΠ1K EA1

,EM1
‖EA2

,EM2
JΠ2K

))
\ E′

From the definition of A‖B ,

P =
((

JBS1K EA1
,EM1

,E′1
‖E′2,EA2

,EM′2
JBS′2K

)
EA⊗ ,EM⊗ ,E

′‖EA⊗ ,EM⊗ ,E
′

(
JΠ1K EA1

,EM1
,E′1
‖E′2,EA2

,EM′2
JΠ2K

))
\ E′

where E′ = E′1] EA2
, E′M2

169

From 〈A‖B−assoc〉

P =


(JBS1K EA1

,EM1
,E′1
‖EA2

,EM2
,E′′2

JBS′2K
)

EA2
, EM2

EA1
, EM1

,E′

‖EA1
,EM1

,E′1
JΠ1K

 EA2
, EM2

EA1
, EM1

,E′

‖EA2
,EM2

,E′′2
JΠ2K

 \ E′

From 〈A‖B−symm〉

P =
(((

JBS′2K EA2
,EM2

,E′′2
‖EA1

,EM1
,E′1

JBS1K
)
EA⊗ ,EM⊗ ,E

′‖EA1
,EM1

,E′1
JΠ1K

)
EA⊗ ,EM⊗ ,E

′‖EA2
,EM2

,E′′2
JΠ2K

)
\ E′

From 〈A‖B−assoc〉

P =
((

JBS′2K EA2
,EM2

,E′′2
‖EA1

,EM1
,E′1

(
JBS1K EA1

,EM1
,E′1
‖EA1

,EM1
,E′1

JΠ1K
))

EA⊗ ,EM⊗ ,E
′‖EA2

,EM2
,E′′2

JΠ2K
)
\ E′

From 〈A‖B−symm〉

P =
(
JΠ2K EA2

,EM2
,E′′2
‖EA⊗ ,EM⊗ ,E

′

(
JBS′2K EA2

,EM2
,E′′2
‖EA1

,EM1
,E′1

(
JBS1K EA1

,EM1
,E′1
‖EA1

,EM1
,E′1

JΠ1K
)))

\ E′

From 〈A‖B−assoc〉

P =
((

JΠ2K EA2
,EM2

,E′′2
‖EA2

,EM2
,E′′2

JBS′2K
)
EA2

,EM2
,E′′2
‖EA1

,EM1
,E′1

(
JBS1K EA1

,EM1
,E′1
‖EA1

,EM1
,E′1

JΠ1K
))
\ E′

From 〈A‖B−symm〉

P =
((

JBS1K EA1
,EM1

,E′1
‖EA1

,EM1
,E′1

JΠ1K
)
EA1

,EM1
,E′1
‖EA2

,EM2
,E′′2

(
JΠ2K EA2

,EM2
,E′′2
‖EA2

,EM2
,E′′2

JBS′2K
))
\ E′

From 〈hide−A‖B−dist〉

P =
(
JBS1K EA1

,EM1
,E′1
‖EA1

,EM1
,E′1

JΠ1K
)
\ (E′1, EA1

, EM1
∩ E′) EA1

,EM1
,E′1
‖EA2

,EM2
,E′′2

(
JΠ2K EA2

,EM2
,A′2
‖EA2

,EM2
,E′′2

JBS′2K
)
\ (E′ ∩ E′′2 , E′i . . . E′j)

From the definition of A‖B

P =

(
JBS1K ‖

EA1
,EM1

,E′1

JΠ1K

)
\ (E′1, EA1

, EM1
∩ E′) ‖

EA1
,EM1

∩EA2
,EM2

(
JΠ2K ‖

EA2
,EM2

,E′′2

JBS′2K

)
\ (E′ ∩ E′′2 , E′i . . . E′j)

Simplifying the set intersection (knowing that the first-order events are disjoint from E′)

P =

(
JBS1K ‖

EA1
,EM1

,E′1

JΠ1K

)
\ E′1 ‖

EA1
,EM1

,E′1

(
JΠ2K ‖

EA2
,EM2

,E′′2

JBS′2K

)
\ E′′2

This translate to

P � (ν A1,M1)

((
‖

l∈A1,M1

ll〈Pl〉

)
‖

EA1
,EM1

ΠM1

A1

)
‖

EA1
,EM1

∩EA2
,EM2

(ν A2,M
′′
2)

 ‖
l∈A2,M ′′2

ll〈Pl〉

 ‖
EA2

,EM′′2

ΠM2

A2


as required

Lemma B.0.15. From Lem. B.0.14 and the compositionality theorem, we prove that the specifi-

cations labelled as follows in table 7.2 are not affected by the composition of the cluster.

Compositionality case 0 R1 v SM1

A1
and R2 v SM2

A2
such that (A1,M1)∩ (A2,M2) = ∅ implies

R1 ‖
E

SM2

A2
v SM1

A1
⊗ SM2

A2
and R2 ‖

E

SM2

A2
v SM1

A1
⊗ SM2

A2

170 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

Compositionality case 1 R1 v SM1

A1
and R2 v SM2

A2
such that A1 ∩ (A2,M2) = ∅, A2 ∩

(A1,M1) = ∅ implies

R1 ‖
E

S
M2\M1

A2
v SM1

A1
⊗ SM2

A2
and R2 ‖

E

S
M1\M2

A1
v SM1

A1
⊗ SM2

A2

Compositionality case 2 R1 v SM1

A1
and R2 v SM2

A2
such that A1 ∩ (A2,M2) = ∅ implies

R2 ‖
E

S
M1\(M2,A2)
A1

v SM1

A1
⊗ SM2

A2

where E = (EA2
, EM2

) ∩ (EA1
, EM1

) is the set of events that connect the components in SM1

A1

and SM2

A2

Proof. case Compositionality 0 We know that

R1 v SM1

A1
(IB.247)

R2 v SM2

A2
(IB.248)

(A1,M1) ∩ (A2,M2) = ∅ (IB.249)

From the compositionality theorem theorem 6.1.18, we infer

R1 ‖
E

SM2

A2
v SM1

A1
‖
E

SM2

A2
(IB.250)

R2 ‖
E

SM1

A1
v SM1

A1
‖
E

SM2

A2
(IB.251)

E = (EA2
, EM2

) ∩ (EA1
, EM1

) (IB.252)

From Lem. B.0.14, we know that

SM1

A1
⊗ SM2

A2
= SM1

A1
‖
E

S
M2\(A1,M1)
A2

(IB.253)

However, we know that (A1,M1) ∩ (A2,M2) = ∅ and thus

SM1

A1
⊗ SM2

A2
= SM1

A1
‖
E

SM2

A2
(IB.254)

case Compositionality 1 We know that

R1 v SM1

A1
(IB.255)

R2 v SM2

A2
(IB.256)

A1 ∩ (A2,M2) = ∅ (IB.257)

A2 ∩ (A1,M1) = ∅ (IB.258)

In this case, the components are not disjoint, they overlap over the monitored components.

From Pro. B.0.16, we know that for the well-formed clusters, removing a monitored component

preserves the well-formed property

S
M2\(M1,A1)
A2

is well-formed (IB.259)

S
M1\(M2,A2)
A1

is well-formed (IB.260)

171

From the compositionality theorem theorem 6.1.18, we infer

R1 ‖
E

S
M2\(M1,A1)
A2

v SM1

A1
‖
E

S
M2\(M1,A1)
A2

(IB.261)

R2 ‖
E

S
M1\(M2,A2)
A1

v SM1\(M2,A2)
A1

‖
E

SM2

A2
(IB.262)

E = (EA2
, EM2

) ∩ (EA1
, EM1

) (IB.263)

We know that A1 ∩ (A2,M2) = ∅, therefore from Lem. B.0.14, we know that

SM1

A1
⊗ SM2

A2
= SM1

A1
‖
E

S
M2\(M1,A1)
A2

(IB.264)

Similarly, we know that A2 ∩ (A1,M1) = ∅, therefore from Lem. B.0.14, we know that

SM1

A1
⊗ SM2

A2
= SM2

A21 ‖
E

S
M1\(M2,A2)
A1

(IB.265)

case Compositionality 2 We know that

R1 v SM1

A1
(IB.266)

R2 v SM2

A2
(IB.267)

A1 ∩ (A2,M2) = ∅ (IB.268)

We know that A2 overlaps with M1. Because of this overlap, the satisfaction of R1 is affected

by the composition but the satisfaction of R2 is not. From Pro. B.0.16, we know that for the

well-formed clusters, removing a monitored component preserves the well-formed property.

S
M1\(M2,A2)
A1

is well-formed (IB.269)

From the compositionality theorem theorem 6.1.18, we infer

R2 ‖
E

S
M1\(M2,A2)
A1

v SM2

A2
‖
E

S
M1\(M2,A2)
A1

(IB.270)

E = (EA2
, EM2

) ∩ (EA1
, EM1

) (IB.271)

We know that A1 ∩ (A2,M2) = ∅, therefore from Lem. B.0.14, we know that

SM1

A1
⊗ SM2

A2
= SM2

A2
‖
E

S
M1\(M2,A2)
A1

(IB.272)

Proposition B.0.16. For a well-formed cluster SMA , we know that S
M\l
A is also well-formed

Proof. We know that

SMA = (ν A,M)

 ‖
l∈(A,M)

l〈Pl〉

 ‖
EA,EM

ΠM
A


From the well-formed rules in fig. 6.1 and the structure of the process, we infer that only wPar

172 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

must have been applied. This means that

A,M `

 ‖
l∈(A,M)

l〈Pl〉

 (IB.273)

A,M ` ΠM
A (IB.274)

in

 ‖
l∈(A,M)

l〈Pl〉

 ∩ in(ΠM
A) = ∅ (IB.275)

out

 ‖
l∈(A,M)

l〈Pl〉

 ∩ out(ΠM
A) = ∅ (IB.276)

out

 ‖
l∈(A,M)

l〈Pl〉

 ∩ in(ΠM
A) ⊆ A,M (IB.277)

in

 ‖
l∈(A,M)

l〈Pl〉

 ∩ out(ΠM
A) ⊆ A,M (IB.278)

From Pro. 5.1.5 and the definition of a monitored component, we know that

l /∈ loc(ΠM
A) (IB.279)

out(ΠM
A) ⊆ A (IB.280)

in(ΠM
A) = ∅ (IB.281)

which from Pro. B.0.10, we know that eq. (IB.274) implies

A,M − {l} ` ΠM
A (IB.282)

We know that

 ‖
l∈(A,M)

l〈Pl〉

 is equivalent

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ‖
El∩(EA,EM)

l〈Pl〉 which by

173

eq. (IB.273), we know that tPar must have been applied and therefore

A,M `

 ‖
l∈(A,M)−{l}

l〈Pl〉

 (IB.283)

A,M ` ll〈Pl〉 (IB.284)

in

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ∩ in(ll〈Pl〉) = ∅ (IB.285)

out

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ∩ out(ll〈Pl〉) ⊆ A,M (IB.286)

in

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ∩ out(ll〈Pl〉) ⊆ ∅ (IB.287)

out

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ∩ in(ll〈Pl〉) ⊆ ∅ (IB.288)

(IB.289)

From the structure of the process in eq. (IB.283), we know that l /∈

 ‖
l∈(A,M)−{l}

l〈Pl〉

 and thus

by Pro. B.0.10,

A,M − {l} `

 ‖
l∈(A,M)−{l}

l〈Pl〉

 (IB.290)

From eqs. (IB.280) and (IB.281) We know that eqs. (IB.275) to (IB.278) are all preserved in the

assertions below

in

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ∩ in(ΠM
A) = ∅ (IB.291)

out

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ∩ out(ΠM
A) = ∅ (IB.292)

out

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ∩ in(ΠM
A) ⊆ A] (M − {l}) (IB.293)

in

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ∩ out(ΠM
A) ⊆ A] (M − {l}) (IB.294)

By wPar with eqs. (IB.282) and (IB.283), we infer

∅ ` (ν A,M − {l})

 ‖
l∈(A,M)−{l}

l〈Pl〉

 ‖
EA,EM−{l}

ΠM
A

 (IB.295)

S
M\{l}
A is well-formed (IB.296)

174 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

Lemma B.0.17. We show that the following property holds for well-formed clusters S1, S2 and

S3,

S1 ⊗ S2 = S2 ⊗ S1 〈⊗−sym〉

S1 ⊗ (S2 ⊗ S3) = (S1 ⊗ S2)⊗ S3 〈⊗−assoc〉

Proof. case S1 ⊗ S2 = S2 ⊗ S1

We know that S1 and S2 are well-formed then from Lem. B.0.13 S1 ⊗ S2 is well-formed. Thus

from theorem 6.1.14, we know that there is a CSP process such that S1⊗S2�Q. From the structure

of clusters, we know that

S1 ⊗ S2 = (ν l⊗)

((
‖
l∈l⊗

l〈Pl〉

)
‖
E⊗

(Π1 E1
‖E2

Π2)

)

where l⊗ = (loc(S1) ∪ loc(S2)), E1 = ev(Π1) and E2 = ev(Π2).

