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Abstract

Next generation Wireless Sensor Networks will operate as self-regulated ad hoc networks of tiny 

devices that sense, actuate and coniinunicate in a collaborative fashion. These networks will also be 

required to operate in an autonoinous and decentralised manner. Data distribution capabilities will 

facilitate the replication of data elements to multiple, disparate devices in the network. To achieve 

these goals, a communications infrastructure capable of efficiently scaling and reliably disseminating 

data to a (sub)set of consumer nodes in a wireless sensor network is reciuired.

This thesis presents the design, implementation and evaluation of Tiny Torrents; a novel com­

munications architecture for selective data dissemination in scalable, unstructured wireless sensor 

networks. The Tiny Torrents framework supports mechanisnis for selective data j)u.shing and i)ulling 

within the sensor network, and to and from the Internet. The architecture is comprised of a data 
distribution layer, the Tiny Torrents protocol, sitting on top of a reliable routing protocol. The 

cross-layer design employs data-centric dissemination and addres.s-centric routing to eidiance the 

versatility of the communications process. Tiny Torrents employs peer-to-peer content distribution 

concepts to efficiently distribute pieces of data amongst the overlay of consumer and producer nodes. 

Network traffic burden is balanced amongst consumers and producers.

A reactive routing protocol (UMG) has been developed to complement the Tiny Torrents protocol. 

UMG employs gradient routing concepts to provide? reliable end-to-end delivery, data-centric routing 

capabilities and service advertisement and discovery. Additionally, UMG is robiLst to moderate 

mobility of nodes in the network.

The Tiny Torrents system has been evaluated under a variety of network conditions and scenarios 

via simulation. Tiny Torrents, using UMG as a routing substrate, has been shown to be reliable, 

scalable, and capable of distributing data in a fair and efficient manner across the network. The 

communication architecture has then been evaluated in a real-world testbed comprised of 64 telosB 

nodes with .similarly succe.ssful results.
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Glossary

• Ad Hoc Networks - The term refers to a collection of wireless devices which cooperate to 

establish network connections for specific purposes. In this type of network, nodes act as 

routers of packets.

• Flash Crowd Problem - This problem arises when a resource achieves sudden unexpected 

popularity, resulting in excessive demand on the provider, which might have an imj)act on the 

performance of the node.

• Hot Spot Problem - This problem arises when a node becomes popular in the network thus 

receiving a higher number of targeted packets than the rest of the nodes within its area.

• Interest - This term is employed in this thesis to refer to the tyi)e of data a node provides 

or wishes to acquire. The interest of a node is dehned via the u.se of human-readable tags 

encapsulated in efficient memory structures (descriptors). A Torrent hie contains a descriptor 
of the data.

• Local Mobility - The term refers to a node changing position within the boundaries of a 

limited area such that the wireless connectivity with its neighbours still remains or demonstrates 

an intermittent behaviour.

• Mote - The term was coined by researchers working on the NEST Project at UC Berkeley, 

including David Culler and Kristofer Pister, and is employed to refer to a wireless sensor node. 

The terms “Node” and “Mote” are used interchangeably in this thesis to refer to a wireless 

sen.sor device.

• Network Partition - The term refers to the situation where some nodes in an area of the 

network get disconnected from the rest of the network. This can occur when a node, or set of 

nodes, acting as the link between areas fail or their energy is depleted.



• Network Traffic Load Balancing - The term refers to the fair distribution of {jackets sent 

and received in the network by the subset of nodes participating in the connnunication. The 

goal is to more evenly distribute packets to reduce the burden in areas, routes or nodes. This 

can help avoid the Hot Spot and/or Flash Crowd Problems.

• SensorNet - The term is used as an alternative name for Wireless Sensor Network and de­

scribes a network comprised of sensor devices (Motes).

• Service - The concept of Service in this thesis is employed to dehne any resource {provided by 

a node; this includes data hies or resource availability information aljout other nodes.

• Swarm (of a Torrent) - This is the list of peers (nodes) in the network which contain pieces 

of the data hie represented by a given Torrent.

• Torrent - In this thesis, the term refers to a specihe tyijc of structure in the Tiny Torrents 

protocol employed to describe a particular data hie using metadata. It resembles the torrent 

hies employed in f.he BitTorrent protocol.

• TT - Refers to TinyTorrents. It can be used as an acronym for the TinyTorrents framework 

or the TinyTorrents ijrotocol.

• UMG - Refers to the Ubiquitous Mobile Gradient routing protocol.

XIX



Chapter 1

Introduction

Wireless Sensor Networks (W'SNs) are a particular realisation of wireless technologies characterised 

by the use of small, low power, low data rate, wireless devices with sensing and actuating capabilities. 

WSNs enable the monitoring of environmental conditions and infrastructures in a pervasive manner. 

In effect, the range of applications of traditional wired sensor technologies is extended through the 

use of small unobtrusive wireless devices which may also form ad hoc networks. However, WSN 

tecdmologies raise issues that have to be carefully addressed for the technology to be fully adopted 

and integrated in our daily life. The main challenges come from the constrained characteristics of 

the wireless sensor devices, also known as “motes”. Motes are devices with short communication 

ranges, low data transmission rates and limited processing power and memory. They are commonly 

energy constrained as they are battery powered. Additional constraints include the noisy nature of 

the wireless medium and the unattended nature of the devices and applications.

Extensive research has been carried out over the last decade which has proposed a variety of com­

munication architectures, protocols and mechanisms at various layers of the network stack. However, 

research has not yet unlocked the full potential of the technology, as envisioned by many authors in 

the late 90’s.

Next-generation Wireless Sensor Networks will involve self-regulated networks of static and tran­

sient motes behaving as autonomous colonies - sensing, acting and communicating in a collaborative 

way. Pervasive networks of co-operative tiny mobile wireless devices, capable of interacting with 

the environment is an emerging research challenge in ubiqtiitous computing and will definitely con­

tribute to advancing the vision of ambient intelligence. “Ambient intelligence is the vision of a 

technology that will become invisibly embedded in our natural surroundings, present whenever we
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need it, enabled by simple and effortless interactions, attuned to all our senses, adaptive to users 

and context-sensitive, and autonomous [1]'’. In this regard, one of the main goals is to transparently 

connect WSNs to the Internet such that WSNs can also be globally inter-connected. When trans­

parently connected to the Internet, WSN nodes will be easily accessible to any user in any network, 

including via mobile cellular networks.

WSNs should also be capable of operating autonomously in a decentralised distributed fashion. 

For this purpose, a Wireless Sensor Network, may operate as a distributed data storage system, pre­

serving data for later upload to other nodes, or to the Internet, from different points in the network. 

For this purpose, data needs to be distributed to multiple points in the WSN to reduce the risk 

of data being lost in the event of devices or entire areas failing or becoming disconnected. This is 

something which could occur due to the error-prone wireless medium, the limited energy of motes, 

and/or the unreliable physical conditions of the environment where motes can be deployed. For 

instance, consider a scenario where sen.sors are tracking and monitoring glaciers which might sud­

denly break into smaller ice blocks. Climate scientists might be interested in i)eriodically retrieving 

data from those small separated ice blocks. To achieve such a level of data distribution, a reliable 

data dissemination protocol is required which distributes data replicas over the network to a set 

of nodes. This goal necessitates a communications architecture composed of a set of reliable and 

efficient protocols capable of providing fault tolerant decentralised data distribution in unreliable 

wireless sensor networks. This thesis addresses the design, implementation and evaluation of such a 

communications architecture.

The remainder of this chapter is structured as follows: Firstly the main features of the proposed 

communications framework are introduced and the research domains, where the contributions of 

this thesis lie, are identified. The research rationale of the work presented is then explained in the 

context of the WSN domain. Next, the design issues addre.ssed and underpinning assumptions are 

presented. The contributions of this thesis follow. Finally, a summary of the thesis is provided and 

directions for future work discussed.
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1.1 A Novel Peer-to-Peer Data Distribution Framework

The TinyTorreiits (TT) framework is presented in this thesis, a communications architecture which 

provides the substrate for the development of the next generation of co-operative decision-making 

applications for wireless sensor networks. TinyTorreiits challenges the rather narrow, commonly held, 

perception of a WSN as a network of devices with sensing capabilities which retrieve data, fuse it, and 

send it to a network gateway to be stored or utilised. This is achieved by leveraging existing Peer-to- 

Peer (P2P) content distribution concepts from wired and wireless networks. TinyTorreiits employs 

P2P data distribution systems to efficiently distribute data globally and inside the sensor network. 

In this sense, the TinyTorreiits framework can be viewed as being composed of two elements:

• the Gateway-Internet side, which transparently integrates the WSN to the global BitTorrent [2] 

network, thus leveraging all the benefits that P2P content distribution solutions offer for global 

data dissemination, and

• the Wireless Sensor Network side, where a reliable and decentralised cornmunicatioiis system 

for selective data dissemination over multi-hop WSN has been designed which employs concepts 

from the BitTorrent content distribution protocol.

The coiifributions of this thesis reside in the Wireless Sensor Network side. Here a selective 

data dissemination protocol for reliable data distribution in sensor networks is presented as the 

TinyTorreiits protocol (see Chapter 5). The TinyTorreiits protocol employs BitTorrent-like P2P 

comniunicatlon iiiechanisms to replicate data amongst nodes in a efRcient. reliable and scalable 

manner across the WSN. The TinyTorreiits protocol cannot work in isolation - it needs to operate 

above a suitable routing mechanism. For this purpose two routing protocols have been designed to 

provide the wireless network communications required by the paradigm of data distribution in sensor 

networks. The first protocol is called Tiny Hop [3], which is an oii-demand, end-to-end, flat-topology, 

reliable routing protocol. The second protocol is called Ubiquitous Mobile Gradient (UMG) (see 

Chapter 4) and introduces iinjirovements with respect to TinyHop by using the concept of gradients 

in such a way as f o achieve efficient P2P communication. UMG also introduces an efficient lookup 

mechanisni to support content distribution techniques in Tiny Torrents and is designed to work in an 

environrnent where nodes can experience moderate mobility.

The Tiny Torrents framework transparently disseminates and replicates sensor data on a global 

scale via the Internet. For this purpose, the Gateway-Internet side of the TinyTorreiits framework 

connects to the Internet BitTorrent network via the use of gateway devices iinplenienting a cus­

tomized plug-in for Vuze, a popular BitTorrent Client/Server application. When data is routed out

3
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of the WSN, all the benefits of P2P dissemination can be employed to distribute data over the Inter­

net - including Web 2.0 services and R.SS feeds. In tlissendnatiug data across networks on a global 

basis, TT conforms to the “Infrastructure as a Service” (laaS) capability set required for cloud com­

puting deployments. The Tiny Torrents framework is intended to target a broad range of application 

scenarios where a generic, stable, robust and fault tolerant communications platform provides the 

framework for the development of tailored application domain solutions.

1.2 Research Rationale

Much of the research in wireless sensor networks tackles the problem of data dissemination from the 

perspective of the initiator of the communication; i) source-to-sink, i.e i)ushing or ii) sink-to-node 

i.e. pulling. A sink node pulls data by sending a request to the source node. However, a source 

node may decide to push data to the sink at any given time. Pushing data towards a sink, or set of 

sinks, can be seen as a data collection process. Sinks can be placed at different points in the network 

for continuous collection or can act as opportunistic or nomadic points of collection which move to 

another area once data has been retrieved. Nomadic mobile sinks are sometimes known as data 

mules. Sink nodes usually have more resources and can communicate with other networks such as 

the Internet. Hence they are employed as gateways to j)erforni pulling activities over the WSN and 

to push data outside the WSN. For reconfigurable systems, pushing data into the sensor network is 

employed for programming purposes where the goal is to reliably deliver big chunks of data to all, or 

mo.st of the nodes, in the network; this is traditionally achieved in a hop-by-hop e])idemic manner.

Considering WSNs will cooperate as a set of sensor and actuator nodes taking decisions and 

performing actions based on distributed data, a versatile communications architecture is reciuired. 

Pushing and pulling data from any point in the sensor network is necessary such that nodes receive 

up-to-date information on its surroundings for collaborative decision making. Moreover, data may 

need to be replicated and disseminated so that the sensor network acts as a distributed storage 

medium; this avoids data loss, increases data integrity, makes the network fault tolerant, allows for 

efficient and reliable data collection from any point, and reduces the appearance of the hot sj)ot and 

flash crowd problems. Storing data at rmdtiple points gives the sensor network a degree of autonomy 

when performing data collection, where data can be retrieved from different points at a later stage, 

while also enables decision making based on historical tlata. However, nodes should decide whether 

to participate in the dissemination and storage process according to their capabilities or the status 

of their resources. In addition, when a node needs to communicate to a distant area within the
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same WSN, or to another WSN, backbone networks, such as the Internet, should be employed when 

possible. For instance, nodes sensing and act ing a wide area niiglit require to i)e aware of certain 

events and data i)roduced at 30 liops away. A backljone network could be used to transparently 

pusli data close or into the recpiesting area via gateway nodes placed at any point in the network. 

However, when a gateway is not accessible, a dissemination process will be required to reliably push 

data towards disparate areas.

Considering the above, this thesis presents the Tiny Torrents communications architecture for 

selective data pushing and pulling within a wireless sensor network and to and from the Internet. 

Although the Tiny Torrents framework is develojjed in the document, the major contributions of this 

thesis lie in the area of selective data dissemination and routing for wireless sensor networks. A 

routing protocol, UMG, and a data distribution protocol, the TinyTorrents protocol, are proposed 

as the communications architecture required to accomplish the WSN-side collaborative scenario 

presented above.

1.3 Assumptions and Design Issues

The following list of assunii)tions and design issues help to scaffold the design of the system rather 

than bound it.

• Common scenarios for WSNs may include a low number of nodes changing neighbourhood, 

t hat includes sink nodes, with a relatively low speed, e.g. a person walking or even jogging. 

Therefore, support for mobility needs to be in place taking into consideration that a WSN is 

not a vehicular ad-hoc network. However, vehicular networks could make use of the WSN for 

opportunistic data commnnication.

• Nodes do not eni])loy a system to calculate or obtain their geographical coordinates, such as 

a GPS device, and coordinates are not hardcoded in the device. Nodes can be deployed in an 

unsupervised fashion if required.

• Every node can act as a gateway for the integration of the WSN with other networks snch as 

the Internet . Connections can be established through any existing node and a new node may 

be deployed in a particular area which might not be stationary.

• Nodes can use the communication protocols to query the network or can passively wait for 

metadata to be received in order to decide whether to acquire the associated torrent data.
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• A flat-network topology is adopted as a more flexible and adaptable structure which requires 

less niariagement than a hierarchical approach where clusters need to be formed and maintained.

• The communications architecture presented in this thesis maps the decision process of some 

routing and data distribution factors to the application layer, such that the designer retains 

control over the involvement of the node in the dissemination process, communications efficiency 

and data storage.

1.4 Contributions of this Thesis

This section identifies the contributions of this thesis by highlighting the key features and behaviours 

of the protocols presented.

• The Ubiquitous Mobile Gradient (UMG) routing protocol is presented in Chapter 4 as an 

opportunistic, reactive, gradient-based routing protocol for data collection, point-to-point, 

nmltipoint-to-point and point-to-multipoint communication. The research contribution of 

UMG lies in the area of versatile routing protocols for low power and lossy networks. The goal 

was to develop a routing protocol capable of supporting efficient and reliable communication 

for collaborative application scenarios in WSNs. For this [)urpose UMG has been designed em­

ploying the gradient routing concept while offering reliable mechanisms for the creation, update 

and navigating of the gradient field. Local recovery mechanisms and efficient caching systems 

are employed to increase the reliability of the end-to-end communication. UMG is addres.s- 

centric in the sense that node identifiers are emi)loyed for routing, but it also integrates sui)i)ort 

for data-centric routing by making use of Bloom filters as compression mechanisms of service 

description. Bloom filter-based descriptors are integrated into the gradient formation thereby 

providing a mechanism for data-centric searching. UMG has been designed to tolerate sink 

and .source mobility by opportunistically detecting a node’s relative change in neighbourhood 

and reacting by locally updating its gradient.

• In Chapter 4, Section 4.6, the opportuiiLstic relative mobility detection algorithm employed 

by UMG is explained. The contribution of this approach lies in the area of efficient mobility 

detection mechanisms based on neighbourhood awareness. The mechanism defines a model, 

which can be parameterized by the user, to compute the likelihood that the node is changing its 

neighbourhood, only taking into account opportunistic communication. The approach, which
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can be easily employed by any routing protocol seeks to avoid the proactive periodic beacon 

employed by neighbourhood detection systems in determining mobility.

The TinyTorrents protocol is then presented in Chapter 5 as a decentralised data distribution 

protocol which sits on top of UMG operating in a cross-layer fashion. One of the research goals 

in the area of data dissemination is to reliably and efficiently deliver data to all, or a selection of 

nodes, in the network. Most of the approaches examined in the literature employ some sort of 

epidemic algorithm where data is diffused over the network in a hop-by-hop basis. Nodes either 

rely on their neighbours to acquire data or employ some sort of routing protocol to acquire data 

from a source node. One of the research goals of this work is to disseminate data only to those 

nodes interested in it while utilising other nodes for relay purposes in a process whereby the 

dissemination mechanism acquires control over the flow of data traffic. In this way, the t raffic 

can be balanced, avoiding factors such as network partition, hot spots and flash crowds, which 

can adversely impact the irerformance of the network, up to a point of partial or total failure. 

The TinyTorrents protocol, operating in a cross-layer fashion with UMG, offers a selective data 

dissemination mechanism capable of managing the flow of data in the disseminat ion process. 

It employs peer-to-f)ecr content distribution concepts from the BitTorrent protocol for data 

partition and distribution, with the goal of reducing the burden on any node in the network, 

including the source of data, by providing selective data redundancy and co-operative data 

distribution. The architecture has been designed to operate in a self-regulated, decentralised 

manner where every node has the capability of acting as a partial location tracker for prox­

imate data. Unstructured mechanisms are employed for data discovery instead of structured 

(DHT-ba.sed) algorithms - the latter being sensitive to mobility whilst requiring more control 

and communication in]mt. The unstructured discovery mechanisms employ UMG’s Bloom fil­

ter descriptors to prune the scope of the candidate node’s searching process. Nodes participate 

in the decision of which pieces of data to retrieve, and from which peers, according to different 

peer-piece selection mechanisms. The cross-layer architecture design of the TinyTorrents pro­

tocol and the UMG routing protocol employs data-centric dissemination and address-centric 

routing to enhance the versatility of the communications capabilities. The TinyTorrents pro­

tocol pushes data from any node into the network, employing a handshake-based scheme based 

on advertised metadata. More traditionally, the UMG routing protocol can also be employed 

as a mechanism for data pulling.
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1.5 Thesis Roadmap

The remainder of this thesis is organised as follows:

Chapter 2: State of the Art

This chapter reviews the literature in the areas of the contribution of this thesis following a general- 

to-specific aiiproach. Firstly, an overview of the Wireless Sensor Network technology is described. 

Then, a general review of the area of routing protocols is given. A comprehensive review of the state 

of the art in the area of gradient routing protocols for wireless ad hoc networks is provided. Finally, 

the state of tlie art in peer-to-peer content distribution protocols for wired and wireless networks is 

presented including P2P discovery mechanisms and dissemination protocols for WSNs.

Chapter 3: The Tiny Torrents Framework: Data Distribution in WSN

This c:hapter presents ttie top-level component view of the Tiny Torrents framework. The architecture 

is described which is divided into two main areas of communication: i) tlie Gateway-Internet com­
munications architecture and ii) the WSN-Mote architecture. The work presented in the remainder 

of the chapters focuses on the design, implementation and testing of the WSN-Mote communications 

architecture, and is where the major research contributions are made.

Chapter 4: The Ubiquitous Mobile Gradient Routing Protocol

In tliis chapter, the UMG routing protocol is presented as a versatile communications protocol for the 

WSN-Mote architecture. UMG provides reliable bidirectional point-to-point, multipoint-to-point, 

and point-to-mnltipoint connectivity employing gradient concepts. A description of the operation of 

the protocol is given. Subsequently, each of the [)hases of the routing process are explained along 

with the mechanisms and algorithms involved, as well as the implementation and data structures 

utilised.

The last section of the chapter, Section 4.G, thoroughly describes the mechanism for opportunistic 

detection of relative mobility employed by UMG.

Chapter 5: The TinyTorrents Protocol

This chapter presents the TinyTorrents protocol as a selective data dissemination layer which utilises 

UMG to achieve multi-hop communication. The TinyTorrents protocol, which employs data partition 

and distribution concepts from the BitTorrent protocol, is designed to operate in a centralised and
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decentralised manner. Initially, the design and implementation of the common architecture and 

functionality of both versions of the Tiny Torrents protocol are described in detail. Subsequently, the 

progression in the design from the centralised version towards the fully decentralised architecture is 

described, as well as the advantages and disadvantages arising. The remainder of the chapter focuses 

on the decentralised version following the idea of every peer being capable of acting as a partial tracker 

for peers in a proximate area. Unstructured mechanisms for discovering potential trackers are then 

proposed. Peer-piece selection strategies are explored by taking into account the constraints posed 

by the WSN domain. Finally, the mechanism employed by the Tiny Torrents protocol for service 

discovery, i.e torrent data discovery, is also described.

Chapter 6: Evaluation

The Evaluation chapter introdvices the operating system employed for the implementation and per­

formance analysis of the i)rotocols, i.e. TinyOS version 2.x, and describes its integrated simulator, 

TOSSIM. The speciheations of the sensor devices employed in the evaluation are also given. The 

TinvTorrents protocol in its two modalities, centralised and decentralised, operating above the UMG 

routing protocol is evaluated. A ])erformance analysis employing a variety of network conditions, 

l)otential real-world scenarios and i)rotocol configurations is provided. The system is also evaluated 

in terms of scalability, both when the network and consumer-producer distributions scale. Addi­

tionally, TinyTorrents is compared against state-of-the-art dissemination protocols in the simulator. 

Finally, the decentralised version of the TinyTorrents protocol is evaluated in a real-world testbed 

comprised of G4 telosB motes.

Chapter 7: Conclusions & Fhture Work

The author summarises the work presented in this thesis and its contributions in the area of Wire­

less Sensor Networks. Future work is proposed to enhance the functionality of the TinyTorrents 

framework while indicating potential research avenues to explore in the area of data distribution in 

WSNs.
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State of the Art

This chapter reviews the state of Ihe art in the areas of the protocols teclmologics presented in this 

thesis. The hrst section provides the reader with an overview of the Wireless Sensor Network tech­

nology and describes its main design principles. A description of Medium Access Control (MAC) 

solutions in WSNs then follows. The next section introduces the area of routing protocols in WSNs 

and includes a general classification. Thereafter, the mechanisms of gradient-based routing in wire­

less networks are explained. A comprehensive review of the most relevant gradient-based routing 

protocols in WSNs, which impact the design of the Ubiquitous Mobile Gradient (UMG) routing pro­

tocol described in Chapter 4, is provided. Finally, related work in the areas of i) peer-to-peer content 

distribution for wired and wireless networks (including the BitTorrent protocol), ii) structured and 

unstructured P2P discovery mechanisms in wireless networks, and hi) data dissemination protocols 

in WSNs, is explored in the last section. This final section aims to introduce concepts employed in 

the TinyTorrents jjrotocol, described in Chapter 5, while identifying the research areas where the 

architecture presented in this thesis is placed.

2.1 Wireless Sensor Networks

Interest in Wireless Sensor Networks (WSN) has grown rapidly since Mark Weiser introduced the 

concept of “ubiquitous computing” in the paper “The Computer for the Twenty-First Century” [4] 

in 1991. While wired sensors have been employed since Cold War times and are widely deployed 

in everyday objects, they are still subject to cabling constraints and consequently are unstiitable 

in many deployment scenarios. Wireless Sensor Networks overcome many of these limitations by
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wirelessly Interconiiectiiig sensor devices. Wireless sensors can be deploycid in an ad hoc, unstructured 

hisliion and coinniunicate with each other to form cooperative networks. To achieve this goal, 

a WSN device not only needs to have sensing and wireless communication capabilities, but also 

Incorporate a microprocessing architecture capable of running distributed algorithms for in-network 

data processing, cooperative decision taking and mnlti-hoi) networking.

The main challenges for wireless sensor network technologies come from the constrained charac­

teristics of the sen.sor devices, also known as "motes”; typically they are battery powered devices with 

constrained ju'ocessing power, limited storage and short communications ranges achieving low data 

transmission rates. Furthermore, the distributed reduntlant nature of this technology necessitates 

special attention to issues such as sensor node deployment, density of nodes in an area, environmental 

interference, and amelioration of node failure. These challenges can affect the network fault toler­

ance and robustness, mainly by compromising coverage of the region/area where the i)henomenon 

occurs. In addition, modern networks commonly enable Quality of Service (QoS) provisioning. In 

WSNs such provisions may need to be achievable in error-prone wireless environments. Robust WSN 

system design needs to anticipate such requirements. Whilst low-level QoS is realised using metrics 

such as bandwidth, delay, jitter and packet lo.ss rate, in WSNs there is a parallel interest in the 

requirements at the application level, what is referred as high-level QoS. As many sensor i)latforms 

communicate using the unlicensed ISM bands, they may encounter considerable interference traffic 

from other devices.

While the technology is no longer in its infancy, we cannot say that it has attained its full potential. 

Much research has been undertaken in tleveloping architectures and protocols which sensor devices 

can use to communicate amongst themselves and with other networks, but these have yet to be 

standardized or widely embraced by the community. Amongst the.se standards, IEEE 802.15.4 [5] for 

the PHY and MAC layers is the most widely adopted, employing 3 ISM frequency bands for operation, 

2.4GHz (global), 915MHz (Americers) and 868MHz (Europe). Diverse communities and associations 

are working on creating specifications of protocol suites which layer on top of the IEEE 802.15.4 

standard. For example, a free versatile specification of higher layer protocols has been developed 

by the ZigBee Alliance [6], while MiWi [7] conies as a simple proprietary protocol suite. There are 

also specifications fitting particular settings, such as the industry oriented ISA-SPlOO.lla [8] and 

WirelessHART [9]. These protocols seek to offer communication architectures which manage ad 

hoc networks of constrained devices and efficiently transport data within the WSN. There are also 

efforts on the integration of WSN with the Internet; in this regard, the Internet Engineering Ta.sk 

Force (IETF) is developing the IPv6 over Low power Wireless Personal Area Networks (6L0WPAN)

12
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standard [10]. In 2010, the IETF Routing Over Low power and Lossy networks (ROLL) Working 

Group was formed [11] to standardize a generic IPv6-compliant routing protocol for this type of 

networks, i.e. the Routing Protocol for Low power and lossy networks (RPL) [12],

In the following section, the main design issues which differentiate wireless sensor networks from 

other wireless technologies are discussed in detail.

2.1.1 Design Issues in WSN

When designing protocols and algorithms for Wireless Sensor Networks, some design issues which 

characterise this technology have to be considered. Next, some of the most relevant design issues are 

described in the context of wireless sensor networks.

2.1.1.1 Fault Tolerance/Robustness

A system is favdt tolerant when it can continue correct operation in the event of a partial hardware 

or software failure. Redundancy is employed to make systems fault tolerant and reliable, and can 

Ije achieved in a variety of ways in WSNs. For instance, sensor devices can be placed into the same 

area to redundantly monitor a ijhenonienon. In this scenario, a given node might obtain the .same, 

or closely correlated data for a [)articular i)henonienon from more than one neighl)our. This way 

multiple instances of the same data can be compared to assess the integrity and accuracy of the 

sensed data. In terms of communication, redundancy can be achieved by disseminating data to 

different points in the network. This enhances t he network’s robustness in case of a node failure or 

network partition.

Factors such as the tyi)e of deployment, network density, energy consumption, physical damage 

and environmental interference can affect the network fault tolerance, mainly by not supi)orting 

coverage and communication to t he whole area where the phenomenon occurs.

Koushanfar et al. state that fault tolerance in WSN can be addressed at different levels [13]: 

Hardware, System Software, Middleware and Application. They also mention that heterogeneous 

networks increase the fault tolerance of the system as there are different sources of data with different 

properties which can be cross-checked to detect the presence of a faulty node.

Algorithms should be designed to be robust to changes in the topology, environmental problems 

and mobility of nodes such that the normal functioning of the systems is not affected, and if it does, 

minimize the time in solving the failure while risking minimum resources.
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2.1.1.2 Scalability

In a wireless sensor network, the iminber of nodes can grow from hnndreds to thousands, either by 

covering the same area, i.e. increasing the density, or by extending the coverage area. In both cases, 

the system has to be prepared to handle such issues. The same phenomenon can be detected by 

a big quantity of sensors, and data might need to be transported over large distances employing 

multihop commnnication. Performance has to be maintained in larger WSNs with techniques such 

as data fusion and aggregation to minimize the number of retransmissions. The use of clustering 

mechanisms to eidiance the reliability when transmitting data over long distances is also proposed, 

despite its sensitivity to topological changes and the recpiired coordination of the cluster.

2.1.1.3 Quality of Service

Quality of Service (QoS) can be divided into two categories for wireless sensor networks [14]: i) low- 

level QoS, related to the networking of the devices and ii) high-level QoS, which is usually imposed 

at the application layer and can be considered as a user-observable subjective metric: it has also 

been categorized as ciuality of experience, QoE.
While the low-level QoS refers to parameters like bandwidth, delay, jitter, packet delivery and loss 

rate, the high level QoS is focmssed on application requirements. Different performance/attributes 

might be required by each specific application for a .system to provide. For instance, specific QoS is 

recpiired in applications belonging to the following areas: i) event detection/reporting ])robability, ii) 

event cla.ssification error, iii) event detection delay, iv) missing reports, v) ai)proxiniation accuracy, 

vi) tracking accuracy.

When designing protocols tailored to each application, a balance between quality of service or 

experience and the required resources might need to be achieved. The nature of the application 

typically establishes this trade-off. For instance, health monitoring applications might require “real­

time” data reporting, within less than a second, from a patient .sen.sor device, while humidity control 

applications for home environments may not require such constrained time boundarit«.

2.1.1.4 Mobility

I'he majority of wirele.ss sen.sor networks work with stationary motes tracking static or mobile phe­

nomenon. Currently, research is focusing on what is called Mobile Wireless Sen.sor Networks, where 

the sensor devices themselves might be transient.

Depending on the type of WSN, nodes might have different responsibilities or capabilities, i.e. 

heterogeneous networks. For instance, a node might be in charge of collecting data for the whole
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network or for a particular area: this node is denoted as the “sink”. A WSN can also have multiple 

sinks at different points. When designing protocols, especially in routing, the type of node which is 

experiencing mobility needs to be taken into account as this can determine the performance of the 

system.

Mobility can appear as: i) node mobility, where tlie node itself moves due to some sort of device 

attached to it or due to the effect of the environment, ii) sink/gateway mobility, where a device 

with mobile capabilities gathers data from nodes (also known as the “data mule”), and can act as 

a gateway to other networks or hi) event mobility, where static sensor devices monitor and track 

transient objects or transient physical phenomenons. For network connectivity purposes, a node 

is considered to show mobility when a change is produced in its neighbourhood set; this is called 

relative mobility. In addition, it has to be noted that mobility of a sensor node might affect the area 

of the phenomenon being monitored.

2.1.1.5 Hardware Constraints

A sensor device, also known as a "mote”, is comprised of 4 main units: i) processing unit, ii) 

transceiver, iii) sensing/actuating unit and iv) jmwer unit. There are other components which might 

be attached and which depend on the application requirements such as GPS/localization unit, power 

generator, etc. These devices have to operate autonomously and fit in reduced spaces. Energy 

sources need to be unobtrusive even if that implies reducing their energy capacity. According to 

this, the rest of the components in a mote are constrained by the lack of energy and they need to 

minimize their power consumption. To do so, components operate in low duty cycle mode and go 

to sleep whenever possible. Limited size flash memories are employed and microprocessors tend to 

reduce the power consumption and operate at low frequencies (8 MHz). Radio transceivers consume 

the highest energy compared to the rest of the components, which is the reason why researchers 

seek to reduce communication activities in their protocols. Despite these constraints, the technology 

is evolving rapidly; new energy sources which last longer and scavenging systems like solar cells 

are being researched. The number of transistors that can fit in an integrated circuit has still not 

reached its limit and keeps on growing without strictly following Moore’s law. A good example of 

the evolution of the hardware is the new Lotus mote [15] which integrates a 32bit lO-lOOMHz CPU, 

64KB SRAM, 512KB Program Flash and 64MB Measurements Serial Flash. This mote supersedes 

previous technology like the micaZ mote [16] which incorporates a 8bit 16MHz CPU, 4KB SRAM, 

128KB Program Flash and 512KB Measurements Serial Flash, representing a huge jump in memory 

size and comput ational capabilities.
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The generic characteristics of this technology - i.e. low power, low processing capabilities, reduced 

size of memory - along with the high number of devices which are needed to cover an area, demand 

for the components to be cheap. In order to create networks of hnndreds of nodes, they have to be 

priced at far less than € 1 to be feasible. Currently the existing hardware for research and commercial 

purposes is too expensive for the technology to be profitable.

2.1.1.6 Deployment/Topology / Connectivity / Coverage

There are two types of deployment in WSN: i) supervised and ii) nnsnpervised. The first one involves 

the creation of the network where motes are placed in strategic locations to efficiently cover the whole 

area to be monitored and to increase the network’s fault tolerance. Once it is deployed, the network 

should have a hill connectivity amongst all the motes and complete coverage of the phenomenon. On 

the other hand, the unsupervised deployment is an uncontrolled process where the position of the 

motes within an area is not determined or controlled. This can lead to the situation where some areas 

have no coverage, the network may not be fully connected, and/or the absence of redundancy might 

drastically affect the fault tolerance of the system. In this case, the network may be iiartitioned 

and data from affected areas might not reach the gateway. An example of unsupervised dejiloyment 

occurs when nodes are dropped from a plane; this iirotluces irregular density and areas might be 

uncovered or isolated in terms of communications. On the other hand, this type of deployment is not 

as cumber.some as the supervised approach where, for instance, full connectivity and coverage should 

be guaranteed to monitor every single corner of some secure premises. The mobility of nodes, the 

effect of the environment, and the malfunctioning of strategic motes could break down both clas.ses 

of networks, supervised and unsupervised, if there is not enough redundancy of sensors within a 

given area. In this case, protocols should adapt to the new topology to try to maintain the normal 

operation of the network. A redeployment i)hase can be carried out to replace or distribute sen.sor 

devices in compronii.sed areas [17].

Bulusn et al. calculate the network density p{/?) in terms of number of nodes per nominal 

coverage area like [18]:

/r(7?) = NnR^
(2.1)

where N is the number of sensors within region A and R is the range of a particular sensor or the 

radio transmission range. In this paper, critical density A is defined iis the density required to achieve 

a given task. If the network density is greater than the critical density, i.e. /r(/?) > A, then only a 

subset of A nodes needs to participate. The number of possible subsets of nodes can be calculated
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with the binomial coefficient index by fi and A. In addition the authors in [19] demonstrate that, 

with a uniform distribution, the probability that a node is connected reaches 1 when p{R) = 6.

2.1.1.7 Applications

Traditional sensor devices were restricted by wires and consequently could not operate in environ­

ments where the installation of wires was inefficient or simply not possible. With the revolution 

of WSNs, the range of environments which can be monitored and actuated go from environmental 

applications for early flood detection [20], volcano monitoring [21] or animal monitoring (e.g. the 

Great Duck Island project [22] and the ZebraNET project [23]) to military application for ad hoc 

estimation of the trajectory of a bullet and the sniper position [24].

In addition, underwater applications, referred as Underwater Wireless Sensor Networks (UWSN) 

[25], are capable of monitoring for example the quality of sea bays, while underground sensors, also 

known as Wireless Underground Sensor Networks (WUSN) [26], can assist geologists in unobtrusively 

measuring soil proj)erties. Furthermore, the concept of Body Sensor Networks (BSN) has been coined 

to describe WSN operating in human bodies, for instance monitoring the health of patients with 

Parkinson’s disease [27].

Materials are starting to be develoj)ed with wireless sensors embedded for unol)trusive moni­

toring; for instance wireless sensor devices integrated in wind turbine blades are being studied for 

structural health monitoring and damage detection [28]. Problems may arise when the conditions 

in the environment interfere with the communication i)rocess, when t he devices cannot be accessed 

to rei)lace the energy source, or even when the motes are subject to physical alterations from the 

surrounding medium; this needs to be carefully considered in the specification of the application 

domain.

2.1.1.8 Transmission Media

In the area of WSN, the wireless transmission medium which has been most widely adopted is the 

Radio Frequency (RF) based. Although optical and infrared are considered, due to their protection 

against, interference from electrical devices, they need line of sight for communicat ion which reduces 

the scope of environments where motes can be deployed. Underwater Wireless Sensor Networks 

mostly employ acoustic waves to form wireless links, while WSN transmitting underground (WUSNs) 

employ magnetic induction.

In the RF spectrum, the efforts are focussed on getting a radio frequency band which can be 

established as a standard for WSN transmission worldwide. Currently WSN technology employs
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different unlicensed bands for coinnmnications such as 868 MHz, 915 MHz, 2.4 GHz Industrial, 

Scientific, Medical (ISM) or the 5GHz Unlicensed Network Information Structure (U-NH) which 

are used for multiple purposes with different transmission power ranges. The energy constraint of 

motes makes them one of the weakest contenders for the channel. As an example, technologies like 

IEEE 802.11 (WiFi) and Bluetooth, which are usually implemented in devices with higher energy 

limitations, work in the 2.4 GHz band, same range in which microwave ovens may operate, causing 

interference in the wireless medium which can affect the reliability and integrity of the sensor network 

communications operating in the same band and channel. Despite using narrow-band and ultra- 

wide-band (UWB) transmission techniques, WSNs commonly employ spread spectrum techniciues 

due to its resistance to interference. While Frequency Hoj)ping Spread Spectrum (FHSS) is employed 

in Bluetooth technology, most of the WSN transceivers employ Direct Seciuence Spread Spectrum 

(DSSS). In DSSS, the narrow-band signal and its energy is spread over a larger bandwidth such that 

it appears like noi.se. Indeed, the signal is multiplied by a stream of pseudo-noise codes, i.e. chips, 

employed to code and decode the signal. The pseudo-noise stream needs to be known beforehand 

by tho.se devices involved in DSSS-based communication. DSSS is utilised in chips such as the 

Texas Instruments CC242() Chipcon Tran.scciver [29], which is IEEE 802.15.4 [5] compliant, and is 

embedded in motes such as the micaZ [16] and telosB [30]. ASK, FSK and PSK and its variants are 

employed for digital modulation of the signal. For instance, the IEEE 802.15.4 standard employs 

Binary Phase Shift Ktiying (BPSK) modulation in the 816MHz (1 channel) & 915MHz (10 channels) 

bands and Offset Quadrature Phase Shift Keying (O-QPSK) in the 2.4GHz band (16 channels).

Re.searchei’s are working on cognitive and Multiple-Input Multiple-Output (MIMO) radios which 

can dynamically vary the transmission power, change the transmission band according to the pre­

vailing interference level and use multiple channels to carry the signal.

2.1.1.9 Power Consumption

Currently motes operate with limited energy sources, usually a set of AA or AAA batteries pro­

viding 1.2-1.5 Volts. The goal is to further reduce the size of the power .source such that it can 

be unobtrusively integrated in any environment and still provides enough energy capacity to keep 

motes running for years. Advances in materials, nanotechnology and even scavenging techniciues 

will be key to develop such energy sources. In addition, the way in which electronic components 

make use of the energy is an important factor to consider. The wide range of components, like 

transceiver or microprocessors, draw energy according to their different operational states and can 

be turned on/off and, thus, operate at different energy levels. The energy levels of components can
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l)e controlled and conibined to produce different operation states within a mote: that is referred as 

Dynamic Power Management (DPM) [31]. The mote can be in the “active” state in which most of 

the main components will be on, the “idle” state in which components like memory or microproces­

sors can be turned off, and in “sleep” state in which all comi)onents turn off for a period of time 

presuming the mote does not need to be operative. In addition, in most of the WSN platforms, 

communication activities - transmission, reception and idle state - consume higher energy than pro­

cessing and sensing tasks. For instance, the telosB mote [30], which integrates the Texas Instruments 

CC2420 Chipcon Transceiver [29], consumes 32 rnA in receiving mode while only drawing 1.8 niA 

in the MCU when in active mode. In addition, transceivers allow for different transmission powers 

to control the transmission range and energy. This is highly useful when deploying motes in order 

to establish different densities at different areas of the network. Moreover, dynamically adai^tive 

protocols are capable of modifying the transmission power according to the current status of the 

network to optimise communications.

2.1.1.10 Heterogeneity

A wireless sensor network is formed by homogeneous motes when all the sensor devices retrieve the 

same type of data and have the same capabilities. On the other hand, a WSN can be comprised of 
devices with different capacities in terms of computation, power or communication, hence creating a 

heterogeneous network. In these type of networks, different devices can also measure different phe­

nomena like temperature, humidity, capture images or track devices. In this regard, t hese networks 

are usually more difficult to manage as protocols should take into account the device capabilities 

for routing purposes and for data processing. On the other hand, the greater the diversity of data 

which can be gathered from an area, the richer the information for monitoring purposes and the 

higher the redundancy. An example of an heterogeneous device can be a cluster head node. This 

node can be used to perform data aggregation of data from nodes within its cluster and communi­

cate the processed data to far away nodes. For instance, the IEEE 802.15.4 MAC layer [5] defines 

two types of devices: Reduced Function Device (RFD) and Full Function Device (FFD). RED have 

limited capabilities and their communication is restricted to FFDs to achieve multihop end-to-end 

connectivity. However, FFD devices are equipped with higher capabilities and can act as Personal 

Area Network (PAN) coordinators.
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2.1.1.11 Data Reporting Method

The data reporting method employed by a node depends on the nature of the application and its 

QoS reciuirements. Energy conservation and routing protocol designs depend on the type of data 

reporting method employed [32]. These methods can be classified as: i) time-driven, ii) event-driven, 

and iii) query-driven.

In time-driven reporting methods, motes are schedule to transmit in time intervals, hence if a 

phenomenon is monitored the mote has to wait until its allocated time to transmit. That is not 

suitable for critical applications like fire alarms or real time systems in which the data needs to be 

obtained rapidly. This method is energy efficient when the phenomenon occurs freciuently.

On the other hand, event-driven methods report data as soon as the event is detected. It is 

usually employed in critical systems where the phenomenon needs to be monitored in real-time. If 

events occur frequently, the cost in energy of this method increases radically.

When either a base station or another mote requires some data, the method employed is cpiery- 

driven, where motes reply to explicit queries from requesting devices. This method becomes energy 

inefficient when queries are issued and data is not available.

Depending on the application, a combination of the data reporting methods is usually a solution 

to reduce conmumication and decrease energy consumption.

2.1.1.12 Data Aggregation/In-network processing

Despite the benefits of redundancy of data and communication for network robustness, an excess of 

redundancy may be highly inefficient in terms of energy consumption and communications. In this 

case, techniques such as in-network processing and aggregation, where data is manipulated before 

forwarding, are employed. Aggregation of correlated data resulting from notles monitoring the same 

phenomenon is one of the keys to reducing the excess of redundancy. In the process of aggregating 

data, there are some issvies to consider like: i) does the aggregator have to wait for all its associated 

motes to transmit before aggregating data?, ii) which function is to be used to aggregate the data 

and what is its cost in terms of complexity and processing power?, iii) how is the aggregator identified 

and is there a need to create a special topology?, iv) what is the risk of losing redundancy with the 

aggregation and how would this affect the system fault tolerance?.

All these issues have to be taken into consideration at the time of designing the system. For 

instance, aggregation functions can range from duplicate suppression to complex algorithms which 

compose images from different mote locations. Cluster heads are usually employed as aggregators.
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The efficacy of the data aggregation can be calculated according to the following metrics [14]: 

i) accuracy of the resulting value at the receiver, ii) completeness of the aggregation, iii) latency 

generated with the aggregation i^rocess, and finally iv) the amount of compression in the message 

overhead. Signal processing methods can be used for a mote to produce a more accurate output 

signal by combining the incoming signals (data fusion) and reducing the noise [32].

2.1.2 Medium Access Control in WSN

Medium Access Control (MAC) i)rotocol design for Wireless Sensor Networks is influenced by the 

constrained factors that characterise this technology. These factors involve ad hoc wireless communi­

cation, energy-efficiency, low processing capabilities, duty-cycle activities and nature of mobility. The 

main classification for these types of protocols is based on how/when the medium is accessed; in this 

regard two main groups are defined for MAC protocols: i) contention-based and ii) contention-free.

The first group, content ion-based, can also be defined as random access protocols, as there is 

no coordination amongst the nodes accessing the medium. This randomness produces packet colli­

sions and consequently retransmissions which increase the latency of the communication potentially 

impacting the quality of service of the system. Earlier MAC protocols for wired networks included 

Pure Aloha or Slotted Aloha which were outirerformed by the Carrier Sense Multiple Access (CSMA) 

and its Collision Detection (CD) mechanism used in Ethernet. CSMA was later enhanced for use 

in wireless communications with the Collision Avoidance (CA) mechanism, where collisions could 

not be detected but rather avoided. CSMA/CA employs binary exponential backoff mechanisms 

to space out the retransmissions in the presence of collision; this reduces the likelihood of packets 

colliding and reduces congestion. This protocol is widely used in IEEE 802.11 wireless LANs and 

Wireless Sensor Networks. However, transmission in the wireless medium gives raise to the hidden 

and exposed node problems. To mit igate or reduce the occurrence of these problems, two approaches 

have been employed. The first one is known as the busy tone, which requires the node to operate 

in duplex mode with two channels, one for data and another for control. The receiver will send a 

signal through the control channel to indicate to the neighbourhood that is busy receiving a packet. 

The second approach implements the handshake mechanism for the CSMA/CA based on Request to 

Send (RTS) and Clear to Send (CTS) messages, which does not fully solve the hidden node problem 

in all the scenarios. Examples of random access-based protocols, which are usually variants of the 

CSMA/CA can be classified as [33]: i) Multiple TraiLsceivers [34], ii) Multiple Path [35], iii) Event- 

Centred [36] and iv) Encounter-ljased [37].
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The second group, the contention-free MAC protocols, seeks to avoid collisions by schedtiling the 

access to the medium. Scheduling can be biisecl on time. Time Division Multiple Access (TDMA), 

on frequency, Frequency Division Multiple Access (FDMA), or on code. Code Division Multiple 

Access (CDMA). The TDMA type of protocol is based on scheduling time slots for each node in 

the neighbourhood to transmit in a contention-free fasliion. Issues like synchronization have to be 

taken into account. Centralised solutions use cluster heads to synchronize neighbourhoods while 

distributed solutions usually depend on global synchronization. These type of protocols need an 

initial contention-based stabilization phase in order to schedule the slot frames amongst all the 

neighbours in a 2-hops radius while avoiding overlapping. Another type of protocol employs Polling 

and Reservation techniques in which slots are reserved according to the demand. Examples of 

schedule-based, or contention free, protocols are mainly based on a TDMA approach since those 

based on frequency and code might increase the cost and power reciuirements. They can be classified 

as [33]: i) Priority-based [38], ii) Traffic-based [39], iii) Clustering-based (Sensor MAC (S-MAC) [40]) 

and iv) TDMA (Self-Organizing MAC for SensorNets (SMACS) [41]).

There are other issues to take into account when designing MAC protocols for WSNs such as: i) 

the type of network and topology, e.g. flat vs. cluster topologies, ii) the dynamics of the network, 

e.g. self-stabilizing to topology changes, iii) the complexity of the protocol, for instance in terms 

of messages, or iv) whether sleep scheduled mechanisms are employed to save energy. In addition, 

latency, throtighput, robustness, .scalability and fairness in the allocation of the channel capacity also 

need to be considered.

2.1.3 Significance for this Thesis

This section has presented a general overview of the area of Wireless Sensor Networks, providing 

context for the technology behind the architecture proposed in this thesis. With an emphasis on 

networking, WSN technology has been characterized in terms of the advantages and disadvantages 

posed by the type of devices employed. These are small devices, constrained in terms of resources, 

such as processing, memory and energy, which communicate wirelessly and can be unobstrusively 

integrated in the environment for sensing and actuating purposes. The range of pervasive applications 

which this technology empowers has been identified. Additionally, the new networking paradigms, 

which have arisen from the design of protocols for this type of error-prone wireless distributed 

networking scenario, have been described. This section has also highlighted common mechanisms 

and design issues around wireless technologies, while noting the particularities of research in wireless 

sensor networks.
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2.2 Routing Protocols in Ad Hoc Wireless Networks

Routing protocols for wireless sensor networks have been the focus of much effort in recent years. 

Many of the approaches proposed have evolved from routing techniques in wireless networks and 

have been adapted to suit the requirements, and more importantly, the constraints of WSNs. When 

designing a routing protocol for WSNs, most of the design principles explained in Section 2.1.1 must 

be taken into account.

Different routing protocol classifications exists which try to group WSN routing protocols ac­

cording to their functionality and operation. Al-Karaki and Kainal [32] suggests routing protocols 

for wireless sensor networks can be classified according to a) the Network Structure, b) the Route 

Discovery Process and c) the Protocol Operaiion.

Arising from the Network Structure, routing protocols can be classified as:

1. Flat-based: all nodes in the network are peers with the same relevance, functionality and 

duties.

2. Hierarchical-based: special nodes in the network have different functionalities and roles, and 

are usually responsible for coordinating the cluster of nodes, representing the cluster within 

the whole network, or aggregating data from nodes. These protocols aim to tackle some of 

the scalability and energy-inefficiency problems which may arise in flat-based networks routing 

l)rotocols by organising the network into areas.

3. Location-based: routing decisions are performed based on the location information to send 

data to a certain region rather than spreading it inefficiently over the network.

Arising from the Route Discovery Process, routing protocols can be classihed following the time 

when routes are discovered as:

1. Reactive (On-Demand): Protocols start their route discovery mechanisms only when there is 

a need for a node to start communication with any other node/s. Thus routes are created 

on-demand when there is data to be sent and a route does not already exists or is not (known 

to be) working. This mechanism has an impact on data communication latency when routes 

are unknown or fail and need to be discovered.

2. Proactive (Table-Driven): Routes are created at some point in time, which might be the 

beginning of the network’s life, before they are needed to route data. Routes are created and

23



2.2. Boating Protocols in Ad Hoc Wireless Networks

updated every so often at the cost of periodic iiiaiiiteiiaiice messages. This type of routing 

protocol are characterised by their rapid response in delivering data (low latency) as routes are 

discovered beforehand. They are also characterised by having a high degree of robustness to 

node mobility at the cost of frequent transmissions update. However, when nodes within the 

network or a specific area do not need to transmit data periodically, this approach proves to be 

highly expensive in terms of communication and energy, as routes are maintained but rarely 

iLsed.

3. Hybrid: Routing protocols employ mechanisms from both Reactive and Proactive route dis­

covery methodologies.

Arising from the Protocol Operation, routing protocols can be classihed as: Negotiation-based, 

Multi-path-based, Query-biised, QoS-based and Coherent-based. Furthermore, as different protocols 

are suited to different applications, features like mobility tolerance, energy awareness and reliability 

are of significance in WSN environments and have to be considered when designing routing protocols.

An alternative classification arises from the larger number of devices in a wireless sensor net­

work when compared to traditional ad hoc wireless networks. The high number of devices, which 

might overlap each other in the monitoring of an area or phenomenon, gives this technology a differ­

ent communications paradigm where data and metadata become more important than the devices 

which generate it. This concept is known as “data-centric” and was introduced with a protocol 

called Directed-Diffusion [42]. “Data-centric is different from the “address-centric” concept where 

the address of the device primes in the communication process. In this regard, data-centric routing 

protocols need to be aware of the type of application data and the network characteristics for the de­

sign of the routing mechanism. Most of the protocols employing “data-centric” routing are classihed 

as data dissemination protocols, where the main goal is to push data through the network towards 

a sink, or set of sinks, in a process where intermediate nodes do not need to be known and act as 

pure relays. Data-centric Routing Protocols for data dissemination include Directed Diffusion [42], 

SPIN [43], Rumor Routing [44] and Gradient-Based Routing (GBR) [45] which are presented in 

Section 2.3.3 and Section 2.4.5.

These classiheations establish points of reference for dehning the behaviour of a routing protocol 

and, therefore, its suitability for a particular range of applications in the domain of wireless sensor 

networks. However most of the routing protocols ht in more than one type of each proposed classih-
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cation. One of the main research goals is to l)nild a generic routing protocol cai)ahle of adapting to 

multiple network scenarios and different applications.

For instance, SPIN [43] and Directed Diffusion [42] are classified as flat-network, data-centric, 

query-based and negotiation-based, while Rumor Routing [44] and GBR, [45] are characterised as 

flat-network, data-centric and query-based. AODV [46], DSR. [47] and DYMO [48] are examples of 

flat-network, address-centric and reactive route discovery, while DSDV [49] is one of the first protocols 

to be classified as flat-network, address-centric and proactive route discovery protocols. Examples 

of hierarchical-network routing protocols are LEACH [50] and PEGASIS [51], while GPSR [52] is 

a good example of location-based-network protocols, also known as geographical routing protocols. 

Finally, two protocols which explicitly address QoS metrics are SAR [53], which is classified as fiat- 

network and multi-path-based, and SPEED [54] which belongs to the group of location-based-network 

protocols.

2.2.1 Flooding and Gossiping

Flooding and Gossiping are two of the most commonly employed techniques in routing, di,s.semination 

and searching in computer networks [55]. While they are used in wired networks, their operation is 

described in the domain of ad hoc wireless networks where the broadcast proi^erty of the wireless 

mt'dium impacts their functionality.

Flooding [56] in wireless ad hoc networks is a dissemination mechanism whereby nodes broadcast 

packets on recept ion of a new, or dui)licate, packet. The flooding process can be limited by including 

a Tinie-To-Live (TTL) parameter in the packets where the TTL value is decremented at each node 

according to node conhguration. Each node keeps a record containing information on the packets 

which have been broadcast. Flooding the network typically has a high dissemination factor, i.e. the 

number of nodes in the network which receive the data, and the operation can be affected by the 

dynamics and density of the network topology. However, flooding encounters three main problems; 

1) Implosion, where the same data is received multii)le times, thus wasting resources, 2) Overlap, 

where sensors measuring the same phenomenon send redundant data, thus wasting resources due to 

data duplication, and 3) Resource Blindness, where nodes do not modify their activities according 

to the current state of their resources. These problems have been extensively studied for WSN, not 

only in terms of how to avoid them, but also how to benefit from them.
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Gossiping [57] is a dissemination technique whicli forwards a packet to a randomly selected 

neighbour, thereby reducing the energy consumption. Unlike flooding, the information is dis.semi- 

natecl slowly and may not reach all the nodes in the network. When adapting gossiping techniques 

to unreliable ad hoc wireless networks, where neighbour notles might not be known or simply not 

available, a different perspective can be adopted. The authors in [57] took advantage of the broadcast 

property of wireless networks to define gossiping as the probability of a receiving node broadcasting 

a received message. Nodes on reception of a packet decide whether to broadcast it with a probability 

‘‘p” or discard it with a probability ‘T-p”. The probability of broadcasting a packet can be calculated 

as a function of the resource levels and overheard packets at the node. This way the main flooding 

problems are ameliorated in an efficient manner, although not completely solved.

2.2.2 Reactive Routing Protocols

Reactive routing protocols, like Ad hoc On-Demand Distance Vector (AODV^) [4G], Dynamic Manet 

On-Demand (DYMO) [48] and Dynamic Source Routing (DSR) [47], have been used for traditional 

wireless ad hoc networks. Such protocols work on an on-demand basis: communicating only when 

there is data in the network to be transmitted. Although the.se j)rotocols are not suitable “as is” for 

wircle.ss sen.sor networks (becau.se of the ilifferences between the technologies), the reactive approach 

offers a good solution for avoiding the energy-greedy, periodic beacons used by proactive protocols. 

These protocols need to be adapted to suit the constraints of WSN. In the area of addres.s-ceiitric 

reactive routing protocols for flat-networks, AODV, DSR and DYMO establish the basic mechanisms 

employed in the design of new oii-demand protocols for WSN. However every new routing protocol 

tries to optimise the network performance according to the design principles of WSN pre.sented in 

Section 2.1.1.

2.2.2.1 AODV

The Ad hoc On-Demand Distance Vector (AODV) [46] routing protocol follows the reactive paradigm 

of discovering routes when communication with a node is requested. In the route discovery phase (see 

Figure 2.1), the network is flooded with Route Request (RREQ) packets such that multiple paths 

towards the destination are created in the routing tables of the intermediary nodes. The flooding 

process is controlled by avoiding cycles while broadcasting only the first RREQ packet arriving. 

Duplicates are detected and discarded as every packet contains the source address and sequence 

identifier which is incremented with every RREQ packet issued. In addition, the destination address 

and the hop counter are carried in the packet as well as the most recent sequence number the node
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has for the destination. Intermediate nodes can reply to the RREQ only if they have a route to 

the destination with a greater or equal destination sequence number. When a RREQ packet arrives 

at the destination, or at an intermediate node which contains a route to the destination, a Route 

Reply (RREP) packet is sent on the reverse route towards the source node. The RR.EP packet is 

sent back to the node from where it was received (unicast), such that the routing table is ciueried for 

the next hop on the way back and also updated with the received packet address as the next nofle 

on the irath to the destination. This process establishes a bidirectional route and sets a timeout 

value for the route entry to expire. If more than one RREP packet is received at the same node, 

only t hose with a higher secpience or those whic;h have a smaller hop count are forwarded. Once the 

bidirectional route is established - note that AODV requires symmetric links - a route maintenance 

jrhase starts where packets can be sent over the path by relaying the packet according to the routing 

table information. Every time a packet traverses the route, the timeout is reset to indicate the route 

is still valid. In the event of an intermediate node in the path failing or changing jrosition, the route 

will break. In this case a mechanism based on periodic hello messages detects the missing node and 

a special RREP packet, also known as Route Error (RERR), is unicast to alert the nodes along 

the upstream of the failing route towards the source/s node (see Figure 2.2). Another rnechanism 

employed to detect whether the next node is available and has received the packet make use of the 

link-layer acknowledgements at every node in the downstream. When a RERR arrives to the source 

node, a new route discovery process (RREQ) is triggered. Another possibility is to locally repair the 

route such that a new RREQ message is broadcast, with a time to live (TTL) in terms of hops, in 

order to discover new routes from the failing point, to the destination node. Once the destination 

replies to the intermediate node, the communication between the original source and t he destination 

is resumed. Azzuhri et al. st udied the performance evaluation of the local and source initiated repair 

mechanisms to compare the efficiency of each approach [58].

■ Network Unk
■ AReo 
> RREP

Fig. 2.1: AODV - Route Discovery
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2.2.2.2 DYMO

The Dynamic Manet On-Demand (DYMO) [48] routing protocol operates under the same basic 

concepts of AODV. In fact, DYMO was conceived as a lighter, simplified version of AODV, for 

Mobile Ad hoc NETworks (MANETS). DYMO does not implement the local route repair mechanism 

employed in AODV, but rather repairs the route from the source when RERR jjackets are received. 

The option of intermediate nodes replying with a RREP when they know a fresh route to the 

destination is optional in DYMO, while for AODV it is the default mechanism. Even though DYMO 

does not impose a mechanism to monitor the state of the route, a timeout value for the routing table 

entries is emj)loyed. An RREP message is broadcast when the corresponding entry of an intermediary 

node, which is part of the path being traversed, has timed out or does not exist anymore. Timeout 

values are refreshed every time a packet is received or sent. Wheti detecting a failing link, an RERR 

packet is broadcast to inform those notles containing the failing node in their routing table entries 

(see Figure 2.4). Instead, AODV unicasts the RERR packet through the upstream path towards the 

sink/s by following the precur.sor list. DYMO has an option to accumulate the intermediate nodes 

atldiesses in the RREQ and RREP packets such that paths arc transported in each j^acket and 

intermediate nodes can populate their routing tables with paths to different destinations (see Figure 

2.3). This mechanism can be expensive in terms of mes.sage size tis the number of hops increa.ses. 

DYMO and AODV have been tested under different mobility conditions [59] and DYMO performs 

better in terms of packet delivery ratio, throughput, and control message overhead when the mobility 

speed increases. However AODV is more efficient in terms of energy consumption when the mobility 

speed is low.

Network link
DATA
RLRR

Fig. 2.3; DYMO - Route Discovery Fig. 2.4: DYMO - Route Error
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2.2.2.3 DSR

The Dynamic Source Routing (DSR) [47] protocol describes some of the basic mechanisms of re­

active routing for nmlti-hoi) wireless ad hoc networks; for instance the route discovery and route 

maintenance mechanisms employed in the AODV routing protocol. As opposed to AODV, DSR 

accumulates the path traversed by RREQ packets in the the packet itself (see Figure 2.5). The 

accumulated jiath also serves as a mechanism to detect loops and to discover routes to other nodes. 

The accumulation path mechanism is also optional in DYMO. Multiple RREP packets are issued by 

the destination node which traverse different routes back to the source node. The source stores the 

path/s to reach the destination; the decision on which path to store might be taken in terms of hops). 

When data needs to be sent, the j^acket contains the full path which needs to be traversed on the way 

to the destination and back (as bidireictioiiality is assumed). By using inter-node acknowledgements, 

end-to-end acknowledgements, or per-hop implicit acknowledgements, a broken link can be detected 

and an RERR packet is unicast towards the source node; this packet follows the reverse path con­

tained ill the packet (see Figure 2.6). Bisoyi et al. have evaluated the performance of DSR, AODV 

and DYMO in small scale networks under different number of nodes, speed and pause times [60]. 

DYMO ])crformed better than DSR and AODV with respect to Quality of Service parameters such 

as throughput, packet delivery ratio, delay and normalized routing load. However AODV performs 

better in terms of routing overhead.

■ Network link 

• Route Request

” ” ^ Route Reply, 
PaHll:2-4-S-9

Network Link 
Data
Route Error

Fig. 2.5: DSR - Route Discovery Fig. 2.6: DSR - Route Error

2.2.3 Energy Efficiency and Reliability in Routing Protocols for WSN

In Wireless Sensor Networks, two of the most important factors to consider when designing routing 

protocols are the reliability of the system in terms of communication and the efficiency of the protocol 

in terms of energy at node and network level.
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Energy Efficiency is an important issue for wireless sensor networks due to the energy constraint 

of the sensor devices. Different techniques have been adopted to reduce the power consumption of 

both the motes and the WSN as a whole. Jayashree et al. define a taxonomy with three main 

schemes for energy management [01]: i) Battery Management, ii) Transmission Power Management, 

and iii) System Power Management. These include strategies such as sleep mode operation whenever 

possible, avoiding retransmissions, minimizing control packet size and using power efficient error 

control techniques [62]. In tandem with this, many solutions have been proposed to increase the life 

of the network by avoiding network partition [63]. These include: i) Routing oriented to traffic [64], 

ii) Probabilistic methods to select the next hop based on energy [65], iii) Awareness of the level of 

energy needed not only to perform routing but to keep routes working [66], and iv) Energy-based 

multipath routing to balance the network communication [67].

