LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Managing Adaptive Web Services Using Semantic

Models and Automated Policy Refinement

By Kevin Carey
Supervisor: Prof. Vincent Wade
School of Computer Science & Statistics

Trinity College Dublin

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or

any other University, and that unless otherwise stated, it is entirely my own work.

I agree that Trinity College Library may lend or copy this thesis upon request.

—_— T T—

il

Abstract

There is an increasing demand for web services to be more flexible, in order to
suit fast changing business needs and user requirements. Web services need to be
adaptive to changes in context, so as to provide web service personalisation, i.e.
services that are adaptive to meet user’s preferences or that accommodate to changes
in the business environment. This thesis investigates a policy-based management
approach to achieving adaptive composite services. A key aspect of policy-based
management is to be able to specify high-level policies that can be mapped down to
low-level policies, in order to manage the adaptive behaviours of web services. This
thesis researches how to describe adaptive composite services so as to expose their
adaptive behaviours, and how to specify and automatically refine management

policies to dynamically manage these adaptive behaviours.

A methodology is introduced for describing and managing adaptive web
services. This thesis also investigates the development of innovative tools to support
this methodology. A set of integrated tools were developed, which ease the task of
describing adaptive web services, and of refining high-level policies in an automated
manner to manage adaptive web services. This set of integrated tools undergoes a
functional evaluation to validate our approach, and a usability evaluation to assess the

usability of these tools.

This thesis proposes a new approach to adaptive web service management,
which is accomplished through a novel integration of FSM and Ontology reasoning to
automate policy refinement. Thus, this approach enables the auto-generation of
refined policies for managing adaptive composed web services. The thesis presents
the design of innovative tools that hide the complexity of modelling adaptive web
services, and automatically refine high-level policies into auto-generated low-level

enforceable policies, for managing adaptive composed web services.

iii

Acknowledgements

Firstly, I would like to thank my supervisor Professor Vincent Wade for all his
wisdom, patience, and support. It is through his belief and trust in me that this thesis
became a reality. I would also like to take this opportunity to thank my parents for all
they have done for me; my brother and sisters Felim, Kathleen and Roisin for their

support and words of encouragement.

I would also like to thank Nina for her love and understanding, and with much
gratitude to the Burke sisters Michelle and Marie, for helping with my English. And I
would like to acknowledge the support of all my close friends, and the friendship of
all my friends from KDEG.

Finally, I would like to dedicate this work to Noreen Carey, whose life would

have been an endless sea of possibilities.

v

Table of Contents

B e LSOOI et A S s S e DI B LS R e ii
I s e e L e ok i e S S s e R i ii
IR BTN /Lol i o s aemboin sttt A mhi b o Sk L i S A iy o s il v
AR L O L Sy S VO AT 0TI I L S W S A 1
I CIPARR.. " 7 R TR DD WEERMC A YDA T30 AWl NN SR IT 0 B ol 1
1.2 S Researely Gaal S CIeOIINEE. . o e et csavababena vadinss rsibaan s 3
L3 ConlibSOn OF TWORK ... i hinias assoihon s siabsnnsvas bt my et i assarssl insasias s wemiinsi 4
LA T OChRBCRl CIVINYERN oo oiisibicsssnn hrmanihodvas sk sl b SRR iy ks S i g s 5
LA ks ERCRE Rl IRl O L e e e L it B 3
WP I T AR SR P S AP A AL PO e f

e AR T e e o oo D W e 7 S I A e [e 9
P WA T R e e I SR 8 A S B0 G U e A 9
U R PRI S G T e S e el USSR S TN R St e 9
2.3 . Achieving AdapBve Wl SEIVICESiiciisrsiasirmsssmisonssstustrrissesssvisrressoss 11
23.1 In-house Development for Achieving Adaptive Web Services............. 11

2.3.2 Achieving Adaptive Web Services by Dynamic Service Composition.12
2.3.3 Achieving Adaptive Web Service using Policy-based Management15

2.3.4 Discussion of Approaches to Achieving Adaptive Web Service........... 17
2.4, . Defining Adaphive Wb SOrvien ... i isssabiisiotimms sk st 19
2.4.1 Describing Adaptive Web Services with WSDL Technology............... 20
2.4.2 Describing Adaptive Web Services with Ontologycccceevveerurennee. 22
2.43 UML Technologies for Describing Adaptive Web Services................. 26
2.5 Representing Management POLICIESc.cusisissssasisssssrsssassmssonsesssassassussansin 29
2.6 A Survey of Policy Refinement Approachescccceceevererrrerinennieeneennennn 31
CAEE o A el O SRR U S R AR W e i 38
3 Design of the MAWS Methodology and Requirements for Supporting Tools ...39
L R (LA IR DI B RO sl S e U S R e 39
8.2 DebiiGons A ASSEROBRIONS . .cavie: i e itk msesetinss sapsissis i spasinstns 39
R L i e i TR 41
3.4 Overtl Detion SIIIOABEL. .. L. civislinidssrasitsatior sbinnshos soentianbosb asaimnserssbassss 43
3.5 TRe IR EIAMINOBOIIENk s oot iniinatbiiseosensessedarons ivassonnsvtssssakbossnisnas 46
3.5.1. vWeb Serice LIESCODHON PIOGOSSixvrus . wriiumsrinsssassssmrostassmasinossssys hivss 49
332 el Seaviee COMBORBOIE PIGCBIE. ..oty seommnsissisiinssasinsortinsasssinons ixtins 23
3.5.3 «iWeb Sepice NManhgotienit PIOCRER.........kisiismorisssrrmassbssstagssissansassnsssns 56
3.6 Supporting Tools for the MAWS Methodologyccceceeerereninenenennenne. 61
3.6.1 Requirements for the Supporting ToOIS........ccccurveriiinirreniiniriercee 61
3.6.2 Architecture of the Supporting TOOISccccevueverrenenenirenenereseenenn 65
3:6.3 | Supportanl the MAWSE SIEIHOBOIORYoerssessesssssersivrionsosnmsescrsssrsssasns 67
N T o e R RS o et e R i S (el iee el i e O ot Bt IR 68
4 Implementation of Integrated TO0IS..........coicviiiisinsiissassseeasisonsssisensisnsonsvnnsssnsessan 70
e R I o 0 o s L 70
4.2 D GE BB TO0IR.. . e L e ssats s sy ass 71
4.3 Design and Implementation of the WSDE tool..........cccecevirviinieninnieiene. 71
4.3.1 . Ontology Interpreter COMPONENL...........ciursmmsesssivissshssmsasivasssssssasasess 73
432 Web Service Viewer COMPONEIL...........cccvsssussnsvossasssrssssssesssnssisonsssesasses 74

4. 3.3 oD Seeuree BNIOT LOMIRONBIE .. o lvisb s srsmeonssitnaivn st hshsasasShrsnsoss T
4.4 Design and Implementation of the SABE tool........c.ccceverirveecieneneenieennene 78
44.1 Ontology Interpreter COmPONEIL........ccouunisiissnrmisassrvasensssessassssnesarsnasas 81
442 Web Service Viewer COMPONENL...........ccssneesessssssssasssansrsessssssssasanssssess 82

44.3 Adaptive Behaviour Editor Component.............ccoccesessossssssossscssssonsancs 83

444 Web Service FSM Generator Componentcccceeeveiiuvervecincsuennn 84
4.4.5 Adaptive Behaviour Aggregator Componentcccceeeeueevvernnnnennne 85
4.5. 'SMPE fool and its COMPOBGIMEo-evonsersmorsissusassiononvensohiviistsditiiesisselitione 86
4.5.1 Ontology Interpreter COMPONENt..........ccueeveeerueenireereeereereeenneesreeenes 89
4.5.2 . . Weh Service NeWer COMPOMEIL,vonvevssromssvusons iossidbsnsaossmnssingassssnnsss s 89
45.3 Adaptive Behaviour Viewer COmPONENt......c.cc...missimaisansssssissssssisass 90
454 Management Policy Editor Component...........c.cccceevureeruenieriuenieniincnnes 90
4.5.5 Management Policy Refinement Component..........cccccecuvrueevveniuennnnnnen. 92
4.6 A Walkthrough in Using SABE to Describe Adaptive Web Services.......... 96
4.6.1 Describing Adaptive Behaviours of Atomic Web Services................... 97
4.6.2 Aggregating Adaptive Behaviours of Composite Web Services......... 104
4.7 Walkthrough in Using SMPE Tool to Create Policies to Manage Adaptive
OO BRI 0 L B) o ST o bbbl o et I g oAl s 107
4.7.1 Specifying Management Policies for Managing Adaptive Composite
bt BT T S e T R X Mpn DR) LTRSS 11 S Caloais IR RS 108
4.7.2 Automatically Refining Management Policies for Adaptive Composite
T T AR SO BRSO SRR S S TR E P LSRN L U S 116
4.8 Adaptive Web Service PBMS Evaluation Platform...........cccceevueevvenvennenne 119
L Nty S SIS L LR S RTINS T O FA 121
Oyt T G Ky LRI TS N G SR TR TR 100 PR TN N 122
Sl ATTOINMCEIONY . ki ittt A e AR A SRR Ao s EA B4 do b aslis i d b ramins 122
5.2 .. FOncnonsiiby BVRINSIION . ..o i stimiabaivivh st suinars b ommmidssaiss asabinbuss 182
5.2.1 Case Study — Personalised Holiday Serviceccccceeveveevnvricnnnnne. 123
5.2.2 . Case Study — NotifiCAHOR BEEVIGE i..c.cioecsmmvssmsrssennssnsrssnssenbtsscsrossessnsn 133
5.3 SABE Tool Usability Evalnahion EXDERIMONLcsrsisssistssssssasssdovoans 143
53.1 Goals of SABE Tool Usability Evaluation Experiment 145
5.3.2 Method of the SABE Tool Usability Evaluation Cycles..................... 146
5.3.3 Effectiveness Result Analysis of the SABE Tool........cc.cccccevurineennne 150
5.3.4 Efficiency Result Analysis of the SABE TooOl..........cccccceveiiuinuinnnnnne 152
5.3.5 Satisfaction Result Analysis of the SABE Toolcccccoueicuiniiunnnnn. 152
5.3.6 Overall Conclusion for the SABE Tool Usability Evaluation............. 156
5.4 SMPE Tool Usability Evaluation Experimentcccccoceeeereercieeneenuennne. 157
5.4.1 Goals of SMPE Tool Usability Evaluation Experiment 158
54.2 Method of the SMPE Tool Usability Evaluation Cycles..................... 160
5.43 Effectiveness Result Analysis of the SMPE Tool........c..ccceceenuinennee. 163
5.4.4 Efficiency Result Analysis of the SMPE Toolccceeviiviieenieenennee. 164
5.4.5 Satisfaction Result Analysis of the SMPE Toolccceceeevveneennennen. 165
5.4.6 Overall Conclusion for the SMPE Tool Usability Evaluation............. 169
5.5 R TPRORIE L.t L % s it b i iR LA it b i A a6l Sy 170
5.6 Cost and Benefit of Adaptive Web Services..........ccoceevueveeveenenerncrnunncnnens 176
B R L Tl I A A O DR e ot S0 e I oo U 14,1715 IO)L SN 176
RS e T CRNOREE SRS G SRR S o SRR ST IR S e e 178
I SGRRERE S L CR B SR S T S T R S SRS 178
6.2.. COnectives and ACKICVEMIBIES [\ i i ribritrmsitedibsibsiinsminsess v vursansonss 178
R T ORI [LR T W 03T e L A SRR) T 184
RN R RN IREL IR, 1R T [e A e, I L R et 185
IR R SRR SR A P R S SRS TR SRt S 186
- RIS NS PR 1 e T e SR SR T St P S 188
U I PR SNBSS BPRI IO ... | ok 1 At | O AT 10 VR TR 4 IR~ 196

vi

Appendix A — SABE Tool Usability Evaluation Experimentc.coccoceveeuinucnnenne 196

Instructions and Questionnaire for SABE Usability Test 1........cccoeceeviivvennennne. 196
Instructions and Questionnaire for SABE Usability Test 2.......ccccccevveevenierreennenns 202
Instructions and Questionnaire for SABE Usability Test 3cccoceevvivienieennenn. 207
Appendix B — SABE Tool Usability Evaluation Results..........c.ccceceevueriincnciiniennene 212
Results of the SABE Tool Usability Evaluation Cycle 1 Pre-Test...........cccueeuuene 212
Results of the SABE Tool Usability Evaluation Cycle 1 Pre-Test..........cccoceeee.e. 213
Results of the SABE Tool Usability Evaluation Cycle 1 Questionnaire............... 214
Results of the SABE Tool Usability Evaluation Cycle 2 Pre-Test...........ccccceeneene 215
Results of the SABE Tool Usability Evaluation Cycle 2 Task-related Questions 216
Results of the SABE Tool Usability Evaluation Cycle 2 Questionnaire............... 217
Results of the SABE Tool Usability Evaluation Cycle 3 Pre-Test............c..c........ 219
Results of the SABE Tool Usability Evaluation Cycle 3 Task-related Questions 220
Results of the SABE Tool Usability Evaluation Cycle 3 Questionnaire............... 221
Analysis of the SABE Tool Usability Evaluations...........cccceeeeveeneenenveenenieenennne 222
SABE Lisability Evalustion CYBIE 1..... .. crevesnssrmessesssssninssinsasmmnseissosssspasntsssons 222
SABE Usability Evaluation Cycle 2...........ccceceervrnninrnercnnsnnisnesussssssnssssesesssssssens 223
SABE Usability Evaluation Cwele 3ccoiclimrrinmmmmemssssaimptrssssssssssoserbismsdssons 224
SABE Comparison of Usability Evaluation Cycles...........cccceevverreenieeruennneennn 225
Appendix C — SMPE Tool Usability Evaluation Experimentcccccecevvueruennnenne 230
Instructions and Questionnaire for SMPE Usability Test 1.......cccccovevverieviennnnnen. 230
Instructions and Questionnaire for SMPE Usability Test 2.........cccceevueriiiiiennennns 235
Instructions and Questionnaire for SMPE Usability Test 3.........cccevvveeviiriinnenns 239
Appendix D — SMPE Tool Usability Evaluation Results............ccccevvierieenienieennnnn. 244
Results of the SMPE Tool Usability Evaluation Cycle 1 Pre-Test...........cccoeeueenee 244
Results of the SMPE Tool Usability Evaluation Cycle 1ccocceevieviiiivenninenns 244
Results of the SMPE Tool Usability Evaluation Cycle 2 Pre-Test...........cccceeuunnee 246
Results of the SMPE Tool Usability Evaluation Cycle 2 Task-related Questions 247
Results of the SMPE Tool Usability Evaluation Cycle 2 Questionnaire............... 247
Results of the SMPE Tool Usability Evaluation Cycle 3 Pre-Test...........cccueeunennee 249
Results of the SMPE Tool Usability Evaluation Cycle 3 Task-related Questions 249
Results of the SMPE Tool Usability Evaluation Cycle 3 Questionnaire............... 250
Analysis of the SMPE Tool Usability Evaluations............ccceoeverenenencnenenennnns 251
SMPE Ugabiluty Evaluation CYCIE ©..........uumccsmmmsssmsssasnmsesssonssossonsssveonssbrsnsson 251
SMEPE Usabilt v EvalGaBOn S VEIE D ... i cvs ssnbsabemiasvusiskinsnio N sbass 232
SMPE Usability EvaRualion CVEIE 3 iiressinirinisbossassonssasnansintinastnssnnsinasdnnssn 253
SMPE Comparison of Usability Evaluation Cyclesc.cccocvveniinenvirncnnens 254
Appeniix B ~Ontology MOGELS ccmmmismbrstnroserosssrsnaisossassnssasstbsnsinssonsrssssssissn 259
g T E e LT L SRR S SIS S R S NS IS S e 259
Obligation PRy DIIGIGRUINIOMEL cicinisessamsssinssinsashses ssstiisisnsbassnsasismisnpissans 267
Appendix F — Personalised Holiday Service Case Studyccccecevververeeeninenennens 272
eIl T o Sl AR e BN ST A ASTROM SIS S) BT SR 272
o0y ot T T AR e R AR UBRE T LT B e N A SRS 272
v T D e A R S S R S P 288
PersonalHoldR Y BREviCe 'S FEM ., ... il B it sstsiiiiiaismmer i ihosaisissibciopong 296
PersonalHoliday Service’s Management POLICYc.cccererenenenenenineieeienne 302
PersonalHoliday Service’s Refined POLICIES........cocueereenecsunssiansecsnssanessessacsasacassonss 303
PersonalHoliday Service’s Refined Policies as Jess Rules........cc.ccoceevenieniennennnen. 309
PetsonnlHobidiy Bervice RIMTHINE TIB00.... oo serrisiietirmiibobssrsmsrse sisssmnsstusssitn 310
Appendix G — Notification Service Case Studyccccevererrecrrecresresnnnrcsserseencnnes 313

vii

NotificationiService .. o S o Tiide o copisrad L it SR80 o 8 e e 343

O G O T .5 L R i s e i e R L L e e 313
NoUBCHHoneotnding .. <L A i ol R Lt Siiudebebcini ash ek i 325
T E T e R e R S S ST A AT B AT 1553 1L MO XL e 331
Notification Service s Manapemiont POHEYo chibinitsimsirsomerismisrssinsonisss 340
Notification Service’s RefINed POLICIESccccersrerecsererssssressssessarassssnssssssssssassssns 343
Notification Service’s Refined Policies as Jess Rules.........ccccveeevveeecevernneeerineeennne 353
Notification BErvice RUNTING TIROB . ..ol rbis e ittontsssessrsaiassrarsnssbiaserssbsats 356
Appendix H — PhotoAlbumPrint Service Exampleccccovvevviinerienieenennieneenene 359
PO A R I S RINICE . b et e e A i A b e s bbb 359
PROIoA IR PO BEEE.. . Ll i e B e e b nd st dotenss b s n s abin 360
Photo AIDBIE I SEWNOE SRR .o et isaaitis senbon cran sasb bin g o os banea s asmeson et 364
PhotoAlbumPrint Service’s Management Policyccoceevveviieerienviiinienienieene 372
PhotoAlbumPrint Service’s RefIned POLICIESccccvrecissenrsessrnsssrosssransossinsnsssssess 373

viii

Table of Figures

Figure 3-1, A diagram of the PhotoAlbumPrint composite web service..................... 42
Figure 3-2, The three processes in the MAWS Methodologyc.ccceeevirvieenueinnnennee. 47
Figure 3-3, Web service description PrOCESS ... osiiorssstrstasssisnesssssatsnrsnsssosarapossion 49
Figure 3-4, Snippet of WSDL artefact consumed for print web service 50
Figure 3-5, Snippet of OWL-S artefact produced for print web service 51
Figure 3-6, FSM artefact describing the adaptive behaviours of the print web service