From the structure of the process, we know that wPar must have been applied which by Pro. 6.1.13,

we know that Q then must be of the form

�

(
JBSK ‖

E⊗,L⊗

(JΠ1K E1
‖E2

JΠ2K)

)
\ L⊗

From 〈A‖B−symm〉

=

(
JBSK ‖

E⊗,L⊗

(JΠ2K E2
‖E1

JΠ1K)

)
\ L⊗

which from the translation, this is equivalent to

�(ν l⊗)

((
‖
l∈l⊗

l〈Pl〉

)
‖
E⊗

(Π2 E2
‖E1

Π1)

)

=S2 ⊗ S1

case S1 ⊗ (S2 ⊗ S3) = (S1 ⊗ S2) ⊗ S3 We know that S1, S2 and S3 are well-formed then S1 ⊗
(S2⊗S3) is well-formed. Thus from theorem 6.1.14, we know that there is a CSP process such that

S1 ⊗ (S2 ⊗ S3)�Q. From the structure of clusters, we know that

S1 ⊗ (S2 ⊗ S3) = (ν l⊗)

((
‖
l∈l⊗

l〈Pl〉

)
‖
E⊗

(Π1 E1‖E2,E3 (Π2 E2‖E3 Π3))

)

where l⊗ =
⋃
loc(Si), Ei = ev(Πi) for i ∈ {1, 2, 3}. We know that Q then must be of the form

�

(
JBSK ‖

E⊗,L⊗

(JΠ1K E1
‖E2,E3

(JΠ2K E2
‖E3

JΠ3K))

)
\ L⊗

175

From 〈A‖B−assoc〉

=

(
JBSK ‖

E⊗,L⊗

((JΠ1K E1
‖E2

JΠ2K) E1,E2
‖E3

JΠ3K)

)
\ L⊗

which from the translation, this is equivalent to

�(ν l⊗)

((
‖
l∈l⊗

l〈Pl〉

)
‖
E⊗

((Π1 E1
‖E2

Π2) E1,E2
‖E3

Π3)

)

=(S1 ⊗ S2)⊗ S3

176 APPENDIX B. PROOFS FOR VERIFICATION TECHNIQUE

Appendix C

Encoding for the Art Gallery

Case-Study

Requirement 2: At most 10 visitors in Room D In section 1.2, we outline two approaches

to satisfy Req. 2. In Ad. Proc. 2.1, we track the number of visitors entering and leaving room

D and we lock the entrance to room D once the number of visitors in the room is 10. In Ad.

Proc. 2.2, we also want to prevent some degree of tailgating in adjacent rooms by restricting the

number of visitors in rooms B, D to 10 visitors.

First Approach (Ad. Proc. 2.1) The components relevant to this approach is room D, which,

as depicted in fig. 4.1, is physically connected to the corridor and room B through doors. We define

a set of first-order events to encode these movement: Ed = {t(ED,c), t(EB,ED)}. Here t can be vis,

grd or emp to represent a visitor, guard or employees movements respectively. For simplicity we

only consider vis in our presentation of the encoding. Room D can be in one of two functionalities:

1. The entrance to room D is open. From the topology, we know that there is no connectivity

that allows visitors to move from room D to B and thus we do not include the event vis(ED,EB)

R′D =2

vis(EB,ED) → R′D

vis(ED,c) → R′D

2. No more visitors are allowed to enter room D and thus visitors can only move from room D

to the corridor,

R′′D = vis(ED,c) → R′′D

(a) First Approach described in (Ad. Proc. 2.1) (b) Second Approach described in (Ad. Proc. 2.2)

Figure C.1: Adaptation Procedures for enforcing Req. 2 at different levels of Granularities

177

178 APPENDIX C. ENCODING FOR THE ART GALLERY CASE-STUDY

The initial configuration of room D is encapsulated in location ld, with the process R′D—ld〈R′D〉.
An adaptation procedure can adapt the behaviour of room D through higher-order outputs to ld.

The internal state of Room D tracks the number of visitors entering and leaving room D to

make sure that the number of people leaving is less than or equal to the number of people entering

room D,

CD(n) =2

n > 0 & vis(ED,c) → CD(n− 1)

vis(EB,ED) → CD(n+ 1)

We now define an adaptation procedure Π2 that aims to ensure the satisfaction of Req. 2. The

adaptation procedure sends adaptation commands, in the form of higher-order communication to ld

to close or open the door to room D. In our encoding adaptation procedures comprise an adaptation

pattern and an adaptation function. The pattern tracks the number of visitors in room D and

triggers adaptation when the number reaches 9. To trigger adaptation, the process broadcasts an

?-event to the adaptation function. With an ?-event, we communicate the number of visitors in

the rooms so the adaptation function can correctly determine the system behaviour that aims to

ensure the satisfaction of Req. 2.

P2(n) =2



vis(EB,ED) → ifn+ 1 ≥ 10

then ?〈n+ 1〉 → ack → P2(n+ 1)

else P2(n+ 1)

vis(ED,c) → ifn− 1 ≥ 9

then ?〈n− 1〉 → ack → P2(n− 1)

else P2(n− 1)

The encoding of the adaptation function F2 is a process that listens to the ?-events and adapts the

behaviour at location ld through higher-order outputs depending on the number of visitors in the

room. Irrespective of whether adaptation is needed, the process broadcasts the ack event back to

P2 to unblock it,

F2 = ?〈n〉 → ifn ≥ 10 then ld!R
′′
D.ack → F2 else ld!R

′
D.ack → F2

The adaptation procedure is encoded as

Π2 = (ν {|?|} , ack)

(
P2(0) ‖

{|?|},ack
F2

)

The unary cluster for Req. 2 is encoded as the composition of room D and the adaptation procedure

Π2,

S2 = (ν ld)

((
ld〈R′D〉 ‖

Ed

CD(0)

)
‖
Ed

Π2

)

We later verify that the unary cluster S2 is a trace-refinement of the specification, Spec2 where

179

only 10 visitors are in room D at any time,

Spec2 = let

T (n) =2

vis(EB,ED) → T (n+ 1) if n < 10

vis(ED,c) → T (n− 1) if n > 0

withinT (0)

The second approach (Ad. Proc. 2.2) To satisfy this approach, we extend the scope of

our adaptation procedure. Through the connectivity relation, we know that room D is connected

through a door with room B. In this approach, we limit the number of visitors in rooms B, D to

10, to reduce tail-gating to room D.

To satisfy this requirement, we define an adaptation procedure Π2B that controls the entrance

to rooms B. From fig. 4.1, we know that Room B is connected through a door with room A and

a one-way door to room D. The door between rooms A and B is the only entrance to rooms

B, D. We define a family of first-order events for the movement from and to room B—EB =

{t(EB,ED), t(EA,EB), t(EB,EA)}. The movement from and to room D is the set of events ED from

the first approach. Again, for simplicity, we only consider vis in our presentation.

1. The entrance to the rooms is open to visitors, by allowing the event vis(EA,EB) that represents

a visitor movement from room A to room B

R′B =2


vis(EB,ED) → R′B

vis(EB,EA) → R′B

vis(EA,EB) → R′B

2. No more visitors are allowed to enter the rooms B, by precluding the event vis(EA,EB),

R′′B =2

vis(EB,ED) → R′′B

vis(EB,EA) → R′′B

We encapsulate the initial processes for the components of room B, D in locations lb〈R′B〉, and

ld〈R′B〉 respectively. The adaptation procedure can adapt between the two functionalities through

higher-order outputs to lb and ld. We define the internal state of room D as the process CD(0)

presented in first approach and similarly the process CB(0) tracks the number of visitors in room

B.

We now define the adaptation procedure Π2B . We assume the class of events {|?2B |} =

{?2B〈n〉 | n ≥ 0} to be the communication of the number of visitors in rooms B, D in Π2B

between the adaptation pattern and adaptation function. We encode the adaptation procedure as

the parallel composition of the adaptation pattern and function synchronizing on the ?2B-events

and ack event.

Π2B = (ν {|?2B |} , ack)

(
P2B(0) ‖

{|?2B |},ack
F2B

)

The adaptation pattern in process P2B(0) tracks the number of visitors in rooms B, D. The process

communicates through a distinguished ?2B-events the state when the system must-adapt. For these

180 APPENDIX C. ENCODING FOR THE ART GALLERY CASE-STUDY

cases, we trigger adaptation once the total number of visitors in the rooms is 10. The adaptation

pattern may trigger adaptation more frequently e.g., for all movements or when the count is equal

to or greater than 8. The adaptation function can decide appropriately how to handle adaptation.

For simplicity, here we trigger adaptation when the rooms are full and further entrance should be

precluded.

P2B(0) =2



vis(EA,EB) → if(n+ 1 ≥ 10) then ?2B〈10〉 → ack → P2B(10) else P2B(n+ 1)

vis(EB,EA) → if(n ≥ 10) then ?2B〈n− 1〉 → ack → P2B(n− 1) else ifn > 0 then P2B(n− 1) else P2B(0)

vis(ED,c) → ifn ≥ 10 then ?2B〈n− 1〉 → ack → P2B(n− 1) else ifn > 0 then P2B(n− 1) else P2B(0)

vis(EB,ED) → P2B(n)

At every execution point, the pattern either accepts all first-order system events or triggers

adaptation. The process F2B represents the adaptation function. The process F2B only adapts

room B but monitors room D to determine adaptations. The behaviour of room B is determined

according to the number of visitors in the rooms, which is communicated with the ?2B-event,

F2B = 2
n∈I

?2B〈n〉 → ifn ≥ 10 then lb!R
′′
B .ack → F2B else lb!R

′
B .ack → F2B

The encoding of the adaptation function is stateless, mirroring adaptation functions in SAA

and only affect the system through adaptation, i.e., does not exhibit any first-order events external

to Π2B ,

The unary cluster for the requirement is defined as,

S2B = (ν lB , lD)

((
lD〈R′D〉 ‖

ED

CD(0)

)
‖

E(B,D)

(
lB〈R′B〉 ‖

EB

CB(0)

)
‖

EB ,ED

Π2B

)

where E(B,D) = {vis(EB,ED)} is the set of events representing the connectivity between room B

and room D.

We need to update the specification Spec2 to include the behaviour of room B. To be effective,

specifications needs to mirror faithfully the requirements. Since the requirement does not constraint

the behaviour of room B, we encode the most permissive behaviour of room B,

Spec′2 = let

T (n) =2



n < 10 & vis(EB,ED) → T (n+ 1)

n > 0 & vis(ED,c) → T (n− 1)

vis(EA,EB) → T (n)

vis(EB,EA) → T (n)

withinT (0)

Requirement 4: No more than 30 visitors (in total) should be in the exhibition area at

the same time In section 1.2, we outline two approaches to satisfy Req. 4. In the first approach,

described Ad. Proc. 4.1, we implement a simple access control, where we define an adaptation

procedure that controls the entrance to the exhibition area, the door connecting corridor 1 to

room A, to ensure the number of visitors in the exhibition area never exceeds 30. The adaptation

procedure monitors the exits from the exhibition area to track the number of visitors in the area.

In the second approach (Ad. Proc. 4.2), we define an adaptation procedure that ensures at

181

most 15 visitors are in rooms A and B and we also define an adaptation procedure that ensures at

most 15 visitors in rooms B and D. Here, we overview the encoding for both approaches.

