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Thesis summary

Neurons are the principal cellular elements that underlie the function of the nervous 

system, which includes the brain, spinal cord, and peripheral ganglia. These 

electrically excitable cells process and transmit information primarily via electrical 

signalling through the generation of action potentials. These action potentials can be 

recorded

in-vivo by placing electrodes in the vicinity of the neuron’s membrane within the 

extracellular space.

Electrodes measure electric potential fluctuations in the extracellular space. These 

fluctuations generally contain two types of activity, low frequency content, also 

known as Local Field Potentials (LFPs) and extracellular action potentials (spikes) 

which contribute to the higher frequency content.

The advancement of neural recording techniques allows for the simultaneous 

recording of many neurons. It has been estimated that the ability to record 

simultaneously from several neurons has been growing exponentially since the 1950s 

and it has been predicted that this number doubles every 7 years (Stevenson and 

Kording, 2011). The technological advance in neural recording systems demands the 

parallel advancement of neural decoding algorithms to analyse and extract information 

from these signals automatically and objectively.

In this thesis, methods to extract information from extracellular recordings are 

presented; the first step in this process is called spike sorting. Spike sorting is defined 

as the process of isolating spikes generated by each neuron in the vicinity of the
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recording electrode. This thesis presents a new method of automated spike sorting 

based on Laplacian eigenmaps and A:-means clustering. Using simulated and in-vivo 

recordings this method was compared to previously reported algorithms and 

improvement in unit isolation is achieved.

The variability of in-vivo spike recordings is examined over short and long recording 

periods. This was achieved by identifying cells across successive sessions using the 

information carried by the cells. This method allows the identification of cells across 

different sessions using markers independent of the waveform, which permits 

identification of the cell even during large waveform variability. The result shows that 

a /-distribution would be a better fit to the residues of the spikes. Understanding the 

variability of spike waveforms is important in many applications such as spike sorting 

and neural prostheses.

The information transmitted by these neurons is also examined in closer detail. In this 

thesis a subset of cells in the brain’s thalamic nuclei is examined. Specifically the 

relation between spikes in head-directional cells and theta rhythms in the thalamic 

anteroventral nucleus are closely studied. This thesis shows evidence that there is a 

substantial population of head-direction cells in the thalamic anteroventral nucleus 

that spike rhythmically in the theta frequency range, further demonstrating the 

importance of theta oscillation in spatial learning.

This thesis provides a platform to extract information from in-vivo recordings and 

presents insights into the information transmitted by these neurons, in order to 

contribute to research into the brain function.
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Chapter 1. Introduction

1.1 Introduction:

The brain is a complex system; brain disorders include a wide spectrum of mental and 

neurological diseases (e.g. addictive disorders, dementia, epilepsy, multiple sclerosis, 

Parkinson’s disease, etc.). It is estimated that 38% of the European Union (EU) 

population suffer from mental disorders every year (Wittchen et al., 2011). Hence the 

economic and social burdens of brain disorders are enormous. With a recent report 

estimating the total cost of brain disorders in Europe in 2010 to be €789 billion, it is 

suggested that brain disorders are “likely to constitute the number one economic 

challenge for European health care” (Gustavsson et al., 2011). The report recommends 

actions to increase funding for brain research; it also urges the pharmaceutical 

industry to reverse their policy of moving away from neuroscience research.

The report predicts that the cost of brain illness to increase in future as a natural 

consequence of an increased life expectancy. Thus today’s research in understanding 

the brain and brain disorders is vital in addressing future health challenges.



1.2 Importance of understanding the neural code:

Neural sciences intend to decode how neural circuits give individuals their perception 

of the world around them. Traditionally there are two approaches that neural scientists 

have adopted in researching these circuits. The bottom up approach involves the study 

of the nervous system in terms of elementary components (molecules, cells, etc.), 

whereby the changes of connection and signalling properties of nerve cells are 

studied. The second approach, the top-down approach, involves examining the mental 

functions of intact human beings, where the relationship between these activities and 

population of neurons are researched (Albright et al., 2000).

The first discovery of neuroscience starts with the idea by Ramon y Cajal that neurons 

serve as the basis for signal transmission in the nervous system (Albright et al., 2000). 

Subsequent research, described these neurons and their anatomy consisting of 

dendrites that serve as inputs to receive information, and the axons that allow for the 

propagation of the signal to other neurons (outputs). Later Alan Hodgkin and Andrew 

Huxley detailed how these cells transmit information via a process referred to as the 

action potential. The process underpinning the action potential was quantitatively 

described by Hodgkin and Huxley (1952). Who outlined how ionic flow into and out 

of neurons can lead to potential differences associated with the generation of an action 

potential.

Additional studies sought to link these action potentials and behaviour in the intact 

brain. To this end, advances have been made in reporting cells that correlate with 

specific behaviours, for example, hippocampal cells (place cells) have been shown to 

fire when animal is in a specific location within its environment (O'Keefe and



Dostrovsky, 1971), and are thought to provide the animal with an internal sense of it’s 

location in space (Moser et al., 2008). An example of place cell activity is shown in 

Figure 1.1. The place field (the location where the cell is active) can be examined in 

more detail using firing frequency plots (Figure I.IB).

I
Figure 1.1. Example of a place cell recorded in the hippocampal CAl subregion (A) black line 
indicates the trajectory of the animal in the environment (square box) red dots correspond to the 
location of the animal when the cell fired a spike (B) firing frequency plot of the same place cell; 
the environment is divided by a set of squares (bins) (3x3 cm) and the number of spikes in each 
bin is divided by the time spent by the rat in that bin. The firing rate in each bin was smoothed 
using a 5 X 5 kernel, meaning that the firing rate for each bin was calculated as the average of the 
5X5 bin square centred on that bin. The six colours of firing-rate maps were autoscaled to 
represent 20% of the peak rate (red to dark blue).

Other cells have been shown to correlate with the head direction of the animal (Taube 

et al., 1990), head-directional cells are accepted to act as an internal compass 

providing an innate sense of direction (Knierim et al., 1998). The firing of these cells 

is determined by the animal’s head direction, and is independent of other factors such 

as behaviour, location in the environment and trunk position (Taube, 1995). Figure 1.2 

shows an example of a head-directional cell. With the firing rate that is maximal in the 

preferred head direction, as the animal head moves away from this direction the firing 

rate decreases.



c.

Figure 1.2: Example of a head-directional cell. (A) Shows the trajectory of the animal (black line), 
coloured dots represent the location of the animal when a spike was emitted. (B-C) shows head 
directional preference of the cell.

A third type of cells (grid cells) are reported that are thought to be important for 

spatial navigation, these cells are similar to place cells how'ever they differ in having 

multiple place fields arranged in periodic triangular grids (Fyhn et al., 2004, Hafting et 

al., 2005). An example of grid cell is shovvii in Figure 1.3. These cells are thought to 

provide metric system in spatial navigation (Moser et al., 2008).

Figure 1.3: Grid cell example (Moser, 2007) (A) Shows the trajectory of the animal (black line), 
coloured dots represent the location of the animal when a spike was emitted. (B) Firing frequency 
plot of the same grid cell.



These cells population are thought to interact with each other to support the cognitive 

function of navigation within an environment (Moser et al., 2008, Burgess, 2008b). 

These are some examples of how the brain encodes information. Discoveries have 

also been made into how the brain encodes sensory information, for example how the 

brain encodes different visual stimuli (bar, rectangles, squares, etc.) (Albright et al., 

2000). The field of neuroscience have advanced vastly in the past century (Albright et 

al., 2000). This introduction is focused on discoveries related to subsequent chapters 

of the thesis.

With regards to clinical implication of neural research, an exploration of the brain’s 

encoding methods allows for the design and development of better diagnostic and 

treatment methods to find ways of repairing and/or replacing dysfunctions within the 

brain. One method of treating brain disorders involves administering medications to 

alleviate symptoms of the disease. Hence a better understanding how the brain 

functions can aid finding the most effective pharmaceutical intervention. A lack of 

success in pharmaceutical treatments is thought to be one of the reasons for the 

reluctance of investment from the pharmaceutical industry in brain diseases 

(Gustavsson et al., 2011).

An alternative treatment option is the use of active implants which constitute one of 

the emerging areas in neuroscience (neural prostheses). These devices link the nervous 

system with passive or active electronic systems. Such systems can replace or 

supplement a function which is impaired or completely lost due disease or injury 

(Akay, 2007). Examples of neural implanted devices include Deep Brain Stimulation 

(DBS), where symptoms of movement disorder disease (such Parkinson’s disease, 

dystonia) are alleviated by delivering electrical pulses (Holtzheimer and Mayberg, 

2011). Cochlear implant technology is an example of a sensory neural device. This
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type of implant transfers sounds to neural inputs with the aim of restoring hearing in 

subjects with hearing impairment (Zhou and Greenbaum, 2009). Similarly, visual 

prostheses aim to restore eyesight for the visually impaired (Weiland and Humayun, 

2008). Further examples of neural prostheses include prosthetic limbs (Schwartz et al., 

2006). While many of these devices are still in need of further research and 

development, success has been achieved in producing FDA approved neural devices, 

most notably in the area of cochlear implants (Dilorenzo and Dronzino, 2008).

Implanted devices generally consist of four components:

• Recording neural activity

• Extraction of intended action

• Generation of action

• Feedback

An example of a neural prosthesis with the four components described above is shown 

in Figure 1.4. As shown the first step in the neural prosthesis is recording neural 

activity and extracting the relevant information to generate action.



Extraction Algorithm

Electrode Recordings

Figure 1.4: Example of a neural prosthetic limb. Neural activity is recorded from the brain using 
microelectrode arrays with implanted microprocessors sampling and transmitting the neural 
activity. An extraction algorithm decodes the information transmitted by these neurons. The 
information is fed to a robot controller to move the prosthetic arm, which generates feedback to 
close the control loop (Schwartz et al., 2006).

The main focus of this thesis is to build this framework of extracting and 

understanding the basic brain information, more specifically information recorded and 

carried by these implanted electrodes.

1.3 Neural recording methods:

Electrical signals of the brain can be recorded using several invasive and non-invasive 

methods. Electroencephalography (EEG) is an example of a non-invasive technique 

that measures electrical activity of the brain on the surface of the scalp. The 

electrocorticography (ECoG) is an invasive method that measures the electrical 

potential on the cortical surface of the brain. Epidural or subdural arrays of electrodes 

are used to record the signal from the surface of the brain (Waldert et al., 2009). This 

provides a higher noise to signal ratio and a higher bandwidth than EEG. The local



field potentials (LFP) are recorded from deeper regions within the brain structure. The 

LFP signal reflects the local cell activity around the electrode tip (Waldert et al., 

2009). The single unit recording method is used to record potential from a single cell 

(neurons). Single cell recordings or “spikes” provide the best spatial resolution. 

However the disadvantage of this method is that it is invasive and the stability of the 

recordings can change over long terms, due to electrode deterioration or other factors 

such as the brain’s inflammatory response. A summary of the electrophysiological 

recording methods and their corresponding spatial resolution is provided in Figure 1.5. 

Magnetic approaches to record brain activity are also available. These methods 

include functional magnetic resonance imaging (fMRI), and magnetoencephalography 

(MEG).

In an analogy given by Buzsaki (2004), if the brain is considered to be an orchestra, 

and the goal is understanding the function of the orchestra, then EEG and MEG can 

be thought of as tools recording the overall activity, without the ability of 

distinguishing individual instruments strings, woodwind, etc. fMRI can be considered 

as taking infrared snapshots of the orchestra; it can reveal spots of dominant activity 

within the orchestra. However it fails to capture the essence of the music. Spikes can 

be thought of as pressure sensors close to individual instruments; when the pressure 

exceeds certain value a pulse is sent. By monitoring a large number of instruments and 

using these pressure sensors, one can reconstruct the essential features of the 

orchestra.

The focus of this thesis is on electrophysiological recording using implanted 

electrodes, hence in subsequent chapters, only local field potentials and spike 

recordings are described.



Figure 1.5: Electrophysiological recording (Schwartz et al., 2006)

1.4 Neurons:

Nerve cells (neurons) constitute the basic units of the brain, with the human brain 

exhibiting approximately lO” neurons. These cells can be categorized into many 

different types, although the basic architecture is shared among all the different types. 

The neuron morphology as shown in Figure 1.6 consists of four regions, namely the 

cell body, dendrites, the axon and the presynaptic terminals. The dendrites are short 

terminals responsible for receiving incoming signals from other nerve cells. The axon 

can range from 0.1mm up to 3m and has the role of transmitting electrical signals to 

other neurons. These electrical signals are called action potentials and are the means 

by which the brain transmits, receives and analyses information (Kandel et al., 2000).



Figure 1.6: Morphology of the neuron (Kandel et al., 2000)

1.5 Chronic electrode implants:

One of the most widely used recording electrode is the microwire electrodes (Polikov 

et al., 2005). The conducting material used in these electrodes can range from gold, 

platinum, tungsten, iridium or stainless steel. With the exception of the tip of the 

electrodes, the wires are coated with an insulator (non-cytotoxic). Microelectrodes can 

be arranged in several configurations stereotrode (two wires), tetrode (four wires 

Figure 1.7A). These wires are spaced closely to each other and offer advantages in the 

analysis process (Gray et al., 1995). Larger arrangements are also available, where 

electrodes are arranged in a grid. An example of 128 electrodes is shown in 

(Figure 1.7B).
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Figure 1.7: microwires (A) schematic of tetrode configuration (Buzsaki, 2004) (B) microelectrode 
arrays (Nicolelis et al., 2003)

The advantages of microelectrodes include easier fabrication and hence lower costs 

(Polikov et al., 2005). However among their disadvantages are that the wire could 

bend during insertion, hence the precise location of the electrode within the brain 

tissue can be difficult to determine.

To overcome the short-comings of wire electrodes, most recently silicon electrodes 

are manufactured, where the distance between recording sites can be controlled during 

fabrication. The silicon probes have also the advantage that more dense recording sites 

can be achieved with less tissue damage, the size of recording area can be controlled 

and in general offers more flexibility in their design (Polikov et al., 2005).

The disadvantages of silicon probes are the high cost, reliability in chronic 

implantations (Polikov et al., 2005), and mechanical stability. Examples of silicon 

probe designs are provided in Figure 1.8.
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Figure 1.8: NeuroNexus silicon probe designs (A). Two electrodes multi shank and single shank 
electrodes. (B) Close up of view of the shank, each shank can have several recording sites.

1.6 Challenges of implanted electrophysiology recordings:

The challenges of decoding neural recordings can be summarised (Buzsaki, 2004) in 

to three components:

1. Neuron-electrode interface

2. Spike sorting/identification

3. Methods for analysis of multiple spike trains
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The first challenge of implanted recording is the ability to sample a large number of 

neurons in order to gain sufficient information to decode the function of the brain. As 

in the orchestra analogy described in the previous section, examining one instrument 

will not be sufficient to analyse the complete orchestra.

It has been estimated that the progress in sampling from a number of neurons 

simultaneous recordings doubles every seven years (Stevenson and Kording, 2011). 

Several factors dictate the design of the electrodes, biocompatibility, minimisation of 

tissue damage during insertion and long term stability of the electrode (Polikov et al., 

2005).

Multi-electrode 

Single-electrode 

1960 1970 1980

1990 2000

Utah array

2010 
Ca^'^ imaging

130 urr, depth .

*20 ^lm

Polytrodes

Figure 1.9: Recent advances in neural recording techniques (Stevenson and Kording, 2011) (A) 56 
studies were examined by the authors and the number of simultaneous neurons recordings 
plotted against publication date, indicating doubling every 7 years. (B) Timeline of electrode 
designs starting with single microwire and to mulitprobes and electrode arrays.

The second challenge is the capability of processing and storing large number of 

recordings sampled at high frequencies. The processing power has been doubling 

every two years obeying Moore’s law. Hence substantial progress is being made in 

this area.
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The third challenge is to develop tools to decode the information carried by these large 

numbers of neurons (Quian Quiroga and Panzeri, 2009). It has to be noted that this 

thesis contributes in addressing the third challenge. Therefore the third challenge is 

explored next in greater details.

The first step in analysing spike recordings (neurons activity) is called spike sorting. 

In the orchestra and pressure pulse analogy this can be thought of as each pressure 

sensor picks ups pressure from more than one instrument. The sorting step is therefore 

to separate the pulses from each instrument so that roles of each instrument can be 

examined. The second step is extracting the information from these spikes and 

identifying their roles. The third step is then to explore the interaction between these 

neuron populations.

1.7 Thesis outline:

Chapter 2 outlines the progress reported in the literature in one of the major and oldest 

challenges of neural recordings, namely the problem of spike sorting. There after 

within the chapter, an automatic method to sort spikes is introduced; this method is 

tested and compared to other algorithms in the literature and an improvement in 

performance is reported.

Chapter 3 builds on the findings of chapter 2, and examines the variability of spike 

waveforms during short and long terms recording, with the aim of aiding the design of 

spike sorting methods and neuron-electrode interfaces. In the chapter the information 

carried by place cells are used as markers to identify these cells across subsequent 

recording sessions.
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Chapter 4 focuses on the step after spike sorting which is examining the information 

carried by spike recordings. This is the main aim of any neural recording. The chapter 

explicitly explores the relationship between theta oscillations of the limbic system and 

head-direction cells in the thalamic anteroventral nucleus.

Chapter 5 provides a summary of the major contributions of this thesis. It also 

provides a discussion on future trends and possible advancements.

1.8 Contributions of the thesis:

• New method addressing some of the challenges of spike sorting is introduced.

• Validation of the spike sorting method by comparing it against other popular 

methods employed in the literature. Improvement in spike sorting is achieved 

using the proposed method in the thesis.

• Quantifying the residue distribution of in-vivo spike recordings which has 

important implications in the assumptions made by spike sorting algorithms.

• Investigating amplitude variability of in-vivo spike recording between 

successive sessions.

• Investigating a method of identifying a cell across successive sessions.

• Exploring a population of cells in thalamic anteroventral nucleus which 

integrate both head-direction and theta oscillations.

• Investigating directional modulation of theta cells in the anteroventral 

nucleus.

• Exploring the coherence between the anterventral nucleus and hippocampus 

oscillations.
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• Examining the possible relation between theta cells of anterventral nucleus 

and sniffing behaviour of rodents.
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Chapter 2. Spike sorting method

2.1 Introduction:

Neurons are the principal cellular elements that underlie the function of the nervous 

system, which includes the brain, spinal cord, and peripheral ganglia. These 

electrically-excitable cells process and transmit information mainly by electrical 

signalling through the generation of action potentials (Kandel et al., 2000). These 

action potentials can be recorded in-vivo by placing electrodes in the vicinity of the 

neuron’s membrane within the extracellular space. The design of the electrodes used 

in extracellular recordings may vary from single wire, tetrode (four wires twisted 

together) to microelectrode array configurations.

Although the electrodes’ configuration can differ from one experiment to another, the 

basic principle behind action potential sampling remains the same. Electrodes measure 

electric potential fluctuations in the extracellular space. These fluctuations generally 

contain two types of activity, low frequency content, also known as local field 

potentials (LFPs) and extracellular action potentials (spikes) which contribute to the 

higher frequency content (Mitra and Bokil, 2009). The spikes recorded by the 

electrodes represent spike events generated by an unknown number of neurons. The 

role of spike sorting is therefore to assign each spike to the neuron that produced it 

(Brown et al., 2004). As the technology progresses multi-electrode arrays are 

increasingly being employed (Rizk et al., 2009, Csicsvari et al., 2003). Increasing the
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number of recording electrodes augments the need for automatic sorting, as manual 

sorting or human supervised sorting becomes a time consuming and tedious task.

The complexity of spike sorting can be attributed to several factors. It has been 

reported that spike waveforms for a given neuron can vary (Fee et al., 1996b); for 

example, during a complex spike burst, the amplitude of the spike can decrease by up 

to 80% (Buzsaki, 2004). Overlapping spikes create another complication when it 

comes to spike sorting; this phenomenon occurs when two or more closely spaced 

neurons fire action potentials simultaneously. Moreover, in the course of the recording 

session, the electrode may move slightly within the brain tissue due to external 

physical constraints, causing the spike waveform to vary in time (Lewicki, 1998).

Spike sorting algorithms are typically composed of four steps in total (illustrated in 

Figure 2.1). The first step involves detecting spike segments. The second step consists 

of extracting features that best discriminate the spikes produced by the different 

neurons. In the third step the number of neurons is estimated and often this step is 

carried in conjunction with final step. In the final step each spike is assigned to the 

neuron that generated it.
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Figure 2.1 Spike Sorting Process, Spike detection, feature extraction, identifying the number of 
neurons and clustering

In this chapter a review of the spike sorting algorithms reported in the literature is 

presented. Lewicki (1998) reported a review of spike sorting methods in 1998, hence 

this chapter reports findings that were published in that review paper, and focus the 

rest of the chapter on methods reported subsequently (A summary is provided in 

Table 2.1).
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The earlier spike sorting methods were based on temporal features of the spikes 

(Dinning and Sanderson, 1981); Features such as amplitude and spike width were 

used to discriminate spikes generated by different neurons. While these methods are 

simple to implement they do not offer the best results since spikes of distinct neurons 

can have similar spike amplitudes; also during complex burst spikes the amplitude of 

spike can vary largely.