Furthermore, cross-layer designs are employed as a solution to optimise the use of energy across 

multiple layers, from data link and routing layers to application layer. Finally, the on-demand 

[)aradigm of routing protocols seeks to avoid the energy-expensive periodic beacon messages of 

proactive routing protocols [68] and it should be used when possible or in combination with the 

table-driven paradigm to reduce energy consumption.

Reliability is another concern in a WSN environment. The wireless medium implicitly gives rise 

to problems related to contention arul fluctuations in the quality of data transmission. These can 

re.sult in data delivery failures where links might be intermittently operative. Whilst .some of the.se 

problems are addressed at the link layer, reliability mechanisms at the network layer are necessary 

for link connectivity and end-to-end packet delivery.

Protocols like Multipath On-Demand Routing (MOR) [69] offer reliability at the link layer by 

storing alternative paths in every node and performing local retransmission in the event of link 

failure. This approach uses a reactive nicchanism that keeps track of the transmission status of 

every packet. R uses flooding mechanisms to discover routes and unica.st data packets once a route 

is created. MOR has been layered over IEEE 802.11, where it performed reliably and in a more 

energy efficient way than AODV and a modified version of DSR. The drawback of this protocol is 

that multiple routes have to be retained in the routing table to provide reliability. Other protocols 

use multiple paths to help ensure reliability to some degree. Reliable Information Forwarding Using 

Multiple Paths in Sensor Networks (ReliiForM) [70] sends the same packet over different routes to 

achieve a degree of reliability that is dependent on the importance of the packet. It utilises a reactive 

approach and floods the network periodically to identify the neighbours of each node.
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Another protocol which achieves reliability, using local repair mechanisms, is Single-path With 

Repair routing scheme (SWR) [71]. In SWR a quick local repairing mechanism is launched when 

a broken link is detected. This uses information available in the immediate neighbourhood of the 

sender. The sender overhears the receiver transmission and detects whether the receiver sends the 

message following the route or not. If the receiver has not sent the packet after a certain period, 

t he sender starts a neighbourhood discovery to find another node that has the routing information 

required to reach the destination. If no node is found, the packet is returned to the origin node to 

iiiflicate that a new discovery process needs to be launched; otherwise the new node is used to reach 

the destination.

Reliable Energy Aware Routing (REAR) [72] protocol is described as using a reactive approach. 

REAR achieves reliability by creating two disjoint paths, between sink and source, in the discovery 

process. The first route created will be used as a service path which performs unicast transmissions. 

The second is created as a backup path. In the event of a failure in the service pat h, a message is 

broadcast to both the sink and the source to indicate that the backup path should be used and a 

new service path must be discovered. REAR is energy-efficient as it discovers paths using flooding 

mechanisms that determine if a node can be part of a route based on its levels of reserved energy. 

Using an estimation of the quantity of data to l)e transmitted from the source, nodes reserve the 

energy necessary to i)erform rout ing for each route t hey are part of. If the node is energy-sufficient, 

the flooding packet is forwarded. The path selected is usually the one with the largest available 

energy. REAR increases the overhead when links are not bidirectional as new service routes have to 

be discovered and it does not incorporate a link repairing system.

2.2.4 Significance for this Thesis

This section ha.s introduced the different classifications of routing protocols for wireless sensor net­

works according to the network structure, the protocol’s route discovery process and the protocol 

operation. A special type of classification for WSN has been presented which employs data and 

metadata for rout ing purposes, i.e. data-centric routing, as opposed to the traditional addres.s-centric 

routing. The protocols presented herein can be identified as supporting both data and address centric 

routing paradigms, having a reactive route discovery process and forming a flat network structure. 

The key mechanisms and algorithms representing the flat-network reactive roviting concejjt have been 

presented, with an emphasis on communications reliability and energy efficient design.
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2.3 Gradient-based Routing in Ad Hoc Wireless Networks

2.3.1 Gradient Definition

The word “gradient” can be defined as:

According to the Oxford English Dictionary (OED):

• ‘‘A continuous increase or decrease in the magnitude of any quantity or property along a line 

from one point to another; also, the rate of this change, expressed as the change in magnitude 

per unit change in distance. ”

• Of a road or railway: “Amount of inclination to the horizontal; degree of slope. ”

• In Mathematics: “A vector function whose components along the co-ordinate axes are the 

partial derivatives with respect to the corresponding variables of a given scalar function; it is 

denoted by V/ or by grad f, where f is the scalar function. ”

• In Geometry: “The degree of steepness of a graph at any point, measured by the tangent of the 

angle between the horizontal axis and either the line (if straight) or the tangent to the curve.’’

According to the Merriani-Webster Dictionary:

• “The rate of regular or graded ascent or descent: inclination. ”

• “A part sloping upward or do wnward. ”

• “Change in the value of a quantity (as temperature, pressure, or concentration) with change in 

a given variable and especially per unit distance in a specified direction”

• “The vector sum of the partial deiivatives with respect to the three coordinate variables x, y, 

and z of a scalar quantity whose value varies from point to point. ”

The method of “Steepest Descent” also called “Gradient Descent”, allows for the progression 

from any point in the gradient to the closest local minima. According to Wolfram Math World [73], 

the “Method of Steepest Descent” is defined as:

• “An algorithm for finding the nearest local minimum of a function which presupposes that 

the gradient of the function can he computed. The method of steepest descent, also called the 

gradient descent method, starts at a point Pq and, as many times as needed, moves from P, 

to Pi+i by minimizing along the line extending from Pi in the direction of—Nf{Pi), the local 

downhill gradient. ”
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If the gradient is formed in such a way that local minimum points do not occur, the steepest 

descent algorithm will progress until the global minimum is reached, i.e. the originator of the 

gradient.

2.3.2 Basis of Gradient-based Routing

In denoting routing protocols in computer networking, the “gradient” concept is employed to describe 

an overlay network in which every node has an associated quantity value with respect to a node known 

as “sink”. Routing of packets is achieved by decreasing the cpiantity value at the next node in the 

path while descending the gradient towards the sink node, i.e. relaying the packet to those neighbour 

nodes which have lower quantity values with respect to the sink. For instance. Figure 2.7 gives a 

visual re])resentation of the gradient flowing toward the originator at point (0,0). A set of vectors 

indicate the direction towards point (0,0) and the concentric contour lines shows the radius distance 

as the quantity value with respect to the origin of the gradient.
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Fig. 2.7: Gradient field example with sink at position (0,0). Arrows indicate the direction towards 

the sink. Concentric circles indicate the radius distance with respect to the sink.
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Gradient-baKed routing protocols are employed as mechanisms for data collection in multi-hop 

mesh networks where a source node, i.e. the sink, spreads its gradient through the nodes in the 

network. This process creates a Directed Acyclic Graph (DAG) where every participating node has 

an associated value with respect to the root node, i.e. the sink, which is ultimately reached by 

following the direction of the graph in a process called “gradient descent”. The concept of sending 

data towards a central node (with higher capabilities) is frecpiently employed in ad hoc networks for 

network data processing or for the purposes of pushing data outside of the network.

One of the first protocols employing the gradient routing concept for ad hoc wireless networks 

was described in the year 2000 with the paper “Gradient Routing in Ad Hoc Networks” using the 

acronym “GRAd” [74]. Around the same time, three of the first protocols designed to operate 

in wireless sensor networks employing the concept of gradient as a way to disseminate data were 

presented as “Directed Diffusion” (DD) [42,75], Gradient Based Routing (GBR) [45] and GRAdient 

Broadcast (GRAB) [76,77]. Since then, gradient-based routing schemes have been one of the most 

widely used mechanisms for reporting data in multi-hop networks. For instance, the IETF Routing 

Over Low power and Lossy networks group (ROLL) was formed in 2010 to standardize a generic 
routing protocol for this type of networks. RPL, an IPv6-compliant protocol which stands for Routing 

Protocol for Low power and lossy networks [12], has been designed employing gradient-based routing 

concepts as the btisic mechanism for routing data.

In gradient-based routing protocols, two phases are well defined: i) gradient setup, where the 

overlay network, i.e. the gradient, is formed, and ii) data forwarding or gradient descent, where 

packets are routed by a forwarding process which follows the gradient path towards the sink node.

The gradient setup phase deals with the formation of the gradient-based overlay network and 

needs to be launched before nodes can start sending packets to the sink node. Starting from the 

sink, packets are broadcast in such a way that every node receiving a i)acket, updates its routing 

table and (re)broadcasts the packet. The common mechanisms to discover paths in routing protocols 

such as flooding, periodic broadcast, and, to a certain extent, gossiping are employed. Depending on 

the nature of the broadcasting mechanism, a node might decide if and when the packet needs to be 

broadcast. When a broadcast packet is received, the routing table is populated with the address of 

the next node in the path to reach the sink, i.e. the node from which the packet was received, and 

also with the quantity value associated to the cost of selecting that node as the next hop. The cost 

value, known as the “height”, is the key to forming the gradient and is calculated by a cost function 

at each node. The cost function calculates the height of the current node according to the received 

height. The new node’s height is then encapsulated in the packet to broadcast. The different metrics
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determine the expression of t he cost function which governs the gradient formation. For instance, 

metrics such as hop connt. node’s remaining energy, link quality indicators, physical distance or 

even fast est response are employed separately, or in combination, forming different routing overlay 

networks in terms of efficiency. Gradient-based networks are initially launched by the sink node and 

their structure can be updated when a neighbour node is found which reduces the current height 

value. Alternatively, the sink node can launch the formation of the gradient at any point in time to 

ui)date the routing overlay network. When a gradient is spread, routing tables are populated with 

the unique combination of the sink node address and the gradient sequence value. This way, newer 

gradient formations can be identihed over older entries in the routing table and updated accordingly. 

However, special mechanisms are required for those nodes which do not receive the new gradient 

packet; older and newer entries need to coexist for a loop-free routing process. Gradient-based 

routing protocols usually scale well as there is no need to store a large quantity of information in its 

forwarding table. On the other hand, the gradient-based network might Ire affected by an excess of 

transient nodes, demanding a new gradient formation. A “good” formation of the gradient implies 

avoiding local minima points which might produce a situation where a data packet can not progress 

towards the global minima, i.e. the sink. Backtracking and local repair methods are ased to progress 

from local minima points. However, local minima points can be avoided or minimized in the gradient 

setup phase. Iii this phase, avoiding loops is one of the major issues to address. Still, the algorithm 

needs to be prejrared for the situation where nodes fail thereby creating a local minima point. The 

ideal scenario where a gradient has no local minima and only one global minima, the sink, can be 

seen in Figure 2.8 with different points having heights in the range of 0 to 3.

Once the gradient is formed, packets can be routed from those nodes in the network which belong 

to the gradient overlay network of the sink. Whether the packet is originated from the node or the 

node is acting as a router, the packet is either sent to the next hop address according to the routing 

table or broadcast such that only neighbours with lower heights keep on broadcasting. This phase is 

known as the data forwarding phase or gradient descent as data is sent to the sink by descending its 

gradient via reducing the height to the sink in each routing hop. The height to the sink is contained 

in the rout ing t able of each node and is employed in the data forwarding jihase to decide whether 

the packet needs to be forwarded according to the cost value carried in the jmeket. The routing table 

could contain none, one, or more than one possible next hop neighbours for the same gradient. In 

this case a decision process based on the available information can be employed to select the most 

efficient next liojr neighbour. On the other hand, the next hop address at the routing table might 

not be contactal)le or available to continue forwarding data. In this case, local recovery mechanisms
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Fig. 2.8: Gradient field in 3D witli no local inininia point.s and one global niininia, i.e. the .sink. 

Height is represented in the axis which ranges from 0 to 3 [77].

are employed to locate a valid neighbour to replace the failing router node. These mechanisms 

use acknowledgement packets to detect node availability. Node unavailability might be due to the 

node not being capable of acting as a router; for instance this may hapiren when the level of its 

available resources - such as memory, processing capabilities, queue status or energy remaining - 

is below a certain threshold. Many gradient-based routing protocols broadcast the i)acket to their 

neighbours such that these are left to take the decision whether to keep on forwarding the received 

packet. Despite being a memory efficient solution, decision mechanisms at each node need to be 

implemented to avoid multiple redundant transmissions which increase the use of the medium and 

waste energy.

A considerable number of approaches to routing have been presented in the literature employing 

the concept of gradient formation and efficient forwarding mechanisms to route data towards the 

sink. Many of these protocols employ a unidirectional approach where data is routed from nodes
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to only one sink node. Some of them employ clustering algorithms to designate the group of nodes 

belonging to the sink gradient overlay network. In addition, routing protocols with multiple sinks are 

also i)roi)osed and mechanisms to evaluate the current network performance are employed to optimise 

the routing process. In most of the gradient-based protocols, a combination of the mechanisms of 

the gradient setup jjhase and the data forwarding phase impacts on the way the protocol operates. 

For instance network load balancing is addressed in gradient-biised routing protocols by exploiting 

information and taking decisions at the gradient setup phase and/or the data forwarding phase. 

When balancing the network traffic, the use of the available resources from the nodes in the network 

tends to be evenly distributed. Balancing the traffic load according to the level of resources is highly 

beneficial in constrained wireless sensor networks where network partition can be produced when 

the energy of a set of strategic nodes is depleted, leaving areas of the network disconnected. In 

addition, traffic load balancing ameliorates the congestion and avoids higher latencies in nndti-hop 

routes which might also jiroduce low delivery ratios.

Two categories of techniques employed by gradient-based routing protocols can be defined ac­

cording to the type of traffic load information to be exploited in the forwarding decision at each 

node [78]: i) 1-hop neighbotirhood traffic load information and ii) cunudative traffic load informa­

tion over the gradient climbing i)ath. Decisions are typically made based on the energy remaining or 

forwarding queue length information. In the hrst category, this information comes from 1-hop neigh­

bour nodes and the decisions are taken once the gradient is formed. The gradient is created based 

on the energy remaining or the hop count at each node. Examples of this category are SGF [79] and 

PB-routing [80]. However in the second category, a cumulative value is calculated in each previous 

hop of t he pat h when the gradient is being established. The ciunulative imth cost at each node is 

calculated with the value from a received packet by typically following different weighted average 

formulas. In the first category of load balancing methods the decision is taken based on local infor­

mation anfl affects the load balancing of a reduced scope in terms of hops. However, in the second 

category the inii)act on the traffic load balance broaden as the decision information is the result of 

an aggregation of single decisions in each of the previous nodes forming the gradient. However, when 

using the cnmulative method, climbing down the best cost effective gradient path does not guarantee 

that one of its nodes is not one of the most energy depleted or highly congested in the network. Yoo 

et al. present GLOBAL [78] as a gradient-based routing protocol capable of balancing the traffic 

load by selecting the least-loaded path which does not contain the most overloaded sensor. GLOBAL 

employs a weighted average of the cumulative path and traffic load of the most overloaded nodes in 

the path to establish its gradient.
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To clearly uiiclerstaiKl the basic iiiecliaiiisiiis behind gradient-based routing, the following section 

presents a comprehensive list of routing j)rotocols in this category covering a wide range of apiiroaches 

to solve some of the most typical routing problems.

2.3.3 Gradient-based Routing Protocols

In this subsection a set of the most relevant gradient-basetl routing protocols are chronologically 

presented and their underpinnings explained. Earlier designs of gradient-based protocols established 

the basis for gradient routing and therefore are well described next. Later approaches focussed on 

oi)tinusing the performance of the basic mechanisms for gradient-based routing to adapt to different 

applications and scenarios. The majority of the gradient routing protocols presented here have been 

designed to operate in ad hoc wireless sensor networks.

2.3.3.1 GRAd (2000)

One of the first works to describe the basis for gradient-based routing protocols in ad hoc wireless 

networks was ptiblished by Robert D. Poor in 2000 under the name “Gratlicnt Routing in Ad Hoc 
Networks" [74]. The gradient-based protocol “GRAd" belongs to the reactive category of ad hoc 

routing protocols where routing information is established on-demand. In this type of routing pro­

tocols, the general rule is “if you want to be spoken to, you must first speak". Grad assumes that 

links between nodes are symmetrical but it works well in wireless real-world scenarios where par­

tial .symmetry exists. Only broadcast packets are employed in the communication. Every packet is 

uniciuely identified as it carries the originator address and a sequence value. In addition, it contains 

the message type (MJDATA, M_REQUEST), the target address, the “accrued cost” - which starts in 

0 and is incremented by one “hop” with every broadcast at each relaying node - and the “remaining 

value” - an initial estimation of the number of hops to the destination which is decremented with 

every broadcast at each relaying node. Two phases are clearly differentiated, “Message Origination 

and Relaying” and ‘Reply and Request”. The “Message Origination and Relaying” (M_DATA) phase 

is performed when a node A wishes to communicate to a destination node B and it contains a cost 

value in the so called “cost table” with the number of hops to reach the destination. In this case, a 

packet is broadcast with the “remaining value” as the estimated cost value stored in the cost table. 

When a node receives a packet, the decision of forwarding the packet, i.e. broadcast the packet, 

is made based on the cost tables. If the cost value in the table is less than the “remaining value” 

carried in the packet, then the packet is broadcast. Loops are avoided as the “remaining value” is 

decremented by one before broadcast and it is also discarded when the value reaches 0. However,
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this iuec;lianisni i)roves to he expensive in terms of communications when there is a iiigh density 

of nodes within range. All nodes with a lower cost value broadcast the received packet, increasing 

the medium access contention and wasting energy in the transmission and recej)tion. On the other 

hand this increases the delivery ratio in the situation where some nodes are in sleeping mode. In 

addition, the author employs implicit acknowledgements to stop a node from broadcasting a packet 

when an instance of the same packet with a lower cost value is overheard. The “Reply and Reqiiest” 

(MJIEQUEST) phase is triggered when a node A needs to send a message to a destination B for 

which routing information is unknown. By the process of flooding the network, where every node 

only broadcasts the hrst packet received, a gradient is formed in terms of hop distance cost to the 

originator by storing the “accrued cost” or height in the cost table. If another packet is received with 

a better “accrued cost”, i.e. lower hop distance, the value is updated in the cost table but the packet 

is not. broadcast again. Depending on the initial “remaining value”, the packet may not arrive at the 

target id. If this occurs, timers are in place to try again with a higher “remaining value”. When the 

packet is received by the target node, the “accrued cost” of the received packet is used to poimlate 

the “remaining value” of the packet to be broadcast with the originator id as the target. This way, 

the packet traverses the route back to the originator in the same way a data packet does, by the 

mechanism of broadcasting and decrementing the “remaining value”. The j)ropagation of the mes­

sage through the network establishes and u])dates reverse path routing information to the originator 

and employs the “accrued cost” value to create a gradient to the destination node B; however the 

gradient information for B is only stored at the cost tables of those nodes participating in the route 

Ijack to the originator node A, including those which overhear the packet. Each entry at the cost 

table has an expiration time which is refreshed every time information for this gradient is received. 

The authors simulated GRAcl under dynamic network topologies and it proved to work well due to 

the opport unistic update of cost tables. This mechanism produces shorter and longer routes and 

the possibility of increasing the “remaining value” field when end-to-end acknowledgements are not 

received. GRAd was tested oi)erating on top of a CSMA/CA IEEE 802.11 MAC layer with similar 

results. The authors suggest that a compromise between relaying packets to a fixed neighbour, so­

lution employed in protocols such as AODV [46]), and to all the neighbours, solution employed in 

GR Ad, shows some promise. Finally, the paper describes the possibility of using functional address­

ing in which a node’s target is replaced by a predicate which is evaluated by those nodes receiving 

the request message (MJIEQUEST).
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2.3.3.2 GBR (2001)

One of the first papers to develop a routing protocol employing the gradient concept for ad hoc 

wireless sensor networks appeared in 2001 under the title ’‘Energy Efficient Routing in Wireless 

SeiLsor Networks”. In this work, the Gradient-Based Routing protocol (GBR) [45] is presented 

under the fissumption that optimal routing in sensor networks is infeasible. GBR employs a special 

packet called “Interest” and a data packet “Data”. The sink floods the network with ’’Interest” 

])ackets at the beginning of the network life. The flooding process establishes a gradient from every 

node towards the sink which is based on the hop count a.s a measuremeut of the height of each 

node. In the forwarding process every node forwards the packet to a neighbour node with a lower 

height value towards the sink. Nodes satisfying the requirements in the “Interest” packet send their 

“Data” packets to the sink by descending the established gradient. In this approach, energy efficient 

technic[ues like in-network data processing with data combination are used. To distribute the network 

load, the process of .selecting the next node in the gradient descending phase is done in a stochastic 

fashion when two or more nodes with the same height are available. The protocol also implements 

another approach to balance the traffic load in which a node informs its neighbours, except for the 

one from which the stream is coming, if its height vahie has increased. This reduces the node’s 

involvement in future data streams when its battery is running low. or if its stream load is too high, 

and diverts the future streams along other j)aths.

2.3.3.3 A Scalable Solution to Minimum Cost Forwarding in Sensor Networks (2001)

Ye et al. propose a scalable solution to minimum co.st forwarding in large .sensor networks [81]. The 

paper presents an algorithm to construct an efficient gradient in terms of forwarding cost which em­

ploys a controlled flooding where sensors only broadcast each unique gradient discovery packet once. 

In order to wait for your neighbourhood to finish transmitting, each node receiving an advertisement 

packet (ADV) sets a tinier to wait before broadcasting its ADV packet. The ADV packet broadcast 

contains the best associated cost from all neighbours’ packets previously received. A backoff-based 

scheme is employed which introduces a delay in the formation of the gradient and avoids multiple 

retransmissions of the advertisement packet by the same node in an effort to optimise the gradient 

formation. The backoff tinier delay is a function of a constant multiplied by the cost value of the link 

between the sender of the packet and the neighbour receiver node. The cost value for each pair of 

nodes’s link is calculated as the energy needed to transmit from the sender to the receiver according 

to the physical distance between them and the node’s communications range. If the constant is too 

low, they will need to rebroadcast again if a packet with a lower cost value is received at a later stage.
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When descending the gradient, the cost value for the optimal route calculated during gradient setup 

is encapstilated in the packet to he broadcast. By matching the received cost value in the packet, 

minus the cost added by the local node, with the local cost value to the sink, the receiving node 

knows if it is part of the optimal path and therefore must broadcast the packet. When ADV packets 

are lost in the gradient formation, the optimal path considering all network will not be formed. In 

the event of a node failure, the authors propose to increase the cost value at the packet in an effort 

to overcome the gap left in t he optimal path.

2.3.3.4 GRAB (2001-2005)

In the paper “A Scalable Solution to Minimum Cost Forwarding in Large Sensor Networks” [81], 

Ye et al. jjroposed a backoff-based method for efficient gradient formation. An enhanced version of 

their protocol was presented later as Gradient Broadcast (GRAB) [76,77], a gradient-based routing 

protocol which provides a robust mechanism for data forwarding when descending the gradient. 

While keeping the gradient setup mechanism according to the first design [81], where the energy 

consumed in each link is employed as the cost value, the gradient is also refreshed based on the 

variation of each source historic profile. Information for each packet received is stored in the sink 

to accoimt for changes in variables such as source delivery ratio or source average budget value. 

These metrics indicate whether change in the topology has occurred and thus a new gradient setup 

is required.

GRAB emjjloys a robust forwarding algorithm which makes use of the multiple number of paths 

available when descending the gradient. Nodes in GR AB contain an estimation of the energy cost to 

send a packet to a neighbour, which is computed in t he gradient setup i)hase employing measurements 

such as the Signal to Noise Ratio, and therefore each node stores an energy cost to the sink. Each 

node receiving a broadcast data imeket forwards tfie packet if the local cost value to reach the 

sink is lower than the value in the packet, which is updated at each router node. This mechanism 

makes use of multiple interleaved paths to forward the packet which increases the reliability at a 

cost in redundancy and therefore transmission and energy. Depending on the number of nodes and 

the energy costs, a “band” containing all nodes involved in the transmission from source to sink is 

formed (see Figure 2.9). GR AB controls the width of this band in order to increase the delivery ratio 

with a credit-based value generated at the source node and transported in the packet . The credit 

value is an extra budget which can be added to the energy cost at each node when deciding if the 

packet is to be forwarded. The packet can be broadcast over the width of the band and down to 

the sink for as long as the forwarding nodes energy cost is lower than the sum of the energy cost of
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Fig. 2.9 : Forwarding Band coinpo.sed of Multiple Nodes which participate in the coninmnication 
from Source to Sink in the GRAB routing protocol [77],

the packet and the credit value from the source node. Nodes can tune their transmission power to 

control the range of the broadcast. GRAB has been simulated under different node failure, jracket 

loss, density and scalability conditions indicating a delivery ratio of around 90%, depending on the 

credit value, which might drop to 50% when transient nodes fail suddenly.

In works by .Jaffres-Runser et ah, three optimisations of the forwarding phase of GRAB have been 

proposed as “Probabilistic-GRAB” (P-GRAB) [82], “Utility-GRAB” (U-GRAB) [83] and “Utility 

and Probabilistic GRAB” (UP-GRAB) [84], which take into account interference and congestion met­

rics. In GRAB when descending the gradient a considerable number of redundant packets flowing 

through multiple paths contribute to increase the reliability of the packet delivery. However, Jaffres- 

Runser et al. decrease the number of forwarded data messages by employing cooperative (U-GR AB
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and UP-GR AB) and non-cooperative (P-GR AB) decision making. Decisions are made leased on tiie 

available information at each node with the goal of improving the robnstness-latency-energy trade­

off. P-GR AB does not interact with neighbours - instead each node takes broadcasting/forwarding 

decisions based on the interference distribution of the neighbourhood. P-GR AB assigns higher for­

warding probabilities to nodes which are part of an area where less interference has been produced. 

On the other hand, nodes interact in U-GRAB to gather information from the neighbourhood on 

energy level and channel occupancy. A heuristic utility function based on pricing concepts is em­

ployed for the decision, f aking into account current channel congestion. UP-GR AB aggregates the 

benefits of both policies by combining the interference impact metric with the channel congestion. 

The schemes outperform GR AB in terms of the average transmission delay, reducing it by up to two 

f iines. P-GRAB is the best approach in terms of robustness and energy consumption in networks 

with high reliability of nodes. U-GRAB with its cooperative congestion-based approach is the best 

option for unreliable networks where collisions need to be avoided as much as possible.

2.3.3.5 GLIDER (2005)

In “Gradient Landmark-Based Distril)uted Routing for Sensor Networks” [85], GLIDER is presented 

as a gradient routing jjrotocol where each node contains a lightweight global vision of the routing 

information. The authors assumed that nodes in a sensor network can disaj)pear Init the main 

global to])ology is maintained. The protocol creates an overlay of landmarks, which are nodes act ing 

irs reference points for its tiles, i.e regions of nodes with a landmark node virtually representing 

it. The network is partitioned into tiles which are represented by a landmark using the landmark 

Voronoi complex. Within each tile, traffic is balance using greedy routing or local coordinates based 

on the square distances of hops - using an average distance of the landmarks - with respect to a 

set of landmarks. A virtual routing overlay of landmarks is abstracted by apj^lying combinatorial 

Delaunay t.riangulat ion. This creates an efficient graph representation of a higher overlay which is 

disseminated to the nodes in the network, thus every node has a global vision. In evt'ry tile, a node 

routes through another node by descending the gradient towards the next tile which belongs to a 

landmark point closer to the destination. Therefore, routing is executed at a higher level from tile 

to tile by employing greedy gradient descent over a path coinj)osed of a series of tiles; the gradient 

descent process utilised the lightweight gloljal information cont ained in each node.
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2.3.3.6 A New Gradient-Based Routing Protocol in Wireless Sensor Networks (2005)

Xia et al. employ gradient-based mechanisms with the goal of prolonging the network lifetime by 

optimising the energy consumption [86]. A combination of hop count and remaining energy at each 

node is employed to calculate the cost value when creating the gradient. In addition, a backoff 

mechanism waits for a fixed time before sending tlie broadctist packet. By delaying the broadcast, 

the best metric from all the messages received is chosen and the number of setup nie.ssages is reduced. 

Implicit acks are employed to acknowledge a packet that has just been relayed by snooping for the 

next broadcast packet - that with lower cost - in the path. They tackle the problem of a node 

changing area by broadcasting a recjnest message to tlie new neighbours such that the new costs for 

the gradient can be recomputed based on the received height information from each neighbour.

2.3.3.7 GRASP (2005)

Lim et al. jjresent a gradient-ascending stateless mechanism for gradient-based routing protocols 

called GRASP [87]. GRASP operates in stationary networks where the gradient has already been 

established. GRASP makes use of data packets which descend the gradient towards the sink. These 

data packets are u.sed by GRASP to populate a space efficient data structure called a Bloom filter [88], 

a probabilistic bit-vector structure which acts as a nieml)ership-based hlter callable of indicating 
wliether the packet has been stored or not. The Bloom hlter mechanism is explained in Section 

4.4.1, neverthele.ss it has to be noted that GRASP employs a counting Bloom hlter [89]. Counting 

Bloom hlters are capable of inserting and deleting elements as they are multi-dimensional Bloom 

hlters, thus they can keep count on how many items have been inserted within a certain probability. 

This adds more complexity and reliability to the probabilistic membership mechanism from a simple 

Bloom hlter. GRASP stores packet footprints in the Bloom hlter and exploits this information to 

ascend the gradient from the sink to the source node. If a node receiving a packet contains in its 

Bloom hlter the footprint of a previous packet related to this one, then the node broadcasts the 

packet. This mechanism takes into account sequence, hop count, destination and .source helds of the 

packet and avoid duplicates. The authors state that the number of packets from the same source will 

traverse a similar set of nodes in the network when descending the gradient. However, this might 

not be true depending on the number of source nodes sending packets and the network den.sity. A 

situation where many of the bits are set to 1 in the Bloom hlter will start to produce false positives. 

Nevertheless, they employ a Bloom hlter per sink packet in each node and employ a metric to quantify 

how long ago a footprint was created or assessed. In ascending the gradient, GRASP employs 

reliable mechanisms such as implicit and explicit acknowledgement packets employing storing and
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rel)roadcast iiiediariisms to increase the delivery success of the packet. GRASP is simulated in 

ns-2 [90] with the CSMA/CA IEEE 802.11 MAC layer.

2.3.3.8 HYPER (2006)

Hyper [91] was designed as a collection routing protocol offering support for mobile sinks. The 

protocol capitalises on the idea of collecting data at any given time from any given point in the 

WSN. In this situation, a mote is deployed which acts as a sink. The sink advertises its arrival to the 

neighbourhood and evaluates the link quality to each of its sensors with a mechanism called “fast 

connect”. This is done by using the Expected Transmission Count (ETX) metric over a series of 

broadcast beacons and acknowledgements. The ETX metric estimates the link quality based on the 

number of successfully delivered unicast packets between two given nodes. Once the neighbourhood 

is properly assessed, Hyper builds the tree-based routes and creates a gradient towards the sink. 

Tlie formation of t he gradient delays the broadcast based on the cost value at each node which only 

broadcasts the best cost received during the waiting time. A periodic beacon is sent to maintain 

the tree structure connected. If a node, or set of nodes, get isolated from an area or do not have 

a sink to route to, they store their data in the flash memory until a new data sink is advertised. 

Every time a sink enters a new neighbourhood it needs to advertise its presence and setup the 

gradient. Hyper, as many ol her protocols which aim to increase reliability in the dat a delivery, bases 

its reliability mechanisms foundations in the good assessment of the link quality of its neighbours, 
in t he approjiriate management of the neighbourhood table and in the use of reliability-based cost 

metrics [92].

2.3.3.9 RCDR (2006)

The Reliable Cost-based Data-centric Routing Protocol for Wireless Sensor Networks (RCDR) [93] 

was designed to route data from an event zone towards the sink in dynamic environments where the 

sink node can change position. The sink needs to initially sjiread its global gradient. Then data 

packets from nodes capturing an event descend the gradient by multipath routing. RCDR exploits 

the event’s footprint-based gradient created by the diffusion laws of a physical phenomenon. This 

is used as the local gradient for the event, which overrides the global gradient for the sink, such 

that nodes report initially to the local minima node for the event. This node is then in charge of 

aggregating data and sending the packet towards the sink by progressing t hrough the global gradient. 

The global gradient is formed in a similar fashion to GRAB [76,77]. RCDR employs Data Query 

(DQ) messages to setup the gradient. A variable backoff time is applied in the setup phase at each
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node which depends on the cost. This avoids the rebroadcast storm with only one broadcast per 

node occurring which transports the minimuni cost from those packets received. It also implements 

grab’s mechanism to control the width of the multipath band between source and sink; they employ 

the concept of credit cost as premium cost. Only the first packet to be received in the forwarding 

phase is forwarded. Mobility is detected by periodically checking neighbours information from the 

MAC layer. If a node moves, and it is not the sink, it sends a cpiery message to its new neighbourhood 

to update its cost table to the best relay node for the sink. When the sink detects a change in its 

neighbourhood, the setup phase is performed with a limit in the number of hops for the DQ to live. 

This avoids updating the whole network, only refreshing a closer area. Every time the sink updates 

its gradient in this manner, the initial cost of the DQ packet sent by the sink is decremented by 1, 

such that it keeps on updating the funnel, i.e. gradient, to negative lower values of cost - on the 

initial setup the sink Inus a cost of 0 - such that packets keep progress to the sink. The authors 

employ a CSMA/CA MAC protocol, the Sen.sor-MAC [40], although no reference to the use of a 

sleep duty cycle is made. RCDR has been evahiated against GRAB comprising simulations with 

speeds from 0 to 3 m/s in a 60 sensor network of 800x800 meters with a transmission range of 150 

meters and a 2 packets/second stream from 1 node to the sink. Nodes move in this area according to 

the random way-point model (RWP) with random speed and waiting time. With dynamic scenarios 

where nodes move at speeds greater than 2 m/s, GRAB does not perform reliably and the expensive 

flooding mechani.sm doubles the energy consumed with respect to RCDR. A 75% succe.ss delivery 

ratio is achieved with RCDR when 100% of the nodes move (.sink is static) at a speed of 3 ni/s, while 

90% is achieved when 20% of the nodes are moving. When only the sink moves, RCDR achieves 95% 

success delivery ratio at 3 ni/s with GR AB achieving 28%.

2.3.3.10 SGF (2009)

In State-free Gradient-based Forwarding (SFG) [79], the gradient is established at the beginning of 

the network and it is updated via received data packets. By emidoying a backoff-based gradient 

formation mechanism, an improved version of the algorithm designed by Ye et al. [81], the gradient 

cost value is defined as the minimum total energy required to send a packet from the node itself to the 

sink; this takes into account energy consumed at every node both in the transniLssion and reception 

of the packet. The backoff-based scheme in “A Scalable Solution to Minimuni Cost Forwarding in 

Large Sensor Networks” (see Section 2.3.3.3) introduces a delay in the formation but avoids multiple 

retransmissions of the advertisement packet by the same node in an effort to optimise the gradient 

formation. Improvements on the design of the backoff-based gradient formation algorithm have been
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carried out to avoid the situation where tiie gradient is not properly formed due to a miscalculation 

in the delay to broadcast at each hop. The delay introduced at every node Ijefore broadcasting the 

next ADV packet is a function of the energy cost received in the packet, i.e. a delay in the order 

of milliseconds is applied per watt of energy. However, the authors of SGF found that when higher 

delays occur when the packet is being transmitted, propagated and processed, the broadcast delay 

might not be large enough to wait, for other packets to arrive before the timer expires. Therefore a 

minimum delay to broadcast needs to be larger than the sum of the transmission, propagation and 

processing delays for a packet plus the maximum delay which can be incurred by t.he MAC layer, 

taking account of the exponential backoff and the number of retransmissions. The improvement 

increases t he delay in the formation of the gradient but guarantees an energy-efficient formation of 

the gradient with an optimal cost. SGF does not maintain a neighbours table but rather maintains 

t he gradient as a cost-field value which indicates the direction toward the sink. When the gradient 

breaks, an opportunistic distributed contention process within the neighbourhood is launched to fix 

the gradient pat h towards the sink. A neighbour node wins t he contention process depending on its 

gradient, channel condition and remaining energy, and gets elected as the next forwarder.

2.3.3.11 GRACE (2009)

Khan et al. in their pajjer “GRAdient cost establishment (GRACE) for an energy-aware routing 

in wireless semsor networks” [94] present a protocol which enhances network lifetime and reliable 

data delivery when compared to GRAB (see Section 2.3.3.4). In the gradient setup phase, the ADV 

packets carry the lower cumulated cost value of each node when broadcast . This is achieved by 

following the same mechanisms as GRAB for the setup phase which also includes a back-off time 

which is calculated ms a function of the cost (same as in GR AB). The cost is calculated based on the 

cost of the link to the sender plus the energy of the node (receiver). The cost of the link is calculated 

as the transmission energy consumption divided by the reception energy consumption of the two 

nodes of the link. Once the setup phase is completed, the so called steady-state phase is launched 

where data packets flow in a unicast manner through the path with the smallest cost. GRACE 

offers different modes of operation to update the status information at the nodes, i.e. the costs. 

This way nodes with lower energy increase their cost thereby informing neighbours and reducing the 

likelihood of participation in the path. The first mode is based on updating the cost of the nodes 

via a new gradient setup when a node dies. The second mode employs unicast acknowledgements 

from data packets on the way to the sink to piggyback the current cost of each node. A third 

mode employs broadcast acknowledgements to inform all the neighbourhood of its current cost.
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Finally, two correction inodes are presented which act as reliable niechanisins employing end-to-end 

acknowledgements from the sink to the source and from an intermediate node back to the source; 

these niechanisins inform whether a packet has been lost or dropped. The authors also propose a 

modification to GR AB to enhance its energy-efficiency while niaintaining the same level of reliability. 

This is achieved by reducing the number of broadcast packets in GRAB via the use of GRACE’S 

acknowledgements and correction modes. Overall, GRACE offers a solution to extend the network 

lifetime which can be controlled by dynamically choosing the iiio.st suitable mode of ojieration to 

update the co.st of nodes according to the density of the network or vicinity of the sink.

2.3.3.12 CTP (2009)

The Collection Tree Protocol (CTP) [95] is the de-facto standard in data collection protocols for 

Wireless Sen.sor Networks in the leading platforms: TinyOS 2.x [96] and Java SunSPOTS [97]. CTP 

is a tree-based protocol where a designated root, or set of roots, advertise thenrselves in a gradient 

setup manner creating routing trees. Root nodes establish their gradient using a cost metric called 

Expected Transnii.ssion Count (ETX). The ETX metric for each node estimates the link quality based 

on the number of successfully delivered unicast packets between two given nodes; that includes the 

successful reception of the acknowledgement packets. The ETX of a node is the ETX value received 

from its parent plus the ETX cost of the link from the node to its ]iarent. The ETX at the root is 

0 when the gradient is setuj). This is an additive measure, much like the hop count, which helps to 

avoid loops when data packets descend the gradient towards the root by always progressing through a 

node with lower ETX. When a loop is detected, an inconsistency in CTP terms, the node broadcasts 

a beacon to inform the node which sent the data packet that it needs to adjust its routes. The 

data packet is then sent along the loop with the prospect that by the time the packet conies back 

to the node the routes have been adjusted and the looj) cancelled. In the case where the network 

is partitioned, nodes could not progress towards the sink; in this case the ETX, which might be 

adjusted in an uncontrolled fashion forming loops, would reach a maximum ETX value. Legitimate 

duplicate packets, for instance those which circulate through the loop twice, need to be detected but 

not discarded. To detect this type of packet, a counter named “time ha.s lived” (THL) is carrietl in 

the data packets. Packets are uniquely identified by their origin address, seciuence number and an 

identifier for higher protocols. When the THL is also considered the instance of a packet can also be 

uniquely identified.

A parent node is in charge of detecting inconsistencies for its children, i.e. children have lower 

ETX than the parent. The parent node reacts to inconsistencies by sending a beacon frame to all its
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neiglihours to inform t hem about tiie inconsistency. This node also needs to schedule an advertising 

I^rocess in the near future to fix those routes.

Two coui)led mechanisms are employed to discover bidirectional links to enable computation of the 

ETX; every 5 transmissions the ETX value is computed based on the previous ETX and the successful 

packet delivery ratio. The first mechanism, called LEEP, employs beacon messages containing in­

bound link estimations according to the transmissions for the nodes in the neighbourhood [98]. This 

way nodes receiving the beacon can calculate their out-bound link estimation. The periodicity of 

broadcasting the beacon is regulated based on the Trickle dissemination protocol [99]. Trickle self- 

regulates the beacon update period based on the changes in the neighbourhood according to some 

Iiarameters in the packets. In the case of CTP, an inconsistency or a drastic decrease in its routing 

cost will reset t he period of beacon transmission to t he minimum value. A packet can also trigger 

the beacon, for instance if its routing table is empty. If the beacon transmission period is not reset, 

it doubles until it reaches a maximum value. Minimum values can be in the order of 60 ms while 

maximum values in the order of 1-i- hours. In addition, the other mechanism employs the unicast 

data packets and its acknowledgement packets to update the ETX values. Information from both 

mechanisms is combined into an exponentially weighted moving average.

CTP provides best-effort delivery mechanisms with a high nunil)er of retrials and local repairs 

and it has been designed for relative low traffic rates. CTP counts on the link layer to provide an 

efficient local repair with synchronous acknowledgements for unicast packets; each jracket carries 

single-hoj) source and destination addresses.

CTP has been designed with a set of core mechanisms for collection routing purposes while 

leaving some of the aspects open for different implementations. Gnawali et al. developed CTP Noe 

[100], an implementation of CTP which includes additional functionality to improve the protocol’s 

performance. CTP Noe uses retransmit timers of up to 32 trials capitalising on the idea that dropping 

a packet from the queue would not fix the path for the next in the queue. This can decrease the 

performance for real-time applications where fresh data needs to be received. However, this is a 

best-effort implementation and the value is open to be modified. CTP employs hysteresis, i.e. the 

reaction of the system depends on past reactions, in the selection of the route such that a new route 

is selected if there is a considerable gain in the ETX value. Its beacon rate in Tiickle has been set to a 

minimum value of 64 ms and a maximum value of 1 hour. This way changes in the topology (mainly 

link dynamics) can be detected rapidly and at the same time avoid redundant communication when 

the network is stable. CTP Noe delays the transmission of a dat a packet based on a randomized value 

within an interval which aims at minimizing collision with previous packets in the path. However this
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iiiecliaiiisiii works well when there is only data flowing towards a path. It also iinplcinents a hybrid 

send queue where there is a pool of packets for tns many higher-level clients of the ronting protocol 

and a fix pool of packets for forwarding packets. The queue along with a small cache is checked for 

duplicates packets. In addition, CTP Noe employs a 4-bit link estimator metric as a composite value 

of the quality of the link from the physical, mac, and routing layer [101]. CTP Noe has been evaluated 

in 12 static WSN testbed with different link dynamics, mote platforms, density and number of motes. 

Four mac layer protocols have been employed with different low power schemes. One root node has 

been used with different inter-packet intervals, from every 16 seconds to 5 minutes, operating in 

channels with different levels of interference. One experiment aimed at rei)roducing sink mobility by 

changing the root every so often. Experiments measured the performance of CTP Noe in terms of 

robustness, agility to failure and energy consumption in scenarios with topology inconsistencies and 

with different transmit timers and cache sizes. CTP Noe offers 90-99.9% packet delivery in highly 

dynamic link topologies with 73% fewer control packets than existing approaches. The authors claim 

it can achieve duty cycles of less than 3% while supporting aggregate loads of 25 packets per minute.

2.3.3.13 BCP (2010)

The Backpre.ssure Collection Protocol (BCP) [102] imiilements the backpressure routing concept for 

routing packets in multi-hop networks. This is achieved by emiffoying cpieue congestion .status in 

the forwarding of a packet. BCP needs to initially create a gradient, based on the ETX metric, 

similar to CTP [95], where routing trees are created with the root node as the sink collector. Based 

on the ETX value and the cjuetie backlog of neighbour nodes, a weight is calculated for every link 

between the node and its neighbours. This weight changes as packets are queued or de-queued and 

it is the basic factor in selecting the next hop for the next packet in the (jueue to be forwarded. 

Thus, the protocol operates on the basis of pushing packets according to the gradient and the status 

of the queue. In the initial gradient setup phase, some packets get trapped in the queues and can 

not jjrogress. This is due to the difference in queue size between a node and its neighbours. This 

difference does not create a positive weight required for the packet to be forwarded. However, when 

packets start to be sent in the direction of the sink, packets begin to flow from high to low congested 

([ueues in the direction of the gradient. In addition, FIFO and LIFO queues are employed as two 

mechanisms for selecting the packet to be forwarded.

The authors compared the protocol against CTP [95] in static and sink mobile scenarios, where 

another node is simply designated as the sink, rather than having physical mobility. With 0.25 

packets per .second, CTP has a 99.0% delivery ratio while BCP i)roduce.s 96.9%. However, in mobile
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sink scenarios, the delivery ratio for BCP was 99.6%, considerably higher than CTP’s 59%. It has 

to be noted that when using LIFO instead of FIFO, the system average delivery packet latency can 

be reduced by more than 98% at low data rates, while 75% at higher rates.

2.3.3.14 WARP (2010)

The Whirlpool Routing Protocol (WARP) [103] is a data collection protocol which works on the 

same basis as CTP [95], indeed WARP is an extt'iision of CTP which includes an enhancement 

for routing to mobile sinks. A sink node in WARP detects its mobility by using periodic beacon 

messages. The beacon sending rate is variable as the node only sends beacons if a data packet has 

not been received within a certain period of time. Thus, data traffic is employed to validate the path 

stability to the sink node. Beacons are employed to inform nodes of the presence of the sink in the 

neighbourhood. However, if the sink moves and a data packet arrives to its old neighbourhood, a 

mechanism is launched to locate the sink and fix the routing tree from the new to the old area of 

the sink. This mechanism, the so called whirlpool routing, is initiated by the node which is unable 

to relay the packet to the sink. The whirlpool routing mechanism exploits the irregular concentric 

circles of increasing cost values which arc formed around the sink when the gradient is setui). A 

packet is sent to a randomly sehicted node in each of the concentric circle areas uj) to a maximum 

distance which is i)robabilistically estimated. When nodes receive the packet, they forward it to nodes 

with a closer cost value, therefore packets start to be routed around the corresponding concentric 

circle. This is a speculative mechanism which sends packets to the last known location of the sink 

in order to locate its new position. When the sink receives or snoops the whirlpool packet, it sends 

a beacon to the neighbours in the area of the update. This packet cancels the whirlpool routing 

and progressively updates the cost tables of the nodes involved. WARP is compared against CTP, 

HYPER [91] and DYMO-TYMO [104] with metrics such as delivery ratio and average path length 

in a real topology of 60 motes with slow sink mol)ility and in the simulator TOSSIM [105 107] where 

mobility is induced by changing the id of the sink per time. Node speed ranges from 0.7 to 2.9 meters 

per second and different overall data rates from 4.3 to 21.3 packets per second are employed. Across 

all data rates and speed scenarios, WARP stays above 83% in terms of reliability and outperforms 

CTP and HYPER (60%). However, WARP performance in terms of reliability goes down to 48.8% 

when testing in high speed scenarios.
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2.3.3.15 TABS (2010)

TABS (Try Ancestors Before Spreading) [108] is a gradient-based ronting protocol which aims at 

descending the gradient wliile increasing reliability in the presence of lossy links. The protocol as­

sumes that a gradient setup phase occurs which creates a gradient based on the hop count metric. 

This phase can be initiated reactively by the sink in a distance-vector manner or tis an exchange 

of local information following the link-state approach. Each node maintains a cost to the sink. 

In addition duplicate packets can be detected. When descending the gradient towards the sink, a 

sender broadcast a packet which contains a value known as the “minimum progress limit”. Re­

ceiving nodes compare tlieir cost with that of the received packet and keep on broadcasting if the 

difference is higher or equal than the minimum progress limit. This way TABS controls how many 

nodes are involved in the forwarding process in the same way GRAB [76, 77] controls the width of 

the forwarding band. TABS uses inij)licit acknowledgements from overheard broadcast packets to 

cancel redundant broadcasts and also emjjloys acknowledgements on received broadcast packets to 

increase the reliability. When an acknowledgement packet is not received within a predefined time, 

a retransmi.ssion is laimched. If this fails, the “minimnm jjrogre.ss limit” value is reduced in order 

to increase the number of opportunistic routes which can be used. The "minimum progress limit” 

is an inverse function of the retransmissions counter for the pac:ket. TABS has been evaluated on a 

testbed having 56 telosB nodes over 1125 square meters achieving over 98% delivery ratio while link 
quality is highly dynamic.

2.3.3.16 DGR (2011)

Guo et al. present DGR in the paper “Dynamic Gradient-based Routing protocol for unbalanced 

and persistent data transmission in wirele.ss sensor and actor networks” [109]. The protocol aims at 

balancing the energy consumption by detecting nodes reaching certain energy levels and consequently 

refreshing the gradient with new cost values. When gradients are updated, a parameter in the 

packet controls the number of nodes involved in the ronting process; this is known as the “expansion 

strategy”.

DGR has been developed based on concepts from the SGF [79] and GRAB [76,77] protocols. The 

protocol also assumes that nodes can change the communication range by varying the transmission 

power at any given time. All sensor nodes are initially in idle mode and, as soon as a sensor receives 

a transmission request, they turns to busy mode. The DGR protocol mechanism is comprised of 

three phases: the dynamic gradient setup pha.se, the routing path establishment phase, and the data 

transmission phase.

52



Chapter 2. State of the Art

In the setup phase of the dynamic gradient, the hop metric is emirloyed. Nodes accept only 

the hrst received ADV message and ignore all the others. In this phase the gradient cost value is 

calculated based on the hop count, the remaining energy of the node, and a coefficient which t rades 

network balance for routing efficiency. The coefficient helps regulate how many nodes are involved 

in the routing process for this gradient, i.e. the expansion strategy. Once this phase is completed, 

source nodes launch the route establishment idiasc. A source node broadcasts a packet, at low 

transmission power, requesting neighbour nodes to reply. Neighbours delay their reply as a function 

of their gradient cost value. The first node replying will be selected as the next hop which also 

enables bidirectionality for reverse path communication. The fast packet to reply is selected as it 

forms an efficient gradient in terms of hops and energy. The process is repeated until the destination 

sink is reached. When the path is established, data can be sent in the data transmission phase. 

In this phase nodes send packets using full transmission power, rather than the lower transmission 

[rower emjrloyed in the route establishment phase. This way a node can reach other nodes in the 

path at a distance higher than one hop away. This will avoid having to rotite over a higher number of 

nodes. The distance which can be reached in terms of hops according to the full power transmission 

is calculated based on information of the power levels of all the nodes in the pat h. However, the node 

receiving the data packet needs to send an acknowledgement [racket back to the sender using the full 

path at tow [rower transmission. This mechanism increases the reliability of the communication. In 

addition, the routing path establishment phase is launched again when the energy level of a node 

falls bekrw a threshold. This energy threshold is computed by the sink and disseminated in the ADV 

packet, when the gradient is created. When this ha[rpens, the node sends a message to the source 

node so it stops transmitting data packets and initiates the route establishment phase. Nodes not 

partici[rating anymore will go int o idle mode. Now costs will be recalculated wit h the current energy 

values. Different costs will now change the [rath to be established, balancing the traffic load to those 

with higher costs and therefore higher energy. However, by varying the coefficient involved in the 

calculation of t he cost, a tradeoff can be achieved between optimising the route in terms or hops and 

balancing the network in terms of energy.

2.3.3.17 RPL (2010-2011)

Recently, the IETF Routing Over Low power and Lossy networks (ROLL) Working Group has been 

formed [11] to standardize a generic routing protocol which satisfies most of the requirements and 

con.straints from urban [110], industrial [111], home automation [112] and building automation [113] 

scenarios where low [rower and lossy networks are to be deployed. An IPv6-com[)liant routing
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protocol known as RPL has been designed by taking into consideration the applicability, scalability, 

constraints, usability and existing technology integration of this type of networks. RPL (Routing 

Protocol for Low power and lossy networks) [12] has been engineered to route data in networks 

of dozens to thousands of low power devices where interconnections are characterised by high loss 

rates, low data rates, and instability. The protocol has been proposed, with some modiheations, 

as the routing layer for the advanced metering infrastructure in Smart Grid [114]. The design of 

the protocol describes the basis of routing such as packet processing and forwarding decisions while 

leaving the network traffic optimisation mechanisms open for implementation by the application 

developer.

The IETF ROLL group work indicated the necessity for the routing protocol to support point- 

to-point (P2P), point-to-multipoint (P2MP), and multipoint-to-point (MP2P) communication, to 

account for all the possible traffic flow application scenarios. The RPL routing protocol employs 

gradient-based routing concepts as the basic mechanism to accomplish most of the requirements 

outlined for the generic design of a routing protocol. Thus, RPL capitalises on the formation of 

Directed Acyclic Graphs (DAG) ending up in a DAG root, which is a node with no outgoing edges. 

A DAG is defined by 1) a set of sink nodes, 2) the set of metrics on each link, 3) the link cost formation 

according to the metrics and 4) multi-hop path cost formation from a combination of link's costs. 

I'he j)rotocol uses the concept of “Up” and “Down” to route through the acyclic gra[)h and a “Rank’' 

value to assess a node’s position relative to others with respect to the root node. A DAG can have 

multiple root nodes (gradients), useful for multicasting, while graphs with only one root node are 

known as DODAG. Forwarding mechanisms and Route Repair mechanisms are suggested and paths 

are established by sending the so called Destination Advertisement Object (DAO) messages. An 

on-demand mechanism to establish cost-efficient routes from a router or host to another router is 

available to guarantee P2P communication [115]. RPL is IPv6-compliant employing periodic IPv6 

Router Advertisements to maintain the gradients in the network.

2.3.4 Other Gradient-based Routing Mechanisms

A number of protocols have been presented in detail in the previous section, which describe the 

basis of gradient-based routing and a variety of mechanisms employed in the gradient setup and data 

forwarding phases. This section extends the state of the art by briefly presenting other algorithms 

for gradient formation and forwarding decision taken.

Shah et al. calculate the gradient setup cost value as a combination of the link transmi.ssion energy 

and tlie residual energy of the node [65]. The algorithm does not aim at hnding the optimal route
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but rather employing multiple sub-optimal paths to reduce traffic load and avoid network partition. 

To achieve this, a i^robabilistic forwarding mechanism calculates an average cost of the available 

neighbours to route data (excluding high cost values), and randomly selects the next neighbour from 

those with a cost equal or less than the average cost of the neighbourhood.

Chen et al. present an algorithm called Self-Selective Routing (SSR) [116] for wireless networks 

which employs the gradient cost variable as a delay in the data packet forwarding. In SSR when 

neighbour nodes receive a broadcast data packet, a back-off timer is set to a value proportional to 

the cost. When the first receiving node broadcasts the packet, this serves as an implicit acknowl­

edgement to cancel the broadcasting of those nodes waiting. To cover those nodes out of the range 

of the node broadcasting, the previous sender (which has overheard the broadcast) sends an explicit 

acknowledgement packet to cancel the sending of those nodes in its range. Even though the mech­

anism is robust to failures and reduces the number of forwarded messages, the end-to-end delay is 

increased.

Cheng et al. propose a forwarding method which takes decisions based on 1-hop neighbourhood 

information to balance the traffic load according to a priority value which is calculated based on the 

remaining energy [117]. The approach employs a multi-sink network in which nodes route information 

to the nearest sink to save on the overall energy of the network; the goal is to push data from the 

network to the sinks in an energy efficient manner.

On the selection of the next hop to forward t he packet, the Erdene et al. propose a set of selection 

schemes (random, deterministic and random probabilistic) to improve the resilience of the network 

against malicious attacks [118]. The next hop selection strategies were implemented and tested on 

the Gradient-Based Routing protocols (GBR) [45].

Han et al. employ the hop count as a metric to setup the gradient [119]. They also tackle the 

problem of a node changing its neighbourhood via sending periodic hello messages to discover the 

node with the lowest hop count to the sink; this node become its new parent.

Verbist et al. present a mechanism for good formation of the gradient which utilises a back-off 

time before broadcasting the gradient advertisement packet [120]. The FuRF (Furthest Responds 

First) algorithm employs the received signal strength indicator (RSSI) and the hop count to delay 

the single broadcast packet sent by each node.

A gradient setup mechanism for highly dynamic environments is described by Hhan et al. [121]. 

The mechanism enhances the ideas in the paper “A scalable solution to minimum cost forwarding 

in large sensor networks” [81] which was only evaluated to work well in static environments. This 

mechanism requires that, all nodes in the network are synchronized and that t he number of neighbours
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of a node is predefined. The algorithm is based on a delay computed at the sink which is then carried 

in the advertisement packets. The advertisement packet tells nodes the amount of delay before 

broadcasting. Only one broadcast is made with the best accumulated cost. In order to account for 

mobility, the sink performs statistical analysis on the received data packets in search of performance 

variations. If mobility is detected, the sink triggers a new gradient setup process with a new delay 

value which is calculated from statistical analysis of the data packets received amongst other factors. 

The idea aims at a proper gradient formation where, for instance, nodes at 1 hop away from the sink 

broadcast the packet before the first node at a distance 2 hops away does it.

2.3.4.1 Data-Centric Query and Searching by Gradient Navigation

Another class of gradient-based routing protocols exploit the potential field, i.e. the gradient, formed 

by the physical phenomenon diffusion laws when the phenomenon propagates away from the point of 

origin of the event, e.g. the RCDR protocol (see Section 2.3.3.9). This class of protocols are driven 

by queries of data which navigate the gradient, usually by employing greedy algorithms, selecting 

the next hoj) node according to the correlation of the phenonienon/s .sen.sed at the nodes and the 

information encapsulated in the ciuery.

In this line of research. Jabbed Farucpie et al. ]5roi)osed in their paper “Routing on fingerprint 

Gradients in Sensor Networks” (RUGGED) [122] a mechanism for routing of packets towards the 

central point of an event. This is achieved by following the event's hngerprints left in the sensor 

network according to the diffusion laws of any physical ijhenomenon. Their argument is based on the 

gradient created by a phenomenon which affects nearby sensors according to their distance from the 

event. The rationale is that queries initially employ some flooding mechanism to traverse the network 

until those nodes containing some information about the event are located. At this point, packets 

progress through the gradient in a multi-path greedy manner. Due to the po.ssible distortion of the 

physical events over distance, local minima or maxima points can be given. The authors employ 

a techniciue based on simulated annealing, where a change in the status is based on probabilistic 

decisions, to escape from this points and progress towards the global maxima or minima, i.e. where 

the event occurs. This is not a gradient-based protocol per se. The algorithm is based on the concept 

of data-centric routing, where packets are forwarded according to the properties of the data, instead 

of using node identifiers. However, the algorithm provides evidence of the suitability and rationale 

behind the use of gradients for routing.

Similar data-centric approaches which employ the concept of navigation through the gradient 

formed by the phenomenon, or data from the event, have been employed [123- 126]. These mechanism
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seek to query single events, or a composition of them, in an efficient manner by descending and 

climbing the potential field generated by data from the phenomenon. In-network processing and 

decision making at every forwarding node are made. These employ a combination of equations 

based on the way data is diffused and the analysis and coni[)arison of both sensor data and query 

(meta)data.

2.3.5 Significance for this Thesis

This section has presented a chronological and comprehensive review of gradient-based routing i)ro- 

tocols for wireless sensor networks. Common features of all the gradient-based routing protocols 

analysed, including the Ubiquitous Mobile Gradient (UMG) routing protocol, have been identified 

and are presented in Table 2.1. The table helps to characterise the behaviour and functionality 

provided by UMG when compared to existing protocols. UMG’s design can be compared to that 

of DGR [109] or GRACE [94] as they have some commonality of feature set, including a reactive 

behavionr, nnicast-based gradient descent and gradient ascent functionality. However, UMG does 

not incorporate energy in t he rout ing metric and tolerates sink mobility.

While having some similarities to existing gradient jirotocols, UMG design integrates a set of 

specific mechanisms which enhance the reliability and versatility of the routing ])rocess. UMG 

incorporates a robust gradient formation mechanism based on a backoff delay as a function of the 

hop count. The i)rot()col also employs a mechanism which avoids cycles and allows for the coexistence 

of cost table information from different gradient formation processes from the same sink node. It 

employs reliable end-to-end mechanisms utilizing a unicast-based gradient descent, pha.se to transport 

data, while ascending the gradient with broadcast packets for acknowledgement i)urposes. UMG also 

employs a novel mechanism to detect relative mobility for triggering scoped sink gradient updates. 

In addition, UMG leverages the routing process to provide service advertisement to higher layers.

In summary, UMG has been designed as a reliable and versatile routing protocol, providing 

point-to-point, multipoint-to-point and point-to-multipoint communication for those scenarios where 

a node’s application requires end-to-end, on-demand connectivity. UMG has been designed to satisfy 

the communications requirements of the content distribution protocol presented in this thesis, i.e. 

the TinyTorrents protocol.
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2.4 Peer-to-Peer Data Distribution in Wireless Networks

Global data dissemination networks and infrastructures can he realised using Peer-to-Peer (P2P) 

technologies over TCP/IP. P2P architectures are commonly characterised as moving the resource 

management to the edge of the network, i.e.: to the “peers”. This is achieved by allowing direct 

communication among peers, which encourages them to cooperate amongst each other in managing 

the resource. The resource being managed is commonly bandwidth, data or computing power. Peers 

in a P2P system operate autonomously, which means that stich systems exhibit greater reliability 

and availability, as they are more resistant to individiial node failures. Peer autonomy also means 

that peers are often equipped with discovery protocols, which allow them to find functioning peers 

in the network when neighbouring peers have failed. This ability of “self-organisation” greatly adds 

to the reliability of P2P systems. It also means that the central node is relieved of much of the 

management: Imrdeii. Ideally, a P2P network has no central nodes, with decentralised functionality 

being provided through struct)ired Distributed Hash Tables (DHT) on all participating nodes or 

unstructured discovery mechanisms. For these recisons. P2P systems generally scale better than 
corresponding client-server systems. This is most clearly seen in file-sharing applications in which 

the cost of puhlishing and transferring data is spread across all the nodes in the P2P network.