The first approach (Ad. Proc. 4.1) We follow Steps 2 and 3 from the approach presented in

section 4.1. First, we identify the components that affect the satisfaction of Req. 4. Visitors can

access and exit the exhibition area through rooms A and D. From the containment relation, we know

that the exhibition area also contains room B. This room connects room A and D. Therefore guided

by the topology, we infer that the components that affected the satisfaction of this requirement

are rooms A, B and D. We define the set of first-order events Eea to represent the connectivity of

the rooms within the exhibition area as

Eea = {t(c,EA), t(EA,c), t(EB,EA), t(EA,EB), t(EB,ED), t(ED,c)} = EA, EB , ED

Here t can take the form vis or grd to represent visitors or guard movements respectively; for

simplicity we only consider the value vis in our encoding. We only present the encoding of room

A, the encoding for room B and room D follow the same structure and has been presented for

the encoding of Req. 2 (second approach). To satisfy this requirement, the adaptation procedure

adapts room A to control the entrance to the exhibition area but monitors the behaviour of rooms

B, D to track the number of visitors in the exhibition area.

The component room A, that is adapted to satisfy Req. 4, can be in one of the following

functionalities:

1. Visitors are allowed in the exhibition area by moving through the door connecting the corridor

to room A

R′A = 2
t∈{EB,c}

vis(t,EA) → R′A

vis(EA,t) → R′A

2. Visitors are not allowed in the exhibition area and thus we preclude the movement from the

corridor to room A

R′′A =2


vis(EB,EA) → R′′A

vis(EA,EB) → R′′A

vis(EA,c) → R′′A

We assume a process CA to track the internal state of room A similar to the process CD

presented for Req. 2.

We define an adaptation procedure Π4 that tracks the number of visitors in the exhibition area

and refuses entry to more visitors when the number of visitors in the exhibition area is 30. The

adaptation procedure re-opens the door after a visitor leaves the exhibition area. In our encoding,

an adaptation procedure comprises an adaptation pattern P4 that tracks the number of visitors

in the exhibition area and triggers adaptation when the number of visitors reaches 30 and an

adaptation function F4 that identifies the execution points where a system may-adapt and the

adaptation—whether visitors are allowed entrance from corridor to room A.

Π4 = (ν {|?|} , ack)

(
P4(0) ‖

{|?|},ack
F4

)

182 APPENDIX C. ENCODING FOR THE ART GALLERY CASE-STUDY

The adaptation pattern P4 communicates the number of visitors in the exhibition area to the adap-

tation function, when the number of visitors gets close to 30. The count is derived by monitoring

the movements in rooms A, B and D.

P4(n) =2



vis(c,EA) → if(n+ 1 ≥ 16) then ?〈n+ 1〉 → ack → P4(n+ 1) else P4(n+ 1)

vis(EA,c) → if(n = 30) then ?〈n− 1〉 → ack → P4(n− 1) else ifn > 0 then P4(n− 1) else P4(0)

vis(ED,c) → if(n = 30) then ?〈n− 1〉 → ack → P4(n− 1) else ifn > 0 then P4(n− 1) else P4(0)

vis(EB,ED) → P4(n)

vis(EA,EB) → P4(n)

vis(EB,EA) → P4(n)

The adaptation function F4 precludes entrance from the corridor to room A when the number

communicated with the ?-event is greater or equal to 30.

F4 = 2
n∈I

?〈n〉 → ifn ≥ 30 then la!R′′A.ack → F4 else la!R′A.ack → F4

The encoding for the unary cluster for Req. 4 comprises components rooms A, B, D and adaptation

procedure Π4,

S4 = (ν lA, lB , lD)

((
lA〈R′A〉 ‖

EA

CA(0)

)
‖

E(A,B)

(
lB〈R′B〉 ‖

EB

CB(0)

)
‖

E(B,D)

(
lD〈R′D〉 ‖

ED

CD(0)

))
‖

EA,EB ,ED

Π4

where the event sets E(A,B) and E(B,D) encodes the connectivity through doors between rooms A,

B and rooms B, D respectively. Through the verification approach in Chapter 6, we later verify

that the above model refines Spec4,

Spec4 = letP (n) =2



n < 30 & vis(c,EA) → P (n+ 1)

n > 0 & vis(EA,c) → P (n− 1)

n > 0 & vis(EA,EB) → P (n)

n > 0 & vis(EB,EA) → P (n)

n > 0 & vis(EB,ED) → P (n)

n > 0 & vis(ED,c) → P (n− 1)

withinP (0)

Consider, the scenario where tail-gating is discovered and the system designer decides to reduce

the number of visitors allowed in the exhibition area to 28. For this change, the system designer

needs to check that when the 18th visitor enter the exhibition area, adaptation is triggered and

the correct adaptation is communicated to room A. The system designer needs to verify that the

adaptation pattern broadcasts an ?-event when 18 visitors are in the exhibition area, which our

encoding of P4 does and the adaptation function to preclude visitor entrance from the corridor to

room A when the number of visitors reaches 18,

F ′4 = 2
n∈I

?〈n〉 → ifn ≥ 28 then la!R′′A.ack → F ′4 else la!R′A.ack → F ′4

The second approach (Ad. Proc. 4.2) To satisfy this approach, we define two adaptation

procedures—Π4A ensuring at most 15 visitors in rooms A and B and an adaptation procedure Π4B

183

that guarantees at most 15 visitors in rooms B and D. The encoding for Π4B is similar to Π2B in

Ad. Proc. 2.2. We thus only show the encoding for Π4A.

From fig. 4.1, we know that room A is connected to the corridor and room B through a

door and room B is connected through a door with room A and a one-way door to room D.

We define a family of first-order events for the movement from and to room A and room B—

EA = {t(c,EA), t(EA,c), t(EA,EB), t(EB,EA)} and EB = {t(EB,ED), t(EA,EB), t(EB,EA)} where t can

be vis, grd or emp to represent a visitor, guard and employee movement respectively. Again, for

simplicity, we only consider vis

1. The entrance to the rooms is open to visitors. We include the event vis(c,EA)

R′A = 2
t∈{EB,c}

vis(t,EA) → R′A

vis(EA,t) → R′A

2. No more visitors are allowed to enter the rooms A and B respectively,

R′′A =2


vis(EB,EA) → R′′A

vis(EA,EB) → R′′A

vis(EA,c) → R′′A

We encapsulate the initial processes for the components of room A, B in locations la〈R′A〉, and

lb〈R′B〉 respectively. The adaptation procedure can adapt between the two functionalities through

higher-order outputs to la and lb. We assume the definition of the internal state processes of room

A as CA(0), room B as CB(0) and room D as the process CD(0).

We now define the adaptation procedure Π4A as the composition of adaptation pattern and

function. We assume the class of events {|?4A|} = {?4A〈n〉 | n ≥ 0} to be the communication of

the the number of visitors in rooms A, B between the adaptation pattern and adaptation function.

Π4A = (ν {|?4A|} , ack)

(
P4A(0) ‖

{|?4A|},ack
F4A

)

The adaptation pattern P4A(0) tracks the number of visitors in the rooms A, B. The process

communicates through a distinguished ?4A-events the state when the system must-adapt. For

these cases, we trigger adaptation once the number of visitors in the rooms is 15. The adaptation

pattern may trigger adaptation more frequently e.g., for all movement when the count is equal to

or greater than 8. The pattern may also broadcasts an ?4A-event at every step and the adaptation

function can decide appropriately how to handle adaptation outcomes. For simplicity, here we

trigger adaptation when the rooms are full and the entrance should be locked.

P4A(0) =2



vis(c,EA) → if(n+ 1 ≥ 15) then ?4A〈15〉 → ack → P4A(15) else P4A(n+ 1)

vis(EA,c) → if(n ≥ 15) then ?4A〈n− 1〉 → ack → P4A(n− 1) else ifn > 0 then P4A(n− 1) else P4A(0)

vis(EB,ED) → ifn ≥ 15 then ?4A〈n− 1〉 → ack → P4A(n− 1) else ifn > 0 then P4A(n− 1) else P4A(0)

vis(EA,EB) → P4A(n)

vis(EB,EA) → P4A(n)

At every execution point, the pattern either accepts all first-order system events or triggers

adaptation. The process F4A represents the adaptation function. The process F4A only adapts

room A but monitors the behaviour of room B to determine the outcome of the adaptation. The

184 APPENDIX C. ENCODING FOR THE ART GALLERY CASE-STUDY

behaviour of room A is determined by the number of visitors in the rooms, which is communicated

with the ?-event,

F4A = 2
n∈I

?4A〈n〉 → ifn ≥ 15 then la!R′′A.ack → F4A else la!R′A.ack → F4A

The encoding of the adaptation function is stateless, mirroring adaptation functions in SAA

and only affect the system through adaptation, i.e., does not exhibit any (external) first-order

events. The encoding for the adaptation procedure Π4B that constraint the number of visitors

in rooms B, D to 15 is defined similarly to Π4A and Π2B . We thus skip the presentation of its

encoding. The unary cluster for the Req. 4 is defined as the composition of rooms A, B and D

and the adaptation procedures Π4A and Π4B .

S4.2 = (ν lA, lB)

(((
lA〈R′A〉 ‖

EA

CA(0)

)
‖

E(A,B)

(
lB〈R′B〉 ‖

EB

CB(0)

)
‖

E(D,B)

(
lD〈R′D〉 ‖

ED

CD(0)

))
‖

EA,EB ,ED

(
Π4A ‖

EB

Π4B

))

where E(A,B) = {vis(EB,EA), vis(EA,EB)} is the set of events representing the connectivity

between room A and room B. Similarly E(B,D) = {vis(EB,ED)} is the set of events representing

the connectivity between room B and room D.

Specifications should reflect as closely as possible the requirement. Even though, we are enforc-

ing a stricter access control on the exhibition area, we still verify that the above process S4.2 trace

refines the specifications Spec4. If the system designer wants to verify a stricter specification, she

can refine the original specification and verify the refinement in FDR. For instance, consider the

process Spec′4

Spec′4 =Spec4A ‖
EB

Spec4B

Spec4A = letP (a, b) =2



a > 0 & vis(EA,EB) → P (a− 1, b+ 1)

b > 0 & vis(EB,EA) → P (a+ 1, b− 1)

b > 0 & vis(EB,ED) → P (a, b− 1)

a > 0 & vis(EA,c) → P (a− 1, b)

a+ b < 15 & vis(c,EA) → P (a+ 1, b)

withinP (0, 0)

Spec4B = letP (b, d) =2



d+ b < 15 & vis(EA,EB) → P (b+ 1, d)

b > 0 & vis(EB,EA) → P (b− 1, d)

b > 0 & vis(EB,ED) → P (b− 1, d+ 1)

d > 0 & vis(ED,c) → P (b, d− 1)

withinP (0, 0)

Using FDR, we verify that Spec4 vT (ACSP) Spec
′
4 and thus by transitivity, we know

Spec′4 vT (ACSP) S4.2 implies Spec4 vT (ACSP) S4.2

Requirement 5: The people in the building should be able to reach the nearest emer-

gency exit This requirement comprises the whole building, which to verify entails translating

185

and verifying the whole art gallery. In order to preserve the compositionality in our model, we

change the requirement for each room to say

Requirement E. In the case of an emergency, all doors should be open ♦

Irrespective of the number of visitors in the rooms, visitors should not be precluded entrance to

any room as it may be the only path to an exit. This specification can be verified compositionally

for each room. Here, we only show the encoding and specification for room D. The encoding and

specification for all the other rooms in the art gallery is similar.

The components affecting the satisfaction of this requirement (for room D) are the room and

the fire alarm panel. The alarm panel broadcasts non-deterministically an emergency event

when the art gallery needs to be evacuated. The first-order events for the components are

EF = {emergency}.
Recall that the first-order events of room D are Ed = {t(ED,c), t(EB,ED)} that represents the

rooms connectivity through a door with the corridor (c) and room B (B). Here t can be vis, grd

or emp to represent a visitor, guard and employee movement. For simplicity we only consider vis.

