
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Managing Adaptive Web Services Using Semantic

Models and Automated Policy Refinement

By Kevin Carey

Supervisor: Prof. Vincent Wade

School of Computer Science & Statistics

Trinity College Dublin

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or

any other University, and that unless otherwise stated, it is entirely my own work.

I agree that Trinity College Library may lend or copy this thesis upon request.

Signed:

Decemb

11

Abstract

There is an increasing demand for web services to be more flexible, in order to

suit fast changing business needs and user requirements. Web services need to be

adaptive to changes in context, so as to provide web service personalisation, i.e.

services that are adaptive to meet user’s preferences or that accommodate to changes

in the business environment. This thesis investigates a policy-based management

approach to achieving adaptive composite services. A key aspect of policy-based

management is to be able to specify high-level policies that can be mapped down to

low-level policies, in order to manage the adaptive behaviours of web services. This

thesis researches how to describe adaptive composite services so as to expose their

adaptive behaviours, and how to specify and automatically refine management

policies to dynamically manage these adaptive behaviours.

A methodology is introduced for describing and managing adaptive web

services. This thesis also investigates the development of innovative tools to support

this methodology. A set of integrated tools were developed, which ease the task of

describing adaptive web services, and of refining high-level policies in an automated

manner to manage adaptive web services. This set of integrated tools undergoes a

functional evaluation to validate our approach, and a usability evaluation to assess the

usability of these tools.

This thesis proposes a new approach to adaptive web service management,

which is accomplished through a novel integration of FSM and Ontology reasoning to

automate policy refinement. Thus, this approach enables the auto-generation of

refined policies for managing adaptive composed web services. The thesis presents

the design of innovative tools that hide the complexity of modelling adaptive web

services, and automatically refine high-level policies into auto-generated low-level

enforceable policies, for managing adaptive composed web services.

Ill

Acknowledgements

Firstly, I would like to thank my supervisor Professor Vincent Wade for all his

wisdom, patience, and support. It is through his belief and trust in me that this thesis

became a reality. I would also like to take this opportunity to thank my parents for all

they have done for me; my brother and sisters Felim, Kathleen and Roisin for their

support and words of encouragement.

I would also like to thank Nina for her love and understanding, and with much

gratitude to the Burke sisters Michelle and Marie, for helping with my English. And 1

would like to acknowledge the support of all my close fiiends, and the ftiendship of

all my friends from KDEG.

Finally, I would like to dedicate this work to Noreen Carey, whose life would

have been an endless sea of possibilities.

IV

Table of Contents
Declaration.. ii
Abstract.. iii
Acknowledgements.. iv
1 Introduction.. 1

1.1 Motivation.. 1
1.2 Research Goal and Objectives..3
1.3 Contribution of Work...4
1.4 Technical Overview..5

1.4.1 Technical Approach...5
1.4.2 Thesis Overview..7

2 State of the Art...9
2.1 Introduction...9
2.2 Adaptation...9
2.3 Achieving Adaptive Web Services...11

2.3.1 In-house Development for Achieving Adaptive Web Services..............11
2.3.2 Achieving Adaptive Web Services by Dynamic Service Composition. 12
2.3.3 Achieving Adaptive Web Service using Policy-based Management.... 15
2.3.4 Discussion of Approaches to Achieving Adaptive Web Service...........17

2.4 Defining Adaptive Web Services..19
2.4.1 Describing Adaptive Web Services with WSDL Technology............... 20
2.4.2 Describing Adaptive Web Services with Ontology................................22
2.4.3 UML Technologies for Describing Adaptive Web Services.................26

2.5 Representing Management Policies..29
2.6 A Survey of Policy Refinement Approaches..31
2.7 Conclusion...38

3 Design of the MAWS Methodology and Requirements for Supporting Tools ... 39
3.1 Introduction...39
3.2 Definitions and Assumptions...39
3.3 Example.. 41
3.4 Overall Design Approach... 43
3.5 The MAWS Methodology.. 46

3.5.1 Web Service Description Process... 49
3.5.2 Web Service Composition Process..53
3.5.3 Web Service Management Process..56

3.6 Supporting Tools for the MAWS Methodology.. 61
3.6.1 Requirements for the Supporting Tools.. 61
3.6.2 Architecture of the Supporting Tools.. 65
3.6.3 Supporting the MAWS methodology...67

3.7 Summary.. 68
4 Implementation of Integrated Tools...70

4.1 Introduction..70
4.2 Design of Integrated Tools... 71
4.3 Design and Implementation of the WSDE tool...71

4.3.1 Ontology Interpreter Component...73
4.3.2 Web Service Viewer Component...74
4.3.3 Web Service Editor Component...77

4.4 Design and Implementation of the SABE tool..78
4.4.1 Ontology Interpreter Component..81
4.4.2 Web Service Viewer Component...82

4.4.3 Adaptive Behaviour Editor Component... 83
4.4.4 Web Serviee FSM Generator Component... 84
4.4.5 Adaptive Behaviour Aggregator Component.. 85

4.5 SMPE tool and its components... 86
4.5.1 Ontology Interpreter Component.. 89
4.5.2 Web Service Viewer Component... 89
4.5.3 Adaptive Behaviour Viewer Component... 90
4.5.4 Management Policy Editor Component... 90
4.5.5 Management Policy Refinement Component.. 92

4.6 A Walkthrough in Using SABE to Describe Adaptive Web Services..........96
4.6.1 Describing Adaptive Behaviours of Atomic Web Services...................97
4.6.2 Aggregating Adaptive Behaviours of Composite Web Services......... 104

4.7 Walkthrough in Using SMPE Tool to Create Policies to Manage Adaptive
Composite Services.. 107

4.7.1 Specifying Management Policies for Managing Adaptive Composite
Web Services... 108
4.7.2 Automatically Refining Management Policies for Adaptive Composite
Web Services... 116

4.8 Adaptive Web Service PBMS Evaluation Platform.................................... 119
4.9 Summary... 121

5 Evaluation.. 122
5.1 Introduction.. 122
5.2 Functionality Evaluation.. 122

5.2.1 Case Study - Personalised Holiday Service.. 123
5.2.2 Case Study - Notification Service... 133

5.3 SABE Tool Usability Evaluation Experiment.. 143
5.3.1 Goals of SABE Tool Usability Evaluation Experiment...................... 145
5.3.2 Method of the SABE Tool Usability Evaluation Cycles..................... 146
5.3.3 Effectiveness Result Analysis of the SABE Tool................................ 150
5.3.4 Efficiency Result Analysis of the SABE Tool..................................... 152
5.3.5 Satisfaction Result Analysis of the SABE Tool.................................. 152
5.3.6 Overall Conclusion for the SABE Tool Usability Evaluation............. 156

5.4 SMPE Tool Usability Evaluation Experiment.. 157
5.4.1 Goals of SMPE Tool Usability Evaluation Experiment.......................158
5.4.2 Method of the SMPE Tool Usability Evaluation Cycles..................... 160
5.4.3 Effectiveness Result Analysis of the SMPE Tool................................ 163
5.4.4 Efficiency Result Analysis of the SMPE Tool.................................... 164
5.4.5 Satisfaction Result Analysis of the SMPE Tool.................................. 165
5.4.6 Overall Conclusion for the SMPE Tool Usability Evaluation.............169

5.5 Related Work... 170
5.6 Cost and Benefit of Adaptive Web Services... 176
5.7 Summary... 176

6 Conclusion... 178
6.1 Introduction..178
6.2 Objectives and Achievements... 178
6.3 Limitations...184
6.4 Contribution.. 185
6.5 Future Work.. 186

References.. 188
Appendix.. 196

VI

Appendix A - SABE Tool Usability Evaluation Experiment................................... 196
Instructions and Questionnaire for SABE Usability Test 1................................... 196
Instructions and Questionnaire for SABE Usability Test 2...................................202
Instructions and Questionnaire for SABE Usability Test 3...................................207

Appendix B — SABE Tool Usability Evaluation Results.. 212
Results of the SABE Tool Usability Evaluation Cycle 1 Pre-Test........................212
Results of the SABE Tool Usability Evaluation Cycle 1 Pre-Test........................213
Results of the SABE Tool Usability Evaluation Cycle 1 Questionnaire...............214
Results of the SABE Tool Usability Evaluation Cycle 2 Pre-Test........................215
Results of the SABE Tool Usability Evaluation Cycle 2 Task-related Questions 216
Results of the SABE Tool Usability Evaluation Cycle 2 Questionnaire...............217
Results of the SABE Tool Usability Evaluation Cycle 3 Pre-Test........................219
Results of the SABE Tool Usability Evaluation Cycle 3 Task-related Questions 220
Results of the SABE Tool Usability Evaluation Cycle 3 Questionnaire...............221
Analysis of the SABE Tool Usability Evaluations...222

SABE Usability Evaluation Cycle 1...222
SABE Usability Evaluation Cycle 2...223
SABE Usability Evaluation Cycle 3...224
SABE Comparison of Usability Evaluation Cycles..225

Appendix C - SMPE Tool Usability Evaluation Experiment...................................230
Instructions and Questionnaire for SMPE Usability Test 1...................................230
Instructions and Questionnaire for SMPE Usability Test 2...................................235
Instructions and Questionnaire for SMPE Usability Test 3...................................239

Appendix D - SMPE Tool Usability Evaluation Results... 244
Results of the SMPE Tool Usability Evaluation Cycle 1 Pre-Test........................244
Results of the SMPE Tool Usability Evaluation Cycle 1......................................244
Results of the SMPE Tool Usability Evaluation Cycle 2 Pre-Test........................246
Results of the SMPE Tool Usability Evaluation Cycle 2 Task-related Questions 247
Results of the SMPE Tool Usability Evaluation Cycle 2 Questionnaire...............247
Results of the SMPE Tool Usability Evaluation Cycle 3 Pre-Test........................249
Results of the SMPE Tool Usability Evaluation Cycle 3 Task-related Questions 249
Results of the SMPE Tool Usability Evaluation Cycle 3 Questionnaire...............250
Analysis of the SMPE Tool Usability Evaluations... 251

SMPE Usability Evaluation Cycle 1... 251
SMPE Usability Evaluation Cycle 2...252
SMPE Usability Evaluation Cycle 3... 253
SMPE Comparison of Usability Evaluation Cycles..254

Appendix E - Ontology Models..259
FSM Ontology Model..259
Obligation Policy Ontology Model..267

Appendix F - Personalised Holiday Service Case Study... 272
PersonalHoliday Service..272
PersonalHoliday Process..272
PersonalHoliday Grounding...288
PersonalHoliday Service’s FSM..296
PersonalHoliday Service’s Management Policy..302
PersonalHoliday Service’s Refined Policies..303
PersonalHoliday Service’s Refined Policies as Jess Rules....................................309
PersonalHoliday Service Runtime Trace...310

Appendix G - Notification Service Case Study...313

Vll

Notification Service...313
Notification Process...313
Notification Grounding..325
Notification Service’s FSM...331
Notification Service’s Management Policy...340
Notification Service’s Refined Policies...343
Notification Service’s Refined Policies as Jess Rules...353
Notification Service Runtime Trace..356

Appendix H - PhotoAlbumPrint Service Example...359
PhotoAlbumPrint Service..359
PhotoAlbumPrint Process..360
PhotoAlbumPrint Service’s FSM..364
PhotoAlbumPrint Service’s Management Policy...372
PhotoAlbumPrint Service’s Refined Policies..373

Vlll

Table of Figures
Figure 3-1, A diagram of the PhotoAlbumPrint composite web service.................... 42
Figure 3-2, The three processes in the MAWS Methodology.................................... 47
Figure 3-3, Web service description process.. 49
Figure 3-4, Snippet of WSDL artefact consumed for print web service.................... 50
Figure 3-5, Snippet of OWL-S artefact produced for print web service.................... 51
Figure 3-6, FSM artefact describing the adaptive behaviours of the print web service
.. 52
Figure 3-7, Web service composition process.. 53
Figure 3-8, OWL-S snippet describing the composition of the PhotoAlbumPrint web
service.. 55
Figure 3-9, FSM snippet for PhotoAlbumPrint service’s adaptive behaviours.......... 56
Figure 3-10, Web service management process... 57
Figure 3-11, Management policy specified for PhotoAlbumPrint web service.......... 58
Figure 3-12, Refined mapping policies for PhotoAlbumPrint composite web service59
Figure 3-13, Refined enforceable policies for the PhotoAlbumPrint web service..... 60
Figure 3-14, Alignment of requirements with MAWS processes................................62
Figure 3-15, Design architecture of the set of integrated tools for supporting MAWS
methodology.. 66
Figure 3-16, How the designed tools support the MAWS methodology processes. ...67
Figure 4-1, Architecture of the WSDE tool.. 72
Figure 4-2, A screenshot of the WSDE tool.. 73
Figure 4-3, Web service composition detail panel... 75
Figure 4-4, Web service process detail panel.. 76
Figure 4-5, Web service data flow detail panel... 77
Figure 4-6, Web service node description detail panel.. 78
Figure 4-7, Architeeture of the SABE tool.. 78
Figure 4-8, A screenshot of the SABE tool... 80
Figure 4-9, Web service process detail panel.. 82
Figure 4-10, FSM strueture detail panel.. 83
Figure 4-11, FSM description detail panel... 84
Figure 4-12, FSM model with various states of a running web service..................... 85
Figure 4-13, Architeeture of the SMPE tool.. 87
Figure 4-14, A screenshot of the SMPE tool... 88
Figure 4-15, Poliey strueture detail panel.. 91
Figure 4-16, Policy aspect description panel... 92
Figure 4-17, SABE tool prior to loading a web service description........................... 98
Figure 4-18, Selecting the Print Serviee OWL-S description......................................98
Figure 4-19, SABE tool with the Print Service description loaded and creating FSM99
Figure 4-20, Creating a sub-FSM to describe an adaptive behaviour..........................99
Figure 4-21, Unnamed adaptive behaviour is highlighted in red............................... 100
Figure 4-22, Adding an initial state for this FSM.. 100
Figure 4-23, Adding a transition to the initial state... 101
Figure 4-24, Missing aspects of the new transition are highlighted in red................ 102
Figure 4-25, Adding a new state where state type options are provided................... 103
Figure 4-26, When configuring transition, the new state is suggested as target state 103
Figure 4-27, Loading the description for composite service PhotoAlbumPrintService
.. 105

IX

Figure 4-28, SABE tool displaying the adaptive behaviours of one of the constituent
services... 105
Figure 4-29, SABE tool aggregating the adaptive behaviours of the constituent
services... 106
Figure 4-30, SABE tool displaying the aggregated adaptive behaviours for the
composite service... 107
Figure 4-31, SMPE tool prior to loading web service description...........................109
Figure 4-32, Selecting description of composite service PhotoAlbumPrintService.. 110
Figure 4-33, Specifying a management policy using the SMPE tool....................... Ill
Figure 4-34, Adding an event to the management policy.. 111
Figure 4-35, SMPE tool highlights in red the missing details and provides options. 112
Figure 4-36, Selecting subject for new condition from selection of service’s
parameters.. 113
Figure 4-37, Adding a complex action to management policy................................. 113
Figure 4-38, Adding a Boolean node for the complex action................................... 114
Figure 4-39, Adding the second child action for the complex action.......................114
Figure 4-40, Configuring the first policy action from dropdown menu to be
CreateCalendar... 115
Figure 4-41, Selecting ColourPrinting adaptive behaviour for the second policy action
... 116
Figure 4-42, Starting the automated policy refinement... 117
Figure 4-43, SMPE tool’s report of the policy refinement identifying generated
policies... 118
Figure 4-44, SMPE tool displaying the generated refined policies for the constituent
services... 118
Figure 4-45, Snapshot of the Policy Evaluation Framework..................................... 120
Figure 5-1, Diagram of the Personalised Holiday Service.. 124
Figure 5-2, A snippet of the second management policy specified for the Personal
Holiday Service.. 127
Figure 5-3, A snippet of the enforceable policies as Jess Rules for the second
management policy.. 129
Figure 5-4, Runtime trace for Susan Smith using Personal Holiday Service............ 131
Figure 5-5, Runtime trace for John Murphy using Personal Holiday Service...........131
Figure 5-6, A diagram of the Notification Service.. 134
Figure 5-7, Snippet of the third management policy specified for the Notification
Service.. 136
Figure 5-8, Jess rules for third management for Notification Service.......................139
Figure 5-9, Runtime trace for Notification service with gold member policy triggered
.. 141
Figure 5-10, Runtime trace for Notification service with high priority policy triggered
.. 142
Figure 5-11, Decomposition of the experiment goals for the SABE tool’s usability
evaluation... 146
Figure 5-12, Breakdown of the usability evaluation’s objectives for the SMPE tooll59

Table of Tables
Table 1, Policy refinement approaches comparison..37
Table 2, Management policy for PhotoAlbumPrint Service..43
Table 3, Another management policy for PhotoAlbumPrintService......................... 108
Table 4, Enforceable policies generated for Personal Holiday Service.....................127
Table 5, Enforceable policies generated for Login Service....................................... 127
Table 6, Enforceable policies generated for Holiday Package Service..................... 128
Table 7, Enforceable policies generated for Flight Service....................................... 128
Table 8, Enforceable policies generated for Hotel Service..128
Table 9, Susan Smith’s request and response to the Personal Holiday Service....... 130
Table 10, John Murphy’s request and response to the Personal Holiday Service....130
Table 11, Enforceable policies generated for Notification Service...........................137
Table 12, Enforceable policies generated for Login Service..................................... 137
Table 13, Enforceable policies generated for Message Service................................ 137
Table 14, Enforceable policies generated Address Book Service.............................138
Table 15, Enforceable policies generated for Contact Service..................................138
Table 16, Enforceable policies generated for Phone Service....................................138
Table 17, Enforceable policies generated for Email Service..................................... 138
Table 18, Gold user type request and response to the Notification Service..............140
Table 19, High priority type request and response to the Notification Service........140
Table 20, Preliminary set of questions for the usability evaluation of SABE tool.... 148
Table 21, Results of the preliminary set of questions for knowledge on Web Services
..148
Table 22, Results of the preliminary set of questions for knowledge on Web Finite
State Machines...148
Table 23, Results of the preliminary set of questions for knowledge on Adaptive
Behaviours...149
Table 24, Task questioimaire for the usability evaluation of SABE tool.................151
Table 25, Degree of accuracy for SABE tool from second and third usability cycles
..151
Table 25, Questioimaire for the first usability test of SABE tool.............................153
Table 26, Degree of satisfaction in viewing adaptive behaviours from three usability
cycles..153
Table 27, Questionnaire for the second usability test of SABE tool........................154
Table 28, Degree of satisfaction in describing adaptive behaviours from three
usability cycles...154
Table 29, Questionnaire for the third usability test of SABE tool.............................155
Table 30, Degree of satisfaction in aggregating adaptive behaviours from three
usability cycles...155
Table 31, Preliminary set of questions for the usability evaluation of SMPE tool.... 161
Table 32, Results of the preliminary set of questions for knowledge on Policy.....161
Table 33, Task questionnaire for the usability evaluation of SMPE tool.................163
Table 35, Degree of accuracy for SMPE tool from second and third usability cycles
..164
Table 34, Questionnaire for the first usability test of SMPE tool..............................165
Table 35, Degree of satisfaction in viewing policies from three usability cycles....166
Table 36, Questioimaire for the second usability test of SMPE tool.........................166
Table 37, Degree of satisfaction in authoring policies from three usability cycles... 167
Table 38, Questionnaire for the third usability test of SMPE tool.............................167

XI

Table 39, Degree of satisfaction in refining policies from three usability cycles.....168
Table 42, Policy refinement approaches comparison...175

Xll

Abbreviations

AWT - Abstract Window Toolkit

BPEL - Business Process Execution Language

FSM - Finite State Machine

GUI - Graphical User Interface

MAWS - Manage Adaptive Web Service

MVC - Model View Controller

OWL - Web Ontology Language

OWL-S - Semantic Mark-up for Web Services

PBMS - Policy-based Management Systems

RDF — Resource Description Framework

RMI - Remote Method Invocation

SABE - Service Adaptive Behaviour Editor

SMPE - Service Management Policy Editor

SOAP - Simple Object Access Protocol

UML — Unified Modelling Language

URL - Uniform Resource Locator

WSCE - Web Service Composition Engine

WSC - Web Service Composition

WSD - Web Service Description

WSDE - Web Service Description Editor

WSDL - Web Service Description Language

WSDL-S -Web Service Semantics

WSM - Web Service Management

WSMO - Web Service Modelling Ontology

xm

1 Introduction

1.1 Motivation

Increasingly, systems have to cope with rapidly evolving user requirements

[10]. To meet these potential requirements, there is a growing need to make web

services become more adaptive [11]. This need for adaptive services is increased by

the necessity of customising web services to tailor them to meet a client’s preference

or to restrict web services according to evolving business needs. By developing

adaptive applications the same system can satisfy a broader range of requests without

requiring manual reprogramming. In other words, the same adaptive web service

could be personalised to uniquely suit different users thereby addressing the

requirements of a broader range of users without the need to recode.

A second motivation for adaptive web services is the desire to increase

reusability [24]. Web services become more reusable when adaptive, since they can

adapt at runtime to different circumstances, i.e. they can be used in different contexts,

such as customised for different companies and employed for different business

models. For example, a service provider could offer a secure service that uses an

optimised encryption algorithm for gold subscribers and standard encryption

algorithm for bronze subscribers. While another service provider, decides that silver

subscribers can afford this optimised encryption algorithm.

One approach to realising adaptive web services is to dynamically compose

the services from pre-existing simpler services [12]. In this way, adaptive web

services are attained from the adaptive selection of the constituent web services and

the workflow across these selected web services [13]. However, this method of

realising adaptive web services presupposes that all the elemental services required to
perform the required task, and more specifically in the entailed manner*, are available.

Thus, a significant problem here is that the web services may need to be re-composed

and alternative elemental services may need to be found.

' In general web services are static and can only perform a function in the designed manner; their
behaviour is not adaptable to changes

A variation of this approach would be to define web services that are more

intelligent, i.e. web services that have multiple behaviours that can be adaptive at

runtime. These are serviees with default behaviours as well as other alternative

behaviours which can be used in special circumstances to accomplish a range of

service customisation. In order to reason about these adaptive web services, there is a

necessity to describe their behaviours formally [1].

However, just modelling the adaptive behaviours is not sufficient; these

adaptive behaviours need to be dynamically managed at runtime so as to ensure that

web services can dynamically react to contextual changes related to a web

application. The key benefit of this dynamic management is that an adaptive

behaviour can be realised without necessarily changing the web service composition

itself The problem then becomes how to dynamieally choose the correct behaviour

for a web serviee in a partieular environment or context, and automate this dynamic
management^ of the chosen adaptive behaviour of a web service.

A number of different approaches to eontrolling the behaviour of resources or

services on the web have been attempted [21][14]. A declarative approach, called

policy-based management, allows dynamic control and reasoning about the

behaviours of systems or applications [22] [8]. Policy-based management systems

(PBMS) provide a mechanism to dynamically control the behaviour of systems and

services at run time without the need to remodel or recode the managed system.

PBMS has been used to manage large complex dynamic systems, such as

communication network security and QoS [17] [18]. In recent years, PBMS have

focused on managing atomic web serviees [19], web service security [16], and web

service publication and discovery [15]. However, PBMS has not been used to manage

the alternative behaviours of composite web services.

PBMS’s goal is to provide a high-level means of affecting the overall

behaviour of a system, without the need for reconfiguring the system or service

manually [42]. Thus, PBMS allow managers to specify high-level policies, in a

declarative way, to express a goal or a constraint on a system. However, these policies

are abstract and need to be refined to low-level policies. These refined low-level

^ By management it is meant both the sensing of a particular state of a behaviour and the control of this
behaviour

policies affect the local tuning of the relevant components and resources of a system

to enforce their goal [50].

A key difficulty in PBMS is the process of refining high-level policies into

low-level policies, specifically in an automated manner [51]. Thus, a key challenge

when using policies for managing adaptive composite web services is being able to

automatically refine these high-level policies into low-level policies to enforce the

intended behaviour on the relevant constituent atomic web services.

1.2 Research Goal and Objectives

The goal of this thesis is to propose and evaluate an innovative architectural

approach and mechanism, which combines Finite State Machine (FSM) and Ontology

reasoning together with policy-based management. This innovative approach supports

accurate high-level policy specification and automatic refinement and generation of
■1

low-level policies for managing adaptive composite web services .

Thus the research objectives of this thesis are to:

• Research the use of Finite State Machine (FSM) and ontological techniques to

describe adaptive web services and techniques to support policy refinement.

• Define and develop innovative mechanisms to describe the adaptive

behaviours of both atomic and composed web services.

• Define and develop novel mechanisms to specify high-level policies to

manage the adaptive behaviours of composed web services and to auto-

generate refined (low-level) policies, which can be enforced on the relevant

constituent atomic services.

• Evaluate the complexity of designing adaptive service management using this

approach, i.e. usability of the approach, and a comparison with other policy

refinement approaches.

The thesis proposes to use FSM and Ontology representation techniques to

provide the relevant semantics for describing adaptive web services, and proposes to

use policies to provide a means to specify the desired adaptive behaviours for a

^ This thesis focuses on composite services which are made up of sequence of individual adaptive web
service invocations

composite service. Furthermore, the thesis proposes to use the semantic description

and high-level policy specifications to auto-generate refined (low-level) policies to

dynamically manage at runtime the relevant adaptive behaviours belonging to the

appropriate constituent atomic services.

1.3 Contribution of Work

This thesis contributes to the state of the art in adaptive web service

management. It proposes a novel combination of the use of FSM and Ontology

reasoning to automate policy refinement of high-level policies and generate low-level

policies to manage adaptive behaviours of composite web services. While each of

these technologies has been individually used in some form or another to describe

system’s behaviours or to manage systems, this approach provides the first novel

integration of these techniques to auto-generate refined policies for managing

adaptive composed web services.

The thesis presents the design of a set of integrated tools which hide the

complexity of both modelling of the FSM and Ontology models, and eases the

complexity of authoring policies to manage the adaptive behaviours of composite

services. In addition, it automatically refines high-level policies into low-level

enforceable policies, based on the tool’s ability to automatically generate refined

policies.

Publications arising from PhD thesis:

i. Kevin Carey, Vincent Wade. '‘‘'Using Automated Policy Refinement to

Manage Adaptive Composite Services.” Network Operations and Management

Symposium Workshops, 2008. NOMS Workshops IEEE, Salvador Brazil,

April 2008.

ii. K. Carey, V. Wade. '‘‘‘Realising Adaptive Web Services through Automated

Policy Refinement.” Integrated Network Management, 2007. IM '07. 10th

IFIP/IEEE International Symposium, Munich Germany, May 2007.

iii. K. Carey, D. Lewis, S. Higel, V. Wade. ‘‘‘‘Adaptive Composite Service Plans

for Ubiquitous Computing.” Second International Workshop on Management

of Ubiquitous Communications and Services, MUCS 2004, Dublin, Ireland,

December 2004

iv. J. Keeney, K. Carey, D. Lewis, D. O'Sullivan, V. Wade. ‘‘''Ontology-based

Semantics for Composable of Autonomic Elements” Workshop on AI in

Autonomic Communications at 19th International Joint Conference on

Artificial Intelligence, JCAl'OS, Edinburgh, Scotland, July 2005

V. D. Lewis, A. Brady, K. Carey, O. Conlan, K. Feeney, S. Higel, T. O'Donnell,

D. O'Sullivan, K. Quinn, V. Wade. "'Managed Person-centric Adaptive

Services for Smart Spaces.” eChallenges 2004, eChallenges04, Vienna,

Austria, October 2004

vi. D. Lewis, K. Feeney, K. Carey, T. Tiropanis, S. Courtenage. ‘‘‘‘Semantic-based

Policy Engineering for Autonomic Systems.” Second International Workshop

on Management of Ubiquitous Communications and Services, MUCS 2004,

Dublin, Ireland, December 2004

1.4 Technical Overview

1.4.1 Technical Approach

This thesis proposes a new approach to describing adaptive web services and

managing their adaptive behaviours using policies [1]. In order to accomplish this

work it was first necessary to investigate different methods to achieving adaptive web

services. In particular, a policy-based management approach was chosen to achieve

adaptive web services. It became evident from this investigation that there is a need to

formally describe adaptive web services'* in order to be able to manage them. Hence,

the thesis investigates the use of Ontology models to semantically describe the

composite services, and Finite State Machine (FSM) as a means to provide a formal

representation model for their adaptive behaviours.

The other aspect of the approach taken in this thesis is how to tackle the

problem of managing adaptive composite services. A policy-based management

approach was the chosen option to manage the adaptive behaviours of these services.

However, by using policies some key challenges needed to be tackled:

Typically, semantic descriptions don’t provide a formal representation of the service’s adaptive
behaviours

• the need to ensure that high-level policies specified to manage adaptive

services are correctly formed using the correct vocabulary;

• the need for use of low-level policies to enforce the chosen adaptive

behaviour;

• the need to automatically refine high-level policies into low-level policies.

Therefore, a survey of techniques for automatically refining high-level policies

into low-level policies was performed. From this survey a novel technique was

developed, which automatically refines these high-level policies into auto-generated

low-level policies using a combination of semantically rich models. This automated

policy refinement technique uses the semantic descriptions of composite web services

and their adaptive behaviours to generate these enforceable policies.

In order to support the application of these techniques, the thesis proposes a

methodology which steps through the key aspects of the proposed approach. The

proposed methodology helps users identify the sequencing of activities to perform,

and the thesis also defines the tools needed to support these methodology activities.

Rather than developing a single application to provide all of this functionality,

a set of integrated tools were developed to suit the different categories of users in the

development cycle. This set of integrated tools is divided into:

i. a tool for modelling composite web services and capturing the semantic web

description with ontology based descriptions;

ii. a tool to capture adaptive behaviours of web services as FSM; and to

aggregate FSM models in order to describe the adaptive behaviours of

composed web services;

iii. a tool to define high-level policies for adaptive composite services and to

automatically refine these policies generating low-level policies which enforce

the correct adaptive behaviours of the relevant constituent web services.

In order to evaluate the tools, a twin evaluation process was executed, which

validates the policies generated by the tools and evaluates the usability of the tools.

Firstly, the tools were evaluated to validate their ability to describe and manage

adaptive web services using two case studies. Secondly, the tool’s usability was

evaluated; the key issue being investigated here was the ability of these tools to

reduce the complexity of developing the relevant models needed for managing the

adaptive behaviours of web services.

Finally, a comparison of the novel automated policy refinement approach with

other approaches is discussed. This comparison identifies and compares key aspects

of automated policy refinement for managing adaptive composite services.

1.4.2 Thesis Overview

Chapter two begins with a state of the art review and an appraisal of current

approaches to achieving adaptive web services. Then the various standards and

technologies that support the semantic descriptions of adaptive composite web

services, are examined. Following this, a review of the prominent architectural

designs for achieving policy refinement is presented.

Chapter three illustrates the design and architectural vision of this research and

formulates the base requirements for development environments that describe

adaptive web services and their managing policies. Based on influences from chapter

two, a methodology for describing and composing adaptive composite services and

for creating management policies was developed. This provides the foundation for the

architectural design of a set of integrated tools that describe adaptive services and

their management policies.

Chapter four presents the implementation of a set of integrated tools for

describing adaptive composite services, and for specifying high-level policies which

are automatically decomposed in order to d3mamically manage the adaptive behaviour

of composite web services. Based on the design specifications in chapter three, the

architecture of these tools and their components is described.

Chapter five presents the results of the case studies and of the usability

evaluation carried out on the prototype implementation of the set of integrated tools

designed according to the architectural design. Case studies that investigate how well

this thesis’ innovative approach succeeded in describing adaptive web services and

their management policies are also presented. Three separate usability evaluations

were conducted with different groups of computer science graduates, and each time

results were recorded using standard usability engineering questionnaires. Also as part

of the evaluation, a comparison was performed between this approach and other

approaches to automated policy refinement, previously identified as state of the art.

Finally, the thesis concludes with a description of the objectives and

achievements of this research, a summary of key contributions attributed by this

research and its limitations, as well as a discussion of the pertinent future work to

continue and broaden this research.

2 State of the Art

2.1 Introduction

Adaptive web services have gained a lot of interest in recent years due to the

need to continually adapt web services to rapid changes in the market where there is a

necessity for web services to be customised to meet business needs [20]. Furthermore,

there is a need for web services to be adaptable to meet user’s preferences, i.e. web

services that can be personalised to meet user’s needs. There are different ways to

achieve adaptive web services.

Introduction to adaptation is first described, detailing the different methods of

adaptation and adaptive systems. An investigation into different approaches to

achieving adaptive web services is presented, together with a discussion of how the

different approaches compare in their achievement of adaptive web services. A survey

and a discussion of the different modelling languages that can be used to formally

describe adaptive web services are also presented. This is followed by a survey of

different approaches to automated policy refinement. Finally, choices of technologies

for representing obligation policies that can be used in the proposed approach are

presented.

2.2 Adaptation

Adaptation is the process in which an adaptive system adapts its behaviour to

each request based on inputs and changes in context [81]. Many software systems

need to be customised before using them, either to satisfy the user’s needs or to

provide interoperability with other software systems. This customization is a form of

adaptation especially if done in an automated manner. There are many reasons for

adaptive systems, and such needs are growing with the increasing development of

distributed systems and its ad-hoc nature [82]:

• Reuse of components and the significance of component integration, instead of

programming from foundation;

• New paradigms for distributed computing based on mobile technologies;

• Creation of context-aware smart environments - ubiquitous environments;

Increase development of dynamic user centred web sites;

• Growing use of real-time interactions and multimedia based content in

groupware and collaboration systems.

Therefore, many forms of adaptation in software systems have emerged in

diverse areas, from context aware system to web personalisation. For example,

systems that register their locations or physical devices and change their behaviour

accordingly are deemed context aware system [86]. Systems that would change their

web presentation to different users depending on their preference or usage history are

called web personalisation [83]. Adaptive e-leaming systems can provide different

sets of modules for a course, depending on user’s knowledge and preference [84].

Adaptive middleware are frameworks that would change its configuration to better

suit its running applications, for instance to provide a better QoS [85].

From the different methods of adaptation, a few distinguished methods have

been noticed, such as adaptation through composition, reflection, and policy-based

management. Adaptation through composition composes its components on the fly to

produce a system that would achieve the desired task. Reflection allows for other

systems to inspect and modify the behaviours by calling unpublished functions of a

running system. Policy-based management provides a means to automatically change

the behaviour of a rurming system when a particular policy rule is triggered.

The main advantage of adaptive systems is that they can accommodate a broad

range of users. Adaptive systems can be personalised to suit the user’s needs; whether

these personalisation is driven by the user (being able to select a specific course

module), or driven by the system (being recommended a particular book that user

might wish to buy). Another advantage is that adaptive systems are customizable to

integrate or interoperate with other software systems. For example, composable

middleware frameworks can ensure safety interactions for ubiquitous applications

[87].

One of the concerns with adaptive systems is security. By providing the

flexibility to change the system, it can also cause unforeseen security issues to

surface. Customisation has the disadvantage of empowering the users with the ability

to miss-configure the system. Another disadvantage of adaptive systems is that if not

10

designed properly can lead to conflicts between users trying to customize the same

shared adaptive system.

2.3 Achieving Adaptive Web Services

As mentioned previously, there is an increasing demand for web services to be

more intelligent, i.e. to be adaptive to different situations. This thesis defines adaptive

web services as web services that can dynamically change their internal behaviour

according to changes in context relating to them. By changing their internal

behaviour, adaptive web services do not change their overall functionality. Instead,

adaptive web services allow selectively overriding or customising core functionality

of web services when needed, which changes how web services achieve their tasks.

Three possible different candidate approaches to achieving adaptive web services

were identified:

i. In-house Development, where web services are built with embedded logic;

ii. Dynamic Service Composition, where service composer engines are used to

re-compose the necessary web service for a particular change in context;

iii. Policy-based Management, where policies are used to choose the available

alternative behaviours of web services.

2.3.1 In-house Development for Achieving Adaptive Web Services

Adaptive web services can be achieved by embedding intelligence logic within

web services. Web services can be created with built-in logic that allows them to be

adaptive to their environment through different types of inputs. In other words,

intelligence logic can be added to web services to change their behaviour based on the

values of the different inputs of a web service.

For example, developers can create a notification service that contacts

recipients with a designated message. Suppose such a service had inputs: message,

email address, and phone number. Let’s say that this service is then enhanced by

adding intelligence logic so that it will only contact a recipient by phone if a phone

number is provided, and it will only contact a recipient by email if an email address is

provided as an input. Where both email address and phone number are provided, then.

11

the service will try to contact by phone first, and if the recipient is not reached, it will

send an email contact message.

The In-house approach allows web services to be adaptive by hardwiring

intelligent decision logic within web services, which changes their behaviours based

on input values. The benefit of this approach is that it allows developers to quickly

add intelligence to web services, which reacts to different input values. Developers do

not have to learn about nor follow any framework for adaptive web services. They are

free to create adaptive web services whichever way they want. Their intelligence code

is hidden within the web service, which prevents clients and competitors from prying

into the secrets of the adaptive logic.

However, the In-house approach has several drawbacks, such as the lack of a

framework for adding intelligence logic to web services in a standard manner.

Without a framework for exposing the descriptions of the web service’s intelligence

logic, it becomes difficult to formalise or generalise this approach. This approach does

not provide a formal means for clients to be aware of the service’s internal

intelligence logic.

But more importantly, by hard-wiring the intelligence within the service, it

makes it difficult to update or change it to accommodate different or new unforeseen

scenarios. For example, what if a user wanted to use the notification service to notify

his recipients by phone during business hours, or else contact them by email? This

service would have to be re-implemented and redeployed. The In-house approach

only allows for web services to be adaptable to users but not to service providers since

the intelligence logic is tied to the service’s inputs and are only executed when a

service is invoked.

2.3.2 Achieving Adaptive Web Services by Dynamic Service

Composition

Another approach is to have a collection of elemental web services which can

be grouped together to perform a more complex task. These elemental services are

atomic web serviees that perform specific tasks. These web services are then

composed together, during runtime, into a composite service tailored to perform a

particular complex task.

12

A web service composition engine (WSCE) is used to automate this

composition process. There are many frameworks available to achieve dynamic

service composition such as: Artificial Intelligence (AI) planners [24][4], eFlow [25],

Petri-Net [26]. AI planners will be used as the default approach for illustrating the

dynamic service composition approach to achieving adaptive web services.

An AI planner composes a new web service to satisfy the requested service

that accomplishes a particular task or meets specific criteria [24]. AI planners

compose web services from a pool of web services available to it. Being given the

desired set of outputs and available inputs, AI planners use backward chain rules to

find the appropriate set of services that will satisfy these conditions. More

sophisticated AI planners would take other factors into consideration, such as QoS or

context information, during the web service composition process.

Before proceeding, let us consider the following web service example: a report

service, which generates a report document and can be used with an email service to

send this document to all the clients via email. These services are combined together

in this manner to allow a courier company send its delivery report to the sender or

recipient.

It is envisaged that adaptive web services could be achieved through dynamic

re-composition of web services. For example, WSCF can be used to recompose web

services in order to adapt them to meet some new criteria or to be used in different

contexts. Suppose a service was needed to send its delivery report of precious cargo in

a secure manner. In order to adapt to the new context, WSCF can recompose the

report service mentioned above with security criteria specified. This would result in a

new report service, namely a report service that includes an encryption of the

document before sending it out to the clients via email.

This dynamic service composition approach to realising adaptability has the

advantage of allowing developers to create simple web services for specific tasks.

Then these web services can be dynamically combined at runtime to perform a more

complex required task. In general, these web services (used in these compositions) are

not adaptive, but rather the adaptability is achieved through dynamic re-composition.

The benefit of this approach is that atomic web services can be implemented in a

straightforward manner with minimal accounting for changes in context. Therefore,

13

developers do not have to worry about such complexities and would leave it to the

dynamic service composers to handle the task of enabling adaptive web services

through re-composition. This approach provides a framework for adaptive web

services, and the intelligence logic is in the WSCE which is external to the services

used. Thus, services do not need to be recoded.

The difficulty with the dynamic service composition approach is that the

composition process is time-consuming, and web services need to be recomposed

every time, in order to adapt to different scenarios. Dynamic service composition

approaches, such as AI plaimers, need to be aware of all of the different web services

available to them before performing service composition. To achieve a successful

adaptive web service, a WSCE needs to have variants of different web services for the

composition process. Variant services are services that perform the same functionality

but with an alternative behaviour. For example, if a data storage service stores data in

a relational database, then a variant service could be one that stores data in an xml

database, and another variant service could store data in a flat file.

The downside to this approach to adaptive web services is that it is still limited

by the number of different service variants available at runtime. The necessity to have

service variants places an extra burden on the developers to maintain an increased

number of services. Furthermore, the addition of service variants causes the decision

tree to grow exponentially large, and can add extra complexity to the composition

logic. This can cause performance degradation when composing web services, due to

the large decision tree and the added complexity in the composition logic when

searching for the correct service among all web services and their variants.

To illustrate this point, take the example of Windows users preferring their

report in Microsoft Word, Linux users in PDF, and Mac users reading their report in

HTML using a web browser. Then the WSCE needs to have three different variants of

the report service available, so that it can either produce a report document as Word

document, PDF, or HTML; otherwise, it might not accommodate all these users.

Thus, it should be more appropriate to use this approach to achieve a particular

composition and fine-tune the services using another method rather than recomposing

web services over and over again in order to satisfy all the criteria of the desired

composite web service.

14

This approach could also use a script to add intelligence to the service’s

composition, so that composite services are adaptive to change in context without re

composition. In other words, to add conditional logic in the workflow of composite

web services, which can enable web services to react to change in context. These

workflow scripts could allow composite web services to be adaptive by instructing the

composite service to self recompose, i.e. to change the service selection of its

constituent services, when a predicted condition arises, thus allowing the composite

service to be adaptive.

The use of this workflow script has the benefit of enabling composite web

services to be adaptive without re-composition. Thus, adaptive composite services

will not have to rely on a centralised model; adaptive composite service could be

deployed in a distributed architecture using this approach. Developers still does not

have to worry about creating intelligent web services.

The downside is that this approach is still limited by the number of different

service variants available at the time. Furthermore, the added complexity in the

service’s workflow can introduce unforeseen problems, as well as the need to

manually change the script to handle new contexts.

2.3.3 Achieving Adaptive Web Service using Policy-based

Management

A different approach to adaptive web services is to define web services that

contain all the variants within them, i.e. web services that have multiple alternative

behaviours, termed adaptive behaviours, and which can be managed dynamically.

However, these adaptive behaviours are managed externally during runtime in order

to change how the services accomplish their tasks.

Policy-based management systems (PBMS) can be used for controlling the

state of a system and for controlling the devices of a network, using policies [22].

These policies manage the configuration and behaviour of one or more entities within

a managed system to achieve some overall behaviour. PBMS are concerned with the

overall behaviour of the managed system and adjust the policies that are in effect

based on how well the system is achieving its policy goals. These policies are used to

control the behaviour of the managed system in a predictable and consistent fashion.

15

In the case of adaptive web services, it is envisaged that policies could be used to

control their internal adaptive behaviours.

PBMS provide great flexibility in their approach to managing a system, where

they can change the system’s behaviour without the need to remodel or recode the

managed system. This means that the intelligence logic can be expressed externally

through policies. Thus, web services can be manipulated dynamically according to

their policies without the need to recode or re-implement them. By specifying the

intelligence logic of web services as policies, PBMS can dynamically modify the

behaviours of these adaptive web services at runtime, i.e. allowing adaptive web

services to dynamically adapt to changes in context.

However, in order to reason about these adaptive web services, there is a

necessity to describe these web services and their adaptive behaviours in a fomial

manner. By having a formal description of adaptive web services, PBMS can reason

about them and policies can be correctly specified using the appropriate vocabulary.

A downside to PBMS is that the use of policies can be complex and

cumbersome, such as when authoring several policies for a large composite web

service, and when maintaining them. Furthermore a service manager needs to be a

policy expert in order to use this approach. Ideally this approach needs to have a

framework that is easy to use, so that neither service developers nor service managers

need to be policy experts.

Furthermore, managers specifying policies should be able to do so at a high-

level of abstraction, without needing to know the intricacy of the adaptive behaviours

belonging to web services. Therefore, it is vital that policies can be specified at high-

level using abstract elements, and that policies used to enforce these behaviours

should be generated or mapped automatically. This is a major issue among PBMS and

this issue becomes obvious when asked how to map low-level policies assigned to

elemental services, to high-level policies specified for the parent composite service.

Or more precisely how to automatically refine high-level policies, assigned to a

composite service, into enforceable policies for managing the adaptive behaviours of

the constituent adaptive web services.

16

2.3.4 Discussion of Approaches to Achieving Adaptive Web

Service

When comparing the three approaches to achieving adaptive web service, it is

clear that the first approach - The In-house approach - is the weakest one. While the

In-house approach is beneficial when performing quick web service prototypes, it is

hard to maintain them, and this approach does not scale well when many adaptive

behaviours are being created. The cause for these limitations is that the intelligence

logic of the adaptive web services provided by this approach is hardwired and hidden

within the service. Such a method for adaptability prevents the intelligence logic

being modified without recoding the web service itself

The dynamic service composition approach provides a fi’amework for adaptive

services through the use of service variants and dynamic re-composition. This

approach offers a framework that provides developers with a means to better manage

complex adaptive web services and maintain them in the long run. One developer can

be responsible for composing web services while other developers can dedicate their

time to creating the elemental services used in the composition. This approach

separates the burden of adaptability of web services from the development of web

services because adaptive web service is achieved through re-composition.

But the need for recomposing web services every time there is a change in

context can be time-consuming. In addition, the necessity for several different web

service variants to be available during the composition process, can affect scalability,

add complexity to the composition decision tree, and cause performance degradation.

Ideally, it would be more productive for the elemental web services, used in

the composition, to be built with intelligence. These intelligent web services would be

able to fine-tune their behaviour to suit different situations. Then at runtime these

composite web services can accommodate to certain changes in context without the

need to recompose. The outcome is that less strain will be placed on the WSCE since

multiple re-composition of web service will not be necessary.

The policy-based management approach is based on this ideal; where adaptive

web services are composed together^ to perform a specific task, and policies are then

’ Composed together by some other means

17

used to manage the adaptive behaviours of these web services to further fine-tune

them to suit the user’s preference. Web services become adaptive by adding

alternative behaviours within them much like the in-house approach. However, these

adaptive behaviours are not hard-coded intelligence logic but, instead they are

exposed so that they can be managed though the use of policies. By using a policy-

based management approach, web services can be dynamically adaptive at runtime,

and since the intelligence logic is external, it can be updated without the need to re

code these web services.

The policy-based management approach removes the burden of fine-tuning

from the composition engine which would improve its performance and scalability.

But this approach adds responsibility to developers of elemental web services to

ensure that extra adaptive behaviours are included in these services. One of the

benefits of the policy-based management approach is that it provides a separate

management interface for controlling these adaptive web services, which is not tied to

their dataflow. However, in order for the policy-based management approach to work

successfully with adaptive composite web services, policies need to be specified to

the composite service as high-level policies, and they need to be decomposed into

low-level policies to the relevant constituent services.

A common problem with web services is upgrading them while maintaining

backward compatibility. Consider a case where a composite web service has some of

its elemental services upgraded but there is a need to keep their service backward

compatible. In such a scenario, the dynamic service composition approach would

accomplish this task by having two separate service variants that can be chosen during

composition, but this could cause confusion. Whereas the policy-based management

approach overcomes this obstacle by adding the new feature of the elemental services

as adaptive behaviours that can be managed using policies.

When considering the policy-based management approach to adaptive web

services, two questions, which need further investigation, were recognised. The first

question is how can adaptive web services be defined or described so that they are

better understood, i.e. reasoned, or managed by policies. The second question is how

these adaptive web services can be controlled during run-time according to their

specified high-level policies (goals). This is vital in the case of adaptive composite

18

services. Policy refinement technique claims to provide answers to this issue. A

survey is provided in section 2.5.

2.4 Defining Adaptive Web Services

Adaptive web services are web services that can dynamically change their

behaviour due to a change in context as they perform their tasks. One of the

approaches mentioned above, the policy-based management approach, envisages that

adaptive web services have internal adaptive behaviours, which are not hardwired to

some internal intelligence logic, but instead exposed so that they can be controlled

externally. By exposing the adaptive behaviours through a management interface,

they can be controlled externally by a PBMS.

However, one of the shortcomings with the policy-based management

approach (discussed in section 2.3.3) is the necessity of a formal and semantically rich

description of the adaptive web services. In order to select a suitable modelling

language or combination of modelling languages, a brief investigation comparing

different modelling languages for describing adaptive web services was conducted.

This investigation is presented in this section,

Web services can be used in a loosely coupled manner or composed together

to perform a more complex process [31]. So, it is natural to expect that these adaptive

web services can be either atomic or composite web services. Adaptive composite

web services would encapsulate the combination of composition and policy-based

management approaches to adaptive web services.

In order to reason about adaptive web services, they need to be defined with a

rich semantic description. This description needs to encapsulate the key aspects of

adaptive web services. It could be suggested that four aspects important for defining

adaptive web services are:

i. The information necessary for users or client applications to access a web

service, i.e. the functional aspect of web services;

ii. The semantic aspects of a web service to handle the automatic discovery and

interoperation of web services is through a semantic rich description language;

19

iii. The composition description of composite web services, thus allowing

management system to reason about the composition and the constituent web

services of composite web services;

iv. The description of the adaptive behaviours within web services, i.e. a

description of the management interface for reasoning about these adaptive

behaviours.

There are several existing technologies for describing web services both

syntactically as well as semantically. A survey of different technologies - modelling

languages - for defining adaptive web services is presented below. Six different

modelling language candidates were identified from the three technology domains:

WSDL, Ontology, and UML. Each modelling language candidate is presented below,

while measured against the criteria identified above.

2.4.1 Describing Adaptive Web Services with WSDL Technology

This section examines WSDL and BPEL as two potential candidates for

describing adaptive web services from the WSDL technology domain.

Web services can be defined as self-contained, self-describing, modular

applications that can be published, located, and invoked across the web. But in order

to publish them on the Internet, one necessary step is to describe web services in a

standard manner, which allows clients to discover and interact with them uniformly.

Web Services Description Language (WSDL) is de facto industry standard for

describing a web service’s interface [32], and interaction with these web services is

achieved using Simple Object Access Protocol (SOAP) messages [33] as described in

the web service’s associated WSDL description. WSDL has been standardised by

W3C [31] and it has even been adopted by other technologies as their grounding, e.g.

OWL-S and BPEL among others.

WSDL is an XML-based language created for describing web services. It

describes the syntactic information of a web service in a machine-readable document

format (XML) [27], and provides a platform-independent model for describing web

services, which defines their public interfaces and how to invoke them. A WSDL

document defines the public available functions (port types), message formats and

protocol bindings that are required to interact with web services. Port types are

abstract collections of supported operations that can be performed. Message formats

20

define how to interpret the data types passed in messages. Protocol bindings define

how to map messages onto concrete network transports.

WSDL is a strong candidate for the first criterion - describing the functional

aspect of web services. However, it does not meet the second criterion due to the lack

of semantics in its description; WSDL lacks domain specific data definitions,

operation restriction definitions, operation sequence definitions, data mediation

definitions and behaviour mediation definitions. Furthermore WSDL was not

designed to describe the interactions or workflow of web services, i.e. their

composition. WSDL describes web services as a black box and lacks semantics in its

modelling language to describe any of the web service’s internal behaviour, much less

their adaptive behaviours. Although WSDL did not satisfy most of the criteria, it will

not be discarded since WSDL is used as the foundation modelling language and

combined with other modelling languages to enrich the description of web services.

WSDL-S [80] is a lightweight approach for adding semantics to web service

descriptions, specifically described in WSDL. It provides simple extensions to WSDL
thereby allowing semantic descriptions of actions, inputs, outputs, preconditions and

post-conditions of a WSDL operation.

While web services described by WSDL-S can be orchestrated with hard

coded applications, WSDL-S lacks semantics in its description to describe the

workflow information of a web service composition. Therefore, WSDL-S does not

meet the third criterion since it is not suited to describe the composition of composite

web services. Although, the objective is not to describe all of the service’s behaviour,

it is still required that the internal adaptive behaviours of web services be described so

that they can be reasoned with. WSDL-S adds extra semantics but it still does not

contain semantic definition to describe web service’s internal behaviours.

Business Process Execution Language (BPEL) describes the interactions and

workflow of web services within a composite web service [34]. BEPL is built on the

WSDL 1.1 specification. It offers a rich process description notation to describe

service process behaviours and data dependent behaviours, as well as, exception

conditions and orchestration for peer-to-peer interaction between constituent services

grounded in WSDL. In BPEL web services can be modelled in two ways, as either

executable or abstract (partially specified).

21

BPEL is an orchestration language, which specifies composite services as

services that contain message exchanges with other services, such that the message

exchange sequences are controlled by the orchestration engine. BPEL defines an

interoperable integration model that should facilitate the expansion of automated

process integration. BPEL model includes constructs to describe the control flow and

dataflow of service’s composition. Control flow description for composite services is

defined using control constructs, including sequence, choice and if-then-else among

many others.

BPEL is a powerful language that has a semantic description rich enough to

describe web services semantically, thus satisfying the second criterion. And sinee

BPEL is grounded in WSDL, it also satisfies the first criterion though the use of

WSDL. The semantic workflow description used in BPEL to describe a web service’s

composition allows BPEL to meet the third criterion.

Again, the objective here is only to semantically describe the internal adaptive

behaviours of web services in order to manage those adaptive behaviours using

policies. It is possible to attempt to extend BPEL to accommodate the description of a

management interface for controlling these adaptive behaviours. However, the

semantic definition for this management interface still needs to be formalised.

2.4.2 Describing Adaptive Web Services with Ontology

Ontology is a declarative representation of concepts within a domain, and the

relationships between those concepts [89]. Ontology can be used to semantically

describe the entities within a domain and to reason about them. It provides a shared

vocabulary which is structured and computer readable that can be used to model a

domain. Furthermore, ontology models are extendable so that they can continue to

model their domains as these domains changes.

Ontology was initially used in Artificial Intelligence domain to create

computational models for enabling automated reasoning. Since then, the concept of

ontology has expanded into other domains and it is widely used in Semantic Web,

Biomedical Informatics, Data Federation, and System Engineering.

Ontology describes the type of objects, their properties, and relations.

Ontology focus on entities described as classes, i.e. classes are used in ontology to

describe the concepts in a domain. Ontology allows for the modelling of the

22

relationships between concepts. For example, the relationship of two concepts which

are parent and child of each other can be expressed as follows: the parent class is a

superclass of the child class, and the child class is a subclass of the parent class. Each

class can also have attributes that will provide them with properties or restrictions.

Another benefit of ontology is that it can model instances of concept classes and an

instance of an ontology class can have its property set with particular values.

An ontology model is a unique list of concepts for a particular domain

expressed in an ontology representation language. The ontology language is an

important element in building the ontology model. The ontology language must have

a grammar with formal constraints which is used to control how the ontology terms

are related to each other. For example, an ontology language would have grammar

definitions to allow two concepts which are parent and child to be expressed as

subclass or superclass of each other.

There are many ontology languages emerging which were created either for

general purpose or for modelling concepts of a particular domain. Open Biomedical

Ontologies (OBO) [97] is a collaborative effort in creating an ontology language to

describe science-based ontologies, which is shared across different biological and
medical domains. Knowledge Machine (KM) [98] is a frame-based language with

first-order logic semantics, which is used for encoding knowledge representation

bases. One of the main markup ontology languages is the Web Ontology Language

(OWL) [35]. OWL is an ontology language that has been recommended by W3C for

authoring, publishing, and sharing ontologies on the World Wide Web. This ontology

language is derived from the DAML+OIL Web Ontology Language and is based on

RDF/XML markup scheme.

The advantages of Ontology are that ontology is reusable and flexible.

Ontology models can be published and share between communities and even

domains. These ontology models are flexible to be expanded as needed, for example

if shortcomings are spotted. Since OWL is based on XML, ontology models described

in OWL are human readable and it is possible to use off the shelf tools for processing

and querying them such as XPath and XSLT. There are also many tools for OWL,

such as Protege [95], Jena [46], and Pellet [96].

23

The disadvantage of ontology is that it has a high reasoning complexity. When

creating an ontology model, a choice needs to be made between expressiveness and

scalability, i.e. between a light model for inference performance or a full model for

model completeness. Ontology models described in OWL can be very verbose due to

its XML nature, which can be difficult to read, creating large size files, and making

parsing slow.

Subsequently, a couple of potential ontology-based candidates for describing

adaptive web services come from the semantic web service domain, which provides a

semantic orientation for the description of web services. It uses an ontological

language to add semantics to web service descriptions. By using richer semantic

descriptions to describe web services, it is possible to better advertise and

subsequently discover web services and supply a better solution for the selection,

composition and interoperation of web serviees [36]. The main approaches

investigated for describing semantic web serviees using Ontology are OWL-S [36]

and WSMO [29].

Web Service Modelling Ontology (WSMO) is an ontology for semantically

describing (various aspects related to) semantic web services. WSMO describes

semantic web services from the client as well as the service provider point of view

[29]. WSMO uses WSML [30], a semantic web language targeted specifically at

semantic web services. WSMO core elements are: an Ontology element that provides

the concepts and relationships used by other elements; a Goals element that defines

the user’s objectives; Web Services descriptions that define various aspects of a web

service; Mediators which bypass interoperability problems.

OWL-S (formally DAML-S) [36] is an Ontology model for describing web

services expressed in Web Ontology Language (OWL) [35]. It contains a set of rich

class representations and rich typing that allows semantic web services to be

understood by machine processible systems. This semantic description complements

current web service description, for instance, WSDL. The OWL-S ontology

semantically describes web services in three parts: service profile, informs the service

capabilities; process model, describes the service process; and grounding, provides a

mapping for web services and their parameters to their WSDL descriptions.

24

OWL-S and WSMO are the two major efforts that share the same vision that

ontology is essential to support automatic discovery, composition and interoperation

of web services. WSMO model is more complex and has more semantics for the area

of interoperability through its semantic definitions such as mediators. But OWL-S is

more mature in the area of semantically describing composite web services

(choreography) and grounding, and easier to understand due to its single view of the

web service [7].

When examining the OWL-S model, it can be noted that the process model

ontology represents services as processes. Each process (service) has its parameters

(lOPE: inputs, outputs, preconditions, and effects) semantically described using

Ontology definitions, and grounded (mapped) to a WSDL description. Hence the

semantic aspects of web services are described by the OWL-S process model, and the

syntactical aspects of web services are delegated to their WSDL description.

Furthermore, the OWL-S process model categorises a process into three process

types: atomic, simple and composite processes. An atomic process is a directly

invocable process that executes in a single step from the perspective of the service

requester. A simple process is not invocable and is not associated with service

grounding; it provides a means of abstraction for the other types of process.

A composite process is constructed from other processes that can be either an

atomic or a composite process. The composition of composite services is described as

control flow and dataflow. Control flow of a composite process is described using

control constructs, which among others are sequence, choice and if-then-else. The

data flow of a composite process is described by providing ontology definitions for

mapping the inputs and outputs, as well as the preconditions and effects of the relative

processes.

In the same manner as BPEL, OWL-S was designed with the intent to describe

elemental services as a black box. Thus, OWL-S is not designed for describing

internal adaptive behaviours. However, OWL-S uses a rich semantic description

model based on Ontology to describe the different aspects of web services and since

OWL-S is an Ontology-based language, it is possible to extend the model to describe

the internal alternative behaviours of these adaptive web services. For example, these

alternative behaviours could be described as a sequence of actions. But such Ontology

25

definition for describing adaptive behaviours needs to be formalised and extensively

adopted in order for developers to use it.

2.4.3 UML Technologies for Describing Adaptive Web Services

So far the modelling language candidates surveyed were able to describe web

services and their composition, but were not designed to describe their adaptive

behaviours. Unified Modelling Language (UML) is a standardized modelling

language used in the area of software development, with the objective of describing

systems and their behaviours [37].

UML has a set of graphic notation techniques which is used to create visual

models of software applications. Using UML diagrams developers can model and

visualise the static and dynamic views of a software system. Specifically, UML

diagrams can represent the structure, behaviour, and relationship of object-oriented

software applications. UML is extensible through UML profile, which can be used to

extend the model by defining additional diagram types or notations.

There are several commercial and non-commercial UML tools. Tools such as

PowerDesigner [91] and Rational Software Architect [92] are just a few of the

commercial tools available. UML tools such as ArgoUML [93] and Umbrello UML

Modeller [94] provide the same functionality but they are open source and can be

used with a non-commercial license. These tools can also provide features that would

assist developers, features such as code generation for the UML models and reverse

engineering by deriving UML models from source code. Most of these UML tools

allow UML models to be exchanged between them by using XMI (XML Metadata

Interchange) interchange format.

UML has different types of notation techniques to create abstract models of

specific systems; these notations are divided into three categories: structural,

behavioural, and interactional. Behavioural diagrams emphasize what must happen in

the system being modelled, i.e. system behaviour. The following three diagram types

are behavioural diagrams:

• Finite State Machine: standardized notation to describe system behaviours,

from computer applications to business processes [71].

26

• Activity Diagram: represents the business and operational workflows of

components within a system. An activity diagram shows the overall flow of

control [72].

• Use Case Diagram: shows the fiinetionality provided by a system in terms of

actors, their goals represented as use cases, and any dependencies among those

use cases [73].

Use Case Diagram does not seem appropriate to describe web services and

their adaptive behaviours. This section examines Finite State Machine and Activity

Diagram as two potential candidates for describing adaptive web services from the

UML behavioural diagrams.

Finite State Machine (FSM) models are a set of semantic concepts that can be

used to model discrete behaviours of any software system [71]. They can be used to

specify the behaviour of individual entities or to define the interactions between

entities. A FSM model shows possible states that a system or a component can have,
and which events can cause the state to change. Events can represent timers, eounters,

aspects of service invocation (e.g. service invoked, response sent), or changes in the

context in which a system is operating. A change of state is called a transition and all

of these modelling components are encapsulated by (grouped together under) a finite

state machine.

In the eurrent UML specification a clear distinction between state machine

semantics and its graphical notation is established [37]. Two major motives ean be

seen for using FSM are: (i) for visualising the behaviour of a system, (ii) as

information model so systems can reason about it. With regards to visualisation, FSM

have been standardised and eommercialised into applications, like Poseidon [79],

which are used by developers to model object-oriented applications. Poseidon is one

of many UML tools that have a graphical user interface which allows for the

visualisation of a system’s behaviour modelled as FSM.

When reasoning about a system, FSM has been used in diverse areas such as:

• Embedded systems, where FSM is used for modelling the behaviour of

mieroeontrollers;

27

• Computer games, where FSM is used as the artificial intelligence control

technique, say for controlling the actions of characters in the game;

• Policy management systems, where FSM is used as information model to

reason about the system.

The advantages of a FSM are its capacity for expressing descriptive

behaviours; both the entities and the interactions between the entities. It can model

deterministic behaviours; where for each state there is exactly one transition for each

possible input, and non-deterministic behaviours; for each pair of state and input

symbol there may be several possible states. Furthermore, it is the simplicity of the

FSM that facilitates developers in quickly adopting it. FSM are quick to design and

relative flexible to model behaviours. Also, the predictability (in deterministic

models) of FSM allows for easy understanding and testing of the FSM models.

The main disadvantage of a FSM is that the number of states can increase very

quickly when modelling a complex behaviour. Behaviours with a large number of

inputs can lead to a state explosion problem, as each required state or state path must

be repeated for all possible input values. Larger FSM can be difficult to manage and

maintain without a well thought out design. FSM can only be used to describe

systems’ behaviours that can be decomposed into separate states with well defined

conditions for state transitions. This means that all states, transitions and conditions

need to be known up front and be well defined. Furthermore, even though it is rich in

semantics, it does not allow the use of Ontology. Thus, it limits the FSM model from

can expanding its semantic definitions using UML profile to accommodate

customisation of the FSM model but it is not as easy and commonly achieved as with

Ontology.

When examining the use of FSM to describe adaptive web services, it can be

seen that it is not suited to describe the syntactical aspect of a web service (first

criterion) due to its lack of web service terminology. Also, when describing the

semantic aspect of web services (second criterion), FSM was not designed to describe

web services syntactically, nor semantically. However, FSM was designed to describe

system behaviour and so it could be used with the rest of the UML definitions to

describe web services. But this is not ideal since more popular languages in this

28

domain such as OWL-S and BPEL already exist. Thus, FSM is not considered to be a

good candidate for describing semantic properties of web services.

FSM could be used to describe the composition of composite web service

(third criterion) where services can be represented as states, and control flow

constructors can be represented with transitions. But describing web service

composition using FSM can be tedious. Other modelling languages have more refined

semantic definitions for describing control flow and dataflow of composite web

services. On the other hand, the adaptive behaviours of web services (fourth criterion)

could be described formally as FSM, where each of the adaptive behaviours within a

web service could be formally represented by a FSM. These adaptive behaviours are

internal to web services, and its structure doesn’t conform to any standard. Therefore,

the use of states and transitions, from the FSM model, is ideal since it can describe

most component behaviours.

In UML, Activity (Graph) Diagram models the sequence of actions between

different components. Activity Diagram is an extended view of the FSM, i.e. it is a

special case of a state machine that is used to model processes focusing on the

sequence of actions taken and their conditions. It uses all of the modelling constructs

from FSM and it also has a few semantics of its own. Since Activity Diagram is based

on FSM, it has the same benefits and drawbacks found with FSM.

2.5 Representing Management Policies

An obligation policy defines a set of actions that must be performed on a

target, when triggered if the conditions are satisfied [21]. Obligation policies are

normally used for managing the resources or modifying the behaviours of a system

dynamically. This can be done to either fine-tune the system’s overall performance,

e.g. to satisfy QoS requirements [9], or to configure a system to achieve a particular

goal, such as to satisfy new criteria. Obligation type policy is a suitable policy type

for managing adaptive services, i.e. it is suggested that obligation policy is a suitable

policy type to represent the management policies [74].

However, if a policy-based management approach is to be used to manage

adaptive web services, then a suitable policy language needs to be specified to

manage the adaptive behaviours of these web services at runtime. When specifying

29

policies to manage adaptive web services, they should be high-level policies that

would have abstract values, while during runtime, the policies used by the PBMS to

manage adaptive services needs to be enforceable policies, i.e. low-level policies with

their aspects configured with concrete values. For both cases, a policy model or

language needs to be identified to represent these policies. From the obligation type

policy domain, two distinct policy languages were identified: Ponder [38][39] and Rei

[40].

Ponder [38][39] is a policy language developed by Imperial College for

policy-based management systems. Ponder policy language has been used for more

than a decade and is well received by the research community. Ponder defines an

obligation policy as a policy which is triggered by an event, and must satisfy its

conditions before performing the action specified. Ponder policies also have a subject

and a target to specify the agent and the objects on which the actions are to be

performed. Furthermore, the Ponder obligation policy model has an exception

property to specify what action to take in case an error occurs during the policy

execution.

Policy language Rei [40] is based on deontic concepts and grounded in

semantic language RDF-S [28]. It is not tied to any specific application and permits

domain specific information to be added without modification. Rei has constructs for

authorisation, prohibition, dispensation and specifically obligation policy rules. Its

obligation policy rules are defined as actions that an entity must perform and are

usually triggered when a certain set of conditions are true. It consists of actions,

conditions, subjects, and policy objects.

In particular, the Rei policy’s action is represented as a tuple with action

name, target objects, preconditions, and effects. Where the action name is an

identifier, target objects are a list of objects on which the action applies, preconditions

are conditions that need to be true before the action is performed, and effects are the

results of the action performed. Rei policy’s action also includes four action operators

that can be used to specify complex actions. These action operators are: sequence,

where action A and B must he performed in sequence; non-deterministic, where either

A or B can be performed but not both; repetition, where action A can be executed

several times; and once, where action A can only be performed once. And Rei

30

policy’s conditions are based on properties of entities and other domain conditions.

Rei allows complex conditions to be built from the operators AND, OR, and NOT.

Both policy languages are powerful and complex, but when comparing them,

commonality in their policy model started to emerge. These commonalities are the

essential properties of the obligation policy model. It can be seen that both policy

languages have a condition property that specifies conditions, which must be met

before the policy is executed. They also have an action property that specifies actions

that must be performed when the policy is executed. Furthermore, Ponder and Rei

have a subject and a target property to speeify the agent and the objects on which the

actions are to be performed.

Ponder has a trigger action that specifies events that will trigger the policy.

However Rei doesn’t have this property, instead Rei considers an event as another

condition. But it is felt that it is important to differentiate an event from other

conditions. Therefore, the trigger property is considered as a valuable property of the

obligation policy model.

The policy model to be used must contain these essential properties identified.

This policy model will be used for specifying high-level policies for managing

adaptive web services, and for creating low-level policies for managing these adaptive

services.

2.6 A Survey of Policy Refinement Approaches

Policy refinement is the process of decomposing high-level abstract policies

into low-level concrete policies, where these low-level policies realise the intention of

their high-level policies [50]. Automated Policy refinement has been the focus of

several research projects and initiatives [51]. Policy refinement is needed if policies

are to be successfully used to control the internal behaviours of adaptive web services,

especially in the situations where policies are used to manage adaptive composite

services. Composite web services are made up of several other web services, which

perform the intended tasks. Thus, composite services can be considered to be abstract.

Policies can be specified to a composite service but must be refined before being

applied to the relevant constituent services. If policies are to be used successfully,

they need to be specified as high-level policies to manage a composite serviee, and be

31

refined into low-level policies to enforce the correct behaviours in the constituent

elemental services. This section presents a survey of different policy refinement

approaches.

One type of approach is to use machine-learning techniques to support policy

refinement. Verma [57] presents a case-based reasoning approach to policy

refinement where the system maintains a database of past cases. A combination of

expert knowledge and observation of the managed system is used to build a database

containing the relationship between the policy goals and the configurable parameters

of the system. When a goal needs to be achieved, the case database is consulted to

find the closest matching case. Otherwise, an interpolation is performed between a set

of cases to find a solution.

Different mathematical techniques are suggested to improve the efficiency and

accuracy of the refinement process. Such techniques as data pre-processing are used

to improve the usefulness of the case database by removing noise in the data as well

as irrelevant or redundant data. Furthermore, Gaussian distribution and density

function are used together with K-nearest neighbour clustering technique in order to

improve the accuracy of the point assignment.

Verma’s approach to policy refinement is relatively easy to implement since it

does not require a system description or a domain model. Instead, the system needs to

have its case database populated with a combination of system configuration

parameters used, and the policy goals achieved. However, this task needs to be

performed by policy experts with full knowledge of the system. This approach was

demonstrated for managing network QoS management [58], but it should be scalable

to other domains, such as managing adaptive web services by modifying the database

to accommodate web service configurations.

Verma’s approach is considered to be semi-automated in refining policies.

This approach can only be fully automated if all the possible cases have being

accounted for and populated into the database. Thus, the effectiveness of this

approach depends on having a rich set of cases. At bootstrap time, the system has no

case history. So the system has to be populated with a set of cases observed in pre-

operational tests. This approach requires large volumes of data of the operations

performed to be accumulated. The case database would normally accumulate

32

measurements of various parameters of a system over a long period of time. The

learning time needed for this approach can be an issue for ad-hoc type services such

as in Ubiquitous environments.

Furthermore, the complexity of Verma’s approach depends on the correctness

of its cases; hence it needs a policy expert with domain expertise to manually populate

its tables with the correct values. In this approach, the refinement process is only as

good as the policy experts, who could accidently introduce errors when manually

populating the database.

Another type of approach, suggested by Russo [52], uses a goal elaboration

based approach to semi-automated policy refinement. This approach uses goal

elaboration to derive a set of sub-goals that satisfies the specified policy goal, and

adductive reasoning to create a strategy for policy refinement.

Russo’s policy refinement approach uses KAOS [54], goal elaboration method

to refine abstract goals into lower level goals by breaking a goal into sub-goals using

logically proven refinement patterns. KAOS is a formal technique for elaborating

goals grounded in temporal logic, and contains domain specific and domain

independent elaboration patterns. Each high-level goal is refined into sub-goals,

forming a goal refinement hierarchy using AND & OR operators.

In order to perform the next step of the policy refinement process, a domain

hierarchy description for the managed objects must be provided, in addition to a

system description as state charts, which is transformed into a formal notation based

on Event Calculus [55]. Event Calculus is used to formalise the descriptions before

being used for the policy refinement process [56].

Abduction reasoning is then used to infer the strategies that will achieve the

elaborated goals. Finally, each refined goal is assigned to managed objects or specific

operations. The event and conditions of the high-level policy are mapped, by the user,

into the low-level policy.

Russo’s policy refinement approach only provides a partial automated policy

refinement, because this policy refinement process is automated only for the goals

previously refined. The automation of this approach is realised by manually refining a

goal using goal elaboration and adductive reasoning and saving the policy refinement

strategy of this goal for future refinements. One of the difficulties with Russo’s

33

approach is that the policy refinement uses patterns that need to be discovered and

mapped, and until they are mapped, automated poliey refinement cannot be achieved.

Russo’s approach to policy refinement was only demonstrated for managing

network QoS management [53]. But it can be envisaged that by ereating different

poliey refinement patterns, it is possible to use this poliey refinement approach to

manage adaptive web services. However, such a task is manual, and can be eomplex

and tedious. Thus, the eomplexity of this approach lies in creating these policy

refinement patterns, where a policy expert with full knowledge of the domain in

question needs to be present.

A goal-oriented policy refinement approach, based on (goal-oriented)

requirements engineering and model cheeking technique, is presented by Rubio-

Loyola [60]. It uses KAOS goal elaboration methods to refine goals to lower-level

goals, forming a goal refinement hierarehy using AND & OR operators. It then uses

linear temporal logic formulae and model checking capabilities to obtain system

exeeution traces aimed at fulfilling low-level goals [59]. Policy information is then

extracted from the chosen system exeeution traee, and finally low-level goals are

encoded into refined policies specified in Ponder.

Model checking is performed using a tool called SPIN [63]. It makes use of a

system behaviour description specified, as PROMELA, i.e. as state machines that

eommunicate via message passing or shared variables. SPIN not only verifies the

properties but also produces execution traces through system simulation. This

approaeh is not automated, and requires administrators to analyse the exeeution traces

and ehoose appropriate sets of refined polieies.

Cassasa-Mont [70] outlines a policy-authoring environment that provides a

poliey toolkit, called POWER, which refines policies specified. Power toolkit uses

poliey refinement templates that define the relationship between abstract actions and

low-level concrete ones. Domain experts must first develop a set of policy templates,

expressed as Prolog programs [75].

The POWER tool has an integrated inferenee engine that interprets these

templates (Prolog programs), to guide the user in selecting the appropriate elements

from the management information model to be included in the final policy. The

poliey-authoring tool makes use of a policy template library, information and system

34

model component, and a device-mapper component for the policy refinement. The

policy template library contains a collection of policy templates created by domain

experts.

Cassasa-Mont’s approach could be used for managing adaptive web services

but the difficulty is that someone has to actually implement the policy refinement

templates, and these templates can be complex and they need to be implemented by a

Prolog expert.

In [3] Kiel presents an automated policy refinement approach which uses

Ontology and web service composition. Managed devices/components must have a

web service-based interface that is described using OWL-S. This web service

description, describes how the component can be managed, i.e. a low-level policy.

Policy refinement is achieved through a web service composition. Conditions and

actions are extracted from a specified policy, and used as inputs in the web service

composer. The web service composer has a matchmaking engine that tries to find the

necessary service combination to satisfy these inputs. If the web service composer is

successful in generating a composite service, then refined policies can be extracted

from the sequence of services.

This approach to policy refinement is demonstrated for the network

management domain. However, the transition of this approach to adaptive web

service management should be small, since it requires that the managed devices be

modelled as web services. It is envisaged that the adaptive behaviours of the web

services needs to be modelled as web services in order to use this policy refinement

approach.

Guerrero [2] presents a generic ontology-based policy refinement approach

that also provides interoperability between high-level and low-level policies. Thus,

this refinement approach enables bidirectional policy mapping at runtime. Guerrero’s

approach needs that high level and low-level of a system be modelled as Ontology

using OWL together with the OWL relationship between these Ontology models.

Translation rules modelled in Semantic Web Rule Language (SWRL) are needed to

allow the data interchanged between the different levels. Policies are modelled as

SWRL and refined using the Ontology models, and their relationships.

35

Another approach, from Albuquerque [64], to policy refinement designed for

security type policies, uses a structured technique that models network security

systems based on the concepts of policy-based management and model-based

management. It describes a security system using a model that specifies the system in

different abstraction levels, and policy hierarchies built from the low-level up.

Automated policy refinement is achieved using a modelling technique where a

system’s model is structured in different abstraction levels. System’s objects,

relationships, and policies at a certain abstraction level together with system model of

the lower level and the relationship between entities of the two layers enables the

generation of lower level policies.

Systems to be managed and their policies are modelled with several abstract

layers, each with objects and associations. The model entities of a certain level and

their relationships supply the contextual information needed to automatically interpret

and refine the policies of the same level. It uses a ‘Diagram of Abstract Subsystem’ to

model a management system (abstractly) segmented into Abstract Subsystems (AS); a

graph comprised of AS.

Another approach to automated policy refinement of security policies is from

Cunningham [66]. It models the resource hierarchy that is used to refine policies

assigned to the abstract resources in (top of) the resource hierarchy, and automatically

produces low-level policies for its concrete resources. Policies are first refined for a

resource type, and then for its instance. It uses AND/OR Graph to model resources

and Arithmetic and Logical Expression Tree (ALET) to write expressions model

policy specification.

Table 1 presents a comparison of the approaches discussed. It focuses on

comparing the key aspects of the policy refinement process.

36

re
o
>t
o 0 g

o .2

*o
0
0
E

CO
o
o

■O
c
0

</>
■c
0
Q.X

CO
o<<

_i• *^t5 o k- E 0 2 0c
o
!a O JD

3
0 0

o 0
to

>»o 0
3 <r 0 O o 03 o CO to
cc ^ 0 z o z CO 0. LL o.

3
^ IB ra
« ^ >> (U

CO n

(i>
T3
c
o
0.

c CO 0)
E c </)

•o
c
cc
D)

— vw .£
to 5 i= 52.

*o ^ ^
CD c m ”
42 -- c 5Z to c > <

o >» o
O ■;= = TO

03
c
’to
o
o to

03
>

0
"D
o c

t
03

1—
LU

i*—
o E X5 o Q.

X <
03
g O
§ 2

>* BJZ ro
E E
0 o
0 3

ts
•c
o

3

■s
o o
i 3
03 03

03
E
B"to>>

o3
O
O
<

S 0 Z < < Z CO CO Q

•o
o
ra
E
o
3
03

C
0)
E
03
U)
CD

c
o

3
03
C
o
O

CO
o
O

o
5
03
z

CO
o
O

o
5
03

CD
O
O

CO
O
O

o

03
z

TO
o
TO «3
'-'42 03
8*^ B
-=0.0.P X C
rt" 03 ^
0. 03 ^

P 03

1 ^
CL CO CL t

■c
03

tr Q-E X
03 LU

^ Q.

<D H c
E re
o .H p
3 0 0
< 0. Q

(0 c
>> o CO .M

*- E
O 3

? §
Q. o

CD
</>
CO
iS
to
T?
0)CO
CO
o

0)
Q.>%

. -D
lD ri

0O >>
5 E
O CO CO t 0 0 a: z

0 03 0
03 c c ■o *3
.9 o "O 0 X O O
£ S re c E 03 2
03 gw a

E
■2 o

re
E
o
D

ts
O)
Z

■S£ ®
o S’> re
■5 S
03 re

E
re
OT>^

CO1
-J
5

CO1—I
5

< O Z 2 CO o o

0
0
0
O.
E
0
>*
.9
o
a.

0
0
*C
c
0
0
</>
0
O

w
0

o
o

CL

c
o

0
0

“D
0

TD
0
0

0
O.>.
0 ^
i E
ii

03

03 03
£ S

8 -
55 t/3 2
03 03 03
Q a: :e

c
!g
o

to
03

2 S
03

re I ;§

> T3 5
CD 03 s! r- C CD

3 _
tg’E
S 2
O m —
O Q.Z

3 to
O' ®
03 O
‘ E“D

0 rI ® 8

§ S 5 03

S 03 o to £
a. .= ■> ™ ®
El''
° E m o ®

to

.Q 03 to
c "o 03 .a

o 03 'i I
S O ^

c
.9
0
3
O)
c
o
O

0
^ "fl?
03 ®
C to
ore®
o B

0)iS
"D O Q.

O

.y <0
0

03
to
3

2 £
“■'5

t. 03 ^
“ O “3 0

.2^ £ ^ — w;
g 2 ® g.8

O Q. Z Q. O

O)
c
0

0Im.
o
0

0

o -Q
o }2
"D
0 S
0 ts

■D
0
to
E
o
3

Q. 0

42 E
I -

o

£ D ® ^co >-

>.o
o
Q.
03
sz

03 ®
•E re
re Q.
E E
O B

0(/>
0o
00
3
O)
.E 0
to-g
0 ^
6 0

CO
O

(/)
0
>-

A
a
E
ou

Ao
Urn
aa
s
E
s
c
u

"o
Om

.D
A
H

0
0
>

After surveying the different approaches to policy refinement, some positive

and negative points were noted. In order to manage adaptive composite web services,

policy refinement is needed. But this policy refinement needs to be automated and

easy to use, so that service providers (or service users) can manage these adaptive

web services with ease.

Neither Cassasa-Mont’s approach, nor Rubio-Loyola’s approach are

automated, which makes them difficult to use. Russo’s approach is only automated if

all the policy refinement patterns are present, which initially is not the case, thus a

policy expert is required to manually create them. Verma’s approach also suffers from

initial inability to automate policy refinement, where a policy expert is required to

manually populate its database with policy refinement cases.

Cassasa-Mont’s approach makes a good point in that it is better to first ensure

a valid specified high-level policy by guiding the user, rather than trying to validate

refined policies, such as in Rubio-Loyola’s approach. A full system description as

state charts is needed in both Russo’s and Rubio-Loyola’s approaches, which can be
cumbersome and tedious. It can also lead to state explosion if dealing with large and

complex systems.

2.7 Conclusion

This chapter introduced and discussed technologies and techniques in the area

of web service technologies, policy-based management systems and modelling

languages, which will be used as part of the discussion in the following chapters of

this thesis. A survey and analysis was also presented which examines approaches to

policy refinement. Finally, a choice of obligation policy technologies used for the

proposed solution was presented. The next chapter identifies the assumptions

regarding and requirements for the proposed solution to achieving adaptive web

services. It also introduces a new methodology for achieving adaptive web services

and describes the architectural design of a set of integrated tools to support this

methodology.

38

3 Design of the MAWS Methodology and

Requirements for Supporting Tools

3.1 Introduction

An outline of the Manage Adaptive Web Service (MAWS) methodology is

presented in this chapter. The MAWS methodology consists of three key development

processes namely:

i. to semantically describe adaptive web services;

ii. to describe the composition of adaptive composite web services and to

aggregate their adaptive behaviours;

iii. to specify high-level policies for managing these adaptive composite

web services and to refine these policies into policies that enforce these

adaptive behaviours.

The chapter first presents the definitions and assumptions which scope the

design of the proposed methodology. The input and output artefacts for each stage of

the methodology are identified and the scope of the tool set which would support this

methodology is defined. An example of an adaptive composite service is described

which will subsequently be used throughout the chapter to illustrate the proposed

methodology. When presenting the MAWS methodology, descriptions of example

artefacts produced at each stage of the proposed methodology are also shown. This

chapter then presents a requirement analysis which identifies the architectural

requirements necessary for the design of a set of integrated tools to support the

proposed methodology.

3.2 Definitions and Assumptions

Key definitions, assumptions, and design decisions were made regarding

adaptive web services, their description technologies, and policy management. The

key assumptions made are:

39

i. Adaptive behaviours within a web service may change the effect of a service

but must not change the input parameters required by the service or the type of

output produced by the service (i.e. no change to input and output types).

This thesis considers adaptive web services to be those which have internal

adaptive behaviours. These behaviours affect the constituent web services internally

without changing their inputs and outputs^. Typically, these adaptive behaviours are

based on non-fiinctional characteristics, e.g. use a faster search algorithm, or allocate

more resources such as bandwidth for higher quality video streaming. However, it is

possible that they can change the service’s effect, such as, an adaptive behaviour for

an email service that encrypts its email contents or compresses its email attachment

file. Consequently, adaptive web services have the same inputs and outputs, but may

differ in non-functional characteristics, e.g. time, cost, quality, or calculation

algorithms. Thus, this thesis focuses on those web services which have adaptive

behaviours but do not change the service’s inputs and outputs types. This assumption,

however, limits the range of services to which the proposed approach can apply.

ii. The adaptive behaviours within web services should be semantically described

without any conflict or ambiguity, and this description omits a description of

the service’s overall (default) behaviour.

Adaptive web services discussed in this thesis have an overall behaviour or

default behaviour in the same manner any other web service would have. This default

behaviour is not to be semantically described. Instead, only the adaptive behaviours

internal to these web services which the developer wishes to expose are to be

described semantically. Hence, smaller semantic description models would be created

reducing the risk of over complex semantic descriptions. Furthermore, the semantic

description representing these adaptive behaviours must be free of any conflict or

ambiguity. Although this assumption restricts the proposed approach to only handle

services with appropriate semantic descriptions, it does have the benefit of removing

the extra complexity needed for handling such services with incomplete descriptions.

Any adaptive behaviour is a composable adaptive behaviour and adaptive

behaviours of a composite web service are the resultant aggregation of

adaptive behaviours belonging to its constituent services.

111.

® Semantic web services consider a web service to have inputs, outputs, preconditions, and effects.

40

It is also assumed that any adaptive behaviour is considered composable

adaptive behaviour. Therefore, when aggregating adaptive behaviours for composite

web services, the adaptive behaviours are never filtered out. Furthermore, adaptive

behaviours of a composite web service are the resultant aggregation of adaptive

behaviours pertaining to its constituent services. This means that adaptive behaviours

cannot be directly added to (top level) composite web services. But composite web

services can expose the adaptive behaviours of their constituent adaptive web

services.

iv. Obligation Policies managing the adaptive behaviours of a web service should

not conflict with policies managing the adaptive behaviours of other web

services.

This thesis focuses on obligation type policies to manage adaptive web

services. While it might be possible to use other type of policies such as

authentication policies with the proposed approach, the proposed approach was

designed with the intention to only use obligation type policies. Furthermore, policy

refinement should percolate policies down and not peer to peer where these refined

policies are responsible for managing the adaptive behaviours of a web service, and

not for, say, the composition of a composed web service. Since adaptive behaviours

are internal to web services and web services operate atomically, then by design it is

assumed that policies managing the adaptive behaviours of a particular web service

should not conflict with the policies managing the adaptive behaviours of another web

service, i.e. that there are no conflictions or sharing of resources between web

services.

3.3 Example

In order to demonstrate what is meant by adaptive services and their

composition, and how the adaptivities of web services are controlled, an example of a

PhotoAlbumPrint service comprising a photo processing service called PhotoService,

a photo album maker service called PhotoAlbumService, and a print service called

PrintService are illustrated in Figure 3-1.

41

PhotoAlbumPrint Service
(Composite Service)

^Aggregation of
adaptive behaviours>

V___ ______ - -T^.- ____ _____ J

1
Photo Service

(Atomic Service)
High-Quality
Black& White
Redeye-Removal

Photo Album Service
(Atomic Service)

• Photo-Calendar
• Photo-Postcards

J

Print Service
(Atomic Service)
Economy-Mode
Intermediate-Mode
Expensive-Mode
Colour-Printing

Figure 3-1, A diagram of the PhotoAlbumPrint composite web service

The Photo Service is a photo processing service which processes a given set of

photos. This service has the following adaptive behaviours:

High-Quality adaptive behaviour, which allows the service to process

photos in high quality;

Black&White adaptive behaviour, which modifies the service to process

photos in black and white;

Redeye-Removal adaptive behaviour, which activates a function to remove

redeye from photographs.

The PhotoAlbum Service takes a set of photos as input and makes a photo

album (as power-point file) from them. It also has adaptive behaviours:

Photo-Calendar adaptive behaviour, which modifies the service to create a

photo calendar;

- Photo-Postcard adaptive behaviour, which modifies the service to create a

collection of postcards from the photos.

The Print Service prints any given file, in this case a power-point file. The

adaptive behaviours of this service are:

- Economy-mode adaptive behaviour, which modifies the service to print 4

pages of a document per sheet;

Intermediate-mode adaptive behaviour, which modifies the service to print

double-sided;

42

Expensive-mode adaptive behaviour, which modifies the service to print

single-sided;

Colour-printing adaptive behaviour, which modifies the service to print in

colour if colour cartage is available.

Thus, the PhotoAlbumPrint Service processes a given set of photos, generates

a photo album of such photos and prints this album. This service inherits all the

adaptive behaviours of its constituent services.

The following high-level policy was specified for the PhotoAlbumPrint

Service as an example of a typical management policy used to demonstrate the use of

these adaptive behaviours (shown in Table 2);

“When processing portrait photos, apply the Redeye-Removal and use the

Create-Calendar adaptive behaviours”

PhotoAlbumPrint Service (CompositeProcess)

Name Event Condition Action

Policyl ProcessEvent Photo= = Portrait Redeye-Removal && Create-Calendar

Table 2, Management policy for PhotoAlbumPrint Service

This service example will be used in the remainder of this chapter to illustrate

the different artefacts produced by the proposed methodology. This service has been
kept simple for the sake of clarity and emphasis has been put on highlighting the

novel aspects. Full details of the artefacts produced for this example can be seen in

Appendix H.