.. 52
Figure 3-7, Web service cOmPOSITION PIOCESS ...ricvssrierrassissnssssssasponssmssvassrsrsenssssopssansns 53
Figure 3-8, OWL-S snippet describing the composition of the Photo AlbumPrint web

7 e ORI ol 0 PSS DL 1 RO S s 11 e TN IS AN AR A M 39
Figure 3-9, FSM snippet for PhotoAlbumPrint service’s adaptive behaviours........... 56
Figure 3-10, Web service management DYOOBREcvisissusssmvesrustssiarnsasesssusssssssisssssrss 57
Figure 3-11, Management policy specified for PhotoAlbumPrint web service........... 58
Figure 3-12, Refined mapping policies for PhotoAlbumPrint composite web service59
Figure 3-13, Refined enforceable policies for the PhotoAlbumPrint web service60
Figure 3-14, Alignment of requirements with MAWS processes..........c.cceceeeveruenunne 62
Figure 3-15, Design architecture of the set of integrated tools for supporting MAWS

e et R M 0 U B I R LU SRR s A R o 66
Figure 3-16, How the designed tools support the MAWS methodology processes. ...67
Figuve 4-1, Architecture Of the W SDIE 000 ccomaissiseisioissssanssosaiisgninistaasassinrasans s
Figure 4-2, A screenshot of the WSDE t00Lc..cecisenssereusirnssnassesnsssnasssssssssosassosentons 73
Figure 4-3, Web service composition detail panel..........c..cecceeveiniiinienieineniiencnienen. 75
Figure 4-4, Web service process detail panelccoeveeiiiiiiniiiienienninicncneenen. 76
Figure 4-5, Web service data flow detail panelccoceeviiniiniininneeinencncieeen. 77
Figure 4-6, Web service node description detail panel.............coismenicssssssssncsniassrisos 78
Figine 4-7. Architecturs of 1he SARE YOG ...« ovesmssaretssssonsessissbessins sbsstsnissrions 78
Figtire 4-8. X scheonshot 0F the SARE W01vcicnnmsossssssssisrsarinnisonsrarssisnssnisnssnssass 80
Figure 4-9, Web service process detail PARelcnipeiiisnisiaisntisispinsrisssisossns 82
Figure 4-10, FSM structure detail panelccovuieriseiersssssnsonssresessonssssssnssasnasss 83
Figure 4-11, FSM description Geail PANEL ciiessiexorsiissassiiiomenbonssenssrsaeiiossbsadons 84
Figure 4-12, FSM model with various states of a running web service 85
Figure 4-13, Architecture of the SMIPE t00L............c.covinissosasonssssessessinsssnsssssssssassensens 87
Figure 4-14, A screcnshot OF THE SWIPE 1001, ..oicvioviimcssevsnsmsssessossissosssnvsrsmsstsressassnss 88
Figute 4-15, Policy stoaciure detRIl DRAEL ...t iiiiviiiimmmmisinssasicssassnsdbrossnnis 91
Figure 4-16, Policy aspect description panelccceeeeiereiieninenieneenienienieicnenen 92
Figure 4-17, SABE tool prior to loading a web service description............cccceeueunenee. 98
Figure 4-18, Selecting the Print Service OWL-S description..........cccceceevvrenieencennnns 98
Figure 4-19, SABE tool with the Print Service description loaded and creating FSM99
Figure 4-20, Creating a sub-FSM to describe an adaptive behaviour.............cccc....... 99
Figure 4-21, Unnamed adaptive behaviour is highlighted in red............ccccceeunenee. 100
Figure 4-22, Adding an initial state for this FSM.........ccccoevieiiievnnienciecnccrecesene 100
Figure 4-23, Adding a transition to the initial state............c.cceeeeeviereeicieeninieesenennn. 101
Figure 4-24, Missing aspects of the new transition are highlighted in red................ 102
Figure 4-25, Adding a new state where state type options are provided.................... 103

Figure 4-26, When configuring transition, the new state is suggested as target state103
Figure 4-27, Loading the description for composite service PhotoAlbumPrintService
.. 105

iX

Figure 4-28, SABE tool displaying the adaptive behaviours of one of the constituent

e IOl SO e WG SR A S P [T e i N G S 105
Figure 4-29, SABE tool aggregating the adaptive behaviours of the constituent

071 T R A T 0, D AT o R ey NN A A A0 P e e R A 106
Figure 4-30, SABE tool displaying the aggregated adaptive behaviours for the

T T T SR R e e s SO B M e 107
Figure 4-31, SMPE tool prior to loading web service descriptionccceeveeeenee. 109
Figure 4-32, Selecting description of composite service PhotoAlbumPrintService..110
Figure 4-33, Specifying a management policy using the SMPE tool........................ 111
Figure 4-34, Adding an event to the management poliCy..........cceceevuervuerrveriererruennee. 111

Figure 4-35, SMPE tool highlights in red the missing details and provides options.112
Figure 4-36, Selecting subject for new condition from selection of service’s

T T ok ok o m ek S et e 8 o 1o 10 IE e LETAL O R Ve R Sy 113
Figure 4-37, Adding a complex action to management poliCy........c.ccceevueerueriueernnene 113
Figure 4-38, Adding a Boolean node for the complex action............ccceecveecverveeennnne 114
Figure 4-39, Adding the second child action for the complex action..............cc....... 114
Figure 4-40, Configuring the first policy action from dropdown menu to be
L e I i e S IR S B R e S L 115
Figure 4-41, Selecting ColourPrinting adaptive behaviour for the second policy action
.. 116
Figure 4-42, Starting the automated policy refinementcccccoeveviieniieniieniieenneen. 4 b
Figure 4-43, SMPE tool’s report of the policy refinement identifying generated
T TR A § B R T PN L i BT U e S e O 118
Figure 4-44, SMPE tool displaying the generated refined policies for the constituent
R s e Tl veh e fia podmesrasnsn ehasan bys s 118
Figure 4-45, Snapshot of the Policy Evaluation Frameworkccccceevveeienveennn. 120
Figure 5-1, Diagram of the Personalised Holiday Servicecccccceveerveenivenseeennnen. 124
Figure 5-2, A snippet of the second management policy specified for the Personal
TR T R R S S T L AL R LR e S e e Fagd
Figure 5-3, A snippet of the enforceable policies as Jess Rules for the second
BIARDRBIABIL POBICYoviuivniririisbebmmvennss e riismaississnipssiss sxssnssesintsisns ssbagrassossessnsnsrsesvass 129
Figure 5-4, Runtime trace for Susan Smith using Personal Holiday Service............. 131
Figure 5-5, Runtime trace for John Murphy using Personal Holiday Service........... 131
Figure 5-6, A diagram of the NOUTICAUON SEIVIGErcsersmsvsmssrssssssnsnssssbrnssssssnssss 134
Figure 5-7, Snippet of the third management policy specified for the Notification
1y T 1 SN EONSMIRE TR SR L A ook U ko S ol AN T R e 136
Figure 5-8, Jess rules for third management for Notification Service............cccc...... 139
Figure 5-9, Runtime trace for Notification service with gold member policy triggered
.. 141
Figure 5-10, Runtime trace for Notification service with high priority policy triggered
142

..

Figure 5-11, Decomposition of the experiment goals for the SABE tool’s usability
p i R IR ol e, A LS R R A R TSR e bR O I e 146
Figure 5-12, Breakdown of the usability evaluation’s objectives for the SMPE tool159

Table of Tables

Table 1, Policy refinement apmoachos COMMPBEISONcusssimsssrissssssressmsassingsassessrasnss 37
Table 2, Management policy for PhotoAlbumPrint Service.........cccccevvevuenerenenennennen 43
Table 3, Another management policy for PhotoAlbumPrintService............cccucu....... 108
Table 4, Enforceable policies generated for Personal Holiday Service..................... 127
Table 5, Enforceable policies generated for Login Service........ccecevveverviriiienninne 127
Table 6, Enforceable policies generated for Holiday Package Service 128
Table 7, Enforceable policies generated for Flight Service..........cccccocvcninnisuivnasassunne 128
Table 8, Enforceable policies generated for Hotel Service..........ccceceveeeenuiinnennnene. 128
Table 9, Susan Smith’s request and response to the Personal Holiday Service 130
Table 10, John Murphy’s request and response to the Personal Holiday Service.....130
Table 11, Enforceable policies generated for Notification Service..........cccceeueeuenee 137
Table 12, Enforceable policies generated for Login S€rvice..........coevseernenssnsenssnsonsen 137
Table 13, Enforceable policies generated for Message Servicececeevevvennennen. 137
Table 14, Enforceable policies generated Address Book Serviceccccevevuenuennee 138
Table 15, Enforceable policies generated for Contact Service..........ccceuevuerenienuecnene 138
Table 16, Enforceable policies generated for Phone Servicecccoveveeveniincnnen. 138
Table 17, Enforceable policies generated for Email Service.........ccoceevicveiiinninncnnee. 138
Table 18, Gold user type request and response to the Notification Service............... 140
Table 19, High priority type request and response to the Notification Service......... 140

Table 20, Preliminary set of questions for the usability evaluation of SABE tool....148
Table 21, Results of the preliminary set of questions for knowledge on Web Services

.. 148
Table 22, Results of the preliminary set of questions for knowledge on Web Finite
PP T T eV ROSANR = remot LoT o SN BT SEL UL RISl RS i NS 148
Table 23, Results of the preliminary set of questions for knowledge on Adaptive

27 T8 T T TR O el WA . Ve MLAI 50 IS L ol S L o e 149
Table 24, Task questionnaire for the usability evaluation of SABE tool 151
Table 25, Degree of accuracy for SABE tool from second and third usability cycles
.. 151
Table 25, Questionnaire for the first usability test of SABE tool.........c.cccccceeuenuennnne. 153
Table 26, Degree of satisfaction in viewing adaptive behaviours from three usability
oy NSOV OROAn TR LI P LR AT O L L) 0 ST ot o oL M S Sl B 153
Table 27, Questionnaire for the second usability test of SABE toolcccccue.e. 154
Table 28, Degree of satisfaction in describing adaptive behaviours from three
DT TR L UM €1 RS el LS e T M e N 154
Table 29, Questionnaire for the third usability test of SABE tool.........cccccevuveunenne. 155
Table 30, Degree of satisfaction in aggregating adaptive behaviours from three
T 2 R e R (A e S e L I e ek (LR s, Bl N 155

Table 31, Preliminary set of questions for the usability evaluation of SMPE tool.... 161
Table 32, Results of the preliminary set of questions for knowledge on Policy 161

Table 33, Task questionnaire for the usability evaluation of SMPE tool.................. 163
Table 35, Degree of accuracy for SMPE tool from second and third usability cycles

.. 164
Table 34, Questionnaire for the first usability test of SMPE tool...........ccccccceveunnnne. 165
Table 35, Degree of satisfaction in viewing policies from three usability cycles166
Table 36, Questionnaire for the second usability test of SMPE tool...........cccceueuee. 166
Table 37, Degree of satisfaction in authoring policies from three usability cycles...167
Table 38, Questionnaire for the third usability test of SMPE tool...........cccccceveueenene 167

xi

Table 39, Degree of satisfaction in refining policies from three usability cycles......
Table 42, Policy refinement approaches COmMpPAariSOnceceeruerruereereeruesaesuessenne

Xii

Abbreviations

AWT — Abstract Window Toolkit

BPEL — Business Process Execution Language
FSM - Finite State Machine

GUI - Graphical User Interface

MAWS — Manage Adaptive Web Service
MVC - Model View Controller

OWL — Web Ontology Language

OWL-S — Semantic Mark-up for Web Services
PBMS - Policy-based Management Systems
RDF — Resource Description Framework
RMI — Remote Method Invocation

SABE — Service Adaptive Behaviour Editor
SMPE — Service Management Policy Editor
SOAP — Simple Object Access Protocol
UML — Unified Modelling Language

URL — Uniform Resource Locator

WSCE — Web Service Composition Engine
WSC — Web Service Composition

WSD — Web Service Description

WSDE — Web Service Description Editor
WSDL — Web Service Description Language
WSDL-S —Web Service Semantics

WSM — Web Service Management

WSMO — Web Service Modelling Ontology

Xiii

1 Introduction

1.1 Motivation

Increasingly, systems have to cope with rapidly evolving user requirements
[10]. To meet these potential requirements, there is a growing need to make web
services become more adaptive [11]. This need for adaptive services is increased by
the necessity of customising web services to tailor them to meet a client’s preference
or to restrict web services according to evolving business needs. By developing
adaptive applications the same system can satisfy a broader range of requests without
requiring manual reprogramming. In other words, the same adaptive web service
could be personalised to uniquely suit different users thereby addressing the

requirements of a broader range of users without the need to recode.

A second motivation for adaptive web services is the desire to increase
reusability [24]. Web services become more reusable when adaptive, since they can
adapt at runtime to different circumstances, i.e. they can be used in different contexts,
such as customised for different companies and employed for different business
models. For example, a service provider could offer a secure service that uses an
optimised encryption algorithm for gold subscribers and standard encryption
algorithm for bronze subscribers. While another service provider, decides that silver

subscribers can afford this optimised encryption algorithm.

One approach to realising adaptive web services is to dynamically compose
the services from pre-existing simpler services [12]. In this way, adaptive web
services are attained from the adaptive selection of the constituent web services and
the workflow across these selected web services [13]. However, this method of
realising adaptive web services presupposes that all the elemental services required to
perform the required task, and more specifically in the entailed manner', are available.
Thus, a significant problem here is that the web services may need to be re-composed

and alternative elemental services may need to be found.

! In general web services are static and can only perform a function in the designed manner; their
behaviour is not adaptable to changes

A variation of this approach would be to define web services that are more
intelligent, i.e. web services that have multiple behaviours that can be adaptive at
runtime. These are services with default behaviours as well as other alternative
behaviours which can be used in special circumstances to accomplish a range of
service customisation. In order to reason about these adaptive web services, there is a

necessity to describe their behaviours formally [1].

However, just modelling the adaptive behaviours is not sufficient; these
adaptive behaviours need to be dynamically managed at runtime so as to ensure that
web services can dynamically react to contextual changes related to a web
application. The key benefit of this dynamic management is that an adaptive
behaviour can be realised without necessarily changing the web service composition
itself. The problem then becomes how to dynamically choose the correct behaviour
for a web service in a particular environment or context, and automate this dynamic

management” of the chosen adaptive behaviour of a web service.

A number of different approaches to controlling the behaviour of resources or
services on the web have been attempted [21][14]. A declarative approach, called
policy-based management, allows dynamic control and reasoning about the
behaviours of systems or applications [22][8]. Policy-based management systems
(PBMS) provide a mechanism to dynamically control the behaviour of systems and
services at run time without the need to remodel or recode the managed system.
PBMS has been used to manage large complex dynamic systems, such as
communication network security and QoS [17] [18]. In recent years, PBMS have
focused on managing atomic web services [19], web service security [16], and web
service publication and discovery [15]. However, PBMS has not been used to manage

the alternative behaviours of composite web services.

PBMS’s goal is to provide a high-level means of affecting the overall
behaviour of a system, without the need for reconfiguring the system or service
manually [42]. Thus, PBMS allow managers to specify high-level policies, in a
declarative way, to express a goal or a constraint on a system. However, these policies

are abstract and need to be refined to low-level policies. These refined low-level

? By management it is meant both the sensing of a particular state of a behaviour and the control of this
behaviour

policies affect the local tuning of the relevant components and resources of a system

to enforce their goal [50].

A key difficulty in PBMS is the process of refining high-level policies into
low-level policies, specifically in an automated manner [51]. Thus, a key challenge
when using policies for managing adaptive composite web services is being able to
automatically refine these high-level policies into low-level policies to enforce the

intended behaviour on the relevant constituent atomic web services.

1.2 Research Goal and Objectives

The goal of this thesis is to propose and evaluate an innovative architectural
approach and mechanism, which combines Finite State Machine (FSM) and Ontology
reasoning together with policy-based management. This innovative approach supports
accurate high-level policy specification and automatic refinement and generation of

low-level policies for managing adaptive composite web services’.
Thus the research objectives of this thesis are to:

e Research the use of Finite State Machine (FSM) and ontological techniques to

describe adaptive web services and techniques to support policy refinement.

e Define and develop innovative mechanisms to describe the adaptive

behaviours of both atomic and composed web services.

e Define and develop novel mechanisms to specify high-level policies to
manage the adaptive behaviours of composed web services and to auto-
generate refined (low-level) policies, which can be enforced on the relevant

constituent atomic services.

e Evaluate the complexity of designing adaptive service management using this
approach, i.e. usability of the approach, and a comparison with other policy

refinement approaches.

The thesis proposes to use FSM and Ontology representation techniques to
provide the relevant semantics for describing adaptive web services, and proposes to

use policies to provide a means to specify the desired adaptive behaviours for a

3 This thesis focuses on composite services which are made up of sequence of individual adaptive web
service invocations

composite service. Furthermore, the thesis proposes to use the semantic description
and high-level policy specifications to auto-generate refined (low-level) policies to
dynamically manage at runtime the relevant adaptive behaviours belonging to the

appropriate constituent atomic services.

1.3 Contribution of Work

This thesis contributes to the state of the art in adaptive web service
management. It proposes a novel combination of the use of FSM and Ontology
reasoning to automate policy refinement of high-level policies and generate low-level
policies to manage adaptive behaviours of composite web services. While each of
these technologies has been individually used in some form or another to describe
system’s behaviours or to manage systems, this approach provides the first novel
integration of these techniques to auto-generate refined policies for managing

adaptive composed web services.

