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Summary

Semantic role labelling (SRL) is the task of labelling text with a 
semantic notation in order to identify who did what? When? How? 
Etc. Once the text is labelled; that information can be used to solve 
a multitude of other natural language processing tasks.

The purpose of this thesis is to expand the knowledge about how 
tree alignment algorithms perform in SRL, and expects to help fu­
ture researchers and engineers to use and combine those algorithms.

The method used to predict the semantic labels consist on align­
ing the (piery to a similar sample with semantic annotation, and 
project the notation. The similar sami)les are selected l)y Tai- 
distance or Tai-similarity, and the alignments are Tai-mappings.

The system was evaluated on seven different languages: Chinese, 
German, English, Catalan, Spanish, Czech and Japanese. The dif­
ferences across languages are large regarding size of the data set, 
domain, set of semantic labels, length of the semantic dependencies, 
set of syntactic labels, and parser used to generate the annotation. 
It lead to a large variety of results, showing that Chinese and Ger­
man seems to be especially suited to these techniques in spite of the 
expectation from the public evaluation in CoNLL-2009.

The data provide a diverse set of kinds of information which 
might be used, including four labels for each word, two syntactic 
labels: POS and dependency relationship to its head word, and two 
lexical identity labels: Form and Lemma.

The simplest settings ignore lexical identity and just use the 
geometry, POS and dependency relations. These settings work sur­
prisingly well in contrast with the majority label base line. In the
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main approach in which each argument is separately labelled in a 
tree, the whole tree acts as context. For the simple settings, losing 
this context and working with the fragment which contains a single 
argument reduces accuracy.

More complex settings referring to lexical identity and frames 
out-perform the simple settings. Promoting the use of samples of the 
same frame increases accuracy, as long as samples from other frames 
are not banned. Most experimentation was done labelling single ar­
guments in the context of a whole predicate-argiiments structure. 
The sub-tree contains all the arguments of a single predicate, con­
trasting the results with experiments in which trees contain less con­
text, just one semantic relation per sub-tree, can be observed that 
with richer node labelling, losing the context of the other seman­
tic relations, and working with smaller sentence fragments increases 
accuracy.

The use of tree structures leads to a substantially better perfor­
mance than string structures.

Making k-NN categorisation to take distance equivalence classes 
properly into account works substantially better than sedecting sam­
ples by distance and randomly separating distance ties.

Distances and similarities are often considered interchangeable. 
Several different kinds of equivalences are identified and proof pro­
vided, and some of them hold and others do not. It turns out that 
for k-NN and clustering tasks, similarity outcomes may not be repro­
ducible by distance, but any distance outcomes can be reproduced 
by similarity. Regarding the empirical comparison on SRL between 
distance and similarity, as similarity deletion and insertion costs was 
fixed to zero, distance turns out to perform better than similarity.
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Chapter 1

Introduction

1.1 Document structure

This dociinient is divided in to nine chapters and two appendices: (1) Intro­
duction (2) Background (3) Underlying methods (4) Tree-SRL (5) Distance 
outcomes (6) Further parameter refinements (7) Contrasting Distance and Sim­
ilarity (8) System variants, and (9) Conclnsions and future work.

(1) Introduction

This chapter explains the task of Semantic Role Labelling and its api)lications.

(2) Background

This chapter describes the data set used in this thesis, and other data sets that 
could have been used it, shows statistics about the data set used of the seven 
languages in the thesis, exposing the main public Semantic Role Labelling eval­
uations, and explains the common architecture of a Semantic Role Labelling 
system as a pipeline of five sub-systems: parsing, filtering, argument identifica­
tion, argument classification and joint scoring. The Tree-SRL system proposed 
on this thesis only performs the argument classification step.



(3) Underlying methods

This chapter introduces basic concepts to understand how the system was built: 
the tree edit distance algorithm and k-NN the machine learning algorithm. And 
also the metrics used to evaluate the sytein (mainly FI), and justifies the choice 
of accuracy as an evaluation measure and the McNemmar test for comparing 
results.

(4) Tree-SRL

This chapter explains the architecture of the proposed SRL system, how a k- 
NN system is embedded in it, and the different settings that will be used to 
evaluate the system in future experiments. This chapter is essential for the 
comprehension of the experiments, results and discussion.

(5) Distance outcomes

This is the first chapter describing results on tree distance. All experiments 
were tested using the evaluation and the out-of-domain data set.

(6) Further parameter refinements

This chapter is an attempt to optimise five internal parameters of the system 
devoting one section to each of them (a) tuning the deletion cost, (b) tuning 
weights for POS against dependency relations information, (c) tuning weights 
for lexical against syntactic information, (d) tuning the k of the k-NN system, 
(e) tuning the cost of using samples from different frames.

All experiments where tested using the development data set as the aim is 
to tune parameters.

(7) Contrasting Distance and Similarity

This is the most theoretical chapter of the whole thesis. It starts by explaining 
the theoretical differences between Tai-distance and Tai-similarity and ends by 
giving an empirical comparison of how much those differences affect the Tree- 
SRL system.



All experiments where tested using the evaluation and the otd-of-domain 
data set.

(8) System variants

This is the last chapter of experiments. It explains other ways in which the 
system could have been designed giving some results for such variations.

All experiments wdiere tested using the evaluation and the out-of-domain 
data set.

(9) Conclusions and future work

The first section of this chapter is a bullet point compilation of the conclusions 
of previous four chapters, and the hist two sections describe future work and 
open questions for other researches.

Appendices

This part contains further details of the data set, tables and technical details 
that were considered redundant in the main parts of the thesis.

1.2 SRL problem

Semantic Role Labeling (SRL) is a natural language processing task. It deals 
with internal semantic analysis of a sentence as a stand alone entity. However, 
the task has recently been expanded to inter-sentence level. SRL is the task 
of identifying and labelling arguments for a certain predicate. The arguments 
determine events such as ‘who’ did ‘what’ to ‘whom’, ‘where’, etc in reference 
to a predicate.

This is a sample of semantic roles:

;i) [Yesterdaylremp, [JohnjcuUer cut [the grassjrhms cut [with the scissors| Instrument

The same semantic structure can have multiiile syntactic representations. 
The following sentences have an equivalent semantic strncture to Sentence 1.
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(2) The grass was cut by John yesterday with the scissors

(3) Yesterday, the grass was cut with the scissors by John

(4) Witli the scissors, Jolin cut the grass yesterday

(5) Yesterday the grass was cut by John with the scissors

(6) John cut the grass with the scissors yesterday

One purpose of SRL is to obtain plain semantic similarity across syntactic 
alternatives. For instance, a Semantic Role Labelling system would take plain 
text as input for sentences like Sentences 2 to 6, and produces labelled sentences 
as output like Sentence 1.

Role-label inventories and annotation principles vary widely, the two main 
styles correspond to FrameNet and to Propbank. In the FrameNet approach, 
a concept is identihed and a set of roles specihed and named for that concept, 
all of which dehnes a Frame. Typically several distinct lexical items belong to 
a single frame. In the ProjjBank approach, the set of roles is defined for each 
of the lexical items. There is certain continuity on the set of roles used across 
the different lexical units, even across lexical units which represent different 
concepts. Core arguments are enumerated and their meaning is dehned in 
reference to the lexical unit. And adjuncts have a non-ennmerated label and 
their meaning is independent of the lexical item.

Further description of both approaches will appear in next sections.

1.3 Motivation

The motivation for further improvements and developments in the Semantic 
Role Labelling system is its utility for other Natural Language Processing ap­
plications. The promise of SRL is to create smarter natural language processing 
tools by making computers understand the content of human texts more pro­
foundly.

Producing electricity it is not important per se, but it is important because 
it enables other technologies to flourish such as fridges to keep food fresh much 
longer time. Computing is important because it enables other technologies
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to exist like a robust high fidelity global telephone network. In a similar way, 
Semantic Role Labelling is not just important because it annotates text, but it is 
important because this annotation enables other natural language technologies 
to flourish. This section is list of other natural language processing problems 
that can take advantage of an SRL system.

Information extraction and question answering

Information extraction and question answering are similar tasks which can lever 
semantic roles to extract answers for the (jueries. For instance, in the question 
“When was Napoleon defeated?” The pattern to be sought should contain: (this 
example is from (Went-tau Yih et ah, 2006))

• ‘defeated’ is the predicate.

• ‘Najjoleon’ is the patient of the predicate defeated.

• the pro})osition will have an argument indicating a time in which the 
action happens and that time is the answer or the field aimed to extract.

This kind of annotation is exactly what a SRL system provides.
For information extraction, the searched pattern would be very similar. 

(Narayanan and Harabagiu, 2004; Shen and Lapata, 2007) used SRL in ques­
tion answering systems. (Surdeanu et ah, 2003) is an example of an information 
extraction system which uses a semantic role labelling system.

If a semantic role labelling system is available it is easier to search for a 
semantic structure with one unknown argument than to search directly in raw 
text, and the missing argument(s) can be the information being sought.

Information retrieval

Moreda et al. (2005) developed an Information Retrieval system based on SRL. 
An Information Retrieval system based on string matching would process the 
query or string “Harry loves Sally” by searching for documents containing the 
words Harry, Sally and love. The problem is that the system would not be able 
to distinguish among the following sentences (Khoo, 1997):
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1. Sally loves Harry, but Harry hates Sally.

2. Harry’s best friend loves Sally’s best friend.

3. Harry and Sally love pizza.

4. Harry’s love for Sally is beyond doubt.

The words ‘Harry’, ‘Sally’ and ‘love’ can occur in the same sentence, but they 
do not necessarily bear the relationship that the query {“Harry loves Sally”) 
was meant to search for. The previous sample may not be a very realistic case 
for an information retrieval system. However, it illustrates very nicely that all 
sentences contain the words in the query, but only one of them contains the 
meaning of the query.