Principal Component Analysis (PCA) was proposed for spike sorting by (Abeles and 

Goldstein, 1977, Glaser and Marks, 1968), the principle behind this method is that a 

set of orthogonal basis vectors are chosen that explain the largest variation within the 

data set (Lewicki, 1998). This method became popular and is widely used in the 

literature. An alternative approach employed in the literature is template matching 

(Yang and Shamma, 1988, Gerstein and Clark, 1964, D'Hollander and Orban, 1979), 

where sample spikes are chosen as templates, and spikes are assigned to the template 

that best matches it. Templates can be selected manually or automatically (Lewicki, 

1998). A different approach reported earlier was to find a set of filters that separates 

the spikes of different neurons (Roberts and Hartline, 1975, Andreassen et al., 1979, 

Stein et al., 1979, Gozani and Miller, 1994). The principle behind these methods is to 

find a set of optimal filters that will yield high response to a specific spike waveform 

while suppressing others. In order to find these filters spike templates estimations are 

required. This method also requires that noise power spectrum and spikes shapes are 

accurately estimated. However these methods were reported to perform poorly when 

compared to PCA methods (Wheeler and Heetderks, 1982).

More recently spike sorting algorithms can be divided into three main categories 

namely. Wavelet, Dimension reduction, and probability based measures.
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2.1.1 Wavelet based methods:

Wavelet Transform was proposed by Zouridakis and Tam (1997) as a feature for spike 

sorting. This method relies on shift-invariant wavelet transform and, the performance 

of the method is highly dependent on spike templates, hence the fuzzy clustering was 

used initially on a portion of the recordings to determine the spike templates. It is 

reported that the method has advantage of sorting overlapped spikes.

A method based on Discrete Wavelet Transform (DWT) was proposed by Letelier and 

Weber (2000). The method is based on Daubechies wavelet basis, which is computed 

by the fast pyramidal algorithm. The relative variability of the DWT coefficients are 

calculated using mean and standard deviation, these coefficients are then judged for 

their differentiating potential visually, which corresponds to a large standard 

deviation, mean and a bimodal or multimodal distribution. Then m most 

differentiating coefficients were then selected and spikes were sorted manually. The 

results show that the method proposed preforms better than PCA however this method 

requires manual clustering.

An algorithm based on Wavelet Packet Decomposition is proposed by (Hulata et al., 

2002, Hulata et al., 2000), This method is reliant on Wavelet transform with a 3'^'* 

order Coiflet mother wavelet, spikes were also detected using this method, a simple k- 

means clustering method was used to cluster the spikes, however the number of 

neurons in the recording was manually set. This method was compared to PCA and 

Wavelet transform spike sorting methods. The main advantage of this method was in 

the ability to cluster overlapping spikes, hence this method yielded in improved results 

since 25% of data set used in the study were overlapping spikes.
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Quiroga et al. (2004) propose a method based wavelet transform and the 

superparamagnetic clustering, Haar wavelets were chosen in wavelet transform 

decomposition. The first 10 wavelet coefficients with the largest deviation from 

normality were used as features. This method was compared against PCA and k- 

means clustering in most cases the proposed method performed better.

Takekawa et al. (2010) report a sorting algorithm based on WT feature extraction and 

Robust Variational Bayes (RVB) classification. Haar and Cohen-Daubechies- 

Feauveau were used in obtaining the wavelet transform. Wavelet coefficients that 

yielded multi-modal distribution were selected. These coefficients were further 

reduced using PCA. In the clustering step RVB is used which employs a mixture 

model of Student /-distribution model. Then the number of clusters is determined by 

applying a minimum message length criterion. It was reported that Cohen- 

Daubechies-Feauveau wavelets with combination of RVB provides “excellent 

performance”; however, no specific classification results were reported in this study.

A real-time spike sorting algorithm is proposed by Aghagolzadeh et al. (2010). The 

method calculates discrete wavelet transform (DWT), with symlet4 wavelet basis. The 

coefficients of DWT are compared to a pre-set threshold, each time this threshold is 

exceeded a binary event is recorded. At the classification step, spikes are separated 

using the probability of each neuron producing those spikes where DWT coefficients 

would exceed the thresholds. The result was compared to PCA/EM algorithm and a 

similar performance was obtained using both methods.

Lai et al. (2011) propose an automatic spike sorting method based on Haar wavelet 

transform and single linkage clustering. The Kolmogorov-Smimov (KS) test was then 

used to select the wavelet, and six coefficients which displayed largest divergence
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from Gaussian distribution were extracted. In the final step single linkage clustering 

method is then used to sort the spikes. Performance was measured in terms of 

percentage of correctly classified spikes and percentage of correctly identified 

neurons. Comparison to PCA method was also carried out, similar to the WT method, 

PCA components were selected using KS tests. Classification procedures were also 

compared such as superparamagnetic clustering, A:-means. The results presented 

showed that the proposed method yielded an average accuracy of 95% compared to 

PCA-KS with k-means 85%. It also showed that while single linkage clustering is 

more appropriate for WT-KS, k-means with PCA-MV yielded higher results.

Farashi et al. (2010) report a feature extraction method for spike sorting. DWT with 

symlet5 basis was chosen in the spike detection procedure. In the feature extraction 

phase, spikes are first clustered using PCA, and then templates are constructed from 

the average waveform in each cluster. For each template the undecimated wavelet 

transform UWT coefficients are calculated. The differences between the coefficients 

of these templates are then used to find the coefficients that separate the clusters the 

most. Then the most informative coefficients were used to reconstruct each spike, and 

finally the PCA of the reconstructed waveform are used as features in spike sorting. 

Visual plots are provided comparing the feature space of this method, and similar 

methods based on WT (Quiroga et al., 2004).

A wavelet approach is proposed by Pavlov et al. (2007), in this algorithm. First PCA 

is used to extract spike templates, in the second step a search is applied to find wavelet 

parameters that maximizes the differences between templates. These wavelet 

parameters are then used in the feature extraction algorithm and clustering is carried 

out using superparamagnetic clustering. The result of this method was compared to

PCA and wavelet based methods (Letelier and Weber, 2000) and (Quiroga et al.,
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2004). Over three data sets the proposed method performed better than other methods, 

it was reported that (Letelier and Weber, 2000) and (Quiroga et al., 2004) performed 

worse than PCA, due to the choice of wavelet basis employed in the methods.

2.1.2 Dimension reduction methods

Harris et al. (2000) recorded simultaneously from neurons intracellularly and 

extracellularly using a tetrode. They then quantified the error committed by human 

operators and by semi-automated spike sorting methods. Errors were classified into 

two types, type I false positives where spikes from different neurons are grouped 

together, and type II false negatives where spikes generated by a neuron are not all 

grouped together. Spikes were detected using amplitude thresholding method, two 

feature extraction methods were employed PCA and peak-to-peak amplitudes. Human 

operators were instructed to use graphical clustering program to sort the spikes. Semi

automatic clustering were carried out using AutoClass (Cheeseman and Stutz, 1996), 

the output of the clustering method was then examined by human operator to merge 

spike clusters deemed to contain spikes from the same neuron. The results showed that 

there was a large variation between human operators sorting performance, and that 

semi-automated sorting performed better than human operated sorting.

A method based on Independent Component Analysis (ICA) and A:-means clustering is 

reported by (Takahashi et al., 2003a, Takahashi et al., 2003b) whereby, the waveforms 

are initially sorted based on their temporal features and the number of clusters is set to 

twice the expected number of clusters. Utilising this technique the clustering problem 

is reduced to a set of clusters rather than individual spikes. ICA is then used on each 

cluster to decompose and reconstruct the spikes of the cluster. Each decomposed 

waveform has an independent component basis vector ICBV and spikes generated by 

the same neuron will yield a similar ICBV. The distance between ICBVs is then used
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to combine clusters using a pre-set threshold. This procedure was followed for “stable 

waveform”, i.e. waveforms with Gaussian variability. Spikes that were not sorted in 

the previous step are then assumed to contain overlapping spikes and hence the 

non-Gaussian variability, these data are then divided in large number of clusters (four 

times the expected number) and then ICBV are compared and combined to the 

appropriate cluster if the distance was in line with the threshold set. A real-time 

implementation of the ICA spike sorting algorithm was reported later (Takahashi and 

Sakurai, 2005).

A spike sorting method relying on multivariate /-distribution of the spike waveform 

was reported Shoham et al. (2003). Where the parameters of the distribution are 

estimated using Expectation Maximization (EM) algorithm; in this case the spikes 

complete waveform and principal component analysis were used as feature sets for the 

algorithm and the EM algorithm was used to estimate the parameter of each cluster. 

Although it was reported that /-distribution would be a better fit to spike waveform, 

the result of the effectiveness of the algorithm in sorting the spikes were not reported.

Atiya (1992) proposed a sorting method with the specific aim of resolving overlapping 

spikes. First the number of neurons is determined by extracting peak-to-peak features, 

using this feature space the spikes are clustered several times by incrementing the 

number of clusters. This procedure was then stopped when the minimum distance 

between the clusters was lower than a pre-set threshold. Then templates were 

constructed from the average waveform within each cluster. Then all possible 

combinations of the templates are considered, and overlapping spikes are resolved by 

estimating the highest likelihood combination.
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A method to address the problem of overlapping spike is proposed by Zhang et al. 

(2004). The method uses PCA and subtractive clustering to determine the number of 

clusters. Then templates are constructed from the results of PCA and subtractive 

clustering; the final step spikes are then sorted using template matching technique. If 

any spike did not match the templates then it is assumed that the spike corresponds to 

an overlapping waveform. Then template matching step is repeated with combination 

of two or more templates. The noise in spike waveform is assumed to be Gaussian 

noise, and this principle is applied in the template matching procedure. This method 

was compared to a method that resolves overlapping spikes (Atiya, 1992), while the 

performance of proposed method by Zhang et al. was worse than Atiya, the 

computation complexity v/as less. An improvement of this method was reported by 

(Wang et al., 2006, Wang and Liang, 2005) where Fast Fourier Transform (FFT) 

method is used to decompose and sort overlapped spikes. The method compared all 

possible combination of templates to decompose overlapped spikes, a cost function 

was calculated for each combination, and the minimum cost value then corresponds to 

the best solution for sorting the overlapped spike. The author reports that the 

performance of this method was superior when compared against (Atiya, 1992).

Vargas-Irwin and Donoghue (2007) propose a method using density grids of two 

dimensional PCA feature space to determine the number of neurons (i.e. number of 

clusters) in a recording, the feature space is divided into bins where the complete 

space is represented by 100x100 grid. The grid is then smoothed with a Gaussian 

kernel. The local maxima are then assumed to belong to centre of clusters. Templates 

are then constructed from the detected clusters. Overlapping spikes are resolved by 

subtracting templates from the spike waveform, if the difference between the template 

and spike is lower than predefined threshold, the spike is clustered to the matched
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template; otherwise other templates are used to resolve the overlapped spike. And the 

spike is assigned to the combination of templates that produces the best fit. The 

method yielded improved results compared to (Zhang et al., 2004) and (Quiroga et 

al., 2004) algorithms.

Sato et al. (2007) propose a template matching spike sorting algorithm, the initial 

segment of recordings were used to construct the template. PC A are extracted from 

the spikes then A:-means clustering is used to find the templates. The number of the 

neurons is then determined by calculating the Davies-Bouldin validation index 

(DBVI). The templates are then constructed from the average waveform in each 

cluster. After this step template matching procedure was used to sort the spikes.

Peng et al. (2008) propose a spike sorting method with low power requirements. The 

method is similar in principle to template matching sorting algorithms. Initially a 

template matching method is carried out where the first detected spikes are assumed to 

be the cluster templates, or spikes belonging to the same neuron if the difference 

between the template and spikes is lower than a pre-set threshold. Then the memory 

and power requirement are reduced by storing only relevant information rather than 

complete information about each spike clusters. This method was compared with 

PCA/A:-means sorting method. Both methods yield similar performance however the 

method proposed by (Peng et al., 2008) has the advantage of having less power 

requirement.

A method based on feature extraction of the minimax feature set based is reported by 

Yen et al. (2009). Graphical representation of the feature space is then used to select 

the number of clusters. Following this fiizzy C-means clustering algorithm is used to 

cluster the spikes.

28



Linear filters are introduced to the problem of spike sorting by Franke et al. (2010), 

the first step is to estimate the templates of the spikes. The templates were estimated 

using a combination of PCA and EM algorithms. The authors argue that accurate 

estimation of templates is not required for their algorithm. The principle of the method 

is to find a set of linear filters (finite impulse filters); these filters should yield a high 

response to one of the templates and should provide a minimal response to the other 

templates. To overcome the problem of tissue drift, templates are re-estimated at 

fixed-time intervals. Templates are then constructed as the mean of the last 350 

spikes. This method was compared to (Harris et al., 2000) and (Pouzat et al., 2002); 

the results show that this method performs better in resolving overlapping spikes and 

under lov/ signal to noise ratios.

Graph-Laplacian was proposed as feature in spike sorting (Ghanbari et al., 2009, 

Ghanbari et al., 2010, Ghanbari et al., 2011). This method is a dimension reduction, 

where spike waveforms are transformed in lower set of dimension conveying most of 

the spike waveform information. This feature extraction method is compared to PCA 

and a wavelet features based on Haar wavelet. The result showed that Graph- 

Laplacian provides better cluster separation than PCA and Haar wavelet.

A human supervised method is reported by Adamos et al. (2010). A dimension 

reduction method ISOMAP is implemented in the feature extraction phase, then the 

number of clusters are selected manually with the aid of feature space plots. Fuzzy C- 

means is then used to cluster the spikes; spikes exceeding a set threshold were 

assigned to the clusters, while spikes not fulfilling these criteria were further 

processed. Unclassified spikes from the previous step were then processed using 

Extreme Machine Learning (EML) algorithm. The EML method is trained using data 

obtained from the previous step. The EML algorithm is then used to sort noisy and
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overlapped spikes. The performance of this method was compared against PCA/EM 

and WaveClus, the result showed an improved performance in spike classification.

A frequency shaping filter is proposed for spike sorting algorithms by Yang et al. 

(2009b), in the study the first derivate of the spike was chosen as the shaping filter. 

Clustering was carried out using evolving mean shift algorithm (Yang et al., 2009a). 

This algorithm was compared to PCA and simple amplitude features. It was reported 

that the addition of spike derivate can improve spike sorting, however in this study 

overlapping spikes were excluded from the data set.

A template matching method is reported by Thakur et al. (2007), the templates are 

generated using PCA and hierarchical agglomerative clustering, the noise statistic 

within the recording is also estimated, where it is assumed that noise in 

neurophysiological recording is Gaussian. A lower dimensional space is then 

constructed using the templates and the first few PCA components. This lower 

dimensional space was designed to maintain spike energy while reducing the noise 

energy. And spikes were sorted by applying template matching and taking into 

account the background noise.

The feature extraction for spike sorting method proposed by Horton et al. (2007) is 

based on curvature features of the spike waveform. A set of scores is calculated for 

each point of the waveform, where each score quantifies the curve shape, and the 

amount of curvature. These scores are then averaged within time segments to obtain a 

reduced set of scores. For the clustering step Kohonen network is used to identify the 

number of neurons, in this process training data should be allocated for the clustering 

method to calculate decision boundaries and carry out clustering subsequently.
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The spike sorting method reported by Yang et al. (2011) relies on extracting spike 

sam.ples that show a multimodal distribution. The method starts by estim.ating the 

probability of each sample being partitioned into several clusters, and then sample 

information is quantified using Shannon entropy, using this probability waveform 

samples yielding highest information are then selected for feature extraction. The 

results show that this method yields higher accuracy in spike sorting, however details 

about clustering method and detection of the number of neurons are not provided.

A method based on projection pursuit is proposed by (Kim and Kim, 2003, Kim, 

2006), where projection pursuit based on negentropy entropy is used to find 

projections with maximum separation. These projections are then examined to find the 

number of Gaussian distribution within the feature space. Finally the parameters of 

Gaussian distribution are estimated and spikes are clustered accordingly. The result 

showed better separation of clusters compared to PCA.

Balasubramanian and Obeid (2011) propose a method based on fuzzy logic, the 

method extracts temporal features of spikes, such as spike power, spike amplitude 

range slope of the spike. Then features are converts categories for example spike 

power is divided into low, medium and high. In the classification step. Fuzzy rules are 

evaluated and score is assigned to the spike. The scores were then clustered using 

Fuzzy C-mean algorithm. The performance was compared with PCA algorithm and no 

significant difference between these methods was found. The advantage of proposed 

method however lies in the computational complexity.

2.1.3 Probability based methods:

A Bayesian classification for neural signals is proposed by Lewicki (1994). The noise 

is modelled as Gaussian noise, and then the probability of each spike belonging to
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each cluster is calculated using Bayes rule. Overlapping spikes are decomposed by 

determining the most probable sequence using ^-dimensional search trees.

Fee et al. (1996a) propose a method to overcome the limitations of Gaussian isotropic 

assumption. As a first step a subset of spike waveform are clustered into a large 

number of clusters. Secondly these clusters are combined by taking into account 

waveform similarities and inter-spike intervals of combined clusters.

A method of spike sorting based on the modelling of spikes’ noise was proposed by 

Pouzat et al. (2002). The Bayesian Information Criterion (BIC) was used to determine 

the number of clusters, and then probabilistic data generation model was computed for 

each cluster. Each spike was then assigned to the cluster with highest probability of 

generating the spike.

A neural network method is presented by Chandra and Optican (1997), the method 

requires a training phase. During the training phase templates are constructed, and 

then these templates are used to train the neural network. It was shown that this 

method yields better separation of overlapping spikes than matched filter method. The 

main disadvantage of this method is that it requires training, and initial estimation of 

clusters (Lewicki, 1998).

Aksenova et al. (2003) propose a method relying on self-oscillating model with 

perturbations, the method is based on assumption that the spike waveform can be 

represented by a solution of differential equations, and that a set of similar “cycles” 

are generated by spikes from of the same neuron. The classification process is carried 

out first on a subsection of the recording to estimate the number of clusters and then 

spikes are clustered based on Gaussian distribution.
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A semi-automated method is proposed by Delescluse and Pouzat (2006) an 

advancement of a previous algorithm reported (Pouzat et al., 2004), the method is 

based on modelling the firing statistics of neurons, such as inter-spike intervals ISI 

using Markov chain Monte Carlo. The model also takes into account amplitude 

dynamics of the spikes, where the amplitude is modelled with exponential decay at 

short ISI. In the sorting algorithm the number of neurons recorded must be set by the 

user. This method was tested on real data recorded from Purkinje cells, where the 

amplitude of these cells decreases within short ISI. The result showed good separation 

of spikes 98% compared to (Pouzat et al., 2002) 85%.

A method based on neuron localization is proposed by Chelaru and Jog (2005), the 

method depends on multichannel spike recording electrodes (tetrodes). The 

assumption is that the amplitude of the spikes recorded decreases linearly with respect 

to the distance between the electrode and neuron. This assumption is then used to 

estimate the origin of the spike in 3D space. Self-organizing map (a modification of 

A:-means) is used then to cluster the spikes. The number of clusters is determined using 

Davies-Bouldin validity Index.

An online spike sorting method is proposed by Rutishauser et al. (2006), the number 

of neurons and the spike sorting is based on the estimation of noise properties of the 

signal. Noise standard deviation is calculated with sliding window, and then the 

threshold is set as the average noise standard deviation squared. Each spike is 

compared to the average waveform of the sorted clusters, if the distance between the 

spike and the average waveform was smaller than the threshold this spike is assigned 

to the cluster, otherwise if no match was found the spike was declared as a new 

cluster. This method was compared to two other common methods PCA/KlustaKwik
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(Harris et al., 2000) and WaveClus (Quiroga et al., 2004), all three methods compared 

had similar performance.

Bar-Hillel et al. (2006) reported a method of spike sorting to address the 

non-stationary spike recordings. In the proposed method the recording is divided in 

non-overlapping time frames, within each time frame PCA was extracted and a “local 

solution” is found where it is assumed that the spike clusters follow a mixture of 

Gaussian distributions. Then a transition score is calculated between successive time 

frames. In the final step a “global solution” is found by calculating the maximum-a- 

posteriori using Viterbi algorithm. This method was compared against other methods 

reported where it is shown that the algorithm outperform previous spike sorting 

method when non-stationary clusters were present.

A method of spike clustering was reported in (Wood and Black, 2008, Wood et al., 

2006). The method extracts PCA features and applies infinite mixture modelling in the 

clustering phase. This approach was compared with traditional EM algorithm 

combined with Bayesian information criteria. The comparison was carried on a data 

set recorded from behaving monkey and ground truth was determined using human 

sorting. It was reported that the author “believe that cluster found” using this approach 

resembles human sorting more than EM algorithm. However no specific results were 

reported.

Nguyen et al. (2003) propose reversible-jump Markov chain to estimate the number of 

neurons and to cluster the spikes. The feature vector is modelled as an anisotropic 

mixture of Gaussians. The method is then used to estimate the number of clusters and 

model parameter in order to classify the spikes. In simulation the algorithm performed
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well, however in real data set the algorithm achieved worse results due to presence of 

outliers and violation of Gaussian assumption.

Support vector machine classifier (SVM) was used in sorting spikes by Ding and 

Yuan (2008), multi-class “one against all” SVM was used since it yielded in higher 

performance. One tenth of the recorded spikes were assigned to train the classifier. 