The thesis presents the design of a set of integrated tools which hide the
complexity of both modelling of the FSM and Ontology models, and eases the
complexity of authoring policies to manage the adaptive behaviours of composite
services. In addition, it automatically refines high-level policies into low-level
enforceable policies, based on the tool’s ability to automatically generate refined

policies.
Publications arising from PhD thesis:

i. Kevin Carey, Vincent Wade. “Using Automated Policy Refinement to
Manage Adaptive Composite Services.” Network Operations and Management
Symposium Workshops, 2008. NOMS Workshops IEEE, Salvador Brazil,
April 2008.

ii. K. Carey, V. Wade. “Realising Adaptive Web Services through Automated
Policy Refinement.” Integrated Network Management, 2007. IM '07. 10th
IFIP/IEEE International Symposium, Munich Germany, May 2007.

iii. K. Carey, D. Lewis, S. Higel, V. Wade. “Adaptive Composite Service Plans
for Ubiquitous Computing.” Second International Workshop on Management
of Ubiquitous Communications and Services, MUCS 2004, Dublin, Ireland,
December 2004

iv. J. Keeney, K. Carey, D. Lewis, D. O'Sullivan, V. Wade. “Ontology-based
Semantics for Composable of Autonomic Elements.” Workshop on Al in
Autonomic Communications at 19th International Joint Conference on

Artificial Intelligence, JCAI'05, Edinburgh, Scotland, July 2005

v. D. Lewis, A. Brady, K. Carey, O. Conlan, K. Feeney, S. Higel, T. O'Donnell,
D. O'Sullivan, K. Quinn, V. Wade. “Managed Person-centric Adaptive
Services for Smart Spaces.” eChallenges 2004, eChallenges04, Vienna,
Austria, October 2004

vi. D. Lewis, K. Feeney, K. Carey, T. Tiropanis, S. Courtenage. “Semantic-based
Policy Engineering for Autonomic Systems.” Second International Workshop
on Management of Ubiquitous Communications and Services, MUCS 2004,

Dublin, Ireland, December 2004
1.4 Technical Overview

1.4.1 Technical Approach

This thesis proposes a new approach to describing adaptive web services and
managing their adaptive behaviours using policies [1]. In order to accomplish this
work it was first necessary to investigate different methods to achieving adaptive web
services. In particular, a policy-based management approach was chosen to achieve
adaptive web services. It became evident from this investigation that there is a need to
formally describe adaptive web services® in order to be able to manage them. Hence,
the thesis investigates the use of Ontology models to semantically describe the
composite services, and Finite State Machine (FSM) as a means to provide a formal

representation model for their adaptive behaviours.

The other aspect of the approach taken in this thesis is how to tackle the
problem of managing adaptive composite services. A policy-based management
approach was the chosen option to manage the adaptive behaviours of these services.

However, by using policies some key challenges needed to be tackled:

* Typically, semantic descriptions don’t provide a formal representation of the service’s adaptive
behaviours

o the need to ensure that high-level policies specified to manage adaptive

services are correctly formed using the correct vocabulary;

e the need for use of low-level policies to enforce the chosen adaptive

behaviour;
e the need to automatically refine high-level policies into low-level policies.

Therefore, a survey of techniques for automatically refining high-level policies
into low-level policies was performed. From this survey a novel technique was
developed, which automatically refines these high-level policies into auto-generated
low-level policies using a combination of semantically rich models. This automated
policy refinement technique uses the semantic descriptions of composite web services

and their adaptive behaviours to generate these enforceable policies.

In order to support the application of these techniques, the thesis proposes a
methodology which steps through the key aspects of the proposed approach. The
proposed methodology helps users identify the sequencing of activities to perform,

and the thesis also defines the tools needed to support these methodology activities.

Rather than developing a single application to provide all of this functionality,
a set of integrated tools were developed to suit the different categories of users in the

development cycle. This set of integrated tools is divided into:

i. a tool for modelling composite web services and capturing the semantic web

description with ontology based descriptions;

ii. a tool to capture adaptive behaviours of web services as FSM; and to
aggregate FSM models in order to describe the adaptive behaviours of

composed web services;

iii. a tool to define high-level policies for adaptive composite services and to
automatically refine these policies generating low-level policies which enforce

the correct adaptive behaviours of the relevant constituent web services.

In order to evaluate the tools, a twin evaluation process was executed, which
validates the policies generated by the tools and evaluates the usability of the tools.
Firstly, the tools were evaluated to validate their ability to describe and manage
adaptive web services using two case studies. Secondly, the tool’s usability was

evaluated; the key issue being investigated here was the ability of these tools to

reduce the complexity of developing the relevant models needed for managing the

adaptive behaviours of web services.

Finally, a comparison of the novel automated policy refinement approach with
other approaches is discussed. This comparison identifies and compares key aspects

of automated policy refinement for managing adaptive composite services.

1.4.2 Thesis Overview

Chapter two begins with a state of the art review and an appraisal of current
approaches to achieving adaptive web services. Then the various standards and
technologies that support the semantic descriptions of adaptive composite web
services, are examined. Following this, a review of the prominent architectural

designs for achieving policy refinement is presented.

Chapter three illustrates the design and architectural vision of this research and
formulates the base requirements for development environments that describe
adaptive web services and their managing policies. Based on influences from chapter
two, a methodology for describing and composing adaptive composite services and
for creating management policies was developed. This provides the foundation for the
architectural design of a set of integrated tools that describe adaptive services and

their management policies.

Chapter four presents the implementation of a set of integrated tools for
describing adaptive composite services, and for specifying high-level policies which
are automatically decomposed in order to dynamically manage the adaptive behaviour
of composite web services. Based on the design specifications in chapter three, the

architecture of these tools and their components is described.

Chapter five presents the results of the case studies and of the usability
evaluation carried out on the prototype implementation of the set of integrated tools
designed according to the architectural design. Case studies that investigate how well
this thesis’ innovative approach succeeded in describing adaptive web services and
their management policies are also presented. Three separate usability evaluations
were conducted with different groups of computer science graduates, and each time

results were recorded using standard usability engineering questionnaires. Also as part

of the evaluation, a comparison was performed between this approach and other

approaches to automated policy refinement, previously identified as state of the art.

Finally, the thesis concludes with a description of the objectives and
achievements of this research, a summary of key contributions attributed by this
research and its limitations, as well as a discussion of the pertinent future work to

continue and broaden this research.

2 State of the Art

2.1 Introduction

Adaptive web services have gained a lot of interest in recent years due to the
need to continually adapt web services to rapid changes in the market where there is a
necessity for web services to be customised to meet business needs [20]. Furthermore,
there is a need for web services to be adaptable to meet user’s preferences, i.e. web
services that can be personalised to meet user’s needs. There are different ways to

achieve adaptive web services.

Introduction to adaptation is first described, detailing the different methods of
adaptation and adaptive systems. An investigation into different approaches to
achieving adaptive web services is presented, together with a discussion of how the
different approaches compare in their achievement of adaptive web services. A survey
and a discussion of the different modelling languages that can be used to formally
describe adaptive web services are also presented. This is followed by a survey of
different approaches to automated policy refinement. Finally, choices of technologies
for representing obligation policies that can be used in the proposed approach are

presented.

2.2 Adaptation

Adaptation is the process in which an adaptive system adapts its behaviour to
each request based on inputs and changes in context [81]. Many software systems
need to be customised before using them, either to satisfy the user’s needs or to
provide interoperability with other software systems. This customization is a form of
adaptation especially if done in an automated manner. There are many reasons for
adaptive systems, and such needs are growing with the increasing development of

distributed systems and its ad-hoc nature [82]:

e Reuse of components and the significance of component integration, instead of

programming from foundation;
e New paradigms for distributed computing based on mobile technologies;

e Creation of context-aware smart environments - ubiquitous environments;

e Increase development of dynamic user centred web sites;

e Growing use of real-time interactions and multimedia based content in

groupware and collaboration systems.

Therefore, many forms of adaptation in software systems have emerged in
diverse areas, from context aware system to web personalisation. For example,
systems that register their locations or physical devices and change their behaviour
accordingly are deemed context aware system [86]. Systems that would change their
web presentation to different users depending on their preference or usage history are
called web personalisation [83]. Adaptive e-learning systems can provide different
sets of modules for a course, depending on user’s knowledge and preference [84].
Adaptive middleware are frameworks that would change its configuration to better

suit its running applications, for instance to provide a better QoS [85].

From the different methods of adaptation, a few distinguished methods have
been noticed, such as adaptation through composition, reflection, and policy-based
management. Adaptation through composition composes its components on the fly to
produce a system that would achieve the desired task. Reflection allows for other
systems to inspect and modify the behaviours by calling unpublished functions of a
running system. Policy-based management provides a means to automatically change

the behaviour of a running system when a particular policy rule is triggered.

The main advantage of adaptive systems is that they can accommodate a broad
range of users. Adaptive systems can be personalised to suit the user’s needs; whether
these personalisation is driven by the user (being able to select a specific course
module), or driven by the system (being recommended a particular book that user
might wish to buy). Another advantage is that adaptive systems are customizable to
integrate or interoperate with other software systems. For example, composable
middleware frameworks can ensure safety interactions for ubiquitous applications

[87].

One of the concerns with adaptive systems is security. By providing the
flexibility to change the system, it can also cause unforeseen security issues to
surface. Customisation has the disadvantage of empowering the users with the ability

to miss-configure the system. Another disadvantage of adaptive systems is that if not

10

designed properly can lead to conflicts between users trying to customize the same

shared adaptive system.

2.3 Achieving Adaptive Web Services

As mentioned previously, there is an increasing demand for web services to be
more intelligent, i.e. to be adaptive to different situations. This thesis defines adaptive
web services as web services that can dynamically change their internal behaviour
according to changes in context relating to them. By changing their internal
behaviour, adaptive web services do not change their overall functionality. Instead,
adaptive web services allow selectively overriding or customising core functionality
of web services when needed, which changes how web services achieve their tasks.
Three possible different candidate approaches to achieving adaptive web services

were identified:
i. In-house Development, where web services are built with embedded logic;

ii. Dynamic Service Composition, where service composer engines are used to

re-compose the necessary web service for a particular change in context;

iii. Policy-based Management, where policies are used to choose the available

alternative behaviours of web services.

2.3.1 In-house Development for Achieving Adaptive Web Services

Adaptive web services can be achieved by embedding intelligence logic within
web services. Web services can be created with built-in logic that allows them to be
adaptive to their environment through different types of inputs. In other words,
intelligence logic can be added to web services to change their behaviour based on the

values of the different inputs of a web service.

For example, developers can create a notification service that contacts
recipients with a designated message. Suppose such a service had inputs: message,
email address, and phone number. Let’s say that this service is then enhanced by
adding intelligence logic so that it will only contact a recipient by phone if a phone
number is provided, and it will only contact a recipient by email if an email address is

provided as an input. Where both email address and phone number are provided, then,

11

the service will try to contact by phone first, and if the recipient is not reached, it will

send an email contact message.

The In-house approach allows web services to be adaptive by hardwiring
intelligent decision logic within web services, which changes their behaviours based
on input values. The benefit of this approach is that it allows developers to quickly
add intelligence to web services, which reacts to different input values. Developers do
not have to learn about nor follow any framework for adaptive web services. They are
free to create adaptive web services whichever way they want. Their intelligence code
is hidden within the web service, which prevents clients and competitors from prying

into the secrets of the adaptive logic.

However, the In-house approach has several drawbacks, such as the lack of a
framework for adding intelligence logic to web services in a standard manner.
Without a framework for exposing the descriptions of the web service’s intelligence
logic, it becomes difficult to formalise or generalise this approach. This approach does
not provide a formal means for clients to be aware of the service’s internal

intelligence logic.

But more importantly, by hard-wiring the intelligence within the service, it
makes it difficult to update or change it to accommodate different or new unforeseen
scenarios. For example, what if a user wanted to use the notification service to notify
his recipients by phone during business hours, or else contact them by email? This
service would have to be re-implemented and redeployed. The In-house approach
only allows for web services to be adaptable to users but not to service providers since
the intelligence logic is tied to the service’s inputs and are only executed when a

service is invoked.

2.3.2 Achieving Adaptive Web Services by Dynamic Service

Composition

Another approach is to have a collection of elemental web services which can
be grouped together to perform a more complex task. These elemental services are
atomic web services that perform specific tasks. These web services are then
composed together, during runtime, into a composite service tailored to perform a

particular complex task.

12

A web service composition engine (WSCE) is used to automate this
composition process. There are many frameworks available to achieve dynamic
service composition such as: Artificial Intelligence (AI) planners [24][4], eFlow [25],
Petri-Net [26]. Al planners will be used as the default approach for illustrating the

dynamic service composition approach to achieving adaptive web services.

An Al planner composes a new web service to satisfy the requested service
that accomplishes a particular task or meets specific criteria [24]. Al planners
compose web services from a pool of web services available to it. Being given the
desired set of outputs and available inputs, Al planners use backward chain rules to
find the appropriate set of services that will satisfy these conditions. More
sophisticated Al planners would take other factors into consideration, such as QoS or

context information, during the web service composition process.

Before proceeding, let us consider the following web service example: a report
service, which generates a report document and can be used with an email service to
send this document to all the clients via email. These services are combined together
in this manner to allow a courier company send its delivery report to the sender or

recipient.

It is envisaged that adaptive web services could be achieved through dynamic
re-composition of web services. For example, WSCE can be used to recompose web
services in order to adapt them to meet some new criteria or to be used in different
contexts. Suppose a service was needed to send its delivery report of precious cargo in
a secure manner. In order to adapt to the new context, WSCE can recompose the
report service mentioned above with security criteria specified. This would result in a
new report service, namely a report service that includes an encryption of the

document before sending it out to the clients via email.

This dynamic service composition approach to realising adaptability has the
advantage of allowing developers to create simple web services for specific tasks.
Then these web services can be dynamically combined at runtime to perform a more
complex required task. In general, these web services (used in these compositions) are
not adaptive, but rather the adaptability is achieved through dynamic re-composition.
The benefit of this approach is that atomic web services can be implemented in a

straightforward manner with minimal accounting for changes in context. Therefore,

13

developers do not have to worry about such complexities and would leave it to the
dynamic service composers to handle the task of enabling adaptive web services
through re-composition. This approach provides a framework for adaptive web
services, and the intelligence logic is in the WSCE which is external to the services

used. Thus, services do not need to be recoded.

The difficulty with the dynamic service composition approach is that the
composition process is time-consuming, and web services need to be recomposed
every time, in order to adapt to different scenarios. Dynamic service composition
approaches, such as Al planners, need to be aware of all of the different web services
available to them before performing service composition. To achieve a successful
adaptive web service, a WSCE needs to have variants of different web services for the
composition process. Variant services are services that perform the same functionality
but with an alternative behaviour. For example, if a data storage service stores data in
a relational database, then a variant service could be one that stores data in an xml

database, and another variant service could store data in a flat file.

The downside to this approach to adaptive web services is that it is still limited
by the number of different service variants available at runtime. The necessity to have
service variants places an extra burden on the developers to maintain an increased
number of services. Furthermore, the addition of service variants causes the decision
tree to grow exponentially large, and can add extra complexity to the composition
logic. This can cause performance degradation when composing web services, due to
the large decision tree and the added complexity in the composition logic when

searching for the correct service among all web services and their variants.

To illustrate this point, take the example of Windows users preferring their
report in Microsoft Word, Linux users in PDF, and Mac users reading their report in
HTML using a web browser. Then the WSCE needs to have three different variants of
the report service available, so that it can either produce a report document as Word
document, PDF, or HTML; otherwise, it might not accommodate all these users.
Thus, it should be more appropriate to use this approach to achieve a particular
composition and fine-tune the services using another method rather than recomposing
web services over and over again in order to satisfy all the criteria of the desired

composite web service.

14

This approach could also use a script to add intelligence to the service’s
composition, so that composite services are adaptive to change in context without re-
composition. In other words, to add conditional logic in the workflow of composite
web services, which can enable web services to react to change in context. These
workflow scripts could allow composite web services to be adaptive by instructing the
composite service to self recompose, i.e. to change the service selection of its
constituent services, when a predicted condition arises, thus allowing the composite

service to be adaptive.

The use of this workflow script has the benefit of enabling composite web
services to be adaptive without re-composition. Thus, adaptive composite services
will not have to rely on a centralised model; adaptive composite service could be
deployed in a distributed architecture using this approach. Developers still does not

have to worry about creating intelligent web services.

The downside is that this approach is still limited by the number of different
service variants available at the time. Furthermore, the added complexity in the
service’s workflow can introduce unforeseen problems, as well as the need to

manually change the script to handle new contexts.

2.3.3 Achieving Adaptive Web Service using Policy-based

Management

A different approach to adaptive web services is to define web services that
contain all the variants within them, i.e. web services that have multiple alternative
behaviours, termed adaptive behaviours, and which can be managed dynamically.
However, these adaptive behaviours are managed externally during runtime in order

to change how the services accomplish their tasks.

Policy-based management systems (PBMS) can be used for controlling the
state of a system and for controlling the devices of a network, using policies [22].
These policies manage the configuration and behaviour of one or more entities within
a managed system to achieve some overall behaviour. PBMS are concerned with the
overall behaviour of the managed system and adjust the policies that are in effect
based on how well the system is achieving its policy goals. These policies are used to

control the behaviour of the managed system in a predictable and consistent fashion.

15

In the case of adaptive web services, it is envisaged that policies could be used to

control their internal adaptive behaviours.

PBMS provide great flexibility in their approach to managing a system, where
they can change the system’s behaviour without the need to remodel or recode the
managed system. This means that the intelligence logic can be expressed externally
through policies. Thus, web services can be manipulated dynamically according to
their policies without the need to recode or re-implement them. By specifying the
intelligence logic of web services as policies, PBMS can dynamically modify the
behaviours of these adaptive web services at runtime, i.e. allowing adaptive web

services to dynamically adapt to changes in context.

However, in order to reason about these adaptive web services, there is a
necessity to describe these web services and their adaptive behaviours in a formal
manner. By having a formal description of adaptive web services, PBMS can reason

about them and policies can be correctly specified using the appropriate vocabulary.

A downside to PBMS is that the use of policies can be complex and
cumbersome, such as when authoring several policies for a large composite web
service, and when maintaining them. Furthermore a service manager needs to be a
policy expert in order to use this approach. Ideally this approach needs to have a
framework that is easy to use, so that neither service developers nor service managers

need to be policy experts.

Furthermore, managers specifying policies should be able to do so at a high-
level of abstraction, without needing to know the intricacy of the adaptive behaviours
belonging to web services. Therefore, it is vital that policies can be specified at high-
level using abstract elements, and that policies used to enforce these behaviours
should be generated or mapped automatically. This is a major issue among PBMS and
this issue becomes obvious when asked how to map low-level policies assigned to
elemental services, to high-level policies specified for the parent composite service.
Or more precisely how to automatically refine high-level policies, assigned to a
composite service, into enforceable policies for managing the adaptive behaviours of

the constituent adaptive web services.

16

2.3.4 Discussion of Approaches to Achieving Adaptive Web

Service

When comparing the three approaches to achieving adaptive web service, it is
clear that the first approach — The In-house approach — is the weakest one. While the
In-house approach is beneficial when performing quick web service prototypes, it is
hard to maintain them, and this approach does not scale well when many adaptive
behaviours are being created. The cause for these limitations is that the intelligence
logic of the adaptive web services provided by this approach is hardwired and hidden
within the service. Such a method for adaptability prevents the intelligence logic

being modified without recoding the web service itself.

The dynamic service composition approach provides a framework for adaptive
services through the use of service variants and dynamic re-composition. This
approach offers a framework that provides developers with a means to better manage
complex adaptive web services and maintain them in the long run. One developer can
be responsible for composing web services while other developers can dedicate their
time to creating the elemental services used in the composition. This approach
separates the burden of adaptability of web services from the development of web

services because adaptive web service is achieved through re-composition.

But the need for recomposing web services every time there is a change in
context can be time-consuming. In addition, the necessity for several different web
service variants to be available during the composition process, can affect scalability,

add complexity to the composition decision tree, and cause performance degradation.