A semantic role labelling system helps to discriminate among the previous 
sentences, because the search would be on a semantic structure in which “Harry” 
is labelled as the one in love and “Sally” is labelled as the object of affection, 
but not the other way around.

Text summarisation

Melli et al. (2005) developed a text summarisation system based on the assump­
tion that predicates and their core arguments have the essence of the sentences. 
Therefore adjuncts can be removed from a summary. For instance:

(7) Thursday’s report on the September consumer price index is expected 
to rise, although not as sharply as the 0.9% gain reported Friday in the 
producer price index.

If the following predicates are kept ‘raise’, ‘expected’, ‘report’ and ‘index’ 
with their core arguments, the sentence can be summarized into:

(8) The report on the price index is expected to rise.

Figure 1.1 illustrates this sample.



Ill the proposed suiiimarisatioii, the white nodes are kept, and the grey nodes are 
removed. Straight lines represent dependency relations. Scpiare nodes represent 
predicates. Curved lines represent semantic relations, the solid lines represent 
core argument and the dotted lines reiiresent adjuncts. (This sentence is the 
fourth sentence of the trial English dataset used in this thesis).

Figure 1.1: Possible summarisation

Text classification

Shehata et al. (2008) improved a text classification task by basing the classifi­
cation on the terms of the concepts of a text rather than classifying the terms 
that appear in the document. For instance, consider the following sentence:

(9) We have noted how some electronic techniques, developed for the de­
fense effort, have eventually been used in commerce and industry.

The SRL system identihes three predicates: the words in bold underlined 
font. For each of these predicates the rest of the sentence will be labelled as:
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(10) (Wej.4flGo [noted] [how some electronic techniques, developed for the 
defense effort, have eventually been used in commerce and industry.]^BGi

(11) We have noted how [some electronic techniques], [developed] [for 
the defense effort]yiBGM-PAfC) have eventually been used in commerce and 
industry.

(12) We have noted how [some electronic techniques, developed for the defense 
effort]^BGi, have [eventually[^BGM-TA'/p been [used]i/pfip [in commerce 
and industry]LOG-

Terms like “electronic techniques” appear as arguments for all three pred­
icates. Therefore, they will have more weight than “commerce and industry” 
which oidy appears as arguments for the predicates ‘noted’ and ‘used’.

Paraphrasing

Ellsworth and Janin (2007) developed a paraphrasing algorithm in which a 
SRL system identifies verbs and their arguments which will be re-arranged in 
the sentence using a different valence for the verb. For instance the sentence:

(13) I want your opinion 

can be paraphrased as:

(14) Your opinion is desired

From the Sentences 13 and 14 a SRL system would extract the same semantic 
structure, but the sentences are different.

Machine translation and its evaluation

The following sample illustrates a translation from English to Farsi, in which 
the order of the arguments is changed to fit the structure of Farsi language and 
the arguments are translated one by one.

English (SVO) Farsi (SOV)
AGENT The little boy AGENT pesar koocholo boy-little

PRED kicked THEME toop germezi ball-red
THEME the red ball ARGM-MNR inoqtam hard-adverb

ARGM-MNR hard PRED zaiad-e hit-past



An SRL system can be used to extract the semantic structure of a sentence, 
then translate the arguments on their own and transform the semantic structure 
into a text for the target language. For samples of machine translation systems 
improved by an SRL system see (Boas, 2002; Wu and Fung, 2009).

Gimenez and Marquez (2007) developed a semantic similarity measure be­
tween automated and reference translations by comparing their semantic roles, 
the more similar the semantic structure is between the reference and the au­
tomated translation, the better the translation is. A good translation should 
contain the same semantic structure with the same set of arguments as the 
original text.

Co-reference resolution

Ponzetto and Strube (2006) developed a co-reference system that use semantic 
roles as features to learn the task. For instance:

A state commission of iiupiiry into the sinking of the Kursk will con­
vene in Moscow on Wednesday, the Interfax news agency reported.
It said that the diving oi)eration will be completed by the end of 
next week.

In this example, the SRL system will label “the Interfax news agency” as 
the AGENT of “reported” and “It” will be labelled also as the AGENT of “said”. 
That information helps to predict the a co-reference between both of them.

Textual entailment

Tatu and Moldovan (2005) developed a textual entailment system in which 
semantic relationships are compared to each other to decide if the meaning of 
one can be inferred from the other.

As shown previously, Sentence 1 on page 3, can be re-written in many other 
ways by swapping the order of its arguments. Another example is:

(15) [John]agent is |in the garage]Location aeav the car.

(16) [Jolmlagent IS Hear the car |in the garage)Location •



Sentences may look very similar but if tlieir semantic arguments are different 
they are likely to have different meanings,.

(17) |John]Qge„( is in the car near tlie garage.

Sentences 15 and 16 liave tlie same meaning^, but 16 and 17, even if they 
have the same words they differ in meaning. In Sentence 17 John may be getting 
to tlie garage by driving, and in Sentence 16 John may have already reached to 
tlie garage and got out of the car.

As mention before,instead of plain text the semantic structure is compared 
then it is easy to identify differences and consequently realize that the meaning 
of both sentences (Sentence 16 and 17) are different.

Word sense disambiguation

Agirre and Martinez (2001) used semantic lalxds to disambiguate the senses of 
some words. For instance in the sentence:

(18) The bad news will eat him.

The object of eat fills the experiencer role; this information can be used 
to constrain the possible senses for the verb eat. The most common sense for 
the word eat applies to food taken into the mouth and swallowed, but as news 
does not have mouth, the system should disambiguate the word “eaf’as having 
a metaphorical sense, indicating of ‘him” that his health will be “consumed”in 
reaction to the bad news. In order to do this, it is necessary a SRL system 
trying to label “news” as the consumer, so the next module of the word sense 
disambiguation system can decided if “news” is an agent capable of “eating” or 
not, and if not, then the system has to search for another possible meaning.

^Both sentences are ambiguous, but both can mean the same.
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Chapter 2 

Background

2.1 Introduction
Semantic Role Labelling as a task and its importance with respect to other 
application has already been discussed in Chapter 1. This chapter will begin by 
detailing the corpora/ data set used for thesis and how public data is annotated 
for SRL, what are the previous public evaluations on semantic role labelling, 
what is the common on architecture of a statistical SRL system and finally why 
it why chosen to perform labelling by projecting annotation through alignment.

2.2 Corpora
Throughotit the last decade, large corpora have been manually annotated with 
semantic relationships. The most important annotated corpora available in 
English are: FrameNet, PropBank and Nombank. The experiments in this 
thesis were carried out with data in PropBank style.

2.2.1 FrameNet

Fillmore et al. (2001) built the FrameNet Corpus taking sentences from the 
British National Corpus. It contains more than 10,000 lexical units, more than 
825 frames and more than 135,000 sentences. A lexical unit is a pair of word 
and a frame. Each frame represents a situation involving participants that can 
perform different roles, each of this roles of the frame has a tag and a description
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of which role is representing, this is an annotated example for the predicate 
“retaliation”:

(19) [This attack was conducted][hijsuppori retaliation |for the U.S. 
bombing raid on Tripoli...

Different words can belong to the same frame: for instance the frame “Com­
merce” includes the verbs (“sell” and “buy”). FrameNet data was not used on 
any of the experiments on this thesis, but it is important to mention the corpus 
because its impact in the literature review.

2.2.2 PropBank

Frame set sample: edge.01 ‘move slightly’.

label: role:
ArgO causer of motion
Argl thing in motion
Arg2 distance moved
Arg3 start point
Arg4 end point
Arg5 direction

ArgM
Example:

medium

iQSj^rgo edged [TCDjyirgi [upjargs |6 positions],1^32 ]to 43rd].4,.g4
Ifroin 49th]4rg3 [in 2009]tmp

Figure 2.1: Frame sample

Palmer et al. (2005) built the Propbank by transferring each sentence into 
propositions adding a semantic layer to the Penn TreeBank and defining a set 
of semantic roles for each predicate.

Samples in Figures 2.1, 2.2 and 2.3 were taken from (Palmer et ah, 2005).
It is difficult to define universal semantic roles for all predicates. Hence, 

PropBank defines a set of semantic roles for each possible sense of each predicate 
(frame).

The core arguments are enumerated. Figure 2.1 shows the ‘edge.OF frame 
and a sample sentence where core arguments ‘aO’, ‘al’, ‘a2’, ‘a3’, ‘a4’, ‘a5’ and
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Frame set sample: accept.01: ‘take willingly’

label: role:
ArgO Acceptor
Argl Thing accepted
Arg2 Accepted-from
Arg3 Attribute

Example:

[He[^rg0 [would[^rgM-A/0£i|ii’t[yirgM-V£G accept [anything of 
value[yirgi [from those he was writing about[^r32’ (wsj 0186)

Figure 2.2: Frameset accept.01 “take willingly”

adjunct ‘TMP’ are present. Although the meaning of the numbered arguments 
cannot be generalised. Usually for a particular verb, AO is the Agent, Al the 
patient or theme (Palmer et ah, 2005).

Verbs can have adjunct-like arguments, this is a list of the label of the 
adjunct and their meaning^ examples are taken from (Babko-malaya, 2005).

• AM-LOG: locative this modifiers indicate where some action takes place.
It can reference abstract locations. Example;
“|in his speech|^A/_/,oc7 he was talking about ...”.

• AM-EXT: extent: indicate the amount of change occurring from an action.
Example:
“the price rise [by 10%\am-ext'-

• AM-TMP: time; It points when an action took place. Example;
“we played [yesterday],4M-rMp”-

• AM-DIS: discourse connectives: These are markers which connect a sen­
tence to a preceding sentence. Example:
.|ButlyiM_£)/5 for now, they are looking forward to their winter meeting.

