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Abstract

In this work, the crystal and electronic structures of defects and im-
purities in ZnO and Fe3zO,4 are studied using first principles calcula-
tions. B3LYP hybrid density-functional theory calculations were used
with supercell method to evaluate electronic structures and formation
energies of intrinsic vacancy defects oxygen(Vo), zinc (V,) and zinc-
oxygen pair (Vz,o) vacancies. The magnetic exchange couplings of
well-separated, singly negatively charged defects were also calculated
and were found to be induced by a conduction band electron when
the defect levels are partially filled, more than half-filling. Partially
filled defects (above half-filling) with a large and positive Hubbard-U
show a ferromagnetic interaction in a range exceeding 10 A. Using this
observation, an attempt is made to explain defect-related ferromag-
netism observed in ZnO. The formation energies and the transition
levels were estimated for oxygen (Vp), zinc (Vz,) and zinc-oxygen
pair (Vz,0) vacancies in various charge states. Different methods
were considered in the calculation of transition levels and Hubbard-
U. A total energy method and a single particle eigenvalue method
were applied to estimate the vacancy defect transition levels. A quan-
titative comparison has been made between the two methods. Re-
laxation of crystal structure was found to affect the formation energy
and transition level values and was deemed necessary for estimating
these quantities. Some literature values of U and the values obtained
here with unrelaxed defect geometry are positive and large but U val-
ues are strongly dependent on relaxation. For all the three vacancies
U becomes negative upon relaxation . The long-standing problem
of anomalous photoluminescence observed in non-stoichiometric ZnO

thin films was addressed by estimating the optical transition energies.



The electronic properties of FesO4 are governed by mixed valence
hopping between Fe?T-Fe3* ions in its insulating phase at low tem-
perature. Electronic structure calculations were carried out to study
the effect of hole doping in magnetite using its low temperature lat-
tice structure. Li-ferrite (LigsFes 50, ) was found in some experiment
to have a moderate band-gap semiconductor with large FM moment
and is investigated here. First principles calculations predict that the
small band-gap is due to the mixed valence hopping. This is quenched
by dilute hole doping and is eliminated totally in LigsFes 504 . Sub-
stituting oxygen with nitrogen in FesOy yields similar results with
Li-doping. Small polaron states are observed upon hole doping in

which holes localise at particular sites.



Contents

1 Introduction 1
1.0:1 Infrinsicdefects in ZaQr . . - ¢ .« o s i s w e ke m o8 s 5

1.0.2  Acceptor doped magnetite . . . . . . ... ... ... ... 10

2 Defects in oxide semiconductors: A brief literature review 12
2.1 Characterisation of vacancy defects . . . . . .. .. .. ... ... 15
2.1.1 EPR and PAS studies of electron traps . . . . . . .. ... 16

2:1.1.1 Negative Udefects . . . < « + v o 5 v oo 22

2.1.2  Role of defects in optical properties: Photoluminescence . 23

2.1.3 First-principles calculations on oxide defects . . . . . . .. 28

2.2 Defect related ferromagnetism in oxides . . . . . . . ... .. ... 28

2.2.1 The Magnetic Polaron and Impurity Band-Exchange Models 28

2.2.2  Hubbard model: Room temperature ferromagnetism . . . . 30

3 Computational Methods 35
3.1 Hartree-Fock and Density Functional Theory . . . . . .. ... .. 35
3.1.1 Hartree Fock THeory -«  « « « « s ¢ wn s s e s o & s 36

3.1.2 Density Functional Theory . . . . . . ... ... ...... 38

3.2 B3LYP hybrid DFT futictional « .« « ; ¢ 5 ¢ 5 s 55 5 a¢ 55 » o 3 40
33 The CRYSTALEOGE . o « s « « w5 o ¢ 5 s o 5c 59 4 5 8 55 53 42
3.3.1 Localised orbital vs. plane-wave basis sets . . . . . . . .. 44

34 The EXCITONcode . .. .. ... ... enenenn. 45



CONTENTS

4 Estimation of Defect Formation Energies and Transition Levels

4.1
4.2

4.3

5 Intrinsic Vacancy Defects and Impurities in ZnO: Electronic and

Defect and impurity formation Energy . . . . . . . . ... .. ..
Defect transition levels . . . . . . .. ... ... ... ... ... .
4.2.1 Transition level calculation using total energy . . . . . . .
4.2.2  'Transition level from single-particle eigenvalues . . . . . .
Computational errors and correction schemes . . . . ... .. ..
4.3.1 Effect of periodic boundary condition . . . . . . . .. . ..
4.3.2 Effect of relaxation . . . . .. ... ... ... .......
4.3.3 Effect of k-point sampling and basis sets . . . . ... ...

Crystal Structure

5.1

ot

5.4

6 Calculation of Defect Formation Energies, Transition Levels and

Electronic structure of the defects . . . . . . ... ... ... ...
5.1.1 Oxygen vacancy Vo . . . . . . . ..o
5.1.2 Zincvacancy Vz, . . . . . . . . ..o
5.1.3 ZnO pair vacancy Vzp,o - - -« « o o o oo oo
5.1.4 Clustered vacancy defect V0, . . . . . . . . ... .. ..
Effect of relaxation of crystal structure. . . . . . . . . . ... ...
Impurity doping in ZnO . . . . . . . ... ...
5.3.1 Transition metal doping . . . . . .. .. .. ... .. ...
5.3.2 Electron doping with aluminum co-doping . . . . . . . ..

Conclusion . . . . . . . . .

Hubbard-U values

6.1
6.2

6.3
6.4

Formation energies . . . . . . . . . ... ... ... ... ...
Defect transition levels . . . . . . .. ... ... ... ... ... .
6.2.1 Transition levels from single particle eigenvalues . . . . . .

Calculation of Hubbard U . . . . . . . . . . . . .. .. ... ...

Conclusion . . . . . . v e e e e e e e e e e e e e e

vi

30



CONTENTS

7 Interaction of Defect-trapped Electrons, Transition Metal Dop-

ing

7.1
7.2
7.3

102
7.0.1 Magnesium oxide (MgO) . . . . . ... ... ... 108
Implication of Hubbard model of ferromagnetism . . . .. .. .. 109
Interaction between defects and transition metal impurities . . . . 110
Conclusion . . . . . . . . .. L 113

8 Effect of Acceptor Doping in Magnetite Below Verwey Transi-

tion 114
8.1 Acceptor doped magnetite . . . . . . . ... ... 117
8.1.1 Lithium ferrite: Li0‘5FCQ.504 and Li0A625F62.375O4 ...... 118

8.1.2 Nitrogen substituted magnetite FesO35Ngs . . . . . . .. 121

8.2 Conclusion . . . . . . . . 123

9 Conclusions 124
9.1 Future Work . . . . . . . 126

A Details of Calculations 128
B Basis Sets 130
References 156

vil



List of Figures

2.1

2.2

4.1

4.2

5.1
9.2

Electron paramagnetic resonance (EPR) spectra of a powder ZnO
sample. A. Before annealing, B. After annealing in vacuum, C.
Annealed and exposed toair. . . . . ... ... ... ... ....
Schematic diagram of a bound polaron model. A net ferromagnetic
moment is retained as long as the polaron wavefunction percolates.

As the temperature rises, polaron radius decreases (Eqn. 2.10) and

Schematic diagram explaining working formulae for transition level
calculation. Top: hole-charged defect. The transition level e(+/0)
has been explained as the example. Bottom: estimation of transi-
tionlevel e(-/0) . . . . . . . ...
Band gap of ZnO estimated using Eqn. 4.14. L = V/3. Calcula-
tions are made using LDA exchange implemented on the Quantum
Espresso code. The value of band gap E, extrapolates linearly to
0.11 eV for infinitely large supercell. This value of E, is too low in
comparison to experiment but is comparable to other LDA results

(see text) that always underestimates the band gap. . . . . . ..

Whrtwibe unit eell of Znl). : « & = o x5 s s w5 e s
Band structures of bulk ZnO (left) and that of ZnO with a neutral
oxygen vacancy (Vo) (right) in a wurtzite 3x3x3 supercell. The
wurtzite Brillouin zone and the k-path is shown at the bottom.

Horizontal dotted lines show the Fermi level. . . . . . . . . . . ..

viil

31

53



LIST OF FIGURES

5.3 The bandstructures (top) and crystal structures (bottom) of Vo in
different charge states for fully relaxed 3x3x3 supercell. From left
to right, V&, V5 and \/20+ respectively. For spin polarized systems,
red lines show the majority spin and green/dashed lines show the
minority spin states. Large pink spheres denote the Zn atoms and
smaller red spheres denote oxygen atoms (Shown on bottom-left
of figure). The small green dot denotes the vacancy site. Fermi
levels are shown by horizontal blue dotted lines. . . . . . .. . .. 66
5.4 (Left) Band structure of V,, for both spins (red: majority, green:minority).
(Right) The I'-point wave function isosurface of V,, state imme-
diately below the Fermi level (blue dotted line) . . ... ... .. 68
5.5 The bandstructures (top) and crystal structures (bottom) of Vg,.
From left to right, V%, V,, and V%, respectively, fully relaxed
3x3x3 supercell. For the spin polarized systems majority and
minority band diagrams are plotted in the same figure. Note that
the ground state of V%, is a spin-triplet with two holes. The color

scheme isthe same 88 Fig: 5.3, . - . - o i & v« 6 54 v 5 5% 5 o s 69

ot
(@]

The two different possible configurations of Vz,0, A: Radial and
B Alal s o & 5 wlow i sl avman 5 5% o & ¥ 58 5 op s Hh w5 70
5.7 The bandstructures (top) and crystal structures (bottom) of V,0
for a fully relaxed 3x3x3 supercell. From left to right, V%, 5, V.
and V?z:lo respectively. For spin polarized systems, red lines show
the majority spin and green/dashed lines show the minority spin
states. The color scheme is the same as Fig. 5.3 and Fig. 5.5 . . . 71
5.8 The bandstructures (top) and crystal structures (bottom) of V0
for a fully relaxed 3x3x3 supercell. From left to right, V%, . V5
and VQZJ;O respectively. The color scheme is the same as Fig. 5.7. . 72

5.9 Change in crystal structure upon relaxation of lattice around V., 73

X



LIST OF FIGURES

5.10

5.11

5.13

5.14

Wavefunctions for trapped electrons in V,, , V;,,, and V7, , va-
cancies at the I' point of the Brillouin zone. Trapped electron
wavefunction in V,, (A) viewed along the c axis, (B) viewed per-
pendicular to the c¢ axis. Trapped electron wavefunction in V,_,
(C) viewed along the ¢ axis. (D) perpendicular to the ¢ axis. Same
for V3, , (E) along the c axis and (F) perpendicular to the ¢ axis.
Pink and yellow surfaces show +ve and -ve components of the iso-
surfacerespectively. The green surface is the inside of the pink
GUETBOE. o« = o 2 5 5 5 b K% Fu a4 @ n T EEm E A B e
Band structure of ZnO with a neutral (Vz,0,) defect (red/solid
line) superposed with the triplet states of V, , (Green/dashed
line) and V%, (Blue/dotted line). The states for more highly
charged states are shifted up but the shift is smaller than that for
V%, o The Fermi levels for the three charge states are shown by
horizontal dotted lines. Right: Vyz,0, defects in a 4,/3x2,/3x2
sapereell. & .. . Lo oL Lo L e e e
The majority-spin bandstructures of Vo, V, and V3,0, showing
the change in dispersion and energy levels due to crystal lattice
relaxation. The red solid lines are the relaxed levels and the dashed
green lines are the levels with ideal geometry. Fermi levels for
relaxed (red) and unrelaxed (green) structures are shown by blue
and yellow dotted lines, respectively. . . . . .. .. .. .. .. ..
The minority-spin bandstructures of Vo, Vz, and Vz,0, showing
the change in dispersion and energy levels due to crystal lattice
relaxation. The red solid lines are the relaxed levels and the dashed
green lines are the levels with ideal geometry. Fermi levels for
relaxed (red) and unrelaxed (green) structures are shown by blue

and yellow dotted lines, respectively. . . . . ... ... ... ...

Majority (left) and minority (right)-spin bandstructure of Zn; ,Co,O:
x=0.055 with one V2,0 defect (red) compared to Zn; ,Co,O (green)

without any defect. The Fermi level is shown by horizontal blue

dotited lime. . . .« o . L e e e e e e b e e

74

76

[

78



LIST OF FIGURES

5.15 Majority (left) and minority (right) bandstructures of V%, , + Alz,
(red/solid) comparing with V, ., (green/dashed) obtained using
a fully relaxed 2,/3x2,/3x2 supercell. The Fermi level does not
change and is shown by blue dotted line. Note that a square k-path

is used for this cuboid supercell. . . . . . ... ... ... ..... 80

6.1 Defect formation energies as a function of fermi level position for
Vo, Vz, and Vz,0. These two diagrams show formation energies
for a 3x3x3 supercell when the crystal structure is unrelaxed (top)
and fully relaxed(bottom). . . . . . .. .. ... ... ... .. 86
6.2 Vyz,o pair vacancy formation energies as a function of fermi level
position compared with Vo and V,. V, , has a formation energy
about 2 eV lower than the separated Vo +V,, . . ... ... .. 89
6.3 Estimation of band gap using total energies. Extrapolation to-
wards infinitely large supercell has been shown by thin black line. 91
6.4 Comparison of transition levels obtained from total energy and
single particle eigenvalue methods. . . . . . . . . . ... ... .. 98
6.5 The transition energies €(—/0) and ¢(2 — /—) and the value of
Hubbard-U for the V  ,0 defect with unrelaxed crystal structure.
Values for different supercell sizes are plotted with respect to in-
verse of supercell size L. Value of the band gap E, for infinitely

large supercell (L— o0) isshown. . . . . ... ... .. ... ... 99

7.1 Estimation of U from different spin-population configurations of

one (left) and three electrons (right) in two Vz,o defects. Up

and down arrows denote o and /3 spin populations. Length of the

arrows vaguely depict population strength. . . . . . . . .. .. .. 105
7.2 Wave function isosurface of V 2,0 defect-trapped electron in a 4,/3x2,/3x2

supercell with two V2,0 defects (marked V1 and V2) and two elec-

trons in a relaxed crystal structure showing that in the ground state

the two electrons reside on one vacancy and the other one remains

empty. This implies a negative - U, otherwise, we should get both

the defects half-filled (Heisenberg antiferromagnet). . . . . . . .. 107

X1



LIST OF FIGURES

8.1

8.2

8.3

8.4

8.9

8.6

8.7

Crystal structure of magnetite in the P2/c cell below the Verwey
transition temperature. Different iron sites are labelled. . . . . . .
Density of states of Fe3O4 with HF exchange parameters 20% and
15%. Respective band gaps and Fermi levels are also shown.

Majority and minority band structure of Fe3O, with HEF exchange
parameter of 0.15. Dashed green line marks the fermi level. . . . .
Spin densities of pure magnetite (top) and lithium ferrite (bot-
tom). Gold, cyan and silver spheres denote Fe, O and Li atoms,
respectively. Note that the iron d-orbital-orientation has changed
gl s e 5 . o bl b e e e ]
Majority and minority band structure of Ligga5Fes 37504 (red) su-
perposed on conventional lithium ferrite (LipsFes 504 ) (green).
E(A) and E(B) denote the Fermi levels for LiggosFes 3750, and
LigsFeo 504, respectively . . . . . . . ... ..o
Spin density of LiggosFes 37504 viewed along the b-axis. The pola-
ronic holes localised in an oxygen 2p-like orbital is shown as P1.

The colour scheme is same as Fig. 8.4. . . . .. ... ... ....

Majority(left) and Minority band structures of Fe3O3 5N 5 (solid /red)

superposed on those of pure magnetite (green/dashed). Fermi lev-
els are shown by Ep(N) and Ep(M) for Fe3O35Ng5 and FezOy,

respectively. . . . . . ...

xil

123



Chapter 1
Introduction

In the material design for cutting edge electronic industry, oxide semiconductors
attract a large share of the attention of scientists and engineers. These materi-
als show a number of interesting properties such as large optical band gap with
transparency, high photo-electric yield, metal-insulator transition and sometimes
room-temperature ferromagnetism. Applications of these materials are quite di-
verse, including fabrication of microelectronic devices, energy from solar power,
catalysis in chemical experiments and solid state sensors. Point defects such as
vacancies and interstitials mediate dopant diffusion in semiconductors [1, 2] which
is extremely important for the fabrication of various devices. The presence of a
very small number of defects can affect the resistive [3] and photo-electric proper-
ties greatly [1, 5] and therefore is of great importance in fabricating photo-active
devices such as light emitting diodes (LED) [6, 7, 8], waveguides [9] and sensors
[10]. For example, zinc oxide (ZnO) is an optically efficient ultra-violet band
gap semiconductor, but shows a green, yellow and blue photoluminescence when
defects are present [5, 11].

Systematic experimental observations suggest that defects in semiconduc-
tors may have also a role in inducing or manipulating the magnetic properties
[12, 13, 14, 15]. Following Dietl et al [12, 16], experimental studies carried out in
the last decade show that oxides such as ZnO, tin oxide (SnO,) or indium oxide
(InyO3) can exhibit ferromagnetism (FM) if dilute amounts of transition metals
(Mn, Fe, Ni, Co) [14, 15, 17] are present. A magnetic semiconductor is useful

in spin-electronics or spintronics. Spintronics presents the possibility that the



spin-polarization of electrons can be used in electronic devices as an information
carrier, hence leading to more compact and energy efficient devices. Wide band
gap oxide semiconductors with a direct band gap, such as ZnO or copper alu-
minate (CuAlQO,), always have been in the centre of attention for this purpose.
These materials are transparent and already are widely used as high-yield optical
devices in the UV-visible range. Naturally there are great prospects for both
optically and magnetically responsive semiconductor devices.

Some recent experiments show that the magnetism of the oxide semiconduc-
tors may not originate from dilute transition-metal (TM) doping but from their
defects. ZnO and SnOs thin films were found to be FM, even without transition
metal doping but in presence of high off-stoichiometry [18, 19]. On the other
hand, FM was not found in TM (Co) doped ZnO thin films which were prepared
with high crystallinity [20].

Since defects are so important for controlling these properties, experimental
techniques have been developed to control the concentration of particular defects
during growth of a sample. Manipulating the partial oxygen pressure of the
growth chamber is the most common technique to control the concentration of
oxygen vacancies or interstitials in a thin film sample produced by a method such
as pulsed laser deposition (PLD) or molecular beam epitaxy (MBE). The cation
vacancy / interstitial concentration can also be controlled by the metal vapour
intensity of the molecular beam in an MBE method or by manipulating the initial
stoichiometry in a chemical deposition method. However, it is nearly impossible
to confirm the presence of a certain type of defect from experiments only and to
identify a defect to be responsible for inducing one or more particular phenomenon
such as photoluminescence signals or magnetism [21] which are not characteristic
of the host material. It is important to have a detailed microscopic knowledge
of the crystal and electronic structure of a defect in order to predict its role in
certain phenomena. This can only be done using first principles simulations.
Starting with some known experimental parameters such as the crystal structure
parameters, first principles calculations can provide a detailed information on
the atomic and electronic structure and electron dynamics of a system, based on

quantum physics.



Density functional theory (DFT) developed by Kohn and Sham [22] can suc-
cessfully describe the electronic structure of a system. DFT was used by Sato
[13] to make the previously mentioned prediction of ferromagnetism in dilute TM
doped semiconductors [12]. There are a number of questions regarding the accu-
racy of the simulation, but as the computational power and efficiency are growing
exponentially, there is always opportunity for experimentation and development
of techniques. At the present state of technology, a number of experiments ranging
from atomic force microscopy (AFM) [23] to X-ray magnetic circular dichroism
(XMCD) [24] can be virtually recreated by simulation. Almost any system, from
bulk silicon [22] to composite nanostructures [25], can be simulated with a con-
siderable level of accuracy using first principles methods. A primary concern of
using a first principles method is that there is no single technique or algorithm
that can be applied to all types of materials. So the scientific community has
developed a number of different computer codes and algorithms for particular
materials/systems.

The most exploited and effective method to date for simulation of electronic
structure of materials is the DF'T, mentioned previously. The original DFT pro-
posed and implemented by Kohn and Sham has a very simple but effective as-
sumption, namely the local density approximation (LDA) [22]. Details of this
assumption and application of LDA are discussed in Chapter 4, but the idea
is described briefly here. Solution of DFT is obtained by invoking an iterative
algorithm to calculate the electronic structure and energies of a many-particle
system. This is done by assuming the potentials acting on the electrons in a
system are functionals of charge density, which is a function of position vector r.
The key potentials in the Schrodinger equation are the electron-nucleus electro-
static potential and the electron-electron coulomb and exchange potentials. The
exact form of the exchange-correlation potential is unknown and derived using
the LDA by assuming that it is a functional of the electron density and varies
in the same way as in a homogenous electronic system. For narrow band gap or
metallic systems, the electron-density does not change rapidly in real space and
the approximation made in LDA is valid and reproduces the energy eigenvalues of
these systems correctly. Therefore the corresponding density of states is in good

agreement with experiment [22, 26]. As researchers pushed on the boundaries of



simulation of electronic systems, it was found that this simple approximation does
not work for many electronic systems. For example in systems with interacting
3d orbital-electrons at the top of the valence band, electron dynamics is strongly
correlated and charge density varies rapidly in space. LDA severely underesti-
mates the correlation effect and therefore underestimates the band gap in those
systems [27, 28, 29]. Several remedies for this problem have been provided by
introducing new techniques such as LDA+4U [29] (U is a Coulomb energy correc-
tion), generalized gradient approximation (GGA) [30], GGA+U [31] or the GW
approximation (GWA) [32] etc. But the discovery of new phenomena and new
experimental techniques in different novel materials presents a constant challenge
to modeling and simulation of electronic structures.

HSE [33] and B3LYP [34, 35] density functionals provide hybrid exchange-
correlation functionals based on the original DFT algorithm which are more ac-
curate than LDA for strongly-correlated systems and wide band-gap semicon-
ductors. B3LYP is a hybrid of DFT and Hartree-Fock (HF) methods and is
an accurate tool for predicting the band gap and exchange coupling energies of
magnetic semiconductor oxides [36, 37, 38]. Details of the B3LYP method and
its implications are described in Chapter 4. In the present context, the role
of intrinsic defects in the electromagnetic and absorption/emission properties of
oxide semiconductors have to be identified using first-principles methods. This
task presents a twofold problem to be solved. Firstly, a computational method
that can describe the semiconductor oxides properly, i.e. estimate the band-gap,
magnetic exchange energies and the defect formation energies with reasonable
accuracy which is determined by results in agreement with experiments. Com-
putation of electronic structures becomes more challenging when defects are in-
volved. Defects reduce the symmetry, making computation expensive regarding
computer-time and also make the convergence of the calculations difficult. Some
defects tend to toggle the system between metallic and non-metallic depending on
Fermi level [39]. Therefore the choice of computational technique and functional
to study defect systems is crucial. However, we have already noted that B3LYP
hybrid DFT is reliable in this respect. In the current work, BSLYP hybrid DFT
has been used for almost all calculations and the results are in good agreement

with comparable experiment results [39].



The second part of the problem is to interpret these results such that one or
more defect structures can be identified as being responsible for a particular defect
related phenomenon. The primary focus of this thesis is on the effect of particular
defects and impurities on the electronic structure of oxides and interpreting some
of the experimental observations made on defect related oxides. Predictions are
made for microscopic electronic structures of possible defects that may appear in
an oxide.

Electronic structures of zinc oxide (ZnO) and magnetite (Fe3O4) have been
computed in this work with relevant defects and impurities. The formation ener-
gies of the defects in ZnO were calculated from the total energy calculations for
supercells with various intrinsic vacancy defects in order to find out the naturally
occurring defects, from a thermodynamic point of view. Electron transition lev-
els were calculated between the same defect levels with different occupancy. An
estimate of the optical transition energy can be made from these calculations and
thus the defects responsible for any photoluminescence signals those are not char-
acteristic to the host material, can be identified. This phenomena is explained in
detail in the next section.

A different phenomenon is addressed in Chapter 9. The effects of acceptor
impurities on the band-gap, magnetic moment and the electronic structure of
magnetite (Fe3O4) have been investigated using B3LYP hybrid DET.

More detail on the problems tackled in this work and the methodologies used

in solving them are outlined in the following sections.

1.0.1 Intrinsic defects in ZnO

ZnO shows anomalous photoluminescence [5, 11] and paramagnetism [15, 40, 41]

when defects are present in the sample. There are reports of yellow, green and
blue photoluminescence in ZnO thin film samples [11, 10]. Another interesting
phenomenon observed in off-stoichiometrically grown ZnO thin-films is room tem-
perature ferromagnetism (RTFM). RTFM was observed when a dilute amount of
transition metal is doped [15, 17, 42, 43] and even in undoped ZnO [18, 19
with intrinsic defects from off-stoichiometry. Since no local ferromagnetic order

associated with the transition metal ions was observed and the samples render



non-magnetic when grown with perfect stoichiometry [20, 44], this phenomenon
is also often attributed to intrinsic defects [15, 36, 43, 15]. Similar experimental
observations were made on other metal oxide thin films such as HfO, [16, 47],
TiO, [47, 48], InyO3 [17] and SnO, [49].

As discussed previously, the microscopic structure of the defect responsible for
a particular experimental observation must be known in order to prepare a recipe
for successful reproduction. At the present state of technology, determination of
the exact microscopic and electronic structure of a defect is not possible from the
experiments mentioned above. However, some experiment can give us more infor-
mation on the nature of the defects. Electron paramagnetic resonance (EPR) and
positron annihilation spectroscopy (PAS) experiments show that some defects act
as electron traps. An electron trapping defect with a single electron trapped can
retain a finite spin moment and act as a paramagnetic centre. Evidence of single-
electron-trapping defects in ZnO was found in a recent EPR experiment. EPR
on ZnO powder yielded a resonance with a g-factor close to that of a free electron
[50]. The resonance intensity increases on vacuum annealing of the sample and
greatly reduces in air exposure [50]. This phenomenon is commonly attributed to
electrons trapped in vacancies formed on surfaces. This is also observed in HfO,
and ZrO, [51, 52]. PAS experiments also have given evidence of electron traps
in ZnO [53]. These electron traps are also known as F-centres, from the German
word Farbezentrum or colour-centre. This name was chosen because in many
transparent semiconducting oxides, electron trapping defects add energy levels in
the spectrum that take part in optical recombination [51, 55]. Notably, these ox-
ides are n-type in normal growth conditions [56]. The frequently occurring oxygen
vacancy is thought to be a source of electrons [12, 13, 14, 57] but extensive doping
is also done by doping aluminum (Al) [11] or nitrogen [58], in order to produce
a measurable n-type or p-type conductivity. When heavy electron/hole doping is
involved, there is a possibility of magnetism from exchange of itinerant electrons
without defect involvement [59, 60]. But some experimental results suggest that
the contribution of defects to the magnetism of these oxides may be greater than
the exchange of itinerant electrons. Kaspar et al [20] showed that if defects are
not present, i.e. for pure and stoichiometric Co-doped n-type Zn0, magnetism

cannot be observed and therefore must be associated with defects.