Once the training procedure is completed the spikes are classified. If the SVM output 

for a particular cell is less than a pre-set threshold, the spike is regarded as overlapped 

spike and further processing are carried out where templates are subtracted from the 

spike to resolve the spike.

Herbst et al. (2008) apply probabilistic hidden Markov models (HMMs) to the spike 

sorting problem. In the learning stage the parameters of the models (state transition 

probability, spike templates and noise variance) were estimated using Baum-Welch 

algorithm. The Viterbi algorithm was then used to compute the most likely state of the 

hidden variables from the data. The algorithm was compared to WaveClus, and when 

this algorithm did not find the real number of clusters, this parameter was corrected. 

The number of false positives in both algorithms was similar. However HMMs 

method performed better in number of false negatives. This was mainly due to the fact 

WaveClus does not classify overlapping spikes.

Ventura (2009) propose a method that relies on combining spike waveform and tuning 

information. The waveform and tuning parameter are estimated from the data using 

Expectation maximization EM. For simplicity it is assumed that spike waveforms 

follow a normal distribution. Then linked EM is employed to estimate neurons’ tuning 

function, i.e. given the waveform and firing parameters of the neuron, the tuning 

parameters of the neuron are estimated. The algorithm was tested on simulated data,
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inspired from movement decoding recordings obtained from the motor cortex. The 

number of neurons is identified by using Akaike Information Criterion (AIC) and 

Bayesian Information criterion (BIC). Classification error was reduced using this 

method compared to waveform only classification.

Calabrese and Paninski (2011) introduce a spike sorting algorithm with the aim of 

tracking changes in spike waveform characteristic during neural acquisition. The 

method uses PCA the common feature extraction method applied in the literature, then 

for the clustering step, the method assumes mixture of Gaussian model where the 

parameters can be estimated using EM algorithm. The authors advance this model a 

step further to mixture-of-Kalman filters, by allowing the mean voltage waveform to 

vary across time. Hidden Markov Model was also used to account for refractory 

period of the spikes. The method was tested on several simulated and real data sets. In 

these tests the number of clusters was determined manually. In simulations where the 

mean waveform varied, traditional clustering method (mixture of Gaussian) performed 

worse than proposed algorithm. In real recordings the difference between the two 

algorithm was minimal (~ 2%), due to that fact clusters remained well separated in 

real recordings.

2.1.4 Computation comparison of spike sorting:

An important aspect of real time spike sorting is the computation complexity of spike 

sorting methods. A comparison of the power requirement of spike detection method is 

reported by (Gibson et al., 2008, Gibson et al., 2010). The results showed the least 

computational complexity is a simple amplitude threshold method. In terms of spike 

detection performance the Nonlinear Energy Operator (NEO) yielded the highest 

results, although the difference in performance between simple amplitude threshold 

and NEO was minimal. Complexity of feature extraction methods was also compared
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it was shown that PCA, discrete wavelet transform DWT and Discrete Derivatives 

(DD) had similar sorting perfoim.ance, although DD had the lowest computational 

complexity.

Table 2.1 Summary of Spike sorting methods
Author Spike

detection
Feature
extraction

Clustering Automation Overlapping
spikes

(Atiya, 1992) Peak-to-
peak
threshold

Peak-to-peak Template matching Yes Yes

(Gozani and
Miller, 1994)

~ Templates Optimal filtering Yes No

(Lewicki, 1994) Amplitude
thresholding

Spike
waveform

Bayesian clustering Yes Yes

(Fee et al., 1996a) Amplitude
thresholding

Spike
waveform

Recursive
bisection/aggregation
step

Yes No

(Chandra and
Optican, 1997)

Amplitude
thresholding

Templates Neural networks No Yes

(Letelier and
Weber, 2000)

Amplitude
thresholding

Wavelet
transform

Manual graphical No No

(Zouridakis and 
Tam,1997)

Unknown Wavelet
transform

Template No Yes

(Harris et al., 
2000)

Amplitude
thresholding

PCA/ peak
amplitude

AutoClass Semi-
automated

No

(Hulata et al., 
2002)

Wavelet
packet

Wavelet
packet
decomposition

A-means Semi-
automated

Yes

(Pouzat et al., 
2002)

Threshold Noise
modeling

Gaussian distribution No No

(Takahashi et al., 
2003a, Takahashi 
et al., 2003b)

Amplitude
thresholding

ICA Gaussian distribution Yes Yes

(Kim and Kim, 
2003, Kim, 2006)

Teager
energy
operator/
discrete
wavelet
transform

negentropy Gaussian distribution Yes No

(Aksenova et al., 
2003)

First
derivative

Differential
equation
phase

Gaussian distribution Yes No

(Shoham et al., 
2003)

threshold Waveform/
PC

t-distribution, E-M No No

(Nguyen et al., 
2003)

Spike
amplitude

Reversible-jump 
Markov chain Monte 
Carlo

Yes No

(Pouzat et al., 
2004)

Markov
chain
Monte
Carlo

No No

(Zhang et al., 
2004, Wang et 
al., 2006)

Threshold PCA Template
matching/Gaussian
distribution

yes partial

(Chelaru and Jog, Threshold Spike Self-organizing map Yes No
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2005) localization
(Rutishauser et 
al., 2006)

Power
38hreshold

Spike
residuals

Noise threshold Yes No

(Quiroga et al., 
2004)

Amplitude
threshold

Wavelet
transform

Superparamagnetic Yes No

(Bar-Hillel et al., 
2006)

Amplitude
threshold

PCA Gaussian distribution Yes No

(Wood et al., 
2006)

PCA Infinite mixture
modeling

Yes No

(Horton et al., 
2007)

Amplitude
threshold

Curvature
component

Kohonen network Yes No

(Vargas-Irwin 
and Donoghue, 
2007)

Amplitude
threshold

PCA template Yes Yes

(Pavlov et al., 
2007)

WT Superparamagnetic Yes No

(Sato et al., 2007) Template PCA A:-means/Template Yes No
(Thakur et al., 
2007)

Matched
filter

PCA Template Yes No

(Ding and Yuan, 
2008)

— — Support vector
machine

No yes

(Herbst et al., 
2008)

Amplitude
threshold

Automated
template

Hidden Markov
models

Yes Yes

(Peng et al., 
2008)

Not
reported

Template Preset thresholds Yes No

(Yen et al., 2009) Amplitude
threshold

Minimax 
reduced 
feature set

Fuzzy C-means No No

(Ventura, 2009) Waveform 
and tuning
information

EM Yes Yes

(Ghanbari et al., 
2009)

Amplitude
Threshold

Graph-
laplacian

— — —

(Yang et al., 
2009b)

NEO Frequency 
shaping filter

Evolving mean shift 
clustering.

Yes No

(Franke et al., 
2010)

Optimal
filter

Linear filters Yes No

(Takekawa et al., 
2010)

Amplitude
threshold

PCA/ WT Robust Variational 
Bayes (RVB)

No Yes

(Adamos et al., 
2010)

ISOMAP Fuzzy C-means Yes No

(Yang et al., 
2011)

NEO Waveform
samples

— “ —

(Aghagolzadeh et 
al., 2010)

DWT DWT Bayesian Yes No

(Farashi et al., 
2010)

DWT PCA and
UWT

— No No

(Calabrese and 
Paninski, 2011)

Amplitude
threshod

PCA Mixture of Kalman 
filters

No No

(Balasubramanian 
and Obeid, 2011)

Temporal
features+
Fuzzy logic

Fuzzy C-means Yes No

(Lai et al.,2011) Amplitude
threshold

WT Single linkage
clustering

Yes
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2.2 Literature review discussion

A summary of the spike sorting algorithms are provided in Table 2.1. Some of these 

algorithms require human supervision e.g. (Ding and Yuan, 2008, Letelier and Weber, 

2000, Harris et al., 2000), to select the number of neurons active during the 

recordings, or to carry initial training of the classifier. Human supervised methods 

require time and training and hence are not feasible with large data sets.

The disadvantage of methods relying on firing properties of the neurons is that prior 

assumptions about the information of firing statistics should be made, while in most 

applications this information is unknown. Prior assumptions about firing statistics can 

distort any further analysis carried out.

The method of wavelet transform has been shown to provide a good separation 

between neural spikes, however depending on the data set the choice of wavelet basis 

can have profound effect on the performance of spike sorting as shown by (Pavlov et 

al., 2007). Data sets employed in literature can vary in difficulty of spike sorting, or 

noise statistical assumptions. For example in some studies (Yang et al., 2009b) 

overlapping spikes were excluded from the data sets and hence the results report could 

be biased. Therefore it is important to test the algorithm on public data sets to provide 

objective comparison between different spike sorting methods in literature.

PCA is a simple algorithm used commonly directly or indirectly in spike sorting, for 

example in template matching algorithms (Vargas-Irwin and Donoghue, 2007, Zhang 

et al., 2004). Generating templates is an important step. Some use initial clustering 

based on PCA to extract these templates. And hence the accuracy of these algorithms
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depends on the effeetiveness of the initial standard dimension reduction and 

clustering.

An ideal spike sorting method will be able to address the following challenges:

1. Isolating the spikes of all neurons close to the recording electrode

2. Minimal human intervention

3. Resolving overlapping spikes

4. Taking into account non-stationary recordings

5. Ability to carry spike sorting online i.e. during the recording session

6. Low computational complexity, so it can be implemented on implanted 

chips

It should be noted that due to complexity of spike sorting challenges, designing an 

algorithm that can overcome all challenges is a demanding task. Hence depending on 

the experiment requirement certain algorithms can be more suitable. For example, if it 

is required to have online sorting, then methods that factor this should be selected. Or 

if the recording contains a large percentage of overlapping spikes, then algorithm 

addressing this issue would be more suitable.

In the next section of this thesis, an automated spike sorting algorithm is introduced to 

address some of the challenges associated with spike sorting, namely the challenges of 

efficient spike isolation and automation. The method shares the simplicity offered by 

PCA, hence this method can be used as alternative to generate templates. The 

proposed method was compared to common applied methods including PCA methods. 

The test data compromised a publically available data set, where the objectiveness of 

the comparison can be retained.
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2.3 Spike sorting method:

An important aspect of spike sorting is to extract the maximum information available 

from the neural recordings, hence it is important to develop spike sorting methods that 

will produce high sorting accuracies.

In this chapter a robust method of automatic spike sorting is proposed. Locality 

preserving projections (Xiaofei and Partha, 2003), which is linear approach of 

Laplacian eigenmaps was previously reported for manual spike sorting (Ghanbari et 

ah, 2011), In this chapter a fully automated spike sorting based on nonlinear feature 

extraction method (Laplacian eigenmaps) and A:-means clustering is reported. The 

performance of the proposed method is compared with systems based on simple 

amplitude features, and on PCA derived features. Two types of classification 

algorithms were employed in this thesis, namely ^-means and classification 

expectation-maximization algorithms (CEM, as implemented in KlustaKwik (Harris)).

The data set used in this chapter included publically available simulated data set, 

where it allows objective comparison between different algorithms.

Simulated data set has the advantage that the spike origins are known and are free 

from expert sorting subjectivity (Harris et ah, 2000, Wood et ah, 2004), however it is 

important to test the algorithm in practical environment. Hence in this chapter in-vivo 

data recorded from rodents was also used in evaluating the performanee of the 

methods.
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The main finding of this chapter was reported in:

Chah, E., Hok, V., Della-chiesa, A., Miller, J. J., O'Mara, S. M. & Reilly, R. B. 2011. 

Automated spike sorting algorithm based on Laplacian eigenmaps and A:-means 

clustering. J Neural Eng, 8, 016006.

2.4 Data set:

Simulated data used in this chapter were obtained from the publicly available data set 

WaveClus (Quiroga et al., 2004). All simulated recordings 22 in total, named in 

Table 2.2 according to the convention used by the author of WaveClus (Quiroga et al., 

2004), where the number at the end of file indicated the noise level. The data set 

included simulations of complex spike cells (data set, Burst_Easy2_015) and electrode 

drift (data set, Drift_Easy2_015). Each file contains spikes from three neurons.

The average number of neural spikes in the files was ~ 2790. In most recordings the 

standard deviation of noise in the data set varied between 5% - 20% of the spike peak 

amplitude, the only exception was data set “easyl” where noise level was varied up to 

40%. The noise was constructed to simulate background neural activity. This was 

achieved by adding average spike waveforms at random times and with random 

amplitudes to form the noise signal. The simulated data spike clusters had a mean 

firing rate of 20 Hz and a 2 ms refractory period.

Simulated data has the advantage of being objective and it provides an error-free 

benchmark. However, it has several shortcomings. For example, the simulated data 

represents a single channel recording. However it has been established that 

multichannel recording such as tetrodes markedly improve spike sorting (Gray et al..
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1995). Hence, it is vital to consider multichannel recording when assessing the 

performance of spike sorting algorithms.

The simulated data sets in this study contained spikes from three neurons in each 

recording; however, when it comes to in-vivo studies, more neurons may be recorded 

by each chaimel. Theoretical estimations suggest that a tetrode can sense spikes from 

~ 140 neurons with sufficient spike amplitude for spike sorting (Henze et al., 2000). In 

practice, however, the number of neurons sensed will be fewer ~20 (Henze et al., 

2000). A higher number of clusters can lead to lower classification accuracy. For 

example, if there are two clusters, the probability of classifying an object correctly by 

chance is 50%, while if the number of clusters increase to 10, the probability is 

reduced to 10%.

To address the shortcomings of the simulated data set, the performance of spike 

sorting algorithms was also evaluated from in-vivo recordings from the hippocampus 

of a freely-moving rodent. A surgical procedure was followed for the implantation of 

electrodes; the animal was anaesthetized with isofluorane and mounted on a sterotaxic 

frame for precise positioning of the electrodes. The animal was allowed to freely 

explore an enclosure for 20 min during the recording. Experiments were conducted in 

accordance with European Community directive, 86/609/EC, and the Cruelty to 

Animals Act, 1876, and followed Bioresources Ethics Committee, Trinity College, 

Dublin, Ireland, and international guidelines of good practice.

The in-vivo data was collected using a commercial spike recording system (Axona, 

Ltd.). The recording was obtained using a tetrode configuration with one channel set 

as a reference. In this case, the results of automatic sorting were compared against 

expert manual sorting. The expert was able to sort and reliably isolate spikes of two
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neurons (-3890 spikes). The remaining detected segments were considered as noise 

event. The total number segments detected (noise and spikes) was -10400. Manual 

spike sorting was carried out offline using graphical cluster-cutting software (Axona, 

Ltd.), where the spikes were sorted based on multiple features including spike 

amplitude, spike duration, maximum and minimum spike voltage, and the time of 

occurrence of maximum and minimum spike voltages. The spike sorting performance 

using in-vivo data provides an insight into the performance of the spike sorting 

algorithms for practical spike sorting by the scientific community.

2.5 Methods:

Spike sorting involves four steps (See Figure 2.2) as follows:

Figure 2.2 Spike sorting steps

2.5.1 Spike detection

The spike detection employed was based on the method reported by (Quiroga et al., 

2004). The recordings were high-pass filtered (300 Hz). The background noise 

standard deviation was estimated using the formula:

median^x
0.6745 (2.1)
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Where x/ refers to the sampled filtered signal. For data sets with noise levels between 

5% and 20%, the tbj-eshold was chosen as in (Quiroga et al., 2004) to be¥*cr„o,^g, in 

data sets with higher noise level this threshold was lowered to 2.5*cr„p,^g, since in 

these high noise data sets a high threshold would yield in few spikes being detected. 

Spikes are detected when this threshold is exceeded. Each detected spike is 

represented by 64 samples when the threshold was exceeded. This corresponds to an 

interval of ~2.7 ms.

2.5.2 Feature extraction:

Feature sets were divided into three categories:

2.5.2.1 Laplacian eigenmaps:

Laplacian eigenmaps (LE) is a dimension reduction method, that optimally preserves 

local neighbourhood information in a data set, by preserving these local information 

in the data set it indirectly emphasizes the natural clusters of a given data set (Belkin 

and Niyogi, 2003). Thus this method can be utilized to separate spike clusters 

generated by distinct neurons. As with any data reduction method, the problem is that 

given a set of Xi, ... ,Xm of M points in R‘, find a set of point , ... , jA/in R" {n«I) 

such that jF/ represents x,. The objective of Laplacian eigenmaps is to map points which 

are found to be similar under a specific definition, to points close together (Chen et al., 

2010, Belkin and Niyogi, 2003). Let y = (yi,y2,y3, ... ,ym)^ be such a map, this 

objective is achieved by minimizing the following function:

I.^(yi-yj)'
(2.2)

Where Wy is defined in Eq. (2.3). This weight function {Wy) ensures that points close 

to each other assigned a large weight while points further apart assigned a smaller
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weight. Since this function decreases exponentially, points mapped further apart incur 

a heavier penalty (Belkin and Niyogi, 2003). These mappings demonstrate the 

potential suitability of LE in spike sorting algorithms.

For a detected spike segment jc of length M the LE algorithm has the following steps:

First step: The Euclidean distance matrix is computed ||jc, - Xj\f. Then n nearest 

neighbours are cormected. i.e. if node j is among the n nearest neighbours of i then 

nodes i and j are cormected.

Second step: Weight matrix is computed according to Eq. (2.3).

W- =<"ij ^ e if i and j are connected
0 otherwise

(2.3)

Third step: for the cormected component the generalized eigenvalues and 

eigenvectors are computed.

Lf= XDf

Where A is the eigenvalue and/is the corresponding

eigenvector

(2.4)

With A, = I, ^ (2.5)

Laplacian matrix L = D-W (2.6)

Fourth Step: The eigenvectors are sorted according to their eigenvalues:

0 = Xg<X,<X2<...< A„ (2.7)
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Final Step: The mapping of Xj into the lower m dimension space is then given by 

(fiO), ,fm(i))- Ignoring the first eigenvector fo which corresponds to the eigenvalue 

0.

There are two parameters to be determined in the Laplacian eigenmap dimension 

reduction algorithm, namely n and a . It is reported in (Ghanbari et al., 2009, Ghanbari 

et al., 2010) that choosing n values between (5 - 21) is sufficient for spike cluster 

separation. In this study n = 12 was chosen which is in the range reported in the 

literature, a was determined empirically; higher values than 0.6 were shown to have 

no effect in improving the cluster separation. In this thesis a was set to a simple value 

of 1. The dimension of the features extracted from the spikes using Laplacian 

eigenmaps dimension reduction was limited to three dimensions, in line with the other 

feature extraction methods compared in this study.

2.5.2.2 PC A feature:

Principal Component Analysis (PCA) finds a set of orthogonal basis vectors that 

represent the largest variation of the data. It has been reported for spike sorting that 

choosing the first three principal components provides good separation (Wheeler and 

Heetderks, 1982). Choosing a higher number of components would account for higher 

variation; however, higher components were found to be dominated by background 

noise (Lewicki, 1998). In this chapter the PCA features consisted of the first three 

PCA components.

2.5.2.3 Amplitude-Only features:

Amplitude-only features were based on the temporal characteristic of the spike 

waveform. The distance between the neuron and electrode is an important factor in 

determining the amplitude sensed by the electrode (Henze et al., 2000, Moffitt and
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McIntyre, 2005). In an environment where neurons are not equidistant with respect to 

the electrode, the amplitude of the spikes can be used to discriminate spikes from 

different neurons.

The temporal characteristics extracted included:

• The positive peak amplitude of the spike.

• The amplitude of the local minimum before the peak.

• The amplitude of the local minimum after the peak.

2.5.3 Clustering:

Two types of clustering algorithms were used:

2.5.3.1 k-means clustering:

A:-means clustering (Theodoridis and Koutroumbas, 1998) is a simple clustering 

algorithm involving few steps, although the number of clusters k must be 

predetermined. In spike sorting methods, the number of neurons contributing to the 

spikes sensed by the electrode is not known, and therefore, it is not possible to pre-set 

k. To overcome this A:-means limitation the PBM index (Pakhira et al., 2004) was 

employed to determine k. The PBM index is a cluster validity index; it measures the 

“goodness” of clustering using a range of clusters (k).

Below is a short description of the steps in A:-means combined with PBM index 

algorithms:

• Stepl: number of clusters is initially set to k.

• Step2: k points are chosen randomly in the feature space as the initial cluster 

centres CQwherej = 1,... , k.
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• Step 3: For a feature vector/I of length N, find the Euclidean distance between 

each A- and CCj, j=l,... ,k, where i= 1,... , N.

• Step 4: Assign Aj to the cluster CCj which gives the minimum Euclidean 

distance.

• Step 5: Recaleulate cluster centres CCj using the points in each cluster.

• The steps 2-5 are repeated until no change is obtained, below a certain 

threshold, in cluster centres CCj. In practice clustering is repeated a number 

times with different initial random cluster centres so that a local minimum is 

not interpreted as the optimum classification result.

• Step 6: Calculate the PBM index for each k:

PBM(k ) =
^ 1 Ex .

— X—-xSt,yk E, % (2.8)

• Where k is the number of clusters, is the maximum separation between 

cluster centres; Ei is the sum of separation between the points and the cluster 

centres when number clusters k =1. Ek is the sum of separations between the 

feature points and the k cluster centres.

• Step 7: Choose k that yields the highest PBM index.

2.5.3.2 Classification expectation-maximization:

The software KlustaKwik was used which is based on the Classification Expectation- 

Maximization algorithm (CEM) (Celeux and Govaert, 1992).
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2.6 Performance measure metrics:

Two metrics were used to evaluate the performance of the spike sorting system. 