Room D can be in one of two functionalities:

1. The entrance to room D is open and visitors are allowed to move from room B to room D

represented by the event vis(EB,ED)

R′D = (vis(EB,ED) → R′D) 2 (vis(ED,c) → R′D)

2. No more visitors are allowed to enter room D. We encode this by precluding the event

vis(EB,ED),

R′′D = vis(ED,c) → R′′D

The internal state of Room D tracks the number of visitors entering and leaving room D to

make sure that the number of visitors leaving is less than or equal to the number of visitors entering

room D. We assume the definition of the process CD from Req. 2 as the internal state process.

The initial configuration of room D is encapsulated by a location ld, with the process R′D—ld〈R′D〉.
Theoretically, this process satisfies the requirement as the doors are already open. However, we

know that Req. 2 will at specific execution points close the entrance to room D for visitors. We

define an adaptation procedure that adapts the behaviour of room D through a higher-order output

to ld, on the broadcast of the emergency event

P5D =2

e→ P5D where e ∈ Ed
emergency → ?→ ack → P5D

The adaptation function opens the doors connecting room B to room D on an ?-event,

F5D = ?→ ld!D0.ack → F5D

The adaptation procedure is defined as

Π5D = (ν?, ack)

(
P5D ‖

{?,ack}
F5D

)

186 APPENDIX C. ENCODING FOR THE ART GALLERY CASE-STUDY

The composition of the adaptation procedure and the component in its scope to be verified for

this requirement is defined below. The process S5D is referred to as the unary cluster for Req. 5

for room D.

S5D = (ν ld)

((
ld〈R′D〉 ‖

Ed

CD(0)

)
‖

ED{emergency}
Π5D

)

We later verify that S5 refines by the failure semantic the following specification, 1

Spec5D = R′D 4 (emergency → RUN(Ed))

This specification is a liveness property, we want to show that in the case of an emergency, visitors

are not refused an entrance or exit to/from room D.

Requirement 6: HVAC software updates should be installed within 3 hours In Req. 3,

we disconnect the HVAC once a visitor connects to the access point. However, in the presence

of a pending update, we temporarily disconnects visitors to give the HVAC a chance to install

important updates. We assume an event update that the HVAC broadcasts when an update

is overdue. We satisfy the requirement by following the approach presented in section 4.1. We

first identify the components that affect the satisfaction of Req. 6—HVAC and the access point.

We assume the sets of first-order events EH and EAP are the set of events for the HVAC and

access point components respectively, presented for Req. 3. The adaptation procedure adapts the

behaviour of the access point and monitors the behaviour of the HVAC components. For simplicity,

we only show the encoding for the access point.

The access point can be in one of the following functionalities,

1. The HVAC is connected and connections from both employees and visitors are pending. This

is the initial configuration of the access point, where only the HVAC is connected

A0 = connhvac → 2
t∈{vis,emp}

connt → A0

disconnt → A0

2. Visitors are disconnected, and thus the HVAC is reconnected. Thereafter, both visitors and

employees can reconnect to the access point intermittently

A4 = disconnect→ connhvac → 2
t∈{vis,emp}

connt → A4

disconnt → A4

We assume the definition of the process Cap to track the internal state of the access point to be

the same as the process presented for Req. 3. We define an adaptation procedure Π6 that adapts

the access point to A4 on the update event,

Π6 = (ν {|?|} , ack)

(
P6 ‖
{|?,ack|}

F6

)

The process P6 is the adapation pattern that tracks the state of the access point and the hvac.

The process P6 triggers adaptation on the update event. As explained in section 5.1.1, adaptation

procedures are the composition of an adaptation pattern and an adaptation function synchronizing

1the function RUN(A) offers the choice over all events in A perpetually [59].

187

over ?-events and ack event.

P6 =2

e→ P6 where e ∈ Eap, Ehvac\{update}

update→ ?→ ack → P6

On the ?-event, the process F6 adapts, through higher-order outputs to ap, the behaviour of the

access point to A4,

F6 = ?→ ap!A4.ack → F6

The overall process that guarantees the satisfaction of Req. 6, known as the unary cluster, is

S6 = (ν ap, h)

((
ap〈A0〉 ‖

E(ap,h)

h〈H0〉

)
‖

EH ,EAP

Π6

)

We later verify that the process S6 trace refines

Spec6 = 2
t∈{vis,emp}


disconnt → Spec6

connt → Spec6

update→ disconnect→ Spec6

188 APPENDIX C. ENCODING FOR THE ART GALLERY CASE-STUDY

Appendix D

Encoding for the Smart Stadium

Case-Study

Requirement D: During a match, visitors are allowed to roam to other non-empty

sections Once a match starts, represented by the during event, we expect most visitors to be

seated. This allows us to relax the access control between sections to improve user experience.

Any visitor is free to access other non-empty sections or VIP sections, despite not having a ticket

to it. If a lower or upper section is empty by the start of a match (on the during event) the section

is closed off to reduce energy usage across the stadium. Nonetheless, ticket holders to an empty

section are still allowed to enter, in case they arrive late. Then the section is then opened to all

visitors as it is no longer empty.

For satisfying this requirement, we adapt the behaviour of the access controller and monitor

the match status component. The access controller can be in one of two functionalities

1. Visitors are allowed to enter s as it is non-empty,

SRoam = 2
a ∈ adj

v ∈ V isitors

gotov,a,s → SRoam

gotov,s,a → SRoam

2. Only ticket holders are allowed to enter , as s is empty and s can be used as a backup by

other sections through the opens,s′ event,

AC3 = SOpen 9 2
s′∈SectionID\s

{
opens,s′ → SKIP

We now define an adaptation procedure ΠD as the composition of an adaptation pattern PD

and adaptation function FD. The process PD triggers adaptation on the during event or for an

empty section when the first visitor enters the section. A section is empty, if there are no goto

events entering the section between the before and the during events. The adaptation pattern

communicates to the decision process FD whether the section is empty.

189

190 APPENDIX D. ENCODING FOR THE SMART STADIUM CASE-STUDY

PD = let

B(emp, dur) = 2
v ∈ V isitors

a ∈ adj



gotov,a,s → if dur ∧ emp

then ?〈F 〉 → ack → B(F, dur)

else B(F, dur)

gotov,s,a → B(emp, dur)

before → B(T, F)

after → B(emp, F)

open → B(emp, dur)

during → ?〈emp〉 → ack → B(emp, T)

empty → B(T, dur)

withinB(T, F)

Because an adaptation pattern comprises only first-order events, we check using FDR that the

pattern does not affect the component behaviour but just monitors. We verify that the adaptation

pattern does not, unless adapting, refuses any events from the components eq. (ID.1) or introduces

events not in the interface of the components eq. (ID.2),

RUN(Eac, Em) vF (ACSP) PD \ {|?, ack|} (ID.1)

PD \ {|?, ack|} vT (ACSP) RUN(Eac, Em) (ID.2)

The adaptation function, encoded in the process FD opens a section to all visitors if not empty

or is a VIP section otherwise access remains for ticket holders only

FD = ?〈emp〉 → if emp ∧ s /∈ {|V IP |} then ac!AC3.ack → FD else ac!SRoam.ack → FD

The adaptation procedure is defined as the composition of the processes FD and PD

ΠD = (ν ?, ack)

(
FD ‖
{|?,ack|}

PD

)

The unary cluster encoding the satisfaction of Req. D for s is defined as

SD = (ν ac,ms)

(
(AccessController 9MatchStatus) ‖

Eac,Em

ΠD

)

We now discuss the specification for Req. D. The process R encodes the most permissive

behaviour for s that applies before or after a match, when the requirement does not apply. The

process D describes the behaviour during a match according to the requirement, where if s is

empty only ticket holders are allowed to enter, otherwise all visitors are allowed to enter.

191

SpecD = let

R(emp) = 2
a ∈ adj

v ∈ V isitors



before → R(T)

during → D(emp)

after → R(T)

gotov,s,a → R(emp)

gotov,a,s → R(F)

open → R(emp)

empty → R(emp)

D(emp) = 2
a ∈ adj

v ∈ V isitors

s′ ∈ SectionID \ s



gotov,s,a → D(emp)

emp&gotos,a,s → D(emp)

¬emp&gotov,a,s → D(emp)

before → R(T)

after → R(T)

during → D(emp)

opens,s′ → D(emp)

emp & opens′,s → D(emp)

empty → D(emp)

withinR(T)

With our verification approach, we verify that for s, the unary cluster SD trace refines SpecD.

SpecD vT (ACSP) SD

Requirement E: On a windy day, the system should attempt to empty the upper area

This requirement aims to protect visitors from strong winds. Sections in the upper area are

particularly exposed to wind. Upon detecting strong winds during a match, the system changes

the access control in the upper sections so that only ticket holders (and employees) are allowed to

enter. The system also aims to find an alternative, more sheltered, section in the lower area for

visitors to sit in. Once an alternative section is opened, visitors are directed to the new section.

We model this by closing the exposed section. In sold-out matches, there would not be any empty

sections in the stadium. In this case, only ticket holders are allowed to enter an upper section for

the remainder of the match.

To satisfy this requirement, we adapt the behaviour of the access controller and monitor the

match status and wind monitor components.

The access controller can be in one of two functionalities

1. A section s is closed to visitors if s is exposed to strong winds and an alternative seating

has been identified for the ticket holders. Note how visitors are only allowed to leave s to

move to the corridor. Adjacent sections would also be exposed to the wind and thus visitors

movement between sections is precluded,

SExit = 2
v ∈ V isitors

{
gotov,s,Corr → SExit

2. Strong wind has been detected and we restrict access to only ticket holders until an alternative

section, that is not exposed to the wind itself, is found. The process requests an alternative

section through the event opens,s′ to all lower sections,

AC4 = SOpen 9 2
s′∈{|L|}

{
opens,s′ → SKIP

We now define an adaptation procedure ΠE that comprises an adaptation pattern PE and adap-

tation function FE .

The adaptation pattern encoded in process PE monitors the access controller, match status and

wind monitor components. Adaptation is triggered on the during event if wind has been detected

192 APPENDIX D. ENCODING FOR THE SMART STADIUM CASE-STUDY

prior the start of a match, on the wind event during a match and once an alternative section has

been found for an exposed section. We communicate with the ?-event if an alternative section has

been found for an exposed section in the form of a boolean variable.

PE = let

B(w, ev) = 2
a ∈ adj

s′ ∈ SectionID \ s



goto → B(w, ev)

before → B(F, F)

during → ifw then ?〈F 〉 → ack → B(w, T) else B(w, T)

after → B(w,F)

opens,s′ → if ev ∧ w ∧ s′ /∈ {|H|} then ?〈T 〉 → ack → B(w, ev) else B(w, ev)

opens′,s → B(w, ev)

empty → B(w, ev)

wind → if ev then ?〈F 〉 → ack → B(T, ev) else B(T, ev)

withinB(F, F)

Because adaptation patterns comprises only of first-order events, we check using FDR that the

pattern PE does not affect the components behaviour. We verify that the adaptation pattern does

not, unless adapting, refuses any events from the components eq. (ID.3) or introduces events not

in the interface of the components eq. (ID.4),

RUN(Eac, Em, Ew) vF (ACSP) PE \ {|?, ack|} (ID.3)

PE \ {|?, ack|} vT (ACSP) RUN(Eac, Em, Ew) (ID.4)

The adaptation function performs a higher-order output to ac to adapt the behaviour of the access

controller,

FE = ?〈backup〉 → if backup ∧ s ∈ {|H|} then ac!SExit.ack → FE

else if s ∈ {|H|} then ac!AC4.ack → FE

else ack → FE

The adaptation procedure is defined as the composition of the processes FE and PE synchronizing

over the scoped first-order events ? and ack,

ΠE = (ν ?, ack)

(
FE ‖
{|?,ack|}

PE

)

The unary cluster for a section s also comprises the wind monitor component. In ACSP, this

is modelled as a non-deterministic event. We thus do not include its encoding here,

SE = (ν ac,ms)

(
(AccessController 9MatchStatus) ‖

Eac,Em

ΠE

)

We now discuss the specification for Req. E. The process R describes the most permissive behaviour

that applies before and after a match, whereas the process W describes the behaviour during a

match where access to s is affected by the wind level.