• AM-DIR: direction: Directional modifiers show motion along some path.
Example:
Workers dumped large burlap sacks of the imported material [into a huge

^The prefix “AM" stands of Argument Modifier

13



Frame set sample: kick.01 ‘drive or impel with the foot’

label: role:
ArgO Kicker
Argl Thing kicked
Arg2 Instrument (defaults to foot)

First example
[But]yirgA/-D/5 [two big New York banksj^rso seem |*trace*i|y4rgo 
to have kicked [those chances]^1^31 \siWciy\ArgM-Dm, [for the 
momentj 4rgM-TMP) [with the embarrassing failure of Citicorp 
and Chase Manhattan Corp. to deliver $7.2 billion in bank fi­
nancing for a leveraged buy-out of United Airlines parent UAL 
Corp|4rg2- (wsj 1619)

Second example:

[Jolmij^rgo tried [*trace*i|Argoto kick [the football[yi^gi, but Mary 
pulled it away at the last moment.

Figure 2.3: Frameset kick.01 “drive or impel with the foot”

hin\ am-DIR ) poured in cotton and acetate hbers and mechanically mixed 
the dry fibers in a process used to make filters .

• AM-REC: Reciprocal: this is the label of reflexives and reciprocals such 
as himself, itself, themselves, together, each other, jointly, both, which 
refer back to one of the other arguments. Example
“But voters decided that if the stadium was such a good idea someone 
would build it |himself|^M-R£;c, and rejected it 59% to 41%.”

• AM-PRD: These arguments point that an adjunct of a predicate is in 
itself capable of carrying some predicate structure. Example:
“Prior to his term, a teacher bled [to deatlij^M-ppo hi the halls, stabbed 
by a student”.

• AM-PNC: Purpose Not Cause, they point the motivation for the action. 
Example:
“More than a few CEOs say the red-carpet treatment tends them to return 
to a heartland city [for future meetings[4A'/-pvc”-

• AM-CAU: cause: It indicates the reason for an action. Example:
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“Pro-forma balance sheets clearly show [why] am-cau Cray Research fa­
vored the spinoff”.

• AM-MNR: manner : it specify how an action is performed. Example;
“He works |well with others)is a manner.

• AM-ADV: general-purpose: These are used for syntactic elements which 
clearly modify the event structure of the verb in cpiestion, but which do 
not fall under any following cases;

— Temporally related (modifiers of events) Example: “Treasures are 
just lying around, waiting to be picked up”

- Intensional (modifiers of propositions): Probably, possibly

— Focus-sensitive: Only, even

— Sentential (evaluative, attitudinal, viewpoint, performatives) like For­
tunately, really, legally, frankly speaking, or clauses beginning with 
given that, despite, except for, if Example:
“IHappily]she sang”, (can be paraphrased as T am happy 
that she sang’)

• AM-MOD: modal verb: They are: will, may, can, must, shall, might, 
should, could, would and “Phrasal modals” such tis ''going (to), have (to)” 
find "used (to)”. Example
“John does not [have]am-mod to run”.

• AN'I-NEG: negation marker: This tag is used for elements such as "not, 
n’t, never, no longer”, etc.

There are two other functional tags: EXT (for extent of an argument) and 
PRD (for secondary prediction).

Some constituents are split, the way to mention that second part for discon­
tinuous arguments is indicated by adding “C-” as a prefix.

for instance:

(20) [By addressing those problems][Mr. Maxwell]4r.go said, [the new 
funds have become “extremely attractive to Japanese and other investors 
outside the U.S.”]c-argi (wsj 0029)
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Ill this case ArgO is “By addressing those problems the new funds have become 
extremely attractive to Japanese and other investors outside the U.S.”

2.2.3 NomBank

NoiiiBank is designed to complement Propbank, it provides argument structure 
of about 5000 common nouns in the Penn Tree-bank II corpus with a similar 
annotation to Propbank and both can be used together. For instance a Prop- 
Bank/NomBank enlightened system could detect that John was hired by IBM 
from any of the following sentence fragments without further regularization 
across predicates (Meyers et ah, 2004);

(21) IBM appointed John

(22) John was appointed by IBM

(23) IBM’s appointment of John

(24) the appointment of John by IBM

(25) John is the current IBM appointee

(26) IBM’s appoiiitment of John

NomBank annotates verbal noniinalizations (such destruction, knwledge, 
believer, recipient), adjectival nominalizations (such ability, bitterness) and an­
other 16 classes such relational (father, president), and partitive nouns (set, 
variety) (Meyers et ah, 2004)

Like Propbank the core-arguments are enumerated and their meaning is 
defined for each frame, with the intention of compatibility. Figure 2.4 shows an 
example of the predicate “claim” noun form (which could be found in Nombank) 
and another in a verb form (which could be found in Propbank), showing that 
the meaning of the arguments and the annotation format across Propbank and 
Nombank is compatible.
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Frame set sample: predicate

label: role:
ArgO Agent
Argl Toi)ic

noun base example:

[Herj^rgo claim [that Fred can flyj/irgi 

verb base example:

|She]yirgo claimed [that Fred can fly[^rgi 

This sample was found in (Meyers et ah, 2004).

Figure 2.4: Verb and Noun examples for the predicate “claim” meaning “assert”

2.3 Empirical evaluations

Tliis section is a brief enumeration of previous empirical of shared task evalua­
tions on SRL since 2002. Public evaluations are important because they enable 
a direct comparison of the performance between the systems of the participants.

1. CoNLL-2004 (Carreras et ah, 2004)

CoNLL 2004 The task consisted of English langtiague only. The data set 
was from the Wall Street Journal and its composition was: training set 
(sections 15-18), development set (section 20) and test set (section 21) and 
it was annotated in PropBank style. Sentences were given in constituent 
tree structure representation.

2. Senseval-3 (Litkowski, 2004)
The task used given sentence, a target word and its frame to identify the 
frame elements within that sentence and tag them with the appropriate 
frame element name in FrameNet style.

3. CoNLL-2005 (Carreras and Marquez, 2005)
This extended the CoNLL-2004 by evaluating a full SRL parsing. The 
syntactic trees were given by two alternative parses. The training data was 
substantially larger than in 2004. An out-of-domain evahiation corpora 
provided was based on Brown corpus.
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4. SeinEval-2007 task 06 (Litkowski et al., 2007)
This was a task based on identifying prepositional phrases not SRL, but 
since most of the semantic roles are realised in prepositional phases, this 
task can be seen as the argument identification sub-task of SRL.

5. SemEval-2007 task 09 (Marquez et ah, 2007)
One of the sub-tasks was SRL, identifying verb arguments and tagging 
the verb with the semantic-class label. The systems were evaluated in 
Catalan and Si^anish.

6. SemEval-2007 task 17 (Pradhan et ah, 2007)
This shared task included SRL as a sub-task. The data set was annotated 
using the PropBank set of labels and plus the VerbNet set as well. The 
evaluation was done in English language.

7. SemEval-2007 task 19 (Baker et ah, 2007)
The data was annotated in FrameNet style. The task also included to 
identify the frame of the predicates. As an extra challenge the evaluation 
data set included frames that did not appear in the training data set.

8. CoNLL-2008 (Surdeanu et al., 2008)
The sentences were given in dependency based representation. The eval­
uation was done on English.

9. CoNLL-2009 (Hajic et ah, 2009)
The sentences were given in dependency based representation, the an­
notation followed PropBank style, and the evaluation was done in seven 
different language. The data set of this public evaluation is the one used 
for the experiments of this thesis, for this reason next section will explain 
it in further detail.

10. SemEval 2010 Task 10; Linking Events and their Participants in Discourse 
(Ruppenhofer et al., 2010)
SRL task was extended to inter-sentence level, allowing arguments to 
be found in neighbour sentences. The evaluation was done in English 
language. The annotation was provided in PropBank as well as FrameNet 
styles
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The reason to select the data set from the CoNLL-2009 shared task evalu­
ation for this theis is that the event took place at the beginning of starting of 
my PhD, and at that time it was the most recent public evaluation in SRL and 
also it had the advantage of being carried in multiple languages. Next section 
will describe it in further detail.

2.4 The CoNLL-2009 Shared Task

This section is a brief review of the Hajic et al. (2009) paper in which the details 
of the task are explained.

The CoNLL-2009 shared task was dedicated to parsing syntactic and se­
mantic dependencies. The systems presented were tested in seven languages: 
Catalan, Chinese, Czech, English, German, Japanese and Spanish.

Two tasks were offered:

Joint task: Syntactic dependency parsing and semantic role labelling.

SRL-only task: Syntactic annotation were already provided, so only semantic 
role labelling has to be done.

And there were two challenges:

Closed challenge: Only the information given by the organisers was allowed 
to be used.

Open challenge: Any external tool or resource was allowed to be used, except 
if it contained parts of the test data set.

2.4.1 Data Format
The following graph-sentence samples will follow the notation specified in Figure 
2.5

The CoNLL 2009 uses a dependency tree representation: Figure 2.6 shows 
the differences between constituent tree structure (2.6a) and dependency tree 
structure (2.6b).

There is a head word for each constituent node. In Figure 2.6a the double 
lined outbound arrows specify which child node leads to the head word of the
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Syntactic relationship^ 
leading to the head word

Syntactic relationship *'

Different colours 
represent different labels

Semantic relationship 10
rose

Node match

•>>
Predicate nodes are 

represented by a square

Domain
node

Wrapper sub tree

Range
node

\\
II

Constituent nodes are 
represented by an hexagon

>urniton^
Words nodes are 

represented by an ellipse

________ = = = = = = = ■-'
Figure 2.5: Notation for next figures

node itself. Therefore, each constituent node has a head word ‘A’ and each 
constituent node has one child node that leads to ‘A’. The constituent node can 
have some children who also have their own head word (nodes ‘B„’). In the 
dependency tree structure the arrows will go from node ‘A’ to nodes ‘B„’, and 
the label of the arrow corresponds to the relationship between node ‘B„’ and 
node ‘A’. In the sample of Figure 2.6, ‘wise’ is a noun modifier of ‘man’.