In this work, the intrinsic vacancy defects oxygen vacancy (Vp), zinc vacancy
(Vzn) and ZnO Schottky pair vacancy (Vz,0) were investigated. The electronic
structure, formation energies at different charge states, values of transition levels
and Hubbard-U values [61] were estimated. The significance of these quantities
is explained in the next paragraph. These three intrinsic vacancy defects were
chosen for the following reasons: point defects such as vacancies and intersti-
tials have low formation energies and therefore are the most abundant defects
in oxides [55]. The II-VI oxides such as ZnO grow oxygen deficient with large
concentrations of oxygen vacancies if the oxygen partial pressure of the growth
chamber is not maintained to at least 1mBar [17]. Cation interstitials and anti-
sites are created in an oxygen-poor growth environment but these defects have
higher formation energies [62, 63] and also do not act as electron-traps or para-
magnetic centres. Interstitials and antisite defects are therefore not the primary
focus of this work. Cation vacancies can be controlled in growth techniques such
as the MBE. Aggregation of Vp and Vg, will form a Vz,0 Schottky vacancy if
the formation energy of a Schottky vacancy is lower than that of two separate
V., and Vp vacancies. Occurrence of a Schottky pair vacancy or more complex
cluster vacancies resulting from further aggregation of vacancies in a highly off-
stoichiometric condition was investigated in this work. Such defects will host a
number of energy levels and may act as electron traps.

Vo and V2, are donor and acceptor-type defects respectively. Vo can occur in
three charge states, i.e. 0, +1 and +2, while V, can take up 0, -1 and -2 charge
states [62, G4]. Vz,0 is a neutral vacancy with respect to dangling charges in the
defect and can trap both holes and electrons, giving it a charge state range -2, -1,
0, +1, +2 [39]. All the charge states of these vacancies may not be stable with
respect to dissociation into other charge states. For positive values of Hubbard-U
[61] one vacancy is needed to be more stable at its +1 or -1 state than its +2 or
-2 state. We already know from the literature that the V/, state is unstable and
that Vo is a negative-U defect [36, 64]. Different charge states of these defects
were investigated with both ideal, unrelaxed and relaxed geometries. There is a
large change in electronic structure observed upon relaxation. Formation ener-
gies and transition levels of these three vacancy defects were calculated for both

relaxed and unrelaxed ideal geometries in order to confirm stability of the defect



in one or other charge state. Large alterations in the values of formation energy
were noted upon relaxation, even though the relaxation energies are relatively
small with respect to the change in transition levels and the relaxation is quite
localized around the vacancy site. Transition levels between charge states were
calculated from the difference in their formation energies. These estimations of
formation energies and transition levels are made using total energies from hybrid
DFT self-consistent-field calculations. However, another method is also used to
calculate transition levels from energy eigenvalues of the charged defect states.
The methods are discussed in detail in Chapter 3 and the results from the two
methods are compared in Chapter 6, where we can see that they agree roughly
with each other, as well as with other published work, when the crystal structure
is relaxed. The deviations between the results obtained from the two different
methods are small but significant, if comparison is made with photoluminescence
experiments. The possible corrections that can be applied are also discussed.

Hubbard-U values for these defects were calculated from differences in transi-
tion levels [61, 64]. Large changes in U-values were found as the crystal structure
was relaxed. This is because of the alteration of the crystal structure upon relax-
ation around the defect site as the defect occupancy is changed.

The Hubbard-U value for Vz,o was also calculated from the energy differ-
ence between two different spin configurations of a 3/4 filled V4,0 vacancy pair.
A large supercell with two Vz,o vacancies 11 A apart was chosen for this pur-
pose. In a 3/4 filled system electrons trapped in defect sites 11 A apart were
found to interact with each other. The U-value found from the two methods are
in agreement with each other. This method gives us useful information about
long range defect-defect interaction. However, this method requires large super-
cell calculations and is extremely expensive in computer time, especially when
lattice relaxation is necessary with different spin configurations. Hence, these
calculations were not repeated for the estimation of U for Vo and V,.

A similar set of calculations were carried out for magnesium oxide (MgO) to
estimate the value of Hubbard-U for the MgO pair vacancy (V40), following
Ricci et al’s [65] prediction that electron-trapping MgO pair vacancies may fre-
quently occur in MgO thin film surfaces and act as paramagnetic centres. Also,

there is a report of observation of room temperature FM in MgO thin films [60]



which may occur from defect-defect interaction. V40 was found in this work to
have large U-value and moderate bandwidth.

A model for defect-defect interaction is proposed in this work. A defect may
trap one or two electrons in an energy level lying in the band gap of the host
system. This energy level can be represented by the solution of a single-band
Hubbard model. Based on a single band Hubbard model, different 3D lattice
structures (simple cubic, fcc and bee) were studied in the past using different
finite temperature computational algorithms, such as high temperature series ex-
pansion (HTSE) [67] and quantum Monte Carlo (QMC) [68]. Magnetic phase di-
agrams from these calculations suggest that electron-trapping defects with a large
Hubbard-U and moderate bandwidth will retain a parallel-spin configuration be-
tween the defect-trapped electrons at finite temperature when the defect-level is
partially filled, away from half filling.

The interaction between defect and transition metal (TM) ions substituted
for Zn in ZnO is investigated here. This is done by substituting up to two Co*"
ions at various distances from the defects. The interaction between a Co?* ion
and defect-trapped electron is large when the Co** ion is at nearest neighbour’s
distance from the defect. The mechanism of the interaction depends on the
wavefunction of the trapped electron in the defect.

The effect of crystal structure relaxation was also tested with TM doping. Due
to the similarity between ionic sizes of Co and Zn, there is hardly any displacement
around the substituted Co?* ion. We will see in Chapter 7 that the deep 3d filled
states in Co rise up in the energy spectrum upon relaxation that yields stronger
coupling with the defect state.

As discussed previously, ZnO thin films also exhibit a number of photolumi-
nescence anomalies in the presence of defects [5]. ZnO has an ultraviolet (UV)
region direct band gap of 3.4 eV [56], but green, yellow and blue photolumines-
cence was observed in ZnO thin films with various degree of defects [6, 11]. Once
again, there is a huge debate and speculation on the details of the structure of
the defect responsible for the different luminescence colours [69, 70, 71]. The
optical transition energies for the defect energy levels have to be calculated very
precisely. Conventional LDA/LDA+U computational methods underestimate the

defect transition levels and therefore new techniques such as hybrid DFT or GW



must be adopted [72]. In this work, a brief commentary has been made on the
estimation of optical transition energies from the defect transition levels and the

role of various defect transitions are discussed.

1.0.2 Acceptor doped magnetite

The electronic structure of acceptor type impurities doped in magnetite (FesOy)
was studied using a similar DFT scheme. Fe3O4 shows a number of interesting
phenomena such as ferrimagnetism, a metal-insulator transition, charge order
and mixed valence hopping [73]. The metal-insulator transition, known as the
Verwey transition [74], occurs around 123 K. Below the transition temperature
the crystal structure distorts from cubic symmetry [74]. The structure in the
insulating state was investigated [75] and evidence was found for charge ordering
by X-ray diffraction [73] and muon spin spectroscopy [76]. The iron atoms in
Fe30, are divided between tetrahedral (known as the A-sites) and octahedral (B-
sites) sites. Since Fe exists in a Fe?* and Fe*' mixed valence state on octahedral
sites, hopping of the charge carriers between Fe?™ and Fe?' gives little electrical
conductivity [75, 77] below the Verwey transition. Neutron diffraction experi-
ments reveal that the electronic spin on Fe*t ions in tetrahedral sites are aligned
antiparallel to that on the octahedral Fe*" ions and only the moments from Fe?*
ions give a net ferrimagnetic moment [73]. Hole-doping oxidises Fe*" to Fe®*
which increases the magnetic moment and quenches mixed-valence hopping si-
multaneously. Substituting half of the Fe?* ions on tetrahedral sites in magnetite
by lithium yields lithium ferrite (LigsFes504). The substitution of Li preserves
the lattice order and LigsFes 50, has the same crystal structure as FezOy [78].
Some experiments found LigsFes 50,4 to be a moderate band gap semiconductor
at room temperature and has a higher energy associated with spin polarized pho-
toelectrons than that of pure magnetite [78]. With a high concentration of oxygen
vacancies, Li-ferrite shows strong magnetization of about 2.5u5 per formula unit
at room temperature [79)].

Hole doping causes quenching or termination of this mixed-valence hopping
in various degrees, depending on doping concentration. Li ferrite was studied in

this work using the low temperature structure. Different site substitutions were
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considered in order to find out the energetically most favourable substitution site.
In LigsFes 504 all Fe?t ions are oxidised and the Fe?'-d bands governing mixed-
valence hopping, vanish and a moderate optical band gap of 2.55 eV opens up. A
spin-split polaronic band can be introduced by overdoping of Li which can give
rise to p-type conductivity in low temperature by small polaron hopping. The
excitation probabilities and magnetic moments are manipulated by substituting
oxygen with nitrogen (Fe3O35Ng5) which also removes mixed valence hopping
bands depending on substitution site. The geometry remains quite unaltered

comparing to Li-ferrite as N atoms substitute O atoms.
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Chapter 2

Defects in oxide semiconductors:

A brief literature review

The role of defects in modifying the photo-electric and magnetic properties of
oxides were briefly described in the introductory chapter. Here we will go into
more detail to discuss the state of research in this field and the relevance of defect
study in oxide semiconductors. Although many types of defects, such as surface
defects and stacking faults, may impact properties of oxides but point defects
play a particularly important role, even when very dilute as they modify several
important physical properties. A detailed understanding of the defect structure
responsible for a particular experimental observation has been obtained in very
few cases [55]. The main objective of this chapter is to illustrate the progress that
has been made in understanding the electronic and structural properties of oxide
defects and to show how this knowledge can be applied to engineer materials
properties. The development of higher-precision instrumentation for materials
characterization, improved processing methods with the ability to control chem-
istry and structure on a near-atomic scale, and improved computational tools
apable of considerably more realistic modeling are the key foci of the research
in this field. Since we are interested in point defects in particular, emphasis has
been given to experimental and computational results obtained for point defects
in oxides.

A brief discussion is made on the thermodynamics of creation and stabili-

sation of defects, describing their dependence on temperature, atmosphere, and
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composition. We then examine how these defects can impact properties (e.g.,
clectrical, optical or magnetic) and how these properties can be experimentally
analyzed and evaluated. We discuss spectroscopic experimental results, dealing
with defect systems and then the computational interpretation and predictions.

The key types of intrinsic point defects in oxides are vacancies, interstitials
and antisites. A vacancy is removal of an atom. In an oxide, MO, vacancies
can be of both cationic (V) and anionic (Vy). lons may occupy interstitial
crystallographic sites and give interstitial defects (M;, O;) or occupy lattice sites
of an ion of different species, leading to antisites (Mg: ion M occupying O lattice
site or vice versa, Oys). Extrinsic defects include donor or acceptor impurities
(Dar, Ap) and less common impurity interstitials (D;). The notation used here to
describe defects is known as the Kréger-Vink notation [80]. The original Kroger-
Vink notation describes the charge state of a defect by putting x, e, and / in
the superscript to describe neutral, positive and negative charges, respectively
(e.g. V5, Vg and V{) represent neutral, singly positively and negatively charged
oxygen vacancies respectively). In this work, we use 0, 4+ and - | respectively, for
simplification.

At high growth temperatures, point defects are mobile and they may collide
to create pairs or cluster defects. A pair defect may be more stable than separate
defects from a thermodynamic point of view [55, 81]. Pair defects include the
Schottky pair vacancy (Va - Vo ), Frenkel (Vy, - M;) and anti-Frenkel (O; -
Vo) defects. The probability of formation of a defect can directly be estimated
from a reciprocal function of formation energy which is the energy cost to create
a defect. A detailed explanation of the significance and methods for estimation
of formation energies is given later in this chapter and in Chapter 4. In general
the possibility of occurring of a particular type of defect may be anticipated from
the host crystal structure and the growth condition of an oxide. For example, a
Schottky defect has more probability of occurring than a Frenkel defect in a close-
packed structure because the energy required to pack one interstitial ion into the
lattice is high unless the gas pressure of that particular ion during growth is very
high.

Basic chemical thermodynamic principles determine which types or species of

defect dominate. At equilibrium, at a given temperature and pressure, the free
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energy should follow,
AG = AH-TAS<O0 (2.1)

where, H and S are the enthalpy and entropy, respectively, and T is the absolute
temperature. AS can be represented from the probability relation AS = klnW
where W is the thermodynamic probability and depends on the description of
entropy. The entropy change may be divided into two parts AS = ASy + ASe
where, ASy is the change in vibrational entropy and AS¢ denotes the configura-
tional entropy change induced by the formation of the defect. The two quantities

can be estimated from the probability equation. The vibrational entropy change,
174

ASy = zkpln— (2.2)
174

where, z is number of neighbours of the defect and v and v/ are the vibrational
frequencies corresponding to bulk lattice and the lattice with the defect, respec-

tively. The configurational entropy change is given by,
AS(; = /\‘Blllp (23)

where, P represents the number of ways n defects may be distributed in a lattice
of N atoms (therefore over N+n sites).

Hence, solving for n, by minimising AG in Eqn. 2.1, we have,
n a NeA.S\'-—AH/kBT (24)

Thermodynamics gives us information about which defect will dominate at equi-
librium but in practice the concentration of a particular type of defect is increased
deliberately by controlling growth atmosphere and target stoichiometry in growth
techniques such as pulsed laser deposition (PLD). In PLD or other modern-day
growth methods such as molecular beam epitaxy (MBE), oxygen partial pressure
Po, is a key parameter in controlling stoichiometry. Since it is important to have
a predictive knowledge of the concentration of defects at any given temperature, a
simple model can be established, based on thermodynamics and defect chemistry,
such that the concentration of any defect can be represented as a function of Pp,

and temperature T. Duncan [82] and Huggins [83] have shown that an isothermal
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2.1 Characterisation of vacancy defects

plot of defect concentration with respect to Pp, can be very useful in growth
design. Tuller and Bishop [84] have shown that from such a diagram, drawn us-
ing experiments on Gd doped CeO,, the concentration of oxygen vacancies can
be expressed as [V3] o P(_);/ % [84]. This relationship becomes [V3] oc Pg;/ !
for higher oxygen partial pressure, where the cation vacancies dominate. This is
important from the application point of view. Given that all other stoichiometric
parameters are fixed, measurable quantities which arise from the conduction of
vacancy electrons such as electrical conductivity, can be written as a function of

Po, and temperature T.

2.1 Characterisation of vacancy defects

In the previous chapter it was noted that the structural and electronic properties
of defects can not be easily obtained from experiment, and require theoretical
models and first principles simulations. High-resolution transmission electron
microscopy (HRTEM) has nearly reached the atomic scale in the last decade
[85]. However, point defects still need to be identified and characterised using
indirect methods. Defects in oxides are mostly investigated using a range of
spectroscopy experiments. Absorption and emission spectroscopies of different
types [5] can be used to measure the densities of states of defect energy levels.
These quantities are directly comparable to first-principles simulation results.
Magnesium and zinc oxide are two of the most investigated oxides on which
these techniques have been used [11, 86, 87, 88, 89]. Results were interpreted
using first-principles methods and a number of density functionals and algorithms
[21, 39, 63, 64, 65, 90]. In this chapter we discuss some of these experimental
results and corresponding theoretical models that help to understand the role of
defects in modifying properties of semiconductors.

New electronic states introduced by defects can be identified by techniques
such as photoluminescence (PL) spectroscopy [11], sometimes generated by high
energy electron irradiation [86]. Characterisation of defect charging and electron-
trapping behaviour can be understood using electron paramagnetic resonance
(EPR) [41, 55] and positron annihilation spectroscopy (PAS) [89, 91]. These

techniques help to identify defects which act as paramagnetic centres.



2.1 Characterisation of vacancy defects

Intrinsic defects are thought to take part in high T (Curie-temperature)
ferromagnetism (FM) observed in non-magnetic oxides such as ZnO [18, 19],
SnO, [19] and InyO3 [17, 18, 92] and dilute magnetic semiconductors (DMS)
Zn,_,Co,0, Sny_,Fe, Oy (x = 4-7%) [15, 93]. FM is detected using magnetic
hysteresis [17] and X-ray magnetic circular dichroism (XMCD) [44] with off-
stoichiometric oxide samples. Several theoretical models are proposed to explain
the role of defects in this phenomenon and require highly accurate first-principles
calculations of several measurable parameters such as magnetic moment and ex-
change constant, in order to test these models.

The formation energy of a defect and the transition level between different
charge states are the parameters computable from first-principles simulations.
They can be used to interpret the experimental results. The formation energy of
a defect is the energy cost to create that defect in a system in a particular charge
state and can not be measured directly. It represents the probability of formation
of a particular type of a defect. One recent report by Kim and Kang [94] reports
techniques to estimate the formation energy of the oxygen vacancy in ZnO from
photoluminescence (PL) experiments.

The transition level (TL) between the two charge states of a defect is another
parameter which is computable from first principles. The optical recombination
energy can be calculated from transition levels and can be directly compared with
the results from PL experiments.

In the rest of this chapter we will discuss in more detail, first the experimental
results for EPR, PAS and PL, dealing with defect systems and then the first
principles calculations and predictions. In this work we have investigated defects
in ZnO, so this literature review is mainly focussed on ZnO defects. ZnO is one
of the most studied wide-gap oxides both in theory and experiment. Models for
defect-driven high-T¢ ferromagnetism in intrinsic oxide semiconductors and DMS

are also discussed.

2.1.1 EPR and PAS studies of electron traps

Some defects trap electrons in localized states. Vacancy defects often act as

electron traps [55] and dominate absorption/emission spectra of the material
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2.1 Characterisation of vacancy defects

in the band gap energy range. This may cause coloration of the material and
therefore electron trapping vacancy defects are sometime known as colour centres
or more commonly F-centres after the German term farbezentrum (colour centre).

In an EPR experiment the paramagnetism of an unpaired charge can be ob-
served when the sample, either single crystal or powder, is put in a magnetic field
which splits the otherwise degenerate spin states. The unpaired spin can move
between energy levels by either absorbing or emitting electromagnetic radiation
of energy € = hr, such that the photon energy is equal to gugBy. g is the Landé
g-factor and By is the magnitude of the external magnetic field. This leads to the

fundamental equation of EPR spectroscopy [95],
hv = gupBy (2.5)

Typically, EPR measurements are made in the GHz frequency range (9 - 10 GHz),
with fields By corresponding to around 4 Tesla. EPR spectra can be obtained by
varying the magnetic field By for a fixed frequency v. The Landé g-factor is a
3x3 tensor. For an axially symmetric defect wavefunction such as Vy in ZnO,
the unique elements of the tensor are g and g,. This gives further information
about the environment of the unpaired charge. For example, if a paramagnetic
centre is occupied by a lone electron in an s-like hydrogenic wavefunction with
nearly spherical symmetry, the g-tensor is expected to be isotropic with g-value
close to the free electron value, 2.0023.

EPR g-factors for defects in ZnO and other oxides are given in Table 2.1.

The first column of Table 2.1 shows the possible paramagnetic centres as-
signed in the respective publication. These assignments are made on the basis of
the growth stoichiometry of the samples and may not describe exact structural
information of the defect. The V} is a spin-1/2 state and is found unstable with
respect to dissociation into V& and V3 [36, 39, 64]. Therefore it is unlikely to
be found in n-type ZnO. The signal thought to be corresponding to V) in ZnO
is only observed at low temperature and after illumination in optically detected
EPR (ODEPR) experiments [41, 96, 97, 98]. The V}, EPR signal disappears after
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2.1 Characterisation of vacancy defects

Table 2.1: EPR g-factors for ZnO, ZrO,, HfO,, MgO and CaO

Defect spin g gL q
Zn0O
vg ! 1/2 1.9945  1.9960
vy, ! 1/2 2.0024  2.0124
Zny 1 1/2 1.9605 1.9595
Powder F-centre? 1/2 2.0027
HfO, powder
H4 centre? 1/2 2.0025
710y powder
74 centre? 1/2 2.0028
MgO
F* centre? 1/2 2.0023
Fy centre? 1/2 2.0008
F, centre® 1/2 2.0004 2.0012
CaO
F* centre! 1/2 2.0001
Fy centre® 1/2 1.9995 1.9980 1.9980

sample annealing to over 400°C [11].

The Vg, vacancy in ZnO is an acceptor defect with a deep defect level [62].
The neutral Vg, vacancy was reported to have a spin 1 triplet ground state by
Galland and Hervé [101]. As neutral Vg, charged by one electron to V. it
undergoes a Jahn-Teller distortion. The single hole in V may be localised on
an oxygen ion with g = 2.0024 and g, = 2.0193 [96, 101]. The g-tensor symmetry
suggests that V, wavefunction is axially symmetric. We will see in Chapter 5
that it is the oxygen-2p orbitals neighbouring a V, that host the electron.

The zinc interstitial in ZnO, Zn;, is a spin 1/2 defect in the Zn; state. EPR

'Ref. [96]
2Ref. [50]
3Ref. [88]
1Ref. [99]
Ref. [100]
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2.1 Characterisation of vacancy defects

signals with g = 1.9605 and g, = 1.9595 are assigned to Zn}! by Vlasenko and
Watkins [96]. An EPR signal with both components of g close to 1.96 is commonly
observed in ZnO and, according to a number of publications, is associated with
a shallow donor defect. This defect is labeled as effective mass (EM) defect
[90, 96, 102]. Zn; interstitial is one possible candidate for this shallow donor
defect [102].

EPR g-factors for oxides other than ZnO also show paramagnetic electron
traps. EPR resonances observed in HfO5, ZrO, and ZnO powders occur almost
at the free electron g-factor, 2.0023. The resonance peaks are sharp with line-
widths as narrow as 2G at 9.8 GHz when HfO, and ZrO, powders are annealed
in vacuum to temperatures between 300° and 750°C for two hours [38].

Fig. 2.1 depicts the result of an EPR experiment done on ZnO powder [50].
The resonance peak shown has a g-factor of 2.0027 + 0.0002, which is close to
that of a free-electron and it has a symmetric line shape. Resonance intensity
increases upon vacuum annealing and reduces fast on air exposure. The rapid
decrease in the resonance peak upon air exposure suggests that the unpaired
electron is trapped in such a defect that reduces in ambient atmosphere. This is
thought to be oxygen vacancy defect that absorbs oxygen from the air, and so
probably is on the surface of the sample. A sharp and symmetric resonance peak
was obtained for a powdered sample, where the crystalline grains are randomly
distributed. This may indicate that the unpaired electron associated with the
resonance signal has a spherically symmetric s-like orbital. A similar annealing
effect on EPR spectra was observed for HfO, and ZrO, [52, 88].

Defects in alkaline earth metal oxides are also extensively studied using EPR.
g-factors for oxygen deficient MgO and CaO has been found to be 2.0023 and
2.0001, respectively [99]. EPR signals associated with these g-factors were as-
signed to the V/, F* centre which, unlike in ZnO, is thought to be a stable state
[99]. EPR signals from MgO powders heated above 400°C show a reduction in
the F' line at ¢ = 2.0023 and appearance of a new line at g = 2.0008, which
was assigned to an F,-centre [99]. Similar phenomena were observed for CaO,
which, upon annealing, also shows an F,-centre peak with a g-factor of 1.9995
[100]. The F,-centre may be assigned to an anion-cation divacancy [65, 99]. At

high annealing temperature the defects are mobile and may congregate to form a
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2.1 Characterisation of vacancy defects
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Figure 2.1: Electron paramagnetic resonance (EPR) spectra of a powder ZnO
sample. A. Before annealing, B. After annealing in vacuum, C. Annealed and

exposed to air.

divacancy. We show in Chapter 6 that the formation energy of a ZnO divacancy
Vzn0 is 2 €V lower than separate Vz, and Vo vacancies. Ricci et al [65] have
argued that electron-trapping MgO divacancy defects would congregate on the
surface of the sample due to a further lowering of formation energy.

Positron annihilation spectroscopy (PAS) is another tool used to characterise
F~-centres. The principle of this technique is that if positrons are injected into a
solid body, they will annihilate upon meeting electrons and emit -ray photons.

The interaction can be written as,
CHE e (2.6)

The two y-photons which are emitted, are detected. An artificial radioactive light
element such as ?Na is commonly used as the positron source. The intensities
of incident and emitted positrons are detected to calculate the annihilation rate
A and positron lifetime 7 (A = 77 !). The lifetime of the incident positron will

depend on the electron density in its path. By comparing the fraction of positrons
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2.1 Characterisation of vacancy defects

that have a longer lifetime to those that annihilate quickly, insight can be gained
into the voids or the defects of the structure. Typically if there is a void (vacancy
defect) in an oxide semiconductor sample, the positron lifetime increases by 7, ~
1.27, where 7, is the positron lifetime in the bulk material [103]. The average
value of 7, for semiconductors is 200 - 300 picoseconds. An important advantage
of PAS of semiconductors is its sensitivity to the charge states of positron traps
(charged vacancy defects). Remarkably different temperature dependencies of
trapping rates may be observed if the defect is charged positively, negatively or
is neutral.

PAS is quite extensively used in characterising defects in ZnO. Tuomisto et
al [89] reported from PAS studies on as-grown and electron-irradiated ZnO that
the Vz, vacancy is a dominant acceptor defect and can account for almost all
of the acceptor centres in n-type ZnO. It is commonly believed that the n-type
nature of as-grown ZnO and a number of oxides arises from high oxygen vacancy
concentrations, if not grown under an oxygen partial pressure [17] (of at least 1
mBar for ZnO). Tuomisto et al argued that in a Zn-poor growth condition, n-
type conductivity arises from residual hydrogen impurities. In more recent PAS
studies on Zn0O, V,,, was expected to be mostly in a double-negative-charge state
[89, 104]. The V¢ defect was expected to be a deep donor when induced by elec-
tron irradiation, having an ionisation level about 100 meV below the conduction
band edge[104]. Shining monochromatic light on the samples during the positron
annihilation measurements at low temperature leads to the conclusion that both
irradiation induced Vz, and negative-ion-type defects have ionisation levels close
to 2.3 eV below the conduction band [104]. The negative-ion-type defects were
suggested to be oxygen interstitials (O;) or oxygen antisites (Oyz,) [104].

Another recent PAS study along with an optical transmission study by Selim
et al [62] supports the earlier evidence of Vo being a deep donor and Vy, a
dominant acceptor defect. Optical transmission experiments suggest that the
red or orange coloration in ZnO annealed at 1100°C originates from transitions
between Vg, defect states. In the same study, formation of Zn; was found unlikely
to occur, even in Zn-rich growth conditions. Creation of Vg, was observed after
irradiating with 2 MeV O% ions [105]. Formation of vacancy clusters is observed

at higher irradiation fluences. ZnO divacancies and vacancy clusters are expected
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2.1 Characterisation of vacancy defects

to be formed by aggregation of irradiation induced single vacancies [91, 105].
These complex defect clusters are charge-neutral, suggesting that they are V0

divacancies, which is an intrinsic charge neutral defect.

2.1.1.1 Negative U defects

When a defect traps more than one electron, the electrons exert Coulomb re-
pulsive forces on each other. This introduces a finite energy cost to add one
additional electron to an already half-filled defect state. This energy cost is the
on-site Coulomb repulsion energy or Hubbard-U. For a bivalent metal oxide
such as ZnO or MgO, a cation defect or a Schottky pair defect can trap up to
two electrons. The energy cost of adding a second electron to such a defect al-
ready occupied by one electron is U. A combination of lattice and electronic
relaxation in some defects allows a second electron to be added to the defect,
accompanied by a lowering of the energy. The Hubbard-U values are negative for
these defects and they are known as negative-U defects [64]. We have mentioned
previously that the oxygen vacancy Vo in ZnO was found in first principles cal-
culations to be such a defect. The singly positively charged (V) state of this
defect was found to be unstable with respect to dissociation into V% and V&
[36, 39, 64]. A negative-U defect can be identified from PAS experiments on
as-grown and electron-irradiated samples [101]. It was also suggested that the
Vz, defect was a negative-U defect, as PAS reveals that Vg, prefers to be in a
double-negative-charge state after electron irradiation [89, 1041]. Identification of
a defect as negative-U is important for certain issues. A negative-U defect with
an unpaired charge is not stable and cannot act as a paramagnetic centre. This
is particularly important in explaining the role of defects in DMS and intrinsic
ferromagnetism in oxide semiconductors. In Section 2.2 of this chapter we shall
discuss different models to explain the role of defects and we will see that a singly-
charged defect is essential for almost all the models. In a negative-U defect the
doubly-occupied defect energy level is deeper than a singly-occupied level and
the transition €(2 — /—) will be have a lower value than the ¢(—/0) transition.
Transition levels are calculated from first principles calculations and the value of
U is given by, U = €(2 — /—) — €(—/0). The techniques for estimation of these

quantities are discussed in Chapter 4.