2.4.1 Taxonomy of Peer-to-Peer Content Distribution Strategies

The concept of i)eer-to-i)eer networking enables distribution of the burden of centralised servers by 

turning networks into a set. of self-organised devices capable of communicating with each other and 

sharing resources. In particular, content distribution is an area of P2P technology which deals with 

data sharing in a distributed way. The network acts as a distributed database where redundant, data 

is published, searched and transferred by employing P2P communication amongst devices [127]. This 

approach offers the following advantages: i) network traffic load distribution, which contributes to 

avoid congestion and improve throughput hy better using the resources in the network, ii) fault- 

tolerance, as data is replicated and traffic control is decentralised, iii) imi)licit security, which is 

achieved as multiple copies of data at. disparate points in t he network can be verified against each 

other for integrity and authenticity, iv) higher reliability, as there is availability of multiple copies of 

data from multiple sources, v) robustness to changes, due to a higher availability of data at multiple 

and distant points in the network, vi) scalability, as new devices entering the network do not incur 

a major system performance decrease, and vii) resistance to censorship, as there is no central unit, 

of traffic control and anonymity can be achieved.
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Ideally, P2P networks are fully distributed, however different systems require some degree of 

centralisation for coordination purposes. In this regard, a network can be classified as having a:

• Purely Decentralised Architecture

All nodes have the same duties and functionality; there is no central entity.

• Partially Centralised Architecture

Some nodes might perform special tasks within a local neighbotirhood. These nodes are called 

supernodes, they are dynamically appointed and can be replaced making the system fault 

tolerant.

• Hybrid Decentralised Architecture

There is a special jjeer which contains metadata information about what other peers contain 

and can also indicate how to access them. This peer acts as a central coordinator. As a result 

of this, there is a single point of failure which makes the .sy.steni vulnerable and less .scalable. 

However, the transmission of data obeys the peer-to-peer concept.

Another classification arises from the structure of the virtual overlay network employed by de­

centralised distributed systems for content discovery:

• Unstructured Overlay Networks

Data or metadata files are distributed without following an overlay structure. Nondetermin- 

i.stic, inefficient searching mechanisms like flooding have been emj)loyed for simplicity. This 

type of architecture is suitable for networks with transient nodes where a structured overlay 

requires frequent update. On the other hand, scalability problems may arise if the searching 

mechanism proves to be inefficient in terms of latency and communication. However, the evo­

lution of searching mechanisms has overcome some of the inefficiencies in the searching process. 

Techniciues employed include: i) go.ssiping, ii) routing indices [128], iii) history and local data 

caching, for decision making in the forwarding of the packet [129], iv) multiple parallel random 

walks [130], v) intelligent forwarding decision based on a ranking of peer performance pro­

file [131] and vi) heterogeneity node’s exploitation for the formation of dynamic clusters while 

employing random walks for cluster nodes searching [132]. An example of this networks is 

Gnutella [133], which needs to bootstrap a list of nodes and then discover other nodes by ping­

ing nodes from this list. Search is achieved with communication expensive nondeterministic 

methods, mainly variants of flooding. Singla et al. proposed a solution for efficient searching 

in Gnutella via the u.sc of super-nodes, i.e. nodes hierarchically superior than other nodes in
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the network [134]. Super-nodes act as i>roxy nodes caching inforniatioii for a set of client-nodes 

in such a way that a client-node has a supernode associated for querying. This approach ame­

liorates the traffic l)urden and makes the network scale by reducing the number of messages 

involved in the communication.

• Structured Overlay Networks

In this type of infrastructure a virt ual overlay network is created as a keyspace-based structure 

where virtual nodes store either a list of nodes containing data or the data itself. The structure 

provides an efficient mechanism to store and retrieve data from distributed nodes, called Dis­

tributed Hash Table (DHT). The idea is to employ consistent hashing to map data and node 

identifiers to keys in the keyspace structure. This way, data rejn'esented by closer keys will 

be managed by nodes with closer keys in the keyspace structure. Therefore the addition or 

removal of data, or node identifiers, will only incur an additional update to a small subset of the 

keysj)ace nodes; a dynamic rearrangement of the keyspace will be j)roduced in proximate keys 

lo the affected key of the structure. DHTs are mechanisms for storage and searching which 

scale well and are fault tolerant. However, in highly dynamic networks, where nodes may enter 

and leave the keyspace rapidly, the cost of updating virtual neighbours may be highly expensive 

in terms of communication. In addition, DHT-based peer-to-peer systems suffer from the Sybil 

attack [135], where a set of attack nodes might control part of the DHT structure. A solution 

to this is the application of trust-based systems in peer-to-peer networks. The main algorithms 

employing the DHT mechanism for data lookup are: Chord [136], CAN [137], Pastry [138], 

Tapestry [139] arid Kademlia [140].

• Loosely Structured Overlay Networks

This category can be classified as a structured architecture which, instead of maintaining a 

virt ual overlay, locates data by combining data hash keys and routing level hints. An examjjle 

of this special category is Freenet [141].

While centralised architectures offer efficient and reliable single-point lookup mechanisms for 

dist ribut <'d data searching, they suffer from the hot spot problem and present a single point of failure. 

Pure decentralisation, partial centralisation and hybrid approaches are solutions which distribute 

both data and data location information over multiple nodes. Decentralised approaches scale better 

and can adapt to changes in t he network from a local perspective. However, data, or service, discovery 

poses a challenging problem in decentralised P2P networks. In their paper “Ubiquitous and Pervasive 

Api)licat ion Design” [142], Bakhouya and Gaber present a classification of service discovery systems
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according to tlieir arcliitectnres and their operating niocie. Accorciing to tiiein, diKcovery systcuns 

can be cia.s.sified as: 1) structured systems (indexation and DHT), 2) unstructured systems (fioociing 

and random waiks) anti 3) seif-organised systems (affinity networks). Tiie first two ciiscovery systems 

are covered in detaii for wireiess network in Sections 2.4.3 anci 2.4.4. Tiie iatter ai)proacii is i)ased 

on the formation of coiiaborative communities of peers according to affinity reiationships; this can 

be seen as rnuitipie overiay networks wliere a peer is a memi)er of one or more virtuai communities.

On tiie other iiaiui, in tiie area of ad lioc wireiess networks, data ciistribution and service ciiscovery 

pose iiiglier ciiaiienges tlian in traciitionai wireci networks. Tiiis is niainiy cine to tiie unreiiabie 

wireiess meciium anci tiie inefficiency of routing to ciistant nocies. Specificaliy in tiie cioniain of WSN, 

ciata ciisseniination aigoritlims are empioyeci to ciistriimte ciata over tiie sensor network for ciata 

coiiection anci reprogramming purpo.ses (see Section 2.4.5). Dissemination tc'cimiciiies iiavc also been 

used in WSN to ciistriimte ciata over tiie sen.sor network for distriimteci storage purposes. Wiiiie 

some approaciies enipioy iocai storage anci necci ejnery meclianisms sucii as TinyDB [143], others 

ciistriimte ciata replicas at remote locations in tiie network such as DISC [144] and TinyPEDS [145]. 

One of tiie major prolfiems wlien transforming tiie sensor network into a distriimteci remote storage 

is tiie location of data. Some approaches employ cluster-based mc'clianisms for hierarcliical searcliing 

(DISC and TinyPEDS) which may incur a liigh maintenance cost in terms of communications. In 

tliis regard, in tiie area of wireless sensor networks, a decentralised and fiat-based network structure 

represents a more efficient and scalalile solution, liowever, it poses greater ciiaiienges in tiie design 

of robust and reliable data discovery and clis.seniination meclianisms.

In tiie following section, tiie niec:lianisms of tiie BitTorrent protocol arc presented as a reference 

point in tiie design of tiie data ciistribution protocol presented in this tliesis. Propo.sed adaptations 

of BitTorrent to wireless networks are also identified. In later sections, solutions whicli employ struc­

tured overlay networks for data discovery and routing purposes, liotli in Mobile Ad Hoc Networks 

(MANETs) and Wireless Sensor Networks (WSN), are described. Some of the most relevant ap­

proaches for ad hoc networks, with a special emphasis in the area of wireless sensor networks, are 

presented in Section 2.4.3. Unstructured lookup mechanisms for ad hoc wireless networks are then 

de.scribed in Section 2.4.4 as convenient solutions for data searching in sensor networks offering a 

high degree of data replication. Finally, a review of the most influential di.sseniination protocols is 

given as mechanisms for data distribution in WSNs.
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2.4.2 The BitTorrent Protocol for Wireless Networks

2.4.2.1 The BitTorrent Protocol

BitTorrent is a widely used file sharing protocol designed by Brain Cohen [146]. It is intended for 

efficient data dissemination on the Internet, creating a content distribution network based on the 

peer-to-j)eer model. Its key components are the peers, which cooperate in replicating content across 

the network, and the tracker, which provides a means for peers to discover each other. BitTorrent 

allows peers to cooperate directly in transferring data, and ensures fairness among peers using a 

tit-for-tat algorithm. Content is broken into pieces, each of which are treated as atomic units of data 

for t ransportation purposes. This allows different portions of the same file to be downloaded at the 

same time from different nodes in the network. The goal of BitTorrent is to replicate the content as 

quickly as jiossible among the peers, thereby reducing the burden on the original piililisher of the 
content.

The main elements in the BitTorrent architecture are the torrent file, the tracker, the set of peers, 

and the .seed peer. BitTorrent distinguishes peers into two groups: seeders and leechers. Peers which 

have a comidete copy of the file being distributed are called seeders. Leechers are peers which do not 

yet have a complete copy of the content. A tracker is a centralLsed component which is responsible 

for keeihng track of all peers currently involved in the distribution of a file. It is the means by which 

peers discover one another, using the tracker protocol which may be layered on top of HTTP. The 

tracker is not necessarily directly involved in distributing the content. BitTorrent does not include 

a file search mechanism as other P2P content distribution networks do. Instead, it relies on users 

acquiring a “torrent” file, which contains metadata about an item of content published through 

BitTorrent. The torrent file is accpiired e^xternally to the BitTorrent system. BitTorrent can be 

broken down into a number of key elements and behaviours:

• Publishing Data

In order to publish content in BitTorrent, one needs to construct the “.torrent” file. This 

“.torrent” file is made available outside of the BitTorrent network, typically by hosting it on a 

standard web server. At least one peer, which has the full fileset, must be available. This peer 

is the seed for the torrent.

• lYacker Protocol

The tracker jirotocol is used between jieers and trackers, and signals the intent of a peer to join 

a torrent. The tracker keeps track of the peer membership in the torrent. Peers attempt to join 

a torrent using the information about a torrent contained in the “.torrent” file. In particular.
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the address of the tracker responsible for the torrent is j)rovided. Onc;e a peer has contacted 

a tracker, the tracker randondy chooses a set of peers from the torrent and communicates this 

back to the joining peer. Once a peer has joined a torrent, it will periodically inform the tracker 

of its status and progress. This ensures that the tracker’s global view of the torrent is kept up 

to date.

• Peer Interaction

Once a peer has joined the torrent and obtained a list of peers, it proceeds to establish TCP 

connections with its peer set, over which all peer to peer interaction will take place. All peer- 

to-]5eer connections are bidirectional. The peer interaction begins with a handshake process. 

The hamlshake messages contain a fixed header, followed by the SHAl hash of a jjortion of the 

“.torrent” file, which uniquely identifies the content. If both peers do not agree on this hash, 

the connection is terminated. Once the handshake is complete, the peers begin exchanging data 

with each other. They do this by interchanging pieces of the file with each other. Whenever a 

peer completes a jjiece, it informs all the peers in its peer set. This is important, as it allows 

peers to keep track of the status of other peers and thus make better decisions regarding piece 

selection. Two important aspects of the peer protocol are now highlighted, piece selection and 

fairness.

• Piece Selection

The piece selection strategy is the mechanism by which a peer decides in what order it should 

request pieces of the content. In order to select the piece to be downloaded next, peers in 

BitTorrent use a rarest first strategy. This means that peers choose to download the pieces 

whicli the fewest of their own peers already posse.ss. Peers must inform each other when they 

obtain a new piece. The rarest first approach makes sure that peers have pieces which their 

peers are likely to want as well as ensuring that the pieces are rapidly duplicated across the 

network. This means that redundant copies of all pieces are made as cpiickly as possible, thus 

reducing the likelihood of content loss due to node failure. The rarest first approach also means 

that the burden on the initial seed Is reduced much more quickly, thus reducing the flash crowd 

problem [147].

• Fairne.ss: Choking and Unchoking

In BitTorrent, peers essentially barter with each other for pieces of the content. Each peer-to- 

peer connection in BitTorrent is associated with two states at each end: choked or unchoked, 

and interested or not interested. The interested status indicates if the peer at the other end of
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t he connection has a piece that this peer still needs. Peers decide to whom they should upload 

using a tit-for-tat algorithm. They do this using “choking”, which is a temporary refusal to 

upload to a peer. Once a connection is unchoked, then uploading can take place again. In this 

way peers recii)rocate hy uploading to peers which upload to them, thus encouraging fairness. 

Data transfer between two peers will only occur if the sending end of the connection is not 

choked, and if the receiving end is interested. Maintaining the choking state is key to BitTor- 

rent achieving its goal of fairness as it allows peers to interact with each other and promotes 

fair participation in the network [148].

A series of initiatives to decentralise the BitTorrent protocol have been proposed which aim at 

replacing the tracker node (where information abovit the swarm is kept) by a trackerless mecha­

nism based on Distributed Hash Tables. The most popular DHT versions, the one implemented 

by BitTorrent Inc., known as Mainline DHT [2], and that developed by Azureus-Vuze, known as 

Distributed Database [149], are both based on Kadenilia [140]. An alternative strategy for peer 

discovery, known as Peer Exchange (PEX), has been implemented in some BitTorrent clients [150]. 

PEX entails ciuerying present peers to find others. It is, however, susceptible to the formation of 

articulation points, whereby the failure of a peer partitions the swarm into disjoint components. It 

thus becomes necessary to flood in order to re-dkscover remaining peers. Anatomic P2P [151] is 

another attempt to decentralised BitTorrent employing a su])ernode caching system. Multi])le su- 

Ijernodes act as trackers spread over the network. In addition, TRIBBLER [152] offers decentralised 

search capabilities based on social relationships between peers. By maintaining and exploiting social 

networks, TRIBBLER perform content discovery, including torrent hies, and builds a peer list for 

data from its known peers. The system offers the j^ossibility to recommend content to other peers 

and cmi)loys a gossiping protocol to search for those peers in the network.

2.4.2.2 BitTorrent in Wireless Ad Hoc Networks

The core design of the BitTorrent protocol offers some benehts to tackle a number of major jiroblems 

faced when designing communication protocols for wireless ad hoc networks, specihcally for Wireless 

Sensor Networks. Like other P2P content distribution protocols, BitTorrent helps to balance the 

communication load and avoid network jjartition. The latter features correspond to two of the 

key design goals in Wireless Sensor Networks. BitTorrent also employs the rarest piece algorithm 

which has been proved to introduce a higher degree of fairness in data replication. The BitTorrent 

mechanism of segmenting data hies into jueces also adds an extra level of inner security to t he system.
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A node which does not contain all pieces of a data file provides only nicaningless data when tampered 

with. Replication policies can be set up so as to avoid peers storing entire data files, thus actiieving 

this added level of security. One additional advantage in using the BitTorrent design is that if every 

segmented data piece can be transported within a single packet, the probability of successful data 

delivery in tlie network increases and, hence, the reliability.

The BitTorrent tracker node contains the list of peers participating in tfie peer-to-peer overlay 

network, i.e. the swarm. While a central point of management is mseful for traffic distribution control, 

it is a single point of failure with a high likelihood of suffering the hot spot and flash crowds problems. 

The inefficiencies produced by these two problems are exacerbated in multi-hop wireless networks 

fis the hop distance to the central point increases. Thus, a decentralised approach is required which 

discovers closer peers capable of providing pieces of the data being searched.

In their works, Mario Gerla et al. proposed the SPAWN [153] .swarming protocol as part of 

a project for cooperative downloading in vehicular networks called Car Torrent. SPAWN employs 

concepts from the BitTorrent i)rotocol such as partial downloading and content sharing where pieces 

of data are acquired from closer vehicles in a peer-to-peer fashion. The mechanism has been designed 

to avoid the situation where a car needs to wait \mtil getting in range with the next gateway to resume 

the download. Instead, SPAWN fosters collaboration amongst vehicles by interchanging pieces of 

data. Since content distribution protoc;ol.s for vehicular wireless networks inherently have a high 

degree of churn, i.e. the continuous jjroce^ss of node arrival and departure in a network, peer discovery 

mechanisms need to be in place. To solve these issues, SPAWN employs a decentralised mechanism 

for peer discovery based on periodic gossiping [57] (.see Section 2.4.5). A peer, from time to time, 

starts a gossiping process containing the peer list for a torrent. As the packet traverses the network, 

the intermediate node identifiers are aggregated in the packet as a mechanism to avoid cycles and 

provide an indication of hop distance between nodes. Nodes hearing the gossip packet forward the 

packet with a higher probability if they are interested in the torrent, such that the gossip process 

becomes more efficient. The protocol can also cache the last gossip heard from as many nodes as 

jjossible and select which gossip packet to rebroadcast at different rates. The selection of the packet 

to rebroadcast and the sending rate depends on the interest of the node in the torrent of the packet. 

These mechanisms act as peer list maintenance and discovery solutions, increasing the robustness 

when in the presence of high churn. However, the likelihood of finding a peer list, or a piece of data, 

in proximate nodes depends on the gossiping process. When a peer discovers another peer, it notifies 

its neighbours and includes the new piece bitvector. While UDP is employed for gossiping, TCP is 

used for content delivery employing the AODV [4G] routing protocol for multi-hop transfers. In this
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type of net works peer proximity impacts the siiccess and efficiency of the comimmications snch that 

it needs to he taken into account in the selection of the peers from which to download pieces of data. 

The authors include the proximity of the peer in the peer-piece selection process and suggest the 

following policies: i) Rarest-Closest First, i.e. select the rarest piece and break ties with the closest 

peer, ii) Rarer-Closer, i.e. a weighted piece selection based on rarity and proximity, and iii) Clo.sest- 

Rarest First, i.e. select the rarest piece amongst the closest. As expected for this type of network, 

the Rarest-Closest First policy produces the most efficient overall performance. Furthermore, the 

higher the swarm of peers for a torrent (popularity index), the better the performance; this indicates 

that collaboration should be fostered in this type of network for efficient distribution and scalability.

Around the same time as SPAWN, a cross-layer design weus published by Rajagpalan et al. which 

adapts the BitTorrent protocol to operate in mobile ad hoc networks employing TCP and UDP [154]. 

The cross-layer approach employs a reactive routing protocol named ANSI for communication and 

searching [)ur])oses. The paper presents a centralised approach, BTI, which irnplements the basic 

functionality of BitTorrent where a tracker node keeps track of the swarm. In BTI, torrents need to be 

searched by employing the flooding process of ANSI in combination with the “expanding ring search” 

strategy if t he search is not succes,sfid for the initial scope. The “expanding ring search” works by 

progressively increase the scope of the flooding i)rocess, in terms of hops, when the search is not 

snccessful. Both seeders and trackers reply if they contain the torrent. Once the tracker is contacted 

for the i)eer list, peers are contacted randomly. They employ a random piece selection strategy. Peers 

deciding to Irecome seeders inform the tracker for how long and with what probability they should be 

selected for the peer list. An enhanced cross-layer decentralised version of BTI is propo.sed as BTM. 

It emi)loys the ANSI routing protocol to collect and cache information about torrents and peers. The 

tracker node disappears at the cost of caching information and extra communications. In addition, 

torrents arc rebroadcast using gossiping [57] from the initial seeder. It also uses the ANSI routing 

protocol for searching torrents and peers. Periotlic scoped flooding packets are issued in search for 

peers, which reply with a response, to keep the peer list updated. Beacon packets are also employed 

to inform the neighbourhood that the node is a peer for a particular torrent. The authors employ a 

mechanism to increase data diversity by quickly distributing the content t o a set of strategic nodes 

in the network, which immediately acquire the data from the initial seeder. These nodes, known 

as proxy seeders, are selected on reception of a torrent according to a hash function which assures 

that a full copy of the data is available at disi)arate points of the network. Experiments varying 

mobility, piece size and in the presence of network partitions jjroved that BTM outperforms BTI in 

terms of goodput and number of unique pieces received. However, these benefits come at the cost
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of higher MAC resource coiisuiiiptioii. A recent paper [155] has iiiipleniented the BTM algorithm 

whicli enhances the protocol by implementing the next piece selection policies: rarest piece, random 

first piece plus rarest piece, rarest piece plus strict priority. The last strategy, based on completing 

sub-pieces of a jriece before moving to download the next piece, was proved to perform better than 

the others, inclnding the random policy, in terms of average goodput, energy consumption, control 

overhead and latency.

There have been apjrroaches which employ a combination of the above mechanisms for cooperative 

content distribution enhancing proximity and diversity [156]. EIRakiibawy et al. presented a similar 

decentralised mechanism which halves the time to download a file by avoiding the random-peer or 

clo.sest-jreer selection strategies [157]. Instead, they take into account the current traffic load and 

interference on the download paths to .select peers, and thus download multiple pieces simultaneously 

by avoiding interference.

A later approach to adapt the BitTorrent protocol to wirele.ss ad hoc networks w;is presented by 

Sbai et al. [158]. They focus in improving the efficiency of the content sharing by minimizing the 

dowidoad time and improving diversity and fairness. They adapt BitTorrent to operate using TCP 

for data communications and UDP for control packets. A decentralised mechanism for peer iliscovery 

is proposed where a peer initiates a flooding process for peer searching and advertisement purposes 

within a scope in the network. The Tinie-To-Live(TTL)-based flooding mechanism periodically 

sends “Hello” messages to discover peers containing pieces of t he torrent; matching ])eers reply with 

a me.ssage. For ad lioc renting purposes, the De.stination-Sequenced DLstance-Vector (DSDV) [49] 

jrroactive protocol is employed. Proximity is taken into account when selecting j)eers for data transfer. 

Two tables are created, the Near Neighbours Table (NNT) and the Far Neighbours Table (FNT). 

Idle NNd’ contains nodes at two hop distance while the rest of the known nodes are stored in the 

FNdh Piece selection strategies - the local rarest first policy - operate only in the NNd^ table, and 

therefore peers send their piece ujidate packets only to nodes in the NNT table. However, for every 

“q” peers selected from the NNT, a node is randomly chosen as a peer from the FNT. In addition, the 

piece which is going to be sent to the FNT node must not exist in the neighbourhood of the selected 

FNd" node; the authors called this as “the absent piece strategy”. ddiis way, the mechanism increases 

piece diversity in the network while keeping the core of the download process in the vicinity, thus 

decreasing the completion time, ddie best “q” value, which establishes the number of peers selected 

from the NNT for each peer from the FNT, depends on the number of nodes in the network. Idiese 

concepts were applied into the creation of BitHoc [159], a trackerless adaptation of the BitTorrent 

protocol employing TCP/IP over the 802.11 MAC Layer with the RTS/CTS mechanism. Another
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version of BitHoc is presented which instead employs the OLSR [100] proactive routing protocol [161]. 

Tracker agents running in nodes connect to each other to create a global distributed membership 

tracking service. In addition, the same authors explored the impact of peer selection strategies in the 

performance of BitTorrent over mobile wireless ad hoc networks [162]. In this case, their selection 

strategy of choosing a far neighbour in order to increase piece diversity proved to be very inefficient 

due to the high loss ratio of mobile networks when performing routing. Through simulat ions, near 

nodes are preferred as a solution for quick and reliable content delivery which exploit node mobility 

to increase piece diversity.

In a recent paper [163], Sbai et al. combine the above mechanisms to allow for content sharing in 

mobile wireless networks. They structure the overlay of peers of a torrent in a minimum spanning 

f ree according to the hop distance. This way all peers are connected and efficient routing can l)e 

accomplished while increasing the chances that all peers complete the download of the file. However, 

t his mechanism requires periodic messages to maintain spanning trees connected when peers enter or 

leave the overlay or when nodes move. Rather than only using the routing hop distance for its peer 

selection strategy, the logical hop distance at the overlay minimum spanning tree is also emi)loyed 

as a mechanism to select the list of near neighbours. As mentioned before, the authors include 

in the ])eer list a distant i)eer, i.e. a far neighbour, for every “q” near ])ecrs in order to increase 

piece diversity. However, too many seeders within the same area connecting to distant nodes would 

increase the overhead in routing providing a low degree of diversification. As a solution, the number 

of connections to far nodes was reduced according to the number of seeders in a particular area, i.e. 

the diversification area. The scope of the diversification area is calculated according to the number 

of successful pieces sent, to far-away peers. They found that a higher number of concurrent torrents 

increases the routing overhead and thus the best strategy is to only connect to near peers. When 

the number of simultaneous torrents is low, the diversification area is self-regulated to cover a wider 

scope. In addition, mobility also contributes to piece diversification.

Most of the BitTorrent adaptations for ad hoc wireless networks in the literature place a strong 

emphasis on the concept of introducing proximity in the peer-piece selection strategies. A cross-layer 

design is a popular approach since routing information should be taken into account for efficient 

content distribution decision making.
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2.4.3 Structured Lookup Mechanisms for P2P Wireless Networks

A range of inedianisins have been presented in the domain of Wireless Sensor Networks which create 

virtual overlays employing Distributed Hash Table (DHT) schemes for data search and retrieval. 

Many of them explore the impact that unreliable peers produce when entering and leaving the 

structure of the DHT. Solutions have been propose to ameliorate this effect by considering peer 

proximity thus eidiancing DHT robustness. However, when facing lossy networks where peers suffer 

from short and long periods of connectivity disruption, and may even have mobility, DHT lookup 

schemes have proven to be ineffective.

One of the first approaches to distribute, store and query data in WSNs was published in the 

papers Data-Centric Storage in Sensornets (DCS) [164,165] and Geographic Hash Tables for Data- 

Centric Storage (GHT) [166]. The authors presented the idea of distributing data by replicating it 

amongst nodes in the network such that a failure in the area will not affect the already gathered data. 

In order to distribute the data, a geographical routing i)rotocol called Greedy Perimeter Stateless 

Routing (GPSR) [52] is employed. Geographical protocols route packets to a location rather than to 

an address, i.e. dala-centric approach. Each node determines its own geographic coordinates, using 

for example GPS devices, and periodically announces its address and coordinates to its neighbours. 

In order to localize where data is stored, a Distribtited Hash Table (DHT) is employed which hash 

data into a hash value which correspond to a location in the network. The hash function evenly 
generates keys amongst all the areas of the WSN, such that every key belongs to a location. In 

each location (zone) a node is re.sponsible for the area, the home node, which is the clo.sest to the 

coordinates of the hashed key. This node is responsible for the storage coordinat ion in this area. To 

address node failures or topology changes, a refresh of each perimeter is iieriodically launched, which 

also confirms if the home node is still valid; if it is not valid, e.g. the node has failed or moved, a new 

home node is elected from those in the perimeter. The approach stores the same type of data in the 

same location. The location can become a hot spot or fail, therefore a technique called structured 

replication is employed. With structured replication, multiple locations can store the same data type 

and all of them are hierarchically structured so they update each other according to proximity. This 

t(!chnique adds extra redundancy at a higher coinmnnication cost.

Chord for Sensor Networks (CSN) [167] is proposed as a protocol which follows the principles of 

the DHT-based Chord algorithm [136] to provide a lookup mechanism capable of searching data with 

a logarithmic complexity. The authors claim it scales well as it maintains a finger table of 0(log(7i)) 

entries and employs 0(log(ji,)) messages to locate data. Cluster hierarchies and overlays are formed 

such that virtual neighbours are closer geographically. The authors state that in mobile scenarios, a
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fa.st update method should keep the finger tables updated but it has not been evahiated. The same 

authors propose a case for P2P overlay networks in sensor networks [168]. This paper outlines the 

design goals to consider when aijplying overlays in sensor networks, proposing a DHT-based protocol 

known as Tiered Chord (TChord). This establishes a virtual overlay of powerhd devices with slaves 

nodes, i.e. sensors with lower capabilities, hooked to them. A cluster structure is formed which can 

dynamically change and which takes into account physical proximity.

A solution for implementing a DHT in MANETS was proposed in Ekta [169]. The idea provides 

a peer-to-peer substrate by the integration of DHT-abstraction Pastry [138] in the network layer, 

employing DSP [47], a reactive routing protocol for multi-hop communication. Ekta updates its 

routing table and leaf set by snooping packets. A similar approach to Ekta, that integrates Pastry 

with the AODV [46] routing protocol, was later presented as MADPastry [170]. DHT tables are 

formed considering physical locality. It employs a set of random landmark keys spread evenly in 

terms of geograpliic coordinates which define temporal cluster nodes. Nodes do not hold a key, but 

rather landmark keys are assigned to new nodes in the cluster area by getting the cluster overlay 

jirefix in addition to a random key. A node moving to anot her landmark cluster area is detected by 

periodic beacon messages. An approach to address mobility in MANETS using DHT was explained 

by Zahn el al. where a distributed segment tree (DST) is implemented on top of MADPastry [171]. 

In a paper by Zheng et al. [172], a DST is used to maintain the ranges of keys in a DHT, therefore 

obtaining the range query, i.e. all keys within a range, and the cover query, i.e. all ranges for a 

key. The same authors of MADPastry proved later in [173] that their DHT ap])roach ontperforms 

reactive and proactive routing protocols in MANETS. They state that there is no need to maintain 

a sejjarate routing ])rotocol for peer-to-peer communication when having a DHT-substrate. Another 

approach to implement Pastry at the routing layer has been studied with the OLSR routing protocol 

which does not take into account proximity in the overlay network formation [160].

Ghose et al. proposed a DHT approach with circular virtual overlays over a geographical rout ing 

protocol, the Greedy Perimeter Stateless Routing (GPSR) [52], which finds optimal routes by using 

local information at every hop [174], This is achieved as every node has information about its 

position, typically by the use of GPS device; in a sensor node the use of a GPS might prove to be 

impractical due to its high energy consumption. Furthermore, the DHT overlay network is formed 

by ‘‘reference” nodes which represent events from an area, called event monitors. Bloom filters are 

employed for enabling attribute-based queries of the events at every event monitor node.

There has also been research on constructing DHT according to the topology of the network, 

such that virtual neighbours in the overlay are also close in terms of routing (hops). For instance,
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Topology-based DHT (T-DHT) [175] selects “reference” nodes by flooding niechanisms to offer sup­

port for other nodes to perform triangnlation and to calculate the relative ])osition of a node. Then, 

a virtual two-dimensional coordinate system is generated and mapped into a DHT which is used to 

store and retrieve data deterministically. A similar approach for data-centric storage and routing is 

also proposed in GEM [176], which uses graph embedding and tree routing, maintaining a two hop 

neighbourhood.

A routing protocol which applies DHT concepts on top of the link layer was presented as Virtual 

Ring Routing (VRR) [177]. The goals in designing the routing protocol were: i) to avoid flooding and 

ii) to avoid location-dependent addresses. On the other hand, scalability issues were not evaluated. 

Routing between virtual neighbours in the Pastry-based overlay ring is performed in such a way that 

there is knowledge about other nodes in the network, rather than only predecessors and successors. 

The complexity (in number of hops) to locate a virtual node can be reduced from 0(log(n)) to 0(y/n). 

This is achieved by taking into account link layer information of closer nodes when routing in the 

virt\ial ring. The protocol was comjrared in a sensor network of niica2dot against the Beacon Vector 

Routing (BVR) [178] protocol. BVR has been classified as a routing protocol for wireless networks 

and it has been evaluated in mobility scenarios with successful results. It should be mentioned that 

physical proximity is not considered when forming the overlay network and simulations have not 

taken into account power consumption.

Awad et al. presented Virtual Cord Protocol (VCP) as a DHT-based routing protocol which sits 

on top of the MAC layer [179]. It also takes into account geographical proximity (2 hops away) of 

virtual nodes to minimize commnnication. Like in VRR,, routing is based on virtual and routing 

knowledge. Mobility scenarios were not evaluated in the approach.

Finally, ScatterPastry [180] is a DHT approadi using Pastry on top, or integrated, at routing 

level. It is evaluated in a real WSN testbed called ScatterWeb. The authors try to minimize energy 

consumption and addre.ss scalability by using Pastry concepts both on top of, and in combination 

with, the De.stination-Sequenced Distance Vector (DSDV) [49] routing protocol. Every node hashes 

its ID into a key and routing is performed by key prefix comparison such that a packet will be sent to 

the closest prefix in the routing table. By exchanging periodic me.ssages, nodes failing or leaving an 

area can be detected thus refreshing table entries. A new node tliscovers its neighbourhood and finds 

a route to the node with its closer key in the network. Mobility is not simulated in this approach.
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2.4.4 Unstructured Lookup Mechanisms for P2P Wireless Networks

The problem of data retrieval from a wireless sensor network acting as distributed data storage has 

also been explored employing unstructured lookup techniques. Research has been carried out on the 

concept of disseminating queries towards the area where data has been generated. For instance, the 

comb-needle mechanisms [181] are particularly renowned in the area of query dissemination. In this 

approach, an event is advertised or pushed into some of the nodes in the network forming a spike 

or needle shape where the source is the centre point; this is achieved by the use of geographically 

aware mechanisms. Data is then pulled by issuing queries from the sink forming a comb shape, 

with a distance in between the teeth of the comb equal to the length of the needles, such that all 

mult iple queries sweep t he area to eventually reach the event data. This type of discovery behaviour 

based on the dissemination of data/query was classified by the authors in the paper as: i) Push or 

Collection (event source nodes send data to the sink), ii) Pull or Querying (source nodes store data 

locally and sink nodes query it on-demand), and iii) Push-Pull (a comluiiation of both approaches 

where source nodes push data in a way that can optimise the query/searching process). Alternative 

classifications for (lueryiug are based on the type of data being searched [182] as: i) Continuous 

Stream and ii) One-Shot Query. In this regard, the comb-needle mechanism is an unstructured one- 

shot Ptish-Pull approach where the searching process benefits from a previous data dtssemination 

jdiase. This paradigm exjdoits the redundancy factor of information spread over the network where 

queries do not- need to reach the node/area where the event is produced, but. rather locate a near 

node which can provide either the data itself or information about the location of the data being 

queried. Hence, this problem becomes a distributed searching problem.

In Wireless Sensor Networks, unstructured lookup mechanisms come as a good solution for data 

searching in dynamic network toj)ologies where structured lookup mechanisms (DHT-based) lose 

Ijerformance. The benefits of unstructured query systems are exposed in scenarios with a high degree 

of data rejilication over the network [183]. This situation makes the unstructured searching process 

efficient when comiJared to DHT-based methods at a much lower comjdexity and low maintenance 
cost..

Unstructured discovery systems can he classified in two categories [142]: i) Flooding and ii) 

Random Walks (RW). Moreover, random walks are subdivided in a) K-Parallel RW and b) Agent 

Cloning.

Flooding is a basic mechanism for searching based on Breadth First Search where nodes broad­

cast packets to all neighbours in a hop-by-hop basis (see Section 2.2.1). The broadcast behaviour of 

flooding increases the probability of reaching a high set of nodes in the search domain. The scope
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of the search is controlled with a Tinie-To-Live (TTL) counter which typically employs the hop 

count metric as a way to control tlie limits of the searching/dissemination j)rocess. Enhancements 

to flooding have been proposed to increase the efficiency of the searching process where an element 

of control is introduced, for instance duplicate packet suppression. Three types of enhancements can 

be defined [184]: i) Expanding Ring Search (ERS), Blocking Expanding Ring Search (BERS), and 

iii) Local Indices (LI). ERS floods the network with a TTL value - if no query reply is received after 

a given time, the TTL limit is increased progressively such that it covers a broader area. The so 

called Search Expansion Function (SEE) controls the TTL value and is defined as: f(x) = a + {x-l)b, 

where “a" is the TTL value at the start, “b” is a fixed increment, and “x” is the .search attempt. The 

difference with BERS is that the latter starts the next flooding process from those nodes where the 

maximum TTL value is reached; this node acts on behalf of the source node. The source node is then 

responsible for sending a packet to cancel the process when a query response is received. A delay 

needs to be in place before attempting the next flooding. The authors in [185], introduced a shorter 

delay according to the TTL value in BERS to smooth the delay process, achieving lower latencies 

than ERS and BERS for number of hops greater than 3. Finally, Local Indices (LI) store the content 
of the nodes from an area X hops away such that the node acts on behalf of these nodes. Only 

a sub.set of these nodes are required to maintain local indexes with a separation of 2X+1 amongst 

them for efficient coverage. If the nodes enter and leave the network, or they change position to 
another area, an update is required.

Random walks are stochastic proce.sses which aim at visiting the vertices of the network graph 

randomly in a unicast manner until the search query is satisfied [18G]. A (piery packet, known as 

the walker, is sent to a randomly selected neighbour in a process which is independent from previous 

visited nodes. The walker traverses the network from node to node, thus the overhead in neighbours 

reception communication is low at the cost of potential high latencies. Parallel rantlom walks increase 

the reliability of the searching process while decreasing the latency at the cost of a higher overhead in 

communications. However, the number of parallel random walks, k, needs to be estimated to control 

tlie trade-off. Additionally, agent cloning is a type of random walk where agents are software entities 

which travel the network in a random walk fashion until the search is complete. Agent packets 

accumulate information from each node visited in order to perform a backtracking routing process. 

An agent can be seen as an explorer packet which sets the path for future routing or subsequent 

biased random walks. At each node, an agent has the capability to clone such that the searching 

proce.ss is distributed, i.e. k-parallel random walks. For instance, Gaber et al. employ an intelligent 

cloning mobile agent in combination with a biased random walks technique for unstructured resource
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clLscovcry [187]. The previously presented comb-needle algorithm can also be categorized as a biased 

k-jDarallel random walk technicpie. In the paper “Empirical evaluation of querying mechanisms for 

niistrnctnred wireless sensor networks” [182], a random walk technique with a three phase handshake 

mechanism is employed to increase the reliability of the unicast packet delivery process. In addition, 

a memory-based self-avoiding random walk mechanism is also implemented to avoid the most visited 

nodes; the list of visited nodes is transported in the agent. The mechanism has bt!en compared to 

Flooding and the authors convey that: “For isolated networks with little or no interference, flooding 

has high reliability and outperforms random walks in terms of delay and energy costs. For networks 

with considerable interference, the reliability of flooding is drastically reduced and random walk 

based api)roaches might be better suited”.

Wireless Sensor Networks are characterised by a high degree of data redundancy over lossy 

networks and dynamic toj^ologies which make unstructured discovery mechanisms a suitable choice 

for data searching. In the area of WSN, different approaches exist which employ the above methods 

as the basis for unstructured discovery.

In a paper from 2004 entit led “Asymptotics of Query Strategies over a Sensor Network” [188], the 

jjrobability of a cpicry being successful was studied in source-only scenarios (Pull), source-receiver 

driven scenarios (Pull-Push), and spatially-periodic caching scenarios (Pull-Push with Data Redun­

dancy). In all these techniques the source node triggers random walks to query receiver nodes. In 

the Pull-Push strategy, the one employed in comb-needle approaches, the receiver also triggers a 

random walk which leaves a t rail of information of the type of data j^rovided. This idea has been 

employed for routing in the so called “Rumor Routing [44]”. In the latter approach, the Pull-Push 

with Data Redundancy, the data itself, or information on where the data is located, is spatially stored 

at different points in the network on a jreriodic basis. The authors conclude that the probability of a 

source-only query being unsuccessful decays to zero only logarithmically fast, while it becomes poly- 

nornially fast when employing either a source-receiver driven search or the spatially-periodic caching 

approach. They also convey that the Pull-Push strategy requires less memory consunii)tion than the 

caching apjiroacli, and thus is a good strategy for searching in unstructured networks. Furt hermore, 

remote distributed storage with a high degree of data replication not only offers efficient queries but 

also enhances all the benefits outlined for data distribution systems such as robustness and hot spot 

avoidance.

Dimakis et al. proposed an unstructured solution on how to enable ubiquitous access to dis- 

triluited data in WSN [189,190], The goal is to retrieve a set of distributed data packets by querying
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as many nodes as the number of data packets recpiired. Storage nodes are randondy selected and data 

is pre-ronted witli a complexity per data node of 0(lii(n)). Distributed erasure codes are employed as 

a solution to achieve reliable distributed storage. An erasure code is a forward error correction code 

which can detect and correct “k” errors or erasures in a structure of “n” redundant bits/symbols, 

where ^ is the code rate and is less than 1. With distributed erasure codes, each node can store, for 

instance, at most one data packet, such that when more than one packet is to be stored the data is 

diffused to accommodate it to the available size. The diffusion is performed with randomized linear 

codes such that by querying any “k” nodes it is possible to retrieve all the "k” data packets with 

a high probability. Data then is available to any collector in the network by querying “k” or more 

nodes and reconstruct the data from the set of “k” packets. It is a.ssumed that a routing layer with 

geographical information like GPSR [52] is provided and packets are not lost.

Racluu-i et al. presented Increasing Ray Search (IRS) [191], a highly scalable, density independent 

unstructured solution to achieve efficient search in high density scenarios when compared to ERS 

and Random Walks. This paper aims to minimize the number of messages employed in the cpiery 

mechanisms in an unstructured network in a non-deterministic way. The paper emjjloys a Pull 

teclmi<iue .sending one-query at a time until the destination is found. Each query path traverses a 

ray shape i)erpendicular to the sink, with a width equal to the transmission radius of a node. By 
varying the angle with respect to the sink, the query packet is only forwarded by those nodes which 

match the angle criteria. If the destination is not found, the angle is varied to cover another ray 

area. The nodes need to know their location to apply geometric calculations of the angle.

In ACQUIRE [192], a packet is injected containing an active query which employs random walks, 

biased random walks or even a predetermined path. Each node receiving a query packet performs, 

if information is not available, an on-demand request for information, within a scoped distance in 

terms of hops, in order to improve on the selection of the next neighbour. When the active query is 

completely resolved, the query reply is sent directly to the source.

A recent paper presents a combination of biased random walks for Pull-type unstructured search 

where sensor nodes are considered stationary [193]. Sensor nodes need to be aware of their neigh­

bourhood and the distance in hops to the sink, i.e. the level. A set of protocols are presented which 

employs a combination of Several Short Random Walks (SSRW) and Level Biased Walks (LBW). In 

LBW a query is propagated from the sink in such a way that it is forwarded to a neighbour with 

a higher level until it reaches a limit. If the query is not successful, another is started. A query 

walk can alternate a sequence of steps using LBW and then perform SSRW. The idea of LBW is 

to increase the coverage by reducing the correlation of visited nodes. The protocols are efficient in
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terms of energy, communications and latency when compared to simple random walks and multiple 

random walks technicpies.

In the category of biased random walks, searching based on Bloom Filters (BFs) [88] come as 

a probabilistic-based memory-efficient solution (see Section 4.4.1 for more detail about BFs). The 

Bloom Filter is an efficient structure for data compression which has been used as a query mechanism 

in peer-to-peer networks in the Internet. The filter acts as a probabilistic membership structure in the 

form of a bit vector which can be queried to find out, with a certain likelihood, whether an element 

has been previously stored. In this regard, a BF can produce false positives which could affect the 

decision-based mechanisms. In unstructured content discovery for peer-to-peer networks, BFs have 

been used as memory-efficient mechanisms to contain a synopsis of the content stored in a node. 

The BF-based search aims at disseminating the BF amongst the nodes in the network such that 

the comjdexity of the search is rerhiced, thereby saving resources and decreasing the latency of the 

query process. However, the BF structure needs to be periodically refreshed to update the network 

on the new content of the node. Different approaches to BF-based searching exist. The simple one 

is that where t he BF st oring a description of the content in a node is spread to all the nodes in 

the network. Queries are then resolved by checking the BF table and the use of a routing protocol. 

On the other hand, BFs have been emi)loycd as data-centric routing mechanisms [194 196] where 

ciueries are forwarded based on the BF information cached at a given node about its neighbours. 

The rout ing process is usTially performed by a greedy airproximation which selects the next node 

whose BF best matches the BF in the query. In this type of routing, BFs need to be disseminated 

over t he network in sucdi a way t hat a gradient of information is formed towards the BF source. This 

is achieved by applying a decay factor on the filter as the BF is disseminated; this is usually based 

on proximity, hoj) distance, and consists of the aggregation or the union of filters. A])proaches such 

as the Attenuated Bloom Filter (ABF) [197] aggregates filters according to their proximity in terms 

of hops while the Exponent ial Decay Bloom Filer (EDBF) [198] applies a decay proport ional to the 

hop count to introduce noise in the received BF.

In the area of WSN, some research has also been conducted employing Bloom filters for data- 

centric routing. Hebden et al. [195] employed a hierarchical structure where a cluster formation 

protocol assigns nodes t o monitor an area via caching data from packets in a counting Bloom filter - 

a BF which keeps count on how many times an element has been inserted. Query routing is performed 

between cluster heads according to the BF structures. Li et al. adopted a fiat-network approach 

I)resenting the Scojje Decay Bloom Filter (SDBF) as a structure to disseminate event hints [196]. 

SDBF is based on a mechanism where a decay factor is only applied to the BF once it is at a
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distance larger than a predefined hop-based scope. Bloom Filter-based searching has been j)roved to 

increase the query sncces.s rate, reduce energy consunii)tion and decrease latency when compared to 

flooding-based or random walks at the cost of BF dissendnation overhead.

2.4.5 Data Dissemination in Wireless Sensor Networks

Data dissemination techniciues over wireless sensor networks have been proposed to reliably distribute 

data with the aim of achieving a high data delivery and low latencies while minimizing communication 

and energy consumption. First approaches in the area of dissemination employed the flooding and 

gossiping mechaiiLsms (see Section 2.2.1). Flooding and go.ssii)ing, in their basic forms, are considered 

as inefficient solutions with low complexity which do not optimise the process of data dissemination. 

For instance, controlled Hooding employs prune mechanisms, dujdicate and rebroadcast control, or 

('xpanding rings to make the process efficient. Comprehensive research has been conducted in the 

area of data dissemination to increase the efficiency of the process while maintaining low complexity.

One of the first api)roaches in the design of data dis.seniination mechanisms for wireless sen.sor 
networks was introduced with a protocol called Directed DiH’usion [42]. In Directed DiH'usion. source 

nodes describe data using attributes, introducing the concept of data-centric routing (rei)lacement for 

the tradition adtlre.s.s-centric approach). Around the same time, the SPIN [43.199] protocol tackled 

the problem of data dissemination from a data-centric perspective with a negotiation-based paradigm 
in which nodes decide whether to acciuire the data from neighbour nodes. These two protocols 

establish the concept of metadata packets, known as "interests”, which travel the network to inform 

other nodes of the availability of data while preparing the path for data communication. In this 

regard, data dissemination protocols, where the sink propagates the interest and the source responds 

with data, might be classified as Sink Oriented Data Dissemination protocols. Examples of this 

type are Directed Diffusion [42,75,200], TTDD [201,202], Declarative Routing Protocol (DRP) [203] 

and GRAB [7G, 77]. The de.sign of Sink Oriented Data DLssemination protocols revolves around 

the subscribe-publish paradigm where nodes disseminate the interest or cpiery towards i)otential 

sources of data such that data is forwarded to nodes which manifest an interest. On the other 

hand. Source Oriented Data Dis.seniination protocols are characterised by source nodes initiating the 

dls.seniination of metadata towards the sink. On reception, the sink performs some data acquisition 

process which might be ba.sed on negotiations. A good example of this is SPIN [43,199]. The Source 

Oriented Data Dissemination protocols are based only on source nodes publishing and disseminating 

metadata towards the network in order to alert nodes on the availability of data. This type of protocol 

can easily be enhanced with a subscribe mechanism if the dis.seniination process can be controlled.
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The adoption of each scheme la'ings different benefits and drawbacks related to scalability, network 

topology dynamics, resource-efficiency and real-time data acciuisition.

Moreover, dissemination protocols have been employed for multi-hop network reprogramming 

where large objects of data/code are disseminated over the network in a reliable manner. Examples 

of these types of jirotocols are Pump Slowly Fetch Quickly (PSFQ) [204], GARUDA [205] and Reli­

able Multi-Segment Transport (RMST) [206] which employ hop-by-hop retransmissions for reliability. 

Multihop Over-the-Air Programming (MOAP) [207] is another ai)proach to network reprogramming 

over multihop networks which delivers the whole object to a node before the latter become a source 

for the next hop. In [208], the Multihop Network Reprogramming protocol (MNP) adds a sender 

selection algorithm which attempts to guarantee that at mo.st one source is transmitting within 

a neighbourhood to minimize collisions. Other approaches rely on network coordination to mini­

mize collision at a higher complexity cost. For network reprogramming in TinyOS [96], two data 

dissemination protocols are available; i) Deluge [209], and ii) Typhon [210] which is based on the 

l)asic mechanisms from Deluge and improves its performance. On the other hand, DIP [211] and 

DHV [212] are employed in TinyOS for small to medium data size dissemination. They operate by 

finding nodes in need of dat a ujKlates in order to keep consistency over the network.

Deluge, Typhon, DIP and DHV employ the Trickle [99] protocol for maintaining code updates. 

Trickle employs beacons to disseminate data which fits in much less than a packet, and .self-regulates 

the periodicity of the update beacon based on the changes in the neighbourhood. Trickle is efficient 

in terms of packets as it siippresses broadcasts if a recently up-to-date packet has been overlu^ard. 

Trickle also adapts the beacon periodic time-out according to the network activity and the up-to- 

date status of the neighbours such that beacons might not be transmitted for an extended period, 

thus reducing resource consumption while scaling well. In doing so. Trickle exponentially increases 

the beacon interval to reduce communications when there are no changes in the neighbourhood, 

until it reaches a maximum value of T/j. Conversely, Trickle decreases the beacon interval towards a 

minimum vahie, T/, when the neighbourhood is out-of-date. Setting T; to a low value increases the 

overhead in communications while improving latency.

All of the above dissemination protocols are based on hop-by-hop data comnuinication rather 

than supi)orting end-to-end connectivity and their reliable mechanisms operate at 1 hop distance. 

However, they aim for reliable data dissemination in an efficient manner which is of relevance for the 

work presented in this thesis. Next, an insight into some of the the most, relevant data dissemination 

protocols is given.
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2.4.5.1 Directed Diffusion

Directed Diffusion (DD) [42,75,200] was presented in the year 2000 as a coiiimuiiications paradigm for 

coordination of wireless sensor nodes to perform distributed sensing of environmental phenomena. 

DD design seeks to disseminate data in an energy efficient and robust manner while suiting in- 

network processing and scaling efficiently in large networks of different densities. In addition, DD is 

application aware and data-centric in the sen.se that data is represented, or named, with metadata in 

the form of attribute-value tuples which describe the properties of the data. Instead of routing data in 

an end-to-end address-centric fashion, DD is only aware of its neighbours to forward packets, therefore 

there is no global knowledge of the topology. The dissemination protocol does not aim at finding 

optimal i)ath.s, but rather trades off energy efficiency for robustness and scalability, while following 

the commnnications behaviour of ant colonies when building robust and scalable transmi.ssion ])ath.s.

In Directed Diffusion any node, called the sink, can start communication by transmitting an 

interest descn-ibing the type of data which needs to be acquired. The metadata packet is called 

“interest’’ and is propagated through the network via different mechanisms such as flooding or 

directional flooding biused on location or cached data (see Figure 2.10 a). Since interests are not 

reliably transmitted, the packet is periodically resent by the sink to refresh and reach most of the 

nodes in the network. For control purj)oses, the metadata i)acket not only contains the tyi)e of data 

being queried (and associated attributes, operators or location information) but also incorjiorates 

parameters which indicate the interest timestamp, expiration time, and the "interest interval’’ at 

which tho.se potential sources will be sending events to the sink. The “interest interval” value is 

employed to regulate the flow of information, to .select paths, and to e.stablish the data rate of 

packets from source to sink. The propagation of interest packets creates a gradi(uit towards the sink 

node. At each intermediate node an entry for the gradient is described by the direction, i.e. the 

next hop address, and the data rate, i.e. the interest interval. In this regard, a node which receives 

an interest generates an entry if one does not exist already, and associates one or more gradients 

with this interest entry. The rea.son is that multiple sinks might be querying the same interest with 

different intervals, and using different paths.

Once a node receives the interest, different application-based local rules can be applied to decide 

whether to keep forwarding it. Nodes store interests in their cache. When a node detects an event, 

it searches its interest cache for matching entries. For those matching, the node (known as a source 

node) sends the so called “exploratory events” towards the sink node, containing the interest plus 

some extra parameters on the sensed phenomenon. The source node sends the packet to the relevant 

neighbours from which the interest was received. A node receiving the exploratory event checks its
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(a) Gradient establislnnent (b) Reinforcement (c) Multiple sources

(d) Multiple sinks (e) Repair

Fig. 2.10: Directed Diffusion Routing Protocoi Piiases [200].

interest caciie for niatciiiiig ent ries. Tiiis mechanism aiiows for dupiicate packets coiit roi and ioop 

prevention, aiui it. aiso regulates f lie exploratory events data rate which has been previously defined 

for the interest for each of the gradients according to their intervals. Exploratory events flowing 

towards the sink also establish a gradient towards the source node called exploratory gradient. 

Once exiiloratory events arrive to the sink, possibly along multiple paths, the sink selects one of its 

neighbours according to local rules to reinforce one of these paths (see Figure 2.10 b). Same rules 

are applied at intermediate nodes and therefore a single gradient path is chosen for which data from 

source to sink flows. An example of a local rule can be the selection of the first neighbour to reply 

which will selects a route with a low latency. The mechanism to reinforce the jrath is based on the 

])reviously mentioned “interest interval” which is initially set to a low data rate. The sink reinforces 

a neighbour by increasing the dat a rate, i.e. the interval value, in such a way that the receiving node 

must reinforce the next neighbour on the way to the source node. The pat h is then established from
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source to sink through local interactions according to node’s local rules which might be defined by 

the application. Reinforcement also operates in scenarios with mnltiple sinks and multiple sources 

where data can flow from different paths or partially disjoint routes which might be inefficient in 

terms of commnnication and energy (see Figure 2.10 c,d). Reinforcement rules and mechanisms can 

also be triggered by intermediate nodes when degradation in the link or the node’s energy level is 

detected. This way, reinforcement can be used for local repair (see Figure 2.10 e). Finally, DD counts 

on negative reinforcement mechanisms for these situations where more than one path is reinforced 

at tlifferent event periods. One mechanisin employs soft state reinforcement where the path times 

out if it is not reinforced. In addition, DD employs the same mechanism employed for reinforcement 

bnt in this case reducing the interest data rate; a reduction in the “interest interval” indicates a 

receiving node that it needs to reduce its data rate and therefore that it is no longer included in 

the gradient for data transmission for that sink. A different local ride is employed by each node to 

select those nodes to receive negative reiidbrcement. For instance, those neighbours from which no 

new exploratory events have been received may be selected for negative reinforcement as compared 

to the rest of the neighbonrhood. Loop removal is also possible with negative reinforcement.
Directed Diffusion has been compared against flooding and omniscient mnlticast - where all route 

information is available - in fields ranging from 5 to 250 nodes, varying the numbers of sinks and 

sources and employing the IEEE 802.11 MAC layer in the ns-2 simulator [90]. While maintaining 

the density, DD has been evaluated in terms of average dissipated energy, average delay, and event 

delivery ratio in networks with a 10% to 20% node failure with and without in-network aggregation. 

The authors claim DD outperforms the idealized omniscient multicast dissemination in terms of 

delay and energy dissipation.

2.4.5.2 SPIN

One of the most cited papers in the area of ilata dissemination in wireless sensor networks presents 

a family of adaptive protocols called Sensor Protocols for Information via Negotiation (SPIN) [43, 

199]. The paper emphasizes the higher level of accuracy, robustness and sophistication in capturing 

the physical phenomenon which a collection of wireless sensor devices can achieve. In doing so, 

performing in-network iirocessing and data transportation over the network are key elements. Thus, 

the authors exploit the idea that effective dissemination information strategies need to be in place for 

WSN which suit the constraints of this technology and effectively relay data. One of their arguments 

is based on the inefficiencies caused by simple ajiproaches such as flooding or gossiping. According to 

this, SPIN was designed to operate efficiently and conserve energy. SPIN is based on a negotiation
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protocol composed of three stages. First, a node with data to disseminate advertises a smaller 

description of the data, the metadata, by sending an advertisement (ADV) packet. A neighbour 

node receiving the ADV packet decides whether to acquire the data from the sender. If so, the 

node sends a request packet, REQ, containing the metadata information for the requested data. On 

reception of a REQ packet, the node sends data to the requesting neighbour node. The negotiations 

and data transactions only occur within the neighbourhood of a node (1-hop). Not all the nodes 

might be interested or capable of acquiring the data.

(«)

nodes without data nodes waiting to transmit REQ

0 nodes with data Q transmission range

Fig. 2.11: SPIN-PP Protocol [199] Fig. 2.12: SPIN-BC Protocol [199]

Four versions of SPIN have been designed: SPIN-PP, SPIN-BC, SPIN-EC and SPIN-RL. SPIN- 

PP operates the three stages of the protocol in a unicast point-to-point fashion (see Figure 2.11), 

therefore a mechanism to discover the neighbourhood needs to be in place. SPIN-BC employs 

broadcasting to send the ADV packet and data to all of its neighbours (see Figure 2.12). Since 

neighbour nodes receive broadcast packets, if they decide to request data while hearing a request for 

t he same data, then they do not need to send the request as data will be broadcast and received by all 

neighbours. Re-trial mechanisms with implicit and explicit acknowledgements are in place to account 

for packet- collisions. An energy-efficient enhancement of SPIN-PP, known as SPIN-EC, describes a 

resource manager interface which SPIN exposes to allow the node to account for the current level of
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resources. This way the node decides its involvement in the next communication activity according to 

the status of its resources. Therefore, a node with a low energy level may decide not to request data 

since it will not be capable of handling its reception. In addition, SPIN-RL enhances the reliability 

of SPIN-BC by keeping track of the ADV packets received and re-requesting data if a time is elapsed. 

Moreover, a random delay is applied before broadcasting the ADV packet to minimize congestion.

With its negotiation-based approach, SPIN solves the implosion problem and even the overlap 

problem of Flooding (see Section 2.2.1). The SPIN three stages protocol occur within 1-hop distance, 

therefore the dissemination of information depends on neighbour nodes requesting and receiving data. 

The SPIN family achieves high performance in data dissemination at low cost in terms of complexity, 

energy, computation and communication when compared to classical flooding and go.ssiping.

2.4.5.3 TTDD

Ye et al. in their paper “A Two-Tier Data DLssemination Model for Large-.scale Wireless Sensor 

Networks” (TTDD) [201,202] address the problem of data dissemination over large-scale sensor 

networks where multiple mobile sinks query data .source nodes. A set of static data source nodes 

constitute a virtual grid overlay for query and data dissemination. TTDD divides the network 

into a grid of square cells by appointing the closer soiirce node at each intersection of a cell iis the 

repre.sentative for a dissemination point; this node is known as the dissemination node. Dis.semination 

nodes proactively update each other by propagating announcement me.ssages and storing information 

about the virtual tier. Each dissemination point is represented by a dissemination node. A mobile 

sink belongs to a cell at a time, so it has a.ssigned a di.s.semination node. A sink floods the cell to 

reach the closest dissemination node. The dissemination node then forwards the query from the 

sink to its upstream dissemination node in the direction towards the source node. Therefore the 

query is forwarded either to the source node itself or to another dissemination node which is already 

receiving data from the source. The query packet leaves information in the nodes along the path 

for performing reverse path routing from source to sink when sending data packets. Each node in 

the grid is aware of its own location via GPS or other techniques and it is also static, such that 

greedy geographical forwarding is employed to construct the grid structure. There will be a grid 

structure for each data source. When compared to Directed Diffusion in a 200 node network, TTDD 

has similar success rates, while they both scale similarly to the number of sources and stationary 

sinks in terms of energy consumption. TTDD consumes less energy when the number of sinks is 

small while Directed Diffusion consumes less energy when aggregating queries from multiple sink.s. 

TTDD experiences a lower delay than Directed Diffusion when the number of sources increases.
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2.4.5.4 Deluge

Deluge [209] is an epidemic protocol for reliable dissemination of large data objects to many nodes 

in the network. It works by executing state machine rules locally at each node. The simple mech­

anism is based on nodes advertising their most recent version of the data object. Neighbour nodes 

receiving beacons of an older version respond with the prohle of the newer version object (metadata). 

Out-of-date nodes then request data from neighbours and data is unicasted. A request to another 

neighbour is made if the link performs badly while transmitting data. This is a three phase handshake 

protocol which serves as a mechanism for testing bi-directional communication between neighbours. 

Eventually the new version of the object spreads over the whole network to those nodes which are 

out-of-date. The advertising rate is dynamically adjusted to trade propagation speed for resource 

consumption. Deluge is density-aware in the sense that redundant control packets are suppressed to 

minimize contention according to the number of neighbours participating. This is controlled with 

Trickle in an effort to minimize resource consumption and quickly propagate data in a reliable way. 

Objects are split onto pages which then are chunked into packets of fixed size for a controlled, effi­

cient and reliable transmission which fosters spatial multiplexing. With spatial multiplexing, nodes 

do not need to have the whole object to keep on propagating pages. Pages are sequentially transmit­

ted in such a way t hat higher transmission priority is assigned to lower sequences in the case where a 
request, decision is to be made. In the data transmission, density-awareness is also achieved by using 

random backoff and snooping techniejues to cancel overheard redundant data. Reliability is ensured 

with selective acknowledgements and bitvectors for missing packets with the latter being checked for 

integrity with CR.Cs. Packets are sent in round-robin order to provide fairness among requesters. 

The authors describe the importance of using suppression of duplicate control packets in the perfor­

mance of the dissemination algorithm. Without using suppression the contention could be as high 

as to produce a deadlock. They also mention that limiting the number of senders affects the per­

formance. Deluge has been evaluated in terms of dissemination completeness, energy consumption, 

propagation time, packet loss rate vs. distance, and messages sent and received. The performance 

evaluation has been carried out in TOSSIM [105-107] over a grid topology of 20 x 20. The authors 

claim that “Deluge can disseminate data with 100% reliability at nearly 90 bytes/second, one-ninth 

the maximum transmission rate of the radio supported under TinyOS [96]”. They also argue that 

“dissemination is inherently slower than single path propagation and identified establishing a tight 

lower bound as an open problem”.
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2.4.5.5 Typhon

Typhoii [210] has been designed following the basis of Deluge [209] to reliably disseminate large 

objects of data to nodes in the network for reprogramming purposes. The protocol divides the large 

objects, which can weight as much as 100KB, into small objects, called pages, which are themselves 

partitioned for transmission to ht the packet payload size. The aim is to disseminate the data as fast 

as po.ssible trying to minimize collisions by simultaneous transmissions at non-overlapping nodes. 