3.4 Overall Design Approach

Before introducing the proposed methodology, some design decisions for the

artefacts used in this methodology are presented. Two distinct areas that need

addressing are: (i) artefacts for representing adaptive web services and (ii) for

representing management policies, before introducing the novel automated policy

refinement approach.

Representing Adaptive Composite Web Services
When it comes to defining web services, WSDL [32] is the de facto industry

standard. Web service containers use WSDL to describe their web services. WSDL

describes the syntactical aspects of web services. Web service containers provide

WSDL descriptions to their web services so that users or client applications can

43

reason about how to access the required web service. However, it lacks rich semantic

definition for describing web services.

From the different modelling languages identified as candidates for

representing adaptive web services, OWL-S [36] stood out as the most promising.

Besides having the definitions to describe web services semantically, it also has the

semantics to describe the composition of composite web services. Furthermore, the

semantic definitions of OWL-S are Ontology based and its semantic definitions of

web services are grounded in WSDL. Although BPEL [34] can describe web services

semantically and the workflow of composite services just as well as OWL-S, BPEL

description is based on WSDL and therefore lacks the Ontology-based semantics that

OWL-S possess.

It is even more important to have a rich semantic representation of the internal

adaptive behaviours of web services. Because the policy-based management used in

the proposed approach will need to reason specifically about these adaptive

behaviours. It is then vital that a formal representation will be used to describe the

adaptive behaviours of adaptive web services. It is possible to attempt to extend

OWL-S schema with Ontology definitions to describe internal adaptive behaviours.
But it was decided that such an action on its own would be premature, because this

extension still needs to have a formal definition for describing adaptive behaviours in

a formal manner.

On the other hand, FSM [71] provides a formal representation for describing

behaviours of components and systems. This modelling language has been created for

formally describing system behaviours and successfully used for many years. By

providing a formal representation to these adaptive behaviours, policies can then be

created for controlling them. Adaptive web services can then be managed by these

policies, which dynamically control the web service’s internal adaptive behaviours.

Although FSM has issues with scalability, this issue should not be such a

problem when describing adaptive behaviours. The reason is that FSM has not been

used to describe the overall behaviour of web services, but only to describe these

adaptive behaviours which are encapsulated within web services.

However, FSM was not designed with the intention to describe web services

specifically. Therefore, it was decided that FSM should be combined with other

44

modelling languages such as OWL-S in order to better represent adaptive web

services. The idea to combine OWL-S with FSM allows composite web services to be

described with a modelling language already designed for describing them, and use

FSM to describe the adaptive behaviours within these web services.

Representing Management Policies
A policy ontology modelled in OWL was created for obligation type policies

based on the properties identified from policy languages Ponder [38][39] and Rei

[40]. This Obligation Policy Ontology model will be used by the proposed tools to

define high-level management policies, low-level mapping policies, and low-level

enforceable policies. The difference between the various policies is their level of

abstraction and the context of their parameters, and not the constructs used by the

Obligation Policy Ontology model. Policies specified using this model could then be

translated to Ponder, Rei or any other rule-based language, thus having the benefit of

using any policy engine for this approach.

In this obligation policy ontology model, a policy rule has a trigger property

that specifies an event that will trigger (activate) the policy. Obligation policies also

have a subject property that specifies the agents to which the policies applies and

which interpret the policies. The target property of an obligation policy specifies the

object (service) on which the actions are to be performed.

This Obligation Policy Ontology model also contains condition property that

specify what conditions must be met before the policy is executed. They must be

evaluated every time an obligation policy is triggered. The action property of an

obligation policy specifies the action that must be performed when the policy is

executed. This action consists of method invocations for a concrete component or an

action name for an abstract component making the policy a high-level (abstract)

policy.

Automated Policy Refinement

A policy refinement method is necessary in order to manage the adaptive

behaviours of composite services using a policy-based management system. A survey

of automated policy refinement approaches was conducted, and presented in section

2.6. Although none of them were designed to manage adaptive web services, they did

provide valuable information on what is needed for an automated policy refinement

method for managing adaptive web services.

45

Firstly, the policy refinement needs to be automated since the process is very

complex and tedious for any user. It was decided to use an approach that infers its

refinement decision based on a rich semantic model of the adaptive web service. The

semantic model must also provide vocabulary for specifying appropriate high-level

policies. By allowing users to only specify appropriate high-level policies, it is

possible to ensure that the refinement of these policies is achievable. Lastly, tools

must be provided to facilitate the creation of the semantic models as well as the

specification of the high-level policies and their automated policy refinement.

3.5 The MAWS Methodology

The Manage Adaptive Web Service (MAWS) methodology is a design process

for describing adaptive (composite) web services semantically, and for specifying and

refining management policies to manage the internal adaptive behaviours of these

adaptive web services.

Before deploying adaptive web services with enforceable policies to manage

their adaptive behaviours, these web services and their adaptive behaviours must first

be semantically described. When adaptive web services are composed of other web

services, i.e. composite services, their composition must be described and the adaptive

behaviours belonging to their constituent services aggregated. Then high-level

policies can be specified to manage these adaptive composite services. The

specification of these management policies must be based on the semantic

representation of adaptive web services. These policies can then be automatically

refined (using the semantic descriptions) into low-level policies which are generated

to manage adaptive composite services. The policy refinement method is based on the

semantic description of adaptive web services. By limiting the policy specification to

the vocabulary provided by these semantic descriptions, it is possible to assure that

the policy refinement is achievable and that the refined policies are correctly refined

according to the intention of the specified high-level policy.

The MAWS methodology presented in this section is designed to guide

developers in describing adaptive web services and to allow managers to control these

adaptive web services by specifying and refining management policies to enforce

their adaptive behaviours. The MAWS methodology defines the required tasks to be

accomplished before being able to deploy and execute these adaptive composite

46

seivices, which results in the creation of enforceable policies to dynamically manage

their adaptive behaviours at run-time. These policies allow adaptive (composite)

services to change their behaviours in order to;

i. personalise web services according to user’s preference;

change web services according to a new business model;

allow web services to be context-aware to changes in the environment

The MAWS methodology was inspired by the methodology used for

describing and composing non-adaptive web services [31] and can be divided into

three processes, namely Web Service Description, Web Service Composition, and

Web Service Management. These are shown graphically in Figure 3-2.

n.

111.

Figure 3-2, The three processes in the MAWS Methodology

The initial step of the MAWS methodology is the Web Service Description

(WSD) process, which is responsible for describing adaptive atomic services. It

produces syntactic descriptions for atomic web services (as WSDL), semantic

descriptions for atomic web service (as OWL-S), and formal representations

(expressed in FSM) for each of the adaptive behaviours pertaining to these adaptive

atomic services.

47

The Web Service Composition (WSC) process is the second step in the

MAWS methodology. This WSC process is responsible for modelling and describing

the composition of web services, thus producing a semantic description for composite

web services (expressed in OWL-S). The WSC process is also responsible for the

aggregation of the adaptive behaviours of the constituent web services. This produces

formal representations (expressed in FSM) of the adaptive behaviours of the adaptive

composite services. The WSC process uses artefacts produced by the WSD process to

semantically describe adaptive composite services.

The final step in the MAWS methodology is the Web Service Management

(WSM) process, which enables high-level policies to be specified to manage adaptive

(composite) services. This process is also responsible for the automated refinement of

these policies and the generation of enforceable (low-level) policies for the

constituent web services. In addition, it performs a validation of these generated

enforced (low-level) policies against the specified (high-level) management policies.

The activities in this process are accomplished with the aid of the artefacts produced

from the previous process, e.g. OWL-S and FSM.

The MAWS methodology tries to support different kinds of users involved in

the development of managing adaptive web services, and encourages that each

artefact is produced by the appropriate person responsible for it. Hence, adaptive web

services are described by developers who are responsible for creating them. Adaptive

web services can then be combined to create adaptive composite services with their

aggregated adaptive behaviours. And the composition of these amalgamated web

services is described by web service composers or application developers. Finally,

adaptive composite services can have their adaptive behaviours managed by policies

which can be safely specified by service managers and assured that refined

enforceable policies are generated to manage them.

Each of the steps in the MAWS methodology described above consists of a

number of design activities. To better understand these processes and their activities, a

detailed description of each of them, together with their produced artefacts, is

provided in the following subsections. Full details of these artefacts are available in

Appendix H.

48

3.5.1 Web Service Description Process

The Web Service Description (WSD) process was designed to describe

adaptive atomic services, both syntactically, as WSDL, and semantically, as OWL-S.

Furthermore, it also semantically describes the adaptive behaviours internal to atomic

services, as FSM. This is an important step in the MAWS methodology, since these

descriptions will be used later to specify management policies and to automatically

refine them.

The WSD process is composed of three activities; Web Service Syntactical

Description, Web Service Semantic Description and Web Service Adaptivity

Description, as depicted in Figure 3-3.

Figure 3-3, Web service description process

The WSD process cycle starts with the Web Service Syntactical Description

activity, where a given web service is syntactically described as WDSL. The next

activity is the Web Service Semantic Description activity, where a given web service

is semantically described using an ontology language to produce a web service

description in OWL-S. The Web Service Adaptivity Description activity then

describes the adaptive behaviours of a web service, producing a formal representation

for them as FSMs.

The Web Service Syntactical Description activity provides a syntactical

description for web services. This activity assumes that developers have designed

their web services, and have either implemented or are about to implement these web

49

services. This activity describes atomic web services as WSDL. A snippet example of

the WSDL description is shown in Figure 3-4, which was produced by this activity for

a web service example PrintService. It shows a WSDL description of the web

service’s operation - print; web service’s input parameters: document (doc), pages,

and colours; web service’s response: sheets.

<wsdl:definitions targetNamespace="http://print.services">
<wsdl:documentation>PrintService</wsdl:documentation>
<wsdl:types>
<xs:schema attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://print.services/xsd">

<wsdlimessage name="printMessage">
<wsdl:part name="partl" element="nsO:doc"/>
<wsdl:part name="part2" element="nsO:pages"/>
<wsdl:part name="part3" element="nsO:colours"/>
</wsdl:message>
<wsdlimessage name="printResponse">
<wsdl:part name="partl" element="nsO:sheets"/>
</wsdl:message>
<wsdl:portType name="PrintServicePortType">
<wsdl:operation name="print">
<wsdl:input message="axis2:printMessage"
wsaw:Action="urn:print"/>
<wsdl:output message="axis2:printResponse"/>
</wsdl: operationX/wsdl: portType>

Figure 3-4, Snippet of WSDL artefact consumed for print web service

The Web Service Semantic Description activity provides a semantic

description for web services. This activity consumes the syntactic description, as

WSDL, of a web service and enriches it with a semantic description. It describes web

services semantically with the use of OWL-S [36]. OWL-S semantically describes

web services through three aspects: process, profile, and grounding, which are

grouped under a fourth aspect called service. For this thesis emphasis was given to the

service, process and grounding aspects of the OWL-S model. This activity produces a

semantic description for web services as OWL-S, which describes web service’s type,

their inputs and their outputs, as well as, a mapping to their WSDL description.

Figure 3-5 shows a snippet of the artefact produced by this activity for the web

service PrintService. It shows the service and process aspects of the OWL-S

description for the PrintService. The service aspect describes the location of the other

aspects of the service semantic description. The code snippet of the process aspect

50

describes the PrintService’s inputs: document name, number of pages, number of

colours to be used; and outputs: number of sheets used to print the document.

<service:Service rdf:ID="PrintService">
<!-- Reference to the Process Model -->
<service:describedBy rdf:resource="&gprocess;#PrintProcess"/>
<!-- Reference to the Grounding -->
<service:supports

rdf:resource="&ggrounding;#PrintServiceGrounding"/>
<!-- Reference to the Profile -->
<service:presents

rdf:resource="Sgprofile;#PrintServiceProfile"/>
</service:Service>
<process:AtomicProcess rdf:ID="PrintProcess">
<process:hasinput rdf:resource="#DocumentName"/>
<process:hasinput rdf:resource="tNumberOfPages"/>
<process : hasinput rdf: resource="#NuinberOfColours"/>
<process:hasOutput rdf:resource="#NuinberOfSheets"/>
<process:hasFiniteStateMachine

rdf:resource="PrintProcessFSM.owl#PrintProcessFSM"/>
</process:AtomicProcess>

Figure 3-5, Snippet of OWL-S artefact produced for print web service

The next step is to add an adaptive behaviour description for atomic web

services. The Web Service Adaptivity Description activity describes the internal

adaptive behaviours of adaptive atomic services. This activity enriches web service

semantic descriptions (expressed in OWL-S), provided by the previous activity, with

a formal representation of the web service’s adaptive behaviours, expressed as FSM.

FSM uses its events, transitions, and states to describe these adaptive behaviours

semantically.

This activity should not be used to describe the service’s default behaviour but

only the behaviours that are desired to be exposed which modify the service’s

behaviour. In order to contain the description of several adaptive behaviours in a

generic manner, the FSM description starts with a description of the different running

states of a web service. These states are: idle, input, process, and output states. FSM

representing adaptive behaviours are then associated to these states through

submachine property. In this manner adaptive behaviours can be grouped based on the

service’s running states.

The print web service example has four adaptive behaviours:

• ExpensiveMode, which modifies the print service to print single-sided;

51

IntermediateMode, which modifies the print service to print double-sided;

• EconomyMode, which modifies the print service to print two pages per sheet

double-sided (i.e. four pages per sheet);

• ColourPrinting, which modifies the print service to print in colour;

Figure 3-6 shows a snippet of the FSM (modelled in OWL) describing a

simple adaptive behaviour called EconomyMode. This snippet shows two states:

initial state (EconomyModeInitialState) and final state (EconomyModeStatel), as

well as a transition from initial state to final state contained in this FSM. The

description of the final state details the activity to be performed by this state - to

change printing mode to print 2 pages on a side and print double sided. This FSM

describing the adaptive behaviour EconomyMode is contained within a submachine,

see snippet code below, and associated to the service’s FSM via a sub-FSM.

<fsm:SubmachineState rdf:ID="EconomyModeSubSM">
<fsm:submachine>

<fsm:StateMachine rdf:ID="EconomyMode">
<fsm:top>
<fsm:Compositestate rdf:ID="EconomyModeCS">

<fsm:subvertex>
<fsm:PseudoState rdf:ID="EconomyModeInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>

<fsm:Transition rdf:ID="EconomyModeInitialStateInitialTransition">
<fsm:trigger>

<fsm:SignalEvent rdf:resource="InitialEvent"/>
</fsm:trigger>
<fsm:source rdf:resource="#EconomyModeInitialState"/>
<fsm: target rdf: resource="#Econom^odeStatel"/>

</fsm:Transition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm:subvertex>
<fsm:subvertex>

<fsm:FinalState rdf:ID="EconomyModeStatel">
<fsm:doActivity>printmode(2, doublesided)</fsm:doActivity>

<fsm:incoming rdf:resource="#EconomyModeInitialStateInitialTransition"/>
</fsm:FinalState>

</fsm:subvertex>
</fsm:CompositeState>

</fsm:top>
<fsm:comment>prints 4 pages per sheet</fsm:comment>

</fsm:StateMachine>
</fsm:submachine>

</fsm:SubmachineState>

Figure 3-6, FSM artefact describing the adaptive behaviours of the print web service

52

3.5.2 Web Service Composition Process

The Web Service Composition (WSC) process was designed to describe the

composition of adaptive composite services, and to aggregate their adaptive

behaviours. This process describes the adaptive behaviours of adaptive composite

services by aggregating the adaptive behaviours, previously described as FSM, of the

constituent atomic web services. This step in the MAWS methodology is important

because adaptive web services being managed can either be atomic or composed. For

those services that are composed, it is necessary to describe their composition. The

composition description will be used later by the policy refinement process to

automatically refine high-level policies. Furthermore, the aggregation of adaptive

behaviours will allow them to be exposed to service managers specifying high-level

policies for composite services, as seen in the next MAWS process.

The WSC process is composed of three activities; Web Service Composition

Modelling, Web Service Composition Description, and Web Service Adaptivity

Aggregation, as depicted in Figure 3-7.

•1 •
1 Yes

T
Web Service Composition

No
Is model

Modelling

1
Semantic Description for Semantic Description for

atomic services: composite services:
OWL-S + FSM OWL-S + FSM

Web Service Semantic Description for

Composition Description
VJ

OWL-S

f
Web Service Adaptivity

Aggregation

Figure 3-7, Web service composition process

The WSC process cycle starts with the Web Service Composition Modelling

activity which models composite services either manually or in an automated manner.

Then the Web Service Composition Description activity describes the composition of

the modelled composite web service. Lastly, the Web Service Adaptivity Aggregation

activity aggregates the adaptive behaviours belonging to the constituent web services

53

for the given eomposite web service. It is assumed that the web services used in the

composition have undergone the WSD process.

The web services to be deployed can be either atomic or composite web

services. However, since composite web services are composed of atomic or other

composite services, their composition must be modelled. The purpose of this process

is to describe the composition of adaptive composite services.

The Web Service Composition Modelling activity searches for the available

web services to satisfy the set of composition requirements, it then selects the

appropriate candidate web services for the composite web service, and finally it

models the composite service. This activity can be performed manually or in an

automated manner, such as through the use of an AI planner [5]. The tasks of this

activity are research topics in themselves and outside the scope of this thesis. This

activity provides a point of reference to developers performing the composition of

web services before describing the composition of composite web services in the next

activity.

The Web Service Composition Description activity describes composite web

services semantically, producing semantic descriptions for composite web services as

OWL-S. The semantic description of composite web services is similar to that of

atomic services, except for the addition to a description of their composition. The

composition is described in a hierarchical manner by identifying the constituent

services and describing their control flow, as well as the dataflow between the inputs

and outputs of the constituent services. For example, this activity can describe the

composition of the PhotoAlbumPrint web service, as OWL-S, exhibited in the snippet

depicted in Figure 3-8. This snippet details the control flow of the composite service

as a sequence of three services: PhotoService, PhotoAlbumService, and PrintService.

54

<process:CompositeProcess rdf:ID="PhotoAlbumPrintProcess">
<process:composedOf>
<process:SequenGe>
<process:components>
<process:ControlConstructList>
<objList:first rdf:resource="#PerformPhotoService"/>
<obj List:rest>
<process:ControlConstructList>
<objList:first>

<process:Perform rdf:resource="PerformPhotoAlb\amServic6">
</objList:first>
<obj List:rest>
<process:ControlConstructList>

<objList:first rdf:resource="#PerformPrintService"/>
<objList:rest rdf:resource="generic/ObjectList.owl#nil"/>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</process:components>

</process:Sequence>
</process:composedOf>

</process:CompositeProcess>

Figure 3-8, OWL-S snippet describing the composition of the PhotoAlbumPrint web service

Once a composite web service is described, its adaptive behaviour must also

be described. The adaptive behaviours of a composite web service are the resultant
aggregation of the adaptive behaviours belonging to the constituent adaptive services.

Thus, the main role of the Web Service Adaptivity Aggregation activity is to combine

the adaptive behaviours pertaining to the constituent adaptive services of a given

composite service. The aggregation activity aggregates adaptive behaviours in a

reversed hierarchical manner based on the composite description of a given composite

web service, provided by the previous WSCM activity. The resultant aggregated

adaptive behaviours for a composite web service are described as FSM in the same

marmer adaptive behaviours are described for atomic web services.

The output of this activity for the example composite web service

PhotoAlbumPrint is shown in Figure 3-9. It depicts a FSM snippet (modelled in

OWL) describing the aggregated adaptive behaviours of this composite web service.

The snippet indicates adaptive behaviours: CreateCalendar adaptive behaviour, which

creates a photo calendar document with a given set of photos and originated from

AlbumService; and ExpensiveMode, which prints a document page per sheet and

originated from PrintService.

55

<fsm:Compositestate rdf:ID="ProcessState">
<fsm:subvertex>

<fsm:SubmachineState rdf:ID="CreateCalendarSubSM">
<fsm:submachine>

<fsm:StateMachine rdf:ID="CreateCalendar">
<fsm:comment>

Creates a calendar with the given set of photos
</fsm:comment>

</fsm:StateMachine>
</fsm:submachine>

</fsm:SubmachineState>
</fsm:subvertex>
<fsm:subvertex>

<fsm:SubmachineState rdf:ID="ExpensiveModeSubSM">
<fsm:submachine>
<fsm:StateMachine rdf:ID="ExpensiveMode">

<fsm:comment>prints a page per sheet</fsm:comment>
</fsm:StateMachine>

</fsm:submachine>
</fsm:SubmachineState>

</fsm:subvertex>
</fsm:CompositeState>

Figure 3-9, FSM snippet for PhotoAibumPrint service’s adaptive behaviours

At this level, the system is operating under the assumption that any adaptive

behaviour is a possible adaptive behaviour for a composite service. Hence, the system

is merely providing all the possible behaviours of the constituent services, and it is not

trying to provide any filtering of combination that might be inappropriate i.e.

conflicting adaptive behaviours with same name.

3.5.3 Web Service Management Process

The Web Service Management (WSM) process was designed to allow web

service managers to specify high-level (obligation type) policies for managing

adaptive (composite) services, and have these policies refined, generating enforceable

low-level policies. These low-level policies are then validated before being used at

run-time to dynamically manage adaptive web services.

The WSM process is composed of four activities: Management Policy

Specification, Management Policy Refinement, Enforceable Policy Generation, and

Management Policy Validation, as depicted in Figure 3-10.

56

Figure 3-10, Web service management process

The WSM process cycle starts with the Management Policy Specification

activity, which specifies the high-level policies needed to manage adaptive

(composite) services. The Management Policy Refinement activity then refines these

high-level management policies into mapping policies which are disseminated down

the service’s composition to the relevant constituent atomic services. Subsequently,

the Enforceable Policy Generation activity generates low-level enforceable policies

for the relevant constituent atomic services, which are enforced on these services to

manage their adaptive behaviours. Lastly, these enforceable policies are validated by

the Management Policy Validation activity to ensure there are no conflicting policies.

The Management Policy Specification activity specifies the management

policies to manage the adaptive behaviours of composite web services. These

management policies are high-level obligation type policies. The semantic

descriptions for web service (OWL-S) and their adaptive behaviours (FSM), which

was produced by the activities within the WSC process, are used as vocabulary to

specify management policies. The expression of these management policies is limited

to the terms of the semantic descriptions provided. This activity ensures that only

functionally valid management policies can be specified.

57

An example of a management policy for managing the PhotoAlbumPrint

service is depicted in Figure 3-11. This policy was specified to change the default

behaviour of the PhotoAlbumPrint service to use RemoveRedEye (functionality for

removing redeye from people in photographs) and CreateCalendar adaptive behaviour

when processing portrait photos. This policy is described in the Obligation Policy

Ontology model (see Appendix E), expressed in OWL. Details of this policy are

shown in the code below, depicting the use of the named adaptive behaviours as its

action.

<policy:Policy rdf:ID="PhotoAlbumPrintPolicyl">
<rdfs:coinment>Policy for this service to use removeredeye and

create calendar adaptive behaviours for processing portrait
photos</rdf s: coitiinent>
<policy:target rdf:resource=
"PhotoAlbumPrintProcess.owl#PhotoAlbumPrintProcess"/>
<policy:event>
<policy:SimpleEvent rdf:ID="PhotoAlbumPrintPolicylEventl"/>
</policy:event>
<policy:condition>
<policy:SimpleCondition
rdf:ID="#PhotoAlbumPrintPolicylConditionl">
<policy:subject rdf:resource="#CameraPhotoCategory"/>
<policy:predicate>
<policy:Predicate rdf:ID="equal"/>
</policy:predicate>

<policy:value>portrait</policy:value>
</policy:SimpleCondition>
</policy:condition>
<policy:action>
<policy:ComplexAction rdf:ID="PhotoAlbumPrintPolicylActionl">
<rdfs:first> <policy:AndList> <rdfs:first>
<policy:SimpleAction rdf:ID="PhotoAlbumPrintPolicylActionl01">
<policy:value>RemoveRedEye</policy:value>

</rdfs:first><rdfs:rest>
<policy:SimpleAction rdf:ID="PhotoAlbumPrintPolicylActionl02">
<policy:value>CreateCalendar</policy:value>
</policy:SimpleAction>
</rdfs:rest> </policy:AndList> </rdfs:first>
<rdf s: restx/rdf s: rest>
</policy:ComplexAction> </policy:action> </policy:Policy>

Figure 3-11, Management policy specifled for PhotoAlbumPrint web service

The objective of the Management Policy Refinement activity is to refine the

management policies specified for managing adaptive composite services. These

policies are refined according to the web service composition generating refined

policies, called mapping policies. These mapping policies, as the name suggests, map

high-level management policies to low-level enforceable policies (which are produced

by the next activity). These mapping policies are assigned to the relevant constituent

services to accomplish the policy refinement. This activity uses artefacts from the

58

WSC process to perform policy refinement and specifically for the generation of

mapping policies; artefacts used include web service syntactical description (WSDL),

web service semantic description (OWL-S), and adaptive behaviour’s formal

representation (FSM).

In order to satisfy the condition aspect of the high-level policy, specified for

the PhotoAlbumPrint Service, refined mapping policies must first be generated to

notify the (future) enforceable policy targeting the PhotoService to monitor its input

for value “portrait”. Furthermore, refined mapping policies also need to be generated

targeting the relevant serviees to notify that such condition occurred. These mapping

policies trigger (future) enforceable policies that will enforce the desired adaptive

behaviours. Figure 3-12 illustrates these two refined mapping policies produced by

this aetivity.

PhotoAlbumPrint Service (CompositeProcess)

Name Event Condition Action

PhotoAlbum
PrintPolicyl

ProcessEvent event{PhotoAlbumPrintPolicy! Event! CO)

PhotoAlbum
PrintPolicyl CU

PhotoAlbumPrint
Policy! Event! CUO

event(PhotoAlbumPrintPolicy! Event! aA)
&&
event(PhotoAlbumPrintPolicy! Event! bA)

PhotoAlbumPrint Service (CompositeProcess)

Name Event Condition Action

PhotoPolicytC PhotoAlbumPrint
Policyt Event! aA

event(PhotoRemove RedEyeEvent)

PhotoAlbumPrint Service (CompositeProcess)

Name Event Condition Action

PhotoAlbumPolicy! C PhotoAlbumPrint
Policy! Event! bA

event(PhotoAlbumCreateCalendarEvent)

Figure 3-12, Refined mapping policies for PhotoAlbumPrint composite web service

The Enforceable Policy Generation activity completes the policy refinement

process by generating low-level enforeeable policies needed to satisfy the high-level

management policies specified to manage adaptive composite services. These

enforceable policies are generated for the relevant refined mapping policies. They are

created to either monitor the inputs and outputs of constituent atomic services or to

enforce their adaptive behaviours. The generation of these enforceable policies is

based on the semantic and syntactical descriptions of the relevant atomic web service.

59

and the formal description (FSM) of the pertaining adaptive behaviour they are

enforcing.

Figure 3-13 shows the refined enforceable policy generated for the constituent

web service PhotoService to monitor its input PhotoCategory, and fires an event if

this input is of value “portrait”. This policy is triggered by

PhotoAibumPrintPoiicyiEventico event and if the condition is met, it generates an

event called PhotoAibumPrintPoiicyiEventicuo. Other policies were generated to

enforce the adaptive behaviours RemoveRedeye and CreateCalendar.

Photo Service (AtomicProcess)

Name Event Condition Action

PhotoPolicyt PhotoAlbumPrint
Policyt Event! CO

PhotoCategory ==portrait event(PhotoAlbumPrint
Policy! Event! CUO)

PhotoRemove
RedEyePolicyt

lnputEvent&&
PhotoRemove
RedEyeEvent

search Red Eye()&&
event(RemoveRedEye
State! Event)

PhotoRemove
RedEyePolicy2

ProcessingPhoto&&
RemoveRedEye
State! Event

redeyelocation > 0 removeRedEyeO

PhotoAlbum Service (AtomicProcess)

Name Event Condition Action

PhotoAlbum
CreateCalendar
Policyt

ProcessEvent&&
PhotoAlbumCreateCal
endarEvent

createCalendarO

Figure 3-13, Refined enforceable policies for the PhotoAlbumPrint web service

Although these activities are tedious, it can be seen later that the Management

Policy Refinement and Enforceable Policy Generation activities are performed

automatically by the relevant supporting tool. Thus, neither developers nor web

service managers need to expend time and effort performing these activities by hand.

Finally, in order to assure that adaptive web services can be deployed safely

with their enforceable policies, these policies must first be validated. The last activity

in the WSM process is the Management Policy Validation activity, which verifies that

the generated refined management policies enforce the behaviours of an adaptive web

service without any confliction. Confliction can occur if contradicting policies are

specified for the same adaptive service. This activity identifies any policy confliction

in order to remove them by re-specifying the management policies, so that there are

60

no conflicting policies among the generated policies. Once these enforceable policies

are validated, adaptive web services can be deployed together with these enforceable

policies to manage them. Policy confliction is a researched area which is outside the

scope of this thesis.

At this level, the system is operating under the assumption that any adaptive

behaviour is a possible adaptive behaviour to be used by the management policy.

Hence, the system is merely providing all the adaptive behaviours available in the

web services for management policy specification, and it is not trying to provide any

filtering of combinations that might be inappropriate. Thus, the system could generate

enforceable policies that are syntactically correct but semantically invalid. This is a

limitation in our approach, which could be addressed in fiiture work by expanding the

FSM model with taxonomy or semantic tags, that would allow a semantic filter

reasoner to prevent or filter out such inappropriate combinations, during management

policy specification.

3.6 Supporting Tools for the MAWS Methodology

It is fair to say that using the MAWS methodology manually would be tedious

and complicated, as can be seen from the snippet artefact examples produced by the

various activities from the MAWS methodology. In order to use the MAWS

methodology successfully, there is a need for supporting tools to accomplish the

activities. Before designing these supporting tools, a set of requirements needs to be

defined. In reality, there are three different specific users that can be identified which

will be using the MAWS methodology, namely web service developers, web service

composers, and web services managers.

3.6.1 Requirements for the Supporting Tools

A set of requirements for integrated tools to support the MAWS methodology

are outlined in the following sub-sections. These requirements are based on the needs

of the various MAWS methodology activities, in addition to the objectives of this

thesis and influences from the current state of the art (see Chapter 2). These

requirements can be divided into three categories (see Figure 3-14), i.e. those specific

to capturing semantic descriptions of web services, those specific to capturing

descriptions of web service’s adaptive behaviours, and those related to managing

61

adaptive web services using policies. These requirements can also be divided into

three different user roles: web service developers, web service composers, and web

service managers. Furthermore, a set of secondary requirements concerned with the

tool’s overall design were also identified.

Requirements for Web Services Semantic Description Environment

The functional requirements for designing a tool to semantically describe web

services were identified as:

• The tool should allow users to create semantic descriptions for atomic services

as OWL-S - derived from the Web Service Semantic Description activity;

• The tool should allow users to describe the composition of composite services,

including a description of their control flow and dataflow - derived from the

Web Service Composition Description activity;

A set of secondary requirements for designing this tool to semantically

describe web services are:

• The tool should be able to facilitate users in describing web services

semantically by providing a graphical user interface;

62

• The tool should be able to persistently store the web service’s semantic

description (OWL-S) in a consistent format as OWL;

Requirements for Web Service’s Adaptive Behaviour Description Environment

The functional requirements for designing a tool to semantically describe

adaptive behaviours of web services were identified as:

• The tool should allow users to create a FSM model (shell) for web services so

as to contain the descriptions of their adaptive behaviours - derived from the

Web Service Adaptivity Description activity;

• The tool should allow users to create sub-FSMs (child FSM to be contained

within FSM shell) representing adaptive behaviours of web services - derived

from the Web Service Adaptivity Description activity;

• The tool should allow users to describe the adaptive behaviours of web

services as FSM, using states, transitions, and events - derived from the Web

Service Adaptivity Description activity;

• The tool should be able to automatically aggregate the adaptive behaviours of

the constituent services of composite services according to their composition -

derived from the Web Service Adaptivity Aggregation activity;

A set of secondary requirements for designing this tool to describe adaptive

web services are:

• The tool should be able to facilitate users in describing web service’s adaptive

behaviours by providing a graphical user interface;

• The tool should be able to persistently store the semantic description of

adaptive behaviours belonging to web services, as FSM, in a consistent format

as OWL;

Requirements for Web Service Management Policy Creation Tools

A set of functional requirements for designing a tool to create policies to

manage the adaptive behaviours of web services were identified as:

63

• The tool should allow users to specify high-level management policies to

manage the adaptive behaviours of web services - derived from the

Management Policy Specification activity;

• The tool should be able to express management policies as obligation policies

with events, conditions, and actions - derived from the Management Policy

Specification activity;

• The tool should limit users in specifying management policies to be expressed

with the description of the managed adaptive web service - derived from the

Management Policy Specification activity;

• The tool should provide users, when specifying policies, with the appropriate

vocabulary of adaptive behaviours as their action, web service’s parameters as

their condition - derived from the Management Policy Specification activity;

• The tool should be able to automatically refine management policies into

mapping policies according to the web service’s composition and the

description of their adaptive behaviours - derived from the Management

Policy Refinement activity;

• The tool should be able to automatically generate low-level enforceable

policies from the refined mapping policies assigned to constituent adaptive

services according to their semantic descriptions - derived from the

Enforceable Policy Generation activity;

A set of secondary requirements for designing a tool to create management

policies to manage the adaptive behaviours of web services were identified as:

• The tool should be able to persistently store the management policies and the

enforcement policies in a consistent format;

• The tool should have a graphical user interface that facilitates the user in

specifying management policies and that shows details of the web service to

be managed, and their adaptive behaviours

• The tool should be able to enable users to specify management policies for

managing the adaptive behaviours of web services by preventing them from

making syntactical mistakes and helping users when specifying policies by

providing the appropriate vocabulary;

64

3.6.2 Architecture of the Supporting Tools

An overview architectural design is presented for a set of integrated tools

needed to support specific activities in the MAWS methodology. The requirements

identified above provide key guidance in determining the overall architecture of these

tools.

Rather than developing a single application, the preferred choice was to design

a set of integrated tools to suit the different categories of users in the development

cycle, and to best support specific activities in the MAWS methodology. Figure 3-15

shows a set of integrated tools which was designed and includes:

i. a tool for describing both atomic and composite web services semantically as

OWL-S;

a tool for providing a formal representation of the adaptive behaviours of

adaptive (composite) services as FSM;

a tool for authoring high-level management policies for adaptive (composite)

services and automatically generating refined mapping and enforceable

policies to manage the adaptive behaviours of these adaptive composite

services.

11.

111.

User Tool Artefacts Produced/Consumed

65

Figure 3-15, Design architecture of the set of integrated tools for supporting MAWS methodology

In particular, the first tool is a Web Service Description Editor (WSDE),

which was designed with the objective of allowing developers to semantically

describe web services as OWL-S. This tool produces OWL-S descriptions for both

atomic and composite web services. The WSDE tool expects atomic web services to

be already implemented and to have their syntactical aspects described as WSDE and

makes use of these WSDE descriptions when producing semantic descriptions for

web services i.e. grounding model of OWE-S. This tool describes the control flow and

data flow as OWE-S when describing composite services. It is designed with a

graphical user interface to facilitate users in viewing and editing semantic descriptions

of web services.

The second tool is a Web Service Adaptive Behaviour Editor (SABE), which

allows developers to describe the adaptive behaviours of adaptive web services as

FSMs. This tool takes as input semantic descriptions of web services as OWE-S. The

SABE tool generates a FSM for an adaptive web service which encompasses all the

FSMs describing each of the service’s adaptive behaviours. This tool is designed with

a graphical user interface to facilitate users in describing adaptive behaviours of these

adaptive web services. The SABE tool allows users to view and edit adaptive

behaviours belonging to these web services as FSM. In addition, the tool’s user

interface allows users to view the semantic descriptions of web services thereby

putting the adaptive behaviours into context with the adaptive web services. For

adaptive composite services, this tool automatically aggregates the adaptive

behaviours of their constituent adaptive web services. This aggregation process is

performed in a reversed hierarchical manner and it produces a FSM, of similar format

as of its constituent services, for the adaptive behaviours of a composite service.

The third tool is a Web Service Management Policy Editor (SMPE), which

allows users to specify management policies to manage adaptive composite services.

The SMPE tool takes as input adaptive web services syntactically described as

WSDE, their semantic descriptions as OWE-S, and their adaptive behaviours

described as FSM. This tool uses these descriptions as policy vocabulary to express

the management policies being specified and for auto-generating refined (mapping

and enforceable) policies. The SMPE tool is designed with a graphical user interface

to facilitate the user in specifying high-level management policies for adaptive

66

composite services; it also allows users to view the semantic descriptions of adaptive

web services.

3.6.3 Supporting the MAWS methodology

Figure 3-16 shows how the supporting tools designed and described in Section

3.6.2 support the various activity of the MAWS methodology.

Figure 3-16, How the designed tools support the MAWS methodology processes.

As described in the MAWS methodology section, see Section 3.4, the first

step, WSD, contains three activities, two of which can be supported by the proposed

tools. The first activity, Web Service Syntactical Description activity, can be

supported by the web service container, which produces WSDL descriptions for web

services. The proposed tool WSDE supports the second activity, Web Service

67

Semantic Description activity, producing an OWL-S description for web services. The

Web Service Adaptive Behaviour Description activity is supported by the proposed

SABE tool. The SABE tool produces FSM to describe the adaptive behaviours within

adaptive atomic services.

The second step in the MAWS methodology, the WSC process, contains three

activities, two of which are supported by the designed tools. The Web Service

Composition Description activity is supported by the WSDE tool which semantically

describes the composition of composite web services as OWL-S. Whereas, the Web

Service Adaptivity Aggregation activity is supported by the SABE tool, which

automatically aggregates the adaptive behaviours of the constituent adaptive services

described as FSM.

The third step in the MAWS methodology, the WSM process, contains four

activities, three of which are supported by the designed SMPE tool. The SMPE tool

supports the Management Policy Specification activity by allowing users to specify

management policies to manage adaptive (composite) services. This tool also supports

the Management Policy Refinement activity by automatically refining the specified

policies according to the description of the adaptive web service. It produces mapping

policies which map the high-level management policies to low-level enforceable

policies. Furthermore, this tool supports the Enforcement Policy Generation activity

by automatically generating enforceable policies for the constituent adaptive atomic

services so as to manage their adaptive behaviours.

3.7 Summary

This chapter has illustrated how the MAWS methodology semantically

describes web services and their adaptive behaviours, composing them into composite

web services and aggregating their adaptive behaviours, as well as specifying

management policies, refining these policies and generating enforceable policies to

manage the described adaptive composite services.

A set of identified requirements and an architecture design for a suite of

integrated tools to support the MAWS methodology was presented in this chapter. An

overall picture of the architecture has been given, focusing on how the various tools

support the MAWS methodology described. A set of tools were proposed as

68

supporting tools for the MAWS methodology together with a description of their

architecture. A detailed discussion of the implementation of these tools is carried out

in the next chapter, Chapter 4.

69

4 Implementation of Integrated Tools

4.1 Introduction

The MAWS methodology was described in the previous chapter - Chapter 3,

and three tools were identified so as to support this methodology. The proposed

integrated tools are:

i. Web Service Semantic Description Editor (WSDE), a tool that describes the

semantic description of atomic web services and the composition description

of composite services expressed as OWL-S;

ii. Web Service Adaptive Behaviour Editor (SABE), a tool that describes the

adaptive behaviours belonging to atomic web services and that automates the

aggregation of these behaviours for composite services;

iii. Web Service Management Policy Editor (SMPE), a tool responsible for the

specification of high-level management policies and for the refinement of

these policies and generation of low-level policies to manage these adaptive

behaviours.

These integrated tools facilitate web service developers and managers to

describe adaptive web services, specify high-level management policies for them, and

auto-generate refined low-level enforceable policies to manage these adaptive web

services.

This chapter describes the design and implementation of this suite of

integrated tools following the requirements identified in the previous chapter. A

detailed description is provided of all the main components within each tool, and any

issues encountered in the implementation of these tools are highlighted. Next, a step

by step demonstration of how to use these integrated tools is presented. Finally, a

policy evaluation platform that was implemented to provide the necessary runtime

support for evaluating adaptive web services and their management policies during

runtime is described.

70

4.2 Design of Integrated Tools

These tools were designed as a component based architecture with a Graphical

User Interface (GUI) and an Ontology interpreter to parse and reason about the

semantic descriptions of adaptive web services. The GUI facilitates the users in

viewing and editing the semantic descriptions of adaptive web services or in

specifying management policies for these adaptive web services.

These tools were implemented solely in Java [76] allowing them to be used

over several platforms since Java is a platform independent language. The GUI of

these tools was implemented with Swing [44]: a GUI toolkit for Java that provides

widgets such as text boxes, buttons, panels, and tables. Swing widgets are designed to

be consistent across all platforms and considered more sophisticated GUI components

than the earlier Abstract Window Toolkit (AWT) [43].

Jena [46], a toolkit which provides a programmatic environment for RDF,

RDFS and OWL was used in the implementation of these tools as the Ontology

interpreter. Jena was used for interpreting and reasoning about ontological

descriptions expressed in OWL. Jena provided these tools with the ability to read,

parse, interpret, and save the semantic descriptions related to adaptive web services

and their management policies. By using Jena, these tools can read and write ontology

descriptions as OWL instances to file, database, or memory. Reading and writing to a

file was the preferred option as it was simple to use and yet provided persistence.

4.3 Design and Implementation of the WSDE tool

The Web Service Description Editor (WSDE) tool allows developers to

describe web services semantically, producing an OWL-S description for both atomic

and composite web services. This tool was developed to support the SABE and the

SMPE tools. The WSDE tool is not novel in describing web service as OWL-S, but it

does provide a user interface for describing web services which is consistent with the

other tools developed.

71

Figure 4-1, Architecture of the WSDE tool

This tool was implemented as a component based architecture, as depicted in

Figure 4-1, with the following main components:

• Ontology Interpreter Component, for interpreting and persisting web services

descriptions model as OWL-S;

• Web Service Viewer Component, for allowing users to view web service’s

semantic details;

• Web Service Editor Component, for allowing users to create or edit web

services semantic descriptions and their details;

These components are described in detail in the next sub-sections below.

This tool was implemented with a Graphical User Interface (GUI) which helps

developers to view and edit the particulars of web service semantic descriptions. This

tool allows developers to semantically describe the parameters of web services and

the composition of composite web services. In addition, developers can save the web

service description as an OWL file. This tool utilises an OWL reasoner to read or save

web service’s semantic descriptions, specified in OWL-S, to an OWL file in lexical

form. A screenshot of the WSDE tool is shown in Figure 4-2.

72

= WSDE - Web Service Description Editor □0®
I Die Help I

FI PhotoMbumPrintProcess □‘d' m
Service Structure
V Q WebService

^ -3 PhotoAlbumPrintService
9 % PhotoAItiumPrintProcess

? .i- Sequence
‘ilj PhotoService
% PhotoAlbumSeivice

~ % PrIntSeivice

Q
Process Description Service Node Description

t <a Inputs ProoBitv I Value
»- ^ CameraPhotos Name If:ameraPhotos

CameraPhotoSlze I Type p I linput
CameraPhotoCategory B Definition I ^ I jstrlng s

f G Outputs WsdlName iphotos —
% AlbumSize w Unk Process IPhotoServIce ▼

^ata Flow
Process Parameter Process Parameter

yigtpSeivice RawPhotos i; iPhotnAlbumPrintProcess pameraPhotos
PhotoService PhotoCategoiy IPhotoAlbumPrintProcess CameraPhotoCategory
PhotoService PhotoSIze Ph otoAl b umPrtntProcess CameraPhotoSlze
PhotoAlbumServIce Album Photos c PhotoService ProcessedPhotos
PrIntSeivice DocumentName PhotoAlbumServIce PhotoAibum
PrlntServIce NumbarOtPages PhotoAlbumServIce PhotoAlbumSIze
PrlntSeivtce NumberOfColours PhotoAlbumServIce PhotoAlbumColours

Statue: Tree selection is CameraiPhotos (Input)

Figure 4-2, A screenshot of the WSDE tool

The following panels are depicted in Figure 4-2 (seen in an anti-clockwise

rotation starting with the top left panel):

A. Web service composition detail panel, which displays the composition of

composite web ser/ices i.e. the control flow of a composite service;

B. Web service process detail panel, which displays the details of a selected

service (termed as process in OWL-S);

C. Web service data flow detail panel, which displays the data flow of a

composite service;

D. Service node description panel, which allows users to edit the details of

selected service nodes.

4.3.1 Ontology Interpreter Component

The Ontology Interpreter component provides the functionality for parsing,

interpreting, and saving semantic descriptions of web services based on OWL. This

component uses Jena to parse, interpret, and save ontological description of web

73

services (as OWL-S). By using Jena, this component is able to read and write

ontology descriptions as OWL instances to an OWL file in lexical form.

Although Jena can read and write ontology descriptions from OWL files in

lexical form, it cannot interpret them without an ontology schema and logic code to

reason about them. This component was implemented with a sub-component to

interpret the Ontology model used by the WSDE tool. This sub-component contains

the necessary Ontology schema to interpret and reason about the semantic web service

descriptions as OWL-S.

An internal representation of a semantic web service description model was

created in order to facilitate the visualisation of the web service description. This

component performs better with an internal representation than using information

taken directly from the web service Ontology model since the internal representation

doesn’t require to be interpreted every time it is called. This internal representation of

web services is populated by this component once the Ontology model instance is

interpreted.

When saving semantic web service deseriptions, this sub-component uses the

OWL-S Ontology schema to create an instance of OWL-S Ontology model for a

particular web service and save it in an OWL file in lexical form. The description of

the web service is taken from their internal representation, and necessary OWL-S

specific information is included into the Ontology model. In the case of a composite

web service, this process saves the web service deseription as OWL-S Ontology

model in a hierarchical manner starting from the topmost web service to every last

constituent atomie web service while also including details of their control flow and

dataflow.

4.3.2 Web Service Viewer Component
The web service viewer component uses panels to display the details of the

web service’s semantic description. These panels are Java Swing widgets, which

follow the Model View Controller (MVC) architectural pattern [77]. MVC divides the

functionality into three parts: model, which handles the model to be displayed; view,

which handles the displaying of the model; and controller, which handles the events

such as actions from the user. It provides the view aspect of MVC by inheriting from

the widget component and extending it. These widgets expect the model and control

74

aspects of MVC to be implemented and provided to them, using their API, before they

can be instantiated. The model aspect of the MVC for the swing widgets is

implemented as the internal representations of web services. This visual component

contains the implementation of the actions for each of the events from the widgets, i.e.

the control aspect of MVC.

This component displays the details of web services to the user using three

panels. The first panel displays the control flow of a web service in case this service is

a composite one. The second panel is a context sensitive panel which displays the

details of a service selected from the first panel. The third panel displays the dataflow

of a service in case this service is a composite service.

Service Structure
9 Q WebService

9 PhotoAlbumPrintService
9 % PholoAibumPrintProcess

9 Sequence
% PhotoService
^ PhotoAlbumSetvice
% PrintService

Figure 4-3, Web service composition detail panel

The first panel, depicted in Figure 4-3, displays the web service’s composition

details using a tree widget customised with different icons for services and

composition constructs. The first node is a node called “WebService” which can

contain nodes representing a web service, e.g. PhotoAlbumPrintService. Based on the

OWL-S definition, process is used to define the making of a web service, where it

describes its type and its parameters [36]. In this case PhotoAlbumPrintProcess is an

example of such process, of type composite.

Composite services must contain a construct node, and a construct node can

contain other construct nodes and service nodes depending on the type of construct

node. For example, a sequence construct node can contain several web services such

75

as PhotoService, PhotoAlbumService, and PrintService. However, leaf nodes must be

atomic services otherwise tbe model is incomplete. Tbe nodes in tbe tree were

implemented to have a name wbicb is displayed, and a type wbicb is used to

determine wbat icon should be displayed. For example, a cogs icon is used to

represent web services, and a pipe-joint icon is used to represent web service’s

constructs. An action was implemented for when a service node is selected which

causes its details to be loaded in the next panel.

This panel also has a context sensitive property pane for each of the nodes,

which allows users to add or remove web service’s constructors and web service

nodes. Depending on which node is selected, the appropriate action is enabled. For

example, if a composite service node is selected, then the available options are to add

a constructor and to remove the service node.

Process Description
9 Q Process

9 % PhotoAlbumService
9 Q Inputs

% AlbumPhotos
9 <3 Outputs

% PhotoAlbum
% PhotoAlbumSize
% PhotoAlbumColours

Figure 4-4, Web service process detail panel

The second panel, depicted in Figure 4-4, displays the details of a web service.

Its title is “process description” since process is used to define the making of a web

service in OWL-S [36]. This panel uses a tree widget customised with different icons,

and provides virtual nodes to display, in a categorical manner, the details of a web

service, i.e. virtual nodes are not part of the web service model. These virtual nodes

are Inputs and Outputs. The service’s parameters are grouped under the virtual nodes

Inputs and Outputs based on their types. Thus, this panel displays the inputs and

outputs details of a selected service, e.g. PhotoAlbumService has an input:

AlbumPhotos, and outputs: PhotoAlbum, PhotoAlbumSize, and PhotoAlbumColours.

The second panel also has a context sensitive property pane for each of the

nodes, which allows users to add or remove parameters of a service. Two functions

were implemented for this property pane, namely the add parameter (input or output),

and the remove parameter. Depending on which node is selected, the appropriate

action is enabled.

76

Data Flow
Process Parameler 1 Process Parameter

PholoSeivlc* ” ThotoAlbumPrinlProcess 'CameraPholdg' ’
PhotoSetvfce PhotoCategory PhotoAIbumPrintProcess CameraPhotoCategory
PhotoService PhotoSize PhotoAlbumPrintProcess CameraPhotoSize
PhotoAlbumService •AlbumPhotos 'PhotoService ProcessedPhotos
PrintService OocumentName PhotoAlbumService PhotoAlbum
PrIntService ^NumberOtPages

NumberOTColours
PhotoAlbumService iPhotoAJbumSize

PrintSeivice PhotoAlbumService Photo^bumColours __
Figure 4-5, Web service data flow detail panel

The third panel, shown in Figure 4-5, displays the dataflow information for a

composite service using a table with four columns. It displays the dataflow mapping

between two parameters of two different services within a composite service or

mapping between parameters of a constituent service and the composite service itself.

This table displays the origin service in its first column, the origin service’s parameter

in the second column, the destination service in the third column, the destination

service’s parameter in the fourth and final column. For example, the last line informs

the user that the NumberOfColours parameter of the Print Service maps to the

PhotoAlbumColours parameter of the PhotoAlbum Service.

4.3.3 Web Service Editor Component
The web service editor component allows users to view and edit the web

service semantic description. It provides a graphical user interface to aid developers in

semantically describing web services. This component also uses Java Swing widgets

and follows the MVC pattern. This component has a panel that is context sensitive,

used for displaying and editing the details of a selected service node from the Web

Service Viewer component. Hence, service nodes or their (input and output)

parameters can be added to the panels in the Web Service Viewer component, and the

details of these nodes can be edited here. This panel uses a table widget with two

columns; where the first column shows the node’s properties and the next column

shows the values of these properties. Figure 4-6 shows the details of the input

parameter called CameraPhotos. This is an input parameter for the PhotoAlbumPrint

Service. The panel depicts the parameter type, its grounding information, and its

dataflow information mapping to Photo Service.

Service Node Description
Propertv Value

Name CameraPhotos
Type Input
Definition string
Wsdl Name photos
Link Process Photo
Link Param RawPhotos

77

Figure 4-6, Web service node description detail panel

4.4 Design and Implementation of the SABE tool

The Service Adaptive Behaviour Editor (SABE) tool allows web service

developers to semantically describe the adaptive behaviours of adaptive web services.

It consumes semantic web service descriptions (OWL-S) in order to reason about

these web services. This tool allows developers to describe each of the adaptive

behaviours pertaining to these web services and produces a formal representation for

them expressed as FSM. It assumes that these behaviours can be described using

events, states, and transitions even if not necessarily implemented as such.

In order to use a consistent format for describing adaptive web services, FSM

was modelled as Ontology model. It also has the beneficial advantage that this tool

can use the same reasoner to reason about the descriptions of web service, as well as

their adaptive behaviours. The descriptions of these adaptive behaviours (FSM) are

also associated with the semantic web service description (OWL-S). This association

is through the addition of a property, called hasFSM, to process class in the OWL-S

model. Thereby the semantic web service description is enriched with a description of

their adaptive aspects.

Figure 4-7, Architecture of the SABE tool

78

This tool was implemented as a component based architecture, as depicted in

Figure 4-7, with the following main components:

• Ontology Interpreter Component, for interpreting and persisting adaptive web

service’s descriptions modelled using OWL;

• Web Service Viewer Component, for allowing users to view web service

descriptions and their details;

• Adaptive Behaviour Editor Component, for allowing users to create and edit

descriptions of adaptive behaviours belonging to web services;

• Web Service FSM Generator Component, for automatically generating a FSM

model to contain sub-FSMs representing the web service’s adaptive

behaviours;

• Adaptive Behaviour Aggregator Component, for aggregating the FSMs

representing adaptive behaviours of the constituent services for a composite

service.

These components are described in detail in the sub-sections below.

The SABE tool was designed with a Graphical User Interface (GUI) that

allows developers to view the particulars of web service’s semantic descriptions (as

OWL-S), as well as to browse and edit the details of FSM describing adaptive

behaviours pertaining to the web service in question. Figure 4-8 shows a screenshot of

the SABE tool.

79

T SABF - Service Adaptive Behaviour Editor

tie Help

Q PhotoAlbumPrintProcess

Service Structure iFiniteStateMachine Structure
9 ^ WebService

? -3 PhotoAlbumPrintSeivice
9 % PhotoAlbumPrintProcess

9 ^ Sequence
^ PhotoService
^ PhotoAlbumService
% PrintService

0

I 9 FiniteStateMachine
j 9 ^ PhotoAlbumPrintProcessFSM

I, a Events
I o- • initialState
^ [S IdleState

9 S] ProcessState
^ ProcessToOutput

9 ^ HighPhotoQuality

o- • HighPhotoQualityInitialState
• hlahPhotoQualitvStatel!

tt EconomyMode
o-1| BlackWhItePhoto
^ CreateCalendar
tt IntermediateMode

^ ExpensiveMode
^ CreatePostcard

^ E InputState
E OutputState

s
Process Description IFiniteStateMachine Description
9 Q Process

9 % PhotoAlbumPrintProcess
9 G StateMachIne

IQ9 PhotoAlbumPrintProcessFSM
9 Q Inputs

^ CameraPhotos
^ CameraPhotoSize
^ CameraPhotoCategory

<3 Outputs

B

state Name
Property

State Type
State Activity

Value
HighPhotoQualltyStatel
FInalState
8etResolutlon(hlgh)

0
Process Parameter Process ’W'

■ Ban

Parameter
^otoService
‘hotoService
^hotoServlce

PhotoAlbumService
*rint8ervlce
frjntService
’rintService

RawPhotos
nIotoOategory
PhotoSIze
.AlbumPhotos
jDqcumentName
NumberOtPages
iNumberOfColours

|SS

PhotoAlbumPrintProcess
,PhotoAlbumPrintProcess
PhotoService
PhotoAlbumService

imeraPhotos
^meraPhotoCategory
lameraPhotoSbe

IPhotoAlbumServIce
PhotoAlbumService

ProcessedPhotos
,PhotoWbum_____
•PhotoAlbumSIze

Status; Tree select)^ is HighPhcrtoQuattyStatel (FInalState)

Figure 4-8, A screenshot of the SABE tool

The following panels are depicted in Figure 4-8 (seen in an anti-clockwise

rotation starting with the top left panel):

A. Web service composition detail panel, which displays the composition of

composite web services i.e. control flow;

B. Web service process detail panel, which displays the details of a selected

service (termed as process in OWL-S);

C. Web service data flow detail panel, which displays the data flow of a

composite service;

D. FSM description detail panel, which allows users to edit the details of a

selected node from the FSM, e.g. specifying the action of a state;

E. FSM structure detail panel, which allows users to add and edit FSMs to

represent the service’s adaptive behaviours.

80

4.4.1 Ontology Interpreter Component

The Ontology Interpreter component provides the functionality for parsing,

interpreting, and saving semantic descriptions of adaptive web services based on

OWL. These semantic descriptions are semantic web service description (OWL-S)

and their adaptive behaviour’s description (FSM). It uses Jena to parse, interpret, and

save ontological descriptions related to adaptive web services. This is the same

component used by WSDE tool, however enhanced for interpreting semantic

descriptions of adaptive behaviours.

This component has been enhanced to have two sub-components to interpret

each of the Ontology models used by the SABE tool: web service interpreter (see

section 4.4.1), and adaptive behaviour interpreter. These sub-components contain the

necessary Ontology schema to reason about the relevant descriptions. They also

contain functions (logic code) to read from OWL description files, interpret OWL

descriptions, and also to save semantic descriptions to OWL files. One sub

component was implemented to interpret the semantic web service descriptions as

OWL-S. The other sub-component was implemented to interpret the ontology used to

describe adaptive behaviours modelled as FSM.

To improve the visualisation of these descriptions and conform to MVC
pattern, an internal representation for each of the models used was created. These

internal representations are populated once their respective models are interpreted. In

the same marmer, information is extracted from them when persisting (saving) these

descriptions; information which is translated into Ontology models according to their

Ontology schema. This provides the flexibility to use an alternative model

representation in the future if so desired.

A syntactical verification of the FSM model is performed during the persisting

process to ensure that the FSM model of the adaptive behaviour described by the user

is syntactically complete. This verification process checks that every state of the

appropriate type has an action, that every transition has its details described, and that

every event contains an event source. It also checks that every FSM has an initial state

and that a transition is assigned to the relevant states, e.g. an initial state must have a

single transition with this state as its source, and that no transition was assigned to a

final state, i.e. a transition with a final state as its source state.

81

Once the FSM model passes the syntactical verification, this model is

persisted in an OWL file and the sub-component returns to the user a report of

success. In case the verification fails, it returns a report with a description of the fault

in the FSM model. For example, the initial state of the HighPhotoQuality adaptive

behaviour must have at least one transition, or State 1 of this adaptive behaviour is

missing its activity value.

4.4.2 Web Service Viewer Component

The Web Service Viewer component, described in section 4.4.2, displays the

details of web services to the user using three panels. The first panel displays the

control flow of a web service in case this service is a composite one. The second

panel displays the details of a selected service. The third panel displays the dataflow

of a service in case this service is a composite service. This component was enhanced

to operate in read only mode for the SABE tool, which prevents users using the SABE

tool from modifying the web service description.

Process Description
? a Process

<f ^ PhotoAlbumService
9 Q StateMachine

[|3 PhotoAlbumServiceFSM
9 Q Inputs

^ AlbumPhotos
? Q Outputs

% PhotoAlbum
% PhotoAlbumSize

PhotoAlbumColours

Add StateMachine
Remove StateMachine

Figure 4-9, Web service process detail panel

In addition, the second panel, depicted in Figure 4-9, has been updated to

display the details of adaptive web services. This panel, now has an extra virtual node

cilled StateMachine. The StateMachine node can contain a single node representing

the FSM model of this web service’s adaptive behaviours, e.g. a node called

PhotoAlbumServiceFSM.

This panel has a context sensitive property pane for the StateMachine node,

which allows users to remove the FSM model created for this web service and to

generate the FSM model to contain the descriptions of adaptive behaviours for this

web service, and in cases of composite web services it automatically aggregates the

F5M, describing the adaptive behaviours pertaining to their constituent web services.

82

4.4.3 Adaptive Behaviour Editor Component

This component allows users to view and edit adaptive behaviours belonging

to adaptive web services modelled as FSM. It provides a graphical user interface to

aid developers in describing adaptive behaviours of web services. This component

also uses Java Swing widgets and follows the MVC pattern. This component has two

panels; one panel for displaying and editing the structure of the FSM model using a

tree widget; and a second panel for displaying and editing the different FSM model

aspects using a table.

FiniteStateMachine Structure
9 Q FiniteStateMachine

9 US PhotoAlbumPrintProcessFSM
o- ^ Events
o- ® InitialState
o- S IdieState
9 ® ProcessState

^ ProcessToOutput
9 ^ HighPhotoQuality

9 « HighPhotoQualityinitialState
^ HighPhotoQualityInitialStatelnitialTransition

^ HighPhotoQualityStateT
o- ^ EconomyMode
0- BlackWhitePhoto
fr- ^1 CreateCalendar
o- ^ IntermediateMode
o- tt ExpensiveMode
o- ^ CreatePostcard

<^[1 InputState
o- ® OutputState

Add Transition

Remove State

Figure 4-10, FSM structure detail panel

The first panel, depicted in Figure 4-10, displays the structure of the FSM

model describing the adaptive behaviours of web services using a tree widget. The

FSM model generated for a web service contains four composite states, namely

IdieState, InputState, ProcessState, and OutputState. Sub-FSMs representing adaptive

behaviours can be added under these states. For example, this panel is displaying the

adaptive behaviours under ProcessState, such as HighPhotoQuality and

EconomyMode among others. This panel has a context sensitive property pane which

changes depending on the node selected and the child node it contains. The main

functions provided by this property pane are to create valid child node types or to

delete the node itself.

This panel aids users in creating a FSM for describing adaptive behaviours.

More importantly, it attempts to prevent users from creating a functionally incorrect

83

model. For example, a property pane for HighPhotoQualityStatel provides only the

option to remove the state since this is a state of type FinalState, and final states

should not have any transitions originating from them, i.e. transitions with these states

as their source state, therefore this component prevents users from adding a transition

to such state.
FiniteStateMachine Description

Property Value
State Name HighPhotoQualityStatel
State Type FinalState
State Activity setResolution(high)

Figure 4-11, FSM description detail panel

The second panel is context sensitive and displays the details of a selected

node (e.g. HighPhotoQualityStatel) from the first panel. This panel uses a table

widget with two columns, where the first column shows the node’s properties and the

next column shows the values of these properties. Figure 4-11 shows this panel in

action for a selected node where its type is FinalState and this state activity is

“setResolution(high)”. This panel allows users to edit the properties of a selected node

and aids the user when editing by providing a dropdown menu with appropriate

options, for example, a dropdown menu of the different types of states. It also

highlights in red properties that are mandatory and not yet completed.

4.4.4 Web Service FSM Generator Component

The Web Service FSM Generator component provides the functionality for

generating a FSM model for a web service so as to contain sub-FSMs representing

adaptive behaviours pertaining to this web service. This component produces a FSM

with four composite states, namely IdleState, InputState, ProcessState, and

OutputState, representing the various states of a running web service [31]. Sub-FSMs

can then be added to these states, by the user, to represent the different adaptive

behaviours of a web service, arranged according to the states provided. This

component generates transitions that link these states together, and events that trigger

these transitions. Figure 4-12 shows a diagram of this FSM model. Adaptive

behaviours shown in Figure 4-10, such as EconomyMode, would be attached to the

Process State node in this diagram.

84

Figure 4-12, FSM model with various states of a running web service

4.4.5 Adaptive Behaviour Aggregator Component

The Adaptive Behaviour Aggregator component provides the functionality for

automatically aggregating the adaptive behaviours for adaptive composite services. It

automatically aggregates the FSM models representing the adaptive behaviours

belonging to the constituent adaptive web services for a composite web service. This

component utilises the internal representation of web services and the internal

representation of their adaptive behaviours to automatically aggregate these adaptive

behaviours for composite services. These adaptive behaviours are aggregated in a

reversed hierarchical manner, i.e. they are composed together at each level of the

hierarchy, starting from the leaves and working to the parent node(s) of the service

composition hierarchy.

The algorithm for this automatic aggregation of adaptive behaviours is as

follows:

1. Search for atomic web services within the composite web service’s description

starting from the topmost web service;

2. Once all the atomic services are found, retrace back to the topmost web

service;

3. On the return path, if any web service has a FSM associated to it

a. Generate a FSM for the parent web service (if one is not present)

85

b. Search each of the states (Idle, Input, Process, Output) for sub-FSMs,

describing adaptive behaviours of this web service;

c. For every FSM found, copy all its contents (state, event, transitions) to

the parent web service;

This algorithm aggregates the FSMs representing the adaptive behaviours

belonging to the constituent atomic services for a composite web service. The

composite web service’s semantic description is then associated with a resultant FSM

containing all the adaptive behaviours pertaining to its constituent adaptive atomic

services.

4.5 SMPE tool and its components

The Service Management Policy Editor (SMPE) tool allows web service

managers or web service users to specify management policies, obligation type

policies, which will manage adaptive web services. This tool consumes the semantic

description of web services, and the formal representation of their adaptive

behaviours. These inputs provide the vocabulary needed for specifying high-level

management policies, and for the automated refinement process of these policies,

generating low-level mapping and enforceable policies to manage adaptive web

services.

The SMPE tool parses semantic web service descriptions of adaptive web

services, described in OWL-S, and their adaptive behaviours descriptions, described

as FSM. This tool was also implemented with a GUI, which allows its users to view

details of web services, details of their adaptive behaviours, and more importantly to

view and edit management policies for managing these adaptive web services. Once

management policies are specified, this tool allows these policies to be automatically

refined and the generated low-level policies are saved as Obligation Ontology model

to an OWL file. This tool also persists (saves) the management policies specified to a

file so that users can load those policies into the tool in the future.

86

Figure 4-13, Architecture of the SMPE tool

This tool was implemented on component based architecture, as depicted in

Figure 4-13, with the following main components:

• Ontology Interpreter Component, for interpreting and persisting adaptive web

service’s descriptions and management policies modelled using OWL;

• Web Service Viewer Component, for allowing users to view the details of web

service semantic descriptions;

• Adaptive Behaviour Viewer Component, for allowing users to view

descriptions of adaptive behaviours pertaining to adaptive web services;

• Management Policy Editor Component, for allowing users to specify high-

level management policies for adaptive web services;

• Management Policy Refinement Component, for automatically refining high-

level management policies, and generating low-level enforceable policies as

well as mapping policies which maps them together.

These components are further described in the sub-sections below.

This tool was designed with a GUI to assist users in specifying the particulars

of high-level management policies for managing the adaptive behaviours of adaptive

web services. Figure 4-14 shows a screenshot of the SMPE tool.

87

SMPE - Service Management Policy Editor
£iie Option Help

3 PhotoAttHjmPhntProcess o‘ di

Service Structure FiniteSteteMachine Structure Policies
y Q WebSeivice

y -3 PhotoAlbumPrintService
y % PhotoAttiumPrintProcess

t >4- Sequence
% PhotoService
% PhotoAlbumService
^ PrintService

0

y FiniteStateMachine
y ^ PhotoAlbumPrintProcessFSM

G Events ------------
o- « InItialState p
o- S IdleState I ^ I
? f^lProcessStatel

^ ProcessToOutput
0- ^ HighPhotoQualit/
0“ ^ EconomyMode
o- ^ BlackWhitePhoto
«- CreateCalendar

IntermediateMode
o- ExpensiveMode
»-CreatePostcard
[5 InputState
E OutputState

y Policies
y ^ PhotoAlbumPrintProcessPolicyl

>■ S Events
y a Conditions

PhotoAlbumPrintProcessPolicyl Conditioni
y «3 Actions

f £ PhotoAlbumPrintProcessPolicyl Actioni
y

PhotoAlbumPrintProcessPolicyl Actioni 01
^ PhotoAlbumPnntProcessPolicyl Actioni D2

Process Description FiniteStateMachine Description Policy Description
y fi3 Process

y % PhotoAlbumPrintPfOcess
a StateMachIne ,____
a Policy

^ Inputs
®- a Outputs

Property
ProceseStato

Type

B Descnption

Value Property

ServiceState Type
For PrgcffSState'.. Value

IPhotoAlbumPrintProcessPoHcy...
SImpleAction
RemoveRedEye

Data Flow

^hotoServIce
'hotoSeivice
>hoto3ervlce
’hotoAlbumService

PrintService
PrintService
Piin^ervice
PhotoService

1 ...
FawPhotos

Parameter Process
totoAlbumPflntProcess CameraPhotos

PhotoSize
WbumPhotos
DocumentName
NumberOfPagee
NumberOfColours
iRawPhotos

PhotoAlbumPrintProcess
PhotoAibumPrinFroceea
PhotoService

”]PhotoAlbumService
PhotoAlbumService

TPhotoAlbumServIce
T^toAlbumPrintProcess

Parameter

CameraPhotoCategory
CameraPhotoSIze
l^cessedPhotos
fhotoAlbum
PhotoAlbumSize
'PhotoAibumColours
CameraPhotos

Status: Tree selection Is ProcessState (ServiceState)

Figure 4-14, A screenshot of the SMPE tool

The following panels are depicted in Figure 4-14 (seen in an anti-clockwise rotation

starting with the top left panel):

A. Web service composition detail panel, which displays the composition of

composite web services i.e. control flow;

B. Web service process detail panel, which displays the details of a selected

service (termed as process in OWL-S);

C. Web service data flow detail panel, which displays the data flow of composite

services;

D. FSM description detail panel, which displays details of a selected node from

the FSM, e.g. the action of a state node;

E. Policy aspect description panel, which allows users to edit the selected aspect

of a management policy;

F. Policy Structure detail panel, which allows users to specify their management

policies;

88

G. FSM structure detail panel, which displays service’s adaptive behaviours as

FSM

4.5.1 Ontology Interpreter Component

The Ontology Interpreter component provides the functionality for parsing,

interpreting, and saving semantic descriptions based on OWL. This component is an

extended version of that used in the SABE tool. It reads semantic descriptions of web

services and their adaptive behaviours as before. However, this component is

restricted from saving these descriptions when used in this tool. Instead, it has been

extended to read and save instances of an Obligation Policy Ontology model to an

OWL file in lexical form.

The component was originally implemented with two sub-components to

interpret the semantic web service descriptions as OWL-S, and to interpret the

ontology used to describe adaptive behaviours modelled as FSM (see section 4.4.1).

For the SMPE tool, this component has been extended with a new sub-component,

which interprets the ontology model used to describe management policies, mapping

policies and enforceable policies.

Once these ontology policy models are interpreted, their respective internal

representations are populated. And when saving these policies, their details are
extracted from these internal representations and translated into Ontology models

according to their Ontology schema. A syntactical verification of the policy

description is performed during the persisting process to make sure that the

management policy specified and the enforceable policies generated are syntactically

complete. This verification process checks that every aspect of these policies is

described.

4.5.2 Web Service Viewer Component

The web service viewer component uses Java Swing widget panels to display

the details of the web service’s semantic description. This component is the same

component used in SABE tool; see section 4.4.2 for its description. In summary, this

component displays the details of web services to the user using three panels. The first

panel displays the control flow of a composite service. The second panel is a context

89

sensitive panel which displays the details of a service selected from the first panel.

Lastly, the third panel displays the dataflow of a composite service.

However, this component’s second panel operates in read-only mode. The

functions for creating and deleting FSM for web services are disabled. Thus, it

prevents managers and non-developers from incorrectly adding or removing FSM

using this tool.

4.5.3 Adaptive Behaviour Viewer Component

The Adaptive Behaviour Viewer component provides a graphical user

interface to aid service managers in browsing the adaptive behaviours of web services

expressed as FSM. It uses Java Swing widgets and follows the MVC pattern. Two

panels display the FSM describing adaptive behaviours belonging to a web service.

The first panel displays the structure of the FSM model, while the second panel is a

sensitive context panel that displays the different aspects of the FSM model. This

component is the Adaptive Behaviour Editor component, used in the SABE tool (see

section 4.4.3), operating in read-only mode.

4.5.4 Management Policy Editor Component

The Management Policy Editor component provides a graphical user interface

to support service managers in specifying management policies to manage the

adaptive behaviours of adaptive (composite) services. This component uses Java

Swing widgets and follows the MVC pattern. Two panels allow users to view and

specify management policies for adaptive web services. The first panel is for

displaying and editing the different aspects of management policies using a tree

widget. The second panel is for displaying and editing the details of each of the

aspects of a management policy using a table widget. This component only allows

management policies to be specified to the topmost (atomic or composite) services,

thus preventing managers from inappropriately specifying policies directly to

constituent web services.

Note that the SMPE tool allows users to specify policies for single atomic

services. But, the SMPE does not allow the specification of policies to atomic services

when these atomic services are being used by some composite service. The tool

ensures that policies must always be specified for the topmost service. However, users

90

can be assured that if they want to change the behaviour of a particular constituent

atomic service, they just need to specify the appropriate policy to the composite

service and it will percolate down to the relevant constituent service during the

refinement process.

Policies
? a Policies

<? 19 PhotoAlbumPrintProcessPolicyl
o- ^ Events
? ^ Conditions

PhotoAlbumPrintProcessPolicyl Conditioni
? a Actions

? ^ PhotoAlbumPrintProcessPolicyl Action!
9 jL And

iPhotoAibumPri ntProcessPoliart Action! Q1
PhotoAibumPrintProcessPolicy! Action! 02

Figure 4-15, Policy structure detail panel

In the first panel, depicted in Figure 4-15, policy descriptions are displayed

with the use of a tree widget with customised icons for the different types of nodes.

These policy nodes can be event nodes, condition nodes, or action nodes. This is due

to the fact that the management policies supported by this tool are obligation type

policies. These aspects are grouped, accordingly, under virtual nodes: events,

condition, and actions. A node representing an action, condition, or event can be of

type simple or complex; where complex nodes are those which can have other nodes

joined by a Boolean node. Boolean nodes can have up to two child nodes and can

only be of type AND or OR, allowing the policy’s complexity to be expressed in a

scalable manner. This panel has a context sensitive property pane which adapts

depending on the node selected and the child node it contains. The functions most

commonly used for this property pane are to create valid type child node or to delete

the node itself An exclusive function for invoking the policy refinement process on

the management policies is also available.

91

Policy Description

Property Value
Name PhotoAlbumPrintProcessPolicy...
Type SimpleAction
Value HighPhotoQuality ▼

HighPhotoQuality
EeonomyMode
BlackiA/hite Photo
CreateCalendar =

Process IntermediateMode

imPrintProcess Came ExpensiveMode

imPrlntProcess Came CreatePostcard

ImPrintProcess Came RemoveRedEye

Figure 4-16, Policy aspect description panel

The second panel (shown in Figure 4-16) displays the details of the node

selected in the first panel representing one of the actions of a management policy.

This panel uses a table widget with two columns, where the first column shows the

properties and the next column shows the values. This panel allows users to edit the

details of a selected node, and highlights in red properties that are mandatory and

incomplete. For example, the value property for this action node (depicted in Figure

4-16) is highlighted in red since a choice has not been made from the dropdown list of

possible high-level actions (adaptive behaviours). Users are aided when editing by the

provision of a dropdown list with appropriate options. In fact, it assures that the

management policies specified for adaptive web services use only the valid

vocabulary acquired from their semantic descriptions. Thus, the action aspect of

management policies is restricted to the adaptive behaviours described for adaptive

web services. The condition aspect of management policies is restricted to the

semantic description of web service’s parameters, i.e. inputs and outputs.

4.5.5 Management Policy Refinement Component

The management policy refinement component provides the functionality for

automatically refining specified management policies and automatically generating

low-level policies to manage adaptive web services. This component utilises the web

service descriptions and the formal representation of their adaptive behaviours to

achieve this objective. Each management policy is refined by analysing its aspects

(event, condition, and action) and generating mapping policies for the immediate

constituent services, which are then further refined in a hierarchical manner until

enforceable policies are created for the relevant constituent atomic services.

92

This component has two modes of policy refinement, action-only refinement

which only refines the action aspects of management policies, and condition-action

refinement which refines the condition, as well as the action aspects of management

policies. Users can choose a policy refinement mode through the SMPE tool’s menu

before performing the refinement process. Both policy refinement modes use events

as a means to link the policies together.

Automatic action-only policy refinement algorithm

The action-only refinement mode assumes that the condition aspects of the

management policies can be handled by the topmost composite service itself. Thus, it

refines only the action aspects of management policies. The algorithm for the

automatic refinement of the action aspects of management policies has two parts. The

first part generates mapping policies in a hierarchical manner for composite web

services. This algorithm is as follows:

1. Copy the contents of a management policy into a new mapping policy since

the mapping policy will be modified during the refinement process, a copy of

the original needs to be retained for the user;

2. Search for the adaptive behaviour named as the action of this mapping policy

in the FSM of the immediate constituent web services;

3. If the named adaptive behaviour is found, generate a new mapping policy for

this web service, naming this adaptive behaviour as its action and the relevant

service as its target;

4. Repeat for all the actions in the original policy;

5. Generate an event e.g. El and insert it into the new mapping policies;

6. Replace the action of the original mapping policy with a new action that

generates this new event, e.g. sendEvent(El);

7. Repeat step 2 for all the new mapping policies.

This algorithm generates mapping policies which target the relevant

constituent atomic web services and all web services in the hierarchical path between

them and the topmost web service i.e. the composite web service itself

93

The second part of this algorithm generates the enforceable policies for the

relevant constituent atomic web services, and starts by searching for mapping policies

targeting atomic web services and for each policy found:

1. Search for the FSM description of the adaptive behaviour named as the action

of this mapping policy;

2. Find the initial state in this FSM;

3. Generate new enforceable policies for every transition deriving from this state;

4. Populate the event aspect of these policies with new generated event and event

described in the transition, recording the generated event for the first

enforceable policy, e.g. El2;

5. Populate the condition aspect of these enforceable policies with the guard

description of their relevant transitions;

6. Populate the action aspect of these enforceable policies with the activity

described in the target state of the relevant transition;

7. In case the target state of a transition is not a final type state, add an extra

action to the derived policy that triggers the event used by the next policy in

the chain, i.e. enforceable policy derived from the transition whose state

source is this particular state.

8. Follow the state machine process path of this FSM, identifying the next state

and repeating step 4;

9. Replace the action of the original mapping policy with a new action that

generates the recorded event, e.g. sendEvent(E12);

This algorithm systematically creates a policy for every transition in the FSM

describing an adaptive behaviour. Enforceable policies are generated, each with an

event which triggers it, a condition based on the transition’s guard, which must be

satisfied, and an action based on the described activity of the transition’s target state,

which will be performed.

Automatic condition-action policy refinement algorithm

The condition-action refinement mode assumes that the topmost composite

service is a virtual service and that the condition aspect of the management policies

94

needs to be handled by the relevant eonstituent serviees. Thus, it also refines the

condition aspects of management policies.

The automatic refinement of condition aspects of management policies

follows the same principle as the refinement process of action aspects, albeit on a far

more complex level. This algorithm has four parts, where parts three and four are the

same as the action-only policy refinement algorithm. The first part generates mapping

policies for the condition aspects of management policies in a hierarchical manner for

composite web services and is as follows:

1. Copy the contents of a management policy into a new mapping policy;

2. Search the dataflow description of this web service for the mapping details of

the web service’s parameters used as the subject of the condition aspect of a

policy;

3. Retrieve the equivalent parameter and its web service from the dataflow

description, where this web service is a constituent web service;

4. Generate a mapping policy for the constituent web service found, and populate

its condition aspect with this web service’s parameter;

5. Generate an event, e.g. El, and use it in the new mapping policy as its
triggering event;

6. Remove the condition aspect of the original mapping policy and insert a

triggering action of the generated event into this policy, e.g. sendEvent(El);

7. Repeat step 2 for all the new mapping policies targeting the constituent web

services;

8. Add a triggering action to the last mapping policy generated, which triggers

the event of a new mapping policy assigned to parent web service, e.g.

sendEvent(E12);

9. Add a new mapping policy to the parent web service with such an event, e.g.

E12;

10. Repeat step 8 until it reaches the topmost web service;

This algorithm generates mapping policies that trigger enforceable policies,

for monitoring the desired conditions on constituent web services. In addition, it

95

generates mapping policies which triggers the top level policies if the relevant

conditions are met.

The second part of this algorithm generates the enforceable policies for the

relevant constituent atomic web services to monitor the desired conditions and is as

follows:

1. Search for mapping policies targeting atomic web services;

2. Identify the service’s parameters used as subject in the condition aspect of

these mapping policies;

3. Search the web service’s description for the mapping of these parameters to

their WSDL counterparts;

4. Convert these mapping policies into enforceable policies, changing their

condition aspects to use the WSDL counterpart of the web service’s parameter

being used;

This algorithm generates enforceable policies to monitor parameters of atomic

services, grounded as WSDL parameters. These policies monitors for the desired

conditions specified in the management policy. This algorithm then uses the action-

only refinement algorithm to refine the action aspect of management policies, i.e.

parts 3 and 4 of this algorithm.

4.6 A Walkthrough in Using SABE to Describe

Adaptive Web Services

The SABE tool was designed and implemented to allow developers to

formally describe the adaptive behaviours of web services. So far, a lengthy

description of the design and implementation of this tool was presented, which can be

seen as complex and convoluted. However, the SABE tool was designed with a GUI

that shields users from the semantic description’s lexical form, and automated features

to facilitate its users. This section demonstrates how this tool can be used by a service

developer to describe the adaptive behaviours of an atomic and a composite service.

The SABE tool was designed with a tree and a table widget which is familiar to most

computer users, and it is evaluated by a usability evaluation in the next chapter

(section 5.3).

96

This section provides a work example of how users can use the SABE to

describe adaptive web services. It starts with a demonstration of how this tool is used

to describe an adaptive behaviour for an atomic web service. Next, a demonstration of

how this tool is used to aggregate the adaptive behaviours of a composite web service

is presented. It provides illustrated example of how the SABE tool supports the Web

Service Adaptivity Description Activity and Web Service Adaptivity Aggregation

Activity of the MAWS methodology.

4.6.1 Describing Adaptive Behaviours of Atomic Web Services

The PrintService example, described earlier in section 3.3, is used to illustrate

how the SABE tool is used to describe the EconomyMode adaptive behaviour of this

service. EconomyMode is an adaptive behaviour that modifies the PrintService to

print on both sided with two pages on each side i.e. four pages per sheet. It is assumed

that this adaptive behaviour has been implemented. It also assumed that files

containing OWL-S description of the web service is also available. The steps for
describing this adaptive behaviour are as follows:

i. Start the SABE tool;

ii. Load the semantic description of the PrintService from PrintService.owl file;

iii. Add a FSM to represent the adaptive behaviours for this service;

iv. Add a FSM to describe EconomyMode adaptive behaviour;

V. Add the initial state for the EconomyMode FSM;

vi. Add the transitions in the EconomyMode FSM;

vii. Add the necessary states in the EconomyMode FSM;

viii. Save the FSM representing the adaptive behaviours of the PrintService;

Screenshots are used to visually aid in the sequence of actions performed on

the SABE tool to describe such adaptive behaviour. Note that descriptions are above

the screenshots.

i. Start the tool and select open (see Figure 4-17).

97

Open AH-O

Save Alt-S

Ex# Alt-X

SABI: - Service Adaptive Behaviour Editor

Fite Help

Figure 4-17, SABE tool prior to loading a web service description

ii. Select the PrintService.owl file (see Figure 4-18).

Open Web Service Description

Look In: ncaseO □a o c3 D—
D—

9AlbumPrintProcess.owl

}AlbumPrintProcessFSM.owl

gAlbumPrintService.owl

Q PhotoServiceFSM.owl

Q PrintProcess.owl

Q PrintProcessFSM.owl

9AibumPrintServicePolicy.owl Q PrintSe[vice.owl

gAlbumPr intServiceFtefinedPolicy.owl

9AlbumSe[viceFSM.owl

Q PrintSerwiceFSM.owl

Q PrintServicePolicy.owl

_____ III

File Name: PrintSetvice.owl

Files of lype: Just Ontology files

Open Cancel

Figure 4-18, Selecting the Print Service OWL-S description

iii. Select PrintProcess on the top left panel, this will load the details of the

service’s process in the bottom left panel. Expand PrintProcess and right click

98

on StateMachine to see a dropdown menu. Select Add StateMachine to add a

FSM for this service (see Figure 4-19).

SABE ' Service Adaptive Behaviour Editor
Fie

3 PrintProcess 'cf S
Service Structure FiniteSteteMachine Structure
V Q WebSetvice

9 -3 PrlntService
a FiniteStateMachine

Proceti Description________________________
9 a Process

9 % PrintProcess
a aartilachine-----------------------

f a Inputs Add StateMachinep---------------------

FiniteStateMachine Description
Property

Documen Rerraive 9ateMachine
e# NumberOmtseo—-------------------

NumberOfColours

Value

9 a Outputs
^ NumberOfSheets

lata Flow
Process Parameter Process Parameter

Status: Tree selection Is StateMachine

Figure 4-19, SABE tool with the Print Service description loaded and creating FSM

iv. Expand the FSM created on the top right panel. Select ProcessState and right

click to get a dropdown menu with an option to add an adaptive behaviour.

Select the Add AdaptiveBehaviour option (see Figure 4-20).

SABE - Service Adaptive Behaviour Editor
I Ella beiP

FI PrintProcess o'd' S

Service Structure FiniteStateMachine Structure
t S WebSetvice

9 -3 PrlntService
PrintProcess

9 ^ FiniteStateMachine
9 E3 PrintProcessFS

a Events
o- « InitialState
^ [S IdleState

VI

^ Process
0- i51 InputState
®- E OutputState

Add AdapthreBeliaviour
RetiHwe ServIceState

Process Description FiniteStateMachine Description
9 S Process Prooerlv Value

9 % PrintProcess Name ProcessState
a- s SMeMachine Type ServiceState
f ’Q Inputs Deschption For ProcessState's adaptive beha..

DocumentName
NumberOfPages

% NumberOfColours
9 S Outputs

% NumberOfSheets

Data Flow
Process 1 Parameter Process Parameter

Status: Tr^ s^cticn is ProcessState (SwviceState)

Figure 4-20, Creating a sub-FSM to describe an adaptive behaviour

99

Select this new node and see its properties load in the bottom right panel

where required fields are highlighted in red (see Figure 4-21). Name it EconomyMode

and add a description.

I
SUBE Service Adeptive Behaviour Editor

Help

R PrintProcess ad! S
Service Structure PiniteSteteMachine Structure
9 a WebService

9 PrinISetvice
^ flintProcess

9 a FiniteStateMachinc
9 ^ PnntProcessFSM

o- a Events
e- « InitialState
o- H IdleState
9 [5 ProcessStale

^ ProcessToOutput______________
lUnnamedProcegsStaieBehavlouri I

o- S InputState
e- B OutputState

Process Description FiniteStateMachine Description
9 a Process

9 % PrintProcess
<- a StateMachtne
9 a Inputs

% DocumentName
‘tv NumberOfPages
% NunnberOfColours

9 a Outputs
NumberOfSheets

Name UnnamedProcessStateBehavlourl
Type AdapttyeBehavlour
Description

Oeta Flow
Process Parameter Process Parameter

Status. Tree selection is UnnamedProcecsStateBehaviourl (AdapHveBehaviour)

Figure 4-21, Unnamed adaptive behaviour is highlighted in red

V. Right click on EconomyMode node to add initial state to this adaptive

behaviour (see Figure 4-22).

SABE - Service Adaptive Behaviour Editor
Ele belp

R PrintProcess o'er a
Service Structure TiniteStateMachine Structure
? a WebService

t PrintSenrice___
'rlntProcess

9 a FInIteStateMachIne
9 la PrintProcessFSM

o- a Events
«- « InitialState
*- B IdleState
9 B ProcessStale

^ ProcessToOutput
^ECtWoll^de

o- B InputState
e- B OutputState

Add State
Remove AdaptiueBehaviour

Process Description______________
? a Process

f % PrintProcess
0- a StateMachtne
f a Inputs

% DocumentName
NumberOfPages
NumberOfColours

9 G Outputs
% NumberOfSheets

FiniteStateMachine Description

Name
Property

Type
Description

Value
EconomyMode
AdapttyeBehavlour
Prints 2 pages per sheet double .

3Data Flow
Process Parameter Process Parameter

Status: Tree selection is UnnamedProcessStateBehaviourt (AdaptiveBehaviour)

Figure 4-22, Adding an initial state for this FSM

100

vi. The first state for this adaptive behaviour (FSM) is an initial state which must

have a transition. Select Add Transition from its dropdown menu to create a

transition (see Figure 4-23).

I SABE Service Adaptive Behaviour Editor
De Help

R PtinIProcess
Service Structure FiniteStateMachine Structure
f Q WebSetvice

f 3 PrintService
% CiintProcess

f a FiniteStateMachine
y I&9 PrlntProcessFSM

e- a Events
»- * InitialState
o- SI IdleState
y [•] ProcessState

^ ProcessToOutput
y ti EconomyMode

• EconomyModeinlti^
®- S inputState
0- S' Outputstate

Add Transition
Remove State

Process Description FiniteStateMachine Description
y S Process

j PrIntProcess
>■ a StateMarhine
y <3 Inputs

DocumentName
NumberOfPages

‘V NumberOfColours
y ^ Outputs

NumberOfSheets

State Name
Property

State Type
State Kind

Value
EconomYModelnItlalState
Pseudostate
Initial

Pete Flow
Process Parameter Process Parameter

Status. Tree selection is EconomyModeinjtiatState (PseudoStsle)

Figure 4-23, Adding a transition to the initial state

If you select this new transition, its details are loaded in the bottom right

panel, showing that transition source is already configured, and required field

transition target has an empty list since there is only this state (see Figure 4-24).