193

SpecE = let

R(w) =2



goto → R(w)

wind → R(s ∈ {|H|})

open → R(w)

before → R(F)

during →W (w,F)

after → R(w)

empty → R(w)

W (w, backup) = 2
v ∈ V isitors

a ∈ adj

s′ ∈ SectionID



w ∧ ¬backup& gotos,a,s →W (w, backup)

¬w&gotov,a,s →W (w, backup)

gotov,s,a →W (w, backup)

empty →W (w, backup)

after → R(w)

before → R(F)

during →W (w,F)

wind →W (s ∈ {|H|} , F)

opens,s′ →W (w,w ∧ s′ /∈ {|H|})

¬w & opens′,s →W (w, backup)

withinR(F)

We verify that the process SE trace refines SpecE for a section s.

SpecE vT (ACSP) SE

Requirement F: During a match, the system should aim to keep noise levels below

a threshold. The stadium has a noise level detector in each section. The level of noise in the

stadium is a ratio between the measured noise and the number of sections open. Thus, if during

a match the noise level in s is very high, the system tries to open an empty section to encourage

visitors to distribute themselves more evenly around the stadium as means to reduce the overall

noise level. As an immediate response to an increase in noise levels, we also restrict the access to

s to ticket holders only.

For satisfying this requirement, we define an adaptation procedure ΠF that adapts the access

controller of a section and monitors the noise detector and the match status components.

The access controller functionality on detecting a high level of noise is adapted so only ticket

holders are allowed in the section and an alternative section is opened.

AC5 = SOpen 9 2
s′∈SectionID\s

opens,s′ → SKIP

We now define an adaptation pattern that monitors the access controller, noise detector and match

status components. The adaptation pattern triggers adaptation on the noisy event during a match.

PF = let

B(ev) =2



goto → B(ev)

before → B(F)

after → B(F)

during → B(T)

open → B(ev)

noisy〈T 〉 → if ev then ?→ ack → B(ev) else B(ev)

empty → B(ev)

noisy〈F 〉 → B(F)

withinB(F)

The process FF adapts the access controller by performing a higher-order output on ac when

194 APPENDIX D. ENCODING FOR THE SMART STADIUM CASE-STUDY

the section becomes too noisy during a match.

FF = ?→ ac!AC5.ack → FF

The adaptation procedure is the composition of the processes PF and FF

ΠF = (ν ?, ack)

(
FF ‖
{?,ack}

PF

)

The unary cluster for the satisfaction of Req. F for s also comprises the noise detector. This is

modelled as a non-deterministic stream of alternating noisy events,

Noisy(b) = noisy〈b〉 → Noisy(¬b)

We encapsulate the process for the noise detector in location np,

NoisePanel = np〈Noisy(T)〉

The unary cluster is defined as the composition of the adaptation procedure ΠF and the compo-

nents in its scope— the access controller, match status and noise detector.

SF = (ν ac, np,ms)

(
(AccessController 9MatchStatus 9NoisePanel) ‖

Eac,Em,En

ΠF

)

We now discuss the specification for Req. F. The process R describes the most permissive behaviour

of the components before and after a match, when the noisy event has no effect on the access to s.

During a match, the requirement is encoding by process Dur, which on the noisy event restricts

the access to ticket holders.

SpecF = let

R =2



goto → R

noisy〈T 〉 → R

open → R

before → R

during → Dur(F)

after → R

empty → R

niosy〈F 〉 → R

Dur(n) = 2
v ∈ V isitors

a ∈ adj

s′ ∈ SectionID



n & gotos,a,s → Dur(n)

¬n & gotov,a,s → Dur(n)

gotov,s,a → Dur(n)

empty → Dur(n)

after → R

before → R

during → Dur(n)

¬n & opens′,s → Dur(n)

n & opens,s′ → Dur(n)

noisy〈b〉 → Dur(b)

withinR

Requirement G: A section may be re-opened as a backup section if it is not noisy, not

exposed to strong wind, empty and its fire alarm is off. A section must be empty, not

exposed to strong winds and not in an emergency state to be used as a backup. During a match, a

backup section permits all movements to and from s, whereas after a match visitors from adjacent

sections can exit to the corridor through s. A section s′ can request to open s as a backup through

the event opens′,s.

195

To satisfy this requirement, we define an adaptation procedure ΠG that adapts the behaviour

of the access controller and monitors the noise detector, fire alarm, match status and wind panel

components.

We now define the behaviour of the access controller on adaptation. The access controller can

be in one of the two functionalities

1. During a match, on the opens′,s event, s is opened to all visitors,

SRoam = 2
a ∈ adj

v ∈ V isitors

gotov,a,s → SRoam

gotov,s,a → SRoam

2. After a match, if the section is eligible to be used a backup, i.e., it is empty, not exposed to

wind and the fire alarm is not triggered, then visitors from adjacent sections can exit through

the empty section,

SExitAdj = 2
a ∈ adj \ Corr

v ∈ V isitors

gotov,s,Corr → SExitAdj

gotov,a,s → SExitAdj

The process PG encodes an adaptation pattern where adaptation is triggered on an opens′,s if

all the criteria are met. We communicate with the ?-event the match status s this determines the

access rights.

PG = let

applies(alrm,wnd, n) = ¬(alrm ∨ wnd ∨ n)

B(a,w, n, emp, dur) =

2
v ∈ V isitors

a ∈ adj

s′ ∈ SectionID



gotov,a,s → B(a,w, n, False, dur)

gotov,s,a → B(a,w, n, emp, dur)

before → B(F, F, F, T, F)

after → B(a,w, n, emp, F)

opens,s′ → B(a,w, n, emp, dur)

opens′,s → if applies(a,w, n) ∧ emp

then ?〈dur〉 → ack → B(a,w, n, emp, dur)

else B(a,w, n, emp, dur)

noisy〈b〉 → B(a,w, b, emp, dur)

during → B(a,w, n, emp, T)

empty → B(a,w, n, emp, dur)

alarm〈b〉 → B(b, w, n, emp, dur)

wind → B(a, s ∈ {|H|} , n, emp, dur)

withinB(F, F, F, T, F)

The adaptation function adapts the behaviour of the access controller through a higher-order

output on ac. The communicated behaviour depends on the match status: during a match a

196 APPENDIX D. ENCODING FOR THE SMART STADIUM CASE-STUDY

section becomes accessible by all visitors and after a match visitors from adjacent sections can exit

the stadium from s. We thus communicate with the ?-event a boolean that is true if a match is

ongoing and false otherwise,

FG = ?〈dur〉 → if dur then ac!SRoam.ack → FG else ac!SExitAdj.ack → FG

We define an adaptation procedure ΠG as the composition of the processes FG and PG that

represent the adaptation function and adaptation pattern respectively.

ΠG = (ν ?, ack)

(
FG ‖
{|?,ack|}

PG

)

The verification for a section s is encapsulated in the unary cluster,

SG = (ν ac, np,ms, f)

(
(AccessController 9MatchStatus 9NoisePanel 9AlarmPanel) ‖

Eac,Em,En,Ef

ΠG

)

We now discuss the specification for Req. G. We define three processes Bef, Dur, Aft that describe

the behaviour before, during and after a match respectively. The Bef process does not include the

event opens′,s implying that the section cannot be used as a backup. In the Dur and Aft process,

the opens′,s is only allowed if the section can be used as a backup. The processes differ because

in the Dur processes visitors are allowed to move from the corridor into the section, which is not

allowed after a match.

197

SpecG = let

Dur

 alrm,

wnd, n,

emp, opn

 = 2
a ∈ adj

v ∈ V isitors

s′ ∈ SectionID



gotov,s,a → Dur(alrm,wnd, n, emp, opn)

¬emp ∨ opn ∨ s ∈ {|V IP |} & gotov,a,s → Dur(alrm,wnd, n, False, opn)

noisy〈b〉 → Dur(alrm,wnd, b, emp, opn)

wind → Dur(alrm, s ∈ {|H|} , n, emp, opn)

alarm〈b〉 → Dur(b, wnd, n, emp, opn)

after → Aft(alrm,wnd, n, emp, opn)

empty → Dur(alrm,wnd, n, emp, opn)

opens,s′ → Dur(alrm,wnd, n, emp, opn)

¬(alrm ∨ wnd ∨ n) ∧ emp & opens′,s → Dur(alrm,wnd, n, emp, T)

Aft

 alrm,

wnd, n,

emp, opn

 = 2
a ∈ adj

v ∈ V isitors



gotov,s,a → Aft(alrm,wnd, n, emp, opn)

a 6= Corr ∧ opn & gotov,a,s → Aft(alrm,wnd, n, emp, opn)

before → Aft(F, F, F, T, F)

noisy〈b〉 → Aft(alrm,wnd, b, emp, opn)

wind → Aft(alrm, s ∈ {|H|} , n, emp, opn)

alarm〈b〉 → Aft(b, wnd, n, emp, opn)

empty → Aft(alrm,wnd, n, T, opn)

opens,s′ → Aft(alrm,wnd, n, emp, opn)

¬(alrm ∨ wnd ∨ n) ∨ emp & opens′,s → Aft(alrm,wnd, n, emp, T)

Bef

 alrm,

wnd, n,

emp, opn

 = 2
a ∈ adj

v ∈ V isitors



gotoEmp,s,a → Bef(alrm,wnd, n, emp, opn)

gotov,a,s → Bef(alrm,wnd, n, F, opn)

during → Dur(alrm,wnd, n, emp, opn)

noisy〈b〉 → Bef(alrm,wnd, b, emp, opn)

wind → Bef(alrm, s ∈ {|H|} , n, emp, opn)

alarm〈b〉 → Bef(b, wnd, n, emp, opn)

empty → Bef(alrm,wnd, n, emp, opn)

opens,s′ → Bef(alrm,wnd, n, emp, opn)

withinR(F)

Using our verification approach we verify that the process SG trace refines SpecG,

SpecG vT (ACSP) SG

Requirement H: To minimize energy usage, noise level sensors are switched off before

and after match or if the section they are in is empty. In order to minimize energy usage

in the stadium, we only switch on noise detectors in non-empty sections and during a match. We

model the switching off a noise detector by broadcasting a noisy〈F 〉 event if the last event was a

noisy〈T 〉 and stop further broadcasting of noisy events. If the last event was a noisy〈F 〉 or there

was no prior noisy event, then no noisy events is broadcast until the noise detector is switched

back on. When on, the noise detector is a non-deterministic cycle of alternating noisy events. We

define an adaptation procedure ΠH to ensure the satisfaction of Req. H which adapts the noise

detector component and monitors the match status, access component components.

The noise detector component can be in one of the three functionalities

1. The noise sensor is switched on and thus the process broadcast (non-deterministically) noisy

events, alternating between T and F ,

Noisy(b) = noisy〈b〉 → Noisy(¬b)

198 APPENDIX D. ENCODING FOR THE SMART STADIUM CASE-STUDY

2. If a section is noisy and the noise detector is to be switched off, represented by suppressing

the noisy events, we broadcast a noisy〈F 〉 event followed by the STOP process

Noisy1 = noisy〈F 〉 → STOP

3. The sensor is to be switched off and the section is not noisy, then we do not broadcast the

noisy〈F 〉 event

Noisy2 = STOP

We encapsulate the noise panel inside location np so the adaptation procedure can adapt its

behaviour. Initially, the noisy monitor is switched off

NoisePanel = np〈STOP〉

We define an adaptation procedure ΠH that guarantees the satisfaction of Req. H. The adaptation

procedure comprises an adaptation pattern PH and function FH . The pattern triggers adaptation

when the match status changes to switch on or off the noise detector and when the section becomes

empty or is no longer empty during a match.

PH = let

B(n, emp, ev) = 2
a ∈ adj

v ∈ V isitors



before → ?〈n, T 〉 → ack → B(n, T, before)

during → if emp then ?〈n, emp〉 → ack → B(n, emp, during)

else B(n, emp, during)

after → ?〈n, T 〉 → ack → B(n, emp, after)

noisy〈b〉 → B(b, emp, ev)

gotov,a,s → if ev = during ∧ emp then ?〈n, F 〉 → ack → B(n, emp, ev)

else B(n, emp, ev)

gotov,s,a → B(n, emp, ev)

open → B(n, emp, ev)

withinB(F, T, before)

We communicate with the ?-events two boolean values: the last value of the noisy event and if

a section is empty. If a section is empty and the last noisy event was T , then the process should

adapt to Noisy1, otherwise to STOP . If the section is not empty, the component is adapted to

Noisy0, initialized to the correct parameter.