Even though the authors aim at reducing the idle listening time for energy efficiency, they agree that 

duty cycling the node will incur a high complexity when trying to achieve reliability. The protocol 

injects large objects from a designated node, i.e. the sink or base station. Before sending an object, 

Typhon employs Trickle [99] to quickly disseminate a small object containing metadata information 

of the new object, such that nodes on reception decide whether the object is to be acquired. After 

hearing a metadata packet containing a new object id which needs to be acquired, a node start 

to broadcast packets requesting a page (page requests increment sequentially until the object is 

completed). Neighbours hearing the request packet reply with a packet offering the page if they 

already have it. These nodes then wait for the node to send a stream request packet tisking for the 
receiver to start transmitting all the data for the page. Back-off mechanisms with acknowledgement 

packets and retrials are in place to minimize collision and increase reliability. Typhon employs the 

overhearing projjerty of the wireless transceiver such that nodes acejuire packets for a page which 

they do not contain if the opportunity arises. However, if all the data pieces are not received, the 

page is discarded. Typhon nodes control their timers in such a way that they increase the jjrobability 

of handling a request for a page over requesting a page when it has recently acquired one. This way 

the dissemination process reduces its latency. Typhon also leverages spatial re-use to accelerate the 

propagation of data through the network by employing channel switching. Metadata and control 

packets operate in the default channel while data streams are sent on a randomly selected and agreed 

channel. However, nodes involved in getting data from a node may miss metadata packets. As a 

solution, nodes switch to the default channel as soon as data has been transferred and wait a period 

of time after a metadata packet is received to allow for this packet to get disseminated. Typhon 

has been implemented in TinyOS 2.x [96], simulated with TOSSIM [105-107] and te.sted in a real- 

testbed of 22 motes. Typhon has been tested in terms of completion time (clLssemination), energy 

consumption, object size impact, density effect, overhead and packet loss impact. Typhon reduces 

the energy consumption and dissemination time by a factor of three as compared to Deluge [209].
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2.4.5.6 DIP

Lin and Levis present Dissemination Protocol (DIP) [211] as an adaptable and scalable dissemination 

protocol which maintains data consistency for all nodes in the network. As in other dissemination 

protocols, data items are assigned tuples of the form (key,version), where “key” identifies the data 

item and “version” serves to indicate the freshness of data. DIP requires the set of keys to be 

predehned such that all nodes contain the whole range. DIP uses the Trickle [99] algorithm to 

broadcast advertisements containing versions of the data items a node stores. Trickle adapts to the 

neighbovirhood conditions and suppresses redundant beacons, so can quickly adapt when data is out- 

of-date while keeping communications low when the network data exhibits consistency. Protocols can 

use Trickle to advertise versions of multiple data items, i.e. serial scan, or adopt a parallel approach 

where each data item is assigned a Trickle instance, i.e. parallel scan. Considering T as the total 

data items, the parallel scan broadcasts a beacon per data item and thus it has a latency of 0(1) and 

a cost in communications of 0(T). Conversely, the serial scan requires 0(T) intervals to transmit a 

given tuple, i.e. a latency of 0(T), while incurring in a communications cost of 0(1). DIP further 

])roposes a new hybrid approach called “search” which achieves 0{Nlog{T)) in communication cost 

and 0{log{T)) in latency, where N is the number of new items. “Search” employs hash trees to 

aggregate ha-shes of versions for a stibset of data items. If a node contains a different hash to that 

received for a range of data items, DIP reacts by sending snb-range hashes. In this way, by descending 

Ihe hash tree levels, the advertisement complexity is redviced to 0{log{T)) transmissions while the 

detection is 0(1), When the network is consistent, a hash of the entire range of nodes in the network 

is sent, 'Searching” is more efficient than scanning mechanisms if there are few data items to update. 

However if the number of data item updates is high a scanning method has less cost in transmissions, 

DIP takes this behaviour into account and adapts the advertisement mechanism from “Search” to 

scanning methods when the number of data items to update is high. Additionally, DIP employs an 

estimate value which indicates the probability of a data item being different. This value gets updated 

with information from all packets received, and also regulates the number of hash beacons sent and 

the hashed data items range. When the estimate value is high, DIP stops descending the hash tree 

and changes from sending hash beacons to employing scanning methods where beacons contain the 

actual (key,version) tuple to unambiguously identify the missing data. Once the missing data is 

identihed, data messages are broadcast to the node with an old version, which in turn rebroadcast 

the data [jacket in case neighl)ours do not have it. Hashes are encapsulated in “summary” messages. 

Additionally, a Bloom filter structure is also encapsulated in the “summary” messages. The Bloom 

filter provides extra information which indicates whether a (key,version) tviple is a member and
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thus it can be used to circumvent some iiasli tree levels. This reduces advertisement messages and 

aids ciuickly identihcation of missing data. DIP has been shown to send 20-00% fewer packets and 

perform 200% faster than dissemination protocols employing randomized serial and parallel scanning 

techniques.

2.4.5.7 DHV

The authors of DHV [212] present a data dissemination protocol which maintains data consistency in 

all the nodes in the network. This protocol falls in the same category as DIP [211] and also uses the 

Trickle algorithm. DHV employs tuples of the form (key,version) to keep track of data item updates. 

The main improvement with respect to DIP is that DHV exploits the following observation: “if two 

versions are different, they often only differ in a few least significant bits of their version number 

rather than in all their bits”; this assumes that the version number is incremented by 1 with each 

update. Thus, it is not necessary to transmit all the version numbers for all the keys in the network 

to identify which version has changed. Rather, DHV creates a matrix with the bit vectors of the 

version numbers for all the keys of tlie data items, where the matrix must be sorted by key, i.e. rows, 

using the same algorithm for all the nodes in the network. By employing bit slicing, efficient searches 

on the matrix can identify the keys for whicli the version has changed. DHV pliases are identified 

as: “Difference detection, Horizontal search, and Vertical search”, and that is where the name arose 

from. The matrix is hashed and broadcast in a SUMMARY me.ssage via the use of Trickle. When 

the received hash at a node differs from the local hash, then a difference is detected. This node tiieii 

enters an “horizontal search” phase, where the node broadcasts a checksum of all versions, known 

as the HSUM message. At the receiving node, the HSUM is used to identify which bit indices for 

all versions differ. At this time, the “vertical search” phase is started, where the node broadcasts 

packets containing the bit slice, i.e. VBIT, of the bit indice(s) differing, i.e. .sends the differing 

cohmm{s) in the matrix. In case more tlian one column differs, the bit slice for the least significant 

bit index is sent first. Upon receipt of the VBIT message, the node compares it to its local VBIT in 

order to identify the differing (key,version) tuple(s). Once identified, the tuple(s) are broadcast in a 

VECTOR message. On reception of a VECTOR message the node verifies if it has a newer version: 

in such a case it send a DATA mes.sage, otherwise it broadcasts its (key,version) tuple. DHV employs 

its own packet suppression mechanism as it decides whether to broadcast the packet when the Trickle 

broadcast interval is elapsed. If there are messages to send of the type 1-DATA, 2-VBIT or 3-HSUM, 

it sends them following the outlined priority. If there are not packets of this type then, if the node 

has lieard two or more messages in the last interval, the broadctist is suppressed; otherwise the node
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scuds VECTOR or SUMMARY messages. DHV achieves 0(N) in cornrmmications cost while 0(1) 

in latency. The authors claim that in simulafions and on a real micaZ testbed DHV reduces by half 

the number of messages, converges in half the time, and reduces the number of bits transmitted by 

40-60% when compared to DIP.

2.4.6 Significance for this Thesis

This section has reviewed research aligned with the ideas and mechanisms behind the Tiny Torrents 

(TT) WSN communications architecture presented in this thesis. The system comprises a P2P data 

distribution protocol, the Tiny Torrents protocol, functioning on top of the UMG routing protocol. An 

insight into, and taxonomy of, P2P data distribution protocols in wireless network has been initially 

provided. Here, the TT architecture is classified as purely decentralised, with an unstructured overlay 

network for content discovery.

Next, mechanisms of tlie BitTorrent protocol have been identified as key in the design of TT. 

A set of BitTorrent adaptations for wireless networks has been presented which exhibit parallels 

with TT. These are SPAWN [153], BTM [155] and BitHoc [159], protocols which employ TCP/IP 

communication. SPAWN follows the unstructured content discovery and advertisement paradigm 

employing gossiping and making use of a reactive roiiting protocol. However SPAWN is intended 

for vehicular networks with high clnirn and opportunistic connectivity. On the other hand. BitHoc 

and BTM are presented as decentralized BitTorrent solutions where searching of peers and tracker 

is based on flooding. TT employs similar peer and piece selection strategies and content discovery 

and advertisement mechanisms to BitHoc and BTM. However, TT employs the concept of “partial 

trackers” where every peer becomes a tracker for an un-defiiied proximate set of peers. Additionally, 

TT exploits information on the advertisement and dissennnation of torrents bot h at a routing level 

and in a data-cent.ric manner for discovery purposes. Following this metaphor, content discovery 

mechanisms for P2P wireless networks are presented as structured and unstructured. The Tiny Tor­

rents WSN solution employs a set of unstructured searching mechanisms to locate either metadata 

information, which can lead to the data, or the data itself. Unstructured lookup mechanisms, such 

as flooding and random walks, have been selected for use in Tiny Torrents as: i) they do not lose 

performance in dynamic network topologies where structured lookvip mechanisms (DHT-based) do, 

ii) they become more efficient as the data replication degree increases across the network, and iii) 

they are solutions of much lower complexity and lower maintenance cost.

Finally, some of the key data dissemination protocols in WSN have been summarised. Existing 

data dissemination protocols in WSN focus on i) pushing data into the network for the maintenance
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of (lata consistency, such as DIP [211] and DHV [212], and for reprograinining purposes, such as 

Typhon [210] and Deluge [209], or ii) pulling data from source nodes to a reduced set of (mobile) 

sink nodes, such as Directed Diffusion [42]. The Tiny Torrents communications architecture targets 

those scenarios where data needs to be distributed in a selective manner to a particular set of nodes 

in the network. TT does not relay data in an epidemic manner such as SPIN [43,199], Deluge 

or Typhon, but rather employs end-to-end, multi-hop connectivity amongst collaborative disparate 

nodes. In this sen.se. Tiny Torrents fosters collaboration by downloading data from multiple points, 

thus reducing congestion, whereas Directed Diffusion only reinforces and aggregates the path(s) 

following the gradient’s sink(s). Additionally, TT does not use physical location techniques, such as 

GPS devices, for discovery or routing purpo.ses, unlike protocols such as TTDD [201,202].
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2.5 Summary

This chapter has introduced the current state of the art for each of tiie system concepts described 

in this thesis, i.e. the UMG routing protocol and the Tiny Torrents data distribution protocol. A 

review of mechanisms and protocols which are related to, or impact the design of, the Tiny Torrents 

WSN communications architecture proposed in this thesis has been provided.

Section 2.1 has introduced the field of Wireless Sensor Network research while identifying the key 

aspects which make WSNs different from existing wireless technologies. The subsequent section has 

provided an overview of routing protocols for WSN.

Next, section 2.3 has described the principles of gradient-based routing in wireless networks. This 

is the main research focus of the Ubiquitous Mobile Gradient (UMG) routing protocol (see Chapter 

4). UMG operates as the main routing substrate for the TinyTorrents protocol. It supports j)oint-to- 

point. multipoint-to-point and point-to-multipoint communication for those scenarios where a node’s 

application requires end-to-end on-demaiid connectivity, and/or data advertisement and discovery 

support. To this extent, a comprehensive description of gradient-based and data collection routing 

protocols for wireless sensor networks has been provided which thoroughly covers the research field 

of UMG. In this review, a core set of mechanisms has been identified as the basis of the gradient 

routing protocols, including UMG, The key features of UMG have been expressed and compared to 

existing gradient-based routing protocols where UMG provides a set of functionalities for reliable 

and versatile coniinunication which aim to serve as a routing solution for a wide spectrum of WSN 

applications.

Finally, section 2.4 has provided a detailed review of techniques for data distribution in ad hoc 

wireless net works, with an emphasis on the mechanisms of BitTorrent for content distribution. The 

TinyTorrents protocol presented in this thesis (see Chapter 5) employs concepts from the BitTorrent 

protocol which are adapted to support selective data dissemination in large networks of sensor nodes. 

In addition, the TinyTorrents protocol employs a combination of unstructured and self-organis(^d 

mechanisms to discover peers in the swarm of a torrent. A review of structured and unstructured 

lookup mechanisms for decentralised content distribution systems is also included in this section. 

Furthermore, data dissemination protocols aligned with the TinyTorrents protocol concept are also 

addressed herein. The TinyTorrents WSN architecture is then compared with DIP and DHV, two 

of the the dissemination protocols presented in this section.

In the next chapter, the TinyTorrents communication system is described.
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The TinyTorrents Framework:

Data Distribution in WSN

This chapter provides a description of the top-level component-oriented design of the TinyTorrents 

framework. The architectnre is documented in terms of two functional entities: i) the Gateway- 

Internet communications architecture and ii) the WSN-Mote architecture. This chai)ter then provides 

context for the remainder of this thesis within the overall TinyTorrents framework.

3.1 The TinyTorrents Framework

The concept of TinyTorrents (TT) leverages existing P2P content distribution ideas from traditional 

wired networks to replicate and store data within a Wireless Sensor Network and on the Internet. 

Traditional P2P networks are characterised by the way they distribute the content amongst partic- 

ij)arits in the network, thereby balancing the load and ameliorating the burden on central nodes. 

Resources are spread amongst nodes forming self-organised, redundant, fault-tolerant and scalable 

networks. By the adoption of traditional P2P content distribution ideas, the TinyTorrents concept 

challenges the general paradigm of a WSN as a network of devices with sensing capabilities which 

retrieve data, fuse it, and send it to the gateway to be stored or utilised. This concept results 

from the vision of colonies of sensor devices, with mobility capabilities, which mutually cooperate to 

take decisions toward achieving a common task. The TinyTorrents framework has been designed to 

provide the next step in the future collaborative environments of WSN. It provides mechanisms to 

distribute data in such a way that the WSN can be converted into an autonomous decision-making
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system capable of operating imleiJeiideiitly and also interoperating with other networks via the Inter­

net. The Tiny Torrents framework provides a generic and versatile way of distributing data from the 

WSN to the Internet, interconnecting the networks in a transparent manner. The interconnection 

between the Internet and the WSN employs existing peer-to-peer (P2P) ideologies where data is 

encapsulated into torrents and stored at different nodes in the Internet. This is achieved via the use 

of the BitTorrent [146] protocol to create a distributed fault-tolerant database.

An initial version of the Tiny Torrents concept was implemented by Karsteri Holger Fritsche in 

his M.Sc. thesis entitled “TinyTorrent; Combining BitTorrent and SensorNets” [213]. The thesis 

presents an adaptation of the centralized version of the BitTorrent protocol for operation in wireless 

sensor networks. This work established the basis of P2P communication in WSN while incorporating 

primitive commimicatioii with the Internet BitTorrent network. This work was a simple proof of 

concept for Tiny Torrents in that all sensor devices were placed at 1-hop distance with no routing 

functionality. The author of this thesis took over the Tiny Torrents project and integrated support 

for multihop communication in small size networks while improving the peer selection process and 
providing a transparent and bidirectional integration with the Internet BitTorrent network [214]. 

This version was a multihop centralized BitTorrent adaptation for WSNs where the management of 

the centra] coordinator i)revented for the system to scale and to be fanlt tolerant. This thesis further 

extends that concept to a fully decentraliz(!d, fault-tolerant, scalable version of the Tiny Torrents 

.system for cooperative and reliable data distribution within WSNs.

3.1.1 P2P Data Distribution in WSNs: A New Communication Paradigm

Traditional communication paradigms for WSNs focus on the collection of data from multiple sources 

by a reduced set of sink nodes. Sink nodes may be employed for further data processing and typically 

are connected to other networks, such as the Internet. In this paradigm, data is pushed out of the 

WSN. Conversely, data can be pushed into the WSN, mainly for reprogramming purposes. However, 

in these scenarios data Hows in one direction towards a .set of receiver nodes in the WSN. While this 

has been commonly accepted for many years, mainly due to the limited resources of sensor devices, 

more complex behaviours can arise from the use of WSNs as colonies of sensor and actuator nodes.

Consider a scenario where static nodes are deployed at some jjremises and other nodes with mobile 

capabilities, for instance miniature robots, are iissigned to perform a given distributed common task. 

Robots would be interested in receiving data from fixed sensor nodes as input to their decision 

making process. It will also be highly important for a set of robots to receive data from each other 

for distributed decision making. This type of data flow requires a new communications paradigm for
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WSNs where data is moved from a producer to a set of consumer nodes within the WSN such that 

the dissemination process is selective and efficient in terms of communications. Data will evolve as it 

flows between a set of nodes within the WSN where nodes can adopt consumer and producer roles. 

Predominantly, nodes will take the role of consumers when receiving and distributing a data file of 

interest, while they will become data producers less frequently, for instance when new data is created 

or a decision is made locally according to the governing application. In addition, the identity and 

number of consumers acquiring data files from a given producer might change dynamically according 

to the interest of the consumers in the data, thus generating virtual overlays of interest. The interest 

of a consumer in acquiring a data hie, and the publication of data hies by a producer, will depend 

on the application layer requirement. Thus, the application will be in charge of controlling the 

replication of the data hies in the network and, consequently, the robustness of the network to the 

unavailability of nodes or data at any given time.

To provide a communications solution for the above scenario, existing dissemination mechanisms 

could l)e employed which: i) employ an epidemic process where most of the nodes in the network 

receive data, or ii) establish common paths for specihe communication, typically towards a common 

sink. These solutions are inefficient mechanisms in terms of communications, providing a low degree 

of versatility for efficient and cooperat ive communication and for discovery of a subset of nodes in 

the network. Where these approaches fail to provide an efficient selective dissemination process, P2P 

content distribution concepts offer a more suitable solution for distributing the network traffic and 

fostering cooperation when performing a selective data distribution process. While this is a different 

dissemination paradigm for WSNs, the concept still follows the publish/subscribe strategy where a 

node juiblishes what type of services are offered and consumer nodes decide whether to subscribe to 

acquire the data. The core difference lies in the way data is transferred amongst those cooperative 

nodes which form a virtual community sharing a common interest.

This thesis explores the idea of distributing a file of data as opposed to the concept of continuous 

sensing. A hie of data can represent sensed data for a period of time; a hie includes metadata such as 

the timestamp when the data is created. Thus, the size of the hie impacts the freshness of the data 

when received by other nodes. However, that does not stop use of the TinyTorrents communications 

architecture for continuous dissemination of data, where the oldest value of each hie will have an 

extra delay according to the period of time the hie represents.

Finally, the P2P content distribution system proposed in this thesis employs concepts and mecha­

nisms from the BitTorrent protocol. While, there have been approaches to adapt the BitTorrent pro­

tocol to wireless networks, following the TCP/IP communications architecture (see Section 2.4.2.2),
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a straiglit forward adaptation to WSNs is not feasible. This is mainly due to the challenges posed 

by the WSNs technology: i) the potential large number of devices forming a WSN require a scalable 

approach which accommodates different neighbourhood densities, ii) the constrained sensor devices 

demand efficient data structures for communication and storage, iii) the unreliable multi-hop wireless 

communication requires efficient peer selection strategies which take into account the proximity of 

nodes, as well as reliable routing solutions which provide information to improve the efficacy and 

efficiency of the distribution process, even in the event of node failure. More specifically, while the 

centralised version of the BitTorrent protocol can be adapted to suit the WSN domain, the technol­

ogy demands a decentralised, scalable and fault tolerant solution which requires a complete redesign 

of the peer discovery mechanism and peer selection strategies.

3.2 The TinyTorrents Architecture

The TinyTorrents framework comes from the idea of employing both existing technology and concepts 

from the BitTorrent [146] protocol to disseminate WSN data in a peer-to-peer fashion, having each 

sen.sor node acting iis a logical peer in the Internet BitTorrent network. Hence, the TinyTorrents 
framework can be divided in two sides of operation which transparently integrate each other:

• The Gateway-Internet .side: The architecture enables the connectivity of the WSN to the 

Internet via the use of the Vuze P2P content di.stribution client-server application [149]. The 

interconnection between Vuze and the WSN has been achieved through the development of 

the “Vuze TT Plugin”, depicted in Figure 3.1. It deals with tran.slating WSN torrents into 

BitTorrent format and making the data accessible in a variety of ways.

• The Wireless Sensor Network side: A communications architecture runs in each node of the 

WSN capable of providing selective data distribution over the WSN. The architecture for each 

■sensor node, i.e. mote, is depicted in Figure 3.1 under the heading “Mote Architecture”. The 

architecture provides functionality for each node to connect to the “Vuze TT Plugin” and 

thus act a.s a gateway or base station. This is achieve via the “Base Station” protocol usually 

employing serial communication. A decentralised BitTorrent-like protocol specifically adapted 

to suit the constraints of WSN, known as the TinyTorrents protocol is in charge of performing 

reliable and efficient data distribution in sensor networks. The TinyTorrents protocol needs to 

sit on top of a rnidti-hop routing protocol operating as a cross-layer fashion; the TinyHop and 

the UMG routing protocols have been designed for this purpose.
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Fig. 3.1 : The TinyTorrents Framework - Communications Architecture

3.2.1 Gateway-Internet Architecture: Vuze TT Plugin

The Vuze TT Plugin deals with making the sensor data available to the Internet by using the BitTor- 

rent protocol [146]. The BitTorrent protocol is the most popular P2P content distribution mechanism 

currently being employed in the Internet. The concept is based on the cooperative distribution of 

data by participant nodes in the network. Data is represented via a metadata file known as the 

“torrent” which contains the control information required for the node to find other nodes to trans­

fer data from and to. Torrents files are published and data files are transferred amongst nodes in a 

process called “torrenting”. Nodes containing pieces of data for a data file belong to the swarm of 

the torrent. Nodes can join and leave a swarm. Thus, data is available to be fetched from multiple 

points in the BitTorrent network, therefore increasing the reliability, the security and the efficiency 

in the distribution of traffic load.
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In order to access the Internet BitTorrent network, the Wireless Sensor Network needs a gateway 

at some point in the network. Thus, a gateway device with both Internet and WSN connectivity 

is required. Sensor devices will be accessed and represented in the Internet via the gateway. In 

fact, each mote can be connected via the gateway in a bidirectional manner. Furthermore data from 

motes is uniquely represented in the Internet BitTorrent network by the use of metadata. Metadata 

describing the BitTorrent torrent file carries descriptive information, including information about the 

gateway, the sensor device, the time at which the data was generated, and the metadata description 

in the WSN.

For the purposes of accessing the Internet BitTorrent network, the open source client-server 

application “Vuze”, formerly “Azureus”, has been selected [149]. This application implements the 

Bit Torrent protocol. Vuze allows users to view, publish and share digital data content and it can be 

conhgured to work in a server mode, i.e. hosting data and torrents. In addition, Vuze can operate in 

a centralised manner, by using or providing tracker functionalities, or make use of distributed hash 

tables to decentralise the location of the peers. The Vuze application has been chosen over other 

existing ones because it offers a versatile API for the develoi)nient of plugins. Customized plugins 

make use of the BitTorrent protocol to enhance their functionalities.

For the purjjoses of the Tiny Torrents framework, a dedicated plngin has been developed which 
operates tis a management component, bridging the WSN to the Internet BitTorrent network. The 

plugin, called “Vuze TT Plugin” (.see Figure 3.1), employs the functionality provided by Vuze to 

create, publish and host data via the use of torrents. Moreover, the i)lugin manages data storage 

from the WSN and implements mechanisms tcj j)nll and j)ush data from and to the WSN. This 

module allows for the transparent interaction with the WSN and provides an interface to perform 

queries. Moreover, the “Vuze TT Plugin” implements the WSN Communications component which 

is in charge of the connection to any mote in the network. This component performs handshakes and 

implements a data communication protocol for the transniLssion of the Tiny Torrents data me.ssages. 

Any node in the network is capable of acting as a base station for the transmission of data to and 

from the WSN.

Data is retrieved from the WSN in a peer-to-peer fashion translating WSN torrents into BitTor­

rent format, so that every sensor node can be seen as a functional peer of the BitTorrent network. 

Currently this architecture works with IPv4, using a single IP to represent the WSN on the Internet 

BitTorrent network. Future enhancements will see its integration with IPv6 over LoW Power wire­

less Area Networks (GLowPAN) to provide a single interface of communication per seii-sor node [215]. 

Regardless of the protocol used, IPv4 or IPv6, a gateway between the WSN and the Internet needs
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to be in place. This is essential in order to prevent nnccontrolled access to sensor devices which can 

consecpiently drain their energy. When data is retrieved from the WSN into Vuze, all the benefits 

of P2P distribution can be employed to distribute data over the Internet; that includes Web 2.0 

services like RSS.

As seen in Figure 3.1, the “Vuze TT Plugin” can be divided in three main areas of functionality 

grouped in modules. All of them are fully integrated, exposing user interfaces for the interaction of 

the user with the system and the WSN. The “WSN Comm” component deals with the communication 

with the WSN. The “Manage Data” component involves all the tasks regarding the creation, process, 

advertisement, storage and query of data. Finally, thie “Publish/Host Torrent Data” component 

refers to the interaction of the Vuze TT Plugin with tlhe Vuze application and all the mechanisms 

employed to advertise and host data.

3.2.1.1 WSN Communications Component

Connectivity to the Wireless Sensor Network is achieved via connection with any sensor device within 

the WSN. Every node in the sensor network implements functionality to operate as a base station and 

establishes connecfion to the “Vuze TT Plugin”. The “‘Vuze TT Plugin” allows for the connection 

to multiple platforms providing the sensor devices implement a communications protocol known as 

the SensorNet protocol. The protocol is defined in both sides, at the “Vuze TT Plugin” and at the 

“Mote Architecture” (see Figure 3.1).

The SensorNet protocol deals with the connection to the sen-sor device and the transmission of 

all the Tiny Torrents protocol messages between the gateway and the mote in a bidirectional way. 

The protocol utilises the same message structures defined in the TinyTorrents protocol (sec Chapter 

5) for the connection/disconnection and query data messages. The “Vuze TT Plugin” implements 

the TinyTorrents protocol functionality and injects and receives messages, to and from the WSN, 

in a complete transparent manner. This way, a higher degree of integration of the motes into the 

Internet BitTorrent network is achieved.

The SensorNet protocol handles the reception of messages from the WSN and acts accordingly. 

When receiving torrent messages, the SensorNet protocol holds the decision to proceed with the 

fetching of data. The base station node waits for the Vuze TT Plugin to reply to start the fetching 

process. On reception of data messages, the SensorNet protocol verifies the integrity of the data and 

stores the pieces of the data file - this is performed by the “Data Management Component”. Once 

the data has been fully downloaded for a torrent, the process of publishing and hosting data takes 

place - this is managed by the “Publish/Host Torrent Data Component”.

Chapter 3. The TinyTorrcnts Framework: Data Distribution in WSN
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3.2.1.2 Data Management Component

Data coming from the WSN is stored on files sorted by the torrent description. The data and 

associated torrents are saved in a permanent hie which is preloaded every time the Vnze TT Plugin 

boots up. The Tiny Torrents framework implements a mechanism to describe data employing human 

readable metadata. Metadata conies from a dictionary of terms which the sensor devices einploj^ 

to describe the generated data. Metadata terms are compressed and transported in a Bloom hlter 

structure over the WSN. When the gateway receives the Tiny Torrents torrent hie, the terms are 

extracted from the structure to create the BitTorrent torrent hie descri])tion.

The TinyTorrents protocol offers a query mechanism which emjiloys the aforementioned metadata 

to .search for particular data in the WSN. In this regard, the “Vuze TT Plugin” implements a 

mechanism to generate query messages according to user search criteria. The user employs a graphical 

interface to combine terms of metadata, time intervals of data generation, accuracy of the search, and 

target node id, in order to form a query message which is injected into the WSN network. Matching 

query replies are received and a list of available torrents is presented for the user to decide which to 

fetch. The query mechanism employs the service discovery mechanism provided by the TinyTorrents 
protocol.

3.2.1.3 Publish/Host Torrent Data Component

Once data files have been received from the WSN, tagged and stored, they need to be made available 

for download in the BitTorrent network. For this purpose, a BitTorrent torrent hie is generated 

based on the metadata and data received from the WSN. Torrent files are tagged with the terms of 

the vocabulary extracted from the TinyTorrents torrent message. These terms, together with the 

data creation timestamp, the id of the generator node, and the description of the gateway, describe 

the torrent file and make it unique in the BitTorrent network. The “Vuze TT Plugin” enables the 

creation of agent applications customized to the user reqtiirements. The agent application decides 

whether to publish certain data, or if data needs to be aggregated, to combine a digest file represented 

by a unique torrent file. The torrent file might be hosted locally or in another server to be retrieved 

by other interested peers. The torrent hie contains descriptive information about the data which 

represents and also stores control information indicating the tracker node. Initially, the gateway 

representing the WSN is the only seeder of the data and, as peers show interest and fetch the data, 

the peer list grows and therefore the traffic load is distributed amongst participant peers for this 

particular data item. In addition to using the BitTorrent network to fetch data in a P2P manner, 

Vuze offers Web 2.0 iii.struments to retrieve data, e.g. Really Simple Syndication (RSS). Moreover
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a HTTP server wliich exposes web services lias been implemented to offer a direct way to retrieve 

information about t he torreiiting status of the WSN. Multiple web services can be implemented and 

started by the agent application.

3.2.2 Mote Architecture

The top-level communications architecture which enables unstructured selective data distribution in 

wireless sensor networks as part, of the Tiny Torrents framework is depicted in the “Mote Architecture” 

in Figure 3.1. The remainder of this thesis focuses on the design and implementation of the protocols 

which shape the “Mote Architecture”, and is where the contributions of this thesis lies. The “Mote 

Architecture” comprehends the Tiny Torrents protocol which can not work in isolation and needs to 

sit on top of a routing protocol operating in a cross-layer fashion.

The TinyTorrents protocol employs P2P data distribution techniques to replicate data amongst 

peers in a fair, selective, efficient and reliable manner across the WSN. The protocol, which employ 
concepts from the BitTorrent protocol, make use of metadata files to describe data, and generates 

unique keys to identify data hies. Similar to the BitTorrent protocol and other content distribution 

protocols, hies arc partitioned into pieces which are then distributed amongst other peers which, in 

turn, become distributors. This approach suits WSN where selective data replication is required as 

a mechanism to protect against network failures and to push data closer to consumers. In addition, 

the concept of every peer being able to become a distributor ameliorates the burden at the data 

source node and balances the network traffic to help avoid partitions. In addition, some security is 

inherently obt ained with this approach as i) multiples copies of data can be compared to check for 

authenticity and ii) a policy where nodes would not contain all the pieces of a data hie will protect 

the integrity of the data if a node gets tampered with.

Two increasingly complex designs of the “Mote Architecture” have been developed. Initially, in 

version 1. the TinyTorrents protocol ojjerates with a single tracker, a central node which manages the 

list of i^eers containing the data, i.e. centralised version. The results of this work are summarised 

in [214]. However, this thesis focuses on the decentralised version of the TinyTorrents protocol, 

version 2. which has been designed to operate in a fully decentralised manner where the single point 

of failure, the t racker, is eliminated. One approach to achieve decentralisation is to employ distributed 

hash tables (DHT) which create a virtual overlay network for locating data. DHT’s are not suitable 

for use ill sensor networks in their current form. Due t o t he constraints of WSN, proposed algorithms 

in the literature take into account proximity of the sensor nodes to create the DHT structure. 

However, as seen in Section 2.4.3 nodes leaving and entering the DHT structure, and the presence of

101



3.2. The TinyTorrents Architecture

mobility in the network, have proved DHTs to be an expensive method of decentralisation in terms 

of communication for WSN. This is the reason why an unstiaictured approach is considered as a 

decentralised lookup mechanism to discover proximate peers holding pieces of data. The approach 

is efficient in terms of communication and does not require constant maintenance or updates. In 

addition, efficient peer-piece selection mechanisms are presented which distribute the traffic load in 

the network in a fair manner fostering diversity of the i^ieces of data files while seeking to reduce the 

overhead in communications.

In the routing layer, two routing protocols, UMG and TinyHop, have been designed to address 

the constraints of WSN while offering cross-layer support to the higher layer, i.e. the TinyTorrents 

I)rotocol. The routing protocols suit the paradigm of torrenting in sensor networks. An initial pro­

tocol, called TinyHop [3], was designed as an on-demand, end-to-end, hat-topology, reliable routing 

protocol. The second protocol, called Ubiquitous Mobile Gradient (UMG), has enhanced and ex­

tended TinyHop by using the concept of gradients while tolerating environments where sinks can 

show mobility. UMG has been tailored to provide the type of end-to-end communication recpiired 

amongst consumer and producer nodes while leveraging the routing process to provide the unstruc­

tured service advertisement and discovery mechanisms reciuired for the data distribution process of 

the TinyTorrents protocol. Unlike existing routing protocols, UMG incorporates a set of proper­

ties and functionalities which suit the TinyTorrents data distribution paradigm. For this purpose, 

UMG provides for selected nodes to advertise data and create paths towards them by following the 

reactive ])aradigm where unstructured virtual clusters are created amongst nearby consumer and 

producer nodes. In this way, UMG performs routing amongst proximate consumer and producer 

nodes of the virtual cluster in a reliable manner, while employing the distribution mechanism of 

the TinyTorrents protocol to spread data to distant consumer nodes - thereby achieving scalability. 

Indeed, UMG has been designed to deliver data with end-to-end reliability over paths of 6 to 8 hops, 

under the assumption that routing at higher hop distances is inefficient and impractical for selective 

data di.ssemination. While the TinyTorrents protocol employs reliable mechanism for communication 

amongst consumer and producer peers, UMG also implements end-to-end reliability at the routing 

layer. Blending end-to-end reliability within the routing layer has been a practical decision for two 

reasons: i) the relative short length of paths which does not incur a high use of control messages, 

and ii) the faster and more certain awareness of peers status gives the TinyTorrents protocol a more 

effective and efficient response in the peer selection, data distribution and discovery processes.
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3.3 Summary

This chapter has presented the TinyTorrents framework architecture; a communications system 

which transparently integrates Wireless Sensor Networks with the Internet BitTorrent network for 

efficient and global distribution of data. The design of the TinyTorrents framework is j^resented as 

1) the Internet-Gateway side, which deals with the interconnection of the WSN with the BitTorrent 

network, and 2) the WSN-side, which implements an architecture for sensor devices capable of 

providing selective scalable data distribution in Wireless Sensor Networks. The main functionality 

of both the Internet-Gateway and the WSN communication systems have been documented.

The major contributions of this thesis arise in the WSN architecture of the TinyTorrents frame­

work which is described in the remainder of this thesis as a two-layer communication system. For 

routing layer functionality, the UMG routing protocol has been developed. UMG has been designed 

to support and enhance the decentralized version of the TinyTorrents system and is fully explained 

in Chapter 4. The upper layer infrastructure, a selective data distribution algorithm known as the 

TinyTorrents protocol, is detailed in Chapter 5.

Chapter 3. The TinyTorrents Framework: Data Distribution in WSN
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Chapter 4

The Ubiquitous Mobile Gradient 

Routing Protocol

This chapter presents the Ubiquitous Mobile Gradient (UMG) protocol, a reactive gradient-based 

dynamic routing protocol designed to provide the communications support required by the Tiny Tor­

rents protocol (see Chapter 5) to enalde scalable and selective data distribution in WSNs. UMG 

evolves from the design of Tiny Hop in such a way as to provide a much more versatile communication 

solution, in terms of connectivity between nodes, by supporting moderate mobility while providing 

a more efficient and relialrle protocol overall.

The novelty of the UMG routing protocol resides in the communications versatility provided and 

the collection of mechanisms which enhance the efficiency and reliability of the routing process. In 

this sense, UMG:

• provides reliable point-to-rnultipoint, multipoint-to-point and point-to-point communications 

while following the reactive paradigm,

• combines address-centric and data-centric routing concepts to provide service advertisement 

and discovery to higher layers,

• employs a backoff-based reliable controlled flooding mechanism for the progressive formation 

of gradients according to the hop distance.
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• allows for the coexistence of multiple gradient updates from the same sink node thus facilitating 

nodes which could not get updated to participate in the forwarding process without incurring 

in loop formation,

• employs an efficient short memory cache to enforce reliability when descending the gradient, 

and to decide which acknowledgement packets are to be broadcast when ascending the gradient 

with the goal of providing end-to-end reliability,

• integrates an opportunistic relative mobility detection mechanism to signal when sink nodes 

change neighbourhood and consequently update their gradient within an estimated scope.

This chapter is organised as follows: The first section provides a description of the UMG routing 

protocol and explains the rationale of the key features which drive its design in the context of WSNs. 

The following section details the protocol operation and places the four main phases of the protocol 

into context. There then follows a detailed description of the design and implementation of the 

Gradient Spread phase. Next, a mechanism for service description, advertisement and discovery is 

presented as an integral element of the protocol. The design and implementation of the three data 

transport phases: Gradient Descent, Local Repair and Acknowledgement, are described in Section 

4.5. In the following section, a relative mobility estimation mechanism for the memory-efficient and 

opjjortuiiistic detection of changes in the neighbourhood of a node is presented and fully explained. 

Finally, a summary of the chapter is provided and the main contributions of UMG are identified.

4.1 A Dynamic Gradient-based Routing Protocol for WSN

A dynamic gradient-based reactive routing protocol, known as Ubiquitous Mobile Gradient (UMG), 

has been de.signed for Wireless Sensor Networks. The UMG design supports efficient and reliable 

communication for a variety of application scenarios in the area of WSNs. It employs the gradient 

concept (see Section 2.3) while offering reliable mechanisms for the creation, update and navigation of 

the gradient field. It supports point-to-point, multipoint-to-point and point-to-multipoint communi­

cation. UMG is address-centric in the sense that node addresses are employed for routing, but it also 

integrates support for data-centric routing by making use of Bloom filters iis compressed mechanisms 

for storing data descriptions. Bloom filter-based descriptors are integrated in the gradient formation 

thus providing a mechanism for nodes to advertise their services. Services range from sensed or fused 

data to resources available at the node. A service requested by a node is known as “Interest". In 

this sense, UMG acts as a service advertisement protocol and facilitates the data-centric searching
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process. The possibility of each node to be capable of describe itself allows for applications to create 

imiltiple overlays according to node’s services or node’s interests in data, thereby making possible the 

formation of dynamically changing communities of wireless sensor nodes. Each node might belong 

to multiple commnnities indicated by the node’s descriptor acting as the node’s profile.

One of the goals of UMG is to avoid the use of periodic messages, assuming that areas with no data 

communication are not updated, whilst network areas with activity benefit from the opportunistic 

communication in order to maintain its connectivity status up-to-date. In other words, UMG follows 

the reactive paradigm, employing eavesdropping to update neighbours rather than using periodic 

updates.

UMG has been designed to operate in networks where every node can take the role of consumer 

and/or producer. This way nodes can be sinks and sources at the same time. It has also been 

designed to tolerate sink and source mobility by opportunistically detecting a node’s relative change 

in neighbourhood, and consecpiently reacting by locally updating its gradient. Therefore, detecting 

relative mobility promptly, while following the reactive paradigm, is paramount. In this regard, 

mobility is detected by using a structure of temporal shift Bloom filters for the efficient storage of 

historical overheard information. A probability-based model is employed to assess the mobility state 

of a node according to the Bloom filter’s structure. In addition, a recursive estimation approach 

introduces a higher level of accuracy to the mobility assessment by evaluating the degree of mobility 

of the previous temporal states.

4.2 Ubiquitous Mobile Gradient Operation

The Ubiquitous Mobile Gradient (UMG) routing protocol is based on the idea that a node wishing 

to be contacted must spread its gradient first. The proper formation of the gradient is a key clement 

in the cjuality of the routing process, i.e. avoid local minimum points and inefficient path lengths. 

In UMG, a new node in the network might decide at some stage to spread its gradient to create 

routes from other nodes toward itself. The node spreads its gradient either because it has taken a 

producer/consumer role in the network or because another node requests to contact the node. In 

the reminder of the document, a node spreading its gradient at any given time will be known as 

“gradient origin node” or “sink”. Multiple sinks might exist in the UMG network which establish 

end-t o-end commnnication. The rest of the nodes act as p\ire routers, i.e. relays of packets.

A node sjjreads (setup) its gradient by employing a reactive controlled flooding process which 

can be limited in scope by setting a maximum coverage distance in terms of hops, i.e. the “Gradient
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Spread Phase”. When flooding tlie network, the gradient origin node in'oadcasts a gradient message 

with its address and a descriptor; the descriptor contains the serviccs/data which the node either 

provides or is interested in. This way, the gradient spreading process is also used as a service 

advertisement mechanism. Only the first gradient packet is forwarded from those received for a 

given gradient process from a gradient origin node. The use of the lowest hop count metric can 

easily be incorporated in UMG to create the shortest path; this is possible as UMG implements a 

backoff mechanism for the proper formation of the gradient, which delays the next broadcast based 

on the hop distance from the gradient origin node. However, UMG employs the fastest route metric 

by default as: i) it produces good results in terms of hops, despite not always being optimal, ii) it 

requires low complexity, and iii) it inherently considers the current congestion status of the nodes and 

the wireless medium. The key idea is that a node controls the number of packets to be broadcast such 

that the implosion problem is minimized. For this purpose, and in order to avoid loops, duplicate 

packets are detected. In the same line, the broadcast of a packet might get lost due to contention 

problems or inactivity of the node, e.g. due to duty cycling. In this case, the gradient might not 

get formed, for instance, if a packet does not reach a crucial node, i.e. a node which, by its unique 

position, serves as the gateway in between areas of the network. For this situation, UMG adds a 

delayed extra broadcast retransmission of the first gradient jracket in order to increase the reliability 

of the gradient formation.

A node receiving the gradient packet creates or updates the entry for the gradient origin node 

in its routing table. The entry in the routing table contains the neighbour addre.ss from which the 

packet was received. The routing table is composed of one entry for every gradient origin node. An 

entry in the routing table for the gradient origin node indicates the next node address to reach the 

gradient origin node, the service descriptor of the gradient origin node and the distance in number 

of hops to the gradient origin node. The service descriptor is stored in the form of a Bloom filter 

which compresses descriptive information efficiently and can also be efficiently and quickly riucried 

(see Section 4.4). The routing protocol provides functionality to search and compare descriptors. 

When combining descriptors with information on the distance to the gradient origin node, the UMG 

offers powerful information to higher layers for the decision making process.

Once initial gradients are established, communication with the gradient origin node can be started 

from any other participating node in the gradient. This is achieved by descending the gradient in a 

reliable manner, i.e. the “Gradient Descent Phase”. Every data packet descending the gradient is 

acknowledged at each hop, either with an explicit packet or by snooping the next hop transmission. 

If after a maximum number of trials, the packet has not been acknowledged, a local repair mechanism
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is launched which looks for a valid candidate to keep on descending the gradient towards the gradient 

origin node, i.e. the “Local Repair Phase”. If the local repair fails, as it does not find a suitable 

neighbour, the entry in the routing table is provisionally disabled. The next end-to-end message will 

launch another local repair process without considering nodes with disabled entries for the gradient. 

This mechanism can be seen as a special one hop backtracking in which the failing node is not 

selected in the next end-to-end gradient descending process.

UMG provides end-to-end acknowledgements to enhance the reliability of the data delivery pro­

cess. End-to-end acknowledgement packets are issued by the gradient origin node and climb the 

gradient towards the originator of the communication (see “Acknowledgement Phase” in Section 

4.5.3). For this purpose, UMG implements a short time-out cache structure which stores key in­

formation from received and sent packets in order to avoid cycles and identify whether the node 

forwarded a previous data packet (see Section 4.5.4.1). According to this, the acknowledgement 

|)acket is only broadcast by those nodes which previously participated in the sending of the data 

packet. This way, the acknowledgement packet climbs the gradient on a hop-by-hop basis. The entry 

for a particular data packet in the cache structure becomes invalid when an acknowledgement packet 

is successfully forwarded or when it times out. The protocol is aware of the successful delivery of the 

acknowledgement packel by snooping the broadcast of the next node on the way up to the originator. 

If an acknowledgement j^acket can not be delivered to the next node, and bidirectionality is therefore 

not achieved, the o])tion of sending the acknowledgement jmeket via the gradient of the originator 

of the communication is enabled; for this purpose, the originator of the communication must have 

spread its gradient. In the worst case scenario, the originator node has the option to spread its gra­

dient in requesting mode, i.e. requesting the gradient origin node to spread its gradient. A diagram 

providing an example of the operation of the main phases of UMG is depicted in Figure 4.1.

The UMG routing protocol has been designed to support dynamic changing topologies, where 

gradient origin nodes leave their current neighbourhoods to become part of other areas. UMG tends 

to minimize communication when there is no data communication activity in the neighbourhood, 

avoiding the use of periodic hello messages. The idea consists in letting the network update itself 

via the use of oi^portunistic communication, either received or snooped. Areas with frequent data 

communication activity will make use of overheard packets to detect when a node is changing its 

position with respect to its neighbours, i.e relative mobility. On the other hand, areas with no com­

munication activity will not be updated even if mobility occurs. These areas where communication 

occurs infrequently might require on-demand gradient updates if the topology changes. However, 

they will require low maintenance in terms of communication and will exhibit a silent behaviour.
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Fig. 4.1: UMG - Phases. Subfigure (a): Gradient Spread Phase. Subfigure (b): Gradient Descent 

Phase with Local Repair Phase. Subfignre (c): Acknowledgement Phase.

This scheme suits applications for wireless sensor networks where some areas might be silent for long 
periods of time and topologies are not subject to a high degree of variation.

In order to estimate whether a node has changed neighbourhood, the UMG routing protocol 

employs a probabilistic mobility assessment mechanism which is opportunistically fed with all packets 

received or snooped (see Section 4.6). The address of the sender of all the overheard packets is 

cached in memory efficient structures, Bloom filters (see Section 4.4.1). By employing a structure 

of temporal shifting Bloom filters, each filter stores the address of the neighbour nodes for a period 

of time before the next Bloom filter starts to be tilled out. Periodically, a probabilistic estimation 

mechanism, employing a predefined table model, utilises the information stored in the Bloom filters 

to determine if the node is changing its position. This process compares previous states of temporal 

Bloom filters against a miister Bloom filter. The master Bloom filter contains reliable information of
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the core neighbourhood obtained with a deterministic query process in a past period of time. This 

way, previous states of mobility can be recursively computed to decide on the probability of the node 

changing neighbourhood.

When mobility is detected, UMG employs explicit local update messages to confirm the neigh­

bourhood mobility status, to find out the number of new and old neighbours, and to populate its 

master Bloom filter. All the entries in the routing table are disabled as they will be of no routing use 

in the new neighbourhood, however they are not deleted as they are employed for service lookup. In 

this ca.se, the node will update its routing table opportunistically based on the communication being 

received. If the node is a gradient origin node, it needs to create routes from its old neighbourhood 

to its new position. To do so, the gradient is spread with a limited scope in terms of hops, depending 

on how far the node is from the farthest old neighbour. This mechanism reconfigures only nodes 

within the area of the scope such that they forward data packets towards the new position. An 

expensive global flooding will not be necessary due to the fact that the sco[)e of the flooding only 

has to reach the old neighbours for the gradients to keep converging into the node.

In t he next sections of this chapter, the different phases and mechanisms of UMG are described.

4.3 Gradient Spread Phase

The gradient spread phase takes place when a node needs to inform other nodes in the network about 

both its existence and the type of service provided. This phase employs a controlled flooding process 

to establish a gradient towards the node, i.e. the gradient origin node, such that other nodes have the 

possibility f.o route traffic towards it. If a node does not want to be contacted or it has no service to 

offer, the node might choose not to spread its gradient. Instead, nodes might work simply as routers 

without providing or consuming data. A node can spread its gradient at any given point in time. 

The gradient spread phase can be launched at the beginning of the mote’s life, which for most of 

the nodes will be the beginning of the network’s life. Further gradient spread updates, which might 

affect only a limited scoi)e of the network, would take place when i) a node changes its services, ii) 

when reliable mechanisms demand a gradient update, or iii) when a change in the neighbourhood of 

the node forces the gradient to be reconfigured. In addition, a node A has the option of reciuesting 

another node B to spread its gradient such that bidirectional data communication can occur between 

them; this is achieved while A is spreading its gradient.
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4.3.1 Gradient Formation

In the initial network setup, i.e. at the beginning of the network’s life, nodes wishing to advertise 

their gradients wait a random time to minimize collisions with ongoing gradient processes. This 

process gives time to all the nodes in the network to boot up and start their radio communication 

system, such that they can participate in the gradient setup process. The option of using a gradient 

message as a control message to start the formation of gradients once all nodes have booted up is also 

available. In this case nodes stay on a waiting state until the first gradient packet is received from 

a previously agreed node or with a reserved service description encapsulated; at this time nodes in 

need to advertise their gradients wait for a random bounded time. While this is a proactive process 

where gradients are created beforehand, nodes might also setup their gradients in a reactive manner 

when data communication is needed.

SpreadGrad Message

nx uintlS t originGradAddr;
nx_uint8_t descriptorBF[DESCRIPTOR_SiZE];
nx uintS t hops;
nx_uint8_t maxHops;
nx uint8 t seq;
nx uIntlS t requestGradAddr;
nx_uint8_t requestDescriptorBF[DESCRiPTOR_SiZEl;
nx_uint8_t accuracyPercentage;

Fig. 4.2: UMG - SpreadGrad Message Structure

The spreading of the gradient consists in a controlled flooding process where the first unic[ue 

packet received is sent twice for a “good” formation of the gradient. I'he message structure em­

ployed to spread the gradient is known as “SpreadGrad” message (see Figure 4.2). The addre.ss of 

the gradient origin node spreading the gradient is indicated in the SpreadGrad message as the “orig- 

iiiGradAddr” field. Each node employs the SpreadGrad message to advertise its services. For this 

purpose, a memory efficient structure containing the service descrijjtor is carried in the SpreadGrad 

message as “descriptorBF” {.see Section 4.4 for further explanation). In order to distinguish between 

different gradient updates from the same gradient origin node, a sequence control value Is defined 

in the SpreadGrad message as “seq”. The combination of “originGradAddr” and “seq” makes the 

SpreadGrad message uniquely identifiable. The sequence value is incremented each time a gradient 

origin node starts a gradient formation. The SpreadGrad message also contains a value which carries 

the height of the sender node with respect to the gradient origin node; by default UMG employs the 

hop distance as the height. The gradient setup limits the scope of the spreading process in terms of
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hop distance; this is indicated by the “niaxHops” field in the SpreadGrad message.

The protocol also provides the option for a gradient origin node to request other node(s) to setup 

their gradient-. By encapsulating requesting information in the SpreadGrad message, the gradient 

origin node can make requests in two ways: i) by addressing a particular node indicating the address 

of the node in the SpreadGrad message as the “requestGradAddr’, or ii) by addressing a set of nodes 

whose service descriptor matches the descriptor “requestDescriptorBF” of the SpreadGrad message 

with an accuracy equals or higher than “accuracyPercentage”. Upon reception of the SpreadGrad 

message, matching nodes hold the power to decide whether to spread the gradient.

RoutingTable

uintl6_t originGradAddr;
uint8_t descriptorBF(DESCRIPTOR_SIZE];
uint8_t hops;
uint8_t realHops;
uint8_t seq;
uintl6_t lastTimeUsed;
uintl6_t receivedFromAddr;

Fig. 4.3: UMG - Routing Table

In UMG, every node receiving a SpreadGrad message only takes into account the first packet 

received for a given gradient origin node and sequence “seq”. The first gradient message received by a 

node populates or updates the Routing Table (see Figure 4.3) with the address of the gradient origin 

node as the key index (see “origiiiGradAddr” in the SpreadGrad message and in the Routing Table). 

In addition, the address of the node from which the message has been received is stored in the Routing 

Table as the next node in the gradient to reach the gradient origin node (see “receivedFroniAddr” 

in the Routing Table). Other values from the SpreadGrad message are also stored in the Routing 

Table such as the hop distance (“hops”), the sequence vahie (“seq”), the maximum hop distance 

(“maxHops”) and the service descriptor (“decriptoiBF”). In addition, a local counter at each node 

is employed to timestamp the creation or update of each Routing Table entry; the “lastTiineUsed” 

field in the Routing Table stores the current local counter value for the associated “origiiiGradAddr” 

entry. The local counter is incremented every time the node receives a gradient update or a data 

packet is relayed through it. This provides an indication of the freshness of information for each 

gradient entry, as compared to the rest of the entries, in the event of the Routing Table gets full 

and a “origiiiGradAddr” entry needs to be replaced by a new one. The “lastTiineUsed” field is also 

employed as a mechanism to enable or disable the Routing Table entry for a gradient. A node might 

be interested in canceling its routing activity for any given gradient by temporarily disabling the
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entry (“lastTimeUsed” equals to 0). For instance, the node might require to save battery, ameliorate 

the congestion, or simply indicate that the Routing Table entry is not valid as a result of mobility or 

unresponsive behaviour. Finally, the “hops” field is popnlated when the gradient is created and acts 

as a control variable together with the “seq” field. However, further gradient updates, e.g. when 

mobility is detected (see Section 4.6), or the launching of local repair processes (see Section 4.5.2) 

might change the real end-to-end hop distance when descending the gradient. To account for the 

real end-to-end hop di.stance to the “originGraclAcldr”, the “realHops” field has been added to the 

Routing Table. The update of this field occurs in the Acknowledgement Phase (see Section 4.5.3).

On the formation of the gradient, routing protocols employ different mechanisms to create efh- 

cient paths in terms of hops. Many implementations employ an evaluation function which decides 

from a set of received packets which one is to be forwarded in the creation of the gradient. This 

function selects the most suitable packet based on metrics like hop count, battery level, link quality 

or signal strength. This process consumes memory and computational resources while demanding 

an extra backoff time to wait for a set of packets to be received. In UMG, the first packet arriving 
from the flooding process is forwarded and used for update purposes. Every node only forwards the 

first unique packet received for a gradient origin node. The rest of the SpreadGrad messages arc 

discarded; this contributes to avoid cycles, decrease the communication activity and thus reduce the 

network contention. This is a simple mechanism which aims to reduce the complexity in the gradient 

process. The assumption is that creating and maintaining optimal gradients, in any terms, incurs 

a high use of re.sources at relatively low benefit in dynamic networks such as WSN. Instead, UMG 

exploits the creation of well-formed (sub-optimal) gradients by increasing the likelihood of all the 

neighbours receiving the SpreadGrad message. In this regard, the successful reception of the message 

by all neighbours depend on factors such as the density and topology of the network, the contention 

in the wireless medium, the congestion in the queues, and the nodes' sleeping policies. These factors 

produce packet loss and might contribute to the inefficient formation of the gradient. While the 

cost of not forming efficient gradients can be translated into an increase in the number of hops of 

a route, the true risk comes when posterior gradient updates only reach a subset of the nodes. In 

this scenario, different gradient updates for the same gradient origin node need to coexist such that 

loops and local minima points are not produced. As an observation, gradient routing protocols which 

unicast data packets following the gradient path, such as UMG, are more susceptible to this problem 

than protocols which do not set paths and rely on nodes with lower height values to broadcast the 

packet.
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To solve the above issues, avoid loops and add reliability and efficiency to the gradient path 

formation, two spaced retransmissions of the same packet are employed to increase the likelihood 

of all neighbours receiving the packet. This acts as a countermeasure against packet loss due to 

network contention or the short unavailability of a node to receive a packet. In addition, a back-off 

time is applied to the first and second retransmission of the broadcast packet. The back-off time is 

computed as a function of the hop distance to the gradient origin node, such that the delay in the 

retransmission increases linearly with respect to the distance from the gradient origin node. This 

mechanism introduces a delay in the gradient setup at the benefit of a progressive formation of the 

gradient in terms of distance from the origin. This can be seen as a wait and forward controlled 

mechanism which expands the gradient in a step-based process where each hop iteration increases the 

scope of the discovery progressively in a semi-uniform concentric manner with centre at the gradient 

origin node.

The backoff-based gradient spread mechanism works as follows: When a new unicpie SpreadGrad 

message is received for the first time at a node, an initial backoff time is calculated as:

BackOff-Initial = (hops * DelayPerHop) -I- RDDelay (4.1)

where “hops” is the number of hops received in the SpreadGrad message, “DelayPerHop” is a constant 

which establishes the incurred delay in milliseconds per hop unit, and “RDDelay” is a randomly 

generated delay in the range of [0, Delay]; “Delay” is a constant time in milliseconds. The higher the 

“Delay” upper limit, the higher the likelihood of an increase in the time to create the gradient and the 

lower the likelihood of colliding with other packets in each neighbourhood. By the same token, the 

higher the “DelayPerHop” value, the higher the latency in the formation of the gradient. However, 

the “DelayPerHop” value affects the probability of packet collision and the proper formation of the 

gradient. Experimentally, the probability of collision increases when ffie “DelayPerHoj)” is set to a 

value equal or less than 3 ms, while the probability of collision remains bounded between proximate 

values when the value is greater than 5 ms. Nevertheless, the probability of collision is highly 

dependent on the number of neighbours and the ongoing communication in the neighbourhood; 

these factors can be constantly changing. This is also one of the main reasons why the delay and 

retransmissions of the SpreadGrad message are required for the proper formation of the gradient.

Once the Imckoff t ime elapses, the packet is broadcast. A second shorter backoff time, which does 

not depend on the hop count, is applied to delay the retransmission of the SpreadGrad message as:
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BackOff-RotraiLsmission = RDDelay + MiiiDclay (4.2)

where “MinDelay” is a constant which guarantees a niiniinuni backoff time in the event of the 

“RDDelay” random value is zero. The BackOff-Retrarismission is employed as a mechanism to 

increase the likelihood of all the neighbours receiving the packet. It is set to a lower value than the 

BackOff-Initial such that the second broadcast of the packet occurs before a packet with a higher 

hop value is broadcast.

While this process improves the gradient formation, it also adds a cumulative linear growth to 

the latency of the gradient setup, which might affect the QoS reciuirements of higli layers. The next 

equation calculates the cumulative latency in the worst case scenario (where the first SpreadGrad 

message is lost) as:

11

LatencyWC = ^ (hops * DelayPerHop + Delay + Delay + MinDelay) (4.3)
hops=0

solving the series in Equation 4.3, the worst case latency can be calculated as:

LatencyWC = -(hops+l)((hops * DelayPerHop) + ((2 * Delay + MinDelay) * 2)) (4.4)

By the same token, the liest case scenario, where the first packet is always received and the 

random value of the “RDDelay” is always 0, can be calculated as:

LatencyBC = (hops * DelayPerHop)
hops=0

(4.5)

solving the series in Equation 4.5, the best case latency can be calculated as:

LatencyBC = -(hops+l)((hop.s * DelayPerHop) (4.6)
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Fig. 4.4 : UMG - Gradient Formation Latencies (WG=Worst Gase Scenario see Equation 4.4) 

(BG=Bcst Gase Scenario see Equation 4.6)

By defatilt, UMG employs the next combination of values for the time delays in milliseconds: 

“DelayPerHop = 5 ms”, “Delay = 7 ms”, and “MiiiDelay = 3 ms”. These parameters have been 

empirically selected as they have proven to establish efficient gradients in terms of hop distance at 

low latencies for a variety of scenarios with different traffic loads. Following these values, the latency 

for the worst and best case scenarios is shown in Figure 4.4 for a maximum hoj) distance of 10 hops. 

Note that the latencies correspond to the delay in the formation of a gradient, this does not take 

into account the delay introduced when other jjackets are in the queue, the time to send a broadcast 

packet (~ 11 ms in TinyOS) and each packet MAC backoff time (300 /<s - 9.8 ms in TinyOS).

Figure 4.5 plots the heights of each node in the network with respect to a selected gradient 

origin node at the initial state of the network when multiple nodes are simultaneously spreading the 

gradient. The gradient origin node is placed at position (100,100). Its gradient is spread progressively 

according to the hop distance over a 20 by 20 nodes grid. The semi-uniforrn concentric circles formed 

can be seen in the contour map, while the smoothness of the gradient shape is identified by the dots 

which represent the height in terms of hops of every node at each location. In addition, the figure 

gives an idea of the transmission range of the nodes and the degree of asymmetry in their links.

The gradient formation process has a two-fold functionality. Firstly, it creates the gradient paths 

and advertises the service. Secondly, the flooding process updates nodes on the current state of their 

neighbourhood, thus increasing the accuracy of the mobility assessment mechanism (see Section 4.6).
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Fig. 4.5: UMG - Gradient Forination Contour Map Example (400 Nodes). Gradient Origin Node at 

position (100,100). Colour map corresponds to the distance in hops, i.e. height, of each node from 

the gradient origin node.

Additionally, the number of messages sent and received in the gradient formation process can he 

estimated beforehand. The number of messages broadcast in a gradient formation process depends 

on the scope of the flooding and the number of nodes in the scope. However, knowing the number 

of participant nodes, the maximum number of messages broadcast will be 2 per node, which gives 

an idea of the cornimmication impact of this process. The number of broadciist packets received 

at each node for a particular gradient formation depends on the network density, the transmission 

power range and the receiver sensitivity of the transceiver. In other words, it depends on the average 

number of neighbours for each node as this varies dynamically due to the instability of the wireless 

links. In addition, the scalability factor in UMG is directly proportional to the number of routing 

table entries which a node can accommodate. In other words, how many consumer/producer nodes 

are going to employ a given node to perform routing for their gradients. In this regard, a given node 

might only be re.sponsible for a set of gradients within a limited scope. The rationale behind this is 

that, in large sensor networks, nodes would limit communication within a certain hop distance for 

efficient routing; after a certain number of hops, routing might be inefficient and infetisible.
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Finally, a new node arriving to an np and running network where gradients are already formed 

is of no use to the net work until it learns from t he network on how to act as a router. The cost of 

re-calculating the gradients of a new node’s neighbourhood to make it work as a functional router 

for all the existing gradients is expensive in terms of communication. Therefore, in UMG a new 

node will progressively operate as a router when its routing table is updated with new gradient 

updates. Gradient setups can be triggered due to an unresponsive eiid-f o-end connectivity or when 

mobility detection demands an update. On the otlier hand, if a new node manifests interest in being 

connected to a jrarticular node or set of nodes, the UMG routing protocol provides cpiery mechanisms 

to prompt specific nodes for gradient formations.