Ideally, it would be more productive for the elemental web services, used in
the composition, to be built with intelligence. These intelligent web services would be
able to fine-tune their behaviour to suit different situations. Then at runtime these
composite web services can accommodate to certain changes in context without the
need to recompose. The outcome is that less strain will be placed on the WSCE since

multiple re-composition of web service will not be necessary.

The policy-based management approach is based on this ideal; where adaptive

web services are composed together’ to perform a specific task, and policies are then

5 Composed together by some other means

17

used to manage the adaptive behaviours of these web services to further fine-tune
them to suit the user’s preference. Web services become adaptive by adding
alternative behaviours within them much like the in-house approach. However, these
adaptive behaviours are not hard-coded intelligence logic but, instead they are
exposed so that they can be managed though the use of policies. By using a policy-
based management approach, web services can be dynamically adaptive at runtime,
and since the intelligence logic is external, it can be updated without the need to re-

code these web services.

The policy-based management approach removes the burden of fine-tuning
from the composition engine which would improve its performance and scalability.
But this approach adds responsibility to developers of elemental web services to
ensure that extra adaptive behaviours are included in these services. One of the
benefits of the policy-based management approach is that it provides a separate
management interface for controlling these adaptive web services, which is not tied to
their dataflow. However, in order for the policy-based management approach to work
successfully with adaptive composite web services, policies need to be specified to
the composite service as high-level policies, and they need to be decomposed into

low-level policies to the relevant constituent services.

A common problem with web services is upgrading them while maintaining
backward compatibility. Consider a case where a composite web service has some of
its elemental services upgraded but there is a need to keep their service backward
compatible. In such a scenario, the dynamic service composition approach would
accomplish this task by having two separate service variants that can be chosen during
composition, but this could cause confusion. Whereas the policy-based management
approach overcomes this obstacle by adding the new feature of the elemental services

as adaptive behaviours that can be managed using policies.

When considering the policy-based management approach to adaptive web
services, two questions, which need further investigation, were recognised. The first
question is how can adaptive web services be defined or described so that they are
better understood, i.e. reasoned, or managed by policies. The second question is how
these adaptive web services can be controlled during run-time according to their

specified high-level policies (goals). This is vital in the case of adaptive composite

18

services. Policy refinement technique claims to provide answers to this issue. A

survey is provided in section 2.5.

2.4 Defining Adaptive Web Services

Adaptive web services are web services that can dynamically change their
behaviour due to a change in context as they perform their tasks. One of the
approaches mentioned above, the policy-based management approach, envisages that
adaptive web services have internal adaptive behaviours, which are not hardwired to
some internal intelligence logic, but instead exposed so that they can be controlled
externally. By exposing the adaptive behaviours through a management interface,

they can be controlled externally by a PBMS.

However, one of the shortcomings with the policy-based management
approach (discussed in section 2.3.3) is the necessity of a formal and semantically rich
description of the adaptive web services. In order to select a suitable modelling
language or combination of modelling languages, a brief investigation comparing
different modelling languages for describing adaptive web services was conducted.

This investigation is presented in this section.

Web services can be used in a loosely coupled manner or composed together
to perform a more complex process [31]. So, it is natural to expect that these adaptive
web services can be either atomic or composite web services. Adaptive composite
web services would encapsulate the combination of composition and policy-based

management approaches to adaptive web services.

In order to reason about adaptive web services, they need to be defined with a
rich semantic description. This description needs to encapsulate the key aspects of
adaptive web services. It could be suggested that four aspects important for defining

adaptive web services are:

i. The information necessary for users or client applications to access a web

service, i.e. the functional aspect of web services;

ii. The semantic aspects of a web service to handle the automatic discovery and

interoperation of web services is through a semantic rich description language;

19

iii. The composition description of composite web services, thus allowing
management system to reason about the composition and the constituent web

services of composite web services;

iv. The description of the adaptive behaviours within web services, i.e. a
description of the management interface for reasoning about these adaptive

behaviours.

There are several existing technologies for describing web services both
syntactically as well as semantically. A survey of different technologies - modelling
languages - for defining adaptive web services is presented below. Six different
modelling language candidates were identified from the three technology domains:
WSDL, Ontology, and UML. Each modelling language candidate is presented below,

while measured against the criteria identified above.

2.4.1 Describing Adaptive Web Services with WSDL Technology

This section examines WSDL and BPEL as two potential candidates for

describing adaptive web services from the WSDL technology domain.

Web services can be defined as self-contained, self-describing, modular
applications that can be published, located, and invoked across the web. But in order
to publish them on the Internet, one necessary step is to describe web services in a
standard manner, which allows clients to discover and interact with them uniformly.
Web Services Description Language (WSDL) is de facto industry standard for
describing a web service’s interface [32], and interaction with these web services is
achieved using Simple Object Access Protocol (SOAP) messages [33] as described in
the web service’s associated WSDL description. WSDL has been standardised by
W3C [31] and it has even been adopted by other technologies as their grounding, e.g.
OWL-S and BPEL among others.

WSDL is an XML-based language created for describing web services. It
describes the syntactic information of a web service in a machine-readable document
format (XML) [27], and provides a platform-independent model for describing web
services, which defines their public interfaces and how to invoke them. A WSDL
document defines the public available functions (port types), message formats and
protocol bindings that are required to interact with web services. Port types are

abstract collections of supported operations that can be performed. Message formats

20

define how to interpret the data types passed in messages. Protocol bindings define
how to map messages onto concrete network transports.

WSDL is a strong candidate for the first criterion — describing the functional
aspect of web services. However, it does not meet the second criterion due to the lack
of semantics in its description, WSDL lacks domain specific data definitions,
operation restriction definitions, operation sequence definitions, data mediation
definitions and behaviour mediation definitions. Furthermore WSDL was not
designed to describe the interactions or workflow of web services, i.e. their
composition. WSDL describes web services as a black box and lacks semantics in its
modelling language to describe any of the web service’s internal behaviour, much less
their adaptive behaviours. Although WSDL did not satisfy most of the criteria, it will
not be discarded since WSDL is used as the foundation modelling language and

combined with other modelling languages to enrich the description of web services.

WSDL-S [80] is a lightweight approach for adding semantics to web service
descriptions, specifically described in WSDL. It provides simple extensions to WSDL
thereby allowing semantic descriptions of actions, inputs, outputs, preconditions and

post-conditions of a WSDL operation.

While web services described by WSDL-S can be orchestrated with hard
coded applications, WSDL-S lacks semantics in its description to describe the
workflow information of a web service composition. Therefore, WSDL-S does not
meet the third criterion since it is not suited to describe the composition of composite
web services. Although, the objective is not to describe all of the service’s behaviour,
it is still required that the internal adaptive behaviours of web services be described so
that they can be reasoned with. WSDL-S adds extra semantics but it still does not
contain semantic definition to describe web service’s internal behaviours.

Business Process Execution Language (BPEL) describes the interactions and
workflow of web services within a composite web service [34]. BEPL is built on the
WSDL 1.1 specification. It offers a rich process description notation to describe
service process behaviours and data dependent behaviours, as well as, exception
conditions and orchestration for peer-to-peer interaction between constituent services
grounded in WSDL. In BPEL web services can be modelled in two ways, as either
executable or abstract (partially specified).

21

BPEL is an orchestration language, which specifies composite services as
services that contain message exchanges with other services, such that the message
exchange sequences are controlled by the orchestration engine. BPEL defines an
interoperable integration model that should facilitate the expansion of automated
process integration. BPEL model includes constructs to describe the control flow and
dataflow of service’s composition. Control flow description for composite services is
defined using control constructs, including sequence, choice and if-then-else among
many others.

BPEL is a powerful language that has a semantic description rich enough to
describe web services semantically, thus satisfying the second criterion. And since
BPEL is grounded in WSDL, it also satisfies the first criterion though the use of
WSDL. The semantic workflow description used in BPEL to describe a web service’s
composition allows BPEL to meet the third criterion.

Again, the objective here is only to semantically describe the internal adaptive
behaviours of web services in order to manage those adaptive behaviours using
policies. It is possible to attempt to extend BPEL to accommodate the description of a
management interface for controlling these adaptive behaviours. However, the

semantic definition for this management interface still needs to be formalised.

2.4.2 Describing Adaptive Web Services with Ontology

Ontology is a declarative representation of concepts within a domain, and the
relationships between those concepts [89]. Ontology can be used to semantically
describe the entities within a domain and to reason about them. It provides a shared
vocabulary which is structured and computer readable that can be used to model a
domain. Furthermore, ontology models are extendable so that they can continue to

model their domains as these domains changes.

Ontology was initially used in Artificial Intelligence domain to create
computational models for enabling automated reasoning. Since then, the concept of
ontology has expanded into other domains and it is widely used in Semantic Web,

Biomedical Informatics, Data Federation, and System Engineering.

Ontology describes the type of objects, their properties, and relations.
Ontology focus on entities described as classes, i.e. classes are used in ontology to

describe the concepts in a domain. Ontology allows for the modelling of the

22

relationships between concepts. For example, the relationship of two concepts which
are parent and child of each other can be expressed as follows: the parent class is a
superclass of the child class, and the child class is a subclass of the parent class. Each
class can also have attributes that will provide them with properties or restrictions.
Another benefit of ontology is that it can model instances of concept classes and an

instance of an ontology class can have its property set with particular values.

An ontology model is a unique list of concepts for a particular domain
expressed in an ontology representation language. The ontology language is an
important element in building the ontology model. The ontology language must have
a grammar with formal constraints which is used to control how the ontology terms
are related to each other. For example, an ontology language would have grammar
definitions to allow two concepts which are parent and child to be expressed as

subclass or superclass of each other.

There are many ontology languages emerging which were created either for
general purpose or for modelling concepts of a particular domain. Open Biomedical
Ontologies (OBO) [97] is a collaborative effort in creating an ontology language to
describe science-based ontologies, which is shared across different biological and
medical domains. Knowledge Machine (KM) [98] is a frame-based language with
first-order logic semantics, which is used for encoding knowledge representation
bases. One of the main markup ontology languages is the Web Ontology Language
(OWL) [35]. OWL is an ontology language that has been recommended by W3C for
authoring, publishing, and sharing ontologies on the World Wide Web. This ontology
language is derived from the DAML+OIL Web Ontology Language and is based on
RDF/XML markup scheme.

The advantages of Ontology are that ontology is reusable and flexible.
Ontology models can be published and share between communities and even
domains. These ontology models are flexible to be expanded as needed, for example
if shortcomings are spotted. Since OWL is based on XML, ontology models described
in OWL are human readable and it is possible to use off the shelf tools for processing
and querying them such as XPath and XSLT. There are also many tools for OWL,
such as Protege [95], Jena [46], and Pellet [96].

23

The disadvantage of ontology is that it has a high reasoning complexity. When
creating an ontology model, a choice needs to be made between expressiveness and
scalability, i.e. between a light model for inference performance or a full model for
model completeness. Ontology models described in OWL can be very verbose due to
its XML nature, which can be difficult to read, creating large size files, and making

parsing slow.

Subsequently, a couple of potential ontology-based candidates for describing
adaptive web services come from the semantic web service domain, which provides a
semantic orientation for the description of web services. It uses an ontological
language to add semantics to web service descriptions. By using richer semantic
descriptions to describe web services, it is possible to better advertise and
subsequently discover web services and supply a better solution for the selection,
composition and interoperation of web services [36]. The main approaches
investigated for describing semantic web services using Ontology are OWL-S [36]

and WSMO [29].

Web Service Modelling Ontology (WSMO) is an ontology for semantically
describing (various aspects related to) semantic web services. WSMO describes
semantic web services from the client as well as the service provider point of view
[29]. WSMO uses WSML [30], a semantic web language targeted specifically at
semantic web services. WSMO core elements are: an Ontology element that provides
the concepts and relationships used by other elements; a Goals element that defines
the user’s objectives; Web Services descriptions that define various aspects of a web

service; Mediators which bypass interoperability problems.

OWL-S (formally DAML-S) [36] is an Ontology model for describing web
services expressed in Web Ontology Language (OWL) [35]. It contains a set of rich
class representations and rich typing that allows semantic web services to be
understood by machine processible systems. This semantic description complements
current web service description, for instance, WSDL. The OWL-S ontology
semantically describes web services in three parts: service profile, informs the service
capabilities; process model, describes the service process; and grounding, provides a

mapping for web services and their parameters to their WSDL descriptions.

24

OWL-S and WSMO are the two major efforts that share the same vision that
ontology is essential to support automatic discovery, composition and interoperation
of web services. WSMO model is more complex and has more semantics for the area
of interoperability through its semantic definitions such as mediators. But OWL-S is
more mature in the area of semantically describing composite web services
(choreography) and grounding, and easier to understand due to its single view of the

web service [7].

When examining the OWL-S model, it can be noted that the process model
ontology represents services as processes. Each process (service) has its parameters
(IOPE: inputs, outputs, preconditions, and effects) semantically described using
Ontology definitions, and grounded (mapped) to a WSDL description. Hence the
semantic aspects of web services are described by the OWL-S process model, and the
syntactical aspects of web services are delegated to their WSDL description.
Furthermore, the OWL-S process model categorises a process into three process
types: atomic, simple and composite processes. An atomic process is a directly
invocable process that executes in a single step from the perspective of the service
requester. A simple process is not invocable and is not associated with service

grounding; it provides a means of abstraction for the other types of process.

A composite process is constructed from other processes that can be either an
atomic or a composite process. The composition of composite services is described as
control flow and dataflow. Control flow of a composite process is described using
control constructs, which among others are sequence, choice and if-then-else. The
data flow of a composite process is described by providing ontology definitions for
mapping the inputs and outputs, as well as the preconditions and effects of the relative

processes.

In the same manner as BPEL, OWL-S was designed with the intent to describe
elemental services as a black box. Thus, OWL-S is not designed for describing
internal adaptive behaviours. However, OWL-S uses a rich semantic description
model based on Ontology to describe the different aspects of web services and since
OWL-S is an Ontology-based language, it is possible to extend the model to describe
the internal alternative behaviours of these adaptive web services. For example, these

alternative behaviours could be described as a sequence of actions. But such Ontology

25

definition for describing adaptive behaviours needs to be formalised and extensively

adopted in order for developers to use it.

2.4.3 UML Technologies for Describing Adaptive Web Services

So far the modelling language candidates surveyed were able to describe web
services and their composition, but were not designed to describe their adaptive
behaviours. Unified Modelling Language (UML) is a standardized modelling
language used in the area of software development, with the objective of describing
systems and their behaviours [37].

UML has a set of graphic notation techniques which is used to create visual
models of software applications. Using UML diagrams developers can model and
visualise the static and dynamic views of a software system. Specifically, UML
diagrams can represent the structure, behaviour, and relationship of object-oriented
software applications. UML is extensible through UML profile, which can be used to
extend the model by defining additional diagram types or notations.

There are several commercial and non-commercial UML tools. Tools such as
PowerDesigner [91] and Rational Software Architect [92] are just a few of the
commercial tools available. UML tools such as ArgoUML [93] and Umbrello UML
Modeller [94] provide the same functionality but they are open source and can be
used with a non-commercial license. These tools can also provide features that would
assist developers, features such as code generation for the UML models and reverse
engineering by deriving UML models from source code. Most of these UML tools
allow UML models to be exchanged between them by using XMI (XML Metadata
Interchange) interchange format.

UML has different types of notation techniques to create abstract models of
specific systems; these notations are divided into three categories: structural,
behavioural, and interactional. Behavioural diagrams emphasize what must happen in
the system being modelled, i.e. system behaviour. The following three diagram types

are behavioural diagrams:

e Finite State Machine: standardized notation to describe system behaviours,

from computer applications to business processes [71].

26

e Activity Diagram: represents the business and operational workflows of
components within a system. An activity diagram shows the overall flow of

control [72].

e Use Case Diagram: shows the functionality provided by a system in terms of
actors, their goals represented as use cases, and any dependencies among those

use cases [73].

Use Case Diagram does not seem appropriate to describe web services and
their adaptive behaviours. This section examines Finite State Machine and Activity
Diagram as two potential candidates for describing adaptive web services from the

UML behavioural diagrams.

Finite State Machine (FSM) models are a set of semantic concepts that can be
used to model discrete behaviours of any software system [71]. They can be used to
specify the behaviour of individual entities or to define the interactions between
entities. A FSM model shows possible states that a system or a component can have,
and which events can cause the state to change. Events can represent timers, counters,
aspects of service invocation (e.g. service invoked, response sent), or changes in the
context in which a system is operating. A change of state is called a transition and all
of these modelling components are encapsulated by (grouped together under) a finite

state machine.

In the current UML specification a clear distinction between state machine
semantics and its graphical notation is established [37]. Two major motives can be
seen for using FSM are: (i) for visualising the behaviour of a system, (ii) as
information model so systems can reason about it. With regards to visualisation, FSM
have been standardised and commercialised into applications, like Poseidon [79],
which are used by developers to model object-oriented applications. Poseidon is one
of many UML tools that have a graphical user interface which allows for the

visualisation of a system’s behaviour modelled as FSM.
When reasoning about a system, FSM has been used in diverse areas such as:

e Embedded systems, where FSM is used for modelling the behaviour of

microcontrollers;

27

e Computer games, where FSM is used as the artificial intelligence control

technique, say for controlling the actions of characters in the game;

e Policy management systems, where FSM is used as information model to

reason about the system.

The advantages of a FSM are its capacity for expressing descriptive
behaviours; both the entities and the interactions between the entities. It can model
deterministic behaviours; where for each state there is exactly one transition for each
possible input, and non-deterministic behaviours; for each pair of state and input
symbol there may be several possible states. Furthermore, it is the simplicity of the
FSM that facilitates developers in quickly adopting it. FSM are quick to design and
relative flexible to model behaviours. Also, the predictability (in deterministic

models) of FSM allows for easy understanding and testing of the FSM models.

The main disadvantage of a FSM is that the number of states can increase very
quickly when modelling a complex behaviour. Behaviours with a large number of
inputs can lead to a state explosion problem, as each required state or state path must
be repeated for all possible input values. Larger FSM can be difficult to manage and
maintain without a well thought out design. FSM can only be used to describe
systems’ behaviours that can be decomposed into separate states with well defined
conditions for state transitions. This means that all states, transitions and conditions
need to be known up front and be well defined. Furthermore, even though it is rich in
semantics, it does not allow the use of Ontology. Thus, it limits the FSM model from
can expanding its semantic definitions using UML profile to accommodate
customisation of the FSM model but it is not as easy and commonly achieved as with

Ontology.