FH = ?〈n, emp〉 → if emp ∧ n then np!Noisy1 → ack → FH

else if¬emp ∧ n then np!Noisy0(F)→ ack → FH

else if¬emp ∧ ¬n then np!Noisy0(T)→ ack → FH

else if emp ∧ ¬n then np!Noisy2 → ack → FH

elseSKIP

199

The adaptation procedure is defined as the composition of processes FH and PH

ΠH = (ν ?, ack)

(
FH ‖
{|?,ack|}

PH

)

The unary cluster for verifying Req. H in s is

SH = (ν np, ac,ms)

(
(NoisePanel 9AccessController 9MatchStatus) ‖

Eac,Em,En

ΠH

)

We now discuss the specification for Req. H, where we never broadcast consecutive noisy events

with the same boolean value, the first noisy event after the before event is always noisy〈T 〉 and

no noisy events are sent following the after event.

SpecH = let

B(n, emp) = 2
a ∈ adj

v ∈ V isitors



before → B(n, T)

during → B(n, emp)

after → B(n, T)

¬emp &noisy〈¬n〉 → B(¬n, emp)

emp ∧ n &noisy〈F 〉 → B(F, emp)

gotov,a,s → B(n, F)

gotov,s,a → B(n, emp)

open → B(n, emp)

empty → B(n, T)

withinB(F, T)

With our verification approach, we verify that for a section s, the process SH trace refines

SpecH .

SpecH vT (ACSP) SH

Requirement I: Floodlights usage should kept to a minimum The last requirement for

our case-study concerns the efficient use of the floodlights. The floodlights should be turned off

during the day when there is sunlight, and if a section remains empty by the start of a match. If

a section becomes temporarily empty during a match, which may happen if a section is scarcely

filled, the lights should not be switched off as this may affect user experience during a match. In

our process language, we cannot accurately model the time of the day and thus the encoding of

the flood light component is a non-deterministic broadcast of lights〈on〉 and lights〈off〉 events.

We can only verify that the lights are switched off when a section is empty.

We satisfy this requirement by adapting the behaviour of the floodlights component and mon-

itoring the match status and access controller components.

The floodlight component that can be in one of the two functionalities

1. The lights should be turned on: floodlights〈T 〉 → STOP

2. The lights should be turned off: floodlights〈F 〉 → STOP

200 APPENDIX D. ENCODING FOR THE SMART STADIUM CASE-STUDY

We encapsulate the component in location lp so it can be adapted by adaptation procedures,

LightPanel = lp〈STOP〉

The adaptation procedure guarantees the satisfaction of Req. I and comprises an adaptation pattern

PI and function FI . The pattern triggers adaptation on the before so lights are switched on, during

event so if a section is empty the lights are switched off or during a match when a ticket holder

enters s meaning that s is no longer empty,

PI = let

B(l, emp, ev) = 2
a ∈ adj

v ∈ V isitors



before → ?〈l, F 〉 → ack → B(l, T, before)

during → ?〈l, emp〉 → ack → B(l, emp, during)

after →→ B(l, emp, after)

floodlights〈b〉 → B(b, emp, ev)

gotov,a,s → if ev 6= before ∧ emp then ?〈n, F 〉 → ack → B(l, F, ev) else B(l, F, ev)

gotov,s,a → B(l, emp, ev)

opens,s′ → B(l, emp, ev)

opens′,s → ?〈l, F 〉 → ack → B(l, F, ev)

empty → if ev = after then ?〈l, T 〉 → ack → B(l, emp, ev) else B(l, emp, ev)

withinB(F, T)

The adaptation function encoded in the ACSP process FI receives the status of the floodlight

and the section – whether the floodlights are on/off and whether the section is empty. From this

information, the function decides to switch the lights on or off or leaves them in their current status

(the STOP process)

FI = ?〈l, emp〉 → if emp ∧ l then lp!floodlights〈F 〉 → STOP → ack → FI

else if¬emp ∧ ¬l then lp!floodlights〈T 〉 → STOP → ack → FI

else lp!STOP → ack → FI

The adaptation procedure is defined as the composition of processes FI and PI

ΠI = (ν ?, ack)

(
FI ‖
{|?,ack|}

PI

)

The unary cluster for a section s that is verified is

SI = (ν lp, ac,ms)

(
(LightPanel 9AccessController 9MatchStatus) ‖

Eac,El,Em

ΠI

)

We now discuss the specification for Req. I. We verify that the lights are switched on after the

before event and switched off if the section remains empty by the time the match starts. The lights

are switched on if during a match the section is no longer empty, either if a ticket holders enters

the section or the section is used as a backup.

201

SpecI = let

B(l, emp, ev) = 2
a ∈ adj

v ∈ V isitors



before → B(l, T, before)

during → B(l, emp, during)

after → B(l, emp, after)

¬emp ∧ ¬l & floodlights〈¬l〉 → B(¬l, emp, ev)

¬l ∧ e = before & floodlights〈T 〉 → B(T, emp, ev)

emp ∧ l ∧ ev 6= before & floodlights〈F 〉 → B(F, emp, ev)

gotov,a,s → B(l, F, ev)

gotov,s,a → B(l, emp, ev)

opens′,s → B(l, F, ev)

opens,s′ → B(l, emp, ev)

empty → B(l, emp ∨ ev = after, ev)

withinB(F, T)

With our verification approach, we verify that for sections s, the process SI trace refines SpecI .

SpecI vT (ACSP) SI

202 APPENDIX D. ENCODING FOR THE SMART STADIUM CASE-STUDY

Bibliography

[1] Croke park - stadium map. https://crokepark.ie/matchday/stadium-map.

[2] Self-adaptive systems artifacts and model problems. https://www.hpi.uni-

potsdam.de/giese/public/selfadapt/exemplars/.

[3] Bahareh Abolhasanzadeh and Saeed Jalili. Towards modeling and runtime verification of

self-organizing systems. Expert Systems with Applications, 44(Supplement C):230 – 244,

2016.

[4] Yousef Abuseta. An investigation of the monitoring activity in self adaptive systems. CoRR,

abs/1802.03667, 2018.

[5] Yousef Abuseta and Khaled Swesi. Design patterns for self adaptive systems engineering.

arXiv preprint arXiv:1508.01330, 2015.

[6] Rasmus Adler, Ina Schaefer, Tobias Schuele, and Eric Vecchié. From model-based design to

formal verification of adaptive embedded systems. In Proceedings of the Formal Engineer-

ing Methods 9th International Conference on Formal Methods and Software Engineering,

ICFEM’07, pages 76–95, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] Mohamed Almorsy, John Grundy, and Amani S. Ibrahim. MDSE@R: Model-Driven Security

Engineering at Runtime. pages 279–295. Springer, Berlin, Heidelberg, 2012.

[8] Jesper Andersson, Luciano Baresi, Nelly Bencomo, Rogério de Lemos, Alessandra Gorla,

Paola Inverardi, and Thomas Vogel. Software Engineering Processes for Self-Adaptive Sys-

tems, pages 51–75. Springer, Berlin, Heidelberg, 2013.

[9] Sreram Balasubramaniyan, Seshadhri Srinivasan, Furio Buonopane, B. Subathra, Jri Vain,

and Srini Ramaswamy. Design and verification of cyber-physical systems using truetime,

evolutionary optimization and uppaal. Microprocessors and Microsystems, 42:37 – 48, 2016.

[10] Björn Bartels and Moritz Kleine. A CSP-based framework for the specification, verification,

and implementation of adaptive systems. In Proc. of the 6th International Symposium on

Software Engineering for Adaptive and Self-managing Systems - SEAMS ’11, page 158. ACM

Press, 2011.

[11] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Uppaal

— a Tool Suite for Automatic Verification of Real–Time Systems. In Proc. of Workshop on

Verification and Control of Hybrid Systems III, number 1066 in Lecture Notes in Computer

Science, pages 232–243. Springer–Verlag, October 1995.

203

204 BIBLIOGRAPHY

[12] Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M. Clarke. Compositional reason-

ing in model checking. In Revised Lectures from the International Symposium on Composi-

tionality: The Significant Difference, COMPOS’97, pages 81–102, London, UK, UK, 1998.

Springer-Verlag.

[13] Marco Bernardo, Rocco De Nicola, and Michele Loreti. Revisiting Trace and Testing Equiv-

alences for Nondeterministic and Probabilistic Processes. Logical Methods in Computer Sci-

ence, 10(1), mar 2014.

[14] Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems

using time petri nets. IEEE Trans. Softw. Eng., 17(3):259–273, March 1991.

[15] Viviana Bono, Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Data-driven

adaptation for smart sessions. Journal of Logical and Algebraic Methods in Programming,

90(Supplement C):31 – 49, 2017.

[16] Aimee Borda and Vasileios Koutavas. Self-adaptive automata. In Proceedings of the 6th

Conference on Formal Methods in Software Engineering, FormaliSE ’18, pages 64–73, New

York, NY, USA, 2018. ACM.

[17] Aimee Borda, Liliana Pasquale, Vasileios Koutavas, and Bashar Nuseibeh. Compositional

verification of self-adaptive cyber-physical systems. In Proceedings of the 13th International

Conference on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’18,

pages 1–11, New York, NY, USA, 2018. ACM.

[18] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel. Morph: A Reference

Architecture for Configuration and Behaviour Self-adaptation. In Proc. 1st International

Workshop on Control Theory for Software Engineering, pages 9–16. ACM, 2015.

[19] Mario Bravetti, Cinzia Di Giusto, Jorge A. Pérez, and Gianluigi Zavattaro. Adaptable

processes. In Proceedings of the Joint 13th IFIP WG 6.1 and 30th IFIP WG 6.1 International

Conference on Formal Techniques for Distributed Systems, FMOODS’11/FORTE’11, pages

90–105, Berlin, Heidelberg, 2011. Springer-Verlag.

[20] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential

processes. J. ACM, 31(3):560–599, 1984.

[21] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,

Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering Self-Adaptive Sys-

tems through Feedback Loops, pages 48–70. Springer, 2009.

[22] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and Andrea

Vandin. Adaptable Transition Systems. pages 95–110. Springer Berlin Heidelberg, 2013.

[23] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and Andrea

Vandin. Modelling and analyzing adaptive self-assembly strategies with Maude. Science of

Computer Programming, 99:75–94, 2015.

[24] Sven Burmester, Holger Giese, and Matthias Tichy. Model-driven development of recon-

figurable mechatronic systems with mechatronicuml. In Uwe Aßmann, Mehmet Aksit, and

Arend Rensink, editors, Model Driven Architecture, pages 47–61, Berlin, Heidelberg, 2005.

Springer.

BIBLIOGRAPHY 205

[25] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and T. Kelly. Engineering

trustworthy self-adaptive software with dynamic assurance cases. IEEE Transactions on

Software Engineering, 44(11):1039–1069, Nov 2018.

[26] Radu Calinescu, Simos Gerasimou, and Alec Banks. Self-adaptive software with decentralised

control loops. In Alexander Egyed and Ina Schaefer, editors, Fundamental Approaches to

Software Engineering, pages 235–251, Berlin, Heidelberg, 2015. Springer.

[27] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. Self-adaptive

software needs quantitative verification at runtime. Commun. ACM, 55(9):69–77, September

2012.

[28] Radu Calinescu, Shinji Kikuchi, and Kenneth Johnson. Compositional reverification of prob-

abilistic safety properties for large-scale complex it systems. In Radu Calinescu and David

Garlan, editors, Large-Scale Complex IT Systems. Development, Operation and Management,

pages 303–329, Berlin, Heidelberg, 2012. Springer.

[29] Javier Cámara and Rogério De Lemos. Evaluation of resilience in self-adaptive systems using

probabilistic model-checking. In SEAMS, pages 53–62. IEEE, June 2012.