22
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2.1.2 Role of defects in optical properties: Photolumines-

cence

Since defect levels lying in the band gap of a semiconductor may dominate opti-
cal transitions in that energy range, tailoring defect concentrations is immensely
important for transparent semiconductors such as ZnO, GaAs, GaN and CuAlQOs.
For example, Zn0O is a UV-bandgap semiconductor but off-stoichiometric sam-
ples emit green, yellow and red photoluminescence [5, 11, 40, 106, 107, 108]. The
green luminescence peak is associated with an energy of ~2.4 eV and is often
attributed to electron-hole recombination of transitions from donors, Zn; or V3,
to deep acceptors V, [106, 109]. This requires both Vo and Vg, to appear in
the sample. The yellow emission energy ~2.2 eV was assigned by several groups
to the radiative recombination of a delocalized electron close to the conduction
band edge with a deep trapped hole in the O; center [40, 107]. In a recent publi-
cation, Heo et al [11] suggested that the green emission is related to donor-deep
acceptor V%, ~— V,  transitions and the yellow to donor-deep acceptor Vo —
O, (negatively charged oxygen interstitial) transition. The yellow luminescence
is also observed in the presence of the extrinsic acceptor impurities: Al, H, Li and
N [110]. A red/orange coloration [62, 108] is observed in Zn-rich samples annealed
at high temperature and was attributed to Vo defects by ODEPR experiments
mentioned previously [62]. This coloration is reversible and the samples become
transparent upon annealing in O-vapour.

Studenikin et al [106] observed a shift from green to blue (2.5 eV) in the
Zn0O photoluminescence spectrum using a high-intensity laser pulse. Some first-
principles calculations assign this signal to the (-/0) or (2-/-) transition of the
antisite defect Oy, [111]. This defect has a high formation energy and therefore

it is argued that it can only form after under high-intensity laser treatment [111].

2.1.3 First-principles calculations on oxide defects

First-principles calculations using a number of different functionals have been
carried out for defects in ZnO. Some of these methods were discussed in Chapter
1 and more detail is given in Chapter 3. A defect system can be simulated by

using the crystal structure parameters of the bulk system obtained using x-ray
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diffraction experiments and removing an atom from it. Supercell methods are
most commonly used in these calculations. A supercell is a large crystal cell
created by multiplying the conventional unit cell. A unit cell cannot be used by
itself for a defect study. If an atom is removed or substituted in a conventional
unit cell, which typically consists of 2 to 10 atoms, the symmetry is heavily
disturbed and poorly represents a point defect. Therefore the supercell method
is useful here. Being periodic over larger dimensions, it gives the scope of looking
into the long-range perturbation due to a defect. The supercell size should be
large enough so that the defect concentration is typically 1% or lower, even if only
one single atom is modified. Since a supercell is repeated in space, any defect
created in the supercell repeats along all directions. This leads to unwanted
interactions between the defect and its periodic images, which contribute to the
total energy. This problem becomes more prominent when charged defects are
involved. The image charges interact in all periodic dimensions and contribute
to the total energy. Correction schemes are required to remove the unwanted
energy contribution which may be as large as 0.5 eV for small supercells with
approximately 40 atoms [55]. This problem and related corrections are discussed
in detail in Chapter 4.

In first-principles calculations with supercells one can calculate the total en-
ergy of the supercell and charge populations on each atomic site. The charge
density is obtained as a function of real space position vector. Eigenvalues of the
Kohn-Sham operator can be plotted as the function of wavevector to generate the
band structure. Electronic wavefunctions associated with the defects can also be
visualised.

Two important quantities related to defects that first-principles calculations
can predict are formation energy and transition level. We discuss the significance
and estimation techniques of these two quantities in Chapter 4. Kohan et al [64]
have formulated formation energy of a defect from first-principles total energies of
supercells containing a defect and bulk. A defect formation energy is the energy
cost to create a defect and comparison of formation energies of different defects
gives information on the relative thermodynamic probability of formation of a
defect. Comparing formation energies of a single defect in different charge states

yields the transition level. A transition level of a defect between two charge states
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2.1 Characterisation of vacancy defects

is the value of the Fermi level at which the formation energies for the two different
charge states become equal [64].

Transition levels are important parameters in the characterisation of a defect.
We mentioned that the value of the Hubbard-U parameter can be estimated from
the transition levels. Lany and Zunger [69] have shown that the optical recom-
bination energies associated with defects can be estimated from transition levels
and hence the results from the photoluminescence experiments can be directly
interpreted. The green luminescence at 2.4 eV is often attributed to the Vo (4/0)
transition [69] from first-principles calculations.

Vidya et al [111] have recently estimated the same quantities, using PAW-
GGA. The results suggests that the green luminescence should be attributed
to a Vz,o divacancy rather than a Vo single vacancy. One concern regarding
prediction of the optical recombination energy form the transition levels is the
accuracy of the value should be high so that the error is lower than at least
0.1eV. This is because the width of most of the PL peaks are in the order of
~ (0.1 eV. Also the energy difference of a green and a yellow signal is ~ 0.2 eV.
Occasionally it has been observed that the results differ much more than this error
limit whenever a different functional is adapted [21, 63] and certain corrections
must be applied.

One of the main concerns regarding first-principles calculations on wide band
gap oxide semiconductors is the band gap problem. As we mentioned before,
although conventional local density approximation (LDA) is frequently used in
first-principles simulations, for large gap oxides and strongly correlated systems,
LDA predicts an incorrect electronic structure. LDA assumes that the energy
functional for any system varies in the same way as that in a homogenous elec-
tron gas (Details of the fundamentals of density functional theory and LDA are
discussed in Chapter 3). LDA incorporates an artificial self interaction of electrons
and also lacks the derivative discontinuities of the exchange-correlation potential
with respect to occupation number [112]. This results in underestimation of the
band gap. The presence of defects makes the calculation more complicated as the
electron density varies rapidly at or near the defect site. Due to the band gap
problem, the defect states are incorrectly described and the formation energy of

defects include a large error, especially for charged defects [21].
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A number of algorithms and correction schemes have been proposed to solve
this problem such as LDA+U [113, 114], the generalised gradient approxima-
tion (GGA) [30], GGA+U [113], self-interaction correction (SIC) schemes [115],
atomic-SIC [45] and hybrid Hartree-Fock-DFT [34]. A combination of two dif-
ferent methods is used sometimes. Rinke et al [116] combined LDA and GW
methods to study self-interstitial defects in silicon. LDA was used for the crystal
structure relaxation of a lare supercell calculation and GW was used for charged
defects at fixed geometries. This is a very useful way of performing defect calcula-
tions with large supercells quickly. LDA is a fast algorithm but leads to incorrect
defect states. GW perturbative method, on the other hand, is theoretically more
elegant but computationally very expensive. Adding GW at the end of a large
supercell structural calculation using LDA,| makes the whole process significantly
faster and more accurate as well. The only drawback of combined methods like
this is that, these methods do not take into account the fact that the structural
changes may be affected by charging of a defect. We will show in Chapter 5 and
6 of this thesis that charging of defects does have a large effect on structural
changes and therefore combined methods may not always be applied.

Anisimov et al [114] have applied a finite Coulomb U to the basic LDA func-
tional. This approximation can predict the band-gap of these system correctly
[64, 114]. In this approach, the electrons are divided into two subsystems consist-
ing of localised d and f states and delocalised states [113]. The localised states are
modelled by introducing a Coulomb repulsion term U, similar to the Hubbard-U
in the Hamiltonian where the delocalised states are modelled by standard LDA.
This method focuses on correcting the band gap in agreement with experiments
by adjusting U but may lead to other errors [117]. When defects are introduced,
LDA-+U leads to incorrect energy levels for the defect states [36, G4, 118] and the
value of U must be estimated for each of the different defects.

Another method often used to correct the band gap error of LDA is the self-
interaction correction (SIC) [115]. This method introduces a correction term
in the Hamiltonian to explicitly remove the electron self-interaction induced by
LDA. The implementation of this method to periodic solids is not straight-forward

and computationally expensive.

26



2.1 Characterisation of vacancy defects

The band gap problem in semiconducting oxides can be corrected by intro-
ducing a non-local exchange in hybrid density functionals. Hybrid functionals
include Hartree-Fock-like exchange in the exchange-correlation functional. This
significantly improves the predictions of certain parameters such as atomisation
energies, bond lengths and vibrational frequencies [34]. We discuss the philosophy
behind the development of hybrid functionals and the techniques used to counter
the band gap problem in Chapter 3. Here different results related to oxide defects
studied by a number of groups using hybrid functionals are described.

The band gap predicted by hybrid functionals can be adjusted to agree with
experiment by tuning the amount of non-local /exact exchange used in the exchange-
correlation functional. Fixing the band gap might lead to incorrect prediction of
other physical parameters such as bond-lengths or vibrational frequencies. Hence
the method must be evaluated on the basis of experience with a number of ma-
terials [119]. The calculation of non-local exchange is computationally expensive
and therefore large supercell calculations can not be easily performed.

Oba et al [63] have examined hydrogen interstitials and oxygen vacancies in
ZnO using HSE [33] hybrid functionals with finite-supercell corrections and ob-
served significant improvements over LDA and LDA+U methods. For example,
The band gap was calculated to be 3.4 eV which is close to the experimental value
of 3.47 eV [56]. LDA undestimates the band gap to ~0.2 eV [64]. The 24 /0 ther-
modynamic transition level of the oxygen vacancy Vg is estimated to be 1.2 eV
below the conduction band minimum (CBM) whereas uncorrected LDA/GGA
yields ~0.1 eV and band gap corrected values (LDA+U/GGA+U) values are
around 2.2 eV [64]. The hybrid result is supported by photoluminescence ex-
periments [11, 111]. The formation energy of V, was estimated to be ~ 1leV in
contrast to an unusually large value of 3.7 eV yielded by LDA+U calculations.

The B3LYP hybrid functional [34] was used in a study on V, and a much
deeper transition level for 2+ /0 of 3 eV below the CBM [36] was reported. Agos-
ton et al [120] studied Vo in ZnO, InyO3 and SnO, to compare results between
LDA/GGA and hybrid functionals. The results indicated that band gap under-
estimation in LDA/GGA can lead to incorrect physical conclusions of the role
of defects as a source of n-type conductivity. For ZnO, hybrid functional cal-

culations suggest that only a small fraction of the donor level electrons induced
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2.2 Defect related ferromagnetism in oxides

by Vo vacancy-type defects are activated at ambient temperature [120]. n-type
conductivity is therefore predicted to be caused by photo-excitation or hydrogen
impurities. A long decay time has been observed for photo-conductivity in ZnO
[120], which is supported by calculations, which show a large relaxation associ-
ated with Vo vacancy defect. For InyOz and SnO,, the V vacancy was found
to be a shallow donor defect with a low formation energy under oxygen deficient

growth conditions and may be contribute to n-type conductivity [21, 120)].

2.2 Defect related ferromagnetism in oxides

It is widely believed that defects play a role in the ferromagnetism which is
observed in many experiments with non-magnetic oxides and in dilute magnetic
semiconductor oxides (DMS) [15, 18, 92, 93]. Dietl et al [12] predicted that a
very dilute impurity of transition metal in non-magnetic semiconductors can lead
to room-temperature ferromagnetism. Different models are proposed in order
to explain ferromagnetisimn in DMS’s. Experimental studies found evidence to
suggest that the ferromagnetism of DMS is related to defects and impurities in
thin film samples [14, 15]. In the case of oxides, the oxygen vacancy defect is
thought to be responsible and the models proposed to explain ferromagnetism in
these materials involve a role for the oxygen vacancy in ferromagnetism [15, 92].
In recent years there have been reports of room-temperature ferromagnetism in
undoped oxide films [18, 19]. The results hint that the source of the magnetic
moment does not lie in transition metal impurities present in the oxide, but in the
defects and demand a model that can describe the mechanism of defect-related
magnetism in oxide semiconductors, transition metal doped or not. Some of the
models that are relevant to this work are described in the following sections. The

new model proposed in this work is also discussed.

2.2.1 The Magnetic Polaron and Impurity Band-Exchange
Models

In dilute magnetic semiconductors it is believed that unpaired charge carriers

bound to a defect by electrostatic interactions may have an exchange overlap with
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2.2 Defect related ferromagnetism in oxides

dilute transition metal (TM) ions in their vicinity and form spin-polarised bound
magnetic polarons (BMP) [15]. In practice, vacancy defects are created while
annealing sample films in high vacuum. The vacancy traps an unpaired charge
carrier and binds neighbouring anti-parallel spin TM d-states by s-d-exchange
into a BMP [15, 93]. It is found from positron annihilation spectroscopy (PAS)
that vacancy defects are quite efficient in trapping charge carriers, depending on
the electrostatic environment [104]. According to the impurity band exchange
model [15], the polaron wavefunction can be described as a hydrogenic wavefunc-

tion given by,
1
Vai

where ag = e¢(m/m*)ag, is the confinement radius, €, m, m* and a, are the static

p(r) ~ @ A (2.7)

dielectric constant, the absolute mass, effective mass of the polaron, and the Bohr
radius, respectively.
The Hamiltonian that governs the interaction between the spin of the donor

level and the impurity magnetic moments is given by [15, 121],
H = =) JW(r)|ads; - s(Ry), (2.8)
i

where S; is the TM spin located at R;, coupling with the carrier spin density s(r)
by local exchange coupling .J. The temperature dependence of polaron percolation
can be easily established. Using Eqn. 2.7 and 2.8, we have, at thermodynamic

equilibrium [121],
ksT = |J|(ao/ag)’(S - s)e 2Re/e8 (2.9)
where,
R(T) = (ap/2)In{s-S|J|(ao/ap)?/kpT}, (2.10)

i.e. the radius of the hydrogenic donor electron state at temperature T [121].
The radius of the donor state is important since the impurity spins that are at
a distance r < R, from a localized carrier tend to align anti-parallel with the

localized carrier spin. Since the TM impurity moment originates from a number
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2.2 Defect related ferromagnetism in oxides

of unpaired electrons in d-orbitals and is larger than the carrier spin-moment,
the net moment is always ferromagnetic. The localized donor state must interact
with many TM cations (v > 10 [15]) in order to stay spin polarized. Eqn. 2.10
implies that at certain temperature, the donor electronic wavefunctions become
too small to percolate and ferromagnetic order breaks down.

The Curie temperature has been estimated to be,

T. = /I[S(S + 1)s2nxy6/3)Jw./ks, (2.11)

where x4 is the doping concentration, n is the donor electron concentration, ¢ is
the defect density ratio (0 = Nyecancy/Nozygen) and w. is cation volume fraction
(typically 6%) [15].

When the donor state is delocalized, the expression for T, becomes
T. = [S(S+ 1)s’nx40/3)J%w?"3/kper, (2.12)

However the value of T, is reduced below 1K for a practical example [15].

The model clearly suggests that the donor electron density should be large in
the vicinity of a TM impurity in order to increase the Curie temperature. The
donor electrons are required to be redistributed largely over the impurity sites
(Fig. 2.2).

Pemmaraju et al [15] suggested another model based on coupling between
Co?* ion-oxygen vacancy pairs in Zn;_,Co,O. Atomic self-interaction corrected
(ASIC) DFT was used in the calculation of the electronic structure of Zn; _,Co,O.
A two-centre model is proposed where the substituted Co?* ions couple antifer-
romagnetically with an oxygen vacancy (Vo) nearby and form a Co?t - Vo pair.
These pairs can interact at long range and produce a net ferromagnetic moment.
Monte Carlo simulations have been carried out at finite temperature to show that

this model is consistent with room temperature ferromagnetism [15].

2.2.2 Hubbard model: Room temperature ferromagnetism

The Hubbard model is a simplification of the many body problem. There is a
simple assumption that, out of a number of levels, only one band plays a domi-

nant role in the ground state properties [61]. The Hamiltonian for the Hubbard
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Figure 2.2: Schematic diagram of a bound polaron model. A net ferromagnetic
moment is retained as long as the polaron wavefunction percolates. As the tem-
perature rises, polaron radius decreases (Eqn. 2.10) and percolation ceases above

the Curie temperature.
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2.2 Defect related ferromagnetism in oxides

model contains only two terms. A term diagonal in the states i, counting doubly
occupied levels which is multiplied by a positive energy U and represent the on-
site Coulomb repulsion. Another term is off-diagonal and accounts for inter-site
fermion hopping, multiplied by a hopping parameter t;;. The second quantized

Hamiltonian in the Hubbard model is given by,

H = - Z(tij — /.L)(,'Z-Lg(}j,, - %U Z NigMi—g s (2.13)

i\j,0 io
where ¢! and ¢ are fermion creation and annihilation operators respectively, t, .
and U are the hopping parameter, the chemical potential and on-site Coulomb
repulsion. The number operator is n,(r) = C:-’G(r)(',-(,(r). The model was first
applied to a 1D hydrogen chain [61]. With perfect half-filling, in the limit of
negligible on-site repulsion (U<t), it yields a metallic band. It yields a Heisenberg
antiferromagnet in the other extreme limit U>>t.

Nagaoka [122] did a rigorous analytical derivation to prove that for very large
U in lattice sites ordered in simple cubic (SC), body centered cubic (BCC), face
centered cubic (FCC), or hexagonal closed packed (HCP) lattices, a finite spin
may be observed for electrons n = N+41. N is the number of sites. The theorem
also requires ¢t > 0 as a necessary condition, t being the hopping parameter. The
theorem proves that in this condition the maximum total spin can be given by
Bas = Ty 2.

For most of the defects in wide band-gap systems, the defect state lies in the
band gap of the energy-band diagram. A defect state like this can be described by
a Hubbard Hamiltonian of the form in Eqn. 2.13. If such a band exhibits large U
and moderate bandwidth, then at partial-fillings of the defect band greater than
half-filling, the state will trap one electron completely and another electron par-
tially, which will hop between defect sites and yield a ferromagnetic polarization
between all defect sites. This is because the kinetic term in Eqn. 2.13 always
favours a FM-aligned system, such that the partially-bound electron can roam
freely through all sites.

Magnetic phase diagrams for the Hubbard model as a function of band occupa-

tion and temperature have been calculated by several groups. High temperature
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series expansion (HTSE) [67], spectral density approach (SDA) [123], dynamic
mean field theory (DMFT) [124] and quantum Monte Carlo (QMC) [68] calcula-
tions predict systems with parallel-spin orientation at finite temperatures which
depend on lattice structure and band filling. These phase diagrams suggest that,
a finite-spin solution can be obtained at fractional band-fillings greater than half-
filling. A necessary condition for a solution where partially filled sites are aligned
parallel is that the ratio between the on-site Coulomb repulsion and hopping pa-
rameter (U/t) should be greater than a critical constant, which depends on the
lattice structure. For example, SDA calculations show that for a SC lattice, a
U/W ratio, W being the bandwidth, greater than unity is essential to retain a
net finite spin for temperature > 300K [123].

The Hubbard model and the simple cubic phase diagrams can be used to ex-
plain ferromagnetism in an ordinary cubic lattice. It is postulated in this work
that defects with large U can interact and retain a parallel-spin configuration at
finite temperatures [68, 122]. The hopping parameter can be determined from
the bandwidth (W) of the defect band. A moderate bandwidth of the defect level
is desirable. A very small bandwidth will not allow the electrons to hop between
neighbouring defect sites, which is essential for long range interaction, and a large
band width will reduce the U/W factor which should fall in the ferromagnetic
region in the phase diagram. This model has the potential to explain the exper-
imentally observed room temperature ferromagnetism in transition-metal doped
[15, 43] and intrinsic semiconductor oxides [18] as a defect-related phenomenon.

A similar model has been presented by Bouzerar et al [92] for finite systems.
The Hubbard parameters of the correlated oxygen states were calculated for dif-
ferent oxides. The unrestricted Hartree Fock (UHF) method was used in their
calculations. The Curie temperature was calculated from the exchange constants
and they predict room temperature ferromagnetism at a low defect /impurity con-
centration.

The real deviation between theory and practice is that in all these algorithms,
calculations are made assuming a lattice ordering, mainly cubic. But the defect
sites in oxide thin films are not on a lattice and it is impossible to predict the

exact defect geometry and the effect of disorder on the phase diagram.
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However, recent work by Nielsen and Bhatt [125] which considered both or-
dered and disordered lattices in Hubbard model, showed that within Nagaoka’s
conditions (U/t — oo and n = N+1), a parallel-spin configuration is favourable.
The phase diagrams obtained in this work also suggest that the U/t — oo con-
dition may not be strictly obeyed and for large but finite U/t, partially filled

disordered systems away from half-filling can retain a finite spin.
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Chapter 3

Computational Methods

3.1 Hartree-Fock and Density Functional The-
ory

The density functional method described in the Thomas-Fermi model [126, 127]
paved the way for the density functional theory (DFT) proposed by Hohenberg
and Kohn [128] for effectively simulating quantum mechanical problems using
computers. The central concept of this theory is to describe the electronic struc-
ture of a particular system by calculating the electron density n(r) as a function of
position vector r. This is done by reducing the many-body problem of interacting
electrons in a static potential to a problem with non-interacting particles moving
in an effective potential. This potential is calculated as a functional of the charge
density function. The mathematical approach is explained below. For the last
half century, the basic concept of DFT remained the same but the accuracy of the
computations significantly increased as new algorithms and functionals became
available. As the speed of the computers increased exponentially in the last few
years, computational techniques such as parallel computing opened up the scope
for extensive and more realistic simulations. Modern day simulation does not
only calculate charge density and total energy but can also reproduce the results
of a wide range of experiments such as atomic force microscopy (AFM) [23] or
X-ray magnetic circular dichroism (XMCD) [24].

DFT simplifies the many-body problem by reducing the dimensionality. A
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system of N non interacting particles has 3N degrees of freedom. DFT reduces
the number of degrees of freedom to 3 since it requires only the total density
functional p(r), which minimises a total energy functional. This is achieved by
solving a self-consistent field matrix eigenvalue problem which can be solved by
only order of M? operations (M is the number of independent electronic wave
functions and is in the order of N). Since there are many assumptions involved
and the calculations are not exact in most many-body simulations, results often
deviate from experimentally obtained results. Thus the assumptions which need
to be carefully considered depend on the electronic structure of the material.
New calculation algorithms and correction schemes are being devised by compu-
tational physicists in order to keep up with the experimental data produced. The
calculation scheme adopted in this work is described in the following sections.
Comparison with experimental results has been made and the computational pa-
rameters have been chosen on the basis of experience and a number of literature

reviews.

3.1.1 Hartree Fock Theory

The Born-Oppenheimer approximation is considered for calculating fixed ionic
geometry calculations since this approximation removes the necessity of calcu-
lating the nuclear wavefunction by assuming that the nuclei are frozen in their
respective atomic sites. Hence the kinetic energy term for the nuclei can be

dropped and time-independent Schrédinger equation can be written as,

(T + Vee + Veur)(21, ..., xn) = Eo(z1,...,TN) (3.1)

Where 1 is the many particle wavefunction and the operators are the kinetic

energy,

1 N
P = -2V 3.2
2 =1 . ( )

the external potential energy,

Vit = Z v(r;), (3.3)
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where v(r;) are the Coulomb potentials on i-th electron. The electron-electron
repulsion is given by,

1. 1

Vee = 52@ (3.4)
7]

r is the electronic spatial coordinate.
The ground state energy is obtained by minimizing the total energy functional
using the variational principle. As electrons are fermions, the total wave function
must be antisymmetric with respect to the interchange of any two of the elec-
trons. Thus the total wavefunction 1) can be represented as the antisymmetric
linear combination of the wavefunction of the ¢-th electron ¢;, given by the Slater

determinant,

(r1) on(rz) ... oi(rn)

b = L 2(:1'1) ¢2(:1”2) (ﬁ'z(:I'N) (35)

(f)N(rl) GﬁNirz) ¢N(.rN)

Hence, the interaction between two particles yields two contributions due to

the antisymmetric nature of the wavefunction:

W|Veel) = Ec[y] + Ex[¥). (3.6)

The two terms are direct (Coulomb) and exchange integrals respectively,

Ecle] = %ZZ/([&T/(F)T, io(T) jal(:)_¢;7|(r)¢jo(r) (3.7)

B = LN [ [orBRGlRot g

= [r — /|
g i,

In 3.8 the sum over o is restricted to parallel spins and each of the functions
¢;(r) satisfies a one electron Schrédinger equation. This is called the Hartree-

Fock approximation (HFA). Eqn. 3.1 is solved in a self-consistent procedure.
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The Hartree-Fock approximation involves explicit exchange interactions between
all occupied orbital wavefunctions and excludes the self-interaction of electrons,
therefore bringing down the energy eigenvalues of the filled levels. In HFA| the
Coulomb repulsion is completely unscreened. This yields a band gap which usu-
ally overestimates the experimental band gap (For some strongly correlated sys-
tems HF yields a much better value of band gap). Overestimation of the band
gap by the HFA is a major disadvantage and since it includes explicit exchange

calculation between all basis orbitals, it is expensive in computation as well.

3.1.2 Density Functional Theory

DFT includes exchange and correlation effects. Modern DFT, introduced by

Kohn [22, 128], is based upon two theorems:

1 . The electron density n(r) in the ground state is a functional of the external

potential V,.(r)

2 . The exchange-correlation potential V,.(r) is a unique functional of the
density n(r). [12§]
The total energy of the full, many-body problem of interacting fermions is

expressed as a functional of the charge density n(r) defined by,

occupied

n(r) = Z /m(r)[?dr (3.9)

Assume a set of normalised Kohn-Sham orbitals ¢;, which are solutions to a
set of single-particle Schrodinger equations, known as Kohn-Sham equations
h?

[_%VQ -+ VII(r) + Vm(r)]gbi = 6i¢i (310)

Vi represents combined electron-nuclear potential and electron-electron Coulomb
potential. V. is the exchange-correlation potential.
In practice, the functional containing exchange and correlation effects is not

known exactly (HFA explicitly calculates exchange using Eqn. 3.8 and may be
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3.1 Hartree-Fock and Density Functional Theory

included in the DFT algorithm. This is known as an exact-exchange functional.
The exact correlation functional, on the other hand, can be calculated exactly for
the homogeneous electron gas only) Kohn and Sham [22] applied a simple local
density approximation (LDA) to the limiting case of a slowly varying electron

density, for which the exchange-correlation energy is given by:

ELPA] = /drn(r)eu[n] (3.11)
and
_ OEAn) ‘
Ve = —pm (3.12)

where €,. is the exchange-correlation energy per particle of a homogeneous
electron gas with density n(r). LDA becomes a self-consistent procedure by
minimising the total energy. Convergence of this self-consistent procedure is

achieved by the variational property of the total energy functional

oE
given that,
/n(r)d37‘ = N (3.14)

where N is number of electrons.

We have discussed in Chapter 2 that LDA tends to underestimate the energy
gap in solids, especially for strongly correlated electron systems [27, 28, 29] where
Hartree-Fock overestimates it. In LDA, spurious self-interaction is nearly can-
celled in the total energy integration but it is included in orbital-independent one-
electron potential [29] which reduces the energy gap. The Van der Waals inter-
action, which originates from correlated motions of electrons caused by Coulomb
interactions between distant atoms cannot be described properly by LDA or any
other mean-field approach. Hence for strongly correlated electron systems like
FeO, CoO, CaCuOs or LayCuO4 as well as the wide gap oxides such as ZnO
[36, 64] and CuAlO, [129], LDA fails to predict the correct ground state for the
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3.2 B3LYP hybrid DFT functional

magnetic systems and the energy gaps of all wide gap systems are severely un-
derestimated [27, 28]. Anisimov et al [29] later augmented the LDA by a finite
Coulomb repulsion U. LDA+U yields more accurate values of energy levels in
strongly correlated systems, but it still tends to underestimate transition levels

of charged defects in ZnO [90].