When examining the use of FSM to describe adaptive web services, it can be
seen that it is not suited to describe the syntactical aspect of a web service (first
criterion) due to its lack of web service terminology. Also, when describing the
semantic aspect of web services (second criterion), FSM was not designed to describe
web services syntactically, nor semantically. However, FSM was designed to describe
system behaviour and so it could be used with the rest of the UML definitions to

describe web services. But this is not ideal since more popular languages in this

28

domain such as OWL-S and BPEL already exist. Thus, FSM is not considered to be a

good candidate for describing semantic properties of web services.

FSM could be used to describe the composition of composite web service
(third criterion) where services can be represented as staftes, and control flow
constructors can be represented with transitions. But describing web service
composition using FSM can be tedious. Other modelling languages have more refined
semantic definitions for describing control flow and dataflow of composite web
services. On the other hand, the adaptive behaviours of web services (fourth criterion)
could be described formally as FSM, where each of the adaptive behaviours within a
web service could be formally represented by a FSM. These adaptive behaviours are
internal to web services, and its structure doesn’t conform to any standard. Therefore,
the use of states and transitions, from the FSM model, is ideal since it can describe

most component behaviours.

In UML, Activity (Graph) Diagram models the sequence of actions between
different components. Activity Diagram is an extended view of the FSM, i.e. it is a
special case of a state machine that is used to model processes focusing on the
sequence of actions taken and their conditions. It uses all of the modelling constructs
from FSM and it also has a few semantics of its own. Since Activity Diagram is based

on FSM, it has the same benefits and drawbacks found with FSM.

2.5 Representing Management Policies

An obligation policy defines a set of actions that must be performed on a
target, when triggered if the conditions are satisfied [21]. Obligation policies are
normally used for managing the resources or modifying the behaviours of a system
dynamically. This can be done to either fine-tune the system’s overall performance,
e.g. to satisfy QoS requirements [9], or to configure a system to achieve a particular
goal, such as to satisfy new criteria. Obligation type policy is a suitable policy type
for managing adaptive services, i.e. it is suggested that obligation policy is a suitable

policy type to represent the management policies [74].

However, if a policy-based management approach is to be used to manage
adaptive web services, then a suitable policy language needs to be specified to

manage the adaptive behaviours of these web services at runtime. When specifying

29

policies to manage adaptive web services, they should be high-level policies that
would have abstract values, while during runtime, the policies used by the PBMS to
manage adaptive services needs to be enforceable policies, i.e. low-level policies with
their aspects configured with concrete values. For both cases, a policy model or
language needs to be identified to represent these policies. From the obligation type
policy domain, two distinct policy languages were identified: Ponder [38][39] and Rei
[40].

Ponder [38][39] is a policy language developed by Imperial College for
policy-based management systems. Ponder policy language has been used for more
than a decade and is well received by the research community. Ponder defines an
obligation policy as a policy which is triggered by an event, and must satisfy its
conditions before performing the action specified. Ponder policies also have a subject
and a target to specify the agent and the objects on which the actions are to be
performed. Furthermore, the Ponder obligation policy model has an exception
property to specify what action to take in case an error occurs during the policy

execution.

Policy language Rei [40] is based on deontic concepts and grounded in
semantic language RDF-S [28]. It is not tied to any specific application and permits
domain specific information to be added without modification. Rei has constructs for
authorisation, prohibition, dispensation and specifically obligation policy rules. Its
obligation policy rules are defined as actions that an entity must perform and are
usually triggered when a certain set of conditions are true. It consists of actions,

conditions, subjects, and policy objects.

In particular, the Rei policy’s action is represented as a tuple with action
name, target objects, preconditions, and effects. Where the action name is an
identifier, target objects are a list of objects on which the action applies, preconditions
are conditions that need to be true before the action is performed, and effects are the
results of the action performed. Rei policy’s action also includes four action operators
that can be used to specify complex actions. These action operators are: sequence,
where action A and B must be performed in sequence; non-deterministic, where either
A or B can be performed but not both; repetition, where action A can be executed

several times; and once, where action A can only be performed once. And Rei

30

policy’s conditions are based on properties of entities and other domain conditions.

Rei allows complex conditions to be built from the operators AND, OR, and NOT.

Both policy languages are powerful and complex, but when comparing them,
commonality in their policy model started to emerge. These commonalities are the
essential properties of the obligation policy model. It can be seen that both policy
languages have a condition property that specifies conditions, which must be met
before the policy is executed. They also have an action property that specifies actions
that must be performed when the policy is executed. Furthermore, Ponder and Rei
have a subject and a target property to specify the agent and the objects on which the

actions are to be performed.

Ponder has a trigger action that specifies events that will trigger the policy.
However Rei doesn’t have this property, instead Rei considers an event as another
condition. But it is felt that it is important to differentiate an event from other
conditions. Therefore, the trigger property is considered as a valuable property of the

obligation policy model.

The policy model to be used must contain these essential properties identified.
This policy model will be used for specifying high-level policies for managing
adaptive web services, and for creating low-level policies for managing these adaptive

services.

2.6 A Survey of Policy Refinement Approaches

Policy refinement is the process of decomposing high-level abstract policies
into low-level concrete policies, where these low-level policies realise the intention of
their high-level policies [50]. Automated Policy refinement has been the focus of
several research projects and initiatives [51]. Policy refinement is needed if policies
are to be successfully used to control the internal behaviours of adaptive web services,
especially in the situations where policies are used to manage adaptive composite
services. Composite web services are made up of several other web services, which
perform the intended tasks. Thus, composite services can be considered to be abstract.
Policies can be specified to a composite service but must be refined before being
applied to the relevant constituent services. If policies are to be used successfully,

they need to be specified as high-level policies to manage a composite service, and be

31

refined into low-level policies to enforce the correct behaviours in the constituent
elemental services. This section presents a survey of different policy refinement

approaches.

One type of approach is to use machine-learning techniques to support policy
refinement. Verma [57] presents a case-based reasoning approach to policy
refinement where the system maintains a database of past cases. A combination of
expert knowledge and observation of the managed system is used to build a database
containing the relationship between the policy goals and the configurable parameters
of the system. When a goal needs to be achieved, the case database is consulted to
find the closest matching case. Otherwise, an interpolation is performed between a set

of cases to find a solution.

Different mathematical techniques are suggested to improve the efficiency and
accuracy of the refinement process. Such techniques as data pre-processing are used
to improve the usefulness of the case database by removing noise in the data as well
as irrelevant or redundant data. Furthermore, Gaussian distribution and density
function are used together with K-nearest neighbour clustering technique in order to

improve the accuracy of the point assignment.

Verma’s approach to policy refinement is relatively easy to implement since it
does not require a system description or a domain model. Instead, the system needs to
have its case database populated with a combination of system configuration
parameters used, and the policy goals achieved. However, this task needs to be
performed by policy experts with full knowledge of the system. This approach was
demonstrated for managing network QoS management [58], but it should be scalable
to other domains, such as managing adaptive web services by modifying the database

to accommodate web service configurations.

Verma’s approach is considered to be semi-automated in refining policies.
This approach can only be fully automated if all the possible cases have being
accounted for and populated into the database. Thus, the effectiveness of this
approach depends on having a rich set of cases. At bootstrap time, the system has no
case history. So the system has to be populated with a set of cases observed in pre-
operational tests. This approach requires large volumes of data of the operations

performed to be accumulated. The case database would normally accumulate

32

measurements of various parameters of a system over a long period of time. The
learning time needed for this approach can be an issue for ad-hoc type services such

as in Ubiquitous environments.

Furthermore, the complexity of Verma’s approach depends on the correctness
of its cases; hence it needs a policy expert with domain expertise to manually populate
its tables with the correct values. In this approach, the refinement process is only as
good as the policy experts, who could accidently introduce errors when manually

populating the database.

Another type of approach, suggested by Russo [52], uses a goal elaboration
based approach to semi-automated policy refinement. This approach uses goal
elaboration to derive a set of sub-goals that satisfies the specified policy goal, and

adductive reasoning to create a strategy for policy refinement.

Russo’s policy refinement approach uses KAOS [54], goal elaboration method
to refine abstract goals into lower level goals by breaking a goal into sub-goals using
logically proven refinement patterns. KAOS is a formal technique for elaborating
goals grounded in temporal logic, and contains domain specific and domain
independent elaboration patterns. Each high-level goal is refined into sub-goals,

forming a goal refinement hierarchy using AND & OR operators.

In order to perform the next step of the policy refinement process, a domain
hierarchy description for the managed objects must be provided, in addition to a
system description as state charts, which is transformed into a formal notation based
on Event Calculus [55]. Event Calculus is used to formalise the descriptions before

being used for the policy refinement process [56].

Abduction reasoning is then used to infer the strategies that will achieve the
elaborated goals. Finally, each refined goal is assigned to managed objects or specific
operations. The event and conditions of the high-level policy are mapped, by the user,

into the low-level policy.

Russo’s policy refinement approach only provides a partial automated policy
refinement, because this policy refinement process is automated only for the goals
previously refined. The automation of this approach is realised by manually refining a
goal using goal elaboration and adductive reasoning and saving the policy refinement

strategy of this goal for future refinements. One of the difficulties with Russo’s

33

approach is that the policy refinement uses patterns that need to be discovered and

mapped, and until they are mapped, automated policy refinement cannot be achieved.

Russo’s approach to policy refinement was only demonstrated for managing
network QoS management [53]. But it can be envisaged that by creating different
policy refinement patterns, it is possible to use this policy refinement approach to
manage adaptive web services. However, such a task is manual, and can be complex
and tedious. Thus, the complexity of this approach lies in creating these policy
refinement patterns, where a policy expert with full knowledge of the domain in

question needs to be present.

A goal-oriented policy refinement approach, based on (goal-oriented)
requirements engineering and model checking technique, is presented by Rubio-
Loyola [60]. It uses KAOS goal elaboration methods to refine goals to lower-level
goals, forming a goal refinement hierarchy using AND & OR operators. It then uses
linear temporal logic formulae and model checking capabilities to obtain system
execution traces aimed at fulfilling low-level goals [59]. Policy information is then
extracted from the chosen system execution trace, and finally low-level goals are

encoded into refined policies specified in Ponder.

Model checking is performed using a tool called SPIN [63]. It makes use of a
system behaviour description specified, as PROMELA, i.e. as state machines that
communicate via message passing or shared variables. SPIN not only verifies the
properties but also produces execution traces through system simulation. This
approach is not automated, and requires administrators to analyse the execution traces

and choose appropriate sets of refined policies.

Cassasa-Mont [70] outlines a policy-authoring environment that provides a
policy toolkit, called POWER, which refines policies specified. Power toolkit uses
policy refinement templates that define the relationship between abstract actions and
low-level concrete ones. Domain experts must first develop a set of policy templates,

expressed as Prolog programs [75].

The POWER tool has an integrated inference engine that interprets these
templates (Prolog programs), to guide the user in selecting the appropriate elements
from the management information model to be included in the final policy. The

policy-authoring tool makes use of a policy template library, information and system

34

model component, and a device-mapper component for the policy refinement. The
policy template library contains a collection of policy templates created by domain

experts.

Cassasa-Mont’s approach could be used for managing adaptive web services
but the difficulty is that someone has to actually implement the policy refinement
templates, and these templates can be complex and they need to be implemented by a

Prolog expert.

In [3] Kiel presents an automated policy refinement approach which uses
Ontology and web service composition. Managed devices/components must have a
web service-based interface that is described using OWL-S. This web service
description, describes how the component can be managed, i.e. a low-level policy.
Policy refinement is achieved through a web service composition. Conditions and
actions are extracted from a specified policy, and used as inputs in the web service
composer. The web service composer has a matchmaking engine that tries to find the
necessary service combination to satisfy these inputs. If the web service composer is
successful in generating a composite service, then refined policies can be extracted

from the sequence of services.

This approach to policy refinement is demonstrated for the network
management domain. However, the transition of this approach to adaptive web
service management should be small, since it requires that the managed devices be
modelled as web services. It is envisaged that the adaptive behaviours of the web
services needs to be modelled as web services in order to use this policy refinement

approach.

Guerrero [2] presents a generic ontology-based policy refinement approach
that also provides interoperability between high-level and low-level policies. Thus,
this refinement approach enables bidirectional policy mapping at runtime. Guerrero’s
approach needs that high level and low-level of a system be modelled as Ontology
using OWL together with the OWL relationship between these Ontology models.
Translation rules modelled in Semantic Web Rule Language (SWRL) are needed to
allow the data interchanged between the different levels. Policies are modelled as

SWRL and refined using the Ontology models, and their relationships.

35

Another approach, from Albuquerque [64], to policy refinement designed for
security type policies, uses a structured technique that models network security
systems based on the concepts of policy-based management and model-based
management. It describes a security system using a model that specifies the system in
different abstraction levels, and policy hierarchies built from the low-level up.
Automated policy refinement is achieved using a modelling technique where a
system’s model is structured in different abstraction levels. System’s objects,
relationships, and policies at a certain abstraction level together with system model of
the lower level and the relationship between entities of the two layers enables the

generation of lower level policies.

Systems to be managed and their policies are modelled with several abstract
layers, each with objects and associations. The model entities of a certain level and
their relationships supply the contextual information needed to automatically interpret
and refine the policies of the same level. It uses a ‘Diagram of Abstract Subsystem’ to
model a management system (abstractly) segmented into Abstract Subsystems (AS); a
graph comprised of AS.

Another approach to automated policy refinement of security policies is from
Cunningham [66]. It models the resource hierarchy that is used to refine policies
assigned to the abstract resources in (top of) the resource hierarchy, and automatically
produces low-level policies for its concrete resources. Policies are first refined for a
resource type, and then for its instance. It uses AND/OR Graph to model resources
and Arithmetic and Logical Expression Tree (ALET) to write expressions model

policy specification.

Table 1 presents a comparison of the approaches discussed. It focuses on

comparing the key aspects of the policy refinement process.

36

SOA

saoeJ) Buisooyd
pue bBuisAjeuy
saoeJ) pijeA
109]8s Ajlenuew
pue uone|nwis
unJ 0} pasN

Japuod

Inoineyaq
walsAs

suiaped
SOV ‘NS4

suadxa Aaljod
pue wajsAs
SOD MomieN
[eoD
pajewojne JoN

uoneloqe|e
[eob SOWM

ejohoT-oiqny

SOA
Ayotesaly

adA) @01nosay
ay) buiquosag
Ayosesaly

adA} aoinosal
pajiejep e pasN
131V se Aaljod

Ayolelaly
adA} @21nosay

137v ® ©0vd

padxa weisAs

Aunoag
JIOMISN
uonesuoyiny
pajewolny
lepow Ayouesaly

joeqsqe
10 90Ul

uostreduwod saydeoadde yusumdulyaa Ad1jod ‘I dqelL

SOA

90IAISS OM S
-TMO se saiijod
92IASP [9A9)

-mo| Buiquasaqg
uoisodwo? 10}
9|ge|leA. S82IAI8S
gem pauinbai sy}
lle ®Aey 0} paaN
sio)oweled
uoneinbyuo)

I8PON S-TMO

I8PON S-TMO

podxe wayshs

uswabeuey
HIOMJSN

uonebiqo

pajewony

:oa_monEoo”_w.

90IBS GOM

SOA

ajejdwa)
£aijod ay) buneais)

sojejdwa)

paseq Bojoid

8]eald 0] paaN
sio)oweled
uoneinbyuo)

sejejdwa} Adijod

(Bojoid)
saje|dwsa} Aoijod

‘spadxe wajsAg
pue (Bojoid) Aotjod

SOD YomaN

Juswabeuep
u&mEsz 10N

sm_aﬁs >o__on_ mc_:omae eseqese)

. poddng |00}

SoA sep

susaped
SOV bBunesain

souus

ased asn Buneai) Aixajdwo)

Sosed

pajewone
asn yum pajejndod Buiaq e10jeq suseyed
21d aq 0} peeN 8yoe 0} paaN suopnejiwi] Aoy
sigjoweled

uoneinbyuo) salo1jod 19puod

~ suseped

SOWH ‘Ayosessly

Seljue 8SB) UIBWOp ‘SUEYD 9jelS
suseped SOV

‘Ayoielaly urewop
‘sninoje) JuaAg
se InoiAeyaq WwalsAs

juswauey

aseqejep ase) ul pasn s|apoiN

A"tonxm uoneinbyuod ~ spedx3 papaaN

~ washs o holod Aoljod pue waisAs asiyadxg Jasn
SOD HOMIBN SO0 WOMIIN.

 uopeinbyuod adA} Aoijod

u&mEoﬁ.«-_Emw
- sanbiuyos}
a:cgm:.o 4]

n&mEoSm-_Emw pajewolny

pury yoeoiddy

E!! BUIBA !I

After surveying the different approaches to policy refinement, some positive
and negative points were noted. In order to manage adaptive composite web services,
policy refinement is needed. But this policy refinement needs to be automated and
easy to use, so that service providers (or service users) can manage these adaptive

web services with ease.

Neither Cassasa-Mont’s approach, nor Rubio-Loyola’s approach are
automated, which makes them difficult to use. Russo’s approach is only automated if
all the policy refinement patterns are present, which initially is not the case, thus a
policy expert is required to manually create them. Verma’s approach also suffers from
initial inability to automate policy refinement, where a policy expert is required to

manually populate its database with policy refinement cases.

Cassasa-Mont’s approach makes a good point in that it is better to first ensure
a valid specified high-level policy by guiding the user, rather than trying to validate
refined policies, such as in Rubio-Loyola’s approach. A full system description as
state charts is needed in both Russo’s and Rubio-Loyola’s approaches, which can be
cumbersome and tedious. It can also lead to state explosion if dealing with large and

complex systems.

2.7 Conclusion

This chapter introduced and discussed technologies and techniques in the area
of web service technologies, policy-based management systems and modelling
languages, which will be used as part of the discussion in the following chapters of
this thesis. A survey and analysis was also presented which examines approaches to
policy refinement. Finally, a choice of obligation policy technologies used for the
proposed solution was presented. The next chapter identifies the assumptions
regarding and requirements for the proposed solution to achieving adaptive web
services. It also introduces a new methodology for achieving adaptive web services
and describes the architectural design of a set of integrated tools to support this
methodology.

38

3 Design of the MAWS Methodology and

Requirements for Supporting Tools

3.1 Introduction

An outline of the Manage Adaptive Web Service (MAWS) methodology is
presented in this chapter. The MAWS methodology consists of three key development

processes namely:
1. to semantically describe adaptive web services;

ii. to describe the composition of adaptive composite web services and to

aggregate their adaptive behaviours;

iii. to specify high-level policies for managing these adaptive composite
web services and to refine these policies into policies that enforce these

adaptive behaviours.

The chapter first presents the definitions and assumptions which scope the
design of the proposed methodology. The input and output artefacts for each stage of
the methodology are identified and the scope of the tool set which would support this
methodology is defined. An example of an adaptive composite service is described
which will subsequentiy be used throughout the chapter to illustrate the proposed
methodology. When presenting the MAWS methodology, descriptions of example
artefacts produced at each stage of the proposed methodology are also shown. This
chapter then presents a requirement analysis which identifies the architectural
requirements necessary for the design of a set of integrated tools to support the

proposed methodology.

