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The solution of complex many-body lattice models can often be found by defining an energy functional of the
relevant density of the problem. For instance, in the case of the Hubbard model the spin-resolved site occupation
is enough to describe the system’s total energy. Similarly to standard density functional theory, however, the
exact functional is unknown, and suitable approximations need to be formulated. By using a deep-learning neural
network trained on exact-diagonalization results, we demonstrate that one can construct an exact functional for
the Hubbard model. In particular, we show that the neural network returns a ground-state energy numerically
indistinguishable from that obtained by exact diagonalization and, most importantly, that the functional satisfies
the two Hohenberg-Kohn theorems: for a given ground-state density it yields the external potential, and it is fully

variational in the site occupation.
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I. INTRODUCTION

Density functional theory (DFT) [1] is today the most
widely used method for computing the electronic structure
of solids and molecules, and it finds widespread applications
in physics, chemistry, biology, and materials science. The
success of DFT has to be attributed to its solid theoretical
foundation, contained in the Hohenberg-Kohn theorems [2],
in a clear pathway to a practical implementation, formulated
in the Kohn-Sham equations [3], and to the possibility of
constructing a hierarchical ladder of approximations for the
energy functional [4]. Although DFT has been developed to
solve the problem of N electrons and M nuclei interacting
through the long-range Coulomb potential, one can formulate
DFT-type approaches also for many-body lattice models [5].
In this case, the electron density is replaced by an appropriate
density defined on the lattice, which becomes the fundamental
quantity of the theory. For instance, the local on-site occupa-
tion, {n;, }, is the relevant density of the Hubbard model. This
is the expectation value of the number operator, #1;,, = clT(, Cio»
with CL (ciy ) being the fermionic creation (annihilation) oper-
ator at site i for spin o = 1, |. In the lattice DFT framework,
the equivalents of the two Hohenberg-Kohn theorems can be
demonstrated.

The interest in lattice DFT is twofold. On the one hand, it
provides a scalable numerical platform to investigate strongly
correlated inhomogeneous systems as they approach the ther-
modynamic limit [6,7]. This is because the DFT computa-
tional effort scales as the local density, i.e., it is linear with the
number of sites. On the other hand, it allows one to explore
fundamental questions common to any density functional
theory, such as the choice of the reference system in the
construction of the energy functional [8], the origin of the
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Mott gap [9], the effects of strong correlation in quantum
transport [10-12], and the extension to the time domain
[13—15]. For some lattice models, exact solutions exist. These
typically concern the homogeneous case [16], but they do not
generalize to the inhomogeneous one [17]. Importantly, lattice
DFT offers the ideal theoretical framework to treat on the
same footing both the homogeneous and the inhomogeneous
problem, as we are now going to explain.

Let us consider, as an example, the standard one-
dimensional Hubbard model. The Hamiltonian operator reads

Ay =T+0+) v, (1)
io
where 7 = —t Zio.(éj;lqaéi(r + 6;6,~+1,(,) is the kinetic en-

ergy with hopping parameter 7, U = U Y i fipfyy is the
Coulomb repulsion of strength U > 0, and the last term
describes the interaction with an external potential {v;}. If
v; = vy for every site i, one has the homogeneous case. The
first Hohenberg-Kohn theorem establishes the existence of an
energy functional,

El{nio}] = Fl{nis)l + Y _ niovi, )