3.2 B3LYP hybrid DFT functional

Since DF'T calculations show a trend of underestimating the energy gap in strongly
correlated systems, and Hartree-Fock calculations overestimate it, a solution was
sought in hybrid HF /DFT methods. B3LYP hybrid DFT involves the Lee Yang
Parr (LYP) correlation functional [130], the Becke3 [34] exchange functional and
Vosko-Wilks-Nussair (VWN) correlation functional [131], along with traditional
LDA and HF exchange. The B3LYP functional is quite successful in strongly cor-
related systems. We have discussed before that the inclusion of self-interaction
in LDA leads to the underestimation of the band gap in correlated systems. The
reason for this success lies in the reduction of self-interaction by the introduc-
tion of HF exchange along with the use of a better correlation- functional that
takes dynamical correlation effects into account. This results in larger exchange
splitting and better prediction of magnetic moments in spin-polarised materials
[132]. The main concept of this functional is that it incorporates combinations of
Hartree-Fock exchange and conventional density functional approximations to ex-
change with weights that sum to unity. These weight factors are determined from
linear least square fits to the results of thermochemistry experiments [132, 133].
The least squares fit was based on a large database [119] created by computation
on organic molecules. Although organic molecules have much different electronic
structures than wide-gap oxides, surprisingly the fit works quite accurately for
oxides also. Comparison with experiment shows that measurable quantities such
as band gap, energy levels, lattice parameters and magnetic exchange coupling
constants are in good agreement with experiments. The order of error in these
quantities are as follows. Band gap: O(0.1 eV) [36, 38], lattice parameters: O(1%)
[132, 134, 135], vibrational frequencies: O(10 em™') [136, 137] for systems such
as Zn0O, CaCuOs, Fez0,4, BaTiO5 and a number of oxides.
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3.2 B3LYP hybrid DFT functional

B3LYP is not the best functional for metallic systems [138] due to the lack of
a proper description of free-electron-like systems with a significant itinerant char-
acter [139, 140], but for wide band gap systems and strongly correlated electron
systems it yields much better results for measurable parameters described before.
Other hybrid functionals such as PBEO [30], HSE [33, 141] and B3PW91 [142]
are also found to be free of the band-gap related problem which LDA experiences
[143] but are inaccurate in describing metallic systems for the same reason as
B3LYP [140]. Hafner [140] and Paier [139] have shown that when it comes to
description of solid state properties such as lattice parameters and bulk moduli
of wide-gap systems, the performance of B3LYP is slightly worse than HSE or
PBEO, but, having three tunable empirical parameters allows B3LYP to achieve
high accuracy in multiple properties with a single calculation [140].

The total exchange correlation functional in B3LYP is given by:
E,. = (1 — AELPA 4 BEPe**y 4 AEHF 4 (1— C)EYWN 4 CEFY? (3.15)

where, A, B and C are weight parameters. Experience with a range of oxides
[38, 132, 144, 145, 146] shows that the particular choice of conventional density
functional approximation used in combination with the Hartree-Fock exchange
does not change predicted values for exchange constants by a large amount [37].
On the other hand, experience shows that band gaps of oxides are more accurately
predicted with weights for Hartree-Fock exchange around 0.2 [36, 38, 132, 144,
115, 116]. Undoubtedly B3LYP estimates a very good result in agreement with
experiment for ZnO. The band gap of ZnO predicted by B3LYP, 3.2 eV [36, 39],
is in reasonably good agreement with experiment, 3.47 eV [56]. In this work
the lattice parameters are predicted to be 3.28 A and 5.27 A in comparison to
experiment values of 3.25 A and 5.21 A, respectively [56].

The B3LYP functional with HF weight of 0.2 is used throughout the current
work (in some calculations LDA is used in order to compare with other published
work using LDA). In the case of magnetite in its low temperature insulating
state the band gap is overestimated by conventional B3LYP [137] (0.9 eV). It is
shown that a lower HEF weight yields a band gap closer to the experimental gap
(Chapter 8). A HF weight factor of 0.15 yields a band gap of 0.4 eV compared to

the experimental value of 0.15 eV. However it is a subject of concern that whether
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manipulating the HF weight factor to correct the band gap will lead to wrong
prediction of other key parameters such as lattice and exchange parameters. In
the case of magnetite in low temperature, lattice parameter predicted using HF
weight of 0.15 are in better agreement with experiment than using the standard
0.2 [137].

3.3 The CRYSTAL code

The CRYSTAL [147] code used in this work, uses a Gaussian orbital basis to
expand wavefunctions. CRYSTAL treats each crystalline orbital (CO), ;(r, k),
as a linear combination of Bloch functions, ¢,(r.k) . defined in terms of local

functions, ¢,(r) (namely atomic orbitals, AOs).
Gi(r k) = > aui(K)g,(r k) (3.16)
i

According to Bloch’s theorem, the orbital wavefunctions of periodic systems with
lattice vector, T can be written as ¥(r +T) = ¥(r)e’®T. k is the wavevector
and is the Fourier conjugate of the position vector r. The mathematical form of

these functions are given by,
Pu(r, k) = Z Pul(r — Ay — T>(’ik'T (3.17)
T

A, denotes the coordinate of a nucleus in the zeroth lattice cell on which
@, 1s centered and summed over all lattice vectors T. The local functions are
expressed as linear combinations of n individually normalized Gaussian functions
G characterized by the same centre, with fixed coefficients d; and exponents «;

defined in the input:

our— A, —T) = > diGlay,xr— A, —T) (3.18)
J

where,

G(Qﬁ r— A[l . T) = e*aj(riAuiT)z (319)
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Hence the initial density n(r) can be computed from the wavefunctions v;(r, k)
using Eqn. 3.9 as a function of r for fixed values of k known as k-points. The
k-points are sampled from the Brillouin zone corresponding to the lattice cell.
Monkhorst and Pack [148] proposed a method of choosing a set of k-points. It
is a rectangular grid of evenly spaced points of dimensions N, x N, x N.. The
accuracy of the calculation is dependent on the density of sampling. The opti-
mum grid size can be established from a convergence test where the total energy
is plotted with respect to increasing number of k-points. Generally, the total
energy decreases rapidly and then oscillates with decay as the number of k-point
increases. When the oscillation amplitude reduces below a certain tolerance limit,
k-point convergence is deemed to be achieved.

The self consistent field calculation of DFT requires diagonalisation of the
eigenvalue equation 3.10 which gives the eigenvalues ¢;(k) as continuous func-
tions of k. When the diagonalisation is numerically computed, the density of the
3-dimensional k-point grid is a deciding factor in the accuracy of the eigenvalues
€;(k). On the other hand increasing the number of k-points will increase the
required computer-time as a function 7" = 3" x Ty, where T is the required
time that will increase by increasing the number of k-points by N. Ty, is the
time needed for diagonalisation of the eigenvalue matrix at a single k-point. An
optimum value for the k-point density must be observed, obtained from k-point
convergence test, in order to obtain the best results. CRYSTAL uses parallel
computing techniques and in a computer cluster system it distributes the diago-
nalisation of the eigenvalue matrix to different computing processors for different
k-points. This speeds up the computation by a large amount.

Another important issue regarding the computational technique is the choice
of basis set. The dependency of the accuracy of computation on different basis
sets is discussed in Chapter 4. The basis sets used here for different atomic
orbitals of different elements are generated by CRYSTAL authors and others,

which are available online at http : //www.crystal.unito.it
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3.3.1 Localised orbital vs. plane-wave basis sets

It was mentioned before that CRYSTAL uses localised orbital Gaussian basis sets.
Some simulation codes such as VASP (Vienna Ab-initio Simulation Package) [119]

and Quantum Espresso [150] use plane-wave orbital basis sets of the form
Ou(r) = u(r)e™* (3.20)
where,

un(r) = Y Coxe™" (3.21)
K

K is a reciprocal lattice vector. Hence the wavefunctions are given by,

Srac(r) = ) Coxe®HiOT (3.22)
K

The main advantages of using a plane-wave basis sets are:

1. A plane-wave basis set, used in combination with a pseudopotential (an
effective-core potential) in a calculation is faster than an all-electron localized-
orbital basis set. This is because the pseudopotential removes the necessity of
calculating the core charge density.

2. A plane wave basis is independent of atomic sites, and therefore the calcu-
lations of forces on atoms are computationally less demanding.

3. A plane-wave basis is parameterised only by a cutoff energy and it converges
in a smooth and monotononic manner to the desired wavefunction and it does not
exhibit basis-set superposition error (BSSE). BSSE arises from the overlapping
of neighbouring-site localised orbitals which effectively increases the number of
basis sets per atomic site and contributes to the total energy.

The main disadvantages of plane-wave basis sets are:

1. In a plane-wave basis set the number of orbital wavefunctions is very
large and therefore calculation of an exact exchange using this basis is extremely
expensive in computer time. This is because the exchange matrix elements have
to be computed between every set of pairs of orbital wavefunctions. This is very
important for the current work since a Hartree-Fock-LDA hybrid DFT method

is adopted.
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2. A plane wave has to use a pseudopotential to describe the core electrons of
a small ion such as oxygen and tend to be concentrated very close to the atomic
nuclei. This results large wavefunctions and density gradients near the nuclei
which are not correctly described by a plane-wave basis set, unless a very high
energy cutoff, and therefore a small wavelength, is used.

Despite of the fact that the advantages of using a plane-wave basis clearly
supersedes its disadvantages, localised-orbital basis sets are used in this work for
the following reasons,

1. A localised orbital basis features a lower number of wavefunctions in com-
parison to its plane-wave counterpart (in the order of magnitude of the number
of atomic orbitals of a corresponding atom) and is most suited for the current
work as the hybrid Hartree-Fock exchange functionals are involved.

2. A localised orbital basis set can describe the core potential in an exact
all-electron wavefunction which is important for small-core atoms such as oxygen
so one does not have to worry about basis set convergence problem for small-core
systems.

The main disadvantages of localised orbital basis sets are:

1. Unlike the plane-wave basis sets, the localised orbital basis sets are not
parameterised to only the energy cutoff and has to be explicitly described for
all different species of atoms. Transferability of these basis sets are therefore
questionable and have to be tested before using in a modelling of a new material.

2. BSSE is a major drawback of localised orbital basis sets. This can be
corrected by computing the error by repeating all the calculations using a mixed
(overlapped) basis set, and the error is then subtracted a posteriori from the un-
corrected energy [151]. The mixed augmented local orbital basis sets are formed
by introducing ghost orbitals, basis set functions which have no electrons or pro-

tons centered on interstitial sites.

3.4 The EXCITON code

The EXCITON code, developed by the electronic structure theory group in the
School of Physics, TCD [152] takes the wavefunctions generated by CRYSTAL

as input and can produce contour maps and 3-D visualizations of the electronic
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structure in periodic systems. Wave function isosurface plots shown in this thesis
to visualize bound polarons and other electronic states were drawn using EXCI-

TON and the visualization interface of the XCrysDen [153] code was used.
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Chapter 4

Estimation of Defect Formation

Energies and Transition Levels

4.1 Defect and impurity formation Energy

Defects and impurities dominate a number of important properties of semicon-
ductors. Concentrations of intrinsic defects, as well as dopants, are therefore
controlled in the growth of semiconductor devices in order to achieve certain tech-
nical applications. Defects and impurity dopants make the material either n- or
p-type, and also control recombination rates and contribute to optical absorption
and luminescence [5]. For wide-band-gap semiconductor materials, knowledge of
defect levels and transition probabilities is particularly important, as the control
over the conductivity and emission colours are the key to optoelectronic device
design.

In this work formation energies of intrinsic defects in ZnO are computed and
defect transition energies are estimated using LDA and B3LYP Hybrid DFT com-
putation techniques discussed in Chapter 3. The importance of these quantities
and their interpretations are discussed in Chapter 2. The formation energy rep-
resents the energy cost associated with a particular defect formation in a solid.
In this case we focus on intrinsic point defects, so the formation energy will be
the energy required to remove (vacancies), add (interstitials) or swap (antisites)
an atom in a solid. Correct estimation of formation energies from first-principles

methods has been extensively studied by several groups and the simplest way to
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4.1 Defect and impurity formation Energy

calculate a formation energy is from the total energy difference of supercells of
the bulk material and one containing a defect. A number of correction factors are
to be applied to the result and are discussed in this chapter. The mathematical

expression of the formation energy of a defect is given by

E/(X9) = Era(X%) — Era(Bulk) = niu;+ q(Ep + By + AV) (4.1)

where X9 denotes a vacancy X with charge state q, n; is the number of types i
added to (n;>0) or removed from (n;<0) the supercell. Eq,(Bulk) and Ep,(X9)
are total energies from supercell calculations for the bulk crystal cell and the
same cell with defect X, respectively. Ep and Ey are the fermi and valence
band maximum levels. p; are the chemical potentials of the corresponding types
and AV is a correction due to a charged supercell [118]. The chemical potential
of each species can be estimated from the total energy calculation in its native
state. In the case of ZnO, under typical growth conditions, we assume that the
chemical potential of Zn at the ZnO growth interface is equal to that of Zn in the
solid metallic state and can be approximated to the total energy of a Zn atom
in metallic Zn. The chemical potential for O relative to the standard chemical
potential of O, u§, in the oxygen molecule can be calculated by adding the free
energy of dilution to u$,

P
S+ kTl — (4.2)

9G _
Oni_u P(—)

From general thermodynamic principles AG = AH—-TAS and H =U+PV. Pis

the oxygen partial pressure during growth. Under typical oxide thin film growth

po = HO+

conditions, the oxygen pressure in the growth chamber is in the range 1072 to 107!
mBar [17]. Thus at a typical film surface temperature of 500°C, the oxygen atom
chemical potential decreases 0.6 to 0.8 eV below that at standard temperature and
pressure (STP). From the theoretical approach, the critical conditions assumed

for bulk ZnO to be bound together and be stable are given by,

/Lo[Og] < g < /,L()[Oz] -+ AH/(Z’!IO) (43)
BznlZNmetal] < Bzn < Bzn[ZNmetat] + AH(ZnO) (4.4)
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The chemical potentials can thus be estimated from the expressions below.

1
Ho = §Etot(()‘2)+AHf(ZnO)a (45)

Kzn = Etot(Z7L) + AHf(ZnO) (46)

The Oy molecule is in its spin triplet ground state and Zn in a bulk metallic
state with the HCP crystal structure. The enthalpy of formation AH ;(ZnO) for

bulk ZnO is estimated from the expression,
1
AIIf(ZﬂO) = Etot(Z’l"LO)B“[k = [EEwt(OQ) + Etot(Zn)] (47)

This is basically the energy that binds bulk ZnO. This energy needs to be included
in the chemical potential of a particular ion in bulk when the material is grown in
an atmosphere where that particular ion species is less abundant than the others.
In this context we assume thin films prepared in an oxygen-poor atmosphere, so
Eqn. 4.5 is essential but in Eqn. 4.6 the enthalpy is not needed to be added with
the total energy of Zn in its bulk metallic state to obtain the chemical potential.
With two different exchange-correlation functionals used (LDA and B3LYP) and
a number of specific basis sets, the enthalpy value for ZnO is estimated between
-3.6 eV (B3LYP) and -4.1 eV (LDA), compared to an experimental value of -3.5
eV [154].

Calculations done using supercell methods and containing a charged defect
always include unwanted contributions from images of charges created from the
periodic boundary condition. Charged supercell calculations also introduce a
compensating uniform background charge [155] that interacts and contributes
further to the total energy. The necessary correction required to nullify any

unwanted contribution is discussed later in this chapter.

4.2 Defect transition levels

The defect transition level is the position of fermi level at which the formation
energies of a defect in its two different charge states become equal. It represents a

measurement of the energy cost of changing the defect occupation from one charge
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state to another. In standard notation transition energy between two charge
configuration of a level is denoted by €(q'/q) where ¢ and ¢ are two different
charge states of the defect. For a single-band the charge configurations are +2,
+1, 0, -1, -2 depending on the electrostatic environment of a particular defect.
Transition levels are obtained by comparing formation energies of a defect in
two distinct charge states and solving for the fermi-level position at which they
become equal. From Eqn. 4.1, the difference in total energy when a supercell

containing a defect X changes its charge state from ¢ to ¢/, is given by,

Ef(X?) - E/(XY) = E(X?)-E(X")+(q—q)(Er—Ev) (48)

where, the total energies of two charged states ¢ and ¢’ of a system with a defect
X are given by F(X9) and E(X7) respectively. When the fermi level is at the
defect transition level, the LHS of Eqn. 4.8 becomes zero. Hence the transition

level €(q'/q) can be defined by,

E(X9) = B{X7T)
q —q

Defect transition levels are estimated from both the total energies and from

e(d/q) = E,+ (4.9)

the one-particle eigenvalues of differently charged defect systems. Both methods

are discussed in the following sections.

4.2.1 Transition level calculation using total energy

In the total energy method, total energies are calculated using DFT in supercell
method and the difference between the total energies of two distinct charge states
of a level replaces the term E(X?) — E(X?) in Eqn. 4.9. Here the absolute value
of the associated valence-band maximum (VBM) Ey is unknown, so the reference
level is set to the VBM by subtracting the total energy difference of same two
distinct charge states in bulk supercell of same size. The working formula to

calculate transition levels from total energies is given by,

e(q'/q) = ([Bu(X7) - Etot(Xq’)] - [E;liulk - Equulk])/(q, —q) (4.10)
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where E;,(X?) is the total energy of the supercell with defect X with charge
state ¢ and EY,,, is the same bulk supercell with same charge state. Eqn. 4.10
is associated with a donor-type defect where the neutral state is doubly occupied
and the vacancy is getting positively charged. The oxygen vacancy (Vo) is such a
defect. In Eqn. 4.10, the transition level is calculated from the change in energy
when a hole is created in a bulk crystal supercell and transferred to a similar
supercell with a defect. This is a two-step procedure explained schematically in
Fig. 4.1. The energy cost for the first step is associated with the last two terms
(Bfun— Egulk) in Eqn. 4.10, where an electron is removed from the bulk valence
band. In the second step, the electron is moved to bulk VBM from the defect state
and associated energy cost represents the first two terms (Ey,(X?) — Eypy (X q')).
The latter sum of terms is the fermi-level position with respect to the VBM at
which the defect changes charge state and is represented by €(¢’/q) in Eqn. 4.10.

In the case of an acceptor-type defect, the defect state is charged by an electron
and the charge state ¢’ is generally -1 or -2. The last two terms in Eqn. 4.10 are
total energies of bulk systems with 0, 1 or 2 electrons in the conduction band.
Thus subtracting their energy difference from the total energy difference of defect
systems yields the transition level with respect to the conduction band minimum
(CBM). In order to obtain the value of the transition level with respect to the

VBM, the value of energy gap should be added to the expression, which is,

/0 = ([Biot(X?) = En(X7)] = [Epu — Bpuas))/(d — @) + Ey (4.11)

Where FE, is the energy gap, which also was calculated using the total-energy
method as the difference of the ionization potential and electron affinity. Both

are given by

Ionisation potential (IP) = Ef . — ESux (4.12)
Electron af finity (EA) = E%.u — Egux (4.13)
E, = IP-EA (4.14)

The physical meaning of Eqn. 4.12 - 4.14 is that the band gap is estimated from

the difference of energy costs to add or remove an electron to the system. The
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additional electron occupies the lowest unoccupied level (CBM) of the host system
while an electron that is being removed is from the highest occupied level (VBM).
This does not imply that the band gap is associated with the ground state only.
The band gap can theoretically be obtained from any other state (say VBM-
1/CBM+1) by removing/adding two or more electrons but the computational
error increases for reasons: 1. Descriptions of excited state from DFT calculations
is not accurate. 2. Computational error may increase because it is difficult to
converge wavefunctions for the metallic states which occur when one or more
electrons are removed from the valence band or added to the conduction band.
3. Periodic boundary conditions render image charges for charged systems and
interaction of image charges contribute to the total energy. Hence the band
gap calculated using this method has to be calculated using a large supercell or
necessary corrections (e.g. by plotting the band gap with respect to inverse of
supercell volume and extrapolating for infinitely large supercell) must be applied.
The correction schemes are described later in this chapter.

The physical interpretation of Eqn. 4.10 and Eqn. 4.11 is explained using
schematic diagram in Fig. 4.1. The difference in the estimation of transition
levels between a negatively charged defect and a positively charged one is that
in a negatively charged defect an electron is inserted into the empty CBM of the
bulk in the first step. In the second step it is shifted to the defect state. This
picture differs from the last one by the fact that in the second step the electron
is transferred from the CBM to the defect state, (not the VBM) and thus the
associated energy cost will be with respect to the CBM only. So if we apply Eqn.
4.10 in this case we will get the transition levels with respect to the CBM. This
problem is solved by simply adding the energy-band gap value E, which gives us

the current form of Eqn. 4.11

4.2.2 Transition level from single-particle eigenvalues

Another approach to estimate the transition levels is using Janak’s theorem [156]
to obtain the energy difference term E(X%) — E(X?) in Eqn. 4.9 from the single-

particle eigenvalues of charged defect states. Janak has shown that single-particle
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Figure 4.1: Schematic diagram explaining working formulae for transition level
calculation. Top: hole-charged defect. The transition level ¢(+/0) has been

explained as the example. Bottom: estimation of transition level ¢(-/0)



4.2 Defect transition levels

eigenvalues can be obtained by taking the derivative of the DFT total energy with

respect to the occupation number associated with that particular eigenvalue,

OF
3ni N

This identity is Janak’s theorem and relates the eigenvalue of a state with the
total energy of the whole system when the state is being occupied by an infinites-
imally small charge. From this identity, the change in the ground state total
energy E upon electron occupation of the lowest unoccupied molecular orbital
(LUMO) (in other words the CBM) can be obtained. The change in the total
energy upon charge occupation is what is needed for the calculation of transition
levels and therefore can be estimated from the eigenvalues of the charging state.
This is done by solving Eqn. 4.15 in the limit between the two states involved in
the transition. In the case of populating a defect level, the total energy change

can be derived by,

1
E(X?) - E(X9 = / ent1(N + n)dn (4.16)
0

where ¢e;,1(N) is the eigenvalue of the lowest unoccupied state for the g-charge
state defect and n is the number of electrons added. Eqn. 4.16 is simplified by
taking just the two eigenvalues involved in the transition instead of integrating
over all eigenvalues for fractional charge accumulation. Hence the numerical

approximation is given by,

eh_{.l(N) + €h+1(N + 1)
2

E(X7) - E(X9) ~ (4.17)

The total energy differences associated with vertical transitions are estimated
from the eigenvalue-shift at the I'-point in the single particle band-structure cal-
culation. It is shown in Chapter 6 that the transition energies calculated from
both methods roughly agree with each other and with the values calculated by
several other groups. Gallino et al [71] have shown that this approximation gives

accurate results for transition levels in agreement with other published data. The
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estimation of transition levels would be more accurate and appropriate if instead
of obtaining the eigenvalue at the I'-point only, it is averaged over all the k-points
by integrating it over the k-point along the designated k-path. But this requires
diagonalisation of the energy eigenvalues for a set of k-points sampled all over
the Brillouin zone, which is computationally much more expensive than just di-
agonalizing only at the I'-point. It is important that the k-point convergence
of energy in the SCF calculation is achieved by sampling enough number of k-
points. There is no variational principle governing the convergence with respect
to the k-point mesh. This means that the total energy does not necessarily show
a monotonic behavior and is oscillatory with increasing k-points. However in this
case the total energy convergence is achieved to 10~7 Hartree for the SCF calcu-
lation and the eigenvalues are computed from the converged density matrix. The
computation-time for calculating the eigenvalues for a number of k-points can
be reduced by making the assumption that the dispersion shape is not changed
much upon charging the system. Thus if the eigenvalue of only the I'-point for
the two bands responsible for transition (Eqn. 4.17) is considered, the error in
the result may be too low to be considered. We will discuss this assumption on

the basis of the results in Chapter 6.

4.3 Computational errors and correction schemes

There are a number of factors to be taken into consideration when computing
formation energies and transition levels. The effect of periodic boundary condi-
tion was mentioned before. Apart from that, the effect of k-point sampling and
basis sets are discussed here. Nieminen [21] has pointed out a few issues with

first-principles calculations of defects that are also discussed here.

4.3.1 Effect of periodic boundary condition

In the case of a charged vacancy, the total energy of a periodic system with a
charged defect includes contributions from interactions between the defect charge,
and its images in neighboring unit cells generated from periodic boundary condi-

tion (PBC). In the computation algorithm of a charged system, a jellium back-
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4.3 Computational errors and correction schemes

ground charge(uniform electron-gas-like charge) of opposite sign is inserted in
order to keep charge neutrality. This background charge also interacts with its
periodic images and contributes to the total energy, thus affecting the formation
energies and transition levels. Using large supercells is one easy but expensive so-
lution to this problem but this does not completely nullify the energy contribution
due to PBC. The Makov-Payne correction scheme [155] provides an expansion for
the finite-size corrections that relates the energy contribution due to PBC for a

cubic supercell of size L to the isolated-defect limit (L— oc0) as,

¢a  2mqQ

AFE = L
2¢l, + 3el3

+O(L™®) (4.18)

where a is the Madelung constant, € is the relative permittivity for the host bulk
material, q is the net charge and Q is the quadrupole moment of the charge
distribution. € and Q are properties of the periodic density and the aperiodic
density, respectively. Clearly, for larger values of L, AE will be smaller but for
larger L the total energy calculation will be expensive. Maximum value of AE
in the current work was found around 1-2 eV for the minimum of supercell size.
Typically AE < 1eV is observed for the supercell sizes used here. Lany et al [70]
used an approximation L = V1/3 where V is the volume of the supercell but this
may not be applicable for non-cubic supercells as the interaction between image
charges is anisotropic for non-cubic supercells.