3.2 Definitions and Assumptions

Key definitions, assumptions, and design decisions were made regarding
adaptive web services, their description technologies, and policy management. The

key assumptions made are:

39

i. Adaptive behaviours within a web service may change the effect of a service
but must not change the input parameters required by the service or the type of

output produced by the service (i.e. no change to input and output types).

This thesis considers adaptive web services to be those which have internal
adaptive behaviours. These behaviours affect the constituent web services internally
without changing their inputs and outputs®. Typically, these adaptive behaviours are
based on non-functional characteristics, e.g. use a faster search algorithm, or allocate
more resources such as bandwidth for higher quality video streaming. However, it is
possible that they can change the service’s effect, such as, an adaptive behaviour for
an email service that encrypts its email contents or compresses its email attachment
file. Consequently, adaptive web services have the same inputs and outputs, but may
differ in non-functional characteristics, e.g. time, cost, quality, or calculation
algorithms. Thus, this thesis focuses on those web services which have adaptive
behaviours but do not change the service’s inputs and outputs types. This assumption,

however, limits the range of services to which the proposed approach can apply.

ii. The adaptive behaviours within web services should be semantically described
without any conflict or ambiguity, and this description omits a description of

the service’s overall (default) behaviour.

Adaptive web services discussed in this thesis have an overall behaviour or
default behaviour in the same manner any other web service would have. This default
behaviour is not to be semantically described. Instead, only the adaptive behaviours
internal to these web services which the developer wishes to expose are to be
described semantically. Hence, smaller semantic description models would be created
reducing the risk of over complex semantic descriptions. Furthermore, the semantic
description representing these adaptive behaviours must be free of any conflict or
ambiguity. Although this assumption restricts the proposed approach to only handle
services with appropriate semantic descriptions, it does have the benefit of removing

the extra complexity needed for handling such services with incomplete descriptions.

iii. Any adaptive behaviour is a composable adaptive behaviour and adaptive
behaviours of a composite web service are the resultant aggregation of

adaptive behaviours belonging to its constituent services.

% Semantic web services consider a web service to have inputs, outputs, preconditions, and effects.

40

It is also assumed that any adaptive behaviour is considered composable
adaptive behaviour. Therefore, when aggregating adaptive behaviours for composite
web services, the adaptive behaviours are never filtered out. Furthermore, adaptive
behaviours of a composite web service are the resultant aggregation of adaptive
behaviours pertaining to its constituent services. This means that adaptive behaviours
cannot be directly added to (top level) composite web services. But composite web
services can expose the adaptive behaviours of their constituent adaptive web

services.

iv. Obligation Policies managing the adaptive behaviours of a web service should
not conflict with policies managing the adaptive behaviours of other web

services.

This thesis focuses on obligation type policies to manage adaptive web
services. While it might be possible to use other type of policies such as
authentication policies with the proposed approach, the proposed approach was
designed with the intention to only use obligation type policies. Furthermore, policy
refinement should percolate policies down and not peer to peer where these refined
policies are responsible for managing the adaptive behaviours of a web service, and
not for, say, the composition of a composed web service. Since adaptive behaviours
are internal to web services and web services operate atomically, then by design it is
assumed that policies managing the adaptive behaviours of a particular web service
should not conflict with the policies managing the adaptive behaviours of another web
service, i.e. that there are no conflictions or sharing of resources between web

services.

3.3 Example

In order to demonstrate what is meant by adaptive services and their
composition, and how the adaptivities of web services are controlled, an example of a
PhotoAlbumPrint service comprising a photo processing service called PhotoService,
a photo album maker service called PhotoAlbumService, and a print service called

PrintService are illustrated in Figure 3-1.

41

(Composite Service)
<Aggregation of
daptive behaviours>

Lo B v

Photo Service Photo Album Service Print Service

(Atomic Service) ‘ (Atomic Service) (Atomic Service)
e High-Quality ! ' e Photo-Calendar g . | e Economy-Mode
e Black&White | e Photo-Postcards . e Intermediate-Mode
e Redeye-Removal | . e Expensive-Mode
| | e Colour-Printing ‘
=) - SEN J

Figure 3-1, A diagram of the PhotoAlbumPrint composite web service

The Photo Service is a photo processing service which processes a given set of

photos. This service has the following adaptive behaviours:

- High-Quality adaptive behaviour, which allows the service to process

photos in high quality;

- Black&White adaptive behaviour, which modifies the service to process

photos in black and white;

- Redeye-Removal adaptive behaviour, which activates a function to remove

redeye from photographs.

The PhotoAlbum Service takes a set of photos as input and makes a photo

album (as power-point file) from them. It also has adaptive behaviours:

- Photo-Calendar adaptive behaviour, which modifies the service to create a

photo calendar;

- Photo-Postcard adaptive behaviour, which modifies the service to create a

collection of postcards from the photos.

The Print Service prints any given file, in this case a power-point file. The

adaptive behaviours of this service are:

- Economy-mode adaptive behaviour, which modifies the service to print 4

pages of a document per sheet;

- Intermediate-mode adaptive behaviour, which modifies the service to print
double-sided;

42

- Expensive-mode adaptive behaviour, which modifies the service to print

single-sided;

- Colour-printing adaptive behaviour, which modifies the service to print in

colour if colour cartage is available.

Thus, the PhotoAlbumPrint Service processes a given set of photos, generates
a photo album of such photos and prints this album. This service inherits all the

adaptive behaviours of its constituent services.

The following high-level policy was specified for the PhotoAlbumPrint
Service as an example of a typical management policy used to demonstrate the use of

these adaptive behaviours (shown in Table 2):

“When processing portrait photos, apply the Redeye-Removal and use the

Create-Calendar adaptive behaviours”

PhotoAlbumPrint Service (CompositeProcess) \

i CL ISR .‘______7_.11

Name Event Condition l Action

‘ Policy1 LProcessEvent E Photo= = Portrait | Redeye-Removal && Create-Calendar |

Table 2, Management policy for PhotoAll;umPrint Service

This service example will be used in the remainder of this chapter to illustrate
the different artefacts produced by the proposed methodology. This service has been
kept simple for the sake of clarity and emphasis has been put on highlighting the
novel aspects. Full details of the artefacts produced for this example can be seen in

Appendix H.

3.4 Overall Design Approach

Before introducing the proposed methodology, some design decisions for the
artefacts used in this methodology are presented. Two distinct areas that need
addressing are: (i) artefacts for representing adaptive web services and (ii) for
representing management policies, before introducing the novel automated policy
refinement approach.

Representing Adaptive Composite Web Services

When it comes to defining web services, WSDL [32] is the de facto industry
standard. Web service containers use WSDL to describe their web services. WSDL
describes the syntactical aspects of web services. Web service containers provide

WSDL descriptions to their web services so that users or client applications can

43

reason about how to access the required web service. However, it lacks rich semantic

definition for describing web services.

From the different modelling languages identified as candidates for
representing adaptive web services, OWL-S [36] stood out as the most promising.
Besides having the definitions to describe web services semantically, it also has the
semantics to describe the composition of composite web services. Furthermore, the
semantic definitions of OWL-S are Ontology based and its semantic definitions of
web services are grounded in WSDL. Although BPEL [34] can describe web services
semantically and the workflow of composite services just as well as OWL-S, BPEL
description is based on WSDL and therefore lacks the Ontology-based semantics that
OWL-S possess.

It is even more important to have a rich semantic representation of the internal
adaptive behaviours of web services. Because the policy-based management used in
the proposed approach will need to reason specifically about these adaptive
behaviours. It is then vital that a formal representation will be used to describe the
adaptive behaviours of adaptive web services. It is possible to attempt to extend
OWL-S schema with Ontology definitions to describe internal adaptive behaviours.
But it was decided that such an action on its own would be premature, because this
extension still needs to have a formal definition for describing adaptive behaviours in

a formal manner.

On the other hand, FSM [71] provides a formal representation for describing
behaviours of components and systems. This modelling language has been created for
formally describing system behaviours and successfully used for many years. By
providing a formal representation to these adaptive behaviours, policies can then be
created for controlling them. Adaptive web services can then be managed by these

policies, which dynamically control the web service’s internal adaptive behaviours.

Although FSM has issues with scalability, this issue should not be such a
problem when describing adaptive behaviours. The reason is that FSM has not been
used to describe the overall behaviour of web services, but only to describe these

adaptive behaviours which are encapsulated within web services.

However, FSM was not designed with the intention to describe web services

specifically. Therefore, it was decided that FSM should be combined with other

44

modelling languages such as OWL-S in order to better represent adaptive web
services. The idea to combine OWL-S with FSM allows composite web services to be
described with a modelling language already designed for describing them, and use
FSM to describe the adaptive behaviours within these web services.
Representing Management Policies

A policy ontology modelled in OWL was created for obligation type policies
based on the properties identified from policy languages Ponder [38][39] and Rei
[40]. This Obligation Policy Ontology model will be used by the proposed tools to
define high-level management policies, low-level mapping policies, and low-level
enforceable policies. The difference between the various policies is their level of
abstraction and the context of their parameters, and not the constructs used by the
Obligation Policy Ontology model. Policies specified using this model could then be
translated to Ponder, Rei or any other rule-based language, thus having the benefit of

using any policy engine for this approach.

In this obligation policy ontology model, a policy rule has a trigger property
that specifies an event that will trigger (activate) the policy. Obligation policies also
have a subject property that specifies the agents to which the policies applies and
which interpret the policies. The target property of an obligation policy specifies the

object (service) on which the actions are to be performed.

This Obligation Policy Ontology model also contains condition property that
specify what conditions must be met before the policy is executed. They must be
evaluated every time an obligation policy is triggered. The action property of an
obligation policy specifies the action that must be performed when the policy is
executed. This action consists of method invocations for a concrete component or an
action name for an abstract component making the policy a high-level (abstract)
policy.

Automated Policy Refinement

A policy refinement method is necessary in order to manage the adaptive
behaviours of composite services using a policy-based management system. A survey
of automated policy refinement approaches was conducted, and presented in section
2.6. Although none of them were designed to manage adaptive web services, they did
provide valuable information on what is needed for an automated policy refinement

method for managing adaptive web services.

45

Firstly, the policy refinement needs to be automated since the process is very
complex and tedious for any user. It was decided to use an approach that infers its
refinement decision based on a rich semantic model of the adaptive web service. The
semantic model must also provide vocabulary for specifying appropriate high-level
policies. By allowing users to only specify appropriate high-level policies, it is
possible to ensure that the refinement of these policies is achievable. Lastly, tools
must be provided to facilitate the creation of the semantic models as well as the

specification of the high-level policies and their automated policy refinement.

3.5 The MAWS Methodology

The Manage Adaptive Web Service (MAWS) methodology is a design process
for describing adaptive (composite) web services semantically, and for specifying and
refining management policies to manage the internal adaptive behaviours of these

adaptive web services.

Before deploying adaptive web services with enforceable policies to manage
their adaptive behaviours, these web services and their adaptive behaviours must first
be semantically described. When adaptive web services are composed of other web
services, i.e. composite services, their composition must be described and the adaptive
behaviours belonging to their constituent services aggregated. Then high-level
policies can be specified to manage these adaptive composite services. The
specification of these management policies must be based on the semantic
representation of adaptive web services. These policies can then be automatically
refined (using the semantic descriptions) into low-level policies which are generated
to manage adaptive composite services. The policy refinement method is based on the
semantic description of adaptive web services. By limiting the policy specification to
the vocabulary provided by these semantic descriptions, it is possible to assure that
the policy refinement is achievable and that the refined policies are correctly refined

according to the intention of the specified high-level policy.

The MAWS methodology presented in this section is designed to guide
developers in describing adaptive web services and to allow managers to control these
adaptive web services by specifying and refining management policies to enforce
their adaptive behaviours. The MAWS methodology defines the required tasks to be

accomplished before being able to deploy and execute these adaptive composite

46

services, which results in the creation of enforceable policies to dynamically manage
their adaptive behaviours at run-time. These policies allow adaptive (composite)

services to change their behaviours in order to:
i. personalise web services according to user’s preference;
ii. change web services according to a new business model;
iii. allow web services to be context-aware to changes in the environment

The MAWS methodology was inspired by the methodology used for
describing and composing non-adaptive web services [31] and can be divided into
three processes, namely Web Service Description, Web Service Composition, and

Web Service Management. These are shown graphically in Figure 3-2.

Adaptive Web Service Developer Adaptive Web Service Composer Adaptive Web Service Manager

A\ 4 A 4

Semantic description for Semantic description for
atomic services: composite services:
OWL-S + FSM OWL-S + FSM
\ 4 \ 4 1

GRENIRER S . 3 R
Web Service Web Service A
~ Description (WSD) ~ Composition (WSC) Management (WSM) 2
2 Process |

e Pmcess Process

4

Mapping Policies &
Enforceable Policies:
Low Level Policies

!
o

b o o e e - - = - = = - ——

Figure 3-2, The three processes in the MAWS Methodology

The initial step of the MAWS methodology is the Web Service Description
(WSD) process, which is responsible for describing adaptive atomic services. It
produces syntactic descriptions for atomic web services (as WSDL), semantic
descriptions for atomic web service (as OWL-S), and formal representations
(expressed in FSM) for each of the adaptive behaviours pertaining to these adaptive

atomic services.

47

The Web Service Composition (WSC) process is the second step in the
MAWS methodology. This WSC process is responsible for modelling and describing
the composition of web services, thus producing a semantic description for composite
web services (expressed in OWL-S). The WSC process is also responsible for the
aggregation of the adaptive behaviours of the constituent web services. This produces
formal representations (expressed in FSM) of the adaptive behaviours of the adaptive
composite services. The WSC process uses artefacts produced by the WSD process to

semantically describe adaptive composite services.

The final step in the MAWS methodology is the Web Service Management
(WSM) process, which enables high-level policies to be specified to manage adaptive
(composite) services. This process is also responsible for the automated refinement of
these policies and the generation of enforceable (low-level) policies for the
constituent web services. In addition, it performs a validation of these generated
enforced (low-level) policies against the specified (high-level) management policies.
The activities in this process are accomplished with the aid of the artefacts produced

from the previous process, e.g. OWL-S and FSM.

The MAWS methodology tries to support different kinds of users involved in
the development of managing adaptive web services, and encourages that each
artefact is produced by the appropriate person responsible for it. Hence, adaptive web
services are described by developers who are responsible for creating them. Adaptive
web services can then be combined to create adaptive composite services with their
aggregated adaptive behaviours. And the composition of these amalgamated web
services is described by web service composers or application developers. Finally,
adaptive composite services can have their adaptive behaviours managed by policies
which can be safely specified by service managers and assured that refined

enforceable policies are generated to manage them.

Each of the steps in the MAWS methodology described above consists of a
number of design activities. To better understand these processes and their activities, a
detailed description of each of them, together with their produced artefacts, is
provided in the following subsections. Full details of these artefacts are available in

Appendix H.

48

3.5.1 Web Service Description Process

The Web Service Description (WSD) process was designed to describe
adaptive atomic services, both syntactically, as WSDL, and semantically, as OWL-S.
Furthermore, it also semantically describes the adaptive behaviours internal to atomic
services, as FSM. This is an important step in the MAWS methodology, since these
descriptions will be used later to specify management policies and to automatically

refine them.

The WSD process is composed of three activities; Web Service Syntactical
Description, Web Service Semantic Description and Web Service Adaptivity

Description, as depicted in Figure 3-3.

& ®

l

4 : No
Web Serv1ce: Syntacncal # Is model
Description | comblete?
o
A 4 1
Syntactical Description: Semantic Description:
WSDL OWL-S + FSM

a

=
«

(e R : %
Web Service Adaptivi
e Description

Web Service
- Semantic Description

Semantic Description:
OWL-S

A 4

v

Figure 3-3, Web service description process

The WSD process cycle starts with the Web Service Syntactical Description
activity, where a given web service is syntactically described as WDSL. The next
activity is the Web Service Semantic Description activity, where a given web service
is semantically described using an ontology language to produce a web service
description in OWL-S. The Web Service Adaptivity Description activity then
describes the adaptive behaviours of a web service, producing a formal representation

for them as FSMs.

The Web Service Syntactical Description activity provides a syntactical
description for web services. This activity assumes that developers have designed

their web services, and have either implemented or are about to implement these web

49

services. This activity describes atomic web services as WSDL. A snippet example of
the WSDL description is shown in Figure 3-4, which was produced by this activity for
a web service example PrintService. It shows a WSDL description of the web
service’s operation — print; web service’s input parameters: document (doc), pages,

and colours; web service’s response: sheets.

<wsdl:definitions targetNamespace="http://print.services”">
<wsdl:documentation>PrintService</wsdl:documentation>
<wsdl:types>

<xs:schema attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://print.services/xsd">

<wsdl:message name="printMessage">

<wsdl:part name="partl" element="ns0:doc"/>
<wsdl:part name="part2" element="ns0O:pages"/>
<wsdl:part name="part3" element="nsO:colours"/>
</wsdl:message>

<wsdl:message name="printResponse">

<wsdl:part name="partl" element="ns0:sheets"/>
</wsdl:message>

<wsdl:portType name="PrintServicePortType">
<wsdl:operation name="print">

<wsdl:input message="axis2:printMessage"
wsaw:Action="urn:print"/>

<wsdl:output message="axis2:printResponse"/>
</wsdl:operation></wsdl:portType>

Figure 3-4, Snippet of WSDL artefact consumed for print web service

The Web Service Semantic Description activity provides a semantic
description for web services. This activity consumes the syntactic description, as
WSDL, of a web service and enriches it with a semantic description. It describes web
services semantically with the use of OWL-S [36]. OWL-S semantically describes
web services through three aspects: process, profile, and grounding, which are
grouped under a fourth aspect called service. For this thesis emphasis was given to the
service, process and grounding aspects of the OWL-S model. This activity produces a
semantic description for web services as OWL-S, which describes web service’s type,

their inputs and their outputs, as well as, a mapping to their WSDL description.

Figure 3-5 shows a snippet of the artefact produced by this activity for the web
service PrintService. It shows the service and process aspects of the OWL-S
description for the PrintService. The service aspect describes the location of the other

aspects of the service semantic description. The code snippet of the process aspect

50

describes the PrintService’s inputs: document name, number of pages, number of

colours to be used; and outputs: number of sheets used to print the document.