Similar to (Yang et al., 2009b) a classification matrix (CM) was computed. However, 

a modified matrix was developed to include the “noise events” or non-spike events.

CM = C,

No N, N2 N3 ... N„

C; 'FPio TP, FP,2 FP,3 ... FP,„

C2 FP20 FP21 TP2 FP23 ... FP2„

C3 PP30 FP31 FP32 TPj ... FP,„

Q FPko FPk! FPk2 FPk3 FP,,,

(2.9)

Where No refers to noise events, and Nj N2 N3... Nk reflect the spikes produced by 

each neuron respectively, C/, C2 and C3 ...Ck refer to the clusters identified by the 

spike sorting method. K refers to the actual number of neurons in the recording, k 

refers to the number of clusters identified. TP, is the number of spikes from neuron i 

in the cluster i (true positives). FPy is the number of spikes from neuron j in the cluster 

i (False positives), note that j = 0 corresponds to noise events.

The first measure of performance is the Sorting Accuracy (SA) which is the 

percentage of the detected spikes labelled correctly:

5Lf(%) = 100* zf.,”’/
y , TP,+y , FP,, (2.10)

Sorting Error SE is the ratio between the false positives and the total number of 

segments (spikes and noise) in identified clusters.
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5'£(%) = 100*
FP^/=l,7=0,i>y ij

Y JP+Y , . n P'P, (2.11)

A perfect spike sorting algorithm will yield a SA of 100% and SE 0% which 

corresponds to y * „ , . FA, = 0.

2.7 Results:

2.7.1 Spike detection;

The performance of the spike detection method was assessed based on the percentage 

of neural spikes detected correctly. The mean percentage of neural spikes detected 

was 81% with a standard deviation of 12%. The percentage of noise events is defined 

as the ratio between noise events and total number of segments detected (noise and 

neural spikes). The mean noise percentage was 9% and the standard deviation was 

16%.

2.7.2 Spike sorting using simulated data set:

The three feature extraction processes mentioned in the previous section were applied 

to the simulated data set and both types of classifiers were used to cluster the feature 

data. The results are shown in Table 2.2.
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Table 2.2 Simulated data set results.

Data
Set

^-means classifier CEM classifier

LE
features

PCA
features

Amplitude
-only

features
LE

features
PCA

features

Amplitude
-only

features
SA
(%)

SE
(%)

SA
(%)

SE
(%)

SA
(%)

SE
(%)

SA
(%)

SE
(%)

SA
(%)

SE
(%)

SA
(%)

SE
(%)

Easyl 005 98 1 99 1 66 30 34 68 96 0 63 35
Easyl_01 98 2 67 2 64 20 68 27 97 1 63 17

Easyl_015 72 2 80 3 58 20 75 1 97 2 60 18
Easyl_02 67 4 56 4 60 37 76 2 96 3 68 25

Easy2_005 94 0 82 2 73 25 64 37 93 0 69 21
Easy201 93 1 82 4 31 45 67 0 93 3 49 44

Easy2_015 74 3 58 13 30 48 79 3 61 34 47 46
Easy2_02 61 13 61 24 31 53 65 17 34 58 43 54

Difficult 1 005 94 0 66 2 40 53 33 64 96 1 32 55
Difficult 1 01 89 3 64 10 31 52 70 1 91 9 38 58

Difficult 1 015 69 12 38 20 41 59 72 13 34 67 41 62
Difficult 1 02 51 34 37 42 30 51 40 41 36 64 40 57
Difficult2 005 93 1 91 6 68 31 79 0 63 27 64 32
Difficult2 01 94 5 64 24 54 47 69 1 65 31 62 23

Difficult2 015 60 27 59 29 38 30 59 28 64 40 51 46
Difficult2 02 63 50 51 50 37 58 57 59 35 67 52 59

Burst_Easy2_01 86 13 48 18 30 50 53 39 59 32 56 57
Drift Easy2 015 57 6 52 19 36 35 76 5 70 46 46 44

Easyl_025 93 4 92 8 47 41 66 15 93 6 50 41
Easyl 03 86 4 82 25 40 49 80 25 85 32 49 39
Easyl_035 31 45 66 19 27 44 41 37 35 8 39 50
Easyl 04 68 13 44 22 24 54 66 25 47 75 34 51

mean 77 11 65 16 44 42 66 24 70 28 51 42

Comparing the mean performance metrics in the last row of Table 2.2, it is evident 

that LE combined with A:-means classification yields higher sorting accuracy and 

lower sorting error percentages than other methods. By examining the mean 

performances, it can be concluded that Amplitude-Only features perform poorly when 

compared to other methods. The mean performance in the Table 2.2 also illustrates 

that A:-means classification combined with PCA feature extraction yields lower sorting 

accuracy than the PCA/CEM algorithm. However PCA/A:-means provides better 

sorting error performance than PCA/CEM.
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The Friedman test (Friedman, 1937) was employed to assess if the methods produced 

significant improvements. This test can be used to detemiine if there is a significant 

difference between several methods when the different methods were tested on the 

same data set (Sheldon et al., 1996).

The Friedman test revealed that the sorting accuracies percentages were significantly 

different with (p < 0.0001). Post hoc analysis showed that LE combined with 

A:-means yields significant different performance than all other methods compared in 

this study. Applying the Friedman test to SE percentages showed that the sorting 

algorithms are significantly different ip < 0.0001). Post hoc analysis reveals that LE 

methods yields significantly lower sorting error than the other methods compared in 

this study. The test also confirms that PCA combined with A:-means or the 

combination of PCA, CEM clustering provides less sorting error than algorithms 

based on Amplitude-Only features. Figure 2.3 presents a graphical representation of 

the sorting accuracy of the spike sorting algorithms employed in this study. Figure 2.4 

on the other hand compares the sorting error percentages of the algorithms.
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Figure 2.3 Dot plot of the sorting accuracy result obtained using the spike sorting methods. Each 
dot represents the sorting accuracy of a single simulated data set using the corresponding spike 
sorting method on the x-axis. Horizontal lines represent the mean sorting accuracy of the spike 
sorting method.

Figure 2.4 Dot plot of the sorting error results obtained using the spike sorting methods. Each dot 
represents the sorting error of a single simulated data set using the corresponding spike sorting 
method on the x-axis. Horizontal lines represent the mean sorting error of the spike sorting 
method.

To further test the effectiveness of LE feature extraction. The ratio between between- 

cluster and within-cluster distance (cluster validity) was compared to other features 

extraction methods employed in this chapter (Figure 2.5). Similarly (Ghanbari et al.,
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2009) have tested this ratio their results showed that clusters produced by locality 

preserving projections were better separated than PCA clusters.

Cluster Validity =
I

N, /4eV, \\A-cCi
(2.12)

Where CC/ is the centre of cluster of spikes produced by neuron Ni, N, is the total 

number of spikes, K is the number of neurons simulated in the recording, and A is the 

feature vector. This cluster validity represents the ratio between the between-cluster 

and within-cluster distance. Higher cluster validity indicates better separation. As 

shown in Figure 2.5 the mean cluster validity is higher for LE features compared to 

the other features employed in the study. The differences in cluster validity between 

all methods are statistically significant (p < 0.0001) as indicated by the Friedman test.

Figure 2.5. Comparison of mean cluster validity index for the feature extraction methods. 
Vertical lines indicate standard error

Figure 2.6 and Figure 2.7 show the two dimensional feature space for simulated Data 

set C. Figure 2.6a and Figure 2.7a shows the feature space of the simulated data with 

three clusters (o , + , . ), each point represents the spike produced by the neuron. The 

markers and colours are used to identify the neuron which the spike belong to. 

Figure 2.6a shows the PCA feature space and Figure 2.7a shows the feature space
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using LE. The separation of the spike clusters is evident in LE feature space on the 

other hand clusters overlapped in PCA feature space. In some cases, (as shown in 

Figure 2.7b), over-clustering occurs. The blue cluster (o) in Figure 2.7 is divided into 

two clusters (o and A). The performance of the spike sorting algorithms can be 

improved by additional step that assess the similarity of the spikes in each cluster and 

merge the cluster of spikes that belong to a single neuron. Over-clustering is also 

illustrated in Figure 2.6b.

(b)
Figure 2.6. PCA Feature space plots for data set C. Where PCAl and PCA 2 refers to the first 
and second principal component respectively (a) PCA feature space of the spikes, (b) PCA 
feature extraction combined with A-means clustering algorithm output where the PBM index 
has detected five clusters.

° . + . -fft t -oiS.- 
• ^ •

Figure 2.7. Laplacian eigenmaps feature space plots. Where LEI and LE2 refer to the first and 
second eigenvectors (// and ) respectively (a) LE feature space of the spikes, (b) LE feature 
extraction combined with A-means clustering algorithm output where the PBM index has 
detected four clusters.
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2.7.3 Spike sorting results using in-vivo recordings:

Table 2.3 shows the results obtained from the in-vivo recordings. The spike sorting 

algorithms were initially used to sort data of individual tetrode channels. The last row 

of the table (multichannel) shows the results obtained when the information is 

extracted from all three available channels of the tetrode and employed in the sorting 

algorithms. Features were extracted from each available channel and input to the 

classifiers. For example, in the PC A feature set the first three components from each 

channel were computed. Recordings from three channels were available hence the 

feature space included (3x3 = 9) dimensions.

Table 2.3 in-vivo data set results.

Channel

A:-means classifier CEM classifier
LE

features
PCA

features
Amplitude-

Only
features

LE
features

PCA
features

Amplitude-
Only

features
SA'
(%)

SE'
(%)

SA'
(%)

SE'
(%)

SA'
(%)

SE'
(%)

SA'
(%)

SE'
(%)

SA'
(%)

SE'
(%)

SA'
(%)

SE'
(%)

1 79 32 33 55 79 35 66 55 77 30 61 38
2 98 12 51 8 96 38 74 9 93 12 75 16
3 99 14 51 14 59 37 74 9 96 13 66 18

Multichannel 100 13 74 7 100 35 71 8 82 5 66 5

SA' and SE' refers to the Sorting Accuracy and Sorting Error when the spike sorting 

algorithm was compared to the experts sorting. The results in Table 2.3 illustrate that 

the combination of EE features and A:-means clustering yields best sorting 

performance. In the combination case most methods yield improved performance this 

illustrates the advantages of tetrode recording. All the spike sorting algorithms 

performed relatively poorly while sorting the spikes in the first channel, this is 

attributed to the low amplitude of the spikes in this channel.
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2.8 Discussion:

Recently it was reported that locality preserving projections can aid graphical manual 

spike sorting (Ghanbari et ah, 2009, Ghanbari et ah, 2010). In this thesis these 

findings are extended and propose a fully automated spike sorting algorithm based on 

LE feature extraction (nonlinear method of locality preserving projection) and k- 

means clustering. The results in Table 2.2 illustrate that there is significant 

improvement between LE/A:-means sorting algorithms compared to other automatic 

sorting algorithms based on PCA and temporal features.

It can be concluded from the results in Table 2.2 that LE provides the best 

performance in spike sorting when used alongside A:-means clustering. Table 2.3 

shows the results obtained using in-vivo recordings confirming the robustness of LE 

algorithms. The performance difference between GEM and k-means algorithms is 

evident when used with LE features. This is primarily due to over-clustering caused 

by GEM.

The GEM algorithms implemented in KlustaKwik assume a Gaussian distribution for 

the features; however, the LE features do not follow a Gaussian distribution. This 

could explain the ineffectiveness of LE/GEM combination.

The Amplitude-Only feature set yielded the poorest performance with large sorting 

error percentages as demonstrated in Table 2.1. This may be due to electrode drift or 

complex-spike cells whilst in other cases, the spikes of two neurons may have similar 

spike amplitude but different widths. The variation in single neuron amplitude can 

cause low spike sorting performance. In the case of in-vivo recordings results 

Table 2.3, individual charmels yield high sorting error percentages or low sorting
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accuracy. However, when the information from multichannel recordings is extracted, 

the performance of spike sorting using the simple amplitude features increases, thus 

illustrating the effect of multicharmel recording in spike sorting.

The PCA feature set yields an excellent performance with data sets that are easy or 

contain low noise. However as data sets get nosier or difficult where spikes shapes 

are separated by small localized features, and in simulation of complex bursts and 

electrode drift the performance improvement of LE/A:-means compared to methods 

based on PCA becomes more evident.

In some cases, (as shown in Figure 2.6b), over-clustering occurs. The performance of 

the spike sorting algorithms can be improved by an additional step that assess the 

similarity of the spikes in each cluster and merge the cluster of spikes that belong to a 

single neuron. A human operated method for merging spike clusters based on 

autocorrelograms and cross-correlograms is proposed in (Harris et al., 2000). Over

clustering was encountered in (Yang et al., 2009b) and clusters were merged based on 

boundary density estimation. Over-clustering is a challenge in spike sorting that has to 

be addressed. A possible solution to over-clustering is to consider the eigengap 

heuristic (von Luxburg, 2007), where the ratio between successive eigenvalues can 

indicate the number of clusters in a data set.

It has to be noted that in data sets where a high firing neurons and a sparse firing 

neurons are recorded the method proposed may not sort spikes of neurons with sparse 

firing due to its dependence on A:-means clustering, since A:-means is shown to produce 

clusters with approximately uniform sizes (Xiong et al., 2009). This issue can be 

addressed by using other nonparametric clustering methods such and mean shift
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clustering (Comaniciu and Meer, 2002) to improve the sorting performance of the 

algorithm with sparse firing cells.

Overlapping spikes is one of the important challenges in automated spikes sorting 

algorithms, several methods have been proposed to address this problem explicitly 

(Atiya, 1992), this algorithm is criticized for being computationally expensive. Others 

have proposed solution to this problem which requires less computation power 

(Lewicki, 1994) however this algorithm is also criticized for underlying assumption of 

Gaussian noise (Segev et al., 2004). Recently more advancement in field is reported 

(Takahashi et al., 2003a, Segev et al., 2004, Hulata et al., 2002). The addition of 

algorithm that will resolve overlapping spikes to current method reported in this study 

can improve the performance of the proposed spike sorting algorithm.

It has to be noted that this algorithm is designed for offline spike sorting and one of 

the short-comings of this method is that this method does not allow online spike 

sorting. However the principles applied in this chapter can be employed, as an initial 

step of finding spike templates, and implementing template matching for online spike 

sorting.

2.9 Conclusion:

In this chapter, an automatic spike sorting method is proposed which is capable of 

spike detection, identifying the number of neurons recorded and assigning each spike 

to the neuron that produced it. This method yields significantly improved performance 

compared to previously reported methods based on PCA and Amplitude feature 

extraction. The method has the limitation of over-clustering in certain cases.
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The proposed method is similar in principle to PCA based methods reported in the 

literature, hence this method can offer a better mechanism of extracting templates in 

spike sorting algorithms. This also allows for incorporation of algorithms that track 

non-stationary of spike waveform methods such as (Calabrese and Paninski, 2011).

Simulated data set and in-vivo recording were used to assess the performance of the 

proposed method. The simulated data set employed in this study was obtained from a 

publically available data, allowing objective comparison of spike sorting method 

across method compared in this study and others published in the literature.
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Chapter 3. Spike waveform variability

3.1 Introduction:

Long-term recording of extracellular potentials, spikes, is an important experimental 

method in neural engineering and neuroscience research. Understanding the variability 

of spikes has important implications in many areas such as spike sorting (Fee et al., 

1996b) and aiding the design of electrodes for chronic implantation (Linderman et al., 

2006).

In the previous chapter a spike sorting method was introduced, the disadvantage of the 

method was that over clustering occurred. And that the method did not allow online 

spike sorting.

In this chapter the variability of spike recordings is examined, in terms focusing on 

noise characteristics and in successive recordings over several sessions. The findings 

of this chapter can aid future design of template matching and other spike sorting 

algorithms.

It has been established that the distance between the electrode and the neurons plays 

an important part in determining the amplitude recorded (Henze et al., 2000). It is also 

reported that spikes waveform vary (Fee et al., 1996b) within recording sessions. The 

changes in spike waveform can be attributed to two factors. The first factor is the 

background neural activity of other neighbouring cells, other neurons are capable of 

generating currents and this is a source of additive noise to the spike recordings. The
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second factor is systematic change in the neuron’s spike waveform. An example is 

seen in the case of spike burst where the spike amplitude decreases with successive 

spikes in the burst (Fee et al., 1996b).

Fee et al. (1996b) studied the variability of spikes recorded from layers 2/3 through 

layer 6 of primary somatosensory vibrissa cortex of the rat. They examined the 

variability within a session in terms of spike waveforms and spectral properties, and 

reported that spike variability does not follow a stationary Gaussian process. It was 

reported that half of the neurons recorded exhibited systematic changes as a function 

of inter-spike intervals.

Lin et al. (2003), studied the stability of neural recording of motor cortex neurons, 

recorded in the behaving monkey. The recording employed in the study included well 

isolated cells and spanned over 3 years. It was concluded that stability can last for 

long periods of time. However the challenge of identifying neurons across successive 

sessions using the spike waveform was noted.

Williams et al. (1999) implanted electrodes in the auditory cortex of guinea pigs. They 

examined the stability of one cell over a period of six weeks on a day to day basis. 

This cell was classified as a “stable unit”, meaning that the waveform did not change 

from day to day, allowing then the cell to be identified aeross different sessions. Using 

Principal Component Stability Tube was used to track waveform changes.

Porada et al. (2000) examined the stability of neuron populations from the visual 

cortex of rabbits and monkeys. Stability was quantified by measuring the range of 

peak amplitudes, spike shape, spike frequeney and the spike train autocorrelation 

histogram. The ability to record for periods up to 711 days was demonstrated.
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However it was difficult to establish whether spikes recorded across different sessions 

originated from the same neuron.

Santhanam et al. (2007), recorded from motor cortex of a monkey for a period over 

two days. The stability of spike waveform during this period was examined. Neurons 

were identified across different 5 minute segment using the spike waveform, neurons 

with spike waveform that are distinct during the recordings were selected to ensure 

accurate tracking of waveform changes. Substantial variations up to 30% of the spike 

waveform were observed.

Suner et al. (2005), studied the variability of spike waveforms over a period of three 

months, to assess the viability of Bionic array electrode. No attempts were made to 

determine whether the same neuron was present across different session. Within short 

period no systematic change in spike amplitudes were observed.

In studying variability of spike waveforms it is difficult to determine if a single cell is 

recorded over long period of time, hence some studies consider the “stable cells” (Lin 

et al., 2003, Porada et al., 2000, Williams et al., 1999) where the waveform is distinct 

and does not fluctuate largely.

To overcome these challenges in this thesis we examined the variability of the spikes, 

using a novel method of identifying cells across session using the information rather 

than spike waveform to examine variability within and between recording sessions. 

Place cell recordings were only included in this study, in order to identify spikes of the 

neurons across consecutive sessions. The place field of these place cells provides a 

marker independent of the waveform, allowing objective tracking of waveforms 

across different sessions.
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The main finding of this chapter was reported in;

Chah, E., Hok, V., O'Mara, S. M. & Reilly R. B., A Waveform Independent Cell 

Identification Method to Study Long-Term Variability of Spike Recordings. 

Conference Proceedings of Annual International IEEE EMBS Conference, Boston, 

USA. Aug 2011.

3.2 Methods:

3.2.1 Place cells:

Place cells have been first described in the rat hippocampus (O'Keefe and Dostrovsky, 

1971). These pyramidal cells emit complex spikes when the animal is in a specific 

location within a particular environment, and are thought to provide the animal with 

an internal sense of it’s location in space (Moser et al., 2008). Place cell activity can 

be visually ascertained by plotting the trajectory of the rodent in the environment, and 

superimposing the spike occurrences (Figure 3.1 A). The place field (the location 

where the cell is active) can be examined in more detail using firing frequency plots 

(Figure 3.IB). Place cells generally have only one firing field in an environment of 

this size (Moser et al., 2008).
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Figure 3.1. Example of a place cell recorded in the hippocampal CAl subregion (A) black line 
indicates the trajectory of the animal in the environment (square box) red dots correspond to the 
location of the animal when the cell fired a spike (B) firing frequency plot of the same place cell; 
the environment is divided by a set of squares (bins) (3x3 cm) and the number of spikes in each 
bin is divided by the time spent by the rat in that bin. The firing rate in each bin was smoothed 
using a 5 X 5 kernel, meaning that the firing rate for each bin was calculated as the average of the 
5X5 bin square centred on that bin. The six colours of firing-rate maps were autoscaled to 
represent 20% of the peak rate (red to dark blue).

Objective measures can be used to characterize and identify place cells activity such 

as the spatial information content (SIC) (Skaggs et al., 1993). This specificity index 

quantifies the amount of information (in bits) that a single spike conveys about the 

animal’s location. (Markus et al., 1994). The SIC is calculated as follows:

/ n A /^ /? ^

= ^ log2 '
\ J \Rj

(3.1)

Where i is the bin index, Pj is the probability of occupancy of the bin, Rj is the mean 

firing rate of the cell in bin i, and R is the overall firing rate of the cell during the 

session.

Spatial coherence is the z-transform of the correlation between the firing rate in each 

bin and the average firing rate of the eight surrounding bins (Muller and Kubie, 1989). 

It quantifies the extent to which firing rate in a particular bin is predicted by the 

average rate of the eight surrounding bins. Thus, high positive values result if the rate 

for each bin could be better predicted given the firing frequency in its neighbours.
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Average firing rate is the total number of spikes emitted during the session divided by 

the recording duration. The measure insures that low firing cells are not misclassified 

as place cells due to low sampling.