Fl{nio}] = (¥|T + U|W), 3)

where F[{n;,}] is universal and independent from the external
potential, v;. This means that there is a one-to-one corre-
spondence between the density and the external potential,
namely the knowledge of the former is enough to uniquely
determine the latter. Since the functional is universal, lattice
DFT can be applied identically to both the homogeneous and
the inhomogeneous problem. Note that for this lattice model
F[{ni;}] is universal only for a given T and U operator. This
has some important consequences. For instance, even in one
dimension, arranging the sites in a ring or in a chain geometry
yields two different 7’s. This means that F[{n,,}] for a ring
is different from F[{n;,}] for a chain, even if both ¢ and U
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remain the same. Finally, the second Hohenberg-Kohn theo-
rem guarantees that the energy functional is minimized at the
ground-state density, {n$%}, to yield the ground-state energy,
ESS, namely E[{n;,}] > E[{n$5}] = ECS. The advantage of a
DFT approach to the Hubbard model is that the ground-state
energy is determined only by the spin-resolved site occupa-
tion, namely by a 2L-dimensional vector, where L is the total
number of sites. In contrast, the many-body wave function has
dimension d = (£)(&) with (£) = where n° is the
number of electrons with spin o.

As for standard DFT, even in the lattice case the exact func-
tional is not known and approximations need to be formulated.
These vary depending on the specific problem and usually
proceed by interpolation from known exact solutions. Here
we take a completely different approach, and we construct an
exact functional by using a machine learning model trained on
exact-diagonalization results. Machine learning (ML) models
form a large class of algorithms, which have been traditionally
used for data processing and analysis. Recently, these numer-
ical techniques have found a common place in many-body
problems [18], phase transitions [19-21], Green’s functions
calculation [22], and in the solution of single-particle prob-
lems in an arbitrary potential [23].

The main motivation behind our work is thus to show that
such an ML functional can be constructed. This means that
we will establish an exact one-to-one relation between the
site occupation and the total energy, and we will numerically
demonstrate that this satisfies the two Hohenberg-Kohn the-
orems. Notably, here we will not proceed by mapping the
exact system onto an effective noninteracting one, as is done
in the conventional Kohn-Sham approach [3], but rather we
will construct a so-called orbital-free DFT [24]. The paper is
organized as follows. In the next section, we will introduce our
procedure for constructing the ML functional, including the
definition of the training and test sets and a brief description
of the ML algorithms used. Then we will discuss our results,
demonstrating the validity of the two Hohenberg-Kohn the-
orems. Finally, we will conclude and discuss the limitations
and outlook of our approach.

L!
n!(L—n)!’

II. METHODS

“Supervised” ML algorithms construct a one-to-one cor-
respondence between vectors or between vectors and scalars.
We can then formulate the search for the energy functional as
a ML problem, i.e., we can search for a function, fyy, which
associates to a given density (the vector of site occupation
{ni;}) the corresponding energy. In particular, our strategy
consists in solving exactly the many-body problem for a set of
different randomly chosen external potentials, {v;}, and then
to use the calculated ground-state density and ground-state
energy to define the ML model. In practice, we compute

fML : ic

{nGS} — EOS — ansvi = (\DGS|f" + U|\IIGS),
4)

where |WYS) is the many-body ground-state wave function of
Hy . The fact that we use a set of random external potentials

effectively allows us to explore a broad range of densities, and
hence to map accurately the functional.

We apply our strategy to the one-dimensional Hubbard
model for a system of L = 8 sites arranged in a ring geom-
etry (periodic boundary conditions). Furthermore, we restrict
ourselves to the paramagnetic quarter-filling case, where the
total number of electrons is N = 4 and we have Ny = N, = 2.
To fully determine the model, we set [25] U =4 and ¢ = 1,
and, as mentioned before, we construct the dataset for the
ML model by exact diagonalization [26]. The random external
potential is taken according to a uniform distribution with v; €
[—W, +W]. In particular, we have constructed several external
potential distributions with W varying between 0.005¢ and
2.5¢. Furthermore, in order to prevent the dataset from having
large fluctuations in the total energy, we neglect potentials
yielding to total energies 0.15¢ larger than that of the homoge-
neous case. Note that the SU(2) symmetry of the problem and
the condition Ny = N, also guarantee that the local site occu-
pation remains spin-unpolarized, i.e., we have n;;y = n;. This
means that in the special case investigated here, the functional
depends only on one of the two spin densities, for instance on
{ni1}, which is solely used to construct the ML model.