4.3.2 Implementation and Structures

A single component manages the gradient setup process and the Routing Table, while exposing an 

interface to control the gradient process, receive events occurring in the component, and query the 

Routing Table. A single-purpose packet for sj^reading the gradient has been created, the SpreadGrad 

message (see Figure 4.2). The SpreadGrad message acts as a service advertiser as it carries the 

descriptor for the services provided by the gradient origin node, i.e. the “ciescriptorBF” field. The 

size of the descriptor in UMG, i.e. the DESGRIPTOR_SIZE, has been set to 4 bytes. When 

the SpreadGrad message serves as a query mechanism for nodes matching the service, i.e. the 

“requestDescriptorBF” field, a comparison against the local descriptorBF at each node is performed 

(see Section 4.4 for details on the comparison of the Bloom filter structures).

The Routing Table structure defines the fields for each unique gradient origin node entry, i.e. 

“originGradAddr” (see Figure 4.3). Thus, an array of Routing Table structures is created which 

contains an entry for each gradient for which the node is a router. The size of the Routing Table 

array depends on the expected number of nodes advertising their gradients. This has a cost in terms 

of R AM memory - currently 13 bytes are allocated for each entry - and therefore UMG lets the user 

application control this parameter. However, a mechanism to replace infrequently used entries is in 

place when the number of gradient advertising nodes exceeds the limit; this was mentioned in the 

previous section which is based on the “lastTimeUsed” field in the Routing Table as an indicator of 

the activity of the entry. A global variable to control the roll over of the “lastTirneUsed” counter 

is in place; the 0 value is reserved as an indicator of the disable status of the entry in the Routing 

Table.

Moreover, the component imirlenients a dedicated queue to manage SpreadGrad messages. Pack­

ets are processed following a FIFO policy. Each packet, is timestamped when added to the queue
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in order to account for the time elapsed in the ciueue when calculating the initial backoff time (see 

Equation 4.1). The queue size depends on an estimation of the number of concurrent gradient setup 

processes and the backoff time applied per packet. For all of the simulations and testbed experiments 

pre.sented in this thesis, a queue size of 10 packets has proved to be successful. Gradients of up to 10 

hops have been achieved, with 60 nodes spreading their gradients. A random time over an interval of 

5 seconds is calculated by each node to initially start their gradient. In addition, a minimum time of 

3 seconds has been set for a node to wait for its gradient to be spread before updating the gradient 

again.

4.4 Ubiquitous Lookup

Many applications in WSN require some form of node description in terms of data or service pro­

vided. Protocols have been designed to specifically achieve such service advertisement and discovery 

functionality. Most of them require a high number of messages to achieve such functionality which, 

in WSN, results in a expensive resource consuming activity that can not be afforded. The idea 

of introducing a service advertisement and discovery mechanism at the routing layer has been im­

plemented in UMG. The process of service advertisement/discovery is implemented as part of the 

routing process by making use of every SpreadGrad message traversing the network. When creating 

the gradient, the SpreadGrad message carries a descriptor of the servic'e/data provided by the gra­

dient origin node (see “descriptorBF” in Figure 4.2). The metadata set, M, is a collection of human 

readable words in a dictionary which is common to the whole network. Items in M are employed to 

define the type of service or the behaviour of a node in terms of data acquisition, i.e. interest. The 

“descriptorBF” structure contains a subset of the metadata, D, such that D C M, and D defines the 

service of a gradient origin node. The idea lays in the possibility of extending the universe of M while 

not affecting the “descriptorBF” of the nodes in the network. To achieve this, the “descriptorBF” 

field operates as a Bloom filter [88], i.e. an array of bits set to 1 and 0, which store the membership 

of an item in the universe of M, rather than storing the item itself. Due to the fact that .storing every 

item (word) would cost too many bytes, and associating one bit of a bitvector to each item re.stricts 

the scope of M, Bloom filters were selected as a compressing structure to store and advertise the 

metadata/services.

On reception of a SpreadGrad nies.sage, a node updates its routing table with the “descriptorBF” 

for its gradient origin node entry (see Figure 4.3). This mechanism allows for each node to have a 

descriptive map of the type of services offered by those nodes for which the local node is a router.
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along with the distance in hops to reach them. This is a powerful tool for the decision making 

process of applications working on top of the routing protocol. UMG provides an interface to the 

uirper layers to create and query Bloom filters. An application might contain a set of keywords, i.e. 

a dictionary, which defines the data offered/contairied/stored by the node. With this approach, an 

implicit ubiquitous lookup system is available which provides hints in the searching process.

In order to populate the “descriptorBF” structure before spreading the gradient, a set of keywords 

from M are selected which describes the behaviour of the node. A set of hash functions are applied 

to each keyword to produce a set of positions in the array of bits of the Bloom filter which are to 

be set to 1. Once created, Bloom filter structures are easy and fast to query and can be compared 

using a “XOR” bitwise operation. This provides a powerful tool in areas like distributed data 

fusion, discovery service, distributed storage or swarm decision making. Moreover, the Bloom filter 

descriptor can be seen as a profile descriptor which describes the node and thus could serve as a 

mechanism to create overlay virtual communities of sensors.

4.4.1 Bloom Filter Functionality

A Bloom filter [88], is a probability-based compressing structure which identifies whether a data item 

is a member of the filter or not, rather than storing the data item itself. The Bloom filter structure 

is represented as an array of bits. By switching bits from 0 to 1 in a reduced set of positions in the 

bitvector, an element is declared as a member of the filter. Every combination of positions represents 

a data item stored. In order to calculate the combination of positions which represent a particular 

data item, hash functions are employed. Each ha-sh funct.ion is applied to the data item producing 

an integer number which is trimmed/scaled to the number of bits in the Bloom filter - thereby 

generating a position in the bitvector. Applying X hash functions to the same data item produces 

V positions set to 1 in the bitvector where A' > V. The collection of hash functions applied over a 

data item will always produce the same combination of positions for that data item. By the same 

token, a data item can be hashed to check whether all its positions in the Bloom filter are set to 1, 

i.e. to check membership.

The Bloom filter structure has a drawback. The higher the number of data items hashed in the 

Bloom hlter, the higher the probability of obtaining false positives. A false positive occurs when a 

data item has not been hashed in the Bloom filter, but the bit positions which correspond to the 

data item are set to 1 as a combination of positions from other data items previously hashed. The 

selection of the number of hash functions, together with the number of bits of the Bloom filter and the 

number of elements inserted in the Bloom filter, establish the probability of getting false positives.
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On the other hand, the Bloom filter guarantees that there will be no false negatives, i.e. if there is 

not a combination of positions set to 1 which satisfies the hashed data item, then it is guaranteed 

that the data item was not inserted in the Bloom filter. Bloom filters can easily be compared with 

a “XOR” bitwise operation and merged with an “OR” bitwise operation.

The probability for a false positive error can be calculated with the next equation:

Efp = (4.7)

where “m” is the number of bits in the Bloom filter, “n” the number of elements inserted and 

“k” the number of Imsh functions [216]. The error Efp can be minimized for the number of hash 

functions according to the next equation [216]:

k — (m/n) In 2 (4.8)

For instance, for a bit array 10 times larger than the number of entries, the probability of a false 

positive is 1.2% for k=4 hash functions, and 0.9% for the optimum case of k=5 hash functions. If the 

data set is known “a priori” then the Bloom filter can be designed to avoid fal.se positives. Figure 4.6 

depicts the activity of imserting an element into a Bloom filter, and also includes a practical example 

showing how a set of keywords, which describe a sensor device, are inserted in the structure.

4.4.2 Implementation

The Bloom filter has been implemented as a generic component which needs to be parameterised with 

the number of hash functions and the size of the filter in bits. Up to ten common implementations of 

hash functions have been selected and their computational performance tested in real sensor devices 

and are available to be apj)lied sequentially. Interfaces are provided for the operation of the Bloom 

hlter, for instance: data item insertion and membershijr checking. Other functionalities are provided 

like Bloom filter reset and union.

A function to compare the similarity of two Bloom filter structures, according to a percentage 

value of accuracy, is also implemented. The accuracy percentage is obtained as the fraction of the 

number of matching positions set to 1 in both Bloom filters divided by the number of i)ositions set 

to 1 in the Bloom filter with the highest number of positions set to 1. This functionality is employed 

by UMG to query the routing table of other nodes descriptors for the discovery of services. For 

instance, the local descriptor is compared against the query descriptor “requestDescriptorBF” of the 

SpreaclGrad message (see Figure 4.2); if the accuracy percentage of similarity is greater or ecjnal than
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(a) Bloom Filter - Item Insertion Operation

(b) Practical Example - Bloom Filter (m=32, k=5, n=3, Efp = 0.78%)

Fig. 4.6: UMG - Bloom Filter Operation. Subfiguro (a);

the “acciiracyPerceritage” of the SpreadGrad then the node should spread its gradient. Moreover, 

this mechanism provides support for applications which require searching or aggregation of different 

types of data.

In UMG, the default parameters employed to configure the descriptor Bloom filters are: size 

eqiials to 32 bits, i.e. DESCRIPTOR_SIZE, and number of hash functions equals to 5. If the 

application contains a set of predefined keywords M, i.e. a metadata dictionary, the Bloom filter can 

be firstly tested to reduce the probability of obtaining false negatives on selected subsets.
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4.5 Data Transport Phases

This section describes the design and iniplenientation of the three phases employed in the trans­

portation of the data. These phases are lannched when the gradient for the destination, and even 

the source, node has been spread. The three data transport phases are; 1) Gradient Descent Pha.se, 

2) Local Repair Phase, and 3) Acknowledgement Phase.

4.5.1 Gradient Descent Phase

This phase is executed when a node needs to communicate with another node which has already 

spread its gradient. The Routing Table is consulted for the entry corresponding to the gradient origin 

node address. The Routing Table can also be searched by descriptors, “descriptorBF”, .searching for 

nodes which can .satisfy the requested service (.see Figure 4.3). If the entry in the Routing Table 

can not be found and the local node demands to communicate with a specific node, then the local 

node needs to setup its gradient with the option of reciuesting a particular address, or a set of nodes 

matching the “requestDescriptorBF", such that the requested node/s spread the gradient (see Section 

4.3.2). When there is a Routing Table entry for the destination node which is marked as enabled, the 
local node prepares the “DataGrad” message (see Figure 4.7). Data from higher layers is encapsulated 

in the “data” field to be transported. A new sequence value is generated by the originator node as 

“.seq” in the “DataGrad” message. Together with the originator node address encapsulated in the 

“origiiiAddr” field and the destination node addre.ss as the “originGradAddr”, the packet is unicpiely 

identifiable. The packet is sent to the addre.ss indicated by the "receivedNodeAddr” field in the 

Routing Table. Intermediate nodes receiving the “DataGrad” message keep on forwarding the data 

packet to the address of the node in the “receivedNodeAdtlr” field of their Routing Tables for the 

corresponding gradient origin node entry, i.e. the “originGradAddr” field. The number of hops is 

increased in the “DataGrad” message (“hops” field) with every new node visited. The “hops” field 

is also used as an incremental hop counter when climbing the gradient towards the originator of 

the communication in the Acknowledgement Phase (see Section 4.5.3). This way, the “hops” field 

is employed to update the “realHops” field of the Routing Table in the intermediate nodes, which 

indicates the most recent real hop distance.

4.5.1.1 Achieving Reliability -when Descending the Gradient

The wireless medium is prone to errors in the packet transmission due to collisions, noise, or envi­

ronmental condition changes which can last for an arbitrary length of time. Communication between

124



Chapter 4. The Ubiquitous Mobile Gradient Routing Protocol

DataGrad Message

nx_uintl6_t orIginGradAddr; 
nx_uintl6_t originAddr; 
nx_uint8_t hops; 
nx_uint8_t seq; 
nx_uint8_t data[0];

Fig. 4. 7: UMG - DataGrad Message Structure

neighbours might not be established for short periods of time due to congestion at nodes, the node 

being in a sleeping mode, or the medium being contended. The connection can also be blocked for 

a long period of time, for example an obstacle could be temporarily interriipting the communication 

or local mobility might be placing nodes too far apart for the link to be stable. Moreover, a link 

might be broken as the next node might have died or changed position. In any of these situations, 

reliability mechanisms arc employed to achieve end-to-end communication in the path.

In this regard, UMG employs acknowledgement packets, timers, and retrials for the end-to-end 

reliability of the path. If an explicit end-to-end acknowledgement packet is not received by the 

originator of the communicat ion after a predefined time, the packet is sent again. This procedure is 

repeated for a number of trials until the packet is acknowledged. The numl)er of trials is subject to 

be changed and by defanlt has been set to 2. When the maximum number of trials is reached, the 

option of employing the gradient creation phase, with or without the option of requesting for the 

destination node t-o spread its gradient, can be launched to create routes. To reduce the munber of 

gradient formations, which are expensive in terms of communication, UMG enables the acknowledge­

ment mode at the MAC layer. In this mode, a unicast packet issued by a node must be explicitly 

acknowledged by the next hop receiver. This mechanism allows UMG to implement a procedure for 

which a node waits for a period of time for an acknowledgement packet and resends the packet up 

to a maximum number of trials if the acknowledgement packet is not received. In addition, UMG 

employs snooping functionality to eavesdrop the data packet being sent by the next hop node as a 

backup mechanism to implicitly acknowledge the packet. Both mechanisms increase the reliability 

of the end-to-end packet delivery in situations where short time communication problems occur. 

Additionally, when the communication between two neighbour nodes repeatedly fails, the maximum 

limit of retrials will be reached and no acknowledgement will be received by the next node when 

descending the gradient. In this situation a local repair mechanism is started which finds the most 

a])propriatc neighbour node to keep on descending the gradient.
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4.5.2 Local Repair Phase

The local repair mechanism is launched when i) the local node needs to send a message to a node 

for which there is no entry in the Routing Table or ii) the maximum number of trials is reached and 

still the data packet has not been acknowledged by the next neighbour in the gradient descending 

path. In this phase, the node waiting to receive the acknowledgement packet needs to look for an 

alternative neighbour node which can keep on relaying the packet towards the gradient origin node. 

For this purpose, a neighbotirhood discovery process is launched by broadcasting a “Neighbours” 

message (see Figure 4.8). The message is typed as LOCAL-REPAIR and contains the address of 

the node which has failed to acknowledge the packet (“brokenAddr”), and the distance in number 

of hops (“hops”) from the sender node to the gradient origin node (“originGradAddr”) (see Figure 

4.8). The “brokeiiAddr” and “hops” values are included to restrict the replies to those neighbours 

which can provide a valid rotite towards the “originGradAddr” node. A candidate node must not 

contain the address of the sender of the “Neighbours” message, nor the value of the “brokenAddr”, 

in the “receivedFroniAddr” field of the “originGradAddr” entry in its Routing Table. In other words, 

the next node to reach the “originGradAddr” in the candidate node’s Routing Table can not be the 

node which failed to acknowledge the packet, nor the sender itself. In addition, the candidate node 

must be at least equally close, in terms of hops, to the “originGradAddr” node than the sender node 

is. These checking procedures avoid the formation of cycles which might incur a higher number of 
local repair mechanisms being launched, increasing the contention in the medium and decreasing the 

performance.

Neighbours Message

nx_uint8_t type; 
nx_uintl6_t originGradAddr; 
nx_uintl6_t brokenAddr; 
nx_uint8_t hops; 
nx_uint8_t seqGradient;

Fig. 4.8: UMG - Neighbours Message Structure

However, when gradient updates for the same gradient origin node occur, it might be possible 

that some nodes will not get updated, thereby containing the address of the next hop ("received- 

FromAddr” field) in their Routing Tables corresponding to older gradient sequences “seq”. In this 

situation, multiple gradient updates, with different secjnences, need to coexist such that loops are not 

formed when performing local repairs. In Figure 4.9, this effect can be seen where a new gradient 

setup has been received which only updates some of the nodes in the network while the rest of the
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nodes still contain old gradient entries in their Routing Tables. In the diagram, for instance, node 10 

issues a packet to descend the gradient towards node 1 via the new gradient. When descending the 

gradient, node 6 relays the packet to node 5 which does not acknowledge the packet after a number 

of trials. Thus, node 6, which is at 4 hops distance to node 1 via the new gradient, starts a local 

repair phase to discovery a valid next hop node. The only reply to the LOCALJIEPAIR packet 

sent by node 6 comes from node 8, which is also at 4 hops distance from node 1 but under the old 

gradient setup. Node 8 is a valid next hop node, as its next hop address is node 7 which does not 

pose any restriction. Nevertheless, node 7 relays packets to node 6 under the old gradient setup; 

this creates a loop. In order to avoid loops in this situation, UMG restricts a neighbour node from 

being a valid candidate if the sequence value “seq” of the entry “originGradAddr” in its Routing 

Table is older than that of the sequence of the node starting the local repair phase. The sequence 

of the initiator of the local repair phase is transported in the “Neighbours” message in the field 

“seqGradient” when the packet is typed as LOCAL-REPAIR. Nodes receiving the LOCAL_REPAIR 

message reply if their sequence for the “originGradAddr” is newer than the sequence received in 

the packet (“seqGradient”). Since sequence values roll over when reaching the maximum value of 

2*^, a way to identify the new sequence when compared to others is required. For this purpose, the 

secpience counter is considered as a cycled structure where the newest sequence value is that, with 

the highest distance to the other sequence value being comi)ared against - the rationale behind this 

is that the probability of a small number of gradient setups updating all the nodes in the scoi)e is 

higher than the probability of a node not getting updated when a larger number of gradient setups 

occur. Loops are not formed when packets progress from a node belonging to an old gradient setup 

to a node involved in a newer gradient formation. Thus, when selecting a node to repair a gradient, 

newer sequences will overlap older sequences even if the hop distance is higher. In addition to this, 

and as a precaution measure against man-in-the-middle attacks, UMG also implements a mechanism 

to detect cycles (see Section 4.5.3).

After a LOGAL_REPAIR message is sent, valid candidate neighbours reply with a “Neighbours” 

message with the “type” field set to REPLYJLOCAL_REPAIR. The latter message contains the 

number of hops to reach the “originGradAddr” node in the field “hops”. From the list of candidates, 

nodes with the newest sequences are considered. From them, the closer one, in terms of hops to the 

gradient origin node, is selected. Other metrics like signal strength or link quality could enhance 

the decision. However, UMG randomly selects a node from those closer to the “originGradAddr” - 

t his process is efficiency in terms of complexity, processing and memory. The gradient descending 

process is resumed employing the selected candidate node as the next hop neighbour. The Routing
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Table is nj^dated accordingly, with the candidate neighbour as the next neighbour to reach the 

“origiiiGraclAddr”, i.e. the “receiveclFroniAddr” field (see Figure 4.3). If a candidate neighbour is 

not found, instead of doing a backtracking process, the node disables the Routing Table entry for 

the “originGradAddr” and discards the packet. When the end-to-end timer expires at the originator 

of the communication, and the maximum number of trials is not reached, the data packet descends 

the gradient again. In this case, a local repair process will be launched ju.st one hop before the node 

which could not repair the gradient previously. This can be seen as an induced backtracking process 

which is always initiated by the originator of the communication. This way, if the maximum number 

of end-to-end trials is reached, UMG opts to update its gradient since the gradient is experiencing a 

high degree of instability and failure.
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4.5.3 Acknowledgement Phase: Short Memory Cache

The acknowledgenieiit phase starts when the destination node is reached, i.e. the “origiriGradAddr”. 

The destination node provides tlie data to the higher layer and is in charge of issuing an acknowl­

edgement packet back to the originator of the end-to-end communication, i.e. the “originAddr” field 

in the “DataGrad” message. The acknowledgement packet is a “DataGrad” message with no data 

enclosed (see Figure 4.7). Rather than having a dedicated field for the packet type, the acknowledge­

ment packet is identified by its length as it only contains the header fields of the routing protocol. 

The acknowledgement packet is configured with the same values of the data packet being acknowl­

edged. The “hops” field is reset to 0 and is increased at each intermediate node when climbing the 

gradient, in order to update the “realHops” field of the Routing Table (see Figure 4.3). It has to 

be noted that the “lastTimeUsed” field of the Routing Table is also updated. Both the “realHops” 

and the “lastTimeUsed” fields provide an indication on the status and distance of the end-to-end 

communication, useful for decision making in higher layers.

The acknowledgement phase depends on a caching mechanism (see Section 4.5.4.1) which caches 

information about received and sent data messages when descending the gradient . Every time a 

data packet is received, the key values defining a unique message are stored in the caching structure. 

The structure caches the key fields of the “DataGrad” message in a small array of “CacheMem- 

ory” type structure (see Figure 4.11). When a packet arrives, this is stored as “status” equals to 

“MEM_RECEIVED” and the “timeStamp” is set to the actual time of the mote. This mechanism is 

used t o control cycles and avoid the reception of duplicate packets. When the node sends the message 

to the next node in the gradient, the entry for the message changes its “status” to “MEM.SENT”. 

This mechanism differentiates received packets in the “CacheMeniory” from those which are also 

waiting to be acknowledged by a packet coming from the final destination (gradient origin node).

When the acknowledgement packet is broadcast on the way back to the source node, neighbour 

nodes receiving the packet check their “CacheMemory” array for a match. If the packet is found and 

its status is set to “MEM_SENT”, the node increases by one the number of hops in the acknowl­

edgement packet (“hops” field), updates the “realHops” field in the Routing Table, and broadcast 

the acknowledgement packet. The only nodes broadcasting the acknowledgement packet are those 

which have previously forwarded the data packet when descending the gradient.

Furt hermore, the link might fail due to a series of short and long time communication problems 

(sec Section 4.5.1.1). Therefore, a reliable mechanism is in place to deliver the acknowledgement 

packets in each gradient ascending hop. Due to the fact that broadcast packets are not acknowl­

edged at the MAC layer, the UMG routing protocol snoops packets in search for the broadcast packet
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with a higher value in the “hops” field. If the packet is snooped within a certain time, the entry in 

the “CacheMeniory” array is disabled, i.e. “status” changes to “MEM„DISABLED”. Contrary, if the 

tinier expires, the acknowledgement packet is broadcast again. This is done for a maximum number 

of times. If after that, the message could not be acknowledged, i.e. snooped, it is assumed that 

bidirectionality in the path can not be achieved and the packet is discarded. However, the gradient 

spreads in the direction of the climbing process and the likelihood of establishing communication 

in the ascending direction should be higher than when descending the gradient. In the situation 

when a packet is discarded, the end-to-end timer at the source node will fire; the node either sends 

the data packet again or spreads its gradient while requesting the destination node to do the same. 

Additionally, UMG offers the possibility to utilise the gradient of the originator of the cornmnnica- 

tion to keep on forwarding the acknowledgement packet, providing there is an entry in the Routing 

Table for the gradient origin node. If there is an entry, the procedure is the same as in Section 4.5.1, 

including the local repair mechanism in Section 4.5.2. For this special purpose, the “hops” value in 

the acknowledgement packet is set to its maximum, thereby acting as a flag and missing the counting 

functionality (“realHops”). This flag indicates to the UMG protocol that the packet is an acknowl­
edgement message thus memory caching is not performed and the end-to-end acknowledgement at 

the destination node will not issue an acknowledgement packet on reply. Instead, wlien the originator 

of the communication receives a data packet with this flag, it will be treated as an acknowledgement, 

stopping the end-to-end timer. When bidirectionality does not exist and there is no gradient setup 

for the originator node, the end-to-end communication would not be achieved. In this situation the 

originator node spreads its gradient by querying the destination node, both gradients will be setup 

and end-to-end communication will occur one way or another.

4.5.4 Implementation

A single component manages the data packet delivery mechanism through all its phases: gradi­

ent descent, local repair and acknowledgement. In this component three queues are employed to 

manage the flow of packets in the different phases of the data transport process. The main queue 

(“SendQueue”) stores all packets to be sent, either from the received interface or from higher layers, 

and operates under a FIFO policy. By default, UMG employs a size of 10 packets which has been 

proved to be an efficient limit providing reliability for a large range of high traffic scenarios presented 

in the evaluation. A small queue is employed to store packets to be sent by higher layers which are 

to be delivered to destination nodes. Messages in this queue are removed when a corresponding 

end-to-end acknowledgement packet is received; the message is then acknowledged to higher layers.
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This queue has been set to 1 packet by default, thus reqiiiriiig for a higher layer to implement a 

queue for the management of its outgoing messages. A third queue is employed to store those packet 

from the “SendQueue” for which a local repair process of their gradient is occurring, i.e. the “Lo- 

calRepairQueue”. Once the gradient is fixed packets are dequeued from this queue and place in the 

“SendQueue” to be sent; if the local repair is not successful, then the packet is dequeued from the 

“LocalRepairQueue” and discarded. This queue has been set by default to 3 packets and has also 

been proved to be a sufficient limit for the stress testing performed in the evaluation section. When 

the component dequeues a packet from the “SendQueue” to be forwarded via a gradient which is 

being repaired, the packet is enqueued again in the “SendQueue”. This way, it waits for the gradient 

to be fixed and does not obstruct the sending process of the rest of the packets in the queue. If the 

packet is the only element in the “SendQueue”, then a delay before checking the queue is applied 

to avoid a repetitive inefficient checking process. However, when a new packet is enqueued, the 

“SendQueue” is checked immediately.

Furthermore, a dedicated component manages the sending and reception of the “Neighbours” 

message, depicted in Figure 4.8. This is a multi-purpose message for the discovery and query of 

nodes in the neighbourhood. The message is utilised in the local repair phase (see Section 4.5.2) to 

find alternative nodes to keep descending the gradient. In this phase, the type of the “Neighbours” 

message (see “type” in Figiire 4.8) is set to “LOCALJIEPAIR” for the discovery message; neighbours 

reply with the message typed REPLY_LOCAL_REPAIR. A small dedicated queue, by default set 

to 4 packets - trading the sending of a second discovery message for R AM memory - is in charge 

of handling the flow of “Neighbours” messages. The component stores the information for the 

REPLYJLOCALJIEPAIR messages in a short table called “NeighboursTable” (see Figure 4.10). 

The table stores the address of the candidate nodes and their distance in hops to reach the requested 

gradient origin node (this value is stored by the neighbours in the “hops” field of the “Neighbours” 

message). The component sets a timer which gives a limited time for the neighbours to reply; when 

the tinier expires the component informs the rest of the components of the availability of fresh 

information from the neighbourhood. This component also provides a function to select the best 

candidate based on a random selection over those nodes with the lowest hop distance to the gradient 

origin node.

The “Neighbours” message is also employed by the mobility support component (see Section 4.6) 

to discover the core neighbourhood of a node. For this purpose, the “Neighbours” message is typed 

as “NEIGHBOURS-DISCOVERY” and “REPLY_NEIGHBOURS-DISCOVERY”. In this case, the 

rest of t he fields are not relevant since the packet only informs of the presence of a neighbour node.
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NeighboursTable

uintl6_t neighbourAddr;
uint8_t hopsToRequestedGrad;

Fig. 4.10: UMG - Neighbours Table 

4.5.4.1 Messages Caching Mechanism

For the caching of received and sent messages, an array of “CacheMeniory” type structure is employed 

(see 4.11). The .structure stores the next fields of the “DataGrad” message: “originGradAddr”, 

“origiiiAddr”, ‘tseq” and “hops” (.see Figure 4.7). These fields make the packet unique. When a node 

receives a data packet in the gradient descent j)hase, these values are stored in the “CacheMeniory” 

structure. In addition, the “status” held is set to “MEM^RECEIVED” and the time at the node is 

stored in the “tinieStamp” held. When a mes.sage is sent to the next node in the gradient, the “status” 

held changes to “MEM.SENT”. This mechanism controls duplicates in the reception of the jiackets 

and also identihes those packets which have been forwarded; this is useful for acknowledgement 

purposes (see Section 4.5.3).

CacheMemory

uintl6_t originGradAddr;
uintl6_t originAddr;
uint8_t hops;
uint8_t seq;
uint32_t timestamp;
uint8_t status;

Fig. 4.11: UMG - Message Cache Memory Structure

The “CacheMeniory” array gets accessed rapidly so it needs to be short and entries need to be 

freed when they are not in use. For this reason, a timer updates the “CacheMeniory” array at intervals 

of time dehned by the cached messages. A predehncd time value is set for a “MEM_R,ECEIVED” 

entry to expire. The time value is calculated according to the maximum end-to-end round trip time. 

When the “status” of an entry is set to “MEM.SENT” and an acknowledgement broadcast packet 

is received which matches the entry, the “timeStamp” field is updated to the actual time. At this 

moment, the MEM_SENT “status” becomes a numerical variable which starts at 0 and keeps count 

of the broadcast trials of the acknowledgement packet. When the entry “status” is equal to numerical 

values (0..“MAX-BROADCAST_TRIALS”), the node waits a backoff time for an acknowledgement
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to he snooped. When the time is elapsed, the “tiineStamp” field is set to the actual time and the 

“status” field is increased by one. A maximum number of trials (broadcast of the acknowledgement 

packet) are performed before the entry is finally disabled. If the broadcast acknowledgement with 

a higher value in the “hops” field is snooped, the entry is also disabled, i.e. status is assigned to 

“MEMJDISABLED”, to indicate that the acknowledgement packet is not to be broadcast anymore 

by the node.

A timer is employed to control the next ujjdate of the “CacheMemory” type structure. The timer 

is set to fire according to the first entry due to expire. This can be calculated using the “timeStamp” 

field, the “status” field, and the time expiration values for each “status” field.

In the event of the “CacheMemory” array gets full, i.e. none of the entries “status” fields are set 

to “MEMJDISABLED”, a mechanism based on message priorities decides which entry is dispensable 

and can be rejilaced. The mechanism follows the following order for entries to be replaced: 

first entry to expire with “MEMJIECEIVED” status with the highest number of hops and 2'“^) first 

entry to expire with “MEM-SENT” status with the highest number of hops. “MEM_SENT” entries 

have a higher jjriority due to the fact that are waiting for an acknowledgement packet. However, 

a way of increasing the likelihood of selecting a “MEM-RECEIVED” entry over a “MEM-SENT” 

entry when the time to expire between them falls below a predefined value has been implemented. 

This is achieved by incrementing the “MEM-SENT” entry expiration time with a predefined thresh­

old value, the DELAY-SENT_ENTRY constant. Therefore, for the “MEM-SENT” entry to be 

disalrled over the MEMJIECEIVED entry, the quickest “MEM-SENT” entry to expire has to be 

DELAY-SENT_ENTRY milliseconds closer to expire than the quickest “MEM-RECEIVED” entry 

to exi)ire. In addition, the number of hops (“hops” field) is also a factor which introduces a delay 

in the expiration time of an entry. The higher the number of hops, the better to remove the entry 

due to the fact that the closer the node to the destination, the faster the entry had to be disabled 

by an acknowledgement packet. Thereupon, a predefined delay time (“DELAYJIOPS”) multiplied 

by the number of hops (“hops” field) is subtracted from the expiration time of the entry; note that 

an upper limit in the number of hops is set to avoid excessive subtraction. Entries with the “status” 

field equals to integers (0..“MAXJ3ROADCAST-TRIALS”) are not to be considered in this process 

due to their high priority.

The “CacheMemory” array could also be implemented as two separate queues, one for “status” 

equals to “MEMJIECEIVED” and the other for the rest of the status. Therefore, the entries will be 

expiring in a FIFO order, which suits the active queue model. This way. Active Queue Management 

(AQM) schemes could be applied at the queue with “MEMJIECEIVED” status.
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4.6 Mobility Support

Dynamically changing topologies in ad hoc networks commonly necessitate a proactive approach 

to maintain the routing connectivity of the network. If the degree of mobility is high and data 

is transmitted frequently in most of the areas of the network, then the periodic update conies 

cus a good solution. However, if we consider that many applications in ad hoc networks, more 

specihcally in wireless sensor networks, transmit data intermittently, then the volume of control 

traffic required in the proactive approach to maintain the network updated might be expensive in 

terms of communication. Specifically for those scenarios where a network is composed of a few 

transient nodes, where communication activity might occur only in some parts of the network, and 

where data communication will be infrequent, the periodic proactive approach becomes inefficient. 

Furthermore, in many application scenarios for WSN, the topology does not change particularly 

rapidly. Wireless transmission ranges are in the order of tens to hundreds of meters and a great 

percentage of nodes are static. Some nodes might move at different speeds and some of them will 

only have local mobility. In tandem with this, a set of neighbour nodes may not be moving with 

respect to each other - even though they are physically changing position. In all of these situations, 

communication and energy may be conserved by opportunistically updating only areas with activity, 

while avoiding the proactive beacon approach. Nevertheless, the latency in the communication might 

increase when a route discovery process is launched to update the routing connectivity in areas with 

no activity.

One of the features in the design of the UMG routing protocol is to avoid the periodic beacon 

messages by assuming that areas with no communication activity do not reciuire recurrent updates, 

whilst areas with activity exploit opportunistic communication to update their connectivity status. 

In other words, UMG follows the opportunistic and reactive paradigms, employing eavesdropping 

mechanisms rather than using periodic updates. The opportunistic behaviour of this approach might 

produce disconnected areas where no communication activity has been occurring during a long period 

of time, at the benefit of reducing communication activity and therefore network contention.

In UMG, every message received or snooped is analysed to determine the source of the packet, 

i.e. the neighbour address. Areas with no communication will not be updated until communication 

takes place. In this case, if mobility has occurred and the topology of the network has changed, the 

use of local repair mechanisms (see Section 4.5.2) or even the creation of a new gradient (see Section 

4.3.1) will be required. Detecting when a node is changing neighbourhood is the key to update its 

routing status. In UMG, there are two situations when mobility of a node occurs: i) when the node 

is only a router and ii) when the node is also a gradient sink. In both situations when the node
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leaves its neighbourhood, its routing table becomes non-functional, therefore all the gradient entries 

are disabled, although not deleted. The cost in messages of integrating the node as a fully working 

router in the new neighbourhood might be too high if there are a lot of gradient entries. In addition, 

if the mote keeps moving, routing table updates become highly inefficient.

In the situation where the node changing neighbourhood is a sink, meaning that it has already 

spread the gradient, the node is responsible to update its gradient so packets can still descend its 

gradient towards its new position. A global gradient setup is expensive in terms of messages and, 

unless t he network topology has changed drastically - indicated by multiple nodes requesting the 

gradient origin node to spread its gradient due to a poor end-to-end delivery ratio -, it might not 

be required. The efficient solution proposed in UMG consists in a scoped gradient setup. This 

mechanism performs a scoped gradient update in terms of hops such that the old neighlrourhood 

of the moving sink node receives the update. In this regard, the scope needs to be over-estimated 

according to the new position such that all the old neiglibours are reached. The new gradient setup 

will have a newer sequence value which will differentiate from old gradient setups from the same 

sink node. Once the gradient is spread, packets will be forwarded from any node in the network 

by progressing through the next node in the gradient, whether the node has a new sequence value 

or the number of hops is higher. For instance, a node A containing an old sequence entry would 

relay the jjacket to its next node B which has been updated with the new sequence (as it was within 

the scope of the gradient update). In this situation, node A would have a lower number of hops 

since node B has been updated with the hop distance to the new position of the moving sink. This 

situation will not affect the descending of the gradient but it will affect the end-to-end calculation of 

the hop distance. To overcome this problem, the acknowledgement packet climbing the gradient in 

the Acknowledgement Phase (see Section 4.5.3) updates the “realHops” field of the Routing Table 

of the intermediate nodes with the real hops value carried in the “hops” field of the packet. In 

addition, when selecting a neighbour node to repair a gradient (see Local Repair Phase in Section 

4.5.2), the restriction of selecting the node with the newer sequence value (even if the number of hops 

is higher than old sequences) will enable the descending towards the new position of the moving sink. 

Nevertheless, inefficiencies in the gradient descending process can be produced when packets at closer 

nodes to the new position of the gradient origin node need to route away from it, via descending an 

old gradient, before starting to descend the new gradient.

This effect can be seen in Figure 4.12 where the gradient origin node, also known as the sink 

S, moves from position S to S’ and then to S”. When in position S, the gradient with sequence 1 

(“seq” in the Routing Table) is spread over all the nodes in the network, i.e. a global gradient setup.
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Fig. 4.12: UMG - Mobility Support Example

However, when mobility is detected at position S’, the sink spreads its gradient with sequence 2 with 

a scope of 2 hops such that it reaches its old position. Another scoped gradient update with sequence 

3 is triggered when the sink moves to S”. At this stage, the “Originator” node sends a packet towards 

the sink node. The packet is unicast to the next hop node in the gradient which in this case has a 

gradient sequence of 1. The packet keeps on descending the gradient with sequence 1 until it reaches
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a next hop node which belongs to gradient sequence 2. At some point, a node in the gradient with 

sequence 2 does not have a valid next hop node and therefore a Local Repair Phase is launched. 

In this case, neighbour nodes reply with sequence 2, providing a hop distance of 1, however the 

node with the highest sequence is chosen, i.e. sequence 3. Now the packet keeps on descending the 

gradient with sequence 3 until it reaches the sink at position S”. It has to be noted that the shortest 

route from Originator to S” is of 3 hops, however the packet has traveled 7 hops. The “hops’” value 

contained at the Originator node corresponds to the hop distance to the sink node at position S, 

which has not been modified by any gradient update. When the acknowledgement packet climbs 

the gradient towards the Originator, the “realHops” value is updated in the Routing Table of the 

intermediate nodes. This is of high interest to the UMG routing protocol as the difference between 

the “hops” and the “realHops” at the Routing Table would indicate the degree of mobility of the 

sink node and the inefficiency of the routing process. According to these values, a global gradient 

update can be requested from the sink node.

For the scoped gradient update to be launched, the node needs to promptly detect when a node 

has changed its relative i)osition with respect to its neighbourhood, i.e. relative mobility. For this 
purpose, a mobility estimation mechanism which detects if a node has changed its relative position 

based on eavesdropped data has been designed [217]. The approach builds a set of temporal shift 

Bloom filters (see Section 4.4.1) to store historical overheard neighbour addresses at continuous steps 

in time. A probability-based model is employed to assess the mobility state of a node according to 

the information cached in the set of Bloom filters. A recursive estimation approach enhances the 

accuracy of the mobility assessment by incorporating previous expressions of mobility certainty. 

The model accommodates most of the uncertainty scenarios where wireless connectivity might be 

temporarily disrupted and where the relative position of Hie node(s) may or may not have changed.

4.6.1 Recursive Mobility Estimation with Temporal-Shift Bloom Filters

The creation of a historical record of eavesdropped neighbours addresses is key to evaluating a node’s 

relative mobility, i.e. changing neighbourhood. The core neighbourhood of a node is formed by a 

group of static, in relative terms, neighbours. Over time, other nodes can come and go including 

those which, by being at the edge of the communication range, may have local mobility. Nodes 

seen for a short jieriod of time can distort this representation. To accommodate this, overheard 

information is split into a number of consecutive chronological intervals. The time window for 

overhearing packets, prior to launching the mobility evaluation process, is defined from the average 

speed at which a node will move and the mean transmission range of a node. The transmission range
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is a function of the transiiiission power and the eiiviroiiineiit where nodes are placed, and needs to 

be calculated beforehand through testing. These two factors provide an indication of the average 

time that a moving node would take to leave its neighbourhood area radius. This time, known as 

the “Evaluation Time”, is employed as the mobility evaluation interval and is given by the eciuatioii:

Evaluation Tinie(s) = lYansmission Range{m) 
Speed(ni/s) (4.9)

The mobility evaluation interval, i.e. the Evaluation Time, defines the interval prior to launching 

the mobility evaluation process. In this interval, all the overheard neighbour addresses are hashed 

into a set of Bloom hlters which act as independent consecutive memory structures. Initially, an 

iiidepeiicleiit Bloom filter, the “PrimaryBF” (PriBF), will hash the addresses of the core neighbour­

hood. The initial neighbourhood can be established by explicitly requesting the neighbours to reply, 

or by eavesdropping for an initial period of time. The source of an overheard packet is hashed into 

the Bloom filter. Once the “PrimaryBF” is populated, every overheard packet will be stored in the 

“Active” Bloom filters. The number of “Active” Bloom filters is determined by the “split factor". 

The shifting time to start storing information in the next “Active” Bloom filter is calculated by:

Shift BF = Evaluation Time(s) 
Split Factor (4.10)

If no data communication activity occurs, the evaluation mechanism will not be launched as the 

“ActiveBF” will be empty. A maximum time can be pre.set such that, if no mobility evaluation 

process takes place, a “Hello" message discovery process starts; however, UMG does not set this time 

as it works on a reactive fashion. Each “ActiveBF” and “PrimaryBF” keep a counter of the number 

of different neighbour addresses which have been stored, i.e. #BF and #PriBF respectively. When 

the last “ActiveBF” is populated, the evaluation process starts by comparing each of the indiviilual 

“ActiveBF” with the “PrimaryBF”. This comparison calculates the similarity of the “PrimaryBF” 

and the “Active” Bloom filter as:

Siinilarity(BF, PriBF, #BF, #PriBF)(%)=

# hits in “BF” matching “PriBF” I’s .if #BF > #PriBF,# bits in “PriBF” .set to 1

# bits m “BF” niatdiing “PriBF” Fs ^qF < #PriBF. 
# bits 111 BF set to 1 tt ir
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#BF #PriBF PI. Sim. #BF #PriBF PI. Sim.
1 1 0% 2 1 100%
1 2 0% 2 2 1/2
1 3 0% 2 3 1/2
1 4 0% 2 4 1/2
1 5 0% 2 5 1/2
1 6 0% 2 6 1/2
1 7 0% 2 7 1/2
1 8 0% 2 8 1/2
1 9 0% 2 9 1/2
1 10 0% 2 10 1/2

#BF #PriBF PI. Sim. WBF #PriBF PI. Sim.
6 1 7 1
6 2 7 2
6 3 7 3
6 4 lOOK 7 4
6 5 1/5 7 5 100%
6 6 2/6 7 6 2/6
6 7 2/6 7 7 2/7
6 8 2/6 7 8 2/7
6 9 2/6 7 9 2/7
6 10 2/6 7 10 2/7

#BF #PriBF PI. Sim.
3 1 100%
3 2 1/2
3 3 1/3
3 4 1/3
3 5 1/3
3 6 1/3
3 7 1/3
3 8 1/3
3 9 1/3
3 10 1/3

#BF #PriBF PI. Sim.
8 1
8 2
8 3
8 4
8 5
8 6 100%
8 7 2/7
8 S 3/8
8 9 3/8
8 10 3/8

#BF #PriBF PI. Sim. 4BF #PriBF PI. Sim.
4 1 5 1
4 2 100% 5 2
4 3 1/4 5 3
4 4 1/4 5 4 1/4
4 5 1/4 5 5 1/5
4 6 1/4 5 6 1/5
4 7 1/4 5 7 1/5
4 8 1/4 5 8 1/5
4 9 1/4 5 9 1/5
4 10 1/4 5 10 1/5

#BF #PriBF PI. Sim. #BF #PriBF PI. Sim.
9 1 10 1
9 2 10 2
9 3 10 3
9 4 10 4
9 5 10 5
9 6 100% 10 6
9 7 100% 10 7 100%
9 8 2/8 10 8 100%
9 9 3/9 10 9 2/9
9 10 3/9 10 10 3/10

Fig. 4.13: UMG - Predefined Model of the Plausible Similarity for each combination of cardinality 

of the “ActiveBF" and “PrimaryBF”, The Plausible Similarity (PI. Sim.) value is indicated cither 

with a i)crcentage or with a fraction of according to Equation 4.12. Shadow combinatiions

indicate UNCERTAIN state.

The “Similarity” percentage value in Equation 4.11 represents the ratio of the number of neigh­

bours seen by an “ActiveBF” which are core neighbours; that is the number of neighbours also stored 

in the “PrimaryBF” to the total number of neighbour’s addresses hashed in the filter (“ActiveBF” 

or “PriBF”) with the lowest cardinality of neighbours’ addresses. Each “ActiveBF” (BF) is intended 

to hash addresses of nodes that are static, mobile or appear within the neighbourhood subsequent 

to the formation of the “PrimaryBF”. Then, the “Similarity” ratio seeks to capture an indication of 

the proportion of the nodes in the “ActiveBF” which belong to the core neighbourhood represented 

by the “PrimaryBF”, bounded to the minimum cardinality of nodes hashed from the two filters.

Plausible Similarity(#BF, #PriBF, #Tolerance) =

100 - X 100) if #BF > #PriBF,

100 - X 100) if #BF < #PriBF.
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4.6. Mobility Support

III addition, tlie Plausible Similarity (PI. Sim.) in Equation 4.12 indicates the minimum level of 

“Similarity” that must be achieved for a node’s neighbourhood to assume it remains unchanged. 

Plausible Similarities are precalculated according to Equation 4.12 creating a predetermined table 

model to be queried. A predetermined table model (generated for a maximum of 10 neighbours) 

with their associated [lercentages of plausible similarity and thresholds for the number of neighbours 

in the “ActiveBF” and the “PrimaryBF” has been created (see Figure 4.13). In Equation 4.12, 

the #Tolerance parameter is used to establish the level of allowable (“plausible”) change within 

the Similarity expression according to the cardinality of the filter in the denominator. Indeed, 

the ^Tolerance parameter indicates the number of neighbour nodes which are allowed not to form 

l)art of the core neighbourhood to still consider the neighbourhood of the node has not change. 

The Plausible Similarity depends on the relationship between #BF and ^PriBF, giving rise to two 

different formulations of the expression.

E(}uation 4.13 establishes criteria which map the numeric Similarity and Bloom Filter measures 

into the following Mobility States;

• MOBILITY, mobility is estimated.

• STATIC, node has seen sufficient core neighbours to estimate tliat there is not mobility.

• UNCERTAIN, there is not enough information to evaluate whether the node is moving.

Mobility Evaluation State(Sim., #BF, #PriBF, Pl.Sini.)=

MOBILITY

MOBILITY

UNCERTAIN

STATIC

MOBILITY

STATIC

MOBILITY

UNCERTAIN

MOBILITY

if #BF 

if (#BF > 

if (#BF > 

if (#BF > 

if (#BF > 

if (#BF < 

if (#BF < 

if (#BF < 

if (#BF <

#PriBF,

#PriBF)

#PriBF)

#PriBF)

#PriBF)

#PriBF)

#PriBF)

#PriBF)

#PriBF)

&& (Sim. 

&& (Sim. 

&& (Sim. 

&& (Sim. 

&& (Sim. 

&& (Sim. 

&& (Sim. 

&& (Sim.

< 100%),

= 100%),

> Pl.Sini),

< Pl.Sini),

> Pl.Sini),

< Pl.Sini),

> Pl.Sini),

< Pl.Sim).

(4.13)

140



Chapter 4. The Ubiquitous Mobile Gradient Routing Protocol

Each relevant “Mobility Evaluation State” (see Equation 4.13) is established for consecutive 

temporal states of “ActiveBE” and is associated with the interval of time in which the state was 

assessed. In order to improve the reliability of the estimation, the number of temporal Bloom filters 

(“ActiveBE”) determined by the Equation 4.10 represents temporal states which are recursively 

estimated. A consecutive combination of states increases confidence in the estimation of the final 

mobility state for the evaluation time. For instance, if the “MOBILITY” state appears in 3 out 

of 4 consecutive states of the evaluation time, then mobility is assumed; a change from “STATIC” 

state to a set of consecutive “UNCERTAIN” states indicates the lack of definitive information. The 

combination of the number of states, and the order and consecutive states required, is defined within 

the model which provides a final mobility state for the evaluation time. These parameters can be 

changed to control the mobility detection speed versus the reliability of the detection.

When mobility is detected, a neighbourhood discovery process is launched to update the set 

of core neighbours in the “PrimaryBF” for future estimations. Based on the result, the distance in 

number of hops to reach all the nodes in the old neighbourhood is over-estimated from preestablished 

values.

4.6.1.1 Implementation

The mechanism has been designed as a separate comiionent to operate wit h other routing protocols. 

The “Split Factor” (see equation 4.10), which determines the number of “Active” Bloom filters, has 

been set to 5. The size of the Bloom filter has been set to 64 bits. This helps to reduce the number 

of false positives through establishing that the maximum number of elements in the filter can be 12, 

i.e. 12 different neighbours. According to Equation 4.7, the probability of getting a false positive 

error in the Bloom filter with a size of 64 bits, for 12 data items inserted, and 4 hash functions, is 

0.07915. The number of hash functions employed is close to the optimal number for minimizing the 

error, which according to Equation 4.8 is 3.69.
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4.7 Summary

A new routing protocol designed to provide versatile communication support to higher layers in 

the domain of Wireless Sensor Networks has been presented in this chapter. UMG is a gradient- 

bfused routing protocol supporting reliable P2P communications. Its design is a combination of 

mechanisms for creating, descending and climbing the gradient in a reliable and end-to-end manner. 

UMG provides an algorithm for the proper formation of the gradient, i.e. avoiding loops and local 

minima. The protocol efficiently tolerates moderate mobility of nodes through the use of a scoped 

gradient setup mechanism which updates the routes towards a moving node for a specific area. UMG 

employs the gradient setup to efficiently advertise node services and thereby enhances the data-centric 

searching process. In addition, UMG integrates a probabilistic mobility estimation mechanism which 

employs opportunistic communication to detect when a node has changed neighbourhood.

UMG’s design inherently supports the unstructured creation of clusters where some consumer 

and/or producer nodes might spread their gradient with a limited scope within a virtual cluster. 

Si^ecially selected nodes, such as cluster heads, can spread the gradient with a wider scope thereby 

creating overlay networks of nodes which recpiire communication within different area sizes in terms 

of hoi)s.

Furthermore, UMG operates as the main routing substrate for the Tiny Torrents protocol, pro­

viding a peer-to-peer cooperative data distribution framework for WSN. It i)rovides end-to-end com­

munication between consumers and producers of data. While UMG transports data within the scope 

of the gradients, the Tiny Torrents protocol employs a selective data dissemination approach to jiush 

data to distant nodes in the network. The rationale behind this approach is that nodes in large sen­

sor networks tend to limit communication within a certain scope for efficient routing, as routing at 

higher hop distances has proved to be inefficient and impractical. In this way, scalability is achieved 

in a reliable cross-layer fashion where the UMG routing protocol provides up-to-date information of 

a scoped area to the TinyTorrents protocol for scalable and efficient distribution of data. In addition, 

the TinyTorrents protocol has been designed to advertise its services via descriptions of data. In 

this context, UMG’s advertisement mechanism provides support for describing the “interest” of data 

producer and consumer nodes. Moreover, descriptors can be used for searching jnirposes in content 

distributed algorithms. This can be exploited by higher layers in areas like distributed data fusion, 

service discovery, distributed storage or swarm decision making.
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Chapter 5

The TinyTorrents Protocol

This chapter presents the TinyTorrents (TT) protocol, a selective data dissemination protocol for 

Wireless Sensor Networks. The TinyTorrents protocol leverages a routing protocol which provides 

reliable point-to-point comnnmication, i.e. the TinyHop or UMG routing protocols. Two versions 

of the protocol exist: i) the TinyTorrents Centralised version, where a central node coordinates the 

distribution process, and ii) the TinyTorrents Decentralised version, a fully decentralised and scal­

able solution for the distribution of data in WSN.

The novelty of the TinyTorrents architecture, i.e. the TinyTorrents i)rotocol operating on top 

of t he UMG routing protocol, arises from the challenge of disseminating data to a subset of nodes 

placed at disparate points in the network in a cooperative, reliable and efficient manner such that 

traffic is balanced. In this regard, the TT protocol is a novel selective data dissemination protocol 

for WSNs which employs BitTorrent-based P2P content distribution concepts. The TT architecture:

• provides fair and efficient cooperation amongst a subset of consumer nodes in the network for 

the ecpiitable distribution of data while balancing the traffic load,

• employs a set of peer selection policies which seek to balance the network traffic and foster 

data dispersion, mainly based on the proximity of the peer and the time when the consumer 

shows interest in acquiring the data,

• allows for application layers to configure the degree of data replication in the network, where 

nodes choose whether to participate in the distribution process, thereby making possible the 

creation of overlays of communities.
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• iinpleinents a novel decentralized P2P data distribution solution which increases the degree 

of robustness and fault tolerance of the network by having every consumer node acting as a 

partial tracker of data for its nearby area,

• provides unstructured service advertisement and discovery mechanisms at both layers for ef­

ficient and robust lookup of nearby consumer nodes and for querying activities, enabling the 

network to function as a data storage vehicle,

• enables efficient scalability in the data distribution process - only limited by the inter-consumer 

distribution in the network,

• succeeds in providing a versatile, cooperative, reliable, scalable and decentralized communi­

cations architecture for selective data dissemination where as similar solutions only employ 

epidemic-based dissemination approaches for reprogramming or data collection purposes.

This chapter is organised as follows: The first section introduces the Tiny Torrents protocol and its 

main features. Next, a functional description of all the various phases comprising the behaviour of the 

Tiny Torrents protocol is provided which describes the flow of messages involved in the distribution 

process. The Tiny Torrents mote architecture is depicted and described in the following section, 

including the storage structures employed in each component and phases of the protocol. The 

strategies employed to select peers in the data distribution process are then presented. Progressing 

into the following section, the centralised and decentralised versions of the Tiny Torrents protocol 

are explained and their scalability discussed. The subsequent section describes a set of unstructured 

discovery mechanisms which are employed to locate partial trackers in the decentralised version of 

the Tiny Torrents protocol. Finally, service discovery in the Tiny Torrents protocol is explained, and 

the chapter is concluded.

5.1 A Data Distribution Protocol for WSN

The Tiny Torrents protocol has been designed to operate as a P2P data distribution layer sitting 

above a reliable end-to-end routing protocol in a Wireless Sensor Network. The ideas behind the 

most popular Internet peer-to-peer content distribution protocol, the BitTorrent protocol, have been 

the corner stone of the design of the Tiny Torrents protocol. However, the different behaviour of 

WSNs, the constraints of sensor devices, and the ad hoc multihop nature of these networks, impede 

the straightforward adaptation of the BitTorrent protocol to fully operate in WSNs. In this regard, 

the Tiny Torrents protocol has been designed to benefit from P2P content distribution concepts while
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tackling the problems presented when distributing data in multihop wireless networks of constrained 

devices.

The Tiny Torrents protocol offers an efficient mechanism for data publication and selective data 

distribution over the sensor network. Applications using the Tiny Torrents protocol layer benefit 

from a series of reliable algorithms which allow for a collaborative distribution of data by employing 

application-level decision policies. TinyTorrents provides service advertisement and discovery mech­

anisms which allow for data t.agging using human readable vocabulary. It offers a simple interface to 

tag, publish and distribute application layer data. Like in the BitTorrent protocol, data is split into 

small units called “pieces”. The data is represented with a file called “TinyTorrent” which, in the 

remainder of the document, will be interchangeably called “torrent”. A torrent contains a descrip­

tion of the data and some data control information, for instance the number of pieces in which the 

data is divided, data integrity values, and the next node to contact in the discovery of other nodes 

in the swarm of the torrent, i.e. the tracker node. Peer-to-peer data communication is achieved 

amongst nodes belonging to the swarm of the torrent, seeking to balance resource consumption and 

to dissipate the burden of data transfers and network overhead fairly.

The TinyTorrents protocol has been designed to operate in both a partially centralised and a 

decentralised manner. In the centralised approach, a central node, i.e. the tracker, keeps control 

of the ])eers involved in the swarm of each torrent. On request from a peer wishing to join the 

swarm, the tracker node selects t he list of peers which the requesting node should employ to fetch 

the data. While a central tracker node reduces the system fault tolerance, the tracker node is capable 

of regulating the data distribut ion process while maintaining some degree of fairness in the proce.ss. 

However, in t he decentralised a])proach, the central tracker node disappears to increase t he system 

fault tolerance, robustness and autonomy. In this modality, each peer belonging to the swarm of 

a torrent is cai)able of act ing as a i)art.ial tracker for that particular file. The concept of “partial 

tracker” arises from the fact that the node only keeps track of a subset of the jreers in the swarm. 

The partial tracker discovers peers from new peers involved in its own data acquisition process or 

when acting as a tracker. This way, each peer is potentially a partial tracker which manages the 

swarm of the torrent wit hin a scope of the network; the scope of the swarm depends on the location 

of both the peer and the peers involved in the data fetching process for the torrent. The decentralised 

approach can be seen as a scalable selective data distribution protocol which efficiently disseminates 

data files to a set of interested nodes in the network.

To achieve data communication in the network, the TinyTorrents protocol needs to sit on toji 

of a reliable routing layer which also provides networking status information, such that both layers
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operate in a cross-layer fashion in order to enhance the protocol behaviour and its overall efficiency. 

Two routing protocols have been designed. The hrst one, TinyHop [3], is a reactive end-to-end 

routing protocol which iinpleinents local recovery niechanisnis to achieve bidirectional reliable paths. 

The .second routing protocol, the Ubiquitous Mobile Gradient (UMG) (see Chapter 4), employs 

gradient-based routing techniques with robust and favdt-tolerant mechanisms for the creation and 

navigation of the gradient held and seeks to deliver data packets in a reliable end-to-end fashion. 

The protocol integrates mechanisms for node service advertisement and discovery which are enij)loyed 

by the Tiny Torrents protocol for the unstructured discovery of partial trackers. The Tiny Torrents 

protocol, employing UMG as the routing substrate, provides a communications framework for the 

development of a new range of versatile applications which foster the collaboration among wireless 

sensor and actuator devices and the autonomous behaviour of the sensor network

5.2 Functional Description of the TinyTorrents Protocol

This section initially introduces the TinyTorrents protocol phases in a functional overview of the 

protocol. Next, each phase is described in detail.

The TinyTorrents protocol is comprised of the following phases which are executed when a node 

in the network needs to publish or to acquire some data file;

• Publish Phase: This phase is initiated when a node, known as the “initial seeder”, contains data 

to be publisluid, i.e. the node is a “producer” in the network. A metadata file is generated, i.e. 

the “TinyTorrent” hie or torrent, which describes and represents the data file in the network. 

Every node in the network potentially participates in the dissemination of the torrent hie. 

When a torrent is received at a node, the application layer decides whether to acquire the data 

hie associated with the torrent and whether to forward the torrent hie. Nodes starting to fetch 

the data hie for a received torrent become “peers” of the swarm of the torrent.

• Peer List Request Phase: A node wishing to fetch the data hie associated with a received 

torrent, thus becoming a “consumer” of the torrent, needs to request a list of peers, known 

as the “peer list”, by contacting a designated tracker node. A tracker node, whether in the 

centralised or decentralised version of the TinyTorrents protocol, maintains a list of peers 

participating in the data fetching process of each torrent. At any given time, the complete 

list of peers for a torrent is known as the “swarm of the torrent”. A node might decide to 

acejuire multiple torrents thereby becoming a peer in multiple swarms. The tracker is in charge 

of selecting a small subset of the swarm of peers to send back to the requesting node. A node
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requesting a peer list from a tracker node automatically becomes a peer in the swarm of the 

torrent.

• Handshake Phase: Once a node receives a list of peers from which to acquire the data file, a 

handshake process is performed with each of the peers in the list. The handshake process is 

responsible for finding out i) whether the peer is still contactable and, ii) the list of pieces of 

the data file contained by each peer. The data file is segmented into smaller “pieces” of data 

which become the atomic data unit in the TinyTorrents protocol; a piece of data fits in a single 

message for efficient and reliable transportation.

• Piece Request Phase: Once the handshake phase is completed, the node starts to request pieces 

of data from those contactable peers which contain the piece/s. The node performs a piece 

selection process in order to choose the rarest piece from all the pieces contained in the list of 

peers. The rarest piece from the remaining pieces is acquired first in order to foster a uniform 

piece distribution and a quick piece dispersion over the network. This minimizes the risk of 

a data file not being completed, i.e. all the pieces received. A peer selection process is then 

launched to select the peer from which to acquire the piece. Different peer selection policies 

can be applied to increase fairness and make the data distribution process more uniform and 

efficient. A node which contains all the piec^es of data for a torrent is known as a “seeder” of 

the file.

TinyTorrent

uint8_t key[KEY_SIZE];
uint8_t length;
uint8_t descriptorBF[BF_SIZE];
uint32_t ti me Cre ate dWRTLocalTi me;
uintl6_t tracker;
uint8_t checksum[MAX_PIECES];

Fig. 5.1: TT - Tiny Torrent File Structure (also called “torrent”)

The main structure of the TinyTorrents protocol is known as the “TinyTorrent” file, also called 

torrent (see Figure 5.1), and acts as a representative entity of a data file in the network, providing 

descriptive and control information. Each torrent is unicjuely identified by its “key” field which has 

been defined as a combination of 4 bytes, i.e. KEY_SIZE is 4. The first two octets contain the 

identifier of the node, i.e. 2^'^’ = 65535 node addresses available in the network. The next byte is 

assigned to a sequence value which is incremented with every new torrent generated by the local
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node, while the last octet stores a randonily generated nuniber. The size of the data file associated 

with the torrent is stored in the field “length” as the miniber of bytes. A description of the data file 

employing human-readable tags is stored in the field “descriptorBF”, a Bloom filter structure (see 

Section 4.4 for more detail). Currently the size of the descriptor Bloom filter (BF_SIZE) is set to 

4 bytes, but can be easily modified to decrease the likelihood of getting false positive descriptions, 

particularly when the descriptor of the file contains a high number of tags. In addition, the time when 

the torrent was generated is stored in the “timeCreatedWRTLocalTime” held of the torrent in binary 

millisecond precision. The timestamp held is 4 bytes long and thus is capable of counting np to 2^^ 

milliseconds, i.e. 48.5 days before the timer rolls over. This value puts a limitation on the time before 

a torrent in the network is retrieved by a gateway node capable of matching the network timestamp 

of the torrent against the atomic clock time. This field acts as a reference timestamp value with 

respect to the time at a sender node for the purposes of performing soft real-time synchronization 

when the torrent is disseminated over the network. Moreover, the torrent structure contains a held 

(“tracker”) for the purposes of designating the address of the node acting as a tracker. Finally, a 
byte array (“checksum”) contains the checksum value of each of the pieces in which the data hie is 

divided. The checksum value is computed for data integrity juirposes as packets can get corrupted in 

the wireless transmission. It is calculated employing the “Adler-32” checksum algorithm [218] which 

trades reliability for efficiency in terms of computational speed. The 4 bytes resulting from the Adler- 

32 algorithm are combined into a single byte by applying a bitwise exclusive-OR (XOR) checksum. 

The checksum array length matches the maximum number of pieces per hie (MAX_PIECES), which 

has been dchned as 16.

5.2.1 Publish Phase

This phase is triggered by the application layer when a data hie needs to be published to other nodes in 

the network. The application interacts with the Tiny Torrents protocol via the Tiny Torrents interface. 