101

i
Fite Help

SABF Service Adaptive Behaviour Editor

B PrintProcess n*^ 0

Service Structure FiniteStateHachine Structure
t ^ WebService

^ PrintService
JrtntPracess

9 ^ FiniteStateMachine
9 SS PrintProcessFSM

Q Events
»■ A InitialState
0- H IdleState
9 ® ProcessState

^ ProcessToOutput
9 tj EconomyMode

9 • EconomyModelnItlalState
^ EconornyModelnltlalStatelnltialTransition

«■ 15 InputState
»- E OutputState

Process Description FiniteStateMachine Description
? Q Process

9 % PrintProcess
0- ■a StateMachine
9 a Inputs

% DocumentName
‘%i NumberOfPages
^ NumberOfOolours

y ^ Outputs
NumPerOfSheets

Property Value
Transition Name EconomyModeInttialStatelnitialTra...
Transition Type Transition
Transition Source EconomyModelnItlalState
Transition Target 1-
Transition Trigger
Guard Subject
Guard Predicate
Guard Value

Date Flow
Process I Parameter I Process ----------------- raieiiieiei ^

Stilus; Tree selection is EconomyModelnitialStertelNberfTransftiwn (Transition)

Figure 4-24, Missing aspects of the new transition are highlighted in red

vii. Another state must be added. Right click EconomyMode node and select the

appropriate option. If this is the last state of the FSM, then this state should be

a final state with an action (activity) which is a required property (see Figure

4-25).

102

I S&BE Service Adaptive Behaviour Editor
File

B PrintProcess o p

Service Structure TiniteStateHachine Structure
T ^ WebService

? -> PrintSeivIce
PrtntProcesSi

S FiniteStateMachIne
^ IBi PrintProcessFSM

o- Q Events
o- A InlllalState
e- Si IdleState
t B ProcessState

^ ProcessToOutput
t EconomyMode

f • EconomyModeInrtlalState
^ EconornyModelnitialStatelnitlalTransition
EconomyModeStatel

0- B InputState

Process Description ^niteStateMachine Description
9 Q Process Property Value

? % PrintProcess State Name EconomyModeStatel
0- S StateMachIne State Type SlmplaSUrtt 1 ▼
? a Inputs State Activity SlmplaStJte

% DocumentName Cofnposit«S1«tt

'tir NumberOfPages PinilSijtt

9 <S Outputs
% NumberOfSheets

>«ta Flow
Process Paramete'^ Process Parameter

Status; Tree selection is EconomyModeStatel (ShnpleState)

Figure 4-25, Adding a new state where state type options are provided

Now the transition from initial state can be configured by selecting the new

state as its transition target (see Figure 4-26).

EHe Help

R PrintProcess

) Service Structure TiniteStateMachine Structure
? S WebService

t PnntService
! *¥a PrintProcess

9 G FiniteStateMachIne
y G3 PrintProcessFSM

®- a Events
• InItlalState

*- B IdleState
y B ProcessState _

^ProcessToOutput “
9 tj EconomyMode

9 « EconomyModelnItlalState
^ EconomyMCNtel.nitlalStatelnltlarTransItion

« EconomyModeStatel
»- B InputState ^

Process Description FiniteStateMdchine Description
? Q Process

g % PrintProcess
»- S StateMachIne
y e Inputs

DocumentName
^ NumberOfPages
% NumberOfColours

? Q Outputs
NumberOfSheets

Property Value
Transition Name EconomyModelnItiaiStatelnItlarTra..
Transition Type Transition
Transition Source EconomyModelnItlalState
Transition Target EoonomyMod«Stjt«1] ▼
Transition Triaaer BconomvModtSijiti
Guard Subject
Guard Predicate
Guard Value I

Data Flow
Process I Parameter 1 Process I Parameter |

St«^S- Tree selection is EconomyModelnimiStatelrAiarTrens&ion (Transftion)

Figure 4-26, When configuring transition, the new state is suggested as target state

viii. The description of this simple adaptive behaviour is now complete and can be

saved. When saving, the FSM model is validated. In case the FSM model is

103

incomplete or any of the required fields have not been configured, the SABE

notifies the user.

It was demonstrated how the SABE tool can be used to describe the adaptive

behaviours of atomic web services. More importantly, it demonstrates how the SABE

tool can be used to accomplish the Web Service Adaptivity Description Activity of the

MAWS methodology.

4.6.2 Aggregating Adaptive Behaviours of Composite Web

Services

The PhotoAlbumPrintService example web service, described in section 3.3, is

used to illustrate how the SABE tool is used here to aggregate the adaptive behaviours

of composite web services. It is assumed that this composite web service has been

semantically described, as well as the adaptive behaviours of its constituent adaptive

web services. The steps for aggregating these adaptive behaviours are as follows:

i. Load the semantic description of the PhotoAlbumPrintService;

Expand the PhotoAlbumPrintService node to see the service’s composition;

Select the PhotoAlbumPrintService node and add a FSM to represent the

adaptive behaviours for this composite service;

11.

111.

iv. Review that the FSM created for this service contains the aggregated adaptive

behaviours pertaining to its constituent adaptive web services;

V. Save the service’s FSM;

Screenshots are used to visually aid in the sequence of actions performed on

the SABE tool to describe such adaptive behaviour. Note that descriptions are above

the screenshots.

i. Select the PhotoAlbumPrintService.owl file (see Figure 4-27).

104

Open Web Service Description

Look In: ncaseO □a C3 D—
D—

Q PhotoAlbumPrintProcess.owl

PhotoAlbumPrintProcessFSM.owl

PhotoAlbumPrintService.owl

Q PhotoServiceFSM.owl

Q PrintProcess.owl

Q PrintProcessFSM.owl

Q PhotoAlbumPrintServicePolicy.owl Q PrirrtService.owl

Q PhotoAlbumPrintServiceFlefinedPolicy.owl Q PrintSerwiceFSM.owl

Q PhotoAlbumServiceFSM.owl Q PrintSeivicePolicy.owl

* I III

File Name: ;PhotoAlbumPrintSeivice.owl

Files of lype: Just Ontology files

Open Cancel

Figure 4-27, Loading the description for composite service PhotoAlbumPrintService

ii. Expand the PhotoAlbumPrintService node on the top left panel to see its

composition structure. By selecting each of its constituent atomic web

services, description of their adaptive behaviours can be seeing on the top right

panel (see Figure 4-28).

S&BE - Service Adeptive Behaviour Editor ■ ' X ^

1 FHe Help I

Q PhotoAlbumPrintProcess d'cT S

Service Stnjcture FiniteStateMachine Structure
7 d WebSetvIce

? O PhotoAlbumPrintService
t % PhotoAlbumPrintProcess

9 X Ssquence
% PhotoService
% PhotoAlbumSetvIce
^ PrintService

f FiniteStateMachine 1
9 IS PhotoSeivIceFSM |

o- S Events
0- a InItlalState
o- SI IdleState
9 S ProcessState

^ ProcessToOutput |
®- HIghPhotoOuallty
0- BlackWhItePhoto i

0- S InputState)
o- S OutputState

Process Description FiniteStateMachine Description
f Q Process

9 % PhotoService
o- ^ StateMachine
®- ^ Inputs
o- ^ Outputs

Property Value

Stdus Tree setedican is PhotoService (AtomicProcess)

Figure 4-28, SABE tool displaying the adaptive behaviours of one of the constituent services

105

iii. Select PhotoAlbumPrintProcess, and the process details of this service are

loaded in the bottom left panel. Expand it, and right click on the StateMachine

node to see a dropdown menu with an option to add a StateMachine (FSM).

Select this option to create a FSM and automatically aggregate the adaptive

behaviours of its constituent web services (see Figure 4-29).

I S&BE - Service Adaptive Behaviour Editor
Fie Help

!sS3

Q PhotoMbumPrintProcess : i Q*' S

Service Structure ^niteStateMachine Structure |
? ^ WebService

t PhotoAlbumPrintService
? PhotoAlbumPrintProcess:

r JL Sequence
% PhotoService
% PhotoAlbumService

PrintService

03 FInIteStateMachIne j

Process Description ^niteStateMachine Description
? a Process

? % PhotoAlbumPrintProcess
Property Value

S SMaMachine
*• Q Inputs
9 S Outputs

Add StateMachine
Remove StateMachine

% AlbumSIze

Deta flow
Process Psremeler Process1 P

PhotoAlbumPrintProcess
~PhotoAJbumPi1n£rocess_

PhotoAlbumPrintProcess

Parameter
Photos

PholoCategoiY
ameraPhotos

^ameraPhotoCategory
ICameraPhotoSize

Status' Tree selection Is StateMachine

Figure 4-29, SABE tool aggregating the adaptive behaviours of the constituent services

iv. Expand the FSM description on the top right panel to see that all the FSM

describing the adaptive behaviours of its constituent web services have been

aggregated and are included here. Note that the tool prevents the description of

these FSM from being edited (see Figure 4-30).

106

SABF Service Adaptive Behaviour Editor
F«e Hetp

Q PhotoAIbumPrintProcess

Service Structure FiniteSteteMachine Structure
V ^ WebService

t PhotoAlbumPrIntSeivIce
V fhotoAlbumPrintProcessI

f 4- Sequence
% PhotoService
^ PhotoAlbumSeivIce
% PrintSeivice

Process Description FiniteSteteMachine Description
9 <3 Process Prooerh Value

9 ^ PhotoAIbumPrintProcess A
»• <3 btateMachInel s
»- €3 Inputs --- 1

 ft- ^ Aiitniitg . --- .. --- ------------------------ ---------------------------- 1 w

f ^ FiniteSteteMachine
? IS9 PhotoAibumPrintProcessFSM

»■ Q Events
<>■ 9 initialState
«- Si IdleState
t ® ProcessState

^ ProcessToOutput
o- ^ HighPhotoQuaiity
e- BiackWhitePhoto
o- CreateCaiendar
o- CreatePostcard
0- % EconomyMode
e- tj intermediateMode

eta Flovii
Process 1 Parameter Process Parameter

ftotoServIce PhotoAIbumPrintProcess CameraPhotos A

tMeivice PhotoCategory PhotoAIbumPrintProcess CameraPtmWUMWf
WBMvice ^PhotoSIze PhotoAIbumPrintProcess CameraPhotoSize

statue: Tree selection is StateMachine

Figure 4-30, SABE tool displaying the aggregated adaptive behaviours for the composite service

V. The aggregation of the adaptive behaviours of this composite web service is

now complete and can be saved. This is achieved by clicking File, then Save.

When saving, the FSM model is validated. In case the FSM model is

incomplete or any of the required fields have not been configured, the SABE

notifies the user.

It was demonstrated how the SABE tool can be used to accomplish the Web

Service Adaptivity Aggregation Activity of the MAWS methodology by aggregating

the adaptive behaviours of composite web services in an automated manner.

4.7 Walkthrough in Using SMPE Tool to Create
Policies to Manage Adaptive Composite Services

The SMPE tool was designed and implemented to allow administrators to

specify high-level management policies which are automatically refined into auto

generated low-level policies that manage adaptive composite services. This chapter

presented a lengthy an in-depth description of the design and implementation of this

tool. However, the SMPE tool was designed with a GUI that shields users from the

semantic description, and policy model in their lexical form. This tool also provides

107

an automated policy refinement feature that facilitates managers in generating policies

to manage adaptive composite services.

This section provides a work example of how web service managers can use

the SMPE tool to specify and automatically refine management policies to manage

adaptive composite services. This walkthrough should illustrate how this tool

facilitates the users in creating policies to manage adaptive composite services. It

provides illustrated example of how the SMPE tool supports the Management Policy

Specification Activity, Management Policy Refinement Activity and Management

Policy Generation Activity of the MAWS methodology.

4.7.1 Specifying Management Policies for Managing Adaptive

Composite Web Services

The PhotoAlbumPrintService example web service, described earlier in

section 3.3, is used here to illustrate how the SMPE tool is used. For the example, a

management policy (shown in Table 3) was specified to: “Produce a colour photo

calendar of the members of the U2 band“.

PhotoAlbumPrint Service (CompositeProcess)

Name Event Condition Action

Policyl ProcessEvent PhotoCategory= = Portrait Colour-Printing && Create-Calendar

Table 3, Another management policy for PhotoAlbumPrintService

Furthermore, it also depicts how this tool is used to refine this management

policy. It is assumed that this adaptive web service has been implemented, and

syntactically and semantically described. The steps for specifying this management

policy and then refining it are as follows:

i. Start the SMPE tool;

ii. Load the PhotoAlbumPrintService from file PhotoAlbumPrintService.owl;

iii. Select the PhotoAlbumPrintService node and create a new policy for it;

iv. Expand the newly created management policy for this service;

V. Add an event for this policy;

vi. Add a condition for this management policy;

vii. Add a complex action (made of two actions) for this management policy;

108

viii. Configure first simple action;

ix. Configure the second action;

X. Save the policies created for this service;

Screenshots are used to visually aid in the sequence of actions performed on

the SMPE tool to specify these management policies and refine them. Note that

descriptions are above the screenshots.

i. Start the tool and select open (see Figure 4-31).

SMPr - Service Management Policy Hditor
Rte] Optk^ Help

Cipen AJt o
£«ve Alt s
Exit Alt-X

Figure 4-31, SMPE tool prior to loading web service description

ii. Open the PhotoAlbumPrintService.owl file (see Figure 4-32).

109

Open Web Service Description

Look In: caseO □a O D—
D—

PhotoAlbumPrintProcess.owl
Q PhotoAlbumPrinitProcessFSM.owl
Q PhotoAlbumPrintService.owl

Q PhotoServiceFSM.owl
Q PrinitProcess.owl
Q PrintProcessFSM.owl

Q PhotoAlbumPrintServicePolicy.owl Q PrintService.owl

PhotoAlbumPrintSeiviceRerinedPolicy.owl PrintServiceFSM.owl
Q PhotoAlbumServiceFSM.owl PrintServjcePolicy.owl

i I III i±

File Name: PhotoAlbumPrintSeivice.owl

Files of lype: Just Ontology files

Open Cancel

Figure 4-32, Selecting description of composite service PhotoAlbumPrintService

iii. The left side of this tool is similar to the SABE tool. Policies can only be

specified to the topmost web service, in this case the PhotoAlbumPrint

Service. Hence, select the PhotoAlbumPrintProcess from the top left panel and

the other panels will load with its relevant details. Right click on Policies node

on the top right panel to add a management policy (see Figure 4-33).

110

SMPF Service Management Policy Editor
I File Option ^Ip

Q PhotoAlbumPrintProcess

Jervice Structure FiniteStateMachine Structure Policies

a WebService
y -J PhotoAlbumPrinlSeivIce

y *|i»PholQAIbumPrintProcess'
y jU Sequence

% PhotoService
^ PhotoAlbumService
% PrintService

IL

®- Q Events
»- • InItialState
«- Si IdleState
y S ProcessState

ProcessToOutpul
o- ^ HighPhotoQuality
®- ^ EconomyMode
o- ^ BlackWhitePhoto
»- CreateCalendar
»- IntermediateMode
o- ExpensiveMode
ft- ^ CreatePostcard

a Policiei

III

AddPoNcy

ReTme Policies

Reset Policies

'rocess Description FiniteStateMachine Description Policy Description
Q Process
y 1^ PhotoAlbumPrIntProcess

ft- Q StateMachine
Q Policy

ft- S Inputs
ft- S Outputs

Property Value Property Value

)ata Flow
Process Parameter I Process I Parameter

PhotoServIcs IPhotoAlbumPrtntProcess ioMieraPhatos A
’hotoSeryicB PhotoMMM IPhotoAlbumPrtntProcess IcameraPhntnr-jiABWt

=hotoSenrlce PhotoSize lphotoAlbumPrtntProct*l BHMraPMHHI
PhotoAlbumSeivIca AlbumPhotos PhotoService TrocessedPhotos

Status Tree selection is Policies

Figure 4-33, Specifying a management policy using the SMPE tool

iv. Expand the new policy and see that it has three aspects: event, condition, and

action. Right click on the event node to add an event (see Figure 4-34).

SMPF Service Management Policy Editor

Elle Option Help

Q PhotoAlbumPrintProcess □ □

Service Structure FiniteSteteMechine Structure Policies
a yvebService
y -> PhotoAlbumPrintService

y PhotoAlbumPrintProcess
y J- Sequence

% priotoSenrice
PhotoAlbumService

% PrlntSennce

ft- «3 Events
ft- • InItialState
ft- SI IdleState
y S ProcessState

^ ProcessToOutpul
ft- ^ HighPhotoQuality

ft- tt EconomyMode
ft- It BlackWhitePhoto
ft- tt CreateCalendar
ft- tt IntermediateMode
ft- Tt ExpensiveMode
ft- Tt CreatePostcard

y O Policies
y Q PhotoAlbumPrIntProcessPollcyl

<3
G Acl Remove

Add Event
Event I

'rocess Description FiniteStateMachine Description Policy Description
Q Process
y djt PhotoAlbumPrintProcess

ft- Q StateMachine
^ Policy

ft- S Inputs
ft- S Outputs

Property Value Property Value

Process 1 Parameter 1 Process 1
’hotoService iRawPhotos IPhotoAlbumPrintP rocess
>hotoServ1ce IPhotoAlbumPrintP rocess
’hotoServIce BBEUm tPhotoAlbumPrintP rocess
>hotoAlbumSetvite MbumPhotos IPhotoSenricB

Parameter
IraPhotos

eraPhotoSizB
’rocessedPhotos

Status: Tree selectxxj a Events

Figure 4-34, Adding an event to the management policy

111

V. Select the new node and configure its properties in the bottom right panel.

Required fields are highlighted in red. Select the appropriate event from a list

of events (see Figure 4-35).

SMPE Service Management Policy Editor
RIe Option

Q PhotoAlbumPrintProcess

;ervice Structure FiniteStateMachine Structure Policies
f Q WebSeivice

y PhotoAlbumPrintSetvice
y 1^ PhotoAlbumPrintProcess

y X Sequence
^ PhotoService
% PhotoAlbumService
^ PrintService

o- Q Events
e- InitialState
«- [5 IdleState
y [5 ProcessState

^ ProcessToOutput
o- ^ HighPhotoOuality

o-EconornyWode
o- BlackWhitePhoto
o- CreateCalendar
o- ^ IntermediateMode
o- tt ExpensiveMode
o- tt CreatePostcard

y Q Policies
y ip PhotoAlbumPrintProcessPolicyt

y G Events
® PhotoAlbumPrintProcessPolicyt Even

a Conditions
S Actions

IJH
Process Description FiniteStateMachine Description Policy Description
9 e Process

9 PhotoAlbumPrintProcess
0- & StateMachine

<3 Policy
o- s Inputs
o- Q Outputs

Property Value
Name

Property ______ Value_______
PhotoAlbumPrintProcess..

Type jSImpleEvent

data Flow
Process Parameter Process

=hotoServlce_
^holoServIce
PhotoServI^

j PhotoAlbumPrintProcess
PhotoAlbumPrintProcess
PhotoAlbumPrintProcess

FhotoAlbumSeivIce PhotoService

Status: TreeseleclionisPhotoAlbumPrintProcessPolicylEventl CSimpleEventj

Figure 4-35, SMPE tool highlights in red the missing details and provides options

vi. Add a new condition and configure its properties in the bottom right panel.

Required fields are highlighted in red. A list of the service’s parameters is

available for the subject property and a list of predicates (equal to, not equal

to, less than, greater than) for the predicate property (see Figure 4-36).

112

SMPF Service Management Policy Fditor

File ^ion tjelp

Q PhotoAlbumPrintProcess

Service Structure FiniteSteteMechine Structure Policies
9 S WebSeivice 0- Q Events 9 Q Policies

t -3 PholoAlbumPrintServIce ^ • InitialState ^ WS PhotoAlbumPrintProcessPolicyl
9 ^ PhotoAlbumPrintProcess o- SI IdleState 9 «3 Events

9 "A* Sequence 9 S ProcessState ® PhotoAlbumPrintProcessPolicyl Even
% PhotoServIce ^ ProcessToOutpul 9 ■a Conditions
tfe PhotoAlbumService »-HighPhotoQuality _ [S PhotoAlbumPrintProcessPolicyl Com
% PrintSenrlce o- EconomyMode a Actions

0- BladAMhitePhoto 1

«- CreateCalendar j
^ ^ IntermediateMode 1
^ ^ ExpensiveMode
^ ^ CreatePostcard , 1

4 1 III L’ i 1 III

Process Description FiniteStateMachine Description Policy Description 1
9 Q Process Property Value Property 1 Value

9 ^ PhotoAlbumPrintProcess Name PhotoAibumPhntProcess...
o- StateMachIne Type IsimpleCondItlon

Q Policy Subject jCjmefjPhotos
»- S Inputs Predicate JC«mtrjPhofos
^ <3 Outputs Value fCamtrjPhotoSIz*

■ BimaiaPhotoCataac^
lata Flow

Process I Parameter Process I Parameter
’hotoSenrice ■RawPhotos PhotoAlbumPrintProcess IcameraPhotos A
PhotoSenrice .PhotoCateoory PhotoAlbumPrintProcess jCameraPhotoCateaory =
PhotoServIce IPbotoSlze PhotoAlbumPrintProcess icameraPhotoSIze ””
PhotoAlbumSeivice lAlbum Photos PhotoServIce IprocessedPhotos

-
Status: Tree selection is PhotoAlbumPrritProcessPolicyl CondHionl (SmipleConcttion)

Figure 4-36, Selecting subject for new condition from selection of service’s parameters

vii. Add an action and configure its type attribute to be ComplexAction, since this

policy will contain more than one action (see Figure 4-37).

SMPF Service Management Policy Editor
I Option tjetp

Q PhotoAlbumPrintProcess

Service Structure FiniteStateHachine Structure Policies 1
9 S WebServIce

9 -> PhotoAlbumPrlntSendce
9 PhotoAIDumPrintProcess

9 "A- Sequence
PhotoServIce

% PhotoAlbumSeivice
•fe PrlntServIce

e- e Events
0- • InitialState
0- Si IdleState
9 ffl ProcessState

^ ProcessToOutpul
0- ^ HighPhotoQuality

®- ^ EconomyMode
o- ^ BlackWhltePhoto
»- CreateCalendar
o- ^ IntermediateMode
o- Tj ExpensiveMode
o- CreatePostcard

9 Q Policies t
9 W PhotoAIPumPrintProcessPolicyt i

9 « Events I
® PhotoAlbumPrintProcessPolicyl EvenJ

9 e Conditions
1^ PhotoAlbumPrintProcessPolicyl Cora

9 Actions
^ jhiotoAlbumPrlntProcessPolicyl Actio

i 1 ill !► III . 1 OJ

Process Description FiniteStateHachine Description Policy Description I
9 Q Process Property Value Properly Value

9 PhotoAibumPhntProcess Name IPhotoAlbumPrintProcess...
®- Q StateMachIne Type CompkxAetion 1 ^

Q Policy Simpl«Aeti6n

^ Inputs ftMplexAetion
■

e- ^ Outputs 1
Ota Flow

[CameraPhol6s~
Icameraj

Process Parameter Process Parameter
^rhotoService iRaj£liotos

PfcitoCat5~
Ttotosize

IwbumPhoti

IPhotoAltiumPrintProcess
^hotoSenrice
PhotoSeivice

iPhotoAlbumPrintProcess
iPhotoAlbumPrIntProcess eraPhotoSIze

PhotoAlbumSeivice IbumPhotos PhotoSeivice .ProcessedPhotos

Status: TreesetectronisPhotoAlbumPrlntProcessPottcylActionl (ComplexAction)

Figure 4-37, Adding a complex action to management policy

Add a Boolean node for this complex action (see Figure 4-38).

113

SMPF Service Management Policy Editor
Fie Option tjelp

FI PhotoAlbumPrintProcess □ D
Service Structure FiniteStateHachine Structure Policies
? G WebSenrice

? -J PhotoAlbumPrintServIce
y ^ PhotoAlbumPnntProcess

t ^ Sequence
•Si PhotoService
% PhotoAlbumServIce
% PnhtService

e- Q Evehts
0- • IhitialState
0- [*1 IdleState
y 15 ProcessState

^ ProcessToOutput
a- ^ HighPhotoQuallty
0- ^ EconomyMode
0- ^ BlackWhitePhoto
0- tj CreateCalendar
e- ^ IntermediateMode
0- ExpensiveMode
o- ^4 CreatePostcard

y G Policies
y PhotoAlbumPrintProcessPolicyt

y G Events
® PhotoAlbumPrintProcessPolicyt Even

y G Conditions
® PhotoAlbumPrintProcessPolicyl Com

y G Actions
dt) PholnAltaumPlInff’rocsssPotinrt Actio

Add Action
Add Boolean
Remove Action

• 1 HI Li __________ III 1.^
Process Description FiniteStateMachine Description Policy Description
f Q Process Property Value Property Value

y PhotoAlbumPhhtProcess Name PhotoAlbumPrintProcess...
•- S StateMachIne Type ComplexActlon

Q Policy 1
^ ^ Inputs
^ G Outputs i

Data Flow
Process Parameter Process Parameter

Came^aPtiotos
ICameraPhoioCalegory
^meraPhotoSIze

ProcessedPhotos

^otoSerto_
“hotoServIce
^hotoServIce
PhotoAlbumServIce

■RawPhotos PhotoAlbumPrintProcess
PholoCategory
PhotoSIZB
AlbumPhotos

P2iotoAJbt^J“rlntProcj^
_P h otoWbumPrintProc ess

PhotoSeivice
■Status: Tree selection is ProtoAlbumPrintProcessPoticylActionl (CompleyAction)

Figure 4-38, Adding a Boolean node for the complex action

It is configured to be AND by default. Then add two action nodes (see Figure

4-39).

SMPE Service Management Policy Editor
Eile Option tjelp

m

Service Structure FiniteStateMachine Structure Policies I
y G WebSetvice

y -> PhotoAlbumPrintServIce
y ^ PhotoAlbumPrintProcess

y ..A. Sequence
% PhotoService
<6l PhotoAlbumSenrI
•%! PrlntServIce

0- «3 Events
o- • Initlaistate
0- 5 IdleState
y 5 ProcessState

^ ProcessToOutput
»- HighPhotoQuallty
•- ^ EconomyMode
0- tg BlackWhitePhoto
0- CreateCalendar
»- IntermediateMode
»- ExpensiveMode
*- CreatePostcard

=

y <3 Policies
y VP PhotoAlbumPrintProcessPolicyt

y a Events
® PhotoAlbumPrintProcessPolicyt Event!

y ^ Conditions
1^ PhotoAlbumPrintProcessPolicyt Conditlonl

y G Actions !
y Si PhotoAlbumPrintProcessPolicyt Action!

y .A. And
Si Add Action isPolicyt Actio

Add Boolean
Remove BooleanT| ¥ TTT i 1 m 1 l> •f..... .. ___

Process Description FiniteStateMachine Description Policy Description
y G Process Property Value Property Value

y % PhotoAlbumPrintProcess Name And
®- G StateMachIne Type Boolean

G Policy
0- G Inputs

^ Outputs

Data Flow
Process 1 Parameter j Process J Parameter

PhotoService WiPhotos IPhotoAlbumPnntProcess jcameraPhotos
PhotoService jPhotoCategory iPhotoAlbumPnntProcess IcameraPhotoCategory
PhotoService IphotoSIze iPhotoAlbumPrintProcess ICameraPhotoSize
PhotoAlbumService MUMPhotos iPhotoSeryice (ProcessedPhotos
Status: Tree selecticn is And CBodean)

Figure 4-39, Adding the second child action for the complex action

114

viii. Select the first new action node and its properties will load in the bottom right

panel. The value property for this action is highlighted in red since it is a

required property. Choose an appropriate action value from the list of adaptive

behaviours; in this case it is CreateCalendar (see Figure 4-40).

‘ SMPE Service Management Policy Editor
Fie Option bWp

Q PhotoAlbumPriiitProcess d'cT H
Service Structure FiniteStateMachine Structure Policies 1
t Q WebService 0- Q Events 9 Q Policies

t -> PhotoAlbumPrIntService o- « InitlalState 9 ® PhotoAlbumPrintProcessPollcyl
9 ^PhotoAlbumPrinlProcess o- [5 IdleState 9 a Events

f jL Sequence 9 [51 ProcessState ® PhotoAlbumPrintProcessPollcyl Eventi
% PhotoService ^ ProcessToOutput 9 G Conditions
•© PhotoAlbumServI *- ^ HighPhotoQuallty _ PhotoAlbumPrintProcessPollcyl Conditioni

PrintService e- tj EconornyMode 9 a Actions
0- tj BlackVyhItePhoto 9 af PhotoAlbumPrintProcessPollcyl Action!
»- CreateCalendar 9 And
^ IntermediateMode ^ PhotoAlbumPrIntProcessPolicylActloi
^ ExpensiveMode ^ PhotoAlbumPrintProcessPollcyl Actio

tt CreatePostcard
M ill 1 1 > i 1 1 L It T| iir 1 I P
Process Description FiniteStateMachine Description Policy Description
y e Process Prooerty Value Property Value

T ^ PhotoAlbumPrintProcess Name PhotoAlbumPrintProcessPoli...
o- & StateMachIne Type SimpleActlon

Q Policy Value HlghPrioloQualltv ▼
^ G Inputs HighPhotoQujIiiy rr

O Outputs EoonomyMod*
BlaokWhiUPhoto

)ata FIom |r«jt«Cjltndar

Process i Parameter Process j lnt«rmtdlJt*Modt
=hoto8eivlce jRawPhotos PhotoAlbumPrintProcess iDMil ExpensiveMode

=hotoSerylce ^hotoCatewr PhotoAlbumPrintProcess Bami CreaiePostcaid _
=holoServlce ’hotoStee PhotoAlbumPrintProcess Bami RemoveRedEye

’hotoAlbumServIcs PhotoSenrics mMsssdPhotos

Status Tree selection Is PhotoAlbuinPrintProcessPolicylActionl 01 (SimpleAction)

Figure 4-40, Configuring the first policy action from dropdown menu to be CreateCalendar

ix. Configure the second node to have an action value of ColourPrinting (see

Figure 4-41).

115

' SMPF Service Management Policy fditor

I File Option Help

yiy *5?

Q PhotoAlbumPrintProcess

Service Structure FiniteStateMachine Structure Policies 1
t G WebSeivice o- a Events 9 Q Policies 1

T -•> PholoAlbumPrintSetvice t>- * InitialStale 9 W PhotoAlbumPrlntProcessPolicyl
9 % PhotoAlbumPrlntProcess o- SI IdleState 9 a Events

9 -i- Sequence 9 S ProcessState ® PhotoAlbumPrlntProcessPolicyl Eventi
% PhotoSeivice ^ ProcessToOutput 9 a Conditions

PbotoAlbumServi ®- HighPhotoOualily _ PhotoAlbumPrlntProcessPolicyl Condition!
SJj PrtntSeivice ®- EconomyMode 9 a Actions

0- BlackWhItePhoto 9 SS PhotoAlbumPrlntProcessPolicyl Actiont
«- It CreateCalendar 9 .i. And
^ tt IntermediateMode ^ PhotoAlbumPrintProcessPolicyt Actio
^ ExpensiveMode ^ PhotoWbumPrintProcBSsPolicyl Actio

0- CreatePostcard
i] iii TTT i 1 III L I^ Ti " ir L.. !►
Process Description FiniteStateMachine Description Policy Description
9 Q Process Property Value Proberty Value

9 PholoAlbumPrinlProcess Name iPhotoAlbumPrintProcessPoli...
*• Q SlateMachine Type SImpleActlon

Q Policy Value CoIourPrinting ▼
^ ^ Inputs EconomyMod* •*-!i

G Outputs BlJcMVhitoPhoto _
CrsjteCjlondjr

^9ta Flo«^
Process 1 Parameter 1 Process

PhotoServIce t tPhotoAlbumPrIntPracess rtiiliri
PhotoSeivice 1 HilCateMit IphotoAlbumPrlntPrbcess c3!s3
PhotoSenrlce PhotoSIze IPhotoAlbumPrintProcess

InUrmtdlJttMod*

£xp«nfhrtMod«
|Cie«tcPostojrd

RtmovcRtdEyt
^oufPrlntinA

PhotoAlbumServIce Photos IPhotoSeivIce

Status Tree selection Is PhotoAlbumPrintProcessPotcyl Actbnl 02 (SImpleActlon)

Figure 4-41, Selecting CoIourPrinting adaptive behaviour for the second policy action

X. The specification of this high-level management policy for the adaptive

composite service PhotoAlbumPrintService is now complete and can be saved.

This is achieved by clicking File, then Save. When saving, management

policies specified are validated. The SMPE notifies the user in case any of the

specified policies are incomplete or any of the required fields have not been

configured.

It was shown how the SMPE tool can be used to accomplish the Management

Policy Specification Activity of the MAWS methodology by allowing user to specify

management policies for adaptive (composite) services.

4.7.2 Automatically Refining Management Policies for Adaptive

Composite Web Services

The PhotoAlbumPrint Service example web service is used here to illustrate

how the SMPE tool automatically refines the specified management policies. It is

assumed that management policies have been specified for this service. The

refinement process produces low-level enforceable policies for the relevant

constituent adaptive web services. The steps for refining this management policy are

as follows:

116

11.

111.

IV.

Refine the specified management policy for this service;

Verify that there are no errors from the policy refinement report produced;

Check to see the generated enforceable policies;

Save the policies created for this service;

Using the same composite service PhotoAlbumPrintService and the same

specified management policy as in the previous section (see section 4.7.1).

i. Management policies for this service can be refined by right clicking on

Policies and select Refine Policies from the dropdown menu (see Figure 4-42).

I SMPr Service Management Policy Editor
File Option He^

n PhotoAlbumPrintProcess

Service Structure FiniteSteteMachine Structure Policies
? Q WebServite

y -J PhotoAlbumPrintService
y i^PhotoAlbumPrintProceM

y .i. Sequence
% PhotoService
% PhotoAlbumServi
^ PrintService

III Li

o- a Events
o- • InitialState
o- 51 iqieState
y m ProcessState

^ ProcessToOutput
e- ^ HIghPhotoQuallty
®- tt EconomyMode
0- BlackWhitePhoto
e-CreateCalendar
a- ty IntermediatsMode
®- ExpensiveMode
o- tt CreatePostcard

.11 T7p:

POM ________
■GIF Add PoHcy
t < Refine Poides

t <
r

Reset Policies

ssPolicyt

ntProcessPollcyt Eventi

PhotoAlbumPrintProcessPolicyl Condilioni
y G Actions

y a? PhotoAlbumPrintProcessPolicyl Actioni
f M And

& PhotoAlbumPrintProcessPolicyl Actioj
aj PhotoAlbumPrintProcessPolicyl Actioi

If JL
Process Descnption FiniteSteteMacrhine Description Policy Description
y <3 Process

y PhotoAlbumPrintProcess
®- e StateMachine

G Policy
»- G Inputs
o- G Outputs

Property Value Property Value
Name
Type

IPhotoAlbumPrintProcessPoll..
'Policy

Description

date Flow

Process Parameter Process 1 Parameter
’hotoService PhotoAlbumPrintProcess BameraPhotos A

’hotoSenrice ’hotoCategory PhotoAlbumPrintProcess IcameraPhotoCategory

PhotoService ’hotoSIza PhotoAlbumPrintProcess IcameraPhotoSIze
PhotoAlbumService PhotoService ProcessedPhotos ■V

Status. Tree selection is Policies

Figure 4-42, Starting the automated policy refinement

ii. The SMPE tool notifies the user with a report of the success of the automated

policy refinement process. In this case the tool reports that there were no

errors and it provides a list of enforceable policies generated (see Figure 4-43).

117

Refining poiicyfor PhotoAlbumPrintProcess (CompositeProcess):
Poiicy generated tor PhotoAlbumSenrice:
Poiicy PhotoAibumServicePoiicyf C, EventRPhotoAlbiimPrintProcessPoiicyiEventf A, Action=CreateCalendar,
Poiicy generated for PrinfSetvice:
Policy PrintServicePolicyl C. Event=RPhotoAlbumPrintProcessPolicyf Eventi A Action=ColourPrintinQ,
Policy generated for PhotoService:
Policy PhofoSetvicePolicyf, Event=RPhotoAlbumPrintProcessPolicy1 Event! C, Condifion=portrait, Action=event(RPhotoAlbumPrintProces

Refining policy for PhotoService (AlomicProcess):
Policy generated for PhotoSenrice:
Policy PhotoSenricePolicyl, Event=RPhotaAlbunnPrintProcBssPolicy1 Event! C, Conditlon=portrait, Action=event(RPhotoAlbunnPrlntProces

Refining policy for PhotoAlbumSeivice (AlomicProcess):
Policy generated for PhotoAlbumSeivice:
Policy CreateCalendarPolicyl, Event=CreateCalendarEverrt. Acbon=creafeCalendarO,

Refining policyfor PrintSerrice (AlomicProcess):
Policy generaled for PrintService:
Policy ColourPrintingPolicyf, Event=ColourPrinllngEyent, Actlon=Comple)tAcllon (And),
Policy ColourPrintingPolicy2, Event=ComplexEvenl (And), Condilion=presenl, Acbon=usecartage(type_coloui),
Policy ColourPrintingPolicy2, Event=Comple)(Evenl (And), Condilion=presenl, Aclion=:usecanagB(type_colour),

Ok

Figure 4-43, SMPE tool’s report of the policy refinement identifying generated policies

iii. Details of these enforceable policies can be seen by browsing the relevant

services from the top left panel, and its policies are loaded in the top right

panel, where their aspects are loaded in the bottom right panel when selected

(see Figure 4-44).

SMPE Service Management Policy Editor
I EHe Option bolp I

R PhotoAlbumPrintProcess ud‘

lervice Structure FiniteStoteMachine Structure Policies
S WebSeivice
y PhotoAlbumPrinlService

y PhotoAlbumPrintProcess
y A. Sequence

4|l PhotoService

PhotoAlbumSeivii
<89 PrIntSenrice

<L 11 Zl£

y a FinIteStafeMachine
y I99 PrintSeiviceFSM

o- a Events
o- • InitialState
«- IS IdleState

ProcessState
InputState

y IS Outputs! ate
<5* OutputToldle

y Colourprinting
o- ♦ ColourPrintingl
o- * ColourPrintingl

M III I IM

y a Policies
e- 0 PrintServicePolicyl C
»- W ColourPrintingPolicyf
y W) ColourPrlntingPollcy2

y a Events
y ® ColourPrlntingEvent2

y A And
® ColourPrintIngEventOOl
® ColourPrintingEvent002

y a Conditions
3 ColourPrlntingCondttion2

y a Actions
ColourPrintinflAction2

Process Description FiniteStateMachine Description Policy Description
f Q Process

y % PrintService
o- Q StateMachine

a Policy
e- a Inputs
*- a Outputs

Property Value
Name

Properly

Type
Subject
Predicate
Value

Value
ColourPhntingCondition2
SimpleCondllion
colourcaitage
equal
present

Data Flow
Process 1 Parameter [Process 1 Parameter

PhotoService RawPhotos PhotoAlbumPrintProcess CameraPhotos -1
PhotoService PhotoCategory .PhotoAlbumPrintProcess CameraPhotoCategory d

PhotoService iphotoSize PhotoAlbumPrintProcess CameraPhotoSiie d

PhotoAlbumService AlbumPhotos .PhotoService .ProcessedPhotos

Status; Tree selection is ColOLirPrint»rigCondftion2 (SimpteCondition)

Figure 4-44, SMPE tool displaying the generated refined policies for the constituent services

iv. The refinement of this high-level management policy for the composite web

service PhotoAlbumPrintService is now complete and can be saved. This is

achieved by clicking File, then Save. When saving, generated enforceable

118

policies are saved on a separate file, which prevents from getting mixed with

high-level policies and allows the file to be directly consumed by a policy

engine.

This section demonstrates how the SMPE tool can be used to accomplish the

Management Policy Refinement Activity and the Management Policy Generation

Activity of the MAWS methodology by automatically generating refined enforceable

policies to manage adaptive (composite) services.

4.8 Adaptive Web Service PBMS Evaluation Platform

In order to verify that the generated enforceable policies can manage the

adaptive composite services according to the specified high-level management

policies, a policy evaluation framework for web services was needed. The policy

evaluation platform was implemented to validate case studies during runtime. It offers

the necessary support to execute adaptive web services at runtime and provide

runtime traces for analysis.

The policy evaluation framework can host adaptive web services, and together

with their enforceable policies for managing their adaptive behaviours. The evaluation
policy platform consists of a web service container for executing the adaptive web

services, and a policy engine, which consumes the generated low-level policies and

enforces them upon the hosted web services for managing their adaptive behaviours

during their execution.

Apache Tomcat [48] and Apache Axis2 [49] were used as the web service

container to host these adaptive web services. Axis2 has Java2Wsdl and Wsdl2Java

which allows for the generation of WSDL for web services implemented in Java or

for the generation of web service skeleton code in Java for WSDL description of web

services. Both Apache Tomcat and Apache Axis2 are very widely used as web service

containers in industry and academia and therefore provide an authentic

implementation environment for adaptive web services.

This framework also includes a policy engine, which was build upon the Jess

rule engine [47]. The policy engine consumes generated low-level policies expressed

in OWL and transforms them into Jess rules. These enforceable policies, expressed as

Jess rules, are loaded into the Jess rule engine to manage the relevant adaptive web

119

services in the web service container through a Remote Method Invocation (RMI)

connection. This RMI connection ensures that the policy engine is informed of events

from the adaptive web services and that actions assigned by a triggering policy are

invoked on the relevant adaptive web service. Thus, allowing several adaptive web

services to be enforced by a single policy engine.

s Web Service Policy Engine

File Help
igh Policies

S®®

Name Target Event Condition Action
ReportLetlerSeivicePolicy2 RepoftLetterService ProcessEvent Membership-Silver LinuxDoc
ReportLetterServicePolicyl ReportLetlerServjce ProcessEvent Membership=Oold FasterSearch

Policies
Name Target Event Condition Action

FasterSearchPoiicy2 AddressBookService SortedEvent&FasterSearc... BinarySearchO
FasterSearchPolicyt
* - ^iii ill rfTiJIniT

AddressBookSetvice ProcessEvent&FasterSea...
bun—.j

QuickSortO&eYent(Faster,..

AddressSookServIcePolic.. AddressBookService
! P WittLBabtJ
RReportLetlerServicePoli... eve nt(F a ste rS e a r c h E venO

RReportLetlerSsfvicePoli.. ReportLetterSeMce ProcessEvent R eventCRReportLetterSeM..
RReporILetlerSeivicoPoli... ReportLetterService ProcessEvent eve nt(R R e p 0 rtLetle rSe rvi... -
Recetvino Event for Service LetterServlce:
Receiving input for Service LetterServlce:
Receiving input for Service LetterServlce:
Receiving Input for Service LetterServlce.
Receiving Input for Service LetterServlce:
Receiving Input for Service LetterServlce
Receiving input for Service LetterServlce
Receiving Input for Service LetterServlce
Receiving Event for Senrice LetterServlce
Receiving Event for Service LogmServIce.
Receiving Input for Service LogInService.
Receiving Input for Sennce LogInService.
Receiving Input for Service LogInService
Receiving Event for Service LogmService
Receiving Event for Service LogmService.

InpiitEvent
username = 1smith'
passworc = '1234*
memberships'Silver
name s "jane"
messages-NewYear
prlorliy="Hioh“
filter s
ProcessEvent
InpulEverit
username s''j8mith'
passwords'1234'
membership s ‘Silver
ProcessEvent
OutputEvent

lys Mign
" I I

essEvenl | D |

(deiruie LoginServicePDiicy2
(event (service '^serviceO&LoginServiceiAny) (name ?eventO&RReportLe
IlerServicePoliCY2Eventi O)
(param (service 7c8eiviceO&LoginSetvice) (direction 7clirection0) (name
7param0&mempershlp) (value ?valueO)) (test (eg 7v8tueQ SliveO)
s>(aB8ert (event (service Any) (name RReportLetterSefvlcePollcy2Event
1CU0))))

lE III I

0

Figure 4-45, Snapshot of the Policy Evaluation Framework

The policy engine was implemented with a GUI to facilitate observing the

policy execution, as depicted in Figure 4-45. Its top panel (A) shows the high-level

management policy, while the middle panel (B) shows the refined enforceable

policies. The bottom right panel (C) shows the Jess rule for the selected low-level

enforceable policy. And the bottom left panel (D) shows a running trace of the policy

engine.

In order to ensure that the policy evaluation platform is able to manage these

adaptive web services, the following steps are suggested for web service developers in

their implementation, and were used in the implementation of the adaptive web

services for the case studies described in section 5.2:

1. Create a project in Eclipse for a web service;

2. Create a WSDL file for a web service;

3. Describe this web service in the WSDL file with a single request

120

4. Use Wsdl2Java tool with the options -ss -sd -uri <wsdl file>, this will

generate web service skeleton java files;

5. Edit build.xml and add PolicyEngineProxy.jar to classpath

6. Edit service.xml and add logging module to this service

7. Edit the web service skeleton java file and add the following lines:

a. Add PolicyEngineProxy attribute to this service and initialize it in the

service’s constructor with the parameter this;

b. Add line engine.event(servicename, InputEvent) in the service main

function before reading the service’s input parameters;

c. Add line engine, event(servicename, ProcessEvent) in the service main

function after reading the service’s input parameters;

d. Add line engine.event(servicename, OutputEvent) in the service main

function before writing the service’s output parameters;

8. Finally, add the desired adaptive behaviours as public functions.

A tool called SoapUI [45] was used to invoke the web services. This tool facilitates

the creation of soap requests and allows users to invoke the soap request with

different parameters. Service responses are then displayed to the user through the

SoapUI’s GUI.

4.9 Summary

This chapter illustrated how the integrated set of tools was implemented to

support the MAWS methodology in describing web services and their adaptive

behaviours using a combination of OWL-S and FSM. In addition these integrated

tools also support the specification of management policies and automated refinement

of these policies, generating enforceable policies to manage adaptive web services.

The design and implementation of each of these integrated tools was explained in

detail and included how the respective enabling technologies were used to achieve the

functionality of each of their main components. Lastly, a demonstration of the use of

these tools is provided together with screenshots.

In the next chapter. Chapter 5, a description of how these tools operate with

different case studies and how they undergo a usability test is presented. Furthermore,

the results of each of their experiments and conclusions are also presented.

121

5 Evaluation

5.1 Introduction

In order to evaluate the MAWS approach, three tools were developed. This

chapter evaluates these innovative tools as proof of concept, in particular the SABE

and SMPE tools. These prototype tools, as proofs of concept, have undergone

experiments to evaluate their usability and functionality. More specifically these

experiments focus on validating the approach these tools support against the

objectives set out in this thesis. The first experiment is a functional evaluation with

case studies used to validate the approach proposed using the implemented integrated

tools. Two application areas for adaptive web services were chosen, namely

personalisation and business context adaptation. Each case study validates the

functionality of the tools in creating discrete policies to manage adaptive composite

services under different circumstances.

Usability experiments were conducted for the prototype tools SABE and

SMPE to appraise their usability by measuring the degree of ease with which users

can complete specific tasks using these tools. Due to time limitations and a limited

number of users, usability experiments were conducted only for the SABE and SMPE,

and not for the WSDE tool, since it is not novel to the field of describing web services

as OWL-S.

Finally, a discussion of related work to the approach proposed in this thesis is

presented at the end of this chapter. This discussion compares other approaches in the

domain of adaptive web services and policy refinement to the proposed approach,

depicting any relevance and contrasting any differences.

5.2 Functionality Evaiuation

The aim of the functionality evaluation is to evaluate SABE and SMPE tools

under different scenarios but more importantly, scenarios that provide adaptive web

services which demonstrate higher level of complexity than the adaptive web services

used in the usability experiments. Two scenarios were designed in different

application areas to evaluate the functionality of these tools, and to validate their

122

flexibility as a set of integrated tools for managing adaptive composite services. The

adaptive services chosen for these case studies were selected to demonstrate how the

proposed approach can successfully adapt web services in the areas of personalisation,

context changes, and business model flexibility. Therefore in order to evaluate the

MAWS methodology and its supporting tools, these two case studies had to be

defined and executed using the policy evaluation platform described in section 4.8.

For each case study, adaptive composite services were implemented in Java,

the processes in the MAWS methodology were followed, and its supporting tools

were used; (i) the WSDE tool was used for describing the atomic web services

semantically, (ii) the SABE tool was used for describing their adaptive behaviours,

(iii) the WSDE tool was used for describing the composition of composite web

services; (iv) the SABE tool was used for aggregating the adaptive behaviours of

composite services; (v) the SMPE tool was used for specifying management policies

and for automatically refining them into low-level enforceable policies. Finally, the

adaptive web services and their enforceable policies were loaded onto the policy
evaluation platform^, and runtime traces were recorded. The policy evaluation

platform offers the necessary runtime support for the following case studies to be

evaluated.

5.2.1 Case Study - Personalised Holiday Service

This case study demonstrates how the integrated tools can be used to describe

and manage adaptive behaviours of a composite web service called Personal Holiday

service. This web service allows a user to login and book a holiday trip, which

includes a return flight to an exotic destination of their choice and accommodation in

a resort hotel, and finally allows them to pay for the trip through a payment service.

This adaptive composite service is depicted in Figure 5-1.

The Personal Holiday service is more complex than the composite web service

used in the usability experiments; for instance, this composite service is itself

composed of another composite service. The multi-level hierarchy of constituent

services allows this case study to demonstrate how the integrated tools can

automatically aggregate the adaptive behaviours of this web service in a reversed

Implementation of the policy evaluation platform is described in section 4.8

123

hierarchical manner. In addition, it shows that the integrated tools can automatically

refine the specified policies, generating enforceable policies for this web service in a

hierarchical manner.

Furthermore, this case study provides an application scenario that

demonstrates how the proposed approach to adaptive web services can empower users

using these web services. It shows the flexibility of integrating (individual and group)

user preferences into web services. It shows how adaptive web services can be

personalised to suit user’s needs or preferences, as they are specified through policies.

A description of this adaptive composite service together with the specified high-level

management policies and their enforceable policy counterparts is presented.

Personal Holiday
Service

tComoosite Service)

f
Login Service

(Atomic Service)
Holiday Package

Service
(Comoosite Service)

Payment Service
(Atomic Service)

r 1
Flight Service

(Atomic Service)
Hotel Service

(Atomic Service)
Holiday Bill

Service
tAtomic Service)

Figure 5-1, Diagram of the Personalised Holiday Service

Personal Holiday Service

The Personal Holiday Service, depicted in Figure 5-1, is composed of:

• a login service, for authenticating the user’s credentials;

• a holiday package service; which provides the user with a holiday package

including a return flight and hotel, and is composed of:

o a flight service, for booking a return flight to a resort destination;

o a hotel service, for reserving a room in one of the hotels from the resort

destination;

124

o a holiday bill service, for generating the holiday bill by adding the total

cost;

• a payment service, which charges the user with the total amount for the

holiday trip to his/her visa card;

However, imagine that it was also possible to personalise this service to meet

your preferences or needs, such as if you were on a business trip, vegetarian or in

need of wheelchair accessibility. In order to accommodate the personalisation of these

services, adaptive behaviours were added to these services together with their

semantic descriptions.

Flight Service’s Adaptive Behaviours

The flight service was improved with the following adaptive behaviours:

• Accessibility, changes the service’s behaviour to allocate a seat beside the

door for accessibility;

• Vegetarian, changes the service’s behaviour to serve the passenger with a

vegetarian meal;

• BusinessClass, changes the service’s behaviour to allocate a business class
seat on the flight;

• HighClass, changes the service’s behaviour to allocate a first class seat on the

flight;

Hotel Service’s Adaptive Behaviour

The hotel service was implemented with the following adaptive behaviours:

• Accessibility, changes the service’s behaviour to allocate a room with

wheelchair accessibility;

• Vegetarian, changes the service’s behaviour to prepare vegetarian menu for

the guest;

• BusinessClass, changes the service’s behaviour to prepare the reserved room

for business purposes (desk, internet connection, conference phone);

• HighClass, changes the service’s behaviour to reserve the presidential suite;

125

Payment Service’s Adaptive Behaviour

The payment service has the default behaviour of charging users on a visa

card. This service was improved with the following adaptive behaviours:

• MasterCard, changes the service’s behaviour to charge users on his/her master

card;

• AmericanExpress, changes the service’s behaviour to charge users on his/her

American Express card;

• Travel Voucher, changes the service’s behaviour to utilise travel vouchers to

pay for the trip;

Management Policies

In order to demonstrate how this adaptive composite service can be

personalised for a particular user or a group of users, two set of policies were created,

one for each:

• Susan Smith is someone in a wheelchair, who likes to go on holidays.

However, there needs to be some accessibility for her, both in the flight as

well as in the hotel. Thus, the policy specified for her is as follows:

o “ON Process Event, IF username = Susan.Smith AND Membership =

Frequent Flyer, THEN Action: Accessibility”.

• John Murphy is a member of the sales team in a multinational company. John

and his team are in charge of advertisement in different countries, and while in

those countries they need to present their new products. Therefore, in order to

prepare for their presentations, they need a place to do their job, i.e. both the

flight and accommodation need to be business class. Thus, the policy specified

for him and his team members is as follows:

o “ON Process Event, IF Membership = SalesGroup, THEN Action:

BusinessClass;

The high-level policy specified for John Murphy and her team using the

SMPE tool is shown in Figure 5-2, described as Obligation Policy Ontology Model.

126

<policy:Policy rdf:ID="PersonalHolidayServicePolicy2">
<rdfs : commentx/rdf s : coininent>
<policy:target rdf:resource="PersonalHolidayProcess.owl#
PersonalHolidayService'Vxpolicy: event rdf: resource="
#PersonalHolidayServicePolicy2Event 1" / xpolicy: condition
rdf:resource=" #PersonalHolidayServicePolicy2Conditionl"/>
<policy:action rdf:resource="
#PersonalHolidayServicePolicy2Actionl"/x/policy: Policy>
<policy:SimpleEvent rdf;ID="PersonalHolidayServicePolicy2Eventl">
<policy: value>ProcessEvent</policy: valuex/policy: SiinpleEvent>
<policy:SimpleCondition rdf:ID="
PersonalHolidayServicePolicy2Condition01"Xpolicy:subj ect>
<policy: Subject rdf: ID="Membership"/x/policy: subject>
<policy:predicateXpolicy: Predicate rdf: ID="equal"/>
</policy:predicatexpolicy: value> SalesGroup</policy: value>
</policy: SimpleConditionXpolicy: SimpleAction
rdf:ID="PersonalHolidayServicePolicy2Actionl">
<policy:value>BusinessClass</policy:valueX/policy:SimpleAction>

Figure 5-2, A snippet of the second management policy specified for the Personal Holiday Service

Next, the SMPE tool was used to automatically refine these management

policies into enforceable policies. The tables below show a summary of the

enforceable policies generated for the Personal Holiday Service and its constituent

services.

PersonalHolidayService (CompositeProcess)

Name Event Condition Action

Policyl ProcessEvent event(RPersonalHoiidayServicePolicy1 Eventi CO)

Policy2 ProcessEvent event(RPersonaiHolidayServicePolicy2Event1C0)

Policyl CU RPersonal HolidayService
Policyl EventICUO

event(RPersonalHolidayServicePolicy1 Eventi aA)

Policy2CU RPersonalHolidayService
Poiicy2Event1CU0

event(RPersonalHolidayServicePolicy2Event1aA)

Table 4, Enforceable policies generated for Personal Holiday Service

LoglnService (AtomicProcess)

Name Event Condition Action

Policyl RPersonaiHolidayService
Policyl Eventi CO

(name==Susan.Smith)&&
(m ember==F requentFiyer)

event(RPersonalHolidayServicePolicy
1 EventICUO)

Policy2 RPersonalHoiidayService
Policy2Event1C0

member==SalesGroup event(RPersonaiHolidayServicePolicy
2Event1CU0)

Table 5, Enforceable policies generated for Login Service

HolidayPackageService (CompositeProcess)

Name Event Condition Action

PoiicylC RPersonalHolidayService
Poiicyl Eventi aA

event(HoiidayPackageServicePolicy1CEvent2aA)&&
event(HolidayPackageServicePolicy1CEvent2bA)

Policy2C RPersonalHolidayService
Policy2Event1aA

event(HolidayPackageServicePolicy2CEvent2aA)&&
event(HolidayPackageServicePolicy2CEvent2bA)

127

Table 6, Enforceable policies generated for Holiday Package Service

FlightService (AtomicProcess)

Name Event Condition Action

Policy ICC HolidayPackageServicePolicy1CEvent2aA event(AccessibilityEvent)

AccessibilityPolicyl ProcessEvent&& AccessibilityEvent AccessibilityO

Policy2CC HolidayPackageServicePolicy2CEvent2aA event(BusinessClassEvent)

BusinessClassPolicyl ProcessEvent&& BusinessClassEvent BusinessClassO

Table 7, Enforceable policies generated for Flight Service

HotelService (AtomicProcess)

Name Event Condition Action

PolicylCC HolidayPackageServicePolicy1CEvent2bA event(AccessibilityEvent)

AccessibiiityPoiicyl ProcessEvent&& AccessibilityEvent AccessibilityO

Policy2CC HolidayPackageServicePolicy2CEvent2bA event(BusinessClassEvent)

BusinessClassPolicyl ProcessEvent&& BusinessClassEvent BusinessSuiteO

Table 8, Enforceable policies generated for Hotel Service

In order to validate these policies, the adaptive web services described above

were implemented as shell web services, and they were loaded into the policy

evaluation framework to evaluate these policies. The enforceable policies were

translated from their ontology model to jess rules by the policy evaluation framework

before being executed to manage these adaptive web services. Figure 5-3 shows the

generated low-level policies as jess rules for managing the Personal Holiday Service.

128

(defrule HotelServicePolicy2CC
(event (service ?serviceO&HotelServiceI Any) (type ?typeO) (name
?eventO&HolidayPackageServicePolicy2CEvent2A))
=>(assert (event (service Any) (type Policy) (name BusinessClassEvent)))
(assert (action (service ?serviceO) (name ?eventO))))

(defrule LoginServicePolicy2
(event (service PserviceO&LoginServiceI Any) (type ?typeO) (name
?eventO&RPersonalHolidayServicePolicy2EventlC)) (event (service
?cserviceO) (type ?ctypeO) (name ?ceventO&~IdleEvent))
(param (service ?cserviceO&LoginService) (direction ?directionO) (name
PparamO&member) (value ?valueO)) (test (eq ?valueO MarJceting))
=>(assert (event (service Any) (type Policy) (name
RPersonalHolidayServicePolicy2EventlCU0))) (assert (action (service
?serviceO) (name ?eventO))))

(defrule RPersonalHolidayServicePolicy2CU
(event (service ?serviceO&PersonalHolidayServiceI Any) (type ?typeO) (name
?event0&RPersonalHolidayServicePolicy2EventlCU0))
=>(assert (event (service Any) (type Policy) (name
RPersonalHolidayServicePolicy2EventlA))) (assert (action (service
?serviceO) (name ?eventO))))

(defrule HolidayPackageServicePolicy2C
(event (service ?serviceO&HolidayPackageServiceI Any) (type ?typeO) (name
?eventO&RPersonalHolidayServicePolicy2EventlA))
=>(assert (event (service Any) (type Policy) (name
HolidayPackageServicePolicy2CEvent2A))) (assert (action (service
?serviceO) (name ?eventO))))

(defrule FlightServicePolicy2CC
(event (service ?serviceO&FlightService|Any) (type ?typeO) (name
?eventO&HolidayPackageServicePolicy2CEvent2A))
=>(assert (event (service Any) (type Policy) (name BusinessClassEvent)))
(assert (action (service ?serviceO) (name ?eventO))))

(defrule RPersonalHolidayServicePolicy2
(event (service ?serviceO&PersonalHolidayServiceI Any) (type ?typeO) (name
?eventO&ProcessEvent))
=>(assert (event (service Any) (type Policy) (name
RPersonalHolidayServicePolicy2EventlC))))

Figure 5-3, A snippet of the enforceable policies as Jess Rules for the second management policy

The request and response made by Susan Smith to the Personal Holiday

Service can be seen in Table 9.

Request Response

Parameter Value

Username: Susan.Smith

Password: 1234

Member: FrequentFlyer

Origin: New York

Destination: Paris

Going Date: 01/03/2007

Leaving Date: 05/03/2007

Person : 1

Parameter Value

Approved true

Flight class EconomyCtass

Flight number FR235

Itinerary NYPR_Hilton_0204

Hotel name Hiiton

Hotel address Chartes De Gauid

Hotel reservation Hilton_02_4

Hotel stars 5

129

Hotel facilities Swimming Pooi Game Room Sauna

Brochure English, French

Total 2530.0

Table 9, Susan Smith’s request and response to the Personal Holiday Service

The request made by John Murphy to the same instance of the Personal

Holiday Service and the response returned can be seen in Table 10.

Request Response

Parameter Value

Username: John.Murphy

Password: 1234

Member: SalesGroup

Origin: Toronto

Destination: London

Going Date: 10/04/2007

Leaving Date: 12/04/2007

Person : 1

Parameter Value

Approved true

Flight class EconomyClass

Flight number BA 655

Itinerary TOLO_Mariott_0102

Hotel name Mariott

Hotel address Abbey Street

Hotel reservation Mariott_01_2

Hotel stars 4

Hotel facilities Swimming Pool Game Room

Brochure English

Total 1650.0

Table 10, John Murphy’s request and response to the Personal Holiday Service

Runtime traces were recorded with the use of the policy evaluation framework

for these two requests made to a single instance of the Personal Holiday Service; one

made by Susan Smith and the other made by John Murphy. Figure 5-4 shows the

content of a runtime log file for the first request made by user Susan Smith and Figure

5-5 show the trace log of the same service instance at runtime for the second request

made by user John Murphy from the sales team. Please note the difference in the trace

logs where changes in the service behaviour are indicated with $$.

130

[Login] Reading user list from file
[Login] username = Susan.Smith
[Login] password = 1234
[Login] membership = FrequentFlyer
[Login] Susan Smith has successfully login
[Flight] Reading user list from file
[Flight] Reading airline list from file
[Flight] Processing flight reservation request
[Flight] Searching for a flight from New York to Paris
[Flight] $$Reserving flight seat with Wheelchair access
[Flight] A flight was found for 300.0 euro
[Hotel] Reading user list from file
[Hotel] Reading hotel list from file
[Hotel] Processing hotel reservation request
[Hotel] Searching for a hotel in Paris
[Hotel] Hotel found for the desired holiday location Hilton
[Hotel] $$Reserving room with Wheelchair access
[HotelBill] Processing Holiday Bill
[HotelBill] Holiday package adds up to 2300.0
[HotelBill] Sales tax is 10.0
[Payment] Reading user list from file

Processing Payment request for a bill of 2300.0
Retrieving Visa Card Number
Retrieving Visa Expiry Date
Validating Visa Card
Charging the user Susan Smith: 2530.0
Payment of 2530.0 including sales tax of 10.0% has been

[Payment]
[Payment]
[Payment]
[Payment]
[Payment]
[Payment]
approved

Figure 5-4, Runtime trace for Susan Smith using Personai Holiday Service

[Login] username = John.Murphy
[Login] password = 1234
[Login] membership = SalesGroup
[Login] Sending Event ProcessEvent
[Login] John Murphy has successfully login
[Flight] Reading user list from file
[Flight] Reading airline list from file
[Flight] Processing flight reservation request
[Flight] Searching for a flight from Toronto to London
[Flight] $$Reserving Business class flight
[Flight] A flight was found for 700.0 euro
[Hotel] Reading user list from file
[Hotel] Reading hotel list from file
[Hotel] Processing hotel reservation request
[Hotel] Searching for a hotel in London
[Hotel] Hotel found for the desired holiday location Mariott
[Hotel] $$Reserving Business suite
[HotelBill] Processing Holiday Bill
[HotelBill] Holiday package adds up to 1500.0
[HotelBill] Sales tax is 10.0
[HotelBill] Reading user list from file
[Payment] Reading user list from file
[Payment] Processing Payment request for a bill of 1500.0
[Payment] Retrieving Visa Card Number
[Payment] Retrieving Visa Expiry Date
[Payment] Validating Visa Card
[Payment] Charging the user John Murphy: 1650.0
[Payment] Payment of 1650.0 including sales tax of 10.0% has been

Figure 5-5, Runtime trace for John Murphy using Personal Holiday Service

131

It can be noted that the same web serviee instanee behaved differently for

these two requests. In other words, this web service was personalised for these two

users according to their polieies ($$ indicates the changes in the serviee behaviour).

For full detail of the artefaets used in this case study - see Appendix F.

This ease study illustrated how the integrated tools sueeessfully deseribed user

centric adaptive behaviours of a eomposite web service. Furthermore, it illustrated a

suceessfiil automated policy refinement of management policies specified to

personalise this web service to suit the preferenee of two different users. This is just a

small sample of how web services can be personalised through adaptive behaviours

using this approach.

One might argue that this personalisation can be implemented within the web

services. And indeed they can as shown in the In-house approach (section 2.3.1). But

the key to the novel approaeh is to have the intelligenee expressed externally through

policies that allows web serviees to be dynamically adaptive in a declarative manner.

Furthermore, the use of policies allows the changes in the personalisation without the

need to recode web services.

The case study showed how adaptive behaviours of the constituent web

serviees were aggregated together, using the SABE tool, for this composite web

serviee. And also, that this aggregation was performed in a hierarchical manner over

different levels of composition. More importantly, it showed how the SMPE tool

successfully refined the specified management policies, in an automated manner, into

low-level polieies for the relevant eonstituent adaptive atomic web services.

This case study also demonstrated how the SMPE tool was capable of refining

eomplex high-level policies. It was able to automatically refine both policies with

multiple eonditions and with multiple actions. This refinement also ineludes mapping

polieies that are created for the different web services in the composition path linking

the high-level policies to the low-level policies. The policy refinement process is also

done in a hierarehical manner, so it ean be performed over several levels of

composition. This was demonstrated through this ease study, which contains multiple

levels of eomposition.

132

5.2.2 Case Study - Notification Service

This case study demonstrates how the integrated tools can be used to describe

and manage adaptive behaviours of a composite service called Notification service.

When the Notification Service receives a notification request, it formats the

notification’s message, finds the address of the recipient, and contacts the recipient by

phone and email with the notification’s message. This web service, depicted in Figure

5-6, also has a composition more complex than the composite service used in the

usability experiment with more number of constituent services and a multi-level

hierarchy of constituent services.

Hence, this case study demonstrated how the integrated tools can

automatically aggregate the adaptive behaviours of this web service in a reversed

hierarchical manner. In addition, it showed that the integrated tools can automatically

refine the specified policies, generating enforceable policies for this web service in a

hierarchical manner.

However, this case study differs from the previous one since this case study

focus on demonstrating how adaptive web services can be described and managed by

policies in order to make their behaviour dynamic to changes in context and to

changes in business logic. To demonstrate how the Notification service could change

its behaviours dynamically for changes both in context and in business logic, a larger

set of policies were specified than previous case study. By using the integrated tools

to refine these policies, a large number of enforceable policies were generated

targeting different constituent services. Furthermore, these enforceable policies

changed the web services behaviour appropriately and did not conflict with each

other, as seen through the runtime trace logs.

133

Notification Service
(Composite Service)

f T 1 T 1
Login Service

(Atomic Service)
Message Service
(Atomic Service)

AddressBook
Service

(Atomic Service)

Contact Service
(Composite

Service)

r
Phone Service

(Atomic Service)
Email Service

(Atomic Service)

Figure 5-6, A diagram of the Notification Service

Notification Service’s Adaptive Behaviours

The Notification service is composed of:

• a login service, for authenticating the user’s credentials;

• a message service, which formats the message content for the recipient to be

notified with;

• an address book service, which finds the address (email and phone number) of

the recipient to be contacted;

• a contact service; which contacts the recipient with the message provided, and

composed of:

o a phone service, which notifies the recipient by phone with the given

message;

o an email service, which notifies the recipient by email with the given

message;

In order to accommodate changes in business logic or environment context,

this service was composed of adaptive web services.

Message Service’s Adaptive Behaviours

The message service was implemented with the following adaptive

behaviours:

• MessagelnSpanish, which translates the notification message to Spanish;

134

• MessageInFrench, which translates the notification message to French;

• ShortMessageMode, truncates the notification message to 120 characters;

Address Book Service’s Adaptive Behaviours

The Address Book service was implemented with the following adaptive

behaviours:

• QuickSearch, changes the behaviour of this service to perform a binary search

to a list sorted using Quicksort algorithm;

• SimpleSearch, changes the behaviour of this service to perform a binary

search to a list sorted using a simple progression algorithm;

• EmergencyContact, modifies the service to return high priority contact details;

Phone Service’s Adaptive Behaviours

The Phone service was implemented with the following adaptive behaviours:

• Authentication, requests that the recipient authentieates using a pin;

• Tenacious, modifies the service to retry multiple times if recipient is not

reaehed;

Email Service’s Adaptive Behaviours

The Email service was implemented with the following adaptive behaviours:

• RiehContent, transform the email’s content to use HTML format;

• Encryption, encrypts the email’s eontent;

• Compression, compresses the email’s content before sending it;

Management Policies

Many sets of management policies can be created to manage these adaptive

web services to aceommodate different scenarios of context changes or changes in

business logic. Three sets of management polieies were specified to demonstrate how

this adaptive eomposite service could be dynamically adaptive to context change and

to changes in business logic:

135

• Use optimised algorithm and high-quality content for gold subscribers, and

save on resources and less efficient algorithm for bronze subscribers (while

the service’s default behaviour would be for silver subscribers):

o “IF membership = Gold, THEN Action: QuickSearch AND RichContent“

o “IF membership = Bronze, THEN Action: SimpleSearch AND

ShortMessageMode “

• Use emergency contact and make sure it contacts the right person in case of a

high-priority notification:

o “IF priority = high, THEN Action: EmergencyContact AND

Authentication"

• Translate the notification message to French for users of the Club de Leon:

o “IF membership = LeonClub, THEN Action: MessageInFrench“

The lexical form of the high-level management policy specified for high-

priority notifications (third management policy), using the SMPE tool, is shown in

Figure 5-7.

<policy:Policy rdf:ID="NotificationServicePolicy3">
<rdf s : commentx/rdf s : comment>
<policy:target rdf:resource="NotificationProcess.owl#
NotificationService'Vxpolicy: eventxpolicy: SimpleEvent rdf: ID="
NotifloationServicePolicy3Eventl"Xpolicy:value>ProGessEvent
</policy: valuex/policy: SimpleEventx/policy: event>
<policy: conditionXpolicy: SimpleCondition rdf: ID="
NotificationServicePolicy3Conditionl"Xpolicy:subj ect>
<policy:Subj ect rdf:ID="Priority"/x/policy:subj ect>
<policy:predicate rdf:resource="#equal"/>
<policy:value>high</policy:value>
</policy: SimpleConditionX/policy: conditionXpolicy: action>
<policy:ComplexAction rdf:ID="NotificationServicePolicy3Actionl">
<rdfs : firstxpolicy: AndListxrdfs : f irstxpolicy: SimpleAction
rdf:ID="NotificationServicePolicy3Actionl01">
<policy:value>EmergencyContact</policy:value>
</policy: SimpleActionx/rdf s : firstxrdfs : rest>
<policy:SimpleAction rdf:ID="
NotificationServicePolicy3Actionl02">
<policy:value>Authentication</policy:valuex/policy:SimpleAction>
</rdfs : restx/policy: AndListx/rdfs : firstxrdfs : restx/rdfs : rest>
</policy: ComplexActionX/policy: actionX/policy: Policy>

Figure 5-7, Snippet of the third management policy specified for the Notification Service

Next, the SMPE tool was used to automatically refine these management

policies into enforceable policies. Tables below show a summary of the enforceable

policies generated for the Notification Service and its constituent services.

NotificationService (CompositeProcess)

136

Name Event Condition Action

Policyl ProcessEvent event(RNotificationServicePolicy 1 Eventi CO)

Policy2 ProcessEvent event{RNotificationServicePolicy2Event1C0)

PolicyS ProcessEvent event(RNotificationServicePolicy3Event1 Cl)

Policy4 ProcessEvent event(RNotificationServicePolicy4Event1C0)

Policyl CU RNotificationServicePolicy 1 Eventi CUO event(RNotificationServicePolicy1 Eventi aA)
&&
event(RNotificationServicePolicy1 Eventi bA)

Policy2CU RNotificationServicePolicy2Event1CU0 event(RNotificationServicePolicy2Event1aA)
&&
event(RNotificationServicePolicy2Event1bA)

PolicySCU RNotificationServicePolicy3Event1CU1 event(RNotificationServicePolicy3Event1aA)
&&
event(RNotificationServicePolicy3Event1bA)

Policy4CU RNotificationServicePolicy4Event1CU0 event(RNotificationServicePolicy4Event1aA)

Table 11, Enforceable policies generated for Notification Service

LoginService (AtomicProcess)

Name Event Condition Action

Policyl RNotificationServicePolicyl Eventi CO member==Gold event(RNotificationService
Policyl Eventi CUO)

Poiicy2 RNotificationServicePolicy2Event1C0 member==Bronze event(RNotificationService
Poiicy2Event1CU0)

Policy4 RNotificationServicePolicy4Event1C0 member==LeonClub event(RNotificationService
Policy4Event1 CUO)

Table 12, Enforceable policies generated for Login Service

MessageService (AtomicProcess)

Name Event Condition Action

Policy3 RNotificationService
Policy3Event1C1

priority==high event(RNotificationService
Policy3Event1CU1)

Poiicy2C RNotificationService
Policy2Event1aA

event(ShortMessageModeEvent)

ShortMessageModePolicyl ProcessEvent&&
ShortMessageModeEvent

setShortModeO

Policy4C RNotificationService
Policy4Event1aA

event(MessagelnFrenchEvent)

MessageInFrenchPolicyl ProcessEvent&&
MessageInFrenchEvent

setLanguage(French)

Table 13, Enforceable policies generated for Message Service

AddressBookService (AtomicProcess)

Name Event Condition Action

Policyl C RNotificationServicePolicyl Eventi aA event(QuickSearchEvent)

QuickSearchPolicyl ProcessEvent&& QuickSearchEvent doQuickSort()&&
event(QuickSearchState1 Event)

QuickSearchPolicy2 SortedEvent&&
QuickSearchStatel Event

doBinarySearchO

Policy2C RNotificationServicePolicy2Event1bA event(SimpleSearchEvent)

137

SimpleSearchPolicyl ProcessEvent&& SimpleSearchEvent doSimpleSort()&&
event(SimpleSearchState1 Event)

SimpleSearchPolicy2 Sorted Event&& S
impleSearchStatel Event

doBinarySearchO

PolicySC RNotificationServicePoiicy3Event1aA event(EmergencyContactEvent)

EmergencyContact
Policyl

ProcessEvent&&
EmergencyContactEvent

useEmergencyContactO

Table 14, Enforceable policies generated Address Book Service

ContactService (CompositeProcess)

Name Event Condition Action

Policyl C RNotificationServicePolicyl Eventi bA event(ContactServicePolicy1CEvent2aA)

Policy3C RNotificationServicePolicy3Event1bA event(ContactServicePolicy3CEvent2aA)

Table 15, Enforceable policies generated for Contact Service

PhoneService (AtomicProcess)

Name Event Condition Action

Policy3CC ContactServicePolicy3CEvent2aA event(AuthenticationEvent)

AuthenticationPolicyl ProcessEvent&& AuthenticationEvent setAuthenticationO

Table 16, Enforceable policies generated for Phone Service

EmallServIce (AtomicProcess)

Name Event Condition Action

Policyl CC ContactServicePolicyl CEvent2aA event(RichContentEvent)

RichContentPolicyl ProcessEvent&& RichContentEvent doHtmlMessage()&&
event(RichContentState1 Event)

RichContentPolicy2 MessageCreatedEvent&&
RichContentStatel Event

doHmtIHeaderO

Table 17, Enforceable policies generated for Email Service

Again, in order to validate these policies, the adaptive web services described

above were implemented as shell web services, and they were hosted by the policy

evaluation framework together with these enforceable policies. The produced

enforceable policies were transformed into jess rules and executed by the

framework’s rule engine to manage these adaptive web services. Figure 5-8 shows a

snippet of these policies as jess rules; in particular it illustrates the jess rules for the

third management policy - policy for high priority notifications.

Some of the adaptive behaviours are more complex than others in this case

study; the complexity is in the sense of the number of states it has in its FSM model,

i.e. the number of actions that needs to be performed. The adaptive behaviours

QuickSearch and RichContent are such adaptive behaviours. Therefore, it can be

138

noted that the enforceable policies generated for the Address Book and Email

services, where these adaptive behaviours reside, are invoking all the necessary

actions and account for all the events and conditions defined in their adaptive

behaviour’s FSM model.

(defrule MessageServicePolicy3
(event (service ?serviceO&MessageService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy3EventlC)) (event (service
?cserviceO) (type ?ctypeO) (name ?ceventO&~IdleEvent))
(param (service PcserviceO&MessageService) (direction
?directionO) (name ?paramO&priority) (value TvalueO)) (test (eq
?valueO high))
=>(assert (event (service Any) (type Policy) (name
RNotificationServicePolicy3EventlCUl))) (assert (action (service
?serviceO) (name ?eventO))))

(defrule PhoneServicePolicy3CC
(event (service PserviceO&PhoneService|Any) (type ?typeO) (name
?eventO&ContactServicePolicy3CEvent2A))
=>(assert (event (service Any) (type Policy) (name
AuthenticationEvent))) (assert (action (service ?serviceO) (name
?eventO))))

(defrule RNotificationServicePolicy3CU
(event (service PserviceO&NotificationService|Any) (type ?typeO)
(name ?eventO&RNotificationServicePolicy3EventlCUl))
=>(assert (event (service Any) (type Policy) (name
RNotificationServicePolicy3EventlA))) (assert (action (service
?serviceO) (name PeventO))))

(defrule AddressBookServicePolicy3C
(event (service PserviceO&AddressBookService|Any) (type PtypeO)
(name PeventO&RNotificationServicePolicy3EventlA))
=>(assert (event (service Any) (type Policy) (name
EmergencyContactEvent))) (assert (action (service PserviceO)
(name PeventO))))

(defrule ContactServicePolicy3C
(event (service PserviceO&ContactService|Any) (type PtypeO) (name
PeventO&RNotificationServicePolicy3EventlA))
=>(assert (event (service Any) (type Policy) (name
ContactServicePolicy3CEvent2A))) (assert (action (service
PserviceO) (name PeventO))))

(defrule RNotificationServicePolicy3
(event (service PserviceO&NotificationService|Any) (type PtypeO)
(name PeventO&ProcessEvent))
=>(assert (event (service Any) (type Policy) (name
RNotificationServicePolicy3EventlC))))

Figure 5-8, Jess rules for third management for Notification Service

The request made by Susan Smith as a gold subscriber to the Notification

Service and the response returned can be seen in Table 18.

Request Response

139

Parameter Value

Username: Susan.Smith

Password: 1234

Member: Gold

Subject: Times

Message: This month's edition of the Times magazine has arrived

Priority: Low

Recipient: John.Murphy

Group: None

Parameter Value

Cail response true

Emaii response true

Process time 54

Search time 1046

Language en_US

Table 18, Cold user type request and response to the Notification Service

Another request made by Susan Smith for a high priority message to the same

instance of the Notification Service and the response returned, shown in Table 19.

Request

Parameter Value

Username: Susan.Smith

Password: 1234

Member: Silver

Subject: Parcel Delivery

Message: Your package has arrived

Priority: High

Recipient: John.Murphy

Group: None

Response

Parameter Value

Call response true

Email response true

Process time 24

Search time 2000

Language en_US

Table 19, High priority type request and response to the Notification Service

It can be noted that the process time and the search time for the gold

subscriber is faster than the silver subscriber. Since this logic is expressed through

policies, a different service provider could use different schema for the subscribers,

without having to re-implement these services.

Once the policy rules were loaded into the policy evaluation framework and

the web services executed, runtime traces were recorded. Figure 5-9 shows the

content of a runtime log file for the first request, where the first management policy

comes to effect and it changes the service instance to perform a quick search and use

rich content (html) for gold members. While Figure 5-10 shows the trace log of this

service at runtime for the second request, where the third policy comes into effect and

it changes the service instance to select emergency contact details, and request pin to

140

authenticate the recipient when notifying them. Please note the difference in the trace

logs where changes in the service behaviour are indicated with $$.

[Login]
[Login]
[Login]
[Login]
[Login]

Reading user list from file
username = Susan.Smith
password = 1234
membership = Gold
Susan Smith has successfully login

[AddressBook] Reading user list from file
[AddressBook] Reading contact list from file
Receiving Actions
Action: doQuickSort
[AddressBook] Requesting search for contact for user John.Murphy
[AddressBook] $$Using Quicksort algorithm to sort contact list
Sending Event SortedEvent
Receiving Actions
Action: doBinarySearch
[AddressBook] $$Searching for 02 using Binary search algorithm
[AddressBook] Contact detail found for originator:
Susan.Smith@moto.co.uk, 9894455
[AddressBook] $$Searching for 01 using Binairy search algorithm
[AddressBook] Contact detail found for recipient:
John.Murphy@svaley.com, 8381122
Sending Event MessageCreatedEvent
Receiving Actions
Action: doHtmlMessage

Creating email body
$$Adding HTML tags to email body
$$Transforming message to HTML format
Adding the following message to email body This month's

edition of the Times magazine has arrived
[Email] Generating email header

Setting From field = Susan.Smith@moto.co.uk
Setting To field = John.Murphy@svaley.com
Setting email size

Receiving Actions
Action: doHmtlHeader

Sending email to Susan.Smith@moto.co.uk
Email Acknowledgement received
Creating vxml dialog to notify recipient by phone
Calling recipient on 8381122
User has answered the call
Informing recipient of a notification from 9894455
Notifying recipient with the following message: This
edition of the Times magazine has arrived
User has acknowledged this message

[Email]
[Email]
[Email]
[Email]

[Email]
[Email]
[Email]

[Email]
[Email]
[Phone]
[Phone]
[Phone]
[Phone]
[Phone]
month's
[Phone]

Figure 5-9, Runtime trace for Notification service with gold member policy triggered

141

[Login] Reading user list from file
[Login] username = Susan.Smith
[Login] password = 1234
[Login] membership = Silver
[Login] Susan Smith has successfully login
[AddressBook] Reading user list from file
[AddressBook] Reading contact list from file
Receiving Actions
Action; useEmergencyContact
[AddressBook] Requesting search for contact for user John.Murphy
[AddressBook] $$Changing criteria to search for emergency contact
address
Sending Event SortedEvent
[AddressBook] Searching for 02 using Linear search algorithm
[AddressBook] Contact detail found for originator:
Susan.Smith@moto.co.uk, 9894455
[AddressBook] Searching for 01 using Linear search algorithm
[AddressBook] Contact detail found for recipient:
John.Murphy@svaley.com, 8381122
[Email] Creating email body
[Email] Adding the following message to email body Your package
has arrived
[Email] Generating email header
[Email] Setting From field = Susan.Smith@moto.co.uk
[Email] Setting To field = John.Murphy@svaley.com
[Email] Setting email size
Sending Event MessageCreatedEvent
[Email] Sending email to Susan.Smith@moto.co.uk
[Email] Email Acknowledgement received
Receiving Actions
Action; setAuthentication
[Phone] Creating vxml dialog to notify recipient by phone
[Phone] $$Changing the vxml dialog to request user's pin before
notifying recipient
[Phone] Calling recipient on 8381122
[Phone] User has answered the call
[Phone] $$Requesting the user for a pin
[Phone] $$Validating the pin supplied by the user - accepted
[Phone] Informing recipient of a notification from 9894455
[Phone] Notifying recipient with the following message: Your
package has arrived
[Phone] User has acknowledged this message

Figure 5-10, Runtime trace for Notification service with high priority policy triggered

It can be noted that the same web service was dynamically modified for these

scenarios according to their specified high-level policies ($$ indicates the changes in

the service behaviour). For full detail of the artefacts used in this case study - see

Appendix G.

This case study showed how management policies specified for an adaptive

composite service can empower it to dynamically adapt to context changes. It also

showed how the tools allow a high-level policy to be automatically refined in a

hierarchical manner into low-level policies, which are generated for the relevant

constituent web services to modify their behaviours, so as to accommodate change in

142

business logic. Note that the composition of the Notification service differs from the

web service used in the previous case study.

It showed how the SMPE tool allowed users to specify several management

policies for the Notification service and was capable of automatically refining them

into low-level policies for the relevant constituent adaptive atomic web services. It

also showed how tliese enforceable policies managed to change the behaviour of the

constituent services according to the specified policies. Furthermore, the enforceable

policies did not conflict with each other and only the necessary policies were

triggered for each request based on the conditions met. It also showed how the

integrated tools generate the necessary enforceable policies according to their FSM

description even for more complex adaptive behaviours such as QuickSearch and

RichContent.

This case study demonstrated how web services can be modified to

accommodate changes in business logic without having to recompile them. Instead,

policies were used which allow web services to have their behaviours adapted to suit

business logic during runtime. In addition it shows that by using this approach, the

adaptive web services could be dynamically adaptable to context changes, as long as
management policies could be specified for those circumstances.

5.3 SABE Tool Usability Evaluation Experiment

The aim of this usability evaluation experiment is to appraise the usability of

the implemented prototype SABE tool. This usability evaluation measures the degree

of ease with which users can complete specific tasks using this tool, and mainly

focusing on user satisfaction. The usability evaluation experiment was designed with

three different usability tests (see Appendix A), and since it was not possible to get a

large sample of users in the same place at the same time, these usability tests were

conducted over three usability evaluation cycles.

Each usability evaluation cycle was conducted with a group of users taken

from Computer Science and Computer Engineering graduates. Thus, the evaluation

assumed that the users had some knowledge of computer programming. Although

these users are not web service or policy experts, they are in fact undergoing a course

in those areas and therefore they were very much interested in performing this

143

experiment. More importantly, these users are new to the area of creating web

services, and therefore they do not have preconceptions and specific habits that might

interfere with their evaluation of this tool.

The first usability evaluation cycle was conducted with a small population of

users allowing for a one to one interaction, where users were observed individually

during the experiments. Any minor issues encountered were resolved before the next

cycles. The second and third usability evaluation cycles were conducted in a group

manner with a larger population of users, so that the tool could be evaluated in a

wider exposure. A chi square test was then performed to evaluate the similarity in

opinion responses for user satisfaction between the user groups in order to establish

an overall larger sample group (see Appendix B).

In order to design the usability tests for this experiment, experiment goals

were first identified. Three experiment goals were identified (described below), that

instructed the creation of a usability test for each of these goals. These goals were

derived from the thesis’ objectives, so as to validate the usability of the prototype

SABE tool against the proposed approach. A preliminary set of questions were asked

at the beginning of each evaluation cycle to determine the user‘s experience and

knowledge in the areas of Web Services, Finite State Machines, and Adaptive

Behaviours.

Furthermore, at the end of each usability tests was a questionnaire, to assess

the user’s usability experience when using the SABE tool. The questionnaire was

broken down into questions tailored to establish the user’s experience of the different

aspects of this tool after performing typical tasks with it. The questionnaire covered

areas such as ease of use, comprehension, and helpfulness. In this manner, it was

possible to appraise the usability of each aspect of this tool, and conclude its level of

usability.

Likert scale type questions [78] were used in the questionnaire with four

possible answers, ranging from ‘very difficult’, ‘difficult’, ‘easy’, to ‘very easy’.

Thus, it encouraged the users to choose an answer carefully, and not consolidate with

a neutral answer (middle option). Open questions were also provided, allowing users

to express their opinions that could not be captured with close.

144

5.3.1 Goals of SABE Tool Usability Evaluation Experiment

To evaluate the usability of the SABE tool, the following experiment goals were

identified:

1. To determine the usability of the SABE tool in displaying the descriptions of

the adaptive behaviours of atomic services as Finite State Machines.

2. To determine the usability of the SABE tool in describing the adaptive

behaviours of atomic services as Finite State Machines.

3. To determine the usability of the SABE tool in aggregating Finite State

Machines describing the adaptive behaviours of constituent atomic service for

adaptive composite services.

A usability test was designed for each of the three experiment goals identified

above. Each usability test was designed with a description of tasks, instructions,

sample services, and a questionnaire to validate the experiment goal in accordance to

the user’s experience. Additionally, a set of pre-test questions was designed to

determine the user’s knowledge in the areas of web service, finite state machine, and

adaptive behaviours.

The questionnaire was tailored to query the user’s usability experiences in the

various aspects of this tool, in accordance with the experiment goal. This

questionnaire was designed in a formal manner, by decomposing the experiment goals

into the three areas of ease of use, comprehension, and helpfulness, as depicted in

Figure 5-11. Questions for this questionnaire were tailored to satisfy each of these

sub-goals. It also facilitated an analysis of the answers within those stated areas.

145

To determine the usability of the SABE tool in displaying the descriptions of the
adaptive behaviours of atomic services as Finite State Machines
> Find how easy is it to view descriptions of adaptive behaviours
> Find how understandable is the process of viewing descriptions of adaptive

behaviours
> Find how helpful is the tool in viewing descriptions of adaptive behaviours

To determine the usability of the SABE tool in describing the adaptive behaviours of
atomic services as Finite State Machines
> Find how easy is it to describe adaptive behaviours
> Find how understandable is the process of describing adaptive behaviours
> Find how helpful is the tool in describing adaptive behaviours

To determine the usability of the SABE tool in aggregating FSM describing the
adaptive behaviours of constituent atomic service for adaptive composite services
> Find how easy is it to aggregate adaptive behaviours of a composite web service
> Find how understandable is the process of aggregating adaptive behaviours of a

composite web service
> Find how helpful is the tool in aggregating adaptive behaviours of a composite

web service

Figure 5-11, Decomposition of the experiment goals for the SABE tool’s usahility evaluation

For each of the usability tests conducted, an analysis was performed of the

answers provided by the users. The answers for the multiple-choice questions were

grouped according to the areas of ease of use, comprehension, and helpfulness. A

histogram was generated for these answers where the possible answers are: very

difficult, difficult, easy, or very easy. The results were reduced to the nominal level by

combining all agree and disagree responses into two categories of easy and difficult.

Then pie charts were generated, which provided a graphical view of the answers and

their percentages. A description of the tests performed and the result-analyses are

presented for each usability evaluation in the succeeding sections.

5.3.2 Method of the SABE Tool Usability Evaluation Cycles

The usability tests were presented online (over the internet) to the users. In

addition to the pre-test questions, each usability test presented background

information on the concepts used in the experiment for users not familiar with them.