3.2.2 Subjects:

Male Han Wistar rats (540-650 g) were housed individually in Perspex cages and 

maintained on a 12:12 h lightidark schedule with lights off at 8 p.m. All experimental 

procedures (behavioural, electrophysiologieal, and surgical) fulfilled the EU 

guidelines on protection of vertebrates used for experimentation (European 

Community Council Directive 86/609/EEC).

3.2.3 Surgery:

Prior to the beginning of the experiment the rats underwent surgical implantation of 

drivable microwires for eolleeting multiple single neurons activity. The recording 

electrodes consisted of eight bundles of four platinum-iridium wires (90% platinum, 

10% iridium; HM-L insulated, 25|j,m bare wire diameter, California Fine Wire Ltd., 

California, USA) twisted together. Tetrodes were threaded through a 25 gauge guide 

cannula, and protected with 21 gauge cover. Tetrodes were then mounted on a 

lightweight microdrive (Axona Ltd.), cut flat and implanted in the dorsal hippocampus 

(-3.8 to -4.2 AP, ±3.0 to ±3.6 ML and 1.2 to 1.5 mm dorsoventral to dura). The 

microdrives used here are built around a precision screw, machined to a pitch of 200 

pm, which advances the eleetrodes in 25 pm steps (l/8th turns). A spring tensions the 

serew and prevents it from moving spontaneously, therefore allowing reeording of the 

same eell over several days.
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3.2.4 Spike recording:

After a one week recovery, animals were connected, via a thirty-two channel 

headstage (Axona Ltd.) to a recording system which also allowed for animal position 

tracking. Signals were amplified between 3000 to 12000 and bandpass filtered 

between 380 Hz and 6 kHz for spike detection. In order to maximize spike separation, 

only waveforms of sufficient amplitude (at least three times noise threshold) were 

acquired. Spike waveforms were sampled at 48 kHz, with each spike represented by 

50 samples corresponding to ~lms. Candidate waveforms were then discriminated 

off-line using graphical cluster-cutting software (TfNT, Axona Ltd.), which allows 

waveform separation based on multiple features. Such features include spike 

amplitude, spike duration, maximum and minimum spike voltage, and the time of 

occurrence of maximum and minimum spike voltages. It was also possible for the 

experimenter to discriminate the waveforms according to the voltage at a specified 

time. Autocorrelation histograms were built for each unit and the whole unit was 

removed from analysis if the histogram revealed the existence of correlations within 

the first 2ms (refractory period), inconsistent with good cell isolation. Similar to 

others (Fenton et al., 2010, Leutgeb et al., 2007), place cells were selected for study if 

their spatial firing patterns were location-specific (spatial coherence > 0.25; spatial 

information content > 0.5 bits/AP) and robust (average firing rate > 0.25Hz).

The recordings took place in a square arena (64 x 64 x 25 cm high) located in the 

centre of a room with multiple cues available. Rats were food-deprived to 85% of 

their original weight. Rats were then placed in the open field and 20 mg food pellets 

were thrown in every 20 seconds to random locations within the open field; in this 

way, animals were in continuous locomotion, allowing for complete sampling of the 

environment. Each recording session lasted for 20 minutes.
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3.2.5 Within session variation:

Similar to Fee et al. (Fee et al., 1996b), we defined the action potential residuals as the 

difference between a particular instance of a spike waveform and the average 

waveform. The distributions of these residues were then compared to normal and 

^-distributions.

Probability plots (Mullins, 2003) were used to determine if either normal or 

^-distributions would fit the residues distributions. This comparison was carried out on 

each cell recording. Only the channel with the largest amplitude recorded was 

considered in this analysis, as this electrode is the closest to the neuron and records the 

maximum voltage deflections.

Figure 3.2 shows an example of spike recording using a tetrode (four channels), one of 

the channels (largest amplitude) captures the largest voltage deflection.

Figure 3.2. Example of spike waveform recorded using a tetrode (four channels), the black solid 
lines represent the spikes and red dashed line represents the average waveform.
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3.2.5.1 Normal distribution:

The normal distribution or Gaussian distribution is a well-known distribution; one of 

its properties is that the mean and variance are independent of each other. The 

probability density function of a normal distribution is characterised by the following 

equation:

/W = -
2ct^ (3.2)

crV^

Where // is the mean and o is the standard deviation. By calculating the two 

parameters mean and standard deviation the entire distribution can be modelled.

3.2.5.2 t-distribution:

A t-distribution has a bell curve similar to the normal distribution however in a t- 

distribution the tails fall with slower rate, in other words the areas under the tails are 

larger in a t-distribution than a normal distribution and its probability density function 

is represented by:

V ^ y
V vna ^ V va

(3.3)
y

Where v is the degrees of the freedom, F is the gamma function, is the mean and a is 

the standard deviation. As the degrees of freedom increase the t-distribution curve can 

be approximated by a normal curve (Spiegel et al., 2009).

3.2.6 Between session variations:

Place cells were identified across different sessions using the Pearson correlation 

coefficient. The coefficient was calculated between the firing frequency plots (as 

described in Figure 3.1b) between all cells recorded from the same electrode across all
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recording sessions. Cells that yielded an average correlation coefficient higher than 

0.8, were added to the group and assumed to be the same cell (computed between the 

cell and the members of the group). Identifying the cells using their place field 

characteristics, which are independent of the spikes’ waveform, this procedure allows 

for the comparison of spike waveforms across different sessions while guaranteeing 

the sameness of the neuron being studied. Figure 3.3 shows spatial firing frequency 

plots of a place cell tracked across several sessions where the average correlation 

coefficient between the sessions shown is 0.90.

The average amplitude was computed from each cell recording. The amplitude is 

defined as the peak-to-trough amplitude of the spike. Percentage change of the 

amplitude was computed and compared between successive sessions. The slope of 

these changes was also examined to test for systematic slow changes in the amplitude 

across the entire recording period of individual cells.
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Figure 3.3. Comparing place field of a place cell across three successive sessions, the similarity 
between the place fields allows for objective and simple identification of the cell across these 
sessions. The average correlation between the sessions is 0.9.

3.2.7 Cell identification test:

Using the data set recorded in this study, the effectiveness of methods to identify 

whether two spike waveform recordings originated from a single cell is presented in 

this chapter. Two methods are proposed, the first is based on inverted wilks’ lamda 

statistics which is has the advantage of being intuitive with normalized values between 

0-1, and the second is based on Principal Component Analysis.

The methods were also tested on control conditions, where waveforms of two distinct 

cells were compared. The control condition was obtained by comparing cells recorded 

from different rats.
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3.2.7.1 Wilks' lambda test:

Wilks’ lambda (Johnson and Wichem, 2007) is used as a test to compare several 

multivariate population means. Consider a data collected at random from g 

populations.

Where Xu, X12, .... , Xi„,. are samples from population 1 and population g samples

are Xgj, Xg2, .... , Xgm •

Any observation X(j can be represented by Eq. (3.4).

Xij=\ + (\^-\) + (\(j-Xi) (3.4)

Where xis the overall mean, x^is the mean of the population i. The term (x^-x)

represents the estimated method (or treatment) effect and the term {\(j -X()

represents the error in the estimation.

Eq. (3.4) can be decomposed into a sum of squares Eq. (3.5).

s "I _ , g

«=i 7=1 e=\

g g
(3.5)

f=i t=\

Where the first term is the total sum of squares and cross products, second term 

represents the between sum of squares and the final term is the within sum of squares 

and cross products.

The wilks’ lambda (A) is the ratio between the within sum of squares and cross 

products and the total sum of squares and cross products.
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A:

g g _ _ ,

^=1 (=\ W
g

e=\ 7=1

B + W (3.6)

Higher values of wilks’ lambda obtained when the between sum of squares and cross 

products (B) is small, hence indicating no difference between the populations. For 

simplicity in this study inverted wilks’ lambda is referred to as 1-A i.e larger values 

correspond to larger separation and vice versa.

In this chapter wilks’ lambda was calculated for spike recordings of two different 

sessions. The wilks’ lambda results were used to assess the applicability of the method 

to identify if the recordings were from the same neuron.

3.2.7.2 Principal Component Analysis test:

Principal Component Analysis (PCA) is used in data reduction, i.e. the aim of PCA is 

to find k set of linear combinations that explains the maximum variability of the data. 

PCA is widely used in spike sorting algorithms (Abeles and Goldstein, 1977, Lewicki, 

1998). The principal components are calculated by computing the eigenvalues and 

eigenvectors Aj of the covariance matrix of data X.

PC,=Y.^,{t)Xit) (3.7)
t

In this study the first three components were calculated, since these components are 

commonly used in spikes sorting algorithms, and they explain most of the variation 

within the spikes.

The Euclidian distance ratio of between and within cluster were calculated. This 

measure was used to assess the usefulness of PCA in identifying the cells across 

different sessions.
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PCA dist =
CQ-CCJ

(3.8)

Where CCj and CC2 are the cluster centres, the term ||CC, -CC2f coiTesponds to the

between cluster distance. The denominator represents the average within cluster 

distance. Where N, is the total number of spikes, PC is the principal components 

calculated and CC/ is the cluster centre.

Higher values indicate greater separation between the clusters hence indicating the 

spikes might originate to two different cells.

3.3 Data sets:

Data set recording were obtained from four rats. A total of 438 cell recordings were 

included in examining the within session variability in this study. From these 

recordings a total of 19 cells were identified across different sessions using their 

respective place fields. The cells were tracked up to a maximum of 46 days. Cells that 

were tracked for more than four sessions were only included in examination of the 

between sessions variability.

3.4 Results:

3.4.1 Within session variation:

We examined the distribution of the residues of the spikes recorded from the largest 

amplitude channel. We found that in 80% of these recording the residues followed a 

/-distribution. By contrast a low percentage (15%) of the cases the residues followed a 

normal distribution. Figure 3.4 shows two examples of the residues distribution, where
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/-distribution can be used to approximate the residues distribution (Figure 3.4A), 

Figure 3.4C plot shows a rare case where normal distribution can be used to model the 

residues distribution.

A B

Figure 3.4. Residues distribution within a session. (A) distribution of residues where 
t-distribution fits the data better than normal distribution, (B) corresponding probability plot(C) 
rare case where both distribution are similar. (D) Corresponding probability plot for the data 
represented in C.

3.4.2 Between session variation:

An examination of the average amplitude percentage change, between successive 

sessions was carried out using the entire cell population in this study. It is evident that 

the change in amplitude is random varying around zero (Figure 3.5). A /-test showed 

that mean percentage change of the amplitude is not significantly different from zero.

76



•10 0 10 20 30
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Figure 3.5. Histogram of the average amplitude percentage change between successive sessions 
for the entire cell population recorded in this study. The average is 0.02 (not significantly 
different from zero) standard deviation is 11.32. The range of the values is between (-32, 47).

A linear function was fitted to the percentage change of the cells’ average amplitude, 

across all the sessions where the cell was recorded, 15 cells that were tracked for the 

largest number of session are displayed in Figure 3.6. A line was fitted to the data of 

each cell so that systematic changes across the entire recording period of the cell can 

be examined. The fitted line had the following equation:

Y = a*(x) + b

Where a is the slope of the line and b is the initial offset.

(3.9)
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Figure 3.6. Selected cell examples illustrating the percentage change in amplitude. The x-axis 
represents the number of session where the cell was successfully sorted and identified, y-axis 
represents the percentage change in amplitude between successive sessions. The solid line 
represents with circular markers represent the amplitude percentage change between the 
successive sessions. The dashed line is a linear line fitted through the data, the equation of the 
lines is displayed within each plot.

78



By calculating the slope it is possible to quantify the slow changes in average 

amplitude. The average slope for all cells tracked is -0.98, most of the cells yielded a 

negative slope indicating that the amplitude change systematically decreased over the 

longer time periods. However as it can be seen in Figure 3.7 there are exceptions 

where the cells change in amplitude increased after longer periods or the slope was 

close to zero.

Figure 3.7. Dot plot of the slopes of the lines fitted to the average amplitude change for all the 
tracked cells across different sessions. Most of these values are close to zero.

3.4.3 Cell identification test:

As described in the methods Wilks’ lambda and PCA distance was caleulated between 

successive sessions, to design a test to assess the similarity of spike waveform.

3.4.3.1 Inverted Wilks* lambda:

For each tracked cell Wilks’ lambda as described in Eq. (3.6) was calculated between 

successive recording sessions, and control comparisons. The result is shown in 

Figure 3.8 where the threshold was varied between 0 and 1. Accuracy indicates that 

the optimum threshold is 0.41 where sensitivity is 80% and specificity 100%.
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Figure 3.8. Wilks’ lambda test performance, the threshold was varied from 0 up to 1.

3.4.3.2 PCA distance

Similarly PCA distance was computed between successive sessions of identical cells. 

The results are shown in Figure 3.9 where the threshold is varied between 0 and 10. 

The Accuracy indicates that the optimum threshold would be 0.93, with Sensitivity of 

83% and specificity of 97%.

Figure 3.9. PCA performance test when the threshold is varied between 0-10
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3.5 Discussion:

In this chapter the variability of spike waveforms between and within sessions were 

examined. The place field of the place cells was chosen as a marker to identify the 

cells across successive recording sessions. This criterion is independent of the spike 

waveform. Hence the results obtained are not affected by large variation in the spike 

waveform. The results show that the distribution of the residues do not follow a 

normal distribution in line with previous findings (Fee et al., 1996b).

A /-distribution fits the residues in the majority of cases. This could be attributed to 

the fact that place cells are complex spikes cells and the amplitude of the spikes can 

vary largely with short inter-spike intervals (Harris et al., 2001), hence the larger areas 

under the curves compared to what is expected from a normal distribution. The 

distribution of the residues has important implication for spike sorting analysis as 

many studies assume a Gaussian variability of spike waveforms.

The results show that amplitude average variation can be up to -47%. This variation is 

large and it has important implications for long term neural recording systems. For 

example, in automatic spike sorting methods it cannot be assumed that spike 

waveforms are stationary for long periods of time. (Santhanam et al., 2007) recorded, 

using an accelerometer, rapid head movements along with neural recordings. It was 

shown that in some cases large amplitude variation of spikes was a result of vigorous 

head movement. Although in this study surgical procedures were followed to prevent 

the electrode from moving spontaneously, the possibility of electrode drifts causing 

large amplitude variations cannot be ruled out. In this study both decrease and 

increase in amplitude change were observed, indicating that the amplitude change is
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not due to deterioration in the electrode. This is expected as the cells were recorded 

for a maximum of 46 days. It has been reported that “stable recordings” for periods 

longer than 6 months can be obtained (Lin et al., 2003, Porada et al., 2000), while the 

recording period in this study is relatively short. There are two possible mechanisms 

for the slow changes; the first is a slow drift of electrode through the tissue, which 

explains increase or decrease in average amplitude as the electrode moves closer or 

further away from the cell body. The second mechanism is the brain tissue response to 

the electrode where the gliosis pushes the cells away from the electrode (Polikov et 

al., 2005). The results demonstrate the need for improved electrode implantation 

procedures to reduce the effects of electrode movements after implantation, and also 

the need for flexible spike analysis to account for changes in spike waveform. 

Understanding the long term changes in spike waveform has particular importance in 

long term studies or in neural prosthesis where signals are acquired over long periods.

While in this chapter it was shown that variability of spike waveform follows a 

/-distribution, it has to be noted that the variability was studied on a small subset of 

cell types (namely pyramidal cells or place cells). However it cannot be assumed that 

all neurons have the same waveform variability. The method applied in this chapter 

can be extended to other types of cells to study if their variability is similar to place 

cells.

In this chapter variability of spike recordings with large amplitude are examined, since 

sorting spikes of a large amplitude recording are relatively easier than lower amplitude 

recordings. It can be expected that the variability to be larger in lower amplitude 

recordings although in those cases the reliability of spike sorting can suffer and bias 

the results.
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Quian Quiroga (2009) demonstrate that the shape of the spikes can be distorted 

depending on the filtering procedure, however filtering procedures were not changed 

during the course of the study hence the effect of filtering should not influence the 

result reported in this chapter.

In this chapter two methods are proposed to test whether spike recording from two 

different sessions are generated by the same cell. Both methods yield similar results, 

this could be due to the fact that most of variation within spike clusters are represented 

by the first three principal component hence the two method become mathematically 

equivalent.

The optimum threshold for Wilks’ lambda statistics is 0.41 while for the PCA method 

is 0.93. However these thresholds can be chosen differently depending on the 

experiment requirement. For example if it is important to exclude false positives then 

the threshold can be lowered to a value were Specificity is 100% rather than choosing 

the optimum trade-off between sensitivity and specificity.

While both tests yield similar performance, the Wilks’ lambda statistics provides 

easier interpretation since the value of this statistics can range only from 0-1. This can 

be used as an objective measure to determine if the same cells are analysed across 

different sessions.

3.6 Conclusions:

In this chapter of the thesis, the variability of spike waveforms is studied. 

Understanding the variability is important in terms of spike sorting, and has important 

implications in studies recording spikes over long periods.
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In line with other studies (Fee et ah, 1996b) it is shown that the assumption of 

Gaussian waveform variability is not valid. The results also show that amplitude 

variability over long period recording can be large, violating the assumption of 

stationary. Hence spike sorting methods should consider these two factors in their 

design.

For example (Calabrese and Paninski, 2011), propose a method to account for non

stationary during spike recordings. This algorithm can be incorporated with the 

method proposed in the previous chapter, to enhance the performance of spike sorting 

methods during long recording sessions.
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Chapter 4. Spike as information

4.1 Introduction:

In the previous chapters of this thesis, methods were proposed for the basic processing 

of spike information extraction, more attention was given to spike waveform to carry 

the task of spike sorting, and also the waveform variability of in-vivo spike recordings 

were reported. It has to be noted that the main purpose of spike waveform analysis is 

to extract the information carried by these spikes through the brain. In fact spike 

sorting is the first step in the extraction of information from spike recordings. The 

focus of this chapter is on the subsequent steps after spike sorting which is examining 

the information carried by these spikes. In chapter 1 a brief overview of information 

transmitted by these cells are presented namely, place cells, head-direction cells and 

grid cells which are thought to be important for spatial navigation. In this chapter the 

spiking properties of head-direction cells are examined in greater detail, specifically 

the relation between spikes in head-directional cells and theta rhythms are closely 

studied.

The first evidence that there is a population of cells that integrate head direction and 

theta oscillation in the thalamic anteroventral nucleus are presented.

Head-direction cells are neurons encoding the animal’s directional heading in the 

horizontal plane, originally it was discovered in the postsubiculum by (Taube et al., 

1990), head-directional cells subsequently were found in several other locations
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within the brain (Taube, 1995, Mizumori and Williams, 1993, Sargolini et al., 2006) 

(Figure 4.1). Therefore that head-directional cells is accepted to act as an internal 

compass providing an innate sense of direction (Knierim et al., 1998).

Figure 4.1: Major Regions in the rodent brain involved in the head-direction circuit blue areas 
indicate regions where head-directional cells have been identified (Taube, 2007).

The firing of these cells is determined by the animal’s head direction, and is 

independent of other factors such as behaviour, location in the environment and trunk 

position (Taube, 1995). Figure 4.2 shows an example of head-directional cell. With 

the firing rate that is maximum in the preferred head direction, and as the animal head 

moves away from this direction the firing rate decreases.
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70.30 Hz

Figure 4.2: Example of head-directional cell. (A) Shows the trajectory of the animal (black line), 
coloured dots represent the location of the animal when a spike was emitted. (B-C) shows head 
directional preference of the cell.

Head-direction cells integrate external sensory inputs (visual, auditory and tactile) as 

well as internal idiothetic (self-motion) signals (Knierim et al., 1998, Goodridge et al., 

1998, Zugaro et al., 2000, Kudrimoti et al., 1996). These idiothetic signals are driven 

by the combination of vestibular and proprioceptive inputs (Stackman and Taube, 

1997, Stackman et al., 2003, van der Meer et al., 2007).

The anatomical pathways mediating head-direction signals share remarkably similar 

connectivity to those mediating theta rhythm (a sinusoidal oscillation of 6 to 12 Hz). 

Both pathways involve the tegmental nuclei ^ mammillary bodies ^ anterior 

thalamic nuclei ^ subicular/entorhinal cortices (Swanson and Cowan, 1977, Witter et 

al., 1990, Van Groen and Wyss, 1995, Gonzalo-Ruiz et al., 1997, Shibata, 1993b, van 

Groen et al., 1999). Previous studies suggest that the head-direction and theta systems 

involve parallel subcomponents of this circuitry (Vertes et al., 2004, Vann and 

Aggleton, 2004). Neurons possessing both theta and head-directional properties have 

been described at the highest level of this circuitry, namely the pre-/parasubicular
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region, where a subset of cells encoding both direction and location with theta firing 

modulation is reported in those regions (Cacucci et al., 2004, Boccara et ah, 2010). 

The proposal that theta and head-directional processing might converge at an earlier 

stage is supported by the findings that head-direction cells are present in anteroventral 

thalamic nucleus (Yoganarasimha et ah, 2006), which is known to be the locus of 

theta oscillations (Vertes et ah, 2001). The anterior thalamus has already been shown 

to integrate angular head velocity and head directionality, this was demonstrated by 

examining the spiking patterns of anterodorsal thalamic neurons (Blair and Sharp, 

1995, Goodridge and Taube, 1997).