To increase the size of the dataset without performing
further exact-diagonalization steps, we include configura-
tions obtained from the calculated ones by applying the
allowed symmetry operations. In particular, for any poten-
tial v; the mirror-symmetric potential v; — vy, —; yields a
mirror-symmetric charge density with identical total energy. A
similar situation applies to potentials obtained by translation,
namely v; — v;4. Examples of the charge-density profiles
obtained with such symmetry operations are presented in the
inset of Fig. 1. The addition of such configurations drastically
improves the ML model. The improvements have two main
origins. On the one hand, the dataset is larger. On the other
hand, the inclusion of the degenerate configurations allows the
model to learn about the symmetries of the system.

In the construction of the ML model, the dataset is split
into four mutually exclusive subsets. The training set, con-
taining 52 500 samples, not including samples generated by
applying symmetries, is used to train the model. The vali-
dation set, containing 26 250 samples, is employed to select
the best ML model. The test set, also containing 26250
samples, serves to estimate the generalization error of the
model, namely how well it performs on new data never
seen before. Finally, we set aside 100 configurations to test
the gradient descent scheme for the demonstration of the
second Hohenberg-Kohn theorem. These latter configurations
are chosen uniformly over energy such that the entire range is
explored.

The choice of ML model proceeds in two steps. First, we
test several different neural network architectures and choose
the best performing architecture on the validation set. Second,
the validation set is employed again to determine how many
epochs the model must be trained for (in each epoch the entire
training set is used to update the model). For an overestimated
number of epochs, the neural network becomes accustomed
to the training set and will not be able to generalize well.
In contrast, if the number of epochs is underestimated, the
model will fail to learn any complex relationships between
the feature vectors and the targets.
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FIG. 1. Structure of the data used to construct the ML model.
We plot the ground-state total energy as a function of the Euclidean
distance of the corresponding charge density with respect to that of
the homogeneous case, n;, = 1/4, for a large selection of external
potentials, {v;}. The total energy is measured with respect of that of
the v; = 0 case, which corresponds to E homo — F[{1/4}]. Note that
the data points in the main plot are those generated numerically, and
they do not take into account the symmetries of the system. In the
inset, we show examples of charge densities constructed from a given
one (dashed line) by applying the symmetry operations of the system:
mirror symmetry (blue line) and translational symmetry (green line).

The structure of our dataset is presented in Fig. 1. In the
figure, we plot the ground-state total energy as a function of
the Euclidean distance of the corresponding charge density
with respect to that of the homogeneous case, n;,, = 1/4.
Larger Euclidean distances are associated with the choices of
external potential with larger fluctuations. As expected, the
distribution of total energies gets broader as the deviation from
the homogeneous case gets larger. Note that the homogeneous
case, v; = 0, is associated with the minimum of the distribu-
tion, where we have EGS = F[{1/4}].

Having tested a few ML models, we have opted for a
convolutional neural network, which is found to perform
better than standard neural networks [27]. All the machine
learning algorithms have been implemented by using the
KERAS PYTHON package [28]. In the convolutional neural
network, in order to fully capture all the information, we
extend each of the occupation vectors by adding their first
k — 1 components to the end of the vector, thus creating
an (L + k — 1)-component-long vector. Here k is the size of
the one-dimensional convolution window, in our particular
case k = 3. Since the convolutional neural network slides the
kernel window over the feature vector by choosing k elements
at the time, such a prescription guarantees that there are kernel
windows, which contain both the first (k — 1) elements and the
last one of the on-site occupation. The convolutional neural
network used has eight convolutional filters, followed by two
fully connected layers each with 128 units, and finally an out-
put layer. The loss function used to construct the convolutional
neural network is the mean-squared error, and the optimizer is
the Adam algorithm.
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FIG. 2. Numerical accuracy of the ML model measured by the
residuals, namely the difference between a predicted quantity and
its exact value. In the upper panel, we show the residual of fy
as a function of the corresponding exact-diagonalization result for
the entire test set. The model is almost indistinguishable from
the exact results, demonstrating that fy_ is the exact functional. The
mean absolute error is 0.0002z, namely it is about 0.02%. In the
middle panel, we present a numerical demonstration of the first
Hohenberg-Kohn theorem. The residual of the external potential at
site i = 2, measured with respect to that at site i = 1, ¥, = v, — vy,
is plotted against the exact value for the entire test set. The mean
absolute error is 0.0017. Similar curves can be obtained for the
other on-site energies. The lower plot shows the relative deviation
of the ML potential from the exact one, Y- |58 — gML| /N, as a
function of the potential corrugation, N = ||p<**!||.