In order to better acquaint the users, it also contained a description of the usability test

and of the tool used. In addition, a link to the SABE tool was provided, as well as a

sample of web service descriptions for the usability test, which could be downloaded

from the web site and executed on their computer. A textual description of the web

service sample to be used in the experiment and a set of tasks to be performed on

them using the tool were also provided. Instructions on how to get started with each

146

task were given also. Having completed these tasks, the users were asked to complete

a questionnaire.

The first usability evaluation cycle was conducted with six users in an

individual marmer, where users were observed individually during the experiments.

This evaluation cycle was performed in this manner to acquire better individual

feedback from the users about the usability of the SABE tool. Explanations were

provided for any queries the users might have about the experiment and the SABE

tool.

The next two usability evaluation cycles were conducted with twelve different

users each, in a group manner, over the period of an hour. This evaluation cycle was

performed in this manner to get a broader usability exposure of the SABE tool.

Feedback from the first usability evaluation cycle was taken into account, and some

changes were made to these usability evaluation cycles.

Some minor changes were made to the SABE tool since a flaw in the table

widget was observed during the first evaluation cycle. The table widget allows users

to edit properties of a selected node. However, in order to execute these changes, the

user has to either press the “enter” button or click somewhere on the table, otherwise

the changes are not executed. This issue was observed early on in the first evaluation

cycle. In order to address this issue, two small changes were made to this tool since

the table widget is a Swing component (third party). Incomplete required properties

are now highlighted in red, and a report is presented to the user of the model

validation, which is performed during the saving process. Thus allowing the user to

know if the model is incomplete and also helping the user to spot any non-configured

required properties.

Some improvements were made to the usability tests for the second and third

test cycle, after some minor shortcomings in the first evaluation cycle were spotted.

The changes are as follows:

A warning about pressing the “enter” button after editing a property value;

Some re-wording and spell checking of the usability test description;

Updates to some of the questions in the questionnaire which users found

confusing;

147

The following preliminary set of questions were asked at the beginning of the

usability evaluation to determine the user‘s experience and knowledge in the areas of

Web Services, Finite State Machines, and Adaptive Behaviours:

Web Services
101. How would you rate your knowledge of Semantic Web Service (Owl-S)?
102. Have you studied about web services?
103. Have you used a web service?
104. Have you created a web service?
105. Have you modelled a web service semantically in Owl-S?
Finite State Machines
111. How would you rate your knowledge of Finite State Machine?
112. Have you studied about Finite State Machine?
113. Have you seen a piece of software described as a Finite State Machine?
114. Have you described a piece of software semantically? __
115. Have you described a piece of software using Finite State Machine?
Adaptive Behaviours
106. How would you rate your knowledge of (software) Adaptive Behaviours?
107. Have you studied about (software) Adaptive Behaviours? ___________
108. Have you used a piece of software with some adaptive behaviour?
109. Have you configured an adaptive piece of software or application?
110. Have you created a piece of software with some adaptive behaviour?

Table 20, Preliminary set of questions for the usability evaluation of SABE tool

The answers to these questions were analysed for all the users and the

following tables were produced:

Web Services

Usability Cycle Novice Knowledgeable Expert

First Cycle 19% 50% 31%

Second Cycle 44% 56% 0%

Third Cycle 33% 56% 11%

Table 21, Results of the preliminary set of questions for

knowledge on Web Services

Finite State Machines

Usability Cycle Novice Knowledgeable Expert

First Cycle 7% 77% 17%

Second Cycle 33% 45% 22%

Third Cycle 42% 57% 2%

Tabie 22, Results of the preliminary set of questions for

knowiedge on Web Finite State Machines

148

Adaptive Behaviours

Usability Cycle Novice Knowledgeable Expert

First Cycle 7% 77% 17%

Second Cycle 33% 45% 22%

Third Cycle 42% 57% 2%

Table 23, Results of the preliminary set of questions for

knowledge on Adaptive Behaviours

It was observed that most of the users were either knowledgeable or experts in

the field of Web Services, Finite State Machines, and Adaptive Behaviours. This is

due to the fact that these users are undergoing a master course in computer science.

Furthermore, it can be noted that the users from the first cycle are overall more

knowledgeable in the enquired areas since these users were selected from

postgraduates undergoing a PhD in Computer Science knowledgeable in such areas.

Three usability tests were conducted for each user to evaluate the usability of

the SABE tool. Each usability test asked the users to perform a specific set of tasks so

that the usability of the various aspects of this tool could be evaluated. Below is a

summary of the tasks the users had to undertake in their evaluation tests.

SABE Usability Test 1 - “To determine the usability of the SABE tool in

displaying the descriptions of adaptive behaviours of atomic services as Finite

State Machines”.

In this usability test, the users were asked to use the SABE tool to view the

details of a set of adaptive behaviour descriptions, described as FSM, pertaining to an

adaptive Print service. Users were asked to use the SABE tool to observe the

parameters of this service, and more importantly the details of the adaptive

behaviours. They were asked to observe the details of the FSM describing these

adaptive behaviours: states and their actions, transitions and their triggers as well as

their guards.

149

SABE Usability Test 2 - “To determine the usability of the SABE tool in
describing adaptive behaviours of atomic services as Finite State Machines".

Similar to the previous evaluation cycle, in this usability test, the users were

asked to use the SABE tool to define adaptive behaviour descriptions as FSM for an

atomic web service, called PhotoService. This service is an adaptive photo processing

service. The adaptive behaviours were: BlackWhitePhoto for processing the photo as

black & white; RemoveRedeye for removing redeye from photos; HighPhotoQuality

for processing the photos in high resolution.

SABE Usability Test 3 - “To determine the usability of the SABE tool in

aggregating Finite State Machines describing the adaptive behaviours of

constituent atomic services for a composite service”.

In this usability test, the users were asked to use the SABE tool to describe

adaptive behaviours, as FSM, of a composite service called PhotoAlbumPrintService.

This service is composed of a PhotoService, a PhotoAlbumService, and a

PrintService. Since the adaptive behaviours of a composite service is the resultant

aggregation of the adaptive behaviours pertaining to its constituent services, this task

is accomplished by using the SABE tool to automatically aggregate the adaptive

behaviours previous described.

Analyses of the results for each of these usability tests in relation to

effectiveness, efficiency, satisfaction are presented in the succeeding sub-sections.

5.3.3 Effectiveness Result Analysis of the SABE Tool

The usability evaluation requested that users utilised the SABE tool to perform

specific tasks for each usability test. To measure the effectiveness of the usability

evaluation, the accuracy and completeness were observed for each of the users

performing these tasks. In other words, the effectiveness of a usability evaluation can

be measured by the number of correct answers provided by the users after performing

each task.

The first usability evaluation cycle was performed in an individual manner,

where user’s progress was monitored and any queries were dealt with immediately. It

was observed that the users completed all their tasks, and that each of their tasks were

performed correctly. While assistance was provided whenever requested, the number

150

of assistance requests was not counted. However, the request for assistance while

performing a task provided feedback to the usability evaluation and improvements

were made in the instructions for the second and third usability evaluation cyeles. The

improvements were done to guarantee a better rate of success when performing the

usability evaluation in a group manner.

For the second and third usability evaluation cycles, the users were asked the

following questions at the end of the first and third usability tests, so as to attain the

user’s effectiveness about their usability tasks:

Questions with respect to the usabiUty tasks
121. What is the activity of the ExpensiveModestatel of the ExpensiveMode adaptive
behaviour?
122. What is the type of the of the ExpensiveMode adaptive behaviour?
123. What is the guard condition in the transition (between ColourPrintingStatel and
ColourPrintingState2) of the ColourPriting adaptive behaviour?
124. What triggers the transition (between ColourPrintingStatel and ColourPrintingState2)
of the ColourPriting adaptive behaviour? __
321. Does the FSM belonging to the composite service have IdleState, InputState,
ProceState, OutputState like of an atomic service?___________________
322. Are all the adaptive behaviours from the constituent services present in the FSM of the
composite service?
323. How many adaptive behaviours are present under the ProcessState of the composite
service's FSM?

Table 24, Task questionnaire for the usability evaluation of SABE tool

The effectiveness of the second usability test was evaluated by analysing the

artefacts produced by the users. The artefacts were examined for specific values that

should have been set based on the usability tasks.

Analysing the answered questions and the artefacts produced, it was noted that

there was 100% completion for all the usability tests. In relation to accuracy, the

answers to these questions and the artefacts were verified for all the users and the

table below was produced in which the following conclusions were drawn:

Accuracy Second Usability Cycle Third Usability Cycle

Usability Tests Right Wrong Right Wrong

First Test 96% 4% 96% 4%

Second Test 94% 6% 89% 11%

Third Test 100% 0% 89% 11%

Table 25, Degree of accuracy for SABE tool from second and third usability cycles

The usability evaluation resulted in a completion rate of 100% and an

accuracy rate of no less than 89% for perform the tasks with the SABE tool.

151

Although, the accuracy rate of the second usability cycle yield a better result. These

results provide a positive indication that the majority of the users were well capable of

understanding and performing the tasks set out to them. It can also be concluded that

the majority of the users did manage to use the SABE tool to correctly perform the

tasks.

5.3.4 Efficiency Result Analysis of the SABE Tool

The usability evaluation was presented online with instructions at the

beginning of the test and questionnaire that had to be answered online at the end of

the usability test. Having the usability test online, it allowed for the users to be timed

over each usability test. The timer would start when the usability test web page was

opened and stop when the questionnaire was answered. However, this timer

malfunctioned and most users’ test did not get their time recorded.

Due to the lack of data, no emphasis can be placed on the efficiency of the

SABE tool. Although the times were not recorded for each usability test, the entire

usability evaluation for the SABE tool was performed in just under an hour by the

users. Having three separate usability tests with multiple tasks completed and

questionnaire answered in just under an hour, it can be concluded that the usability

evaluation was completed in a reasonable time, and that the SABE tool has performed

in an efficient manner for the users to have completed the tasks in that time.

5.3.5 Satisfaction Result Analysis of the SABE Tool

The questionnaire provided at the end of each usability test had questions

tailored to access the user’s satisfaction towards the SABE tool. Presented below are

the set of questions and a result analysis of their answers.

SABE Usability Test 1 - “To determine the usability of the SABE tool in

displaying the descriptions of adaptive behaviours of atomic services as Finite

State Machines”.

At the end of the usability test, the users were asked the following questions in

their questionnaire:

Questions with respect to Easiness
128. Browsing the service's Finite State Machine (FSM) was?
129. Identifying the adaptive behaviours contained in the FSM was?
130. Viewing the details of an adaptive behaviour was?

152

131. Identifying the actions performed by an adaptive behaviour was?
132. Identifying the sequence of actions performed by an adaptive behaviour was?
Questions with respect to Comprehension
136. To understand the description of adaptive behaviours using SABE tool was?
137. To understand the description of states describing an action of adaptive behaviours
using SABE tool was?
138. To understand the description of transitions describing a sequence of actions of
adaptive behaviours using SABE tool was?
Questions with respect to Helpfulness in guiding users
133. Sabe tool made the process of browsing the description of an adaptive behaviour?
134. Sabe tool made the process of identifying the actions of an adaptive behaviour?
135. Sabe tool made the process of identifying the sequence of actions of an adaptive
behaviour?

Table 26, Questionnaire for the first usability test of SABE tool

The answers to these questions were analysed for all the usability cycles and

the table below was produced in which the following conclusions were drawn:

Easiness Comprehension Helpfulness

Usability Cycle Easy Difficult Easy Difficult Easy Difficult

First Cycle 77% 23% 78% 22% 89% 11%

Second Cycle 92% 8% 67% 33% 97% 3%

Third Cycle 92% 8% 78% 22% 88% 12%

Table 27, Degree of satisfaction in viewing adaptive behaviours from three usability cycles

Positive results such as these would indicate that the GUI designed for this

tool was successful in displaying the adaptive behaviours, as FSM, of a web service.

It shows that the combination of a tree widget - used to display adaptive behaviours

belonging to a service - and a table widget - used to display the details of each node

of this tree widget - was successful in displaying the adaptive behaviours of a service.

These results also give a good indication of how well FSM used for describing

adaptive behaviours of web services was accepted by users, since its lexical form was

hidden from them.

SABE Usability Test 2 - “To determine the usability of the SABE tool in

describing adaptive behaviours of atomic services as Finite State Machines”.

Similar to the previous evaluation cycle, at the end of the usability test, the

users were asked the following questions in their questiotmaire:

Questions with respect to Easiness
221. Generating a FSM for the service's process was?
222. Creating an adaptive behaviour was?
223. Creating the states for this adaptive behaviour was?

153

224. Creating the transitions for this adaptive behaviour was?
225. Describing an adaptive behaviour was?
226. Describing the activities of an adaptive behaviour using states was?
227. Describing the sequence of activities for an adaptive behaviour using transitions was?
Questions with respect to Comprehension
232. To understand the process of generating a FSM was?
233. To understand the process of describing an adaptive behaviour was?
234. To understand the process of describing the activities of an adaptive behaviour as
states was?
235. To understand the process of describing the sequence of activities for an adaptive
behaviour as transitions was?
Questions with respect to Helpfulness in guiding users
228. Sabe tool made the process of generating a FSM for the service?
229. Sabe tool made the process of describing an adaptive behaviour?
230. Sabe tool made the process of describing the activities of an adaptive behaviour?
231. Sabe tool made the process of describing the sequence of activities for an adaptive
behaviour?

Table 28, Questionnaire for the second usability test of SABE tool

The answers to these questions were analysed for all the usability cycles, and

the table below was produced in which the following conclusions were drawn:

Easiness Comprehension Helpfulness

Usability Cycle Easy Difficult Easy Difficult Easy Difficult

First Cycle 89% 11% 75% 25% 97% 3%

Second Cycle 88% 12% 79% 21% 94% 6%

Third Cycle 87% 13% 79% 21% 88% 12%
Table 29, Degree of satisfaction in describing adaptive behaviours from three usability cycles

These results are even higher than the first usability test, suggesting how easy

it is to describe adaptive behaviours as FSM with the SABE tool. It is logical to

presume that once the users got used to using the tool, they found it easier and more

helpful in describing the adaptive behaviours, although it is considered to be slightly

more complex than viewing adaptive behaviours. These results also give a good

indication of how well-accepted FSM was as a means to describe the adaptive

behaviours of atomic services. By hiding the FSM lexical model, users who are

novice to FSM were found to be able to describe adaptive behaviours with ease.

154

SABE Usability Test 3 - “To determine the usability of the SABE tool in
aggregating Finite State Machines describing the adaptive behaviours of

constituent atomic services for a composite service’’.

At the end of this usability test, the users were asked the following questions

in their questionnaire:

Questions with respect to Easiness
324. Aggregating the adaptive behaviours for a composite service was?
325. Viewing the resultant aggregated adaptive behaviours was?
Questions with respect to Comprehension
328. To understand the process of aggregating the adaptive behaviours for a composite
service was?
329. To understand the resultant aggregated adaptive behaviours using the SABE tool was?
Questions with respect to Helpfulness in automation
326. Sabe tool made the process of aggregating the adaptive behaviours for a composite
service?
327. Sabe tool made the process of browsing the resultant aggregated adaptive behaviours?

Table 30, Questionnaire for the third usability test of SABE tool

The answers to these questions were analysed for all the usability cycles, and

the table below was produced in which the following conclusions were drawn:

Easiness Comprehension Helpfulness

Usability Cycle Easy Difficult Easy Difficult Easy Difficult

First Cycle 100% 0% 67% 33% 100% 0%

Second Cycle 79% 21% 71% 29% 96% 4%

Third Cycle 83% 17% 79% 21% 88% 12%
Table 31, Degree of satisfaction in aggregating adaptive behaviours from three usability cycles

These results indicate that while the users thought the process of aggregating

the adaptive behaviours for adaptive composite services is somewhat difficult to

understand, none of the users thought that it was difficult to accomplish this process

using the SABE tool. The SABE tool allows users to aggregate these adaptive

behaviours in an automated manner. Thus, these results indicate that automating this

aggregation process was an appropriate decision during the design of this tool. Again,

it is seen with these high scores how useful the automated aggregation process is for

describing adaptive behaviours of composite services. It can be noted that while the

process of aggregating the adaptive behaviours for composite services would have

been difficult and somewhat tiresome, the SABE tool overcomes this issue with the

automation of this process and proves itself to be useful with these high scores.

155

Comparison between the SABE Tool Usability Evaluation Cycles

Small changes were made to the usability tests after the first evaluation cycle.

These changes were only improvements to the tests, and did not affect the overall

intent of these tests. Furthermore, the changes to the tool were minor changes, which

had minimal to none improvement in the usability evaluation. Thus, a comparison of

the results of the user’s answers to the questionnaire was performed.

The answers for the various tests were grouped into the eategories of: ease of

use, helpfulness, and comprehension. A comparison was performed between the

results of the evaluation cycles by applying a chi square test on the various answers.

The ehi square test mathematically compares the results of the evaluation cycles. By

using the chi square test to compare these answers, it was found that the answers of all

three usability tests passed the null hypothesis test thus, proving that there was no

difference between the answers from the evaluations cycles. Consequently, this result

strongly indicates that these three evaluation cycles concurrently provide the same

results with regards to the usability evaluation of the SABE tool.

5.3.6 Overall Conclusion for the SABE Tool Usability Evaluation

After analysing the results of the usability tests performed on the SABE tool,

conclusions were drawn based on their results. The first conclusion is that the results

from these usability tests are a good indication that the SABE tool is easy to use, due

to its ability to hide complex details of a FSM, such as its lexical form, and to provide

a graphical user interface that users found helpful when describing adaptive

behaviours as FSM.

Secondly, these results indicate that while the users thought that the process of

aggregating the adaptive behaviours for a composite service was somewhat difficult

to understand, none of the users believed it difficult to accomplish this process using

the SABE tool. These results prove that automating this aggregation process was an

appropriate decision during the design of this tool. It can be noted that while the

process of aggregating the adaptive behaviours for composite services would have

been diffieult and somewhat tiresome, the SABE tool overeomes this issue with the

automation of this process and proves itself to be useful with these high scores.

156

5.4 SMPE Tool Usability Evaluation Experiment

The aim of this usability evaluation experiment is to appraise the usability of

the implemented prototype SMPE tool. This usability evaluation measures the degree

of ease with which users can complete specific tasks using this tool, and mainly

focusing on user satisfaction. The usability evaluation experiment was designed with

three different usability tests (see Appendix C), and since it was not possible to get a

large sample of users in the same place at the same time, these usability tests were

conducted over three usability evaluation cycles.

In the same manner as the previous usability evaluation experiment performed

on the SABE tool, each usability evaluation cycle was conducted with a group of

users with some knowledge of computer programming. Pre-test questions were asked

at the beginning of the evaluation cycle to determine their experience and knowledge

in the area of policy-based management.

Again, objectives were first identified, before designing the usability tests for
this experiment. Three experiment goals were identified, which instructed the creation

of a usability test for each goal. These experiment goals were derived from the

research objectives so as to validate the usability evaluation of the prototype SMPE

tool.

In the same fashion as before, the usability tests were designed with a

questionnaire at end of each of them to assess the user’s usability experience when

using this tool. The questionnaire was broken down into questions tailored to establish

the user’s experience of the different aspects of a tool, after performing typical tasks

with this tool. The questionnaire covered areas such as ease of use, comprehension,

and helpfulness. And the questionnaire was designed with four-point Liker scale type

closed questions.

Once more, three usability evaluation cycles were conducted with the same set

of users as was in the SABE’s usability experiment. The first usability evaluation

cycle was conducted with a small population of users in an individual manner, where

users were observed individually during the experiments. The second and third

usability evaluation cycles were then conducted in a group manner, with a larger

population of users, so as to gain a larger sample group. Then a chi square test was

conducted to evaluate the similarity between the results for user satisfaction of the

157

different test cycles, in order to appraise them as a single large sample group (see

Appendix D).

5.4.1 Goals of SMPE Tool Usability Evaluation Experiment

To evaluate the usability of the SMPE tool, the following experiment goals

were delineated:

1. To determine the usability of the SMPE tool in viewing the details of a policy

specified to manage adaptive composite services.

2. To determine the usability of the SMPE tool in specifying policy to manage

the adaptive composite services.

3. To determine the usability of the SMPE tool in refining policies managing

composite services to auto-generated (discrete) policies managing their

constituent adaptive services.

These experiment objectives have influenced the design of the usability tests

from the creation of tasks and sample services, which allow users to experience the

usability of the tool to the design of the questionnaire which validates the experiment

objective in accordance to the user’s experience. In order to design the questions for

this questionnaire, the experiment objectives were first decomposed into the three

areas of easiness, comprehension, and helpfulness, as depicted in Figure 5-12.

158

❖ To determine the usability of the SMPE tool in viewing the details of a policy
specified to manage adaptive composite services
> Find how easy is it to view descriptions of management policies
> Find how understandable is the process of displaying descriptions of

management policies
> Find how helpful is the tool in displaying management policies

❖ To determine the usability of the SMPE tool in specifying policy to manage
the adaptive composite services
> Find how easy is to describe management policies
> Find how understandable is the process of describing management

policies
> Find how helpful is the tool in describing management policies

❖ To determine the usability of the SMPE tool in refining policies managing a
composite service to auto-generated (discrete) policies managing their
constituent adaptive services
> Find how easy is it to refine management policies assigned to a

composite web service
> Find how understandable is the process of refining management policies

for a composite service
> Find how helpful is the tool in refining management policies for a

composite web service

Figure 5-12, Breakdown of the usability evaluation’s objectives for the SMPE tool

A usability test was designed for each of the three experiment goals defined

above. Each usability test was designed with a description of tasks, instructions,

sample services, and a questionnaire to access the user’s usability experience.

Additionally, a set of pre-test questions was designed to query the user’s knowledge

in the area of policy-based management. The questionnaire was tailored to query the

user’s usability experiences in the various aspects of this tool, divided into the areas

of ease of use, comprehension, and helpfulness.

For each of the usability tests conducted, an analysis was performed on the

answers provided by the users. The answers for the multiple-choice questions were

grouped according to the areas of ease of use, comprehension, and helpfulness. A

histogram was generated for these answers, where the possible answers are: very

difficult, difficult, easy, or very easy. The results were reduced to the nominal level by

combining all agree and disagree responses into two categories of easy and difficult.

Then pie charts were generated that provide a graphical view of the answers and their

percentages.

159

5.4.2 Method of the SMPE Tool Usability Evaluation Cycles

The usability tests were presented online (over the internet) to the users.

Besides the pre-test questions, each usability test presented background information

on the concepts used in the experiment in case the users were not familiar with them.

The background information also contained a description of the usability test and of

the tool used. In addition, a link to the SMPE tool was provided, as well as a sample

of web service descriptions for the usability test that could be downloaded from the

web site and executed on a computer. Additionally, a description of the web service

sample to be used in the experiment, and a set of tasks to be performed on them using

the tool was provided. Instructions to get started with each task were also provided.

Having completed these tasks, the users were asked to complete a questionnaire.

The first usability evaluation cycle was conducted with six users, in an

individual manner, where users were observed individually during the tests. This

evaluation cycle was performed in this marmer to acquire better individual feedback

from the users about the usability evaluation of the SMPE tool. Explanations were

provided for any queries the users might have about the experiment and the SMPE

tool.

The second and third usability evaluation cycles were conducted with twelve

different users each, in a group manner, over a period of an hour. This evaluation

cycle was performed in this manner to ensure broader usability exposure of the SMPE

tool. Feedback from the first usability evaluation cycle was taken into account, and

some changes were made to these usability evaluation cycles.

The same flaw encountered in the SABE tool, was also present in the SMPE

tool. Thus, a similar action was taken, and minor changes were made to the SMPE

tool, to highlight in red incomplete required properties, and report details of the

validation of the policies to the user before saving them.

Once more, some improvements were made to the second and third usability

tests, after some shortcomings in the first evaluation cycle were spotted. The changes

are as follows:

• A warning about pressing the “enter” button after editing a property value;

• Some rewording and spell checking of the usability test description;

160

• updates to some of the questions which users found confusing;

The following preliminary set of questions were asked at the beginning of the

usability evaluation to determine the user‘s experience and knowledge with regards to

Policy:

Policy
401. How would you rate your knowledge of Policy?
402. Have you studied or read about policies?
403. Have you seen a policy rule before?
404. Have you used policy before?
405. Have you created a policy before?

Table 32, Preliminary set of questions for the usability evaluation of SMPE tool

The answers to these questions were analysed for all the users and the table

below was produced in which the following conclusions were drawn:

Policy

Usability Cycle Novice Knowledgeable Expert

First Cycle 17% 40% 43%

Second Cycle 28% 64% 5%

Third Cycle 20% 80% 0%

Table 33, Results of the preliminary set of questions for

knowledge on Policy

It was observed that most of the users were either knowledgeable or experts in

the area of policy management. This is due to the fact that these users are undergoing

a course in policy-based management. Furthermore, it can be noted that there are

more experts in the field of policy management for the first usability cycle since these

users were selected from postgraduates undergoing a PhD in Computer Science

knowledgeable in such area.

Three usability tests were conducted with each user to evaluate the usability of

the SMPE tool. Each usability test asked the users to perform a specific set of tasks to

evaluate the usability of the various aspects of this tool. Below is a summary of the

tasks the users had to undertake in their evaluation tests.

161

SMPE Usability Test 1 - “To determine the usability of the SMPE tool in

viewing the details of a policy specified to manage adaptive behaviours of a

composite service”.

In this usability test, the users were asked to use the SMPE tool to view the

details of a management policy authored to manage the adaptive behaviours of an

adaptive print service. This management policy was created to modify this service's

behaviour to print in EconomyMode when a document has over 50 pages. As before,

users were asked to use the SMPE tool to browse the various aspects of this

management policy, such as event, condition, and action aspects.

SMPE Usability Test 2 - “To determine the usability of the SMPE tool in

specifying policy to manage the adaptive behaviours of a composite service".

In this usability test, the users were asked to use the SMPE tool to define a set

of management policies to manage the adaptive behaviour of an adaptive composite

web service called PhotoAlbumPrintService. This web service processes photos,

creates an album document from these photos, and prints this album document.

Users were asked to describe a management policy that modifies this service's

behaviour to apply the BlackWhitePhoto and HighPhotoQuality adaptive behaviours

when service is processing landscape photos. Then users were asked to define a

second management policy that modifies this service's behaviour to apply the

RemoveRedEye adaptive behaviour when service is processing portrait photos.

Full instructions were provided for specifying the first management policy,

while only minimum details were given for specifying the remaining management

policies, so as to allow the users to think for themselves when defining them

SMPE Usability Test 3 - “To determine the usability of the SMPE tool in

refining policies managing a composite service to auto-generated (discrete)

policies managing its constituent services”.

In this usability test, the users were asked to use the SMPE tool to

automatically refine a management policy specified for an adaptive composite

service, called PhotoAlbumPrintService. This web service processes photos, creates

an album document from these photos, and prints this album document. A

management policy was specified to modify this service's behaviour to apply the

162

RemoveRedEye and CreateCalendar adaptive behaviours when processing portrait

photos.

The users were asked to use the SMPE tool to refine this management policy

into auto-generated discrete policies that manage the adaptive behaviours of the

relevant constituent atomic web services.

Analyses of the results for each of these usability tests in relation to

effectiveness, efficiency, satisfaction are presented in the succeeding sub-sections.

5.4.3 Effectiveness Result Analysis of the SMPE Tool

The usability evaluation requested that users utilised the SMPE tool to

perform specific tasks for each usability test. To measure the effectiveness of the

usability evaluation, the accuracy and completeness were observed for each of the

users performing these tasks. In other words, the effectiveness of a usability

evaluation can be measured by the number of correct answers provided by the users

after performing each task.

The first usability evaluation cycle was performed in an individual manner,

where user’s progress was monitored and any queries were dealt with immediately. It
was observed that the users completed all their tasks, and that each of their tasks were

performed correctly. While assistance was provided whenever requested, the number

of assistance requests was not counted. However, the request for assistance while

performing a task provided feedback to the usability evaluation and improvements

were made in the instructions for the second and third usability evaluation cycles. The

improvements were done to guarantee a better rate of success when performing the

usability evaluation in a group manner.

For the second and third usability evaluation cycles, the users were asked the

following questions at the end of the first usability test, so as to attain the user’s

effectiveness about their usability tasks;

Questions with respect to the usability tasks__________________________________
421. What is the event triggering the management policy ServiceAdaptI Policy2?
422. What is the action the management policy ServiceAdaptI Policy2 will perform?
423. What is the condition the management policy ServiceAdaptI Policy2 must first satisfy?

Table 34, Task questionnaire for the usability evaluation of SMPE tool

163

The effectiveness of the second and third usability tests were evaluated by

analysing the artefacts produced by the users. The artefacts were examined for

specific values that should have been set based on the usability tasks.

Analysing the answered questions and the artefacts produced, it was noted that

there was 100% completion for all the usability tests. In relation to accuracy, the

answers to these questions and the artefacts were verified for all the users and the

table below was produced in which the following conclusions were drawn:

Accuracy Second Usability Cycle Third Usability Cycle

Usability Tests Right Wrong Right Wrong

First Test 97% 3% 89% 11%

Second Test 92% 8% 89% 11%

Third Test 100% 0% 100% 0%

Table 35, Degree of accuracy for SMPE tool from second and third usability cycles

The usability evaluation resulted in a completion rate of 100% and an

accuracy rate of no less than 89% for perform the tasks with the SMPE tool.

Although, the accuracy rate of the second usability cycle yield a better result. These

results provide a positive indication that the majority of the users were well capable of

understanding and performing the tasks set out to them. It can also be concluded that

the majority of the users did manage to use the SABE tool to correctly perform the

tasks.

5.4.4 Efficiency Result Analysis of the SMPE Tool

The usability evaluation was presented online with instructions at the

beginning of the test and questionnaire that had to be answered online at the end of

the usability test. Having the usability test online, it allowed for the users to be timed

over each usability test. The timer would start when the usability test web page was

opened and stop when the questionnaire was answered. However, this timer

malfunctioned and most users’ test did not get their time recorded.

Due to the lack of data, no emphasis can be placed on the efficiency of the

SMPE tool. Although the times were not recorded for each usability test, the entire

usability evaluation for the SMPE tool was performed in just under an hour by the

users. Having three separate usability tests with multiple tasks and questionnaire

164

completed in just under an hour, it can be concluded that the usability evaluation was

done in a reasonable time, and that the SMPE tool has performed in an efficient

manner for the users to have completed the tasks in such time.

5.4.5 Satisfaction Result Analysis of the SMPE Tool

The questionnaire provided at the end of each usability test had questions

tailored to access the user’s satisfaction towards the SMPE tool. Presented below are

the set of questions and a result analysis of their answers.

SMPE Usability Test 1 - “To determine the usability of the SMPE tool in

viewing the details of a policy specified to manage adaptive behaviours of a

composite service”.

At the end of the usability test, the users were asked in their questionnaire the

following questions:

Questions with respect to Easiness
426. Viewing the details of the policy managing this service was?
427. Identifying what event triggers the policy was?
428. Identifying what condition the policy is evaluating was?
429. Identifying what adaptive behaviour is the policy is performing as its action was?
Questions with respect to Comprehension
434. To understand the description of the policy managing this service using SMPE tool
was? ________________
435. To understand the description of the event that triggers this policy using SMPE tool
was?
436. To understand the description of the condition that must be satisfied for this policy using
SMPE tool was?
437. To understand the description of the action that is performed for this policy using SMPE
tool was?
Questions with respect to Helpfulness in guiding users
430. Smpe tool made the process of browsing the description of the policy managing this
service?
431. Smpe tool made the process of browsing the description of the event that triggers this
policy?
432. Smpe tool made the process of browsing the description of the condition that must be
satisfied for this policy?
433. Smpe tool made the process of browsing the description of the action that is performed
for this policy?__

Table 36, Questionnaire for the first usability test of SMPE tool

The answers to these questions were analysed for all the usability cycles, and

the table below was produced in which the following conclusions were drawn:

Easiness Comprehension Helpfulness

Usability Cycle Easy Difficult Easy Difficult Easy Difficult

165

First Cycle 96% 4% 83% 17% 100% 0%

Second Cycle 96% 4% 92% 8% 100% 0%

Third Cycle 94% 6% 88% 12% 96% 4%

Table 37, Degree of satisfaction in viewing policies from three usability cycles

These results give a good indication that the SMPE tool is capable of

displaying the management policies of a web service successfully. In addition, they

shown that the users were able to understand the management policies provided to

manage a service through its adaptive behaviours. It was demonstrated that the

combination of a tree widget and a table widget - used to display management policies

and its details - work just as well as it did for the SABE tool in displaying adaptive

behaviours.

SMPE Usability Test 2 - “To determine the usability of the SMPE tool in

specifying policy to manage the adaptive behaviours of a composite service”.

At the end of the usability test, the users were the following questions asked in

their questionnaire:

Questions with respect to Easiness
521. Creating a policy for managing the service was?
522. Creating an event that would trigger this policy was?
523. Creating a condition that must be satisfied for this policy was?
524. Creating an action that would be performed by this policy was?
Questions with respect to Comprehension
529. To understand the process of creating a policy for managing the service using SMPE
tool was?
530. To understand the process of describing the event that would trigger this policy using
SMPE tool was?
531. To understand the process of describing the condition that must be satisfied for this
policy using SMPE tool was?
532. To understand the process of describing the action that would be performed by this
policy using SMPE tool was?
Questions with respect to Helpfulness in guiding users
525. Smpe tool made the process of creating the policy for managing the service?
526. Smpe tool made the process of describing the event that would trigger this policy?
527. Smpe tool made the process of describing the condition that must be satisfied for this
policy?
528. Smpe tool made the process of describing the action that would be performed by this
policy?__

Table 38, Questionnaire for the second usability test of SMPE tool

The answers to these questions were analysed for all the usability cycles, and

the table below was produced in which the following conclusions were drawn:

Easiness Comprehension Heipfulness

166

Usability Cycle Easy Difficult Easy Difficult Easy Difficult

First Cycle 100% 0% 96% 4% 96% 4%

Second Cycle 90% 10% 94% 6% 92% 8%

Third Cycle 96% 4% 85% 15% 94% 6%

Table 39, Degree of satisfaction in authoring policies from three usability cycles

These results demonstrate how helpful and effective the SMPE tool is in

authoring management policies for an adaptive composite service. It also

demonstrates that by restricting the users with selections of appropriate vocabulary for

different aspects of the policies, the tool facilitates the users in specifying policies,

and it is considered helpful in preventing the user from authoring policies incorrectly.

These high results also reveal how well suited the users found policies to be in

managing the adaptive behaviours of a service, and how straightforward the process

of authoring them with the help of the SMPE tool.

SMPE Usability Test 3 - “To determine the usability of the SMPE tool in

refining policies managing a composite service to auto-generated (discrete)

policies managing its constituent services”.

At the end of this usability test, the users were asked the following questions

in their questionnaire:

Questions with respect to Easiness
621. Refining policies for a service was?
622. Identifying the refined policies was?
623. Identifying the events of the refined policies was?
624. Identifying the conditions of the refined policies was?
625. Identifying the actions of the refined policies was?
Questions with respect to Comprehensiveness
625. To understand the process of generating refined policies to manage a service was?
626. To understand the resultant generated refined policies was?
625. To understand the process of generating refined policies to manage a service was?
626. To understand the resultant generated refined policies was?
625. To understand the process of generating refined policies to manage a service was?
Questions with respect to Helpfulness in automation
631. SMPE tool made the process of refining policies managing a service?
636. How helpful was SMPE in refining policies for a service?
632. SMPE tool made the process of identifying the refined policies?
633. SMPE tool made the process of identifying the events of the refined policies?
634. SMPE tool made the process of identifying the conditions of the refined policies?
635. SMPE tool made the process of identifying the actions of the refined policies?

Table 40, Questionnaire for the third usability test of SMPE tool

167

The answers to these questions were analysed for all the usability cycles, and

the table below was produced in which the following conclusions were drawn:

Easiness Comprehension Helpfulness

Usability Cycle Easy Difficult Easy Difficult Easy Difficult

First Cycle 100% 0% 80% 20% 97% 3%

Second Cycle 96% 4% 88% 12% 96% 4%

Third Cycle 92% 8% 92% 8% 100% 0%

Table 41, Degree of satisfaction in refining policies from three usability cycles

When compared with the first usability test, it is observed that while the users

have found the process itself easier after repeating the process of viewing the

management policies, (even though it is to some extent different) they have found it

more difficult to comprehend, since policy refinement is complex and the refined

policies are very different from the original policy. Although users found the

refinement process easy due to its automation, their understanding of the process was

not in the same level. Thus, it can be seen that while the process of refining

management policies for a composite service would have been very difficult and

complex, the SMPE tool overcomes this problem with the automation of the

refinement process. The SMPE tool’s automated refinement process prevents users

from making the mistakes they would make if they were to manually refine these

policies. Thus it shows how valuable an asset the automated refinement process was

to this tool. These results are a good indication that although refinement of policies is

very complex, its automation, as it is performed by this tool, greatly facilitates its

accomplishment.

Comparison between the SMPE Tool Usability Evaluation Cycles

Small changes were made to the usability tests after the first evaluation cycle.

These changes consisted only of improvements to the tests, and did not affect the

overall emphasis of these usability tests. Furthermore, the changes to the tool were

minor changes which had minimal to no improvement in the usability. Thus a

comparison was performed of the results of the user’s answers to the questionnaire.

The answers for the various tests were grouped into the categories of: ease of

use, helpfulness, and comprehension. A comparison was performed between the

results of the evaluation cycles by applying a chi square test on the various answers.

168

By using the chi square test to compare these answers, it was found that the answers

of all three usability tests passed the null hypothesis test, thus proving that there was

no difference between the answers from the three evaluation cycles. Consequently,

this result strongly indicates how well these three evaluation cycles are in agreement

regarding the usability evaluation of the SMPE tool.

5.4.6 Overall Conclusion for the SMPE Tool Usability Evaluation

After analysing the results of the usability tests performed on the SMPE tool,

conclusions were drawn based on their results. The first conclusion is that the results

from these usability tests are a good indication that the SMPE tool is easy to use due

to its graphical user interface, which users also found helpful when specifying

management policies for these adaptive web services.

These results demonstrate how helpful and effective the SMPE tool is in

authoring policies for adaptive web services. It also demonstrates that by restricting

the users with appropriate selections for authoring the policies, the tool makes it very

easy, and it is considered very helpful, in preventing the user from authoring

syntactically incorrectly policies. These high results reveal how well-suited policies

are to manage the adaptive behaviours of a service, and how easy it is to understand

the process of authoring them with the help of the SMPE tool. However, it is

important to note that the users in this usability evaluation were not professionals, and

therefore their answers were not very critical.

Although users found the refinement process easy due to its automation, their

understanding of the process was not at the same level. Thus, it can be seen that while

the process of refining management policies for a composite service would have been

very difficult and complex, the SMPE tool overcomes this problem with the

automation of the policy refinement process. The SMPE tool’s automated policy

refinement process prevents users from making mistakes; such as if they were to

manually refine these policies. Thus, it shows how useful and effective the automated

policy refinement process was to this tool.

169

5.5 Related Work

Automated policy refinement has been the focus of several research projects

and initiatives. This section illustrates some principal approaches, whilst

differentiating them from our approach.

Verma [58] proposes a case-based reasoning approach to support policy

refinement. In Verma’s approach, the system learns experimentally from the

operational behaviour it has previously examined. Each of those cases contains a

combination of the system configuration parameters and the policy goals achieved. It

takes the desired goal as input, and searches the case database to determine the

optimal configuration that will satisfy this goal.

Due to its nature, Verma’s approach could be easily adapted to refine policies

to manage the adaptive behaviours of web services. It can observe expert users create

high-level policies and the relevant configuration for managing adaptive web services.

The similarity between Verma’s approach and our approach is that they both

perform automated policy refinement. However they differ considerably in the way

this is achieved and the circumstances under which it can be achieved. Verma’s

approach differs from our approach in the way that our tools seek to explicitly model

only the adaptive behaviours and support empowerment of the

administrators/managers in composing appropriate high-level management policies.

These are then automatically refined, based on the modelling of web services and

their adaptive behaviours.

Verma’s approach is dependent on a rich enough case database, which is only

made possible by observing the system for some period. Unlike our approach, such

dependency limits this approach from automatically refining policies for new adaptive

web services. Only if a policy expert first pre-configures the database with cases of

every possible policy-configuration combination can this be achieved. Otherwise, a

policy expert needs to be available to address the manual refinement of new policies.

Also, Verma’s approach relies on observing users experience, which places a

high burden on the expert manually mapping the high-level policies into enforceable

policies. This can be a complex task when dealing with adaptive composite web

services. Since the case database is populated by users, and it is not linked with the

170

managed devices, it could contain incorrect configurations. This could perhaps occur

due to misalignment with the managed system, which would then cause issues when

employed. In our approach, policies are automatically refined, based on a rich

semantic description of the managed adaptive web services. The automatic policy

refinement process can be repeated when services are updated. These descriptions are

normally described by the person responsible for creating the services; a person who

is knowledgeable in the workings of their services.

Furthermore, existing cases in this policy refinement case database can be

invalidated with the introduction of new configuration parameters, new service

composition, or new conditions in the high-level policy. In our approach, the

automated refinement process will automatically handle such changes. Since our

policy refinement process is based on a rich semantic model, it can automatically

generate updated policies based on the updated models.

Russo [53] presents a partially automated approach for policy refinement by

which a formal representation of a system based on Event Calculus can be used in

conjunction with abductive reasoning and goal elaboration techniques, to derive the

sequence operations for a particular goal.

From the user’s point of view, this approach is somewhat similar to ours. It

expects a high-level policy (goal), and needs system behaviour description as state

charts (like FSM) to automatically refined them into low-level policies. However,

after a closer inspection, it can be noted that the two approaches are quite different.

The approach proposed by Russo requires system behaviour description as

state charts, which can be complex and tedious to describe for large systems. In our

approach, developers are only required to describe small aspects of the web services,

which are deemed ‘adaptive behaviours’. Thus, it encourages developers to adopt our

approach by only describing some aspects of adaptive web services, as supposed to

having to describe the entire system.

Russo’s approach uses Event Calculus notation for its abductive reasoning.

Hence, system behaviours are only described as state charts for convenience. This

system description must be translated to Event Calculus notation before it can be

used. In our approach, this transformation step is not needed, since policies are

inferred directly from the FSM descriptions.

171

Although Russo’s approach claims to be domain-independent, it is only useful

if the poliey refinement is performed in an automated manner. In order to be

automated, it must first aecumulate enough refinement patterns in a particular domain.

These policy refinement patterns must be created manually, and this can be strenuous

for the poliey expert, espeeially if dealing with complex polieies for large composite

web services. In our approaeh, policies are always automatically refined. Furthermore,

our approaeh restriets users from specifying unsupported high-level policies. This

means that it can handle refining policies for new adaptive web services, without the

need for a poliey expert to be present. Thus, it promotes the employment of our

approach by different web service providers, where their web service managers do not

have to be policy experts or to have full knowledge of the intricacy of the managed

web services.

Cassasa-Mont [70] outlines a poliey-authoring environment that provides a

policy toolkit, called POWER, for refining policies. A domain expert first develops a

set of policy templates, expressed as Prolog programs, and the poliey authoring tools
have an integrated inferenee engine that interprets these programs to guide the user in

seleeting the appropriate elements from the management information model. These

are then included in the final poliey.

A major limitation of the approach proposed by Cassasa-Mont is that their

system does not provide any support for automatieally deriving the actions to be

included in a policy template. A positive side to the Cassasa-Mont approaeh to policy

refinement is that it can be adapted for different application domains. However, the

templates must be manually defined by a domain expert in Prolog. Therefore, domain

experts must have a detailed understanding of the system and formalism. Another

limitation is that it also assumes that domain experts are knowledgeable in Prolog and

so can create poliey templates. In our approach, no templates are needed. Instead,

automatie policy refinement is achieved by inferring directly from the adaptive web

service’s descriptions.

Kiel [3] suggests an automated policy refinement approaeh that aceomplishes

its refinement using Ontology-based service composition. By modelling each of the

managed components/devices as Ontology-based web serviees using OWL-S, these

components/devices can then be used by the policy refinement approach. The Kiel’s

approach is clever in dynamically discovering the policy refinement pattern using the

172

web service composition (matchmaking engine). However, this approach will not

always result in a policy refinement, since some of the required service might not be

present for the service composition. The proposed approach will always result in a

policy refinement since only valid high-level can be specified.

The Kiel approach uses service composition to generate our low-level

mapping policies, and the low level enforceable policies are manually created and

modelled as web services. In the proposed approach, mapping policies are generated

based on a service composition, and enforceable policies are also automatically

generated based on the adaptive behaviour description as FSM. In other words, the

proposed approach takes one step forward and generates the low level enforceable

policies as well.

Guerrero [2] presents a generic ontology-based policy refinement approach

that also provides interoperability between high-level and low-level policies, by using

Ontology models and SWRL rules. Guerrero’s approach to policy refinement requires

a very high modelling effort - modelling the system at every level as well as the

relationship between them, together with translation rules. Too much effort is required

for all this modelling, and unless the system is large and will not change for a long

time, this effort is too great of a challenge for the outcome. In the proposed approach,

policy refinement is inferred from a much smaller model without the need for

translation rules.

Guerrero’s approach assumes that policies will be manually specified at every

level of abstraction. Thus it allows for interoperability between high-level and low-

level policies. But this assumption adds an extra burden of having to manually create

low-level policies. In the proposed approach, low level policies are seen as a

realisation of the high-level policies and they should not be manually created. Such

action also eliminates human error added in the creation of such policies.

Another approach, to automated policy refinement designed for security type

policies comes from Albuquerque [65]. This is executed using a modelling technique

where a system’s model is structured in different abstraction levels. A system’s

objects, relationships, and policies at a certain abstraction level, together with the

system model of the lower level and the relationship between entities of the two

layers, enables the generation of lower level policies. It uses a Diagram of Abstract

173

Subsystem to model a management system (abstractly) segmented into Abstract

Subsystems (AS). However, it doesn’t support the refinement of obligation policies,

since their approach only models RBAC systems and is not suitable for managing

adaptive behaviours.

Another approach to automated policy refinement of security policies is from

Cunningham [66]. It models the resource hierarchy, and this is used to refine policies

assigned to the abstract resources in (on top of) the resource hierarchy, and

automatically produce low-level policies for its concrete resources. Policies are first

refined for a resource type, and then for its instance. It uses an AND/OR Graph to

model resources, and an Arithmetic and Logical Expression Tree to write expressions

modelling policy specification.

Rubio-Loyola [62] achieves policy refinement by breaking down high-level

goals into AND/OR structures by using KAOS domain independent refinement

patterns, as part of a goal graph elaboration step. An administrator then selects the

most suitable lower level goals to be refined by the management module. Rubio-

Loyola’s approach is not automated, and it requires administrators to choose an

appropriate set of refined policies. System behaviours of a managed system are

modelled with labelled transition systems which are based on FSM. It suffers from

scalability since it uses the FSM approach to model an entire managed system,

without using a multi-layer of abstraction. In our approach, FSM is used only to

describe the adaptive behaviours, and not the overall behaviour of (composite) web

services. Because FSM is combined with OWL-S, it can be scaled for use with a large

composite web service.

Table 42 presents a comparison of the approaches discussed. It focuses on

comparing the key aspects of the policy refinement process.

174

CD
0
>«
0 " 00 .2

3
0
0
E

CO
0
0

3
c
0

CO
3
0
Q.X_11 0 p 0

0
0 X)

3
0

0
0 0

CO
>.
0

3 <f 0 0 0 0 5s 0
q: X 0 z CD z CO O-

V)
O

Si
LI. Q.

3
^ i
B ro
CO x: >> 0

CO X3

0
T3Co
CL

T3

i c 1
^ O ^ 03
O ^ >ro 03
T5 ^ 5 O m ^ O
a> ? £ <1^ o ^ ^<D E 55 O) CD
z w £ w i=

■Oc
CO

f ?

^ ‘crt «^ o <l> CO o ^5-^2
< o i=

(/)
0)
>

o•D
O
E
>»<D

C o
£ 2 fe

^ (0 £

■o
0
15
E
o
D<

Co
CO
(0

■d
0
Q.
X
0

>' r-
o c S
■Sow
0 0 >%
Z CO CO

LJJ
-J<
oe5
O
O<
Q

0
Q.>%
0o

o
0

3 o w
0 0
0^ Z

I-ili -i
^ -2
< 0

"D(0
0
>%O
o
0.

0
CL

0
0

0? o _

0 0
-c 9“>>
|i^

=§ 3 e
S 5

0 0 0
Q DC £

(1)O

0
CO

0
5

c
.0
COoa.
E
o
O

"D
0
ra
E
o

c
.2 ^
0 o

f ^o

t<13Q.Xo
E
0)

0 ro ^
CO

0•DO

CO

0)■DO

CO
I

5
o

C
O w
2 ^
3 0
.g’E
5 2

0

0
0 j3
^ <13

o "H

0

I §
0 ”

O (iZ

. w 0 0 t o
’3 ■
cr
0

w oQ.
E

,_ o
£ “

0>
0

5o

w
0
v>
0

■<J
<^=s
I-
•c 0 o o
0 £
Q TJ

0o
E
0CO

X2
0
$

CO

> <0
o >-

a
Eoo

0
0
Q.
E
0

,0
o

CL

■D
0
0
Eo
3
0

c ^
“ o E o
0 ^
S' o
50 0

■n V ^ Q.
0 I- c
E (5
o .2 c

— 5
3 0 0
< 0. Q

CO
^ 0
°E t
S 0 E

CL -JS 0 ^x: ^42 r. 03
o 0 o 75
P ^ "X P 0.0. 0 0 D. S±L

■c
0Q.
X.

,_ LU
° E
o£:= (O O >»
CL CO

CO
■d

*0 0
C Q. 0 X
E
52 o
CO =>» o

CO Q-

r
0Q.X
0
E
0
CO>.

CO

0
CO
0n
0
0
■3
0
CO
0
O

CO
0

3
^'i
® 0

CO n

CO
0
0
Q.
E
0
>»o
o

CL

CO
0

'Um

c
0
0
CO
0
O

•B 22 ̂
3 0
.2>E

0

0
0 “S
d CO
O 0 w
o .2 0)0
3 O
^ O 0 ^O CO ^ ^

O Q.Z CL

Ol
£
0

co
0

'i03 ^
CO

3 0
^E
c ro
o

03 -O "O
■2 CD CO
■C3 s o
32 Q- 0303 o <0

!'2 S

O Q. Z Q. 3

CO" O CO

^ ra E
3 l: 0
o 0 eTO TO
O c “■
■£ CDS E 9
LU 3

O CO j"
^ C .S:

CO 2 0 .2
■c .2 e o
2 x: 2 Qlj: ^ D. .

iisi
■2 o < o
CO -o 2 D.

» s|

s|s

O
O c

■O 0 ro
03 e E03 0 0
Z CLX3

3CD

CO
I-J

o
08

CO

X303
5
03> ■i.2

$“8
:r </>
£

0 03 «3
>, 0 <0 -p

^>0 2*0<=X303
CDC075= Q.00 ■o 03 0 ^ o 9.> ra
<COT30CL<>J3

03 3

S<« X 03 o
3 UJ Z S

0

ft
^ 52
ro o0 :=
6 Q.

8 «
3 .2
g’-E■E 0
CD 0
0 V)

CJ)

CO
O

O) W
E c>-0 0
0 £2
O Q.

CO
0
>-

D.

fi
E4
B̂c4>

CO
0
>-

^ X)
0D3g

9 0.-^ w CD £
52 "D 0
Q CD CO

003
>-

5.6 Cost and Benefit of Adaptive Web Services

The proposed approach places a new view on web services; a vision where

web services can adapt dynamically at runtime. This vision of adaptive web services

provides many benefits to users and businesses alike, but for such flexibility there is a

cost, and that cost is in the development of these services. In this section the cost and

benefits of creating and managing adaptive web services are discussed.

There is an extra cost when developing adaptive web services compared to

development of simple web services. With simple web services, the developers have

to only concentrate in creating web services to do the task at hand. For adaptive web

services, the developers have to also implement and describe the adaptive behaviours.

Thus adding extra time and effort performing these tasks to develop adaptive web

services. Furthermore, developers need to be aware of how web services will be used

and what other needs the users of these web services might have in order to create

these adaptive behaviours. However, this burden imposed on the developers pays off

when they manage to foresee and implement the adaptive behaviours needed by

diverse businesses or that it can satisfy several users’ needs, i.e. adaptive behaviours

which make their web services more flexible and therefore popular than other web

services.

The MAWS methodology describes the process cycle of how adaptive web

services are developed and managed, but more importantly it identifies the actors

involved for each activity in the methodology process. The MAWS methodology

identifies the web service developer as the actor responsible for implementing web

services and describing their adaptive behaviours, while web service administrators

are responsible for specifying policies to manage these adaptive web services.

Furthermore, separate tools are provided to perform the different activities. By

dividing the duties of development and management of adaptive web services to

different actors it has the benefit of empowering the managers in modifying the web

services to suit their needs, and thus freeing the developers from such burden.

5.7 Summary

This chapter demonstrated how well the novel prototype tools SABE and

SMPE, behave under the different user cases scenarios presented. Furthermore it

176

described in detail the usability tests performed on these innovative tools together

with the results and evaluation of these experiments. Lastly this chapter presents a

discussion on related work of automated policy refinement and adaptive composite

services.

177

6 Conclusion

6.1 Introduction

In this chapter, the original objectives of the thesis are restated followed by a

discussion of how these objectives were achieved. Then conclusions are drawn based

on observations from the tool’s design and results of the experiments performed.

Limitations to the proposed approach are identified. Additionally, contributions made

by the research presented in this thesis are described together with their benefits.

Finally, some suggestions as to future enhancements of this research are explored.

6.2 Objectives and Achievements

The research goal driving this thesis was to propose and evaluate an

innovative architectural approach and mechanism, which combines Finite State

Machine (FSM) and Ontology reasoning together with policy-based management.

This innovative approach supports accurate high-level policy specification and

automatic refinement and generation of low-level policies for managing adaptive

composite web services.

The objectives drawn from this research question were:

• Research the use of Finite State Machine (FSM) and ontological techniques to

describe adaptive web services and techniques to support policy refinement.

• Define and develop innovative mechanisms to describe the adaptive

behaviours of both atomic and composed web services.

• Define and develop novel mechanisms to specify high-level policies to

manage the adaptive behaviours of composed web services and to auto-

generate refined (low-level) policies, which can be enforced on the relevant

constituent atomic services.

• Evaluate the complexity of designing adaptive service management using this

approach, i.e. usability of the approach, and a comparison with other policy

refinement approaches.

178

A discussion of how well these research objectives were achieved is presented

below.

“Research the use of Finite State Machine (FSM) and ontological techniques

to describe adaptive web services and techniques to support policy

refinement.”

The key to success when managing adaptive web services is to have a

semantically rich set of descriptions to reason about them and their adaptive

behaviours. Ontology is being used more and more to semantically describe

resources. Hence, OWL-S, an Ontology-based model for describing web services

semantically, was found to be a semantically rich model chosen to describe web

services and their composition. However, this Ontology model was not designed to

describe the adaptive aspects of adaptive web services, i.e. their internal adaptive

behaviours.

After investigating multiple modelling languages for representing behaviours

of web services in a formal manner, FSM was identified as a strong modelling

language candidate to formally describe the adaptive behaviours belonging to

adaptive web services. FSM is a well-established model for formally describing a

system’s behaviours, but there is a need to be careful of complexity when using this

model. FSM uses states and transitions to describe behaviours, which when describing

large and complex systems, can become convoluted, and difficult to understand.

However, if FSM is used judiciously, in what it describes and how it describes

it, this complexity issue can be reduced or avoided. As shown in the proposed

approach, by using FSM to describe only the adaptive behaviours of web services and

not their entire behaviour, and by encapsulating each of them in sub-FSM, it was

possible to significantly reduce the number of states and inter-relationships that

needed to be described, thereby avoiding the complexity issue. Still, care needs to be

taken in providing enough tools so that users can easily make use of FSM to describe

adaptive behaviours pertaining to web services.

179

“Define and develop innovative mechanisms to describe the adaptive

behaviours of both atomic and composed web services.”

By describing adaptive behaviours pertaining to web services as FSM, users

can reason about them in a formal manner, allowing policies to be specified to

manage adaptive web services. However, using the FSM models manually in their

raw form (lexical form) can be very tedious to write and complicated to read.

Furthermore, it allows for syntactical errors to be introduced into the FSM

description, therefore degrading its usefulness for reasoning. Thus, there is a necessity

to build tools that actually hide the complexity of FSM and provides support in what

needs to be described.

A set of integrated tools was developed and was fitted into a broader

methodology, which gave users methodology steps, and showed how these novel

tools can be used to support those steps. The WSDE and SABE tools were developed

to shield the users away from the low-level details of OWL-S and FSM by hiding

their lexical form, and to provide a method to visualise the OWL-S and FSM model

using a graphical user interface. The SABE tool in particular facilitates the users in

describing adaptive behaviours as FSM by having checks in place to aid the users in

creating the FSM model and to prevent them from making structural mistakes in the

FSM model.

Although it is possible for a developer to describe the adaptive behaviours of

composite services by hand, this process is very tedious and error prone. Thus one of

the requirements for developing the SABE tool was the ability to automatically

aggregate the adaptive behaviours of the constituent services. Experiments performed

on the SABE tool found it able to perform the aggregation of adaptive behaviours.

But, the experiments were limited to sequential composition. It is believed that minor

issues would arise for other types of composition.

Another issue is that the Ontology model OWL-S - used to describe web

services - is a separate technology to the FSM model - used to describe their adaptive

behaviours - and there is no natural bridge between the two. Therefore, there might be

an issue with using the two of them together to describe adaptive web services.

This technological gap between OWL-S and FSM presented an initial

challenge to the development of the SABE tool. However, this challenge was

180

overcome by creating a FSM Ontology model (see Appendix E), which could be

interpreted by the same Ontology reasoner as was used to reason about the web

service’s semantic description.

“Define and develop novel mechanisms to specify high-level policies to

manage the adaptive behaviours of composed web services and to auto-

qenerate refined (low-level) policies, which can be enforced on the relevant

constituent atomic services.”

A methodology, called MAWS methodology, was created to identify the set

of steps required before management policies could be refined into low-level policies

to manage adaptive web services. This methodology also helped identify a set of

requirements for designing the SMPE tool; a tool for specifying management policies

and for automatically refining them into auto-generated enforceable policies for

managing adaptive web services.

The SMPE tool was designed with a graphical user interface that facilitates the

users in authoring management policies, while hiding the complexity of such policies

and of the adaptive web service’s semantic description. This tool allows users to

specify high-level policies, in which their vocabularies are based on abstract

terminology, such as the name of a FSM representing an adaptive behaviour.

However in order to manage these adaptive web services, these policies need to be

refined.

Questions were raised as to whether the authoring of a high-level policy for

managing an adaptive web service should be permitted when the web service does not

have the resources to support the refinement of such policy. Thus, this tool prohibits

users from expressing an out of scope management policy. Furthermore, it was found

that the automated refinement and auto-generation of management policies into

discrete enforceable policies could be assured by limiting their expressiveness to that

provided by the semantic description of the adaptive web service.

By shielding the user from the intricacy of policy refinement and automating

such a complicated and strenuous process, it was realized that non-policy experts can

use the SMPE to specify high-level policies for managing adaptive web services. This

tool can then generate low-level policies that enforce the goal of the specified

policies. Unfortunately, users are currently not restricted from specifying policies that

181

are semantically contradictive. Nor are they restricted from refining them. In other

words, the enforceable low-level policies are correctly refined according to the

intention of the specified high-level policy, even if semantically the specified policy

does not make sense.

During the implementation of the SMPE tool, two sets of algorithms were

developed for refining management policies in an automated manner. The first

algorithm developed automatically refines only the action aspect of management

policies; it is used for orchestration-type services, specifically for non-virtual

composite web services. The second algorithm implemented automatically refines

both the action and condition aspects of management policies; it is used for

choreography-type composite web services. Both policy refinement algorithms make

use of the event aspects of these policies in order to link high-level management

policies to refined mapping policies, and to link mapping policies to low-level

enforceable policies. Management policies could be linked to higher-level business

policies through their event aspect.

“Evaluate the complexity of designing adaptive service management using

this approach, i.e. usability of the approach, and a comparison with other

policy refinement approaches.”

The usability and effectiveness of the implemented tools were evaluated by

undergoing a series of case studies to test their functionality, and a suit of usability

experiments to test their ease of use. Case studies were designed to demonstrate the

usefulness of the integrated tools in creating policies to manage different adaptive

web services, and thereby validating the approach proposed in this thesis. A small

web service rule engine had to be implemented together with shell adaptive web

services in order to demonstrate the refined policies in effect.

Two case studies were conducted to demonstrate how effective these tools

were in creating policies to manage:

i. a personalised holiday service, according to users preference;

ii. a notification service, according to context changes and business needs;

Several usability evaluations were performed on the innovative tools SABE

and SMPE to validate their ease of use. The results from the usability experiments

182

gave a strong indication of how easy and helpful these tools were in both describing

adaptive web services, and specifying and refining management policies. Even though

the overall results were good, there were some problems encountered with how the

table widget was used by these tools. Although the context-sensitive dropdown menus

used by these tools were found helpful in assisting users with the various tasks, it was

realised that without an initial instruction provided for them, their operation can be

obscure. It is granted that these usability evaluations were not conducted with

professional developers or professional web service administrators.

Unfortunately, it was not possible to conduct the usability evaluations with

professional web service or policy administrators, who most likely would have been

more critical about them. However, the positive results provided by the usability

experiments conducted with computer science graduates gave a good indication that

any user with a background in computer programming and some understanding of

web services and policies could use this tool with ease to specify policies to manage

adaptive composite services.

Instead of performing a single usability evaluation with a large population, it

was decided to perform an iteration of three evaluations, where the first evaluation is

performed with a small group of users on a one to one basis. This provided fast

feedback from the users and assessment of the evaluation progress, which were used

to refine the usability tests for the next evaluations and fix any minor issues

encountered so as to have successful subsequent evaluations. Then the second and

third evaluations were performed in a group manner, with a larger group to grant a

greater usability exposure. This approach to usability evaluation proved effective

since some issues were encountered with the tool’s GUI and small changes were

made to improve them before the subsequent evaluations. If the usability evaluation

was performed as a single evaluation, this minor issue could have badly affected the

overall result of the evaluation and it would have been too late to resolve it.

A comparison analysis was performed over the results fi'om all the

evaluations, and it was found that, although the usability evaluations were performed

with a small population, the pools of users had the same overall opinion about the

usability of these tools.

183

The novel automated policy refinement process implemented in the SMPE

tool was compared to other policy refinement processes performed by various

research groups. It was concluded from this investigative comparison that none of

other approaches have tried to use a model that combines FSM and OWL-S to reason

about the policy refinement process in an automated manner.

It was confirmed that the SABE tool is very capable of successfully allowing

users to describe adaptive behaviours pertaining to adaptive web services with ease.

Furthermore, it was verified that the SMPE tool does perform well in specifying

management policies and automatically refining them. The automation of the policy

refinement and the provision of correct vocabulary for the policy specification were

found to be the cornerstone to the approach proposed.

6.3 Limitations
However, the approach does have a number of limitations which need to be

addressed in our future work. These can be summarised as follow;

• The proposed policy refinement approach does not provide parameter values

for management policies: At present the enforcement policies produced from

the policy refinement process only contain the operations that will achieve a

particular goal, not the parameter values to be used with these operations.

• This approach excludes services with effects: The current solution is limited to

managing a subset of adaptive web services, i.e. adaptive web services that do

not account for changes in their effects. This approach was designed to only

manage adaptive web services with fixed input and output types.

• Adaptive behaviours are not semantically filtered: At present the adaptive

behaviours presented for a composite service is the resultant aggregation of

the adaptive behaviours pertaining to its constituent services, without any

constraints. There is neither semantic tagging nor filtering for the adaptive

behaviours belonging to a web service.

Despite these limitations, the work presented in this thesis advances the

current state of the art for managing adaptive web services and automatic policy

refinement/generation. These contributions are described in the following section.

184

6.4 Contribution

This thesis proposes a novel model that combines FSM and Ontology

reasoning, for describing adaptive composite services. This novel model, together

with management policy, and an automated policy refinement technique are used to

generate enforceable policies for managing these adaptive services. Although each of

the technologies used by this model has been individually used in some form or

another to describe a system’s behaviours or to manage systems, this approach

provides the first novel integration of these technologies to manage adaptive

composite services.

This unique model provides support for an automated policy refinement

technique. And this novel policy refinement approach was designed with the purpose

of managing adaptive composite services by means of automatically refining specified

high-level policies into generated discreet low-level policies, which directly control

the behaviour of the relevant atomic services according to the intention of the
specified high-level policy.

By using this novel approach, it is possible to remove complex business logic
from the workflow* of composite web services and contain them within their

constituent web services as adaptive behaviours that can be managed by policies. In

this manner, composite web service’s workflow can be kept simple, and hence fast,

while businesses are still empowered with the flexibility to change the services

behaviour using policies to suit their business goal. This is an example of web

services adapting to context information.

As business requirements change, current web services need to evolve while

trying to maintain a backward compatibility with previous client applications. Trying

to support different versions of the same service can be very troublesome. Another

way to address this issue is to model the new features for these services as adaptive

behaviours and use policies to control when to enable the new feature.

Another benefit in adopting this innovative approach to web services is the

individualisation empowerment that it provides to composite web services, while

* Complex logic written within workflow scripts or within the composition graph used to generate the
composition workflow

185

keeping their workflow logic generic. Consequently it is kept efficient, and error-free.

An example of this empowerment is demonstrated when businesses enable users to

configure these web services based on their user’s preferences.

A minor contribution to the state of the art in adaptive web service

management is a set of integrated tools that embodies this model and approach. This

set of tools hides the complexity of both modelling of the FSM and Ontology, and

eases the complexity of authoring policies to manage the adaptive behaviours of

composite services. In addition, it has the ability to automatically refine high-level

policies and automatically generate judicious low-level policies.

Using the approach proposed in this thesis, together with the innovative

prototype tools, allows administrators to create low-level policies to manage adaptive

web services without the need to know the intricacy details of all pertaining adaptive

behaviours. Furthermore, since these tools provide the users with a valid vocabulary

when specifying management policies, and automatically refine them into auto

generated enforceable policies, it removes human error. Thus the creation of discrete

low-level policies that conforms with the goals of the specified policy is assured.

The proposed approach, using these innovative tools, differentiates from

others in the automated policy refinement technique. Other approaches require that a

policy expert either creates policy patterns or creates case-based policies to map high-

level policies into low-level policies. Or they require a policy expert to validate the

creation of policy refinement traces. It was substantiated that the tools and the model

together can hide the complexity and allows non-policy experts to define high-level

policies. In addition, these tools ensure that low-level policies are generated correctly

according to the adaptive web service’s model. These adaptive web service models

are described by developers; these are non-policy experts but, are responsible for

creating the web services. These integrated tools also facilitate the description of

adaptive web services by hiding the complexity of their model as lexical form, thus

encouraging its use by the developers of these web services.

6.5 Future Work

This thesis presented an approach for creating discrete policies to manage

adaptive composite services, including a set of integrated tools to facilitate the users

186

in accomplishing the required tasks. However, this is only the beginning for the area

of adaptive web service management.

The prototype tools allow users to automatically refine high-level policies,

generating discrete low-level policies according to the intentions of the specified

policies. However, developers need to describe these adaptive behaviours beforehand.

It would be even easier to adopt this approach if the descriptions of these adaptive

behaviours could be inferred directly from the web service’s implementation. It is

envisaged that this can be achieved through annotations in the web service’s

implementation.

In the proposed approach, adaptive behaviours presented for a composite

service is the resultant aggregation of the adaptive behaviours pertaining to its

constituent services, without any constraints. It is envisaged that this approach can be

extended to provide semantic tagging and filtering mechanisms for the adaptive

behaviours with the aim of supporting users in specifying semantically correct high

level policies.

187

References
[1] D. Lewis, O. Conlan, D. O’Sullivan, V. Wade, “Managing adaptive pervasive computing

using knowledge-based service integration and rule-based behavior”, IFIP/IEEE

Network Operations and Management Symposium, NOMS 2004, Seoul Korea, April

2004

[2] A. Guerrero, V. Villagra, J. Lopez de Vergara,A. Sanchez-Macian, and J. Berrocal,

“Ontology-Based Policy Refinement Using SWRL Rules for Management Information

Definitions in OWL”, Large Scale Management of Distributed Systems, DSOM 2006,

LNCS 4269, pp. 227 - 232, 2006.

[3] T Klie, L Wolf, “Automatic Policy Refinement Using OWL-S and Semantic Infrastructure

Information”, MACE Workshop, ManWeek 2007, San Jose, CA, USA 2007

[4] Nematbakhsh, Naser; Mardukhi, Farhad; Mohammadkhani, Hasan; “Proposition of a

Query Planner for Semantic Web Services”, Services Science, Management and

Engineering, 2009. SSME '09. IITA International Conference on 11-12 July 2009

Page(s):366 - 369

[5] Seog-Chan Oh; Hyunyoung Kil; Dongwon Lee; Kumara, S.R.T.; “WSBen: A Web

Services Discovery and Composition Benchmark”, Web Services, 2006. ICWS '06.

International Conference on 18-22 Sept. 2006 Page(s):239 - 248

[6] K. Barrett, J Strassner, S. Meer, W. Donnelly, “Determining the Feasibility of Policy

Translation” Modelling Autonomic Communications Environments, 2007. MACE 2007.

[7] J. Bruijn, D. Fensel, M. Kifer, J. Kopeck, R. Lara, H. Lausen, A. Polleres, D. Roman, J. Scicluna, I.

Toma, “Relationship of WSMO to other relevant technologies”, 2005. WWW Page

http://www.w3.org/SubmissionAVSMO-related/

[8] Sloman, M.; Lupu, E. “Security and management policy specification” Network, IEEE

Volume 16, Issue 2, March-April 2002 Page(s):10 - 19 IEEE JNL

[9] Sabata, B.; Chatteijee, S.; Davis, M.; Sydir, J.J.; Lawrence, T.F.;” Taxonomy for QoS

specifications”, Object-Oriented Real-Time Dependable Systems, 1997. Proceedings.,

Third International Workshop on 5-7 Feb. 1997 Page(s):100 -107

[10] Jin Yu; Benatallah, B.; Casati, F.; Daniel, F.; “Understanding Mashup Development”

Internet Computing, IEEE Volume 12, Issue 5, Sept.-Oct. 2008 Page(s):44 - 52

[11] Sheng, Q.Z.; Benatallah, B.; Maamar, Z.; Ngu, A.H.H.; ’’Configurable Composition and

Adaptive Provisioning of Web Services”, Services Computing, IEEE Transactions on

Volume 2, Issue I, Jan.-March 2009 Page(s):34 - 49

188

[12] Casati, F.; Ilnicki, S.; Li-Jie Jin; Krishnamoorthy, V.; Ming-Chien Shan; ”eFlow: a

platform for developing and managing composite e-services” Research Challenges, 2000.

Proceedings. Academia/Industry Working Conference on 27-29 April 2000 Page(s):341 -

348

[13] Liangzhao Zeng; Benatallah, B.; Ngu, A.H.H.; Dumas, M.; Kalagnanam, J.; Chang, H.;

“QoS-aware middleware for Web services composition”, Software Engineering, IEEE

Transactions on Volume 30, Issue 5, May 2004 Page(s):311 - 327

[14] M.Hanna, A. Buck, R. Smith, “Fuzzy Petri nets to control vision system and robot

behaviour under uncertain situations within an FMS cell”, Fuzzy Systems, 1994. IEEE

World Congress on Computational Intelligence., Proceedings of the Third IEEE on

Pages: 1889 - 1894 vol.3

[15] Tan Phan, Jun Han, Jean-Guy Schneider, Tim Ebringer and Tony Rogers , “Policy-Based

Service Registration and Discovery” Lecture Notes in Computer Science, On the Move to

Meaningful Internet Systems 2007: OTM 2007, Part I, LNCS 4803, pp. 417—426, 2007

[16] Duma, C.; Herzog, A.; Shahmehri, N.; “Privacy in the Semantic Web: What Policy

Languages Have to Offer”, Policies for Distributed Systems and Networks, 2007.
POLICY '07. Eighth IEEE International Workshop on 13-15 June 2007 Page(s):109 -118

[17] S. Wright, R. Chadha, G. Lapiotis (eds.), “Special Issue on Policy Based Networking”.
IEEE Network, Vol. 16, No. 2, March, (2002), 8-56

[18] M. Sloman, “Policy Driven Management for distributed Systems.” Plenum Press Journal

of Network and Systems Management, Vol. 2, No. 4, (1994), 333-360

[19] Tan Phan; Jun Han; Schneider, J.-G.; Ebringer, T.; Rogers, T.; “A Survey of Policy-

Based Management Approaches for Service Oriented Systems”, Software Engineering,

2008. ASWEC 2008. 19th Australian Conference on 26-28 March 2008 Page(s):392 - 401

[20] TeleManagement Forum, NGOSS Technology Neutral Architecture Release 4.0, January

2004

[21] C.J. Strassner, “Policy-based Network Management, Solutions for the Next Generation”,

Elsevier, Morgan Kaufmann Publishers 2004. ISBN: 1-55860-859-1.

[22] N. Damianou, N. Dulay, E. Lupu, M. Sloman, T. Tonouchi, “Tools for domain-based

policy management of distributed systems,” Network Operations and Management

Symposium, 2002. NOMS 2002. 2002 lEEE/IFIP 15-19 April 2002 Page(s):203 - 217

[23] E. Lupu, M. Sloman, “Conflicts in policy-based distributed systems management,”

Software Engineering, IEEE Transactions on Volume 25, Issue 6, Nov.-Dee. 1999

Page(s):852 - 869.

189

[24] Naseri, M.; Towhidi, A.; “Qos-Aware Automatic Composition of Web Services Using

A1 Planners”, Internet and Web Applications and Services, 2007. ICIW '07. Second

International Conference on 13-19 May 2007 Page(s):29 - 29

[25] Casati, F.; Ilnicki, S.; Jin, L.-J.; Shan, M.-C.; “An open, flexible, and configurable

system for service composition”. Advanced Issues of E-Commerce and Web-Based

Information Systems, 2000. WECWIS 2000. Second International Workshop on 8-9 June

2000 Page(s):125 -132

[26] R. Hamadi and B. Benatallah, “A Petri-Net-Based Model for Web Service

Composition,” Proc. 14th Australasian Database Conf. Database Technologies, ACM

Press, 2003, pp. 191-200

[27] W3C “Extensible Markup Language (XML)”, 2004 (Web reference:

http://www.w3.org/TR/xml)

[28] W3C “RDF Vocabulary Description Language 1.0: RDF Schema”, 2004 (Web reference:

http://www.w3.org/TR/rdf-schema/)

[29] W3C “Web Service Modeling Ontology (WSMO)”, 2005 (Web reference:
http://www.w3 .org/Submission/W SMO/)

[30] W3C “Web Service Modeling Language (WSML)” , 2005 (Web reference:

http://www.w3 .org/Submission/W SML/)

[31] W3C “Web Service Architecture”, 2004 (Web reference:
http://www.w3.Org/TR/2004/NOTE-ws-arch-20040211/)

[32] E. Christensen, F. Curbera, G.Meredith, S.Weerawarana, “Web Services Description

Language (WSDL) - version 1.1”, http://www.w3.org/TR/wsdl

[33] D. Box, et al. Simple Object Access Protocol - Version 1.1, 2004 (Web reference:

http://www.w3.Org/TR/2000/NOTE-SOAP-20000508/)

[34] Thatte, S., et al.: Business Process Execution Language for Web Services - Version 1.1.

OASIS Standard BPELvl 1-May052003 (May 2003)

[35] World Wide Web Consortium (W3C), Web Ontology Language (OWL),

www.w3.org/2004/OWL/

[36] “OWL-S: Semantic markup for web services”. The DAML Service Coalition,

http://www.daml.org/services/, October 2002

[37] OMG - Unified Moddeling Language 1.5, March 2003.

[38] N. Damiano, Dulay N, Lupu, E, Sloman M, “The Ponder Policy Specification

Language”, Proc. Policy 2001: Workshop on Policies for Distributed Systems and

Networks, Bristol, UK, Jan. 2001, Springer-Verlag LNCS 1995

190

[39] Twidle, K.; Dulay, N.; Lupu, E.; Sloman, M.;”Ponder2: A Policy System for

Autonomous Pervasive Environments”, Autonomic and Autonomous Systems, 2009.

ICAS '09. Fifth International Conference on 20-25 April 2009 Page(s):330 - 335

[40] L. Kagal, T. Finin, A. Johshi, “A Policy Language for Pervasive Computing

Environment”. In Proceedings of IEEE Fourth International Workshop on Poliey (Policy

2003).

[41] Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L., Johnson,

M., Kulkari, S., Lott, J.,“KAoS Policy and Domain Services: Toward a Description-Logic

Approach to Policy Representation, Deconflictions,and Enforcement”, IEEE 4th

International Workshop on Polieies for Distributed Systems and Networks, June 04 - 06,

2003, Lake Como, Italy, pp 93-98

[42] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suril, A. Uszok “Semantic Web

Languages for Policy Representation and Reasoning: A Comparison of KAoS, Rei, and

Ponder”. Proc. 2nd Inti. Semantic Web Conference, Sanibel Island, Florida, USA, LNCS

2870 (October 2003) 419-437.

[43] Sun: The AWT in 1.0 and 1.1. WWW Page (2008) http://java.sun.com/products/jdk/awt/

[44] Sun: Creating a GUI with JFC/Swing. WWW Page (2008)

http://java.sun.com/docs/books/tutorial/uiswing/.

[45] Eviware: SoapUI testing tool. WWW Page (2008) http:// www.soapui.org/.

[46] Hewlett-Packard Development Company: Jena - A Semantic Web Framework for Java.

WWW Page (February 2007) http://jena.sourceforge.net.

[47] Jess “Rule Engine for the Java Platform”, (Web reference: http://herzberg.ca.sandia.gov/)

[48] Apache Software Foundation: Apache Tomcat. WWW Page (2007)

http://tomcat.apache.org/.

[49] Apache Software Foundation: Apache Axis2/Java - Next Generation Web Services.

WWW Page (April 2007) http://ws.apache.org/axis2/index.html.

[50] R. Wies, “Using a Classification of Management Policies for Policy Specification and

Policy Transformation”, Integrated Network Management, IM 1995, IFIP/IEEE

International Symposium 1995.

[51] J. Moffett, M. Sloman, “Policy Hierarchies for Distributed Systems Management,”, IEEE

JSAC Special issue on Network Management, Volume 11, Issue 9, 1993 Page(s):1404-

1414.

[52] A. Bandara, E. Lupu, J. Moffett, A. Russo, “A Goal-based Approach to Policy

Refinement,” Policies for Distributed Systems and Networks, 2004. POLICY 2004.

Proceedings. Fifth IEEE International Workshop on 7-9 June 2004 Page(s):229 - 239.

191

[53] A. Bandara, E. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas, M. Charalambides, G.

Pavlou, “Policy Refinement for DiffServ Quality of Service Management,” Integrated

Network Management, 2005. IM 2005. 2005 9th IFIP/IEEE International Symposium on

Page(s):469 - 482.

[54] R. Darimont, A. van Lamsweerde, “Formal Refinement Patterns for Goal-Driven

Requirements Elaboration”, Fourth ACM Symposium on the Foundations of Software

Engineering 1996, FSE 1996 pp. 67-95.

[55] R. A. Kowalski, M. Sergot, “A logic-based Calculus of Events”, New Generation

Computing, volume 4 pp. 67-95, 1986.

[56] A. Russo, R. Miller, B. Nuseibeh, J. Kramer, “An Adbuctive Aproach for Analysing

Event-based Requirements Specifications”, 18* International Conference on Logic

Programing 2002, ICLP 2002.

[57] S Beigi,.S Calo,.D Verma, “Policy transformation techniques in policy-based systems

management” Policies for Distributed Systems and Networks, POLICY 2004 June 2004

Page(s):13 - 22

[58] S Calo,.D Verma, “A toolkit for policy enablement in autonomic computing”.

International Conference on Autonomic Computing 2004, ICAC 2004 Page(s): 270 - 271

[59] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, A.L. Lafuente,

“Using linear temporal model checking for goal-oriented policy refinement frameworks”.

Policies for Distributed Systems and Networks, 2005. Policy 2005. Sixth IEEE

International Workshop on 6-8 June 2005 Page(s):181 - 190.

[60] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, “A Functional

Solution for Goal-Oriented Policy Refinement”, Policies for Distributed Systems and

Networks, 2006. Policy 2006. Seventh IEEE International Workshop on Page(s):133 -

144

[61] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, “A Distributed

Goal-oriented Policy Refinement Environmenf’, Network Operations and Management

Symposium, 2006. NOMS 2006. 10th lEEE/IFIP Page(s): 1 - 4.

[62] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, “A Methodological

Approach toward the Refinement Problem in Policy-based Management Systems”,

Communications Magazine, IEEE Volume: 44 , Issue: 10 Page(s): 60 - 68.

[63] G. Holzmann, “The SPIN Model Checker: Primer Reference Manual”, A. Wesley

Publisher 2004. ISBN: 0-321-22862-6.

192

[64] J.P. de Albuquerque, H. Krumm, P.L. de Geus, “Policy modeling and refinement for

network security systems”, Policies for Distributed Systems and Networks 2005. Policy

2005. Sixth IEEE International Workshop on 6-8 June 2005 Page(s):24 - 33.

[65] J.P. de Albuquerque, H. Krumm, P.L. de Geus, “Model-based management of security

services in complex network environments”. Network Operations and Management

Symposium, NOMS 2008. IEEE on Page(s): 1031 - 1036.

[66] Linying Su, D. Chadwick, A. Basden, J. Cunningham, “Automated decomposition of

access control policies”. Policies for Distributed Systems and Networks 2005. Policy

2005. Sixth IEEE International Workshop on 6-8 June 2005.

[67] Linying Su, D. Chadwick, O. Otenko, R. Laborde, “Coordination between distributed

PDPs”, Policies for Distributed Systems and Networks 2006. Policy 2006. Seventh IEEE

International Workshop 2006.

[68] T. Rochaeli, C. Eckert, “Using patterns paradigm to refine workflow policies”. Database
and Expert System Applications 2007. DESA 2007. 18* IEEE International Workshop

2007.

[69] T. Rochaeli, C. Eckert, “Expertise Knowledge-based Policy Refinement Process”,

Policies for Distributed Systems and Networks 2007. Policy 2007. Eighth IEEE

International Workshop 2007.

[70] M. Casassa Mont, A. Baldwin, C. Goh, “POWER Prototype: Towards Integrated Policy-

based Management”, Network Operations and Management Symposium, NOMS 2000,

IFIP/IEEE International Symposium 2000 pp. 789 - 802.

[71] “State Machines”, OMG - Unified Moddeling Language 1.5, March 2003, Pages(s) 2-

140-2-169

[72] “Activity Graphs”, OMG - Unified Moddeling Language 1.5, March 2003, Pages(s) 2-

170-2-180

[73] “Use Cases”, OMG - Unified Moddeling Language 1.5, March 2003, Pages(s) 2-129 -

2-139

[74] K. Carey, V. Wade. “Using Automated Policy Refinement to Manage Adaptive

Composite Services.” Network Operations and Management Symposium Workshops,

2008. NOMS Workshops IEEE, Salvador Brazil, April 2008.

[75] William F. Clocksin, Christopher S. Mellish,”Prograinming in Prolog: Using the ISO

Standard. Springer”, 5th ed., 2003, ISBN 978-3540006787

[76] Sun: “Developer Resources for Java Technology”, WWW Page (2008)

http://java.sun.com/.

193

[77] Steve Burbeck, “How to use Model-View-Controller”, WWW Page (2007) http://st-

www.cs.illinois.edu/users/smarch/st-docs/mvc.html.

[78] John S. Uebersax, “Likert Scales: Dispelling the Confusion”, Statistical Methods for

Rater Agreement website. 2006 (Web reference: http://www.john-

uebersax.com/stat/likert.htm)

[79] Gentleware AG: “Poseidon for UML”, WWW Page (2008) http://www.gentleware.com/.

[80] R. Akkiraju, et al, “Web Services Semantics (WSDL-S) - version 1.0”, 2007 WWWPage

http://www.w3 .org/Submission/W SDL-S/

[81] J. Whittle, P. Sawyer, N. Bencomo; B. Cheng, “A Language for Self-Adaptive System

Requirements”, International Workshop on Service-Oriented Computing: Consequences

for Engineering Requirements, 2008. SOCCER '08.

[82] A. Tripathi, “Challenges designing next-generation middleware systems”,

Communications of the ACM , Volume 45 Issue 6, June 2002.

[83] V. Koutsonikola, A. Vakali, “A fuzzy bi-clustering approach to correlate web users and

pages”. International Journal of Knowledge and Web Intelligence , Volume 1 Issue 14,

August 2009.

[84] F.P. Williams, O. Conlan, “Visualizing Narrative Structures and Learning Style

Information in Personalized e-Leaming Systems”, ICALT 2007: Seventh IEEE

International Conference on Advanced Learning Technologies, 2007.

[85] Y. Krishnamurthy, V., D. Karr, C. Rodrigues, D. Schmidt, “Integration of QoS-Enabled

Distributed Object Computing Middleware for Developing Next-Generation Distributed

Application”, LCTES 'OLProceedings of the ACM SIGPLAN workshop on Languages,

compilers and tools for embedded systems, August 2001.

[86] O. Davidyuk, J. Riekki, V. Rautio, J. Sun, “Context-aware middleware for mobile

multimedia applications”, MUM '04: Proceedings of the 3rd international conference on

Mobile and ubiquitous multimedia, October 2004.

[87] N. Venkatasubramanian, “Safe 'composability' of middleware services”,

Communications of the ACM , Voliune 45 Issue 6, June 2002.

[88] J. Keeney, V. Cahill, “Chisel: a policy-driven, context-aware, dynamic adaptation

framework”, IEEE 4th International Workshop on Policies for Distributed Systems and

Networks, 2003. Proceedings. POLICY 2003.

[89] T. Gruber, “Toward Principles for the Design of Ontologies Used for Knowledge

Sharing”. International Journal Human-Computer Studies, 43(5-6):907-928, 1995

[90] T. Gruber, “A translation approach to portable ontology specifications”. Knowledge

Acquisition, 5:199-220, 1993.

194

[91] Sybase: “PowerDesigner”, WWW Page (2009) http://www.sybase.com/products/

modelingdevelopment/powerdesigner/.

[92] IBM: “Rational Software Architect”, WWW Page (2009) http://www.ibm.com/

software/awdtools/architect/swarchitect/.

[93] Tigris.org: “ArgoUML”, WWW Page (2009) http:// http://argouml.tigris.org/.

[94] Umbrello Team: “Umbrello UML Modeller”, WWW Page (2009)

http://uml.sourceforge.net/.

[95] Stanford University: “Protege”, WWW Page (2009) http://protege.stanford.edu/.

[96] University of Maryland: “Pellet”, WWW Page (2009) http://pellet.owldl.com/.

[97] OBO Foundry, Open Biomedical Ontologies, WWW Page (2009) http://obofoundry.org/

[98] P. Clark and B. Porter., Knowledge Machine, WWW Page (2009)

http://www.cs.utexas.edu/users/mfkb/RKF/km.html

195

Appendix

Appendix A - SABE Tool Usabiiity

Evaluation Experiment
The SABE tool usability evaluation presented to the users, which consists of three

usability tests. Each usability test presents the instructions, experiment tasks, and the

usability questionnaire.

Instructions and Questionnaire for SABE Usability

Test 1

Experiment 1 Section A
"To determine the ability of the SABE tool to represent the adaptive

behaviours of an atomic service using Finite State Machines"

Brief Background Questioner

Semantic Web Service

1. How would you rate your knowledge of Semantic Web Service (Owl-S)? (101)
^ none ^ novice ^ intermediate ^ expert

2. Have you studied about web services? (102)
r r r rnever a little enough a lot

3. Have you used a web service? (103)
c c c cnever seldom sometimes often

4. Have you created a web service? (104)
c c c cnever seldom sometimes often

5. Have you modelled a web service semantically in Owl-S? (105)
err cnever seldom sometimes often

Adaptive Behaviour

6. How would you rate your knowledge of (software) Adaptive Behaviours? (106)
^ none ^ novice ^ intermediate ^ expert

7. Have you studied about (software) Adaptive Behaviours? (107)

196

r c c rnever a little enough a lot

8. Have you used a piece of software with some adaptive behaviour? (108)
c c c cnever seldom sometimes often

9. Have you configured an adaptive piece of software or application? (109)
err rnever seldom sometimes often

10. Have you created a piece of software with some adaptive behaviour? (110)
r r r rnever seldom sometimes often

Finite State Machine
11. How would you rate your knowledge of Finite State Machine? (Ill)
^ none ^ novice ^ intermediate ^ expert

12. Have you studied about Finite State Machine? (112)
r r r rnever a little enough a lot

13. Have you seen a piece of software described as a Finite State Machine? (113)
r r r rnever seldom sometimes often

14. Have you described a piece of software semantically? (114)
r r r rnever seldom sometimes often

15. Have you described a piece of software using Finite State Machine? (115)
r r r rnever seldom sometimes often

Using Application

16. Have you used an application which uses a tree structure to represent data
(such as folders)? (116)
r r r rnever seldom sometimes often

17. Have you used an application which uses a table to display data? (117)
r r r rnever seldom sometimes often

18. Have you used an application which uses a table to allow user to edit values?
(118)
r r r rnever seldom sometimes often

Prerequisite Information
Semantic Web Service is a semantic description of a web service.
It uses an ontological language to add semantics to web service descriptions.
It describes services via its inputs, outputs, preconditions, and effects, as well as
its composition.