For some of the languages the dependency structures were derived from a 
constituency structure (e.g. English), for others dependency structures were 
their native representation (e.g. Czech).

For each word in the data set, the following information is provided: ID, 
FORM, LEMMA, PLEMMA, POS, PPOS, FEAT, PFEAT, HEAD, PHEAD, 
DEPREL, PDEPREL, FILLPRED, PRED, and APREDs. (Hajic, 2008):

1. FORM: Word form or punctuation symbol.
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(a) Constituent tree structure

(b) Dependency tree structure

The double arrow on Figure 2.6a specifies which child node leads to its head
word.

“No wise man ever wished to be younger”.
Jonathan Swift,

Thoughts on Various Subjects from Miscellanies (1711-1726)

Figure 2.6: Constituent Tree and Dependency Tree structtires plus a semantic 
layer
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2. LEMMA; Lemma of word form, or an underscore if not available.

3. POS: Fine-grained part-of-speecli tag, where the tag set depends on the 
language.

4. FEAT: is a set of morphological features (separated by |) defined for each 
particular language, e.g. more detailed part of speech, number, gender, 
case, tense, aspect, degree of comparison, etc.

5. HEAD: Head of the current token, which is either an ID value, or zero 
(‘0’) if it is the root.

6. DEPREL: Dependency relationship to the HEAD. The set of dependency 
relationships depends on the particular language. The root node has the 
label ‘ROOT’.

7. PRED: Its value is ‘Y’ if the word is a predicate, or otherwise.

8. The P-cohnnns (PLEMMA, PPOS, PFEAT, PHEAD and PDEPREL) 
are the automatically predicted variants of the gold-standard LEMMA, 
POS, FEAT, HEAD and DEPREL columns. They are produced by inde­
pendently trained or cross-trained taggers and parsers.

9. APREDs; Columns with argument labels for each semantic predicate fol­
lowing a textual order, i.e., the first column corresponds to the first pred­
icate in PRED, the second column to the second predicate, etc.

2.4.2 CoNLL-2009 data set

This data set is described in further detail because this is the data set used for 
the experiments of this thesis.

The CoNLL-2009 shared task (Hajic et ah, 2009) evaluation was carried 
in seven languages: Catalan, Chinese, Czech, English, German, Japanese and 
Spanish. Each language data set was annotated by a different group of annota­
tors without a uniform guide (except Spanish and Catalan) but the organisers 
of the CoNLL-2009 evaluation adapted the data set format annotation in order 
to make experiments across different languages comparable with each other. 
Spanish and Catalan are extraordinarily similar to each other because most of
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their content is a translation of each other. The data sets are described in great 
detail in Appendix A because it is the data set used in the experiments of this 
thesis.

The data set used in CoNLL-2009 Shared task is described in Table 2.1. 
For each language the data was divided into three or four files: training (T) 
development (Dev), evaluation (E) and some languages also have an out-of- 
domain evaluation set (OOD).

The sentences are represented in a dependency tree structure. Each node of 
the tree is a word, containing four labels which correspond to ‘POS’ (Part Of 
Speech), ‘DepReP (Dependency relationship) to its parent node, the ‘Lemma’ of 
the word, and the ‘Form’ which is the word itself. In some cases the dependency 
tree representation provided, lack of a single root node. This feature makes that 
graph representation incompatible with the Zhang and Shasha (1989) algorithm 
for tree edit distance. In order to overcome this issue, an extra artificial node 
was added to the dependency representation as the uniciue root of the tree.

Table 2.1 describes how many sentences, predicates and arguments each file 
of the data set has. It shows the ratio of predicate per sentence and argument 
per sentence, the size of the files and the branching factor. ^

The perplexity of a language model p ^ is defined as a function of entropy 
{H{p)) which is a function on the distribution of probabilities:

(2.1) Perplexity{p) = 2^^^^^ = 2 p{x)log2{p{x))

where each different value of x corresponds to each word of the language model, 
and p{x) is the probability of the word x.

^The branching factor ratio corresponds to the sub-trees extracted. Section 4.2 on page 57 
describes how sub-trees are extracted, where this measure is defined as the average amount 
of child nodes of the nodes of a tree excluding leave nodes.

^In these case a language model means the probabilities of each word to appear on the 
text.
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T 102,809 102,813 231,869 1.00 2.26 40,707 2.182 3.67
Chinese Dev 1,762 8,103 18,554 4.60 2.29 3,318 2.193 3.70

E 2,5.56 12,282 27.712 4.81 2.26 4.939 2.172 3.68
T 36.020 17,400 34,276 0.48 1.97 42,557 1.835 3.51

Dev 2,000 588 1,169 0.29 1.99 2,099 1.862 3.48CTerman r,E 2,000 550 1,073 0.28 1.95 2,067 1.836 3.47
OOD 707 648 1,193 0.92 1.84 973 1.784 3.52

T 39,279 179,014 393,699 4.55 2.20 60,449 1.646 3.80
1,334 6,390 13,865 4.79 2.17 2,125 1.611 3.79English 2,399 10,498 23,286 4.38 2.22 3,614 1.644 3.80

OOD 425 1,259 2,859 2.96 2.27 429 1.728 3.97
T 13,200 37,431 84,367 2.83 2.25 43,544 2.254 3.25

Catalan Dev 1,724 5,105 11,529 2.96 2.26 5,937 2.258 3.25
E 1,862 5,001 11,275 2.69 2.25 5,942 2.255 3.25
T 14,329 43,824 99,054 3.05 2.26 4,7406 2.262 3.26

Spanish Dev 1,655 5,076 11,600 3.07 2.29 5,574 2.286 3.29
E 1,725 5,175 11,824 3.00 2.28 5,611 2.286 3.28
T 38,727 414,237 365,255 10.70 0.88 87,484 1.444 2.20

Cverl, 5,229 55,517 49,071 10.62 0.88 11,753 1.443 2.21
Cj 4,213 44,585 39,223 10.58 0.88 9,418 1.452 2.20

OOD 1,184 16,313 13,882 13.78 0.85 3,441 1.428 2.19
1' 4,393 25,712 43,957 5.85 1.17 8,931 1.124 5.68

J apanese Dev 250 1,539 2,706 6.16 1.76 539 1.134 6.00
E 500 3,111 5,316 6.22 1.17 1086 1.126 5.63

In the case of the German data set only a portion of the sentences are annotated, that is why the pericate
per sentence ratio is under one.

Table 2.1: Data set statistics
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The area of the bubbles represents the size of the dataset by amount of 
predicates. English and Czech data sets were reduced to the first 20K and 10k 

sentence in order to be more computational tractable. The small circle 
represents the reduced version and big circle the original size. Please note that 

this reduction was not carried for the CoNLL-2009 evaluation but for the
experiments on this thesis

Figure 2.7: Training data set size
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Table 2.2: Comparison between the perplexity of the semantic labels and the 
dependency

The labels presented on the sub-trees correspond to the Training data sets of each language.
No correlation was found between those perplexities and accuracy of the tree semantic role labelling system.

Dataset Semantic perplexity Dependency relation perplexity
English 8,02 14.09
Catalan 12.07 8.065
Chinese 7.21 10,93
Czech 11.90 10.19

German 3.38 8.49
Spanish 12.16 8.00
Japanese 9.59 0.05

Table 2.2 shows the perplexity of the amount of semantic labels and the 
amount of dependency relation labels in the sub-trees of the data sets for the 
training data set. Perplexity in dependency relations is a measure of how much 
information the SRL system receives, perplexity in semantic relations is a mea­
sure of how much information the system has to produce.
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The more annotated a sentence is (mnnber of predicates) the lower the 
average ratio of arguments i)er predicate.

Figure 2.8: Arguments per predicate vs predicate per sentence

Figure 2.8 shows the correlation between the ratios of arguments per pred­
icate and predicates per sentence. Czech data has a specially low amount of 
arguments per predicate^, this is due to the way the data set was annotated in 
which almost every word is labelled as a predicate without any arguments.

It is an interesting observation that the ratio of predicates i)er sentence in 
Chinese for the training data-set (1.0) is very different to the ratio of the one 
for the development and evaluation data sets (4.6 and 4.8). It suggests that the 
partition is not made equally. The same can be said about the German data 
sets but with smaller differences.

'‘Note that the ratio arguments per predicate is measured in a way in which if a word is an 
argument of two different predicates it will be counted twice. Therefore the low ratio cannot 
be the result of control/raising constructions.
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2.4.3 Further preprocessing

Apart from reducing the Eiiglisli and Czech data sets to the hrst 20k and 10k 
sentences, a new node was added to every singlesentence as a new root node. 
This decision was taken to solve the problem of having some sentence with mul­
tiple root nodes. After this pre-processing step, all old root nodes become the 
children of a new artificial node.^ Therefore the sentences had to be converted 
from a forest structure into a tree structure and make it possible to use tree 
edit distance over them. No further preprocessing was required.

2.5 Semantic role labelling pipeline

Having reviewed the different public evaluations, now 1 will look at the common 
architecture of a semantic role labelling system.

Figure 2.9: Semantic Role Labelling system pipeline

^Section 3.3 will explain the tree edit distance algorithm which can work only with fully 
connected tree structures
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Marquez et al. (2008) claim that the most common architecture of a Seman­
tic Role Labelling system consists of the following five steps: parsing, filtering, 
argument identification, argument classification, and joint scoring. Figure 2.9 
illustrates these steps, which are explained in the text that follows.

2.5.1 Parsing

Parsing raw text into syntactic representation is an old and well-studied prob­
lem. Therefore, most semantic role labelling systems use an external syntactic 
parser, a black box for pre-processing raw text and some authors do not consider 
that parsing is part of the semantic role labelling task. According to Palmer 
et al. (2010, page 46) the most popular parsers are Collins (1999) and Charniak 
and Johnson (2005).