III. RESULTS AND DISCUSSION

The accuracy of our ML model can be appreciated by
looking at the upper panel of Fig. 2, where we present
the residual of the predicted F[{n$5}], namely FS5 — f,
calculated over the test set against the predicted results. From
the figure it can be clearly appreciated that the ML model is
almost indistinguishable from the exact functional. Its mean
error over the entire test set is in fact 0.0002¢, i.e., it is of the
order of 0.02%. This remarkable accuracy confirms that the
functional has been fully learned by our ML model.

We now proceed to demonstrate that the ML functional,
JfMmL, satisfies both of the Hohenberg-Kohn theorems. The
first Hohenberg-Kohn theorem states that the ground-state
density uniquely determines the external potential up to a
constant [2]. To numerically demonstrate the theorem, we take
the convolutional neural network constructed before and we
generate as an output a seven-component vector. This contains
the external potential, namely the on-site energies {v;}, which
are measured by imposing that the potential of the first site
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is v; = 0. Such a constraint ensures that all the potentials
are determined with the same constant. In other words, our
constant-rescaled external potential is the vector

V=(v —v;,v3—V1,...,0L —Vp).

(&)

The numerical proof of the first Hohenberg-Kohn theorem
is presented in the middle panel of Fig. 2, where we compare
the residual of the first component of ¥, namely ¥ = v, —
v, against the exact results. As before, the agreement over
the entire test set is nearly perfect with a mean absolute error
(MAE) of 0.001¢. Similar agreements are found for the other
on-site energies. Furthermore, in the lower panel of Fig. 2 we
show the relative deviation of the entire external potential as a
function of the potential corrugation. This is defined as

S et — o

| | f)exact | |

MAE/N = , 6)
where the normalization constant is the potential corruga-
tion N = [|[99%| = Y°F " [pexect — gt Clearly our ML
functional delivers a potential that is within 1% of the exact
one. The only deviations are found near ||7**!|| = 0, namely
around the homogeneous case, where the error arises from
the vanishingly small normalization factor. Overall one has
to conclude that 0.0017 is the absolute precision of our ML
model to determine the external potential and 1% is the
relative one.

Finally, we proceed to demonstrate the second Hohenberg-
Kohn theorem, i.e., we show that the ground-state energy can
be found as the minimum of the universal functional at the
ground-state density. Strictly speaking, this information was
not explicitly used in the construction of our ML functional,
since fiy interpolates only at the ground state and not around
it. However, since our dataset includes a vast number of exter-
nal potentials, it includes a vast number of different densities.
As such, fy has been de facto constructed by extensively
exploring the entire density landscape. The minimization of
the energy functional (2) is carried out by gradient descent
[27]. The generic derivative of E[{n;,}] reads

oE + a
= V;
8}’ljo—f I 8nj(,/

Fl{nic}1, (N
where the gradient of the ML model, F[{ni}] = fmL, is
estimated by using second-order finite differences. The search
for the minimum must also satisfy two conditions, namely
0 < nj; <1 and particle conservation, Zf:l nj; = N,. The
first condition is imposed by simply halting the gradient
descent algorithm whenever it is violated. In contrast, the
second one is enforced by normalizing the occupations after
each update.