Adaptive Behaviour is a configurable feature or a setting that changes the
behaviour of a service.

197

Finite State Machine is a set of semantic concepts that can be used to model
discrete behaviours of any software system. They can be used to specify the
behaviour of individual entities or to define the interactions between entities.

Experiment Description
Service Adaptive Behaviour Editor (SABE) is a tool that allows a developer to
describe any adaptive behaviour the developer would like to expose for a given
service.

SABE tool allows a developer to open a service description described in OWL-S
and it displays the service's details.
A service has a process that performs its task which contains a description of its
inputs and outputs.

SABE tool allows a user to view the description of any adaptive behaviour
belonging to a given service.
Where the adaptive behaviour is modelled as a Finite State Machine (FSM).

SABE tool provides a basic FSM for a service with IdleState, InputState,
ProcessState, and OutputState depending on the service.
Adaptive behaviours can then be appended to any of these states as FSM.

Before beginning the experiment, you must first download the Service Adaptive
Behaviour Editor (SABE) tool by clicking on sabe.zip.
And you must also download a set of semantic web service descriptions by
clicking on owl.zip.

Please read and complete the experiment tasks provided, and to help accomplish
these tasks please follow the instructions are provided.

Experiment Tasks
1. Please attempt the tasks bellow and then complete the questionnaire
provided. To help accomplishing these tasks, follow the instructions provided.

Material Provided

2. Service Adaptive Behaviour Editor (SABE) tool. Download sabe.zip.

3. Semantic web service descriptions. Download owl.zip.

4. Please follow the instructions provided to run the SABE tool.

Service Provided

5. You are provided with a service ServiceAdaptl.

6. ServiceAdaptl is an adaptive print service, which prints a given document.
This service is adaptable to different printing modes. E.g. print single page,
double page.

7. Its inputs are: DocumentName, which informs the service of the document it
needs to print;
NumberOfPages, which informs the service of how many pages the document
has;
NumberOfColours, which informs the service of how many colours it needs to
use, default is 1.

198

8. Its output is NumberOfSheet, which informs you how many sheets it used for
the print job.

9. Your initial task is to load this service in the SABE tool.

Adaptive Behaviour

10. This service has 4 adaptive behaviours described for it.

11. It has an adaptive behaviour EconomyMode, which configures the service to
print 2 pages per sheet double sided via printmode (2, doublesided)

12. Your first task is to analyze how this adaptive behaviour is described in the
SABE tool.

13. It has an adaptive behaviour ExpensiveMode, which configures the service
to print 1 page per sheet single sided via printmode (1, singlesided)

14. Your second task is to analyze how this adaptive behaviour is described in
the SABE tool and answer the questions on the web site.

15. It has an adaptive behaviour ColourPrinting, which configures the service to
print in colour by first checking if uses a colour cartage
(checkcartage(type_colour)) and if colourcartage is present when Printing
(Event) then set the printer to use colour cartage (usecartage(type_colour))

16. Your third task is to analyze how this adaptive behaviour is described in
the SABE tool and answer the questions on the web site.

Experiment Instructions

Material Provided
1. Service Adaptive Behaviour Editor (SABE) tool. Download sabe.zip.

2. Semantic web service descriptions. Download owl.zip.

Steps for Installation

3. Make sure you have Java 1.4.x or higher installed in your computer (from
dos prompt type java -version).

4. Download and unzip sabe.zip to c:\sabe.

5. Download and unzip owl.zip to c:\owl.

Steps for Running the Application

6. Run c:\sabe\sabe.bat.

7. From the SABE application open c:\owl\ServiceAdaptl.owl.

Steps for Operating SABE

8. Top left panel details of the service and its composition.

9. Bottom left panel contains details of the selected process such as its
parameters (Inputs, Outputs) and Finite State Machine.

199

10. The service is supported by a process.

11. Top right panel contains the details of the Finite State Machine belonging to
the selected process.

12. Bottom right panel contains the details of the selected node (e.g. a state or
a transition) of the Finite State Machine.

13. Bottom panel contains the details of the services dataflow for a composite
service.

14. Double click on a node or click the plus sign to expand a node of a tree.

15. Hover over for information on the node.

16. Right click on a node to perform action if any.

Steps for Browsing EconomyMode Adaptive Behaviour

17. Expand the service node on the left panel, a process will appear under it.

18. Select the process, its description will appear in the panel bellow and FSM
on the top right panel.

19. Expand the FSM node on the top right panel.

20. Navigate through the different states (e.g. InputState) and select
EconomyMode adaptive behaviour.

21. Its name and description will be shown in the bottom right panel.

22. Hover over the description to see a tool tip with the complete description.

23. Expand the adaptive behaviour (EconomyMode) node to see its states.

24. There should be an EconomyModelnitialState (PseudoState) and an
EconomyModeStatel (FinalState).

25. Select the state to see its name, its type and its activity (Note that a
pseudo state has a kind instead of activity).

26. An initial state must always have a transition with a target pointing to the
first state that supports this adaptive behaviour.

27. A final state cannot have any transition, it is the last state of the adaptive
behaviour.

28. Simple and final states have activities that can be set.

29. Expand the initial state and select Its transition.

30. This transition has its target pointing at next state (EconomyModeStatel).

Steps for Browsing ExpensiveMode Adaptive Behaviour

31. Repeat the same procedure for viewing the ExpensiveMode adaptive
behaviour.

Steps for Browsing ColourPrinting Adaptive Behaviour

200

32. Expand OutputState and select ColourPrinting adaptive behaviour.

33. Note that it contains 3 states.

34. Note that ColourPrintingStatel is of type SimpleState and it has a
transition.

35. Note that this transition has a Guard using condition subject, predicate and
value.

36. Note that this transition has a trigger.

37. Expand Events and select Printing to see the details of this event.

Steps for Closing your Service

38. Close your service by clicking on the X in the inner frame and answering
yes when prompted.

Experiment Questionnaire
Task
1. What is the activity of the ExpensiveModestatel of the ExpensiveMode
adaptive behaviour? (121)

2. What is the type of the of the ExpensiveMode adaptive behaviour? (122)
r r r rSimpleState ComplexState InitialState FinalState

3. What is the guard condition in the transition (between ColourPrintingStatel
and ColourPrintingState2) of the ColourPriting adaptive behaviour? (123)

4. What triggers the transition (between ColourPrintingStatel and
ColourPrintingState2) of the ColourPriting adaptive behaviour? (124)
err rTyping Printing Colouring Processing

5. Starting the SABE tool was? (125)
r r r cvery difficult difficult easy very easy

6. Loading the service was? (126)
c c c cvery difficult difficult easy very easy

7. Browsing the service's process (with its inputs, outputs,...) was? (127)
r errvery difficult difficult easy very easy

8. Browsing the service's Finite State Machine (FSM) was? (128)
r r r rvery difficult difficult easy very easy

9. Identifying the adaptive behaviours contained in the FSM was? (129)
r r r rvery difficult difficult easy very easy

201

10. Viewing the detaiis of an adaptive behaviour was? (130)r c c cvery difficult difficult easy very easy

11. Identifying the actions performed by an adaptive behaviour was? (131)r c c cvery difficult difficult easy very easy

12. Identifying the sequence of actions performed by an adaptive behaviour was?
(132)r errvery difficult difficult easy very easy

13. Sabe tool made the process of browsing the description of an adaptive
behaviour? (133)r r r rvery difficult difficult easy very easy

14. Sabe tool made the process of identifying the actions of an adaptive
behaviour? (134)
r r r rvery difficuit difficult easy very easy

15. Sabe tool made the process of identifying the sequence of actions of an
adaptive behaviour? (135)r r r rvery difficult difficult easy very easy

16. To understand the description of adaptive behaviours using SABE tool was?
(136)
r r r rvery confusing confusing clear very clear

17. To understand the description of states describing an action of adaptive
behaviours using SABE tool was? (137)r r r r

very confusing confusing clear very clear

18. To understand the description of transitions describing a sequence of actions
of adaptive behaviours using SABE tool was? (138)r r r rvery confusing confusing clear very clear

19. Comment on any feature of SABE tool you found useful? (139)

20. Comment on any feature of SABE tool you found difficult? (140)

Instructions and Questionnaire for SABE Usability

Test 2

Experiment 1 Section B
"To determine the ease of use of the SABE tool in defining the

adaptive behaviours of an atomic service as Finite State Machines."

202

Brief Background Questioner
SABE

1. How would you rate your confidence in describing the adaptive behaviours of
an atomic service? (201)
c c c cunsure some confident confident very confident

Prerequisite Information
Simple State is an abstract metaclass that models a situation during which some
invariant condition holds.
A state has an action associated with it.

Final State signifies that the enclosing composite state is complete; it doesn't
have transitions originating from it.

Composite State is a state that contains other states.

Initial State represents the default state inside a composite state and there can
be only one pseudo state per composite state.

Transition is a directed relationship between a source state and a target state.
It is triggered by an event but it will only take effect if a Boolean expression
called guard is satisfied.

Event is defined as a specification of the type of the observable occurrence, and it
can be of type a signal event, a call event, a tirpe event or a change event.

Experiment Description
Service Adaptive Behaviour Editor (SABE) is a tool that allows a developer to
describe any adaptive behaviour the developer would like to expose for a given
service.

Adaptive behaviours are modelled using states and transitions.
States describe the activities to be performed for an adaptive behaviour.
Transitions describe the sequence and the condition needed to be met in order to
activate these states for an adaptive behaviour

Please read and complete the experiment tasks provided, and to help accomplish
these tasks some instructions are also provided.

Experiment Tasks
1. Please attempt the tasks bellow and then complete the questionnaire
provided. To help accomplishing these tasks, follow the instructions provided.

Service Provided

2. You are provided with a service ServiceAdapt2.

3. ServiceAdapt2 is an adaptive photo processing service, which processes raw
format photos from a digital camera.
This service is adaptable to different quality processing.

4. Its inputs are: RawPhotos, which informs the service of the photos it needs

203

to process;
PhotoCategory, which informs the service of what type of photos;
PhotoSize, which informs the service of what size the photos have to be.

5. Its output is Processed Photos, which returns the processed photos.

6. The default behaviour of the service is to process photos in colour and use
low resolution.

7. Your initial task is to load this service in the SABE tool and create a FSM for
it (which will contain the adaptive behaviours).

Generating Finite State Machine

8. This service needs a Finite State Machine to contain the adaptive behaviours

9. Your first task is to generate a Finite State Machine for this service's
process.

Creating Adaptive Behaviours
10. This service has an adaptive behaviour HighPhotoQuality, which configures
the service to process the photos using high resolution (setResolution(high))

11. Your second task is to model this adaptive behaviour using the SABE tool
according to its description.

12. This service has an adaptive behaviour BlackWhitePhoto, which configures
the service to process the photos in black&white (setColour(false))

13. Your third task is to model this adaptive behaviour using the SABE tool
according to its description.

14. This service has an adaptive behaviour RemoveRedEye, which removes red
eyes in the photos by first finding a red eye in the photo (searchRedEyeO) and
if redeyelocation is not zero when Processing Photo (Event) then remove it
(removeRedEyeO)

15. Your fourth task is to model this adaptive behaviour using the SABE tool
according to its description.

Saving Your Work

16. Now that you have finished describing these adaptive behaviours, your
final task is to save them by clicking on File and then save.

Experiment Instructions
Material Provided

1. Service Adaptive Behaviour Editor (SABE) tool. Download sabe.zio.

2. Semantic web service descriptions. Download owl.zip.

Steps for Running the Application

3. Run c:\sabe\sabe.bat.

4. From the SABE application open c:\owl\ServiceAdapt2.owl.

204

Steps for Generating a Finite State Machine

5. Expand the service node on the left panel, a process will appear under it.

6. Select the process, its description will appear in the panel bellow.

7. Select the StateMachine node from the process detail panel.

8. Right click and add Finite State Machine.

9. A FSM is generated and its details can be seen on the top right panel.

Steps for Adding HighPhotoQuality Adaptive Behaviour

10. Expand the FSM tree on the top right panel.

11. Select ProcessState and right click to add an adaptive behaviour.

12. Give the adaptive behaviour a proper name (HighPhotoQuality) and
description in the bottom right panel.

13. Right click the newly added adaptive behaviour to add a state.

14. The first state is an Initial State (PseudoState) which must have a transition
with a target to another state.

15. Right click the newly added adaptive behaviour again to add another state.

16. Select the added state and name it with any appropriate name you desire
(HighPhotoQualityStatel).

17. Change the state type to FinalState (the last state - this state does not
have transitions).

18. Set the appropriate activity for this state (setResolution(high)).

19. Right click the initial state and add a transition.

20. Select the added transition and select the desired state
(HighPhotoQualityStatel) as its target (Press ENTER (keyboard button) after
doing this action to assure your selection).

Steps for Adding BlackWhitePhoto Adaptive Behaviour

21. Repeat the same procedure for adding the BlackWhitePhoto Adaptive
Behaviour.

22. Use the appropriate names and activity (mentioned in the task section) for
adding BlackWhitePhoto Adaptive Behaviour.

Steps for Adding RemoveRedEye Adaptive Behaviour

23. Add RemoveRedEye adaptive behaviour under InputState.

24. Add an initial state.

25. Add a simplestate state (RemoveRedEyeStatel) with the appropriate
activity.

26. Add a FinalState state (RemoveRedEyeState2) and set the appropriate

mm

205

activity value.

27. Add a transition for the initial state and set its target to the first state in
this adaptive behaviour (RemoveRedEyeStatel).

28. Add an event for the next transition by right clicking on Events and
selecting add event.

29. Rename this event to the appropriate value according to its description
(mentioned in the task section).

30. Select the appropriate value for the event's source.

31. Add a transition for RemoveRedEyeStatel and set its target to the last state
in this adaptive behaviour (RemoveRedEyeState2).

32. Set transition's trigger to the appropriate event and set its guard to the
appropriate condition redeyelocation > 0.

Steps for Saving your Adaptive Behaviours

33. Click on File and then save. Make sure there are no errors and click OK.

Steps for Closing your Service
34. Close your service by clicking on the X in the inner frame and answering
yes when prompted.

Experiment Questionnaire
Tool
1. Generating a FSM for the service's process was? (221)r rvery difficult r rdifficult easy very easy

2. Creating an adaptive behaviour was? (222)r r r rvery difficult difficult easy very easy

3. Creating the states for this adaptive behaviour was? (223)
r rvery difficult r rdifficult easy very easy

4. Creating the transitions for this adaptive behaviour was? (224)
r r c cvery difficult difficult easy very easy

5. Describing an adaptive behaviour was? (225)r rvery difficult C Cdifficult easy very easy

6. Describing the activities of an adaptive behaviour using states was? (226)r r r rvery difficult difficult easy very easy

7. Describing the sequence of activities for an adaptive behaviour using
transitions was? (227) r rdifficult easy very easyr rvery difficult

206

8. Sabe tool made the process of generating a FSM for the service? (228)
r errvery difficult difficult easy very easy

9. Sabe tool made the process of describing an adaptive behaviour? (229)
r r r rvery difficult difficult easy very easy

10. Sabe tool made the process of describing the activities of an adaptive
behaviour? (230)
r r r rvery difficult difficult easy very easy

11. Sabe tool made the process of describing the sequence of activities for an
adaptive behaviour? (231)
r r r rvery difficult difficult easy very easy

12. To understand the process of generating a FSM was? (232)
r r r rvery confusing confusing clear very clear

13. To understand the process of describing an adaptive behaviour was? (233)
r r r rvery confusing confusing clear very clear

14. To understand the process of describing the activities of an adaptive
behaviour as states was? (234)
r r r rvery confusing confusing clear very clear

15. To understand the process of describing the sequence of activities for an
adaptive behaviour as transitions was? (235)
r r r rvery confusing confusing clear very clear

16. Comment on any feature of SABE tool you found useful? (236)

17. Comment on any feature of SABE tool you found difficult? (237)

Instructions and Questionnaire for SABE Usability

Test 3

Experiment 1 Section C
"To determine the ease of use and ease of comprehension of the

SABE tool in representing the resultant automatic aggregated Finite
State Machine describing the adaptive behaviours of a composite

service."

207

c c c rnone novice intermediate expert

2. How would you rate your confidence in using the SABE application to browse a
service? (302)
c c c cunsure some confident confident very confident

Prerequisite Information

Atomic Service is a basic unit service that is associated to a grounding.

Composite Service is a service composed of other services.

Control Flow describes the ordering and conditional execution of the constituent
services.

Data Flow describes the flow of data between the inputs and outputs of the
constituent services.

Experiment Description

Service Adaptive Behaviour Editor (SABE) is a tool that allows a user to describe
adaptive behaviours for both atomic and composite services.

SABE tool allows a developer to open a service description described in OWL-S
and it will display the service's details.
Composite service has a composite process which can have several constituent
processes to do its task.
The workflow (composition description) of a composite service is
displayed/described in the SABE tool.

Adaptive behaviours for a composite service should be the aggregation of the
adaptive behaviours of its constituent services.
SABE tool aggregates these adaptive behaviours automatically according to the
service's composition description (workflow)

Please read and complete the experiment tasks provided, and to help accomplish
these tasks some instructions are also provided.

Experiment Tasks

1. Please attempt the tasks bellow and then complete the questionnaire
provided. To help accomplishing these tasks, follow the instructions provided.

Service Provided

2. You are provided with a service ServiceAdaptB.

3. ServiceAdaptB is an adaptive composite service which processes your
photos, compiles them into an album and print them as a document.

4. This service is composed of a sequence of a photo processing service
(ProcessAdaptA), a photo album service (ProcessAdaptB), and a print service
(ProcessAdaptC).

5. ServiceAdaptA is the same as the previous service ServiceAdaptB. It has

208

adaptive behaviours HighPhotoQuaiity, BlackWhitePhoto, and RemoveRedEye.

6. ServiceAdaptC is the same as the previous service ServiceAdaptl. It has
adaptive behaviours EconomyMode, IntermediateMode, ExpensiveMode, and
ColourPriting.

7. ServiceAdaptB is an adaptive service for creating photo albums from given
photos in standard formats. Its default behaviour is to create a photo aibum.

8. ServiceAdaptB has an adaptive behaviour CreateCalendar, which creates a
caiendar with the first 12 photos (createCalendar()).

9. ServiceAdaptB has another adaptive behaviour CreatePostcard, which
creates an album of postcards with the given photos (createPostcard()).

10. Your initial task is to load this service in the SABE tool.

Aggregating Adaptive Behaviours

11. Please note that each of the constituent services contains at least one
adaptive behaviour described using FSM.

12. The adaptive behaviours of a composite service is the aggregation of the
adaptive behaviours of its constituent services.

13. Your first task is to aggregate the adaptive behaviours of the constituent
services for the composite service ServiceAdaptB.

Resultant Aggregated Adaptive Behaviours
14. The adaptive behaviours of a composite service should be displayed in the
same manner as of an atomic service.

15. Your second task is to analyze the resultant aggregated adaptive
behaviours of the composite service ServiceAdaptB and answer the questions
on the web site.

Saving Your Work

16. Now that you have finished aggregating these adaptive behaviours, your
final task is to save them by clicking on File and then save.

Experiment Instructions
Material Provided

1. Service Adaptive Behaviour Editor (SABE) tool. Download sabe.zip.

2. Semantic web service descriptions. Download owl.zip.

Steps for Running the Application

3. Run c:\sabe\sabe.bat.

4. From the SABE application open c:\owl\ServiceAdapt3.owl.

Steps for Browsing Adaptive Behaviours of the Constituent
Services

209

■'3

pi

El

5. Expand the service node on the left panel, a composite process will appear
under it (ProcessAdapt3).

6. Expand this composite process to see that it is composed of a sequence of
ProcessAdaptA, ProcessAdaptB, and ProcessAdaptC.

7. Browse through the constituent processes of this composite process.
ProcessAdaptA is a photo processing service, ProcessAdaptB is a photo album
service, and ProcessAdaptC is a printing service

8. For each of the constituent processes, browse through its FSM on the right
panel to familiarize with the adaptive behaviours.

9. ProcessAdaptA has HighPhotoQuality, BlackWhitePhoto, and RemoveRedEye
adaptive behaviours.

10. ProcessAdaptB has CreateCalendar, and CreatePostCard adaptive
behaviours.

11. ProcessAdaptC has EconomyMode, ExpensiveMode, IntermediateMode, and
ColourPrinting adaptive behaviours.

Steps for Aggregating Adaptive Behaviours for a Composite
Service

12. Select the topmost composite process i.e. select process ProcessAdaptB
from top left panel, its description will appear in the panel bellow.

13. Expand process ProcessAdaptB node from bottom left panel.

14. Select the StateMachine and right click, then select add Finite State
Machine which will generate a populated FSM on the top right panel.

Steps for Browsing Adaptive Behaviours of a Composite Service

15. Expand the FSM ProcessAdapt3FSM node and browse through the
automatically aggregated FSM.

16. Verify that all the adaptive behaviours seen in the constituent services are
present in the composite service's FSM.

17. InputState should have an adaptive behaviour called RemoveRedEye.

18. OuputState should have an adaptive behaviour called ColourPrinting.

19. ProcessState should have all other adaptive behaviours.

20. This is because when aggregating adaptive behaviours for a sequence,
adaptive behaviours under the InputState for the first service in the sequence
belong to the InputState of the composite service.

21. And adaptive behaviours under the OutputState for the last service in the
sequence belong to the OuputState of the composite service.

Steps for Saving your Adaptive Behaviours

22. Click on File and then save. Make sure there are no errors.

Steps for Closing your Service

210

23. Close your service by clicking on the X in the inner frame and answering
yes when prompted.

Experiment Questionnaire
Task

1. Does the FSM belonging to the composite service have IdleState, InputState,
ProceState, OutputState like of an atomic service? (321)
r rno yes

2. Are all the adaptive behaviours from the constituent services present in the
FSM of the composite service? (322)
r rno yes

3. How many adaptive behaviours are present under the ProcessState of the
composite service's FSM? (323)
r c r r1 5 6 7

4. Aggregating the adaptive behaviours for a composite service was? (324)
r r r rvery difficult difficult easy very easy

5. Viewing the resultant aggregated adaptive behaviours was? (325)
r r r cvery difficult difficult easy very easy

6. Sabe tool made the process of aggregating the adaptive behaviours for a
composite service? (326)
c r c cvery difficult difficult easy very easy

7. Sabe tool made the process of browsing the resultant aggregated adaptive
behaviours? (327)
r r r rvery difficult difficult easy very easy

8. To understand the process of aggregating the adaptive behaviours for a
composite service was? (328)
r r r rvery confusing confusing clear very clear

9. To understand the resultant aggregated adaptive behaviours using the SABE
tool was? (329)
c c c cvery confusing confusing clear very clear

10. Comment on any feature of SABE tool you found useful? (330)

11. Comment on any feature of SABE tool you found difficult? (331)

211

Appendix B - SABE Tool Usability
Evaluation Results
The results of the pre-test and usability questionnaires for the three SABE tool’s

usability evaluation cycles. Analytical results of the Chi-square test performed over

the three sets of usability questionnaire results.

Results of the SABE Tool Usability Evaluation Cycle 1
Pre-Test

Users A B C D E F z’

101. How would you rate your knowledge of Semantic Web
Service (Owl-S)? 3 2 4 3 1 4 3

102. Have you studied or read about web services? 3 2 4 4 3 4 3

103. Have you ever used a web service? 4 2 4 4 1 3 3

104. Have you ever created a web service? 2 1 3 4 1 2 2

105. Have you ever described a web service semantically (Owl-
Si? 1 1 3 3 1 2 2

106. How would you rate your knowledge of (software)
Adaptive Behaviours? 3 3 3 3 2 4 3

107. Have you studied or read about (software) Adaptive
Behaviours? 2 3 3 3 2 4 3

108. Have you ever used a piece of software with some
adaptive behaviour? 3 2 3 3 2 3 3

109. Have you ever configured an adaptive piece of software or
application? 2 1 3 3 1 3 2

110. Have you ever created a piece of software with some
adaptive behaviour? 2 1 3 3 1 2 2

111. How would you rate your knowledge of Finite State
Machine? 3 3 3 3 3 4 3

112. Have you studied or read about Finite State Machine? 3 3 3 3 4 4 3

113. Have you ever seen a piece of software described as a
Finite State Machine? 2 2 3 4 3 4 3

’ This is the (rounded) average of the pre-test results, where 4 is very positive and 1 is very negative

212

114. Have you ever described a piece of software semantically? 2 1 3 3 1 3 2

115. Have you ever described a piece of software using Finite
State Machine? 2 2 2 3 2 2 2

301. How would you rate your understanding of service
composition? 3 2 4 3 2 4 3

302. How would you rate your confidence in using the SABE
application to browse a service? 2 2 3 2 2 2 2

Results of the SABE Tool Usability Evaluation Cycle 1
Pre-Test

Users A B C D E F Zio

121. What is the activity of the ExpensiveModestatel of the
ExpensiveMode adaptive behaviour?

3 2 4 3 1 4 3
122. What is the type of the of the ExpensiveMode adaptive
behaviour?

2 1 3 4 1 2 2
123. What is the guard condition in the transition (between
ColourPrintingStatel and ColourPrintingState2) of the
ColourPriting adaptive behaviour?

1 1 3 3 1 2 2
124. What triggers the transition (between
ColourPrintingStatel and ColourPrintingState2) of the
ColourPriting adaptive behaviour?

3 3 3 3 2 4 3
321. Does the FSM belonging to the composite service have
IdleState, InputState, ProceState, OutputState like of an
atomice service?

2 3 3 3 2 4 3
322. Are all the adaptive behaviours from the constituent
services present in the FSM of the composite service?

3 2 3 3 2 3 3

323. How many adaptive behaviours are present under the
ProcessState of the composite service's FSM? 2 1 3 3 1 3 2

2 1 3 3 1 2 2

3 3 3 3 3 4 3

3 3 3 3 4 4 3

2 2 3 4 3 4 3

This is the (rounded) average of the pre-test results, where 4 is very positive and 1 is very negative

213

Results of the SABE Tool Usability Evaluation Cycle 1
Questionnaire

Users A B C D E F

121. Starting the SABE tool was? 4 4 4 3 3 4

122. Loading the service was? 4 4 4 3 4 4

123. Browsing the service's process (with its inputs,
outputs,...) was? 3 4 4 3 3 3

124. Browsing the service's Finite State Machine (FSM) was? 3 4 3 3 3 3

125. Identifying the adaptive behaviours contained in the FSM
was? 3 4 3 2 2 3

126. Viewing the details of an adaptive behaviour was? 3 4 3 3 3 2

127. Identifying the actions performed by an adaptive
behaviour was? 3 4 3 2 3 2

128. Identifying the sequence of actions performed by an
adaptive behaviour was? 3 4 3 2 3 1

129. To understand the description of adaptive behaviours
was? 3 4 3 2 3 2

130. To understand the description of states describing an
action of adaptive behaviours was? 3 4 3 2 3 3

131. To understand the description of transitions describing a
sequence of actions of adaptive behaviours was? 3 4 3 3 3 2

132. Sabe tool made the process of browsing the description
of an adaptive behaviour? 3 4 3 3 3 3

133. Sabe tool made the process of identifying the actions of
an adaptive behaviour? 3 4 3 2 3 3

134. Sabe tool made the process of identifying the sequence of
actions of an adaptive behaviour? 3 4 3 3 3 2

135. When browsing adaptive behaviours, would you rate
SABE tool as? 3 4 4 3 3 3

221. Generating a FSM for the service's process was? 3 4 4 3 3 3

222. Creating an adaptive behaviour was? 3 4 4 2 2 3

223. Creating the states for this adaptive behaviour was? 3 4 3 3 3 3

224. Creating the transitions for this adaptive behaviour was? 3 4 3 3 2 4

225. Describing an adaptive behaviour was? 3 4 3 3 3 3

226. Describing the activities of an adaptive behaviour using
states was? 3 4 2 3 3 3

214

227. Describing the sequence of activities for an adaptive
behaviour using transitions was? 3 4 2 3 2 2

228. To understand how to generate a FSM was? 3 4 3 3 3 3

229. To understand how to describe an adaptive behaviour
was? 3 4 3 2 2 3

230. To understand how to describe the activities of an
adaptive behaviour as states was? 3 4 3 3 3 2

231. To understand how to describe the sequence of activities
for an adaptive behaviour as transitions was? 3 4 3 3 3 2

232. Sabe tool made the process of generating a FSM for the
service? 3 4 4 3 3 3

233. Sabe tool made the process of describing an adaptive
behaviour? 3 4 3 3 3 3

234. Sabe tool made the process of describing the activities of
an adaptive behaviour? 3 4 3 3 3 3

235. Sabe tool made the process of describing the sequence of
activities for an adaptive behaviour? 3 4 3 3 3 3

236. When describing adaptive behaviours, would you rate
SABE tool as? 3 4 3 3 3 3

321. Aggregating the adaptive behaviours for a composite
service was? 3 4 3 3 4 4

322. Viewing the resultant aggregated adaptive behaviours
was? 3 4 3 3 3 3

323. To understand how to aggregate the adaptive behaviours
for a composite service was? 3 4 3 2 2 3

324. To understand the resultant aggregated adaptive
behaviours was? 3 4 3 2 3 2

325. Sabe tool made the process of aggregating the adaptive
behaviours for a composite service? 4 4 3 3 3 4

326. Sabe tool made the process of viewing the resultant
aggregated adaptive behaviours of a composite service? 4 4 3 3 3 3

327. When aggregating the adaptive behaviours for a
composite service, would you rate SABE tool as? 3 4 3 3 3 3

328. Comparing the composite service's FSM with the
constituent service's FSM, would you say they are? 4 4 3 3 3 3

Results of the SABE Tool Usability Evaluation Cycle 2

Pre-Test

Users A B C D E F G H I J K L z"

101. How would you rate your knowledge
of Semantic Web Service (Owl-S)? 2 1 2 1 2 1 1 1 2 1 2 1 1

** This is the (rounded) average of the pre-test results, where 4 is very positive and 1 is very negative

215

102. Have you studied about web services? 2 3 2 2 2 2 2 3 2 2 2 1 2

103. Have you used a web service? 1 3 2 2 3 3 3 3 2 2 2 3 3

104. Have you created a web service? 1 2 1 1 1 1 1 3 1 1 1 2 1

105. Have you modelled a web service
semantically in Owl-S? 1 1 1 1 1 1 1 1 1 1 1 1 1

106. How would you rate your knowledge
of (software) Adaptive Behaviours? 2 2 2 2 2 2 1 2 2 2 1 1 2

107. Have you studied about (software)
Adaptive Behaviours? 2 1 2 2 2 1 1 1 2 2 1 1 1

108. Have you used a piece of software
with some adaptive behaviour? 2 2 2 1 1 2 1 2 3 4 1 4 2

109. Have you configured an adaptive piece
of software or application? 1 2 1 1 1 1 1 1 2 4 1 1 1

110. Have you created a piece of software
with some adaptive behaviour? 1 2 1 1 1 1 1 2 1 1 1 1 1

111. How would you rate your knowledge
of Finite State Machine? 4 3 2 1 2 2 3 3 3 3 2 4 3

112. Have you studied about Finite State
Machine? 4 4 2 1 2 2 3 2 2 3 2 4 2

113. Have you seen a piece of software
described as a Finite State Machine? 4 3 1 1 1 1 4 3 3 3 1 4 2

114. Have you described a piece of software
semantically? 4 3 1 1 1 1 1 3 1 1 1 4 2

115. Have you described a piece of software
using Finite State Machine? 4 3 1 1 1 1 4 2 2 3 1 4 2

116. Have you used an application which
uses a tree structure to represent data (such
as folders)?

4 4 4 4 4 4 3 4 2 4 4 4 4

117. Have you used an application which
uses a table to display data? 3 4 4 4 4 4 3 4 4 4 3 4 4

118. Have you used an application which
uses a table to allow user to edit values? 3 4 4 3 4 4 3 4 3 4 4 4 4

301. How would you rate your understand
of service composition? 1 2 2 2 2 2 2 2 3 1 2 2 2

302. How would you rate your confidence
in using the SABE application to browse a
service?

2 2 3 2 1 2 3 2 3 2 2 1 2

Results of the SABE Tool Usability Evaluation Cycle 2

Task-related Questions

Users A B C D E F G H I J K L

121. What is the activity of the
ExpensiveModestatel of the

1 1 1 1 1 1 1 1 1 1 1 1

216

ExpensiveMode adaptive behaviour?

122. What is the type of the of the
ExpensiveMode adaptive behaviour? 1 1 1 1 1 1 1 1 1 1 1 1

123. What is the guard condition in the
transition (between ColourPrintingStatel
and ColourPrintingState2) of the
ColourPriting adaptive behaviour?

1 1 1 1 0 1 1 1 1 1 0 1

124. What triggers the transition (between
ColourPrintingStatel and
ColourPrintingState2) of the ColourPriting
adaptive behaviour?

1 1 1 1 1 1 1 1 1 1 1 1

321. Does the FSM belonging to the
composite service have IdleState,
InputState, ProceState, OutputState like of
an atomice service?

1 1 1 1 1 1 1 1 1 1 1 1

322. Are all the adaptive behaviours from
the constituent services present in the FSM
of the composite service? 1 1 1 1 1 1 1 1 1 1 1 1

323. How many adaptive behaviours are
present under the ProcessState of the
composite service's FSM?

1 1 1 1 1 1 1 1 1 1 1 1

Results of the SABE Tool Usability Evaluation Cycle 2

Questionnaire

Users A B C D E F G H 1 I K L

124. What triggers the transition
(between ColourPrintingStatel and
ColourPrintingState2) of the
ColourPriting adaptive behaviour?

2 2 2 2 2 2 2 2 2 2 2 2

125. Starting the SABE tool was? 4 3 4 4 3 3 4 4 3 3 3 3

126. Loading the service was? 4 4 4 4 3 3 4 4 3 4 3 3

127. Browsing the service's process (with
its inputs, outputs,...) was? 4 4 3 4 3 2 3 3 3 3 3 3

128. Browsing the service's Finite State
Machine (FSM) was? 3 3 3 4 3 3 4 3 3 3 3 3

129. Identifying the adaptive behaviours
contained in the FSM was? 3 3 3 4 3 3 3 3 3 2 3 3

130. Viewing the details of an adaptive
behaviour was? 4 3 3 4 3 3 3 3 3 2 3 3

131. Identifying the actions performed by
an adaptive behaviour was? 3 3 3 4 2 3 3 3 3 3 3 3

132. Identifying the sequence of actions
performed by an adaptive behaviour
was?

3 3 3 3 3 3 3 3 3 2 2 3

217

133. Sabe tool made the process of
browsing the description of an adaptive
behaviour?

3 3 3 3 3 3 3 4 3 3 3 3

134. Sabe tool made the process of
identifying the actions of an adaptive
behaviour?

3 3 3 4 3 3 4 3 3 3 3 3

135. Sabe tool made the process of
identifying the sequence of actions of an
adaptive behaviour?

3 3 3 3 3 3 3 3 3 2 3 3

136. To understand the description of
adaptive behaviours using SABE tool
was?

3 3 3 3 2 3 3 3 3 3 2 2

137. To understand the description of
states describing an action of adaptive
behaviours using SABE tool was?

3 2 3 3 2 3 4 3 3 3 2 2

138. To understand the description of
transitions describing a sequence of
actions of adaptive behaviours using
SABE tool was?

3 2 2 3 2 3 4 3 3 3 2 2

221. Generating a FSM for the service's
process was? 3 2 3 4 3 3 3 3 3 3 3 3

222. Creating an adaptive behaviour
was? 3 4 3 4 3 3 4 3 3 3 3 3

223. Creating the states for this adaptive
behaviour was? 3 4 4 3 3 3 4 3 3 3 3 3

224. Creating the transitions for this
adaptive behaviour was? 3 3 4 3 3 3 4 2 3 3 3 3

225. Describing an adaptive behaviour
was? 3 4 4 3 3 3 3 3 3 3 2 3

226. Describing the activities of an
adaptive behaviour using states was? 2 3 3 3 3 3 4 3 2 3 2 3

227. Describing the sequence of activities
for an adaptive behaviour using
transitions was?

2 2 3 3 3 3 3 2 2 3 3 3

228. Sabe tool made the process of
generating a FSM for the service? 3 3 4 3 3 3 4 3 3 3 3 3

229. Sabe tool made the process of
describing an adaptive behaviour? 3 3 3 3 3 3 3 3 2 3 3 3

230. Sabe tool made the process of
describing the activities of an adaptive
behaviour?

3 3 3 3 3 3 3 3 2 3 3 3

231. Sabe tool made the process of
describing the sequence of activities for
an adaptive behaviour?

3 3 3 3 3 3 4 3 2 3 3 3

232. To understand the process of
generating a FSM was? 3 4 2 3 3 3 4 3 3 3 2 3

233. To understand the process of
describing an adaptive behaviour was? 3 4 3 3 3 3 3 3 3 2 2 3

234. To understand the process of
describing the activities of an adaptive
behaviour as states was?

3 2 3 3 3 3 3 3 3 2 2 3

235. To understand the process of
describing the sequence of activities for
an adaptive behaviour as transitions
was?

3 2 3 3 3 3 3 3 3 2 2 3

218

324. Aggregating the adaptive behaviours
for a composite service was? 4 2 4 3 2 3 4 3 4 3 2 3

325. Viewing the resultant aggregated
adaptive behaviours was? 4 4 4 3 2 3 4 3 4 3 2 3

326. Sabe tool made the process of
aggregating the adaptive behaviours for a
composite service?

4 2 4 4 3 3 4 3 4 3 3 3

327. Sabe tool made the process of
browsing the resultant aggregated
adaptive behaviours?

4 3 4 4 3 3 4 3 4 3 3 3

328. To understand the process of
aggregating the adaptive behaviours for a
composite service was?

3 2 3 4 2 3 3 3 3 3 2 2

329. To understand the resultant
aggregated adaptive behaviours using
the SABE tool was?

3 3 3 4 2 3 4 3 3 3 2 2

Results of the SABE Tool Usability Evaluation Cycle 3

Pre-Test

Users A B C D E F G H I J K L z
12

101. How would you rate your knowledge
of Semantic Web Service (Owl-S)? 2 1 2 1 2 1 1 1 2 1 2 1 1

102. Have you studied about web services? 2 3 2 2 2 2 2 3 2 2 2 1 2

103. Have you used a web service? 1 3 2 2 3 3 3 3 2 2 2 3 3

104. Have you created a web service? 1 2 1 1 1 1 1 3 1 1 I 2 1

105. Have you modeled a web service
semantically in Owl-S? 1 1 1 1 1 1 1 1 1 1 1 1 1

106. How would you rate your knowledge
of (software) Adaptive Behaviours? 2 2 2 2 2 2 1 2 2 2 1 1 2

107. Have you studied about (software)
Adaptive Behaviours? 2 1 2 2 2 1 1 1 2 2 1 1 1

108. Have you used a piece of software
with some adaptive behaviour? 2 2 2 1 1 2 1 2 3 4 1 4 2

109. Have you configured an adaptive piece
of software or application? 1 2 1 1 1 I 1 1 2 4 1 1 1

110. Have you created a piece of software
with some adaptive behaviour? 1 2 1 1 1 1 1 2 1 1 1 1 1

111. How would you rate your knowledge
of Finite State Machine? 4 3 2 1 2 2 3 3 3 3 2 4 3

112. Have you studied about Finite State
Machine? 4 4 2 1 2 2 3 2 2 3 2 4 2

This is the (rounded) average of the pre-test results, where 4 is very positive and 1 is very negative

219

I

113. Have you seen a piece of software
described as a Finite State Machine? 4 3 1 1 1 1 4 3 3 3 1 4 2

114. Have you described a piece of software
semantically? 4 3 1 1 1 1 1 3 1 1 1 4 2

115. Have you described a piece of software
using Finite State Machine? 4 3 1 1 1 1 4 2 2 3 1 4 2

116. Have you used an application which
uses a tree structure to represent data (such
as folders)?

4 4 4 4 4 4 3 4 2 4 4 4 4

117. Have you used an application which
uses a table to display data? 3 4 4 4 4 4 3 4 4 4 3 4 4

118. Have you used an application which
uses a table to allow user to edit values? 3 4 4 3 4 4 3 4 3 4 4 4 4

301. How would you rate your understand
of service composition? 1 2 2 2 2 2 2 2 3 1 2 2 2

302. How would you rate your confidence
in using the SABE application to browse a
service?

2 2 3 2 1 2 3 2 3 2 2 1 2

Results of the SABE Tool Usability Evaluation Cycle 3

Task-related Questions

Users A B C D E F G H I J K L

121. What is the activity of the
ExpensiveModestatel of the
ExpensiveMode adaptive behaviour? 1 1 1 1 1 1 1 1 1 1 1 1

122. What is the type of the of the
ExpensiveMode adaptive behaviour? 1 1 1 1 1 1 1 1 1 1 1 1

123. What is the guard condition in the
transition (between ColourPrintingStatel
and ColourPrintingState2) of the
ColourPriting adaptive behaviour?

1 1 1 0 1 0 1 1 1 1 1 1

124. What triggers the transition (between
ColourPrintingStatel and
ColourPrintingState2) of the ColourPriting
adaptive behaviour?

1 1 1 1 1 1 1 1 1 1 1 1

321. Does the FSM belonging to the
composite service have IdleState,
InputState, ProceState, OutputState like of
an atomice service?

1 1 0 1 1 1 1 1 1 1 1 1

322. Are all the adaptive behaviours from
the constituent services present in the FSM
of the composite service? 1 1 1 1 1 1 1 1 1 1 1 1

323. How many adaptive behaviours are
present under the ProcessState of the
composite service's FSM?

1 1 1 0 1 1 1 1 1 1 0 0

220

Results of the SABE Tool Usability Evaluation Cycle 3

Questionnaire

Users A B C D E F G H I I K L

124. What triggers the transition
(between CoIourPrintingStatel and
ColourPrintingState2) of the
ColourPriting adaptive behaviour?

2 2 2 ; 2 2 2 2 2 2 2 2 2

125. Starting the SABE tool was? 4 3 4 4 3 4 4 4 4 4 4 3

126. Loading the service was? 4 3 4 4 3 4 4 4 4 4 4 3

127. Browsing the service's process (with
its inputs, outputs,...] was? 3 3 4 3 3 4 3 4 3 4 3 2

128. Browsing the service's Finite State
Machine (FSM] was? 3 3 4 4 3 4 3 4 3 4 3 2

129. Identifying the adaptive behaviours
contained in the FSM was? 3 3 3 3 3 4 2 3 3 4 3 2

130. Viewing the details of an adaptive
behaviour was? 3 3 4 3 3 4 3 4 3 3 3 3

131. Identifying the actions performed by
an adaptive behaviour was? 3 3 3 4 3 4 3 3 3 3 3 3

132. Identifying the sequence of actions
performed by an adaptive behaviour
was?

3 3 3 4 3 3 3 3 3 2 3 2

133. Sabe tool made the process of
browsing the description of an adaptive
behaviour?

3 3 3 4 3 4 3 4 3 4 3 3

134. Sabe tool made the process of
identifying the actions of an adaptive
behaviour?

3 3 3 3 3 4 2 3 3 2 3 3

135. Sabe tool made the process of
identifying the sequence of actions of an
adaptive behaviour?

3 3 3 4 3 4 2 3 3 2 3 2

136. To understand the description of
adaptive behaviours using SABE tool
was?

4 3 3 3 4 2 3 3 3 3 3

137. To understand the description of
states describing an action of adaptive
behaviours using SABE tool was?

4 3 3 3 3 4 2 4 2 2 3 3

138. To understand the description of
transitions describing a sequence of
actions of adaptive behaviours using
SABE tool was?

3 3 3 3 3 3 2 3 2 2 3 2

221. Generating a FSM for the service's
process was? 3 3 3 4 3 3 1 3 3 4 3 3

222. Creating an adaptive behaviour
was? 3 3 3 3 3 3 1 3 3 4 3 2

223. Creating the states for this adaptive
behaviour was? 3 3 3 3 3 3 1 3 3 4 3 2

224. Creating the transitions for this
adaptive behaviour was? 3 3 3 3 3 3 1 3 3 3 3 2

221

225. Describing an adaptive behaviour
was? 3 3 3 3 3 3 1 3 3 3 3 3

226. Describing the activities of an
adaptive behaviour using states was? 3 3 3 3 3 3 1 3 3 3 3 3

227. Describing the sequence of activities
for an adaptive behaviour using
transitions was?

3 3 3 3 3 3 1 3 3 3 3 1

228. Sabe tool made the process of
generating a FSM for the service? 3 3 3 3 3 3 1 4 3 3 3 2

229. Sabe tool made the process of
describing an adaptive behaviour? 3 3 3 3 3 3 1 4 3 3 3 3

230. Sabe tool made the process of
describing the activities of an adaptive
behaviour?

3 3 3 3 3 3 1 4 3 3 3 3

231. Sabe tool made the process of
describing the sequence of activities for
an adaptive behaviour?

3 3 3 3 3 3 1 4 3 3 3 2

232. To understand the process of
generating a FSM was? 4 3 3 3 3 3 1 4 3 3 3 2

233. To understand the process of
describing an adaptive behaviour was? 4 3 3 3 3 3 1 4 3 3 3 2

234. To understand the process of
describing the activities of an adaptive
behaviour as states was?

4 3 3 3 3 3 1 4 2 3 3 2

235. To understand the process of
describing the sequence of activities for
an adaptive behaviour as transitions
was?

4 3 3 3 3 3 1 4 2 3 3 2

324. Aggregating the adaptive behaviours
for a composite service was? 4 3 3 3 3 4 1 4 4 3 4 2

325. Viewing the resultant aggregated
adaptive behaviours was? 4 3 3 3 3 4 1 4 4 3 3 2

326. Sabe tool made the process of
aggregating the adaptive behaviours for a
composite service?

4 3 3 3 3 4 1 4 4 3 3 3

327. Sabe tool made the process of
browsing the resultant aggregated
adaptive behaviours?

4 3 3 3 3 4 1 4 4 3 3 2

328. To understand the process of
aggregating the adaptive behaviours for a
composite service was?

3 3 3 2 3 4 1 4 3 3 3 2

329. To understand the resultant
aggregated adaptive behaviours using
the SABE tool was?

3 3 3 3 3 4 1 4 3 3 3 1

Analysis of the SABE Tool Usability Evaluations

SABE Usability Evaluation Cycle 1

Usability Test 1 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

222

Very Difficult 1 1 1 0 1 0

Difficult 2 6 2 2 2 4

Easy 3 18 3 13 3 11

Very Easy 4 5 4 3 4 3

Usability Test 2 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 4 2 1 2 6

Easy 3 23 3 23 3 14

Very Easy 4 9 4 6 4 4

Usability Test 3 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 0 2 0 2 4

Easy 3 8 3 7 3 6

Very Easy 4 4 4 5 4 2

SABE Usability Evaluation Cycle 2

Usability Test 1 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 5 2 1 2 12

Easy 3 49 3 32 3 22

223

Very Easy

Usability Test 2 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 10 2 3 2 10

Easy 3 62 3 42 3 35

Very Easy 4 12 4 3 4 3

Usability Test 3 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 5 2 1 2 7

Easy 3 10 3 13 3 14

Very Easy 4 9 4 10 4 3

SABE Usability Evaluation Cycle 3

Usability Test 1 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 5 2 5 2 8

Easy 3 42 3 24 3 22

Very Easy 4 13 4 7 4 6

Usability Test 2 Easiness Helpfulness Comprehension

224

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 8 1 4 1 4

Difficult 2 3 2 2 2 6

Easy 3 69 3 38 3 30

Very Easy 4 4 4 4 4 8

Usability Test 3 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 2 1 2 1 3

Difficult 2 2 2 1 2 2

Easy 3 11 3 13 3 15

Very Easy 4 9 4 8 4 4

SABE Comparison of Usability Evaluation Cycles

Usabiiity Test 1 Easiness

Observed A S C Total

Easy 23 55 55 133

Difficult 7 5 5 17

30 60 60 150

Expected A B C

Easy 26.6 53.2 53.2

Difficult 3.4 6.8 6.8

Null Hypothesis Observed Expected Result

P-value 0.068094 0.05 TRUE

225

Usability Test 1 Helpfuiness

Observed A B C Total

Easy 16 35 31 82

Difficult 2 1 5 8

18 36 36 90

Expected A B C

Easy 16.4 32.8 32.8

Difficult 1.6 3.2 3.2

Null Hypothesis Observed Expected Resuit

P-value 0.236798 0.05 TRUE

Usability Test 1 Comprehension

Observed A B C Total

Easy 14 24 28 66

Difficult 4 12 8 24

18 36 36 90

Expected A B C

Easy 13.2 26.4 26.4

Difficult 4.8 9.6 9.6

Null Hypothesis Observed Expected Result

P-value 0.505697 0.05 TRUE

Usability Test 2 Easiness

Observed A B C Total

Easy 32 74 73 179

226

Difficult 4 10 11 25

36 84 84 204

Expected A B C

Easy 31.58824 73.70588 73.70588

Difficult 4.411765 10.29412 10.29412

Null Hypothesis Observed Expected Result

P-value 0.947177 0.05 TRUE

Usability Test 2 Helpfulness

Observed A B C Total

Easy 29 45 42 116

Difficult 1 3 6 10

30 48 48 126

Expected A B C

Easy 27.61905 44.19048 44.19047619

Difficult 2.380952 3.809524 3.80952381

Null Hypothesis Observed Expected Result

P-value 0.297459 0.05 TRUE

Usability Test 2 Comprehension

Observed A B C Total

Easy 18 38 38 94

Difficult 6 10 10 26

24 48 48 120

Expected A B C

227

Easy 18.8 37.6 37.6

Difficult 5.2 10.4 10.4

Null Hypothesis Observed Expected Result

P-value 0.906468 0.05 TRUE

Usability Test 3 Easiness

Observed A B C Total

Easy 12 19 20 51

Difficult 0 5 4 9

12 24 24 60

Expected A B C

Easy 10.2 20.4 20.4

Difficult 1.8 3.6 3.6

Null Hypothesis Observed Expected Result

P-value 0.245311 0.05 TRUE

Usability Test 3 Helpfulness

Observed A B C Total

Easy 12 23 21 56

Difficult 0 1 3 4

12 24 24 60

Expected A B C

Easy 11.2 22.4 22.4

Difficult 0.8 1.6 1.6

Null Hypothesis Observed Expected Result

228

P-value 0.299585 0.05 TRUE

Usability Test 3 Comprehension

Observed A B C Total

Easy 8 17 19 44

Difficult 4 7 5 16

12 24 24 60

Expected A B C

Easy 8.8 17.6 17.6

Difficult 3.2 6.4 6.4

Null Hypothesis Observed Expected Result

P-value 0.681457 0.05 TRUE

229

Appendix C - SMPE Tool Usability

Evaluation Experiment
The SMPE tool usability evaluation presented to the users, which consists of three

usability tests. Each usability test presents the instructions, experiment tasks, and the

usability questionnaire.

Instructions and Questionnaire for SMPE Usability

Test 1

Experiment 2 Section A
"To determine the ease of use of SMPE tool in managing adaptive

behaviours of a service using policies."

Brief Background Questioner
Management Policy
1. How would you rate your knowledge of Policy? (401)
c r c rnone novice intermediate expert

2. Have you studied or read about policies? (402)r r r rnever a little enough a lot

3. Have you seen a policy rule before? (403)
err cnever seldom sometimes often

4. Have you used policy before? (404)
c c c cnever seldom sometimes often

5. Have you created a policy before? (405)
c c r cnever seldom sometimes often

Prerequisite Information
Policy is a set of rules that are used to manage and control the changing and/or
maintaining of the state of one or more managed objects.

Authorization Policies define what activities a member of the subject domain can
perform on the set of objects in the target domain.

Obligation Policies specify the actions that must be performed by managers within
the system when certain events occur and provide the ability to respond to
changing circumstances.

230

Experiment Description
Service Management Policy Editor (SMPE) is a tool that allows a developer to
describe management policies for managing the adaptive behaviours of a given
service.

SMPE tool allows a user to open a service description described in OWL-S and
display its details. It also displays the service's adaptive behaviours described as
FSM.

SMPE tool allows a user to author obligation type policies for managing a service,
specifically its adaptive behaviours.

Thus, this management policy can have an event, condition and action.
If an event is not present, it will assume that this policy is triggered anytime.
If a condition is not present it will assume that once this policy is triggered, it will
perform its action.

Before beginning the experiment, you must first download the Service
Management Policy Editor (SMPE) tool by clicking on smoe.zip.
And you must also download a different set of semantic web service descriptions
by clicking on owlp.zip.

Please read and complete the experiment tasks provided, and to help accomplish
these tasks some instructions are also provided.

Experiment Tasks
1. Please attempt the tasks bellow and then complete the questionnaire
provided. To help accomplishing these tasks, follow the instructions provided.

Material Provided
2. A Service Management Policy Editor (SMPE) tool. Download sabe.zip.

3. Semantic web service descriptions. Download owlp.zip.

4. Please follow the instructions provided to run the SMPE tool.

Service Provided
5. You are provided with a service ServiceAdaptl.

6. ServiceAdaptl is an adaptive print service, which prints a given document.
This service is adaptable to different printing modes.

7. Its inputs are: DocumentName, which informs the service of the document it
needs to print;
NumberOfPages, which informs the service of how many pages it needs to
print;
NumberOfColours, which informs the service of how many colours it needs to
use, default is 1.

8. Its output is NumberOfSheet, which informs you how many sheets it used for
the print job.

9. Your initial task is to load this service in the SMPE tool.

231

Management Policy

10. This service has management policies that change its behaviour.

11. Note that each adaptive behaviour is as an alternative behaviour to the
service's default behaviour.

12. ServiceAdaptlPolicyl modifies this service's behaviour to print in
EconomyMode when document has over 50 pages (NumberOfPages greater
than 50).

13. Your first task is to follow the instruction given and analyze how this policy
is described.

14. ServiceAdaptlPolicy2 modifies this service's behaviour to print in Colour
when document has more then 1 colour.

15. Your second task is to analyze how this policy is described and answer the
questions on the web site about these policies.

Experiment Instructions

Material Provided
1. A Service Management Policy Editor (SMPE) tool. Download sabe.zip.

2. Semantic web service descriptions. Download owlD.zip.

Steps for Installation

3. Make sure you have Java 1.4.x or higher installed in your computer (from
dos prompt type java -version).

4. Download and unzip sabe.zip to c:\sabe.

5. Download and unzip owlp.zip to c:\owlp.

Steps for Running the Application

6. Run c:\sabe\smpe.bat.

7. From the SMPE application open c:\owlp\ServiceAdaptl.owl.

Steps for Operating SMPE

8. Top left panel details of the service and its composition.

9. Bottom left panel contains details of the selected process such as its
parameters (Inputs, Outputs) and State Machine.

10. Top middle panel contains the details of the Finite State Machine belonging
to the selected process.

11. Bottom middle panel contains the details of the selected node (e.g. a state
or a transition) of the Finite State Machine.

12. Top right panel contains details of the Management Policies belonging to
the selected process.

13. Bottom right panel contains details of the selected node of a Management

232

Policy.

14. Bottom panel contains the details of the services dataflow.

15. Double click on a node or click the plus sign to expand a node of a tree.

16. Hover over for information on the node via a tool tip.

17. Right click on a node to perform action if any.

Steps for Selecting Service

18. Expand the service node on the left panel; a process will appear under it.

19. Select the process, its description will appear in the panel below and its
policy on the top right panel.

Steps for Browsing Management Policies

20. Expand Policy node on the top right panel and select the policy node
(ProcessAdaptl Policy 1).

21. This policy's details will be shown in the bottom right panel, where you can
see its name, type and description.

22. Expand the policy node (ProcessAdaptlPolicyl) and you will see Events
node. Conditions node, and Actions node.

23. Expand Events node and select the event node
(ProcessAdaptlPolicylEventl).

24. In the bottom right panel it is possible to see the name, type and value of
the selected event.

25. Expand Conditions node and select the action node
(ProcessAdaptl PolicylConditionl).

26. In the bottom right panel it is possible to see the name, type, subject,
predicate and value of the selected condition.

27. Policy's condition should be NumberOfPages greater than 50.

28. Expand Actions node and select the action node
(ProcessAdaptlPolicylActionl).

29. In the bottom right panel it is possible to see the name, type and value of
the selected action.

30. Policy's action should be EconomyMode.

31. Now it is your turn to analyse the second policy (ProcessAdaptlPolicy2).

Steps for Closing your Service

32. Close your service by clicking on the X in the inner frame and answering
yes when prompted.

Experiment Questionnaire
Task

233

1. What is the event triggering the management policy ServiceAdaptlPolicyZ?
(421)
c c c cInputEvent OutputEvent ProcessEvent IdleEvent

2. What is the action the management policy ServiceAdaptlPolicyZ will perform?
(422)
c r c rEconomyMode ColourPrinting ExpensiveMode IntermediateMode

3. What is the condition the management policy ServiceAdaptlPolicyZ must first
satisfy? (423)

4. Starting the SMPE tool was? (424)
r c c cvery difficult difficult easy very easy

5. Loading the service was? (425)
c c r cvery difficult difficult easy very easy

6. Viewing the details of the policy managing this service was? (426)
r c c cvery difficult difficult easy very easy

7. Identifying what event triggers the policy was? (427)
r r r rvery difficult difficult easy very easy

8. Identifying what condition the policy is evaluating was? (428)
c r c rvery difficult difficult easy very easy

9. Identifying what adaptive behaviour is the policy is performing as its action
was?(429)
r r r rvery difficult difficult easy very easy

10. Smpe tool made the process of browsing the description of the policy
managing this service? (430)
r c c cvery difficult difficult easy very easy

11. Smpe tool made the process of browsing the description of the event that
triggers this policy? (431)
r c c rvery difficult difficult easy very easy

12. Smpe tool made the process of browsing the description of the condition that
must be satisfied for this policy? (432)
c c r cvery difficult difficult easy very easy

13. Smpe tool made the process of browsing the description of the action that is
performed for this policy? (433)
r c c cvery difficult difficult easy very easy

14. To understand the description of the policy managing this service using SMPE
tool was? (434)

234

r r r rvery confusing confusing ciear very ciear

15. To understand the description of the event that triggers this poiicy using
SMPE tool was? (435)
r c c cvery confusing confusing clear very clear

16. To understand the description of the condition that must be satisfied for this
policy using SMPE tool was? ^36)
r c c cvery confusing confusing clear very clear

17. To understand the description of the action that is performed for this policy
using SMPE tool was? (437)
r errvery confusing confusing clear very clear

18. Comment on any feature of SABE tool you found useful? (438)

19. Comment on any feature of SABE tool you found difficult? (439)

Instructions and Questionnaire for SMPE Usabiiity
Test 2

Experiment 2 Section B
"To determine the ease of use of SMPE tool in defining a policy to

manage the adaptive behaviours of a composite service."

Brief Background Questioner
Management Policy

1. How would you rate your confidence in describing a management policy? (501)
r r r runsure some confident confident very confident

Prerequisite Information
Policy Events are the events in which will trigger the policy.

Policy Conditions are the conditions that must be satisfied before the policy
perform its actions.

Policy Actions are the actions that the policy performs once its conditions are
satisfied.

Experiment Description
Service Management Policy Editor (SMPE) is a tool that allows a developer to
describe management policies for managing the adaptive behaviours of a given
service.

235

SMPE tool allows a user to author obligation type policies for managing a service,
specifically its adaptive behaviours.

SMPE tool limits the policy authoring to use adaptive behaviours as its action and
service's inputs and outputs for the condition's subject.

Please read and complete the experiment tasks provided, and to help accomplish
these tasks some instructions are also provided.

Experiment Tasks
1. Please attempt the tasks bellow and then complete the questionnaire
provided. To help accomplishing these tasks, follow the instructions provided.

Service Provided

2. You are provided with a service ServiceAdaptZ.

3. ServiceAdaptZ is an adaptive composite service which processes your
photos, compiles them Into an album and prints them as a document.

4. This service is composed of a sequence of a photo processing service
(ProcessAdaptA), a photo album service (ProcessAdaptB), and a print service
(ProcessAdaptC).

5. Its inputs are: CameraPhotos, which informs the service of the photos it
needs to process;
CameraPhotoCategory, which informs the service of what type of photos;
CameraPhotoSize, which informs the service of what size the photos have to
be.

6. Its output is AlbumSize, which informs the size of the album printed.

7. Your initial task is to load this service in the SMPE tool.

Management Policy 1

8. This service needs a management policy to change its behaviour.

9. ServiceAdapt2Policyl modifies this service's behaviour to apply the
BlackWhitePhoto and HighPhotoQuality adaptive behaviours when service is
processing landscape photos (CameraPhotoCategory is landscape).

10. Your first task is to author management policy ServiceAdapt2Policyl using
the SMPE tool according to its description.

Management Policy 2

11. This service needs another management policy to change its behaviour.

12. ServiceAdapt2Policy2 modifies this service's behaviour to apply the
RemoveRedEye and ColourPriting adaptive behaviours when service is
processing portrait photos (CameraPhotoCategory is 'portrait').

13. Your second task is to author management policy ServiceAdapt2Policy2
using the SMPE tool according to its description.

Saving Your Work

236

14. Now that you have finished authoring these management policies, your
final task is to save them by clicking on File and then save.

Experiment Instructions
Material Provided

1. A Service Management Poiicy Editor (SMPE) tool. Download sabe.zip.

2. Semantic web service descriptions. Download owlp.zip.

Steps for Running the Application

3. Run c:\sabe\smpe.bat.

4. From the SMPE application open c:\owlp\ServiceAdapt2.owl.

m

Steps for Selecting Service

5. Expand the service node on the left panel; a process will appear under it.

6. Select the process, its description will appear in the panel bellow and its FSM
on the middle panel.

Steps for Adding Management Policy 1
7. Right click Policy node in the top right panel and select add policy.

8. Expand the newly added policy node.

Steps for Adding Policy Event
9. Right ciick on Events and select add event to add an event.

10. Expand Events and select the newly added event.

11. Rename this event if you so desire.

12. Select the appropriate value (ProcessEvent) from a list of events for this
policy's event.

Steps for Adding Policy Condition

13. Right click on Conditions and select add condition to add an condition.

14. Expand Conditions and select the newly added condition.

15. Rename this condition if you so desire.

16. Select the appropriate subject (CameraPhotoCategory) from a list of
subjects for this policy's condition.

17. Select the appropriate predicate (equal) from a list of predicates for this
policy's condition.

18. Set the appropriate value (landscape) for this policy's condition.

Steps for Adding Policy Action

19. Right click on Actions and select add action to add an action.

•■ifS
..-.r.'t

i
•m

]
237

20. Expand Actions and select the newly added action.

21. Rename this action if you so desire.

22. In this case we need to set this action type to complex action.

23. Right click on the action node and add a Boolean.

24. Make sure the Boolean node is an AND Boolean node.

25. Expand the action node and right click the Boolean node to add 2 action
nodes.

26. For the first action, select the appropriate value (BlackWhitePhoto) from a
list of adaptive behaviours.

27. For the second action, select the appropriate value (HighPhotoQuality) from
a list of adaptive behaviours.

Steps for Adding Management Policy 2

28. Repeat the same procedure for adding the management policy
ServiceAdapt2Policy2.

29. Use the appropriate names and values (mentioned in the task section).

Steps for Saving your Management Policies

30. Click on File and then save. Make sure there are no errors and click OK.

Steps for Closing your Service
31. Close your service by clicking on the X in the inner frame and answering
yes when prompted.

Experiment Questionnaire
Tool

1. Creating a policy for managing the service was? (521)
c r r r

very difficult difficult easy very easy

2. Creating an event that would trigger this policy was? (522)r rvery difficult r rdifficult easy very easy

3. Creating a condition that must be satisfied for this policy was? (523)r r
very difficult

r r
difficult easy very easy

4. Creating an action that would be performed by this policy was? (524)r err
very difficult difficult easy very easy

5. Smpe tool made the process of creating the policy for managing the service?
(525)r r r r

very difficult difficult easy very easy

6. Smpe tool made the process of describing the event that would trigger this

238

policy? (526)
c c c rvery difficult difficult easy very easy

7. Smpe tool made the process of describing the condition that must be satisfied
for this policy? (527)
r c c cvery difficult difficult easy very easy

8. Smpe tool made the process of describing the action that would be performed
by this policy? (528)
r r c cvery difficult difficult easy very easy

9. To understand the process of creating a policy for managing the service using
SMPE tool was? (529)
r errvery confusing confusing clear very clear

10. To understand the process of describing the event that would trigger this
poiicy using SMPE tool was? (530)
r r r rvery confusing confusing ciear very clear

11. To understand the process of describing the condition that must be satisfied
for this policy using SMPE tool was? (531)
r r r rvery confusing confusing clear very clear

12. To understand the process of describing the action that would be performed
by this policy using SMPE tool was? (532)
r r r rvery confusing confusing clear very clear

13. Comment on any feature of SABE tool you found useful? (533)

14. Comment on any feature of SABE tool you found difficult? (534)

Instructions and Questionnaire for SMPE Usability

Test 3

Experiment 2 Section C
"To determine the ease of use and ease of comprehension of the

SMPE tool in refining policies to manage the constituent services of
a composite service."

Brief Background Questioner
Management Policy

1. How would you rate your confidence in describing a management policy? (601)
r r r runsure some confident confident very confident

239

Prerequisite Information
Policy Refinement is the taken in as input a policy and generating policy(s) which
affect the implementation of that service and any constituent service of that
service thus policy refinement is capable of mapping high level goals of a service
down to automatically generating low level policies which interact with previously
existing management functions in its constituent services.

Experiment Description
Service Management Policy Editor (SMPE) is a tool that allows a developer to
describe management policies for managing the adaptive behaviours of a given
service.

SMPE tool allows a service provider to refine authored management policies for a
given service into discrete policies that will modify the behaviour of this service.

Policy refinement is done according to the description of the adaptive behaviour
used by the management policy.

Please read and complete the experiment tasks provided, and to help accomplish
these tasks some instructions are also provided.

Experiment Tasks
1. Please attempt the tasks bellow and then complete the questionnaire
provided. To help accomplishing these tasks, follow the instructions provided.

Service Provided
2. You are provided with a service ServiceAdaptB.

3. ServiceAdaptB is an adaptive composite service which processes your
photos, compiles them into an album and prints them as a document.

4. This service is composed of a sequence of a photo processing service
(ProcessAdaptA), a photo album service (ProcessAdaptB), and a print service
(ProcessAdaptC).

5. Its inputs are: CameraPhotos, which informs the service of the photos it
needs to process;
CameraPhotoCategory, which informs the service of what type of photos;
CameraPhotoSize, which informs the service of what size the photos have to
be.

6. Its output is AlbumSize, which informs the size of the album printed.

7. Your initial task is to load this service in the SMPE tool.

Management Policy

8. This service has a management policy that changes its behaviour.

9. ServiceAdaptBPolicyl is a policy to create a calendar album of portrait photos
by modifying this service's behaviour to apply the RemoveRedEye and
CreateCalendar adaptive behaviours when processing portrait photos
(CameraPhotoCategory is 'portrait').

240

241

13. Right click on Conditions and select add condition to add a condition.

14. Expand Conditions and select the newly added condition.

15. Rename this condition if you so desire.

16. For a SimpleCondition, an appropriate value must be selected from a list of
subjects.

17. It also needs that an appropriate predicate be selected from a list of
predicates for this policy's condition.

18. And finally an appropriate value must be set for this policy's condition.

Steps for Adding Policy Action
19. Right click on Actions and select add action to add an action.

20. Expand Actions and select the newly added action.

21. Rename this action if you so desire.

22. An action can be ComplexAction or SimpleAction.

23. If action is ComplexAction, right click on the action node and add a
Boolean.

24. Action Boolean node can an AND or an OR Boolean node.

25. Action Boolean nodes can take up to 2 nodes by expanding the action
Boolean node and right click the Boolean node to add 2 action nodes.

26. For the SimpleAction, an appropriate value must be selected from a list of
adaptive behaviours.

Steps for Refining Management Policies

27. Right click Policy in the top right panel and select refine policy.

28. New policies should appear; they are the automatically refined policies
generated for this service.

Steps for Saving your Refined Policies

29. Click on File and then save. Make sure there are no errors and click OK.

Steps for Closing your Service

30. Close your service by clicking on the X in the inner frame and
answering yes when prompted.

Experiment Questionnaire
Tool

1. Refining policies for a service was? (621)r r r rvery difficult difficult easy very easy

242

2. Identifying the refined policies was? (622)r c c cvery difficult difficult easy very easy

3. Smpe tool made the process of refining policies managing a service? (623)r r c cvery difficult difficult easy very easy

4. Smpe tool made the process of identifying the refined policies? (624)
c errvery difficult difficult easy very easy

5. To understand the process of generating refined policies to manage a service
was?(625)r r r rvery confusing confusing clear very clear

6. To understand the resultant generated refined policies was? (626)
c c c cvery confusing confusing clear very clear

7. How helpful was SMPE in refining policies for a service? (627)
c r c cvery unhelpful unhelpful helpful very helpful

8. How understandable were the resultant generate refined policies? (628)r c c rvery confusing confusing clear very clear

9. Comment on any feature of SABE tool you found useful? (629)

10. Comment on any feature of SABE tool you found difficult? (630)

11. (Optional) How difficult was it to follow the flow of the generated refined
policies? (631)

12. (Optional) Can you identify the constituent services in which the generated
refined policies are enforced? (632)

243

Appendix D - SMPE Tool Usability

Evaluation Results
The results of the pre-test and usability questionnaires for the three SMPE tool
usability evaluation cycles. Analytical results of the Chi-square test performed over
the three sets of usability questionnaire results.

Results of the SMPE Tool Usability Evaiuation Cycle 1
Pre-Test

Users A B C D E F

401. How would you rate your knowledge of Policy? 3 2 4 4 2 4 3

402. Have you studied or read about policies? 2 2 4 4 2 4 3

403. Have you ever seen a policy (rule)? 2 1 4 4 1 4 3

404. Have you ever used policy? 2 1 4 4 2 3 3

405. Have you ever created a policy? 2 1 4 4 1 3 3

Results of the SMPE Tool Usability Evaluation Cycle 1

Users A B C D E F

421. Starting the SMPE tool was? 3 4 4 3 3 4

422. Loading the service was? 3 4 4 3 4 4

423. Viewing the details of the policy managing this service
was? 3 4 4 3 3 3

424. Identifying what event triggers the policy was? 3 4 4 2 3 3

425. Identifying what condition the policy is evaluating was? 3 4 4 3 3 3

426. Identifying what adaptive behaviour is the policy is
performing as its action was? 3 4 3 3 3 3

427. To understand the description of the policy managing this
service was? 3 4 3 3 3 2

’ This is the (rounded) average of the pre-test results, where 4 is very positive and 1 is very negative

244

428. To understand the description of the event that triggers
this policy was?

i
3 4 4 2 2 3

429. To understand the description of the condition that must
be satisfied for this policy was? 3 4 4 3 3 3

430. To understand the description of the action that is
performed for this policy was? 3 4 4 3 2 3

431. Smpe tool made the process of browsing the description of
the f)olicy managing this service? 3 4 4 3 3 3

432. Smpe tool made the process of browsing the description of
the event that triggers this policy? 3 4 4 3 3 3

433. Smpe tool made the process of browsing the description of
the condition that must be satisfied for this policy? 3 4 4 3 3 3

434. Smpe tool made the process of browsing the description of
the action that is performed for this policy? 3 4 4 3 3 3

435. When viewing management policies, would you rate
SMPE tool as? 3 4 4 3 3 3

521. Creating a policy for managing the service was? 3 4 4 3 3 3

522. Creating an event that would trigger this policy was? 3 4 3 3 3 3

523. Creating a condition that must be satisfied for this policy
was? 3 4 4 3 3 3

524. Creating an action that would be performed by this policy
was? 3 4 3 3 4 3

525. To understand the process of creating a policy for
managing the service was? 3 4 4 3 3 3

526. To understand the process of describing the event that
would trigger this policy was? 3 4 3 3 3 3

527. To understand the process of describing the condition that
must be satisfied for this policy was? 3 4 4 3 4 3

528. To understand the process of describing the action that
would be performed by this policy was? 3 4 3 3 4 2

529. Smpe tool made the process of creating the policy for
managing the service? 3 4 4 3 3 3

530. Smpe tool made the process of describing the event that
would trigger this policy? 3 4 4 3 3 3

531. Smpe tool made the process of describing the condition
that must be satisfied for this policy? 3 4 4 3 3 3

532. Smpe tool made the process of describing the action that
would be performed by this policy? 3 4 4 3 3 2

533. When describing management policies, would you rate
SMPE tool as? 3 4 3 3 3 3

621. Refining policies for a service was? 3 4 4 3 3 4

622. Identifying the refined policies was? 3 4 4 3 3 3

623. Identifying the events of the refined policies was? 3 4 4 3 3 3

245

624. Identifying the conditions of the refined policies was? 3 4 4 3 4 3

625. Identifying the actions of the refined policies was? 3 4 4 3 4 3

626. To understand the refining process of policies for a service
was? 3 4 3 3 2 2

627. To understand the refined policies was? 3 4 3 3 3 2

628. To understand the events of the refined policies was? 3 4 4 3 3 2

629. To understand the conditions of the refined policies was? 3 4 4 3 3 2

630. To understand the actions of the refined policies was? 3 4 4 3 3 2

631. Smpe tool made the process of refining policies managing
a service? 3 4 4 3 4 2

632. Smpe tool made the process of identifying the refined
policies? 3 4 4 3 3 3

633. Smpe tool made the process of identifying the events of
the refined policies? 3 4 4 3 3 3

634. Smpe tool made the process of identifying the conditions
of the refined policies? 3 4 4 3 3 3

635. Smpe tool made the process of identifying the actions of
the refined policies? 3 4 4 3 3 3

636. How helpful was SMPE in refining policies for a service? 3 4 4 3 3 3

637. How efficient was SMPE in refining policies for a
service? 3 4 4 3 3 3

638. How understandable were the resultant refined policies? 3 4 3 3 3 2

639. Was the actions of the refined policies consistent with the
chosen adaptive behaviour? 3 4 3 3 3 3

640. When refining management policies, would you rate
SMPE tool as? 3 4 4 3 3 3

Results of the SMPE Tool Usability Evaluation Cycle 2

Pre-Test

Users A B C D E F G H I J K L
z
14

401. How would you rate your knowledge
of Policy? 2 2 3 2 2 2 2 2 3 3 2 2 2

402. Have you studied or read about
policies? 2 2 3 2 2 2 2 2 2 3 2 3 2

14 This is the (rounded) average of the pre-test results, where 4 is very positive and 1 is very negative

246

403. Have you seen a policy rule before? 1 1 2 2 2 2 2 3 3 4 2 3 2

404. Have you used policy before? I 1 1 1 2 2 1 3 2 4 1 2 2

405. Have you created a policy before? 1 1 1 1 1 1 1 3 1 4 1 2 2

Results of the SMPE Tool Usability Evaluation Cycle 2

Task-related Questions

Users A B C D E F G H 1 J K L

421. What is the event triggering the
management policy ServiceAdaptlPolicy2? 1 1 1 1 1 1 1 1 1 1 1 1

422. What is the action the mtmagement
policy Service Adapt 1 Policy? will perform? 1 1 1 1 1 1 1 1 0 1 1 1

423. What is the condition the management
policy ServiceAdaptl Policy? must first
satisfy?

1 1 1 1 1 1 1 1 1 1 1 1

Results of the SMPE Tool Usability Evaluation Cycle 2

Questionnaire

Users A B C D E F G H 1 J K L

424. Starting the SMPE tool was? 4 1 4 4 3 3 4 4 3 3 3 3

425. Loading the service was? 4 4 4 4 3 3 4 4 3 3 3 3

426. Viewing the details of the policy
managing this service was? 4 4 4 4 3 3 4 3 3 3 3 3

427. Identifying what event triggers the
policy was? 4 4 3 4 3 3 4 3 3 2 n

L 3

428. Identifying what condition the policy
is evaluating was? 4 4 4 4 3 3 4 3 3 3 3 3

429. Identifying what adaptive behaviour
is the policy is performing as its action
was?

4 4 3 3 3 3 4 3 3 3 3 3

430. Smpe tool made the process of
browsing the description of the policy
managing this service?

3 4 3 4 3 3 4 3 3 3 3 3

431. Smpe tool made the process of
browsing the description of the event that
triggers this policy?

3 4 4 4 3 3 4 3 3 3 3 3

432. Smpe tool made the process of
browsing the description of the condition
that must be satisfied for this policy?

3 4 4 4 3 3 4 3 3 3 3 3

247

433. Smpe tool made the process of
browsing the description of the action that
is performed for this policy?

4 4 3 4 3 3 4 3 3 3 3 3

434. To understand the description of the
policy managing this service using SMPE
tool was?

4 3 3 3 3 3 4 3 3 3 2 3

435. To understand the description of the
event that triggers this policy using SMPE
tool was?

4 3 3 3 3 3 4 3 3 3 2 3

436. To understand the description of the
condition that must be satisfied for this
policy using SMPE tool was?

3 3 3 3 3 3 3 3 3 3 2 3

437. To understand the description of the
action that is performed for this policy
using SMPE tool was?

3 3 3 3 3 3 4 3 3 3 2 3

521. Creating a policy for managing the
service was? 3 3 4 3 3 3 4 3 3 3 3 3

522. Creating an event that would trigger
this policy was? 3 3 3 3 3 3 4 3 3 2 3 3

523. Creating a condition that must be
satisfied for this policy was? 2 3 4 3 3 3 4 3 3 2 3 3

524. Creating an action that would be
performed by this policy was? 2 2 3 3 3 3 4 3 3 3 3 3

525. Smpe tool made the process of
creating the policy for managing the
service?

3 3 4 3 3 3 4 3 3 2 3 3

526. Smpe tool made the process of
describing the event that would trigger this
policy?

3 3 3 3 3 3 4 3 3 2 3 3

527. Smpe tool made the process of
describing the condition that must be
satisfied for this policy?

3 3 3 3 3 4 3 3 2 3 3

528. Smpe tool made the process of
describing the action that would be
performed by this policy?

3 2 4 3 3 3 4 3 3 3 3 3

529. To understand the process of creating
a policy for managing the service using
SMPE tool was?

3 3 Q3 3 3 3 4 3 3 2 3 3

530. To understand the process of
describing the event that would trigger this
policy using SMPE tool was?

3 3 4 3 3 3 4 3 3 2 3 3

531. To understand the process of
describing the condition that must be
satisfied for this policy using SMPE tool
was?

3 3 3 3 3 3 4 3 3 2 3 3

532. To understand the process of
describing the action that would be
performed by this policy using SMPE tool
was?

3 3 3 3 3 3 4 3 3 3 3 3

621. Refining policies for a service was? 3 4 3 3 3 3 4 4 3 3 3 3

622. Identifying the refined policies was? 3 3 4 3 2 3 4 3 3 3 3 3

623. Smpe tool made the process of
refining policies managing a service? 3 4 4 3 2 3 4 3 3 3 4 3

624. Smpe tool made the process of
identifying the refined policies? 3 3 4 3 3 3 4 3 3 3 3 3

248

625. To understand the process of
generating refined policies to manage a
service was?

3 3 2 4 2 3 3 3 3 3 3 3

626. To understand the resultant
generated refined policies was? 3 3 3 3 2 3 3 3 3 3 3 3

627. How helpful was SMPE in refining
policies for a service? 3 3 4 3 2 3 4 3 3 3 3 3

628. How understandable were the
resultant generate refined policies? 3 3 4 3 2 3 3 3 3 3 3 3

Results of the SMPE Tool Usability Evaluation Cycle 3

Pre-Test

Users A B C D E F G H I J K L
z
15

401. How would you rate your knowledge
of Policy? 2 2 3 2 2 2 2 2 3 3 2 2 2

402. Have you studied or read about
policies? 2 2 3 2 2 2 2 2 2 3 2 3 2

403. Have you seen a policy rule before? 1 1 2 2 2 2 2 3 3 4 2 3 2

404. Have you used policy before? 1 1 1 1 2 2 1 3 2 4 1 2 2

405. Have you created a policy before? 1 1 1 ' 1 1 1 3 1 4 1 2 2

Results of the SMPE Tool Usability Evaluation Cycle 3

Task-related Questions

Users A B c D E F G H 1 J K L

421. What is the event triggering the
management policy ServiceAdaptlPolicy2? 1 0 1 0 1 1 1 1 1 1 1 1

422. What is the action the management
policy ServiceAdaptl Policy? will perform? 1 0 1 I 1 1 1 1 1 1 1 1

423. What is the condition the management
policy ServiceAdaptl Policy? must first
satisfy?

1 0 1 1 1 1 1 1 1 1 1 1

This is the (rounded) average of the pre-test results, where 4 is very positive and 1 is very negative

249

Results of the SMPE Tool Usability Evaiuation Cycie 3

Questionnaire

Users A B C D E F G H 1 J K L

424. Starting the SMPE tool was? 4 3 3 4 3 4 4 4 4 3 3 4

425. Loading the service was? 4 3 3 4 3 4 4 4 4 3 3 4

426. Viewing the details of the policy
managing this service was? 4 3 3 4 2 4 3 4 3 3 3 4

427. Identifying what event triggers the
policy was? 4 3 3 3 3 3 3 4 3 3 2 3

428. Identifying what condition the policy
is evaluating was? 4 3 3 3 3 3 3 4 3 3 3 3

429. Identifying what adaptive behaviour
is the policy is performing as its action
was?

4 3 3 3 2 3 3 4 3 3 3 3

430. Smpe tool made the process of
browsing the description of the policy
managing this service?

4 3 3 3 3 3 2 4 3 3 3 3

431. Smpe tool made the process of
browsing the description of the event that
triggers this policy?

4 3 3 3 3 3 2 4 3 3 3 3

432. Smpe tool made the process of
browsing the description of the condition
that must be satisfied for this policy?

4 3 3 3 3 3 3 4 3 3 3 3

433. Smpe tool made the process of
browsing the description of the action that
is performed for this policy?

4 3 3 3 3 3 3 4 3 3 3 3

434. To understand the description of the
policy managing this service using SMPE
tool was?

3 3 3 3 2 3 3 4 3 3 2 3

435. To understand the description of the
event that triggers this policy using SMPE
tool was?

3 3 3 3 2 3 3 4 3 3 2 3

436. To understand the description of the
condition that must be satisfied for this
policy using SMPE tool was?

3 3 3 3 3 3 3 3 3 3 2 3

437. To understand the description of the
action that is performed for this policy
using SMPE tool was?

3 3 3 3 3 3 3 4 3 3 2 3

521. Creating a policy for managing the
service was? 4 3 4 3 3 4 3 3 4 3 3 3

522. Creating an event that would trigger
this policy was? 4 3 4 3 3 4 3 3 4 3 2 3

523. Creating a condition that must be
satisfied for this policy was? 4 3 4 3 3 4 3 3 4 3 2 3

524. Creating an action that would be
performed by this policy was? 4 3 4 3 3 4 3 3 4 3 3 3

525. Smpe tool made the process of
creating the policy for managing the
service?

4 3 4 4 3 4 3 3 4 3 2 3

250

526. Smpe tool made the process of
describing the event that would trigger this
policy?

4 3 4 4 3 4 3 3 4 3 2 3

527. Smpe tool made the process of
describing the condition that must be
satisfied for this policy?

4 3 4 3 3 4 3 3 4 3 2 3

528. Smpe tool made the process of
describing the action that would be
performed by this policy?

4 3 4 3 3 4 3 3 4 3 3 3

529. To understand the process of creating
a policy for managing the service using
SMPE tool was?

3 3 4 3 3 4 2 3 4 3 2 3

530. To understand the process of
describing the event that would trigger this
policy using SMPE tool was?

3 3 4 3 3 4 2 3 4 3 2 3

531. To understand the process of
describing the condition that must be
satisfied for this policy using SMPE tool
was?

3 3 4 3 3 4 2 3 4 3 2 3

532. To understand the process of
describing the action that would be
performed by this policy using SMPE tool
was?

3 3 4 3 3 4 2 3 4 3 3 3

621. Refining policies for a service was? 4 3 2 3 3 3 3 3 3 4 3 3

622. Identifying the refined policies was? 3 3 2 3 3 3 3 3 3 4 3 3

623. Smpe tool made the process of
refining policies managing a service? 4 3 4 3 3 3 3 4 3 4 3 3

624. Smpe tool made the process of
identifying the refined policies? 4 3 4 3 3 3 3 4 3 4 3 3

625. To understand the process of
generating refined policies to manage a
service was?

3 3 3 3 3 3 3 3 3 3 3 3

626. To understand the resultant
generated refined policies was? 3 3 3 3 2 3 3 3 3 3 2 3

627. How helpful was SMPE in refining
policies for a service? 4 3 3 3 4 3 3 3 3 3 4 3

628. How understandable were the
resultant generate refined policies? 3 3 3 3 2 3 3 3 3 3 2 3

Analysis of the SMPE Tool Usability Evaluations

SMPE Usability Evaluation Cycle 1

Usability Test 1 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 1 2 0 2 4

251

Easy 3 16 3 16 3 13

Very Easy 4 7 4 8 4 7

Usability Test 2 Easiness Heipfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 0 2 1 2 1

Easy 3 17 3 15 3 15

Very Easy 4 7 4 8 4 8

Usability Test 3 Easiness Helpfuiness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 0 2 1 2 6

Easy 3 17 3 22 3 16

Very Easy 4 13 4 13 4 8

SMPE Usability Evaluation Cycle 2

Usability Test 1 Easiness Heipfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 2 2 0 2 4

Easy 3 29 3 33 3 39

Very Easy 4 17 4 15 4 5

252

Usability Test 2 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 5 2 4 2 3

Easy 3 37 3 38 3 40

Very Easy 4 6 4 6 4 5

Usability Test 3 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 1 2 1 2 3

Easy 3 18 3 17 3 20

Very Easy 4 5 4 6 4 1

SMPE Usability Evaluation Cycle 3

Usability Test 1 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 3 2 2 2 6

Easy 3 34 3 38 3 39

Very Easy 4 11 4 8 4 3

Usability Test 2 Easiness Helpfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

253

Very Difficult 1 0 1 0 1 0

Difficult 2 2 2 3 2 7

Easy 3 30 3 27 3 29

Very Easy 4 16 4 18 4 12

Usability Test 3 Easiness Heipfulness Comprehension

Meaning Bin Freq Bin Freq Bin Freq

Very Difficult 1 0 1 0 1 0

Difficult 2 2 2 0 2 2

Easy 3 19 3 16 3 22

Very Easy 4 3 4 8 4 0

SMPE Comparison of Usability Evaluation Cycles

Usability Test 1 Easiness

Observed A B C Total

Easy 23 46 45 114

Difficult 1 2 3 6

24 48 48 120

Expected A B C

Easy 22.8 45.6 45.6

Difficult 1.2 2.4 2.4

Null Hypothesis Observed Expected Result

P-value 0.87671 0.05 TRUE

254

Usability Test 1 Helpfulness

Observed A B C Total

Easy 24 48 46 118

Difficult 0 0 2 2

24 48 48 120

Expected A B C

Easy 23.6 47.2 47.2

Difficult 0.4 0.8 0.8

Null Hypothesis Observed Expected Result

P-value 0.217529 0.05 TRUE

Usability Test 1 Comprehension

Observed A B C Total

Easy 20 44 42 106

Difficult 4 4 6 14

24 48 48 120

Expected A B C

Easy 21.2 42.4 42.4

Difficult 2.8 5.6 5.6

Null Hypothesis Observed Expected Result

P-value 0.567771 0.05 TRUE

Usability Test 2 Easiness

Observed A B C Total

Easy 24 43 46 113

255

Difficult 0 5 2 7

24 48 48 120

Expected A B C

Easy 22.6 45.2 45.2

Difficult 1.4 2.8 2.8

Null Hypothesis Observed Expected Result

P-value 0.168208 0.05 TRUE

Usability Test 2 Helpfulness

Observed A B C Total

Easy 23 44 45 112

Difficult 1 4 3 8

24 48 48 120

Expected A B C

Easy 22.4 44.8 44.8

Difficult 1.6 3.2 3.2

Null Hypothesis Observed Expected Result

P-value 0.791065 0.05 TRUE

Usability Test 2 Comprehension

Observed A B C Total

Easy 23 45 41 109

Difficult 1 3 7 11

24 48 48 120

Expected A B C

256

Easy 21.8 43.6 43.6

Difficult 2.2 4.4 4.4

Null Hypothesis Observed Expected Result

P-value 0.234287 0.05 TRUE

Usability Test 3 Easiness

Observed A B C Total

Easy 30 23 22 75

Difficult 0 1 2 3

30 24 24 78

Expected A B C

Easy 28.84615 23.07692 23.07692

Difficult 1.153846 0.923077 0.923077

Null Hypothesis Observed Expected Result

P-value 0.284601 0.05 TRUE

Usability Test 3 Helpfulness

Observed A B C Total

Easy 35 23 24 82

Difficult 1 1 0 2

36 24 24 84

Expected A B C

Easy 35.14286 23.42857 23.42857143

Difficult 0.857143 0.571429 0.571428571

Null Hypothesis Observed Expected Result

257

P-value 0.625307 0.05 TRUE

Usability Test 3 Comprehension

Observed A B C Total

Easy 24 21 22 67

Difficult 6 3 2 11

30 24 24 78

Expected A B C

Easy 25.76923 20.61538 20.61538

Difficult 4.230769 3.384615 3.384615

Null Hypothesis Observed Expected Result

P-value 0.455745 0.05 TRUE

258

Appendix E - Ontology Models
The Ontology models for the Finite State Machine and Obligation Policy used by the

SABE and SMPE tools.