<service:Service rdf:ID="PrintService">

<!-- Reference to the Process Model -->
<service:describedBy rdf:resource="&gprocess; #PrintProcess"/>
<!-- Reference to the Grounding -->

<service:supports

rdf:resource="&ggrounding; #PrintServiceGrounding" />
<!-- Reference to the Profile -->
<service:presents

rdf:resource="&gprofile; #PrintServiceProfile"/>

</service:Service>

<process:AtomicProcess rdf:ID="PrintProcess">
<process:hasInput rdf:resource="#DocumentName"/>
<process:hasInput rdf:resource="#NumberOfPages"/>
<process:hasInput rdf:resource="#NumberOfColours" />
<process:hasOutput rdf:resource="#NumberOfSheets" />
<process:hasFiniteStateMachine
rdf:resource="PrintProcessFSM.owl#PrintProcessFSM" />
</process:AtomicProcess>

Figure 3-5, Snippet of OWL-S artefact produced for print web service

The next step is to add an adaptive behaviour description for atomic web
services. The Web Service Adaptivity Description activity describes the internal
adaptive behaviours of adaptive atomic services. This activity enriches web service
semantic descriptions (expressed in OWL-S), provided by the previous activity, with
a formal representation of the web service’s adaptive behaviours, expressed as FSM.
FSM uses its events, transitions, and states to describe these adaptive behaviours

semantically.

This activity should not be used to describe the service’s default behaviour but
only the behaviours that are desired to be exposed which modify the service’s
behaviour. In order to contain the description of several adaptive behaviours in a
generic manner, the FSM description starts with a description of the different running
states of a web service. These states are: idle, input, process, and output states. FSM
representing adaptive behaviours are then associated to these states through
submachine property. In this manner adaptive behaviours can be grouped based on the

service’s running states.
The print web service example has four adaptive behaviours:

e ExpensiveMode, which modifies the print service to print single-sided;

51

¢ IntermediateMode, which modifies the print service to print double-sided;

e EconomyMode, which modifies the print service to print two pages per sheet

double-sided (i.e. four pages per sheet);
e ColourPrinting, which modifies the print service to print in colour;

Figure 3-6 shows a snippet of the FSM (modelled in OWL) describing a
simple adaptive behaviour called EconomyMode. This snippet shows two states:
initial state (EconomyModelnitialState) and final state (EconomyModeStatel), as
well as a transition from initial state to final state contained in this FSM. The
description of the final state details the activity to be performed by this state — to
change printing mode to print 2 pages on a side and print double sided. This FSM
describing the adaptive behaviour EconomyMode is contained within a submachine,

see snippet code below, and associated to the service’s FSM via a sub-FSM.

<fsm:SubmachineState rdf:ID="EconomyModeSubSM">
<fsm:submachine>
<fsm:StateMachine rdf:ID="EconomyMode">
<fsm:top>
<fsm:CompositeState rdf:ID="EconomyModeCS">
<fsm:subvertex>
<fsm:PseudoState rdf:ID="EconomyModeInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:Transition rdf:ID="EconomyModeInitialStateInitialTransition">
<fsm:trigger>
<fsm:SignalEvent rdf:resource="InitialEvent"/>
</fsm:trigger>
<fsm:source rdf:resource="#EconomyModeInitialState"/>
<fsm:target rdf:resource="#EconomyModeStatel"/>
</fsm:Transition>
</fsm:outgoing>
</fsm:PseudoState>
</fsm:subvertex>
<fsm:subvertex>
<fsm:FinalState rdf:ID="EconomyModeStatel">
<fsm:doActivity>printmode (2, doublesided)</fsm:doActivity>
<fsm:incoming rdf:resource="#EconomyModeInitialStateInitialTransition"/>
</fsm:FinalState>
</fsm:subvertex>
</fsm:CompositeState>
</fsm:top>
<fsm:comment>prints 4 pages per sheet</fsm:comment>
</fsm:StateMachine>
</fsm:submachine>
</fsm:SubmachineState>

Figure 3-6, FSM artefact describing the adaptive behaviours of the print web service

52

3.5.2 Web Service Composition Process

The Web Service Composition (WSC) process was designed to describe the
composition of adaptive composite services, and to aggregate their adaptive
behaviours. This process describes the adaptive behaviours of adaptive composite
services by aggregating the adaptive behaviours, previously described as FSM, of the
constituent atomic web services. This step in the MAWS methodology is important
because adaptive web services being managed can either be atomic or composed. For
those services that are composed, it is necessary to describe their composition. The
composition description will be used later by the policy refinement process to
automatically refine high-level policies. Furthermore, the aggregation of adaptive
behaviours will allow them to be exposed to service managers specifying high-level

policies for composite services, as seen in the next MAWS process.

The WSC process is composed of three activities: Web Service Composition
Modelling, Web Service Composition Description, and Web Service Adaptivity
Aggregation, as depicted in Figure 3-7.

No

Web Service Composition

«

Is model

Modelling combplete?
v T
Semantic Description for Semantic Description for
atomic services: composite services:
OWL-S + FSM OWL-S + FSM
s TR Semantic Description for Web Service Adaptivi 3
. Web Selgwce o g & composite services: —b> et or? ty !
5 __s;gon escription OWL-S f 88reg
- ‘d J

Figure 3-7, Web service composition process

The WSC process cycle starts with the Web Service Composition Modelling
activity which models composite services either manually or in an automated manner.
Then the Web Service Composition Description activity describes the composition of
the modelled composite web service. Lastly, the Web Service Adaptivity Aggregation

activity aggregates the adaptive behaviours belonging to the constituent web services

93

for the given composite web service. It is assumed that the web services used in the

composition have undergone the WSD process.

The web services to be deployed can be either atomic or composite web
services. However, since composite web services are composed of atomic or other
composite services, their composition must be modelled. The purpose of this process

is to describe the composition of adaptive composite services.

The Web Service Composition Modelling activity searches for the available
web services to satisfy the set of composition requirements, it then selects the
appropriate candidate web services for the composite web service, and finally it
models the composite service. This activity can be performed manually or in an
automated manner, such as through the use of an Al planner [5]. The tasks of this
activity are research topics in themselves and outside the scope of this thesis. This
activity provides a point of reference to developers performing the composition of
web services before describing the composition of composite web services in the next

activity.

The Web Service Composition Description activity describes composite web
services semantically, producing semantic descriptions for composite web services as
OWL-S. The semantic description of composite web services is similar to that of
atomic services, except for the addition to a description of their composition. The
composition is described in a hierarchical manner by identifying the constituent
services and describing their control flow, as well as the dataflow between the inputs
and outputs of the constituent services. For example, this activity can describe the
composition of the PhotoAlbumPrint web service, as OWL-S, exhibited in the snippet
depicted in Figure 3-8. This snippet details the control flow of the composite service

as a sequence of three services: PhotoService, PhotoAlbumService, and PrintService.

54

<process:CompositeProcess rdf:ID="PhotoAlbumPrintProcess">
<process:composedOf>
<process:Sequence>
<process:components>
<process:ControlConstructList>
<objList:first rdf:resource="#PerformPhotoService" />
<objList:rest>
<process:ControlConstructList>
<objList:first>
<process:Perform rdf:resource="PerformPhotoAlbumService">
</objListfirsts
<objList:rest>
<process:ControlConstructList>
<objlList:first rdf:resource="#PerformPrintService"/>
<objlList:rest rdf:resource="generic/ObjectList.owl#nil"/>
</process:ControlConstructList>
</objlList:rest>
</process:ControlConstructList>
</objList:rest>
</process:ControlConstructList>
</process:components>
</process:Sequence>
</process:composedOf>
</process:CompositeProcess>

Figure 3-8, OWL-S snippet describing the composition of the PhotoAlbumPrint web service

Once a composite web service is described, its adaptive behaviour must also
be described. The adaptive behaviours of a composite web service are the resultant
aggregation of the adaptive behaviours belonging to the constituent adaptive services.
Thus, the main role of the Web Service Adaptivity Aggregation activity is to combine
the adaptive behaviours pertaining to the constituent adaptive services of a given
composite service. The aggregation activity aggregates adaptive behaviours in a
reversed hierarchical manner based on the composite description of a given composite
web service, provided by the previous WSCM activity. The resultant aggregated
adaptive behaviours for a composite web service are described as FSM in the same

manner adaptive behaviours are described for atomic web services.

The output of this activity for the example composite web service
PhotoAlbumPrint is shown in Figure 3-9. It depicts a FSM snippet (modelled in
OWL) describing the aggregated adaptive behaviours of this composite web service.
The snippet indicates adaptive behaviours: CreateCalendar adaptive behaviour, which
creates a photo calendar document with a given set of photos and originated from
AlbumService; and ExpensiveMode, which prints a document page per sheet and

originated from PrintService.

55

<fsm:CompositeState rdf:ID="ProcessState">
<fsm:subvertex>
<fsm:SubmachineState rdf:ID="CreateCalendarSubSM">
<fsm:submachine>
<fsm:StateMachine rdf:ID="CreateCalendar">

<fsm:comment>
Creates a calendar with the given set of photos
</fsm:comment>
</fsm:StateMachine>
</fsm:submachine>
</fsm:SubmachineState>
</fsm:subvertex>
<fsm:subvertex>
<fsm:SubmachineState rdf:ID="ExpensiveModeSubSM">
<fsm:submachine>
<fsm:StateMachine rdf:ID="ExpensiveMode">

<fsm:comment>prints a page per sheet</fsm:comment>
</fsm:StateMachine>
</fsm:submachine>
</fsm:SubmachineState>
</fsm:subvertex>
</fsm:CompositeState>

Figure 3-9, FSM snippet for PhotoAlbumPrint service’s adaptive behaviours

At this level, the system is operating under the assumption that any adaptive
behaviour is a possible adaptive behaviour for a composite service. Hence, the system
is merely providing all the possible behaviours of the constituent services, and it is not
trying to provide any filtering of combination that might be inappropriate i.e.

conflicting adaptive behaviours with same name.

3.5.3 Web Service Management Process

The Web Service Management (WSM) process was designed to allow web
service managers to specify high-level (obligation type) policies for managing
adaptive (composite) services, and have these policies refined, generating enforceable
low-level policies. These low-level policies are then validated before being used at

run-time to dynamically manage adaptive web services.

The WSM process is composed of four activities: Management Policy
Specification, Management Policy Refinement, Enforceable Policy Generation, and

Management Policy Validation, as depicted in Figure 3-10.

56

Management Policy
Specification

No Is policy

refinement
complete?

A 4

Management Policy: Valid Enforceable Policies:
High Level Policies Low Level Policies

' Lod

Management Polic Management Policy
- Refinement Validation :
wﬁ;: <)

A 4

Enforceable Policy
~ Generation : 5

Enforceable Policies:
Low Level Policies

Mapping Policies:
Low Level Policies

Figure 3-10, Web service management process

The WSM process cycle starts with the Management Policy Specification
activity, which specifies the high-level policies needed to manage adaptive
(composite) services. The Management Policy Refinement activity then refines these
high-level management policies into mapping policies which are disseminated down
the service’s composition to the relevant constituent atomic services. Subsequently,
the Enforceable Policy Generation activity generates low-level enforceable policies
for the relevant constituent atomic services, which are enforced on these services to
manage their adaptive behaviours. Lastly, these enforceable policies are validated by

the Management Policy Validation activity to ensure there are no conflicting policies.

The Management Policy Specification activity specifies the management
policies to manage the adaptive behaviours of composite web services. These
management policies are high-level obligation type policies. The semantic
descriptions for web service (OWL-S) and their adaptive behaviours (FSM), which
was produced by the activities within the WSC process, are used as vocabulary to
specify management policies. The expression of these management policies is limited
to the terms of the semantic descriptions provided. This activity ensures that only

functionally valid management policies can be specified.

57

An example of a management policy for managing the PhotoAlbumPrint
service is depicted in Figure 3-11. This policy was specified to change the default
behaviour of the PhotoAlbumPrint service to use RemoveRedEye (functionality for
removing redeye from people in photographs) and CreateCalendar adaptive behaviour
when processing portrait photos. This policy is described in the Obligation Policy
Ontology model (see Appendix E), expressed in OWL. Details of this policy are
shown in the code below, depicting the use of the named adaptive behaviours as its

action.

<policy:Policy rdf:ID="PhotoAlbumPrintPolicyl">
<rdfs:comment>Policy for this service to use removeredeye and
create calendar adaptive behaviours for processing portrait
photos</rdfs:comment>
<policy:target rdf:resource=
"PhotoAlbumPrintProcess.owl#PhotoAlbumPrintProcess" />
<policy:event>
<policy:SimpleEvent rdf:ID="PhotoAlbumPrintPolicylEventl"/>
</policy:event>
<policy:condition>
<policy:SimpleCondition
rdf:ID="#PhotoAlbumPrintPolicylConditionl">
<policy:subject rdf:resource="#CameraPhotoCategory"/>
<policy:predicate>
<policy:Predicate rdf:ID="equal"/>
</policy:predicate>
<policy:value>portrait</policy:value>
</policy:SimpleCondition>
</policy:condition>
<policy:action>
<policy:ComplexAction rdf:ID="PhotoAlbumPrintPolicylActionl">
<ndfs:first> <policy:Andhist> <rdfs:first>
<policy:SimpleAction rdf:ID="PhotoAlbumPrintPolicylActionl01">
<policy:value>RemoveRedEye</policy:value>
</rdfstfirst><rdfs:rest>
<policy:SimpleAction rdf:ID="PhotoAlbumPrintPolicylActionl02">
<policy:value>CreateCalendar</policy:value>
</policy:SimpleAction>
</rdfs:rest> </policy:BndList> </rdfs:first>
<rdfs:rest></rdfs:rest>
</policy:ComplexAction> </policy:action> </policy:Policy>

Figure 3-11, Management policy specified for PhotoAlbumPrint web service

The objective of the Management Policy Refinement activity is to refine the
management policies specified for managing adaptive composite services. These
policies are refined according to the web service composition generating refined
policies, called mapping policies. These mapping policies, as the name suggests, map
high-level management policies to low-level enforceable policies (which are produced
by the next activity). These mapping policies are assigned to the relevant constituent

services to accomplish the policy refinement. This activity uses artefacts from the

58

WSC process to perform policy refinement and specifically for the generation of
mapping policies; artefacts used include web service syntactical description (WSDL),
web service semantic description (OWL-S), and adaptive behaviour’s formal

representation (FSM).

In order to satisfy the condition aspect of the high-level policy, specified for
the PhotoAlbumPrint Service, refined mapping policies must first be generated to
notify the (future) enforceable policy targeting the PhotoService to monitor its input
for value “portrait”. Furthermore, refined mapping policies also need to be generated
targeting the relevant services to notify that such condition occurred. These mapping
policies trigger (future) enforceable policies that will enforce the desired adaptive
behaviours. Figure 3-12 illustrates these two refined mapping policies produced by

this activity.

PhotoAlbumPrint Service (CompositeProcess)

Name Event Condition | Action

PhotoAlbum ProcessEvent event(PhotoAlbumPrintPolicy1Event1CO0)

PrintPolicy1

PhotoAlbum PhotoAlbumPrint event(PhotoAlbumPrintPolicy1Event1aA)

PrintPolicy1CU | Policy1Event1CUO &&
event(PhotoAlbumPrintPolicy1Event1bA)

PhotoAlbumPrint Service (CompositeProcess)

Name Event Condition | Action

PhotoPolicy1C | PhotoAlbumPrint event(PhotoRemove RedEyeEvent)
Policy1Event1aA

PhotoAlbumPrint Service (CompositeProcess)

Name Event Condition | Action

PhotoAlbumPolicy1C | PhotoAlbumPrint event(PhotoAlbumCreateCalendarEvent)
Policy1Event1bA

Figure 3-12, Refined mapping policies for PhotoAlbumPrint composite web service

The Enforceable Policy Generation activity completes the policy refinement
process by generating low-level enforceable policies needed to satisfy the high-level
management policies specified to manage adaptive composite services. These
enforceable policies are generated for the relevant refined mapping policies. They are
created to either monitor the inputs and outputs of constituent atomic services or to
enforce their adaptive behaviours. The generation of these enforceable policies is

based on the semantic and syntactical descriptions of the relevant atomic web service,

59

and the formal description (FSM) of the pertaining adaptive behaviour they are

enforcing.

Figure 3-13 shows the refined enforceable policy generated for the constituent
web service PhotoService to monitor its input PhotoCategory, and fires an event if
this input is of value “portrait”. This policy is triggered by
PhotoAlbumPrintPolicylEvent1CO event and if the condition is met, it generates an
event called PhotoAlbumPrintPolicylEvent1CU0. Other policies were generated to

enforce the adaptive behaviours RemoveRedeye and CreateCalendar.

Photo Service (AtomicProcess)

Name Event Condition Action
PhotoPolicy1 PhotoAlbumPrint PhotoCategory ==portrait | event(PhotoAlbumPrint
Policy1Event1CO Policy1Event1CUOQ)
PhotoRemove InputEvent&& searchRedEye()&&
RedEyePolicy1 | PhotoRemove event(RemoveRedEye
RedEyeEvent State1Event)
PhotoRemove ProcessingPhoto&& redeyelocation > 0 removeRedEye()
RedEyePolicy2 | RemoveRedEye
State1Event

PhotoAlbum Service (AtomicProcess)

Name Event Condition Action
PhotoAlbum ProcessEvent&& createCalendar()
CreateCalendar | PhotoAlbumCreateCal

Policy1 endarEvent

Figure 3-13, Refined enforceable policies for the PhotoAlbumPrint web service

Although these activities are tedious, it can be seen later that the Management
Policy Refinement and Enforceable Policy Generation activities are performed
automatically by the relevant supporting tool. Thus, neither developers nor web

service managers need to expend time and effort performing these activities by hand.

Finally, in order to assure that adaptive web services can be deployed safely
with their enforceable policies, these policies must first be validated. The last activity
in the WSM process is the Management Policy Validation activity, which verifies that
the generated refined management policies enforce the behaviours of an adaptive web
service without any confliction. Confliction can occur if contradicting policies are
specified for the same adaptive service. This activity identifies any policy confliction

in order to remove them by re-specifying the management policies, so that there are

60

no conflicting policies among the generated policies. Once these enforceable policies
are validated, adaptive web services can be deployed together with these enforceable
policies to manage them. Policy confliction is a researched area which is outside the

scope of this thesis.

At this level, the system is operating under the assumption that any adaptive
behaviour is a possible adaptive behaviour to be used by the management policy.
Hence, the system is merely providing all the adaptive behaviours available in the
web services for management policy specification, and it is not trying to provide any
filtering of combinations that might be inappropriate. Thus, the system could generate
enforceable policies that are syntactically correct but semantically invalid. This is a
limitation in our approach, which could be addressed in future work by expanding the
FSM model with taxonomy or semantic tags, that would allow a semantic filter
reasoner to prevent or filter out such inappropriate combinations, during management

policy specification.