This way when a torrent is received by a node, the application layer decides if and when to keep on 

disseminating the torrent to neighbours, and if and when to fetch the data. Therefore, the application 

has control over the behaviour of the data distribution process. In addition, the application layer 

inputs the vocabulary of tags (keywords) through the Tiny Torrents interface and selects, for each 

generated torrent, the combination of keywords which defines its data. The application layer calls 

the Tiny Torrents interface to create the torrent file, indicating the data file to be published. For 

reliability and efficiency in terms of packet communication, the torrent file is transported in a single 

packet known as the “PublisliTinyTorrent” message (see Figure 5.2). In addition to the torrent fields.
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the field “fromid” of the message contains the identifier of the node which generated the torrent, i.e. 

the initial seeder. Despite the fact that the initial seeder of the torrent is also encapsulated in the 

hrst two bytes of the “key” field, the redundant “fromid” field is in place as a backup in case the 

torrent key might be generated in any other unrelated manner in a future version.

PublishTinyTorrent Message

nx uintl6 t fromid;
nx_uint8_t key[KEY_SIZE];
nx_uint8_t length;
nx_uint8_t descriptorBF[BF_SIZE];
nx uint32 t timeWRTSender;
nx uint32 t CurrentTimeAtSender;
nx uintl6 t tracker;
nx_uint8_t checksum[MAX_PIECES];

Fig. 5.2: TT - PublisliTinyTorrent Message Structure

As mentioned earlier, the TinyTorrent structure is timestamped with the time at the local node 

(sec “timeCreatedWRTToLocalTime” in Figure 5.1). However motes in the WSN are unsynchro­

nized due to the fact that each sensor device has its own clock starting at different times. A variety 

of synchronization mechanisms exist which employ periodic beacon messages to keep t he sensor net­
work synchronized. However, these jiroactive mechanisms introduce extra congestion in the wireless 

medium. For this reason, the TinyTorrents protocol implements a soft real-time synchronization 

mechanism for the purpose of keeping the torrent creation time in sync with the clock at the nodes 

receiving the torrent . The mechanism works as follows: When a “PublisliTinyTorrent” message is 

received, it contains both the torrent creation time at the sender, i.e. “timeWRTSender”, and the 

current time at t.he sender when the message was sent, i.e. “currentTimeAtSender” (see Figure 5.2). 

The receiving node is able to calculate from these values the creation time for the torrent with respect 

to its local time, which is then stored in the torrent structure as “timeCreatedWRTLocalTime” (see 

Figure 5.1). This mechanism is performed in a single hop fashion, such that the average time elapsed 

from the time the “PublisliTinyTorrent” message is timestamped and sent, to the time when the 

message is received and processed, can be calculated within a certain delay error threshold. The de­

lay introduced depends on the congestion level at the routing and mac layers in both the sender and 

the receiver nodes and the packet propagation time. While the delay error is in the order of tens of 

milliseconds, and can be previously approximated, a small cumulative error over a high hop distance 

can produce a greater inaccuracy. Depending on the application, millisecond accuracy will require 

the adoption of addit ional synchronization algorithms, however accuracy in the order of a second
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luiglit be sufficient for calculating the time when a torrent was generated for most applications. This 

mechanism saves messages and establishes a soft real-time data-level synchronization.

When a node receives the “PublisliTinyTorrent” message and decides to keep forwarding the 

torrent, the protocol waits for a period of time indicated by the application layer before broadcasting 

the message. Due to the fact that the broadcast packet is not acknowledged, the jirotocol defines the 

number of times the message is broadcast in order to increase the delivery success. The successful 

dissemination of the torrent message over the network depends on the number of nodes participating 

in the forwarding process as well as the average number of neighbours per node.

In the centralised version of the Tiny Torrents protocol, the torrent file is initially sent to the 

node appointed as the central tracker before being disseminated to the nodes in the network. The 

tracker is in charge of keeping records of the status of each torrent file in the network, which includes 

the identity of the nodes which contain some, or all, the pieces for the data file as.sociated with 

the torrent. However, in the decentralised design, the central tracker is replaced by multiple partial 

trackers where the first tracker of a torrent is always the initial seeder itself.

Both in the centralised and decentralised versions of the Tiny Torrents protocol, generated and 
accpiired torrents, as well as their associated data, are stored in memory for seeding purposes.

5.2.2 Peer List Request Phase

This phase is initially launched when a node receives a torrent and the application layer instructs 

the Tiny Torrents protocol to start the data fetching process. The consumer node needs to retrieve 

a peer list from which to acquire all the pieces of the data file. The consumer contacts the tracker 

node indicated in the “PublisliTinyTorrent” message (.see “tracker” in Figure 5.2). In the centralised 

version, the address of the tracker node remains constant during the dissemination of the torrent 

over the network. However, in the decentralised version, the address of the tracker node changes 

according to the dissemination of the “PublisliTinyTorrent” message which enables the selection of 

a nearby partial tracker. The “tracker” field of the “PublisliTinyTorrent” message is updated with 

the address of the local node before it is forwarded only if the node is to become a consumer, i.e. a 

potential partial tracker of the torrent. A node chooses the closest tracker address in terms of hops 

from all received “PublisliTinyTorrent” messages before the torrent is due to be forwarded or its 

data fetched. The “tracker” field of the “TinyTorrent” structure (see Figure 5.1) is updated with 

the address of the closest partial tracker. The hop distance is obtained from the routing layer, which 

can be 0 when the node is out of the routing discovery scope. Other mechanisms are employed in 

the discovery of an efficient tracker in terms of proximity which are presented in Section 5.G.
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A “PeerListRequest” message (see Figure 5.3) is sent to the tracker address on request of a valid 

peer list. The message contains the identiher of the requesting node (“fronild”) as well as the key of 

the torrent (“key”) from which the peer list is to be obtained.

PeerListRequest Message

nx uintlS t fromid;
nx_uint8_t key[KEY_SIZE];
nx_uintl6_t pieceBitVector;
nx uint8 t numPeersFailed;
nx_uintl6_t peerUstFailed[MAX_PEERS];

Fig. 5.3; TT - PeerListRequest Message Structure

Tracker nodes are designed to employ selection schemes to construct a peer list according to 

information such as the chronological position when the node enters the torrent swarm, or the 

received i)iece bit vector of a peer. This strategies aim to regulate the traffic in the network by 

achieving high degrees of fairness. Peer list selection policies at tracker nodes are covered in Section 

5.4.1.

PeerList Message

nx_uintl6_t fromid; 
nx_uint8_t key(KEY_SIZE]; 
nx_uint8_t numPeers; 
nx_uint8_t position; 
nx_uintl6_t peerList(MAX_PEERS];

Fig. 5.4: TT - PeerList Message Structure

The tracker replies with a peer list from its swarm of peers for the requested torrent via the 

use of the “PeerList” message (see Figure 5.4). The message contains the address of the tracker 

node (“fromid”) and the key of the torrent (“key”). The size of the peer list (MAX_PEER,S) is 

configurable but by default has been set to 4, however the tracker might not contain as many peers 

in its swarm at a given time. For this reason, the message contains the number of peers (“numPeers”) 

transported in the peer list array (“peerList”). Additionally, the “PeerList” message contains a field 

which indicates the chronological position (“position”) at which the requesting node entered the 

swarm of the torrent for the tracker. This is employed in the next phases as an inpiit in the peer 

selection strategy.
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In tlie event of peers in the list can not be contacted or when the coinbination of i)ieces from all 

the peers can not satisfy the completeness of the data file, successive “PeerListR.eciuesb’ messages are 

sent to the tracker. The idea is to retrieve another set of peers capable of providing the missing pieces. 

In this regard, the requesting peer informs the tracker of the list of missing pieces by including a piece 

bit vector in the message ('‘pieceBitVector”). In addition, the peer sends information to the tracker 

about the number of peers which failed to be contacted and their addresses (“numPeersFailed” and 

"peerListFailed”), such that the tracker avoids their inclusion in the new peer list (see Figure 5.3).

5.2.3 Handshake Phase

The Handshake phase of the Tiny Torrents protocol begins when a valid “PeerList” message is re­

ceived. In this phase, the protocol starts to contact sequentially each of the peers in the peer list 

with the goal of obtaining the list of available pieces at each of the peers. The “Handshake” message 

(see Figure 5.5) is employed in the communication from and to the requesting peer and serves as a 

mechanism to update both of the peers on their respective list of pieces. Thus the requested peer 

must reply with another “Handshake” me.ssage. The message contains the address of the node which 

issues the message ("fromid”), the torrent key (“key”), and the piece bit vector (“pieceBitVector”) 

indicating the pieces of data stored at the peer for the given torrent key. The position of the peer 

in the .swarm of the torrent (“po.sition”), which was previously provided by the tracker node, is also 

sent in the “Handshake” message. This value is employed in the peer selection process of the next 

phase. In addition, a control field (“initiator”) indicates whether the mes.sage has been issued by the 

originator of the handshake process.

Handshake Message

nx_uintl6_t fromid; 
nx_uint8_t key[KEY_SIZE]; 
nx_uintl6_t pieceBitVector; 
nx_uint8_t position; 
nx_uint8_t initiator;

Fig. 5.5: TT - Handshake Message Structure

Once all handshakes are performed, the next information is stored in memory; i) a list of peers 

which are valid, i.e. contactable, ii) their position in the swarm of the torrent for the tracker, and 

iii) a list of available pieces from each peer. If some of the peers in the handshake process are not 

contactable after a defined number of attempts (2), they are marked tis failed. In the event of none of
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the peers are contactable, or the list of peers can not provide all the pieces of the data hie, the Peer 

List Request Phase is lannched. In such a case, the addresses of the peers which previously failed to 

handshake are transported in the “peerListFailed” held of the PeerListRequest message (see Figure 

5.3). On reception of the message the tracker avoids the inclusion of these peers in the selection of 

the new peer list.

5.2.4 Piece Request Phase

Once the handshake [)hase is completed, t he consumer node starts the process of selecting which 

pieces are to be acquired hrst and from which peers. Like in the BitTorrent protocol, the rarest 

piece is selected; that is the piece with the least number of occurrences in the set of bitvectors of the 

peers in the list. Particularly in wireless sensor networks, the rarest piece selection strategy greatly 

improves the piece disi)crsion over t he network, reducing the number of peers lacking of the same 

piece. This policy contributes to minimize the situation where the file can not be completed; seeders 

might be unreachable and the set of available peers could not provide the totality of pieces for the 

data file. Therefore, the TinyTorrents protocol calculates the rarest pieces from the set of available 

I)ieccs to be retrieved and randomly selects one.

When more than one peer in the list contains the piece which is going to be acquired next, a 

selection algorithm decides which peer is to be contacted. Peer selection strategies are discussed in 

Section 5.4.2 which take into account information such as position of the peer in the swarm of the 

tracker, proximity of the peer, and number of pieces in the bit vector of the peer.

RequestPiece Message

nx uintie t fromid;
nx_uint8_t key[KEY_SIZE];
nx_uint8_t pieoeldx;
nx_uintl6_t piece BitVector;

Fig. 5.6: TT - RequestPiece Message Structure

Once a peer is chosen to provide the current rarest piece, a “RequestPiece” message (see Figure 

5.6) is sent. The message carries the requesting peer address (“fromid”), and the key of the torrent 

(“key”) for which the piece is being acquired. The identifier of the peer being requested is carried in 

the field “pieceld”. In addition, the piece bit vector of the requesting peer is also sent in the message 

(“pieceBitVector”) as an opportunistic mechanism to update receiving peers acquiring data for the 

same torrent.
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A peer receiving the “ReciuestPiece” message replies with the data for the piece being requested 

by employing the “Piece” message (see Figure 5.7). The data for the piece identified as “pieceld” is 

transported in the “piece” array of the message. By default the piece size (MAX_PIECE.SIZE) has 

been set to 16 bytes. However, the piece size can be easily increased at the cost of increasing the 

transmission time of the message which also increases the probabilities of failure due to collisions. 

In addition, the “Piece” message is also employed to update the requesting peer, and other peers en 

rotite, on the piece bit vector (“pieceBitVector”) of the sending peer.

Piece Message

nx uintie t fromid;
nx_uint8_t key[KEY_SIZE];
nx_uint8_t pieceld;
nx_uint8_t pieoe[MAX_PIECE_SIZE];
nx_uintl6_t piece BitVector;

Fig. 5.7: TT - Piece Mes.sage Structure

The TinyTorrents protocol has been designed to snoop both the “Reque.stPiece” and “Piece” 

messages en route to the destination node. A snooping peer opportnnistically acquires pieces if they 

are on demand in its current torrent transfer process, and also updates the piece bit vector of the 

peers list of the torrent if approj^riate. This mechanism enhances the performance of the protocol 

by reducing the number of messages in the communication while maintaining updated information 

which improves the peer selection process.

When a piece can not be provided due to the fact that the peer is not longer contactable or the 

peer does not contain the piece anymore - this could happen if the peer suddenly discards the torrent 

data the next peer selection process does not take into account the failing peer. If the peer does 

not contain the piece being requested, a “Piece” message is sent to the reciuesting node with the 

“pieceld” field set to the OxFF flag value. In the event of all peers are failing to provide a piece, 

either the next rarest piece is attempted or a new peer list is retrieved from the tracker.

When receiving the “Piece” mes.sage, the peer stores the piece in the right po.sition of the data 

hie buffer. The mechanism keeps checking for the rarest piece for the remaining pieces which have 

not yet been retrieved. If the combination of the bitvectors from of all the peers in the list does not 

contain all the pieces of the hie, the Peer List Request Phase is lauiK:hed in order to retrieve a new 

peer list which can provide the remaining pieces. The node requests a new peer list from the tracker 

containing the missing pieces; that is indicated in the bitvector of the “PeerListReqiiest” message 

(see Figure 5.3). This mechanism keeps working until the data is completed for the torrent or a timer
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expires thus canceling all the current processes for the torrent and proceeding to fetch the data for 

the next torrent in queue. When the data hie for a torrent is successfully retrieved, both the torrent 

and the data are stored in nieinory and the peer becomes a seeder. While a consumer node acts as 

a peer for the torrent being processed, it also acts as a seeder, and in the decentralised versions as a 

partial tracker, for all its stored torrents.

5.3 Architecture of Components

The Tiny Torrents architecture for a sensor node, i.e. mote, is depicted in Figure 5.8. The Tiny Tor­

rents protocol is comprised of the “Peer”, “Tracker” and “TinyTorrentsCore” modules which expose 

local interfaces for the communication amongst them, i.e. the “TorrentFetcher” and “Tracker” in­

terfaces.

TinvTorrents Mote Architecture
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The “TiiiyTorreiitsCore” module is the central point of coordination of the TinyTorrents protocol 

and provides the “TinyTorrents” interface for interaction with higher layers. The protocol utilises 

the “BaseStation” module to relay messages in both directions when the mote is acting as a gateway 

(see Section 3.2.1). The TinyTorrents protocol needs to work on top of the routing layer. Two 

routing protocols have been engineered to be easily interchanged according to the TinyTorrents 

protocol requirements. For the purpose of enabling the TinyTorrents protocol to operate on top of 

any routing protocol, an intermediate communications layer has been implemented which dehnes 

a set of interfaces and functionalities to be provided by the routing protocol. This layer needs 

to be slightly configured to connect the interfaces provided by the different routing protocols. In 

this regard, two intermediate layers, “UMGComm” and “TinyHopComm”, have been created for 

each of the proposed routing protocols. This intermediate layer acts as a structure for message 

control, in charge of encapsulating the type of the message in the payload before it is relayed to 

the routing protocol. It exposes a set of common routing interfaces to the TinyTorrents i)rotocol: 

"Send”, “Receive”, “Intercept”, “Radio” and “Comm”. The first three interfaces provide the basic 

nie.ssage transfer mechanisms, the “Radio” interface is employed to initialize and disable the radio 
communications, and finally the “Comm” interface aggregates functionalities for the rest of interfaces 

provided by the routing protocol.

5.3.1 TinyTorrentsCore Module

The “TinyTorrentsCore” module is the main component of the TinyTorrents protocol which exposes 

the “TinyTorrents” interface for higher layers to interact with the protocol. The “TinyTorrents” 

interface declares the main commands and events which are employed by the application layer to: 

i) publish data, ii) generate torrents, iii) control the torrent dissemination process, and iv) decide if 

and when to fetch the data file for a torrent.

The “TinyTorrentsCore” module utilises the “TorrentFetcher” interface provided by the “Peer” 

module to generate local torrents and to initiate the data fetching process of a torrent. Moreover, 

the “TinyTorrentsCore” module manages the functional status of the “Peer” module thereby holding 

the re.sponsibility to: i) retry a failed data fetching process, ii) cancel it, and iii) decide which torrent 

should be selected for data fetching from the queue.

The module is in charge of receiving “PublisliTinyTorrent” messages (see Figure 5.2) from the 

network layer and stores each unique received torrent in the quevre of "TiuyTorrentReceived” struc­

tures (.see Figure 5.9).
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TinyTorrentReceived

TinyTorrent torrent;
uint32_t receivedAt;
uint32_t delayToForward;
uint32_t delayToFetch;
bool forwarded;
bool fetched;

Fig. 5.9: TT - TiiiyTorrentReceived Structure (see also Figure 5.1). Store received torrents and 

information about their status.

The “TiiiyTorrentReceived” queue stores torrents (see Figure 5.1) which are pending of being 

forwarded or their data fetched. Information on the local time at which the torrent is received is 

also stored in the field “receivedAt”. When a new torrent is received, an event is triggered to inform 

the a]iplication layer which must decide if and when the torrent is to be forwarded and its data 

fetched. The application layer returns the delay in milliseconds for i) the torrent to be forwarded 

(“delayToForward”) and ii) the fetching process of the data file to be started (“delayToFetch”). When 

the value is 0, the torrent is not to be forwarded nor fetched. Every time a torrent is successfully 

fetched or cancelled, its entry in the queue of •‘TinyTorrentReceived” structures is marked as fetched, 

i.e. “fetched” field equals to true. Furthermore, the queue is queried according to the time when 

the next torrent is to be forwarded or its data file fetched. The time for the next query process is 

calculated according to the time when the torrent was received (“receivedAt”) and the corresponding 

delays. This mechanism guarantees that torrents are not removed from the queue until they are 

forwarded and its data is fetched according to the application layer decision. Torrents are selected 

for data fetching one at a time, with longer torrents in the queue having higher priority. Once a 

torrent at the top of the queue has both flag fields equal to true (“forwarded” and “fetched”), it is 

dequeued from the FIFO queue.

In addition to the “TinyTorrentReceived” queue, another queue has been implemented which 

acts as an index of the last X number of unique torrents received. The structure of each element 

of this queue is depicted in Figure 5.10 as “KeyTrackerTinyTorrent”. If contains the key for the 

received torrents (“key”) along with an array of the nearest tracker addresses (“tracker”). In the 

centralised version, the array has only one address, however in the decentralised modality up to 4 

partial tracker addresses can be stored by default (“MAX_TRACKERS”). A tracker address is added 

to file array when a “PublishTinyTorrent” message is received. If the “tracker” array is full, the 

farthest address is replaced by the received partial tracker address if it is closer in terms of hops;
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the newest entry is replaced first in the event of a tie. Tlie routing layer is queried to hnd out the 

hop distance to both candidate tracker nodes. When a torrent is selected for data fetching from 

the “TinyTorrentReceived” queue, the tracker address is updated with the closest in the array of 

the “KeyTrackerTinyTorrent” queue. This is an opportunistic mechanism to discover the nearest 

set of partial trackers. The array of partial tracker addresses is utilised when the selected partial 

tracker can not provide a peer list. This way, a list of potential partial trackers is available which 

are contacted in a round-robin fashion until one of them provides a valid peer list. Furthermore, the 

“Key TrackerTiny Torrent” queue is employed as a filter to prevent duplicate torrents to be processed, 

i.e. fetched and forwarded, in the situation when torrents have been already processed and dequeued 

from the “TinyTorrentReceived” queue. Hence, the “Key TrackerTiny Torrent” (jneue .should be large 

enough to act as a memory for the last received torrents in order to prevent delayed received torrents 

from being processed, particularly when there is a high number of torrents in the network.

KeyT rackerTinyT orrent

uint8_t key[KEY_SIZE];
uintl6_t tracker[MAX_TRACKERS];

Fig. 5.10: TT - Key TrackerTiny Torrent Structure. Store the key and the closest set of trackers 

from a unkpie received torrent.

When a torrent is selected for data fetching, the “TinyTorrentsCore” module is in charge of 

instructing the “Peer” module to start the fetching process by pointing out the torrent in the “Tiny­

TorrentReceived” queue and the address of the buffer where the data is to be stored. When the 

fetching of the data file is completed, both the torrent and the data are stored in memory for seeding 

and tracking pnrpo.ses (see Tracker Module in Section 5.3.3).

5.3.1.1 Gateway Communication: BaseStation Module

The “TinyTorrentsCore” module is akso responsible for the communication with the Vuze TT Plugin 

gateway (.see Section 3.2.1) via the serial port. It employs the “Ba.seStation” module which acts 

as a bidirectional message relay component. This module implements two FIFO queues for the 

incoming and outgoing message communication with the gateway via the serial port. A i)rotocol for 

the commnnication with the Vuze TT Plugin gateway is implemented here. This protocol enables 

the configuration of a node to act as a gateway. For a node in the WSN to become a functional 

gateway, the Vnze TT Plugin gateway must send a requesting connection message via the serial 

port. For this purpose, the “RetrieveBaseStationId” message (see Figure 5.11) is employed for the
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Indirectional communication. In the message, the field “fromld” is utilised to find out the address 

of the node which is going to act as the gateway. Additionally, the held “gatewayMode” is used 

to change the status of the node with respect to its functionality as a gateway. In this regard, the 

node can be instructed to be in the next gateway modes: “PEER”, “GATEWAY” or “RELAY”. By 

default all nodes are in “PEER” mode, which indicates the node is working autonomously with no 

gateway attached.

RetrieveBaseStationId Message

nx_uintl6_t fromld; 
nx_uint8_t gatewayMode;

Fig. 5.11: TT - RetrieveBaseStationId Message (Connection to the Vuze TT Plugin Gateway).

In the “RELAY” mode, the node is conhgured only to relay messages from the routing layer to 

the serial port and vice versa. The Tiny Torrents protocol is also implemented at the Vuze TT Plugin 

in order to control the process. This mode allows the Vuze TT Plugin gateway both to push data 

out and into the sensor network in a transparent way. When no message activity between the Vuze 

TT Plugin and the node occurs for a period of time, a “RetrieveBaseStationId” message is also sent 

to check oil the status of the connection. This mechanism changes the gateway mode in the node to 

“PEER” in the event of the serial communication has been incorrectly disrujited.

On the other hand, when the node is configured in “GATEWAY” mode, the “TinyTorrentsCore” 

module handles the control of t he data fetching process which in this case is regulated by an applica­

tion running in the Vuze TT Plugin. The aiiplication layer at the node passes on the control to the 

ajiplication at the Vuze TT Plugin to handle the distribution process. This way, “PublisliTinyTor- 

rent” messages (see Figure 5.2) are relayed to the Vuze TT Plugin when received. The application 

decides if and when to forward and fetch the data for the torrent. This values are sent to the gateway 

node in the “DownloadCommand” message (see Figure 5.12). The message contains the torrent key, 

the delay lime to forward and the delay time to start the data fetching process. When the gateway 

node receives the message, a reply must be sent, employing the “DownloadGommand” message, to 

indicate the status of the torrent (“status”). If the torrent is stored in the queue waiting to be 

processed, the field “status” is set to “WAITING”. When the node forwards the torrent or starts 

the fetching of the data file, anot her “DownloadCommand” message is sent to the Vuze TT Plugin 

to indicate the new status as “FORWARDED” or “FETCHING” respectively. In the “GATEWAY” 

mode, the “TinyTorrentsCore” module instructs the “Peer” module to relay messages containing 

pieces of data (see “Piece” message in Figure 5.7) to the Vuze TT Plugin.
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DownloadCommand Message

nx_uint8_t key[KEY_SIZE];
nx uint32 t delayToForward;
nx_uint32_t delayToFetch;
nx_uint8_t status;

Fig. 5.12: TT - DowiiloadCoiiiniaiid Message Structure {Coinmuiiicatioii between the Vuze TT 

Plugin Gateway Application and the Sensor Node for Fetching and Forwarding decisions.)

In addition, when the node is in “GATEWAY’' mode, the “TinyTorrentsGore” module is also 

in charge of receiving, sending and relaying service discovery messages coming from the Vuze TT 

Plugin (see Section 5.7 for Service Discovery in the Tiny Torrents protocol).

5.3.2 Peer Module

The “Peer” module handles the following phases of the Tiny Torrents protocol: i) Peer List Request 

Phase ii) Handshake Phase and iii) Piece Request Phase. The j^luises are executed until the data file 

is completed or the “TinyTorrentsGore” module cancels the data fetching j)roce.s.s. In this regard, 

the rarest piece selection process is implemented in this mochilc ;is well as the different peer selection 

strategies discu.ssed in Section 5.4.2. The “Peer” module provides the “TorrentFetcher” interface 

which implements a set of commands to create torrent files and to start the data fetching process of 

a torrent.

Peer

uintl6_t id;
uint8_t position;
uint8_t piece BitVector;
bool valid;
bool handshakeCompleted;

Fig. 5.13: TT - Peer Storage Structure

The “Peer” module maintains a structure which keeps the status of the active torrent data fetching 

process (see “FileTramsfer” in Figure 5.14). The structure contains pointers to the torrent file being 

fetched (“*torrent”) (see Figure 5.1) and to the buffer where pieces are to be stored (“*data”) 

in the “TinyTorrentsGore” module. The list of peers received from a tracker in the “PeerList” 

message (see Figure 5.4) is stored in the array of “Peer” structure (.see Figure 5.13). The number 

of peers which can be stored in the “Peer” array (MAX_PEER,S-SWARM) is equal to the peer list
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FileTransfer

TinyTorrent *torrent;
Peer peers[MAX_PEERS_SWARM];
uint8_t nPeers;
uint8_t position;
uintl6_t pieceBitVector;
uint8_t handshakeindex;
bool isActive;
bool peerListU pT oDate;
uint8_t *data;

Fig. 5.14: TT - FileTransfer Storage Structure (see Figures 5.1 and 5.13)

size {MAX_PEER.S) for the centralised version of the protocol. Nevertheless, in the decentralised 

version, MAXJPEERS^SWARM is greater than MAX^PEERS due to the fact that the peer can 

act as a partial tracker (adding requesting peers to the swarm) while the torrent data transfer is 

ongoing. The “Peer” structure stores the address of each peer (“id”) along with the position of the 

I)eer in the swarm of the torrent (“position”). Also, the “pieceBitVector” field of each stored peer 

is updated when a “Handshake” message is received from the peer (see Figure 5.5). In addition, 

two flag variables are stored in each “Peer” structure to identify: i) if the Handshake Phase has 

been successfully completed with the peer (“handshakeCompletcd”) and 2) whether the entry for 

the iieer corresponds to a valid peer list or contrary the protocol is still waiting for a “PeerList” 

message to be received (“valid”). In the “FileTransfer” structure, the number of peers stored in the 

“peers” array is kept in the field ‘“nPeers”. This indicates whether a new peer can be added to the 

peer list when a non-initiated “Handshake” message is received. The position of the local peer in 

the swarm of the torrent at the tracker node is stored in the field “position”. The record of the 

list of pieces stored in the data buffer is kept as a bit vector array in the “pieceBitVector” field. 

When the protocol is executing the Handshake Phase, the “handshakeindex” field acts as a counter 

variable which indicates the entry in the “peers” array for which the handshake process is ongoing. 

Two boolean variables control the status of the transfer: i) “isActive” indicates whether the torrent 

transfer is active and therefore all receive messages are to be processed or otherwise discarded, ii) 

“peerListUpToDate” is set to false when a new jjeer list is being requested and therefore the current 

peer list in the “peers” array is invalid.
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5.3.3 Tracker Module

The lYacker module has a two-fold approach. Firstly, it serves as a storage for torrents and data 

files when the “Peer” module completes a torrent data file. The storage of multiple torrent data files 

enables the possibility of having multiple torrent data transfers in the network at the same time while 

transforming the sensor network into an autonomous storage system where nodes might cooperate 

for the purpose of maximising the network capacity. Secondly, the “Tracker” module implements 

the mechanisms for tracking the swarm of peers of each torrent. In the decentralised version of the 

Tiny Torrents protocol all consumers of a torrent can act as partial trackers by storing a subset of 

peers in the swarm of the torrent. In the centralised version a node is designated as the tracker which 

keeps a record of the whole swarm of peers for each torrent and acts as the central coordinator. This 

node does not perform any other peer functionality but only tracking duties. In the two versions, 

both for storage and tracker purposes, the “TinyTracker” structure is employed (see Figure 5.15) in 

this module. However, in the central version of the protocol, the central tracker does not perform 

storage of data files and thus the “TinyTracker” structure does not include the riata buffer (“data”), 

nor the “position” fiekl (as the tracker node does not belong to the swarm of another tracker).

TinyTracker

TinyTorrent torrent;
Peer peers[MAX_PEERS_SWARM];
uint8_t n Peers;
uint8_t position
uint8_t data[MAX_BUFFER_SIZE];

Fig. 5.15: TT - Tiny Tracker Structure: Torrent File & Data Storage. Employed for Tracking and 

Torrent-Data Storage Purpo.ses in the TT Centralised and Decentralised versions (see Figures 5.1, 

5.13).

The storage mechanism is implemented for all the consumer nodes in both the centralised and 

decentralised approaches. As soon as a torrent is either locally generated or its data successfully 

fetched, it is stored along with its data in the “TinyTracker” structure (.see Figure 5.15). In addition, 

the list of peers stored in the “peers” array of the “FileTransfer” structure (see Figure 5.14) for the 

torrent file are also stored in the “peers” array. If the torrent is locally generated, the only peer stored 

is the local node. The size of the “peers” array (MAX_PEERS_SWARM) is, by default, .set to 10 

when a node acts as a partial tracker. However, the tracker node in the centralised version demands 

to record the whole swarm of peers for each torrent, and thus MAX_PEER.S_SWARM is set to a high
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value which depends on the niaxiinnrn potential consumers for a torrent and the available memory. 

The current number of peers in the swarm is also stored (“nPeers”). Additionally, the position of the 

peer in the swarm of the torrent is also stored (“position”). An array of the “TinyTracker” structure 

is in place which stores as many elements as memory permits with a policy of replacing the oldest 

entry when the array gets full.

In the centralised version of the TinyTorrents protocol, the tracker employs the “nPeers” field of 

the “TinyTracker” structure to indicate the position of a new peer joining the swarm of the torrent. 

Nonetheless, in the decentralised version, the position of a new peer joining the swarm of a partial 

tracker depends on the position of the local peer in its partial tracker, and the position of the other 

peers in its swarm. New peers entering the torrent swarm of a partial tracker are assigned the highest 

position from all the peers in the swarm (including the position of the local peer) plus one, - the 

peer position value in the swarm is employed as a weighting factor in the peer selection process 

(see Section 5.4) and this mechanism increases the likelihood of new peers being selected thereby 

fostering fairness in the dist ribution. It has to be noted that the Handshake Phase must be completed 

before the local peer can start acting as a partial tracker. Once the torrent data transfer process is 

complet ed and the peer becomes a seeder, the highest position is stored in the “position” field of the 

“TinyTracker” structure. This field indicates the position of the latest peer joining the swarm of the 

torrent and gets incremented when new peers join the swarm. This way, new peers are gtiaranteed 

a higher position value for peer selection purposes from the existing peers in the swarm. It has to 

be noted that the “position” field is limited to 255 values (1 byte). In the centralised version this 

value corresponds to t he maximum number of consumers of a torrent before the counter rolls over 

and affects the selection process. However, in the decentralised version, the position value grows 

according to the distribution of the consumers in the network which depends on the branch of the 

simnning tree formed amongst the consumers where the initial seeder is the root with a position 

value of 1.

The “Tracker” module handles the reception of “PeerListRequest” messages (see Figure 5.3), and 

consequently updates t he swarm of peers for the torrent being requested. In the centralised version, 

the module also handles the reception of the “PublishTinyTorrent” message (see Figure 5.2) which 

instructs the tracker node to create a swarm for the new torrent with the node as the initial seeder 

in position 1. In the decent ralised version this process is not required since the first partial tracker 

for a generated torrent is the peer itself which automatically stores the torrent and data file in the 

“TinyTracker” structure.
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Ill the “TinyTracker” structure, each elenieiit of the “peers” array is of the type “Peer” structure 

(see Figure 5.13). However, only the fields which contain the address of the peer (“id”) and the 

position in the swarm (“position”) are really employed for tracking purposes. The rest of the fields 

are not used and could be removed for memory efficiency but have been kept for consistency purposes 

thus maintaining a unique “Peer” .structure for multiple purposes. Nevertheless, the “pieceBitVector” 

field is updated when peer list request messages are received from the peer - this happens when the 

previous list of peers fail to deliver all the pieces of the data file. This way, the “pieceBitVector” 

field is used by the tracker as an additional indicator of the necessity of recurring peers to obtain 

a peer list which satisfy the completeness of the data file. In this regard, updating tracker nodes 

regularly with the current torrent’s jnece bit vector at each peer gives updated information on the 

torrent piece status in the swarm. This greatly helps in the .selection of a complete peer list for a 

requesting node. Nonetheless, this solution has been avoided as i) it has a great cost in terms of 

messages, ii) it increases the wirele.ss medium contention level, and hi) it contribtites to the risk of 

overflowing the message admission capacity of tracker nodes, mainly in the centralised version. On 

the other hand, the position of each peer in the swarm gives an estimation of the likelihood of the 

peer containing most of the jneces and can be used as a factor to include peers with lower jiositions 

in the peer list which have a higher likelihood of containing most of the pieces. Peer list selection 

strategies at tracker nodes are implemented in this modide and are discussed in Section 5.4.1.

SwarmRemove Message

nx_uintl6_t fromid; 
nx_uint8_t key[KEY_SIZE];

Fig. 5.16: TT - SwarmRemove Message Structure

When a peer needs to rejdace an entry from the array of “TinyTracker” structures, or when a 

peer fails to fetch the data for a torrent file, the tracker is informed that the node is no longer a 

peer in the swarm of the torrent. The removal of a peer from the swarm of a torrent is achieved 

through the sending of a “SwarmRemove” message (see Figure 5.16). However, in the decentralised 

version of the protocol, this message is only sent to the last tracker node from which the peer list 

was retrieved, rather than trying to update all the connected partial trackers which contain the peer 

in their swarms. The lack of peer removal updates amongst partial trackers might require future 

extra peer list requests and handshake messages at the beneht of saving the extra messages required 

to keep all partial trackers updated. Additionally, the “PeerListRequest” message (see Figure 5.3) 

carries peers which have failed to handshake such that they are not include in the peer list.
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5.3.4 Routing Communication Modules: UMGComm and TinyHopComm

All intermediate layer tietween the Tiny Torrents protocol and the chosen routing protocol is imple­

mented to adapt the interfaces provided by the routing layer to the generic interfaces used by the 

Tiny Torrents protocol. This layer is in charge of multiplexing messages to the corresponding receive 

and send interfaces of the Tiny Torrents protocol according to the type of packet. Thus, each layer is 

tailored for each routing protocol and acts as a single point of message control. This way messages 

can be intercepted and decisions on which messages are to be relayed, in both directions, can be 

made. For instance “Piece” messages are snoojjed for efficiency purposes and “PeerListRecpiest” 

messages can be intercepted when the local node is a valid jrartial tracker. This layer handles the 

communication witli the routing jirotocol, thus it reacts to status messages coming from tlie routing 

layer and make use of the available routing functionalities. It also implements reliable mechanisms 

in order to make a best, effort, in the end-to-end delivery of each message. Reliable mechanisms such 

as retrials, backoff delays, or partial flooding are employed in response to the routing layer. For 

this purpose a queue of messages is employed to regulate the sending process. In this line, duplicate 

message suppression is performed and the design offers the possibility of implementing a priority 

management scheme in the sending j)roccss. Finally, “UMGComm” is the communications layer 

tailored for the use of the Ubiquitous Mobile Gradient (UMG) routing protocol (see Chapter 4), 

while “TinyHopComm” connects the TinyTorrents protocol layer to the TinyHop routing protocol.

5.4 Peer Selection Policies

In the TinyTorrents protocol appropriate selection of the peers from whicli to gather pieces of data 

impacts the efficiency of the traffic flow in terms of fairness, throughput, resource consumption and 

communications reliability. Peer selection strategies contribute to make the system scalable, to foster 

data dispersion, and to avoid the flash crowd problem at initial seeders.

Two peer selection proce.sses are performed in the TinyTorrents protocol. The first one occurs at 

the tracker when a node requests a peer list. A tracker node is in charge of selecting a peer list from 

the swarm of peers for the requested torrent. The second selection process occurs at the requesting 

node when the peer list is received from the tracker. Here, the node selects, for every piece of data, 

a peer from t he received peer list which can be contacted and also contains the piece to be acquired.

The combination of different peer selection strategies, both for peer list selection in a tracker 

node, and for peer selection at the requesting node, highly impacts the overall performance of the 

TinyTorrents protocol, both in its centralised and decentralised versions. A range of indicators
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of the status of the peers with respect to the requesting node can be utilised in the peer selection 

process. However, a balance between the quantity of information for each peer and its relevance in the 

selection process needs to be achieved. Employing too many status indicators might not enhance the 

selection process but rather consume valuable resources and increase the computational complexity. 

Accordingly, the Tiny Torrents protocol emi)loys the following indicators in the selection process: 

i) the chronological position of each peer in the swarm of its torrent (position-based selection), ii) 

the proximity of a peer in terms of hops (location-based selection), and iii) the piece bit vector of 

each peer (piece-based selection). This information is updated before each selection process and is 

opportunistically acquired and piggybacked in the messages, which does not incur an overhead in 

communication.

5.4.1 Peer List Selection Strategy at the Tracker

In a tracker node, both in the centralised and decentralised version, the selection of a peer list from 

the swarm of a torrent is mainly performed according to the position of each peer in the swarm 

(see “position” in the Peer Structure in Figure -5.13). In addition, the piece bit vector of every 

peer is only updated when successive peer list requests are received (see "pieceBitVector” in Figure 

5.13). This only occurs when the peer list of the requesting peer can not satisfy the completion 

of all the pieces of the data file. Thus, the reception of a “PeerListReriuest” message (see Figure 

5.3) with a piece bit vector different from zero, indicates to the tracker that the reciuesting peer- 

needs to obtain a list of peers which contain the missing pieces of data. Since piece bit vectors in a 

tracker node are not periodically updated, the protocol can not rely on this information to select a 

peer. Instead, the selection process takes into account the fact that the piece bit vector has suffered 

a change and it increases the likelihood of including peers with lower position values in the peer- 

list irr air attempt to select peers with higher probabilities to contain a higher number of pieces. 

Additionally, the “PeerListRequest” message might include a list of peers which failed to handshake 

(see “peerListFailed” in Figure 5.3). Failing peers are not including in the .selection of the peer list 

when alternative peers are available. It also has to be noted that information on the proximity of 

each peer will not be of any use in this selection process unless peers are close to the tracker node.

Thus, the peer selection strategy utilised in the tracker is based on a stochastic process where 

the distribution of probabilities amongst electable peers is based on their position in the swarm of 

the torrent. It is a weighting scheme where the probability of a peer “i” being .selected for inclusion 

in the peer list “PseiPosii]" can be calculated according to Eciuation 5.2,
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TWpos = Position{iy°'-'S(a)

ies

PselPos{‘^‘) —
Position{iy°^^°‘^

TWpos

(5.11

(5.2)

where “Positioii(i)” is the position at which the peer “i” entered the swarm of the torrent in the 

tracker. The denominator is computed as the sum of the weighted jjositions ^‘TWpos” according to 

Equation 5.1 where “S” is the set of peers in the swarm except from those in the “peerListFailed” 

array of the received “PeerListRequest” message. Additionally, in order to increase the probability 

of selecting peers with higher positions, i.e. recently received peers, over peers which have been 

longer in the swarm, a coefficient a is utilised as a weighting parameter to control the growth of 

the position-based probability distribution. In the situation where a peer can not complete the data 

file with the first requested peer list and needs to request another peer list, the tracker can lower 

the a coefficient to the minimum value, where a can take values from 1 to 255. A lower value of n 

increases the likelihood of peers with lower positions being selected under the assumption that, the 

lower the i)osition in the swarm, the higher the likelihood for the peer to contain most of the pieces 

of data. However, when the peer list is requested for the first time for a given torrent, the value 

of O' is set high in order to increase the probabilities of including recently joined peers in the peer 

list. While this is employed to achieve fairness in the data distribution process, it also contributes 

to include recently joined peers in the peer list which is provided to potential partial trackers in the 

decentralfsed version of the protocol. Including peers which recently joined the swarm in the peer 

list is of interest in the decentralised version since most of the torrent dissemination strategies would 

expand concentrically from the producer. This means that the likelihood of two nodes being in close 

proximity would increase as peers have a close value of position in the swarm. Currently, a value of 

255 is assigned to a when the peer list is initially requested. Subsequent peer list requests for a give 

node change the value of q to 1.
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5.4.2 Peer Selection Strategies

A set of different strategies are proposed for tiie peer selection process when a peer is in the Piece 

Request Phase, i.e. it has already received a peer list from the tracker, Peer List Request Phase, 

and has also performed the Handshake Phase with all, or some, of the peers in the list. In this 

phase, the peer has stored updated information on a set of peers from which to acquire pieces. For 

each contactable peer, the requesting peer contains the following information for the torrent: i) the 

piece bit vector and ii) the position in the swarm. While the position in the swarm and the piece 

bit vector of each peer are initially acquired in the Handshake Phase, the piece bit vector of a peer 

is updated with every “ReciuestPiece” and “Piece” messages received in the Piece Request Phase. 

Thus, the peer selection process is executed every time a new piece is to be retrieved as the current 

piece status of peers might have changed. This way, information about peers in the list is updated as 

the data fetching process progresses, which enhances the selection process in order to achieve fairness 

in the data distribution. Additionally, proximity to each of the contactable peers in terms of hops is 

known via the routing protocol; this value is up-to-date due to the fact that “Handshake” or “Piece” 

messages are received from the peers before the start of the peer selection process.

While the position in the swarm of a peer is a relevant factor to achieve fairness in a distributed 

manner and to alleviate the burden in initial seeders, the hop distance to each peer is the key factor to 

control the communications overhead and therefore the overall performance of the protocol. In single 

channel wireless sensor networks, a peer at a hop distance of 1 should always be chosen over 2 hops 

or more, to reduce the contention factor in the neighbourhood. However, when the peer .selection 

process involves peers at a distance greater or equal to 2 hops, the unknown si)atial distribution of 

the peers in their areas and the unknown contention conditions are insufficient information to assert 

that the clo.ser peer in terms of hops becomes the most efficient choice. In this situation, the position 

in the swarm of the peer should be taken into account in the peer selection process.

With all of the above taken into consideration, a set of peer selection strategies have been proposed 

for comparLson under different configurations of the Tiny Torrents protocol.

5.4.2.1 Position-based Peer Selection

This strategy takes into account only the peer position in the swarm as the factor to calculate the 

probability of each peer to be elected; this is the same strategy employed at the tracker for peer list 

selection. The peer selection process is based on a stochastic process where high position peers have 

higher probability to be selected. This way, new peers entering the swarm have higher probability
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of being selected. This mechanism mitigates the presence of flash crowds and seeks to distribute the 

traffic load amongst peers in the swarm of the torrent in a fair manner.

The i)robability of selecting a peer “i” according to the position in the swarm “PseiPosW' 

be calcnlated by following Eqnation 5.2. In this case, '‘TWpos"' in Equation 5.1 considers “S” as the 

set of contactable peers which contain the piece being recjuested. The a coefficient is also utilised 

here to adjust the position-based growth probability distribution.

5.4.2.2 Position-Location-based Peer Selection

This strategy is analogous to the Position-baited Peer Selection but combines both the position of 

the peer in t he swarm and the location in terms of hops of the peer with respect, to the local node in 

order to calculate the probability of each peer in the distribution. The probability of a peer ‘d” being 

selected according to the position (Position(i)) and distance in hops to peer “i” (HopsToPeer(i)) can 

be calculated according to Equation 5.4 as “PseiPosLoc{i)” ■ In this equation, the denominator is 

calculated according to Equation 5.3 as ^‘TWposLoc’ ■

TWposLoc = TWpos + ^ TWpos/HopsToPeer{i)
i^S

PselPosLoci^^) —
Position{iy"-'^°‘^ -f {TWpos/HopsToPeer{i)) 

TWposLoc

(5.3)

(5.4)

The equations take into account the sum of weighted positions in Equation 5.1 and increase the 

possible set of elementary outcomes (sample space) by a factor which is inversely proportional to 

the hop distance to each peer in “S”, where “TkEpog” is the constant of proportionality. Again, 

“S” is the set of contactable peers which contain the piece being requested. The q coefficient is 

employed as a mechanism to increase the probability of selecting peers both with high j^ositions and 

low number of hops. This strategy seeks to increase the probabilities of selecting closer i^eers in t he 

position-based probability distribution.

5.4.2.3 1-Hop First Position-Location-based Peer Selection

This strategy operates on the same basis as Position-Location-based Peer Selection when the peers 

in “S” are at a distance greater than 1 hop. If at least one peer is at 1 hop distance, then this is 

selected over the rest in a deterministic fashion. In the event of more than one peer is at a distance 

of 1 hop, the Position-based Peer Selection strategy is employed to select the peer from the subset
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of peers at 1 hop distance. This strategy seeks efficiency in teriiLS of conmiunication while balancing 

the network load of the swarm of the torrent.

5.4.2.4 Closest First Position-based Peer Selection

Initially, this strategy includes the closest peers in “S”, i.e. peers with the minimum nnmber of hops 

from the list of contactable peers which have tlie piece to be requested. Then, the Position-based Peer 

Selection strategy is applied to the peers in “S”. This selection mechanism mainly seeks efficiency in 

terms of conmiunication while it balances the traffic load amongst nearby peers.

5.4.2.5 Closest First Piece Remaining-based Peer Selection

This mechanism operates in the same way as the Closest First Position-based Peer Selection strategy 

but the swarm position factor is replaced by the number of pieces in the bit vector of the peer. For 

this purpose, the formula employed in the Position-based Peer Selection (see ''PseiPos{i)” hi Ecpiation 
5.2) is utilised which replaces “Position(i)” for “PieceRemaining{i)”. PieceRemaining(i) indicates the 

remaining number of pieces to be acquired by peer “i” according to its piece bit vector. The higher 

the number of pieces to be acquired, the higher the probabilities for the peer to be selected. This 

strategy mainly seeks efficiency in terms of communication while at the same time fosters the update 
of the piece bit vector at peers in need of pieces. Updating the piece bit vector of peers in need of 

pieces reduces the chances of peers requesting another peer list due to missing pieces in the current 

one. In addition, this strategy balances the load of traffic within the near proximities due to the fact 

that the piece bit vector of nearby peers is also updated at the requesting node when the piece is 

received; this increases the chances of nearby peers being selected to provitle the remaining pieces of 
data.

5.4.2.6 PieceRemaining First Position-Location-based Peer Selection

Initially, this strategy includes in the set of electable peers “S” those peers with the most number of 

remaining pieces to be acquired, according to their piece bit vectors, from the list of contactable peers 

which have the piece to be requested. Then, the Position-Location-based Peer Selection strategy is 

applied to the set of peers in “S”. ddie strategy primarily seeks to balance the flow of traffic towards 

those peers with a low number of pieces in order to reduce the load on seeders. From those peers, 

the strategy increases the probabilities of peers which are closer and have recently join the swarm.
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5.4.3 Implementation of Peer Selection Policies

The peer list selection strategy performed at the tracker is implemented at the “Tracker” module of 

the TinyTorrents protocol (see Figure 5.8). This strategy is employed both for the centralized and 

decentralized version. In the centralized version, only the tracker node inlines the strategy, while in 

the decentralized version every node can act as a consumer and thus implements this functionality.

On the other hand, the set of peer selection strategics are implemented at the “Peer” module of 

the TinyTorrents protocol (see Figure 5.8). One selection policy is enal^led at each test case in the 

simulator for comparison purposes. When compiling the code for real devices only one strategy is 

inlined for memory efficiency purposes. However, strategies can be rnnltiplexed at rnntime if required 

both for testing or when a strategy has been shown not to perform well under certain conditions.

5.4.4 Reducing Peer Participation

The selection strategies presented above only employ information from peers with respect to a given 

torrent and thus they do not consider the overall status information of the device itself. For instance, 

a node might be lacking in resources such as energy or memory and might need f o reduce its par- 

ticij^ation in the swarm of the torrents. Rather than being greedy, the node might be recpiired to 

reserve its resources for situations of higher ])riority, for example when it acts aa a key relay in the 

network or when it contains a rare piece of data.

For this i)urpose, the api)lication layer at a node makes the decision whether to fetch a received 

torrent. In addition, a peer which is part of a torrent swarm should be able to reduce its partici])ation 

without completely ceasing its service. For this purpose, the peer can control its participation by 

reducing its position value in the swarm when sending the “Handshake” message to other peers. 

For instance, reducing the value to 1 decreases the probability of the peer being selected when a 

Position-based peer selection strategy is operating. At the same time, the peer can still be selected, 

particularly in the cases when i) other peers are in the same situation, ii) the number of peers 

containing a particular piece is limited, and iii) the node is at 1 hop distance. By the same token, 

in strategies involving the PieceRemaining factor, a peer can rednee its participation by indicating 

that the peer does not store any piece of data - i.e. all bits in the pieceBitVector set to 0 - when 

sending messages containing the i)iece bit vector.
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5.5 Scalability of the TinyTorrents Protocol: Centralised vs. 

Decentralised

In this section, tlie beliavioiir of the TinyTorrents protocol, botli in its centralised and decentralised 

versions, is described with a sample network scenario and the factors affecting its scalability are 

explained.

Figure 5.17 illustrates the data distribution process in the centralised version of the TinyTorrents 

protocol for a torrent generated at a producer node “P”. The central version of the TinyTorrents 

protocol relies on a central tracker to maintain the swarm of peers for all the torrent files in the 

network, identified as “T”. Nodes interested in becoming peers, i.e. acquiring the data for the 

torrent, are identihed as consumers “C”.

Initially, the producer “P” sends a “PublisliTinyTorrent” message containing the torrent (see 

Figure 5.2) to the tracker ‘‘T". Once the tracker is aware of the new tracker, the producer broadcasts 

the “PublisliTinyTorrent” message to start disseminating the torrent across the network. Nodes re­

ceiving the message decide if and wlien to forward (broadcast) the torrent (see “delayToForward” in 
Section 5.3.1). Consumer nodes also decide if and when to fetch the torrent data (see “delayToFetch” 

in Section 5.3.1). In Figure 5.17, the arrows represent the dLssemination process of the “Piiblishl'iny- 

Torrent” message issued by the producer node (“P”). On reception of the message containing the 

torrent file, consumer nodes (“C”) wait for a period of time (“delayToFetch”) and then request a 

peer list from the tracker node (“T”). The position at which each consumer sequentially enters the 

swarm of the torrent is indicated as (“C#”). The peer list selection strategy at the tracker selects a 

peer list for each requesting consumer. One of the drawbacks of the centralised approach is the lack 

of a general map of the location of the consumers in the network, despite hop distance information 

at the routing layer. Thus, closer nodes to the consumer arc not necessarily included in the peer list 

which is inefficient in terms of communications. For example, “C8” contacts the tracker which, by 

employing the position-based peer list selection strategy, replies with a random peer list including 

for instance peers “C7”, “C6”, “C5” and “C2”. While the peer selection process in “C8” improves 

the selection of peers based on proximity and/or position, the peer list received from the tracker 

is already inefficient in terms of proximity, mainly when considering that peers “C3” and “C4” are 

closer to “C8” and were not included in the peer list. To ameliorate this problem, “C8” can request 

another peer list from the tracker when some of the peers exceed a defined routing scope in terms 

of hops. In the next peer list request, the node indicates that all the current peers as not valid (see 

“peerLLstFailed” in Figure 5.3). The tracker will produce a new peer list which does not contain
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Fig. 5.17: TT - Centralised Version of the TinyTorrents Protocol

the previous peers. On reception of the new peer list, “C8” compares the old peer list with the 

new one in terms of proximity - information is available at the routing layer - and thus selects the 

closer set of peers defined by “MAX-PEERS”. This mechanism improves the peer selection process 

in terms of i)roximity at the cost of an extra peer list request message. However, when the network 

scales and consumers are placed at a high distance from the tracker in terms of hops, the overhead
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in comniuiiicatioiis and the ri.sk of packet loss greatly increases. Thus, the centralised version of 

the TinyTorrents protocol is targeted to small-inedium size networks where the tracker node can be 

reached efficiently and reliably in terms of routing communications from any consumer node in the 

network.

The design of the decentralised version of the TinyTorrents protocol tackles some of the issues 

encountered in the centralised version with the use of “partial trackers”. The central tracker, in 

c:harge of maintaining the swarm of peers for all the torrents in the network, is replaced by consumer 

nodes acting as partial trackers only for their stored torrents. A consumer acts as a partial tracker for 

a given torrent by keeping track of a list of peers which do not necessarily need to comprise the whole 

swarm of the torrent. A partial tracker discovers and updates its list of peers when i) the torrent 

data is being fetched, ii) peer list recpiest messages are received, or iii) messages in the protocol 

are intercepted which contain the key of the torrent. Each consumer node is capable of acting as a 

partial tracker for nearby consumers. Thus peer lists are formed from a set of peers which are likely 

to be close to the requesting node. This behaviour can be seen in Figure 5.18 where consumer nodes 

send their “PeerListRequest” messages to nearby consumers acting as partial trackers.

In Figure 5.18, the cardinality in the consumer label (“C#”) sorts consumers according to the 

time when they start fetching the torrent. Consumer nodes discover ami select nearby [)artial trackers 

employing a set of unstructured discovery mechanisms. For instance, “C2” requests a peer list from 

the initial seeder “P” which only contaiiLs “Cl” and itself as peer for the torrent. By the same token, 

“C8” selects “C5” as its partial tracker. “C5” contains in its swarm, at least, the peer list provided 

by “C4” which surely includes “C3”, “C2”, “Cl” and “P’, as the default size of the peer list is 4 

(.see “MAX_PEERS” in “PeerList” message Figure 5.4) and “C2” and “Cl” are in the swarm of 

“P” when “C3” reque.sts the peer list. In addition, “C5” has been acting as a partial tracker for 

“C7” which has also been included in its swarm of the torrent. It has to be noted that, for memory 

efficiency purposes, the maximum number of peers in the swarm of a partial tracker for a torrent 

is MAX_PEERS-SWARM which by default is set to 10. When the swarm is full and new peers 

are discovered for the torrent, the current policy replaces the furthest peer in terms of hops if the 

new peer is closer. This mechanism tends to populate the swarm of each partial tracker with closer 

peers. In this regard, a consumer needs to locate a nearby partial tracker to receive an efficient peer 

list in terms of proximity. Hence, the scalability of the system only depends on the distribution of 

consumers over the network, such that the highest distance between any two closest consumers is 

equal or le.ss than the discovery scope of the routing protocol. For instance, in Figure 5.18, “C2” 

is within the routing scope of its partial tracker, i.e. “P”. However, “CIO” is an isolated consumer
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Fig. 5.18: TT - Decentralised Version of the Tiny Torrents Protocol

dne to the fact that the closer partial tracker is “C6” which is not within its routing scope; in other 

words, “CIO” does not contain routing information about “C6” in its routing table. Therefore, the 

successful discovery of a nearby partial tracker is the key mechanism for the efficient operation of the 

decentralised version of the Tiny Torrents protocol. In this regard, a set of mechanisms to discover 

jfartial trackers are presented in Section 5.6.
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5.6 Unstructured Discovery of Partial Trackers

A iiiechaiiism to discover partial trackers, i.e. consumer nodes which can provide a peer list for 

a torrent, is required for the scalable and efficient operation of the Tiny Torrents protocol in its 

decentralised version. For this purpose, unstructured discovery mechanisms have been developed 

which, fis opposed to structured mechanisms, do not maintain an overlay network. Thus, unstruc­

tured mechanisms are more suited for discovery in unreliable wireless networks where nodes might 

be intermittently available and exhibit transient behaviour.

Two network environments need to be considered when discovering partial trackers: 1) “High 

Distribution Activity Environments” in which the data distribution process is ongoing thus the 

torrent is being disseminated and the fetching of the data occurs within a short interval of time 

since the torrent is generated at the producer and received, and 2) “Low Distribution Activity 

Environments” in which there is little data distribution activity occurring for the torrent, either 

due to a high delay in the fetching of the received torrent, or due to the acquisition of the torrent 

at a later stage, e.g. a gateway node arriving to the area/network queries the WSN for a torrent 

generated and distributed in the past (see Service Discovery in Tiny Torrents in Section 5.7).

In “High Distribution Activity Environments”, “PublishTinyTorrent” messages (see Eigure 5.2) 

are being dis.seniinated across the network. The data fetching process is occurring within a short 

enough interval of time to consider the routing scope of the consumer to be static from the point of 

view of the TinyTorrents protocol. This means that nodes can still be contacted and there is a high 

probability that data files, or pieces of data, are still stored in the memory of most of the consumers. 

However, in “Low Distribution Activity Environments”, the data distribution process for the torrent 

is not ongoing and thus the likelihood of the status of the peers in the swarm having changed is 

higher than in “High Distribution Activity Environments”. Peers’ geographical location could have 

changed and the data file might have been removed from memory to accommodate data for other 

torrents. In this regard, peers which remove a data file from memory are reejuired to inform their 

tracker. The “SwarmRemove” message (see Eigure 5.16 in Section 5.3.3) is employed for this matter. 

In the central version of the TinyTorrents protocol the update of the swarm of a torrent is centralised 

and the tracker keeps records of peers joining and leaving the swarm. However, the decentralised 

version of the protocol requires to update all partial trackers which contain the peer to be removed in 

their swarm. This requires a distributed update where each consumer updates its partial tracker in a 

process which navigates the tree of relevant consumers. Nonetheless, this mechanism has an overhead 

in communication and complexity, and depends on intermediate consumers to still be contactable 

in order to reach all the relevant partial trackers. Therefore, the TinyTorrents protocol does not
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I)erfonii the distributed update and instead relies on the peer list request mechanism for obtaining 

different peer lists if nodes can not be contacted, i.e. handshakes fail (see Section 5.2.2). In this 

regard, each partial tracker can keep a counter to control the number of times the peer has been 

reported as failed (see “peerListFailed” in Section 5.2.2)) and remove it from the swarm once a 

threshold is reached. However, the latter approach has not been implemented as it constitutes a 

potential flaw - for instance a set of consumers can report a failed peer as the handshake was not 

successful, as it was out of the routing scope, but the peer still contains the torrent. Additionally, 

more than one request of a peer list for the same torrent is not guaranteed to happen if some peers 

can provide all the pieces of data.

Thus, the discovery of partial trackers is paramount in the eventual acquisition of a list of peers 

which can provide the data file. For this purpose, a set of unstructured discovery mechanisms for 

the location of nearby partial trackers both in “High Distribution Activity Environments” and “Low 

Distribution Activity Environments” have been designed and are presented next. These mechanisms 

are applied in the order presented such that the next is employed if the opportunity arises or when 

the previous mechanism can not discover a partial tracker.

1. Torrent Dissemination Control: This discovery mechanism can be classified as One-Shot Push- 

Pull according to Section 2.4.4, where initial seeders push data to the network in a way that can 

optimise the query/searching process of requesting consumers. It employs the delay variable at 

the application layer (“delayToForward” see Section 5.3.1) to regulate the dissemination process 

of the “PublisliTinyTorrent” message. The application layer controls the flooding process of 

the torrent by deciding at each receiving node if and when to forward the message. In this 

sense, the first “PublisliTinyTorrent” message received is forwarded only when the delay time 

(“delayToForward”) is elapsed, and thus a reception window is opened for the admission of 

further messages of the same torrent type. This way, the reception of duplicate torrent messages 

is leveraged to update the consumer on the set of closer tracker addresses as messages come from 

spatially separated consumers. Additionally, consumer nodes assign a smaller value of delay 

as compared to the rest of the nodes, which increments the likelihood of potential consumers 

receiving a higher number of instances of the message coming from disparate partial trackers.

Currently, the “delayToForward” value at the application layer is required to be higher than 70 

ms and the TinyTorrents protocol layer automatically sets this value to 30 ms when the node 

is a consumer. The node is a consumer when the “delayToFetch” value is not 0. On reception 

of “PublisliTinyTorrent” messages, a consumer node checks the queue of “KeyTrackerTiny- 

Torreiit” structure for a matching torrent key (see Figure 5.10). If found, the array of partial
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tracker addresses (see “tracker[MAX_TRACKER.S”]) is searched for the received tracker ad­

dress. If the address does not exists, then it is added. If the array of partial tracker addresses 

is full, then the farthest address is replaced by the received partial tracker address if it is closer 

in terms of hops; the newest entry is replaced first in the event of a tie. The routing protocol 

provides information on the hop distance to the tracker address if this is within the routing 

scope. When the torrent is selected to be fetched or forwarded, the address of the closest 

tracker in the array is employed as the partial tracker. However, the closest partial tracker 

can be a consumer which is due to start the fetching process at a later stage and thus it can 

not provide a peer list yet. This is the reason why the “KeyTrackerTinyTorrent” structure 

stores an array of potential partial tracker addresses. The node contacts the addresses of the 

“tracker” array in a round-robin fashion until one of them provides a valid peer list. A delay 

(by default 2 seconds) is introduced in between reejuests to i) wait for these nodes to become 

partial trackers, and ii) avoid overloading the network.

Thus, the dissemination process of the “PublisliTinyTorrent” message is utilised as a niecha- 

iiisin to fliscover nearby partial trackers.

2. “PeerListRequest” Message Interception: This mechanism enhances the previous mechanism 

by intercepting the “PeerListRequest” message (see Figure 5.3) eii route to the previously 

discovered partial tracker. Every relay node in the route towards the partial tracker checks 

whether it can act as a tracker for the recpiested torrent key. In this case, if the node can [U'ovide 

a peer list for the torrent, then it replies with a “PeerList” nies.sage (see Figure 5.4) and becomes 

the new partial tracker of the requesting node. The intermediate layer of communication with 

the routing protocol (see Section 5.3.4) is in charge of intercepting the message received from 

the routing layer. This layer takes appropriate actions to acknowledge the “PeerListRequest” 

message sent at the requesting node when a “PeerList” message is received from a different 

address.