FSM Ontology Model
<?xml version=" 1.0" encoding="UTF-8" ?>
<rdf;RDF

xmlns;rdf="http://www. w3 .org/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.kdeg.cs.tcd.ie/FiiiiteStateMachme.owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http;//www.kdeg.cs.tcd.ie/FiniteStateMachine.owl">
<owl:Ontology rdf:about="">
</owl:Ontology>
<owl:Class rdf:ID="Transition">
<rdfs:subClassOf>

<owl:Restriction>
<0 wl: onProperty>
<owl: Obj ectProperty rdf: about="#transitionsOf'/>

</owl:oiiProperty>
<owl:maxCardinality rdf datatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </owl: maxCardinality>

</o wl: Restric tion>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:maxCardinality rdf datatype="http://www.w3.org/2001/XMLSchema#int"
>l</owl:maxCardinality>
<owl:orLProperty>

<owl: ObjectProperty rdfabout="#guard"/>
</owl: onProperty>

</o wl: Restriction>
</rdfs:subClassOf>
<rdfs;subClassOfi>

<owl:Restriction>
<0 wl: onProperty>
<owl:ObjectProperty rdfabout="#effect"/>

</owl:onProperty>
<owl:maxCardmality rdf datatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </owl: maxCardinality>

</o wl: Restric tion>
</rdfs:subClassOf>
<rdfs: subClassO f>

<0 wl: Restriction>
<owl:cardmality rdfdatatype="http://www.w3.org/2001/XMLSchema#mt"
>l</owl:cardinality>
<0 wl: onProperty>
<0 wl: Obj ectProperty rdf about=" #target"/>

</o wl: oiiProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs: subC lassOfi>
<owl: Restric tion>

<0 wl: onProperty>

259

<owl: Obj ectProperty rdf:about=" #source"/>
</o wl; onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>l</owl;cardmality>

</owl:Restriction>
</rdfs;subClassOf>
<rdfs; subClassOf>
<0 wl: Restriction>
<owl:maxCardmality rdf:datatype="http;//www.w3.org/2001/XMLSchema#int"
> 1 </owl: maxCardinality>
<0 wl: onProperty>
<owl: Obj ectProperty rdf:about="#intemalTransitionOf 7>

</owl:onProperty>
</owl: Restriction>

</rdfs: subClassOf>
<rdfs:subClassOf>
<owl: Class rdf: ID="ModelElement"/>

</rdfs:subClassOf>
<rdfs: subC lassO f>
<owl: Restriction>
<0 wl: onProperty>

<owl: Obj ectProperty rdf about="#trigger"/>
</o wl: onProperty>
<owl:maxCardmality rdf datatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </o wl: inaxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf ID="Guard">

<rdfs:subClassOfi>
<owl:Restriction>
<owl:cardinality rdf datatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </owl; cardinality>
<0 wl: onProperty>

<owl:ObjectProperty rdfabout="#guardOf'/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassO£>
<rdfs:subClassOf rdfresource="#ModelElement"/>

</owl:Class>
<owl:Class rdf ID="FinalState">

<rdfs: subClassO£>
<owl:Class rdf about="#State"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf ID="ChangeEvent">

<rdfs:subClassOf>
<owl:Class rdf about="#Event"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdfID="StateMachine">
<rdfs:subClassOf>

<0 wl: Restric tion>
<0 wl: onProperty>
<owl:ObjectProperty rdfabout="#top"/>

</owl:onProperty>
<owl:cardinality rdf datatype="http://www.w3.org/2001/XMLSchema#mt"
>l</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

260

<rdfs: subC lassO f>
<0 wl: Restriction>

<owl:maxCardmality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>l</owl:maxCardmality>
<0 wl: onProperty>
<owl:ObjectProperty rdf:about="#context"/>

</o wl: onProperty>
</owl:Restriction>

</rdfs:subClassOfi>
<rdfs:subClassOf rdf:resource="#ModelElement"/>

</owl:Class>
<owl:Class rdf:ID="SubmachineState">
<rdfs: subC lassOC>

<0 wl: Restriction>
<0 wl: onProperty>

<owl :Obj ectProperty rdf: about="#submachine"/>
</owl:onProperty>
<owl: cardinality rdf: datatype="http ://www. w3 .org/2001 /XMLSchema#mt"
> 1 </owl:cardmality>

</owl:Restriction>
</rdfs:subClassOC>
<rdfs:subClassOf>

<owl:Class rdf about="#CompositeState"/>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf ID="SimpleState">

<rdfs:subClassOC>
<owl:Class rdf about="#State"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf ID="SubState">
<rdfs:subClassOf>

<owl:Class rdfabout="#StateVertex"/>
</rdfs:subClassOf>

</owl;Class>
<owl:Class rdf ID="Procedure">
<rdfs:subClassOf>
<owl: Restriction>

<0 wl: onProperty>
<owl :ObjectProperty rdf about="#effectOf 7>

</ owl: onProperty>
<owl:maxCardinality rdf datatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </o wl: maxCardmality>

</owl: Restriction>
</rdfs:subClassOf>

</owl:Class>
<0wl: C lass rdf ID=" SignalEvent" >

<rdfs:subClassO£>
<owl:Class rdf about="#Event"/>

</rdfs:subClassOf>
<rdfs: subClassOf>
<0 wl: Restriction>

<owl:onProperty>
<owl:Obj ectProperty rdfabout="#signal"/>

</owl:onProperty>
<owl:cardinality rdfdatatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </ owl: cardinality>

</o wl: Restriction>
</rdfs:subClassOf>

</owl:Class>

261

<owl:Class rdf:ID="Parameter">
<rdfs:subClassOf>

<0 wl: Restriction>
<owl:maxCardmality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </o wl: maxC ardinality>
<0 wl: onProperty>
<owl;ObjectProperty rdf:about="#parameterOf'/>

</o wl: onProperty>
</owl;Restriction>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="CallEvent">

<rdfs:subClassOf>
<owl:Class rdf:about="#Event"/>

</rdfs:subClassOf^
<rdfs;subClassOf>

<owl:RestTiction>
<owl: cardinality rdf: datatype="http://www.w3 .org/2001/XMLSchema#mt"
> 1 </owl:cardinality>
<owl:onProperty>

<owl:ObjectProperty rdfabout="#operation"/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf ID=" State Vertex">

<rdfs;subClassOf rdf resource="#ModelElement"/>
<rdfs:subClassOf>

<0 wl: Restriction>
<owl:maxCardinality rdfdatatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </owl: maxCardinality>
<owl:onProperty>

<owl: Obj ectProperty rdf about="#contamer"/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdfID="PseudoState">

<rdfs:subClassOf rdfresource="#StateVertex"/>
</owl:Class>
<owl:Class rdf ID="State">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty>
<owl:ObjectProperty rdfabout="#doActivity"/>

</o wl: onProperty>
<owl:maxCardinality rdf data type="http://www.w3.org/200 l/XMLSchema#int"
> 1 </o wl: maxCardinality>

</owl: Restric tion>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl;Restriction>
<owl:maxCardinality rdfdatatype="http://www.w3.org/2001/XMLSchema#mt"
>l</owl:maxCardinality>
<owl:onProperty>
<owl: Obj ectProperty rdf about="#exit"/>

</o wl: onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs: subC lassOf>

262

<owl; Restriction>
<0 wl: onProperty>
<owl:ObjectProperty rdf:about="#entry"/>

</o wl; onProperty>
<owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
> 1 </owl: maxCardmality>

</o wl; Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#StateVertex"/>
<rdfs:subClassOC>

<owl; Restriction>
<0 wl: onProperty>
<owl:ObjectProperty rdf:about^"#topOf'/>

</o wl: onProperty>
<owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>l</owl:maxCardmality>

</owl:Restriction>
</rdfs;subClassOC>

</owl:Class>
<owl:Class rdf:ID="TimeEvent">

<rdfs:subClassOfl>
<owl;Class rdf:about="#Event"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Signar7>
<owl:Class rdf;ID="SynchState">
<rdfs:subClassOfrdf:resource="#StateVertex"/>

</owl:Class>
<owl:Class rdf:ID="CompositeState">
<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>
<owl:Class rdf:ID="Operation"/>
<owl:Class rdf:ID="Event">
<rdfs:subClassOf rdf:resource="#ModelElement"/>

</owl:Class>
<0 wl: Obj ectProperty rdf: ID=" transitionsOf' >
<rdfs:domain rdfresource="#Transition"/>
<owl:inverseOf>
<owl:ObjectProperty rdfabout="#transitions"/>

</o wl: inverseOf>
</owl;ObjectProperty>
<owl:ObjectProperty rdf ID="submachineOf'>

<rdfs:range rdfresource="#SubmachineState"/>
<rdfs:domain rdfresource="#StateMachine"/>
<owl:inverseOf>

<owl: Obj ectProperty rdf about="#submacliine"/>
</owl:inverseOC>

</owl:ObjectProperty>
<owl:ObjectProperty rdfID="intemalTransitionOf'>

<rdfs:domain rdfresource="#Transition"/>
<owl:mverseO£>
<owl: Obj ectProperty rdf about=" #mtemalTraiisition"/>

</owl:inverseOf>
<rdfs:range rdfresource="#State"/>

</o wl: Obj ectProperty>
<owl;ObjectProperty rdfID="doActivity">

<rdfs:range rdfresoiirce="#Procedure"/>
<rdfs:domain rdfresource="#State"/>

</o wl: Obj ectProperty>
<owl:ObjectProperty rdf ID="parameter">

263

<0 wl; in verseO f>
<owl:ObjectProperty rdf:about="#parameterOf'/>

</o wl; mverseOf>
<rdfs;range rdf:resource="#Parameter"/>
<rdfs:domainrdf:resource="#Event"/>

</o wl: Obj ectProperty>
<owl:ObjectProperty rdf:ID="subvertex">

<owl;mverseOfi>
<owl:ObjectProperty rdf:about="#container"/>

</o wl: inverseOf^>
<rdfs:domain rdf:resource="#CompositeState"/>
<rdfs:range rdf:resource="#StateVertex"/>

</owl: Obj ectProperty>
<owl: Obj ectProperty rdf: ID=" exit" >

<rdfs:range rdfresource="#Procedure"/>
<rdfs:domain rdfresource="#State"/>
<rdftype rdfresource="http://www.w3.org/2002/07/owl#TransitiveProperty"/>

</o wl: Obj ectProperty>
<owl: Obj ectProperty rdf ID="submachine">
<owl:inverseOf rdfresource="#submachineOf7>
<rdfs:range rdfresource="#StateMachme"/>
<rdfs:domain rdfresource="#SubmachineState"/>

</o wl: Obj ectProperty>
<0 wl: Obj ectProperty rdf ID=" target" >
<rdfs:domain rdfresource="#Transition"/>
<rdfs:range rdfresource="#StateVertex"/>
<owl:inverseOf>

<owl:ObjectProperty rdf about="#incoming"/>
</o wl: inverseOf>

</owl: Obj ectProperty>
<owl: Obj ectProperty rdfID="guardOf'>

<owl:inverseOf>
<owl:ObjectProperty rdfabout="#guard"/>

</o wl: in verseOf>
<rdfs:domain rdfresoiirce="#Guard"/>
<rdfs: range rdf resource="#Transition"/>

</owl:ObjectProperty>
<0 wl: Obj ectProperty rdf ID=" guard" >

<owl:inverseOf rdfresource="#guardOf7>
<rdfs:range rdfresource="#Guard'7>
<rdfs:domain rdfresource="#Transition'7>

</o wl: Obj ectProperty>
<owl:ObjectProperty rdf ID="deferrableEvent">

<rdfs: range rdf resource=" #Event'7>
<rdfs:doniain rdfresource="#State'7>

</o wl: Obj ectProperty>
<0 wl: Obj ectProperty rdf ID=" triggerO f' >

<rdfs:range rdfresource="#Transition'7>
<owl:inverseOf>

<owl: Obj ectProperty rdfabout="#trigger'7>
</owl:inverseOf>
<rdfs:domain rdfresource="#Event'7>

</o wl: Obj ectProperty>
<owl:ObjectProperty rdfID="topOf'>

<rdfs:domain rdfresource="#State'7>
<rdfs:range rdfresource="#StateMachine'7>
<owl:inverseOfrdfresource="#top'7>

</owl: Obj ectProperty>
<owl:ObjectProperty rdfID="eflFect">

<rdfs:range rdfresource="#Procedure'7>

264

<rdfs:domain rdf;resource="#Transition"/>
<owl:inverseOf>

<owl:ObjectProperty rdf:about="#effectOf'/>
</owl:inverseOf>

</o wl; Obj ectProperty>
<0 wl: Obj ec tProperty rdf: ID=" trigger" >

<rdfs:domain rdfresource="#Transition"/>
<owl:inverseOfrdfresource="#triggerOf'/>
<rdfs:range rdfresource="#Event"/>

</o wl: Obj ectProperty>
<0 wl; Obj ec tProperty rdf ID=" intemalT ransition" >
<0 wl: inverseO f rdf resource=" #intemalTransitionO f 7>
<rdfs:range rdfresource="#Transition"/>
<rdfs:domain rdfresource="#State"/>

</o wl: Obj ectProperty>
<owl:ObjectProperty rdf ID="operationOf'>

<owl: inverseO fi>
<owl: Obj ectProperty rdf about="#operation"/>

</o wl: inverseOC>
<rdfs:domain rdfresource="#Operation"/>
<rdfs:range rdfresource="#CallEvent"/>

</o wl: Obj ectProperty>
<owl:ObjectProperty rdfID="effectOf'>
<rdfs:range rdfresource="#Transition"/>
<rdfs:domain rdfresource="#Procediire"/>
<owl: inverseOf rdf resource="#effect"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf ID="entry">

<rdfs:domain rdfresource="#State"/>
<rdfs;range rdfresource="#Procedure"/>

</o wl: ObjectProperty>
<owl:ObjectProperty rdf ID="incoming">

<rdfs:domain rdfresource="#StateVertex"/>
<rdfs:range rdfresource="#Transition"/>
<owl: inverseOf rdf resource=" #target"/>

</o wl: Obj ec tProperty>
<owl;ObjectProperty rdfID="container">

<rdfs;range rdfresource="#CompositeState"/>
<rdfs:domain rdfresource="#StateVertex"/>
<owl:inverseOfrdfresource="#subvertex"/>

</o wl: Obj ectProperty>
<owl:ObjectProperty rdfID="parameterOf'>

<rdfs:doniain rdfresource="#Parameter"/>
<owl:inverseOfrdfresource="#parameter"/>
<rdfs:range rdfresource="#Event"/>

</o wl: Obj ectProperty>
<0wl: Obj ectProperty rdf ID=" outgoing" >

<rdfs:domain rdfresource="#StateVertex"/>
<rdfs:range rdfresource="#Transition"/>
<owl: inverseO f>

<owl:ObjectProperty rdfabout="#source"/>
</owl: in verseOC>

</o wl: Obj ectProperty>
<owl: Obj ectProperty rdf ID=" signal" >

<rdfs:range rdfresource="#Signal"/>
<owl:inverseOf>

<owl:ObjectProperty rdfabout="#signalOf'/>
</owl:inverseO£>
<rdfs;domain rdfresource="#SignalEvent"/>

</o wl: Obj ectProperty>

265

<owl:ObjectProperty rdf;ID="top">
<rdfs:range rdf:resource="#State"/>
<rdfs:domain rdf;resource="#StateMachine"/>
<owl; inverseOf rdf:resource="#topOf'/>

</o wl: Obj ec tProperty>
<owl:ObjectProperty rdf:ID="behaviour">

<rdfs:domain rdf:resource="#ModelElement"/>
<owl:mverseOf>

<owl: Obj ectProperty rdf: about="#context"/>
</o wl: inverseOf>

</o wl: Obj ec tProperty>
<0 wl: Obj ectProperty rdf ID=" context" >

<rdfs:domain rdfresource="#StateMachine"/>
<owl:inverseOfrdfresource="#behaviour"/>
<rdfs:range rdfresource="#ModelElement"/>

</o wl: Obj ectProperty>
<owl:ObjectProperty rdfID="signalOf'>

<rdfs:domain rdfresource="#Signal"/>
<rdfs:range rdfresource="#SignalEvent"/>
<owl:inverseOf rdfresource="#signal"/>

</o wl: Obj ec tProperty>
<owl;ObjectProperty rdfID="transitions">

<rdfs:range rdfresoiirce="#Transition"/>
<owl:inverseOfrdfresource="#transitionsOf'/>
<rdfs:domain rdfresource="#StateMachine"/>

</o wl: Obj ec tProperty>
<owl:ObjectProperty rdfID="source">

<rdfs:range rdfresource="#StateVertex"/>
<owl:inverseOf rdfresource="#outgoing"/>
<rdfs:domain rdfresource="#Transition"/>

</o wl: Obj ec tProperty>
<0 wl: Obj ectProperty rdf ID=" operation" >

<rdfs:range rdfresource="#Operation"/>
<rdfs:domain rdfresource="#CallEvent"/>
<owl: inverseOf rdf resource=" #operationOf'/>

</o wl: Obj ectProperty>
<owl:DatatypeProperty rdfID="changeExpression">

<rdfs:range rdfresource="http://www.w3.org/2001/XMLSchenia#string"/>
<rdfs:domain rdfresoiirce="#ChangeEvent"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf ID="kind">

<rdfs:range>
<owl: DataRange>
<owl:oneOf rdfparseType="Resource">
<rdf first rdfdatatype="http;//www.w3.org/2001/XMLSchema#string"
>initial</rdf first>
<rdfrest rdfparseType="Resource">
<rdf rest rdfparseType="Resoiirce">
<rdfrest rdfparseType="Resource">
<rdf first rdf datatype="http://www.w3.org/2001/XMLSchenia#string"
>join</rdf first>
<rdfrest rdfparseType="Resource">
<rdf first rdfdatatype="http://www.w3.org/2001/XMLSchema#string"
>fork</rdf first>
<rdfrest rdfparseType="Resource">
<rdfrest rdfparseType="Resource">
<rdf first rdfdatatype="http;//www.w3.org/2001/XMLSchenia#string"
>choice</rdf first>
<rdf rest rdf resource="http://www.w3 .org/1999/02/22-rdf-syntax-ns#nil"/>

</rdfrest>

266

<rdf: first rdf;datatype="http://www.w3.org/2001/XMLSchema#strmg"
>junction</rdf: first>

</rdf:rest>
</rdf:rest>

</rdf:rest>
<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>shallo wHistory</rdf: first>

</rdf:rest>
<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>deepHistory</rdf: first>

</rdf:rest>
</owl:oneO£>

</o wl; DataRange>
</rdfs:range>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:domain rdf:resource="#PseudoState"/>

</owl:DatatypeProperty>
<owI:DatatypeProperty rdf:ID="isRegion">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
<rdfs:domain rdf;resource="#CompositeState"/>

</owl:DatatypeProperty>
<0 wl: DatatypeProperty rdf: ID=" expression" >

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Guard"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="when">
<rdfs:domain rdf:resource="#TimeEvent"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="bound">

<rdfs:domain rdf:resource="#SynchState"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#positiveInteger"/>

</owl;DatatypeProperty>
<owl:DatatypeProperty rdf:ID="isConcurrent">
<rdfs:domain rdf:resource="#CompositeState"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#booIean"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="referenceState">

<rdfs:domain rdf:resource="#SubState"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI"/>

</o wl: DatatypeProperty>
</rdf:RDF>

Obligation Policy Ontology Model
<?xml version="1.0" encodmg="ISO-8859-l"?>
<?xml version="1.0" encoding="ISO-8859-l"?>
<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
<!ENTITY owl "http://www.w3.org/2002/07/owl">
<!ENTITY policy "http://kdeg.cs.tcd.ie/Policy.owl">
<!ENTITY DEFAULT "http://kdeg.cs.tcd.ie/Policy.owl">
<!ENTITY THIS "http://kdeg.cs.tcd.ie/Policy.owl">

]>
<rdf:RDF
xmlns:rdf= "&rdf;#"
xmlns:rdfs = "&rdfs;#"
xmlns:owl = "&owl;#"

267

xmlns = "&policy;#">
<owl:Ontology rdf:about="">

<0 wl: versionInfo>
1.0

</owl:versionInfo>
<rdfs:comment>

OWL ontology for obligation policy.
</rdfs:comnient>

</owl: Ontology>
<!-- Policy —>
<owl;Class rdf:ID="Policy">

<rdfs:label>Policy</rdfs;label>
<rdfs:coniment>Obligation PoIicy</rdfs;coninient>

</owl:Class>
<owl:DatatypeProperty rdf:ID=" subject">

<rdfs:domain rdf:resource="#Policy"/>
<rdfs:range rdf:resoiirce="&xsd;#anyURI"/>

</owl:DatatypeProperty>
<0 wl: DatatypeProperty rdf; ID=" target" >
<rdfs:domain rdf:resource="#Policy"/>
<rdfs:range rdfresource="&xsd;#anyURI"/>

</owl:DatatypeProperty>
<!-- Event —>
<0 wl: Obj ectProperty rdf: ID=" event">

<rdfs:domain rdf resource="#Policy"/>
<rdfs:range rdfresouree="#Event"/>

</owl:DatatypeProperty>
<owl:Class rdf ID="Event">
<owl:unionOf rdfparseType="Collection">
<owl;Class rdf about="#SimpleEvent"/>
<owl:Class rdf about="#ComplexEvent"/>

</owl:unionOf>
</owl:Class>
<owl:Class rdfID="SimpleEvent">

<rdfs:subClassOf rdfresource="#Event"/>
<rdfs:label>Simple Event</rdfs:label>
<rdfs:coniment>Simple Event</rdfs:coinment>

</owl:Class>
<owl:DatatypeProperty rdfID="value">

<rdfs:comment>
Value of a policy event aspect.

</rdfs: coinment>
<rdfs:domain rdfresource="#SimpleEvent"/>
<rdfs:range rdfresource="&xsd;#anyURI"/>

</o wl: Obj ectProperty>
<!— Condition —>
<owl:ObjectProperty rdfID="condition">

<rdfs:domain rdfresource="#Policy"/>
<rdfs:range rdfresource="#Condition"/>

</o wl: DatatypeProperty>
<owl:Class rdf ID="Condition">

<0 wl: unionO f rdf parseType=" Collection" >
<owl:Class rdfabout="#SimpleCondition"/>
<owl:Class rdfabout="#ConiplexCondition"/>

</owl;unionOf>
</owl:Class>
<owl:Class rdf ID="SimpleCondition">

<rdfs:subClassOfrdfresource="#Condition"/>
<rdfs: label>S impleC ondition</rdfs: label>
<rdfs:conmient>Simple Condition</rdfs;coniment>

268

</owl:Class>
<0 wl: DatatypeProperty rdf: ID=" subj ect" >

<rdfs:coiiiment>
Subject of a policy condition aspect.

</rdfs:coniment>
<rdfs:domain rdfresource="#SinipleCondition"/>
<rdfs:range rdfresource="&xsd;#anyURI"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdfID="predicate">

<rdfs:comment>
Predicate of a policy condition aspect.

</rdfs;coinment>
<rdfs:doniain rdfresource="#SinipleCondition"/>
<rdfs:range rdfresource="#Predicate"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf ID=" value">
<rdfs:coninient>

Value of a policy condition aspect.
</rdfs; comment>
<rdfs:domain rdfresource="#SimpleCondition"/>
<rdfs:range rdfresource="&xsd;#anyURJ"/>

</o wl: Obj ectProperty>
<owl:Class rdf ID="Predicate">
<rdfs:label>Predicate</rdfs:label>
<rdfs: comment>Predicate</rdfs: conunent>

</owl:Class>
<Predicate rdf ID="equal"/>
<Predicate rdf ID="inequal"/>
<Predicate rdf ID="greater"/>
<Predicate rdf ID="less"/>
<!-- Action -->
<owl:ObjectProperty rdfID="action">

<rdfs:domain rdfresource="#Policy"/>
<rdfs:range rdf:resource="#Action"/>

</owl:DatatypeProperty>
<owl:Class rdf ID="Action">
<owl:unionOf rdfparseType="Collection">

<owl:Class rdfabout="#SimpleAction"/>
<owl:Class rdfabout="#ConiplexAction"/>

</owl:unionOf>
</owl;Class>
<owl:Class rdfID="SimpleAction">
<rdfs:subClassOfrdfresource="#Action"/>
<rdfs: label>S imple Action</rdfs: label>
<rdfs:coninient>Simple Action</rdfs:coninient>

</owl:Class>
<owl:DatatypeProperty rdf ID=" value" >

<rdfs:coinment>
Value of a policy action aspect.

</rdfs:coniment>
<rdfs:domain rdfresource="#SimpleAction"/>
<rdfs:range rdfresource="&xsd;#anyURI"/>

</o wl: Obj ectProperty>
<!-- Comples (Multiple) aspects ->
<owl:Class rdfID="ConiplexEvent">
<rdfs:subClassOfrdfresource="#Event"/>
<rdfs:label>Coniplex Event</rdfs:label>
<rdfs:coinment>Complex Event</rdfs:coinment>
<0 wl: Restriction>
<owl:onProperty rdfresource="&rdfs;#first"/>

269

<owl:allValuesFrom rdf;resource="#PolicyAspect"/>
</o wl; Restriction>
</rdfs:subClassOfi>
<rdfs:subClassO£>
<owl:Restriction>
<owl:onProperty rdf:resource="&rdfs;#rest"/>
<owl:allValuesFrom rdf:resource="#PolicyAspect"/>
</o wl: Restriction>
</rdfs: subC lassO f>

</owl:Class>
<owl:Class rdf:ID="ComplexCondition">

<rdfs:subClassOfrdf:resource="#Condition"/>
<rdfs;label>ComplexCondition</rdfs;label>
<rdfs;comment>Complex Condition</rdfs;comment>
<0 wl: Restriction>
<owl:onProperty rdf:resource="&rdfs;#first"/>
<owl:allValuesFrom rdf:resource="#PolicyAspect"/>

</owl:Restriction>
</rdfs:subClassO£>
<rdfs:subClassOP>
<owl:Restriction>
<owl:onProperty rdf:resource="&rdfs;#rest"/>
<owl:allValuesFrom rdf:resource="#PolicyAspect"/>
</o wl: Restriction>

</rdfs:subClassOC>
</owl:Class>
<owl:Class rdf:ID="ComplexAction">
<rdfs:subClassOfrdf:resource="#Action"/>
<rdfs:label>ComplexAction</rdfs:label>
<rdfs:comment>Complex Action</rdfs:comment>
<0 wl: Restriction>
<owl:onProperty rdf;resource="&rdfs;#first"/>
<owl:allValuesFromrdf:resource="#PolicyAspect"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&rdfs;#rest"/>
<owl:allValuesFromrdf:resource="#PolicyAspect"/>
</owl:Restriction>
</rdfs:subClassO£>

</owl:Class>
<owl;Class rdf:ID="PolicyAspect">
<owl:unionOf rdf:parseType="Collection">
<0wl: Class rdf: about="#SimpleEvent"/>
<owl:Class rdf:about="#SimpleCondition"/>
<owl:Class rdf:about="#SimpleAction"/>
<owl:Class rdf:about="#AndList"/>
<owl:Class rdf;about="#OrList"/>

</owl:unionOf>
</owl:Class>
<owl:Class rdf:ID="AndList">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="&rdfs;#first"/>
<owl:allValuesFromrdf:resource="#PolicyAspect"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

270

<owl:onProperty rdf:resource="&rdfs;#rest"/>
<owl:allValuesFromrdf:resource="#PolicyAspect"/>
</owl:Restriction>

</rdfs:subClassOfi>
</owl:Class>
<owl:Class rdf:ID="OrList">
<rdfs;subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="&rdfs;#first"/>
<owl;allValuesFrom rdf:resource="#PolicyAspect"/>

</owl:Restriction>
</rdfs: subC lassO fi>
<rdfs:subClassOf>
<0 wl: Restric tion>
<owl;onProperty rdf:resource="&rdfs;#rest"/>
<owl:allValuesFrom rdf:resource="#PolicyAspect"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
</rdf:RDF>

271

Appendix F - Personalised Holiday Service

Case Study
The artefacts produced for the Personalised Holiday service case study. The artefacts

are the description of the composite service, expressed as OWL-S; the description of

the adaptive behaviours, expressed as a FSM; the high level management policies;

and auto-generated refined low level enforceable policies. Lastly, the runtime trace of

the web service managed by the refined policies.

PersonalHoliday Service
<rdf:RDF

xmlns="http://www.daml.org/services/owl-s/l.l/PersonalHolidayService.owl#"
xmlns:process="http://www.dainl.org/services/owl-s/l.l/Process.owl#"
xmlns:thisgrounding="http;//www.daml.org/services/owl-s/l.l/PersonalHolidayGrounding.owl#"
xinlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns;rdfs="http;//www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/PersonalHolidayProcess.owl#"
xmlns:service="http://www.dainl.org/services/owl-s/l. 1/Service.owl#"
xmlns:base="http;//www.daml.org/services/owl-s/l.l/PersonalHolidayService.owl"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:thisprofile="http://www.daml.org/services/owl-s/l.l/PersonalHolidayProfile.owl#"
xmlns:profile="http;//www.daml.org/services/owl-s/l. 1/Profile.owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayService.owl">
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="PersonalHolidayProfile.owl"/>
<owl:imports rdf:resoiirce="PersonalHolidayProcess.owl"/>
<owl;imports rdf:resource="PersonalHolidayGrounding.owl"/>
<owl;imports rdf;resource="Process.owl"/>
<owl:imports rdf:resource="Service.owl"/>
<owl:imports rdf:resource="Grounding.owl"/>
<owl: versionlnfox/o wl: versionInfo>
<owl:imports rdf:resource="Profile.owr7>
<rdfs: commentx/rdfs; comment>

</owl:Ontology>
<service:Service rdf:ID="PersonalHolidayService">
<service:describedBy rdf;resource="PersonalHolidayProcess.owl#PersonalHolidayService"/>
<service:presents rdf:resource="PersonalHolidayProfile.owl#PersonalHolidayProfile"/>
<service:supports rdf:resource="PersonalHolidayGrounding.owl#PersonalHolidayGrounding"/>

</service: ServicO
</rdf:RDF>

PersonalHoliday Process
<rdf:RDF

xmlns:process="http://www.daml.org/services/owl-s/l.l/Process.owl#"
xinlns:objList="http://www.daml.org/services/owl-s/l.l/generic/ObjectList.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"

272

xmlns:service="http://www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:rdf="http://www.w3.org/l 999/02/22-rdf-syntax-ns#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayProcess.owl"
xmlns:rdfs="http://www. w3 .org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:daml="http://www.daml.org/2001/03/dainl+oil#"
xinlns="http;//www.daml.org/services/owl-s/l.l/PersonalHolidayProcess.owl#"
xmlns;profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"

xnil:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayProcess.owl">
<owl:Ontology rdf:about="">
<owl:imports rdf:resource="Service.owl"/>
<owl:imports rdf:resource="PersonalHolidayService.owl"/>
<owl:imports rdf:resoiirce="Grounding.owl"/>
<owl;imports rdf:resource="Profile.owl"/>
<owl:imports rdf:resource="PersonalHolidayProfile.owl"/>
<owl:imports rdf:resource="PersonalHolidayGrounding.owl"/>
<owl:versionInfox/owl:versionInfo>
<rdfs:commentx/rdfs:comment>
<owl:imports rdf:resource="Process.owl"/>

</owl:Ontology>
<process:lnput rdf:ID="HotelCost">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/2001 /XMLSchema#double</process:parameterType>

</process:Input>
<process:AtomicProcess rdf:ID="PaymentService">
<process: haslnput>

<process:Output rdf:ID="Guestid">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3 .org/2001/XMLSchema#string</process:parameterType>
<rdf;type rdf:resource="Process.owl#Input"/>

</process:Output>
</process:hasInput>
<process: haslnput>

<process: Input rdf: ID=" Charge">
<process:parameterType rdf datatype="http://www.w3.org/200l/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#double</process:parameterType>

</process:Input>
</process: haslnput>
<process: haslnput>
<process:Output rdfID="SalesTax">
<process:parameterType rdf datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3 .org/200 l/XMLSchema#double</process:parameterT ype>
<rdftype rdfresource="Process.owl#Input"/>

</process: Output>
</process: haslnput>
<process:hasOutput>
<process:Output rdfID="TotalCost">
<process:parameterType rdf datatype="http://www.w3.org/200l/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#double</process:parameterType>

</process: Output>
</process:hasOutput>
<process:hasOutput>
<process:Output rdf ID="Approved">

<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#boolean</process:parameterType>

</process: Output>
</process: hasOutput>
<process:hasFiniteStateMachine rdfresource="PaymentServiceFSM.owl#PaymentServiceFSM"/>

</process:AtomicProcess>

273

<process:AtomicProcess rdf;ID="FlightService">
<process:hasOutput>
<process:Output rdf;ID="Itmerary">

<process:parameterType rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/2001 /XMLSchema#string</process:parameterType>

</process:Output>
</process:hasOutput>
<process;hasInput>
<process:Input rdf:ID="Seats">

<process:parameterType rdf:datatype="http://www.w3.org/200l/XMLSchema#anyURI"
>http;//www. w3.org/200 l/XMLSchema#int</process:parameterType>

</process:Input>
</process: haslnput>
<process: hasOutput>

<process: Output rdf;ID="Cost">
<process;parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/200 l/XMLSchema#double</process;parameterType>

</process: Output>
</process:hasOutput>
<process:hasInput>
<process:Input rdf:ID="Depart">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#date</process:parameterType>

</process:Input>
</process:hasInput>
<process: hasOutput>
<process:Output rdf:ID="FlightNumber">

<process :parameterT ype rdf: datatype="http ://www. w3 .org/2001 /XMLSchema#anyURI"
>http://www.w3.org/200 l/XMLSchema#string</process:parameterType>

</process:Output>
</process:hasOutput>
<process:hasInput>

<process:Input rdf ID="Origin">
<process:paraineterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/200 l/XMLSchema#string</process:parameterType>

</process:Input>
</process;hasInput>
<process:hasInput rdfresource="#Guestid"/>
<process: hasOutput>

<process:Output rdf ID="ArriveHome">
<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/200 l/XMLSchema#date</process;parameterType>

</process: Output>
</process:hasOutput>
<process:hasOutput>
<process:Output rdfID="FlightClass">

<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Output>
</process: hasOutput>
<process:hasInput>
<process:Input rdf ID="Retum">

<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3 .org/2001/XMLSchema#date</process:parameterType>

</process:Input>
</process:hasInput>
<process: hasOutput>
<process:Output rdfID="ReservationCode">

<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/200 l/XMLSchema#string</process:parameterType>

274

</process:Output>
</process:hasOutput>
<process;hasFiniteStateMachine rdf:resource="FlightServiceFSM.owl#FlightServiceFSM"/>
<process:hasInput>
<process: Input rdf: ID=" Destination" >

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http;//www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process:hasInput>
<process:hasOutput>

<process;Output rdf:ID="ArriveDestination">
<process;parameterType rdf:datatype="http;//www.w3.org/2001/XMLSchenia#anyURI"
>http://www.w3 .org/2001 /XMLSchema#date</process:paranieterType>

</process: Output>
</process; hasOutput>

</process: AtoniicProcess>
<process: Input rdf:ID=="FlightCost">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#double</process:parameterType>

</process:Input>
<process:Output rdf:ID="HoteIReservation">
<process:paranieterType rdf:datatype="http://www. w3.org/200 l/XMLSchenia#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process;parameterType>

</process: Output>
<process:Perfonn rdf:ID="HotelServicePerfomi">

<process;hasDataFrom>
<process:InputBinding>

<process:valueSource>
<process: V alueOf>

<process: the Var>
<process:Output rdf;ID="HotelAddress">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchenia#string</process:paranieterType>

</process: Output>
</process:theV ar>
<process:froniProcess rdf:resource="#TheParentPerform"/>

</process: ValueOf>
</process:valueSource>
<process:toParatn rdf:resource="#HoteLAddress"/>

</process;InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>

<process: InputB inding>
<process: value Source>
<process:ValueO£>
<process:theVar>

<process: Output rdf:ID="HotelFacilities">
<process;parameterType rdf:datatype="http://www.w3.org/2001/XMLSchenia#anyURI"
>http://www.w3.org/2001/XMLSchenia#string</process:parameterType>

</process:Output>
</process: the V ar>
<process:fromProcess rdf;resource="#TheParentPerform"/>

</process: ValueO £>
</process:valueSource>
<process:toParam>
<process:Output rdf;ID="Facilities">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/200I/XMLSchema#string</process:parameterType>

</process: Output>
</process:toParam>

275

</process: InputB inding>
</process:hasDataFrom>
<process:hasDataFrom>

<process:InputBinding>
<process: value SourcO

<process;ValueOf>
<process:theVar rdf:resource="#HotelReservation"/>
<process: fromProcess rdf:resource="#TheParentPerform"/>

</process: ValueO f>
</process:valueSource>
<process:toParam rdf:resource="#ReservationCode"/>

</process:InputBmdmg>
</process:hasDataFrom>
<process: hasDataF rom>

<process: InputB mding>
<process:valueSource>

<process:ValueOf>
<process:theVar rdf:resource="#Guestid"/>
<process: fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOf>
</process: value Source>
<process; toParam rdf; resource=" #Guestid"/>

</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process;InputBinding>

<process;valueSource>
<process:ValueOC>

<process: the Var>
<process:Input rdf ID="Persons">
<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.w3.org/2001/XMLSchema#int</process:parameterType>

</process:Input>
</process: the V ar>
<process:froniProcess rdf resource="#TheParentPerform"/>

</process:ValueOf>
</process: value Source>
<process:toParam>

<process:Input rdf ID="Rooms">
<process:parameterType rdf datatype="http://www.w3 .org/2001 /XMLSchema#anyURJ"
>http://www.w3.org/200I/XMLSchema#int</process:parameterType>

</process:Input>
</process:toParam>

</process: InputB inding>
</process:hasDataFrom>
<process:hasDataFrom>

<process:InputBinding>
<process: valueSource>
<process:ValueOC>
<process:theVar rdfresource="#ArriveDestmation"/>
<process: fromProcess>

<process: Perform rdfID="FlightServicePerform">
<process:process rdfresource="#FlightService"/>
<process: hasDataF rom>
<process: InputB inding>

<process: valueSource>
<process:ValueOf>
<process:theV ar rdf resource="#Retum"/>
<process:froniProcess rdfresource="#TheParentPerform"/>

</process:ValueOC>

276

</process:valueSource>
<process:toParam rdf:resource="#Retum"/>

</process; Inputs mding>
</process: hasDataF rom>
<process: hasDataFrom>

<process: Inputs inding>
<process:valueSource>

<process:ValueOC>
<process:theVar rdf:resource="#FIightNumber"/>
<process: fromProcess rdf:resource="#TheParentPerfomi"/>

</process: ValueOC>
</process:valueSource>
<process:toParam rdf:resource="#FlightNumber"/>

</process;InputSinding>
</process:hasDataFrom>
<process:hasDataFroni>

<process:InputSinding>
<process: value Source>
<process:ValueO£>

<process: the V ar>
<process: Output rdf:ID="FlightItinerary">
<process:parameterT ype rdf; datatype=
"http://www.w3 .org/2001 /XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchenia#string</process:parameterType>

</process: Output>
</process: the V ar>
<process: fromProcess rdf resource="#TheParentPerfonn"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdfresource="#Itinerary"/>

</process: Inputs inding>
</process:hasDataFrom>
<process:hasDataFrom>
<process: Inputs inding>
<process: value Source>

<process:ValueOf>
<process:theVar rdfresource="#Guestid"/>
<process:fromProcess rdfresource="#TheParentPerform"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdfresource="#Guestid"/>

</process:InputSinding>
</process: hasDataF rom>
<process:hasDataFrom>

<process: Inputs inding>
<process:valueSource>
<process:ValueOf>
<process:theVar rdfresource="#Origin"/>
<process: fromProcess rdfresource="#TheParentPerform"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdfresource="#Origin"/>

</process:InputSinding>
</process: hasDataF rom>
<process: hasDataF rom>

<process:InputSindmg>
<process: value Source>

<process:ValueOC>
<process:theVar rdfresource="#Destination"/>
<process: fromProcess rdf resource="#TheParentPerform"/>

277

</process:ValueOC>
</process:valueSource>
<process:toParam rdf;resource="#Destination"/>

</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>

<process:InputBinding>
<process:valueSource>

<process;ValueOC>
<process:theVar rdf:resource="#Depart"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOf>
</process:valueSource>
<process:toParani rdf:resource="#Depart"/>

</process: InputB indmg>
</process: hasDataF rom>
<process: hasDataFrom>
<process;InputBinding>

<process:valueSource>
<process: V alueO£>

<process: the Var>
<process:Output rdf:ID="FlightReservation">
<process:parameterType rdf:datatype=
"http://w\vw.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Output>
</process:theVar>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOC>
</process:valueSource>
<process:toParam rdf:resource="#ReservationCode"/>

</process:InputBinding>
</process: hasDataF rom>
<process:hasDataFrom>

<process:InputBinding>
<process:valueSource>
<process: ValueOft>

<process:theVar rdf:resource="#FlightClass"/>
<process:fromProcess rdf:resource="#TheParentPerfonn"/>

</process;ValueOf>
</process:valueSource>
<process:toParam rdf:resource="#FlightClass"/>

</process: InputB inding>
</process:hasDataFrom>
<process:hasDataFrom>

<process: InputB indmg>
<process:valueSource>
<process;ValueO£>

<process:theVar rdf:resource="#Persons"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOC>
</process:valueSource>
<process:toParam rdf:resource="#Seats"/>

</process;InputBinding>
</process:hasDataFrom>

</process:Perform>
</process: fromProcess>

</process:ValueO£>
</process; value Source>
<process: toParam>

278

<process:Input rdf;ID="CheckinDate">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.w3.org/2001/XMLSchema#date</process;parameterType>

</process:Input>
</process; toParam>

</process:InputBinding>
</process;hasDataFrom>
<process:process>

<process:AtomicProcess rdf:ID="HotelService">
<process:hasInput rdf:resource="#CheckinDate"/>
<process:hasOutput rdf:resource="#Facilities"/>
<process:hasFiniteStateMachine rdf:resource="HotelServiceFSM.owl#HotelServiceFSM"/>
<process: hasOutput>
<process:Output rdf:ID="Brochure">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.w3 .org/2001 /XMLSchema#string</process:parameterType>

</process: Output>
</process:hasOutput>
<process: hasOutput>
<process: Output rdf:ID="HotelName">

<process:parameterType rdf:datatype="http://www.w3.org/200l/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Output>
</process:hasOutput>
<process:hasOutput>

<process: Output rdf:ID="HotelStars">
<process;parameterT ype rdf; datatype="http:// www. w3 .org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#int</process:parameterType>

</process:Output>
</process:hasOutput>
<process:hasOutput rdfresource="#ReservationCode"/>
<process;hasInput rdfresource="#Rooms"/>
<process:hasInput rdfresource="#Destination"/>
<process:hasOutput rdfresource="#HotelAddress"/>
<process: haslnput>

<process:Input rdf ID="CheckoutDate">
<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3.org/200 l/XMLSchema#date</process:parameterType>

</process:Input>
</process: haslnput>
<process:hasInput rdfresource="#Guestid"/>
<process:hasOutput rdfresource="#Cost"/>

</process:AtomicProcess>
</process:process>
<process;hasDataFrom>
<process: InputB inding>

<process:valueSource>
<process;ValueOf>
<process:theVar rdfresource="#HotelName"/>
<process:fromProcess rdfresource="#TheParentPerfomi"/>

</process: ValueO £>
</process;valueSource>
<process:toParam rdfresource="#HotelName"/>

</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>

<process:valueSource>
<process:ValueOf>
<process: the V ar>

279

<process:Output rdf;ID="HotelBrochure">
<process:parameterType rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/2001/XMLSchema#string</process:parameterType>

</process: Output>
</process:theVar>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process: V alueO f>
</process:valueSource>
<process:toParam rdf;resource="#Brochure"/>

</process;InputBindmg>
</process:hasDataFrom>
<process: hasDataFrom>
<process: InputB inding>
<process:valueSource>
<process; ValueOfi>
<process:theVar rdf:resource="#HotelStars"/>
<process: fromProcess rdf:resource="#TheParentPerfonn"/>

</process: ValueO f>
</process:valueSource>
<process:toParam rdf:resource="#HotelStars"/>

</process: InputB inding>
</process:hasDataFrom>
<process;hasDataFrom>
<process: InputB inding>
<process:valueSource>

<process:ValueO£>
<process:theVar rdf:resource="#Destination"/>
<process: fromProcess rdf:resource="#TheParentPerform"/>

</process: ValueO fi>
</process:valueSource>
<process:toParam rdf:resource="#Destination"/>

</process;InputBinding>
</process :hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>

<process: value Source>
<process: ValueOC>

<process:theVar rdf:resource="#Retum"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOP>
</process:valueSource>
<process:toParam rdf:resource="#CheckoutDate"/>

</process:InputBinding>
</process:hasDataFrom>

</process:Perform>
<process:AtomicProcess rdf:ID="HolidayBillService">
<process:hasInput rdf;resource="#FlightCost"/>
<process:hasInput rdf:resource="#HotelCost"/>
<process:hasOutput>

<process:Output rdf:ID="HolidayCost">
<process:parameterType rdf:datatype="http://www.w3.org/200l/XMLSchema#anylJRI"
>http://www.w3.org/2001/XMLSchema#double</process:parameterType>

</process: Output>
</process:hasOutput>
<process: hasOutput rdf: resource=" #S alesTax"/>

</process:AtomicProcess>
<process:Perform rdf ID="HolidayBillServicePerform">

<process:process rdfresource="#HolidayBillService"/>
<process: hasDataFrom>
<process: InputB inding>

280

<process:valueSoiirce>
<process;ValueOC>
<process:theVar rdf:resource="#Cost"/>
<process:fromProcess rdf:resource="#HotelServicePerfonn"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdf:resource="#HotelCost"/>

</process;InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>
<process: value Source>
<process:ValueOf>

<process:theVar rdf:resource="#Cost"/>
<process:fromProcess rdf:resource="#FlightServicePerfonn"/>

</process;ValueOP>
</process:valueSource>
<process:toParam rdf:resource="#HotelCost"/>

</process: InputB inding>
</process;hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>
<process: value Source>
<process: ValueO f>
<process:theVar rdf;resource="#HolidayCost"/>
<process; fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueO£>
</process:valueSource>
<process:toParam rdf:resource="#HolidayCost"/>

</process:InputBinding>
</process;hasDataFrom>
<process:hasDataFrom>
<process; InputB inding>
<process: value Source>

<process;ValueOC>
<process:theVar rdf:resource="#SalesTax"/>
<process;fromProcess rdf:resource="#TheParentPerform"/>

</process;ValueOC>
</process:valueSource>
<process;toParam rdf:resource="#SalesTax"/>

</process:InputBmding>
</process; hasDataF rom>

</process: Perform>
<process:Perform rdf:ID="LoginServicePerform">

<process:process>
<process:AtomicProcess rdf:ID="LoginService">

<process:hasInput>
<process:Input rdf:ID="Usemame">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process;hasInput>
<process:hasInput>
<process:Input rdf:ID="Password">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process;hasInput>
<process: haslnput>
<process:Input rdf:ID="Membership">

281

<process:parameterType rdf;datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http;//www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process:hasInput>
<process:hasOutput rdf:resource="#Guestid"/>

</process:AtomicProcess>
</process:process>
<process;hasDataFrom>
<process: InputB inding>

<process:valueSource>
<process:ValueOf>

<process:theVar rdf;resource="#Usemame"/>
<process:fromProcess rdf:resource="#TheParentPerfonn"/>

</process:ValueO£>
</process:valueSource>
<process:toParam rdf:resource="#Usemame"/>

</process:InputBmding>
</process:hasDataFrom>
<process;hasDataFrom>
<process:InputBinding>

<process:valueSource>
<process:ValueOf>
<process:theVar rdf:resource="#Password"/>
<process: fromProcess rdf:resource="#TheParentPerfomi"/>

</process:ValueO£>
</proccss:valueSource>
<process:toParam rdf:resource="#Password"/>

</process:InputBinding>
</process: hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>

<process:valueSource>
<process: ValueOf>
<process;theVar rdf:resource="#Membership"/>
<process: fromProcess rdf; resource=" #TheParentPerform"/>

</process: ValueOf>
</process:valueSource>
<process:toParam rdfresource="#Membership"/>

</process:InputBinding>
</process: hasDataF rom>

</process:Perform>
<process:Perform rdfID="PaymentServicePerform">

<process;process rdfresource="#PaymentService"/>
<process: ha sDataF rom>

<process:InputBmding>
<process: value Source>
<process:ValueOf>

<process:theVar rdfresource="#Guestid"/>
<process:fromProcess rdfresource="#LogmServicePerform"/>

</process:ValueOfi>
</process;valueSource>
<process:toParam rdfresource="#Guestid"/>

</process:InputBmdmg>
</process:hasDataFrom>
<process:hasDataFrom>

<process:InputBinding>
<process:valueSource>
<process:ValueOf>

<process:theVar rdfresource="#SalesTax"/>
<process;fromProcess>

282

<process;Perform rdf:ID="HolidayPackageServicePerform">
<process:hasDataFrom>

<process:InputBinding>
<process:valueSource>
<process: ValueO P>
<process:theVar rdf:resource="#FlightNumber"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOf>
</process: value S ourcO
<process:toParam rdf:resource="#FlightNumber"/>

</process:InputBmding>
</process;hasDataFrom>
<process:hasDataF rom>
<process; InputB inding>
<process: value SourcO
<process:ValueOf>

<process:theVar rdf;resource="#FlightItinerary"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdf:resource="#FlightItinerary"/>

</process:InputBindmg>
</process:hasDataFrom>
<process: hasDataFrom>

<process:lnputBinding>
<process: valueSource>
<process: V alueOfi>
<process:theVar rdf:resoiu-ce="#HotelName"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process: ValueO f>
</process; value Source>
<process:toParam rdf:resource="#HotelName"/>

</process: InputB mding>
</process:hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>
<process:valueSource>

<process:ValueOC>
<process:theVar rdf:resource="#FIightClass"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process;ValueOf>
</process: value S ource>
<process;toParam rdf:resource="#FlightCIass'7>

</process: InputB inding>
</process:hasDataFrom>
<process: hasDataFroin>
<process: InputB inding>
<process: valueSource>
<process:ValueOC>
<process;theVarrdf:resource="#HotelReservation"/>
<process:fromProcess rdf:resource="#TheParentPerfomi"/>

</process:ValueOf>
</process: value S ource>
<process;toParam rdf:resource="#HotelReservation"/>

</process:InputBinding>
</process:hasDataFrom>
<process;hasDataFroni>
<process:InputBinding>
<process: value Source>
<process: V alueOC>

283

<process:theVar rdf:resource="#HotelBrochure"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOC>
</process:valueSource>
<process:toParam rdf:resource="#HotelBrochure"/>

</process;InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>
<process;valueSource>

<process:ValueOf>
<process:theVar rdf:resource="#Depart"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process;ValueO£>
</process: values ource>
<process:toParam rdf:resource="#Depart"/>

</process: InputB inding>
</process:hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>
<process: value Sourco
<process:ValueO£>

<process:theVar rdf:resource="#HotelFacilities"/>
<process;fromProcess rdf:resource="#TheParentPerfonn"/>

</process: V alueOf>
</process;valueSource>
<process:toParam rdf:resource="#HotelFacilities"/>

</process;InputBinding>
</process:hasDataFroni>
<process: hasDataFrom>

<process:InputBinding>
<process:valueSource>
<process: ValueO f>

<process:theVar rdf;resource="#Destination"/>
<process:froniProcess rdf:resource="#TheParentPerform"/>

</process;ValueO£>
</process;valueSource>
<process;toParani rdf;resource="#Destination"/>

</process: InputB inding>
</process: hasDataF rom>
<process; hasDataFrom>

<process:InputBinding>
<process: value Source>
<process:ValueOf>

<process:theVar rdf:resource="#HotelStars"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOf>
</process;valueSource>
<process:toParam rdf:resource="#HotelStars"/>

</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFroni>
<process:InputBindmg>

<process:valueSource>
<process:ValueO£>

<process:theVar rdf;resource="#Persons"/>
<process:froniProcess rdf:resource="#TheParentPerfomi"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdf:resource="#Persons"/>

284

</process: Inputs inding>
</process:hasDataFrom>
<process:hasDataFrom>

<process; Inputs inding>
<process:vaIueSource>
<process:VaIueOf>
<process;theVarrdf:resource="#FIightReservation"/>
<process:froniProcess rdf:resource="#TheParentPerfonn"/>

</process:ValueO£>
</process: value S ource>
<process:toParam rdf:resource="#FlightReservation"/>

</process: Inputs indmg>
</process;hasDataFrom>
<process:hasDataFrom>
<process: Inputs indmg>
<process: value Source>
<process:ValueOP>
<process:theVar rdf:resource="#Origin"/>
<process:froinProcess rdf:resource="#TheParentPerfonn"/>

</process:ValueOf>
</process;valueSource>
<process: toP aram rdf: resource=" #Origin"/>

</process:InputSinding>
</process:hasDataFrom>
<process: hasDataFrom>
<process:InputSinding>

<process:valueSource>
<process:ValueOf>
<process:theVar rdfresource="#HotelAddress"/>
<process:froniProcess rdfresource="#TheParentPerfonn"/>'

</process:ValueOf>
</process:valueSource>
<process:toParam rdf resource="#HotelAddress"/>

</process: Inputs inding>
</process: hasDataFrom>
<process:hasDataFrom>
<process: Inputs inding>
<process: value Source>

<process:ValueOf>
<process:theVar rdfresource="#Retum"/>
<process: fromProcess rdf resource="#TheParentPerfomi"/>

</process:ValueOfi>
</process:valueSource>
<process:toParam rdfresource="#Retum"/>

</process:InputSinding>
</process:hasDataFroni>
<process:process>

<process:CompositeProcess rdf ID="HolidayPackageService">
<process:hasOutput rdfresource="#HolidayCost"/>
<process:hasInput rdfresource="#Retum"/>
<process:hasInput rdfresource="#Persons"/>
<process: hasinput rdf resource=" #Origm"/>
<process:hasInput rdfresource="#Guestid"/>
<process:hasOutput rdfresource="#HotelAddress"/>
<process:hasOutput rdfresource="#HotelFacilities"/>
<process:hasFiniteStateMachine

rdfresource="HolidayPackageServiceFSM.owl#HolidayPackageServiceFSM"/>
<process:hasInput rdfresource="#Depart"/>
<process:hasOutput rdfresource="#HoteLSrochure"/>
<process:hasOutput rdfresource="#SalesTax"/>

285

<process:hasOutput rdf:resource="#HotelStars"/>
<process:hasOutput rdf:resource="#FlightReservation"/>
<process:hasOutput rdf:resource="#FlightNumber"/>
<process:hasOutput rdf:resource="#HotelName"/>
<process:hasOutput rdf:resource="#FlightItinerary"/>
<process:hasOutput rdf:resource="#FlightClass"/>
<process:composedOf>

<process: SequencO
<process:components>

<process:ControlConstructList>
<objList:first rdf;resource="#FlightServicePerfomi"/>
<objList:rest>

<process:ControlConstructList>
<objList; first rdf:resource="#HotelServicePerform"/>
<objList:rest>

<process:ControlCoiistructList>
<obj List: first rdf:resource="#HolidayBillServicePerform"/>
<objList:rest rdf:resource="generic/ObjectList.owl#nil"/>

</process:ControlConstructList>
</obj‘List:rest>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</process:components>

</process: SequencO
</process:composedO£>
<process:hasOutput rdf:resource="#HotelReservation"/>
<process: hasinput rdf: resource=" #Destination" />

</process:CompositeProcess>
</process:process>
<process:hasDataFrom>

<process:InputBinding>
<process:valueSource>
<process: ValueO f>

<process: the V ar rdf resource=" #Guestid"/>
<process:fi'omProcess rdfresource="#LoginServicePerfomi"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdfresource="#Guestid"/>

</process: Inputs inding>
</process: hasDataF rom>

</process:Perform>
</process: froniProcess>

</process: ValueO f>
</process:valueSource>
<process:toParam rdf resource="#SalesTax"/>

</process: Inputs inding>
</process:hasDataFroni>
<process: hasDataF rom>

<process: Inputs inding>
<process: value Source>

<process: V alueOf>
<process:theVar rdfresource="#HolidayCost"/>
<process: fi'omProcess rdf resource=" #HolidayPackageServicePerform"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdfresource="#Charge"/>

</process: Inputs inding>
</process: hasDataF rom>
<process:hasDataFrom>

286

<process:InputBinding>
<process:valueSource>
<process:ValueOf>

<process: theV ar rdf:resource="#T otalCost"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:VaIueOf>
</process;valueSource>
<process:toParam rdf:resource="#TotalCost"/>

</process:InputBmdmg>
</process:hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>

<process:valueSource>
<process:ValueOf>
<process;theVar rdf:resource="#Approved"/>
<process: fromProcess rdf:resource="#TheParentPerforni"/>

</process: ValueO fi>
</process:valueSource>
<process:toParam rdf:resource="#Approved"/>

</process: InputB inding>
</process: hasDataF rom>

</process;Perform>
<process:CompositeProcess rdf:ID="PersonalHolidayService">
<process:hasOutput rdf:resource="#HotelFacilities"/>
<process:hasInput rdf:resource="#Password"/>
<process:hasOutput rdf:resource="#TotalCost"/>
<process;hasInput rdf:resource="#Depart"/>
<process:hasOutput rdf:resource="#HotelReservation"/>
<process:hasOutput rdf:resource="#Approved"/>
<process:hasOutput rdf:resource="#HotelBrochure"/>
<process;hasOutput rdf:resource="#HotelName"/>
<process:hasOutput rdf:resource="#FlightItinerary"/>
<process:hasInput rdf:resource="#Membership"/>
<process;hasInput rdf:resource="#Usemame"/>
<process:hasOutput rdf:resource="#HotelAddress"/>
<process:hasInput rdf:resource="#Destination"/>
<process:hasOutput rdf:resource="#HotelStars"/>
<process:composedOf>
<process: SequencO

<process:components>
<process:ControlConstructList>
<objList: first rdf:resource="#LoginServicePerform"/>
<objList:rest>

<process:ControlConstructList>
<obj List: first rdf:resource="#HolidayPackageServicePerform"/>
<objList:rest>

<process;ControlConstructList>
<objList; first rdf:resource="#PaymentServicePerform"/>
<objList;rest rdf:resource="generic/ObjectList.owl#nil"/>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</process:components>

</process:Sequence>
</process:composedOf>
<process:hasOutput rdf:resource="#FlightReservation"/>
<process:hasInput rdf:resource="#Persons"/>
<process:hasInput rdf:resource="#Retum"/>

287

<process:hasOutput rdf;resource="#FlightNumber"/>
<process:hasFiniteStateMachine

rdf:resource="PersonalHolidayServiceFSM.owl#PersonalHolidayServiceFSM"/>
<process:hasOutput rdf:resource="#FlightClass"/>
<process:hasInput rdf:resource="#Origin"/>

</process:CompositeProcess>
</rdf:RDF>

PersonalHoliday Grounding
<rdf:RDF

xmlns:process="http://www.daml.org/services/owl-s/l.l/Process.owl#"
xmlns="http://www.daml.org/services/owl-s/l.l/PersonalHolidayGrounding.owl#"
xnilns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:wsdldoc="http://www.daml.org/services/owl-s/l.l/PersonalHolidayGrounding.wsdl"
xmlns:rdfs="http;//www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http;//www.w3.org/2002/07/owl#"
xmlns:wsdl="http://www.daml.org/services/owl-s/l.l/PersonalHolidayGrounding.wsdl#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/PersonalHolidayProcess.owl#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayGrounding.owl"
xmlns:service="http://www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns:grounding="http;//www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"

xml:base="http://www.danil.org/services/owl-s/l.l/PersonalHolidayGrounding.owl">
<owl: Ontology rdf:about="">
<owl:versionInfo></owl:versionInfo>
<rdfs:conimentx/rdfs:comment>
<owl:imports rdf:resource="Service.owl"/>
<owl;imports rdf:resource="Process.owl"/>
<owl: imports rdf:resource="Grounding.owl"/>
<owl:imports rdfresource="PersonalHolidayProcess.owl"/>

</owl:Ontology>
<grounding:WsdlGrounding rdfID="PersonalHolidayGrounding">

<grounding:hasAtomicProcessGrounding>
<grounding:WsdlAtomicProcessGrounding rdf ID="LoginServiceGrounding">

<grounding:otherReference rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://schemas.wmlsoap.org/soap/http/</grounding:otherReference>
<grounding:otherReference rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://schemas.wmlsoap.org/wsdl/soap/</grounding:otherReference>
<grounding:wsdlOperation>

<grounding:WsdlOperationRef>
<grounding:portType rdf datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.dainl.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#LoginService_PortType</grounding:portType>
<grounding:operation rdf datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#LoginService_Operation</grounding:operation>
</grounding:WsdlOperationRef>

</grounding: wsdlOperation>
<grounding:wsdlDocument rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl</grounding:wsdlDocument>
<grounding:wsdlReference rdfdatatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</grounding:wsdlReference>
<grounding: wsdlOutputMessage rdf datatype="http://www. w3 .org/2001 /XMLSchema#anyURI"
>http: //www. daml .org/ services/owl-

s/1.1 /PersonalHolidayGrounding. wsdl#LoginService_Output</grounding: wsdlOutputMessagO
<grounding: wsdllnput>

288

<groundmg:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Password"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl#pass</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding:wsdlInput>
<groundmg:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://\vww.w3 .org/TR/2001 /NOTE-wsdl-20010315</grounding:otherReference>
<grounding: wsdllnput>

<groiinding: W sdllnputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Membership"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http:// WWW. daml. org/services/o wl-

s/1.1 /PersonalHolidayGrounding. wsdl#member</groundmg: wsdIMessagePart>
</grounding: W sdlInputMessageMap>

</ grounding: wsdllnput>
<grounding:owlsProcess rdf:resource="PersonalHolidayProcess.owl#LoginService"/>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Guestid"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.danil.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#user</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</ grounding ;wsdlOutput>
<groundmg:wsdlInput>
<grounding: W sdlInputMessageMap>

<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Usemame"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchenia#anyURI"
>http;//www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#name</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding: wsdl Input>
<grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: / /www. daml. org/services/owl

s/1. l/PersonalHoIidayGrounding.wsdl#LoginService_Input</grounding:wsdlInputMessage>
</grounding: W sdl AtomicProcessGrounding>

</grounding;hasAtoniicProcessGrounding>
<grounding:hasAtoniicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="FlightServiceGrounding">
<grounding: wsdlOutput>

<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Cost"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURJ"
>http .7/www. daml. org/ services/owl

s/1.1/PersonalHolidayGrounding. wsdl#cost</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<groimding:owlsProcess rdf:resource="PersonalHolidayProcess.owl#FlightService"/>
<grounding;wsdlOutput>

<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#FlightNumber"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http ://www. daml. org/services/o wl-

s/1.1 /PersonalHolidayGrounding. wsdWflightnumbeK/grounding: wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</ grounding; wsdlOutput>
<groundmg;otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http:// schemas, wmlsoap .org/soap/http/</grounding: otherReference>

289

<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Origin"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl

s/1. l/PersonalHolidayGrounding.wsdl#origin</grounding:wsdlMessagePart>
</grounding: W sdlInputMessageMap>

</ grounding: wsdllnput>
<grounding: wsdlOutpuP*

<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#ArriveHome"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchenia#anylJRI"
>http://www.danil.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#retuming</grounding:wsdlMessagePart>
</grounding: WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Seats"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#seats</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding:wsdlInput>
<grounding: wsdlOutput>

<grounding:WsdlOutputMessageMap>
<grounding:owlsParaineter rdf:resource="PersonalHolidayProcess.owl#FlightClass"/>
<grounding: wsdlMessagePart rdf:datatype="http://www.w3 .org/200 l/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#flightclass</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding: wsdllnput>

<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Retum"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.danil.org/services/owl

s/1. l/PersonalHolidayGrounding.wsdl#leaving</grounding:wsdlMessagePart>
</grounding: W sdlInputMessageMap>

</grounding: wsdllnput>
<grounding:wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLScheina#anyURI"
>http://www.danil.org/services/owl-

s/1.1 /PersonalHolidayGrounding.wsdl</grounding: wsdlDocument>
<grounding:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: / /www. daml. org/services/o wl-

s/l.l/PersonalHolidayGrounding.wsdl#FlightService_Output</grounding:wsdlOutputMessage>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</grounding:otherReference>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Destination"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl#destination</grounding: wsdlMessagePart>
</grounding:W sdlInputMessageMap>

</grounding: wsdllnput>
<grounding: wsdlOperation>

<grounding:WsdlOperationRe£>
<grounding:portType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

290

>http://www.daml.org/services/owl-
s/l.l/PersonalHolidayGrounding.wsdl#FlightService_PortType</grounding:portType>

<groundmg: operation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http:// WWW.danil.org/services/owl

s/1. l/PersonalHolidayGroimding.wsdl#FlightService_Operation</grounding:operation>
</grounding:WsdlOperationRefi>

</ grounding: wsdlC)peration>
<grounding: wsdlOutput>
<grounding: W sdlOutputMessageMap>
<grounding;owlsParameter rdf:resource="PersonalHolidayProcess.owl#ReservationCode"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.danil.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#reservation</grounding:wsdlMessagePart>
</grounding: W sdlOutputMessageMap>

</ grounding: wsdlOutput>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Itinerary"/>
<grounding;wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#itinerary</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParanieter rdf:resource="PersonalHolidayProcess.owl#Depart"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#going</grounding:wsdlMessagePart>
</grounding: W sdlInputMessageMap>

</grounding;wsdlInput>
<grounding:wsdllnput>

<grounding:WsdlInputMessageMap>
<grounding;owlsParameter rdf:resource="PersonalHolidayProcess.owl#Guestid"/>
<grounding: wsdlMessagePart rdf: datatype="http ://www. w3. org/2001/XMLSchema#anyURI"
>http://www.danil.org/services/owl-

s/1.1/Persona lHolidayGrounding.wsdl#user</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding: wsdllnput>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding: owlsParameter rdf resource=" PersonalHolidayProcess. owl#ArriveDestination"/>
<grounding:wsdlMessagePart rdf datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#arriving</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding:wsdlOutput>
<grounding:otherReference rdf datatype="http://www.w3.org/200 l/XMLSchenia#anyURI"
>http://schenias.wmlsoap.org/wsdiysoap/</grounding:otherReference>
<grounding:wsdlReference rdf datatype="http://www.w3.org/200l/XMLSchema#anylJRI"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</grounding:wsdlReference>
<grounding:wsdlInputMessage rdf datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //WWW.daml.org/ services/owl

s/1. l/PersonalHolidayGrounding.wsdl#FlightService_Input</grounding:wsdlInputMessage>
</grounding:WsdlAtomicProcessGrounding>

</grounding: has AtomicProcessGrounding>
<grounding:hasAtomicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdfID="HotelServiceGrounding">
<grounding:wsdlOutput>

<grounding:WsdlOutputMessageMap>

291

<groundmg:owlsParameter rdf;resource="PersonalHolidayProcess.owl#Brochure"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#brochure</grounding:wsdlMessagePart>
</groimding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding: wsdllnput>

<grounding:WsdlInputMessageMap>
<grounding:owlsParanieter rdf:resource="PersonalHolidayProcess.owl#CheckinDate"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchenia#anyURI"
>http: / /www. daml .org/services/owl

s/1.1 /PersonalHolidayGrounding. wsdl#checkin</grounding: wsdlMessageP art>
</grounding:WsdlInputMessageMap>

</grounding;wsdlInput>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParanieter rdf:resource="PersonalHolidayProcess.owl#Cost"/>
<grounding;wsdlMessagePart rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://www. daml .org/services/o wl-

s/1. l/PersonalHolidayGrounding.wsdl#cost</grounding: wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding :wsdlOutput>
<grounding: wsdllnput>

<grounding: W sdlInputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Guestid"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#user</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding:wsdlInput>
<grounding:otherReference rdf:datatype="http;//www.w3.org/2001/XMLSchema#anylIRI"
>http://schemas.wmlsoap.org/wsdiysoap/</grounding:otherReference>
<grounding: wsdlOutput>

<grounding: W sdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#ReservationCode"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURJ"
>http: //www. daml .org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#reservation</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</grounding;otherReference>
<grounding: wsdlOutput>

<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf;resource="PersonalHolidayProcess.owl#HotelAddress"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#address</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding: wsdlOutput>

<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Facilities"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl

s/1. l/PersonalHolidayGrounding.wsdl#facilities</groundmg:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding: wsdllnput>

<grounding:WsdlInputMessageMap>

292

<groimding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#CheckoutDate"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#checkout</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding: wsdllnput>
<grounding:otherReference rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://schemas.wmlsoap.org/soap/http/</grounding:otherReference>
<grounding: wsdlOutput>

<groundmg:WsdlOutputMessageMap>
<groundmg:owlsParameter rdf:resource="PersonalHolidayProcess.owl#HotelStars"/>
<grounding;wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.daml.org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl#stars</grounding:wsdlMessagePart>
</grounding: WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#HotelService_Output</grounding:wsdlOutputMessage>
<grounding:wsdlReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3.org/TR/2001/NOTE-wsdl-20010315</grounding: wsdlReferencO
<grounding:wsdlOperation>
<grounding:WsdlOperationRef>
<grounding:portType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //www. daml.org/ services/owl-

s/1.1 /PersonalHolidayGrounding. wsdl#HotelServicePortType</grounding:portType>
<grounding:operation rdf;datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#HotelService_Operation</grounding:operation>
</grounding: W sdlC)perationRe£>

</grounding:wsdlC)peration>
<grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http ://www. daml.org/ services/owl

s/1.1 /PersonalHolidayGrounding. wsdl#HotelService_Input</ grounding: wsdlInputMessage>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>
<groundmg:owlsParameter rdf:resource="PersonalHolidayProcess.owl#HotelName"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.daml.org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl#name</groimding: wsdlMessagePart>
</grounding: W sdlOutputMessageMap>

</grounding:wsdlOutput>
<groimding: wsdllnput>
<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Rooms"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //WWW. daml. org/ services/owl

s/1 . l/PersonalHolidayGroxmding.wsdl#rooms</grounding:wsdlMessagePart>
</grounding: W sdlInputMessageMap>

</ grounding: wsdllnput>
<groundmg:owlsProcess rdf:resource="PersonalHolidayProcess.owl#HotelService"/>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<groundmg:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Destination"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#location</grounding:wsdlMessagePart>
</grounding: W sdlInputMessageMap>

</groundmg: wsdllnput>
<groundmg:wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"

293

>http;//www.daml.org/services/owl-
s/l.l/PersonalHolidayGrounding.wsdl</grounding:wsdlDocument>

</grounding: W sdl AtomicProcessGrounding>
</grounding:hasAtomicProcessGroundmg>
<grounding;hasAtoimcProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdf;ID="HolidayBillServiceGrounding">
<grounding:otherReference rdf:datatype="http://www.w3 .org/2001 /XMLSchema#anyURI"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</grounding:otherReference>
<grounding:wsdlReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</groundmg: wsdlReference>
<grounding: wsdllnputMessage rdf:datatype="http://www.w3 .org/2001 /XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#HolidayBillService_Input</groundmg:wsdlInputMessage>
<grounding:wsdlInput>
<grounding:WsdlInputMessageMap>
<groundmg:owlsParameterrdf:resource="PersonalHolidayProcess.owl#HotelCost"/>
<groundmg:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#hotelcost</grounding:wsdlMessagePart>
</groimding: W sdlInputMessageMap>

</grounding: wsdllnput>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf;resource="PersonalHolidayProcess.owl#HolidayCost"/>
<grounding:wsdlMessagePart rdf;datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#bill</grounding;wsdlMessagePart>
</grounding: W sdlOutputMessageMap>

</grounding:wsdlOutput>
<grounding:wsdlOutputMessage rdf;datatype="http://www. w3.org/200 l/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#HolidayBillService_Output</grounding:wsdlOutputMessage>
<grounding;otherReference rdf:datatype="http://www.w3.org/200l/XMLSchema#anylJRI"
>http ://schemas. wmlsoap .org/ soap/http/</ grounding; otherReference>
<grounding: wsdllnput>

<grounding;WsdlInputMessageMap>
<grounding:owlsParanieter rdf:resource="PersonalHolidayProcess.owl#FlightCost"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //www. daml .org/ services/owl

s/1. l/PersonalHolidayGrounding.wsdl#flightcost</groundmg:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding; wsdllnput>
<grounding: wsdlOutput>
<grounding: WsdlOutputMessageMap>

<groimding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#SalesTax"/>
<grounding:wsdlMessagePart rdf: datatype="http://www.w3.org/200 l/XMLSchenia#anyURI"
>http;//www.daml.org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl#tax</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding:wsdlOutput>
<grounding;otherReference rdf datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://schemas.wnilsoap.org/wsdl/soap/</grounding:otherReference>
<grounding:wsdlDocument rdf datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. daml .org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl</grounding:wsdlDocument>
<grounding: wsdlOperation>

<grounding: W sdlC)perationRef>
<grounding:portType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://WWW. daml. org/services/owl

s/1.1/P ersonalHolidayGrounding.wsdl#HolidayBillService_PortType</grounding:portType>

294

<grounding:operation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGroimding.wsdl#HolidayBillService_Operation</grounding:operation>
</grounding:WsdlOperationRef>

</grounding: wsdlOperation>
<grounding:owlsProcess rdf:resource="PersonalHolidayProcess.owl#HolidayBillService"/>

</grounding: W sdlAtomicProcessGrounding>
</grounding:hasAtomicProcessGrounding>
<grounding;hasAtoniicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="PaymentServiceGrounding">
<grounding: wsdllnput>

<grounding: W sdlInputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Charge"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl#bill</grounding: wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</ grounding; wsdllnput>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Approved"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://WWW. daml .org/ser\'ices/o wl-

s/l.l/PersonalHolidayGrounding.wsdl#approved</grounding:wsdlMessagePart>
</grounding: W sdlOutputMessageMap>

</grounding; wsdlOutput>
<grounding:wsdlOperation>

<grounding:WsdlOperationReC>
<grounding:portType rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http: // WWW.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#PaymentService_PortType</grounding:portType>
<grounding: operation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#PaymentService_C)peration</grounding:operation>
</grounding: WsdlOperationRef>

</grounding:wsdlC)peration>
<grounding: wsdlReference rdf:datatype="http://www.w3.org/2001 /XMLSchema#anylJRI"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</grounding:wsdlReference>
<grounding: wsdlDocument rdf:datatype="http;//www. w3 .org/2001 /XMLSchema#anyURI"
>http: / /www. daml.org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl</grounding:wsdlDocument>
<grounding:otherReference rdf:datatype="http://www.w3 .org/200 l/XMLSchema#anyURI"
>http://schemas.wmlsoap.org/soap/http/</grounding:otherReference>
<grounding; wsdllnput>
<grounding: W sdlInputMessageMap>

<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#Guestid"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http:// WWW.daml.org/ services/o wl-

s/1. l/PersonalHolidayGrounding.wsdl#user</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding: wsdllnput>
<grounding;owlsProcess rdf:resource="PersonalHolidayProcess.owl#PaymentService"/>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#SalesTax"/>
<grounding:wsdlMessagePart rdf:datatype="http://www. w3.org/200 l/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/PersonalHolidayGrounding.wsdl#tax</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</ grounding: wsdllnput>

295

<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="PersonalHolidayProcess.owl#TotalCost"/>
<groundmg:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#total</groundmg:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</groundmg: wsdlOutput>
<grounding;otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://schemas.wmlsoap.org/wsdl/soap/</grounding:otherReference>
<grounding:wsdlInputMessage rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#PaymentService_Input</grounding:wsdlInputMessage>
<groimding:wsdlOutputMessage rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http;//www.daml.org/services/owl-

s/l.l/PersonalHolidayGrounding.wsdl#PaymentService_Output</grounding:wsdlOutputMessage>
<grounding:otherReference rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http;//www.w3.org/TR/2001/NOTE-wsdl-20010315</grounding:otherReference>

</groundmg:WsdlAtomicProcessGroundmg>
</grounding:hasAtomicProcessGrounding>

</grounding: W sdlGrounding>
</rdf:RDF>

PersonalHoiiday Service’s FSM
<rdf:RDF

xmlns:fsni="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl#"
xmlns:process="http://www.daml.org/services/owl-s/l.l/Process.owl#"
xmlns:service="http://www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns;rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayServiceFSM.owl"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xiTilns:owl="http://www.w3.org/2002/07/owl#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns="http://www.daml.org/services/owl-s/1.1 /PersonalHolidayServiceFSM.owl#"
xmlns:profile="http://www.daml.org/services/owl-s/l.l/Profile.owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayServiceFSM.owl">
<owl;Ontology rdf:about="">
<owl:imports rdf:resource="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl"/>

</owl:Ontology>
<fsm:Signal rdf:ID="InputEventSource">

<fsm:value>InputSignal</fsm:value>
</fsm:Signal>
<fsm:SignalEvent rdf:ID="InitialEvent">

<fsm:signal>
<fsm:Signal rdf:ID="InitialEventSource">

< fsm: value>Initial Signal</fsm: value>
</fsm:Signal>

</fsm:signal>
</fsm: SignalEvent>
<fsm:StateMachine rdf:ID="BusinessClass">
<fsm:top>

<fsm: CompositeState rdf:ID="BusmessClassCS">
<fsm:subvertex>
<fsm:PseudoState rdf:ID="BusinessClassImtialState">

<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>

296

<fsm:Transitionrdf:ID="BusinessClassImtialStateInitialTransition">
<fsm:trigger rdf:resource="#IiiitialEvent"/>
<fsm:source rdf:resource="#BusinessClassInitialState"/>
<fsm:target>

<fsm:FmalState rdf:ID="BusmessClassStatel ">
<fsm:doActivity>BusinessClass()</fsm:doActivity>
<fsm:doActivity>BusinessSuite()</fsm:doActivity>
<fsm:incoimng rdf:resource="#BusinessClassInitialStateInitialTransition"/>

</fsm:FinalState>
</fsm:target>

</fsm:Transition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm: sub vertex>
<fsm:subvertex rdf:resource="#BusmessClassStater7>

</fsm:CompositeState>
</fsm:top>
<fsm; commentx/fsm: conunent>

</ fsm: StateMachine>
<fsm:Signal rdf:ID="ProcessEventSource">

<fsin:value>ProcessSignal</fsm:value>
</fsm:Signal>
<fsin;SignalEvent rdf;ID="OutputEvent">
<fsm:signal>

<fsm:Signal rdf:ID="OutputEventSource">
<fsm:value>OutputSi gnal</ fsm: value>

</fsm:Signal>
</fsm:signal>

</fsm: SignalEvent>
<fsm:CompositeState rdf:ID="HighClassCS">

<fsm;subvertex>
<fsm:PseudoState rdf:ID="HighClassIiiitialState">
<fsm:pseudoStateKind>initial</fsm;pseudoStateKind>
<fsm:outgoing>
<fsm:Transition rdf:ID="HighClassInitialStateInitialTransition">

<fsm:trigger rdf:resource="#ImtialEvent"/>
<fsm:source rdf:resource="#HighClassInitialState"/>
<fsm:target>

<fsm:FinalState rdf:ID="HighClassStatel ">
<fsm:doActivity>FirstClass()</fsm:doActivity>
<fsm;doActivity>PresidentialSuite()</fsm:doActivity>
<fsm:incoming rdf:resource="#HighClassInitialStateInitialTransition"/>

</fsm;FmalState>
</fsm:target>

</fsm: T ransition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm: subvertex>
<fsm:subvertex rdf:resource="#HighClassStater7>

</fsm:CompositeState>
<fsm;Transition rdf:ID="AccessibilityInitialStateInitialTransition">
<fsm:triggerrdf:resource="#InitialEvent'7>
<fsm:source>

<fsm:PseudoState rdf:ID="AccessibilityInitialState">
<fsm;pseudoStateKjnd>initial</fsm:pseudoStateKind>
<fsm:outgoing rdf:resource="#AccessibilityInitialStateIiiitialTransition'7>

</fsm:PseudoState>
</fsm:source>
<fsm;target>

<fsm:FinalState rdf:ID="AccessibilityStatel">

297

<fsm:doActivity>Accessibility()</fsm:doActivity>
<fsm:incoming rdf:resource="#AccessibilityInitialStateInitialTransition"/>

</ fsm: FinalState>
</fsm;target>

</fsm: T ransition>
<fsm; Transition rdf:ID="MasterCardInitialStateInitialTransition">
<fsm:trigger rdf;resource="#InitialEvent"/>
<fsni:source>

<fsni:PseudoState rdf:ID="MasterCardInitialState">
<fsm:pseudoStateKind>initial</fsni:pseudoStateKind>
<fsm:outgoing rdf:resource="#MasterCardInitialStateInitialTransition"/>

</fsm:PseudoState>
</fsm:source>
<fsm:target>

<fsm: F inalState rdf: ID="MasterCardState 1 ">
<fsm; do Activity>paynientMethod(Master)</ fsm: do Activity>
<fsm:incoming rdfresource="#MasterCardInitialStateInitialTransition"/>

</fsm:FinalState>
</fsm:target>

</fsm: T ransition>
<fsm:FinalState rdf ID=" VegetarianStatel ">

<fsm: do Activity> V egetarianMeal()</fsm: do Activity>
<fsm:doActivity>VegetarianMenu()</fsm:doActivity>
<fsm:incoming>
<fsm:Transition rdf ID="VegetarianInitialStateInitialTransition">
<fsm:trigger rdfresource="#InitialEvent"/>
<fsm:source>

<fsm:PseudoState rdfID="VegetarianInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing rdf resource="#VegetarianInitialStateInitialTransition"/>

</fsm:PseudoState>
</fsm:source>
<fsm:target rdfresoiirce="#VegetarianStatel"/>

</ fsm:Transition>
</fsm: incoming>

</fsm:FinalState>
<fsm:CompositeState rdfID="ServiceState">

<fsm:subvertex>
<fsm:PseudoState rdfID="InitialState">

<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm: T ransition rdf ID=" InitialT" >
<fsm:trigger rdf resource="#InitialEvent"/>
<fsm: source rdf resource="#InitialState"/>
<fsm:target>

<fsm: CompositeState rdf ID=" IdleState">
<fsm:incoming rdfresource="#InitialT"/>
<fsm:outgoing>
<fsm:Transition rdfID="IdleToInput">

<fsm:trigger>
<fsm:SignalEvent rdfID="InputEvent">

<fsm:signal rdfresource="#InputEventSource"/>
</ fsm: SignalEvent>

</fsm:trigger>
<fsm:source rdf resource="#IdleState"/>
<fsm:target>
<fsm:CompositeState rdfID="InputState">

<fsm:incoming rdfresource="#IdleToInput"/>
<fsm:outgoing>

<fsm:Transition rdfID="InputToProcess">

298

<fsm:trigger>
<fsm: SignalEvent rdf:ID="ProcessEvent">

<fsm:signal rdf:resource="#ProcessEventSource'7>
</fsm: SignalEvent>

</fsm:trigger>
<fsm:source rdf:resource="#InputState"/>
<fsni:target>

<fsm:CompositeState rdf:ID="ProcessState">
<fsm:outgomg>
<fsm:Transition rdf;ID="ProcessToOutput">

<fsm:trigger rdf;resource="#OutputEvent"/>
<fsm:source rdf:resource="#ProcessState"/>
<fsm:target>

<fsm:CompositeState rdf;ID="OutputState">
<fsm:mcoming rdf:resource="#ProcessToOutput"/>
<fsm:outgoing>

<fsm:Transition rdf:ID="OutputToIdle">
<fsm:trigger>

<fsm: SignalEvent rdf:ID="IdleEvent">
<fsm:signal>
<fsm:Signal rdf:ID="IdleEventSource">
<fsm:value
>IdleSignal</fsm;value>

</fsm:Signal>
</fsm:signal>

</fsm: S ignalE vent>
</fsm:trigger>
<fsm: source rdf; resource="#OutputState"/>
<fsm:target rdf:resource="#IdleState"/>

</fsm: Transition>
</fsm; outgoing>

</ fsm: CompositeState>
</fsm:target>

</fsm: T ransit ion>
</fsm:outgomg>
<fsm: subvertex>
<fsm:SubmachineState rdf:ID="TravelVoucherSubSM">

<fsm; submachine>
<fsm:StateMachine rdf;ID="TravelVoucher">
<fsm:top>

<fsm;CompositeState rdf:ID="TravelVoucherCS">
<fsm: subvertex>

<fsm;PseudoState rdf:ID="TravelVoucherInitialState">
<fsm:pseudoStateKind
>mitial</fsni:pseudoStateKind>
<fsm:outgoing>
<fsm:Transitionrdf:ID="TravelVoucherInitialStateImtialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resource="#TravelVoucherInitialState"/>
<fsm;target>
<fsm:FinalState rdf:ID="TravelVoucherStatel">

<fsm:doActivity
>paymentMethod(V oucher)</ fsm:do Activity>
<fsm: incoming

rdf;resource="#TravelVoucherInitialStateInitialTransition"/>
</fsm: FinalStatO

</fsm:target>
</fsm: T ransition>

</fsm:outgoing>
</fsm:PseudoState>

299

</fsm: subvertex>
<fsm: subvertex rdf:resource="#TravelVoucherState 1 "/>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Pay using voucher</fsm:comment>

</fsm: StateMachine>
</ fsm; submachine>

</ fsm: SubmachineState>
</fsm: sub vertex>
<fsm: subvertex>
<fsm:SubmachineState rdf:ID="VegetarianSubSM">

<fsm: submachine>
<fsm: StateMachine rdf: ID=" V egetarian">
<fsm:top>

<fsm:CompositeState rdf:ID="VegetarianCS">
<fsm: sub vertex rdf:resource="#VegetarianInitialState"/>
<fsm:subvertex rdf;resource="#VegetarianStatel"/>

</fsm:CompositeState>
</fsm:top>
<fsm: commentx/ fsm: comment>

</fsm: StateMachine>
</fsm: submachine>

</ fsm; SubmachineState>
</fsm: sub vertex>
<fsm:subvertex>
<fsm:SubmachineState rdf:ID="BusinessClassSubSM">
<fsm: submachine rdf:resource="#BusinessClass"/>

</fsm: SubmachineState>
</fsm:subvertex>
<fsm: subvertex>
<fsm:SubmachineState rdf:ID="MasterCardSubSM">
<fsm: submachine>

<fsm: StateMachine rdf:ID="MasterCard">
<fsm:top>

<fsm:CompositeState rdf:ID="MasterCardCS">
<fsm: subvertex rdf:resource="#MasterCardInitialState"/>
<fsm:subvertex rdf:resource="#MasterCardStater7>

</fsm:CompositeState>
</fsm;top>
<fsm:coniment>Pay using MasterCard</fsm:coniment>

</fsm: StateMachinO
</fsm: submachine>

</fsm:SubmachineState>
</ fsm: subvertex>
<fsm;subvertex>

<fsm:SubmachineState rdf:ID="AmericanExpressSubSM">
<fsm: submachine>

<fsm;StateMachine rdf:ID="AmericanExpress">
<fsm:top>
<fsm:CompositeState rdf:ID="AmericanExpressCS">

<fsm: subvertex>
<fsm:PseudoState rdf:ID="AmericanExpressInitialState">
<fsm:pseudoStateKind
>initial</fsm:pseudoStateKind>
<fsm:outgoing>

<fsm:Transition
rdf;ID="AmericanExpressInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resource="#AmericanExpressInitialState"/>
<fsm:target>

300

<fsm:FinalState rdf:ID="AinericanExpressStatel">
<fsm: do Activity
>paymentMethod(American)</fsm:doActivity>
<fsm: incoming

rdf:resource="#AmericanExpressInitialStateInitialTransition"/>
</fsm:FinalState>

</fsm;target>
</fsm: T ransition>

</fsm:outgoing>
</fsm:PseudoState>

</fsm: subvertex>
<fsm:subvertex rdf:resource="#AmericanExpressStatel"/>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Pay using American Express</fsm;comment>

</ fsm: StateMachinO
</ fsm: submachinO

</ fsm: SubmachineStatO
</fsm:subvertex>
<fsm:subvertex>
<fsm: SubmachineState rdf:ID=" AccessibilitySubSM">

<fsm: submachinO
<fsm: StateMachine rdf:ID=" Accessibility">
<fsm:top>
<fsm:CompositeState rdf:ID="AccessibilityCS">

<fsm: subvertex rdf:resource="#AccessibilityInitialState"/>
<fsm: subvertex rdf:resource="#AccessibilityState 1 "/>

</fsm:CompositeState>
</fsm:top>
<fsm:commentx/fsm:comment>

</fsm: StateMachine>
</fsm: submachine>

</fsm: SubmachineState>
</ fsm: subvertex>
<fsm: subvertex>
<fsm: SubmachineState rdf:ID="HighClassSubSM">

<fsm: submachine>
<fsm: StateMachine rdf:ID="HighClass">
<fsm:top rdf:resource="#HighClassCS"/>
<fsm:commentx/fsm:comment>
<fsm:comment>High class room - presidential suite</fsm:comment>

</fsm: StateMachine>
</fsm: submachine>

</fsm: SubmachineS tate>
</fsm: sub vertex>
<fsm:incoming rdf:resource="#InputToProcess"/>

</fsm: CompositeState>
</fsm:target>

</fsm:Transition>
</fsm:outgoing>

</fsm:CompositeState>
</fsm:target>

</fsm: Transition>
</fsm:outgoing>
<fsm:incoming rdf:resource="#OutputToIdle"/>

</fsm:CompositeState>
</fsm:target>

</fsm: T ransition>
</fsm:outgoing>

</fsm:PseudoState>

301

</fsm: subvertex>
<fsm:subvertex rdf:resource="#IdleState"/>
<fsm: subvertex rdf:resource="#ProcessState"/>
<fsm;subvertex rdf;resource="#InputState"/>
<fsm:subvertex rdf:resource="#OutputState"/>