3.6 Supporting Tools for the MAWS Methodology

It is fair to say that using the MAWS methodology manually would be tedious
and complicated, as can be seen from the snippet artefact examples produced by the
various activities from the MAWS methodology. In order to use the MAWS
methodology successfully, there is a need for supporting tools to accomplish the
activities. Before designing these supporting tools, a set of requirements needs to be
defined. In reality, there are three different specific users that can be identified which
will be using the MAWS methodology, namely web service developers, web service

composers, and web services managers.

3.6.1 Requirements for the Supporting Tools

A set of requirements for integrated tools to support the MAWS methodology
are outlined in the following sub-sections. These requirements are based on the needs
of the various MAWS methodology activities, in addition to the objectives of this
thesis and influences from the current state of the art (see Chapter 2). These
requirements can be divided into three categories (see Figure 3-14), i.e. those specific
to capturing semantic descriptions of web services, those specific to capturing

descriptions of web service’s adaptive behaviours, and those related to managing

61

adaptive web services using policies. These requirements can also be divided into
three different user roles: web service developers, web service composers, and web
service managers. Furthermore, a set of secondary requirements concerned with the

tool’s overall design were also identified.

y: J
Web Service | ; Web Service Web Service
‘ Developers ! . Composers - Managers
\ 4
R e (o e
MAWS Web Service MAWS Web Se; MAWS Web Service
Description Process ~ Composition Process - Management Process
-/ s -
v v
z ; 5. - - fls b Rt ¢
Requirements for Web ~ Requirements for Web Requirements for Web
‘ Services Semantic Y Service Adaptive Service Management
‘ Description ’\.\‘ Behaviour Description ~ Policy Creation Tool
Environment ’ Environment 8

Figure 3-14, Alignment of requirements with MAWS processes

Requirements for Web Services Semantic Description Environment

The functional requirements for designing a tool to semantically describe web

services were identified as:

e The tool should allow users to create semantic descriptions for atomic services

as OWL-S — derived from the Web Service Semantic Description activity;

e The tool should allow users to describe the composition of composite services,
including a description of their control flow and dataflow — derived from the

Web Service Composition Description activity;

A set of secondary requirements for designing this tool to semantically

describe web services are:

e The tool should be able to facilitate users in describing web services

semantically by providing a graphical user interface;

62

e The tool should be able to persistently store the web service’s semantic

description (OWL-S) in a consistent format as OWL;

Requirements for Web Service’s Adaptive Behaviour Description Environment

The functional requirements for designing a tool to semantically describe

adaptive behaviours of web services were identified as:

e The tool should allow users to create a FSM model (shell) for web services so
as to contain the descriptions of their adaptive behaviours — derived from the

Web Service Adaptivity Description activity;

e The tool should allow users to create sub-FSMs (child FSM to be contained
within FSM shell) representing adaptive behaviours of web services — derived

from the Web Service Adaptivity Description activity;

e The tool should allow users to describe the adaptive behaviours of web
services as FSM, using states, transitions, and events — derived from the Web

Service Adaptivity Description activity;

e The tool should be able to automatically aggregate the adaptive behaviours of
the constituent services of composite services according to their composition —

derived from the Web Service Adaptivity Aggregation activity;

A set of secondary requirements for designing this tool to describe adaptive

web services are:

e The tool should be able to facilitate users in describing web service’s adaptive

behaviours by providing a graphical user interface;

e The tool should be able to persistently store the semantic description of
adaptive behaviours belonging to web services, as FSM, in a consistent format
as OWL;

Requirements for Web Service Management Policy Creation Tools

A set of functional requirements for designing a tool to create policies to

manage the adaptive behaviours of web services were identified as:

63

e The tool should allow users to specify high-level management policies to
manage the adaptive behaviours of web services — derived from the

Management Policy Specification activity;

e The tool should be able to express management policies as obligation policies
with events, conditions, and actions — derived from the Management Policy

Specification activity;

e The tool should limit users in specifying management policies to be expressed
with the description of the managed adaptive web service — derived from the

Management Policy Specification activity;

e The tool should provide users, when specifying policies, with the appropriate
vocabulary of adaptive behaviours as their action, web service’s parameters as

their condition — derived from the Management Policy Specification activity;

e The tool should be able to automatically refine management policies into
mapping policies according to the web service’s composition and the
description of their adaptive behaviours — derived from the Management

Policy Refinement activity;

e The tool should be able to automatically generate low-level enforceable
policies from the refined mapping policies assigned to constituent adaptive
services according to their semantic descriptions — derived from the

Enforceable Policy Generation activity;

A set of secondary requirements for designing a tool to create management

policies to manage the adaptive behaviours of web services were identified as:

e The tool should be able to persistently store the management policies and the

enforcement policies in a consistent format;

e The tool should have a graphical user interface that facilitates the user in
specifying management policies and that shows details of the web service to

be managed, and their adaptive behaviours

e The tool should be able to enable users to specify management policies for
managing the adaptive behaviours of web services by preventing them from
making syntactical mistakes and helping users when specifying policies by

providing the appropriate vocabulary;

64

3.6.2 Architecture of the Supporting Tools

An overview architectural design is presented for a set of integrated tools

needed to support specific activities in the MAWS methodology. The requirements

identified above provide key guidance in determining the overall architecture of these

tools.

Rather than developing a single application, the preferred choice was to design

a set of integrated tools to suit the different categories of users in the development

cycle, and to best support specific activities in the MAWS methodology. Figure 3-15

shows a set of integrated tools which was designed and includes:

ii.

iii.

a tool for describing both atomic and composite web services semantically as

OWL-S;

a tool for providing a formal representation of the adaptive behaviours of

adaptive (composite) services as FSM;

a tool for authoring high-level management policies for adaptive (composite)
services and automatically generating refined mapping and enforceable
policies to manage the adaptive behaviours of these adaptive composite

services.

Service Developer

Service Composer

Service Manager

User Tool Artefacts Produced/Consumed

Syntactic Web Service Description:

< WSDL
Web Service
Description Editor ~~,| Semantic Web Service Description:

(WSDE) OWL-S

Web Service Adaptive

Behaviour Editor > Adaptive \g;l/)LS_gT;es llalescnptlon:
(SABE)

Management Policies:
High Level Policies

R

Web Service ™
Management Policy
n &Editor (SMPE)

Mapping Policies:
Low Level Policies

Enforceable Policies:
Low Level Policies

65

Figure 3-15, Design architecture of the set of integrated tools for supporting MAWS methodology

In particular, the first tool is a Web Service Description Editor (WSDE),
which was designed with the objective of allowing developers to semantically
describe web services as OWL-S. This tool produces OWL-S descriptions for both
atomic and composite web services. The WSDE tool expects atomic web services to
be already implemented and to have their syntactical aspects described as WSDL and
makes use of these WSDL descriptions when producing semantic descriptions for
web services 1.e. grounding model of OWL-S. This tool describes the control flow and
data flow as OWL-S when describing composite services. It is designed with a
graphical user interface to facilitate users in viewing and editing semantic descriptions

of web services.

The second tool is a Web Service Adaptive Behaviour Editor (SABE), which
allows developers to describe the adaptive behaviours of adaptive web services as
FSMs. This tool takes as input semantic descriptions of web services as OWL-S. The
SABE tool generates a FSM for an adaptive web service which encompasses all the
FSMs describing each of the service’s adaptive behaviours. This tool is designed with
a graphical user interface to facilitate users in describing adaptive behaviours of these
adaptive web services. The SABE tool allows users to view and edit adaptive
behaviours belonging to these web services as FSM. In addition, the tool’s user
interface allows users to view the semantic descriptions of web services thereby
putting the adaptive behaviours into context with the adaptive web services. For
adaptive composite services, this tool automatically aggregates the adaptive
behaviours of their constituent adaptive web services. This aggregation process is
performed in a reversed hierarchical manner and it produces a FSM, of similar format

as of its constituent services, for the adaptive behaviours of a composite service.

The third tool is a Web Service Management Policy Editor (SMPE), which
allows users to specify management policies to manage adaptive composite services.
The SMPE tool takes as input adaptive web services syntactically described as
WSDL, their semantic descriptions as OWL-S, and their adaptive behaviours
described as FSM. This tool uses these descriptions as policy vocabulary to express
the management policies being specified and for auto-generating refined (mapping
and enforceable) policies. The SMPE tool is designed with a graphical user interface

to facilitate the user in specifying high-level management policies for adaptive

66

composite services; it also allows users to view the semantic descriptions of adaptive

web services.

3.6.3 Supporting the MAWS methodology

Figure 3-16 shows how the supporting tools designed and described in Section
3.6.2 support the various activity of the MAWS methodology.

LU " R

Web Service Management Process Web Service Description Process
/" Management Web Service Web Service |
fi it | e \
\ potcy valdaton | [P POy Adaptvity Syntaciic
\ Specification | | Description
/ |
f
[Enforcement Management | \
Policy e Policy ! Web : \ |
Generation Refinement | ;e::':;?
Description
/ (3) L 1]
SABE Tool WSDE Tool

Web Service Composition Process

" Web Service | /' Web Service
{ | Composition ¢
\ Modelling

(2)

Figure 3-16, How the designed tools support the MAWS methodology processes.

As described in the MAWS methodology section, see Section 3.4, the first
step, WSD, contains three activities, two of which can be supported by the proposed
tools. The first activity, Web Service Syntactical Description activity, can be
supported by the web service container, which produces WSDL descriptions for web

services. The proposed tool WSDE supports the second activity, Web Service

67

Semantic Description activity, producing an OWL-S description for web services. The
Web Service Adaptive Behaviour Description activity is supported by the proposed
SABE tool. The SABE tool produces FSM to describe the adaptive behaviours within

adaptive atomic services.

The second step in the MAWS methodology, the WSC process, contains three
activities, two of which are supported by the designed tools. The Web Service
Composition Description activity is supported by the WSDE tool which semantically
describes the composition of composite web services as OWL-S. Whereas, the Web
Service Adaptivity Aggregation activity is supported by the SABE tool, which
automatically aggregates the adaptive behaviours of the constituent adaptive services

described as FSM.

The third step in the MAWS methodology, the WSM process, contains four
activities, three of which are supported by the designed SMPE tool. The SMPE tool
supports the Management Policy Specification activity by allowing users to specify
management policies to manage adaptive (composite) services. This tool also supports
the Management Policy Refinement activity by automatically refining the specified
policies according to the description of the adaptive web service. It produces mapping
policies which map the high-level management policies to low-level enforceable
policies. Furthermore, this tool supports the Enforcement Policy Generation activity
by automatically generating enforceable policies for the constituent adaptive atomic

services so as to manage their adaptive behaviours.

3.7 Summary

This chapter has illustrated how the MAWS methodology semantically
describes web services and their adaptive behaviours, composing them into composite
web services and aggregating their adaptive behaviours, as well as specifying
management policies, refining these policies and generating enforceable policies to

manage the described adaptive composite services.

A set of identified requirements and an architecture design for a suite of
integrated tools to support the MAWS methodology was presented in this chapter. An
overall picture of the architecture has been given, focusing on how the various tools

support the MAWS methodology described. A set of tools were proposed as

68

supporting tools for the MAWS methodology together with a description of their
architecture. A detailed discussion of the implementation of these tools is carried out

in the next chapter, Chapter 4.

69

4 Implementation of Integrated Tools

4.1 Introduction

The MAWS methodology was described in the previous chapter — Chapter 3,
and three tools were identified so as to support this methodology. The proposed

integrated tools are:

i. Web Service Semantic Description Editor (WSDE), a tool that describes the
semantic description of atomic web services and the composition description

of composite services expressed as OWL-S;

ii. Web Service Adaptive Behaviour Editor (SABE), a tool that describes the
adaptive behaviours belonging to atomic web services and that automates the

aggregation of these behaviours for composite services;

ili. ~ Web Service Management Policy Editor (SMPE), a tool responsible for the
specification of high-level management policies and for the refinement of
these policies and generation of low-level policies to manage these adaptive

behaviours.

These integrated tools facilitate web service developers and managers to
describe adaptive web services, specify high-level management policies for them, and
auto-generate refined low-level enforceable policies to manage these adaptive web

services.

This chapter describes the design and implementation of this suite of
integrated tools following the requirements identified in the previous chapter. A
detailed description is provided of all the main components within each tool, and any
issues encountered in the implementation of these tools are highlighted. Next, a step
by step demonstration of how to use these integrated tools is presented. Finally, a
policy evaluation platform that was implemented to provide the necessary runtime
support for evaluating adaptive web services and their management policies during

runtime is described.

70

4.2 Design of Integrated Tools

These tools were designed as a component based architecture with a Graphical
User Interface (GUI) and an Ontology interpreter to parse and reason about the
semantic descriptions of adaptive web services. The GUI facilitates the users in
viewing and editing the semantic descriptions of adaptive web services or in

specifying management policies for these adaptive web services.

These tools were implemented solely in Java [76] allowing them to be used
over several platforms since Java is a platform independent language. The GUI of
these tools was implemented with Swing [44]: a GUI toolkit for Java that provides
widgets such as text boxes, buttons, panels, and tables. Swing widgets are designed to
be consistent across all platforms and considered more sophisticated GUI components

than the earlier Abstract Window Toolkit (AWT) [43].

Jena [46], a toolkit which provides a programmatic environment for RDF,
RDFS and OWL was used in the implementation of these tools as the Ontology
interpreter. Jena was used for interpreting and reasoning about ontological
descriptions expressed in OWL. Jena provided these tools with the ability to read,
parse, interpret, and save the semantic descriptions related to adaptive web services
and their management policies. By using Jena, these tools can read and write ontology
descriptions as OWL instances to file, database, or memory. Reading and writing to a

file was the preferred option as it was simple to use and yet provided persistence.

4.3 Design and Implementation of the WSDE tool

The Web Service Description Editor (WSDE) tool allows developers to
describe web services semantically, producing an OWL-S description for both atomic
and composite web services. This tool was developed to support the SABE and the
SMPE tools. The WSDE tool is not novel in describing web service as OWL-S, but it
does provide a user interface for describing web services which is consistent with the

other tools developed.

71

WSDE Tool =
| ~ Front End N

Web Service Viewer Web Service Editor

/-Onlology Imerpreterﬁ

Web Service S = ot of b Wwla]
Onilogy Models Representation
A

T
(Sl

| Jena
o

Ng J

Web Service
Interpreter

A

Web Service
Description

Figure 4-1, Architecture of the WSDE tool

This tool was implemented as a component based architecture, as depicted in

, Figure 4-1, with the following main components:

e Ontology Interpreter Component, for interpreting and persisting web services

descriptions model as OWL-S;

e Web Service Viewer Component, for allowing users to view web service’s

semantic details;

e Web Service Editor Component, for allowing users to create or edit web

services semantic descriptions and their details;
These components are described in detail in the next sub-sections below.

This tool was implemented with a Graphical User Interface (GUI) which helps
developers to view and edit the particulars of web service semantic descriptions. This
tool allows developers to semantically describe the parameters of web services and
the composition of composite web services. In addition, developers can save the web
service description as an OWL file. This tool utilises an OWL reasoner to read or save
web service’s semantic descriptions, specified in OWL-S, to an OWL file in lexical

form. A screenshot of the WSDE tool is shown in Figure 4-2.

72

WSDE - Web Service Description Editor
Eile Help

¢ & WebhService
¢ 9 PhotoAlbumPrintService
¢ %% PhotoAlbumPrintProcess
¢ -8 Sequence
& PhotoService
&9 PhotoAlbumService
& Printservice

Process Description |Service Node Description
¢ Idn/puts y - Property
o- “p CameraPhotos Name
% CameraPhotoSize Type Input
% CameraPhotoCategory Definition string
¢ € Outputs 'Wsdl Name photos
% AlbumSize Link Process PhotoService

___Process I Parameter . __Proces:

Status: Tree selection is CameraPhotos gh{pu) 7

Figure 4-2, A screenshot of the WSDE tool

The following panels are depicted in Figure 4-2 (seen in an anti-clockwise

rotation starting with the top left panel):

A. Web service composition detail panel, which displays the composition of

composite web services i.e. the control flow of a composite service;

B. Web service process detail panel, which displays the details of a selected

service (termed as process in OWL-S);

C. Web service data flow detail panel, which displays the data flow of a

composite service;
D. Service node description panel, which allows users to edit the details of
selected service nodes.
4.3.1 Ontology Interpreter Component

The Ontology Interpreter component provides the functionality for parsing,
interpreting, and saving semantic descriptions of web services based on OWL. This

component uses Jena to parse, interpret, and save ontological description of web

73

services (as OWL-S). By using Jena, this component is able to read and write

ontology descriptions as OWL instances to an OWL file in lexical form.

Although Jena can read and write ontology descriptions from OWL files in
lexical form, it cannot interpret them without an ontology schema and logic code to
reason about them. This component was implemented with a sub-component to
interpret the Ontology model used by the WSDE tool. This sub-component contains
the necessary Ontology schema to interpret and reason about the semantic web service

descriptions as OWL-S.

An internal representation of a semantic web service description model was
created in order to facilitate the visualisation of the web service description. This
component performs better with an internal representation than using information
taken directly from the web service Ontology model since the internal representation
doesn’t require to be interpreted every time it is called. This internal representation of
web services is populated by this component once the Ontology model instance is

interpreted.

When saving semantic web service descriptions, this sub-component uses the
OWL-S Ontology schema to create an instance of OWL-S Ontology model for a
particular web service and save it in an OWL file in lexical form. The description of
the web service is taken from their internal representation, and necessary OWL-S
specific information is included into the Ontology model. In the case of a composite
web service, this process saves the web service description as OWL-S Ontology
model in a hierarchical manner starting from the topmost web service to every last
constituent atomic web service while also including details of their control flow and

dataflow.

4.3.2 Web Service Viewer Component

The web service viewer component uses panels to display the details of the
web service’s semantic description. These panels are Java Swing widgets, which
follow the Model View Controller (MVC) architectural pattern [77]. MVC divides the
functionality into three parts: model, which handles the model to be displayed; view,
which handles the displaying of the model; and controller, which handles the events
such as actions from the user. It provides the view aspect of MVC by inheriting from

the widget component and extending it. These widgets expect the model and control

74

aspects of MVC to be implemented and provided to them, using their API, before they
can be instantiated. The model aspect of the MVC for the swing widgets is
implemented as the internal representations of web services. This visual component
contains the implementation of the actions for each of the events from the widgets, i.e.

the control aspect of MVC.

This component displays the details of web services to the user using three
panels. The first panel displays the control flow of a web service in case this service is
a composite one. The second panel is a context sensitive panel which displays the
details of a service selected from the first panel. The third panel displays the dataflow

of a service in case this service is a composite service.

Service Structure
9 & WehSemice
¢ <3 PhotoAlbumPrintService
¢ %% PhotoAibumPrintProcess
¢ -8 Sequence

&% PhotoService
€% PhotoAlbumService
& PrintService

Figure 4-3, Web service composition detail panel

The first panel, depicted in Figure 4-3, displays the web service’s composition
details using a tree widget customised with different