This chapter examines the integration of directional and theta-related information in 

thalamic anteroventral nucleus (AV). It has been reported that AV possess neurons 

that fire with theta-bursting and theta-modulated patterns (Vertes et ah, 2001, Tsanov 

et ah, 2011); suggesting the importance of theta oscillation in information encoding in 

AV.

Theta rhythm appears to serve a critical role for spatial and nonspatial mnemonic 

functions of the limbic system (Buzsaki, 2005). Consistent with this view, 

electrophysiological studies in rats have found that synaptic plasticity occurs between 

sequentially-activated hippocampal place cells during theta epochs (Mehta et ah, 

2000, Ekstrom et ah, 2001). This line of research illustrates the importance of “limbic 

theta” cycle in the temporal coding and decoding of neuron populations (Buzsaki, 

2002, Skaggs et ah, 1996).

Firing pattern can also augment the thalamic responsiveness to sensory processing. 

Ventrobasal thalamic neurons show rhythmic burst firing to incoming somatosensory 

stimuli (Fanselow et ah, 2001, Swadlow and Gusev, 2001).
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This chapter examines the rhythmic modulation of the head-direction thalamic signal. 

The spiking properties of thalamic anteroventral head-direction cells are analysed and 

it is found that a population of neurons fire rhythmically at theta frequency. This 

chapter also shows that theta-bursting cells in AV that display directional modulation. 

These data further elaborate the interaction of theta and head directional processing 

within the structures of the hippocampo-diencephalic circuitry (Kocsis and Vertes, 

1994, Vertes et al., 2001).

The main finding of this chapter was published:

Tsanov, M., Chah, E., Vann, S. D., Reilly, R. B., Erichsen, J. T., Aggleton, J. P. & 

O'Mara, S. M. 2011. Theta-modulated head direction cells in the rat anterior thalamus. 

J Neurosci, 31, 9489-502.

4.2 Methods:

4.2.1 Surgical implantation of electrodes:

The recording electrodes consisted of eight bundles of four platinum-iridium wires 

(90% platinum, 10% iridium; HM-L insulated, 25pm bare wire diameter, California 

Fine Wire Ltd., California, USA) twisted together. Tetrodes were threaded through a 

25 gauge guide cannula, and protected with a 21 gauge cover. Tetrodes were then 

mounted in a small microdrive (Axona Ltd., UK) and implanted in the anteroventral 

thalamus (-1.5 AP, -1.4 ML and 5.0 mm dorsoventral to dura).

For the cases with parallel hippocampal recordings, a recording electrode was 

implanted in CA3 subregion (-3.8 AP, -3.0 ML and 3.0 mm dorsoventral to dura). 

Experiments were conducted in accordance with European Community directive, 

86/609/LC, and the Cruelty to Animals Act, 1876, and followed Bioresources Ethics
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Committee, Trinity College, Dublin, Ireland, and international guidelines of good 

practice.

4.2.2 Neural recording:

After at least one week’s recovery, rodents were connected, via a sixteen channel 

headstage (Axona Ltd.), to a recording system, which also allowed for animal position 

tracking. Signals were amplified (x 10000 to 30000) and band-pass filtered between 

380 Hz and 7 kHz for single-unit detection. To maximize cell separation, only 

waveforms of sufficient amplitude (at least three times noise threshold) were acquired. 

Candidate waveforms were discriminated off-line using graphical cluster-cutting 

software (Axona Ltd.), which allows waveform separation based on multiple features 

including spike amplitude, spike duration, maximum and minimum spike voltage, and 

the time of occurrence of maximum and minimum spike voltages. Autocorrelation 

histograms were calculated for each unit, and the unit was removed from further 

analysis if the histogram revealed the existence of correlations within the first 2ms 

(refractory period), inconsistent with good unit isolation. Autocorrelograms were 

plotted between -1000, 1000 ms, with a bin width of 1 ms.

4.2.3 Recording sessions:

The recordings took place in a square arena (64 x 64 x 25 cm high) situated in the 

centre of a room with multiple background cues available (surrounding curtains were 

open). Rats were placed in the open field and 20mg food pellets (TestDiet, Formula 

5TUL) were thrown in every 20 sec to random locations within the open field; in this 

way, animals locomoted continuously, allowing for complete sampling of the 

environment. The duration of each experimental session was 16 min, allowing the 

recording of the local field signal with predominant theta periods.
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4.2.4 Criteria for data inclusion:

Cells were selected on the basis of their directional properties, rhj^thmicity of their 

firing, and spike isolation.

A total 226 well-isolated units were identified within the anterior thalamic nuclei from 

12 male (250-350g) Lister-Hooded rats (Harlan, UK). Based on electrophysiological 

and post-mortem histological criteria, it was estimated that 135 of these units were 

from anteroventral nucleus (AV), while 91 were from anterodorsal nucleus (AD).

For a cell to be classified as head direction-by-theta (HD-by-theta), it had to meet the 

following criteria:

1. Peak rate in the directional field exceeding 1 Hz.

2. Peak firing rate (preferred direction) >30% higher than the non-preferred 

(background) firing rate.

3. The value of the autocorrelogram calculated theta index > 0.01.

Only units that fired a sufficient number of spikes for the duration of the 16 min 

recording sessions to allow the theta index analysis (see below) were included.

Besides the head-direction and HD-by-theta cells we also analysed a population of 

thalamic theta cells. Thalamic units were classified as theta cells based on their phase 

locking to local theta oscillations, their bursting firing properties and their spike shape 

(Christian and Deadwyler, 1986).

A theta unit was defined as a directional theta cell if the peak firing rate was >30% 

higher than the non-preferred firing rate. The non-preferred firing rate represents the 

unit’s activity when the animal is facing the non-preferred heading direction of the 

unit.
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Theta cells were defined as fast spiking for units with average firing rate >30Hz, while 

the slow spiking units’ average firing rate was <30Hz.

4.2.5 Theta index calculations:

A sine wave with decaying amplitude was fitted to the autocorrelograms Eq. (4.1) 

(Royer et al., 2010):

[a(s\n{^ - cot)) + b].e + ce (4.1)

Where t refers to time and a,b,c,Tj,T2 and co are the fit parameters. Initially the 

parameters were estimated by smoothing the autocorrelgrarn and the peaks and 

troughs of the oscillation is estimated, these values are used to estimate a,h,Ti,co. Then 

the initial estimations are used as initial guess for the least squares fitting method and 

fit parameters are estimated more accurately.

The theta index is defined as the ratio of the fitted parameters, alb, where a is 

amplitude of oscillation and b is the offset of the oscillation. Only autocorrelograms 

for all spikes with values of the theta index higher than zero were analysed, excluding 

the units with low firing rates.

4.2.6 Head-direction analysis:

Directional analyses were only performed for experiments with two LEDs (for all 

head-direction cells in anterodorsal and anteroventral thalamic nuclei, 101 units in 

total). The rat’s head direction was calculated for each tracker sample from the 

projection of the relative position of the two LEDs onto the horizontal plane. The 

directional tuning function for each cell was obtained by plotting the firing rate as a 

function of the rat’s directional heading, divided into bins of 5 degrees. Similar to 

others the firing rate was computed based on the total number of spikes divided by the
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total time in that bin (Taube et al., 1990). To restrict the influence of inhomogeneous 

sampling on directional tuning, only recordings sampling all directional bins by the rat 

were included.

The directionality of the HD units in the horizontal plane (measured in degrees) was 

normalized for comparison of the HD firing rate properties. The peak firing rate of 

cells that respond to different direction of heading was aligned to a head-direction of 

180° (Bassett et al., 2005). The firing rate was normalized (with values between 0 and 

1) with respect to the peak firing rate for each unit (Bassett et al., 2005).

4.2.7 Gaussian function:

The Gaussian function or the Gaussian distribution is described mathematically by Eq. 

(4.2):

fix) = re (4.2)
crV^

Where G represents the peak of the eurve, p is the mean and a is the standard 

deviation. The Gaussian distribution has the property that the majority of values 68% 

fall between ±a (standard deviation) away from the mean.

4.2.8 Directional and locational information content:

The recording environment was divided into set boxes of (3cm x 3cm). Firing maps 

were calculated by dividing the number of spikes which occurred in each box by the 

total trial time the animal spent in that box (Cacucci et al., 2004). This produced maps 

showing the firing of cells (Hz) with respect to the loeation of the rodent.

To correet sampling bias and to quantify the influence of location on head-direction 

cells, the maximum likelihood model (MLM) analyses (Cacucci et al., 2004) were
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employed. After the MLM correction, we calculated the locational and directional 

information (Skaggs et ah, 1993):

( 3 A

(4.3)

Where 1 refers to Information content, pj is the probability of the rat occupying bin j, Xj 

is the average firing rate in bin j, and X is the average firing rate of the cell.

4.2.9 Distributive ratio analyses:

To overcome the problems of sampling bias, The “distributive hypothesis” method 

was also included in the analysis (Muller et ah, 1994, Cacucci et al., 2004). Similar to 

the MLM correction, the distributive hypothesis procedure was applied to quantify the 

influence of head direction on the spatial firing. The calculation of locational 

distributive ratio is based on the estimation of directional firing that one would predict 

under the null hypothesis that a cell’s firing is only modulated by location and that the 

only influence of head direction arises from the sampling bias discussed above. The 

predicted rate as a function of direction is as follows:

Rpredie) = T^TAG) (4.4)

Where /?p is the firing rate in one pixel and Tf(6) is the time spent facing head- 

direction 6 in that pixel. Then this tests whether the observed directional tuning for the 

cell, /?obs(6), differs from the one calculated under the assumption that the effect of 

direction is purely artificial, R?KA(d)- This is achieved by computing a “distributive 

ratio” (DR) as follows:
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DR =

m+Robs))
((i+^p,,^(0) (4.5)

Where N is the number of directional bins considered. For a perfect prediction, DR is 

zero. A perfect prediction indicates that the null hypothesis is true, namely place-cell 

firing is only modulated by location and the directional influence on place-cell firing 

is only attributable to the inhomogeneity of sampling referred to above, whereas high 

values of this ratio would indicate a poor prediction (indicating that head direction 

accounts for some of the variability in the firing rate of the cell).

4.2.10 Definition of compact spike trains:

For HD-by theta units, the trains included three or more spikes with inter-spike 

interval of 10 ms and 15-250 ms pause, preceding the first spike of the train.

The burst mode was defined with maximal ISI interval of 4 ms to the preceding spike 

(Ramcharan et al., 2005).

4.2.11 Inter-spike interval analysis:

The inter-spike (ISI) scatter plot, each dot on the scatter plots a spike where the time 

interval of the spike to the preceding one is on the (x-axis) and the time interval of the 

spike to the following one is on the (y-axis). The inter-spike (ISI) ratio represents the 

ratio between the number of spikes from the largest cluster marked with red on the ISI 

plots and the summation of spikes in the second and third largest clusters in the ISI 

scatter plot (marked in green/blue on the ISI plots) Figure 4.8.

Mean shift clustering was used to cluster the spikes in the ISI scatter plots. The 

principle of this clustering method is that assuming the feature space can be modelled 

by a probability density function then dense regions (local maxima) correspond to
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cluster centres, using mean shift procedure points in the feature space that converge 

onto the same local maxima are assumed to belong to the same cluster. Mean shift 

clustering allows the locating of the maxima of a density function given, discrete data 

sampled from that function (Cheng, 1995). This function determines the weight of 

nearby points for re-estimation of the mean. Mean shift clustering is a non-parametric 

clustering method that does not require prior knowledge of the number of clusters and 

it will produce arbitrarily-shaped clusters that depend upon the topology of the data 

(Comanieiu and Meer, 2002). This clustering method was employed in this study 

sinee no prior assumptions are necessary for the clustering procedure.

The mean shift clustering procedure (Comanieiu and Meer, 2002) is as follows given 

n data points JC/, for / values (1, ...n), in the d-dimensional space R‘^ (in this case d = 2), 

the multivariate kernel density estimate for the kernel K(x) is then given by Eq. (4.6).

nh‘^ i=\ K h (4.6)

h is the bandwidth {h = 0.2). Assuming that the kernel K(x) (in this chapter a flat 

kernel was employed) is symmetric, it integrates to 1 and satisfies Eq. (4.7).

(4.7)

Where the k(x) is the “profile kernel” and Ck.d is the positive normalization constant 

which insures K(x) integrate to one.

Using Eq. (4.7) to write Eq. (4.6) the following equation is obtained:

'^k,d
nh‘^ /=i

f
X - X;

2\

V
h J

(4.8)
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The first step is then to find modes of the density; these modes are located at the zeros 

of the gradient i.e. V/(x) = 0.

Using the linearity of the previous equation the gradient can be written as:

,=i

f x-x. 2''

V
h J

(4.9)

2ck,d n r
X - Xj 2)

h\ ) _

Zn X-Xj 2^

h y
Zn

,=1^
f 2\X - X (4.10)

Where the g(x) = - k'(x). Similar to k(x) the g(x) is the profile kernel of G(x).

(4.11)

The first term in Eq. (4.10) is proportional to the density estimate at x, while the 

second term is the mean shift m. in other terms it represents the difference between the 

weighted mean, using kernel G for weights, and x the centre of the kernel window. 

Hence it always moves towards the direction of maximum density.

m(x) =

X-Xj 2^

h y

Tlxs
f 2^X - Xj

h
V y

- X (4.12)

Finally the mean shift procedure is calculated by successive computation of shift 

vector m(x), and translation of the kernel window G(x) by m(x) until a stationary 

point is reached.
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4.2.12 Measurement of local field activity:

I he local field potential (LFP) was sampled at 250 Hz and stored for further off-line 

analysis. LFP signal frequency analysis was carried, where the power was calculated 

using the short-time Fourier transform of the signal (harming window of 2s, with 

overlap of 1 s) and interpolated into colour-coded power spectrograms. Information 

was displayed as the magnitude of the time-dependent Fourier transform versus time in 

a colour gradient graph with the maximum corresponding to 0 Db. The LFP from 32 

charmels (8 tetrodes), in AV was correlated to the LFP of two charmels in CA3 of five 

rats. Three recording sessions with duration of 16 min each were conducted for five 

animals.

4.2.13 Cross-spectral analyses:

The coherence between sniff and hippocampal LFP was calculated using NeuroSpec 

(Halliday et al., 1995). The coherence uses a method of disjoint sections, where the 

recording (R) is divided in to L non-overlapping epochs each of time length T, where 

R=LT. For the segmented signal x Discrete Fourier Transforms is used to estimate the 

auto-spectrums of the signals fxx(^), where 2 is a particular frequency. The linear 

relations (coherence) between signals x and y is Rxy is then estimated using auto and 

cross spectra’s.

Rxy(^)\
UX)fjX) (4.13)

The significance of the coherence was determined as in (Halliday et al., 1995):

i-ro.o5)^-> (4.14)
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4.2.14 Sniffing and theta cells:

It is reported that odour discrimination is depended on sniffing at frequencies of 6-9 

Hz, anticipation of reward was associated with sniffing at frequency of 9-12Hz 

(Kepecs et al., 2007). Similar to frequency band of theta oscillations. Hence in this 

chapter the potential relation between theta cells and sniffing was investigated.

4.2.14.1 Measuring the sniffing activity:

Similar to (Kepecs et al., 2007) a thermocouple was implanted in the nasal passage 

through the nasal bone (Figure 4.3) of the rodents to measure the sniffing activity 

during the recording sessions.

Figure 4.3: schematic of thermocouple placement in the nasal passage (Kepecs et al., 2007)

The electrical noise was large hence a second method of measuring sniffing was 

adopted (Verhagen et al., 2007), where a hollow metal cylinder was implanted in the 

nasal passage to allow passage of air through the cylinder. A plastic tube was attached 

to metal cylinder and connected to a pressure sensor (24PCAFA6G, Honeywell, 

Morristown, NJ). The output of the pressure sensor was connected to a differential 

amplifier with a gain of 10 and the sniffing signal was sampled at 250Hz.
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4.2.14.2 Sniffing phase and theta firing cells:

To measure if the firing of the cells occurs at specific period of sniffing cycle, each 

sniffing cycle was modelled as a sinusoidal wave; first the sniffing signal was up 

sampled to 1 kHz in order to achieve better phase resolution. The peaks were then 

detected by estimating the gradient, the peaks then correspond to locations where the 

gradient switches from positive to negative. Each sniffing cycle was considered as the 

period between two successive peaks, where the phase of the peak was considered as 

zero. The best fit cosine was then found for each cycle using least square fit (an 

example is shown Figure 4.4A).

For each spike of the theta cell, the phase of the sniffing cycling corresponding to the 

time of the spike was obtained. Polar plots displaying the frequency of the spikes 

versus phase of the sniffing cycle were used to determine, if the firing of these cells 

occur at specific phase.

4.2.14.3 Similarity measure between Silent periods and sniffing cycle:

The spike similarity measure proposed by (Lyttle and Fellous, 2011) was modified to 

suit analysing continuous and a point processes.

First the sniffing signal was transformed as described in the previous in series of 

cosine waves, and the entire signal was presented by their phase. This transforms the 

signal from a cosine waveform to series of “triangular waves” (Figure 4.4A (bottom)). 

Similarly the spikes timing can be transformed in a series of triangular waves

(Figure 4.4B (bottom)). Assuming a spike train with timings d = di,d2, .....dn. Where

n is the number of spikes detected for the cell during the recording.
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The transformation f(t) is then:

m 0 for t&{d„d,+T) 
t-{di+ t) for t&[xi+ T,) (4.15)

Where r was selected to 10 ms, this insures spike trains are considered as one event. 

Finally the Pearson correlation can be calculated between both signals at time lags to 

determine the silence and sniffing cycle relationship. Where a value of one indicated 

perfect relationship between the two signals, as the time lag between signals increase, 

it is expected that a true correlation would decease, since the signals are not 

synchronised at longer time delays.

A B

Tlm« (•)

Tlm«(s)

♦

Tkn«(s)

Figure 4.4: Transformation of the signals into a series of triangular waves (A) (first row) An snap 
shot of sniffing activity (blue) and the fitted cosine waves (red) (second row) transformed signal. 
(B) Spiking activity of theta cells (up), and the transformation in continuous signal (bottom).
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4.2.15 Post-mortem veriflcation of electrode site:

Rat brains were removed for histologieal verification of electrode localization, at the 

end of recordings session. The animals underwent transcardial perfusion with 0.1 M 

PBS followed by 10% formol-saline. The brains were postfixed in 10% formol-saline 

and then transferred to 25% sucrose overnight. Brain sections (16 pm) were Nissl- 

stained, using 1% toluidine blue, and examined using brightfield microscopy.

4.2.16 Statistical Analysis:

All data were analysed using Prism software (GraphPad Software, Inc, La Jolla, CA). 

Statistical significance was estimated by using two-tailed Mest and two-way analysis 

of variance (ANOVA) paired with post hoc Newman-Keuls test. The probability level 

interpreted as statistically significant was p < 0.05. All data points are plotted ± sem.

4.3 Results:

4.3.1 Histological and electrophysiological identification of thalamic units:

High-frequency current lesions were induced through the electrodes that recorded 

theta-modulated head-direction cells, to determine the exact location of our electrode 

tips among the nuclei of the anterior thalamus (Figure 4.5A). A total of 226 well- 

isolated units were recorded from anteroventral (AV) and anterodorsal (AD) nuclei in 

12 rats. All recordings were made during pellet-chasing in a square arena. On the basis 

of the histological verification, 135 cells from nine rats were assigned to AV 

(Figure 4.5B) and 91 cells from eight rats to AD (Figure 4.5C). The recording 

positions in anteroventral nucleus were distributed predominantly in its medial 

compartment (Figure 4.5).
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Figure 4.5: Anatomical location and electrophysiological detection of anteroventral units. (A) 
Coronal brain section from a rat where eight chronically-implanted tetrodes targeted the 
anteroventral nucleus (AV, indicated with dashed white line). The black arrow indicates the tip of 
the tetrodes. The dashed blue line indicates the adjacent anterodorsal nucleus (AD). Atlas 
schematic (right) shows rat anteroventral nucleus location (highlighted with red line). The dashed 
blue rectangle denotes the extent of the histological section on left. (B) coronal brain sections from 
two rats with chronically implanted tetrodes in AV (white line). High-frequency current was 
applied at the level of HD-by-theta units’ identification. (C) coronal brain sections from two rats 
with chronically implanted tetrodes in AD (blue line).

To achieve maximum isolation of the extracellular signal, tetrode electrodes were 

used, which allowed clear identification of thalamic units (McNaughton et ah, 1983, 

Gray et ah, 1995). Head-direction (HD) cells are characterized by a tuning curve 

(Taube et ah, 1990), where the firing rate is represented on the y-axis and the animal’s 

head direction represented on the x-axis. Head directionality can be depicted using 

polar plots (Knierim et ah, 1995), where HD-by-theta cells (Figure 4.6A) reveal 

similar to the putative HD cells directionality (Figure 4.6B). The average firing rate 

(33.5 ± 1.66 Hz) and maximal firing rate (109.3 ± 7.43 Hz) of HD-by-theta units (n = 

36) were comparable to the average (31.5 ± 1.55 Hz) and maximal (98.7 ± 5.9 Hz) 

firing rates of the HD units (n = 101), respectively (Table 4.1). The mean spike
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amplitude (261.9 ± 22.6 pV) and spike width (189.5 ± 22.6 ps) of the HD-by-theta 

spikes (Figure 4.6C) showed similar values to the mean spike amplitude (251.1 ±12.1 

pV) and spike width (174.2 ± 6.5 ps) of the HD spikes, respectively (Figure 4.6D).