Carreras and Marquez (2005) estimated a degradation of 2.18 FI points 
by comparing SRL systems using only shallow parsers in contrast of the same 
systems using full parsers.

2.5.2 Filtering

An argument can be a continuous or discontinuous sequence of words. There­
fore any secpience of words in the sentence can be an argument. An exhaustive 
exploration of all possible arguments is either not feasible or is extremely com­
putationally expensive as the amount of them is very large. Hence, in order to 
maintain an adequate speed, it is necessary to have a heuristic to prune most 
of the candidate arguments for the next step (argument identification). This 
algorithm should be computationally light and should have a very high recall.

Marquez et al. (2008) claimed that the simple heuristic rules proposed by 
Xue and Palmer (2004) for constituent tree structures are commonly used to 
perform filtering because of its success.

Figure 2.10 illustrates the Xue and Palmer (2004) filter algorithm which 
is shown in detail in Algorithm 1. In Figure 2.10 the predicate of interest is 
“warned”. The system first adds the PP “of tough measures” to the list of 
candidates® as it is a sister node of the predicate. Then moves to the next

^Candidate to be an argument node
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Input: T: constituent tree 
Input: S: set of predicates
Output: SC: set of argument candidates per predicate 
foreach predicate p in S do 

Pointer = p;
while Pointer^ root(T) do

foreach Q sibling node of Pointer do 
if Q is coordinated with p then 

I continue;
end
if Q is a prepositional phase then 

I SC(p).add(children(Q));
end
SC(p).add(Q);

end
Pointer — parent(Pointer); 

end
return SC ; 

end
Algorithm 1: Filtering heuristic (Xue and Palmer, 2004), on constituent tree 
structures

ancestor and adds the NP “Premier Ryzhkov” to the list of candidates to be 
an argument. At the next level the two ‘S’s form a coordination structure. 
Therefore, there are no more constituents to add.

Experimental results show that even using imperfect parsers, the pruning 
algorithm improves the overall accuracy of the system (semantic role labelling 
accuracy) (Palmer et ah, 2010, pag 33). For Marquez et al. (2008) an exhaustive 
exploration will not be feasible because the data is always extremely large and 
unbalanced.

2.5.3 Argument identification and classification
Argument identification and classification modules are described together be­
cause they have a substantial amount of details in common. Both phases can 
be done in a single step although the results are usually better if the phases 
are done separately (Marquez et ah, 2008). Machine learning algorithms do not
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Figure 2.10: Pruning, extracted from (Xue and Palmer, 2004)

handle very unbalanced data well. A palliative solution for that is to split the 
task argument identification and argument classification. The data for both 
phases are still very unbalanced but not as much as if it would have processed 
in a single step.

Balancing techniques (selective reduction and artificial sample creation such 
SMOTE algorithm (Chawla et ah, 2002)) are recommended for these cases but 
they were not used as they are outside the scope of this thesis.

2.5.3.1 Argument identification

Argument identification is a binary task; a constituent can be a semantic argu­
ment or not. Often, sentences have a large amount of constituents, and a very 
small amount of them are semantic arguments of one of their predicates. In 
other words, the identification task is extremely unbalanced because there is a 
small proportion of positive samples (constituents which are semantic arguments 
for a given predicate) and a large proportion of negative samples (constituents 
which are not semantic arguments for a given predicate).
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Filtering algorithms reduce the majority class which is “this is not an argu­
ment”, but even using a filtering algorithm, the data are still very unbalanced. 
As a consecjuence of machine learning algorithms not handling unbalanced data 
very well, balancing techniques are recommended. In this step each constituent 
of a sentence is classihed as an argument or not for each predicate although 
some of them were already classified at the filtering phase.

2.5.3.2 Argument classification

The constituents that have been classified as arguments are passed to a new 
phase of classihcation to determine which kind of argument they are. The same 
machine learning algorithm that was used in the argument identihcation phase 
may be used in this phase, but usually using a different set of features; thus, 
it usually improves the overall performance. This time the problem is not a 
binary-classification task like in the argument identification phase but multi­
classification task, what means that the system has to classify each sample in 
one of the multiple possible classes (one class for each possible argument).

2.5.3.3 Features for classification

It is common that the features used for identification and chissification are the 
same. Palmer et al. (2010, pages 31-42) describes in detail the features which 
are most commonly used for classification: Phase tyi)e, governing category, 
parse tree path, position, voice, head word, sub-categorisation, argument set 
and more recently also: argument order, previous role, part of speech of the 
head word, named entities in constituents, verb clustering, head word of objects 
of PPs, first/last word/POS in constituent, constituent order, constituent tree 
distance, constituent context features and temporal cue words.

Also when dependency tree structures are available other features are used 
as well (McDonald et al., 2006) , such: Do any of the dependent of the siblings 
share its POS with the Edge? POS tag of each intervening word between head 
and dependent. Do any of the words between the head and the independent 
have a parent other than the head? Are any of the words between the head 
and the dependent not a descendant of the head? How many children do the 
dependent have? What are morphological features do the grandparent of the
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dependent? And have the dependent and its grandparent identical values?

2.5,4 Joint prediction

Several authors designed their SRL systems to first estimate the probabilities 
of possible labels for each identified argument as if the labels were independent 
of each other. Then as a second phase, the SRL system would re-estimate the 
probabilities of all arguments of a single predicate to ]rroduce the best overall 
prediction knowing that the labels are dependent on each other.

This module also helps the system to improve the consistency of the output. 
For instance it can guarantee the non doubling of core arguments for a single 
predicate; If an argument is discontinuous the second part would get a different 
label than the first part, for instance C-AO wotild mean the continuation of the 
argument AO, but the argument AO can’t be cissigned to two different arguments 
in a single predicate.

Gildea and Jnrafsky (2002) made the hrst system based on re-ranking the 
irrobabilities of the arguments for each all arguments of a single predicate at 
the same time. The probabilities for each individual constituent are combined 
with a probability for the set of roles that will be predicted for each predicate. 
An interesting example was produced by Toutanova et al. (2005), using maxi­
mum entropy. The features used in the re-ranking module based on maximum 
entropy model included all the features from the individual argument classifica­
tion module, the sefiuence of labels for the entire sentence (excluding adjuncts 
and including the verb itself), and the sequence of unpredicted labels, which 
simply counts the number of arguments to the left and right of the verb(Pahner 
et ah, 2010, pages 44-45).

2.6 Research motivation

2.6.1 Efficiency

The semantic role labelling system presented in this thesis is based on k-NN 
which is a lazy learning algorithm. This decision is not shared with most other 
SRL systems, which opted for fast response machine learning algorithms such
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as SVM. As a consequence, the system is too slow for a practical application. 
It does not mean that the algorithms investigated in this research are useless; 
the methods presented in this work are used in tasks where the computational 
time is not critical. For instance, Fnrstenau and Lapata (2011) used graph 
algorithms to project labels from one sentence to another, with an even more 
computationally intensive algorithm than the Zhang and Shasha (1989) one. 
This algorithm and its efficiency will be described in detail in Section 3.3.2. 
Furstenau and Lapata (2011) shown that “labelling by alignment” algorithms 
are adequate for labelling a corpus which would be used as an expansion for the 
training data set of another SRL system, which will be more time efficient.

Corpus expansion algorithms like the one developed by Furstenau and Lap­
ata (2011) are usually evaluated by the increment on the accuracy of the second 
system which is using that extended corpus. It leaves an open question: What 
IS the accuracy of the corpus expansion system itself and what would happen 
if that system were forced to label all sentences not just choosing the ones for 
which the confidence is higher?

2.6.2 Alignment methods

There are a several pattern recognition scenarios that have the characteristics 
that one has structured test data such a sequence, a tree, a graph or a grid 
within which some annotation is missing, and one wants to infer the missing 
annotation by exploiting fully annotated training data.

A possible approach is to seek to define alignments between test data with 
missing annotation and training cases fully annotated, and to use these to 
project annotation from the training to test cases.

This has been successfully used in computational biology, for example, to 
project annotation via sequence alignments (Marelder-Bauer et ah, 2002) and 
graph alignments Kolar et al. (2008).

Semantic Role Labelling (SRL) can be seen as a another instance of this 
pattern recognition scenario which is the target of this research.
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2.7 Conclusion

Any Semantic Role Labelling system based on Machine Learning needs a data 
set to learn from. Therefore, this chapter described the main public corpora 
resources: FrameNet, Propbank and Nombank. It continues by mentioning 
the public evaluations of SRL systems since 2002, giving more details on the 
CoNLL-2009 SRL task, because the data set of this evaluation is the one used 
for the experiments conducted during the research and presented in thesis.

Then the attention goes to the general architecture of a SRL system, ob­
served on those public evaluations. Those systems are commonly built as a 
Pipeline of the following five sub-systems: parsing, filtering, argument identi­
fication, argnment classihcation and join scoring. The argument classification 
subsystem is commonly implemented by extracting vectors of features and using 
a machine learning algorithm to classify. In contrast this thesis explores another 
way to biiild the argument classification siib-system, based on extracting sub­
trees and projecting the annotation from one sentence to another, which will 
be explained in the Chapter 4 after explaining the evaluation metrics, the tree 
edit distance algorithm that will be used to project the annotation from the 
training data set to the evaluation data set, and Machine learning algorithm 
used: k-Nearest Neighbours.
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Chapter 3

Underlying methods

3.1 Introduction

This chapter introduces the evaluation metrics in which using the system was 
evaluated. It also introduces the two algorithms required to understand the pro­
posed SRL system. These two algorithms are: Tree Edit Distance algorithm, 
used to align tree sample in order to project annotations and also to calcu­
late a distance score, and k-NN algorithm, a machine learning algorithm used 
with SRL system which uses the distance scores. How these two algorithms 
complement each other will also be explained later in the chapter.