In this work supercells of size . x L. x L are used with L. = 2, 3 and 4
containing 32, 108 and 256 atoms, respectively. There is scope for computational
errors at both of the ends of supercell size. For a relatively small supercell the
defect and its periodic images are much closer and experience higher interactions.
Also in a small supercell the defect does not have much space to relax. In a very
large supercell these problems are minimal but there are other problems such
as large computational time and relatively lower k-point density for the DFT
calculation. Hence we have to choose a supercell of medium size, optimizing for a
low AFE and moderately low computation time with a dense k-point mesh, such
that the total energy converges. In this work, for ZnO, L=3 (3 x 3 x 3) supercell is
used for most of the defect energetics calculations. This supercell is large enough

to host multiple defects, has a AE of ~ 0.4 eV for the band gap. Although 0.4
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eV is quite large in comparison to the band gap of 3.4 eV, the 3 x 3 x 3 is the
best supercell we can use in comparison to 2 x 2 x 2 (L=2) and 4 x 4 x 4(L=4).
The parameters in Eqn. 4.18 can be determined by fitting the total energy
difference between bulk and defect supercell (E% — E% ) against 1/L or 1/L3
but given that only three supercells are available the 1/L? fitting is not possible
with only three points on the graph. The formation energies and transition levels
can be plotted against 1/L and fitted to a straight line. Extrapolation of that
straight line to 1/L=0, i.e. for infinitely large supercell size (L=00) ought to yield
the corrected values. Correction of the band gap of ZnO estimated using Eqn.
4.14 is shown in Fig. 4.2. Fig. 4.2 shows linear extrapolation of band gap values
calculated for different supercell sizes using LDA implemented on the Quantum
Espresso code [150]. The corrected value of the band gap was found to be 0.11
eV, which is much smaller than the experimental value but in agreement with
values estimated by other groups using LDA [64, 157]. The values shown in Fig.
4.2 is not used anywhere as results in this work. The purpose of this calculation
is to show the usability of the Makov-Payne correction in a similar scenario.
There are a few other correction schemes developed, based on the Makov-
Payne expansion. Hine et al [158] proposed that changing the shape of the
supercell in addition to its size gives additional accuracy in the extrapolation.
Changing the shape changes the Madelung constant o and can be negative also.
The total energy can be plotted against 1/ and becomes a function of both L
and a. Thus one can have data either side of 1/L=0 for the supercells with a <0
[21]. In another recent study Freysoldt et al [72] suggested that for most of the
defects Eqn. 4.18 requires large supercells, and since the significance of the higher
order terms is unclear, the long-range tail of the bare Coulomb potential can be
truncated to neglect the polarization beyond supercell lengths. Freysoldt et al

suggested that the first order correction term in Eqn. 4.18 is given by

2

s _6—1)% (4.19)

AR =
¥

This approach was tested in charged vacancies in diamond and GaAs [72].
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Figure 4.2: Band gap of ZnO estimated using Eqn. 4.14. L = V3. Calculations
are made using LDA exchange implemented on the Quantum Espresso code. The
value of band gap E, extrapolates linearly to 0.11 eV for infinitely large supercell.
This value of Eg is too low in comparison to experiment but is comparable to other

LDA results (see text) that always underestimates the band gap.
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4.3 Computational errors and correction schemes

4.3.2 Effect of relaxation

Optimizing the geometry of the crystal by relaxing all degrees of freedom is an
essential step to get the right formation energy and transition levels of defects.
A full relaxation involves relaxation of lattice parameters and atomic positions.
When a vacancy defect is created, depending on its charge state and electrostatic
environment (donor/acceptor) it will exert a force on its surroundings until the
lattice comes to equilibrium. The necessary relaxation energy is equal to the
thermal energy associated with the process. The computational algorithm for
geometry optimization is done by minimising the total energy with respect to
optimal atomic positions. An initial guess of a model Hessian matrix [159] is as-
sumed for the first relaxation step where the lattice parameters and bond-lengths
are relaxed to a maximum of 10-15% . Pulay force [160] components on the crys-
tal lattice are then calculated using the recent implementation of Hartree-Fock
energy gradient [161] using a conjugate gradient algorithm proposed by Schlegel
[159]. The atomic coordinates are replaced according to the forces. The density
is calculated using DFT SCF calculation for each new set of atomic positions
and the total energy is minimized. This process is repeated in an iterative way
until the atomic displacements as well as the gradient of displacements minimizes
below a certain level of tolerance, in the current work 10~4 A.

In this work it has been shown that relaxation of the crystal lattice has a huge
impact on the formation energies and transition levels of the defect states. This
is because the Coulomb interaction between defect and surroundings depends on

different charge state of the defect.

4.3.3 Effect of k-point sampling and basis sets

Different k-point sampling also influences the defect-defect interactions within the
supercell. The convergence of different charge states varies with varying supercell
size if the k-point sampling is not accurate [55]. Thus it affects the ionization
levels most. It is of utmost importance that all the computation involved in a
calculation of a single formation energy or transition level should have the same
k-point mesh. When the supercell size changes, the k-point density changes ac-

cordingly. Therefore, if we intend to compare results from different-sized supercell
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calculations, the k-point density should be same. This means we have to use more
k-points in smaller real-space supercells and less k-points in large supercells. Note
that a large supercell calculation with a dense k-point mesh can be extremely ex-
pensive. On the other hand, for the smaller supercells a dense k-point mesh is
necessary to obtain the ground-state correctly. Especially for conducting systems,
the localized-orbital-basis code CRYSTAL cannot determine the fermi-level at all
if the k-point sampling is not dense enough. This makes the larger supercell cal-
culation in conducting states difficult regarding choice of k-point sampling. For
such cases the density of k-point mesh needed for the numerical integration for
calculation of the fermi surface correctly must be higher than that which is needed
for SCF diagonalisation. In this work a k-point mesh was used for the metallic
systems denser by a factor of 2% than that is used in semiconducting systems.
Details are given in Appendix A.

A number of basis sets was used in this work. Basis sets provide the initial
guess for the Kohn-Sham orbitals. We have discussed the pros and cons of differ-
ent basis sets in Chapter 3. In this work, the basis sets were chosen on the basis
of convergence and minimum total energy.

When a vacancy defect was created, an empty basis set, otherwise known as a
ghost atom [117], was placed in the vacancy site to ensure continuity in the real-
space density. If one or more electrons are trapped in this vacancy, this initial
guess improves convergence of the calculation. The prefactors and exponents of
the Gaussian basis sets were tuned to obtain the lowest total energy for a constant

crystal structure. Details of the basis sets used are given in Appendix B.
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Chapter 5

Intrinsic Vacancy Defects and
Impurities in ZnO: Electronic

and Crystal Structure

In this chapter we discuss the electronic structures of intrinsic vacancy defects in
Zn0. Intrinsic defects such as vacancies and interstitials are generally created in
thin films by growth off-stoichiometry. There are a number of ways to manipulate
a particular type of defect. Anion (oxygen in this case) vacancy concentration
is directly related to the oxygen partial pressure of the growth chamber [17, 14].
Cation vacancies can be controlled in techniques such as molecular beam epitaxy
(MBE) [11]. We have discussed the experimental techniques used to characterise
the crystal and electronic structure of a defect in Chapter 2. Electron param-
agnetic resonance (EPR) [50] and positron annihilation spectroscopy (PAS) [53]
techniques can be used to probe the existence of electron trapping defects in ZnO.
Yet it is not straightforward to assign a particular defect to a particular exper-
imental observation and supporting evidence from first-principles calculations is
required.

Intrinsic vacancy defects are chosen as the starting point of this work as they
are related to interesting experimental observations described in Chapter 2 and
are relatively abundant in samples [14, 62, 87]. A search is carried out for large - U

electron trapping defects which may shed some light on the long-range interaction
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between defects and the possibility that paramagnetic defects prefer a parallel-
spin alignment. The Hubbard model described in Chapter 2 is applied and an
attempt is made to explain ferromagnetism in these oxides [15, 18] in terms of
defect interactions.

As discussed in the introductory chapter, the oxygen vacancy defect (Vo) is
a negative U defect [36, 64] but is investigated in this work as it is probably the
most abundant defect for films grown in low oxygen partial pressure [17, 43].

Other intrinsic vacancy defects are taken into consideration. The zinc vacancy
(Vz,) has been investigated in this work as a possible large-U electron trap. The
zinc interstitial (Zn;) has a high formation energy and under O-poor growth con-
ditions has a low abundance [62]. Also Zn; is not an electron trap [36]. The
possible existence of complex cluster vacancies is also discussed. There is one
positron annihilation spectroscopy (PAS) study by Zubiaga et al [53] where the
presence of negatively charged ZnO pair vacancies was considered. Complex de-
fects such as the ZnO pair vacancy (Vz,0) and the ZnOj cluster vacancy (V z,0,)
have been investigated as possible candidates for large-U defects in this work.

Calculations done in this work suggest that pair vacancy and cluster vacan-
cies are possible in these oxides and energetically more favourable than separate
defects. When defects are created in an oxide due to off-stoichiometry during
growth, they are mobile at high growth temperature [162] and, if energetically
favourable, they can bind together to form cluster vacancies or congregate on the
surface. Total energy calculations are made to determine the stability of complex
defects Vz,0, for n=1-3. These calculations reveal that the total energy of a
supercell with one negatively charged V, ., is lower by 1.9 eV than two separate
V¢, and V,, vacancies. Considering the frequent observation that Vo are more
abundant than V, [62], if we continue to add more Vo to the neutral pair va-
cancy defect, V,0, total energy calculations predict that a V4,0 and a Vy are
bound by 1.4 eV to form V,0,. If one more Vy is added to V2,0, to form Vz,0,,
the binding energy is 1.2 eV. Vacancy defects are surrounded by dangling bonds
and when multiple cation and anion vacancies are created close to each other,
electrostatic attraction between the anion and cation dangling bonds cause point

defects to congregate to form cluster vacancies [55].
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In this chapter, electronic band-diagrams along with the respective crystal
structure of ZnO are presented for the three intrinsic vacancy defects Vo, V2,
and Vz,o in every possible charge-state they can attain. The band-diagram
represents the energy spectrum of a system and for a system with a defect it can
show the new energy level that appears when a defect is created. The dispersion of
this level represents the bandwidth of the defect-trapped state and the transition
energies can be calculated from the level shift upon charging the defect. The
details of the estimation method have been discussed in Chapter 4. A supercell
method is used in all of the computations with different supercells for different
purposes. The wurtzite unit cell of ZnO is shown in Fig. 5.1. All the supercells are
derived from this unit cell. Details of the calculations and supercells are given in
Appendix A. The CRYSTAL DFT simulation package is used, which uses linear

8. .Zn YO0

Figure 5.1: Wurtzite unit cell of ZnO.

combinations of Gaussian functions as localized orbital basis sets (See Chapter
3). The details of the basis sets used in this work are given in Appendix B. We
will briefly discuss in this chapter the influence of basis sets on the electronic
structure of a system.

Finally, the effects of Co and Al doping are discussed. Calculations on Zn;_,Co,O
(x~0.05) supercells with or without vacancy defects are used to investigate anti-
ferromagnetic Co-Co coupling in a ZnO host and coupling between defect-trapped
electron and substituted Co*" ions. Calculations on Zn; ,Al,O (x~0.02) super-

cells are used to investigate n-type doping of ZnO by aluminum.
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5.1 Electronic structure of the defects

5.1 Electronic structure of the defects

Total energy calculations are carried out for the intrinsic vacancy defects Vo,
Vzn, Vzno and Vg,o,. The final charge density was obtained with the total
energy difference between SCF cycles below the tolerance of 1077 Hartree. The
density matrix from this SCF calculations was also used to generate the energy-
band diagram for the corresponding system. The band diagrams are plotted for

both the relaxed and unrelaxed crystal structures for each defect.

5.1.1 Oxygen vacancy Vg

The oxygen vacancy is found to be the most abundant defect in thin film ZnO
samples as well as in other oxides prepared in a controlled atmosphere [17, 43].
Each neutral oxygen vacancy leaves behind two dangling electrons in the system
which are thought to be a source of n-type conductivity observed in O-poor ZnO
[163, 164]. The electronic band diagram of ZnO with one oxygen vacancy is shown
in Fig. 5.2.

The crystal structures of the oxygen vacancy in different charge states are
optimized by relaxing the atomic positions around their ideal coordinates. The
technique was explained in detail in Chapter 4. Changes in crystal structure on
relaxation are different for each charge state. The change in crystal structure is
quite localized and relatively large displacements occur around the vacancy only.
The band structure and corresponding crystal structures around the vacancy are
shown in Fig. 5.3.

The oxygen vacancy has been investigated by several groups, both by exper-
iment [5, 17, 164] and first principles groups [15, 64, 70, 157], so the electronic
structure and characteristics of this defect are quite well studied. Experiments
done with ferromagnetic ZnO thin films suggest a correlation between oxygen
vacancy concentration and ferromagnetic moment. Samples prepared under low
oxygen partial pressure have higher concentrations of oxygen vacancies. Venkate-
san et al [17] have shown that as the partial oxygen pressure of the sample prepa-
ration chamber was increased, the ferromagnetic moment of respective samples

decreased. This study was done on Co doped ZnO. Similar observations were
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Figure 5.2: Band structures of bulk ZnO (left) and that of ZnO with a neutral
oxygen vacancy (Vo) (right) in a wurtzite 3x3x3 supercell. The wurtzite Bril-
louin zone and the k-path is shown at the bottom. Horizontal dotted lines show
the Fermi level.
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Figure 5.3: The bandstructures (top) and crystal structures (bottom) of Vg in
different charge states for fully relaxed 3x3x3 supercell. From left to right, VY,
VJ and V?f respectively. For spin polarized systems, red lines show the majority
spin and green/dashed lines show the minority spin states. Large pink spheres
denote the Zn atoms and smaller red spheres denote oxygen atoms (Shown on
bottom-left of figure). The small green dot denotes the vacancy site. Fermi levels

are shown by horizontal blue dotted lines.

made in the case of undoped ZnO [18] and other oxides such as In,O3 or SnO,
[18, 19).

However, Vo is found by several first-principles group to be a negative-U
defect [36, 64], which we will confirm in the current work. Therefore in Vo, single

electron occupancy is less favourable than a double or zero occupancy of the defect
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5.1 Electronic structure of the defects

level depending on electron concentration. We have discussed in Chapter 2 that
the Hubbard model and theoretical models such as the impurity band exchange
model [15] require a singly charged oxygen vacancy to be a magnetic centre in
order to take part in magnetic interaction of these oxides. Since Vi, is negative-
U, and unable to act as a magnetic centre or a positive Hubbard-U F-centre, it
may not take part in long - range defect-defect interaction and in ferromagnetism

experimentally observed in oxygen-deficient ZnO thin films.

5.1.2 Zinc vacancy Vy,

The Zn vacancy is rarer than the O vacancy in ZnO unless the sample is grown
under high oxygen partial pressure [55]. We will see in the Chapter 6 that the
formation energy of neutral Vz, is ~3-4 eV greater than that of neutral V.
Control of oxygen partial pressure in the deposition chamber for thin film prepa-
ration allows manipulation of oxygen vacancy population, but the concentration
of cation vacancies cannot be manipulated so easily, except by a few techniques
such as ion beam epitaxy [11]. The Zn vacancy (Vy,) has a higher formation
energy in ZnO but can be created during growth of thin films [62]. The electronic
structure of Vg, is described by the band structure diagram given in Fig. 5.5.
Removing a Zn atom leaves two holes in the system and thus the vacancy can
absorb up to two electrons. The ground state of the neutral Zn vacancy, VY, | is
a spin - 1 triplet state with two localised holes in it. The trapped electrons in
V,, and VQZ;_ are absorbed by dangling oxygen bonds and remain in O 2p-like
orbitals. The wavefunction isosurface is shown in Fig. 5.4 for the defect energy
band in its singly occupied (V,, ) state. Trapping electrons in a localized p-
orbital reduces the bandwidth of the defect band and the band appears with very
small dispersion.

The relaxed crystal structure shows that the O atoms neighbouring the va-
cancy sites displace and move towards the vacancy site. The displacements of the
O atoms are in the range of 0.2-0.5 A. As depicted in Fig. 5.5, the displacement is
largest in the neutral Zn vacancy VY, . V, can assume three charge states, V9, |

V,, and V7 . The displacement gradually decreases as the vacancy is filled up
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Figure 5.4: (Left) Band structure of V, for both spins (red: majority,
green:minority). (Right) The I'-point wave function isosurface of V, state im-

mediately below the Fermi level (blue dotted line)

by electrons (Fig. 5.5). Calculations of transition levels between different charge

states and U-value are shown in the Chapter 6.

5.1.3 ZnO pair vacancy V0

An anion-cation pair vacancy such as the ZnO pair vacancy can be formed in
thin films during growth when the vacancies are mobile at high temperature. We
have stated that the probability of a V,,o vacancy being created is larger than
separate Vo and Vz, vacancies. The existence of Vz,n was also postulated in a
positron annihilation spectroscopy experiment by Zubiaga et al [91]. There are
two possible configurations of this defect due to the wurtzite structure. The first
is where one Zn atom and its nearest neighbour O atom along the axial ¢ direction
are vacated together (Vz,0%"). The second configuration is a Vz,o vacancy
where one Zn atom and its one of its three neighbouring O atoms in the direction
parallel to the radial ab plane is vacated (Vz,o%!). These two configurations

are depicted in Fig. 5.6.
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Figure 5.5: The bandstructures (top) and crystal structures (bottom) of Vz,.

From left to right, V%, , V,,, and V7, respectively, fully relaxed 3x3x3 supercell.
For the spin polarized systems majority and minority band diagrams are plotted
in the same figure. Note that the ground state of VY, is a spin-triplet with two

holes. The color scheme is the same as Fig. 5.3.

V 0% is energetically favoured over V 4,044l by a large energy (1.1 eV),

Azial j¢ assumed to be much more abundant and has been used in

hence VZ"()
all calculations discussed further. We will use the term V4,0 instead of writing
V0% for simplicity. Majority and minority spin band structures of Vz,o
are shown in Fig. 5.7 and Fig. 5.8. The moderately large dispersion of the
defect electron state over the Brillouin zone indicates that the wavefunctions of
the defects in neighbouring cells overlap.

The bandstructures of Vz,o for the different charge states are shown in Fig.
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Figure 5.6: The two different possible configurations of V2,0, A: Radial and B:
Axial.

5.7 and Fig. 5.8 for the relaxed geometries. The deformations of crystal structure
due to relaxation are also shown for each charge state. As the aim of this work is
to search for large-U defects that may take part in the ferromagnetism observed in
these oxides, the singly charged defect state, here the V,, , state, is important.
Hence this particular defect state demands more focus. Note that Vz,o is a
neutral defect with no dangling charge and therefore it can host the whole range
of charges -2, -1, 0 , +1 and +2. So there are these five possible charge states
for Vz,0, although positively charged Vz,o would be rare in naturally occurring
oxygen-poor n-type ZnO films and will entirely depend on a low fermi level.
Nonetheless, these states are considered here for completeness. The electronic
band structures and the changes in crystal structure upon hole-doping in Vz,0
are displayed in Fig. 5.8. The dispersion of the Vz,o defect band in its +1
and +2 states are similar to its -1 and -2 states but are shifted in energy. The
energy associated with spin-degeneracy in hole-doped Vz, is much less than its
electron-doped counterpart. We will see in the next chapter in the calculation
of formation energies that these states are more stable than the singly charged
states for respective Fermi levels.

The V3, , vacancy is similar to V,,, with respect to both crystal and electronic
structure. The flat non-dispersive state in the band diagram of V}, , originates

from the dangling O-2p orbitals in a similar fashion as in V, . V7, has a
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Figure 5.7: The bandstructures (top) and crystal structures (bottom) of Vz,0
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for a fully relaxed 3x3x3 supercell. From left to right, V7, ,, V.0 and V7,
respectively. For spin polarized systems, red lines show the majority spin and
green/dashed lines show the minority spin states. The color scheme is the same

as Fig. 5.3 and Fig. 5.5

triplet ground state and is again similar to V9, (Compare in Fig. 5.13, the major
difference between Vz, and Vz,o is the M-shaped defect band characteristic of
V()).

The change of structure upon lattice relaxation around the V, , is shown in
Fig. 5.9. It can be seen that the Zn - Zn distances between Zn ions neighbouring
the defect are reduced and a Zng trimer is formed. The change in the overall
structure away from the defect is small. The defect electrons partially fill 4s

states of three Zn ions neighbouring to the defect, pulling them into the Znj
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Figure 5.8: The bandstructures (top) and crystal structures (bottom) of Vz,0
for a fully relaxed 3x3x3 supercell. From left to right, V%, ,, V£ , and V3,

respectively. The color scheme is the same as Fig. 5.7.
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trimer. The Zn-Zn distance shrinks from 3.25 Ato 2.62 A and resembles closely
that of metallic Zn (2.66 A).

Figure 5.9: Change in crystal structure upon relaxation of lattice around V,

The cylindrical-shaped pair vacancy is stretched along its axis (c axis) when
relaxed and the charge resides on the Vy end, localized in an s-like orbital on the
Znz colloid (Fig. 5.9). This s-like wave wavefunction can be seen in Fig. 5.10
where the wavefunction isosurface of the defect level at I" point is plotted.

The defect possesses a total magnetic moment of 1 pp associated with the
localized electron cloud seen in Fig. 5.10. In a partially filled system, more
than half filling this trapped electrons in Vz,o can interact at ranges exceeding
11 A when there are between one and two electrons per vacacny. In a large
supercell with three electrons and two V 4,0 defects 11 A apart, the electrons are
partially trapped and they assume a spin parallel ground state. A large defect
bandwidth of ~0.4 eV allows electrons trapped in this defect to interact at long
range. Detail of defect-defect interaction of V4,0 vacancy is discussed in Chapter
7. The trapped spin can also couple with a transition metal ion in its vicinity.
The band diagram of Co-doped ZnO is shown in Fig. 5.14 . The defect-defect and
defect - Co exchange interactions are described in Chapter 7 and the exchange

coupling constants are calculated.
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Figure 5.10: Wavefunctions for trapped electrons in V,, , V, ,, and V7 _, va-

cancies at the I' point of the Brillouin zone. Trapped electron wavefunction in

V7, (A) viewed along the c axis, (B) viewed perpendicular to the c axis. Trapped

electron wavefunction in V, , (C) viewed along the ¢ axis. (D) perpendicular
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to the ¢ axis. Same for V7, , (E) along the ¢ axis and (F) perpendicular to the

¢ axis. Pink and yellow surfaces show +ve and -ve components of the isosur-

face,respectively. The green surface is the inside of the pink surface.
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5.2 Effect of relaxation of crystal structure.

5.1.4 Clustered vacancy defect V0,

Larger complex defects such as the ZnOj vacancy (V z,0,) can trap two electrons
in deep donor levels. The major difference between Vyz,0 and Vz,o, is that
V zno, is a much larger vacancy. Vz,o is a neutral vacancy, but removing each
additional oxygen atom gives two dangling electrons and therefore V 4,0, has four
dangling electrons. The band structure of V0, is shown in Fig. 5.11. The four
dangling electrons have a spin-1 triplet ground state. The three bands related to
the singlet (s1) and triplet (t1 and t2) are shown in Fig. 5.11 for different charge
states. The singlet band has a lower energy while the triplets are degenerate
at the ['-point in the neutral charge state. When singly-negatively charged, the
trapped electron fills one of the triplet orbitals to form a doublet but all three
levels rise up in energy due to Coulomb repulsion. At partial filling, defects ~
11A apart show a parallel-spin ground state similar to Vz,0.

Total energy calculations on the binding energies of complex defects were
described previously and it was shown that the probability of formation of such
a defect is higher than separated defects. Fig. 5.11 shows that V,o, cluster
defects have a number of transition states and therefore it may support a number
of optical transitions. Thus it is possible that this defect or other cluster defects
of the form Vg, o,, m<n, may explain the interesting anomalies observed in the

absorption and emission spectra of this material [5].

5.2 Effect of relaxation of crystal structure.

The crystal structure has to be relaxed whenever a defect calculation is con-
cerned since the DFT total energy calculation does not take into account the
uncompensated electrostatic interaction introduced by the defect. In the geom-
etry relaxation procedure described in Chapter 4, the atomic coordinates are
allowed to move from the ideal lattice sites and the new equilibrium is found by
minimizing the total energy. Crystal structure relaxation has a large effect on the
electronic structure of ZnO with intrinsic vacancy defects. Although the struc-
ture change is mainly localized in the neighbourhood of the vacancy, the effect of

lattice relaxation is significant on the defect eigenvalues. The average change in
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Energy (eV)

Figure 5.11: Band structure of ZnO with a neutral (V,0,) defect (red/solid
line) superposed with the triplet states of V, . (Green/dashed line) and V'TZOH
(Blue/dotted line). The states for more highly charged states are shifted up but
the shift is smaller than that for V5, . The Fermi levels for the three charge states
are shown by horizontal dotted lines. Right: Vz,0, defects in a 4,/3x2,/3x2

supercell.

the crystal structure is small. One can see in Fig. 5.12 that the dispersion shape
and position of only the defect band is changed upon relaxation. In Fig. 5.12
the band-diagrams of the filled levels of Vg, V4, and Vg, o vacancies are shown
where the red/solid lines and green/dashed lines denote the levels correspond-
ing to relaxed and unrelaxed crystal structures respectively. The three different

charge states of Vp and Vy, and five different charge states of V,o are shown.

5.3 Impurity doping in ZnO

5.3.1 'Transition metal doping

Dietl et al [12] first predicted the possibility of a magnetic semiconductor by

dilute transition metal (TM) doping in a wide band-gap semiconductor. How
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Figure 5.12: The majority-spin bandstructures of Vo, Vy, and Vz,0, showing
the change in dispersion and energy levels due to crystal lattice relaxation. The
red solid lines are the relaxed levels and the dashed green lines are the levels with
ideal geometry. Fermi levels for relaxed (red) and unrelaxed (green) structures

are shown by blue and yellow dotted lines, respectively.
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Figure 5.13: The minority-spin bandstructures of Vo, Vz, and V4,0, showing
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the change in dispersion and energy levels due to crystal lattice relaxation. The
red solid lines are the relaxed levels and the dashed green lines are the levels with
ideal geometry. Fermi levels for relaxed (red) and unrelaxed (green) structures

are shown by blue and yellow dotted lines, respectively.
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5.3 Impurity doping in ZnO

room temperature ferromagnetism exists in nonmagnetic oxides with TM doped
only by a very dilute amount (4 - 7 %), has been a highly debated subject
[15, 20, 45, 59, 165]. Several different TM impurities were doped in ZnO and
it was found that Co-doped ZnO thin films show the largest magnetic moment
[17].

Here we present the electronic structure of Zn; _,Co, O calculated using B3LYP.
Calculation of exchange coupling constants between defect - Co and Co-Co and
further discussion are given in Chapter 6. In the calculation of the electronic
structure of Zn; ,Co,0, a 3x3x2 supercell with 72 atoms was used. Substitu-
tion of two Zn atoms with Co atoms is used to calculate the exchange constant
between Co atoms. This gives a Co concentration x ~5.5% which is similar to the
concentration used in most DMS related experiments. The majority and minority
bandstructures of Zn;_,Co,O (x = 5.5%) with one V., vacancy are shown in
Fig. 5.14.

" Empty Co states

3 2 32
> : : > ;
jed g : =) :
b Empty:Dangling Zn 4s State ) J
8 : : 5 . |
‘}Itke defect state
4} e =4 I & o

[ Filled Co+Dangling 0 _

Figure 5.14: Majority (left) and minority (right)-spin bandstructure of
Zn;_,Co,0O: x=0.055 with one V2,0 defect (red) compared to Zn;_,Co,O (green)

without any defect. The Fermi level is shown by horizontal blue dotted line.

The dispersion in the V,o defect state does not change, there is a little shift

in energy though. Crystal-field degeneracy splits Co-3d states. Here, the empty
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5.3 Impurity doping in ZnO

toy states are about 5 eV higher than the filled e, states. Note that the filled ¢,

states couple with the dangling O-2p states and the s-like defect state.

5.3.2 Electron doping with aluminum co-doping

We have discussed electron trapping in vacancies in n-type ZnO thin films. In
these calculations electrons and holes were inserted in the supercell to create n-
type or p-type environments which also lead to the creation of a compensating
jellium of opposite background charge. In practice control of n-type doping is
achieved by variable Al co-doping [14] in ZnO. In order to investigate whether Al
doping will alter the electronic and crystal structure and the difference between
pure electron-insertion and Al-doping, one Al atom is substituted for a Zn atom

in a ZnO supercell with a V,o defect.

7S

N YN

N/ VAV

-2

=2}

Energy (eV)
Energy (eV)

14
o5

-6 = 5 '» ’
{100) (110) (010) (000) (100) (100) (110) (010) (000) (100)

Figure 5.15: Majority (left) and minority (right) bandstructures of V%, ., + Aly,
(red/solid) comparing with V., (green/dashed) obtained using a fully relaxed
2,/3x2/3x2 supercell. The Fermi level does not change and is shown by blue
dotted line. Note that a square k-path is used for this cuboid supercell.