Table 4.1: Electrophysiological classification of thalamic units with head directional properties.

Cell types Head-direction Head-direction-by-
theta

Directional theta

n 101 36 10
Mean spike width (ps) 174.2 ±6.5 189.5 ±22.6 186.1 ± 16.0

Average frequency 
(Hz)

31.5± 1.5 33.5 ± 1.6 26.8 ± 1.7

Maximal frequency 
(Hz)

98.7 ±5.9 109.3 ±7.4 133.7± 13.1

Theta index all spikes 0.0017 ±0.0002 0.0217 ±0.0004 0.274 ± 0.0551

104



104.15 Hz
B

./"I

70.30 Hz

150 pVj

.. I

4

4

200 ps

LJ
-8-2 2 8 

time (ms)

ki
-8-2 2 0

a
i\

SJf v

-2 2 8

I..I

-8 -2 2 8

/;

1/

\kd
-8-2 2 8 

time (ms)

II
-8-2 2 8

lllllll^ jjlll
-2 2 8

k J
-8-2 2 8

/i
J

Af <

ki
-8-2 2 8 

time (ms)

ii
-8-2 2 8

I J
-2 2 8

II
-8-2 2 8

Figure 4.6: Spiking properties of anteroventral units. (A) Head-directional properties of HD-by- 
theta units. (B) and HD units. The spiking of HD-by-theta (A up, left, marked with purple 
symbols) and HD {B up, left, marked with red symbols) follows equivalent directional pattern. 
The experiments are conducted in rectangular recording arena and animal’s path is marked with 
black line. Polar plot examples reveal the head directionality of HD-by-theta (A up, right) and 
HD (B up, right) units. The polar plots coordinate system denotes maximal firing frequency of the 
recorded unit with OHz in the centre and 104.15/70.30Hz on the edges for A and B respectively. 
The same signal can be plotted as firing rate versus bead direction tuning plot for HD-by-theta (A 
bottom) and HD (B bottom) units. The spike waveform (left) and the autocorrelogram of spiking 
waveform (right) for eight anteroventral HD-by-theta units (C) and four HD units (D). For the 
spike waveform, the solid curve represents the mean and the dashed curve represents the 
standard deviation. Autocorrelation histograms were calculated for -10/10 ms. The clear isolation 
of the neuronal extracellular response was identified by the absence of correlations within the 
first 2 ms of the refractory period.
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4.3.2 Tonic and rhythmic profdes of head-directional cells:

The occurrence of rhythmic patterns in neuronal spiking was estimated from the inter

spike intervals scatter plots of all AV neurons with head directional tuning. The two- 

dimensional inter-spike interval (ISI) scatter plot represents the action potentials as 

points, for which the x-axis indicates the time interval before and the y-axis indicates 

the time interval after the action potential. The ISI scatter plots of 101 head-direction 

units (44 from AD and 57 from AV) with predominantly tonic spiking were 

characterized with one major ISI cluster and defined as putative HD cells 

(Figure 4.7A). The tonic ISI profile of HD cells can also be visualized by sample 

spike traces (Figure 4.7B).
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Figure 4.7: (A) Inter-spike interval scatter plot for head-direction unit, where the clustering 
procedure finds one large cluster, indicating tonic firing of the cells. The points below the dashed 
horizontal red line represent the action potentials within the 4nis range that defines bursting 
mode. The ISl scatter plot on the right presents the action potentials from the central cluster 
(marked with red). (B) Sample recordings of the same head-direction unit for 1 sec duration (left) 
and 500 msec duration (right, marked with red).

36 head-directional units (HD-by-theta group, all of them from AV) showed an 

additional two ISI clusters, located in the 100 ms pre- and post-inter-spike intervals 

range (Figure 4.8A,B). As expected that the additional ISI clusters represent the first 

(Figure 4.8A bottom; marked with green) and the last spike (Figure 4.8A bottom.
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marked with Blue) of rhythmically-grouped spike trains. These compact spike trains 

occur at a frequency of 6-9 Hz (Figure 4.8A,B bottom).
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Figure 4.8: (A) ISI scatter plots for all spikes (left) and for the main clusters (right) of two HD-by- 
theta units. The central cluster is marked in red, with two further clusters (blue and green). 
Sample recordings of the same cell with 1 sec duration (below, left) and 500 ms duration (below, 
right). Note that the spikes from the green ISI cluster in B take first position in the spike trains, 
while the spikes from the blue ISI cluster are positioned last. The intermediate spikes correspond 
to the points from the central red ISI cluster.

The most frequent spike train parameters for the HD-by-theta cells included three or 

more spikes with an inter-spike interval of 10 ms and a 25-250 ms pause preceding the 

first spike of the train. The number of compact spike trains per total spikes from HD 

cells is much less compared to HD-by-theta cells (P < 0.01) (Figure 4.9A). This 

finding reflects the difference between the ISI profiles of these groups, represented by 

the ISI ratio (the ratio between the total number of spikes from additional ISI clusters, 

marked in green/blue and the number of spikes from the largest cluster, marked in red 

on the ISI scatter plots multiplied by 100). The ISI ratio for HD-by-theta cells is 

several-fold higher than the ISI ratio of HD cells (P < 0.001) (Figure 4.9B).
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Figure 4.9: (A) Comparison between the relative number of spike trains between HD-by-theta 
and HD cell groups (left, P<0.01). (B) The ratio between additional green/purple clusters and 
central red cluster multiplied by 100 (ISI ratio) for the anteroventral HD-by-theta and HD cell 
groups (right, /’<0.001).

The major ISI cluster and the additional two ISI clusters contain the spikes forming 

the compact spike trains Figure 4.10. ISI analyses therefore suggests the two main 

types of head-directional cells in AV: tonic and rhythmic units.
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Figure 4.10: (A) Three examples of ISI scatter plot of HD cells. (B) ISl histograms of HD-by-theta 
units for all spikes (C) The main ISI clusters of plots in B. (D) ISI scatter plots when filtered for 
compact spike trains only.
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The irregularity of the ISI can be also quantified using coefficient of variation, which 

is the ratio between the standard deviation to the mean of ISl’s. The coefficient of 

variation is significantly different between the two groups {P < 0.001) where this 

coefficient was calculated for ISIs less than 200ms to exclude period’s transition 

between preferred and non-preferred head direction. The HD-by-theta group yield a 

higher coefficient of variation (1.189 ± 0.03), and for HD group (0.995± 0.022). The 

ISIs of head-direction cells are highly irregular (Taube, 2010), hence the high values 

of coefficient of variation. While the coefficient of variation indicates the higher 

irregularity of ISIs between the two groups, the ISI scatter plots gives finer details 

where this irregularity originates from.

4.3,3 Theta rhythmicity of anteroventral neurons:

To quantify the rhythmicity of HD-by-theta cells, a sinusoidal function with decaying 

amplitude was fitted to the spike autocorrelogram of each neuron (the fitted curve is 

represented by the red line in Figure 4.11) and the relative amplitude of the fitting 

parameter were used to calculate the theta index (Royer et al., 2010). As described in 

the method section the theta index is the maximal amplitude of the sinusoidal fitted 

curve relative to the maximal value of the non-sinusoidal fitted curve of the 

autocorrelograms. The predominant tonic spiking of HD cells was non-rhythmic 

autocorrelograms (Figure 4.1 lA) with theta index values close to zero (0.0017 ± 

0.0002). Rhythmic spiking resulted in theta-modulated autocorrelograms for HD-by- 

theta units (Figure 4.11B), with theta index values of 0.0217 ± 0.0004.
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Figure 4.11: Evaluation of theta rhythmicity. (A) 1 s autocorrelograms of two HD units. (B) and 
four HD-by-theta units. The fitted vertical red line indicates the relative amplitude of the sinusoid 
component of the autocorrelogram, visualizing the degree of autocorrelogram rhythmicity (Royer 
et al., 2010).

To examine the head directional firing characteristics within periods of maximal firing 

it was assumed that head-directional tuning curves obey a Gaussian distribution. The 

rhythmicity of the spikes within the ±a of the peak was examined to investigate how 

head-directional firing is modulated when the animal is facing the preferred direction 

for the recorded unit (Taube, 2010). This includes spikes from the central part of the 

head-directional tuning curve. By examining this central part of tuning curves It was 

found that the HD autocorrelogram (Figure 4.12A) yielded the HD theta index (0.0018 

± 0.0002) approximately the same value as the entire tuning curve, however HD-by- 

theta autocorrelograms (Figure 4.12B) showed higher rhythmicity, with values of 

0.0484 ± 0.0064 double the previous value (0.0217 ± 0.0004).
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Figure 4.12: Evaluation of theta rhythmicity for HD preferred direction of firing which include 
all spikes from the central region ±o peak and the lower panels include only the spike trains from 
the ±<f peak.. (A) Is autocorreiograms of two HD units (B) and four HD-by-theta units.

To examine the rhythmie properties of the spike trains, the theta index only for the 

aetion potentials composing the spike trains were analysed (Figure 4.13). The theta 

index of HD-by-theta group reached values of 0.06255 ± 0.0086.
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Figure 4.13: : Evaluation of theta rhythmicity for HD preferred direction which include all spike 
trains from the central region ±o peak and the lower panels include only the spike trains from the 
±o peak.. (A) 1 s autocorreiograms of two HD units (B) and four HD-by-theta units.

Examining the peak firing regions of the spike trains showed that the theta index 

increased significantly, compared to all spikes of HD-by-theta units (P < 0.01,
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Figure 4.14 C). In this case, the rhythmicity of the HD-by-theta autocorrelograms 

reached their maximal value (0.1870 ± 0.0265), while the HD autocorrelogram 

revealed zero values when filtered for spike trains.
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Figure 4.14: (A) Theta index of all spikes for HD-by-theta (n = 36) and HD (n = 101) cell groups. 
(B) Theta index of spike trains for HD-by-theta and HD cell groups (/*<0.01). (C) Comparison 
between theta index values of all spikes within preferred direction of firing (grey bar) and spike 
trains Gaussian peak (white bar) for HD-by-theta units (/’<0.01).

To determine the frequency with which the compact spike trains of thalamic head- 

directional units occur. Figure 4.15A shows a plot of inter-train interval. The sequence 

of HD-by-theta spike trains predominated in the range of 80 and 170 ms, 

corresponding to the frequency range of 6-12 Hz (Figure 4.15A, black). In 

comparison, the HD spike trains did not show a preferred frequency range 

(Figure 4.15A, grey). To determine the spike train frequency, the mean spike train 

frequency for each HD-by-theta unit across all recording sessions was analysed 

(Figure 4.15B). We found a distribution of the spike train frequency in the range of 

7.89 ± 0.15Hz. These data show that HD-by-theta units exhibit a constant preference 

for their spiking frequency (which is around 8Hz).
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Figure 4.15: Theta rhythmicity of anteroventral spike clusters. (A) Distribution of spike train 
intervals (mean ± sem) for HD-by-theta units. Dashed vertical line denotes interval of 125 ms 
(8Hz). The values of HD cells are indicated with grey. (B) Mean values of the spike train 
frequency (Hz) for all HD-by-theta cells. The inset on the right represents the averaged frequency 
for all HD-by-theta cells (along with their standard deviation).

4.3.4 Theta cells correspond to HD rhythmicity:

The AV is also a location of theta cells (Tsanov et al., 2011). Next the aim was to 

determine if the firing pattern of HD-by-theta units is related to thalamic theta cells. 

To achieve this, recordings were analysed where both theta- and HD-by-theta units 

were detected on the same channel of the same tetrode. This proximity suggests with a 

high probability that both cells are close enough to be innervated with the axonal 

branches of the same presynaptic afferent. The crosscorrelograms between these cell 

pairs demonstrated the synchronous rhythmicity for both units (Figure 4.16A). 

Furthermore, the crosscorrelation was negative at time lag 0 between theta and HD- 

by-theta spikes for all pairs (marked with a vertical white line). When compared to a 

crosscorrelograms between theta and putative HD cells recorded from the same 

channel, we found no evidence of synchronization (Figure 4.16B). The negative 

crosscorelation between theta and HD-by-theta spikes can be seen in sample traces of 

these cell pairs (Figure 4.16(7). The rhythmic bursts of theta cells (red traces) were 

paralleled occasionally by pauses of HD-by-theta spiking activity (purple traces). The 

subsequent pauses formed compact spike trains, which were evident during the firing
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of HD-by-theta cell in the preferred head direction (Figure 4.16C black trace, bottom). 

These parallel events occurred at the troughs (marked with dotted rectangles) of the 

simultaneously-recorded local field potential (green trace). Thus, the intervals 

between the spike trains of HD-by-theta cells corresponded to the local field troughs, 

which in turn are phase-locked to theta cell bursts.
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Figure 4.16: Rhythmic modulation of anteroventral units corresponds to the activity of theta 
cells. (A) Three examples of crosscorrelograms between theta and HD-by-theta units recorded 
from the same tetrode channel. Time 0 is denoted by dashed white line. (B) Crosscorrelogram 
between theta and HD units recorded from the same tetrode channel. (C) Sample recordings, 
representing the parallel activity of theta (red) and HD-by-theta (purple) units. The left panels 
represent the recorded activity [from three different cells] in one animal, while the right panels 
show similar episodes [from three different cells] in a second animal. Simultaneously recorded 
LFP (green trace) is below. The rectangular box denotes parallel theta cell activity, HD-by-theta 
pause and LFP oscillation trough. Bottom: concurrent head direction (black trace) measured in 
degrees (y-axis).

4.3.5 Directionally-modulated theta cells in anteroventral nucleus:

In the previous sections theta modulation of the head-directional signal in AV was 

reported. Next the goal was to examine if there was a reciprocal influence of the head- 

directional system on the theta signal. For this purpose the directional characteristics 

of all theta-bursting cells recorded within the population of head-direction cells was 

analysed, located in the medial part of AV. The small sample size of all theta cells
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recorded in this region (31/23%) is comparable to the low density of theta cells in the 

hippocampal formation (Jung et ah, 1994). A small group of theta-bursting cells was 

identified (10/7%), for which the difference between maximal and average firing 

frequency for preferred head direction reached 40%, and this population of cells is 

defined as directional theta cells.

Directional theta units possessed an intermediate firing frequency with an average rate 

of 26.8 ± 1.7 Hz and a maximal rate of 133.7 ± 13.1 Hz (Figure 4.17A, first row). The 

remaining theta units were grouped as slow- (Figure 4.17A, second row) and fast- 

spiking (Figure 4.17A, last row) theta cells, depending on their absolute frequency. 

For slow-spiking units, the average firing rate was 18.5 ± 1.7 Hz and the maximal 

firing rate was 76.1 ± 10.5 Hz. For the fast-spiking units, the average firing rate was 

63.6 ± 6.4 Hz and the maximal firing rate was 208.8 ± 24.1 Hz. The theta-spiking 

profile of thalamic theta units is evident when expressed through an autocorrelogram 

(Figure 4.17B) and ISl plots (Figure 4.17C).
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Figure 4.17: (A) Firing rate versus head-direction tuning plot for directional theta (first row), 
slow-spiking theta (second row) and fast-spiking theta (last row) cells. The x-axis presents 
normalized head direction degrees that set the peak of tuning curve for all units to 180”. The y- 
axis represents absolute firing frequency in spikes per sec (mean ± sem). (B) Sample 1 s 
autocorrelograms for directional theta (first row), slow-spiking theta (second row) and fast- 
spiking theta (last row) cells. (C) Sample ISl scatter plots for directional theta (up), slow-spiking 
theta (middle) and fast-spiking theta (bottom) cells.

The place and directional information content of all thalamic theta cells was computed 

and the values of these parameters for the directional theta group, the fast-spiking and 

slow-spiking theta groups. The infomiation content quantifies the amount of spatial 

information (locational or directional) carried by each spike, expressed in bits per 

spike (Skaggs et al., 1993). The directional information of directional theta spikes 

was significantly higher than the directional information of fast-spiking (P <0.01) and 

slow-spiking (P < 0.01) theta units (Figure 4.18A). In comparison, the locational 

information of directional theta spikes did not show significantly different values 

(Figure 4.18B).

Distributive ratios for both the directional and locational component of the units’ 

firing between directional theta cells and fast-/slow-spiking theta cells was also
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compared. Distributive ratios measure the goodness-of-fit between a predicted and an 

observed firing distribution (Muller et al, 1994). Similarly, the directional 

(Figure 4.18C), but not locational (Figure 4.18D), distributive ratio was significantly 

higher for directional theta cells, compared to fast-spiking (P < 0.01) and slow-spiking 

{P <0.01) theta cells. These data demonstrate that the firing of directional theta cells 

is modulated by the animal’s head direction. It has to be noted that the directional 

information content for these cells is low, and as locational distributive ratio indicates, 

the firing of the cell is not entirely explained by head direction.
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Figure 4.18: Comparison of the directional (left) and locational (right) information for the 
directional theta (n = 10), slow-spiking theta (n = 12) and fast-spiking theta (n = 10) cells (P < 
0.01). G, Comparison of the directional (C) and locational (D) distributive ratio for the same cells.

4.3.6 HD cells correspond to theta units’ directionality:

Although the rhythmic properties of directional theta units are similar to the other 

theta-bursting cells with a comparable spike train frequency (Figure 4.19A), spike 

distribution (Figure 4.19D) and theta index (Figure 4.19E), the preferred direction of 

spiking suggests that these cells receive a distinct afferent signal.
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Figure 4.19: Comparison of the rhythmie properties between antcrovcntral theta cells classes. (A) 
Inter-train intervals distribution (mean ± sem) for directional theta, (B) slow-spiking theta (C) 
fast-spiking theta cells. Note that the peaks and troughs for all cell classes share the same 
rhythmic pattern, with the highest peak located at 125 ms (8Hz). (D) Relative number of spike 
trains (E) and theta index values for directional theta unit, fast-spiking theta and slow-spiking 
theta cells.

Directional theta and HD units, recorded on the same tetrode channel showed similar 

directionality (Figure 4.20A). The crosscorrelograms between these cell pairs revealed 

synchronous activity with a positive correlation at time lag 0 (Figure 4.20B, marked 

with a vertical dashed white line). This suggests that the common head directional 

input induces increased spiking of directional theta units during the preferred head 

direction of the HD cell (Figure 4.20(2), compared to the inactive period of a HD unit 

(Figure 4.20D) when the animal was heading in a non-preferred head-direction 

(Figure 4.20D bottom, HD degrees are indicated with black trace).
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Figure 4.20: Directional modulation of anteroventral theta cells corresponds to HD activity. (A) 
Firing rate versus head-direction tuning plot for a directional theta (red) and a HD cell (purple) 
recorded from the same tetrode channel. The inset on the left represents the spike waveform 
(above) and -lO/lOms autocorrelogram (below) for the theta-bursting unit, while the inset on the 
right represents the same parameters for the HD unit. (B) Two examples of crosscorrelograms 
between proximally located directional theta and HD cells. Time 0 is denoted by dashed white 
line. (C) Sample recordings, representing the parallel activity of directional theta (red) and HD 
(purple) units and recorded during the preferred direction for the HD unit. Simultaneously- 
recorded LFP (green trace) and the concurrent heading direction, measured in degrees (black 
trace) are plotted below. (D) Sample recordings of the same pair during non-preferred for the HD 
unit direction. Simultaneously-recorded LFP (green trace) and the concurrent heading direction, 
measured in degrees (black trace) are plotted below. Note the decreased number of directional 
theta spikes, compared to C.

4.3.7 Thalamic and hippocampal theta are functionally related:

In this section the aim was to determine if the rhythmic activity observed in the 

anteroventral thalamic nucleus expresses the same frequency and temporal resolution 

as hippocampal theta rhythm. This would address the question of whether theta 

rhythm in anterior thalamus is a functional part of the limbic theta oscillation. For this, 

simultaneous recordings of local field potentials (LFP) from hippocampal area CA3 

(Figure 4.21 A) and AV (Figure 4.2IB) in five rats were carried out.
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Figure 4.21: Parallel recordings from hippocampus and anterior thalamus. Coronal section 
shows the trace of recording electrode in hippocampal CA3 region (.4) and anteroventaral 
thalamic nucleus (B, marked with white). The black arrows indicate the tip of the recording 
electrodes.

Thalamic LFP theta power is dependent on the proximity of theta cells to the 

recording tetrodes (Tsanov et ah, 2011), and as a result, the LFPs recorded by 

different tetrodes in anterior thalamus (in total 32 channels per rat) can be divided into 

theta and non-theta groups. During the pellet-chasing task, the LFP power reached its 

peak in the range of 7-10 Hz for hippocampal and thalamic theta recordings 

(Figure 4.22A). Coherence analysis showed that the highest degree of coherence 

between hippocampal and thalamic theta signal is in the range of 7-10 Hz 

(Figure 4.22B). The synchronization of concurrent hippocampal and thalamic theta 

oscillations (Figure 4.22C) is apparent. In comparison, hippocampal and thalamic 

non-theta signals are less correlated (Newman-Keuls, P<0.001, Figure 4.225, below, 

grey line).
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Figure 4.22: Synchronous hippocampal and thalamic theta oscillations. (A) Colour-coded 3 sec 
power spectrograms, representing simultaneous recording of local Held potential (LFP) from 
hippocampal area CA3 (left panels), anteroventral theta (middle panels) and anteroventral non
theta (right panels) signal. The black dashed line indicates the frequency level of 8 Hz. (B) 
Coherence plot between hippocampal LFP and anteroventral theta (red trace) and non-theta 
(grey trace) LFP (mean ± sem). (C) Sample LFP traces for the simultaneously recorded 
hippocampal (black), anteroventral theta (red) and anteroventral non-theta (grey) LFPs.