The accuracy of the computed site occupations is
measured as

on = Z|nm—n?;“‘!2=ﬁ\/m > ©

where n{¥* is the exact site occupation, and the second
equality follows from n;y = n;;. Similarly, we compute the
difference in energy from the reference system. In particular,
we perform two tests. In the first one, we set the external
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FIG. 3. Numerical demonstration of the second Hohenberg-
Kohn theorem. The top two panels show the error in the final
converged energy (left) and density (right) [see Eq. (8)] as a function
of the distance of the initial quantity from the exact one. Note that
when searching for the homogeneous density/energy (blue dots),
the gradient descent algorithm appears more accurate than when
looking for the inhomogeneous one (green dots). The two lower
panels show examples of the converged occupations when searching
for the ground-state density of either the homogeneous (left) or the
inhomogeneous (right) system.

potential to v; =0 and search for {n;,,} and F[{n;}] cor-
responding to the homogeneous case starting from a ran-
dom nonhomogeneous occupation. In the second one, we
start from the homogeneous occupation and test the conver-
gence to {ngs} corresponding to the inhomogeneous poten-
tial v; # 0. Such an exercise is performed over the gradient
descent set (100 samples), and the results are presented in
Fig. 3.

The two top panels demonstrate that fy is variational. In
these we show the difference in the energy (left-hand side
panel) and site occupation (right-hand side panel) between the
expected exact values and that found by gradient descent with
respect to their initial value. This effectively explores how
well fy has learned about the energy functional landscape,
and it looks at how close it converges to the ground-state
energy and occupation as a function of how far the initial
occupation/energy was. We use blue dots when searching for
the ground state of the homogeneous case, and green ones
for that of the inhomogeneous case. If fy is exact, all dots
will be on a horizontal straight line at zero. In general, we
find that the ground-state quantities (energy and density) are
reached within a few percent regardless of their initial value.
When searching for the ground state of the homogeneous
system, the error is minimal and almost independent from
the initial condition. In contrast, the search for {ngs} and ECS
corresponding to an inhomogeneous potential is less accurate,
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and the average error grows linearly with the distance of the
initial occupation to the exact one.

The two lower panels instead display two examples of
converged site occupation. The left-hand side panel shows
that one can recover the homogeneous occupation when the
gradient descent starts from an inhomogeneous one, while
that on the right-hand side depicts the opposite, namely that
an almost exact inhomogeneous occupation can be found by
starting from the homogeneous one.

IV. CONCLUSION AND OUTLOOK

We have used here machine learning to construct the exact
energy functional for the inhomogeneous Hubbard model.
This is provided by a convolutional neural network con-
structed over exact results obtained by exact diagonalization.
The functional appears numerically indistinguishable from
the exact solutions and satisfies both of the Hohenberg-Kohn
theorems, namely it establishes a one-to-one correspondence
between the site occupation and the external potential, and it
is variational.

The present functional is constructed for the quarter-filling
diamagnetic case, but the same procedure can be applied
to other filling factors, including the possibility to describe
magnetic ground states. These ML models, when combined,

effectively define an exact universal functional, which extends
to any filling factor. More difficult is the extension to an
arbitrary number of sites. As mentioned in the Introduction,
the kinetic energy and Coulomb repulsion operators change
as the number of sites L varies. This means that, strictly
speaking, one has to construct a new functional for any
L. Clearly this is a limitation of our approach. A possible
solution to such a problem consists in introducing semilocal
functionals, where the energy at a given site depends only on
the site occupation at that site and its neighborhood. In this
case, one can construct the functional from the dataset of an
L-site ring and use it for larger rings.

In conclusion, our results demonstrate that ML can be used
to define exact density functional theories, and it may have
the potential to be expanded to other lattice and continuous
models.
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