3. Initial Seeder Contact: When the appointed partial tracker can not be contacted, this mech­

anism leverages the information contained in the key of the torrent (i.e. the generator of the 

torrent) to request the peer list from the initial seeder. However, this mechanism relies on 

the '‘PeerListRequest” Message Interception mechanism to intercept the message and locate a 

nearby partial tracker. If the initial seeder can not be contacted, as the routing protocol does 

not have an entry in its routing table, then the mechanism can not be employed.
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4. Routing Discovery Scope Increment: This mechanism is employed when neither the appointed 

partial tracker nor the initial seeder {Initial Seeder Contact) can be contacted, either because 

the end-to-end routing connectivity fails, or because the node is out of the routing discovery 

scope (i.e. its address is not in the routing table). In this situation, the Tiny Torrents protocol 

instructs the routing layer, through the intermediate routing communications layer (see Section 

5.3.4), to increase its defanlt discovery scope while searching for the partial tracker node. The 

default routing discovery scope is incremented by a factor of X hops to try to reach the node. 

Current ly, the scope is increased by 3 hops. When and if a partial tracker is discovered, the 

“PeerListRequest” message is sent towards the node.

5. UMG Service Discovery: When neither the appointed partial tracker nor the initial seeder can 

be reached and the Routing Discovery Scope Increment mechanism fails or is not employed, 

then the Tiny Torrents protocol make use of the Ubiquitous Mobile Gradient (UMG) routing 

protocol service advertisement and discovery functionality (see Ghapter 4, Section 4.4) in the 

search for potential partial trackers. Two mechanisms are available:

• Local Discovery: This approach exploits local information in the routing table to provide 

a potential target node in the peer list search process. Rather than using random walks 

algorithms, this mechanism follows the route towards a potential consumer of the torrent 

while at the same t ime leveraging the benehts of the “PeerListRequest” Message Intercep­

tion mechanism. For the location of potential trackers, the Ubiquitous Mobile Gradient 

(UMG) routing protocol provides a service advertisement mechanism which spreads a 

description of the general interest of each consvmier node. In other words, a description 

of the type of torrents which each consumer is interested in acquiring/storing is initially 

spread to the nodes within the gradient spreading scope of each consumer. The descrip­

tion inchides human-readable tags which are dehned by the application layer. Thus, a 

given node contains in its routing table a list of contactable nodes and their associated 

descriptors, which serve as a list of potential candidates when searching for a peer list of 

a particnlar type of torrent. Gurrently up to a maximvim of three nodes from the routing 

table are selected to be contacted which best match the description of the torrent; more 

than three nodes can be considered to increase the success in the discovery, however a 

coinmunications overhead and delay is introduced when contacting each node.
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• Network Discovery: When tlie Local Discovery iiiechariisin can not find potential trackers 

within the local routing table, the Ubiciuitous Mobile Gradient (UMG) routing protocol 

leverages the gradient spreading process to discover nearby nodes with a similar service 

description. Nodes receiving the gradient packet spread their own gradients if their service 

descriptor matches the descriptor of the torrent in the packet within a certain degree 

of accuracy in the comparison of tlie descriptors; the accuracy is also transported in 

the packet (see Sections 4.4 and 5.7). Eventually, the requesting node receives gradient 

updates from nodes matching the request, thereby generating a list of potential consumers 

of the torrent for the Local Discovery meclianism to take place. The scope of the gradient 

is incremented when the discovery is not successful up to a maximum number of hops (the 

default scope is 5 with an increment of 3). This approach operates as a descriptor-based 

multicast Routing Discovery Scope Increment meclianism.

6. Tiny Torrents Service Discovery: While the UMG Service Discovery mechanisms are provided 

by the UMG routing layer to advertise and di.scover consumer nodes, the Tiny Torrents Service 

Discovery mechanism employs descriptor-based query messages at the Tiny Torrents layer to 

search for torrent files in the network. This mechanism, which is de.scribed in Section 5.7, is 

employed when a node is searching for a specific torrent or a description of a torrent which Inis 

not been received. For in.stance, this could have happened due to the node not being in the 

network at the time of the torrent message dissemination, or simply due to the torrent message 

not being successfully received. The mechanism is independent of the routing layer and thus 

it can operate with TinyHop or any other routing protocol. In the Tiny Torrents centralised 

version, the mechanism targets only the central tracker node to discover torrents. However, in 

the decentralised version, the mechanism is employed to target specific nodes, or to query a 

scope of the network, in search for torrents matching a description. Thus, the mechanism is 

also employed as a way to locate partial trackers, i.e. consumers of a specific node description, 

mainly in “Low Distribution Activity Environments”.

The combination of the above mechanisms seeks to increase the likelihood of finding a peer list for 

a given torrent in an unstructured manner. In this regard, some of the mechanisms can be avoided, 

prioritized, or their configuration parameters changed, e.g. the routing discovery scope, the delay 

time to forward, or the maximum nodes to contact, such that a balance between communication 

costs and peer list discovery success is achieved.
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5.7 Service Discovery in the TinyTorrents Protocol

Service discovery and advertisement mechanisms have been introdticed in the TinyTorrents protocol 

as an enhancement which allows for the localization of nodes providing services. In the TinyTorrents 

context, a service is defined as a torrent, a data file, or a torrent peer list, which is jrrovided by 

a sensor node for an interval of time. A node conld advertise a combined description of its stored 

torrents or the type of torrents it is interested in acquiring according to their meta-tag descriptors. 

Ill this regard, a sensor node should be able to describe itself according to its services. In addition, 

a mechanism to disseminate service descrijitors needs to be in place which allows for an efficient 

service discovery in sensor networks.

For the purposes of describing data in memory constrained sensor devices employing human- 

readable tags, a space-efficient structure which allows for the storage of multiple combination of tags 

has been implemented, i.e. a Bloom filter. A Bloom filter is a probabilistic data structure in the 

form of a bit vector which stores the membership of an element by setting strategic bit positions to 

1 (see Section 4.4.1 for more detail on the Bloom filter).

Currently the TinyTorrents protocol defines 32-bit Bloom filters as descriptors (“descriptorBF”) 

employing 4 hash functions which produce 4 strategic positions in the bit vector for each stored 

item. False positives can occur when querying a Bloom filter; this occurs when positions which have 

been set to 1 match a combination for an item which has not been previously stored. False positives 

could be avoided in advaiu'e by checking for possible collisions amongst combinations of the range 

of elements to be stored, i.e. vocabulary of tags. Usually a maximum of 4 tags is sufficient for a 

descriptor in a torrent to characterise a data file in a sensor network. According to Equation 4.7 in 

Section 4.4.1, the probability of a false [)Ositive in a Bloom filter of 32 bits in size, employing 4 hash 

fimetions and inserting 4 elements is equal to 0.025. This probability of false positives is acceptable 

for the purpose of service discovery in TinyTorrents while false negatives are not given. However, 

different combinations of tags can be tested beforehand to minimize the presence of false posit ives.

Service advertisement is realised in TinyTorrents by encapsulating a Bloom filter descriptor in 

the torrent file which is transported in the “PviblishTinyTorrent” message (see “descriptorBF” in 

Figures 5.1 and 5.2). The Bloom filter descriptor is employed to describe the data file associated 

with the torrent. Service discovery is achieved by querying the list of torrents stored in the local node 

or in other nodes in the network. The cpiery process searches torrents matching a given descriptor 

and a period of time when they were created. For network querying purposes, a special message, the 

“Query” message, has been defined (see Figure 5.19).
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Query Message

nx uintie t fromid;
nx uintlG t destinationid;
nx_ui nt8_t hopsToLive;
nx_uint8_t descriptorBF [BF_SIZE];
nx_uint8_t accuracyBF;
nx uint32 t CurrentTimeAtSender;
nx uint32 t timeCreatedFrom;
nx uint32 t timeCreatedTo;

Fig. 5.19: TT - Query Me.ssage Structure for the Torrent File Service Discovery

The “Query” mes.sagc coiitain.s the torrent descriptor (“descriptorBF”) which is to be retrieved. 

When the "Query” message is received, the node search its list of stored torrents and returns those 

matching the description in the “descriptorBF” field (see Figure 5.19) with a degree of tolerance 

indicated by the “acctiracyBF” field. The calculation of the similarity between Bloom filter descrip­

tors is performed at bit level, snch that the query descriptor needs to match the ciueried descriptor 

bit vector with a percentage of bits set to 1 equal or greater than the “accuracvBF” value. The 

(jneried descriptor could contain a higher number of bits set to 1 and match the desired “accura- 

cyBF” percentage. This indicates that the torrent is described with a higher number of tags, which 

in i^rinciple should not be a drawback in the selection of the torrent as a candidate. The cpiery 

system also checks the torrent creation time which needs to fall within the period of time defined 

by the “timeCreatedFrom” and “timeCreatedTo” fields (both in milliseconds). Like in the Publish 

Phase of the TinyTorrents protocol (see Section 5.2.1), the compari.son between the time at the 

sender and the receiver is not .synchronized and thus the local time at the sender is transported in 

the “Query” mes.sage (“currentTimeAtSender”) to calculate the relative time again.st the local time 

in the receiver. This is a soft real-time synchronization mechanism which introduces a degree of 

inaccuracy in the time calculation which increases as the number of hops in the query process gets 

higher; a synchronization accuracy of less than 500 ms was achieved in a network of 30 motes with 

distances of up to 4 hops, however further testing is required as this was out of the scope of this 

thesis.

The “Query” message is sent to a node providing it is contactable. For the location of potential 

nodes which can provide torrents matching a particular description, the Ubiquitous Mobile Gradient 

(UMG) routing protocol (see Chapter 4) advertisement and discovery mechanism is employed which 

is also based on Bloom filter descriptors (see Section 4.4). UMG enables the application layer to 

describe the type of services the local node provides or is interested in, and leverages the gradient
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creation process to advertise them. This way, the routing table of the UMG routing protocol provides 

a list of service descriptors which can be queried to find out potential consumers with a high likelihood 

of containing the torrent descriptor. This will narrow the qtiery sjmce while providing information 

on the proximity of the potential consumer.

When the TinyTorrents protocol operates on top of other routing protocols, like TinyHop, the 

query process can be achieved by querying nearby neighbourhoods, i.e. by flooding the neighbour­

hoods X hops away with the “Query” packet. The flooding process of the “Query” message is limited 

in scope with the “hopsToLive” field of the packet (see Figure 5.19). The “hopsToLive” field acts 

as a decreasing counter which when reaching 0 indicates to the receiving node not to forward the 

(jnery packet. While expanding ring strategies can be implemented to keep on increasing the scope 

of 1 he flooding process when the search is not successful, they increase the communication overhead. 

When a torrent discovery process fails after contacting a set of potential consumers, the TinyTor­

rents protocol assumes the torrent is cither too farther away or it does not exist. In this case, it will 

be inefficient in terms of communication to try to acquire the torrent. Depending on the nature of 

the application, the communications overhead can be accepted. Nevertheless, if a mobile gateway is 
being employed for query purposes, its geographical relocation will be another option to consider.

On reception of a “Query” message, nodes reply with each matching torrent file. For this purpose, 

the “QueryResponse” message is employed which has the same structure as the “PublishTinyTorrent” 

message (see Figure 5.2). The “accuracyBF” field and the available list of matching torrents at each 

node determines the nnniher of torrent replies. Once matching torrents are received, the data fetching 

process can begin.

The torrent discovery mechanism can be employed by any node in the network both at the 

application layer and at the Vuze plugin gateway via the “TinyTorrentsCore” module. Consequently, 

the wireless sensor network can also acts as a distributed data storage.
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5.8 Summary

This chapter has presented the Tiny Torrents protocol, a selective data dissemination protocol for 

cooperative P2P data distribution in wireless sensor networks. The protocol employs existing P2P 

content distribution concepts, specifically from the BitTorrent protocol, to tackle the problem of 

providing a fair and selective data dissemination capability in scalable multihop wireless sensor 

networks.

A detailed description of the operation of the protocol has been provided through detailed ex­

planation of each of the phases from a functional and architectural perspective. The Tiny Torrents 

protocol has been presented as a data distribution layer offering two modes of operation: i) partially 

centralised and ii) decentralised.

In the centralised version, the benefits of having a central point for data distribution management 

are diminished by the reduced scalability of the protocol and the lack of information about the 

localization of peers. Having a central node which tracks the identity of the peers involved in the 

distribution process is of great benefit when aiming to balance the network traffic of a relatively small 

sensor network. However, a central point of failure diminishes the fault tolerance of the system and 

poses a security risk, mainly in wireless networks of unreliable constrained devices. As a consequence 

of this, the decentralised version of the Tiny Torrents protocol has been designed and presented as a 

fault-tolerance solution which eliminates the unique central tracker and makes the system scalable.

The decentralised version of the Tiny Torrents protocol employs a set of unstructured discovery 

mechanisms for efficient location of partial trackers capable of providing a list of peers from which 

to dowrdoad the data file. Different peer selection strategies have been explored for the retrieval 

of a list of peers from tracker nodes and for the selection of peers from which pieces of the data 

file are acquired. The mechanisms operate at the Tiny Torrents layer and leverage UMG routing 

information and functionality. In addition, a service/data discovery mechanism is provided for the 

efficient querying of data files based on human-readable descriptors.

To conclude, the decentralised version of the Tiny Torrents protocol presented in this chapter 

offers a data distribution system for sensor networks with the following properties: i) a high degree 

of fault tolerance and robustness, ii) efficient scalability in terms of communication (which depends 

on the consumer distribution), iii) a distributed self-regulated mechanism which seeks to balance data 

traffic distribution in the network and foster fairness, iv) a set of unstructured discovery mechanisms 

which, when combined, provide an efficient and effective solution for tlie scalable data distribution 

process and enable the use of the WSN as a distributed data storage medium.
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Evaluation

This chapter studies the performance of the protocols presented in this thesis. Initially, the operating 

system (TiiiyOS), employed for the implementation and evaluation of the protocols, is described, as 

well as the simulator (TOSSIM). Next, the specifications of two wireless sensor platforms employed 

in the evaluation are provided. The experimental settings and metrics employed in the performance 

analysis of the protocols are then presented. These initial sections jrrovide information on under­

standing the evaluation environment, before progressing to the performance evaluation.

The following section focuses on the evaluation of the Tiny Torrents protocol operating with the 

UMG routing protocol. The TinyTorrcnts architect\ire is evaluated in its centralised and decen­

tralised modalities under the set of peer selection policies proposed in scalable scenarios of up to 400 

nodes. The behaviour of the system under different conditions, such as torrent dissemination policies 

or number of consumers and producers, is also studied. At the end of the section, the performance of 

the decentralised TinyTorrcnts protocol is compared against two state-of-the-art dissemination pro­

tocols, DIP and DHV, and is also evaluated in a real-world testbed comprised of 64 motes. Finally, a 

summary of the chapter is providcxl which highlights the weaknesses and strengths of the operation 

of the protocols and their contribution to the sensor networks data dissemination process.
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6.1 The TinyOS Operating System for WSN

The set of protocols presented in this thesis have been inipleniented and evaluated in TinyOS v.2.1.1 

[96], the latest version of the most commonly used operating system for WSN. TinyOS 2.x. is a clean 

retlesign and re-implementation of version 1.x, which overcomes some fundamental limitations of its 

previous version. The stability of the system and its usability have been improved with: i) a three 

layer hardware abstraction hierarchy to decouple components, ii) higher booting and initialization 

control, and hi) an optimised scheduler which only allocates one instance of a task at a time in the 

FIFO queue.

From an architectural point of view, TinyOS is an event-driven, component-based framework: 

independent components are linked together to build the final application to be loaded into the 

mote, and higher level components communicate with lower level ones by issuing “commands’' and 

waiting for “events” to be signalled. Commands and events are decoupled and non-blocking, so 

that the command returns immediately and the response is signalled afterwards. This behaviour is 

usually defined as “split-phase”: the invocation (call) and the completion (signal) of an operation 

are distinct with two different execution times. Long term operations, or tasks, form a third abstract 

computational unit and are .scheduled on a non-preemptive FIFO basis. A task, which always runs 

to completion, can be posted to the scheduler queue by a command, event, or another task, where 

a task can also po.st it.self. This design allows for very long computations to be split into multiple 

tasks that will post themselves.

The programming language employed to build TinyOS is known as “nesC” [219] and is a con­

traction of the “C” language which has been tailored and optimised for devices with low power and 

constrained resources. NesC is also an architecture description language which employs “configura­

tion” components to interconnect interfaces. Additionally, “module” components provide, use and 

implement the functionality of these interfaces. Application layer components are compiled and stat­

ically linked with lower layer components in a process called “wiring” whic:h produces a monolithic 

image of the required components in the system. The binary image is then loaded into the motes.

TinyOS applications are characterised by a small memory footprint, both in RAM and ROM, 

which varies according to the functionality and the number of components required. TinyOS pro­

vides support for a list of sensor network platforms in a modular way where low-level components 

implement the functionality for each chip. For instance, the niicaZ [16] and telosB [30] wireless sensor 

platforms integrate the same transceiver but different microcontrollers and flash memory chips.
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6.2 The TOSSIM Simulator

TOSSIM [105 107], now in version 2.1.1, is an open source system simulation environment included 

in Ihe TinyOS suite [96]. It can capture a wide range of network interactions, and is capable of 

scaling up to over one thousand nodes by simulating using a fine-grained, bit-level granularity [105]. 

TOSSIM is a discrete event simulator, such that the operation of the system is driven by the execution 

of chronologically ordered events which react to, and change, the state of the system [220]. For 

instance, the sending of a packet is represented as an event in the events queue which occurs at a 

specific instant in time and lasts the transmission time of the packet. The simidator calculates the 

reception t ime of the message according to the sending of the packet and creates an event in the 

cpieue which is pulled and executed right, after the jirevious event has been processed. Events are 

ordered by the time when they occur and how long they take and are executed instantaneously. In 

this sense, TOSSIM is a simulator, not an emulator. However, it does not capture the behaviour of 

the mote at the instruction level. Thus, if an application is CPU intensive, it is very hard to capture 

the exact amount of time Ihe microcontroller spends in active state.

TOSSIM is integrated in the TinyOS suite as a library which enables the user to control and 

configure the simulation environment, such as topology, noise floor, radio and MAC models. It makes 

use of most of the code in the stack of a TinyOS application to generate the executable and replaces 

low level chip components with an imi)lenientation of their behaviour. Currently, TOSSIM supports 

simulation of the main chips integrated in the micaZ sensor platform (see Section 6.3.2), the Atmel 

ATmega 128L niicro]5rocessor [221] and the Texas Instruments CC2420 Chipcon Transceiver [29]. 

The CC2420 transceiver is also integrated in other platforms such as the telosB mote (see Section 

6.3.1) and thus simulations at network level in TOSSIM can also be employed to test the networking 

activity of these type of sensor devices. Since TOSSIM maps directly to the TinyOS code, compiling 

an application for the simulation environment is as simple as compiling it for the real mote. This 

api)roach reduces the gap between the simulator and the real environment. By replacing low level 

components, a high level of fidelity between the functionality of the system in the simulator and in 

the real device is achieved. This also enables testing the codebase of an application both at node 

and network levels before testbed deployment. For this purpose, TOSSIM offers a debugging output 

system (dbg) which allows printing the state variables of each node at execution time. In addition, 

GDB, the GNU Project debugger, can be used to debug the code.

Good scalability is a natural conseciuence of the TinyOS design: mote based applications are 

usually small in size and each internal component has its own private and static frame, thus sim­

plifying the simulation overhead and allowing simulation of hundreds of nodes in memory. Levis
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et al. [106] tested the effects of scalability on TOSSIM v.l with respect to activity on each of the 

nodes and the iinmber of nodes in the system. A simulation comprising 8192 motes over 12.5 virtual 

seconds took about 2.75 hours, with the overhead mainly due to the simulation of radio model and 

the MAC scheme. However, depending on the radio communication activity and the complexity of 

the protocols, the number of nodes has a great impact on the simulation execution time.

The MAC object in TOSSIM controls variables such as backoff, packet preamble length, radio 

bandwidth, etc., and by default is configured according to the CC2420 transceiver chip operation. 

On the other hand, the radio propagation model in TOSSIM is based on the propagation strength 

of each node and the noise floor trace introduced by the user. Other parameters such as the receiver 

sensitivity are configured according to the CC2420 transceiver specification. The radio propagation 

model employs a Signal to Noise Ratio (SNR) curve derived from experiments with two micaZ motes. 

Additionally, noise floor and interference from the environment and other nodes are included in the 

model via the use of the Closest-fit Pattern Matching (CPM) algorithm. As described by Lee, Cerpa, 

and Levis [107], “the CPM model significantly increases the accuracy of the simulation in terms of 

packet delivery by acknowledging the time-dependence of wirele.ss noise”. “This model can capture 

bursts of interference and other correlated phenomena”. The CPM model exploits the non-linear 

behaviour of the relation between the packet reception ratio (PRR) and the signal to noise ratio 

(SNR). The user is responsible to create the topology in a connectivity file where unidirectional gain 

values between sender and receiver nodes in the network are assigned. Each gain value indicates the 

signal strength in dBm at which the destination receives the signal. Additionally, CPM generates a 

statistical model from the noise floor trace hie selected by the user. Three noise floor files are available 

in TOSSIM which have been obtained from different environments. In Table 6.1, the average and 

standard deviation of a subset of 5000 samples from the noise trace files are included, which provides 

an idea of the background noise in the network. Depending on the path attenuation between two 

nodes, indicated in the topology file, the SNR can be calculated from the noise floor, and according 

to the SNR/PRR curve, the packet drop rate is obtained. In Figure 6.1, the “Casino-lab” noise 

floor has been obtained from measurement at a laboratory in the Colorado Schools of Mines, which 

prodnces a lower level of noise than the very noisy environment in the Meyer library from Stanford, 

“Meyer-heavy”. These files are employed to test and compare networking protocols operating on a 

specific topology under different levels of attenuation.
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Table 6.1: Statistical Comparison of Noise Floor (dBm) Traces in TOSSIM for 5000 samples.

Noise Trace Casino-lab TTX4-DemoNoiseTrace Meyer-heavy

AVG -97.69 -95.55 -93.21

STDV 1.34 2.89 8

6.3 Wireless Sensor Platforms

6.3.1 TelosB

The telosB mote {TPR2420CA) [30] (see Figure 6.1) is a wireless sensor network platform developed 

by the University of California, Berkeley, which can be programmed with the TinyOS open-source 

operating system. While it was initially commercialized by Crossbow Technologies Inc., currently is 

being provided by Memsic Corporation. The telosB platform has been employed in testbed experi­

ments presented in this thesis.

Fig. 6.1: TelosB Mote

The device integrates the ultra-low power Texas Instruments 16-bit MSP430 microcontroller with 

an 8 MHz CPU. It conies equipped with a 10 KB RAM module, 48 KB programming memory and 

a 1 MB external flash memory for data logging. The current consumption of the microcontroller in 

Active mode is of 1.8 niA, while only 5.1 /lA in Sleep mode [30].

It incorporates the Texas Instruments 2.4 GHz CC2420 Chipcon Transceiver [29], which is IEEE

802.15.4 [5] compliant. The CC2420 transceiver transmits in the ISM 2.4 GHz band (2400 - 2483.5 

MHz) with a transmission data rate of 250 Kbps. The IEEE 802.15.4 specifies 16 channels within the

2.4 GHz band, in 5 MHz steps, numbered 11 through 26. For experimental purposes, single channel 

communication has been employed where channel 26 has been selected due to the low degree of 

overlap wit h IEEE 802.11 channels. The device integrates an on-board antenna capable of reaching 

up to 100 meters outdoors and 30 meters indoors. The RE output power of the CC2420 transceiver 

is programmable, which not only enables dynanuc transmission power control but also facilitates
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the testbed deployment for multi-hop testing purposes. The output power register in the CC2420 

transceiver varies from level 3 at -25 dBm and a consumption of 8.5 niA, to level 31 at 0 dBm with 

a consumption of 17.4 niA. Accordingly the transmission range also varies which also depends on 

the environment where the mote is placed. On the other hand, when the transceiver is in receiving 

mode, the current drawn is 23 niA. Therefore, it can be observed that the most expensive activity in 

terms of power in the transceiver, and also in the whole architecture of the device, is the reception 

of a message (RX mode). In contrast to the transniLssion mode (TX mode) which is only enabled 

for the time it takes to transmit the message, the reception mode needs to be active not only for 

receiving a packet but also while listening. This is the main reason why most of the efforts to save 

energy in wireless sensor devices focus on the design of low power listening policies which duty cycle 

the transceiver from RX mode to Sleep mode with a current consumption of 1 fiA.

The mote comes with a USB port for jjrogramming purposes and gateway connectivity employing 

the serial RS-232 standard. In addition, the telosB integrates a set of sensors: visible light, visible 

to IR light, humidity and temperature sensors. The device is powered by a set of 2 AA batteries.

6.3.2 MicaZ

The micaZ [16] mote (see Figure 6.2), like the telosB, was originally developed by the University 

of California, Berkeley, and can be programmed with the TinyOS open-source operating .system. 

While they were initially commercialized by Crossbow Technologies Inc., currently they are being 

developed by Menisic Corporation. The micaZ mote is employed as the reference sensor platform 

for the ini])lenientation of the low level components in the TOSSIM simulation.

The micaZ platform incorporates an 8-bit Atmel Atniegal28L microcontroller [221] with an 8 

MHz CPU. It integrates the following memory modules: 4 KB SRAM, 128 KB flash memory for 

program code, and 512 KB flash memory for measurement/data storage. The current consumption 

of the microcontroller in Active mode is 8 niA, while less than 15 frA in Sleep mode [16]. The micaZ 

mote integrates the 2.4 GHz Texas Instruments Chipcon CC242() [29], the same radio transceiver 

incorporated in the telosB device (see Section 6.3.1).

The inicaZ is powered by two AA batteries and it comes with a 51-pin UART expansion connector 

for communicating with expansion and gateway interfacing boards, e.g. the MIB520CB board [222] 

employed for programming and gateway connectivity purposes. The micaZ sensing board interfaces 

through the 51-pin expansion connector to provide add-on sensing capabilities.
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Fig. 6.2: MicaZ Mote

6.4 Experimental Settings and Performance Metrics

For evaluation purposes, a .series of settings and metrics have been enij)loyed to assess the performance 

of the protocols under a wide range of test case scenarios.
Five topologies have been employed in the evaluation. The reference topology is a regular mesh 

layout comprised of nodes eveidy distributed with an inter-distance of 25 meters; this type of topology 

is known as Square Grid (SG). Three scalable SG topologies have been created comprised of G4, 256 

and 400 nodes with network sizes of 200x200 meters (see Figure 6.3), 400x400 meters (see Figure 

6.5) and 500x500 meters (see Figure 6.7) respectively. Additionally, two irregular mesh topologies of 

64 and 256 nodes have also been created where each node is placed randomly within its associated 

25x25 meters area following the SG topology layout (see Figure 6.4 and 6.6); this type of topology 

is known as Random Uniform (RU).

Different network densities have been achieved by the variation of the transmission range - in 

real devices this is achieved through the node’s transmission power. For this purpose, the link 

layer model generator from Zuniga and Krishnamachari [223] produces a TOSSIM compliant gain- 

based tojrology based on the geographical coordinates of nodes in the network. The tool allows to 

configure the parameters involved in the log-riorrnal shadowing path loss propagation model which 

establishes the attenuation factor as a function of the inter-node distance. For the purpose of this 

evaluation, two configurations have been selected through experiments carried out in TOSSIM. The

191



6.4. Experimental Settings and Performance Metrics

200

---------- 1----- ----- ----------- ------

-

175 56• 57• 59• 50 4' i- 4' -

150 48 49 50 51 52 53 54 55• • • • • • •

125 4“ 4' 4- 4^ 4* 4' J6 4^ -

100 32 33 34 35 36 37 38 39• • • • • • •

75 14 13 16 17 1*^ l‘> 30 31% % • •

50 40 17• 4« 4’ 4" 21•
->■)
r 4' -

25 i 9• 4« 4' 12• 13• 4^ 4' -

0 4’ • i i 4• i i 7•

1

-

0 25 50 75 100 125 150 175 200
Meters

Fig. 6.3: Topology with 64 Nodes in a Square Grid (SG) (200x200 meters)

200

175

150

125

100

75

50 -

25

“t-----------1----------- 1----------- r“

5V S() 61

i" i‘

16 i’

'*4

33 4’• 34 •

S'-

43 f

y y

0 -

_]__________I__________I__________L-

Fig. 6.4: Topology with 64 Nodes in a Random Uniform (RU) Grid (200x200 meters)

192



Chapter 6. Evaluation

400

375

-
------

240

^---

'’41

—1—

‘>4‘>

~i—

'•43

—1—

*’44

—1---

'’45

—1—

^46

^—

'•47 '’48

—1---

?49

—t---

250

—1---

'*51

—1---

^5?

—1---

P

—1—

■’54

—1----- 1

255
-

■■ • • • • ■

350 - 2^4 =*■' 2^6 247 248 249 2.10 2.41 2.42 233 P 2.4,4 2.46 P 2^8 2^9 -

325 - 2^8 2^ 2J0 P P P P P P P P P 2^0 P 2^2 2^3 -

300
19? 193 )94 195 1^6 197 198 199 *>00 ■’01 ?0? "•O? '’04 '’05 ?06 207“ • • "

275 176• y= 178• P 180• 181• 182• 183• 184• 185 186 187 188• 189• 1^1 P -

250 l^iO y P P 1^ 1^.1 1^6 P 1^8 1^9 P P P P P P -

225 144 145• 146 147• 148 149• 1.40 P '*- 153 P P 1.46 P 1.48 P -

200 ns n9 130 131 pq 133 134 135 136 137 138 139 140 141 14? 143€ $ ♦ * • * * * 4 4 * • • • • -

175 'i= 'p P P P P P P P ni 1 ~in 14.4 144 P 146 P -

150 9,6 V 98• 99• ijtci P P- P l^M P 1^)6 p 1^8 1^ p P -

125 s> 81 8^ 83 84 85 86 87 88 89 90 91 QT 93 94 95• • • • • • • • • • • • • • • -

100 y J9 70• 71• 72• 73 75• 76• 77• 78• 79• -

75 48• 49• 50• 51• 52• 53• 54• 55• 56• y 58• 59• 4" 4' 4= y -

50 32• 33• 34• 35• 4'^ 37• 39• f 4' 4= 4= 4-* 45 i6 4= -

25 1’ 40 >' -n
r i= i-* *<■ i= i« i’ ■4" 4' -

0 2 i i
_i__

* 4• i 2 i S 2 4" 4' 4= y 4^ 45 -

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 
Meters

Fig. 6.5: Topology with 256 Nodes in a Square Grid (SG) (400x400 meters)

400 

375 - 

350 

325 - 

300 - 

275 

250 - 

225 - 

200 

175 - 

150 - 

125 - 

100 

75 

50 

25 

0

“1----- r
240

T------1------1------1------1------1------1------1-----
246 247 249• • • • •

T----- r “I----- 1----- 1----- r
■’4'’241 -i-

242 24.1 
241 * *

r,. 2J7

2^(1 2.41 
2.44

=*-2.44 2.44=*-
2^4 2^6 y ^

■> 1 ^ • ~£^>"•'210 =i'
247 248 249

'444 =*’<’ *
■-*’ • 221-*- 244
il« 240 * *

204 204
1J6

177 'S
'i'" *161 'i= ' *

■” * '*=&6 *■

1^6li7>i« f 
* 171 1^2 'i

nn • _.

1^9 191

'*Vl.40 '*=',,, * '*24

112 r,4 Ws
’7%'J-^^* 1

•’ * ^ 100 101

yo • 156 147 '*=•’ *
,^,15-4* * 158
144 * * ..yo* 141n7 

♦ 138
52144 144

80 tl

4*
48 i** 2'
• -i= ■i>44

84*
%.4' •= ^

i'2’ * • 2'JO • 42
•• 55 •

*
\m ni1J7 P •* to4 - - ' 125'*- ,,

* 10,4 104 * 108 * y" y
1112 * 88 '2* 109 *

59 •
74 74

58

86^- »" 
85^ i=

, 142*
•1^7

145'i^ *

94 t)S• 78 •

2> 2=

35
46 -17 *8 40* 41 4.2

•22 ■),

2* • 64 i‘
5f 61 ^2 i1 •

if 44
• • 45 46 _

^4 ,4 6 *'2
s V

_1_ _ _ _ _ _ 1_ _ _ _ _ _ I_ _ _ _ _ _ L_

4.8 40

G. ‘

_1_ _ _ _ _ _ 1_ _ _ _ _ _ 1_ _ _ _ _ _ L_

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Meiers

Fig. 6.6: Topology with 256 Nodes in a Random Uniform (RU) Grid (400x400 meters)

193



6.4. Expcriineiita.1 Settings and Performance Metrics

500 ---------- —— 1 J 1 1 1

475 .1^2 W ¥ ¥ 3^6 ¥ .3^8 3j|9 390• 391• 392• ¥ 394• 395• 396 397• 398 399• -

450 .2^1 3^2 ¥ 3^ ¥ 3^)6 ¥ 3^8 3^9 3^0 ¥ 3^2 ¥ ¥ ¥ ¥ ¥ ¥ ¥ _

425 340• 341• 342• .343 344• 345• 346 347• 348• 349• ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ -

400 ,1^1 ¥ ¥ ¥ ¥ ¥ ¥ .3^9 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ _

375 .3^)0 3^2 W 3^ ¥ 3^ ¥ 3^8 3^9 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 318• ¥ _

350 280• 281• 282• 283• 284• 285• 286• 287• 288•
289
• 2^) 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^ _

325 260• 261• 262• 2.63 264• ¥ 266• 267• 268• 269• 270• ¥ '>7') 273• 274• 275• 276• 277• 278• 279• .

300
240• 2.41 242• 243• 244• 245• 246• 247• 248• 249• ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 2^9 _

275 2J0 TT) ¥ ¥ 2J5 ¥ 2^7 2^8 2^9 ¥ ¥ 2^2 ¥ ¥ ¥ ¥ ¥ ¥ 2^9 _

250 2{K)• 201• 2^2 203• 204• 2^5 206• 2^)7 2^8 209• 2j0 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ _

225 . 1^0 181• 182• 1^(3 ¥ ¥ lj|6 ¥ 1^8 1^9 ¥ ¥ ¥ ¥ ¥ 1^6 ¥ 1^8 l^) _

200 - 1^0 161• 1^2 163• 164• ¥ 166• 167• 1^8 1^9 ¥ ¥ 172• 173• 174• ¥ 176• 177• 178• 179• _

175 . 140• 141• 142• 143• 144• 145• 146 147• 148• 149• ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 1.69 _

150 . 120•
1 T> ¥ ¥ ¥ ¥ 127• ¥ 1^9 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ _

125 I^K) ■i” ¥ ¥ ¥ \j^ ¥ 1^8 1^9 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ _

100 S’ i' ¥ ¥ ¥ f 90 91
• 92• 93• 94• 95• 96 98•

99
• _

75 i' J3 54 ¥ ¥ f f 70
• 71• 72•

73
• 74• 75• 76• 77• 79• _

50 i" 41• i- 43• ¥ 46• 47• f 50• 51• 52• 53• 54•
S5
• 56• 57• 58• 59

• _

25 i" TT
V i-* ¥ i'’ 27• 30• 31• 32•

33
• 34• 35• 36• 37• 38•

39
• _

0
0• • 4 i 4• • 6• 7• 8• i" 11• 1= if I’’ 18• I** -

0 25 50 75 100125150175200225250275300325350375400425450475500
Meters

Fig. 6.7: Topology with 400 Nodes in a Square Grid (SG) (500x500 meters)

experiments calculate the average tran.smission range in meters when packets cease to be received by 

a node moving away from the sender. Employing the “Gasino-lab’' noise floor trace hie in Table 6.1, 

the first configuration averages a radio tran.smission range of 37 meters while the second configuration 

produces a range of 56 meters.

The noise floor in the network has also been varied in the experiments. Two noise floor traces 

have been employed which are included in the TOSSIM simulator (see Figure 6.1). They differ from 

each other in the average noise floor value and the standard deviation of the sample distribution 

which impacts the packet reception ratio and its stability. The “Casino-lab” noise trace has been 

used in most of the test case scenarios, while the “Meyer-heavy” noise trace hms been employed to 

produce scenarios with a high degree of packet loss.

At the Medium Access Control (MAC) layer, the contention-based Carrier Sense Multiple Access 

(CSMA) protocol with Collision Avoidance (CA) has been utilised both in the simulator and in 

the real testbed of TelosB devices. This is the default MAC protocol in TOSSIM which calculates 

backoff and preamble times according to the specifications of the CC2420 transceiver. Software 

acknowledgements have been enabled while hardware acknowledgements have been disabled.
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6.4.1 Performance Metrics

The list of metrics employed in the performance evaluation of the Tiny Torrents protocol operating 

on top of UMG are now presented and defined.

1. Total Packets Sent (TPS): The number of packets sent by a node at the MAC layer.

2. Total Packets Received (TPR): The number of packets received by a node at the MAC layer.

3. Network Total Packets Sent (NTPS): The sum of the Total Packets Sent by all the nodes in 

the network.

4. Network Total Packets Received (NTPR): The sum of the Total Packets Received by all the 

nodes in the network.

5. Average Network Total Packets Sent (A-NTPS): The sum of the Total Packets Sent by all the 

nodes in the network over the number of nodes in the network.

6. Average Network Total Packets Received (A-NTPR): The sum of the Total Packets Received 

by all the nodes in the network over the number of nodes in the network.

7. Torrents Received; The number of unique torrents (PublisliTinyTorrent Message) received at 

each consumer node.

8. Torrents Completed: The ratio of the number of unique torrents for which the data has been 

successfully acquired to the Torrents Received metric.

9. Average Time Data File Completion (A-TDFC): The average time it takes for a torrent received 

at a node to acquire the whole data file from the moment the torrent is successfully selected 

from the rpieue of received torrents. A torrent might be selected and then returned to the 

qiieue when a valid peer list can not be retrieved from any tracker and there are more torrents 

waiting in the queue. The average is computed for all the torrents received at a node.

10. Piece Messages Sent: The total number of data messages (Piece Message) sent by each con­

sumer/producer node. This metric quantifies the involvement of a constuner/producer node 

in the data distribution process of a torrent, or set of torrents, as compared to the rest of the 

consumers in the swarm. For comparison purposes, all the consumers/producers in the swarm 

must be involved in the data distribution of the same list of torrents.
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11. Jain’s Fairness Index (JFI): Tlie Raj Jain Fairness Index [224,225] is a metric employed to 

assess the degree of fairness in the resource utilisation within a set of nodes in the network. 

The JFI is computed by equation 6.1,

JFI{xi,X2, ■..,x„) (6.1)
Eri 9

where “n” is the number of nodes, and “x(i)” the resource value being .studied. In our experi­

ments, “x(i)” corresponds to the total number of packets sent or received. The interpretation 

of the JFI result ranges from: i) ^ (worst case scenario) to ii) 1 (best case .scenario) where all 

nodes are allocated the same resource.
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6.5 Evaluation of the TinyTorrents System

This section provides an evaluation of the TinyTorrents protocol presented in Chapter 5 operating 

above the Ubiquitous Mobile Gradient (UMG) routing protocol (see Chapter 4). The UMG routing 

protocol has been selected over TinyHop due to its design which better enhances the data distribution 

and the unstructured discovery processes of the TinyTorrents protocol.

The performance evaluation seeks to demonstrate the capability of the TinyTorrents distribution 

system to disseminate data from producer nodes to a set of consumer nodes in a reliable and scalable 

manner where the network traffic is fairly distributed. The two modalities of the TinyTorrents 

protocol, i.e. centralised and decentralised, are evaluated and compared in terms of the metrics 

presented in Section 6.4. A performance comparison of the two modalities operating with the list 

of peer selection policies is presented in Section 5.4 which shows the degree of fairness achieved in 

both the network traffic and the data traffic amongst consumer nodes. A set of scenarios have been 

developed to test the performance of the system under different network conditions where the density 

and distribution of consumer nodes in the network has been varied.

6.5.1 Methodology

An application employing the exposed “TinyTorrents” interface (see Section 5.3.1) has been devel­

oped which controls the distribution process of the TinyTorrents framework. At any given time, 

the node can start distributing locally generated data, thus becoming a producer. A producer node 

indicates the data file which is to be distributed and instructs the TinyTorrents protocol to start the 

di.ssemination process. Currently, the system is capable of distributing files of up to 255 bytes; this 

limit has been established considering the available RAM memory of the motes in the real testbed, 

i.e. 10 KB for the telosB [30]. A data file of 255 bytes is subsequently divided by the TinyTorrents 

protocol into 16 pieces of data; by default the size of each piece of data is 16 bytes which has proved 

to achieve an efficient balance between reliability in the transmission of the message and amount 

of data being transported. The majority of the experiments have been carried out with one pro­

ducer (node address 1), publishing a data file of 255 bytes every 100 seconds for a total number 

of 20 files (see Table 6.2). With this configuration, the effects of the distribution process can be 

clearly observed as a function of the number and the position of consumers in the network. When a 

producer node starts the distribution process, the torrent file is disseminated through the network. 

In this phase, the application layer decides, when receiving a torrent message, whether the node is 

acting as a consumer of the data file and whether the torrent file is to be disseminated (broadcast).
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For this purpose, tlie Tiny Torrents interface fires two events to the application layer when a new 

torrent file is received. The application layer decides i) if and when the fetching process of the data 

needs to be started (“delayToFetch” event) and, ii) if and when the torrent file is to be broadcast 

(“delayToForward” event); see Section 5.3.1 for a detailed explanation. Thus, based on the received 

torrent file, the node decides whether to become a consumer of the data file. For testing purposes, 

a set of strategies have been created which control the distribution of consumers in the network (see 

Section 6.5.1.2). In the same line, the .strategy for the dis.semination of the torrent file through the 

network is explained in Section 6.5.1.1 as a key artifact in the decentralised distribution process.

Table 6.2: Tiny Torrents Protocol Simulation Parameters

Topology Layout 64 Nodes Square Grid (SG) (2(K)x2()0ni) ; 64 Nodes Random Uniform (RU) Grid (20()x20()m) ;

2r)6 Nodes Stiuare Grid (SG) (400 x 400m) ; 400 Nodes Square Grid (SG) (500 x 500m)

Transmission Range 37 Ill ; 56 m

Noise Floor Trace Casino-lab ; Meyer-heavy

Data File Size 255 bytes (16 pieces)

Data File Producer 1 Producer (Node 1)

Producers Torrents Published •21)

Producers Publish Intcr\'al 100 sc'coluls

UMG Gradient Scope 5 liojis

The same topologies employed for the evaluation of the routing protocols have been selected. The 

64 nodes Square Grid topology (SG) and the 64 nodes Random Uniform (RU) Grid topology. In 

addition, 256 (SG and RU) and 400 nodes (SG) topologies have been created to test the .scalability 

of the architecture. Two noise floor traces have been employed: i) the Gasino-lab, which i)roduces 

moderate levels of noise and has been employed in the majority of the simulation scenarios and ii) 

the Meyer-heavy, which has been included to demonstrate the effects of high noise environments in 

a busy network traffic scenario. The variation of the network density has been achieved through the 

transmission range of the nodes, 37 meters or 56 meters. A variation in the network density has 

an impact on: i) the wireless medium access contention, ii) the packets flow in the routing protocol 

queues and hi) the number of potential candidate consumers in the peer selection process within 

the default routing scope. In this regard, the UMG routing protocol gradient advertisement and 

discovery scope (routing scope) has been set to 5 hops by default. A consumer can retrieve data 

from other consumers within its routing discovery scope; if a consumer is out of the scope of other 

consumers, the “Routing Discovery Scope Increment” mechanism, part of the unstructured searching 

mechanisms (see Section 5.6) increments the scope by 3 hops on request for consumers placed out.side
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of the default routing scope. However, only a subset of the consumer nodes might be reqviired to 

increase the scope while advertising their gradient. This depends on the distribution of consumers 

in the network and the inter-consumer distance.

Table 6.2 displays the list of the simulation parameters employed in most of the experiments, 

however the UMG Gradient Scope and the number of Data File Producers have been modified for 

a set of specialized experiments which test the unstrtictured discovery mechanisms. The simulation 

runs until the distribution process for all the torrents is completed and there is no activity in the 

network. Metrics are collected every 100 seconds and before the simulation is due to finish.

In the remainder of this section, the centralised version of the TinyTorrents architecture is com­

pared against the decentralised version for topologies with 64 nodes. The comparison evaluates the 

lienefits of using a central tracker as oiiposed to multiple partial trackers. Node 28, placed at the 

centre of the network topology, has been selected as the central tracker node since it can be reached 

from any node in the network with the current value of UMG gradient routing scope, while provid­

ing a much fairer comparison with the decentralised version. The range of i)eer selection strategies 

projjosed are also compared in both of the TinyTorrents modalities in order to identify the most 

suitable policy which fairly distributes: i) the load of data traffic amongst consumers and ii) the 

overall traffic amongst all the nodes in the network, while at the same time achieving a low commu­

nications overhead. The remainder of the experiments focus on the performance evaluation of the 

decentralised version of the TinyTorrents architecture configured to operate with the best peer selec­

tion st rategy. The most reliable and efficient version of the TinyTorrents protocol is evaluated under 

a variety of environment and network conditions, network size, consumer distribution strategies, and 

realistic scenarios where multiple producer nodes simultaneously piiblish torrent files. Finally, the 

performance evaluation of the TinyTorrents protocol is validated on a 64 telosB testbed.

6.5.1.1 Torrent File Dissemination Strategies

The strategy to disseminate the torrent file through the nodes in the network is a key mechanism 

in the discovery of partial trackers in the decentralised version of the TinyTorrents protocol (see 

“Torrent Dissemination Control” in Section 5.6). When a torrent is received at a consumer node, 

the “t racker” field of the message is replaced with the local node such that nodes are aware of closer 

consumers acting as partial trackers. The idea is that the first received new torrent waits in queue 

for a small period of time before it is forwarded. Nodes, on reception of the first instance of a torrent 

message, delay their broadcast according to the value returned from the event “delayToForward” 

lyy the application. Only one instance of a torrent message is broadcast by each node. The rest of
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the received instances of tlie torrent message populate a short array of 4 potential trackers. When 

the torrent message is dtie to be forwarded by a non-consumer node, the closest tracker from those 

received is included as the new tracker in the message. For this retison, in order to locate closer 

trackers, consumer nodes introduce a lower delay when broadcast the torrent message than the rest 

of the nodes. This is a requirement imposed by the TinyTorrents protocol upon the application 

layer. However, the application layer decides the delay introduced by nodes and consumers in the 

forwarding of the torrent message. In this regard, a minimum delay of 1 second in the forwarding of 

the torrent message is imposed on the application layer. This is due to the fact that the TinyTorrents 

protocol employs a number of sending attempts to increase the torrent message getting received. By 

default, the producer broadcasts the torrent message three times while the rest of the nodes broadcast 

it twice. In between broadcasts a delay of 300 milliseconds is introduced. In addition, a randomized 

time of 200 ms is added to minimize the likelihood of collisions.

For evaluation purposes the delay to forward the torrent message has been set to 1 second in 

consumer nodes while non-consumer nodes delay the forwarding for 3 seconds; this conhguration has 

been selected as it produces a progressive dissemination of the torrent messages through the network 

containing the address of closer partial trackers.

6.5.1.2 Consumer Distribution Strategies

The number and the distribution of consumers in the network is also a key factor which impacts 

the data distribution proce.ss. Having a high density of consumers will not exploit the benehts 

of the TinyTorrents selective data dissemination mechanism, but rather would suggest the use of 

epidemic mechanisms for data dissemination. On the other hand, if consumers are at a distance 

higher than the routing discovery scope (UMG Gradient Scope), the TinyTorrents system launches 

its unstructured discovery mechanisms (see Section 5.6). Expanding the routing discovery scope 

increases the communications cost and, at high distances, the packet delivery ratio stai’ts to drop. 

Thus, the strategy for selecting which nodes become consumers of a given torrent are paramount 

for the TinyTorrents system to be fully scalable. A balance needs to be achieved which takes 

into account the default routing discovery scope and the scope increment value employed by the 

unstructured discovery mechanisms to expand the searching scope.

Next, the consumer distribution strategies created for the performance evaluation of the Tiny­

Torrents system are defined:
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1. “64_8”: 8 consumers have been selected in the 64 Nodes Topologies (SG & RU) according to 

Figure 6.8.

2. “64_3ID”: 22 consumers have been selected in the 64 Nodes Topologies (SG & RU) according 

to Figure 6.9.

3. “256_25”: 25 consumers have been selected in the 256 Nodes Topologies (SG & RU) according 

to Figure 6.10.

4. “256_3ID”: 86 consumers liave been selected in the 256 Nodes Topologies (SG & RU) accord­

ing to Figure 6.11.

5. “400-21”: 21 consumers have been selected in the 400 Nodes Topology (SG) according to 

Figure 6.12.

6. “400-3ID”: 134 consumers have been selected in the 400 Nodes Topology (SG) according to 

Figure 6.13.

7. “_RAND_X”: a node becomes a consumer with a random likelihood of X% with the first 

torrent message received from a jrroducer. The first torrent message received from a producer 

(sequence value is 0) establishes the coiis\imer distribution in the network.

Most of these strategies have been selected to enable comparison with different density of con­

sumers and inter-consumer distance. However, the “.RAND_X” strategy is employed as a non- 

deterministic consumer distribution which can be used in unsupervised deployments where the inter- 

consumer distance might be greater than the routing discovery scope. When this occurs, the un­

structured discovery mechanisms are launched to locate a closer partial tracker; this might require 

to increment t he routing discovery scope.

The Tiny Torrents protocol sets a maximum time to complete the acquisition of a torrent data 

file before it is cancelled and discarded. Once a torrent is discarded or completed, the data fetching 

process for the next torrent stored in the queue is launched. Currently, on reception of a torrent, a 

consumer node delays the start of the data fetching process (“delayToFetch” event) between 2 and 

3 seconds. The time since the fetching process starts until the torrent is completed, or dropped, is 

computed with the Average Time Data File Completion (A-TDFC) metric for all torrents. Since 

the torrent file is disseminated through the network with a delay of 1 or 3 seconds at each hop, 

consumers will receive the torrent and start their data fetching process before a closer partial tracker 

is capable of providing a valid peer list. Thus, consumers need to wait and delay the acquisition of
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Fig. 6.8: 64_8 Consumer Distribution Strat­
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the data file until a valid peer list is retrieved from one of the potential partial trackers; this has an 

impact in the A-TDFC since this metric calculates the time since the torrent is successfully selected 

from the queue of received torrents to start its data fetching process.

In this respect, consnmers query the central tracker, or the list of partial trackers known, on a 

regular basis (every 2 seconds) until a valid peer list is retrieved. In the decentralised version, partial 

trackers are cpieried on a round-robin fashion, and a partial tracker can only reply with a valid peer 

list when it has become a seeder of the torrent being requested. This restriction acts as an admission 

control mechanism which regulate the data distribution process of each consumer in such a way as 

to increase the likelihood of communication with closer consumers which contain pieces of the data 

hie. As a consequence, the A-TDFC at each consumer provides an indication of the speed of the 

distribution process to reach the consumer area. However, v.dien more than one torrent is in the 

queue to be processed, the protocol does not wait until a valid peer list is received from a tracker, 

Imt rather it selects the next torrent in the queue until it hnds one for which a valid peer list can be 

retrieved. The queue is checked cyclically. When a selected torrent is returned to the queue due to 

the failure to retrieve a valid peer list from any of its potential partial trackers, the TDFC value is 

reset. In this sense, having more t han one torrent in the queue will reduce the likelihood of achieving 

higher values of A-TDFC, and thus the A-TDFC value could no longer be nsed to study the agility 

of the distribuf ion process. Additionally, a maximum value of TDFC must be set in the i)rotocol to 

prevent consumer waiting for long periods of time. This value has been set to 300 seconds, such that 

the results never reach it and thus the agility of the distribution process can be studied. The 300 

seconds maximum completion time is a sufficient high boundary for all the experiments to result in 

a 100% “Torrents Completed” ratio, i.e. all data files for the received torrents are successfully 

acquired by all the consumers in all the scenarios presented.

6.5.1.3 Peer Selection Strategies

The peer list selection strategy presented in Section 5.4.1 is utilised by a node acting as tracker to 

select a peer list. The same strategy has been employed in both the centralised and decentralised 

versions of the Tiny Torrents protocol, which employs the position of arrival of the peers into the 

swarm of the torrent at the central tracker or at a partial tracker. However, a partial tracker only 

replies with a peer list of a torrent for which it is a seeder. When a peer list message from a tracker 

provides a peer list with the maximum number of i)eers (by default 4), a second i)eer list request is 

sent to the tracker. The second request seeks to obtain a different set of peers and thus transports 

in its payload the list of peers which have already been received (see Section 5.2.2). On reception of
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the second peer list, the closest peer list (4 peers) are selected from the total set of peers retrieved 

(maximum 8). In this configuration, the a coefficient of the position-biised peer list selection strategy 

in Equation 5.2 (see Section 5.4.1) is set to its maximum value (OxFF) to favour the selection of 

peers with high positions.

Table 6.3: TinyTorrents Protocol Evaluation - Peer Selection Strategies

RD Random Selection

PFPL PieceRemaining First Position-Location-based Peer Selection

PO Position-ba.sed Peer Selection

PL Position-Location-based Peer Selection

CFPO Clo.sest First Position-ba.sed Peer Selection

IFPL 1-Ho]) First Position-Location-l)ased Peer Selection

CFP Closest First PieceReniaining-based Peer Selection

In addition, the li,st of peer selection strategies proposed in Section 5.4.2 have been evahiatofl. 

They are employed to select the peer of the list from which to accjuire a given piece of data. Each 

strategy has an impact in the: i) network traffic load, both in terms of received and sent ])ackets, ii) 

the fair distribution of pieces of data amongst consumers, and iii) the average time to complete the 

data file (A-TDFC). A performance comparison of the range of peer selection strategies is shown in 

the following section where the acronyms for the strategies are shown in Table 6.3.

6.5.2 Impact of Peer Selection Strategies: Centralised vs. Decentralised

This section presents an evaluation of the performance of the set of proposed peer selection strategies 

in scenarios of 64 nodes and 256 nodes with the following consumer distribution .strategies: 64_8, 

64_3ID, 256-25 and 256_3ID. In addition, the performance of the centralised (Central) and decen­

tralised (Decentral) versions of the TinyTorrents protocol have been analysed and compared for the 

64 node consumer strategies (64_8, 64_3ID). The topology layout selected for this evaluation is the 

Square Grid (SG), with a node transmi.ssion range of 37 meters and the Casino-lab noise floor trace. 

This evaluation identifies the most suitable peer .selection strategies for data di.stribution in wireless 

sensor networks while showing the efficiency of the decentralised version over the centralised version 

of the TinyTorrents protocol. All figures show results computed as the average of 5 rej)etitions for 

each scenario.
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Fig. 6.14: Impact of Peer Selection Strategies - Jain’s Fairness Index (JFI) of Piece Messages Sent 

- Average of 5 repetitions - Topologies: Square Grid, Transmission Range: 37 meters, Noise; Casino

The Jain’s Fairness Index (JFI) in equation 6.1 has been employed to calculate the data traffic 

load of the set of nodes in the swarm of a torrent(s) from a given producer. This has been achieved 

by computing the JFI of the number of Piece Messages Sent by each of the consumers, including the 

producer, in each scenario. The index provides the degree of fairness in the data piece distribution 

process; the metric does not take into account the routing traffic at each node. The JFI worst case 

scenario is computed as where n is the number of nodes in the swarm of the torrent capable of 

sending pieces of data (i.e. the number of consumers plus the producer). According to the mimber 

of consumers in each of the st rategies proposed, the JFI worst case - best case interval is; i) 64_8 

[0.11,1]; ii) 256-25 [0.038,1]; 64_3ID [0.043,1]; 256_3ID [0.011,1]. However, values close to 1 are not 

expected niairdy due to the fact that consumer nodes at the edges of the network, or at the end of 

the range of the data distribution process, might not even be required to provide pieces of data.

The JFI of the Piece Mes.sages Sent for the set of scenarios is shown in Figure 6.14. Overall, values 

of the JFI are above 0.5 which indicates the appropriateness of the position-based peer list selection 

strategy at t he tracker node, even for the random peer selection strategy. The PieceR.emaining First 

Po.sition-Location-based (PFPL) peer selection strategy outperforms the rest of the strategies in 

most of t he scenarios. As expected, the number and distribution of consumers has an impact in the 

JFI value. For the centralised version of the Tiny Torrents (Central), a sparse consumer distribution
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(64-8) iinjiroves the degree of fairness in the data piece distribution as compared to a higiily dense 

consumer distribution (64„3ID). Having a high number of consumers requesting a peer list within a 

relatively short period of time, in combination with the position-based peer list selection algorithm 

at the tracker, increase the likelihood of including consumers in the peer list which have not yet 

acquired a substantial number of pieces. Consequently, this has a negative impact on the fairness of 

the overall data piece distribution process. An admission control mechanism could be in place to delay 

the sending of the peer list when receiving multiple requests from consumers within a short period of 

time. However, the lack of topology information at the central tracker could delay consumers which 

might be key to provide pieces of data to farther consumers. This is one of the reasons why the 

decentralised approach is preferred over the centralised one. In fact, the decentralised (Decentral) 

version of the TinyTorrents protocol provides higher JFI values when the consumer density is higher 

(SID) in all the scenarios for the majority of the peer selection strategies. This is a consequence 

of the intrinsic fair behaviour of the decentralised version by which each partial tracker provides 

peer lists containing proximate consumers. This is also the reason why the proximity-bfused peer 

.selection strategies, CFPO and CFP, produce a good degree of fairness, specifically in high density 

of consumers (SID), despite not reaching the level of the PFPL strategy'.

According to the .HH re.sults in Figure G.14, the PFPL is the best .strategy when .seeking to 

distribute the load of data traffic among consumers. However, the total number of packets sent and 

received in the network need to be analysed to determine the efficiency in terms of communication 

at network level. For this jjurpose. Figure G.15 and G.IG show the Average Network Total Packets 

Sent (A-NTPS) and Received (A-NTPR) respectively for each of the scenarios being studied. In this 

regard, the ratio of the A-NTPR to the A-NTPS, which indicates the average number of neighbours 

receiving a j)acket from a neighbour node in the network, ranges between 5 and G. Results indicate 

the inefficiency of the TinyTorrents centralised solution as compare to its decentralised version in 

scenarios with a high density of consumers (G4_SID), while showing similar results when the number 

of consumers is relatively low (64.8). In all the scenarios, the two proximity-based peer selection 

strategies (CFPO and CFP), prove to be the most efficient in terms of packets sent and received at 

network level, with similar results. This is due to the Closest-First policy which initially selects the 

set of nearest nodes (in terms of hops) before refining the selection according to the nodes position in 

the swarm (CFPO), or the number of pieces remaining to be acquired in the nodes (CFP). Moreover, 

the PFPL strategy shows slightly higher values of packets sent and received in low density consumer 

distributions (64.8 and 256.25), while producing higher results in scenarios with high density of 

consumers (SID), mainly in the Centralised version.
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Fig. 6.15: Impact of Peer Selection Strategies - Average Network Total Packets Sent - Average of 

5 repetitions - Topologies; Scpiare Grid, Transmission Range: 37 meters, Noise; Casino
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Fig. 6.16: Impact of Peer Selection Strategies - Average Network Total Packets Received - Average 

of 5 repetitions - Topologies: Square Grid, Transmission Range: 37 meters, Noise: Casino
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Highest Avg. Time Data File Completion

Fig. 6.17: Impact of Peer Selection Strategies - Higlie.st Average Time Data File Completion - 

Average of 5 repetition.s - Topologies: Square Grid, Transmission Range: 37 meters, Noise: Ca.sino

On the other hand, the average time a node receiving a torrent takes to acquire the whole data 

file needs to be considered on the selection of the most appropriate peer selection strategjL In 

Figure 6.17, the highest time value of the Average Time Data File Completion (A-TDFC) for all the 

nodes in the network is shown. This metric gives an indication of the time the distribution of the 

data file in the network takes to complete. The CFPO and CFP strategies show the lowest times, 

with CFP performing slightly better for most of the cases. PFPO shows the third best time in all 

the experiments, with a higher impact than CFPO and CFP in high density consumer distribution 

scenarios (SID). It has to be remarked that the highest A-TDFC achieved by the centralised and 

decentralised versions both for 64^8 and 64-3ID consumer strategies is similar. This time corresponds 

to the node which takes the longest to acquire the data file, and is based on the availability of pieces 

from nodes in the peer list. Peers in the list must be within the routing scope of the node. In 

these scenarios, the latest node to accjuire the data file is not within the routing scope of node 1 or 

the set of first seeders. Therefore, the node needs to wait before the second request of a peer list 

from the central tracker. By the time the node can start the distribution process in the centralised 

version, the distribution process of the decentralised version has progressed in the direction of the 

node and a partial tracker and peers are also available within the routing scope of the node (5 hops).
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Avg Time Data File Completion
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Fig. 6.18: Comparison of TT Centralised vs. Decentralised on Average Time Data File Completion 

- CFP, 64^8
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Fig. 6.19: Comparison of TT Centralised vs. Decentralised on Average Time Data File Completion 

- CFP, 64-3ID
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This effect can be clearly seen in Figures 6.18 and 6.19 which show the Average Time Data File 

Completion of the 20 torrents received per consumer for the centralised and decentralised versions 

of the protocol. The experiment employs the CFP peer .selection strategy with the 64_8 and 64-3ID 

consumer strategies.

Figure 6.18 shows a variation in the average time of consumers to accjuire the data file of at 

most 2 seconds between the performance of the two versions of the protocol. This is due to the 

effect of randomness in the acquisition of data and the peer list selection process. On the other 

hand, Figure 6.19 shows the results for the 64-3ID scenario where 22 consumers acquire the data hie. 

Results indicate that the decentralised protocol exhibits a smooth progression in the average time to 

accpiire the data hie according to the position of the nodes in the grid with respect to the producer 

node (node 1). The centralised protocol produces longer times for nodes which are not within the 

routing scope (5 hops) of the producer. This behaviour is due to the fact that the central tracker is 

unaware of inter-consumer distance when populating the peer list. This problem is ameliorated in 

the decentralised version of the protocol by enabling consumers to act as partial trackers for nearby 

consumers. Thus, the decentralised version fosters a progressive dissemination and tends to minimize 
situations of high traffic congestion.