Calculations suggest that when an Al atom substituted for a Zn atom, the

extra electron resides in the vacancy. The crystal structure was relaxed and due
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5.4 Conclusion

to the similar ionic size of Al and Zn, very little displacement is observed around
the substitutional Al atom. In Fig. 5.15 the band-diagram of Alg, with V%, .,
is compared with the band diagram of a V, . Both of the calculations were
done with relaxed crystal structures in a cuboid 2/3x2,/3x2 supercell. There
are minimal differences between the energy levels on the both sides of the energy
gap. This confirms that the electron donated by Al migrates to the vacancy and
gets trapped, even when the Aly, substitutional site is fairly far away from the

vacancy site (in this case 6.3A).

5.4 Conclusion

In this chapter, we have discussed the crystal and electronic structure of intrinsic
vacancy defects oxygen vacancy, zinc vacancy and ZnQO divacancy. The electronic
energy levels were plotted against the wave-vectors and states dominating the
electronic properties are identified. The wave function of the defects were simu-
lated to characterise the defect and to understand the result of some EPR and
PAS experiments. The Vz,0 vacancy was found to have a nodeless s-like wave-
function associated with a moderately dispersive band with a bandwidth of ~ 0.4
eV. This defect can trap up to two electrons or up to two holes, enabling it to
obtain five different charge states (-2 to +2). The transition levels between these
charge states and value of Hubbard-U are calculated in the next Chapter.

The Zn vacancy, traps two electrons in a dangling O-2p state and has a smaller
bandwidth of ~ 0.1 eV. The localised holes in the neutral V4, form a triplet
ground state.

Lattice relaxation has a large effect on defect electronic structure. The overall
change in crystal structure of the supercell is small, a defect may relax by up to
0.3 - 0.7A depending on the charge state of the defect. In the next chapter we will
discuss the formation energies and transition levels of the defect and the effect of

lattice relaxation on these quantities.
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Chapter 6

Calculation of Defect Formation

Energies, Transition Levels and
Hubbard-U values

Electronic structures of the vacancy defects show that these intrinsic vacancy
defects (Vp,Vz, and Vz,0 ) are capable of trapping electrons or holes depending
on the fermi level of the system and that the Vo and Vz,o defect energy lev-
els have moderate bandwidth associated with a large s-like wavefunction. This
implies that these trapped electrons may interact at long range limited by the
spread of their wavefunction. Yet it is still unknown from these results whether
these defects have a large Hubbard-U, so that they can support the model of
room temperature FM proposed in Chapter 2. It is also unclear which of the
defects would have a lower formation energy and in what charge state they are
most likely to exist at certain fermi level. This last criterion is important for
paramagnetism because a defect is required to be stable in a singly charged state
in order to retain a finite magnetic moment and act as a paramagnetic centre.
This is important also for photoluminescence as there are a number of transitions
possible between different charge states of a defect and it is essential to know
which transition is more probable than the others in order to identify a partic-
ular transition associated with a particular colour emission. The exact optical
transition energies of the defect states can be estimated from the calculation of

transition levels to identify roles of different defects as colour centres.
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6.1 Formation energies

In this chapter we discuss the results from the defect formation energy and
transition level calculations, from which estimates were made for Hubbard -U and
optical transition energies. Formation energy calculations have been carried out
for each of the three defects Vo, Vz, and Vz,o. The formation energy of a defect
gives an estimate of the stability of the defect and the probability of formation
of a defect from a thermodynamic point of view. It is the energy cost for defect
formation. Thus the lower the formation energy is, the higher the probability of
forming a defect. The transition level on the other hand, is the energy cost to
change the electron occupation of a defect level. This quantity reveals in which
charge state the defect state is most likely to be found at a particular fermi
level of the system. The Hubbard-U of a defect is the Coulomb repulsive energy
cost to add an electron to an already half-filled defect level and therefore can be
calculated from the transition levels. The importance and calculation techniques
of these quantities were discussed in Chapter 4. It is important that the formation
energies are calculated with the crystal structure of the system fully relaxed in
the particular charge state of the defect that is being calculated. In Chapter 5 we
have seen that there is a large effect of lattice relaxation on the local electronic and
crystal structure of the defect. We will also discuss the importance of calculating
the transition levels with unrelaxed structures from different methods along with
the relaxed structures.

There is an alternate method of calculating the transition levels; from the
electronic band diagram using Janak’s theorem [156]. Both of the methods have
been discussed in Chapter 4. The transition level values calculated from the two
methods agree with each other in general but almost always there is a considerable

difference between them. This anomaly is also discussed in this chapter.

6.1 Formation energies

Eqn. 4.1-4.7 were used to estimate the formation energies from total energy
calculations. The results are given in Table 6.1. B3LYP was used in most of
the calculations but LDA calculations were also carried out for some defects to

compare the values with previous LDA calculation results.
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6.1 Formation energies

Table 6.1: Formation energies for intrinsic vacancy defects compared to literature
values. All values in this work are for relaxed geometries and obtained using the
3x3x3 supercell. Oxygen poor growth conditions were assumed with Ep = Ey,

all values are in eV.

R , + 2+ = 92— ] — 2— +
Functional | Vo | V5 | Vo' | Vzn | V2. | V2u | V2ro | V2o | VZro | VZeo

o
vZnO

B3LYP! (05 |-1.2|-37| 75| 81 | 87 | 4.2 6.6 8.4 3.6

HSE? 1.0 -34 ] 71 | 80 | 10.1
GGA3 1.0 03 |-0.5| 54

LDA! 0.4 5.1 4.0
LDA? 0.0 0.2 ]-03 5.0 | 5.8 6.6

LDA?® 1.5 08 |-05| 5.8 | 5.7 | 5.8
LDAS® 07106 |-04| 59 | 60 | 6.3
LDA+U® | 1.3 | 08 |-06| 64 | 6.5 | 6.9
GGA+U? [ 1.7 0.7 | -0.7 | 5.6 | 6.0 | 7.1

3.4

Formation energy values previously computed by several other groups are
also given in the table for comparison. We know that the hybrid functional
used here gives quite an accurate estimate of the ZnO band gap and describes
occupied levels more accurately than LDA for wide-gap oxides [36, 38, 132].
Thus it is expected that the formation energies as well as the transition energies
obtained using the hybrid B3LYP functional will predict more accurate values
than that obtained using conventional LDA. The values presented in Table 6.1
were calculated using a fully relaxed 3x3x3 supercell. Details of the supercells
used are given in Appendix A.

The transition levels are calculated using Eqn. 4.9. The formation energies of
charged defects are related to the transition levels by Eqn. 4.8. The calculation of

transition levels and the band gap are discussed in the next section. Formation

IThis work, all values correspond to calculation converged down to 1073 eV, rounded off
to 107! eV for comparison.

2Ref. [63]

3Ref. [166]

4Ref. [64]

SRef. [167]

SRef. [90)
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6.1 Formation energies

energies are plotted against the fermi level position for all the defects in Fig.
6.1. These figures give an insight into the charging of the defect states and the
occurrence of the defect level in a certain charged state at a certain fermi level.
This is helpful in predicting the stability of each charge state for different vacancy
defects. The defect should be stable in a singly charged state in order to act as a
paramagnetic centre. These diagrams tell us whether the defect is likely to exist
in a singly charged state or not. The solid lines show the formation energy of
the defect states with respect to the fermi level while the dashed lines denote the
same for unstable states.

The V/, vacancy has been shown previously to be unstable [36, 64] and this is
confirmed in this work (Fig. 6.1). Formation energies predicted in this work using
B3LYP are close to the numbers obtained by Oba et al [63] using the HSE hybrid
functional [33]. Again the values obtained in this work using LDA are similar to
the values obtained by other groups using LDA. The formation energies of Vg
obtained by hybrid functionals are in the range -3.4 to -3.7 eV where the LDA
values are of the range -0.3 to 0.7eV. Underestimation of the chemical potential
of oxygen by around 3 eV makes a significant difference between the hybrid
functional and LDA values. The formation energies of V4, and V3,0 in different
charge states are also underestimated, but not by as much as for V.

We have discussed the effect of relaxation of crystal structure on electronic
structure before. It also has a large effect on the formation energy and transition
levels of the charged vacancy defects. The change in crystal structure is large
around the defect site and relatively very small elsewhere. The displacements in
the atomic positions of the neighbours to the defect site are different for each
charge state of the defect. As a result, the formation energy of each charge state,
as well as the transition levels suffer large change upon relaxation. Fig. 6.1
depicts formation energies of the three vacancy defects with respect to Fermi-
level. The unstable states are represented by a dotted line. When the structure
is relaxed, the V} state rises and becomes unstable, thus agreeing with previous
works [36, 64]. The upper limit of fermi level position at which V5! exists, also
increases from ~1.2 eV to ~ 2.3 eV. Also the V, , state becomes unstable upon
relaxation. One can see in Fig.6.1 that the dotted line representing V,, touches

the solid line for VY, and V7, precisely at the point of the transition between
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Figure 6.1: Defect formation energies as a function of fermi level position for
Vo, Vz, and Vz,0. These two diagrams show formation energies for a 3x3x3

supercell when the crystal structure is unrelaxed (top) and fully relaxed(bottom).
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6.1 Formation energies

these two states. This signifies that for this defect the transition levels among
these three states are the same (See Table. 6.3). In other words the V,,, state has
the same probability of occurrence as the other two charge states. The VQZ; state
exists over a large range of Fermi level positions and indicates that Vg, is likely to
trap two electrons in an n-type atmosphere. This supports the PAS observations
by Tuomisto et al [89, 104], mentioned in Chapter 2. The pair vacancy V2,0, on
the other hand, has five charge states, out of which, the V,_, state is unstable.
The VZZ’HO state has the largest range of stability at the higher values of fermi-
level. The V} , and V3  states have a lower formation energy than the neutral
V zn0, but exist for low fermi-levels (Fig. 6.1).

Since relaxation of crystal structure massively affects the formation energies,
the energetics of the relaxation process were investigated further. The relaxation
energy is a quantity that can give us information about the energy cost associated

with the relaxation process. The relaxation energy can be defined by,
Bra = (BESHe=d(X) - BRise(x)) (6.1)

where Eupelazed(Xa) is a supercell containing a defect at charge state q.
Atomic positions of this supercell are fixed to bulk equilibrium atomic positions.
Erelazed( X a) is the total energy of the same system but fully relaxed. Epq gives
the energy cost for relaxing the supercell with a defect in a particular charge-
state. From the definition of formation energy (Eqn. 4.1) we can say that the

relaxation energy is simply,

XQ) - Ef

relaxed

ERel = Ef

unrela:red(

(X7 (6.2)

When the system is charged (q # 0), the shift of fermi level contributes to the for-
mation energy expression (Eqn. 4.1). The relaxation of a neutral defect supercell
was started with relaxed bulk atomic positions with the defect atom removed.
Then a charge, either a hole or an electron, was inserted in the supercell and
relaxed again in a singly charged state. This was repeated with a second charge
inserted and we get the relaxed structures of doubly occupied (2-) or empty (2+)
defects. Every time the supercell is relaxed in a new charge state, the total en-
ergy difference of the system before and after relaxation represents the relaxation

energy associated with defect charging. This quantity can be defined as,

87



6.1 Formation energies

ha0/q) = BYSHd(X7) — BRimed(xo) (6.3)

where ¢ and ¢/ are two different charge states of the defect X. Eumsclazed( xar)
does not correspond to the fully unrelaxed ideal crystal structure but to the same
crystal structure that corresponds to Ej4¢d(X 7). Therefore for a neutral vacancy
starting with the bulk atomic positions, E%,; = Ere. This quantity helps us to
understand the energy cost associated with relaxation between different charge-
states of a defect. In the next section we will discuss the transition levels of the
defects. E,, gives an estimate of the energy cost of the lattice to relax when the
defect charge state changes. The implication of this quantity in predicting defect
related optical properties is discussed in the next section. Table 6.2 shows the
comparison of formation energies and relaxation energies for each defect state.
For one particular defect, E},_, denotes the relaxation energy of the particular
charge state given in the column heading with respect to the charge state of
the column to its left. E’,_, for the neutral vacancies (q = 0) are the absolute
relaxation energies and are same as Eg.;. Note that the relaxation energies are

much smaller than the formation energy change upon relaxation.

Table 6.2: Relaxation energies for intrinsic defects in different charge states in eV.
Comparison is made with the formation energies with relaxed and non-relaxed
geometries. EY, values of a column shows the relaxation energy between that

column and the column at its left (see text)

—

+ 2+ = 2— - |
Vo Vo Vo Vzn Zn Vzn Vzno vZnOi

Formation energy (Non-relaxed) 1.3 -09 -1.12 74 78 9.7 59
Formation energy (Relaxed) 05 -12 37 75 81 87 42
Relaxation energy (E’,;) 03 08 11 05 04 04 14

9.77
6.6 |
06 |
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Figure 6.2: V4,0 pair vacancy formation energies as a function of fermi level
position compared with Vo and V,. V, , has a formation energy about 2 eV

lower than the separated Vo + V.

Fig. 6.2 shows the Vz,o vacancy formation energy with respect to fermi level.
The values were obtained from a relaxed 3x3x3 supercell. The combined forma-
tion energy of Vo and Vg, is also plotted in the same diagram. Note that the
formation energy of a Schottky Vyz,o pair vacancy defect is lower for all charge
states than the combined formation energy of Vo + V,0. Formation energy of a
V.0 1s lower by about 2 eV than that of combined Vo 4V, . This agrees with
the binding energy calculation results for a pair defect described at the beginning
Chapter 5, where we saw that the total energy of a supercell with a V, , defect

is lower by 2 eV than that of the same supercell with separate Vo + V.

6.2 Defect transition levels

The transition levels are estimated from total energies using equations 4.10 and

I.11. The relationship between transition levels and formation energies is estab-

39



6.2 Defect transition levels

lished in Eqn. 4.8. The values of transition levels relative to the valence band
maximum (Ey) are given in Table 6.3. The value of the energy band gap E,
is required in the equations 4.10 and 4.11. The band gap was also calculated
from total energies of charged bulk ZnO systems using Eqn.4.14 and was found
to be 3.7 eV for the supercell-size 3x3x3 that has been used in most of the
formation energy and transition level calculations. When we compare this value
of band gap to the value obtained from single particle eigenvalues, we have 3.3
eV. The experimental band gap is 3.4 eV [56]. The band gap is clearly overes-
timated in this method and requires an explanation. The above value of 3.7 eV
was obtained using charged 3x3x3 supercells with three different calculations
with charge states: neutral, (charge 0) an extra hole (charge +1) and one extra
electron(charge -1). Total energies of these three differently charged supercells
are required for calculating E, using Eqn. 4.14. The electronic concentration
differs for this type of calculation for supercells of different size and due to the
use of periodic boundary conditions, the extra charge in the supercell as well as
the compensating background charge interact with their periodic images, adding
contributions to the total energy. This phenomenon is discussed in Chapter 4
and can be solved by Makov-Payne correction (Eqn.4.18) [155]. The strength of
this interaction reduces as a polynomial function of reciprocal of supercell size
and thus the value of E, slowly falls as the supercell size increases. Along with
the 3x3x3 supercell, the same calculation for E, was repeated for a 2x2x2 and
a 4x4x4 supercell. The value of E is plotted against 1/L, L being the supercell
length 2, 3 and 4 (See Fig. 6.3) . If only the first term of Eqn. 4.18 is considered,
E, can be extrapolated in a linear fashion. The linear extrapolation tells us that
the band gap for an infinitely large supercell (at L. = oo, interactions between pe-
riodic images are zero) is 3.2 eV, thus in better agreement with the experimental
result.

The Hubbard-U value of a defect can be calculated from the transition levels
and is discussed later in this chapter. An estimate of Hubbard-U is necessary in
order to confirm whether a defect acts as a paramagnetic centre and may promote
ferromagnetism in a Hubbard model described in Chapter 2. The transition en-
ergy values are also important as they can give an estimation of the optical

absorption/emission energy in the energy spectrum of a particular defect-related
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Figure 6.3: Estimation of band gap using total energies. Extrapolation towards

infinitely large supercell has been shown by thin black line.

system. A number of absorption/emission signals have been observed in ZnO thin
film spectra that do not come from pure bulk ZnO. For example, ZnO thin films
prepared by molecular beam epitaxy show a green and a yellow luminescence re-
spectively in oxygen-rich and Zn-rich growth conditions [11]. Naturally the green
and yellow luminescence were attributed to transitions of charge trapped in Zn
and O F-centre vacancies respectively [11]. Kohan et al [61] tried to explain the
green luminescence from transition level calculations using LDA and since then
a significant number of works have been made in predicting the optical transi-
tion levels from first principles calculations. The optical transition energies were
estimated from the transition levels with the aid of the Frank-Condon principle
[69, 168]. Vidya et al [111] however, pointed out that the thermodynamic tran-
sition energy is not exactly the same as the optical transition energy, but the
difference is close to that when the atomic relaxation energy associated with the
transition is low. When an F-centre is involved in an optical process, the optical
transition energy is the ionization energy of the F-centre. The transition level
€(g/q) for unrelaxed supercells in charge states g/ and g represents the ionization
energy of a particular defect. When the supercell is relaxed with charges ¢ and
g/, the transition level €(q//q) represents the energy cost to ionize the defect from
charge state ¢ to charge state ¢/ at equilibrium of crystal forces. When the charge

state of a defect changes from ¢ to g/, the crystal structure is relaxed with the

91



6.2 Defect transition levels

initial charge state q. As the charge state changes to ¢/, the crystal structure
relaxes until it comes to equilibrium for the final charge state ¢/. However, the
optical recombination is much faster (order of 107! second') than the atomic
relaxation process (order of 1072 second) and the energy associated with the
optical transition is not as the same as the transition level at equilibrium. The
energy associated with an optical transition is therefore the transition energy
cost from an initial charge state ¢ with a fully relaxed crystal structure to the
final charge state g/ with the same crystal structure (fully relaxed with the initial
charge state g). Since the transition energy €(q//q) represents the transition en-
ergy in equilibrium with crystal structures fully relaxed with both of the charge
states, in order to estimate the optical transition energy €(q//q)op, from €(q//q)
we have to add the energy cost to relax the crystal structure when the charge
state changes from ¢ to ¢/, which is E%,, (Eqn.6.3). The quantity E,,, can be
identified with the Frank-Condon shift [71]. Thus,

€@/ Dopt = €(a/q) + Epalat/q) (6.4)

Table 6.3 shows a comparison of transition levels (TL) done in this work and
other works. Note that LDA/LDA+U calculations underestimate transition lev-
els. Transition level values are calculated with a relaxed 3x3x3 supercell and
therefore represent transition energies at equilibrium. From Table 6.3 and Table
6.2 we can predict the origin of the anomalies observed in the ZnO photolumi-
nescence [11, 169]. For example, the origin of the green luminescence, associated
with an energy of 2.4 eV [11], remained a topic of major controversy. Some first
principles calculations attributed the green luminescence to the (+/0) transition
in Vo [69, 71, 111] and in this work we also find the €(4+/0),, for Vo to be 2.5 eV
(using Eqn. 6.4 from values in Tables 6.3 and 6.2, ¢(+/0) (1.7 eV) + Ej,(4/0)
(0.8 eV) = 2.5 eV). However the green luminescence is found in Zn-poor films
[11] and more likely to be related to V,. Therefore Vidya et al [111] suggested
that the green luminescence is more likely to be from a (2+/+) transition in

V2.0 defect which was found also have an optical transition energy of 2.5 eV

'The order of magnitude of the electronic recombination time can be estimated from Heisen-
berg’s uncertainty principle AEAt =2 h. h = 4.135 x 10715 eV and AFE being in the order of
1 eV, O(At)~ 1071 s.
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6.2 Defect transition levels

Table 6.3: Transition levels in eV relative to Ey. A fully relaxed 3x3x3 supercell

is used for these calculations.

Defect q//q LDA! LDA+U! B3LYP? B3LYP?® HSE*

Vo +/0 0.1 0.5 1.7 1.8
2+/+ 1.0 1.4 2.5 2.7
2+4/0 2.1 252 2.2
Vin -/0 0.1 0.1 0.6 0.9
2t 08 0.4 0.6 2.5
2-/0 0.6
Vzrno 2+/0 1.5
2+4/+ 0.9
+/0 0.6
-/0 2.4
2-/- 1.9
2-/0 22

[111]. The shift from green to blue luminescence at a high-intensity laser incident
pulse [106] was previously attributed to the (-/0) and (2-/-) transition of the site
inversion defect Oy, [111]. From the results of this work we can suggest that the
blue luminescence may also be attributed to the (2-/-) transition of the Vz,0
defect. The optical transition energy of this transition is 2.7 eV (€(2-/-) (1.9 V)
+ E%.(2-/-) (0.8 eV) = 2.7 eV) and V,0 has a lower formation energy than
Oz [111]

There is also a yellow luminescence observed at 2.37 eV [10, 169] in O-rich
samples. Presumably this is caused by Zn vacancies but none of the Vy,, optical
transition energies estimated in this work agrees with this. Vidya et al identified
this yellow luminescence with the (+/2+) transition of V}iadial which is a different

configuration of the V,o Schottky defect shown in Fig. 5.6.

1Ref.[90)]
2This work, all values correspond to calculation converged down to 1073 eV, rounded off

to 107! eV for comparison.
3Ref[71]
1Ref[63]

93



6.2 Defect transition levels

6.2.1 Transition levels from single particle eigenvalues

In the above section, transition level values discussed are obtained from total
energy (TE) calculations but they can also be estimated from single particle
eigenvalues (SPE) derived from the same density matrix used to obtain the total
energy in the same computation procedure. Janak’s theorem is used to obtain
the values of transition energies with respect to Ey. The details of this method
are discussed in Chapter 4; Eqn. 4.9 and Eqn. 4.17 are used to estimate the
transition level values. The energy eigenvalues of the relevant states at the I'-
point are obtained from the electronic band diagrams shown in Fig. 5.13. The
transition is between the filled and empty levels for electrons and the other way
around for holes, so either the majority or the minority levels are to be considered
for the measurement of €,,1(N) and €, (/N + 1) in spin polarised systems. e.g.,
for transitions such as (4/0) or (-/0) the majority and the minority levels are
considered, respectively, for the spin polarised +1 or -1 systems [71].

In Chapter 4, we have discussed that using a single-point (I') eigenvalue in-
stead of averaging over all k-points may cause inaccurate results in this method.
However, results show that (Table 6.4) the estimations of the transition levels are
in broad agreement with the TL values estimated using TE method. Transition

energy values are tabulated in Table 6.4.
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6.2 Defect transition levels

Fig. 6.4 depicts the comparison between the transition levels obtained from the
two different methods for both relaxed and unrelaxed crystal structures. Note
that the TL values calculated from the two methods are not exactly the same.
In both of the TE and SPE methods the transition levels are obtained using the
relaxed systems for all charge states. The data is shown in Table 6.4.

The deviation (§) in the SPE TL values are calculated with respect to the
TE values and given in Table 6.4. The absolute maximum errors for relaxed
(£(Rel)) and unrelaxed TL values (§(NRel)) are 0.5 and 1.3 eV, respectively.
The standard deviations (root mean square deviation) in £(Rel) and £(NRel)
are 0.3 and 0.6 eV, respectively. Note that for the unrelaxed values the error
and its deviation are almost double that of the relaxed values. The absolute
mean deviation (AMD) for each of the values are also shown in Table. 6.4. The
maximum AMD for unrelaxed values (1.0 eV) is almost double of that of the
relaxed values (0.6 eV). From these statistics we can see that, although the TE
and SPE values are quite close, the errors are not negligible. If we compare these
values with optical recombination energies, these errors are larger than the energy
that is needed to shift the luminescence colour from green to yellow (~ 0.2 eV).
Therefore predictions of optical transition energies from TL calculations made
using the current framework of SPE method will not be accurate.

TL values calculated using the TE method are believed to be more accurate
for certain reasons. Firstly, the TE method includes contributions to the total
energy from all k-points sampled in the Brillouin zone while in the SPE method
uses the eigenvalue at the I'-point only. The estimation would be more accurate
and appropriate if instead of obtaining the eigenvalue at the I'-point only, it was
averaged over all the k-points by integrating it over a Monkhorst-Pack net. The
assumption is that the dispersion of the eigenvalues will not change much upon
relaxation. We can see in Fig. 5.12 and Fig. 5.13 that the dispersion does change
in some cases with lattice relaxation. From these diagrams, the average error for
using the I'-point-only approximation was estimated to be 0.2 eV. This error is
large enough and comparable to the standard errors we get from comparing the
two methods.

Secondly, the TE values are in better agreement with other published results

than the SPE values and also can account for some of the photoluminescence
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6.3 Calculation of Hubbard U

experiment results previously explained by other first-principles studies. The
advantage of using the SPE method is, the SPE method is simple and compu-
tationally much less expensive than the TE method. Only two SCF calculations
with a defect in two charge states are sufficient to calculate the TL using SPE
method, where, in TE method, two bulk supercells of equal dimension contain-
ing the same amount of charges with the defect supercell are also needed to be
computed. Thus the computational expense in the TE method is double of that
in the SPE method. Moreover, calculating charged bulk supercells requires large
k-point grids as they are metallic systems and difficult to converge, especially
when using a hybrid functional.

From the above discussions, we can draw the conclusion that for an accurate
estimation of transition energy €(q’/q), the supercells must be fully relaxed in
their respective charge states. However, in a rapid electron-exchanging system
such as optical recombination, both the total energies of the system in ¢ and ¢’
charge states should have the initial charge state (q) geometry. This is applicable

in the estimation of optical transition energies.

6.3 Calculation of Hubbard U

The Hubbard-U is the Coulomb repulsive energy cost to add an electron to an al-
ready half-filled defect level and can be calculated from the difference in transition
levels €(2 — /—) and €(—/0).

U = e2-/-)—€-/0) (6.5)

Using this equation, U values for the three intrinsic defects Vo, V4, and Vz,0
are obtained from the transition level values shown in Table 6.4. The U values
are tabulated in Table 6.5 for both relaxed and unrelaxed crystal structures.

In Table 6.5 one can see that all three defects are positive-U with large U-
values when the crystal structures are unrelaxed but as the structure is relaxed
all three vacancies become negative-U or zero-U (for Vg, ). The value of U
for Vi is -0.8 eV in comparison to -1.3 eV calculated using LDA by Lany and

Zunger [69]. However, in a rapid electron-exchange system, where the electrons
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Figure 6.4: Comparison of transition levels obtained from total energy and single
particle eigenvalue methods.
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6.3 Calculation of Hubbard U

Table 6.5: Hubbard-U values in eV for defects.

Defect TE method | SPE method

Relaxed Non-relaxed Relaxed Non-relaxed
Vo -0.8 1.9 -0.6 -0.9
Vzn 0.0 1.5 0.2 -0.1
Vzno -0.6 1.3 0.3 0.9

hop in and out of a vacancy faster than the lattice relaxation time (~107'%s), the
value of U may be recalculated using the relaxed crystal structure of 1- state of
the respective defect for both 1- and 2- states, in a similar manner the optical
transition energy was obtained (Eqn. 6.4). The value of U in such a case can
simply be obtained by adding the relaxation energy El,(2-/-). Hence the value
of U in a rapid electron exchange system, say U,.., for the three vacancies are
from Table 6.5 and 6.2: Uyees(Vo ) = -0.8 + 0.8 = 0.0 eV, Uyees(Vzn ) = 0.0 +
04 =0.4eV,and Uyees(Vzno ) = -0.6 + 0.8 = 0.2 eV.

5 T T T T
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= e(2/-) . _ Eq
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=
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Figure 6.5: The transition energies ¢(—/0) and ¢(2 — /—) and the value of
Hubbard-U for the Vg ,o defect with unrelaxed crystal structure. Values for
different supercell sizes are plotted with respect to inverse of supercell size L.