</fsm: CompositeState>
<fsm:StateMachine rdf:ID="PersonalHolidayServiceFSM">
<fsm:top rdf:resource="#ServiceState"/>

</fsm; StateMachme>
</rdf:RDF>

PersonalHoliday Service’s Management Policy
<rdf:RDF

xnilns:process="http://www.daml.org/services/owl-s/l. 1/Process.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmliis:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns: owl=" http;//WWW. w3. org/2002/07/owl#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/PersonalHolidayProcess.owl#"
xmlns="http://www.daml.org/services/owl-s/l.l/PersonalHolidayServicePolicy.owl#"
xmlns:fsm="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl#"
xmlns: service="http://www.daml.org/services/owl-s/1.1/Service, owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/PersonaLHolidayServicePolicy.owl"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayServicePolicy.owl">
<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://kdeg.cs.tcd.ie/Policy.owl"/>
<owl:imports rdf:resource="PersonalHolidayProcess.owl"/>

</owl:Ontology>
<policy: SimpleCondition rdf: ID="PersonalHolidayServicePolicy 1 Condition 102 ">

<policy:subject>
<policy: Subject rdf:ID="Membership"/>

</policy: subj ect>
<policy:predicate>

<policy:Predicate rdf:ID="equal"/>
</policy:predicate>
<policy: valuOF requentF lyer</policy: value>

</policy: SimpleCondition>
<policy:SimpleEvent rdf:ID="PersonalHolidayServicePolicy2Eventl">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>
<policy:ComplexCondition rdf:ID="PersonalHolidayServicePolicyl Conditionl ">

<rdfs:first>
<policy:AndList>

<rdfs:first>
<policy: SimpleCondition rdf:ID="PersonalHolidayServicePolicylConditionl01">

<policy:subject>
<policy: Subject rdf:ID="Usemame"/>

</policy: subj ect>
<policy:predicate rdf:resource="#equal"/>
<policy:value>Susan.Smith</policy:value>

</policy:SimpleCondition>
</rdfs:first>
<rdfs:rest rdf:resource="#PersonalHolidayServicePolicylConditionl02"/>

</policy:AndList>
</rdfs:first>

302

<rdfs: restx/rdfs: rest>
</policy:ComplexCondition>
<policy;SimpleCondition rdf:ID="PersonalHolidayServicePolicy2Conditionl">
<policy:subject rdf:resource="#Membership"/>
<policy:predicate rdf:resource="#equal"/>
<policy;value>SalesGroup</policy:value>

</policy;SimpleCondition>
<policy:Policy rdf:ID="PersonalHolidayServicePolicyl ">
<rdfs: commentx/rdfs: coniment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#PersonalHolidayService"/>
<policy:event>

<policy:SimpleEvent rdf:ID="PersonalHolidayServicePolicylEventl">
<policy: value>ProcessEvent</policy: valuO

</policy: SimpleEvent>
</policy:event>
<policy:condition rdf:resource="#PersonalHolidayServicePolicy 1 Condition 1 "/>
<policy:action>

<policy:SimpleAction rdf;ID="PersonalHolidayServicePolicylActionl">
<policy:value>Accessibility</policy:value>

</policy: Simple Action>
</policy:action>

</policy:Policy>
<policy:SimpleAction rdf:ID="PersonalHolidayServicePolicy2 Action! ">
<policy;value>BusinessClass</policy:value>

</policy; Simple Action>
<policy:Policy rdf:ID="PersonalHolidayServicePolicy2">
<rdfs:commentx/rdfs:comment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#PersonalHolidayService"/>
<policy: event rdf: resource="#PersonalHolidayServicePolicy2Event 1 "/>
<policy:condition rdf resource="#PersonalHolidayServicePolicy2Conditionl"/>
<policy:action rdf resource="#PersonalHolidayServicePolicy2 Action l"/>

</policy:Policy>
</rdfRDF>

PersonalHoliday Service’s Refined Policies
<rdfRDF

xmlns="http://www.daml.org/services/owl-s/l.l/PersonalHolidayServiceRefinedPolicy.owl#"
xmlns:process="http://www.daml.org/services/owl-s/l.l/Process.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns: rdfs=" http://www. w3. org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/PersonalHolidayProcess.owl#"
xmlns: fsm="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl#"
xnilns:service="http://www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Groimding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xnilns:daml="http://www.daml.org/2001/03/daml+oil#"
xnilns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayServiceRefinedPolicy.owl"

xml:base="http://www.daml.org/services/owl-s/l.l/PersonalHolidayServiceRefinedPolicy.owl">
<owl:Ontology rdf about="">

<owl:imports rdfresonrce="http://kdeg.cs.tcd.ie/Policy.owl"/>
<owl:imports rdfresource="PersonalHolidayProcess.owl"/>

</o wl: Ontology>
<policy:SimpleActionrdf ID="PersonalHolidayServicePolicylActionl02">

<policy:value>event(VegetarianEvent)</policy:value>
</policy: Simple Action>
<policy:Policy rdf ID="LoginServicePolicy 1 ">

303

<rdfs:coininentx/rdfs:comment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#LoginService"/>
<policy:event>
<policy:SimpleEvent rdf;ID="LogmServicePolicylEventlC">

<policy:value>RPersonalHolidayServicePolicylEventlC</policy:value>
</policy: SimpleEvent>

</policy:event>
<policy; condition>
<policy:SimpleCondition rdf:ID="LoginServicePolicylConditionl">
<policy:subject>

<policy: Subj ect rdf: ID="name"/>
</policy:subject>
<policy:predicate>

<policy: Predicate rdf ID=" equal"/>
</policy:predicate>
<policy:value>John.Murphy</policy:value>

</policy: SimpleCondition>
</policy: condition>
<policy:action>
<policy:SimpleAction rdf ID="LoginServicePolicylActionlCUO">
<policy:value>event(RPersonalHolidayServicePolicyl Event lCUO)</policy:value>

</policy: SimpleAction>
</policy:action>

</policy:Policy>
<policy:SimpleAction rdfID="HolidayPackageServicePolicylCActionl">

<policy:value>event(HolidayPackageServicePolicylCEvent2A)</policy:value>
</policy: SiinpleAction>
<policy:Policy rdf ID="HolidayPackageServicePolicy2C">

<rdfs: commentx/rdfs:comment>
<policy:target rdfresource="PersonalHolidayProcess.owl#HolidayPackageService"/>
<policy:event>
<policy:SimpleEvent rdfID="HolidayPackageServicePolicy2CEventlA">
<policy:value>RPersonalHolidayServicePolicy2EventlA</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy:action>
<policy:SimpleAction rdf ID="HolidayPackageServicePolicy2CActionl">
<policy:value>event(HolidayPackageServicePolicy2CEvent2A)</policy:value>

</policy:SimpleAction>
</policy:action>

</policy:Policy>
<policy:SimpleAction rdf ID="VegetarianActionl ">

<policy:value>VegetarianMeal()</policy:value>
<policy:value>VegetarianMenu()</policy:value>

</policy:SimpleAction>
<policy:SimpleAction rdfID="VegetarianEventl">
<policy:value>VegetarianEvent</policy:value>

</policy: Simple Action>
<policy:Policy rdfID="RPersonalHolidayServicePolicy2">
<rdfs:cotTunentx/rdfs:comment>
<policy:target rdfresource="PersonalHolidayProcess.owl#PersonalHolidayService"/>
<policy:event>

<policy:SimpleEvent rdfID="RPersonalHolidayServicePolicy2Eventl">
<policy:value>ProcessEvent</policy:value>

</policy:SimpleEvent>
</policy:event>
<policy:action>

<policy:SimpleAction rdf ID="RPersonaIHolidayServicePolicy2ActionlC">
<policy:value>event(RPersonalHolidayServicePolicy2EventlC)</policy:value>

</policy: SimpleAction>

304

</policy:action>
</policy:Policy>
<policy:Policy rdf;ID="FIightServicePolicy2CC">

<rdfs: coninienP></rdfs: comments
<policy;target rdf:resource="PersonalHolidayProcess.owl#FlightService"/>
<policy;event>

<policy:SimpleEvent rdf;ID="FlightServicePolicy2CCEvent2A">
<policy:value>HolidayPackageServicePolicy2CEvent2A</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy;action>

<policy:SimpleAction rdf:ID="FlightServicePolicy2CCAction2">
<policy:value>event(BusinessClassEvent)</policy:value>

</policy: Simple Action>
</policy;action>

</policy:Policy>
<policy: SimpleAction rdf:ID="PersonalHolidayServicePolicy 1 Actionl 01 ">

<policy:value>event(Accessibili1yEvent)</policy:value>
</policy; Simple Action>
<policy:ComplexEvent rdf:ID="BusmessClassEventla">

<rdfs:first>
<policy:AndList>
<rdfs:first>
<policy:SimpleEvent rdf:ID="BusmessClassEventlb">

<policy:value>ProcessEvent</policy:value>
</policy:SimpleEvent>

</rdfs:first>
<rdfs:rest>
<policy:SimpleAction rdf:ID="BusinessClassEventl">
<policy:value>BusinessClassEvent</policy:value>

</policy:SimpleAction>
</rdfs:rest>

</policy: AndList>
</rdfs:first>
<rdfs; restx/rdfs: rest>
<rdfs:first>
<policy; AndList>

<rdfs:first rdf:resource="#BusinessClassEventlb"/>
<rdfs;rest rdf:resource="#BusinessClassEventl "/>

</policy:AndList>
</rdfs:first>

</policy: ComplexEvent>
<policy: SimpleAction rdf:ID="RPersonalHolidayServicePolicy2ActionlCU">
<policy:value>event(RPersonalHolidayServicePolicy2EventlA)</policy:value>

</policy: SimpleAction>
<policy;Policy rdf:ID="RPersonalHolidayServicePolicy2CU">

<rdfs: commentx/rdfs: comment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#PersonalHolidayService"/>
<policy:event>

<policy:SimpleEvent rdf;ID="LoginServicePolicy2EventlCU">
<policy:value>RPersonalHolidayServicePolicy2EventlCU0</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy: action rdf;resource="#RPersonalHolidayServicePolicy2ActionlCU"/>

</policy:Policy>
<policy:Policy rdf:ID="HotelServicePolicy2CC">
<rdfs: commentx/rdfs: coniment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#HotelService"/>
<policy:event>

<policy: SimpleEvent rdf:ID="HotelServicePolicy2CCEvent2 A">

305

<policy:value>HolidayPackageServicePolicy2CEvent2A</policy;value>
</policy: SimpleEvent>

</policy:event>
<policy:action>

<policy: Simple Action rdf:ID="HotelServicePolicy2CCAction2">
<policy;value>event(BusmessClassEvent)</policy:value>

</policy;SimpleAction>
</policy;action>

</policy:Policy>
<policy:Policy rdf:ID="RPersonalHolidayServicePolicylCU">

<rdfs:commentx/rdfs:comment>
<policy: target rdf:resource="PersonalHolidayProcess.owl#PersonalHolidayService"/>
<policy:event>

<policy;SimpleEvent rdf:ID="LoginServicePolicylEventlCU">
<policy:value>RPersonalHolidayServicePolicylEventlCUO</policy:value>

</policy:SimpleEvent>
</policy;event>
<policy:action>

<policy: Simple Action rdf:ID="RPersonalHolidayServicePolicylActionlCU">
<policy:value>event(RPersonalHolidayServicePolicylEventlA)</policy:value>

</policy: Simple Action>
</policy:action>

</policy:Policy>
<policy:SimpleEvent rdf:ID="LoginServicePolicy2EventlC">

<policy:value>RPersonalHolidayServicePolicy2EventlC</policy:value>
</policy: SimpleEvent>
<policy: ComplexEvent rdf: ID=" VegetarianEvent 1 a">

<rdfs:first>
<policy: AndList>

<rdfs:first>
<policy: SimpleEvent rdf: ID=" VegetarianEvent 1 b">
<policy: value>ProcessEvent</policy: value>

</policy:SimpleEvent>
</rdfs:first>
<rdfs:rest rdf resource=" #VegetarianE vent 1 "/>

</policy:AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>
<rdfs:first>
<policy: AndList>

<rdfs: first rdf resource="#VegetarianEvent 1 b"/>
<rdfs:rest rdf resource="#VegetarianEventr7>

</policy:AndList>
</rdfs:first>

</policy:ComplexEvent>
<policy:SimpleAction rdfID="LoginServicePolicy2ActionlCU0">

<policy:value>event(RPersonalHolidayServicePolicy2EventlCU0)</policy:value>
</policy:SimpleAction>
<policy: Complex Action rdf ID="FlightServicePolicyl CCAction2">

<rdfs:first>
<policy:AndList>

<rdfs: first rdf resource="#PersonalHolidayServicePolicy 1 Actionl 01 "/>
<rdfs:rest rdf resource="#PersonalHolidayServicePolicyl Actionl 02"/>

</policy: AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy:ComplexAction>
<policy:Policy rdf ID=" AccessibilityPolicy 1 ">

<rdfs:commentx/rdfs:comment>
<policy:target rdfresource="PersonalHolidayProcess.owl#FlightService"/>

306

<policy:event>
<policy:ComplexEvent rdf;ID="AccessibilityEventla">
<rdfs:first>
<policy: AndList>

<rdfs:first>
<policy:SimpleEvent rdf:ID="AccessibilityEventlb">
<policy:va]ue>ProcessEvent</policy;value>

</policy: SimpleEvent>
</rdfs:first>
<rdfs:rest>

<policy:SimpleAction rdf: ID=" AccessibilityE vent 1 ">
<policy:value>AccessibilityEvent</policy:value>

</poIicy: Simple Action>
</rdfs:rest>

</policy: AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>
<rdfs:first>
<policy:AndList>
<rdfs:first rdf:resource="#AccessibilityEventlb"/>
<rdfs:rest rdf:resource="#AccessibilityEventl"/>

</policy:AndList>
</rdfs:first>

</policy:ComplexEvent>
</policy:event>
<policy:action>

<policy:SimpleAction rdf:ID="AccessibilityActionl ">
<policy:value>Accessibility()</policy:value>

</policy: Simple Action>
</policy;action>
<policy;target rdf:resource="PersonalHolidayProcess.owl#HotelService"/>

</policy;Policy>
<policy:SimpleEvent rdf:ID="FlightServicePolicylCCEvent2A">
<policy:value>HolidayPackageServicePolicylCEvent2A</policy:value>

</policy: SimpleEvent>
<pollcy:SimpleEvent rdf:ID="RPersonalHolidayServicePolicy 1 Eventl ">

<policy:value>ProcessEvent</policy;value>
</policy: SimpleEvent>
<policy:SimpleCondition rdf:ID="PersonalHolidayServicePolicy2Conditionl02">

<policy:subject>
<policy: Subject rdf:ID="member"/>

</policy;subject>
<policy;predicate rdf:resource="#equal"/>
<policy:value>FrequentFlyer</policy:value>

</policy: SimpleCondition>
<policy:Policy rdf;ID="FlightServicePolicylCC">
<rdfs:commentx/rdfs:comment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#FlightService"/>
<policy:event rdf:resource="#FlightServicePolicylCCEvent2A"/>
<policy:action rdf:resource="#FlightServicePolicylCCAction2"/>

</policy:Policy>
<policy:Policy rdf:ID="RPersonalHolidayServicePolicy 1 ">
<rdfs: commentx/rdfs: comment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#PersonalHolidayService"/>
<policy:event rdf:resource="#RPersonalHolidayServicePolicylEventl"/>
<policy:action>
<policy:SimpleAction rdf:ID="RPersonalHolidayServicePolicylActionlC">
<policy:value>event(RPersonalHolidayServicePolicylEventlC)</policy:value>

</policy: Simple Action>
</policy:action>

307

</policy:Policy>
<policy: Complex Action rdf:ID="HotelServicePolicylCCAction2">
<rdfs;first>

<policy;AndList>
<rdfs:first rdf:resource="#PersonalHolidayServicePolicylActionl01"/>
<rdfs:rest rdf:resoiirce="#PersonalHolidayServicePolicylActionl02"/>

</policy: AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy: Complex Action>
<policy:SimpleActionrdf:ID="BusinessClassActionl">

<poliey:value>BusinessClass()</policy:value>
<policy:value>BusinessSuite()</policy;value>

</policy: Simple Action>
<policy;Policy rdf:ID="HotelServicePolicylCC">
<rdfs:commentx/rdfs:comment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#HotelService"/>
<policy:event>

<policy:SimpleEvent rdf:ID="HotelServicePolicylCCEvent2A">
<policy:value>HolidayPackageServicePolicylCEvent2A</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy: action rdf:resource="#HotelServicePolicylCCAction2"/>

</policy:Policy>
<policy:Policy rdf:ID="BusinessClassPolicyl ">
<rdfs: commentx/rdfs: comment>
<policy:target rdf:resource="PersonalHolidayProcess.owl#FlightService"/>
<policy: event rdf:resource="#BusinessClassEventla"/>
<policy: action rdf;resource="#BusinessClassActionr'/>
<policy:target rdf:resource="PersonalHolidayProcess.owl#HotelService"/>

</policy:Policy>
<policy:ComplexCondition rdf:ID="LoginServicePolicy2Conditionl">

<rdfs:first>
<policy:AndList>

<rdfs;first>
<policy: SimpleCondition rdf: ID="PersonalHolidayServicePolicy2Condition 101 ">
<policy: subj ect rdf resource=" #name"/>
<policy:predicate rdfresource="#equal"/>
<policy:value>Susan.Smith</policy:value>

</policy: SimpleCondition>
</rdfs:first>
<rdfs:rest rdfresource="#PersonalHolidayServicePolicy2Conditionl02"/>

</policy: AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy: ComplexCondition>
<policy:Policy rdfID="HolidayPackageServicePolicylC">
<rdfs: commentx/rdfs; comment>
<policy:target rdfresource="PersonaIHolidayProcess.owl#HolidayPackageService"/>
<policy:event>
<policy:SimpleEvent rdf ID="HolidayPackageServicePolicyl CEventl A">
<policy:value>RPersonalHolidayServicePolicylEventlA</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy:action rdf resource="#HolidayPackageServicePolicylCActionl"/>

</policy:Policy>
<policy:Policy rdfID="LoginServicePolicy2">
<rdfs:commentx/rdfs:comment>
<policy: target rdfresource="PersonalHolidayProcess.owl#LoginService"/>
<policy: event rdfresource="#LogmServicePolicy2EventlC"/>

308

<policy:condition rdf:resource="#LoginServicePolicy2Condition 1 "/>
<policy:action rdf:resource="#LoginServicePolicy2 Action 1 CU0"/>

</policy:Policy>
<policy: Policy rdf:ID=" VcgctarianPolicy 1 ">
<rdfs: commcntx/rdfs: commcnt>
<policy:targct rdf:rcsourcc="PcrsonalHolidayProccss.owl#FlightScrvicc"/>
<policy:cvcnt rdf:rcsourcc="#VcgctarianEvcntl a"/>
<policy: action rdf:rcsourcc="#VcgctarianActionl "/>
<policy: target rdf;rcsourcc="PcrsonalHolidayProcess.owl#HotclScrvicc"/>

</policy:Policy>
</rdf;RDF>

PersonalHoliday Service’s Refined Policies as Jess

Rules
(dcfrulc HotclScrviccPolicy2CC
(event (service ?serviceO&HotelService|Any) (type ?typeO) (name
?eventO&HolidayPackageServicePolicy2CEvent2A))
=>(assert (event (service Any) (type Policy) (name BusinessClassEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(defrule LoginServicePolicy2
(event (service ?serviceO&LoginService|Any) (type ?typeO) (name
?eventO&RPersonalHolidayServicePolicy2EventlC)) (event (service ?cserviceO) (type ?ctypeO) (name
?ceventO&~IdleEvent))
(and (param (service ?cserviceO&LoginService) (direction ?directionO) (name ?paramO&name) (value
?valueO)) (test (eq ?valueO Susan.Smith)) (param (service ?cservicel&LoginService) (direction
?directionl) (name ?paraml&member) (value ?valuel)) (test (eq ?valuel Frequent Flyer)))
=>(assert (event (service Any) (type Policy) (name RPersonalHolidayServicePolicy2EventlCU0)))
(assert (action (service ?serviceO) (name ?eventO))))
(defrule RPersonalHolidayServicePolicy 1
(event (service ?serviceO&PersonalHolidayService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
=>(assert (event (service Any) (type Policy) (name RPersonalHolidayServicePolicylEventlC))))
(defrule RPersonalHolidayServicePolicy2CU
(event (service ?serviceO&PersonalHolidayService|Any) (type ?typeO) (name
?event0&RPersonalHolidayServicePolicy2EventlCU0))
=>(assert (event (service Any) (type Policy) (name RPersonalHolidayServicePolicy2EventlA))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule BusinessClassPolicyl
(and (event (service ?serviceO&FlightService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
(event (service ?servicel&FlightService|Any) (type ?typel) (name ?eventl&BusinessClassEvent)))
=>(service-state FlightService "BusinessClassO") (assert (action (service ?servicel) (name ?eventl))))
(defrule HolidayPackageServicePolicy2C
(event (service ?serviceO&HolidayPackageService|Any) (type ?typeO) (name
?eventO&RPersonalHolidayServicePolicy2EventlA))
=>(assert (event (service Any) (type Policy) (name HolidayPackageServicePolicy2CEvent2A))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule HolidayPackageServicePolicy 1C
(event (service ?serviceO&HolidayPackageService|Any) (type ?typeO) (name
?eventO&RPersonalHolidayServicePolicylEventlA))
=>(assert (event (service Any) (type Policy) (name FIolidayPackageServicePolicylCEvent2A))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule LoginServicePolicyl
(event (service ?serviceO&LoginService|Any) (type ?typeO) (name
?eventO&RPersonalHolidayServicePolicylEventlC)) (event (service ?cserviceO) (type ?ctypeO) (name
?ceventO&~IdleEvent))
(param (service ?cserviceO&LoginService) (direction ?directionO) (name ?paramO&name) (value
?valueO)) (test (eq ?valueO John.Murphy))

309

=>(assert (event (service Any) (type Policy) (name RPersonalHolidayServicePolicylEventlCUO)))
(assert (action (service ?serviceO) (name ?eventO))))
(defrule VegetarianPolicyl
(and (event (service ?serviceO&FlightService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
(event (service ?servicel&FlightService|Any) (type ?typel) (name ?eventl&VegetarianEvent)))
=>(service-state FlightService "VegetarianMealO") (assert (action (service ?servicel) (name
?eventl))))
(defrule RPersonalHolidayServicePolicy 1CU
(event (service ?serviceO&PersonalHolidayService|Any) (type ?typeO) (name
?eventO&RPersonalHolidayServicePolicylEventlCUO))
=>(assert (event (service Any) (type Policy) (name RPersonalElolidayServicePolicylEventlA))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule FlightServicePolicy2CC
(event (service ?serviceO&FlightService|Any) (type ?typeO) (name
?eventO&HolidayPackageServicePolicy2CEvent2A))
=>(assert (event (service Any) (type Policy) (name BusinessClassEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(defrule FlightServicePolicylCC
(event (service ?serviceO&FlightService|Any) (type ?typeO) (name
?eventO&HolidayPackageServicePolicylCEvent2A))
=>(and (assert (event (service Any) (type Policy) (name AccessibilityEvent))) (assert (event (service
Any) (type Policy) (name VegetarianEvent)))) (assert (action (service ?serviceO) (name ?eventO))))
(defrule HotelServicePolicylCC
(event (service ?serviceO&HotelService|Any) (type ?typeO) (name
? eventO&HolidayPackageServicePolicy 1 CEvent2 A))
=>(and (assert (event (service Any) (type Policy) (name AccessibilityEvent))) (assert (event (service
Any) (type Policy) (name VegetarianEvent)))) (assert (action (service ?serviceO) (name ?eventO))))
(defrule RPersonalHolidayServicePolicy2
(event (service ?serviceO&PersonalHolidayService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
=>(assert (event (service Any) (type Policy) (name RPersonalHolidayServicePolicy2EventlC))))
(defrule AccessibilityPolicyl
(and (event (service ?serviceO&FlightService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
(event (service ?servicel&FlightService|Any) (type ?typel) (name ?eventl&AccessibilityEvent)))
=>(service-state FlightService "AccessibilityO") (assert (action (service ?servicel) (name ?eventl))))

PersonalHoliday Service Runtime Trace
#First request
Sending Event InputEvent
Sending Event ProcessEvent
[Login] Reading user list from file
Sending Event InputEvent
username = Susan. Smith
password = 1234
membership = FrequentFlyer
Sending Event ProcessEvent
[Login] Susan Smith has successfully login
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
[Flight] Reading user list from file
[Flight] Reading airline list from file
Sending Event InputEvent
Sending Event ProcessEvent
Receiving Actions
Action: Accessibility
[Flight] Processing flight reservation request
[Flight] Searching for a flight from New York to Paris

310

[Flight] $$Reserving flight seat with Wheelchair access
[Flight] A flight was found for 300.0 euro
Sending Event OutputEvent
Sending Event IdleEvent
[Hotel] Reading user list from file
[Hotel] Reading hotel list from file
Sending Event InputEvent
Sending Event ProcessEvent
Receiving Actions
Action: Accessibility
[Hotel] Processing hotel reservation request
[Hotel] Searching for a hotel in Paris
[Hotel] Hotel found for the desired holiday location Hilton
[Hotel] SSReserving room with Wheelchair access
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
[HolidayBill] Processing Holiday Bill
[HolidayBill] Holiday package adds up to 2300.0
[HolidayBill] Sales tax is 10.0
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event OutputEvent
Sending Event IdleEvent
[Payment] Reading user list from file
Sending Event InputEvent
Sending Event ProcessEvent
[Payment] Processing Payment request for a bill of 2300.0
[Payment] Retrieving Visa Card Number
[Payment] Retrieving Visa Expiry Date
[Payment] Validating Visa Card
[Payment] Charging the user Susan Smith: 2530.0
[Payment] Payment of 2530.0 including sales tax of 10.0% has been approved
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event OutputEvent
Sending Event IdleEvent

#Second request
Sending Event InputEvent
Sending Event ProcessEvent
[Login] Reading user list from file
Sending Event InputEvent
username = John.Murphy
password = 1234
membership = SalesGroup
Sending Event ProcessEvent
[Login] John Murphy has successfully login
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
[Flight] Reading user list from file
[Flight] Reading airline list from file
Sending Event InputEvent
Sending Event ProcessEvent
Receiving Actions
Action: BusinessClass
[Flight] Processing flight reservation request

311

[Flight] Searching for a flight from Toronto to London
[Flight] SSReserving Business class flight
[Flight] A flight was found for 700.0 euro
Sending Event OutputEvent
Sending Event IdleEvent
[Hotel] Reading user list from file
[Hotel] Reading hotel list from file
Sending Event InputEvent
Sending Event ProcessEvent
Receiving Actions
Action: BusinessSuite
[Hotel] Processing hotel reservation request
[Hotel] Searching for a hotel in London
[Hotel] Hotel found for the desired holiday location Marriott
[Hotel] SSReserving Business suite
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
[HolidayBill] Processing Holiday Bill
[HolidayBill] Holiday package adds up to 1500.0
[HolidayBill] Sales tax is 10.0
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event OutputEvent
Sending Event IdleEvent
[Payment] Reading user list from file
Sending Event InputEvent
Sending Event ProcessEvent
[Payment] Processing Payment request for a bill of 1500.0
[Payment] Retrieving Visa Card Number
[Payment] Retrieving Visa Expiry Date
[Payment] Validating Visa Card
[Payment] Charging the user John Murphy: 1650.0
[Payment] Payment of 1650.0 including sales tax of 10.0% has been approved
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event OutputEvent
Sending Event IdleEvent

312

Appendix G - Notification Service Case

Study
The artefacts produced for the Notification service case study. The artefacts are the

description of the composite service, expressed as OWL-S; the description of the

adaptive behaviours, expressed as a FSM; the high level management policies; and

auto-generated refined low level enforceable policies. Lastly, the runtime trace of the

web service managed by the refined policies.

Notification Service
<rdf:RDF

xmlns:process="http://www.daml.org/services/owl-s/1.1 /Process.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:thisprofile="http;//www.daml.org/services/owl-s/l.l/NotificationProfile.owl#"
xmlns="http://www.dainl.org/services/owl-s/l.l/NotificationService.owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/NotificationService.owl"
xmlns:thisgrounding="http://www.dainl.org/services/owl-s/l.l/NotificationGrounding.owl#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/NotificationProcess.owl#"
xmlns:service="http://www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns;grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/NotificationService.owl">
<owl:Ontology rdf:about="">

<0 wl: versionlnfox/o wl: versioiiInfo>
<owl:imports rdf:resource="Service.owl"/>
<owl:imports rdf:resource="NotificationProfile.owl"/>
<owl:imports rdf:resource="Profile.owr7>
<owl: imports rdf:resource="Grounding.owl"/>
<owl;imports rdf;resource="Process.owl"/>
<owl:imports rdf:resource="NotificationGrounding.owl"/>
<owl:imports rdf:resource="NotificatioiiProcess.owl"/>
<rdfs; commentx/rdfs: comment>

</owl:Ontology>
<service:Service rdf:ID="NotificationService">

<service:describedBy rdf:resource="NotificationProcess.owl#NotificationService"/>
<service:presents rdf;resource="NotificationProfile.owl#NotificationProfile"/>
<service;supports rdf:resoiirce="NotificationGroundmg.owl#NotificationGroundmg"/>

</service: Service>
</rdf:RDF>

Notification Process
<rdf:RDF

xmliis:process="http://www.daml.org/services/owl-s/l. 1/Process.owl#"
xmlns:objList="http;//www.daml.org/services/owl-s/l.l/generic/ObjectList.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"

313

xmlns:service="ht1p://www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/NotificationProcess.owl"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Groimding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"
xmlns="http://www.daml.org/services/owl-s/l.l/NotificationProcess.owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/NotificationProcess.owl">
<owl;Ontology rdf:about="">
<owl:imports rdf:resource="NotificationProfile.owl"/>
<owl:imports rdf:resource="Process.owl"/>
<owl:imports rdf:resource="Service.owl"/>
<owl:imports rdf:resource="Profile.owl"/>
<owl:imports rdf:resource="NotificationService.owl"/>
<owl:imports rdf:resource="NotificationGrounding.owl"/>
<rdfs:commenP*</rdfs:comment>
<0wl; imports rdf:resource="Grounding.owl'V>
<0 wl: versioninfox/owl: versionInfo>

</owl:Ontology>
<process:Output rdfID="UserContactNumber">
<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>
<rdftype rdf resource="Process.owl#Input"/>

</process: Output>
<process:Perform rdfID="MessageServicePerform">
<process:process>

<process:AtomicProcess rdfID="MessageService">
<process:hasInput>

<process: Input rdf ID=" Subject">
<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process: Input>
</process:hasInput>
<process:hasInput>
<process;Input rdfID="Message">

<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/2001 /XMLSchema#string</process:parameterT ype>

</process:Input>
</process:hasInput>
<process: haslnput>
<process:Input rdf ID="Priority">

<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process:hasInput>
<process:hasOutput>

<process: Output rdf ED=" EmailMessage">
<process:parameterType rdf datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>
<rdf:type rdfresource="Process.owl#Input"/>

</process:Output>
</process:hasOutput>
<process: hasOutput>

<process: Output rdf ID="VoiceMessage">
<process:parameterType rdfdatatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process;parameterType>
<rdftype rdfresource="Process.owl#Input"/>

</process: Output>

314

</process: hasOutput>
<process;hasOutput>

<process:Output rdf:ID="Language">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/2001 /XMLSchema#string</process:parameterType>

</process:Output>
</process:hasOutput>
<process: hasOutput>
<process: Output rdf: ID="ProcessTiine">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#time</process:parameterType>

</process: Output>
</process :hasOutput>
<process:hasFiniteStateMachine

rdf;resource="MessageServiceFSM.owl#MessageServiceFSM"/>
</process:AtomicProcess>

</process:process>
<process;hasDataFrom>

<process:InputBinding>
<process; value Source>
<process:ValueO£>

<process:theVar rdf:resource="#Subject"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueO£>
</process: valueSource>
<process:toParam rdf:resource="#Subject"/>

</process;InputBinding>
</process:hasDataFrom>
<process: hasDataF rom>

<process:InputBinding>
<process;valueSource>
<process;ValueO£>

<process:theVar rdf:resource="#Message"/>
<process: fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueO£>
</process: valueSourcO
<process:toParam rdf:resource="#Message"/>

</process:InputBinding>
</process:hasDataFrom>
<process: hasDataFrom>

<process; InputB inding>
<process:valueSource>

<process:ValueOC>
<process: the Var rdf: resource=" #Priority"/>
<process:fromProcess rdf: resource="#TheParentPerform"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdfresource="#Priority"/>

</process: InputB indmg>
</process: hasDataF rom>
<process:hasDataFrom>

<process: InputB inding>
<process:valueSource>
<process: ValueOf>

<process: the Var rdf resource^" #ProcessT ime" />
<process:froniProcess rdf resource="#TheParentPerfomi"/>

</process: ValueO f>
</process: value Source>
<process:toParam rdfresoiu'ce="#ProcessTime"/>

</process: InputB inding>

315

</process:hasDataFrom>
</process;Perfonn>
<process:AtomicProcess rdf:ID="AddressBookService">

<process:hasOutput>
<process:Output rdf:ID="RecipientContactNumber">
<process;parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>
<rdf:type rdf:resource="Process.owl#Input"/>

</process: Output>
</process:hasOutput>
<process:hasOutput rdf:resource="#UserContactNumber"/>
<process:hasInput>
<process:Input rdf:ID="Department">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process: haslnput>
<process:hasInput>

<process:Input rdf:ID="Recipient">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process:hasInput>
<process:hasOutput>

<process:Output rdf:ID="UserEmailAddress">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURJ"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>
<rdf;type rdf:resource="Process.owl#Input"/>

</process: Output>
</process:hasOutput>
<process:hasOutput>

<process: Output rdf:ID="SearchTime">
<process:parameterType rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#time</process:parameterType>

</process; Output>
</process:hasOutput>
<process:hasFiniteStateMachine

rdf:resource="AddressBookServiceFSM.owl#AddressBookServiceFSM"/>
<process;hasOutput>

<process:Output rdf:ID="RecipientEmailAddress">
<process;parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>
<rdf;type rdf:resource="Process.owl#Input"/>

</process: Output>
</process: hasOutput>
<process:hasInput>
<process: Output rdf: ID=" Guestid" >

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>
<rdf;type rdf:resource="Process.owl#Input"/>

</process: Output>
</process: haslnput>

</process;AtomicProcess>
<process: Input rdf:ID="Membership">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
<process: Input rdf:ID="RecipientContacNumber">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLScheina#anyURI"
>http: //www. w3. org/2001/XMLSchenia#string</process :parameterT ype>

316

</process:Input>
<process:Perform rdf:ID="PhoneServicePerform">
<process:process>

<process:AtomicProcess rdf:ID="PhoneService">
<process:hasInput rdf:resoiirce="#UserContactNumber"/>
<process:hasInput rdf:resource="#RecipientContactNumber"/>
<process:hasInput rdf:resource="#VoiceMessage"/>
<process: hasOutput>

<process:Output rdf:ID="CallResponse">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process;parameterType>

</process:Output>
</process: hasOutput>
<process:hasFiniteStateMachine rdf:resource="PhoneServiceFSM.owl#PhoneServiceFSM"/>

</process:AtomicProcess>
</process:process>
<process: hasDataF rom>

<process: InputB inding>
<process: value Source>
<process:ValueO£>
<process:theVarrdf:resource="#UserContactNumber"/>
<process:froniProcess rdf:resource="#TheParentPerform"/>

</process: ValueO f>
</process: value Source>
<process:toParam rdf:resource="#UserContactNumber"/>

</process:InputBinding>
</process; hasDataF rom>
<process: hasDataF rom>

<process:InputBinding>
<process: value Source>
<process;ValueOf>
<process:theVar rdf:resource="#RecipientContactNumber"/>
<process;fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueOC>
</process:valueSource>
<process:toParam rdf:resource="#RecipientContactNumber"/>

</process:InputBinding>
</process: hasDataF rom>
<process:hasDataFrom>
<process: InputB inding>

<process: value Source>
<process:ValueOf>
<process:theVarrdf:resource="#VoiceMessage"/>
<process:fromProcess rdf:resource="#TheParentPerfomt"/>

</process: ValueO f>
</process: value Source>
<process:toParamrdf:resource="#VoiceMessage"/>

</process;InputBinding>
</process: hasDataF rom>
<process:hasDataFrom>

<process: InputB mding>
<process:valueSource>
<process:ValueOf>
<process:theVarrdf:resource="#CalIResponse"/>
<process;froniProcess rdf:resource="#TheParentPerfonn"/>

</process:ValueOf>
</process:valueSource>
<process:toParani rdf:resource="#CalIResponse"/>

</process;InputBinding>
</process: hasDataFroni>

317

</process: P erform>
<process:Perform rdf:ID="ContactServicePerform">

<process;hasDataFrom>
<process:InputBmding>

<process:valueSource>
<process:ValueOf>

<process:theVarrdf:resource="#RecipientEmailAddress"/>
<process: fromProcess>

<process: Perform rdf:ID="AddressBookServicePerfonii">
<process:process rdf:resource="#AddressBookService"/>
<process:hasDataFrom>
<process: InputB mding>

<process:valueSource>
<process: V alueO£>
<process:theVar rdf:resource="#Recipient"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process: ValueO f>
</process:valueSource>
<process:toParam rdf:resource="#Recipient"/>

</process: InputB inding>
</process:hasDataFrom>
<process:hasDataFrom>
<process: InputB mding>
<process:valueSource>
<process: ValueOf>

<process:theVar rdf:resource="#Department"/>
<process:fromProcess rdf:resource="#TheParentPerform"/>

</process: ValueO f>
</process:valueSource>
<process:toParam rdf:resource="#Department"/>

</process: InputB inding>
</process:hasDataFrom>
<process: hasDataF rom>

<process:InputBinding>
<process:valueSource>

<process:ValueOf>
<process: the V ar rdf; resource="#Guestid"/>
<process: fromProcess>

<process:Perform rdf:ID="LoginServicePerform">
<process:process>
<process:AtomicProcess rdf:ID="LoginService">

<process: haslnput>
<process:Input rdf:ID="Usemame">

<process:parameterType rdf:datatype=
"http;//www.w3.org/2001/XMLSchema#anyURI"
>http: //www. w3. org/2001/XMLSchema#string</process :parameterT ype>

</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="Password">

<process:parameterType rdf:datatype=
"http://www.w3.Org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process;hasInput>
<process:hasInput rdf:resource="#Membership"/>
<process:hasOutput rdf:resource="#Guestid"/>

</process:AtomicProcess>
</process:process>
<process:hasDataFrom>

318

<process:InputBinding>
<process;valueSource>
<process:ValueO£>

<process; the Var rdf: resource^" #Usemame"/>
<process:fromProcess rdfresource="#TheParentPerfomi"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdfresource="#Usemame"/>

</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:valueSource>

<process:ValueOC>
<process:theVar rdfresource="#Password"/>
<process: fromProcess rdf resource="#TheParentPerform"/>

</process: V alueO f>
</process:valueSource>
<process:toParam rdfresource="#Password"/>

</process:InputBinding>
</process: hasDataF rom>
<process:hasDataFrom>

<process:InputBinding>
<process: value Source>
<process:ValueOf>
<process;theVar rdfresource="#Membership"/>
<process:fromProcess rdfresource="#TheParentPerform"/>

</process; V alueOf>
</process:valueSource>
<process:toParam rdfresource="#Membership"/>

</process:InputBinding>
</process: hasDataF rom>

</process:Perfonn>
</process:fromProcess>

</process: ValueO f>
</process:valueSource>
<process:toParam rdfresource="#Guestid"/>

</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>

<process:InputBinding>
<process: valueSource>
<process:ValueOf>
<process:theVar rdfresource="#SearchTime"/>
<process: fromProcess rdf resource=" #TheParentPerform"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdfresource="#SearchTime"/>

</process:InputBinduig>
</process:hasDataFrom>

</process:Perform>
</process: fromProcess>

</process:ValueOfi>
</process:valueSource>
<process:toParam rdfresource="#RecipientEmailAddress"/>

</process:InputBmdmg>
</process:hasDataFrom>
<process: hasDataF rom>
<process: InputB inding>

<process:valueSource>

319

<process:ValueO£>
<process:theVar rdf;resource="#EmailMessage"/>
<process:froinProcess rdf;resource="#ThisPerform"/>

</process;ValueOf>
</process:valueSource>
<process:toParam rdf;resource="#EmailMessage"/>

</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFroni>
<process:InputBinding>

<process:valueSource>
<process:ValueO£>
<process:theVar rdf:resource="#VoiceMessage"/>
<process:fromProcess rdf:resource="#MessageServicePerform"/>

</process:ValueOC>
</process:valueSource>
<process:toParam rdf:resource="#VoiceMessage"/>

</process: Inputs inding>
</process: hasDataF rom>
<process:hasDataFrom>
<process:InputBinding>

<process:valueSource>
<process:ValueO£>

<process:theVar rdf:resource="#VoiceMessage"/>
<process:fromProcess rdf:resource="#ThisPerform"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdf:resource="#VoiceMessage"/>

</process: InputBinding>
</process:hasDataFrom>
<process: hasDataF rom>
<process:InputBinding>

<process:valueSource>
<process:ValueOf>

<process;theVarrdf:resource="#CallResponse"/>
<process:fromProcess rdf:resource="#TheParentPerfonn"/>

</process:ValueOf>
</process:valueSource>
<process:toParam rdf:resource="#CallResponse"/>

</process: Inputs inding>
</process: hasDataF rom>
<process;hasDataFrom>
<process:InputBinding>

<process:valueSource>
<process:ValueO£>

<process:theVar rdf:resource="#UserEmailAddress"/>
<process: fromProcess rdf:resource="#ThisPerfomi"/>

</process: ValueO f>
</process:valueSource>
<process: toP aram rdf: resource=" #U serEmail Address"/>

</process:InputBinding>
</process: hasDataF rom>
<process: hasDataFroni>
<process: InputB inding>

<process:valueSource>
<process:ValueO£>

<process:theVar rdfresource="#UserContactNumber"/>
<process:froniProcess rdfresource="#AddressBookServicePerform"/>

</process:ValueOf>
</process;valueSource>

320

<process:toParam rdf:resource="#UserContactNumber"/>
</process:InputBinding>

</process; hasDataF rom>
<process:process>
<process:CompositeProcess rdf:ID="ContactService">

<process:hasFiniteStateMachine rdf:resource="ContactServiceFSM.owl#ContactServiceFSM"/>
<process: ha slnput>
<process:Input rdf:ID="UserEmailAdress">

<process:paraineterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process: haslnput>
<process:hasOutput rdf:resource="#CallResponse"/>
<process:hasInput rdf:resource="#RecipientEmailAddress"/>
<process:hasInput rdf;resource="#EmailMessage"/>
<process:hasInput rdf:resource="#UserContactNumber"/>
<process: hasOutput>

<process: Output rdf: ED=" EmailResponse">
<process;parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process: Output>
</process:hasOutput>
<process:hasInput rdf:resource="#RecipientContacNumber"/>
<process:composedOf>
<process:Sequence>

<process:components>
<process;ControlConstructList>

<objList: first rdf:resource="#PhoneServicePerform"/>
<objList:rest>
<process;ControlConstructList>

<obj List: firs t>
<process:Perform rdf:ID="EmailServicePerform">
<process:process>

<process:AtomicProcess rdf:ID="EmailService">
<process:hasInput rdf:resource="#UserEmailAddress"/>
<process:hasInput rdf:resource="#RecipientEmailAddress"/>
<process:hasInput rdf:resource="#EmailMessage"/>
<process:hasOutput rdf:resource="#EmailResponse"/>
<process:hasFiiiiteStateMachine

rdf:resource="EmailServiceFSM.owl#EmailServiceFSM"/>
</process: AtomicProcess>

</process:process>
<process:hasDataFrom>

<process:InputBinding>
<process:valueSource>

<process:ValueOf>
<process:theVarrdf:resource="#UserEmailAddress"/>
<process:fi-omProcess rdf:resource="#TheParentPerform"/>

</process:V alueO £>
</process:valueSource>
<process:toParam rdf:resource="#UserEmailAddress"/>

</process:InputBinding>
</process: hasDataFrom>
<process:hasDataFrom>

<process: InputBmding>
<process:valueSource>

<process:ValueOf>
<process:theVar rdf:resource="#RecipientEmailAddress"/>
<process:fi'omProcess rdf:resource="#TheParentPerform"/>

</process:ValueOf>

321

</process:valueSource>
<process:toParam rdf;resource="#RecipientEmailAddress"/>

</process:InputBinding>
</process:hasDataFrom>
<process: hasDataF rom>
<process:InputBinding>
<process: valueSourcO
<process:ValueO£>

<process:theVarrdf:resource="#EmailMessage"/>
<process: fromProcess rdf:resource="#TheParentPerfonn"/>

</process:ValueOP>
</process:valueSource>
<process:toParam rdf:resource="#EmailMessage"/>

</process:InputBinding>
</process: hasDataF rom>
<process: hasDataF rom>

<process;InputBinding>
<process:valueSource>
<process: ValueO£>

<process:theVar rdf:resource="#EmailResponse"/>
<process; fromProcess rdf:resource="#TheParentPerform"/>

</process:ValueO£>
</process:valueSource>
<process:toParam rdf:resource="#EmailResponse"/>

</process: InputB inding>
</process:hasDataFrom>

</process:Perfonn>
</obj List: firs t>
<objList:rest rdf:resource="generic/ObjectList.owl#ml"/>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</process:components>

</process:Sequence>
</process:composedOf>
<process:hasInput rdf:resource="#VoiceMessage"/>

</process:CompositeProcess>
</process:process>
<process: hasDataF rom>
<process: InputB inding>
<process: value Source>
<process:ValueOf>

<process:theVar rdf:resource="#CallResponse"/>
<process:fi'omProcess rdf:resource="#ThisPerform"/>

</process:ValueO£>
</process:valueSource>
<process:toParam rdf:resource="#CallResponse"/>

</process:InputBinding>
</process: hasDataF rom>
<process:hasDataFrom>
<process;InputBinding>

<process:valueSource>
<process: ValueO f>

<process:theVar rdf:resource="#RecipientContactNumber"/>
<process:fi'omProcess rdf:resource="#ThisPerform"/>

</process: ValueOf>
</process:valueSource>
<process:toParamrdf:resource="#RecipientContactNumber"/>

</process:InputBinding>
</process:hasDataFrom>

322

<process:hasDataFrom>
<process:InputBinding>
<process:valueSource>

<process:ValueOC>
<process:theVar rdf:resource="#EmailResponse"/>
<process:fromProcess rdf:resource="#TliisPerform"/>

</process:ValueOfi>
</process:valueSource>
<process:toParam rdf:resource="#EmailResponse"/>

</process:InputBinding>
</process:hasDataFrom>
<process: hasDataFrom>

<process:InputBinding>
<process:valueSource>

<process:ValueOC>
<process:theVar rdf:resource="#RecipientContactNumber"/>
<process:fromProcess rdf:resource="#AddressBookServicePerfonn"/>

</process: ValueOf>
</process:valueSource>
<process:toParam rdf:resource="#RecipientContacNumber"/>

</process:InputBinding>
</process: hasDataF rom>
<process:hasDataFrom>

<process:InputBinding>
<process:valueSource>

<process:ValueOf>
<process:theVar rdf:resource="#EmailMessage"/>
<process:fromProcess rdf:resource="#MessageServicePerfonn"/>

</process:ValueOf>
</process:valueSource>
<process;toParam rdf;resource="#EmailMessage"/>

</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>

<process: InputBinding>
<process:valueSource>

<process:ValueOC>
<process:theVar rdf:resource="#UserEmailAddress"/>
<process:froinProcess rdf:resource="#AddressBookServicePerform"/>

</process:ValueOP>
</process: valueSourcO
<process:toParamrdf:resource="#UserEmailAdress'7>

</process:InputBmding>
</process;hasDataFrom>
<process:hasDataFrom>
<process: InputB mding>

<process: valueSourcO
<process:ValueOf>
<process:theVar rdf:resource="#RecipientEmailAddress"/>
<process:fromProcess rdf:resource="#ThisPerform"/>

</process:ValueO£>
</process; value SourcO
<process:toParam rdf:resource="#RecipientEmailAddress"/:

</process: InputB mding>
</process:hasDataFrom>
<process:hasDataFrom>
<process: InputB inding>
<process: value Source>
<process:ValueOf>

<process:theVar rdf:resource="#EmailResponse"/>

323

"/>

<process:froniProcess rdf:resource="#TheParentPerform"/>
</process:ValueOf^>

</process:valueSource>
<process:toParam rdf:resource="#EmailResponse"/>

</process:InputBmding>
</process;hasDataFrom>
<process: hasDataF rom>
<process: InputB inding>

<process:valueSource>
<process;ValueOf>
<process:theVar rdf:resource="#UserContactNumber"/>
<process:fromProcess rdf:resource="#ThisPerform"/>

</process: ValueOf>
</process:valueSource>
<process:toParam rdf:resource="#UserContactNumber"/>

</process:InputBinding>
</process:hasDataFrom>

</process:Perform>
<process:CompositeProcess rdf:ID="NotificationService">

<process:hasInput rdf:resource="#Priority"/>
<process:hasOutput rdf:resource="#ProcessTime"/>
<process:hasOutput rdf:resource="#Language"/>
<process:hasInput rdf:resource="#Subject"/>
<process:hasInput rdf:resource="#Department"/>
<process:hasInput rdf;resource="#Message"/>
<process:hasInput rdf:resource="#Recipient"/>
<process:hasOutput rdf:resource="#SearchTime"/>
<process:hasFiniteStateMachme

rdf:resource="NotificationServiceFSM.owl#NotificationServiceFSM"/>
<process: hasinput rdf: resource="#Useraaine"/>
<process:hasOutput rdfresource="#CallResponse"/>
<process:hasInput rdf resource="#Password"/>
<process:composedOf>

<process: Sequence>
<process:components>

<process:ControlConstructList>
<obj List: first rdf resource="#LoginServicePerform"/>
<objList:rest>

<process:ControlConstructList>
<obj List: first rdf resource=" #MessageServicePerform"/>
<objList:rest>

<process:ControlConstructList>
<objList: first rdfresource="#AddressBookServicePerform"/>
<objList:rest>
<process:ControlConstructList>

<obj List: first rdfresource="#ContactServicePerform"/>
<objList:rest rdfresource="generic/ObjectList.owl#nil"/>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</process:components>

</process: Sequence>
</process: composedOf>
<process:hasOutput rdfresource="#EmailRespoiise"/>
<process:hasInput rdf resource="#Membership"/>

</process:CompositeProcess>

324

</rdf;RDF>

Notification Grounding
<rdf:RDF

xmlns;wsdl="http;//www.daiiil.org/services/owl-s/l.l/NotificationGrounding.wsdl#"
xmlns:process="http://www.dainl.org/services/owl-s/l. 1/Process.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:rdfs="http;//www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xnilns:base="http://www.daml.org/services/owl-s/l.l/NotificationGrounding.owr'
xinlns="http://www.daml.org/services/owl-s/l.l/NotificationGrounding.owl#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/NotificationProcess.owl#"
xmlns:service="http://www.danil.org/services/owl-s/l. l/Service.owl#"
xmlns;grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xnilns;wsdldoc="http://www.daml.org/services/owl-s/l.l/NotificationGrounding.wsdl"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile, owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/NotificationGrounding.owl">
<owl:Ontology rdf;about="">
<owl: versionlnfox/o wl: versionInfo>
<rdfs: cominentx/rdfs: comment>
<owl:imports rdf:resource="Service.owl"/>
<owl:iinports rdf:resource="Process.owl"/>
<owl:iinports rdf:resource="Grounding.owl"/>
<owl:imports rdf:resource="NotificatioiiProcess.owr7>

</owl:Ontology>
<grounding:WsdlAtomicProcessGroundingrdf:ID="MessageServiceGrounding">

<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http;//www. w3 .org/TR/2001 /NOTE-wsdl-20010315</grounding:otherReference>
<groundmg:wsdlDocument rdf:datatype="http;//www.w3.org/2001/XMLScheina#anyURI"
>http://www.daml.org/services/owl-^l.l/NotificationGrounding.wsdl</grounding:wsdlDocument>
<grounding:wsdllnputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. daml. org/services/o wl-

s/l.l/NotificationGroundmg.wsdl#MessageService_Input</grounding:wsdlInputMessage>
<grounding:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.danil.org/services/owl-

s/l.l/NotificationGroundmg.wsdl#MessageService_Output</groundmg:wsdlOutputMessage>
<grounding; wsdllnput>

<grounding: W sdlInputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Message"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchenia#anyURI"
>http://www.daml.org/services/owl-

s/1. l/NotificationGroundmg.wsdl#message</grounding: wsdlMessagePart>
</grounding: WsdllnputM essageMap>

</grounding:wsdlInput>
<groundiiig:wsdlReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://www.w3 .org/TR/2001 /NOTE-wsdl-20010315</grounding: wsdlReference>
<grounding:wsdlOperation>

<grounding: W sdlOperationRef>
<groiinding:portType rdf:datatype="http;//www.w3.org/200l/XMLScheina#anyURJ"
>http ://www.daml.org/ services/owl

s/1. l/NotificationGroundmg.wsdl#MessageService_PortType</groimding;portType>
<grounding: operation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1.1 /NotificationGrounding. wsdl#MessageService_Operation</grounding; operation>
</groundmg: W sdlOperationReC>

</groundmg; wsdlOperation>
<grounding: wsdlOutput>

325

<grounding: W sdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Language"/>
<grounding:wsdlMessagePart rdf:datatype="http://w\vw.w3.org/2001/XMLSchema#anyURI"
>http; //WWW.daml.org/ services/owl

s/1. l/NotificationGrounding.wsdl#lang</grounding;wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</groundmg: wsdlOutput>
<groundmg:otherReference rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://schemas.wmlsoap.org/soap/http/</grounding:otherReference>
<grounding:wsdlOutput>
<grounding:WsdlOutputMessageMap>
<grounding;owlsParameter rdf:resource="NotificationProcess.owl#EmailMessage"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1.1 /NotificationGrounding. wsdl#emailmsg</grounding: wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://schemas, wmlsoap. org/ wsdl/soap/</grounding: otherReference>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#ProcessTime"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://WWW. daml. org/services/owl

s/1. l/NotificationGrounding.wsdl#time</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</ grounding: wsdlOutput>
<grounding: wsdllnput>
<grounding: W sdllnputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Subject"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/NotificationGrounding.wsdl#subject</grounding:wsdlMessagePart>
</grounding:WsdllnputMessageMap>

</grounding:wsdllnput>
<grounding:owlsProcess rdf:resource="NotificationProcess.owl#MessageService"/>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Priority"/>
<groundmg:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //WWW. daml. org/services/owl

s/1 . l/NotificationGrounding.wsdl#priority</grounding:wsdLMessagePart>
</grounding:WsdlInputMessageMap>

</ grounding: wsdllnput>
<grounding:wsdlOutput>

<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#VoiceMessage"/>
<groxmding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http:// WWW. daml. org/services/owl-

s/l.l/NotiflcationGrounding.wsdl#voicemsg</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding:wsdlOutput>
</grounding:WsdlAtomicProcessGrounding>
<grounding:WsdlGrounding rdf:ID="NotificationGrounding">

<grounding:hasAtomicProcessGrounding>
<grounding:WsdlAtomicProcessGrounding rdf:ID="LoginServiceGrounding">

<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</groundmg:otherReference>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://schemas. wmlsoap.org/soap/http/</grounding:otherReference>

326

<groundmg:wsdlReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/TR/200 l/NOTE-wsdl-20010315</grounding: wsdlReference>
<grounding: wsdllnput>

<grounding: W sdlInputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Usemame"/>
<groundmg:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/NotificationGrounding.wsdl#name</grounding: wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding:wsdlInput>
<groundmg: wsdllnput>

<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Membership"/>
<grounding:wsdlMessagePart rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://www.dainl.org/services/owl-

s/1. l/NotificationGrounding.wsdl#member</grounding: wsdlMessagePart>
</grounding: W sdlInputMessageMap>

</grounding:wsdlInput>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http;//schemas.wmlsoap.org/wsdl/soap/</grounding:otherReference>
<grounding:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //WWW. daml. org/ services/o wl-

s/l.l/NotificationGroundmg.wsdl#LoginService_Output</grounding:wsdlOutputMessage>
<grounding: wsdllnput>

<groundmg:WsdlInputMessageMap>
<groundmg:owlsParameter rdf:resource="NotificationProcess.owl#Password"/>
<grounding;wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/NotificationGrounding.wsdl#pass</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding; wsdl Input>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Guestid"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/NotificationGrounding.wsdl#user</grounding: wsdlMessagePart>
</groundmg:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/NotificationGrounding.wsdl#LoginService_Input</grounding:wsdlInputMessage>
<grounding: wsdlDocument rdf:datatype="http://www. w3 .org/2001 /XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/NotificationGrounding.wsdl</grounding: wsdlDocument>
<grounding: wsdlOperation>

<grounding:WsdlC)perationRef>
<grounding:portType rdf:datatype="http://www.w3.org/2001/XMLSchenia#anyURI"
>http://www.danil.org/services/owl-

s/1.1 /NotificationGrounding.wsdl#LoginService_PortType</grounding:portType>
<grounding: operation rdf:datatype="http://www.w3 .org/2001 /XMLSchenia#anyURI"
>http://www.danil.org/services/owl-

s/l.l/NotificationGrounding.wsdl#LoginService_Operation</grounding:operation>
</grounding: W sdlOperationRef>

</grounding: wsdlOperation>
<grounding:owlsProcess rdf:resource="NotificationProcess.owl#LoginService"/>

</grounding:WsdlAtoniicProcessGroundmg>
</grounding:hasAtomicProcessGrounding>
<grounding:hasAtoniicProcessGroundingrdf:resource="#MessageServiceGrounding"/>
<grounding:hasAtoniicProcessGrounding>

327

<grounding:WsdlAtomicProcessGrounding rdf:ID="AddressBookServiceGrounding">
<grounding:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http;//www.daml.org/services/owl-

s/l.l/NotificationGrounding.wsdl#AddressBookService_Output</grounding;wsdlOutputMessage>
<grounding: wsdllnput>
<grounding: W sdlInputMessageMap>

<groundmg:owlsParameter rdf:resoiirce="NotificationProcess.owl#Department"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //WWW. daml.org/services/owl-

s/1.1 /NotificationGrounding. wsdl#group</grounding: wsdlMessagePart>
</grounding: W sdlInputMessageMap>

</grounding: wsdllnput>
<grounding; wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="NotificationProcess.owl#UserEmailAddress"/>
<groimding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>ht1p://www.daml.org/services/owl-

s/1. l/NotificationGrounding.wsdl#fromemail</grounding: wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</ grounding: wsdlOutput>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURJ"
>http://www.w3.org/TR/2001/NOTE-wsdl-20010315</grounding:otherReference>
<grounding:wsdlOperation>
<grounding:WsdlC)perationRe£>

<grounding:portType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/NotificationGroundmg.wsdl#AddressBookService_PortType</grounding:portType>
<grounding: operation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/NotificationGrounding.wsdl#AddressBookService_Operation</grounding:operation>
</grounding:WsdlOperationRef>

</groimding: wsdl Opera tion>
<grounding: wsdllnput>

<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Guestid"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. daml. org/services/o wl-

s/1. l/NotificationGrounding.wsdl#user</grounding:wsdlMessagePart>
</grounding: WsdllnputMessageMap>

</ grounding: wsdllnput>
<grounding: wsdlOutput>

<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#RecipientEmailAddress"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //www. daml. org/ services/o wl-

s/1.1 /NotificationGrounding. wsdl#toemail</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding:wsdlOutput>
<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<groundmg:owlsParameter rdf:resource="NotificationProcess.owl#SearchTime"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http ://www. daml. org/services/o wl-

s/1. l/NotificationGroundmg.wsdl#time</groundmg:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<groundmg: wsdllnput>

<grounding:WsdllnputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Recipient"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

328

>http://w\vw.dainl.org/services/owl
s/1. l/NotificationGrounding.wsdl#recipient</grounding:wsdlMessagePart>

</grounding:WsdlInputMessageMap>
</groundmg: wsdllnput>
<grounding:otherReference rdf:datatype="http;//www.w3.org/2001/XMLSchema#anylJRI"
>http://schemas, wmlsoap .org/ soap/http/</grounding: otherReference>
<grounding: wsdlOutput>
<groundmg:WsdlOutputMessageMap>

<grounding: owlsParameter
rdf:resource="NotificationProcess.owl#RecipientContactNumber'7>

<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURJ"
>http://www.dainl.org/services/owl

s/1 . 1/NotificationGrounding. wsdl#callee</grounding: wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</grounding: wsdlOutput>
<grounding:otherReference rdf:datatype="http://wwrw.w3.org/2001/XMLSchema#anyURI"
>http://schemas. wmlsoap.org/wsdl/soap/</grounding:otherReference>
<grounding:wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/NotificationGrounding.wsdl</grounding: wsdlDocument>
<grounding: wsdlOutput>

<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#UserContactNumber"/>
<grounding:wsdlMessagePart rdf:datatype="http;//www.w3.org/2001/XMLSchema#anylJRI"
>http://www.daml.org/services/owl-

s/l.l/NotificationGroundmg.wsdl#caller</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</ grounding: wsdlOutput>
<grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURl"
>http://www. daml. org/services/o wl-

s/l.l/NotificationGrounding.wsdl#AddressBookService_Input</grounding:wsdlInputMessage>
<grounding:wsdlReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURl"
>http://www. w3 .org/TR/2001 /NOTE-wsdl-20010315</grounding: wsdlReference>
<grounding:owlsProcess rdf:resource="NotificationProcess.owl#AddressBookService"/>

</grounding:WsdlAtomicProcessGrounding>
</grounding:hasAtomicProcessGrounding>
<grounding:hasAtomicProcessGrounding>
<grounding:WsdlAtomicProcessGroundingrdf:ID="PhoneServiceGrounding">

<grounding: wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="NotificationProcess.owl#CallResponse"/>
<grounding:wsdlMessagePart rdf:datatyT)e="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.danil.org/services/owl

s/1 . 1 /NotificationGrounding. wsdl#response</grounding; wsdlMessagePart>
</grounding:WsdlOutputMessageMap>

</ grounding: wsdlOutput>
<grounding:owlsProcess rdf:resource="NotificationProcess.owl#PhoneService"/>
<grounding: wsdlOperation>

<groimding:WsdlC)perationReC>
<groimding:portType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http ://www. daml.org/services/owl

s/1. l/NotificationGrounding.wsdl#PhoneService_PortType</grounding:portType>
<grounding:operation rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://WWW. daml. org/services/o wl-

s/l.l/NotificationGrounding.wsdl#PhoneService_Operation</grounding:operation>
</grounding; W sdlOperationRef>

</grounding:wsdlC)peration>
<grounding: wsdllnput>
<grounding;WsdlInputMessageMap>
<grounding:owlsParameter rdf;resource="NotificationProcess.owl#VoiceMessage"/>

329

<grounding:wsdlMessagePart rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/NotificationGrounding.wsdl#message</grounding: wsdlMessagePart>
</grounding;WsdlInputMessageMap>

</grounding: wsdllnput>
<groundmg:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1.1 /NotificationGrounding. wsdl#PhoneService_Output</grounding: wsdlOutputMessage>
<grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. daml .org/services/o wl-

s/l.l/NotificationGroundmg.wsdl#PhoneService_Input</grounding:wsdlInputMessage>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding: owlsParameter
rdf:resource="NotificationProcess.owl#RecipientContactNumber"/>

<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchenia#anyURI"
>http:// WWW. daml. org/services/o wl-

s/1.1 /NotificationGrounding. wsdl#callee</grounding:wsdlMessagePart>
</grounding: WsdlInputMessageMap>

</grounding: wsdllnput>
<grounding:wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //WWW.daml.org/services/owl-

s/1. l/NotificationGrounding.wsdl</grounding:wsdlDocument>
<grounding:wsdlReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/TR/2001 /NOTE-wsdl-20010315</grounding: wsdlReference>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/TRy2001 /NOTE-wsdl-20010315</grounding:otherReference>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="NotificationProcess.owl#UserContactNumber"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: // WWW. daml .org/ services/owl

s/1.1/NotificationGrounding. wsdl#caller</grounding: wsdlMessagePart>
</grounding: WsdlInputMessageMap>

</grounding: wsdllnput>
<groimding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://schemas.wmlsoap.org/wsdl/soap/</grounding:otherReference>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anylJRI"
>http://schemas, wmlsoap .org/soap/http/</grounding: otherReferencO

</grounding:WsdlAtomicProcessGrounding>
</grounding:hasAtomicProcessGrounding>
<grounding:hasAtomicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="EmailServiceGrounding">
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="NotificationProcess.owl#EmailMessage"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. daml.org/ services/owl

s/1. l/NotificationGrounding.wsdl#message</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding: wsdllnput>
<grounding:wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http: //WWW. daml. org/ services/o wl-

s/1. l/NotificationGrounding.wsdl</grounding: wsdlDocument>
<groimding:owlsProcess rdf:resource="NotificationProcess.owl#EmailService"/>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://schemas. wmlsoap.org/soap/http/</grounding:otherReference>
<grounding:wsdlReference rdf:datatype="http://w'ww.w3.org/2001/XMLSchema#anylJRI"
>http://www. w3.org/TR/200 l/NOTE-wsdl-20010315</grounding:wsdlReference>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

330

>http;//schemas.wmlsoap.org/wsdl/soap/</groimding:otherReference>
<grounding: wsdlOutput>

<groundmg:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="NotificationProcess.owl#EmailResponse"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/1. l/NotificationGroundmg.wsdl#response</grounding: wsdlMessagePart>
</grounding: W sdlOutputMessageMap>

</grounding;wsdlOutput>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="NotificationProcess.owl#UserEmailAddress"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/NotificationGrounding.wsdl#fromeniail</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding:wsdlInput>
<grounding;wsdlOutputMessage rdf;datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http;//www. daml. org/services/o wl-

s/1.1 /NotificationGrounding. wsdl#EmailService_Output</ grounding: wsdlOutputMessage>
<grounding:otherReference rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/TR/200 l/NOTE-wsdl-20010315</grounding:otherReference>
<grounding: wsdllnput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="NotificationProcess.owl#Recipient£niailAddress"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http:// WWW. daml. org/ services/owl

s/1. l/NotificationGrounding.wsdl#toemail</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

</grounding: wsdllnput>
<grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/NotificationGrounding.wsdl#EmailService_Input</grounding:wsdlInputMessage>
<grounding: wsdlOperation>
<grounding: W sdl Opera tionRe C>

<grounding:portType rdf:datatype="http://wvsw.w3.org/2001/XMLSchema#anyURI"
>http://www.daml.org/services/owl-

s/l.l/NotificationGrounding.wsdl#EmailService_PortType</grounding:portType>
<grounding:operation rdf:datatype="http://www. w3 .org/2001 /XMLSchema#anyURI"
>http://www. daml. org/services/o wl-

s/l.l/NotificationGrounding.wsdl#EmailService_Operation</grounding:operation>
</grounding:WsdlOperationReC>

</grounding:wsdlOperation>
</grounding:WsdlAtomicProcessGrounding>

</grounding: has AtomicProcessGrounding>
</grounding: W sdlGrounding>

</rdf:RDF>

Notification Service’s FSM
<rdf:RDF

xmlns:fsm="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl#"
xnilns:process="http://www.danil.org/services/owl-s/l. 1/Process.owl#"
xmlns:service="http://www.danil.org/services/owl-s/l. 1/Service.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Groimding.owl#"
xmlns="http://www.daml.org/services/owl-s/l.l/NotificationServiceFSM.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xnilns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

331

xmlns;owl="http://www.w3.org/2002/07/owl#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/NotificationServiceFSM.owl"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/NotificationServiceFSM.owl">
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://kdeg.cs.tcd.ie/FiniteStateMachine.owr7>
</owl:Ontology>
<fsm:SubmachineState rdf:ID="RichContentSubSM">

<fsm:submachine>
<fsm;StateMachine rdf:ID="RichContent">

<fsm:top>
<fsm:CompositeState rdf:ID="RichContentCS">

<fsm: subvertex>
<fsm:PseudoState rdf:ID="RichContentInitialState">

<fsm:pseudoStateKind>iiiitial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:Transition rdf:ID="RichContentInitialStateInitialTransition">

<fsm;trigger>
<fsm;SignalEvent rdf:ID="InitialEvent">

<fsm:signal>
<fsm:Signal rdf:ID="InitialEventSource">
<fsm;value>InitialSignal</fsm:value>

</fsm:Signal>
</fsm:signal>

</fsm:SignalEvent>
</fsm:trigger>
<fsm:source rdf:resource="#RichContentInitialState"/>
<fsm:target>
<fsm:SimpleState rdf:ID="RichContentStatel ">

<fsm:doActivity>doHtmlMessage()</fsm:doActivity>
<fsm;incoming rdf:resource="#RichContentInitialStateIiiitialTransition"/>
<fsm:outgoing>

<fsm:Transition rdf:ID="RichContentStatelTransitionl">
<fsm:trigger>

<fsm: SignalEvent rdf: ID="MessageCreatedEvent">
<fsm:signal>

<fsm:Signal rdfro="MessageCreatedEventSonrce">
<fsm: value>MessageCreated</fsm: valuO

</fsm:Signal>
</fsm:signal>

</fsm: SignalEvent>
</fsm:trigger>
<fsm:source rdf resource="#RichContentStatel "/>
<fsm:target>

<fsm:FmalState rdfID="RichContentState2">
<fsm:doActivity>doHmtlHeader()</fsm:doActivity>
<fsm:incommg rdf resource="#RichContentStatelTransitionl "/>

</fsm:FinalState>
</fsm:target>

</fsm:Transition>
</fsm:outgoing>

</fsm: SimpleState>
</fsm:target>

</ fsm: T ransition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm: subvertex>
<fsm:subvertex rdf resoiirce="#RichContentStatel"/>
<fsm: sub vertex rdfresource="#RichContentState2"/>

332

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Enriches the email content with HTML format</fsm:coniment>

</fsm: StateMachinO
</fsm: submachine>

</fsm: SubmachineS tate>
<fsm:FinalState rdf:ID="AuthenticationStatel ">

<fsm:doActivity>setAuthentication()</fsm:doActivity>
<fsm:incoming>

<fsm: Transition rdf:ID="AuthenticationInitialStateInitialTransition">
<fsm;trigger rdf;resource="#InitialEvent"/>
<fsm:source>

<fsm:PseudoState rdf:ID="AuthenticationInitialState">
<fsm;pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm;outgoing rdf:resource="#AuthenticationInitialStateInitialTransition"/>

</fsm:PseudoState>
</fsm:source>
<fsm:target rdf:resource="#AuthenticationState 1 "/>

</fsm: T ransition>
</fsm;incoming>

</fsm:FinalState>
<fsm:Transitionrdf:ID="QuickSearchInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source>

<fsm:PseudoState rdf:ID="QuickSearchInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm;outgoing rdf:resource="#QuickSearchInitialStateInitialTransition"/>

</fsm:PseudoState>
</fsm:soxirce>
<fsm;target>
<fsm:SimpleState rdf;ID="QuickSearchStatel ">
<fsm:doActivity>doQuickSort()</fsm:doActivity>
<fsm: incoming rdf:resource="#QuickSearchInitialStateInitialTransition"/>
<fsm:outgoing>

<fsm: Transition rdf:ID="QuickSearchStatelTransitionl ">
<fsm:trigger>
<fsm: S ignalEvent rdf: ID=" SortedEvent" >

<fsm:signal>
<fsm: Signal rdf n)=" SortedEventSource">

<fsm:value>Sorted</fsm:value>
</fsm:Signal>

</fsm:signal>
</fsm: S ignalE vent>

</fsm:trigger>
<fsm;source rdf resource="#QuickSearchStatel"/>
<fsm:target>

<fsm:SimpleState rdfID="QuickSearchState2">
<fsm:doActivity>doBinarySearch()</fsm:doActivity>
<fsm;incoming rdf resonrce="#QuickSearchStatel Transition! "/>

</ fsm: SimpleState>
</fsm:target>

</fsm:Transition>
</fsm:outgoing>

</fsm;SimpleState>
</fsm:target>

</fsm:Transition>
<fsm:CompositeState rdf ID="ProcessState">

<fsm:subvertex>
<fsm: SubmachineState rdf ID="QuickSearchSubSM">

<fsm: submachine>

333

<fsm:StateMachine rdf:ID="QuickSearch">
<fsm:top>

<fsm:CompositeState rdf:ID="QuickSearchCS">
<fsm;subvertex rdf:resource="#QuickSearchInitialState"/>
<fsm;subvertex rdf:resource="#QuickSearchStatel "/>
<fsm:subvertex rdf;resource="#QuickSearchState2"/>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Uses a faster search algorithm for searching for contacts</fsm:comment>

</fsm; StateMachinO
</fsm; submachinO

</fsm: SubmachineStatO
</fsm: sub vertex>
< fsm: sub vertex>

<fsm: SubmachineState rdf:ID="EmergencyContactSubSM">
<fsm:submachine>
<fsm:StateMachine rdf:ID="EmergencyContact">

<fsm:top>
<fsm:CompositeState rdf:ID="EmergencyContactCS">
<fsm:subvertex>

<fsm;PseudoState rdf:ID="EmergencyContactInitialState">
<fsm:pseudoStateKmd>initial</fsm:pseudoStateKind>
<fsm;outgoing>

<fsm:Transition rdf:ID="EmergencyContactInitialStateInitialTransition">
<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm; source rdf:resource="#EmergencyContactInitialState"/>
<fsm:target>

<fsm:SimpleState rdf:ID="EmergencyContactStatel">
<fsm:doActivity>useEmergencyContact()</fsm:doActivity>
<fsm: incoming rdf:resource="#EmergencyContactInitialStateInitialTransition"/>

</fsm:SimpleState>
</fsm:target>

</fsm: Transition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm; sub vertex>
<fsm:subvertex rdf:resource="#EmergencyContactStatel"/>

</fsm:CompositeState>
</fsm;top>
<fsm:comment>Provide a different contact for emergency cases</fsm:comment>

</fsm: StateMachinO
</ fsm: submachine>

</fsm: SubmachineState>
</fsm: sub vertex>
<fsm:subvertex>

<fsm: SubmachineState rdf:ID="TenaciousSubSM">
<fsm:submachine>

<fsm: StateMachine rdf: ID="Tenacious">
<fsm:top>

<fsm:CompositeState rdf:ID="TenaciousCS">
<fsm:subvertex>

<fsm:PseudoState rdf:ID="TenaciousInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:Transition rdf:ID="TenaciousInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resource="#TenaciousInitialState"/>
<fsm:target>

<fsm: SimpleState rdf: ID="TenaciousState 1 ">
<fsm:doActivity>setRetries(5)</fsm:doActivity>

334

<fsm:incoming rdf:resource="#TenaciousImtialStateInitialTransition"/>
</fsin:SimpleState>

</fsm:target>
</fsm; T ransition>

</fsm:outgoing>
</fsm:PseudoState>

</fsni: sub vertex>
<fsni:subvertex rdf:resource="#TenaciousStatel"/>

</fsm: CompositeState>
</fsm;top>
<fsm:comment>If the call is not answered, it tries again </fsm:conunent>

</fsm; StateMacliine>
</fsni;submachine>

</fsni:SubmachineState>
</fsm: sub vertex>
<fsm:subvertex rdf:resource="#RichContentSubSM"/>
<fsm:subvertex>

<fsm:SubmachineState rdf:ID="EncryptionSubSM">
<fsm:subniachine>

<fsm:StateMachine rdf:II>="Encryption">
<fsni:top>

<fsni:ConipositeState rdf;ID="EncryptionCS">
<fsm;subvertex>
<fsm;PseudoStaterdf:ID="EncryptionInitialState">

<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsni:outgoing>
<fsm:Transition rdf:ID="EncryptionInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm: source rdf:resource="#EnciyptionInitialState"/>
<fsm:target>

<fsni;FinalState rdf:ID="EncryptionStatel ">
<fsni:doActivity>setEncryption()</fsni:doActivity>
<fsm: incoming rdf:resource="#EncryptionInitialStateInitialTransition"/>

</fsm:FinalState>
</fsm:target>

</fsm: Transition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm: sub vertex>
<fsm:subvertex rdf:resource="#EncryptionStatel"/>

</fsm: CompositeState>
</fsm:top>
<fsm:coniment>Encrypts the email message content</fsm:comment>

</fsm: StateMachine>
</fsm: submachine>

</fsm; Submachine State>
</fsm: subvertex>
<fsm:subvertex>
<fsm;SubmachineState rdf:ID="AuthenticationSubSM">

<fsm: submachine>
<fsm:StateMachinerdf;ID="Authentication">

<fsm:top>
<fsm:CompositeState rdf:ID="AuthenticationCS">

<fsm:subvertex rdf;resource="#AuthenticationInitialState"/>
<fsm:subvertex rdf:resource="#AuthenticationStater7>

</fsm:CompositeState>
</fsm:top>
<fsm:coniment>Authenticates the recipient by requesting a pin number before

notifying</fsm:comment>
</fsm: StateMachine>

335

</fsm: submachine>
</fsm: SubmachineStatO

</fsm: sub vertex>
<fsm:incoming>
<fsm:Transitionrdf:ID="InputToProcess">

<fsm:trigger>
<fsm:SignalEvent rdf:ID="ProcessEvent">
<fsm:signal>
<fsm:Signal rdf:ID="ProcessEventSource">

<fsm:value>ProcessSignal</fsm;value>
</fsm:Signal>

</fsm:signal>
</fsm:SignalEvent>

</fsm:trigger>
<fsm:source>
<fsm:CompositeState rdf:ID="InputState">
<fsm:incoming>

<fsm;Transition rdf:ID="IdleToInput">
<fsm:trigger>

<fsm: SignalEvent rdf:ID="InputEvent">
<fsm:signal>

<fsm: Signal rdf;ID="InputEventSource">
<fsm:value>InputSignal</fsm:value>

</fsm:Signal>
</fsm:signal>

</fsm:SignalEvent>
</fsm:trigger>
<fsni:source>

<fsm:CompositeState rdf:ID="IdleState">
<fsm:incoming>

<fsm:Transition rdf:ID="InitialT">
<fsm:trigger rdf;resource="#InitialEvent"/>
<fsm:source>

<fsm:PseudoState rdf:ID="InitialState">
< fsm: pseudo StateKind>initial</ fsm ipseudo StateKind>
<fsm:outgoing rdf:resource="#InitialT"/>

</fsm:PseudoState>
</fsm:source>
<fsm:target rdf:resource="#IdleState"/>

</fsm: T ransition>
</fsm: incoming>
<fsm:outgoing rdf:resource="#IdleToInput"/>
<fsm:incoming>
<fsm:Transition rdf:ID="OutputToIdle">

<fsm;trigger>
<fsm: SignalEvent rdf:ID="IdleEvent">

<fsm:signal>
<fsm:Signal rdf;ID="IdleEventSource">

<fsm; value>IdleSignal</ fsm: value>
</fsm:Signal>

</fsm:signal>
</fsm:SignalEvent>

</fsm:trigger>
<fsm:source>

<fsm: CompositeState rdf: ID=" Outputs tate">
<fsm:incoming>
<fsm:Transition rdf:ID="ProcessToOutput">

<fsm:trigger>
<fsm: SignalEvent rdf:ID="OutputEvent">
<fsm:signal>

336

<fsm:Signal rdf:ID="OutputEventSource">
<fsm:value>OutputSignal</fsm:value>

</fsm:Signal>
</fsm:signal>

</ fsm: SignalEvent>
</fsm:trigger>
<fsm:source rdf:resource="#ProcessState"/>
<fsm:target rdf:resource="#OutputState"/>

</fsm:Transition>
</fsm: incommg>
<fsm:outgoing rdf:resource="#OutputToIdle"/>

</fsm: CompositeStatO
</fsm;source>
<fsm:target rdf:resource="#IdleState"/>

</fsm:Traiisition>
</fsm: incoming>

</fsm:CompositeState>
</fsm;source>
<fsm:target rdf:resource="#InputState"/>

</fsm: T ransition>
</fsm: incoming>
<fsm:outgoing rdf:resource="#InputToProcess"/>

</ fsm: CompositeState>
</fsm:source>
<fsm:target rdf:resource="#ProcessState"/>

</fsm:Transition>
</fsm:incoming>
<fsm:subvertex>

<fsm: SubmachineState rdf:ID="MessageInFrenchSubSM">
<fsm: submachinO

<fsm;StateMachine rdf:ID="MessageInFrench">
<fsm:top>

<fsm:CompositeState rdf:ID="MessageInFrenchCS">
<fsm:subvertex>
<fsm:PseudoState rdf:ID="MessageInFrenchInitialState">

<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm;outgoing>
<fsm:Transition rdf:ID="MessageInFrenchInitialStateInitialTransition">

<fsm;trigger rdf:resource="#InitialEvent"/>
<fsm: source rdf:resource="#MessageInFrenchInitialState"/>
<fsm:target>
<fsm:FinalState rdf:ID="MessageIiiFrenchStatel">

<fsm:doActivity>setLanguage(French)</fsm:doActivity>
<fsm:incoming rdf:resource="#MessageInFrenchInitialStateInitialTransition"/>

</fsm:FinalState>
</fsm:target>

</fsm:Transition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm:subvertex>
<fsm:subvertex rdf:resource="#MessageInFrenchStater7>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Translates message to French</fsm:comment>

</fsm:StateMachine>
</fsm; submachine>

</fsm: SubmachineState>
</fsm: sub vertex>
<fsm:subvertex>

<fsm: SubmachineState rdf:ID="SimpleSearchSubSM">

337

<fsm:submachine>
<fsm:StateMachine rdf:ID="SimpleSearch">

<fsm:top>
<fsm:CompositeState rdf:ID="SimpleSearchCS">

<fsm: subvertex>
<fsm:PseudoState rdf:ID="SimpleSearchInitialState">

<fsm:pseudoStateKmd>iiiitial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:Transition rdf:E)="SimpleSearchInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resoiirce="#SimpleSearchIiiitialState'7>
<fsm:target>

<fsm;SimpleState rdf:ID="SimpleSearchStatel ">
<fsm:doActivity>doSimpleSort()</fsm:doActivity>
<fsm: incoming rdf:resource="#SimpleSearchInitialStateInitialTransition"/>
<fsm:outgoing>

<fsm:Transition rdf:ID="SimpleSearchStatelTransitionl">
<fsm:trigger rdf:resoiirce="#SortedEvent"/>
<fsm:source rdf:resource="#SimpleSearchStater7>
<fsm:target>

<fsm:FinalState rdf:ID="SimpleSearchState2">
<fsm;doActivity>doBinarySearch()</fsm:doActivity>
<fsm:incoming rdf:resource="#SimpleSearchStatelTransitionr7>

</fsm: Final State>
</fsm:target>

</fsm: T ransition>
</fsm:outgoing>

</fsm: SimpleStatO
</fsm:target>

</fsm; Transition>
</fsm:outgoing>

</ fsm:PseudoState>
</fsm:subvertex>
<fsm: sub vertex rdf:resource="#SimpleSearchStater7>
<fsm: sub vertex rdf:resource="#SimpleSearchState2'7>

</fsm: CompositeState>
</fsm:top>
<fsm:coniment>Use simple sort and binary search</fsm:comment>

</fsm: StateMachine>
</ fsm: submachine>

</ fsm: SubmachineState>
</fsm: sub vertex>
<fsm:subvertex>

<fsm: SubmachineState rdf: ID=" ShortMessageModeSubSM">
<fsm: submachine>
<fsm:StateMacliine rdf:ID="ShortMessageMode">

<fsm:top>
<fsm:CompositeState rdf:ID="ShortMessageModeCS">
<fsm: sub vertex>

<fsm:PseudoState rdf:ID="ShortMessageModeInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:Transition rdf:ID="ShortMessageModeInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm;source rdf:resource="#ShortMessageModeInitialState'7>
<fsm:target>

<fsm:SimpleState rdf:ID="ShortMessageModeStatel ">
<fsm: do Activity >setShortMode()</fsm: do Activity>
<fsm:incoming rdf:resource="#ShortMessageModeInitialStateImtialTransition'7>

</fsm:SimpleState>

338

</fsm:target>
</fsm: T ransition>

</fsm;outgoing>
</fsm:PseudoState>

</fsm: subvertex>
<fsm:subvertex rdf:resource="#ShortMessageModeStatel "/>

</fsm:CompositeState>
</fsm;top>
<fsm: commentx/ fsm: comment>

</fsm: StateMachinO
</fsm: submachine>

</fsm: SubmachineStatO
</fsm; subvertex>
<fsm:subvertex>
<fsm:SubmachineStaterdf:ID="CompressionSubSM">

<fsm; submachine>
<fsm: StateMachine rdf: ID=" Compression">
<fsm:top>

<fsni:CompositeState rdfID="CompressionCS">
<fsm:subvertex>

<fsm:PseudoState rdf ID="CompressionImtialState">
<fsm:pseudoStateKind>iiiitial</fsm:pseudoStateKind>
<fsm:outgoing>

<fsm:Transition rdfID="CompressioiiInitialStateInitialTransition">
<fsm:trigger rdf resource="#InitialEvent"/>
<fsm:source rdf: resource="#CompressionInitialState"/>
<fsm:target>

<fsm:FinalState rdf ID="CompressionStatel">
<fsm:doActivity>setCompression()</fsm:doActivity>
<fsm:incoming rdfresource="#CompressionInitialStateInitialTransition"/>

</fsm: Final State>
</fsm:target>

</fsm: T ransition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm:subvertex>
<fsm:subvertex rdf resource="#CompressionState 1 "/>

</fsm: CompositeState>
</fsm:top>
<fsm:comment>Compress email message content</fsm:comment>

</fsm:StateMachine>
</fsm: submachine>

</fsm: SubmachineState>
</fsm:subvertex>
<fsm:subvertex>

<fsm: Submachine State rdf ID="MessageInSpanishSubSM">
<fsm: submachine>

<fsm:StateMachine rdfID="MessageInSpanish">
<fsm:top>
<fsm:CompositeState rdfID="MessageInSpanishCS">

<fsm:subvertex>
<fsm:PseudoState rdfID="MessageInSpanishInitialState">

<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:TransitionrdfID="MessageInSpanishInitialStateInitialTransition">
<fsm:trigger rdf resource="#InitialFvent"/>
<fsm: source rdf resource="#MessageInSpanishInitialState"/>
<fsm:target>

<fsm:FinalState rdfID="MessageInSpaiiishStatel">
<fsm:doActivity>setLanguage(Spanish)</fsm:doActivity>

339

<fsm:mcoming rdf:resource="#MessageInSpanishInitialStateInitialTransition"/>
</fsm: F inal StatO

</fsm:target>
</fsm:Transition>

</fsm;outgoing>
</fsm;PseudoState>

</fsm: subvertex>
<fsm: sub vertex rdf:resource="#MessageInSpanishStatel"/>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Translates message to Spamsh</fsm:comment>

</ fsm: StateMachine>
</fsm: submachine>

</fsm: SubmachineState>
</fsm: sub vertex>
<fsm:outgoing rdf:resource="#ProcessToOutput"/>

</ fsm: Composites tate>
<fsm;CompositeState rdf:ID="ServiceState">

<fsm: subvertex rdf:resource="#InitialState"/>
<fsm:subvertex rdf:resource="#IdleState"/>
<fsm:subvertex rdf:resource="#ProcessState"/>
<fsm:subvertex rdf:resource="#InputState"/>
<fsm: sub vertex rdf:resource="#OutputState"/>

</fsm:CompositeState>
<fsm: StateMachine rdf:ID="NotificationServiceFSM">
<fsm:top rdf:resource="#ServiceState"/>

</ fsm: StateMachine>
</rdf:RDF>

Notification Service’s Management Policy
<rdf:RDF

xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/NotificatioiiProcess.owl#"
xmlns:fsm="http://kdeg.cs.tcd.ie/FiniteStateMachme.owl#"
xmlns="http://www.daml.org/services/owl-s/l.l/NotificationServicePolicy.owl#"
xmlns:service="http://www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-iis#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/NotificationServicePolicy.owl"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/NotificationServicePolicy.owl">
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://kdeg.cs.tcd.ie/Policy.owl"/>
<owl:imports rdf:resource="NotificatioiiProcess.owl"/>

</o wl: Ontology>
<policy:SimpleEvent rdf:ID="NotificationServicePolicy2Eventl ">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>
<policy:SimpleAction rdf:ID="NotificationServicePolicy4Actionl">

<policy:value>MessageInFrench</policy:value>
</policy: SimpleAction>
<policy:SimpleActionrdf:ID="NotificationServicePolicy2Actionl02">

<policy:value>ShortMessageMode</policy:value>
</policy: Simple Action>

340

<policy:SimpleCondition rdf:ID="NotificationServicePolicy2Conditionl">
<policy:subject>
<policy: Subject rdf:ID="Membership"/>

</policy:subject>
<policy:predicate>

<policy: Predicate rdf:ID="equal"/>
</policy:predicate>
<policy:value>Broiize</policy:value>

</policy: SimpleCondition>
<policy; Policy rdf:ID="NotificationServicePolicy 1 ">
<rdfs: conunentx/rdfs: comment>
<policy:target rdf:resource="NotificationProcess.owl#NotificationService"/>
<policy:event>
<policy:SimpleEvent rdf:ID="NotificationServicePolicylEventl">