Overall, the decentralised version performs better than the centralised modality in the majority 

of the scenarios, while at the same time providing a higher degree of fault tolerance. Thus, the 

remainder of the chapter studies the performance of the decentralised version of the Tiny Torrents 

protocol under a range of different conditions. Results also indicate that the PieceReniaining First 

Position-Location-based (PFPL) peer selection strategy provides a high degree of fairness, while the 

Closest First Position-based (CFPO) and the Closest First PieceRemaining-based (CFP) are more 

efficient in terms of average network total packets sent and received. While these metrics provide 

an indication of the performance of the network on average, information of the traffic load amongst 

all the nodes in the network is key to identifying the most suitable peer selection strategy for the 

decentralised distribution process. In this regard, the number of Total Packets Received by each 

node has been plotted in the topology layout which enables clear visual inspection of the network 

traffic load as well as the identification of the areas with higher communication activity and hot 

spots. In addition, the number of Piece Messages Sent has also been plotted using the same format 

thereby providing a visual representation of the degree of fairness represented by the .IFI metric. 

An experiment from the scenario with the 3-ID consumer distribution (64_3ID_Decentral) has been 

selected due to the large number of consumers which emphasizes the impact of the peer selection 

strategies. Figures 6.20, 6.22 and 6.24 show the Total Packets Received per node while Figures 6.21,
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6.23 and 6.25 show the Piece Messages Sent per node for the CFP, CFPO and PFPL peer strategies 

respectively. Each metric value has been normalized to fit the right-hand side scale which employs 

both the colour and the diameter of each node to represent the value.

By visual inspection, the distribution of Piece Messages Sent per node in Figures 6.21 (CFP), 

6.23 (CFPO) and 6.25 (PFPL) clearly show the fair data distribution achieved by the PFPL strategy 

(0.8125 .JFI) as compared to CFP (0.6667 JFI) and CFPO (0.7112 JFI). The lower number of Piece 

Messages Sent by nodes farther away from the producer (node 1) which are placed mainly at the 

edges of the network needs to be noted. This effect is expected as nodes at the edges become seeders 

of pieces when most of the nodes within their partial tracker swarm have already received most of 

the pieces. Since PFPL selects peers with the lower number of pieces, nodes at the edges show a 

higher number of Packets Sent than those in the CFP and CFPO scenarios. This is also the reason 

why the PFPL strategy has a higher degree of fairness than the proximity-based strategies (CFP 

and CFPO).

On the other hand, it can be clearly noted that the distribution of Total Packets Received in 

the network tends towards the centre of the grid. This is expected as cent ral nodes are surrounded 

by a higher number of neiglibours and are also aware of a higher number of nodes at the routing 

layer which is determined by the routing discovery scope (5 hops). Both CFPO (see Figure 6.22) 

and CFP (see Figure 6.20) strategies show a similar traffic load balance in terms of total packets 

received mainly due to the Closest-First policy which selects nearby nodes. In Figure 6.24, the 

PFPL strategy produces a higher number of packets received than the CFPO and CFP strategies, 

specifically in nodes placed towards the centre of the network. Again, this effect is a consequence of 

t he 5 hops routing scope which makes central nodes aware of a higher number of nodes as compared 

to nodes at the edges; this increases the routing cost in terms of packets sent and received. When 

the network scales in scenarios with even distribution of nodes (SG) and consumers (3ID), the traffic 

load balances out for central nodes as a result of these nodes being aware of a similar number of 

nodes within the routing scope of 5 hops (see Section 6.5.4).

Despite the high Jain’s Fairness Index of the PFPL strategy, the number of packets sent and 

received by a node are the key metrics which impact the status of the communications in a wireless 

sensor network in terms of traffic congestion and load balancing. For this reason, CFP and CFPO 

have been selected as the most suitable peer selection strategies for the decentralised version of the 

TinyTorreiits. Despite CFPO performing better in JFI terms for the 64_Decentral scenarios, CFP 

has been chosen for evaluation in the remainder of the section as it provides a higher fairness index 

in scalable scenarios with 256 nodes.
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Fig. 6.22: Total Packets Received - CFPO, 
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Fig. 6.25: Piece Messages Sent - PFPL, 64_3ID 
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6.5.3 Impact of Noise Floor and Network Density

The Tiny Torrents decentralised version operating with the Closest First PieceRemaining-based (CFP) 

peer selection strategy has been tested under high levels of noise and network density in terms of Tor­

rents Completed, JFI of Piece Messages Sent, Average Network Total Packets Sent and Received, and 

Highest Average Time Data File Completion. The 64 and 256 Random Uniform (RU) grid topolo­

gies have been employed as irregular layouts together with a node transmission range of 37 meters 

(37_RU). Higher network density in the Square Grid (SG) topology has been achieved by increasing 

the nodes transmission range from 37 meters to 56 meters (37_SG, 56-SG). For each scenario, the 

low-density consumer distribution, i.e. 8 consumers for 64 node scenarios and 25 consumers for 256 

node scenarios, and the high-density consumer distribution (3ID) have been tested. All the above 

scenarios have been configured with the Casino noise floor. Additionally, the impact of high noise 

has been studied for the set of 64 node scenarios employing the Meyer noise floor trace. Figures 

show results grouped in sets of 3 scenarios - from now on called “density sets” - which correspond to 

the variation in network density and irregular layout {37_SG, 56_SG, 37_RU). For 64 node scenarios, 

the density sets have been compared with the 64_ 8 and the 64.3ID consumer distributions both for 

Casino and Meyer noise floors. The last two density sets correspond to the 256 nodes topologies 

operating under the Ca.sino noisi' floor, for the 256_25 and 256^310 consumer distributions.
Figure 6.26 shows the .Iain’s Fairness Index of Piece Messages Sent. As in previous results, the 

higher the number of consumers in the network, the fairer the process of data distribution. However, 

the inter-consumer distance and the routing .scope influence this assertion. High noise floor (Meyer) 

has a negative impact in the .IFI, mostly in irregular and high network density scenarios with a high 

number of consumers (64_3ID). In general, a clear pattern does not arise from the results which 

indicates a relationship between network density and fairness. Nevertheless, higher density scenarios 

(56 meters transmission range) provide eciual or higher values of fairness for all the scenarios except 

for the 256_3ID. This is due to the higher number of nodes at the partial tracker in the peer list 

selection process and the availability of a greater number of partial trackers in the 256_3ID scenario; 

t here is a high number of consumers at the same closest distance and not all of them are required to 

complete the whole data file. On the other hand, a higher value of JFI is obtained in the 256_37_3ID 

scenario with respect to the higher network density scenario, 256_56_3ID, which indicates that a large 

number of peers in t he swarm of partial trackers might have a negative impact in the overlapping 

of the distribution processes. Still, scenarios of 256 nodes provide high values of fairness (JFI). 

Additionally, irregularity in the network layout (RU) does not directly impact the JFI as much as 

the distribution of the consumers in the layout does.
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Fig. 6.26: Impact of Noise Floor and Network Density - .Jain’s Fairness Index of Piece Messsages 
Sent - Average of 5 repetitions

While the .Jain’s Fairness index of the Piece Messages Sent is a metric to consider for the conipar- 

i.son of peer .selection strategies, the Average Network Total Packets Sent and Received provide more 

relevant information on the performance of the protocol under different noise and network density 

conditions.

Figures 6.27 and 6.28 show the overall increase of the average total number of packets sent and 

received in the network in the presence of high noise floor (Meyer). As compared to the moderate 

noise floor (Casino) scenarios, the Average Network Total Packets Sent (A-NTPS) in high noi.se floor 

(Meyer) scenarios increases by a factor in the range of 6.15 to 7.8 while the Average Network Total 

Packets Received (A-NTPR) increa.ses by a factor in the range of 3.3 to 4.3.

High network density scenarios (56 meters transmission range) produce the liighest average of 

network total packets sent in scenarios of a high number of consumers (64_3ID and 256_3ID), while 

tlie lowest average of network total packets sent in scenarios of a low number of consumers (64.8 

and 256-25). In terms of overall number of received packets, a higher network density (56 meters 

transmission range) produces the highest number of packets received in most of the cases, however 

the irregularity in the layout of a topology can have a higher impact in the reception (64_37_RU-8). 

The ratio of the Average Network Total Packets Received to the Average Network Total Packets Sent

214



Chapter 6. Evaluation

Average Network Total Packets Sent (TT Decentralized)

Fig. 6.27: Irnpaot of Noise Floor and Network Density - Average Network Total Packets Sent 

Average of 5 repetitions

Average Network Total Packets Received (TT Decentralized)

Fig. 6.28: Impact of Noise Floor and Network Density - Average Network Total Packets Sent 

Average of 5 repetitions
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is approximately 6 for scenarios of Casino noise floor and low network density (37 meters transmission 

range), while the ratio drops down to 3 when the noise floor is higher (Meyer). The ratio increases by 

a factor in the range of 1.5 to 4 for high density scenarios (56) within each density set, thus reaching 

ratios of 10 (6+4). This ratio serves as a partial indicator of the average number of neighbours per 

node in the network.

Furthermore, when the network scales from 64 to 256 nodes, an increment in the packets sent and 

received is produced mainly due to a higher number of central nodes acting as consumers, which are 

also aware of a higher number of nodes within the default routing scope. In scenarios of high number 

of consumers (3ID), the Average Network Total Packets Sent and Received increase respectively by 

i) 55% and 57% for 37_SG scenarios, ii) 92% and 72% for 56-SG scenarios, and iii) 57% and 57% 

for 37_RU scenarios. The cost of scalability in terms of average network total packets decreases with 

the number of consumers, despite the higher inter-consumer hop distance. The effect of scalability 

is further studied in Section 6.5.4 with larger networks of 400 nodes.

Highest Avg. Time Data File Completion (TT Decentralized)

Fig. 6.29: Impact of Nokse Floor and Network Density - Highest Avg. Time Data File Completion 

- Average of 5 repetitions

The impact of noise floor and network density on the average time to complete the acquisition of 

all the pieces of the data file has also been studied. The highest Average Time Data File Completion 

(A-TDFC) from all the nodes in the network is plotted in Figure 6.29. As expected, a high noise floor
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(Meyer) impacts the time to complete the distribution process as a consequence of the lower delivery 

ratio, the routing delays, and the number of attempts (retrials). In absolute terms, a high numljer 

of consumers (3ID) produces higher A-TDFC values. However, in relative terms, when comparing 

moderate and high noise floor scenarios (Casino vs. Meyer), a higher increment in the average time 

to complete the data file is produced for low-density consumer scenarios with an average increment 

factor of 10.2, as opposed to high-density scenarios (3ID) with an average increment factor of 4.7. 

This is due to the higher inter-consumer distance in scenarios with a low number of consumers. High 

levels of noise highly increase the end-to-end latency as the path length grows. For this reason, 

increasing the range to 56 meters reduces the path length thus obtaining lower values of A-TDFC, 

despite increasing the network density. In moderate noise floor scenarios (Casino), increasing the 

transmission range does not have the same impact despite reducing the average path length. The 

irregular layout (RU) increases the average time to complete the data file when only a torrent is 

being distributed in the network and the impact gets exacerbated when the noise floor increases; 

nevertheless this highly depends on the consumer distribution in the network.

Finally, a 100% Torrents Completed ratio for all the experiments under different network density, 

irregular topology and high noise floor has been achieved. Again, this shows the high reliability 

levels of the Tiny Torrents protocol.

6.5.4 On Scalability: TinyTorrents Decentralised

One of the advantages of the decentralised version of the TinyTorrents protocol is the capability 

to distribute the data file to distant nodes in networks of different sizes and densities. However, 

this scalalhlity factor depends on the distribution of consumers in the network and the maximum 

routing scope. A consumer at a larger distance than the maxinnim routing scope from the closest 

consumer will be disconnected from the network of consumers and thus will not be able to fetch 

the data file. Moreover, a consumer will not be able to fetch the data file until at least one of the 

consumers within its routing scope acquires the data file. Thus, when scaling the data file distribution 

process, the distribution and number of consumers impact the Torrents Completed ratio, as well as 

the distribution of Total Packets Sent and Received by each node in the network.

For the purpose of comparing the scalability performance of the decentralised version of the 

TinyTorrents protocol operating with the CFP peer selection policy, the Square Grid topology layout, 

the Casino noise floor, and the 37 meters transmission range have been selected. The topology hiis 

been .scaled from 64 lo 256 and up to 400 nodes. The 3ID consumer distribution strategy has 

been selected as it produces a similar consumer distribution structure and enables comparison when
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Average Network Total Packets Sent and Received (% Increase)

Fig. 6.30: On Scalability - Average Network Total Packets Sent and Received (% Increase)- Routing 

Scope of 3 and 5 Hojxs - CFP, TT Decentral, SG, 37ni, Casino - Avg. of 5 repetitions
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the network scales. Each scenario has been configured with two routing scopes, 3 and 5 hops, to 

evaluate its impact when the network scales. In order to compare the cost in packets of scaling both 

the network and the consumer distribution, the Average Network Total Packets Sent and Received 

metrics have been plotted in Figure 6.30. The figure also shows the percentage increase with respect 

to the previous value. Due to the high density of consumers in the 3ID strategy, the average network 

total packets sent and received increases with scalability. However, a higher percentage increase 

is obtained when scaling from the 64_3ID to the 256_3ID scenario - 57% (Recv), 55% (Sent) -, as 

compared to scaling from the 256-3ID to the 400_3ID scenario - 10% (Recv), 7% (Sent). This is due 

to t he lower proportion of nodes at the edges of the square topology as the network scales. Nodes at 

the edges do not get as much participation in the network as central nodes and thus their proportion 

in the network impacts the average network total packets sent and received. In addition, a higher 

number of consumers fetching the data file within the routing scope increases the overall network 

total packets received and sent. In this regard, lowering the routing scoi)e from 5 to 3 hops, lowers 

the average network total [)ackets sent and received (see Figure 6.30) by a percentage decrease in 

the range of 6-9% (Recv) and 8-16% (Sent).

Additionally, Figure 6.31 shows the .Iain’s Fairness Index of the Total Packets Sent and Received 

calculated as an average of 5 repetitions of each scalaljle scenario (64_3ID, 256_3ID and 400_3ID) 

with a routing scope of 3 and 5 hops. The JFI has been computed for all the nodes in the network 

in terms of total j^ackets sent and received to assess t he degree of fairness in the overall network 

communication process for each scenario. However, it has to be noted that the JFI of the Total 

Packets Sent and Received is impacted by the number and distribution of consumers in the network. 

Thus, the metric is not a conclusive indicator of the overall network fairness in the distribution 

I)rocess, but it serves as a metric to evaluate the scalability of a network when it grows with a 

scalable consumer distribution, such as the 3ID. The 3ID consumer distribution strategy grows in a 

fair and scalable manner suitable for comparison, despite not producing the exact same geometric 

consumer distribution in all the scalable topologies - strategies 64_3ID and 400-3ID produce the same 

consumer distribution shape, while 256_3ID generates a different layout (see Figures 6.9, 6.11, 6.13). 

As expected. Figure 6.31 shows higher index of fairness for the total packets received than for the total 

packets sent. This is due to the broadcast nature of the wireless medium. In addition, higher values 

of JFI are obtained for the 256 and 400 nodes topologies as compared to the 64 nodes topologies. 

This is mainly a consequence of the lower proportion of nodes at the edges and the higher number of 

consumers at the centre of the network in the 256 and 400 nodes topologies. The high values of JFI 

in the total packets received (Recv) are due to the high density of consumers in the network, but they
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also confirm that tlie number of packets received is balanced. The JFI of the total packets sent (Sent) 

has lower values due to the fact that the SID consumer distribution strategy places a great proportion 

of consumers at 1 hop distance and consequently reduce the participation of non-consumer router 

nodes and hence their packet sending ratio. By the same token, the higher the routing scope, the 

higher the likelihood of non-consumer nodes acting as routers and thus contributing to increase the 

Jain’s fairness index of the Total Packets Sent (see “Sent 5 Hops” vs. “Sent 3 Hops” in Figure 6.31).

Overall, results indicate that the decentralised version of the Tiny Torrents protocol scales at a 

low cost in terms of total packets received and sent, which depends on the routing scope. It also 

exhibits high values of fairness in the communications process in the network, despite the network 

scales.

Additionally, the distribution of Piece Messages Sent, Total Packets Received and Average Time 

Data File Completion per node in the network has been plotted for two randomly selected experiments 

for the 256_3ID and 400-3ID scenarios. The distribution of Piece Mes.sages Sent in the 2r)6_3ID and 

40()_3ID scenarios is shown in Figures 6.32 and 6.33 respectively. Both of the scenarios show high 

values of fairness in the piece message distribution with a JFI of 0.85 for the 256_3ID scenario 
and 0.79 for the 400_3ID .scenario. In both .scenarios, a reduced number of consumers i)roduce a 

higher number of Piece Messages Sent as conijrared to the rest of the consumers. These consumer 

nodes are popular candidates in the Closest-first Piece (CFP) peer selection process due to the 

stochastic process employed to generate the topology. The process can generate a connectivity map 

where some of the nodes connect to a higher set of neighbour nodes, despite forming a square grid 

layout. These nodes, rather than being a hot spot where congestion is produced, are points of 

high connectivity which distribute a high number of pieces of data to proximate nodes for overall 

efficiency in terms of communication. Furthermore, these nodes do not necessarily make an impact 

in the distribution of the Total Packets Received as it can be seen in Figure 6.34 (256_3ID) and 

Figure 6.35 (400_3ID). Indeed, the intermittent connectivity behaviour of some of the neighbours at 

the edge of communication of a node produces a higher impact in the Total Packets Received by a 

node within the area; this effect can be noted in some of the areas in the network indicated by a 

higher number of Total Packets Received. Neverthele.ss, the network balances out in terms of packets 

received, mainly due to the high density of the consumer distribution (3ID), and the fact that the 

decentralised version of the Tiny Torrents protocol scales by distributing pieces of the data tile locally, 

within a routing scope. On the other hand, the impact of scaling the network on the average time 

to complete the data file (A-TDFC) is shown in Figure 6.36 (256_3ID) and Figure 6.37 (4()0MID). 

Consumer nodes placed within the triangle area formed by coordinates (0,0), (375,0), (0,375) take
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on average similar times to complete the data file in both scenarios of scalability. However, nodes 

outside of this area show higher average times in the 400 node scenario dne to the higher number 

of consumers fetching the data simultaneously. For instance, in the 256 nodes topology, node 255 

takes on average 45 seconds to complete the file, while the node at the same position in the 400 

nodes topology, node 315, employs on average 65 seconds. Moreover, the figure shows the direction 

and the smooth progression of the data file distribution process. This is achieved via the use of 

i) the dissemination strategy of the torrent file (which enables the discovery of nearby trackers), 

and ii) the partial tracker admission mechanism (which only provides the peer list when the node 

itself is a seeder of the data). The latter mechanism enables the distribution process to self-regulate, 

thereby providing a progressive and localized distribution of data which seeks to minimize the overall 

number of messages sent and received. This reduces node congestion and wireless contention, and 

consequently reduces the overall time for data file completion in the network.

Finally, the impact of scalability has also been studied in networks with a low tlensity of con­

sumers. For this purpose, two experiments have been carried out with the 256_25 and 4()(J_21 con­

sumer distribution .strategies (see Figures 6.10 and 6.12). While the 256-25 and the 400-21 strategies 

have a low number of consumers as compare to the 3ID, the 400-21 strategy presents a long inter­

consumer distance of up to 5 hops as compared to the 256-25. This difference enables testing of the 
decentralised distribution protocol under long inter-consumer path lengths where communication is 

le.ss reliable and the CFP strategy has a higher impact in the selection of closer peers. For this pur­

pose, the distribution of Piece Mes.sages Sent in the 256_25 and 400_21 .scenarios is shown in Figures 

6.38 and 6.39 respectively. With a .Iain’s Fairness Index of Piece Me.ssages Sent of 0.65, the 256 -25 

scenario exhibits a high degree of fairness which gets reduced by the high number of Piece Messages 

Sent by node 52. This node acts as a hot spot due to its location in the consumer distribution and 

the direction in which the distribution process expands. Node 52 acts as a key closer consumer and 

partial tracker for a set of consumer nodes which will in turn foster the distribution of the data 

hie to the rest of the consumers in the network. This indicates the importance of the consumer 

distribution strategy in the efficiency of the data hie distribution process. On the other hand, the 

large inter-consumer path length of the 400-21 strategy in Figure 6.39 produces a high degree of 

fairness with a JFI value of 0.72. The appropriateness of selecting closer consumers of the CFP 

peer selection strategy, together with the layout distribution of consumers, increases the fairness in 

the distribution process. Having a fair distribution of Piece Messages Sent when the inter-consumer 

path length is relatively high indicates the eh'ectiveness of the routing protocol, mainly in providing 

accurate information on the path length. In contrast, the distribution of Total Packets Received in
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the network in Figures 6.40 and 6.41 indicate that areas with a higher number of packets received do 

not necessarily correspond to the position where the node/s with higher mnnber of Piece Messages 

Sent are placed, but to the areas where the density of consumers is high. This can be clearly seen 

in the figures, where the 400_21 scenario has lower levels of Total Packets Sent than the 256_25 

scenario due to the lower density of consumers and the higher inter-consumer path length. This also 

proves the capability of the TinyTorreuts protocol to scale when the density of consumers is low, 

only limited by the routing scope. Nevertheless, a higher average time in completing the data file is 

produced in the 4()0-.21 scenario. This is mainly due to the long path lengths, which increases the 

unreliability and latency in the routing process, and the low density of consumers. For comparkson, 

node 399 takes an average time to complete the data file (since the torrent file is received) of 52 

seconds in the 400_21 scenario (see Figure 6.43), while in the 400_3ID scenario (Figure 6.37) the node 

takes 75 seconds. In scenarios of high consumer density, the data file takes on average a higher time 

to reach the same point/area in the network than in scenarios of low consumer density, despite the 

closer proximity amongst consumer nodes.

6.5.5 Effect of Multiple Producers and Random Consumer Distribution

Heretofore, the TinyTorreuts decentralised distribution process has been evaluated from the jioint 

of view of having only one producer in the network. This has enabled the study of i) the degree of 

fairness of each peer selection strategy, ii) the scalability factor of the system, and iii) the reliability 

and efficiency of the protocol in isolation under different conditions. However, having simultaneous 

distribution processes of torrent files, either coming from the same or from different producers, can 

introduce a delay in the data file accjuisition process. This will occur when consumers are forced to 

wait to accpiire pieces of data from consumers which are in the process of acquiring other torrent 

files. While a consumer can act as a seeder and partial tracker for a completed data file, as long as 

this is stored in memory, consumers handle torrent files one at a time and consequently might delay 

other consumers in their data acquisition processes. To minimize this delay, a consumer can progress 

through fetching the next torrent file in queue if no peer list can be obtained for the current torrent 

hie. This way, the consumer can participate in another torrent hie distribution process for which data 

is available in nearby consumers, while avoiding those torrent hies for which the distribution process 

has still not reached the node’s routing scope vicinity. Once a torrent retrieves a valid peer list, the 

distribution process for the data hie runs until completion, or until a time threshold is reached. For 

this reason, the effect of having simultaneous distribution processes for different torrent hies and 

from producers placed at distant points in the network needs to be evaluated.
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For this i)nrpose, the Tiny Torrents decentralised protocol operating with the CFP peer selection 

strategy has been evaluated in the next scenario; 400 nodes in a square grid (SG) layout, a node 

traiisinission range of 37 meters and a moderate noise floor (Casino). To introduce randomness in 

the distribution of consumers in the network and to test the reliability of the unstructured discovery 

mechanisms, the default routing scope has been set to 3 hops with a maximum increment of 2 hops, 

and the R AND_10 consumer distribution strategy has been employed. On reception of a torrent file, 

the R.AND-IO strategy appoints the node as a consumer with a 10% likelihood. Only the first torrent 

file received from node 1 has been used to dehne which nodes act as consumers in the network. Once 

selected, the set of consumers remain constant for the rest of the simulation, acquiring data hies from 

all the torrent hies received from all the producers. A total of 5 producers (nodes 1, 57, 209, 342, 

357), ])laced at. the corners and in the centre of the topology, generate a data hie every 5 minutes for 

a total of 20 hies.
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Fig. 6.44: Avg. Time Data File Completion (seconds) - 400_RAND_10 , CFP , 5 Producers , TT 

Decentral. SG, 37m, Casino

Figure 6.44 shows the average time each node takes to acquire each data hie (A-TDFC). This 

takes into account the time elapsed between the selection of the torrent from the queue (for which a 

peer list is retrieved), and t he completion of the data hie; the average time for all the torrents received 

is calculated. On average, consumers take between 27 and 36 seconds to complete data hies. The
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low average time to complete the data file, a.s compared to one producer scenarios such as the 400-21 

in Figure 6.43, is a result of having multiple torrents in the queue and selecting one for which data 

pieces are available within the routing scope. This mechanism avoids incurring an overall delay in 

the distribution process, thereby increasing the likelihood of completing data files before the torrent 

cancellation time threshold is reached. However, the number of producers and their positions in the 

network impact the average time to complete the data file. Additionally, Figure 6.44 also shows 

the distribution of consumers in the network produced by the RAND_10 strategy which, in this 

particular experiment resulted in a total of 43 consumers, one of them being also a producer (node 

209). For all consumers, a 100% Torrents Completed ratio was obtained; all consumers received 100 

torrent files in total (20 from each producer), with the exception of consumer-producer node 209 

which received 80 - as it does not receive and acquire its own generated torrent data files.
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Figures 6.45 and 6.46 show the distribution of Piece Messages Sent and Total Packets Received 

in the network respectively. As in previous experiments, the distribution of Piece Messages Sent for 

all the torrent files in the network tends to balance according to the position of the consumers with 

respect to each other. However, in this scenario, both the distribution of consumers and producers 

impact the overall number of Piece Messages Sent. Each torrent distribution process has its own 

direction when expanding whic;h impacts the set of partial trackers and peers from which a consumer 

acquires the data file. In the current scenario, the set of consumers remains the same, and therefore 

placing producers at disparate points in the network increases the likelihood of a consumer selecting 

different partial trackers and peers for each distribution process. This contributes to increase the 

overall fairness in the participation of consumers in all the distribution processes; this argument is
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supported by the high value of 0.77 obtained for the Jain’s Fairness Index of Piece Messages Sent in 

the current experiment. Additionally, consumers having a higher number of Piece Messages Sent act 

as link points for a group of consumers within their proximities. For instance, the position of node 

95 and 109 make them key points for the distribution of data coming from producers placed at the 

top of the topology. The effect of having a group of consumers together in the same area increases 

the number of Total Packets Received (see Figure 6.46) and thus contributes to increase the wireless 

medium congestion.

A second set of experiments have been carried out for the purpose of testing the effect of multiple 

producers in the network transmitting at the same interval of time, thus generating simultaneous 

torrent data acquisition processes. These tests have investigated the impact of having similar num­

ber of consumers and producers, where all consumers acquire data generated by all the producers. 

For this purpose, the Tiny Torrents decentralised protocol, operating with the CFP peer selection 

strategy, has been evaluated in the following scenario: 256 nodes in a sqiiare grid (SG) layout, a node 

transmission range of 37 meters and a moderate noise floor (Casino). The default routing scope has 

been set to 3 hops with a maximum increment of 2 hops, and the RAND_10 consumer distribution 

strategy has been employed to randomly select the consumers. Additionally, instead of appointing 

producer nodes beforehand, at the beginning of the simulation all nodes decide with a 10% likeli­

hood whether to become producers for the remaining duration of the simulation. Figure 6.47 shows 

a resulting distribution of consumers and producers from applying the process; note that some nodes 

become both consumers and producers. Producers randomly publish a file every 5 minutes to a total 

of 10 files.

Figure 6.48 shows the average time each node takes to acquire each data file (A-TDFC). On 

average, consumers take between 8 and 18 seconds to complete data files. When compared to the 

previous experiment in Figure 6.44, where consumers take between 27 and 36 seconds, a significant 

latency imiirovement can be observed. However, this improvement is a consequence of having a 

higher number of torrents in the queue available when the active torrent fails to be completed; this 

does not take into account, the time from which a failing t orrent is put back in the queue until it is 

selected again for data fetching. While the latency reduction is mainly dvie to the effect of having 

multiple torrents at the queue, the different consumers and producers distribution also impacts this 

result.

Finally, Figure 6.49 shows the distribution of Piece Messages Sent in the network where a low 

.IFI value of 0.47 can be observed. This indicates the impact that multiple producers have on the
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data traffic activity of key consumer nodes, which serve as gateways to connect different consumer- 

populated areas in the network. The low fairness index is due to the CFP peer selection policy, 

which employs proximity as the primary metric in the selection at the benefit of achieving better 

communications efficiency. The later can be seen in Figure 6.50 which shows the distribution of 

Total Packets Received in the network. The effect of having consumers and producers grouped in 

the same area increases the number of Total Packets Received, which increases further if they are 

positioned at key locations serving as gateways between different areas. Nevertheless, the efficacy of 

having a selective data dissemination protocol is clearly visible, which concentrates the data traffic 

amongst the web formed by the set of consumers and producers.
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6.5.6 Performance Comparison of Dissemination Protocols

This section analyses the performance of Tiny Torrents when compared to two of tlie most popular 

dissemination protocols for Wireless Sensor Networks, i.e. DIP [211] and DHV [212] (see Section 

2.4.5). DIP and DHV have been designed with the goal of reprogramming the network in an epi­

demic fashion such that consistency of data is achieved amongst all the nodes in the network. This 

mechanism of dissemination does not follow the selective data dissemination approach that underpins 

the design of TinyTorrents. While DIP and DHV are good solutions for network reprogramming 

purposes, TinyTorrents provides for the distribution of data amongst a subset of consumer nodes 

in the network which express interest in the data, and thus the traffic load in the network depends 

on the consumer distribution. The higher the number of consumer nodes in the network, the more 

efheient the use of an epidemic dissemination protocol. However, consider a scenario where con­

sumers and producers are placed along a defined area in the network for the purposes of performing 

some sort of sensing-actuating activity, for instance at the edge of the network. Nodes in other areas 

woiild not need to receive data from these producers and consumers, and the data transfer should 

only occur within this area and, most specifically, amongst the overlay of consumers and producers. 

TinyTorrents provides this type of selective data dissemination where router nodes do not necessar­

ily need to receive all the pieces of a file of data, thus also increasing the security of the i)rocess. 

These advantages need to be taken into consideration when comparing TinyTorrents with epidemic 

dissemination protocols which have been shown to be very efficient in terms of connnunication.

For the purpose of providing a fair comparison, an application miming on top of DIP and DHV 

has been developed in TinyOS 2.1 which has been configured to disseminate the same amount of 

data as the TinyTorrents application. One producer, node 1, has been selected to disseminate 20 

files of data, each of size 256 bytes. The Piece message (see Figure 5.7 in Section 5.2), which contains 

the data in the TinyTorrents protocol, has been encapsulated in the payload of these protocols. The 

Piece message has been configured to contain 16 bytes of data and has been fitted in a packet by 

increasing the payload to that used for TinyTorrents packets. DIP and DHV operate by updating 

versions of data items where the most up-to-date version is disseminated with the goal of maintaining 

consistency in t he network. Data packets corresponding to an old-version are not disseminated when 

a new version, i.e. an update, for the data item is, or has been, received at the node. Taking this 

into consideration, the application assigns each of the 16 pieces of a file a different key, such that 

they are described as different data items. In this way, different versions of each piece are injected 

into the network when a new file is disseminated. The same delay employed in TinyTorrents for the 

the dissemination of files by the producer is also in place which guarantees that no pieces of data are
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being transferred when a new version, i.e. a new file, is starting to be disseminated. This mechanism 

enables comparison with Tiny Torrents where each piece of data is distributed as a different data 

item. Note that one of the drawbacks of DHV and DIP is the requirement for defining the type of 

data items to be disseminated at compilation time, such that all the nodes know beforehand what 

type of data items are to be received.

Additionally, DIP and DHV employ the Trickle algorithm [99] to regulate the periodicity of 

broadcasting packets. Trickle exponentially increases the jiacket broadcast interval to reduce com­

munications according to the activity in the neighbourhood, while decreasing the interval towards 

a minimum value, T;, when updates need to occur. Setting T/ to a low value will increase the 

communications at the benefit of reducing the latency in the dissemination process. T; has been 

set to 30 ms; a lower value produces similar results in terms of latency and employs more packets. 

In this way, both DHV and DIP have been configured to achieve a very high performance in terms 

of latency with a low overhead in communications. To further improve latency on DIP and DHV, 

pieces are sequentially published by the producer with a small delay of 50 milliseconds. On the otlier 

hand, the Tiny Torrents protocol employs a set of control messages, such as handshakes and peerlist 

request messages, to regulate the dissemination process. This enables control of the distribution of 

the traffic but also increases the latency and packet overhead in the dissemination of data.

The scenario selected for the comparison comprises 64 nodes in a square grid (SG) layout, a node 

transmission range of 37 meters and a moderate noise floor (Casino). To show the benefits of the 

selective data dissemination process of the decentralised version of the Tiny Torrents operating with 

the CFP peer selection strategy, two consumer distributions have been employed: i) the 64_CONS8 

distribution which employs 8 consumers placed across the network, and ii) the 64_CONS8E dis­

tribution, a new distribution created for this purpose which places 8 consumers along the bottom 

edge of the network (nodes 2, 4, 7, 10, 12, 14, 15, 19) (see Figure 6.52). Conseqtiently, 4 protocols 

configui’ations have been evaluated: i) Tiny Torrents with the CONS_8 distribution, ii) Tiny Torrents 

with the CONS-8E distribution, iii) DIP with T; = 30, and iv) DHV with T; = 30. Note that, as 

DHV and DIP are epidemic dissemination protocols, they deliver data to all nodes in the network 

and thus all nodes are consumers.

Latency in the dissemination process has been studied with the Average Time Data File Comple­

tion (A-TDFC) in Figures 6.51 and 6.52 for Tiny Torrents, in Figure 6.53 for DIP and in Figure 6.54 

for DHV. For DIP and DHV, the A-TDFC for the furthest nodes from node 1, i.e. the producer, is 

of the order of 3 to 4 seconds, where DHV shows faster file completion times than DIP. Tiny Torrents 

also shows a faster data file completion time for closer nodes such as 0 and even 4 in Figure 6.51,
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and nodes 2, 10, 12 and 19 in Figure 6.52. However, as the file is disseminated through the network, 

the data file completion time increases, producing higher values than with DIP and DHV. This is 

mainly due to the delay introduced by the consumers when waiting for other consumers within their 

scope to retrieve the file. For example, node 7 takes double the time to acquire the file than it takes 

with DIP and DHV. This result demonstrates that epidemic algorithms can offer faster solutions for 

delivering data, while employing less control packets, at the cost of disseminating the file throughout 

the whole network.

Figures 6.55 and 6.56 show the Total Packets Sent and Received respectively for each of the 

64 nodes in the network for the 4 jirotocols configurations. DIP and DHV show evenly distributed 

network traffic, both for Total Packets Sent and Received. This is due to the Trickle algorithm which 

regulates packet transmissions according to the neighbourhood activity while leveraging broadcast 

packets for the update of data items. DHV requires less packets than DIP, while showing similar
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Nodes, 1 Producer , SG, 37ni, Gasino, TT Decentral, CFP
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behaviour. By comparison, Tiny Torrents employs higher niimher of Total Packets Sent, mainly by 

those nodes which fully participate in the data dissemination process, both router and consumer 

nodes. However, TinyTorrents sends fewer packets than DIP and DHV from those nodes placed in 

areas where there is a lower concentration of consumers. This effect is more clearly visible with the 

CONS_8E consumer distribution, where nodes are placed at the edge, with the middle top area of 

the network (node 30 to 63) not receiving data and only receiving torrent messages. This shows the 

efficiency of TinyTorrents as a selective data dissemination protocol and the unsuitability of epidemic 

dissemination in this case.

6.5.7 Performance Evaluation on a 64-Node Testbed

This section explores the performance of the decentralised version of the 1 inyTorrents protocol in a 

testbed of 64 telosB [30] wireless sensor devices deployed in a home environment (see Figures 6.57 

and 6.58). In order to achieve multi-hop communication in the test environment, a lower bound on 

the transmission power of the transceiver was set. According to the CC2420 chip specifications [29], 

the RF output ])ower register can be set to a minimum nominal value of 3 (delivering -25 dBm). 

However, the TinyOS lil)raries provide for setting the minimum real value to 1, delivering an outirut 

power of less Ilian -25 dBm. The telosB motes were configured to operate with an RF output power 

setting of 1 which reduced I he communication range to a distance of, at most, 40 centimeters when 

they where placed on top of a non-conductive surface, i.e. carpet over cement (see Figures 6.57 

and 6.58). It was noted that the positions of both the antenna and the usb metal connector with 

respect to the receiving neighbour node/s impact the propagation of the signal and thus the packet 

reception rate. This irregularity may be due to i) the antenna being integrated at the edge of the

Fig. 6.57: Testbed View 1 Fig. 6.58: Testbed View 2
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telosB board aiui ii) the increase in the signal propagation prochiced by the usb metal connector. 

Taking these factors into account, two different topologies of 64 telosB motes were formed: i) the 

Square Grid (SG) layout, and ii) the Irregular Grid (IG) layout. The Square Grid layout (see Figure 

6.59) follows the same square structure employed in previous tests in the simulator. Motes in the 

topology have been placed at 1-hop range to immediately adjoining nodes. On the other hand, the 

protocol has been evaluated operating on a Irregular Grid (IG) topology (see Figure 6.60) where 

nodes have been shifted randomly from the initial Srjuare Grid layout, leaving three clearly defined 

holes (gaps). While this topology has a similar structure to the Random Uniform (RU) layout, the 

latter exhibits a lower degree of irregularity.

Idle decentralised version of the TiiiyTorrents protocol has been evaluated with the Closest First 

PieceRemaining-based peer selection algorithm (CFP). Three producer nodes have been appointed 

to periodically publish data files of 255 bytes length (the maximum permitted). Node 1, 38 and 

49 have been selected as the three producers (3PRO) due to their distant location from each other 

in the network. Eacli producer publishes 20 torrents (data files) every 300 seconds. Producers are 
randomly scheduled to start publishing the next torrent within the first 20 seconds once the 300 

seconds interval is elapsed. This generates simultaneous data file distribution processes for each of 

the 20 torrent intervals. Two deterministic consumer distribution strategies have been employed, the 

64-8 and the 64_3ID, which enable comparison under different consumer densities, network traffic 

burden and inter-consumer hop distances. The size of the queues which store torrent information 

and data files have been reduced to fit the available RAM memory in the telosB architecture, i.e. 

10KB. A maximum of 4 data files are stored at each consunier/producer. This could impact the 

success of the distribution process for a consumer/s seeking to fetch an old torrent which has been 

deleted/discarded from the queue of other consumers in order to accommodate a new torrent (i.e. 

more than 4 torrents being distributed at the same time). However, this has been avoided with the 

300 seconds inter-torrent publication time which establishes a sufficient time for all the consumers 

in any distribution to acquire the 3 data files from nodes 1, 38 and 49. Each experiment took, from 

the time the producer motes were started until the acquisition of the last torrent, an average of 

6300 seconds (Hi 47’). Three repetitions of each experiment have been carried out at different times 

of the day - morning (MORNI), evening (EVENI), overnight (NIGHT) - to account for different 

scenarios of background radio activity. As in previous tests, the default discovery scope has been set 

to 5 hops. The length of the transmitted packet, MAC Protocol Data Unit (MPDU), is of 57 bytes, 

comprised of the CC2420 header (11 bytes) and the payload (46 bytes). The payload contains the 

UMG routing protocol control parameters and the TiiiyTorrents protocol message structures with
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Fig. 6.59: Testbed - Square Grid - Producer nodes (1,38,49) are highlighted with a circle.

Fig. 6.60: Testbed - Irregular Topology - Producer nodes (1,38,49) are highlighted with a circle.
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the corresponding data. At the end of each experiment, a base station node sequentially queries each 

of the motes in the network at full RF transmission power to acquire the set of metrics.

The experiment scenarios have been performed in the 64 telosB testbed at different times of the 

day (morning, evening, overnight) on consecutive days:

1. Experiment with 64^8 consumer distribution and Scpiare Grid (SG) topology,

2. Experiment with 64_3ID consumer distribution and Square Grid (SG) topology, and

3. Experiment with 64_3ID consumer distribution and Irregular Grid (IG) topology.

Statistics are computed for the 9 experiments performed in the testbed. Figure 6.61 shows the 

.Tain’s Fairness Index (JFI) of the number of Piece Messages Sent. For all scenarios, JFI values 

above 0.6 are obtained which indicates a good degree of fairness in the distribution process between 

consumers, in line with results obtained in the simulator. The JFI of Piece Messages Sent for the 64^8 

consumer distribution are close to those for the 64_3ID consumer distribution for the Square Grid 

(SG) topology. This situation only occurred in the simulator experiments when testing was done 

under heavy noise (Meyer). On the other hand, experiments with the Irregular Grid (IG) topology 

produce higher degree of fairness (JFI of Piece Me.ssages Sent), which indicates the effect that the 

distribution of consumers in the network has for the fair distribution of pieces of data. No major 

difference is produced in the JFI of Piece Messages Sent at different times of the day. Furthermore, 

Figure 6.62 shows the highest average time achieved in the completion of the data file. As expected, 

the higher the number of consumers, the higher the average to complete the data file; this is due to 

the fact that torrents received from the other producers are waiting in the queue until the current 

one is processed (i.e. data file acquired). In this figure, a difference of 5 seconds is not a significant 

variation to draw conclusions on the impact of the noise at different times of the day, mainly due 

to the fact that producers publish torrents at random times within the first 20 seconds of each 

sequential torrent. Furthermore, Figures 6.63 and 6.64 show the number of network total packets 

sent and received respectively. The highest number of network total packets sent for each experiment 

is achieved in the evening (EVENT) in all the experiment scenarios. Conversely, the same effect occurs 

with the network total packets received, except for the 64_SG_3ID_3PRO-REAL_NIGHT experiment. 

This could be caused by a variation of the noi.se conditions since experiments at the same time of 

the day were performed at consecutive days. Moreover, the experiments on the Irregular Grid (IG) 

topology produce the highest number of network total packets received, which is due to the higher 

density of nodes in some areas of the network as compared to the even distribution of nodes in the 

Square Grid layout.
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When comparing these results with those achieved with the simulator under a Casino noise floor, 

the testbed produces the highest number of network total packets sent wit h an average increment by 

a factor of 1.79, while obtaining the lowest number of network total packets received with an average 

decrement by a factor of 0.90 for all the scenarios. By the same token, the testbed produces the 

highest average times to complete the data file, increased by a factor of 3.6 (64_8) and 2.3 (64_3ID) 

when compared to the simulator results. Potential causes of this variation can be due to: i) the 

irregular signal propagation at the motes in the testbed which produces a higher variation in the 

path lengths when the routes are being discovered, and ii) the Casino noise floor trace having lower 

values of noise than the environment where the test was carried out. The efficacy and reliability 

of the TinyTorrents decentralised protocol operating in a network of 64 telosB devices in a home 

environment has been shown as it achieved a 100% Torrents Completed ratio for all the experiments.
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To better understand the performance of the TinyTorreuts protocol in the testbed, three exper­

iments have been analysed in terms of distribution of network traffic and average time to complete 

the data file. For this purpose the testbed topologies have been mapped and are plotted along with 

the corresponding metrics.
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Figures 6.65 - 6.68 show results for the experiment with the 64_8 consumer distribution in the 

Square Grid topology performed in the evening (EVENI). In terms of Piece Me.ssages Sent (Figure 

6.65), a high degree of fairness is achieved (JFI 0.69), with nodes 25 and 52 acting as main distributors 

of pieces of data from torrents generated by the three producers (nodes I, 38 and 49). Nodes 25 

and 52 are main distributors due to their proximity and key positions with respect to the producers 

and the other consumers; this effect occurs in the three experiments at different times of the day. 

These two nodes obtain the lowest average times to complete the data file (16 and 17 seconds) as 

compared to the rest of the consumers which take between 20 and 30 .seconds (see Figure 6.66).

238



Chapter 6. Evaluation

Fiirtherniore, Figures 6.67 and 6.68 show the number of total packets sent and received by each of 

the motes in t,he network respectively. As expected, consumer nodes send the highest number of 

packets followed by nodes placed towards the centre of the network which act as routers between key 

consumers. It has l)een noted that consumer nodes at the edges send a high number of total packets 

when compared to the number of piece messages sent. One example of this case is node 4 which, 

despite not contributing as many pieces as node 25, sends a similar number of total packets. It has 

been observed that some of the motes at the edges have a lower packet delivery ratio which require 

a higher number of route repairs. This may be due to their location with respect to their neighbours 

such that these nodes are placed at the edge of the communication range of their neighbours. On 

the other hand, the total number of packets received exhibits a fair distribution with a JFI of 0.91, 

where centre nodes surrounded by key consumers (i.e. a high number of piece messages sent) receive 

the highest total number of packets.

Figures 6.69, 6.71 and 6.73 show results for the experiment with the 64_3ID consumer distribution 

in the Square Grid topology, and Figures 6.70, 6.72 and 6.74 show results for the same consumer 

distribution in the Irregular Grid topology. Both experiment sets were performed in the evening 

(EVENI). The Irregular Grid layout is conducive to a fair distribution of pieces of data w'hen com­

pared to the Square Grid layout; this can be seen by visual inspection and is also indicated by the JFI 

values (0.63 vs. 0.74). This also occurs for the other two experiments performed in the morning and 

overnight. This is a consequence of the Irregular topology which makes the distribution of consumers 

more suitable to achieve fairness than the consumer layout achieved in the Scjuare Grid topology. 

This also confirms the impact the consumer distribution has in the efficiency of the dissemination 

process. Furthermore, in the Irregular Grid experiment (see Figure 6.70), node 18 is a hot spot in the 

distribution of pieces of data. This is expected due to its key position, acting as a central gateway 

node between consumers in the north and south of the network. In terms of total packets received, 

both topologies depict the same expected pattern where central nodes receive most of the packets; 

central nodes are surrounded by a higher number of neighbours and are required to route more pack­

ets. Specifically in the Irregular Grid layout (see Figure 6.72), the highest number of total packets 

received corresj)ond to central nodes with a high number of close consumers, but also to those nodes 

in the gateway path where node 18 is placed. Some nodes at the edges of the Irregular Grid layout 

exhibit a high number of packets received when compared to nodes at the edges in the Square Grid 

layout. These nodes are employed as key routers to reach certain areas; for instance node 8. The 

JFI of the Total Packets Received is high in both experiments - 0.89 (SG) and 0.91 (IG) - which is 

expected for this type of scenario where a high density of consumers and three producers placed at
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distant points generate traffic in most of the areas of the network. The traffic load generated by the 

high number of consumers has an impact in the average time to acquire a data file (see Figure 6.73 

(64_3ID,SG) as conii)ared to Figure 6.66 (64_8,SG). While in the 64_8 experiment the average time 

to acquire a data file ranges from 18 to 29 seconds, depending on the position of the node, the 64_3ID 

experiment takes on average between 27 and 44 seconds. The 64_3ID experiment performed in the 

Irregular Grid topology presents similar average times than tlie same experiment in the Square Grid 

layout (see Figures 6.74 and 6.73). However, the lowest average times in the Square Grid topology 

correspond to central nodes while in the Irregular Grid toi)ology the quickest nodes to acquire the 

data file are placed at the west side of the network. This is explained by noting that two of the 

producers are placed in the west side of the network (1 and 49) and the other producer (node 38) is 

placed at the east side, together with the fact that central nodes are farther from node 38 in terms 

of routing in the Irregular Grid topology. For all the experiments in the testbed, the average time 

to complete the data file is higher than that obtained for the same experiments in the simulator. 

This is a consequence of; i) the different noise level, ii) the topology formation (inter-node distance 

in the Square Grid topology), hi) the irregular transmission coverage of the motes (antenna position 

and effect of the usb connector), and iv) TOSSIM being a discrete event simulator which does not 

consider the real computational time.

In order to irrovide some insight of the RF conditions in the test environment of the testbed, 

the RF spectrum activity in the 2.4 GHz band has been characterised using the Wi-Spy spectrum 

analyser [226]. The measurements have been acquired for the evening experiment with the 64_3ID 

consumer distribution in the Square Grid topology. Figure 6.75 shows the screen capture of the 

Chanalyzer Pro (Wi-Spy software), capturing the signal received power from the beginning of the 

experiment, at 21:00, until the conclusion, at approximately 22:50. The Amplitude (y-axis) repre­

sents the RF power level received at the Wi-Spy device in dBm, where the middle line (gray colour) 

represents the average value. The telosB motes have been configured to operate at channel 26 of 

the IEEE802.15.4 specification (2480 MHz). This has been the selected channel for the experiments 

as it does not overlap with Wi-Fi channels and produces the highest packet reception ratios. At 

channel 26, values of Amplitude close to -90 dBm were obtained. 33 Wi-Fi access points were found 

interfering at different power levels. Additionally, the microwave was started at around 21:18:30 until 

21:24:30 in order to introduce interference in the testbed. The interference effect of the microwave 

can be clearly seen in the waterfall as t he horizontal line with higher density at the mentioned times. 

Despite this interference environment the ratio of Torrents Gompleted remained at 100%.
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Fig. 6.75: RF Spectrum Activity at the Testbed - Mea.suied with Wi-Spy - Experiment 64-3ID, SG

The testbed performance evaluation has confirmed the efficacy and high reliability of the Tiny- 

Torrents protocol in the distribution of data over a medium size network. The results obtained 

exhibited the same general patterns as in the simulated study. A more complete analysis of the 

differences between the practical and simulation study is i)roposed for future works.
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6.6 Summary

This section has evaluated the ijerforinaiice of the TinyTorrents i)rotocol in its centralised and de­

centralised versions oi)erating with the Ubiquitous Mobile Gradient (UMG) routing protocol. The 

system disseminates data files generated by producer nodes to a set of interested, geographically 

dispersed consumer nodes. At first, a torrent message is disseminated over the network to inform the 

nodes in the network of the type of data available for distribution. On reception of a torrent, nodes 

have the capability to become consumers of the data file. A reliable strategy for the dissemination 

of the torrent file, along with a set of consumer distribution strategies for different network densities 

of 64, 256 and 400 nodes have been proposed for the evaluation of the performance of the system.

Initially, the efficiency of the set of peer selection strategies proposed to distribute the traffic load 

amongst consumers in the network have been compared for the centralised and decentralised versions 

of the TinyTorrents protocol under a variety of scenarios. The Closest First PieceRcmaining-based 

(CFP) peer selection strategy has produced the best combined performance in terms of Total Packets 

Sent and Received and a high degree of fairness in the distribution of pieces of data. Accordingly, 

the TinyTorrents decentralised version has been configured with the CFP peer selection strategy 

for further testing. This version has been evaluated under different scenarios by varying the node 

density and noise floor in Iroth regular and irregiilar mesh topologies. In these tests, the system has 

been shown to he robust to variations in the sensor network environments where nodes might be 

unavailal)le for relatively long [leriods of time. The scalability of the system has also been tested in 

scenarios of uj) to 400 nodes using different density consumer distribution strategies, while varying 

the routing discovery scope in the UMG routing protocol. The average number of packets received 

and sent grows logarithmically as the network scales and depends on: i) the number of nodes and 

shape of the topology, ii) the routing scope, and iii) the consumer distribution strategy. Additionally, 

the system has Ireeii tested in large networks of multiple producers in order to study the impact of 

having simultaneous data distribution processes. The distribution of consumers has been randomly 

assigned, with a 10% likelihood of a node becoming a consumer. In this scenario, the system has 

been shown capable of achieving a high degree of fairness in the distibution of pieces of data, despite 

the random distribution of consumers in the network. Moreover, the low average time to acquire 

the data file, as compared to scenarios with one producer, has confirmed i) the efficacy of selecting 

torrents from the queue for which the data file is contained in proximate consumers, and ii) the 

effectiveness of the unstructured discovery mechanisms in the location of partial trackers which can 

provide a list of consumers within routing discovery scope. The performance of TinyTorrents has been 

compared against DIP and DHV, two well-established data consistency maintenance dissemination
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protocols for wireless sensor networks. This evaluation has shown the efhcacy of Tiny Torrents in 

providing selective data dissemination as opposed to epidemic data dissemination where DIP and 

DHV perform better. Finally, Tiny Torrents has proven to reliably disseminate data in a real-world 

testbed comprised of 64 niicaZ motes.

For all the experiments in the scenarios presented in the evaluation, a ratio of 100% Torrents 

Completed has been achieved with a 100% Torrents Received ratio from each producer. This confirms 

the high reliability of the system in delivering the data file to all consumers and the suitability of the 

proposed torrent dissemination strategy, even in scenarios of high noise. The scenarios have been 

configured with a routing discovery scope of 5 hops and a set of consumer distribution strategies 

which did not leave any consumer isolated; this should be the case if the system is to maintain a 

100% Torrents Completed ratio.

To conclude, the system has proved to be reliable, scalable and capable of achieving a fair and 

efficient distribution of data hies under a variety of network scenarios in the simulator and in a real 

world testbed. However, the efficiency of the distribution process is also linked to the distribution 
of consumers and joroducers in the network. This opens a new research direction which focuses on 

studying the impact that the distribution of consumers and producers in the network luus in the data 

hie distribution proce.ss. In this regard, the trade-off between the inter-consumer distance and the 

routing scope in terms of reliability and fairness of the data hie distribution process is of interest.
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Chapter 7

Conclusions &: Future Work

This cliapter summarises the researcli contributions documented in this thesis. The contributions 

made with respect to tiie researcli problem posed in the wireless sensor iretworks donrain are high­

lighted and the impact of the outcomes assessed. Finally, potential research avenues are identified 

in furtherance of the research described in this thesis.

7.1 Conclusions

This thesis addresses the areas of data dissemination and routing in Wireless Sensor Networks. A 

novel communications architecture providing scalable, selective data dissemination for the develop­

ment of cooperative applications is presented. The architecture validates a solution to the following 

research problem: How to reliably disseminate data to a sparse subset of interested nodes in an 

unstructured, scalable wireless sensor network whilst distributing the traffic load. This problem has 

been tackled in the literature via the use of epidemic algorithms which push data in a hop-by-hop 

manner to many of the nodes in the network. While this approach is efficient for network reconfigu­

ration purposes, it is an inefficient solution for scenarios where a subset of nodes in the network are 

producers and/or consumers which generate and/or consume data and the remaining nodes act as 

pure relays. The solution proposed in this thesis addresses the problem by employing peer-to-peer 

content distribution concepts where data is distributed to a subset of nodes in the network in a 

collaborative way. Existing P2P content distribution strategies, such as the BitTorrent protocol, 

have been augmented to operate on wireless networks. However, the unreliable multihop nature of 

wireless sensor networks, and the constrained and ubiquitous characteristics of its devices, demand
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novel, domain-aware .solutions. In addition, the system needs to transport data within the network 

while operating in a decentralised manner and balancing the traffic load. This thesis has presented 

such a system - the Tiny Torrents communications architecture for wireless sensor devices.

Tiny Torrents is a cros.s-layer commimicatioiis system composed of a data distribution layer oper­

ating above a routing protocol. The rationale behind the approach is based on the data distribution 

layer, i.e. the Tiny Torrents protocol, coordinating data acquisition and distribution among.st the 

overlay of {)roximate consumer/producer nodes interested in a data file, whilst employing the rout­

ing protocol for data transportation between these nodes. The design employs concepts from the 

BitTorrent protocol, such as data splitting and the use of torrent files for data tile identification and 

description. The centralised version of the architecture employs a single node to track the swarm of 

consumers and producers. Scalability and fault tolerance requirements incentivised evolution towards 

a decentralised version. In the decentralised version, every consumer/producer node is partially re­

sponsible for tracking a nearby partial swarm of consumer/producer peers. Consumers need to locate 

other consumers acting as partial trackers which also provide a list of consumer nodes from which 

to download parts of the data. For this purpose, a set of unstructured discovery mechanisms which 

leverage both rmiting information and the torrent message dissemination process have been created. 

Consimiers .select other consumers to download data pieces by following a set of peer selection policies 

which seek to balance the traffic load and foster data dispersion. Peer selection policies are mainly 

based on the proximity of the peer and the time when the consumer shows interest in consuming the 

torrent data, i.e. position in the swarm. Locating clo.se consumers and selecting both the consumer 

to get data from and the data piece to acquire at each time are key roles of the protocol in the 

achievement of an efficient and scalable data distribution.

For multihop communication, the UMG routing protocol has been created which provides the 

point-to-point reliable communication paradigm required by the Tiny Torrents protocol. UMG has 

been designed to provide end-to-end acknowledgements and operate in a reactive manner, avoiding 

control message overhead when there is no data to route. The routing protocol incorporates service 

discovery and advertisement fnnctionalities that enable the unstructured discovery required by the 

decentralised version of the Tiny Torrents protocol. UMG employs gradient-based routing which 

better accommodates the Tiny Torrents protocol cross-layer reciuirements as consumer nodes can 

spread their gradients to contact other consumers, or to be contacted. The gradient spreading 

process not only populates nodes with the direction towards a consumer node but also disseminates 

the ’‘interest” of the node. The interest of a node aggregates a description of the type of data 

contained or wishing to be acquired, and is a factor employed in the unstructured discovery of
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potential partial trackers (consumers). Gradients are spread within a limited hop scope of each 

consumer, which can be dynamically adjusted according to the distribution of the nearest consumers 

in the network. Each node needs to maintain routing information only for those consumers within 

a limited scope, which makes the distribution of consumers in the network the defining scalability 

factor of the architecture. Moreover, UMG implements an opportunistic mechanism for the detection 

of relative mobility of a node with respect to its neighbourhood. The TinyTorrents architecture is not 

designed to operate in networks of a high number of transient nodes, and leverages the idea of sensor 

networks composed of a core set of nodes monitoring and actuating the environment. However, the 

mobility detection mechanism of UMG enables efficient reactive routing for a small set of mobile 

nodes, which may act as data mules.

The evaluation section has studied the behaviour of the TinyTorrents protocol operating above 

the UMG routing protocol in terms of successful data file retrieval by each consumer, traffic load 

at, each consumer, and overall routing cost. The tv/o variants of the architecture, centralised and 

decentralised, have been evaluated with the set of peer selection policies proposed. However, most of 

the tests have been carried out with the decentralised version which has proved to be more scalable 

and achieves a higher degree of fairness in the network load. In tandem with this, peer selection 

policies considering the location of the peer as the main factor, and the remaining number of pieces as 

the subsequent factor, have produced t he most efficient results in terms of routing cost and traffic load 

fairness. Additionally, a high impact on the performance of the protocol is derived from the torrent 

dissemination and acquisition policies which include: i) the number of times each torrent message 

is broadcast, ii) the average inter-consumer distance in hops, iii) the delay to broadcast according 

to the node involvement, i.e. producer, consumer or relay, and iv) the delay to start fetching the 

data. While multiple policies can be configured at the application layer, certain thresholds need to 

be established to avoid network overload and situations where the partial tracker of a node is too 

far away.

Overall, the TinyTorrents architecture has proved to be an effective communication substrate for 

the development of cooperative applications in sensor networks. These type of applications can be 

characterised by consumer and producer nodes belonging to multiple overlays of interest, akin to 

social networks today, where data needs to be distributed to the members of each overlay. Complex 

behaviours could arise from networks of sensor and actuators performing basic tasks on data which is 

either acquired from sensing or received from consumers/producers in an overlay of interest. In this 

context, the TinyTorrents framework provides mechanisms for data description and identification 

which have been incorporated at both layers of the communications architecture. In summary, the
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Tiny Torrents system provides the communication arciiitecture required to enable the creation of an 

evolving ad hoc and ubiquitous data storage network which contains, and provides, historical and 

contemporaneous information from the sensed environment to static and mobile (gateway) nodes in 

the surroundings.

7.2 Future Work

The Tiny Torrents architecture is fully operational and provides decentralised data distribution within 

the sensor network. Any given node can act, at any time, as a gateway which enables communication 

with the Internet BitTorrent network through the Vuze Tiny Torrent Plugin. This provides global 

data (jnery and distribution of the sensor network data. The system can also operate in passive mode 

where data is acquired when torrents are received and published in the BitTorrent network. Further 

testing and evaluation of the whole Tiny Torrents system under complex deiiloyment scenarios are 

being carried out in order to further stabilize the data distribution process.

As a communications framework for the development of cooperative applications, the Tiny Tor­

rents architecture provides interfaces for the application layer to control the torrent di.sseniination 
and the data distribution process. In this sense, the application developer is free to explore different 

data distribution policies, while testing the efficacy and efficiency of the communications framework 

under specific scenarios. However, a set of policies which cover a great variety of realistic scenarios 

should be provided such that the application developer can select the most appropriate according to 

the desired performance of the distribiition process. An intermediate layer, which dynamically reg­

ulates the i)aranieters of the data dissemination and distribution process and adapts to the current 

network performance in terms of successful data delivery, consumer distribution in the network, and 

latency of data acquisition, will be a valuable enhancement to the Tiny Torrents framework.

The evaluation section of this thesis did not comprehensively explore the performance of the full 

set of mechanisms provided for unstructured discovery of partial trackers. The current evaluation 

has focussed on the rapid acquisition of data on reception of a torrent file, where the network infor­

mation leveraged in the searching process has not been subject to much variation. The unstructured 

discovery mechanisms provide the capability to search for “old” torrents as though the network was 

operating as a distributed data storage system. While this was not a primary aim of this thesis, it is 

an inherent functionality of the system which deserves to be fully tested. In this regard, the storage 

of torrent data in the motes flash memory and the efficient and selective mapping of this data to 

the RAM memory, are key elements for fast distributed random access. The creation of a searchable
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clcscriptor-hased hierarchical file system for torrent and data storage in the flash memory of sensor 

nodes is an ongoing project. The search mechanism offers a lightweight efficient search engine based 

on Bloom filter descriptors of torrent files. The application layer could benefit from descriptor-based 

searching of stored data in order to perform data fusion activities, or to compute the membership of 

consumer nodes to an overlay of interest according to the type of data stored in the node.

Related work arises in exploring sleep scheduling policies which suit the cross-layer architecture 

of the Tiny Torrents system, thereby providing energy saving when communication is not occurring, 

while minimizing radio duty cycle constraints when the data distribution process is taking place. For 

this purpose, a novel adaptive cross-layer sleep scheduling approach is under development that is 

I)urely non-cooperative. A low jjower listening layer controls the radio duty cycle with a lightweight 

fuzzy-based inference engine which, instead of relying solely on input from the MAC layer, also 

receives information from higher layers of the stack. The fuzzy engine needs to be parameterized 

with the operation of the protocols at each layer, i.e. the type of phases and their sleeping priority 

policies, as well as the cross-layer relationship of the phases. This is achieved via the use of a 

set of interfaces which allow creation of a sleeping model from which to derive the correct dtity 

cycle according to the input received from each layer at a given instant. The goal is to maximise 

the slcci)ing time while minimizing the risk of packet loss due to unavailability of the radio. This 

will maintain the performance of the TinyTorrents system at acceptable levels while significantly 

prolonging the life of imattended ad hoc wireless sensor networks.
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