Value of the band gap E, for infinitely large supercell (L— oo) is shown.
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6.3 Calculation of Hubbard U

The electronic concentration changes with supercell size and thus changes the
transition levels and U-value. We show in Fig. 6.5 that the U value slowly rises
with supercell size and is linear with the inverse of the supercell-size L. This is
because as the supercell gets larger the Coulomb interaction between the periodic
images of the defect-trapped electron decreases and the on-site interaction domi-
nates. The transition energies ¢(—/0) and ¢(2 — /—) and the value of Hubbard-U
for the V,0 defect are obtained using supercells of sizes 2x2x2, 3x3x3 and
4x4x4. We discussed the Makov-Payne correction scheme [155] for the inter-
action of image charges due to the periodic boundary conditions of supercell
methods in Chapter 4, which states that the energy contribution due to this in-
teraction can be described by Eqn. 4.18. If we consider only the 1st term of Eqn.
4.18, the interaction energy between periodic images is inversely proportional to
the supercell length L. (AE o 1/L). In this case L =2, 3 and 4 for supercell
sizes 2x2x2, 3x3x3 and 4 x4 x4 respectively and the corresponding Hubbard-U
values are plotted in Fig. 6.5. The U-value has been linearly extrapolated to
infinite supercell-size (1/L = 0) and the the value of U obtained, Uy = 1.8 eV
at 1/L = 0. We can also see that the Hubbard-U value of 1.7 eV obtained for a
4,/3x2,/3x2 supercell using total energies with different spin-configurations (see
Chapter 7 for details) also fits with this extrapolation.

The supercells used for these calculations are all unrelaxed. When the crystal
structure is relaxed with a charged supercell, the interactions between the periodic
images of the charges are of different strength for different-sized supercells and
the contribution to the transition level estimation are changed in a non-linear
fashion. The true nature of the interaction between charges and their dependence
on supercell size in this case can be derived statistically but needs more than just
three different-sized supercells as used here. A practical obstacle in doing so is
as the supercell-size becomes larger, the structure-relaxation calculation becomes
extremely expensive. So a relationship between the energy contribution due to
interaction between periodic images of charge during lattice structure relaxation
was not possible by fitting the transition energy as a function of supercell-size in

the current work and may be a subject for future work.
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6.4 Conclusion

The results for the estimation of formation energies, transition levels and Hubbard-
U of the intrinsic vacancy defects of ZnO were described in this chapter. Com-
parison has been made with other published results. The transition levels were
calculated from two different methods, from the total energies of bulk and defected
system and from the single-particle eigenvalue shift. A quantitative comparison
between the results from the two methods shows that they roughly agree with
each other but the deviation between the values is also considerable. The effect
of lattice relaxation is discussed, which is substantial on defect charging. Esti-
mation of U shows that none of the three vacancy defects are positive U once the
geometry is relaxed. Hence none of these defects may act as a paramagnetic F-
centre with a finite spin. A small positive U of 0.4 and 0.2 eV may occur for Vg,
and Vz,0 , respectively, if the electron exchange is faster than lattice relaxation
time (~10712g).

In the next chapter we continue discussion on estimation of Hubbard U, but
from the defect-defect interaction instead from a single defect. Also the defect-
transition metal impurity interaction is explored by calculating the exchange

coupling constants.
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Chapter 7

Interaction of Defect-trapped
Electrons, Transition Metal

Doping

In the previous chapter we discussed the formation energies, transition levels and
Hubbard - U values for intrinsic vacancy defects Vo, Vz, and Vz,0. A drastic
effect of crystal structure relaxation is shown on defect charging. The value of
Hubbard -U was calculated from the transition levels and a large reduction of the
U-value was observed upon lattice relaxation.

In this chapter, we discuss defect-defect and defect - transition metal (TM)
impurity interactions and consider any possibility of defect-related magnetism
in intrinsic and TM-doped ZnO. We continue the discussion of Hubbard-U as a
starting point, by estimating the U-value for V2,0 from the interaction of two
V2.0 defects.

The Hubbard-U for Vi, is calculated here from the total energy difference
of different defect level occupations where two Vy,o defects are interacting in
a partially filled system. To simulate the interaction between two defects, two
Vno defects were created, 11A apart, in an unrelaxed 4,/3x2,/3x2 supercell
with 192 atoms. The total electron-trapping capacity of this system is then up
to 4 electrons. At 1/4-filling, there is one electron to be shared between every
two defects. The ground state was found to be a spin-polarised (S=1/2 )state

and the first excited state is unpolarised (spin 0). Note that only the second
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term in the Hubbard Hamiltonian (Eqn. 2.13), 337, Un;n;, is considered. In
order to estimate the value of U, we need to obtain the energy expectation values
of the second term of Eqn. 2.13 in a 1/4-filled system for both the polarised
and unpolarised states. We can write the eigenfunctions for the polarised and
unpolarised state in terms of Bloch wavefunctions. For an N-electron system,
the wavefunction of a spin polarised state with one electron per two defects (1/4

-filling) is given by,

k<kF’p01

«Q’)pol(rl,rz,...,FN):—% H ¢kTB(rn) (71)
k

kp por 1s the magnitude of the Fermi wavevector for the spin-polarised state which,
in this case, is that of a single, fully occupied majority band. The minority band
is empty. Spin orientation o is indicated by T and |. B denotes a bonding state
(A is used to denote anti-bonding states). We can define the wavefunction for

the unpolarised state in a similar fashion,

k<krunpol
1
'z/)“npol(rl,rz, ...~I'N) = ﬁ H ¢k]B(rn)¢le(rm) (72)
k
The magnitude of kg unpe in this case is that of a pair of half-filled bands, one for
each spin-orientation. ¢y, (r) are Bloch wavefunctions, which are expanded in a

pair of defect orbitals. For a single electron,
1 : ;
dron(r) = E[Wz‘l(r — 51 — Ri) + pia(r — s2 — Ry)]e* Rix(0) (7.3)

x(0) is an eigenspinor. ¢y,p5(r) is a bonding combination of ¢;; and ¢;», which
are defect orbitals at sites sy and s in the 1th defect supercell.

The normalisation of these orbitals is,

<991‘s|99jz.) = 5ij5st (7.4)

so that the wavefunctions ¥, and ¥y, are normalised on a single supercell.
Now we can obtain the matrix elements of either state for the second term of the

Hubbard Hamiltonian H 1 = Uniingp (2 labels a defect site). The matrix element
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(Upot| H1|¥por) s zero since there are no spin o =| electrons and operation of 7

yields zero. The matrix element for the unpolarised state is,

' . 1 1 .
W potl i Wanpat) = V<¢kTB(rn)¢kl}3(r1n)|§UnisTnisj|¢le(rp)¢le(rq)> (7.5)

By plugging in the expressions of ¢(r) given in Eqn. 7.3, and applying the

normalisation, we get factors N/2 from number of terms, 1/4 from normalisation

of orbitals ¢ and 2 for number of sites per cell. So the matrix element becomes,
1UN1 U

= ———-2=— 7.6

N 224 8 (78]

Therefore, the energy splitting between the two states is U/8. This can also be

<(/)unpol 'Hl I¢unpol>

shown by calculating the charge population for each of the spin states. From
Fig. 7.1, in the spin 1/2 spin-polarised state, the populations of o and /3 spins on
defects 1 and 2 are ny, = ny,=1/2 and n,3=nqp=0, giving an energy expectation
value of U(1/2 4 1/2)(0) = 0. In the unpolarised state, the populations are n;,
= Ng,=1/4 and ny3=nss=1/4, which yields an energy of U(1/4)(1/4)(2) = U/8
(the factor of 2 is for the number of sites). Hence the energy difference between
the two states is U/8. From the supercell calculation with two defects and one
electron, we have the energy difference of 147 meV between two states. Therefore
U= 147x8 = 1176 meV. For a half-filled system we have one electron per defect.
This is a trivial case of Hubbard model where, for positive values of U, we get a
Heisenberg antiferromagnet.

At 3/4-filling, there are three electrons per defect pair which can give a spin-
polarised state or an unpolarised state. The spin-polarised state contains a filled
bonding band of the form of Eqn. 7.3 and a majority spin band (Fig. 7.1). This

new band is anti-bonding in character. Therefore,

Froa(r) = %k‘”il(r — 81 — Ry) — gin(r — 33 — Ry)Je™™

This state is essentially degenerate with the state in Eqn. 7.3 because the hopping

x(0) (7.7)

parameter ¢t is small compared to U. The spin-polarised and unpolarised states
for this case are given by,

k<k1",pol

: [T oas(ra)duistm)dialry) (7.8)
;

Q/)pol(rl,rz, ...,I‘3N) — ﬁ
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Figure 7.1: Estimation of U from different spin-population configurations of one
(left) and three electrons (right) in two Vyz,o defects. Up and down arrows
denote o and [ spin populations. Length of the arrows vaguely depict population

strength.

and

k<kp,u11pol

Yunpot (T1,T2, ..., T3N) = \/% 1:[ Px1B(n) Pk B(Tm) P a(Tp) P A(Tq)(7.9)

In the unpolarised case, the Fermi level lies in the middle of the ¢y,4 band.
The matrix elements for the Hubbard-U term can be obtained from the charge
population in the exactly same manner as previously done for 1/4 -filling. From
Fig. 7.1, we can see that in the spin 1/2 state, the populations of a and 3 spins
are ny, = Noa=1/2+1/2 = 1 (for both bands) and n;3=nys=1/2, therefore,

1

(pot H [Ypat) = U(5)(2) = U (7.10)

For the unpolarised state, the populations are ny, = ns,=1/4/+1/2 = 3/4



and nyg=ngs=1/4+1/2=3/4, which yields

_w

= (7.11)

%))

<'¢’u7lpolyﬁ1 I"/)unpol> = U(i)(

Hence the energy difference between the two states turns out to be gU -U =
%U again. From the supercell calculation we get the energy difference of 220 meV,
yielding U=1760 meV.

At complete-filling, all states are filled and there is no spin-polarised state
of the defect. The value of U determined for Vz,o by this method (1.76 V) is
near to the value obtained from TE transition levels (Table 6.5) for unrelaxed
supercells (1.2 eV) but overestimated. The reason behind the overestimation is
that U is dependent on supercell-size and linearly decreases with increment of
1/L, reciprocal of supercell size. This implies that the value of U increases with
supercell size (Fig. 6.5). In the related discussion we will see that for a bigger
supercell such as the one used in this calculation (4,/3x2,/3x2 which is almost
double the size of 3x3x3 that yields U = 1.2 eV) the value of U is quite nicely
in agreement with the U-value estimated from the TE-transition level method.

Note that the above calculations are done with an unrelaxed 4,/3x2,/3x2
supercell. The calculation to estimate the Hubbard-U of Vz,o from total ener-
gies of different spin-configuration was repeated and the crystal structure of the
supercells were fully relaxed with each spin configuration. The Hubbard-U from
the energy difference of the relaxed supercell was -0.2 eV. This is in agreement
with the data in Table 6.5 that the defect U-value turns negative when the crystal
structure is relaxed. We have discussed in the previous chapter that for a rapid
electron-exchange system, the Hubbard - U value for V,, and V3, may be pos-
itive but the ratio U/t would not be large. The negative-U behaviour of V0 is
visualized in the wavefunction isosurface drawn using the relaxed structure shown
in Fig. 7.2. We can see that the ground state represents one doubly occupied
and one empty vacancy instead of two singly occupied vacancies. This signifies
that a doubly occupied and an empty vacancy system is energetically preferable
over a two-singly-occupied-vacancy system. This has been shown in the previous
chapter from the estimation of U from the TE values that U = €(2— /—) —¢(—/0)

is negative.
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Figure 7.2: Wave function isosurface of Vz,o defect-trapped electron in a
4,/3x2,/3%x2 supercell with two Vz,o defects (marked V1 and V2) and two

electrons in a relaxed crystal structure showing that in the ground state the two

electrons reside on one vacancy and the other one remains empty. This implies
a negative - U, otherwise, we should get both the defects half-filled (Heisenberg

antiferromagnet ).



The U-values for Vo and Vz,o were not estimated using the interaction be-
tween defects as this method involves large supercells and is extremely expensive
regarding computer-time, especially when full relaxation of crystal structure is

involved.

7.0.1 Magnesium oxide (MgO)

MgO is one of the oxides that was observed showing room-temperature ferro-
magnetic order for thin films grown in low oxygen partial pressure [66]. This
phenomenon was observed in thin films with high impurity levels and therefore
the true origin of ferromagnetism may not only be the intrinsic defects. Khalid et
al [170] have shown that for ZnO and MgO thin films with vacancies and impuri-
ties, the Curie temperature of an FM sample depends on accumulation of defects
and impurities at surfaces and does not depend on the intrinsic ferromagnetic
impurity content (TM:Fe or Co). EPR spectroscopy shows a large resonance
signal for trapped electrons for off-stoichiometric thin films [170], which is very
similar to that of ZnO which was discussed in Chapter 2. A surface calculation
presented by Ricci et al [65] also suggested the possibility of anion-cation MgO
divacancies as surface electron traps which act as paramagnetic centres. Calcu-
lations were carried out in this work in order to estimate the Hubbard-U for the
MgO divacancy in bulk MgO. A 6 x 6 x 6 supercell was constructed from the
cubic MgO unit cell with lattice constant a = 4.21 A [56]. Two MgO divacancies
and three extra electrons were created in this supercell and the energy difference
AFE was obtained between the spin-1/2 and the spin-0 metallic state. Following
the exact same procedure used for ZnO, the Hubbard-U can be estimated to be
U = 8AFE. The spin-1/2 state was found to be the ground state and for the
unrelaxed 6 x 6 x 6 supercell U was found to be 3.1 eV.

However the calculations were done with unrelaxed supercells and the relax-
ation calculation could not be performed because of the large size of the supercell.
Since in earlier work the surface divacancies there found to be positive-U even
when the crystal structure is relaxed [65], the question remains whether V0 in
bulk remains positive-U upon lattice relaxation and may be the subject of future

work.
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7.1 Implication of Hubbard model of ferromag-

netism

We have discussed the Hubbard model of ferromagnetism proposed by Nagaoka
[122] in Chapter 2. The magnetic phase diagrams based on this model are ob-
tained by several groups using different finite-temperature algorithms such as
QMC [68], DMFT [124], SDA [123] and HTSE [67].

U values are the TE method numbers from Table 6.5 and the hopping pa-
rameter ¢ for the three defect levels can be estimated from the band width W
(obtained from the band-diagram shown in Fig 5.12). Hence, an attempt can
the made to explain the defect-related ferromagnetism by comparing the value of
U/t to published Hubbard-model phase diagrams and inquire whether they fall
in the ferromagnetic phase. First we will see the results for the unrelaxed crystal
structure. Each defect has 6 neighbours and therefore ¢ = W/6. The t-values
obtained for Vo, Vz, and Vz,o defects are 62 meV, 35 meV and 96 meV, respec-
tively, for an unrelaxed 3x3x3 supercell. Therefore, for Vz,,o we have U/t ~ 25.
According to an HTSE calculation on Hubbard model [67], the Curie tempera-
ture of this system may fall in the range 800K - 1300K. However, in practice thin
film defects are presumably separated by more than 11A, as used here. U will
not depend strongly on defect separation but ¢ will decrease rapidly. According
to the phase diagrams for both ordered [68, 123, 124, 171] and disordered [125]
lattices, reducing ¢ to half (= 34 meV) will decrease the Curie temperature but
the system may retain the parallel spin-alignment.

However, when the crystal structures are relaxed, Hubbard-U values for all
three defects become negative (zero for Vyz,,). We have discussed before that the
crystal structure must be relaxed when a charged defect is present in order to
calculate TL or U-values. Hence we conclude that in equilibrium, the intrinsic
vacancy defects in ZnO (Vo, Vz, and Vz,0) have negative U (zero U for Vy,)
and can not take part in ferromagnetism described by the model based on the
Hubbard model, discussed in Chapter 2. We have shown in the previous chapter
that even in a rapid electron exchange system, we may have positive values of U,
but these values are too small (0.0 eV, 0.4 ¢V and 0.2 eV for Vo, Vz, and Vz,0

respectively) to satisfy the proposed model.
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7.2 Interaction between defects and transition

metal impurities

We have discussed in Chapters 1 and 2 that dilute amounts (4-7%) of transition
metal (TM) ions doped in oxides such as ZnO, In,O3 etc were found to induce
ferromagnetism in otherwise non-magnetic oxides [12, 13, 15]. Many experiments
suggest a possible correlation between defects and ferromagnetism [15, 17]. Hence
it is important to investigate the mechanism of interaction between the vacancy
defects of ZnO and TM impurities. In this work, Co?* ions are substituted for
Zn?* ions at all unique sites of the supercell close to a V,, 5 or V, vacancy site.
A 3x3x2 supercell with 72 atoms was used. Substitution of two Zn atoms with
Co atoms is used to calculate the exchange constant between the two Co atoms.
This gives a Co concentration x ~5.5% which is similar to the concentration used
in most DMS related experiments. For all these Co?" substitutions, calculations
were performed with the Co?" magnetic moment parallel and antiparallel to the
vacancy-trapped spin. The energy difference between the parallel and antiparallel
spin configurations of the Co?* ion and defect-trapped electron give an estimate
for the magnetic coupling energy of these two magnetic centres.

The occupied e, levels that couple with the defect-spin in s-d exchange are
separated from the empty to, levels by approximately 5 eV. This energy difference
is underestimated in LSDA calculations [11, 59] and is thought to be slightly
overestimated in the B3LYP calculation used here [30].

A list of the calculated values of coupling energies are given in Table 6.1. We
can see that the interaction between the Co?* ions and defect is strong when the
Co?" ion substitutes the Zn?" ions nearest to the defect and then dies rapidly
with separation between the Co?* ion and the defect site. Strong coupling (> 10
meV) exists within a radius of 5 A from the defect centre. The defect wavefunc-
tion is s-like (Fig. 5.10) and it overlaps with the Co?" d-states and couples via a
short range s — d exchange. However, the V,, ., trapped electron wavefunction is
not spherically symmetric (Fig. 5.10), causing the anomaly in a direct relation-
ship between linear distance and coupling strength of a Co®* ion and a trapped

electron (Table 7.1). Calculations for coupling energy were also performed with
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7.2 Interaction between defects and transition metal impurities

pairs of Co*" ions in the absence of any vacancy defects to obtain the interac-
tion between Co?t ions. The coupling energy values are listed in Table 7.2. The
interaction between the near-neighbour Co?" ions are all antiferromagnetic as
expected [59, 157]. This is a superexchange interaction and decays abruptly be-
yond nearest neighbours (Table 7.2). In Table 7.2 a comparison is made between
coupling energies calculated in this work and by the LSDA+U method [172].
The values for near-neighbour Co?* ions in the same basal plane and in adjacent
planes are 12 and 0.1 meV, respectively. In comparison LSDA+U yields 16 and
6 meV, respectively [172].

Table 7.1: Total energy difference AE = F;; — E;| between a V,,, or V, and

a Co®* ion substituted in various distance d from the vacancy site.

doo_vz (A) AECOVZ_nO (meV) doo_vz (A) AECOVEH(meV)
Non-relaxed Relaxed Non relaxed  Relaxed

1.98 394.00 3.26 -78.60

3.25 4.66 18.88 3.30 0.42

3.80 1.86 4.54 -4.24

3.80 -6.40 5.16 -8.00

4.59 14.80 5.99 2.18

4.95 0.02 5.64 -1.22

5.00 25.40 40.37 5.69 -8.00

5.90 1.01 7.63 1.36 0.39

5.95 0.30 - -

6.50 1.54 . -

6.74 2.70 2.40 - -

When calculations were performed with pairs of Co?" ions and a negatively
charged defect, it was found that the coupling energy is a sum of the antifer-
romagnetic coupling energy between the Co?" pairs and the individual coupling
energies between each Co?" ion with the defect spin. This can be summarised by

the Ising Hamiltonian given by,
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7.2 Interaction between defects and transition metal impurities

Table 7.2: AFM coupling between two Co?* ions.

dco—co (AAEcoco’ (meV)AEgoc,2(meV)
3.20 12.2 16.0
4.57 0.10 6.0
5.61 0.58
5.63 0.28
7.66 0.02
R I T L B S (7.12)
1<j

where summation is made over pairs of spin centres: two Co?" ions and a
defect. JV and J“°“° are the coupling energies between Co?t - vacancy
electron and Co** - Co?' ions, respectively. This equation was validated for
V0 and V z, vacancy defects. We can see from Table 7.1 that the interaction
between negatively charged Vz,0 and V, and Co?* ions nearby are AFM and
FM, respectively. The AFM interaction between V z,,0 and Co?* ions is due to an
s — d exchange between the s-like defect wavefunction and the Co?* -3d orbitals.
V zn, on the other hand, when negatively charged, the electron is localised on the
neighbouring dangling O-2p states. These states overlap with Co?" -3d levels at
short range and the exchange is direct p — d exchange, leading to a very short-
range FM coupling. The difference between the wavefunctions of V,,o and Vg,
can be seen in Fig. 5.10.

Most calculations were performed using Co ions substituted at Zn sites with
no lattice relaxation except for some particularly interesting configurations of
Co?* substitutions. The relaxation calculation is expensive and thus is not re-
peated for all Co?t substitution configurations. The coupling energies between
Co?" ions and the defect-trapped spin with relaxed crystal structure for some
of the Co?" substitution configurations are given in Table 7.1. The relaxation

energy and displacements for Coyz, substitution are much smaller than that of

I This work
2Ref. [172]
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7.3 Conclusion

the vacancy defect creation. This is because of the small difference in the ionic
radii of Co?" and Zn%". As the defect and its surrounding atomic coordinates
relax, the interaction between the Co?* ion and the defect-spin becomes subtly

stronger in close and mid ranges.

7.3 Conclusion

A study on defect-defect and defect-TM impurity interaction in ZnO host is
described in this chapter. The value of Hubbard-U for the Vz,o vacancy defect
was estimated using a spin-configuration method. The value of U for both relaxed
and unrelaxed supercells are in agreement with the values estimated in Chapter
6 using transition levels. Calculations with Zn;_,Co,O (z ~ 0.05) show AFM
interaction between Co?" ion pairs when they are nearest neighbours. V,, , and
V,,, interact with a Co?* ion via AFM and FM interactions, respectively, when
the Co?" ion is in the vicinity of the vacancy defect. In the case of V,,, the
range of the AFM defect-Co?* interaction is larger than Co*t - Co*t or V-
Co?" interactions. This is because of the large s-like wavefunction associated
with V,, , allows it to interact with a Co?" ion via s — d exchange in a range

greater than the near-neighbour distance.
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Chapter 8

Effect of Acceptor Doping in
Magnetite Below Verwey

Transition

Magnetite (Fe3O, ) has the inverse spinel crystal structure [75]. At room temper-
ature magnetite has cubic symmetry with space group Fd3m. Fe;O4 undergoes
a first order metal-insulator phase transition known as the Verwey transition
[74, 173] at around 123K. Below the Verwey temperature, Ty, the cubic symme-
try distorts, resulting in reduction of symmetry to a monoclinic phase with space
group C'c. High resolution X-ray [77, 174] and neutron diffraction [73, 77], along
with muon spectroscopy [76] and resonant soft X-ray scattering [175] experiments
report evidence of charge order in the low temperature phase. The charge and
magnetic order in the spinel ferrite magnetite is expressed as Fe’}| [Fe?* Fe?t] 5,0,
in the Verwey model [74]. The Verwey transition results in lattice site displace-
ments of up to 0.07 A [73] according to X-Ray Diffraction (XRD) experiments
which reduces the symmetry from a higher cubic symmetry to a lower monoclinic
one. However, it was found that a smaller P2/c unit cell than the full Cc cell
could account for all diffraction peaks characteristic of the C'c cell [73]. The di-
mension of the P2/c cell is a./v/2 x a./v/2 x 2a., where a, (=8.394A [73]) is
the lattice parameter of the cubic Fd3m phase. The P2/c cell is shown in Fig.
8.1. Like most of the mixed valence oxides the Fe?" - Fe*" mixed valence ions

are stacked in tetrahedral and octahedral environments. Incomplete cancellation
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of the B site magnetic moments by antiparallel A site cation moments results in
ferrimagnetism. The total experimental ferromagnetic moment per unit formula
is 4.07 pp at room temperature [176] which is close to the theoretical value of
4.00 HB-

Figure 8.1: Crystal structure of magnetite in the P2/c cell below the Verwey

transition temperature. Different iron sites are labelled.

The electrical conductivity drops by two orders of magnitude below the Ver-
wey temperature [73, 177] and an optical band gap of 0.14 eV opens up [177].
Interestingly, there is little conductivity below the Verwey transition, which is
believed to arise from the hopping of charge carriers in Fe?*-Fe3t charge-ordered
system (77, 78, 174, 175].

Some recent experiments on conductivity below the Verwey transition show
sharp switching behaviour in the I — V' characteristic curve of nano-crystalline
Fe304 samples [178]. A linear increase is observed in the switching voltage as the
temperature goes below the Verwey temperature. A steadily increasing threshold
energy for electron excitation as the temperature goes down suggests existence of
an energy barrier associated with a small polaron hopping transport mechanism.
The hopping mechanism is rather complicated and involves the electron phonon
interaction [179, 180] and thus cannot be interpreted directly from a band struc-

ture calculation. Since the hopping levels are hybridized O-2p and Fe*t /Fe3*-



3d [175] clustering at the top of the valence band, manipulation of these levels
with substitutional impurities can shed light on the nature of electron-phonon
coupling and transport associated with small-polaron hopping. Doping with ac-
ceptor agents may oxidise Fe%Jr ions to Fo:};, subsequently removing the hopping
levels from the top of the valence band. This process strongly depends on the
substitution sites and simulations were performed to seek out the most probable
choice based on minimum total energy and convergence of DFT potential upon
different site substitutions.

In a recent publication Rowan et al [137] have shown that B3LYP calculations
on the monoclinic insulating magnetite were able to reproduce the charge order
observed in experiments [73, 76, 175]. The lattice and electronic structure as well
as the vibrational spectrum of pure magnetite was studied [137, 181] using the
B3LYP hybrid DFT. This method has been proven quite effective in comparison
to the experimental results available [73, 77, 177]. However, the band gap (=
0.9 eV) using B3LYP with the standard Hartree-Fock (HF) exchange parameter
of 0.2 (Eqn. 3.15) is still overestimated over the experimental value of 0.14
eV [177]. As we already know from the discussion in Chapter 3 that the HF
exchange overestimates the band gap, using a lower fraction of HF exchange in
the exchange-correlation potential described in Eqn. 3.15 may reduce the band
gap nearer to the experimental result. In this work, the HF parameter was fixed
to 0.15 which yields a band gap of 0.4 eV for pure magnetite which is closer to the
experimental value. This HF parameter was used for all calculations described
here. The total density of states (DOS) of magnetite calculated with HF exchange
parameter of 0.15 is shown in Fig. 8.2 compared with the DOS calculated with
HF exchange parameter of standard 0.2. Fig. 8.3 depicts the electronic band
structure of the pure magnetite calculated using HF exchange parameter of 0.15.
The Fe?* bands that create the VBM have been shown. Tuning the B3LYP
parameter to correct the band gap only may lead to incorrect predictions of some
other parameters such as lattice parameters and magnetic exchange coupling
constants. However, lattice relaxation calculations reveal that turning down the
HF exchange fraction does not change the lattice parameters and bondlengths
more than 0.01 A (Lattice parameters are in better agreement with experiment

when A=0.15 is used). The changes in Fes-Fep AFM exchange constants are of
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8.1 Acceptor doped magnetite

the order of ~ 0.05 eV. Turning the HF exchange parameter below 0.15 reduces
lattice parameters drastically and the convergence of the SCF calculation becomes

difficult to achieve.
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Figure 8.2: Density of states of Fe3O4 with HF exchange parameters 20% and

15%. Respective band gaps and Fermi levels are also shown.