[30] Matteo Camilli, Angelo Gargantini, and Patrizia Scandurra. Specifying and verifying real-

time self-adaptive systems. In 2015 IEEE 26th International Symposium on Software Relia-

bility Engineering (ISSRE), pages 303–313. IEEE, November 2015.

[31] Nicolas Cardozo, Sebastian Gonzalez, Kim Mens, Ragnhild Van Der Straeten, and Theo

DHondt. Modeling and Analyzing Self-Adaptive Systems with Context Petri Nets. In 2013

International Symposium on Theoretical Aspects of Software Engineering, pages 191–198.

IEEE, jul 2013.

[32] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper An-

dersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Seru-

gendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo

Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela

Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli,

Danny Weyns, and Jon Whittle. Software Engineering for Self-Adaptive Systems: A Research

Roadmap, pages 1–26. Springer, Berlin, Heidelberg, 2009.

[33] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A goal-based modeling

approach to develop requirements of an adaptive system with environmental uncertainty. In

Andy Schürr and Bran Selic, editors, Model Driven Engineering Languages and Systems,

pages 468–483, Berlin, Heidelberg, 2009. Springer.

[34] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In [1989]

Proceedings. Fourth Annual Symposium on Logic in Computer Science, pages 353–362, June

1989.

[35] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics-based

tool for the verification of concurrent systems. ACM Trans. Program. Lang. Syst., 15(1):36–

72, 1993.

[36] Autonomic Computing et al. An architectural blueprint for autonomic computing. IBM

White Paper, 31:1–6, 2006.

206 BIBLIOGRAPHY

[37] Rodolfo Conde and Sergio Rajsbaum. An introduction to the topological theory of distributed

computing with safe-consensus. Electronic Notes in Theoretical Computer Science, 283:29 –

51, 2012. Proceedings of the workshop on Geometric and Topological Methods in Computer

Science (GETCO).

[38] Maxime Cordy, Andreas Classen, Patrick Heymans, Axel Legay, and Pierre-Yves Schobbens.

Model Checking Adaptive Software with Featured Transition Systems. pages 1–29. Springer

Berlin Heidelberg, 2013.

[39] Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio Gabbrielli.

Aiocj: A choreographic framework for safe adaptive distributed applications. In Benôıt

Combemale, David J. Pearce, Olivier Barais, and Jurgen J. Vinju, editors, Software Language

Engineering, pages 161–170, Cham, 2014. Springer International Publishing.

[40] Alexandre David, Kim. G. Larsen, Axel Legay, Mikael H. Møller, Ulrik Nyman, Anders P.

Ravn, Arne Skou, and Andrzej Wasowski. Compositional verification of real-time systems

using ecdar. International Journal on Software Tools for Technology Transfer, 14(6):703–720,

Nov 2012.

[41] C. Daws. Symbolic and Parametric Model Checking of Discrete-Time Markov Chains. In

Proc. 1st International Colloquium on Theoretical Aspects of Computing, volume 3407, pages

280–294. Springer, 2004.

[42] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson, Marin

Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M. Villegas, Thomas Vogel, Danny Weyns,

Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Desmarais,

Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Göschka, Alessandra Gorla, Vin-

cenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer, Antónia Lopes, Jeff Magee, Sam

Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro

Pezzè, Christian Prehofer, Wilhelm Schäfer, Rick Schlichting, Dennis B. Smith, João Pedro

Sousa, Ladan Tahvildari, Kenny Wong, and Jochen Wuttke. Software Engineering for Self-

Adaptive Systems: A Second Research Roadmap, pages 1–32. Springer, Berlin, Heidelberg,

2013.

[43] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor. Comput. Sci.,

34:83–133, 1984.

[44] Rocco De Nicola and Matthew Hennessy. Testing equivalence for processes. In Automata,

Languages and Programming, 10th Colloquium, Barcelona, Spain, July 18-22, 1983, Proceed-

ings, pages 548–560, 1983.

[45] Søren Debois, Thomas Hildebrandt, and Tijs Slaats. Safety, Liveness and Run-Time Refine-

ment for Modular Process-Aware Information Systems with Dynamic Sub Processes, pages

143–160. Springer International Publishing, Cham, 2015.

[46] Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. Self-

organization in multi-agent systems. Knowl. Eng. Rev., 20(2):165–189, 2005.

[47] Zuohua Ding, Yuan Zhou, and Mengchu Zhou. Modeling Self-Adaptive Software Systems

With Learning Petri Nets. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

46(4):483–498, April 2016.

BIBLIOGRAPHY 207

[48] Nicolas D’Ippolito, Vı́ctor Braberman, Jeff Kramer, Jeff Magee, Daniel Sykes, and Sebastian

Uchitel. Hope for the best, prepare for the worst: multi-tier control for adaptive systems.

In Proc. of the 36th International Conference on Software Engineering - ICSE 2014, pages

688–699. ACM Press, 2014.

[49] Igor Brasileiro Duarte. CSP-GRAMMAR. https://github.com/igorbrasileiro/CSP-

GRAMMAR, 2018.

[50] Hartmut Ehrig, Claudia Ermel, Olga Runge, Antonio Bucchiarone, and Patrizio Pelliccione.

Formal Analysis and Verification of Self-Healing Systems, pages 139–153. Springer Berlin

Heidelberg, 2010.

[51] Naeem Esfahani and Sam Malek. Uncertainty in Self-Adaptive Software Systems, pages

214–238. Springer, Berlin, Heidelberg, 2013.

[52] Yaser P. Fallah, ChingLing Huang, Raja Sengupta, and Hariharan Krishnan. Design of

cooperative vehicle safety systems based on tight coupling of communication, computing and

physical vehicle dynamics. In Proceedings of the 1st ACM/IEEE International Conference

on Cyber-Physical Systems, ICCPS ’10, pages 159–167, New York, NY, USA, 2010. ACM.

[53] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time Efficient Probabilistic Model Checking.

In Proc. 33rd International Conference on Software Engineering, pages 341–350, 2011.

[54] A. Filieri and G. Tamburrelli. Probabilistic Verification at Runtime for Self-Adaptive Sys-

tems. Assurances for Self-Adaptive Systems, 7740:30–59, 2013.

[55] Antonio Filieri, Giordano Tamburrelli, and Carlo Ghezzi. Supporting Self-Adaptation via

Quantitative Verification and Sensitivity Analysis at Run Time. IEEE Transactions on

Software Engineering, 42(1):75–99, jan 2016.

[56] Michael Fisher, Louise Dennis, and Matt Webster. Verifying autonomous systems. Commun.

ACM, 56(9):84–93, September 2013.

[57] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter Steenkiste.

Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer,

37(10):46–54, October 2004.

[58] Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, Adam Hujecek, Frantisek Plasil, and

Dominik Skoda. Strengthening adaptation in cyber-physical systems via meta-adaptation

strategies. ACM Trans. Cyber-Phys. Syst., 1(3):13:1–13:25, April 2017.

[59] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W. Roscoe.

FDR3 — A Modern Refinement Checker for CSP. In Erika brahm and Klaus Havelund,

editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 8413 of

Lecture Notes in Computer Science, pages 187–201, 2014.

[60] Heather J. Goldsby and Betty H. C. Cheng. Automatically Generating Behavioral Models

of Adaptive Systems to Address Uncertainty. In Model Driven Engineering Languages and

Systems, pages 568–583. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[61] Heather J. Goldsby, Betty H. C. Cheng, and Ji Zhang. Amoeba-rt: Run-time verification of

adaptive software. In Holger Giese, editor, Models in Software Engineering, pages 212–224,

Berlin, Heidelberg, 2008. Springer.

208 BIBLIOGRAPHY

[62] Thomas Göthel and Björn Bartels. Modular Design and Verification of Distributed Adaptive

Real-Time Systems, pages 3–12. Springer International Publishing, Cham, 2015.

[63] Thomas Göthel, Nils Jähnig, and Simon Seif. Refinement-Based Modelling and Verification

ofDesign Patterns forSelf-adaptive Systems, pages 157–173. Springer International Publish-

ing, Cham, 2017.

[64] M. Hachicha, R. B. Halima, and A. H. Kacem. Modeling and verifying self-adaptive systems:

A refinement approach. In 2016 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pages 003967–003972, Oct 2016.

[65] M. Hachicha, R. B. Halima, and A. H. Kacem. Formalizing compound mape patterns for

decentralized control in self-adaptive systems. In 2018 12th International Conference on

Research Challenges in Information Science (RCIS), pages 1–10, May 2018.

[66] Marwa Hachicha, Riadh Ben Halima, and Ahmed Hadj Kacem. Designing compound mape

patterns forself-adaptive systems. In Ajith Abraham, Pranab Kr. Muhuri, Azah Kamilah

Muda, and Niketa Gandhi, editors, Intelligent Systems Design and Applications, pages 92–

101, Cham, 2018. Springer International Publishing.

[67] Allen. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[68] Regina Hebig, Holger Giese, and Basil Becker. Making control loops explicit when architect-

ing self-adaptive systems. Proceedings of the second international workshop on Self-organizing

architectures, pages 21–28, 2010.

[69] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. J. ACM,

32(1):137–161, 1985.

[70] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.

[71] M. Usman Iftikhar and Danny Weyns. Towards runtime statistical model checking for self-

adaptive systems, 2016.

[72] Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli. Towards an assume-guarantee the-

ory for adaptable systems. In Software Engineering for Adaptive and Self-Managing Systems,

2009. SEAMS’09. ICSE Workshop on, pages 106–115, 2009.

[73] Yoshinao Isobe and Markus Roggenbach. Csp-provera proof tool for the verification of scal-

able concurrent systems. Information and Media Technologies, 5(1):32–39, 2010.

[74] Kenneth Johnson, Radu Calinescu, and Shinji Kikuchi. An incremental verification frame-

work for component-based software systems. In Proceedings of the 16th International ACM

Sigsoft Symposium on Component-based Software Engineering, CBSE ’13, pages 33–42, New

York, NY, USA, 2013. ACM.

[75] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36(1):41–50,

January 2003.

[76] Yonit Kesten and Amir Pnueli. A compositional approach to ctl* verification. Theoretical

Computer Science, 331(2):397 – 428, 2005. Formal Methods for Components and Objects.

[77] Narges Khakpour, Saeed Jalili, Carolyn Talcott, Marjan Sirjani, and MohammadReza

Mousavi. Formal modeling of evolving self-adaptive systems. Science of Computer Pro-

gramming, 78(1):3–26, November 2012.

BIBLIOGRAPHY 209

[78] Narges Khakpour, Marjan Sirjani, and Ursula Goltz. Context-based behavioral equivalence

of components in self-adaptive systems. In Shengchao Qin and Zongyan Qiu, editors, Formal

Methods and Software Engineering, pages 16–32, Berlin, Heidelberg, 2011. Springer.

[79] Annabelle Klarl. Engineering Self-Adaptive Systems with the Role-Based Architecture of He-

lena. In 2015 IEEE 24th International Conference on Enabling Technologies: Infrastructure

for Collaborative Enterprises, pages 3–8. IEEE, June 2015.

[80] Vasileios Koutavas and Matthew Hennessy. First-order reasoning for higher-order concur-

rency. Computer Languages, Systems & Structures, 38(3):242 – 277, 2012.

[81] Vasileios Koutavas and Matthew Hennessy. Symbolic bisimulation for a higher-order dis-

tributed language with passivation. In Pedro R. D’Argenio and Hernán Melgratti, editors,

CONCUR 2013 – Concurrency Theory, pages 167–181, Berlin, Heidelberg, 2013. Springer.

[82] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and Chris-

tian Becker. A survey on engineering approaches for self-adaptive systems. Pervasive and Mo-

bile Computing, 17:184 – 206, 2015. 10 years of Pervasive Computing In Honor of Chatschik

Bisdikian.

[83] W. H. Lim, N. A. M. Isa, S. S. Tiang, T. H. Tan, E. Natarajan, C. H. Wong, and J. R. Tang.

A self-adaptive topologically connected-based particle swarm optimization. IEEE Access,

pages 1–1, 2018.