4.3.8 Sniffing and theta cells:

Three rats were implanted with tetrodes and pressure sensor was used to monitor the 

sniffing activity during free exploration of the environment. 17 theta cells were 

analysed, polar plots depicting the sniffing phase at which theta cells fired an action 

potentials were used to determine if these cells had a preferred sniffing phase of firing 

(Figure 4.23). None of these cells in the AV showed preference of firing rate at a 

specific sniffing.
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Figure 4.23: polar plots depicting the theta cells and sniffing phase relationship. Six examples are 
shown where none of these cells showed a preferred sniffing phase.

To investigate the relation between the silence period between theta cells spikes and 

sniffing, both signals were transformed and correlation at different time lags (-1,1) sec 

was computed between the transformed signals. In all cases the correlations were 

lower than 0.05 and the correlation coefficient at short time lags were not different 

from longer time lags which indicated the low correlation is random chance 

(Figure 4.24).
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Figure 4.24: theta cells silence period and sniffing cycle correlation. Six examples are shown, y- 
axis indicates correlation coefficient and x-axis is time (-1,1) sec. all correlation were lower than 
0.05 and correlation at short time lags is similar to those at longer time lags indicating these low 
correlation are random chance.

Results examining at the relationship between sniffing cycle and theta cells in AV, 

does not indicate a relation between the two processes. Hence further experimentation 

was not carried out.

4.4 Discussion:

In this chapter it is shown that a substantial population of head-direction cells in the 

thalamic anteroventral nucleus is able to spike rhythmically in the theta frequency 

range. The single-unit recordings from anteroventral thalamic nucleus revealed that 

the spiking activity of local theta cells can undergo head directional modulation. The 

spectral power from this region shows coherence with hippocampal theta rhythm, 

suggesting that the anterior thalamus is a functional component of limbic theta
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processing. Together, these results demonstrate integration of directional and theta 

processing at the level of the anterior thalamus. The result supports the importance of 

theta within the limbic system and demonstrates the significance of cell firing patterns 

in decoding activity of neurons.

4.4.1 Cell types in anterior thalamus:

Based on its anatomical and cytoarchitectonic properties, the anterior thalamus is 

subdivided into anterodorsal (AD), anteroventral (AV) and anteromedial nuclei 

(Kruger et al., 1995). Electrophysiologically, anterodorsal neurons exhibit head- 

direction properties (Taube, 1995), whereas anteroventral and anteromedial nuclei are 

linked to theta rhythm (Albo et al., 2003). Numerous electrophysiological 

investigations have targeted AD in freely-behaving rats, revealing that anterodorsal 

neurons function as head-direction (HD) cells (Goodridge and Taube, 1997, Zugaro et 

al., 2001, Zugaro et al., 2002, Taube, 1995, Yoganarasimha et al., 2006). By 

comparison, most data reported from the adjacent anteroventral nucleus have been 

conducted without concurrent measures of head-directionality (Vertes et al., 2001, 

Albo et al., 2003, Talk et al., 2004). HD cells in AV have previously been described 

(Taube, 1995, Yoganarasimha et al., 2006), but have not been quantified. In this 

chapter it is shown that the medial part of anteroventral nucleus is a locus of HD cells, 

where 69% of recorded units expressed a clear head-directional tuning curve. A 

population of anteroventral cells fires rhythmically at theta frequency (5-12Hz) 

(Vertes et al., 2001), and these neurons are defined as theta cells (Tsanov et al., 2011).

An interesting question was whether thalamic neurons can integrate head direction 

and theta rhythm. The possibility that head-directional and theta signals might merge 

in anterior thalamus was suggested by observations that anterodorsal HD cells
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gradually developed rhythmic firing in the slow theta frequency range (6 Hz) after 

bilateral destruction of the lateral mammillary bodies (Blair et al., 1999).

In this chapter three independent criteria were used to estimate theta modulation of 

anteroventral head-direction neurons:

1) Inter-spike interval ratio.

2) Theta index.

3) Spike train frequency.

Inter-spike interval histograms reveal the temporal relationship between HD spikes 

and ISI is important part of cells coding process (Taube, 2010). Inter-spike interval 

ratio shows the number of spikes clustered around the 100ms inter-spike interval. 

These ISI clusters are formed from the first and the last spike of the spike groups, 

occurring at frequency of 6-12 Hz. These rhythmic groups of spikes are referred to in 

this chapter as compact spike trains, but not as bursts because of their long inter-spike 

interval ( > 10ms) that reached values of 10ms. The definition of burst mode in 

thalamus varies from 4ms (Ramcharan et al., 2005) up to 10ms (Fanselow et al., 2001) 

inter-spike interval. To avoid misinterpretation of the observed spike pattern, in here 

the bursting in the recordings was defined with a maximum of 4 ms inter-spike 

interval.

Measurement of autocorrelogram parameters is the most conventional method to 

identify rhythmic pattern in neuronal spiking (Steriade et al., 1991, O'Keefe and 

Recce, 1993), and on that basis, theta rhythmicity was evaluated using the theta index 

(Royer et al., 2010). It was found that the value of the theta index for the preferred 

direction of the spiking trains reaches values of 0.18 for HD-by-theta units. 

Importantly, these values are comparable to the theta index of anteroventral theta

125



cells, which are 0.11 and 0.49 for the fast- and slow-spiking theta cells (Tsanov et al., 

2011). For comparison, the theta index of putative HD cells was close to zero 

(0.0018).

The third measurement with which spiking rhythmicity was evaluated is the spiking 

train frequency. This parameter demonstrates the predominant frequency with which 

rhythmic spike groups are distributed. It was estimated that the frequency of the spike 

train distribution to be 6-12 Hz, which represents theta frequency modulation. Based 

on the abovementioned analyses, these cells were defined as head direction-by-theta 

(HD-by-theta) units, and this cell type comprised 26% of all reeorded units in medial 

AV or 39% of the head-directional units in AV.

4.4.2 Theta processing in hippocampo-diencephalic system:

One of the major inputs to AV arises from the medial mammillary bodies (Seki and 

Zyo, 1984), which in turn receive projections from the ventral tegmental nucleus 

(Cruce, 1977, Hayakawa and Zyo, 1984), hippocampal formation (Ishizuka, 2001, 

Swanson and Cowan, 1977), medial septum and supramammillary nucleus (Gonzalo- 

Ruiz et al., 1992). Thus, the mammillary bodies project to AV a theta signal that 

integrates tegmental, septal and reciprocal hippocampal theta activity (Pan and 

McNaughton, 1997, Pan and McNaughton, 2002, Bassant and Poindessous-Jazat, 

2001, Kocsis et al., 2001). The generation of theta rhythm per se is proposed to be in 

medial septum and the propagation of theta signal to the hippocampus and the 

diencephalon (thalamus and hypothalamus) is mediated via mammillary and 

supramamillary nuclei.

Studies have found that theta rhythm in the mammillary bodies and hippocampus is 

abolished after procaine injections in the medial septum (Kirk et al., 1996, Kirk and
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McNaughton, 1991). The supramammillary nucleus is a part of an ascending system 

involving the medial septum (Borhegyi et al., 1998, Vertes, 1992) and this system is 

proposed as the cholinergic pacemaker of theta in the hippocampo-diencephalic circuit 

(Brazhnik and Vinogradova, 1986).

The theta oscillations has been shown to be important in spatial learning (Pan and 

McNaughton, 1997, O'Keefe and Recce, 1993) and plasticity (Mehta et al., 2000, 

Ekstrom et al., 2001). Studies have shown a strong link between navigation and theta 

rhythms (Buzsaki, 2005, Cacucci et al., 2004), in place cells it is reported that the 

firing of these cells and their relation to theta rhymes can improve the accuracy of 

locational coding (O'Keefe and Recce, 1993). Since head-directional cells have a large 

firing range (~90 degrees) (Taube et al., 1990), it can be hypothesised theta 

modulation of head-direction cells can improve the accuracy of directional coding.

The major finding described in this chapter is that AV contains HD-by-theta cells 

suggesting a convergence of the highly-processed theta signal and the head-direction 

signal. This convergence suggests another level of integration additional to visual and 

idiothetic information reported in HD cells (Hargreaves et al., 2007, Yoganarasimha 

and Knierim, 2005, Knierim et al., 1998).

The existence of similar information integration is demonstrated by postsubicular 

units that integrate place and direction (Taube et al., 1990, Sharp, 1996). Neurons that 

express spatial, head-directional and theta properties are found in presubicular and 

parasubicular cortices and are named theta-modulated place-by-direction (TPD) units 

(Cacucci et al., 2004). Recent findings have also shown concurrent directional- and 

theta-modulation of grid cells in the same region (Boccara et al., 2010). This line of 

research supports current oscillatory interference models which suggest that grid cell
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firing in entorhinal/parasubicular cortices is highly dependent on a combination of 

theta and grid cell activity (Hasselmo and Brandon, 2008, Burgess, 2008a, Burgess et 

ah, 2007). Thalamic signals from anterodorsal and anteroventral nuclei may update 

grid cell firing via the pre- and parasubicular cortices (Shibata, 1993a, Van Groen and 

Wyss, 1995, van Groen and Wyss, 1990). These afferents define the thalamo-cortical 

connection of the extended hippocampal system (Vann and Aggleton, 2004). 

Functionally, this system is involved in episodic memory formation (Burgess et ah, 

2002, Buzsaki, 2005), and the anterior thalamic nuclei are a vital component of this 

system (Aggleton and Sahgal, 1993, Harding et ah, 2000). Studies have shown that the 

patterns of episodic memory loss seen in patients with anterior thalamic pathology are 

similar to those seen in patients with lesions in the medial temporal lobe (Harding et 

ah, 2000, Van der Werf et ah, 2000).

The information flow within the hippocampo-diencephalic circuitry has been studied 

through lesion studies of the head-direction system. Lesions of the dorsal 

presubiculum (postubiculum) (Goodridge and Taube, 1997) and hippocampus (Golob 

and Taube, 1997) did not disrupt the HD signal in anterodorsal thalamic nucleus. In 

contrast, lesions of the anterodorsal nucleus disrupted the HD signal in the 

postsubiculum (Goodridge and Taube, 1997), suggesting that the propagation of HD 

signal is ascending (i.e. in a bottom-up direction). Coherence analyses of 

simultaneously recorded local field potentials from hippocampus and anterior 

thalamus showed larger coherence between these structures in the theta range. The 

HD system complements anatomically the theta system in hippocampo-diencephalic 

circuitry (Vann and Aggleton, 2004).

In this chapter it is shown that these two systems are functionally integrated and 

actively interacting during the signal propagation. The results show that
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approximately one-third (32%) of theta-bursting eells, whieh generate thalamic theta 

local field potential (Tsanov et al., 2011), display head-directional modulation in the 

medial part of anteroventral nucleus. The observed crossover between head-direction 

and theta processing may functionally implicate an oscillatory enhancement of the HD 

signal. This hypothesis is suggested by the finding that rhythmic oscillations generate 

a period during which thalamic neurons are highly sensitive to incoming sensory 

stimuli (Nicolelis et al., 1995) and that the rhythmic mode can enhance the detection 

of incoming stimuli (Guido and Weyand, 1995, Sherman and Guillery, 1996, 

Sherman, 2001).

4.5 Conclusion:

The data demonstrate that AV neurons integrate head-directional and theta 

information. This data shows the importance of oscillation and the rhythmic firing 

patterns in extracting information from spikes. It further supports the theory that 

spikes encode timing as well firing rates (Buzsaki, 2002).
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Chapter 5. Summary and future work

The aims of this thesis were to research methods of extracting information from 

implanted recording technology and to contribute towards understanding of the brain 

function using in-vivo recordings.

The second chapter of this thesis presents a method of automated spike sorting which 

is the first step in extracting information from spike recordings. As mentioned in the 

introduction chapter and frequently stated in the literature (Buzsaki, 2004, Brown et 

al., 2004) this is an important part of neural in-vivo recording analysis. As the trend of 

neuron recording technology is progressing towards multiple simultaneous recording 

of neurons (Stevenson and Kording, 2011), automated accurate spike sorting becomes 

a vital step making manual sorting too time consuming.

The second chapter outlined the spike sorting algorithm and the results demonstrated 

that improved performances can be obtained using the proposed method of spike 

sorting when compared to other methods reported previously in the literature. Since 

there are many algorithms proposed in the literature the comparison between these can 

provide insights on which method would be more suitable for different experiment 

requirements. It is important to compare spike sorting algorithms with both standard 

data sets and standard tests to provide objective and fair comparison across all 

methods reported in the literature. Quiroga et al. (2004) provide standard data sets for 

testing the performance of these methods and as a result have been used in this study. 

Data sets should simulate real feature of extracellular recordings (Martinez et al.,
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2009). Data set for example can exclude overlapping spikes which may bias test 

result. Therefore it is important any future progress of research in this area to set 

international standard tests to provide an objective comparison of spike sorting 

methods, across several factors:

1. Isolating the spikes of all neurons close to the recording electrode

2. Minimal human intervention

3. Resolving overlapping spikes

4. Taking into account non-stationary recordings

5. Ability to carry spike sorting online i.e. during the recording session

6. Computational complexity

In chapter 3 the variability of spike waveforms associated with place cells are 

reported. The results demonstrated that place cell waveform residues follow a t- 

distribution. This has important implications in the assumption of spike sorting 

methods. Similar analysis can be applied to other type of cells, for example grid cells 

and head-directional cells. Confirming the validity of this assumption would be 

important topic for in-vivo electrophysiology.

The result reported in the third chapter also demonstrates large amplitude fluctuations 

between sessions. Certainly such a large amplitude change can affect spike sorting 

algorithms. This indicates the need for improvement in electrode and headset designs 

to minimise electrode movements. It can be concluded that in long term recordings of 

spikes algorithms must take into account the non-stationary nature of data.

Following the findings of chapters 2 and 3, the spike sorting proposed in this thesis 

can be developed further, to provide online sorting. Where initially the spikes were 

sorted using the method proposed in chapter 2, and those initial sorting results may
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then be employed to construct templates following expeeted t-distribution waveform 

variability. Template matching then can be carried for online sorting and clustering 

can be continued in the background to verify any new spike clusters or any drift in the 

cluster centres. In online sorting other factors such as computational complexity 

should also be considered.

An emerging need in spike sorting is to generate confidence levels of the sorting 

reliability (Einevoll et al., (in press)). An intriguing question to consider in future is 

whether the information relating to the distribution, variation of the spike waveform 

and the similarity measures introduced in chapter 3 can aid in providing a measure of 

sorting reliability.

As the neural electrode technologies advance towards simultaneous recordings from 

hundreds of electrodes, an important challenge to consider in the future of spike 

sorting is how to efficiently incorporate multichannel incoming information in order 

to improve the sorting algorithm and also possibility to detect electrode drifts. 

Tetrodes have been reported to provide better spike isolation (Gray et al., 1995). 

Recent advancement of electrode technology also allow greater control distances 

between of the recording sites, in order to achieve better spike sorting performances 

using information from multi-channel electrodes rather than single channel electrodes.

In the fourth chapter of the thesis the process following spike sorting in neural 

recordings is examined in detail. The focus here is on the information carried by the 

spikes in the thalamic anteroventral nucleus (AV), where a population of cells were 

reported that integrates theta oscillation and head-direction. In the chapter the 

conclusion dravm is that there is coherence between theta oscillations of hippocampus
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CA3 and AV, demonstrating the importance of this oscillation in conveying 

information within the limbic system.

In this thesis it was possible to study the interaction between a few cell types. It has 

been established that the head-direction system involves several brain structures and 

similarly several brain nuclei are involved in the generation of theta rhythm. 

Figure 5.1 A shows a schematic of the brain nuclei involved in head-direction network 

and their respective connections, similarly Figure 5.IB is a schematic of the brain 

nuclei where theta responsive cells are reported.

B
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J Hippocampal formation
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* ^ Medial mammilafy nucleus ^ Antentx ventf ^

' tD C Ventral tegmental nucleusD
Figure 5.1: (A) Regions of the rodent brain involved with head-direction system (B) Regions of 
the brain where theta-responsive cells are reported (Vann and Aggleton, 2004).

Examining the interaction between population of theta cells and head-direction using 

parallel simulations recording of hundreds neurons would provide an improved basis 

for interpretation of the importance of these cells, and also the influence of these cells 

reported in this thesis on the head-direction network.
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Grid cells and theta modulated grid cells recorded from medial entorhinal cortex were 

reported to degrade their spatial periodicity, while head-directional cells retained their 

firing properties after reduction of theta rhythm. The reduction in theta rhythm was 

achieved by inactivation of medial septum (Brandon et al., 2011). Arising from this is 

an interesting question to consider for future research whether reducing theta rhythm 

can change the firing properties of head-directional cells recorded from anteroventral 

(AV) and anterodorsal (AD) nuclei. This may provide further insight into the role of 

theta oscillations in the head direction network. It can also elaborate the role of theta 

modulated HD cells in the head direction network.

In summary the first challenge in extracting information from neural in-vivo recording 

has been addressed in this thesis. The method of spike sorting is introduced to provide 

automated and improved spike isolation.

The method proposed does not address all the challenges of spike sorting however the 

subsequent studies reported on variability of spike waveforms of place cells, within 

short periods and longer time frames. The aim of the study was to provide insights 

into observed variations of in-vivo spike recordings, therefore aiding the design of 

future spike sorting methods and providing a basis where the spike sorting method 

proposed may be extended to address further challenges of spike recordings.

In the study reported in the fourth chapter of the thesis, subsequent challenges of spike 

recording were investigated. The study examined the information carried by these 

neurons and provides insights into the brain function. More specifically the 

information carried by so called head-direction cells is extensively examined. The 

chapter reports on subset of head-direction cells that are modulated by theta 

oscillation. The theta oscillations has been shown to be important in spatial learning
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(Pan and McNaughton, 1997, O'Keefe and Recce, 1993) and plasticity (Mehta et al., 

2000, Ekstrom et al., 2001). The findings of this chapter further support the 

importance of theta oscillation in hippocampo-diencephalic circuitry. This raises 

questions about the significance of theta modulation in head direction network and 

how this modulation encodes information.

This thesis contributes towards the research of methods of extracting information from 

the neuron code and understanding the function of the brain using recordings obtained 

from implanted microelectrodes.
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Appendix A: List of MATLAB codes

Below is a list of main MATLAB codes used/developed during this PhD:

File name Description
detailed_analysisV2.m Extracts basic information about all sorted 

spikes, and files (*.set) in a specific folder (e.g. 
Spike width, frequency, height, information 
content, also plots Autocorrelgram, spike 
waveform, firing maps, head-direction).

Directionalanalysis.m Provides directional analysis of cells, input a list 
of cells in a text file.
Outputs (direction/location information content, 
distributive ratio, does MLM correction and 
plots direction polar plots.

fmdburst.m Outputs burst statics of a cell (number of bursts 
segments, burst times, number of burst spikes 
per burst).

firingextract.m Gets firing stats of cells (autocorrelgram, average 
firing).

GetFiringField.m Finds firing fields of place cells within a firing 
map.

GetmapCorrelation.m Calculated correlation between firing maps of 
two cells.

get spatial information content.m Calculates spatial information content.
GetThetal ndex .m Calculates theta index from an autocorrelgram 

(described in chapter 4).
Getspikelocation.m Outputs the location of the rat when each spike 

was fired for a specific cell
fufm Finds all files in a specific folder.
k means.m A:-means clustering (described in chapter 2).
k pbm.m Calculates PBM index (described in chapter 2).
laplacian_eigen.m Calculated the laplacian eigenmap (described in 

chapter 2).
load axona file.m Imports axona files into matlab.
plot dirs.m Plots directional polar plots.
plot field.m Plots firing maps.
plot maps using breakpoints Plots firing maps using breakpoint firing rates.
plot scatterplot ISI.m Plots ISI scatter plots (described in Chapter 4)
ratemap.m Calculates firing map of a cell.
shuffleHD.m Shuffles the firing times of a cell to determine if
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head-directionality can appear by chance.
silencecorr.m Calculates the correlation with pauses of firing 

pattern of a cells, and a continuous signal 
(described in Chapter 4)

sniff2phase_peaks.m Models the sniffing as a series of cosine 
functions and return the phase of each point.

waveformextract.m Outputs information about the amplitude, width, 
and height of the spikes.

ChopEdges.m Finds edges of the firing map where errors 
correspond to camera detection.

EEG coherence.m Finds coherence between two LFP signals.
get_pass.m Finds the time when the rat passed through the 

place field.
HeadD theta analysis.m Performs batch analysis of HD-by-theta cells.
myspecgram.m Performs FFT analysis.
MeanShiftCluster.m Mean shift clustering with flat top kernel.
clusterlSI.m Plots ISI scatter plots and finds cluster within the 

scatter plot.
Overdispersion_analysis.m Performs over dispersion analysis on place cells.
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