3.2 Evaluation metrics

This section explains why accuracy measure was choose as evaluation metric 
when the CoNLL2009 adopted FI measure, and introduces the McNemar test 
which is suitable to compare different versions of the same system classifying 
the same data set.

3.2.1 Measures

In CoNLL 2009, FI measure was the metric used to compare different systems 
performances. The Tree-SRL system only performs the argument classification 
and not argument identification. Therefore accuracy was used to measure its 
performance (as the values will be the same as FI).
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(3.1) Precision = TruePositives
TrueP ositives + FalsePositives

(3.2) Recall = TruePositives

(3.3) Fp

Where:

TruePositives + FalseN egatives

(1 + /9^) * Precision * Recall 
/32 ^ Precision + Recall

• A True Positive is a correct prediction.

• A False Positive is profhiced when the system predicts a wrong label or a 
label in a wrong place.

• A False Negative is produced when the system misses a label or when it 
predicts a wrong label.

• ^ is an arbitrary number to weight precision and recall, usually it is set 
to 1.

Imagine that the following sentence is properly annotated:

(27) Yesterday [Microsoft shares]raise \2Q%\amount

and the following three predictions of an SRL system:

(28) Yesterday Microsoft shares rose [by 20%[ amount

(29) [Yesterday]oHgmarprice [Microsoft shares|o6iect rose [by 2Q%\amount

(30) Yesterday [Microsoft shares[o6ject rose [by 20%]originai.price

Sentence 28 contains a False Negative, because “Microsoft shares’Vhere not 
labelled. Sentence 29 contains a False Positive, because “Yesterday” was labelled
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as “original.price” it should not be annotated^ and Sentence 30 contains two 
errors: a False Positive, because “20%” was labelled as “original.price” and a 
False Negative, because “20%” should be labelled as “amount”.

In the case of only labelling arguments and the system being forced to make 
a prediction, a wrong prediction (label an X sample as Y) is counted twice (like 
Sentence 30), one as a false positive (an error Y) and one as a false negative (a 
missed X). Therefore, the amount of true positives is the same as the number 
of correct predictions, and false positives and negatives are equal to each other 
and have the same amount as wrong predictions. Expressed in a mathematical 
notation:

TP [True.Positive) = RL{Right.Labels)

F P{False.Positive) = FN {False.Negative) — W L{Wrong. Labels) 
RL

A{Accuracy) = RLfWL

Precision = Recall =
RL

RL + WL
= A

Fb =

(3.4) Fft =

{lFp^)*A*A 
13^ *A +A

{1 + P^)*A*A A* A
= Accuracy

{1 + /3^)*A A 
The conclusion is that in this particular case the values of F^ measure and 

accuracy are the same, so accuracy is adopted as the main parameter to compare 
the performance of the systems. It is true that the SRL system can produce an 
invalid label. Such cases should be considered False Negatives but not a False 
Positives. However, those cases are so rare that. Hence it is assumed they never 
happen, and consequently they were count as wrong predictions as well.

^This cases assumes that “yesterday” is not an argument of “raise”
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3.2.2 McNemar test

The problem of labelling the semantic relationship between two identified con­

stituents is a classification one. If the system is forced to make a prediction, the 

McNemar (1947) test is adequate to determine if a modihcation in the system 

settings produces a statistically significant change on the output of the system.

The test can be explained as if it were applied to a contingency table like 

the one shown in Table 3.1:

Table 3.1; McNemar contingency table

Correct by 
chissifier 2

Incorrect by 
classifier 2

Correct by 
classifier 1

a b

Incorrect by 
classifier 1

c d

The null hypothesis is that the probability of c is the same as the probability 

of b.
The values for the McNemar (1947) test statistic with Yates (1934) correc­

tion for continnity is given by Equation 3.5:

(3.5) =
{\b 0.5)^

b + c

can be approximated by a chi-squared distribution with 1 degree of free­
dom. If 5 -h c < 25, the x^ distribution is not a good approximation. In such 
cases no statistical difference was claimed. If x^ is significant, a statistical 

improvement is claimed.
In this thesis, the McNemniar test was considered significant for a p value 

of chi-square of 0.05 and 0.001 for strictly statistically significant. Furstenan 

and Lapata (2011) used the same test to detect statistical differences with the 

same p values.
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3.3 Tree edit distance

This section explains the tree edit distance algorithm which is a central piece 
of the architecture of the proposed SRL system of this thesis. It produces 
an alignment that can be used to project annotation and it also produces a 
distance score which can be used to train a machine learning algorithm. It will 
start introducing Levenshtein distance, which is the string version of tree edit 
distance, and Tai mappings which contain the restrictions of the alignments 
produce by the algorithm.

3.3.1 Levenshtein distance

The Levenshtein (1966) distance is a string metric for measuring the divergence 
of two sequences and map one into the other. It is defined as the minimum 
number of edits needed to transform one string into the other, by counting 
operations for insertion, deletion and substitution of a single character. This 
algorithm is a predecessor of tree edit distance.

The algorithm constructs a bi-dimensional matrix with the size of the first 
string plus one by the size of the second string plus one. Each cell of the matrix 
corresponds to the cost of deletion/insertion of all items of the sub-string from 
the beginning of the stings to its own position. The first row and column is an 
ascending sequence 1, 2, 3 .. n, and the other cells are defined as the minimal 
cost between the following options:

• a deletion: d|i,j]“ d|i-l,j)-|-l;

• an insertion: d|i,j] = d[i,j-l]J-l;

• a substitiition : d[i,j] = d[i-l,j-ll + l ; only if si|i| !=^ S2[j|

• a perfect match: d[i,j] = d[i-l,j-l] ; only if si[i| == S2|j]

Note that the last two options are a single option together, because a perfect 
match is a substitution where both nodes are equal. The only difference is the 
cost which is 0 for perfect matches and one for any other operation.

Figure 3.2 illustrates the process of building a matrix by an example.
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Table 3.2: Example of levenslitein distance matrix, for the words 'synthetic' 
and 'syntactic'

The words ‘synthetic’ and ‘syntactic’ differ in two units in Levenslitein 
distance, the result is found at the bottom right part of the table. Each 
deletion, insertion or imperfect swap counts as one unit in Levenslitein

distance.

S y n t h e t i c
0 1 2 3 4 5 6 7 8 9

s 1 0 1 2 3 4 5 6 7 8
y 2 1 0 1 2 3 4 5 6 7
n 3 2 1 0 1 2 3 4 5 6
t 4 3 2 1 0 1 2 3 4 5
a 5 4 3 2 1 1 2 3 4 5
c 6 5 4 3 2 2 2 3 4 4
t 7 6 5 4 3 3 3 2 3 4
i 8 7 6 5 4 4 4 3 2 3
c 9 8 7 6 5 5 5 4 3 2

3.3.2 Tree distance

Tai (1979) introduced a criterion for matching nodes between tree represen­
tations, and Zhang and Shasha (1989); Shasha and Zhang (1990) developed 
an algorithm that finds an optimal matching tree solution for a given pair 
of trees. The importance of the algorithm is that its computational cost is 

* 1^2! *rnin{depth{t\), leaves{ti)) *niin{depth{t2), leaves{t2))) and its spa­
tial cost is 0(1^11 * 1^21)-

It has been applied with some success in several fields of Natural Language 
Processing such as:

• Text Entaihnent (Kouylekov and Magnini, 2005),(Negri et ah, 2008), (Mehdad, 
2009),

• Question Answering (Punyakanok et ah, 2004a,b), (Emms, 2006b),

• Parser Evaluation (Emms, 2005b, 2008),

• Question Clustering (Emms, 2006a),

• Question Categorization Emms (2005a).
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A map “f” defines a correspondence between the set of nodes of a source tree 
and the set of nodes of a target tree. The image of the a node is fi: /(a) = /3

Figure 3.1: Maj) example

3.3.2.1 Tai mappings

A Tai map is a mapping between the nodes of two trees. It can be define as:

• S' is the set of nodes of the source tree.

• T is the set of nodes of the target tree.

• /() is a map, / : S —>• T where S is the domain and T is the range .

If (/(a) = x) A (/(6) = y), the Tai mapping restrictions can be defined as:

1. One-to-one: One node cannot be matched with more than one node. 

a = b iS X = y.

2. Left-to-right order preserved: If a node “a” is on the left of “b”, they 
cannot swap after the mapping.

a < b \S X < y.
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(c) Ancestry not preserved (d) Left to right order not preserved

Figure 3.2: Tai-niapping restrictions
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3. Ancestor order preserved. ancestor{a,b) ifi ancestor{x,y).‘̂

Figure 3.2 shows a sample of Tai mapping(3.2a), and samples of impermis­
sible Tai mappings where one-to-one node is not preserved (3.2b), ancestry is 
not preserved (3.2c), and left to right order is not preserved (3.2d).

In order for assigning a score to a Tai (1979) mapping it is convenient to 
identify three sets:

A4 the (i,j) E or. the ‘matches’ and ‘swaps’
V the i E S s.t. Vj € T, (z, j) ^ q: the ‘deletions’
J the j ET s.t. Vz e 5, (z, j) ^ o: the ‘insertions’

Af is just the mapping of the S nodes into the nodes of T. T> and X are just 
the remaining nodes of S and T which are not ‘touched’ by the mapping. Let 
(.)'' give the label of a node and let be a ‘cost’ table, indexed by {A} U S, 
where E is the alphabet of labels, which assigns ‘costs’ to At, P and X according 
to^:

for (z,7) E A4 cost is C^{'P,p) 
for i E T> cost is C^{P, A)
for j EX cost is C^{X,p)

Where a : S T is any 1-to-l mapping from S into T, define A(q' : S ^ T) 
by:

Definition 3.I.- Distance scoring of an alignment

‘distance ’ scoring of an alignment

A(Q:5K+r)= +
{i,j)eM iev jei

From this costs of alignments, a ‘distance’ score on tree pairs is defined by 
minimization:

'^ancestor{a, b) should be read as: “a” is an ancestor of “b”.
^Note that in this general setting even a pairing of two nodes with identical labels can 

make a non-zero cost contribution
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Definition 3.2; Distance scoring of a tree pair S and T

The Tree- or Tai-distance A{S,T) between two trees S and T is the 
minimum value of A{q : S T) over possible Ta.[-m,appings from S to T, 
relative to a chosen cost table .