8.1 Acceptor doped magnetite

We have discussed previously that doping with acceptor impurities oxidises the
Fef;’ ions to I?o,"‘;;r and reduce the mixed-valence hopping. Depending on the im-
purity concentration, a control over the mixed-valence hopping can be exerted. In
this work, electronic structure calculations were carried out with lithium (Li) and
nitrogen (N) substituting the Fe and oxygen sites, respectively. Different substi-
tution sites were tested to find out which site would be energetically favourable

for substitution.
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8.1 Acceptor doped magnetite
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Figure 8.3: Majority and minority band structure of Fe;O4 with HF exchange

parameter of 0.15. Dashed green line marks the fermi level.

8.1.1 Lithium ferrite: Li0,5Fe2‘5O4 and Li0.625F62_375O4

A number of experiments observed that substituting Fe by lithium in magnetite
does not change its crystal structure by a large amount [79, 182]. In Lithium
ferrite (LigsFes504) all of the Fe?t are oxidised to Fe*' and the mixed-valence
hopping is expected to be terminated. This causes opening up of a large band-
gap. Hall effect measurements show that the conduction is normally n-type at
room temperature [79]. However, one experimental study on off-stoichiometric
LipsFes s04with a large concentration of oxygen vacancies showed that limited p-
type conduction can be observed below Ty [79]. The magnetization in Lig 5Fes 504
is 2.5 pp per unit formula (per LigsFe; 504) theoretically but is found to be as
high as 3.0 pup in experiment [79]. The A and B iron sites are antiparallel to each
other but due to the fact that the A sites are only one-third of the Fe atoms,
Fe3z0,4 has a finite ferrimagnetic moment.

Since the magnetic moment is reduced in LigsFes 504, it is assumed that the
A-site Fe3" ions are not substituted. Different B-site iron ions were substituted
by Li ions to find out the energetically favourable substitution. Total energy

calculations reveal that substitution by Lit ions on a FeQBZ—Fe'?;; chain is most
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8.1 Acceptor doped magnetite

favourable (See Fig. 8.1). The ground state is 0.8 eV deeper than substitutions
on a Fef -Fedl chain. The difference in the total energies for different substitution
sites are shown in Table. 8.1. Since Li substitution on the B4 sites corresponds
to the lowest ground state among all different substitution, the energy difference

is shown with respect to the substitution on B4 sites.

Table 8.1: Total energy differences between B4 and other iron sites substituted
by Li. A(BX) = Ery(BX) — Eres(B4),X = 1,2,3. All values are in eV. The
maximum changes in bond lengths upon substitution (A(Bondlength),,,.) and

band gaps are also shown for different site substitutions.

Bl B2 B3 B4

A(BX) (eV) 08 1.1 0.3 0.0
A(Bondlength) .. (A) 0.08 0.11 0.15 0.03
Band gap (eV) 244 231 255 2.55

One of the reasons behind B4 site substitution having the lowest ground state
is that the B4 sites have the largest bond lengths and can be easily substituted by
a large Lit ion. Lattice relaxation calculations also suggest that Li substitution
on the B3 site results in large changes in bond lengths with a maximum of 0.15A,
about 7.5%. In the case of a B4 site substitution, the maximum bond-length
change is 0.03 A.

The total spin density of Li-ferrite with B4 site substitution is shown in Fig.
8.4 viewed along the c-axis. The spin density of pure magnetite is also shown
for comparison. We can see that the oxygen atoms neighbouring to the Li atoms
are pushed further from the Li atoms. Also the orientation of the Fe-3d orbitals
signifies that in LigsFes 50,4 the highest filled level in the energy spectrum is
represented by a different Fe-3d level than that of Fe;O,. This is because of the
removal of the F(*fjl levels from the VBM. The VBM in LigsFes 50,4 consists of
the dispersive Fe'j levels (Fig. 8.5).

Over-doping of Li in Li-ferrite generates extra holes in the system. Below T\,
the holes are either bound to the charge order or may trigger p-type conduction.
This was simulated by adding one extra lithium ion per LigsFe; 504 supercell

to change the configuration to LiggosFes 37504. This system has two extra holes
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8.1 Acceptor doped magnetite

Figure 8.4: Spin densities of pure magnetite (top) and lithium ferrite (bottom).
Gold, cyan and silver spheres denote Fe, O and Li atoms, respectively. Note that

the iron d-orbital-orientation has changed in LigsFes 504.
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8.1 Acceptor doped magnetite

which are associated with deep empty levels in majority spin. The band structure

of LiggasFes.37504 1s shown in Fig. 8.5, compared with that of LigsFes504.

|
L)

Energy (eV)
Energy (eV)

="

=
Y

Figure 8.5: Majority and minority band structure of LiggasFes 37504 (red) su-
perposed on conventional lithium ferrite (LigsFes 504 ) (green). E(A) and E(B)

denote the Fermi levels for Lig gosFes 37504 and LigsFes 504, respectively

The spin density of LiggosFes 37504 along the ca plane (viewed along the b-
axis) is shown in Fig. 8.6. We can see that the deep hole levels in Fig. 8.5
are associated with localized oxygen 2p orbitals neighbouring the B3 site where
the extra Li atom was implanted. These localised holes form a bound polaron.
Formation of polarons in hole-doped magnetite was predicted in earlier works

[137] also.

8.1.2 Nitrogen substituted magnetite Fe3;O3 5N 5

The effect of nitrogen substitution in oxygen sites (Np) was tested in this work.
Nitrogen acts as an acceptor agent by oxidising the Fe?* ions. When all oxygen
atoms in symmetric sites were substituted by nitrogen atoms, we have Fe3O35Ng 5.
These symmetric sites can be denoted as Al’, A2, B1’, B2’, B3’ and B4’, named
after the neighbouring Fe site designation. In practice, preparation of Fe3O35Ng 5

in a single crystallographic phase is yet not achieved in experiments but research is
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8.1 Acceptor doped magnetite

Figure 8.6: Spin density of Lig g25Fes 37504 viewed along the b-axis. The polaronic
holes localised in an oxygen 2p-like orbital is shown as P1. The colour scheme is

same as Fig. 8.4.

in progress [183]. Substitution of B3’ O-sites (next to Feps) are found energetically
most favourable. The total energy of this substitution is lower than B1’, B2’
and B4’ sites by 1.1, 1.3 and 0.4 eV, respectively. Therefore the electronic band
diagram and geometry optimization calculations were carried out with FesO35Ng 5
for only B3" O-sites substituted by N. The lone electron of nitrogen oxidises the
Fe%l ions to Fedf;. Unlike LipsFes 50y, in FesO35Ng5 the Fe?t ions are partially
oxidised and Fe ions on the Bl sites remain in the 24 state. Therefore the band
gap is almost the same as in pure magnetite. Interestingly, although the Ny, levels
are filled, there is a large magnetic moment of 0.32 up per No. The ferrimagnetic
moment magnitudes are reordered. The B3’ sites neighbour the antiferromagnetic
Fe A2 sites (Fig. 8.1) and increase the electronic density in the A2-B3’ bond.
This results in reduction of magnetic moments of Fe A2 ions, increasing the total
ferrimagnetic moment to 5up/unit formula (for pure magnetite the moment is
4pup/unit formula).

The electronic band structure of Fe3O35Ng 5 with B3’ O-sites substituted is

shown in Fig. 8.7. The No levels are coupled with Fe}), levels at the top of the
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Figure 8.7: Majority(left) and Minority band structures of Fe3O35Ng 5 (solid /red)
superposed on those of pure magnetite (green/dashed). Fermi levels are shown
by Ep(N) and Ex(M) for Fe3O35Ng 5 and FezOy, respectively.

valence band (Fig. 8.7) that governs the transitions since the FeZ,'-Fe},” hopping
is partially terminated by the oxidisation of Fe%;. Deeper levels from Fe-B site
minority electrons rise up in the vicinity of the I'-point while the corresponding

empty bands become degenerate.

8.2 Conclusion

From the calculations carried out on Li and N impurity doping in Fe;O4 below the
Verwey transition, we can predict that depending on the doping concentration, a
manipulation over the mixed-valence hopping conduction and magnetic moments
can be achieved. Formation of small polarons by hole doping is predicted. The
energy needed for small polaron hopping in the charge-ordered structure may be
calculated by inserting a hole in different oxygen sites of either a B1’-B2’ chain

or a B3'-B4’ chain. This may be the subject of future work.
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Chapter 9

Conclusions

n this work, the crystal and electronic structures of intrinsic vacancy defects
and certain impurities in oxides ZnO and Fe3O4 have been studied using first
principles calculations. Total energy and electronic structure calculations were
done on the Zn cation vacancy (Vz,), O anion vacancy (Vo ) and the ZnO pair
vacancy (Vz,0). B3LYP hybrid DFT was found in the literature to be accurate
and appropriate for these wide-gap oxides in many other studies and was used in
this work. V, , and V{; exhibit a deep dispersive band by trapping electrons in
an s-like wavefunction above the valence band maximum while V4, traps one to
two electrons in dangling O-2p states with a flat band. The trapped electron state
in V,,, was found to be capable of interacting at a range exceeding 10A. At a
partial band filling, more than half-filling, the defect-trapped electrons couple in a
parallel spin alignment when a positive Hubbard-U is associated with the defect.
From this observation, an attempt is made here to explain the defect-related
ferromagnetism observed in ZnO and other oxide semiconductors.

Defects are sometimes thought to have a correlation with the ferromagnetism
observed in dilute magnetic semiconductors (DMS). Transition metal (TM) ion
doping in ZnO was tested by substituting Zn?* by Co?" ions and the interac-
tions between defects and TM ions are investigated. Co?" ions interact with the
defect-trapped spin in Vz,o via short-range AFM s — d exchange while the inter-
action between V, and Co?" ions were found to be ferromagnetic and limited
to the nearest neighbour range. Co?" ions in ZnO mutually interact via AFM

superexchange interaction when substituted as nearest neighbours.
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In order to estimate the Hubbard-U of the defects and to justify the stability
of the defects in different charge occupancies, formation energies and transition
levels of each intrinsic vacancy defect in every possible charge-state were esti-
mated. The estimations were done using both relaxed and unrelaxed (ideal)
crystal geometries. Relaxation of crystal structure makes a large difference to the
total energy of a defect system. This is because the system has to be restored
to equilibrium for each different charge state. Thus the formation energies and
the transition levels must be calculated with relaxed crystal structures for each
respective defect/charge-state.

Some experiments observed a correlation between the concentration of differ-
ent vacancy defects and anomalous (green / yellow / blue) photoluminescence
in ZnO (normally UV-band gap). To verify the role of electron-trapping intrin-
sic vacancy defects in this phenomenon, estimation of optical transition levels
between different defect charge-states was carried out from the transition levels.
These calculations need special attention regarding relaxation because one has to
consider the fact that the optical recombination process is three orders of mag-
nitude faster than the crystal relaxation and thus the relevant crystal structure
must be used for the estimation of optical transition energies, which is different
from the transition levels in equilibrium. A number of first-principles calculations
have been done in the past to explain the experimental observation of anoma-
lous photoluminescence in off-stoichiometric ZnO thin films. In the current work,
alongside of verification of the previous results, predictions were made on the role
of complex pair vacancy in optical processes.

Transition levels were calculated using two different methods; from total en-
ergies of the two states involved in a transition and from the eigenvalues of those
states using Janak’s theorem. The two methods return results in rough agreement
with each other. The deviations of the transition level values between the two
methods were calculated. The standard (root-mean-square) and mean deviations
for the unrelaxed values were found to be almost double that for relaxed values.
A notable fact is that the deviations are much larger than the difference between
the optical transition energies corresponding to two different photoluminescence

colours. Therefore a high level of precision and accuracy is needed if predictions
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9.1 Future Work

are intended on the photoluminescence colour, based on the transition levels of
the F-centres.

Finally, Hubbard-U values for the three intrinsic vacancy defects Vo, V2, and
V.0 were calculated from the transition levels for both relaxed and unrelaxed
geometries. The defects have a large positive U when the crystal structure is
unrelaxed but as the relaxation takes place U becomes negative (zero for Vyz,).
Therefore, they cannot act as paramagnetic centres and according to the model of
ferromagnetism proposed here, these defects may not take part in room temper-
ature ferromagnetism of ZnO thin films. However, in a rapid electron-exchange
system where the defect occupation changes faster than the crystal relaxation,
Hubbard-U may be positive, but too small to predict Ferromagnetic alignment
of defect-trapped spins according to the Hubbard model.

Hubbard-U for the MgO pair vacancy (Va,0) was also estimated and a large
U was found for unrelaxed crystal structure. The relaxation is expensive and was
not carried out.

First principles electronic structure calculations were used to study acceptor
doped Fe3z04 (magnetite) below the Verwey transition. The electronic structure
of lithium ferrite was investigated with different site substitution and found to be
insulating below the Verwey transition, preserving a strong magnetic moment.
Over-doping with Li produces localized small polaron states but more studies
are required in order to predict possibilities of magnetic interaction and electrical
conductivity mediated by small polaron hopping. Nitrogen substitution for oxy-
gen leads to partial cancellation of mixed valence hopping, widening magnetite

band-gap and increasing FM moment of magnetite.

9.1 Future Work

The analysis of the results and discussion following have raised many questions.
A source of paramagnetism was not found in the intrinsic vacancy defects of ZnO.
It also remained unresolved whether the Hubbard model can be applied to the
defect-related ferromagnetism of oxides such as MgO.

The two different methods used to estimate the transition levels do not give

identical results and the current framework of the single-particle eigenvalue (SPE)
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method is believed not to be as accurate as the total energy (TE) method. The
SPE method can be corrected by summing over the eigenvalues over all k-points
instead of using the ['-point only approximation. Hence the optical recombination
energies can be more correctly predicted and comparisons can be made with
photoluminescence experiment results.

EPR /ODEPR experiments are very helpful in characterising defects in oxide
semiconductors but cannot be directly compared with first-principles calculation
results. A simulation code to calculate the EPR g-tensor may be useful here.
The Quantum Espresso plane-wave code [150] has been developed for the cal-
culation of g-tensor using the gauge-included projector-augmented wave method
(GIPAW) [184] but can not calculate the g-tensor for wide-gap oxides accurately.
Development of a GIPAW algorithm, based on a localized orbital basis code, so
that hybrid DFT calculations may be carried out, will be greatly beneficial in
understanding the nature of electron-trapping defects in wide-gap oxides.

Copper aluminate (CuAlQO,) is a transparent p-type semiconductor with a
direct band gap close to ZnO (3.5 eV [185]). This material has the potential to be
a p-type counterpart of ZnO in a p —n junction optical device. It would be useful
to investigate whether the methods used for ZnO to calculated defect transition
levels are also applicable in CuAlO,, and therefore establishing a generalisation
of these methods.

The possibility of formation of small polarons in magnetite below the Verwey
transition temperature by hole doping has been predicted in this work. The
possibility of electrical transport by small-polaron hopping or magnetic exchange
between the polarons are yet to be calculated. The activation barrier potential
for the small polaron hopping can be calculated by inserting a hole in different
oxygen sites and by minimising the total energy of the lattice and the electronic
system with the hole in those different sites. Hence the results from vibrational
spectrum calculation can be used to identify the phonon modes responsible for

small polaron hopping.
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Appendix A

Details of Calculations

B3LYP hybrid DFT in the CRYSTAL simulation package [117] was used for most
of the calculations in this work. Quantum Espresso [150] was used for some cal-
culations to compare results obtained using a plane-wave code as CRYSTAL is
a Gaussian-orbital code. CRYSTAL can be used to perform DFT calculations
using a number of different functionals such as LDA, LDA+U, GGA, GGA+U,
Hartree-Fock and B3LYP hybrid DFT. In this work B3LYP Hybrid DFT with
constant Hartree-Fock weight factor of 0.2 (See Eqn. 3.15) was used. For Fe;Oy
with the low temperature distorted-inverse-spinel structure, Hartree-Fock weight-
ing of 0.15 was used as it gives better agreement with the experimental band gap.
Supercells of different sizes were used, designated for different purposes and are
described in the following.

The lattice parameters were predicted using B3LYP hybrid DFT. Starting
with a unit cell with lattice parameters derived from X-ray diffraction experi-
ment results, the crystal structure was relaxed using B3LYP hybrid DFT until
the total energy was minimised with respect to a tolerance of 10~* A of lattice
displacement. For ZnO, the calculated lattice parameters of the wurtzite primi-
tive crystal cell are a = b= 3.28 A, ¢ = 5.27, a = = 90°, v = 120° compared
to experimental values with which the calculation was started, a = b = 3.25, c=
521 A, o = = 90°, v = 120° [56]. Note that B3LYP overestimates the lattice
parameters, but they are not far from the experimental results.

From this basic unit cell of ZnO, a number of different supercells were gen-

erated for different purposes. For the band-structure calculation and to test the
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effect of transition metal doping, a monoclinic supercell was used with dimension
3x3x2 (72 atoms), with space group Cm(8). Monoclinic 21/3 x 2,/3x 2 supercell
with 96 atoms and a 4./3 x 2,/3x2 supercell with 192 atoms are used to calcu-
late Hubbard U and defect-defect interaction in long range. These supercells have
orthogonal lattice vectors unlike the integer-multiple-of-the-unit-cell ones. The
space group is Pm(6). The same supercells were also used to produce wavefunc-
tion isosurface figures shown in Fig. 5.10. Trigonal 2 x 2 x 2, 3 x 3 x 3 and
4 x 4 x 4 supercells with space group P3m1 (156) were used in formation energy
and transition level calculations. These supercells have 32, 108 and 256 atoms
respectively. We know from the discussion in Chapter 3, the energy contribution
due to the periodic boundary condition of a supercell is inversely proportionate to
the cube-root of the supercell volume (length dimension of supercell). Hence the
dimension parameter L in Eqn. 4.18 can be taken as 2, 3 and 4 for the supercells
2x2x2,3x3x3and 4 x4 x4 respectively.

A high k-point density was necessary to obtain converged total energies for
metallic states. A 6 x 6 x 6 Monkhorst-Pack net was used for self-consistent field
calculations; a denser 12 x 12 x 12 net was used for total energy evaluations.
However for a 4 x 4 x 4 supercell lower k-point densities, 4 x 4 x 4 and 8 x 8 x 8
had to be used to keep the computational expense affordable.

Tolerances for lattice sum convergence within the CRYSTAL program were
chosen to be 8, 8, 8, 8 and 16. Convergence of each calculation was observed,
based on minimisation of total energy. A total energy minimisation tolerance of
10~ 7 Hartree (10°% eV) was used throughout.

Fe;0, (Magnetite) features an insulating state with a monoclinic crystal struc-
ture below Verwey transition temperature (~123K). A monoclinic inverse-spinel
ferrite structure was used with lattice parameters a = 5.94 A b=5924A, c=
16.77 A, o = v = 90.000°, 3 = 90.2365°. A 4 x 4 x 4 Monkhorst-Pack net was
used for all calculation with magnetite. Lattice sum tolerances of 7, 7, 7, 7 and
14 were maintained throughout. Convergence of calculations observed down to

10~ 7 Hartree (10°% eV) with respect to total energy.
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Appendix B

Basis Sets

The Gaussian orbital basis sets are used in the CRYSTAL codes (Versions CRYS-
TALO03, CRYSTALO6 and CRYSTALO9 are used). These are all-electron basis
sets describing the orbitals that generate the wavefunction and the density func-
tion to start the DFT SCF calculations. The basis set orbitals can be linearly
combined with the wavefunction calculated at the end of each SCF cycle. The
amount of mixing of the calculated and original (basis set) wavefunctions can be
controlled for better convergence. A localized orbital basis set such as the ones
used here are more useful than a plane-wave basis set since explicit Hartree-Fock
exchange is involved in B3LYP exchange-correlation functional. We have dis-
cussed the criteria for choosing the basis sets in Chapter 3. These basis sets are
tested for convergence and slightly modified in cases where slow convergence with
large oscillations is observed. Convergence of the total energy to 1077 Hartree was
observed throughout. In the particular case of a vacancy defect system, a ghost
basis is inserted in the place of the removed atom. A ghost basis is a function
without a nuclear charge and zero electrons. This is an essential step for localised
orbital basis as removal of an atomic basis creates an empty space and a part of
real space inaccessible to any charge due to a lack of wavefunction. Substituting
the atomic basis with a ghost basis allows the SCF calculation to reproduce the
electronic density redistribution caused by the defect. The ghost basis function is
essentially the same as the atom removed, but without any charge in it. A basis
is required for defect calculations that will converge to the bulk atomic wavefunc-

tion quickly and also will be able to converge quick enough to the desired defect
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wavefunction from a ghost basis. Both the O and Zn basis were modified for this
purpose. The O - basis was used in several oxides and used as the standard basis
for previous publications [36, 137].

The data provided here are the prefactors and exponents of Gaussian functions

of the form given by,

Ulr) = Y Cpextrar (B.1)

The exponents a;’s and the prefactors C;’s are the elements of the 1st and 2nd

columns respectively of the i-th row of the tables given below. r4 is the atomic

position.
Lithium(Li)

Basis set generated by Civalleri et al [186].
3 2
0 0 6 2. I

840.0  0.00264
217.5  0.00850
72.3  0.0335
19.66 0.1824
5.044  0.6379

1.5 1.0
0 1 1 . 1.
0.510 1.0 1.0
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Carbon (C)

Basis set generated by Gatti et al [187].
6 4
0 0
.3047524880D+04
A4573695180D+-03
.1039486850D+-03
.2921015530D+-02

6 2.0
.1834737130D-02
.1403732280D-01
.6884262220D-01
.2321844430D+-00
.9286662960D+01 .4679413480D+00
.3163926960D+01  .3623119850D+-00
01 3 4.0
7868272350D+01  -.1193324200D4-00 .6899906660D-01
.1881288540D+-01  -.1608541520D+00 .3164239610D+-00
.5442492580D+00 .1143456440D+01  .7443082910D+-00
0 1 1 0.0
1687144782D+00 .1000000000D+01  .1000000000D+01
0 3 1 0.0
.8000000000D+00 .1000000000D+-01
Nitrogen (IN)
Basis set Generated by Gatti et al [187].

~

(
0

0

4

0

0.417351E+-04
0.627458E4-03
0.142902E+-03
0.402343E4-02
0.128202E4-02
0.439044E4-01
1

0.116264E4-02
0.271628E4-01
0.772218E4-00
1

0.212031E+-00
3
0.800000E+-00

6

0.183477D-02
0.139946D-01
0.685866D-01
0.232241E+00
0.469070E+00
0.360455E+00
3
-0.114961E+4-00
-0.169117E400
0.114585E+01
1
0.100000E+01
1
0.100000E+01
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2.0

5.0
0.675797D-01
0.323907E4-00
0.740895E+-00
0.0
0.100000E+401
0.0

1.0

1.0

1.0

1.0



Oxygen (O)

Basis set generated by Towler et al [185].
8 4
0 0

0

8020.0
1338.0

255.4
69.22
23.90
9.264
3.851
1.212
1
49.43
10.47
3.235
1.217
1
0.4764
1
0.1802

8
0.00108
0.00804
0.05324
0.1681
0.3581
0.3855
0.1468
0.0728
4
-0.00883
-0.0915
-0.0402
0.379

1

1.0

1

1.0

2.0 1.0

7.0
0.00958
0.0696
0.2065
0.347
0.0

1.0

0.0

1.0

1.0

1.0

1.0
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Magnesium (Mg)

Basis set generated by McCarthy et al [189)].

12 6

0 0 3
68370.0  0.0002226
9661.0  0.001901
2041.0  0.011042
529.6 0.05005
159.17  0.1690
04.71 0.36695
21.236  0.4008
8.719 0.1487

0 1 )
143.7 -0.00671
31.27 -0.07927
9.661 -0.08088
3.726 0.2947
1.598 0.5714

0 1 1
1.297 1.0

0 1 1
0.688 1.0

0 1 1
0.28 1.0

0 3 1
0.500 1.0

2.0

8.0

1.0

0.00807

0.06401
0.2092
0.3460
0.3731
0.0

1.0
2.0

1.0
0.0

1.0
0.0

1.0

1.0

1.0

1.0
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Alluminum (Al)
Basis set generated by Catti et al [190].

13 6
0 0 3
70510.0  0.000226
10080.0  0.0019
2131.0  0.0110
547.5 0.0509
163.1 0.1697
94.48 0.3688
19.05 0.3546
5.402 0.0443
06 1 )
139.6 -0.01120
32.53 -0.1136
10.23 -0.0711
3.810 0.5269
1:61¢ 0.7675
0 1 1
1.21 1.0
D1 1
0.59 1.0
0 1 1
0.15 1.0
0 3 1
0.51 1.0

2.0

8.0
0.0089
0.0606
0.1974
0.3186
0.2995
0.0
1.0
2.0
1.0
1.0
1.0
0.0

1.0

1.0

1.0

1.0

1.0



Iron (Fe)

Basis set generated by Catti et al [191].

26 T

0 0 8
315379.0 0.000227
45690.0  0.0019
9677.3 0.0111
2520.88  0.0501
759.746  0.1705
262.964  0.36924
102.801  0.4033
42,9733  0.1434

0 1 6
798.262  -0.0052
191.162  -0.068
63.6885  -0.1314
256.3625  0.2517
10.7338  0.6433
3.764 0.2825

0 1 4
48.1434  0.0122
17.4579  -0.2278
6.9972 -0.8801
3.0791 0.9755

g 1 1
1.3137 1.0

0 1 1
0.5625 1.0

0 3 14
30.4821  0.0583
8.692 0.2591
3.1008 0.5162
1.1709 0.5656

0 3 1
0.4345 1.0

2.0

8.0
0.00850
0.0608
0.2114
0.3944
0.398
0.2251
8.0
-0.0215
-0.085
0.201
1.3024
0.0

1.0

0.0

1.0

5.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
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Cobalt (Co)

Basis set generated by Dovesi et al [192].
27 7

0

0

0

0

0

0

8

341701.0  0.000227

48850.0
10400.9
2718.99
819.661
283.878
111.017
46.4757
1
55.508
206.504
69.0516
27.2653
11.5384
4.2017
1
51.5542
18.9092
7.7251
3.5428
1
1.4914
1
0.6031
3
29.9009
8.1164
2.6433
0.8869
3
0.3011

0.001929
0.0111
0.0501
0.1705
0.3692
0.4033
0.1433
6
-0.0054
-0.0684
-0.1316
0.2616
0.6287
0.2706
1
0.0182
-0.2432
-0.849
0.8264
1

1.0

1

1.0

4
0.0617
0.2835
0.529
0.4976
1

1.0

2.0

8.0
0.0088
0.062
0.2165
0.4095
0.3932
0.225
8.0
-0.0287
-0.0937
0.2036
1.4188
0.0

1.0

0.0

1.0

7.0

0.0

1.0

1.0

1.0

1.0
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Zinc (Zn)
Basis set generated by Jaffe et al [193].

30 8

0 0 8
417016.5 0.00023
60504.2  0.00192
12907.9  0.01101
3375.74  0.04978
1018.11  0.16918
352.95 0.36771
138.19 0.40244
97.851 0.14386

0 1 6
1079.2 -0.00620
256.92 -0.07029
85.999 -0.13721
34.318 0.26987
14.348 0.59918
4.7769 0.32239

0 1 4
60.891 0.00679
25.082 -0.08468
10.620 -0.34709
4.3076 0.40633

0 1 1
1.6868 1.0

0 1 1
0.62679 1.0

0 1 1
0.15033 1.0

0 3 4
57.345 0.02857
16.082 0.15686
5.3493 0.38663
1.7548 0.47766

0 3 1
0.51592 1.0

2.0

8.0

0.00889
0.06384
0.22039
0.40560
0.41370
0.34974
8.0

1.0

1.0

-0.00895
-0.03333

0.08119
0.56518
0.0

1.0

0.0

1.0

0.0

1.0
10.0

0.0

1.0

1.0

1)

1.0

1.0
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