<policy: value>ProcessEvent</policy; value>
</policy:SimpleEvent>

</policy;event>
<policy:condition>

<policy:SimpleCondition rdf:ID="NotificationServicePolicylConditionl">
<policy: subject rdf:resource="#Membership"/>
<policy:predicate rdf:resource="#equal"/>
<policy: value>Gold</policy: value>

</policy:SimpleCondition>
</policy: condition>
<policy:actioii>

<policy:ComplexAction rdf:ID="NotificationServicePolicylActionl">
<rdfs:first>
<policy:AndList>
<rdfs:first>

<policy: SimpleAction rdf:ID="NotificationServicePolicyl Action 101">
<policy;value>QuickSearch</policy;value>

</policy; SimpleAction>
</rdfs:first>
<rdfs:rest>

<policy: SimpleAction rdf:ID="NotificationServicePolicylActionl02">
<policy:value>RichContent</policy:value>

</policy: SimpleAction>
</rdfs:rest>

</policy: AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy: ComplexAction>
</policy:action>

</policy:Policy>
<policy:SimpleCondition rdf:ID="NotificationServicePolicy4Conditionl">

<policy: subject rdf:resource="#Membership"/>
<policy:predicate rdf:resource="#equal"/>
<policy:value>LeonClub</policy:value>

</policy: SimpleCondition>
<policy:Policy rdf:ID="NotificationServicePolicy4">
<rdfs;commentx/rdfs:comment>
<policy: target rdf:resource="NotificationProcess.owl#NotificationService"/>
<policy:event>
<policy:SimpleEvent rdf:ID="NotificationServicePolicy4Eventl ">

<policy: value>ProcessEvent</policy: value>
</policy: SimpleEvent>

</policy:event>
<policy: condition rdf:resource="#NotificationServicePolicy4Condition 1 "/>
<policy:action rdf:resource="#NotificationServicePolicy4Actionl"/>

</policy:Policy>

341

<policy:Policy rdf:ID="NotificationServicePolicy3">
<rdfs: commentx/rdfs: commenP-
<policy:target rdf;resource="NotificationProcess.owl#NotificationService"/>
<policy:event>

<policy:SimpleEvent rdf:ID="NotificationServicePolicy3Eventl">
<policy:value>ProcessEvent</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy;condition>

<policy:SimpleCondition rdf:ID="NotificationServicePolicy3Conditionl">
<policy:subject>

<policy: Subj ect rdf: ID="Priority"/>
</policy:subject>
<policy:predicate rdfresource="#equal"/>
<policy:value>high</policy:value>

</policy: SimpleCondition>
</policy:condition>
<policy:action>
<policy: ComplexAction rdf ID="NotificationServicePolicy3 Action 1 ">

<rdfs:first>
<policy:AndList>

<rdfs:first>
<policy: Simple Action rdfID="NotificationServicePolicy3Actionl01">

<policy:value>EmergencyContact</policy:value>
</policy: Simple Action>

</rdfs:first>
<rdfs;rest>

<policy:SimpleAction rdf ID="NotificationServicePolicy3Actionl02">
<policy:value>Authentication</policy:value>

</policy: Simple Action>
</rdfs:rest>

</policy:AndList>
</rdfs:first>
<rdfs; restx/rdfs: rest>

</policy:ComplexAction>
</policy:action>

</policy:Policy>
<policy:SimpleAction rdf ID="NotificationServicePolicy2Actionl01">

<policy:value>SimpleSearch</policy:value>
</policy: SimpleAction>
<policy:Policy rdfID="NotificationServicePolicy2">
<rdfs: commentx/rdfs: comment>
<policy:target rdf resource="NotificationProcess.owl#NotificationService"/>
<policy:event rdf resource="#NotificationServicePolicy2Eventl"/>
<policy:condition rdf resource="#NotificationServicePolicy2Conditionl"/>
<policy:action>

<policy: ComplexAction rdfID="NotificationServicePolicy2Actionl">
<rdfs:first>

<policy:AndList>
<rdfs: first rdf resource="#NotificationServicePolicy2Actionl 01 "/>
<rdfs:rest rdfresource="#NotificationServicePolicy2Actionl02"/>

</policy:AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy:ComplexAction>
</policy:action>

</policy:Policy>
</rdfRDF>

342

Notification Service’s Refined Policies
<rdf:RDF

xnilns:process="http://www.dainl.org/services/owl-s/l. 1/Process.owl#"
xnilns;policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/NotificatioiiProcess.owl#"
xmlns:fsm="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl#"
xmlns="http://www.daml.org/services/owl-s/l.l/NotificationServiceRefinedPolicy.owl#"
xmlns:service="http://www.dainl.org/services/owl-s/l. 1/Service.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/NotificationServiceRefinedPolicy.owl"
xinlns:profile="http;//www.daml.org/services/owl-s/l. 1/Profile.owl#"

xml:base="http;//www.daml.org/services/owl-s/l.l/NotificationServiceRefinedPolicy.owl">
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://kdeg.cs.tcd.ie/Policy.owl"/>
<owl:imports rdf;resource="NotificationProcess.owl"/>

</owl:Ontology>
<policy:Policy rdf;ID=" AddressBookServicePolicy 1 C">
<rdfs: commentx/rdfs: common t>
<policy: target rdf:resource="NotificationProcess.owl#AddressBookService"/>
<policy:event>

<policy:SimpleEvent rdf;ID="AddressBookServicePolicylCEventlA">
<policy: value>RNotificationServicePolicy 1 Event 1 A</policy: value>

</policy; SimpleEvent>
</policy:event>
<policy:action>
<policy:SimpleActionrdf:ID="AddressBookServicePolicylCActionl">

<policy: value>event(QuickSearchEvent)</policy: value>
</policy:SimpleAction>

</policy:action>
</policy:Policy>
<policy:SimpleActionrdf:ID="MessageServicePolicy2CActionl">

<policy:value>event(ShortMessageModeEvent)</policy:value>
</policy: Simple Action>
<policy;ComplexAction rdf:ID="SimpleSearchActionl ">

<rdfs:first>
<policy: AndList>

<rdfs:first>
<policy: SimpleAction rdf;ID=" SimpleSearchActionO 1 ">

<policy:value>doSimpleSort()</policy:value>
</policy: SimpleAction>

</rdfs:first>
<rdfs:rest>
<policy: SimpleAction rdf:ID=" SimpleSearchAction02 ">
<policy:value>event(SimpleSearchStatelEvent)</policy:value>

</policy: Simple Action>
</rdfs:rest>

</policy: AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy: ComplexAction>
<policy:SimpleEvent rdf:ID="RNotificationServicePolicy2Eventl ">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>
<policy:Policy rdf:ID="MessageInFrenchPolicy 1 ">
<rdfs: commentx/rdfs: comment>

343

<policy: target rdf;resource="NotificationProcess.owl#MessageService"/>
<policy:event>
<policy: ComplexEvent rdf: ID=" MessagelnFrenchEvent 1 a">

<rdfs:first>
<policy:AndList>

<rdfs:first>
<policy:SimpleEvent rdf;ID="MessageInFrenchEventlb">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>

</rdfs;first>
<rdfs:rest>

<policy: Simple Action rdf:ID="MessageInFrenchEventl">
<policy:value>MessageInFrenchEvent</policy:value>

</policy: Simple Action>
</rdfs:rest>

</policy;AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy:ComplexEvent>
</policy:event>
<policy:action>

<policy:SimpleAction rdf:ID="MessageInFrenchActionl ">
<policy:value>setLanguage(French)</policy:value>

</policy:SimpleAction>
</policy:action>

</policy:Policy>
<policy:SimpleEvent rdf:ID="MessageServicePolicy2CEventl A">

<policy: value>RNotificationServicePolicy2Event 1 A</policy: value>
</policy: SimpleEvent>
<policy;SimpleAction rdf:ID="ShortMessageModeEventl">

<policy:value>ShortMessageModeEvent</policy:value>
</policy: SimpleAction>
<policy:Policy rdf:ID="MessageServicePolicy3">
<rdfs:commentx/rdfs:comment>
<policy:target rdf:resource="NotificationProcess.owl#MessageService"/>
<policy:event>

<policy:SimpleEvent rdf:ID="MessageServicePolicy3EventlC">
<policy:value>RNotificationServicePolicy3EventlC</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy: condition>

<policy:SimpleCondition rdf:ID="MessageServicePolicy3Conditionl">
<policy:subject>

<policy: Subj ect rdf:ID="priority"/>
</policy: subj ect>
<policy:predicate>
<policy:Predicate rdf:ID="equal"/>

</policy:predicate>
<policy;value>high</policy;value>

</policy:SimpleCondition>
</policy: condition>
<policy:action>
<policy:SimpleAction rdf:ID="MessageServicePolicy3ActionlCUl">

<policy; value>event(RNotificationServicePolicy3 Event 1CU1)</policy: value>
</policy: SimpleAction>

</policy:action>
</policy:Policy>
<policy:SimpleAction rdf:ID="ShortMessageModeActionl ">

<policy:value>setShortMode()</policy:value>
</policy: Simple Action>

344

<policy:SimpleAction rdf:ID="MessageServicePolicy4CActionl">
<policy:value>event(MessageInFrenchEvent)</policy:value>

</policy; SimpleAction>
<policy:SimpleEvent rdf:ID="ContactServicePolicylCEventlA">
<policy:value>RNotificationServicePolicylEventlA</policy:value>

</policy: SimpleEvent>
<policy:SimpleEvent rdf:ID="RNotificationServicePolicylEventl">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>
<policy: ComplexEvent rdf; ID=" ShortMessageModeEvent 1 a">

<rdfs:first>
<policy:AndLisP-
<rdfs:first>
<policy:SimpleEvent rdf:ID="ShortMessageModeEventlb">
<policy:value>ProcessEvent</policy:value>

</policy: SimpleEvent>
</rdfs:first>
<rdfs:rest rdf:resource="#ShortMessageModeEventl"/>

</policy:AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy: ComplexEvent>
<policy:SimpleCondition rdf:ID="LogmServicePolicy2Conditionl ">

<policy:subject>
<policy: Subject rdf:ID="member"/>

</policy:subject>
<policy:predicate rdf:resource="#equal"/>
<policy:value>Bronze</policy:value>

</policy: SimpleCondition>
<policy:Policy rdf:ID="AddressBookServicePolicy3C">
<rdfs;commentx/rdfs;comment>
<policy: target rdf:resource="NotificationProcess.owl#AddressBookService"/>
<policy:event>
<policy:SimpleEvent rdf:ID="AddressBookServicePolicy3CEventlA">
<policy: value>RNotificationServicePolicy3 Event 1 A</policy: value>

</policy: SimpleEvent>
</policy:event>
<policy:action>

<policy:SimpleAction rdf:ID="AddressBookServicePolicy3CActionl">
<policy:value>event(EmergencyContactEvent)</policy:value>

</policy:SimpleAction>
</policy:action>

</policy:Policy>
<policy:SimpleEvent rdf:ID="LoginServicePolicy4EventlC">
<policy:value>RNotificationServicePolicy4EventlC</policy:value>

</policy: SimpleE vent>
<policy:SimpleAction rdf;ID="AuthenticationActionl">
<policy:value>setAuthentication()</policy:value>

</policy: SimpleAction>
<policy:SimpleEvent rdf:ID="SimpleSearchEvent001">

<policy:value>SortedEvent</policy:value>
</policy; SimpleE vent>
<policy:SimpleEvent rdf:ID="RNotificationServicePolicy4Eventl ">

<policy:value>ProcessEvent</policy;value>
</policy: SimpleE vent>
<policy: ComplexEvent rdf:ID="RichContentEvent2">
<rdfs:first>
<policy: AndList>

<rdfs:first>
<policy:SimpleEvent rdf:ID="RichContentEvent001">

345

<policy:value>MessageCreatedEvent</policy:value>
</policy: SimpleEvent>

</rdfs:firsP*
<rdfs:rest>
<policy: Simple Action rdf:ID="RichContentEvent002">

<policy: value>RichContentState 1 Event</policy: value>
</policy:SimpleAction>

</rdfs;rest>
</policy:AndList>

</rdfs:first>
<rdfs:restx/rdfs:rest>

<'policy: ComplexEvent>
<policy: ComplexEvent rdf: ID=" AuthenticationEvent 1 a">

<rdfs:first>
<policy: AndList>
<rdfs:first>
<policy: SimpleEvent rdf ID=" AuthenticationEvent 1 b">

<policy: value>ProcessEvent</policy: value>
</policy: SimpleEvent>

</rdfs:first>
<rdfs:rest>
<policy:SimpleAction rdfID="AuthenticationEventl">

<policy:value>AuthenticationEvent</policy:value>
</policy: Simple Action>

</rdfs:rest>
</policy: AndList>

</rdfs;first>
<rdfs:restx/rdfs:rest>

</policy: ComplexEvent>
<policy:SimpleEvent rdf ID="RNotificationServicePolicy3Eventl ">

<policy: value>ProcessEvent</policy; value>
</policy: SimpleEvent>
<policy:Policy rdfID="RNotificationServicePolicy4">

<rdfs:commentx/rdfs:comment>
<policy: target rdfresource="NotificationProcess.owl#NotificationService"/>
<policy: event rdfresource="#RNotificationServicePolicy4Eventl"/>
<policy:action>

<policy: SimpleAction rdf ID="RNotificationServicePolicy4Actionl C">
<policy:value>event(RNotificationServicePolicy4EventlC)</policy:value>

</policy:SimpleAction>
</policy:action>

</policy:Policy>
<policy:Policy rdfID="AddressBookServicePolicy2C">

<rdfs:conimentx/rdfs:coniment>
<policy:target rdfresource="NotificationProcess.owl#AddressBookService"/>
<policy:event>

<policy:SimpleEvent rdfID="AddressBookServicePolicy2CEventlA">
<policy;value>RNotificationServicePolicy2EventlA</policy:value>

</policy; SimpleEvent>
</policy:event>
<policy:action>
<policy:SimpleAction rdf ID="AddressBookServicePolicy2CActionl">

<policy:value>event(SimpleSearchEvent)</policy:value>
</policy:SimpleAction>

</policy:action>
</policy:Policy>
<policy:SimpleAction rdfID="SimpleSearchEvent002">

<policy: value>SimpleSearchState 1 Event</policy: value>
</policy: SimpleAction>
<policy:SimpleAction rdf ID="LoginServicePolicy2 Actionl CU0">

346

<policy:value>event(RNotificationServicePolicy2EventlCU0)</policy:value>
</policy: Simple Action>
<policy:ComplexEvent rdf:ID="SimpleSearchEvent2">

<rdfs:first>
<policy: AndList>

<rdfs: first rdf:resource="#SimpleSearchEvent001 "/>
<rdfs:rest rdf: resource=" #SimpleSearchEvent002"/>

</policy:AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy: ComplexEvent>
<policy:Policy rdf:ID="RNotificationServicePolicy2CU">
<rdfs: commentx/rdfs: comment>
<policy:target rdf:resource="NotificationProcess.owl#NotificationService"/>
<policy:event>

<policy:SimpleEvent rdf:ID="LoginServicePolicy2EventlCU">
<policy:value>RNotificationServicePolicy2EventlCU0</policy:value>

</policy:SimpleEvent>
</policy:event>
<policy:action>

<policy:SimpleAction rdf:ID="RNotificationServicePolicy2ActionlCU">
<policy: value>event(RNotificationServicePolicy2Event 1 A)</policy: value>

</policy: Simple Action>
</policy:action>

</policy:Policy>
<policy:Policy rdf:ID="LoginServicePolicy4">
<rdfs:commentx/rdfs:comment>
<policy: target rdf:resource="NotificatioiiProcess.owl#LoginService"/>
<policy: event rdf:resource="#LoginServicePolicy4EventlC"/>
<policy:condition>

<policy:SimpleCondition rdf:ID="LoginServicePolicy4Conditionl">
<policy: subject rdf:resource="#member"/>
<policy:predicate rdf:resource="#equal"/>
<policy:value>LeonClub</policy:value>

</policy:SimpleCondition>
</policy:condition>
<policy:action>
<policy:SimpleActionrdf:ID="LogmServicePolicy4ActionlCU0">

<policy:value>event(RNotificationServicePolicy4EventlCU0)</policy:value>
</policy: Simple Action>

</policy:action>
</policy:Policy>
<policy:ComplexEvent rdf:ID="EmergencyContactEventl a">

<rdfs:first>
<policy:AndList>

<rdfs:first>
<policy:SimpleEvent rdf;ID="EmergencyContactEventlb">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>

</rdfs:first>
<rdfs:rest>
<policy:SimpleAction rdf:ID="EmergencyContactEventl ">

<policy:value>EmergencyContactEvent</policy:value>
</policy: Simple Action>

</rdfs:rest>
</policy:AndList>

</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy:ComplexEvent>
<policy:Policy rdf:ID="RNotificationServicePolicy4CU">

347

<rdfs: commentx/rdfs: comment>
<policy:target rdf:resource="NotificationProcess.owl#NotificationService"/>
<policy:event>

<policy:SimpleEvent rdf:ID="LogmServicePolicy4EventlCU">
<policy:value>RNotificationServicePolicy4EventlCU0</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy;action>

<policy:SimpleAction rdf;ID="RNotificationServicePolicy4ActionlCU">
<policy:value>event(RNotificationServicePolicy4EventlA)</policy:value>

</policy: Simple Action>
</policy:action>

</policy;Policy>
<policy:Policy rdf:ID="RNotificationServicePolicyl ">

<rdfs: commentx/rdfs: comment>
<policy; target rdf:resource="NotificationProcess.owl#NotificationService"/>
<policy: event rdf:resource="#RNotificationServicePolicy 1 Eventr7>
<policy;action>

<policy:SimpleAction rdf:ID="RNotificationServicePolicylActionlC">
<policy:value>event(RNotificationServicePolicylEventlC)</policy:value>

</policy: Simple Action>
</policy:action>

</policy:Policy>
<policy:ComplexEvent rdf:ID="QuickSearchEvent2">
<rdfs:first>

<policy: AndList>
<rdfs:first>

<policy:SimpleEvent rdf:ID="QuickSearchEventOO 1 ">
<policy:value>SortedEvent</policy:value>

</policy:SimpleEvent>
</rdfs:first>
<rdfs:rest>

<policy:SimpleAction rdf:ID="QuickSearchEvent002">
<policy:value>QuickSearchStatelEvent</policy:value>

</policy; Simple Action>
</rdfs:rest>

</policy: AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy: ComplexEvent>
<policy:Policy rdf:ID="RichContentPolicyl ">

<rdfs: commentx/rdfs: comment>
<policy:target rdf:resource="NotificationProcess.owl#EmailService"/>
<policy:event>
<policy: ComplexEvent rdf: ID="RichContentEvent 1 a">

<rdfs:first>
<policy: AndList>

<rdfs:first>
<policy:SimpleEvent rdf:ID="RichContentEventlb">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>

</rdfs:first>
<rdfs:rest>

<policy: Simple Action rdf:ID="RichContentEventl">
<policy;value>RichContentEvent</policy:value>

</policy: Simple Action>
</rdfs:rest>

</policy:AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

348

</policy:ComplexEvent>
</policy:event>
<policy:action>
<policy;ComplexAction rdf:ID="RichContentActionl ">

<rdfs;first>
<policy:AndList>
<rdfs:first>

<policy: Simple Action rdf:ID="RichContentAction01">
<policy:value>doHtmlMessage()</policy:value>

</policy:SimpleAction>
</rdfs:first>
<rdfs:rest>

<policy:SimpleAction rdf:ID="RichContentAction02">
<policy:value>event(RichContentStatelEvent)</policy:value>

</policy: Simple Action>
</rdfs:rest>

</policy:AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy: Complex Action>
</policy:action>

</policy:Policy>
<policy:Policy rdf:ID="SimpleSearchPolicy2">
<rdfs:commentx/rdfs:comment>
<policy:target rdf;resource="NotificationProcess.owl#AddressBookService"/>
<policy:event rdf:resource="#SimpleSearchEvent2"/>
<policy:action>
<policy:SimpleAction rdf:ID="SimpleSearcliAction2">

<policy:value>doBinarySearch()</policy:value>
</policy: Simple Action>

</policy;action>
</policy:Policy>
<policy:Policy rdf:ID=" AuthenticationPolicy 1 ">
<rdfs:commentx/rdfs:comment>
<policy:target rdf:resource="NotificationProcess.owl#PhoneService"/>
<policy:event rdf:resource="#AuthenticationEventl a"/>
<policy:action rdf:resource="#AuthenticationActionl "/>

</policy:Policy>
<policy:SimpleEvent rdf:E)="MessageServicePolicy4CEventlA">
<policy:value>RNotificationServicePolicy4EventlA</policy:value>

</policy: SimpleEvent>
<policy;Policy rdf:ID="RNotificationServicePolicy3 ">
<rdfs: commentx/rdfs: comment>
<policy: target rdf:resource="NotificationProcess.owl#NotificationService"/>
<policy:event rdf:resource="#RNotificationServicePolicy3Eventl"/>
<policy:action>
<policy:SimpleActionrdf:ID="RNotificationServicePolicy3ActionlC">

<policy:value>event(RNotificationServicePolicy3EventlC)</policy:value>
</policy: Simple Action>

</policy:action>
</policy:Policy>
<policy:SimpleActionrdf:ID="RNotificationServicePolicy2ActionlC">
<policy;value>event(RNotificationServicePolicy2EventlC)</policy:value>

</policy: SimpleAction>
<policy:Policy rdf:ID="EmergencyContactPolicy 1 ">
<rdfs: commentx/rdfs: comment>
<policy: target rdf:resource="NotificationProcess.owl#AddressBookService"/>
<policy: event rdf:resource="#EmergencyContactEventla"/>
<policy:action>
<policy:SimpleActionrdf:ID="EmergencyContactActionl"> I

349

<policy:value>useEmergencyContact()</policy:value>
</policy: Simple Action>

</policy:action>
</policy:Policy>
<policy:SimpleEvent rdf:ID="LoginServicePolicylEventlC">

<policy:value>RNotificationServicePolicylEventlC</policy:value>
</policy: SimpleEvent>
<policy;SimpleAction rdf:ID="QuickSearchEventl ">

<policy;value>QuickSearchEvent</policy:value>
</policy: SimpleAction>
<policy;Policy rdf:ID="RichContentPolicy2">

<rdfs: commentx/rdfs: coniment>
<policy:target rdf:resource="NotificationProcess.owl#EmailService"/>
<policy: event rdf: resource=" #RichContentEvent2 "/>
<policy:action>

<policy:SimpleAction rdf ID="RichContentAction2">
<policy:value>doHmtlHeader()</policy:value>

</policy:SimpleAction>
</policy:action>

</policy;Policy>
<policy:SimpleAction rdf ID="ContactServicePolicy 1C Action 1">
<policy:value>event(ContactServicePolicylCEvent2A)</policy:value>

</policy: SimpleAction>
<policy:Policy rdf ID="LoginServicePolicyl ">
<rdfs:commentx/rdfs: comment>
<policy:target rdfresource="NotificationProcess.owl#LoginService"/>
<policy:event rdfresource="#LoginServicePolicylEventlC"/>
<policy:condition>

<policy:SimpleCondition rdfID="LoginServicePolicylConditionl">
<policy: subject rdfresource="#member"/>
<policy:predicate rdf:resource="#equal"/>
<policy:value>Gold</policy:value>

</policy: SimpleCondition>
</policy:condition>
<policy:action>

<policy: Simple Action rdf ID="LoginServicePolicylActionlCUO">
<policy:value>event(RNotificationServicePolicylEventlCUO)</policy:value>

</policy: SimpleAction>
</policy:action>

</policy:Policy>
<policy:ComplexAction rdf ID="QuickSearchActionl ">

<rdfs:first>
<policy:AndList>
<rdfs:first>

<policy: Simple Action rdfID="QuickSearchAction01">
<policy:value>doQuickSort()</policy:value>

</policy: Simple Action>
</rdfs:first>
<rdfs:rest>
<policy:SimpleAction rdfID="QuickSearchAction02">

<policy: value>event(QuickSearchState 1 Event)</policy: value>
</policy: Simple Action>

</rdfs:rest>
</policy:AndList>

</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy: ComplexAction>
<policy:SimpleEvent rdf ID="EmailServicePolicylCCEvent2A">

<policy;value>ContactServicePolicylCEvent2A</policy:value>
</policy: SimpleEvent>

350

<policy;SimpleEvent rdf:ID="PhoneServicePolicy3CCEvent2A">
<policy:value>ContactServicePolicy3CEvent2A</policy:value>

</policy: SimpleEvent>
<policy:Policy rdf:ID="ContactServicePolicy3C">
<rdfs:commentx/rdfs:comment>
<policy:target rdf:resource="NotificationProcess.owl#ContactService"/>
<policy:event>
<policy:SimpleEvent rdf:ID="ContactServicePolicy3CEventlA">
<policy:value>RNotificationServicePolicy3EventlA</policy:value>

</policy:SimpleEvent>
</policy:event>
<policy:action>
<policy:SimpleActionrdf:ID="ContactServicePolicy3CActionl">

<policy:value>event(ContactServicePolicy3CEvent2A)</policy:value>
</policy: Simple Action>

</policy:action>
</policy:Policy>
<policy;SimpleEvent rdf:ID=" SimpleSearchEvent 1 b">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>
<policy:SimpleAction rdf:ID="EmailServicePolicylCCAction2">
<policy;value>event(RichContentEvent)</policy:value>

</policy: SimpleAction>
<policy:SimpleAction rdf:ID="QuickSearchAction2">
<policy:value>doBinarySearch()</policy:value>

</policy: Simple Action>
<policy;Policy rdf;ID="RNotificationServicePolicy2">
<rdfs: commentx/rdfs; comment>
<policy: target rdf:resource="NotificatioiiProcess.owl#NotificationService"/>
<policy:event rdf:resource="#RNotificationServicePolicy2Eventl"/>
<policy;action rdf;resource="#RNotificationServicePolicy2ActionlC"/>

</policy:Policy>
<policy: ComplexEvent rdf: ID=" SimpleSearchEvent 1 a">

<rdfs:first>
<policy:AndList>

<rdfs:first rdf:resource="#SimpleSearchEventlb"/>
<rdfs:rest>

<policy: Simple Action rdf:ID="SimpleSearcliEventl">
<policy:value>SimpleSearchEvent</policy:value>

</policy:SimpleAction>
</rdfs:rest>

</policy:AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy: ComplexEvent>
<policy:SimpleEvent rdf:ID="MessageServicePolicy3EventlCU">
<policy;value>RNotificationServicePolicy3EventlCUl</policy:value>

</policy: SimpleEvent>
<policy:Policy rdf: ID=" QuickSearchPolicy 1 ">
<rdfs:commentx/rdfs:comment>
<policy:target rdfresource="NotificationProcess.owl#AddressBookService"/>
<policy:event>

<policy:ComplexEvent rdf:ID="QuickSearchEventl a">
<rdfs:first>

<policy: AndList>
<rdfs:first>

<policy:SimpleEvent rdf:ID="QuickSearchEventlb">
<policy:value>ProcessEvent</policy:value>

</policy: SimpleEvent>
</rdfs:first>

351

i

<rdfs:rest rdf:resource="#QuickSearchEventl "/>
</policy: AndList>

</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy: ComplexEvent>
</policy:event>
<policy: action rdf:resource="#QuickSearchActionr'/>

</policy;Policy>
<policy:SimpleAction rdf:ID="PhoneServicePolicy3CCAction2">

<policy:value>event(AuthenticationEvent)</policy:value>
</policy: Simple Action>
<policy:Policy rdf:ID="RNotificationServicePolicy3CU">
<rdfs: commentx/rdfs: comment>
<policy: target rdf:resource="NotificationProcess.owl#NotificationService"/>
<policy:event rdf:resource="#MessageServicePolicy3Eventl CU"/>
<policy;action>

<policy;SimpleAction rdf:ID="RNotificationServicePolicy3ActionlCU">
<policy:value>event(RNotificationServicePolicy3EventlA)</policy:value>

</policy: SimpleAction>
</policy:action>

</policy:Policy>
<policy:Policy rdf:ID="QuickSearchPolicy2">
<rdfs:commentx/rdfs:coinment>
<policy:target rdf:resource="NotificationProcess.owl#AddressBookService"/>
<policy:event rdf:resource="#QuickSearchEvent2"/>
<policy:action rdf:resource="#QuickSearchAction2"/>

</policy;Policy>
<policy: Policy rdf:ID="ShortMessageModePolicyl ">
<rdfs;commentx/rdfs:comment>
<policy: target rdf:resource="NotificationProcess.owl#MessageService"/>
<policy:event rdf:resource="#ShortMessageModeEventl a"/>
<policy:action rdf:resource="#ShortMessageModeActionr7>

</policy:Policy>
<policy;Policy rdf:ID="MessageServicePolicy4C">
<rdfs:commentx/rdfs:comment>
<policy: target rdf;resource="NotificationProcess.owl#MessageService"/>
<policy: event rdf:resource="#MessageServicePolicy4CEventl A"/>
<policy: action rdf:resource="#MessageServicePolicy4CActionl"/>

</policy:Policy>
<policy:SimpleEvent rdf:ID="LoginServicePolicyl Event 1CU">

<policy:value>RNotificationServicePolicylEventlCUO</policy;value>
</policy: SimpleEvent>
<policy:Policy rdf:ID="RNotificationServicePolicylCU">

<rdfs:commentx/rdfs:comment>
<policy: target rdf:resource="NotificationProcess.owl#NotificationService"/>
<policy:event rdf:resource="#LoginServicePolicylEventlCU"/>
<policy:action>

<policy:SimpleAction rdf:ID="RNotificationServicePolicylActionlCU">
<policy;value>event(RNotificationServicePolicylEventlA)</policy:value>

</policy: SimpleAction>
</policy:action>

</policy:Policy>
<policy:Policy rdf:ID="ContactServicePolicylC">

<rdfs:commentx/rdfs;coinment>
<policy: target rdf:resource="NotificationProcess.owl#ContactService"/>
<policy; event rdf:resource="#ContactServicePolicy 1 CEventl A"/>
<policy: action rdf:resource="#ContactServicePolicylCActionl"/>

</policy:Policy>
<policy:Policy rdf:ID="EmailServicePolicylCC">

<rdfs:commentx/rdfs:coimnent>

352

<policy: target rdf:resource="NotificationProcess.owl#EmailService"/>
<policy:event rdf:resoxirce="#EmailServicePolicy 1 CCEvent2A"/>
<policy:action rdf:resource="#EmailServicePolicyl CCAction2"/>

</policy:Policy>
<policy;Policy rdf:ID="MessageServicePolicy2C">
<rdfs:commentx/rdfs:comment>
<policy:target rdf:resource="NotificationProcess.owl#MessageService"/>
<policy:event rdf:resource="#MessageServicePolicy2CEventl A"/>
<policy:action rdf:resource="#MessageServicePolicy2C Action !"/>

</policy:Policy>
<policy:Policy rdf;ID="PhoneServicePolicy3CC">
<rdfs: commentx/rdfs: comment>
<policy:target rdf:resource="NotificationProcess.owl#PhoneService"/>
<policy:event rdf:resource="#PhoneServicePolicy3CCEvent2A"/>
<policy:actionrdf;resource="#PhoneServicePolicy3CCAction2"/>

</policy:Policy>
<policy:SimpleEvent rdf:ID="LoginServicePolicy2EventlC">
<policy:value>RNotificationServicePolicy2EventlC</policy:value>

</policy: SimpleEvent>
<policy:Policy rdf:ID="SimpleSearchPolicyl ">

<rdfs; commentx/rdfs; coniment>
<policy: target rdf:resource="NotificationProcess.owl#AddressBookService"/>
<policy:event rdf:resource="#SimpleSearchEventl a"/>
<policy:action rdf:resource="#SimpleSearchActionl "/>

</policy:Policy>
<policy;Policy rdf:ID="LoginServicePolicy2">
<rdfs: commentx/rdfs: coniment>
<policy: target rdf:resource="NotificationProcess.owl#LogmService"/>
<policy:event rdf:resource="#LoginServicePolicy2EventlC"/>
<policy:condition rdf;resource="#LoginServicePolicy2Conditionl"/>
<policy:action rdf;resource="#LoginServicePolicy2 Action 1 CU0"/>

</policy:Policy>
</rdf:RDF>

Notification Service’s Refined Policies as Jess Rules
(defrule MessageServicePolicy3
(event (service ?serviceO&MessageService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy3EventlC)) (event (service ?cserviceO) (type ?ctypeO) (name
?ceventO&~IdleEvent))
(param (service ?cserviceO&MessageService) (direction ?directionO) (name ?paramO&priority) (value
?valueO)) (test (eq ?valueO high))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicy3EventlCUl))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule LoginServicePolicy2
(event (service ?serviceO&LoginService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy2EventlC)) (event (service ?cserviceO) (type ?ctypeO) (name
?ceventO&~IdleEvent))
(param (service ?cserviceO&LoginService) (direction ?directionO) (name ?paramO&member) (value
?valueO)) (test (eq ?valueO Bronze))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicy2EventlCU0))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule MessageServicePolicy4C
(event (service ?serviceO&MessageService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy4EventlA))
=>(assert (event (service Any) (type Policy) (name MessageInFrenchEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(defrule MessagelnErenchPolicyl

353

(and (event (service ?serviceO&MessageService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
(event (service ?servicel&MessageService|Any) (type ?typel) (name
?event 1 &MessageInFrenchEvent)))
=>(service-state MessageService "setLanguage(French)") (assert (action (service ?servicel) (name
?eventl))))
(defrule LoginServicePolicyl
(event (service ?serviceO&LoginService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicylEventlC)) (event (service ?cserviceO) (type ?ctypeO) (name
? ce ventO&~I dleEvent))
(param (service ?cserviceO&LoginService) (direction ?directionO) (name ?paramO&member) (value
?valueO)) (test (eq ?valueO Gold))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicylEventlCUO))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule RNotificationServicePolicyl
(event (service ?serviceO&NotificationService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicylEventlC))))
(defrule RichContentPolicy2
(and (event (service ?serviceO&EmailService|Any) (type ?typeO) (name
?eventO&MessageCreatedEvent)) (event (service ?servicel&EmailService|Any) (type ?typel) (name
?event 1 &RichContentState 1 Event)))
=>(service-state EmailService "doHmtlHeaderO") (assert (action (service ?serviceO) (name ?eventO)))
(assert (action (service ?servicel) (name ?eventl))))
(defrule PhoneServicePolicySCC
(event (service ?serviceO&PhoneService|Any) (type ?typeO) (name
?eventO&ContactServicePolicy3CEvent2A))
=>(assert (event (service Any) (type Policy) (name AuthenticationEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(defrule RNotificationServicePolicy4
(event (service ?serviceO&NotificationService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicy4EventlC))))
(defrule ShortMessageModePolicyl
(and (event (service ?serviceO&MessageService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
(event (service ?servicel&MessageService|Any) (type ?typel) (name
?eventl &ShortMessageModeEvent)))
=>(service-state MessageService "setShortModeO") (assert (action (service ?servicel) (name
?eventl))))
(defrule AddressBookServicePolicylC
(event (service ?serviceO&AddressBookService|Any) (type ?typeO) (name
? eventO&RNotificationServicePolicy 1 Event 1 A))
=>(assert (event (service Any) (type Policy) (name QuickSearchEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(defrule AuthenticationPolicyl
(and (event (service ?serviceO&PhoneService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
(event (service ?servicel&PhoneService|Any) (type ?typel) (name ?eventl&AuthenticationEvent)))
=>(service-state PhoneService "setAuthenticationO") (assert (action (service ?servicel) (name
?eventl))))
(defrule AddressBookServicePolicy2C
(event (service ?serviceO&AddressBookService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy2Event 1 A))
=>(assert (event (service Any) (type Policy) (name SimpleSearchEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(defrule RNotificationServicePolicy3CU
(event (service ?serviceO&NotificationService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy3 Event 1CU1))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicy3Eventl A))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule AddressBookServicePolicy3C
(event (service ?serviceO&AddressBookService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy3 Event 1 A))

354

=>(assert (event (service Any) (type Policy) (name EmergencyContactEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(definle QuickSearchPolicyl
(and (event (service ?serviceO&AddressBookService|Any) (type ?typeO) (name
?eventO&ProcessEvent)) (event (service ?servicel&AddressBookService|Any) (type ?typel) (name
?event 1 &QuickSearchEvent)))
=>(and (service-state AddressBookService "doQuickSortO") (assert (event (service Any) (type Policy)
(name QuickSearchStatel Event)))) (assert (action (service ?servicel) (name ?eventl))))
(defhile EmergencyContactPolicyl
(and (event (service ?serviceO&AddressBookService|Any) (type ?typeO) (name
?eventO&ProcessEvent)) (event (service ?servicel&AddressBookService|Any) (type ?typel) (name
?event 1 &EmergencyContactEvent)))
=>(service-state AddressBookService "useEmergencyContact()") (assert (action (service ?servicel)
(name ?eventl))))
(defrule RNotificationServicePolicy4CU
(event (service ?serviceO&NotificationService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy4EventlCUO))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicy4Eventl A))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule RichContentPolicyl
(and (event (service ?serviceO&EmailService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
(event (service ?servicel&EmailService|Any) (type ?typel) (name ?eventl&RichContentEvent)))
=>(and (service-state EmailService "doHtmlMessageO") (assert (event (service Any) (type Policy)
(name RichContentStatelEvent)))) (assert (action (service ?servicel) (name ?eventl))))
(defrule ContactServicePolicySC
(event (service ?serviceO&ContactService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy3EventlA))
=>(assert (event (service Any) (type Policy) (name ContactServicePolicy3CEvent2A))) (assert (action
(service ?serviceO) (name ?eventO))))
(defrule MessageServicePolicy2C
(event (service ?serviceO&MessageService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicy2EventlA))
=>(assert (event (service Any) (type Policy) (name ShortMessageModeEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(defrule RNotificationServicePolicy 1CU
(event (service ?serviceO&NotificationService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicylEventlCUO))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicylEventlA))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule QuickSearchPolicy2
(and (event (service ?serviceO&AddressBookService|Any) (type ?typeO) (name ?eventO&SortedEvent))
(event (service ?servicel&AddressBookService|Any) (type ?typel) (name
?event 1 &QuickSearchState 1 Event)))
=>(service-state AddressBookService "doBinarySearch()") (assert (action (service ?serviceO) (name
?eventO))) (assert (action (service ?servicel) (name ?eventl))))
(defrule SimpleSearchPolicyl
(and (event (service ?serviceO&AddressBookService|Any) (type ?typeO) (name
?eventO&ProcessEvent)) (event (service ?servicel&AddressBookService|Any) (type ?typel) (name
?event 1 &SimpleSearcliEvent)))
=>(and (service-state AddressBookService "doSimpleSort()") (assert (event (service Any) (type Policy)
(name SimpleSearchStatelEvent)))) (assert (action (service ?servicel) (name ?eventl))))
(defrule EmailServicePolicylCC
(event (service ?serviceO&EmailService|Any) (type ?typeO) (name
?eventO&ContactServicePolicylCEvent2A))
=>(assert (event (service Any) (type Policy) (name RichContentEvent))) (assert (action (service
?serviceO) (name ?eventO))))
(defrule SimpleSearchPolicy2
(and (event (service ?serviceO&AddressBookService|Any) (type ?typeO) (name ?eventO&SortedEvent))
(event (service ?servicel&AddressBookService|Any) (type ?typel) (name
?event 1 (feSimpleSearchState 1 Event)))

355

=>(service-state AddressBookService "doBinarySearch()") (assert (action (service ?serviceO) (name
?eventO))) (assert (action (service ?servicel) (name ?eventl))))
(defrule LoginServicePolicy4
(event (service ?serviceO&LoginServicelAny) (type ?typeO) (name
?eventO&RNotificationServicePolicy4EventlC)) (event (service ?cserviceO) (type ?ctypeO) (name
?ceventO&~IdleEvent))
(param (service ?cserviceO&LoginService) (direction ?directionO) (name ?paramO&member) (value
?valueO)) (test (eq ?valueO LeonClub))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicy4EventlCU0))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule ContactServicePolicylC
(event (service ?serviceO&ContactService|Any) (type ?typeO) (name
?eventO&RNotificationServicePolicyl Event 1 A))
=>(assert (event (service Any) (type Policy) (name ContactServicePolicylCEvent2A))) (assert (action
(service ?serviceO) (name ?eventO))))
(defrule RNotificationServicePolicy2
(event (service ?serviceO&NotificationService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicy2EventlC))))
(defrule RNotificationServicePolicy2CU
(event (service ?serviceO&NotificationService|Any) (type ?typeO) (name
?event0&RNotificationServicePolicy2EventlCU0))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicy2Eventl A))) (assert
(action (service ?serviceO) (name ?eventO))))
(defrule RNotificationServicePolicyS
(event (service ?serviceO&NotificationService|Any) (type ?typeO) (name ?eventO&ProcessEvent))
=>(assert (event (service Any) (type Policy) (name RNotificationServicePolicySEvent 1C))))

Notification Service Runtime Trace
#First request
Sending Event InputEvent
Sending Event ProcessEvent
[Login] Reading user list from file
Sending Event InputEvent
username = Susan. Smith
password = 1234
membership = Gold
Sending Event ProcessEvent
[Login] Susan Smith has successfully login
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
Sending Event OutputEvent
Sending Event IdleEvent
[AddressBook] Reading user list from file
[AddressBook] Reading contact list from file
Sending Event InputEvent
Sending Event ProcessEvent
Receiving Actions
Action: doQuickSort
[AddressBook] Requesting search for contact for user John.Murphy
[AddressBook] SSUsing Quicksort algorithm to sort contact list
Sending Event SortedEvent
Receiving Actions
Action: doBinarySearch
[AddressBook] $$Searching for 02 using Binary search algorithm
[AddressBook] Contact detail found for originator: Susan.Smith@moto.co.uk, 9894455
[AddressBook] $$Searching for 01 using Binary search algorithm

356

[AddressBook] Contact detail found for recipient: John.Murphy@svaley.com, 8381122
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
Sending Event InputEvent
Sending Event ProcessEvent
Receiving Actions
Action: doHtmlMessage
[Email] Creating email body
[Email] $$Adding HTML tags to email body
[Email] $$Transforming message to HTML format
[Email] Adding message to email body: This month's edition of the Times magazine has arrived
[Email] Generating email header
[Email] Setting From field = Susan.Smith@moto.co.uk
[Email] Setting To field = John.Murphy@svaley.com
[Email] Setting email size
Sending Event MessageCreatedEvent
Receiving Actions
Action: doHmtlHeader
[Email] Sending email to Susan.Smith@moto.co.uk
[Email] Email Acknowledgement received
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
[Phone] Creating vxml dialog to notify recipient by phone
[Phone] Calling recipient on 8381122
[Phone] User has answered the call
[Phone] Informing recipient of a notification fi'om 9894455
[Phone] Notifying recipient with the following message: This month's edition of the Times magazine
has arrived
[Phone] User has acknowledged this message
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event OutputEvent
Sending Event IdleEvent

#Second request
Sending Event InputEvent
Sending Event ProcessEvent
[Login] Reading user list fi'om file
Sending Event InputEvent
username = Susan.Smith
password = 1234
membership = Silver
Sending Event ProcessEvent
[Login] Susan Smith has successfully login
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
Sending Event OutputEvent
Sending Event IdleEvent
[AddressBook] Reading user list fi'om file
[AddressBook] Reading contact list fi'om file
Sending Event InputEvent
Sending Event ProcessEvent

357

Receiving Actions
Action: useEmergencyContact
[AddressBook] Requesting search for contact for user John.Murphy
[AddressBook] SSChanging criteria to search for emergency contact address
Sending Event SortedEvent
[AddressBook] Searching for 02 using Linear search algorithm
[AddressBook] Contact detail found for originator: Susan.Smith@moto.co.uk, 9894455
[AddressBook] Searching for 01 using Linear search algorithm
[AddressBook] Contact detail found for recipient: John.Murphy@svaley.com, 8381122
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
Sending Event InputEvent
Sending Event ProcessEvent
[Email] Creating email body
[Email] Adding message to email body: Your package has arrived
[Email] Generating email header
[Email] Setting From field = Susan.Smith@moto.co.uk
[Email] Setting To field = John.Murphy@svaley.com
[Email] Setting email size
Sending Event MessageCreatedEvent
[Email] Sending email to Susan.Smith@moto.co.uk
[Email] Email Acknowledgement received
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event InputEvent
Sending Event ProcessEvent
Receiving Actions
Action: setAuthentication
[Phone] Creating vxml dialog to notify recipient by phone
[Phone] SSChanging the vxml dialog to request user's pin before notifying recipient
[Phone] Calling recipient on 8381122
[Phone] User has answered the call
[Phone] SSRequesting the user for a pin
[Phone] SSValidating the pin supplied by the user - accepted
[Phone] Informing recipient of a notification fi'om 9894455
[Phone] Notifying recipient with the following message: Your package has arrived
[Phone] User has acknowledged this message
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event OutputEvent
Sending Event IdleEvent
Sending Event OutputEvent
Sending Event IdleEvent

358

Appendix H - PhotoAlbumPrint Service

Example
The artefacts produced for the PhotoAlbumPrint service example used in the thesis.

PhotoAlbumPrint Service
<?xml version='1.0' encoding-ISO-8859-!'?>
<!DOCTYPE uridefi

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
<!ENTITY owl "http://www.w3.org/2002/07/owl">
<!ENTITY service "http://www.daml.0rg/services/0wl-s/l.l/Service.owl">
<!ENTITY profile "http://www.daml.0rg/services/0wl-s/l.l/Pr0file.0wl">
<!ENTITY process "http://www.daml.0rg/services/0wl-s/l.l/Process.owl">
<!ENTITY grounding "http://www.daml.0rg/services/0wl-s/l. l/Grounding.owl">
<!ENTITY gprocess "http://www.daml.0rg/services/0wl-s/l. 1/PhotoAlbumPrintProcess.owl">
<!ENTITY DEFAULT "http://www.daml.0rg/services/0wl-s/l. l/PhotoAlbumPrintSer%'ice.owl">

]>

<rdf:RDF
xmlns:rdf^ "&rdf;#"
xmlns :rdfs=" &rdfs;#"
xmlns:owl = "&owl;#"
xmlns:service= "&service;#"
xmlns:profile= "&profile;#"
xmlns:process= "&process;#"
xmlns:grounding= "&grounding;#"
xmlns:gprocess= "&gprocess;#"
xmlns ="&DEFAULT;#"
xml:base="&DEFAULT;"
>

<owl:Ontology rdf:about="">
<owl:versionInfo>

$Id: CongoService.owljV 1.25 2004/10/07 05:49:28 martin Exp $
</owl:versionInfo>
<rdfs:comment>
This ontology represents the OWL-S service description for the
Congo web service example.
</rdfs:comment>
<owl:imports rdf:resource="&service;" />
<owl:imports rdf:resource="&profile;" />
<owl:imports rdf:resource="&process;" />
<owl:imports rdf:resource="&grounding;" />
<owl:imports rdf:resource="&gprocess;" />

</owl:Ontology>
<service:Service rdf:ID="PhotoAlbumPrintService">

<!— Reference to the Process Model —>
<service:describedBy rdf:resource="&gprocess;#PhotoAlbumPrintProcess"/>

</service: Service>
</rdf:RDF>

359

PhotoAlbumPrint Process
<rdf;RDF

xmlns:rss="http://purl.org/rss/1.0/"
xmlns:process="http://www.daml.org/services/owl-s/l. l/Process.owl#"
xnilns="http://www.daml.org/services/owl-s/l.l/PhotoAlbumPrmtProcess.owl#"
xmlns:profileHierarchy="http://www.dainl.org/services/owl-s/l.l/ProfileHierarchy.owl#"
xmlns:objList="http://www.daml.org/services/owl-s/l.l/generic/ObjectList.owl#"
xmlns:swrl="http://www.w3.org/2003/l 1/swrl#"
xmlns:time="http://www.isi.edu/~pan/damltime/time-entry.owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns: owl=" http://WWW. w3. org/2002/07/owl#"
xmlns:expi="http://www.daml.org/services/owl-s/l.l/generic/Expression.owl#"
xmlns:jms="http://jena.hpl.hp.com/2003/08/jms#"
xmlns:service="http;//www.daml.org/services/owl-s/l. 1/Service.owl#"
xnilns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:base="http://www.daml.org/services/owl-s/l. 1/Photo AlbumPrintProcess.owl"
xinlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns: vcard="http://www.w3.org/2001/vcard-rdf73.0#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:dc="http;//purl.org/dc/elements/l. 1/"

xml:base="http://www.daml.org/services/owl-s/l.l/PhotoAlbumPrintProcess.owl">
<owl:Ontology rdf:about="">

<owl:imports>
<owl:Ontology rdf:about="Process.owl"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="http://www.isi.edu/~pan/damltime/time-entry.owl"/>

</owl:imports>
<owl:imports>
<owl;Ontology rdf:about="Service.owl"/>

</owl:imports>
<0 wl: versionInfo>
$Id: CongoProcess.owljV 1.79 2005/02/03 22:43:43 martin Exp $

</owl:versionInfo>
<rdfs:comment>

</rdfs: comment>
<owl:imports>
<owl:Ontology rdf:about="ProfileHierarchy.owl"/>

</owl:imports>
</owl:Ontology>
<process:Input rdf:ID="AlbumPhotos">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
<process:Input rdf:ID="PhotoSize">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
<process:AtomicProcess rdf:ID="PhotoAlbumService">

<process:hasInput rdf:resource="#AlbumPhotos"/>
<process: hasOutput>

<process:Output rdf:ID="PhotoAlbum">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Output>
</process:hasOutput>
<process:hasOutput>

<process:Output rdf:ID="PhotoAlbumSize">

360

<process;parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/2001 /XMLSchema#decimal</process:parameterType>

</process; Output>
</process:hasOutput>
<process:hasOutput>

<process;Output rdf:ID="PhotoAlbumColours">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http ://www. w3 .org/2001 /XMLSchema#decimal</process :parameterT ype>

</process: Output>
</process: hasOutput>
<process;hasFiniteStateMachine

rdf:resource="PhotoAlbumServiceFSM.owl#PhotoAlbumServiceFSM"/>
</process:AtomicProcess>
<process:Input rdf:ID="PbotoCategory">

<process:parameterType rdf:datatype="bttp;//www.w3.org/2001/XMLScbema#anyURI"
>bt1p://www. w3.org/200 l/XMLScbema#string</process:parameterType>

</process:Input>
<process;Input rdf:ID="NumberOfPages">
<process;parameterType rdf:datatype="bttp://www.w3.org/2001/XMLScbema#anylIRJ"
>bttp://www.w3.org/2001/XMLScbema#decimal</process:parameterType>

</process:Input>
<process:Perform rdf:ID="PerformPbotoService">

<process:process>
<process:AtomicProcess rdf;ID="PbotoService">
<process:basInput>

<process:Input rdf:ID="RawPbotos">
<process:parameterType rdf: datatype="bttp://www.w3.org/200 l/XMLScbenia#anyURI"
>bttp://www.w3.org/2001/XMLScbema#string</process:parameterType>

</process:Input>
</process:basInput>
<process:basInput rdf:resource="#PbotoCategory"/>
<process:basInput rdf:resource="#PbotoSize"/>
<process:basOutput>
<process:Output rdf:ID="ProcessedPbotos">

<process:parameterType rdf: datatype="bttp://www.w3.org/200 l/XMLScbema#anyURI"
>bttp://www.w3 .org/2001 /XMLScbema#string</process:parameterType>

</process:Output>
</process:basOutput>
<process:basFiniteStateMacbine rdf:resource="PbotoServiceFSM.owl#PbotoServiceFSM"/>

</process: AtomicProcess>
</process:process>
<process: basDataF rom>
<process:InputBinding>
<process:toParamrdf:resource="#RawPbotos"/>
<process: values ource>
<process:ValueOf>
<process:tbeVar rdf:resource="#CameraPbotos"/>
<process:fromProcess rdf:resource="bttp://www.daml.org/services/owl-

s/1. l/Process.owl#TbeParentPerform"/>
</process:ValueOf>

</process:valueSource>
</process:InputBinding>

</process: basDataF rom>
<process: basDataFrom>
<process: InputB inding>
<process:toParam rdf:resource="#PbotoCategory"/>
<process: value Source>
<process:ValueOf>
<process: tbe V ar rdf: resource=" #CameraPbotoCategory"/>

361

<process;fromProcess rdf:resource="http://www.daml.org/services/owl-
s/1.1 /Process.owl#TheParentPerform"/>

</process:ValueOf>
</process:valueSource>

</process:InputBmding>
</process; hasDataF rom>
<process:hasDataFrom>

<process:InputBinding>
<process;toParam rdf:resource="#PhotoSize"/>
<process:valueSource>

<process; V alueO f>
<process:theVarrdf;resource="#CameraPhotoSize"/>
<process:fromProcess rdf:resource="http://www.daml.org/services/owl-

s/1. l/Process.owl#TheParentPerform"/>
</process:ValueOfi>

</process:valueSource>
</process: InputB mding>

</process: hasDataF rom>
</process:Perform>
<process:Input rdf:ID="CameraPhotoCategory">

<process:parameterType rdf:datatype="http;//www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process;Input>
<process:Perform rdf:ID="PerfonnPrmtService">

<process:process>
<process:AtomicProcess rdf:ID="PrintService">

<process:hasInput>
<process:Input rdf:ID="DocumentName">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#string</process:parameterType>

</process:Input>
</process:hasInput>
<process:hasInput rdf:resource="#NumberOfPages"/>
<process:hasInput>

<process:Input rdf:ID="NumberOfColours">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www. w3 .org/2001/XMLSchema#decimal</process:parameterType>

</process:Input>
</process:hasInput>
<process:hasOutput>

<process:Output rdf:ID="NumberOfSheets">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#boolean</process:parameterType>

</process:Output>
</process: hasOutput>
<process:hasFimteStateMachine rdf:resource="PrintServiceFSM.owl#PrintServiceFSM"/>

</process:AtomicProcess>
</process:process>

<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#DocumentName"/>
<process:valueSource>

<process:ValueOf>
<process;theVar rdf;resource="#PhotoAlbum"/>
<process:fromProcess rdf;resource="#PerfomiPhotoAlbumService"/>

</process:ValueOf>
</process:valueSource>

</process: InputB inding>
</process:hasDataFrom>
<process: hasDataF rom>

362

<process:InputBinding>
<process:toParam rdf;resource="#NumberOfPages"/>
<process:valueSource>

<process:ValueOf>
<process:theVar rdf:resource="#PhotoAlbumSize"/>
<process:fromProcess rdf:resource="#PerfomiPhotoAlbumService"/>

</process:ValueOf>
</process:valueSource>

</process:InputBinding>
</process:hasDataFrom>
<process: hasDataF rom>
<process: InputB inding>
<process:toParam rdf:resource="#NumberOfColours"/>
<process:valueSource>

<process; ValueO £>
<process:theVar rdf:resource="#PhotoAlbumColours"/>
<process:fromProcess rdf:resource="#PerfomiPhotoAlbumService"/>

</process;ValueOf>
</process:valueSource>

</process: InputB mding>
</process:hasDataFrom>

</process: Perform>
<process:CompositeProcess rdf:ID="PhotoAlbumPrintProcess">
<process: haslnput>

<process: Input rdf:ID="CanieraPhotos">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchenia#anyURI"
>http://www.w3.org/200I/XMLSchenia#string</process:parameterType>

</process:Input>
</process:hasInput>
<process:hasInput>

<process; Input rdf:ID="CanieraPhotoSize">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://www.w3.org/2001/XMLSchema#decimal</process:paranieterType>

</process:Input>
</process: haslnput>
<process:hasInput rdf:resource="#CanieraPhotoCategory"/>
<process:hasOutput>
<process:Output rdf:ID="AlbuniSize">

<process:paranieterType rdf:datatype="http://www.w3.org/2001/XMLSchenia#anyURI"
>http://www.w3.org/200I/XMLSchema#decimal</process:parameterType>

</process: Output>
</process :hasOutput>
<process:coniposedOf>
<process:Sequence>

<process:components>
<process: ControIConstructList>

<obj List: first rdf: resource="#PerformPhotoService"/>
<objList:rest>
<process: ControlConstructLi st>
<objList:first>

<process:Perform rdf ID="PerfomiPhotoAIbumService">
<process:process rdf: resource="#PhotoAlbuniService"/>
<process: hasDataF roni>
<process:InputBinding>
<process:toParain rdf: resource="#AIbuniPhotos"/>
<process:valueSource>
<process: V alueO C>

<process:heVar rdf:resource="#ProcessedPhotos"/>
<process:fi-oniProcessrdfresource="#PerfomiPhotoService"/>

</process:ValueOC>

363

</process:valueSource>
</process; InputBinding>

</process:hasDataFrom>
</process:Perform>

</objList:first>
<objList:rest>
<process:ControlConstructList>

<obj List: first rdf: resource="#PerfonnPrintService"/>
<objList:rest rdf:resource="generic/ObjectList.owl#iiil"/>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</process:components>

</process: SequencO
</process:composedOf>
<process: hasp initeStateMachine

rdf:resource="PhotoAlbumPrintProcessFSM.owl#PhotoAlbumPrintProcessFSM"/>
</process:CompositeProcess>

</rdf:RDF>

PhotoAlbumPrint Service’s FSM
<rdf:RDF

xmlns:fsm="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl#"
xmlns:process="http://www.daml.org/services/owl-s/l. 1/Process.owl#"
xmlns:service="http://www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns="http://www.daml.org/services/owl-s/l.l/PhotoAlbumPrintProcessFSM.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xinlns:base="http://www.danil.org/services/owl-s/l.l/PhotoAlbuiiiPrintProcessFSM.owl"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"

xml:base="http://www.daml.org/services/owl-s/l.l/PhotoAlbumPrintProcessFSM.owl">
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl"/>
</owl:Ontology>
<fsm:Transition rdf:ID="BlackWhitePhotoIiiitialStateInitialTransition">

<fsm:trigger>
<fsm:SignalEvent rdf:ID="InitialEvent">

<fsm:signal>
<fsm:Signal rdf:ID="IiiitialEventSource">
< fsm: value>Initial S ignal</fsm: value>

</fsm:Signal>
</fsm:signal>

</fsm: SignalEvent>
</fsm:trigger>
<fsm:source>

<fsm:PseudoState rdf:ID="BlackWhitePhotoInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing rdf:resource="#BlackWhitePhotoIiiitialStateIiiitialTransition"/>

</fsm:PseudoState>
</fsm:source>
<fsm:target>
<fsm:FinalState rdf:ID="BlackWhitePhotoStatel">

364

<fsm:doActivity>setColourMode(false)</fsm;doActivity>
<fsm;incoining rdf:resource="#BlackWhitePhotoInitialStateImtialTransition"/>

</fsm: F inalState>
</fsm: targe t>

</fsm:Transition>
<fsm:Transition rdf:ID="IdleToInput">

<fsm;trigger>
<fsin:SignalEvent rdf:ID="InputEvent">

<fstn:signal>
<fsm:Signal rdf:ID="InputEventSource">

<fsm: value>InputSignal</fsm: value>
</fsm:Signal>

</fsm:signal>
</fsm: SignalEvent>

</fsm:trigger>
<fsm:source>
<fsm:CompositeState rdf:ID="IdleState">

<fsm:incoming>
<fsm: T ransition rdf: ID=" InitialT" >

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source>

<fsm:PseudoState rdf:ID="ImtialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing rdf:resource="#InitialT"/>

</fsm:PseudoState>
</fsm:source>
<fsm:target rdf:resource="#IdleState"/>

</fsm: T ransition>
</fsm:incoming>
<fsm:outgoing rdf:resource="#IdleToInput"/>
<fsm:inconiing>
<fsm: Transition rdf: ID=" OutputToIdle">

<fsm:trigger>
<fsm: SignalEvent rdf: ID=" IdleEvent">
<fsm:signal>
<fsm:Signal rdf:E)="IdleEventSource">

<fsm: value>IdleSignal</ fsm: value>
</fsm:Signal>

</fsm:signal>
</fsm: SignalEvent>

</fsm:trigger>
<fsm:source>

<fsm:CompositeState rdf:ID="OutputState">
<fsm:subvertex>

<fsm:SubmachineState rdf:ID="ColourPrintingSubSM">
<fsm: submachine>
<fsm: StateMachine rdf: ID=" ColourPrinting">

<fsm:top>
<fsm:CompositeState rdf:ID="ColourPrintingCS">
<fsm:subvertex>

<fsm:PseudoState rdf:ID="ColourPrintingInitialState">
<fsm:pseudoStateBCind>initial</fsm:pseudoStateKind>
<fsm:outgoing>

<fsm:Transition rdf:ID="ColourPrintingInitialStateInitialTransition">
<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resource="#ColourPrintingInitialState"/>
<fsm:target>

<fsm:SimpleState rdf:ID="ColourPrintingStatel">
<fsm:doActivity>checkcartage(type_colour)</fsm:doActivity>
<fsm:incommg rdf:resource="#ColourPrintingInitialStateInitialTransition"/>

365

<fsm:outgoing>
<fsm:Transition rdf:ED="ColoxirPrintingStatelTransitionl ">

<fsm:trigger>
<fsm: SignalEvent rdf: ID="Printing">
<fsm;signal>

<fsm:Signal rdfID="PrintingSource">
<fsni lvalue
>PrintingS ignal</ fsm: value>

</fsni:Signal>
</fsni:signal>

</fsni: S ignalE vent>
</fsm:trigger>
<fsm:source rdfresource="#ColourPrintingStater7>
<fsm:target>
<fsm: Final State rdf ID="ColourPrintingState2">

<fsm:doActivity
>usecartage(type_colour)</ fsm: do Activity>
<fsm:incoming rdfresource="#ColourPrintingStatelTransitionr7>

</fsm:FinalState>
</fsm:target>
<fsm:guard>

<fsm:Guard rdfID="ColourPrintingStatelTransitionlGuard">
<fsm:expression>

<fsm:Expression
rdfID="ColourPrintingStatelTransitionlExpression">

<fsm:subject>
<fsm:Subject rdfID="colourcartage'7>

</fsm:subject>
<fsm:predicate>

<fsm:Predicate rdf ID="equal'7>
</fsm:predicate>
<fsm:value
>present</fsm: value>

</fsm:Expression>
</fsm:expression>

</fsm:Guard>
</fsm:guard>

</ fsm: Transition>
</fsm:outgoing>

</fsm: SimpleState>
</fsm:target>

</fsm: T ransition>
</fsm:outgoing>

</fsm:PseudoState>
</fsm: sub vertex>
<fsm:subvertex rdf resource="#ColourPrintingStater7>
<fsm:subvertex rdf resource="#ColourPrintingState2'7>

</fsm: CompositeState>
</fsm:top>
<fsm:comment>Set the printer to print in colour</fsm:comment>

</fsm:StateMachine>
</fsm:submachine>

</fsm: SubmachineState>
</fsm: sub vertex>
<fsm:incoming>

<fsm:Transition rdf ID="ProcessT oOutput" >
<fsm:trigger>
<fsm:SignalEvent rdfID="OutputEvent">

<fsm:signal>
<fsm: Signal rdfID="OutputEventSource">

366

<fsm:value>OutputSignal</fsm:value>
</fsm:Signal>

</fsm:signal>
</fsm: S ignalE vent>

</fsm:trigger>
<fsm:source>
<fsm:CompositeState rdf:ID="ProcessState">

<fsm:subvertex>
<fsm:SubmachineState rdf:ID="CreatePostcardSubSM">
<fsm: submachine>

<fsm:StateMachine rdf:ID="CreatePostcard">
<fsm;top>
<fsm:CompositeState rdf:ID="CreatePostcardCS">

<fsm: subvertex>
<fsni:PseudoState rdf:ID="CreatePostcardImtialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>

</ fsm; PseudoState>
</ fsm: subvertex>
<fsm: subvertex>

<fsm:SimpleState rdf:ID="CreatePostcardStatel">
<fsm:doActivity>createPostcard()</fsm:doActivity>

</fsm: SimpleStatO
</ fsm: subvertex>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Creates an album of postcards with the given

photos</fsm:coniment>
</fsm: StateMachine>

</fsm: submachine>
</fsm: SubmachineState>

</ fsm: subvertex>
<fsm: sub vertex>
<fsm:SubmachineState rdf:ID="ExpensiveModeSubSM">

<fsm: submachine>
<fsm: StateMachine rdf:ID="ExpensiveMode">

<fsm:top>
<fsm:CompositeState rdf:ID="ExpensiveModeCS">

<fsm: subvertex>
<fsm:PseudoState rdf:ID="ExpensiveModeInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:Transition rdf:ID="ExpensiveModeInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm: source rdf:resource="#ExpensiveModeInitialState"/>
<fsm:target>

<fsm:FmalState rdf:ID="ExpensiveModeStatel ">
<fsm:do Activity
>printmode(1, singlesided)</fsm:doActivity>
<fsm:incoming

rdf:resource="#ExpensiveModeInitialStateInitialTransition"/>
</fsm:FinalState>

</fsm:target>
</ fsm: T ransition>

</fsm:outgoing>
</fsm: P seudo State>

</fsm: sub vertex>
<fsm: subvertex rdf:resource="#ExpensiveModeState 1 "/>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>prints a page per sheet</fsm:comment>

367

</ fsm: StateMachine>
</fsm: submachine>

</fsm:SubmachineState>
</fsm: sub vertex>
<fsm:outgoing rdf:resource="#ProcessToOutput"/>
<fsm: subvertex>

<fsm: SubmachineState rdf:ID="HighPhotoQualitySubSM">
<fsm:submachme>

<fsm:StateMachine rdf:ID="HighPhotoQuality">
<fsm:top>
<fsm:CompositeState rdf:ID="HighPhotoQualityCS">
<fsm: subvertex>
<fsm:PseudoState rdf:ID="HighPhotoQualityInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>

<fsm:Transition rdf:ID="HighPhotoQualityInitialStateInitialTransition">
<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm: source rdf:resource="#HighPhotoQualityInitialState"/>
<fsm:target>
<fsm:FinalState rdf:ID="HighPhotoQualityStatel">

<fsm:doActivity
>setResolution(high)</fsm:doActivity>
<fsm:incommg

rdf:resource="#HighPhotoQualityInitialStateInitialTransition"/>
</fsm: FinalState>

</fsm:target>
</fsm:Transition>

</fsm: outgo ing>
</ fsm: PseudoStatO

</fsm: subvertex>
<fsm: subvertex rdf:resource="#HighPhotoQualityState 1 "/>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Produce high quality photos</fsm:comment>

</fsm: StateMachine>
</fsm: submachine>

</fsm:SubmachineState>
</fsm: subvertex>
<fsm:subvertex>

<fsm:SubmachineState rdf:ID="IntermediateModeSubSM">
<fsm: submachine>

<fsm: StateMachine rdf:ID="IntermediateMode">
<fsm:top>
<fsm:CompositeState rdf:ID="IntermediateModeCS">

<fsm: subvertex>
<fsm:PseudoState rdf:ID="IntermediateModeInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>

<fsm:Transition rdf:ID="IntermediateModeInitialStateInitialTransition">
<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resource="#IntermediateModeInitialState"/>
<fsm:target>

<fsm:FinalState rdf:ID="IntermediateModeStatel">
<fsm:doActivity
>prmtmode(1, doublesided)</fsm: doActivity>
<fsm: incoming

rdf:resource="#IntennediateModeInitialStateInitialTransition''/>
</fsm:FinalState>

</fsm:target>
</fsm:Transition>

368

</fsm: outgoing>
</fsm:PseucloState>

</fsm: subvertex>
<fsm: subvertex rdf:resource="#IntermediateModeState 1 "/>

</ fsm;CompositeState>
</fsm:top>
<fsm:comment>prints 2 pages per sheet</fsin:coinment>

</fsm: StateMachine>
</fsm: submachine>

</fsm: SubmachmeState>
</ fsm: subvertex>
<fsm: sub vertex>

<fsm:SubmachineState rdf:ID="CreateCalendarSubSM">
<fsm:submachme>

<fsm: StateMachine rdf:ID="CreateCalendar">
<fsm:top>
<fsm:CompositeState rdf:ID="CreateCalendarCS">

<fsm: subvertex>
<fsm:PseudoState rdf:ID="CreateCalendarIiiitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>

<fsm:Transitionrdf:ID="CreateCalendarImtialStateInitialTransition">
<fsin:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resource="#CreateCalendarInitialState"/>
<fsm:target>
<fsm:SimpleState rdf:ID="CreateCalendarStatel">

<fsm:doActivity
>createCalendar()</fsm: do Activity>
<fsm:incoming

rdf:resource="#CreateCalendarInitialStateInitialTrarisition"/>
</fsm:SimpleState>

</fsm:target>
</fsm: T ransition>

</fsm:outgoing>
</fsm;PseudoState>

</fsm:subvertex>
<fsm: subvertex rdf:resource="#CreateCalendarState 1 "/>

</fsm:CompositeState>
</fsm;top>
<fsm:comment>creates a calendar with the first 12 photos</fsm:comment>

</fsm: StateMachine>
</ fsm: submachine>

</fsm: SubmachineState>
</fsm: sub vertex>
<fsm:subvertex>

<fsm:SubmachineState rdf:ID="EconomyModeSubSM">
<fsm: submachine>

<fsm: StateMachine rdf:ID="EconomyMode">
<fsm:top>

<fsm:CompositeState rdf:ID="EconomyModeCS">
<fsm:subvertex>

<fsm:PseudoState rdf:ID="EconomyModeInitialState">
<fsm:pseudoStateKind>initial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:Transitionrdf:ID="EconomyModeInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resource="#EconomyModeInitialState"/>
<fsm:target>
<fsm:FinalState rdf:ID="EconomyModeStatel">

<fsm: do Activity

369

>printmode(2, doublesided)</fsm:doActivity>
<fsm:incoming

rdf:resource="#EconomyModeImtialStateInitialTransition"/>
</fsm :FmalState>

</fsm:target>
</fsm: T ransition>

</fsm:outgoing>
</fsm:PseudoState>

</fsm: subvertex>
<fsm: subvertex rdf:resource="#EconomyModeState 1 "/>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>prints 4 pages per sheet</fsm:comment>

</fsm: StateMachine>
</ fsm: submachine>

</ fsm: SubmachineState>
</fsm: sub vertex>
<fsm: subvertex>

<fsm:SubmachineState rdf:ID="BlackWhitePhotoSubSM">
<fsm: submachinO

<fsm:StateMachine rdf:ID="BlackWhitePhoto">
<fsm:top>
<fsm:CompositeState rdf:ID="BlackWhitePhotoCS">

<fsm:subvertex rdf:resource="#BlackWhitePhotoInitialState"/>
<fsm:subvertex rdf:resource="#BlackWhitePhotoStatel"/>

</fsm:CompositeState>
</fsm:top>
<fsm:comment>Produce black and white photos</fsm:comment>

</fsm: StateMachine>
</ fsm: submachme>

</fsm:SubmachineState>
</fsm: sub vertex>
<fsm: incommg>

<fsm:Transition rdf:ID="InputToProcess">
<fsm:trigger>

<fsm:SignalEvent rdf:ID="ProcessEvent">
<fsm:signal>
<fsm:Signal rdf:ID="ProcessEventSource">

<fsm:value>ProcessSignal</fsm:value>
</fsm:Signal>

</fsm:signal>
</fsm: SignalEvent>

</fsm:trigger>
<fsm:source>

<fsm:CompositeState rdf:ID="InputState">
<fsm: subvertex>
<fsm:SubmachineState rdf:ID="RemoveRedEyeSubSM">

<fsm: submachine>
<fsm: StateMachine rdf:ID="RemoveRedEye">

<fsm:top>
<fsm:CompositeState rdf:ID="RemoveRedEyeCS">

<fsm: subvertex>
<fsm:PseudoState rdf:ID="RemoveRedEyeInitialState">
<fsm:pseudoStateKind
>imtial</fsm:pseudoStateKind>
<fsm:outgoing>
<fsm:Transition rdf:ID="RemoveRedEyeInitialStateInitialTransition">

<fsm:trigger rdf:resource="#InitialEvent"/>
<fsm:source rdf:resource="#RemoveRedEyeImtialState"/>
<fsm:target>

370

<fsm:SimpleState rdf:ID="RemoveRedEyeStatel">
<fsm:doActivity
>searchRedEye()</ fsm:doActivity>
<fsm; incoming

rdf:resource="#RemoveRedEyeInitialStateInitialTransition"/>
<fsm:outgoing>
<fsm:Transition rdf:ID="RemoveRedEyeStatelTransitionl ">

<fsm;trigger>
<fsm:SignalEvent rdf:ID="ProcessingPhoto">

<fsm:signal>
<fsm: Signal rdf:ID="ProcessingPhotoSource">
<fsm: value>ProcessingS ignal</fsm: value>

</fsm:Signal>
</fsm:signal>

</ fsm: SignalE vent>
</fsm:trigger>
<fsm: source rdf:resource="#RemoveRedEyeStatel "/>
<fsm:target>

<fsm:FinalState rdf:ID="RemoveRedEyeState2">
<fsm:doActivity>removeRedEye()</fsm:doActivity>

<fsm: incoming
rdf:resource="#RemoveRedEyeState 1 Transition 1 "/>

</fsm:FinalState>
</fsm:target>
<fsm:guard>

<fsm:Guard rdf:ID="RemoveRedEyeState 1 Transition 1 Guard">
<fsm:expression>

<fsm:Expression
rdf:ID="RemoveRedEyeStatel Transition! Expression">

<fsm:subject>
<fsm;Subject rdf:ID="redeyelocation"/>

</fsm:subject>
<fsm:predicate>

<fsm:Predicate rdf:ID="inequal"/>
</fsm:predicate>
<fsm;value>0</fsm:value>
</ fsm: Expression>

</fsm: expression>
</fsm:Guard>
</fsm:guard>

</fsm: T ransition>
</fsm:outgoing>

</fsm: SimpleState>
</fsm:target>

</fsm: T ransition>
</fsm:outgoing>

</fsm: Pseudo State>
</fsm: subvertex>
<fsm: sub vertex rdf:resource="#RemoveRedEyeStatel"/>
<fsm:subvertex rdf:resource="#RemoveRedEyeState2"/>

</fsm:CompositeState>
</fsm:top>
<fsm:coniment>Removes red eyes in the photos</fsm:comment>

</fsm: StateMachine>
</fsm: submachine>

</fsm: SubmachineState>
</fsm: sub vertex>
<fsm:incoming rdf:resource="#IdleToInput"/>
<fsm:outgoing rdf:resource="#InputToProcess"/>

</fsm:CompositeState>

371

</fsm:source>
<fsm:target rdf:resource="#ProcessState"/>

</fsm:Transition>
</fsm: incoming>

</fsm:CompositeState>
</fsm;source>
<fsm:target rdf:resource="#OutputState"/>

</fsm:Transition>
</fsm:incoming>
<fsin: outgoing rdf:resource="#OutputToIdle"/>

</fsm:CompositeState>
</fsm:source>
<fsm:target rdf:resource="#IdleState"/>

</fsm: T ransition>
</fsm: incoming>

</fsm:CompositeState>
</fsm:source>
<fsm:target rdf:resource="#InputState"/>

</fsm: T ransition>
<fsm:StateMachine rdf:ID="PhotoAlbumPrintProcessFSM">
<fsm;top>
<fsm:CompositeState rdf:ID="ServiceState">

<fsm:subvertex rdf:resource="#InitialState"/>
<fsm:subvertex rdf:resource="#IdleState"/>
<fsm:subvertex rdf:resource="#ProcessState"/>
<fsm: sub vertex rdf:resource="#InputState"/>
<fsm: sub vertex rdf:resource="#OutputState"/>

</fsm: CompositeState>
</fsm:top>

</fsm:StateMachme>
</rdf:RDF>

PhotoAlbumPrint Service’s Management Policy
<rdf:RDF

xmlns:process="http://www.daml.org/services/owl-s/l. 1/Process.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:fsm="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl#"
xmlns: service="http;//www.daml.org/services/owl-s/l. 1/Service.owl#"
xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
xmlns:base="http://www.daml.org/services/owl-s/l.l/PhotoAlbumPrintServicePolicy.owl"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:daml="http://www.daml.org/2001/03/dainl+oil#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/PhotoAlbumPrintProcess.owl#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xnilns="http://www.daml.org/services/owl-s/l.l/PhotoAlbuniPrintServicePolicy.owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xnil:base="http://www.daml.org/services/owl-s/l.l/PhotoAlbuniPrmtServicePolicy.owl">
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://kdeg.cs.tcd.ie/Policy.owl"/>
<owl:imports rdf:resource="PhotoAlbumPrint.owl"/>

</owl:Ontology>
<policy:ComplexAction rdf:ID="PhotoAlbumPrintPolicylActionl">

<rdfs:first>
<policy:AndList>
<rdfs:first>

<policy: SimpleAction rdf:ID="PhotoAlbumPrintPolicy 1 Actionl 01 ">
<policy:value>RemoveRedEye</policy:value>

372

</policy: Simple Action>
</rdfs;first>
<rdfs:rest>
<policy:SimpleActionrdf:ID="PhotoAlbumPrintPolicylActionl02">

<policy:value>CreateCalendar</policy:value>
</policy: Simple Action>

</rdfs:rest>
</policy: AndList>

</rdfs:first>
<rdfs: restx/rdfs; rest>

</policy:ComplexAction>
<policy:Subject rdf:ID="CameraPhotoCategory"/>
<policy: SimpleCondition rdf: ID="Photo AlbumPrintPolicy 1 Condition 1 ">

<policy;subject rdf:resource="#CameraPhotoCategory"/>
<policy:predicate>

<policy:Predicate rdf:ID="equal"/>
</policy:predicate>
<policy:value>portrait</policy:value>

</policy: SimpleCondition>
<policy:Policy rdf:ID="PhotoAlbumPrintPolicyl">
<rdfs:comment>Policy for this service to use removeredeye and create calendar adaptive behaviours

for processing portrait photos</rdfs:comment>
<policy:target rdf;resource="PhotoAlbumPrint.owl#PhotoAlbuniPrint"/>
<policy:event>

<policy:SimpleEvent rdf:ID="PhotoAlbumPrintPolicylEventl">
<policy:value>ProcessEvent</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy:condition rdf;resource="#PhotoAlbumPrintPolicylConditionl"/>
<policy:action rdf:resource="#PhotoAlbuniPrintPolicy 1 Actionr7>

</policy:Policy>
</rdf:RDF>

PhotoAlbumPrInt Service’s Refined Policies
<rdf:RDF

xmlns:process="http://'www.daml.org/services/owl-s/l.l/Process.owl#"
xmlns:policy="http://kdeg.cs.tcd.ie/Policy.owl#"
xmlns:fsm="http://kdeg.cs.tcd.ie/FiniteStateMachine.owl#"
xmlns: service=" http: / /www. daml. org/services/o wl-s/1.1 /Service .owl#"
xmlns:profile="http://www.daml.org/services/owl-s/l. 1/Profile.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/l.l/Grounding.owl#"
xmlns:daml="http;//www.daml.org/2001/03/daml+oil#"
xinlns;rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns;base="http://www.daml.org/services/owl-s/l.l/PhotoAlbuniPrintServiceRefinedPolicy.owl"
xmlns:thisprocess="http://www.daml.org/services/owl-s/l.l/PhotoAlbuniPrintProcess.owl#"
xnilns="http://www.daml.org/services/owl-s/l. 1/Photo AlbumPrintServiceRefinedPolicy.owl#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http;//www. w3 .org/2000/01 /rdf-schema#"

xnil:base="http://www.daml.org/services/owl-s/l.l/PhotoAlbuniPrmtServiceRefinedPolicy.owl">
<owl:Ontology rdf:about="">
<owl;imports rdf:resource="http://kdeg.cs.tcd.ie/Policy.owl"/>
<owl:imports rdf:resource="PhotoAlbumPrintService.owl"/>

</owl:Ontology>
<policy:Subject rdf:ID="PhotoCategory"/>
<policy:SimpleAction rdf:ID="PhotoRemoveRedEyeAction01 ">

<policy:value>searchRedEye()</policy:value>
</policy:SimpleAction>
<policy: SimpleAction rdf:ID="PhotoRemoveRedEyeAction02">

373

<policy: value>event(RemoveRedEyeState 1 Event)</policy: valuO
</policy: SimpleAction>
<policy:SimpleCondition rdf:ID="PhotoRemoveRedEyeCondition2">
<policy:subject>

<policy; Subject rdf:ID="redeyelocation"/>
</policy; subj ect>
<policy:predicate>

<policy iPredicate rdf: ID=" inequal"/>
</policy:predicate>
<policy:value>0</policy:value>

</policy: SimpleCondition>
<policy:SimpleEvent rdfID="PhotoAlbumCreateCalendarEventlb">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>
<policy:Policy rdf ID="PhotoAlbumCreateCalendarPolicy 1 ">
<rdfs: commentx/rdfs: coinment>
<policy:target rdf resource="PhotoAlbumPrint.owl#PhotoA]bum"/>
<policy:event>

<policy:ComplexEvent rdfID="PhotoAlbumCreateCalendarEventla">
<rdfs:first>
<policy: AndList>

<rdfs: first rdfresource="#PhotoAlbumCreateCalendarEventlb"/>
<rdfs:rest>

<policy; Simple Action rdf ID="PhotoAlbumCreateCalendarEventl">
<policy:value>PhotoAlbumCreateCalendarEvent</policy:value>

</policy: SimpleAction>
</rdfs:rest>

</policy: AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy:ComplexEvent>
</policy:event>
<policy:action>
<policy:SimpleAction rdf ID="PhotoAlbumCreateCalendarActionl">

<policy:value>createCalendar()</policy:value>
</policy: SimpleAction>

</policy:action>
</policy:Policy>
<policy: Complex Action rdf ID="PhotoRemoveRedEyeActionl">

<rdfs:first>
<policy:AndList>

<rdfs: first rdf resource="#PhotoRemoveRedEyeActionO 1 "/>
<rdfs:rest rdfresource="#PhotoRemoveRedEyeAction02"/>

</policy; AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy: Complex Action>
<policy: SimpleAction rdf ID="PhotoRemoveRedEyeAction2">

<policy:value>removeRedEye()</policy:value>
</policy: SimpleAction>
<policy: SimpleAction rdf ID="PhotoRemoveRedEyeEvent 1 ">

<policy:value>PhotoRemoveRedEyeEvent</policy:value>
</policy: SimpleAction>
<policy:ComplexEvent rdfID="PhotoRemoveRedEyeEvent2">

<rdfs:first>
<policy:AndList>

<rdfs:first>
<policy:SimpleEvent rdf lD="PhotoRemoveRedEyeEventOO 1 ">

<policy:value>ProcessingPhoto</policy:value>
</policy: SimpleEvent>

374

</rdfs:first>
<rdfs:rest>
<policy:SimpleActionrdf:ID="PhotoRemoveRedEyeEvent002">
<policy:value>RemoveRedEyeStatelEvent</policy:value>

</policy: S imple Action>
</rdfs:rest>

</policy:AndList>
</rdfs:first>
<rdfs:restx/rdfs:rest>

</policy: ComplexEvent>
<policy:Predicate rdf:ID="equar7>
<policy:Policy rdf:ID="PhotoRemoveRedEyePolicy2">
<rdfs: commentx/rdfs: comment>
<policy:target rdf;resource="PhotoAlbuinPrint.owl#Photo"/>
<policy:event rdf:resource="#PhotoRemoveRedEyeEvent2"/>
<policy:condition rdf:resource="#PhotoRemoveRedEyeCondition2"/>
<policy:action rdf:resource="#PhotoRemoveRedEyeAction2"/>

</policy:Policy>
<policy:Policy rdf:ID="PhotoRemoveRedEyePolicyl ">
<rdfs: commentx/rdfs: coinment>
<policy:target rdf:resource="PhotoAlbumPrint.owl#Photo"/>
<policy:event>

<policy:ComplexEvent rdf:ID="PhotoRemoveRedEyeEventla">
<rdfs:first>

<policy: AndList>
<rdfs:first>

<policy:SimpleEvent rdf:ID="PhotoRemoveRedEyeEventlb">
<policy:value>InputEvent</policy:value>

</policy: SimpleEvent>
</rdfs:first>
<rdfs:rest rdf;resource="#PhotoRemoveRedEyeEventr7>

</policy: AndList>
</rdfs;first>
<rdfs: restx/rdfs; rest>

</policy: ComplexEvent>
</policy:event>
<policy: action rdf:resource="#PhotoRemoveRedEyeActionr7>

</policy:Policy>
<policy:SimpleActionrdf:ID="RPhotoAlbuniPrintPolicylActionlC">

<policy;value>event(RPhotoAlbuniPrmtPolicylEventlCO)</policy:value>
</policy: SimpleAction>
<policy:SimpleAction rdf:ID="PhotoPolicy 1 Action 1 CU0">
<policy:value>event(RPhotoAlbuniPrintPolicylEventlCUO)</policy:value>

</policy: SimpleAction>
<policy:Policy rdf:ID="PhotoAlbutnPolicylC">
<rdfs:comnient>Policy for this service to use removeredeye and create calendar adaptive behaviours

for processing portrait photos</rdfs:coniment>
<policy:target rdf:resource="PhotoAlbuniPrint.owl#PhotoAlbum'7>
<policy;event>
<policy:SimpleEvent rdf:ID="PhotoAlbuniPolicylCEventlA">

<policy; value>RPhoto AlbumPrintPolicy 1 Event 1 bA</policy: value>
</policy; SimpleEvent>

</policy:event>
<policy:action>

<policy: Simple Action rdf:ID="PhotoAlbuniPolicylCActionl ">
<policy:value>event(PhotoAlbumCreateCalendarEvent)</policy:value>

</policy: Simple Action>
</policy:action>

</policy:Policy>
<policy:SimpleAction rdf:ID="RPhotoAlbuniPrintPolicyl ActionH">

375

<policy:value>event(RPhotoAlbuniPrintPolicylEventlbA)</policy:value>
</policy: Simple Action>
<policy:SimpIeAction rdf:ID="RPhotoAlbumPrintPolicylActionlO">
<policy:value>event(RPhotoAlbumPrmtPolicylEventlaA)</policy:value>

</policy: Simple Action>
<policy:SimpleEvent rdf:ID="RPhotoAlbumPrintPolicyl Event 1">

<policy:value>ProcessEvent</policy:value>
</policy: SimpleEvent>
<policy:Policy rdf:ID="RPhotoAlbumPrintPolicy 1 ">

<rdfs:comment>Policy for this service to use removeredeye and create calendar adaptive behaviours
for processing portrait photos</rdfs:coniment>

<policy:target rdf:resource="PhotoAlbuniPrint.owl#PhotoAlbumPrint"/>
<policy:event rdf:resource="#RPhotoAlbumPrintPolicylEventl "/>
<policy: action rdf;resource="#RPhotoAlbumPrintPolicylActionlC"/>

</policy:Policy>
<policy:SimpleCondition rdf:ID="PhotoPolicylConditionl ">

<policy: subject rdf:resource="#PhotoCategory"/>
<policy;predicate rdf:resource="#equal"/>
<policy;value>portrait</policy:value>

</policy: SimpleCondition>
<policy: ComplexAction rdf: ID="RPhotoAlbumPrintPolicy 1 Action 1 CU">

<rdfs:first>
<policy:AndList>

<rdfs:first rdf:resource="#RPhotoAlbumPrintPolicylActionlO"/>
<rdfs:rest rdf:resource="#RPhotoAlbumPrintPolicyl Actionl !"/>

</policy:AndList>
</rdfs:first>
<rdfs: restx/rdfs: rest>

</policy: Complex Action>
<policy:SimpleAction rdf:ID="PhotoPolicyl C Action 1 ">
<policy:value>event(PhotoRemoveRedEyeEvent)</policy:value>

</policy: Simple Action>
<policy:SimpleEvent rdf:ID="PhotoPolicylEventlC">

<policy:value>RPhotoAlbumPrintPolicy 1 Eventl C0</policy: value>
</policy: SimpleEvent>
<policy:SimpleEvent rdf:ID="PhotoPolicylCEventlA">
<policy:value>RPhotoAlbumPrintPolicylEventlaA</policy:value>

</policy: SimpleEvent>
<policy:Policy rdf:ID="PhotoPolicy 1 ">

<rdfs:comment>Policy for this service to use removeredeye and create calendar adaptive behaviours
for processing portrait photos</rdfs:comment>

<policy:target rdf:resource="PhotoAlbumPrint.owl#Photo"/>
<policy:event rdf:resource="#PhotoPolicyl Eventl C"/>
<policy: condition rdf:resource="#PhotoPolicylConditionl"/>
<policy: action rdf;resource="#PhotoPolicylActionlCUO"/>

</policy:Policy>
<policy:Policy rdf:ID="RPhotoAlbumPrintPolicyl CU">
<rdfs: commentx/rdfs: comment>
<policy;target rdf:resource="PhotoAlbumPrint.owl#PhotoAlbumPrint"/>
<policy:event>

<policy:SimpleEvent rdf:ID="PhotoPolicylEventlCU">
<policy:value>RPhotoAlbumPrintPolicylEventlCUO</policy:value>

</policy: SimpleEvent>
</policy:event>
<policy:action rdf:resource="#RPhotoAlbumPrintPolicylActionlCU"/>

</policy:Policy>
<policy:Policy rdf:ID="PhotoPolicyl C">

<rdfs:coniment>Policy for this service to use removeredeye and create calendar adaptive behaviours
for processing portrait photos</rdfs:comment>

<policy:target rdf:resource="PhotoAlbumPrint.owl#Photo"/>

376

<policy: event rdf:resource="#PhotoPolicylCEventlA"/>
<policy: action rdf:resource="#PhotoPolicyl CActionl"/>

</policy:Policy>
</rdf:RDF>

377