There is an illustration of the definitions in Figure 3.3.

a

a - ■ - -
1

!>'
b b

a
..-h

b

c

a 
'f 

b
.'f

b-...... ................. ■
With

c^{x,\) = C^(A,x) = 1,
C^(x, x) = 0, C^{x, y) = 1 for x 7^ y, 

the alignment has score A(o') = 3 
and this is minimal for the given

Figure 3.3: An illustration of tree distance.

A{S,T) can be computed by the algorithm of Zhang and Shasha (1989). Se­
quences can be encoded as vertical trees, and on this domain of trees the tree 
distance coincides with a well known comparison measure on sequences, the 
(alphabet-weighted) string edit distance (Wagner and Fischer, 1974; Gusfield, 
1997).

I had formulated the definition^ in terms of costs applied to mappings which 
respect tree-ordering properties. In contrast to this declarative perspective, 
there is a procedural definition via the notion of an edit-script of atomic oper­
ations transforming S to T in a succession of stages. For both sequences and 
trees the mapping-based and script-based notions coincide (Wagner and Fis-

^The literature contains quite a number of inequivalent notions, all referred to as ‘tree 
distance’; in this Chapter Definition 3.2 will be understood to define the term.
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cher, 1974; Tai, 1979; Kuboyama, 2007), and so I omitted further details of the 
definition via edit-scripts.

While the correctness of the Tai ‘distance’ Zhang and Shasha (1989) al­
gorithm® does not require the cost-table to satisfy any particular proper­
ties, some settings of clearly make little sense. The combination of dele­
tion/insertion cost-entries which are negative [C^{x, A) < 0, C^{X,y) < 0) with 
swap/match cost entries which are not negative gives the counterintuitive effect 
that a supertree of S is ‘closer’ ( in the sense of having a lower A score ) to S 
than S itself®. This is a rationale for the following non-negativity assumption:

(3.6) Vx, y e E(C^(x, y) > 0, C^{x, A) > 0, C‘^(A, y) > 0)

which is a pretty universal assumption, and from which it follows that A(5, T) > 
0, giving a minimum consistency with the everyday notion of ‘distance’. In 
what follows I will confine attention to ‘distance’ A based on a table which 
satisfies at least (3.6).

When the cost-table C‘^{x,y) is constrained more strictly than this to sat­
isfy all the conditions of a distance-metric, then it is well known that A(S', T) 
will also be a distance-metric. Whether such further restriction is desirable 
is moot: in so-called stochastic variants (Ristad and Yianilos, 1998; Bernard 
et ah, 2008; ?), in which the entries in are interpreted as negated logs of 
probabilities,^ these additional distance-metric assumptions are not fulfilled. 
The present studies only assume the cost-table satisfies the non-negativity 
requirement of distance.

Finally, as an important note it should be mentioned that for a pair of trees 
there could be more than one mapping at the same distance, see sample in 
Figure 3.4. The implementation used in the experiments of this thesis promotes 
the swaps for equal cost over deletions/insertions. Therefore, as the nodes are 
processed in ‘traversal post order’, mapping (a) will be prevalent over mapping 
(b). This feature will have an important impact in the results of the system 
when the cost of deleting and inserting two nodes would be the same cost as

®ie. that it truly finds the minimal value of A(q : 5 h-> T) given cost-table 
®or a subtree
^Therefore, the values are positive.
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(a) Alignment 1 (b) Alignment 2
For this sample there are two different Tai maps for the minimal three 

cost.The different colours of the nodes mean different labels.
Figure 3.4: Isert alignments sample extracted from (Isert, 1999).

swapping both of them.

3.3.2.2 Zhang and Shasha algorithm

Figure 3.5 shows a recursive descrii)tion of how to hnd the cost of minimal Tai 
inaj). Some modifications allow not just the cost of the map to be found, bnt 
also the map itself.

The Zhang and Shasha algorithm presented in (Zhang and Shasha, 1989; 
Shasha and Zhang, 1990) follows the same pattern, but it is a successful attempt 
to make it dynamic (not recursive).

Since the Tai (1979) definition of Tai mappings and the Zhang and Shasha 
(1989) implementation, a few authors attempted improve the comi)utational 
efficiency by creating new tree edit distance algorithms. As far as the author of 
this thesis is aware, there are three algorithms that are more efficient than the 
Zhang and Shasha (1989) one which also produce the same mappings such as: 
(Klein, 1998; Demaine et ah, 2009; Pawlik, 2011). Those algorithms are more 
complex than the Zhang and Shasha (1989) one therefore to keep the system 
simple they were not used. Speed testing is beyond the scope of these thesis.
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Tree distance

f
8(MA)+y(o,.J 

S(A,aa)+y( .•)
addition

S(aa,aa)+y(o,*)

(a) Tree Distance

Forest distance

f,

S(aaA.AAA)
=min 1

5(/\aA iAAA)+y( ,*)
' 'acWitiofl

8(m,AA)+ 5(A, A)

(b) Forest Distance
The function B) gives the forest/tree cost/distance between A and B. 

The function j{x, y) gives the atomic cost of modifying a node x into a node y.

Figure 3.5: Tree distance
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3.4 k-NN algorithm

3.4.1 Introduction

k-NN: k-Nearest Neighbour is tlie machine learning algorithm of the proposed 
SRL system of this thesis, this algorithm is a lazy-learning algorithm because all 
computation is deferred until classification, its high computational cost may not 
be suitable systems in which the time response is critical but it is very adequate 
for the proposed SRL system because it can select a set of training samples 
for each query. The proposed system works by aligning samples and projecting 
labels, that is why it is important to use a machine learning algorithm that 
selects a set of samples, this would not be possible with the popular machine 
learning algorithms such Support Vector Machine or Maximum Entropy. In the 
other hand, k-NN is substantially more computationally expensive than those 
methods (SVM and ME)^

Tree edit distance algorithm j^roduces an alignment and a distance value. 
The distance value, can be used to generate a ranking of neighbours, and the 
alignment can be use to make those neighbours to project a label as differ­
ent parts of the sample will contain different labels, some projections may not 
produce any label and they will be counted as null votes, this process will be 
detailed in Chapter 4.

The k-nearest neighbour algorithm works by classifying a sample by a major­
ity vote of the labels of its neighbours. Figure 3.6 illustrates how the mechanism 
works.

In the implementation used the parameter k means the amount of neighbour 
samples that are recommended to be used in the prediction.

There are several reasons why a particular fixed value of k may be inappro­
priate:

1. There are several neighbours at the same distance equally eligible to vote, 
figure 3.7 illustrates this phenomenon.

2. There is a draw on the voting, figure 3.8 illustrates this phenomenon.

*See Appendix B.4 for more details about the computational cost of the tree-SRL system, 
which is based on k-NN.
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The item to be classified (the one with the question mark) is assumed to be 
more likely to be a moon than a sun because the neighboiiring samples are

moons
Figure 3.6: k-NN

3. The neighbour samples didn’t vote. The SRL system is based on pro­
jecting annotation by alignment (see section 4.5), it can happen that a 
sub-tree is similar enough to be a neighbour but its alignment does not 
project a label. Figure 3.9 illustrates this phenomenon.
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for k 1, there are four first neighbours offering two different labels 

Figure 3.7: Multiple neighbours at the same distance

The first nearest neighbours, which are the first equivalence class, produce a
draw in the voting.

Figure 3.8: Draw in voting
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in
The first neighbours did not vote because their alignment did not project a 

semantic label. If the system is forced to produce a prediction the parameter k
has to be extended 

Figure 3.9: Invalid voting

In the case of having multiple neighbours at the same distance, the policy of 
the ‘nearest cut-off’ was adopted. The parameter ‘k’ will be reduced or extended 
to the nearest value guaranteeing that all neighbours that are at equal distance 
receive the same treatment.

There are multiple ways to weigh the voting, for example making it propor­
tionally inverse of the distance. The research about different possible ways to 
weight the voting is outside the scope of this thesis, and the impact of other 
voting methods on the tree-SRL system is left as an open question for future re­
search. The policy adopted is that every vote has the same weight independent 
of its distance. In the case of a draw, the value ‘k’ will be extended.

3.4.2 Equivalence class

An equivalence class is a set of neighbour samples at equal distance to a reference 
sample (query). Figure 3.10 illustrates a sample where the query is represented 
with a “?” symbol and the neighbours with a half-moon. The horizontal line 
represents distance, and the vertical line groups the samples which are at the 
same distance. In this example there are three equivalence classes. The first 
ecpiivalence class contains one sample, the second equivalence class contains 
three samples and the third equivalence class contains four samples.
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Figure 3.10: Eqnivaleiice class

The concept of equivalence class is important because k-NN algorithm works 
with ecpiivalence classes and not with ‘k’ neighbours.

• The value k=: 1, matches with the first equivalence class.

• The value k= 4, matches with the second ccpiivalence class because it 
contains all samples on the first and second equivalence class.

• The value k^ 3, does not match an equivalence class. Therefore the k 
value has to be extended to 4 or retracted to 1.

As the second ecpiivalence class contains three neighbours at the same dis­
tance from the query, the algorithm will extend the value of k to four, in order 
to reach the nearest equivalent class. For this particular example the three 
equivalent classes correspond to k values of: 1,4 and 8. Other values of k will 
have to shrink or be extended to fit them.