[84] Malte Lochau, Stephan Mennicke, Hauke Baller, and Lars Ribbeck. Deltaccs: A core calculus

for behavioral change. In Part I of the Proceedings of the 6th International Symposium on

Leveraging Applications of Formal Methods, Verification and Validation. Technologies for

Mastering Change - Volume 8802, pages 320–335, New York, NY, USA, 2014. Springer-

Verlag New York, Inc.

[85] Iftikhar M. Usman and Weyns Danny. A case study on formal verification of self-adaptive

behaviors in a decentralized system. Electronic Proceedings in Theoretical Computer Science,

(Proc. FOCLASA 2012):45, 2012.

[86] Frank D Maćıas-Escrivá, Rodolfo Haber, Raul del Toro, and Vicente Hernandez. Self-

adaptive systems: A survey of current approaches, research challenges and applications.

Expert Systems with Applications, 40(18):7267–7279, December 2013.

[87] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing adaptive

software. Computer, 37(7):56–64, July 2004.

[88] Emanuela Merelli, Nicola Paoletti, and Luca Tesei. Adaptability checking in complex systems.

Science of Computer Programming, 115:23–46, 2016.

[89] R. Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall,

1989.

[90] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-

puter Science. Springer, 1980.

[91] Robin Milner. The Space and Motion of Communicating Agents. Cambridge University

Press, 2009.

210 BIBLIOGRAPHY

[92] Niall Moran. Croke Park: Sound and weather data monitor-

ing within a smart stadium — Microsoft Technical Case Studies.

https://microsoft.github.io/techcasestudies/iot/2016/10/28/CrokePark.html, 2017.

[93] G. A. Moreno, J. Cmara, D. Garlan, and B. Schmerl. Efficient decision-making under uncer-

tainty for proactive self-adaptation. In 2016 IEEE International Conference on Autonomic

Computing (ICAC), pages 147–156, July 2016.

[94] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Proactive self-

adaptation under uncertainty: a probabilistic model checking approach. In Proc. of the 2015

10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015, pages 1–12,

New York, New York, USA, 2015. ACM Press.

[95] J. Morse, D. Araiza-Illan, K. Eder, J. Lawry, and A. Richards. A fuzzy approach to qualifi-

cation in design exploration for autonomous robots and systems. In 2017 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6, July 2017.

[96] V. Nallur and R. Bahsoon. A decentralized self-adaptation mechanism for service-based

applications in the cloud. IEEE Transactions on Software Engineering, 39(5):591–612, May

2013.

[97] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant

for higher-order logic. Springer Science & Business Media, 2002.

[98] Pierluigi Nuzzo, Jiwei Li, Alberto L. Sangiovanni-Vincentelli, Yugeng Xi, and Dewei Li.

Stochastic assume-guarantee contracts for cyber-physical system design. ACM Trans. Embed.

Comput. Syst., 18(1):2:1–2:26, 2019.

[99] Charles L. Ortiz, Régis Vincent, and Benoit Morisset. Task inference and distributed task

management in the centibots robotic system. In Proceedings of the Fourth International

Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’05, pages 860–

867, New York, NY, USA, 2005. ACM.

[100] Rob Oshana. Chapter 1 - principles of parallel computing. In Rob Oshana, editor, Multicore

Software Development Techniques, pages 1 – 30. Newnes, Oxford, 2016.

[101] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition, 2013.

[102] L. Pasquale, C. Ghezzi, C. Menghi, C. Tsigkanos, and B. Nuseibeh. Topology Aware Adaptive

Security. In Proc. 9th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems, pages 43–48. ACM, 2014.

[103] Liliana Pasquale, Claudio Menghi, Mazeiar Salehie, Luca Cavallaro, Inah Omoronyia, and

Bashar Nuseibeh. SecuriTAS: A Tool for Engineering Adaptive Security. In Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering

- FSE ’12, page 1, New York, New York, USA, November 2012. ACM Press.

[104] . Piel, A. Gonzalez-Sanchez, H. Gross, and A. J. C. v. Gemund. Spectrum-based health

monitoring for self-adaptive systems. In 2011 IEEE Fifth International Conference on Self-

Adaptive and Self-Organizing Systems, pages 99–108, Oct 2011.

[105] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1997.

BIBLIOGRAPHY 211

[106] Roy S. Rubinstein and John N. Shutt. Self-modifying finite automata: An introduction.

Information Processing Letters, 56(4):185–190, November 1995.

[107] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-

lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2):1–42, May

2009.

[108] D. Sangiorgi and D. Walker. The Pi-Calculus - a theory of mobile processes. Cambridge

University Press, 2001.

[109] Davide Sangiorgi. From π-calculus to higher-order π-calculus — and back. In M. C. Gaudel

and J. P. Jouannaud, editors, TAPSOFT’93: Theory and Practice of Software Development,

pages 151–166, Berlin, Heidelberg, 1993. Springer.

[110] Bryan Scattergood. The semantics and implementation of machine-readable CSP. PhD

thesis, Citeseer, 1998.

[111] Bryan Scattergood and Philip Armstrong. Cspm: A reference manual, 2011.

[112] I. Schaefer and A. Poetzsch-Heffter. Compositional reasoning in model-based verification

of adaptive embedded systems. In 2008 Sixth IEEE International Conference on Software

Engineering and Formal Methods, pages 95–104, Nov 2008.

[113] A. Schmitt and J.-B. Stefani. The kell calculus: A family of higher-order distributed process

calculi. In C. Priami and P. Quaglia, editors, Global Computing, IST/FET International

Workshop, GC 2004, Rovereto, Italy, March 9-12, 2004, Revised Selected Papers, volume

3267 of Lecture Notes in Computer Science, pages 146–178. Springer, 2004.

[114] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,

February 2000.

[115] Andreas Schroeder, Sebastian S. Bauer, and Martin Wirsing. A contract-based approach to

adaptivity. Journal of Logic and Algebraic Programming, 80(3-5):180–193, apr 2011.

[116] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar. Opportunities and obligations for physical

computing systems. Computer, 38(11):23–31, Nov 2005.

[117] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. Pat: Towards flexible verification under

fairness. volume 5643 of Lecture Notes in Computer Science, pages 709–714. Springer, 2009.

[118] Daniel Sykes, Jeff Magee, and Jeff Kramer. Flashmob: Distributed adaptive self-assembly.

In Proceedings of the 6th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems, SEAMS ’11, pages 100–109, New York, NY, USA, 2011. ACM.

[119] Bent Thomsen. Plain chocs a second generation calculus for higher order processes. Acta

Informatica, 30:1–59, 1993.

[120] Christos Tsigkanos, Liliana Pasquale, Carlo Ghezzi, and Bashar Nuseibeh. On the Interplay

Between Cyber and Physical Spaces for Adaptive Security. IEEE Transactions on Dependable

and Secure Computing, PP(99), 2017.

[121] Christos Tsigkanos, Liliana Pasquale, Claudio Menghi, Carlo Ghezzi, and Bashar Nuseibeh.

Engineering topology aware adaptive security: Preventing requirements violations at run-

time. In 2014 IEEE 22nd International Requirements Engineering Conference (RE), pages

203–212. IEEE, August 2014.

212 BIBLIOGRAPHY

[122] W. M. P. van der Aalst, A. K. Alves de Medeiros, and A. J. M. M. Weijters. Process

equivalence: Comparing two process models based on observed behavior. In Proceedings of

the 4th International Conference on Business Process Management, BPM’06, pages 129–144,

Berlin, Heidelberg, 2006. Springer-Verlag.

[123] Pieter Vromant, Danny Weyns, Sam Malek, and Jesper Andersson. On interacting control

loops in self-adaptive systems. In Proceedings of the 6th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, SEAMS ’11, pages 202–207, New York,

NY, USA, 2011. ACM.

[124] Jun Wang and Gregory M. Provan. A comparative analysis of specific spatial network topo-

logical models. In Complex, 2009.

[125] Danny Weyns and M. Usman Iftikhar. Model-Based Simulation at Runtime for Self-Adaptive

Systems. In 2016 IEEE International Conference on Autonomic Computing (ICAC), pages

364–373. IEEE, jul 2016.

[126] Danny Weyns, Sam Malek, and Jesper Andersson. On decentralized self-adaptation: Lessons

from the trenches and challenges for the future. In Proceedings of the 2010 ICSE Workshop

on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’10, pages 84–93,

New York, NY, USA, 2010. ACM.

[127] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Chris-

tian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and Karl M. Göschka. On

Patterns for Decentralized Control in Self-Adaptive Systems, pages 76–107. Springer, Berlin,

Heidelberg, 2013.

[128] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of coop-

erative, autonomous vehicles in warehouses. In Proceedings of the 19th National Conference

on Innovative Applications of Artificial Intelligence - Volume 2, IAAI’07, pages 1752–1759.

AAAI Press, 2007.

[129] J. Wuttke, Y. Brun, A. Gorla, and J. Ramaswamy. Traffic routing for evaluating self-

adaptation. In 2012 7th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS), pages 27–32, June 2012.

[130] Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adaptive software.

In Proceeding of the 28th international conference on Software engineering - ICSE ’06, page

371. ACM Press, 2006.

[131] Y. Zhao, S. Oberthür, M. Kardos, and F.J. Rammig. Model-based Runtime Verification

Framework for Self-optimizing Systems. Electronic Notes in Theoretical Computer Science,

144(4):125–145, May 2006.

[132] Yongwang Zhao, Dianfu Ma, Jing Li, and Zhuqing Li. Model Checking of Adaptive Programs

with Mode-extended Linear Temporal Logic. In 2011 Eighth IEEE International Conference

and Workshops on Engineering of Autonomic and Autonomous Systems, pages 40–48. IEEE,

April 2011.

	Introduction
	Motivation
	Motivating Example: An Art Gallery
	Challenges
	[Dissertation Thesis]Research Question
	Contributions
	Limitations and Assumptions
	Organisation of the Dissertation

	Background
	Process Languages
	Communicating Sequential Processes (CSP)
	Semantic Models
	Algebraic Laws
	Tools Available

	Design of Self-Adaptive Systems
	Decentralizing the Adaptation Procedure
	Topology-Aware Self-Adaptive Systems

	Verification of Self-Adaptive Systems
	Design-time verification
	Runtime verification

	Other Related Work

	Abstract View of Self-Adaptive Systems
	Self-Adaptive Autonomous Vehicles
	Overview of the Modelling Framework
	Self-Adaptive Automata
	Adaptation Automata

	Refinement-based Verification
	Translation to CSP

	Expressiveness of Self-Adaptive [Systems]Automata
	[Discussion]Summary

	A Methodology for Modelling and Verifying Self-Adaptive CPSs
	The Methodology
	The Process Language ACSP
	Next Chapters

	Steps 2 & 3: Exploring Adaptation Procedures and ACSP Encoding
	The Cluster
	Adaptation Procedures Encoding

	Modelling the Art Gallery Example
	[Discussion]Summary

	Step 4: Verification of Requirements in Isolation
	Theory of the Verification Technique
	Well-formed Processes
	Translation into CSP
	Verification Results for the ACSP Process Language

	First Evaluation of the Verification Technique
	[Discussion]Summary

	Step 5 & 6: Composition and Re-verification of Overlapping Adaptation Procedures
	Examples
	Cluster Composition
	The merge Operation
	What needs to be re-verified?
	Composing multiple overlapping Scopes

	Cluster Composition in the Art Gallery
	The Exhibition Area
	The Access Point
	The Restoration Area
	The entire Art Gallery

	Revisiting the Evaluation of the Verification Technique
	[Discussion]Summary

	A Translation Tool from ACSPM to CSPM
	The Concrete Syntax for ACSPM
	Environment Generation
	Well-formedness Checking
	Translation
	Tool Validation
	[Discussion]Summary

	Case Study: A Smart Stadium
	Evaluation [Hypothesis]Criteria
	A Smart Stadium
	Challenges

	Step 1: Modelling the CPS
	Step 2-4: Encoding a Section with Adaptive CSP
	Steps 5-6: Composing and Reverification of Overlapping Adaptation Procedures
	Composition of SA to SG

	Scalability of Verification
	Discussion

	Conclusions
	Summary
	Future Work

	Proofs for Self-Adaptive Automata
	Proofs for Verification Technique
	Encoding for the Art Gallery Case-Study
	Encoding for the Smart Stadium Case-Study