3.4.3 Linguistic example

The intention of using suns and moons was to explain how k-NN works without 
requiring knowledge from any other part of the thesis, this section attempts to
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illustrate the same concepts but in the context of the Tree-SRL system. 
Assuming it is required to annotate the following sentence:

(31) [John]? ran [from home]? [to the university]?.

And the following sentences were found in the first equivalence class;

(32) [Yesterday, I Temp Peter ran [to my houselcoa/-

(33) The run [from the station]source was [exhausting]A/a„„er-

(34) [Paul and Mary]Gunner ran [yesterday]Temp-

Table 3.3 shows a possible alignment from the annotated sentences to the 
query sentence.

Table 3.3: Example of alignments

Query sentence sami)le 32 sample 33 sample 34

Yesterday,Temp
John? P GtCl fiunner The y Runner

and
Paul

ran ran run ran
from? fl Olll Source yesterday-Temp

the
home station

to? tOGoa/ was
the my

university house exhaUStingManner

The Tree-SRL system will use tree representations but in order to simplify 
the explanation the alignments are given on string representation.

In this way the query sentence can be seen as a vector of three unknown 
semantic labels, and it is possible to have one k-NN panel for each of them. 
Looking just to the relation of the argument “from home” to the predicate

54



run, sentence 32 would project nothing (null vote), sentence 33 would project 
“Source”, and sentence 34 would project “Temp”, the k-NN module would de­
tect a drawn in voting (like in Figure 3.8) and will try to extend the panel of 
alignments.

Looking just to the relation of the argument “John”, to the predicate run, 
sentence 32 would project “Runner”, sentence 33 would project nothing (null 
vote), and 34 woAild project “Runner”, so the k-NN module will predict “Runner” 
as the semantic relation between John and the predicate run (in Sentence 31). 
If sentence 33 was the complete hrst equivalence class and sentences 32 and 
34 the second equivalence class, the case would be like the one in Figure 3.7, 
where the panel has to be extended because no valid votes are found in the first 
equivalence class.

3.4.4 k-NN in SRL
Li et al. (2009) were the only participant group in the fotir CoNLL evaluations 
for SRL who nses k-NN algorithm. They used k-NN only for the sense disam­
biguation subtask of the predicates. Argument identification and classification 
task were done through maximum entropy. k-NN was used for predicate sense 
disambiguation but not in all languages, for Chinese, Spanish and Catalan SVM 
was used. They compared the results using SVM and k-NN for German and 
concluded that 20-NN performs better on that particular data set. English and 
Czech present a different scenario; these data sets are too large. Therefore, 
they decided to use 20-NN for English and 10-NN for Czech because SVM was 
‘unacceptably slow’ to process the data within the time limits of the public 
evaluation.

SVM requires a substantial computational time investment in the learning 
phase which depends on the size of the training data set. Since k-NN is a ‘lazy- 
learning algorithm’; it requires a substantial computational time investment in 
the labelling phase. Its computational cost depends on the size of the training 
data set by the size of the evaluation data set.

Li et al. (2009) found a way to avoid the huge computational cost. They used 
as many k-NN classifiers as different predicate frames (same sense) can be found 
in the training data set, which reduces the possible neighbours substantially.
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Therefore, the computational cost was reduced to the average size of au amount 
of samples of each frame by the size of the evaluation data set.

This strategy of ignoring samples of different predicate seems reasonable be­
cause there is no strong intuitive reason to assume that the meaning of different 
predicates are related to each other by their tag numbers.

3.5 Conclusion

This chapter introduced the basic concepts required to understand the sys­
tem and how it will be evaluated. It starts by explaining that for argument 
classification task only, FI measure gives identical values to accuracy values, 
so consequently accuracy was adopted. It also introduces the McNemar test 
which is suitable to evaluate variants of a classifier making predictions on the 
same data set (but not making predictions on a different data set). It intro­
duced the tree edit distance algorithm which produces Tai-mappings between 
pairs of trees and also calculate a distance scores, detailed how the mappings 
and scores are calculated and what are their restrictions. Finally, the chapter 
ends by explaining the k-NN algorithm with a minor adaptation to deal with 
samples that will not prodiice any label.

The next chapter will explain the architecture of the proi)osed SRL system 
and will make tise of the concepts explained in this chapter.
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Chapter 4

Tree-SRL

4.1 Introduction

The Tree-SRl is the main contribution of this thesis. To explain how this works, 
it is necessary to describe how tlie sub-trees are extracted from the original data 
which are the basic sample units, and how an alignment between two sub-trees 
can be used to project the labels of one onto the other, which is the first part 
of the chapter. The second part describes how to deal with a list of alignment 
sorted by its distance to the stib-tree to be labelled and how k-NN works. In 
further sections the atomic distances between nodes of sub-trees that were used 
in the experiments are described. The chapter finishes by explaining a similar 
system develop by Furstenau and Lapata (2011).

4.2 Sub-trees

The Tree-SRL system works with sub-trees; each sub-tree contains a single 
predicate node and can contain several argument nodes (Figure 4.1), which is 
probably the most intuitive concept of sub-tree. This section describes a range 
of possible options to extract those sub-trees.
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Figure 4.1: First sample of sub-tree extraction

Input: T:tree structure labelled in post order traversal 
Input: L:list of nodes to be labelled in post order traversal 
Output: T:Sub-Tree 
foreach node x in the list do 

I mark x as jjart of the snb-tree; 
end
while the list contains no uniform values do 

[minValne, position] = min(L); 
value = parent (minValue); 
mark value as part of the sub-tree;
Lfpositionj—value;

end
Remove all nodes that are not marked as part of the sub-tree;
Figure 4.2 illustrates the strategy

Algorithm 2: Sub-tree extraction
Figure 4.1 illustrates the process and Figure 4.2 shows two samples. Assum­

ing that ‘p’(the square node) is a predicate node and nodes ‘al’ and ‘a2’ are its 
arguments ^ (the arguments are defined by the semantic relationships, in this 
case the semi-dotted arrows.), the sub tree extracted from the above sentence 
will contain the nodes ‘al’, ‘a2’, ‘p’ and all ancestors of ‘al’, ‘a2’ and ‘p’ up 
to the first common one (in this case node ‘u’), which is also included in the 
aforementioned sub-tree. None of the white nodes are included in the snb-tree. 
The straight lines represent syntactic dependency relationships.

^‘p’)‘aT and ‘a2’ are nodes assumed to be already identified.
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(b) sub-tree sample 1

(c) sample tree (d) sub-tree sample 2
The minimal sub-tree for a set of nodes is the one which contains the paths 
between the nodes selected to be in the sub-tree (in these samples node ‘a’ 
and node ‘b’) through the nearest common ancestor. The nearest common 
ancestor is drew in black and the paths are drew in grey. All dark nodes 

belong to the sub-tree. Algorithm 2 describes this implementation.

Figure 4.2: Two samples of sub-tree extraction
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4.3 The labelling sub task

Input: training data set (labelled)
Input: testing data set (nnlabelled)
Output: testing data set (labelled) 
load training and testing data; 
adapt the trees for the tree distance algorithm; 
foreach sentence from training and testing data do 

I obtain each minimal sub-tree for each predicate; 
end
foreach sub-tree T from the testing data do

calculate distance and the alignment from T to each training sub-tree; 
sort the list of alignments by distance; 
use the list to label the sub-tree T ;

end
Algorithm 3: Tree-SRL system pseudo code

Input: dependency tree structures 
Output: tree structures, unlabelled arrow 
foreach tree do

foreach arrow do 
I move the label to the child node; 

end
add label ‘root’ to the empty arrow label slot on the head node;

end
Algorithm 4: Tree adaptation for tree distance algorithm 

The Tree-SRL system performs a sub task of the SRL-only closed challenge.
For this task, predicates and their arguments are already identified. Therefore, 
the system only has to label the relationships. The predicate disambiguation 
task is ignored.

The Tree-SRL system is implemented in C+ + . The ‘pseudo code’ of the 
system is described in Algorithm 3, where:

• Trees are preprocessed in order to move the dependency labels from the 
arrows into node labels. (Algorithm 4)

• A minimal sub-tree is the one that contains at least the predicate and can 
also contain arguments.
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• There are several ways to use the sorted list for labelling a sub-tree. They 
are discussed in section 4.6.

• The list is sorted by ascending tree distance order.

4.4 Adapting dependency structures

The tree distance algorithm is not designed for working with labelled arrows, 
but with labelled nodes^, what makes necessary to change the trees into a new 
tyi)e without labelled arrows. Possible ways to do this are:

1. Remove the labels of the arrows. This strategy loses important informa­
tion (the dependency relationships).

2. Add a new intermediate node between the nodes of the original tree which 
has a relationshii) represented by an arrow. This strategy nearly duplicates 
the amoiint of nodes and has the negative effect of having nodes with 
different meanings (some of them are words, some of them relationships).

3. Move the label of the arrow into the child node. This strategy has been 
implemented and described in Algorithm 4.

The tree distance implementation of the tree-SRL system, accepts multiple 
labels per node, and the cost of matching two nodes depends on how many 
different labels there are.

4.5 Projecting labels though mappings

Any kind of mapping with a one-to-one restriction can be used for projecting la­
bels. In this semantic role labelling task the semantic relationships are between 
two single nodes; the predicate node and the argument node.

If a one-to-one partial mapping from the nodes of tree S into the nodes 
of three T, matches two predicate nodes f{p^) = and two of their corre­
sponding argument nodes also match each other /(af) = , then the semantic

^Section 2.4.1 gives some details about the format of the data on the CoNLL 2009 shared 
task.

^/(a) = b: means that the mapping matches node a to node b.
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relationship between nodes and af can be projected as a relationship between
and
Figure 4.3 illustrates this process with samples from the English data set.
Figure 4.3 shows two sentences in a dependency tree representation, One is 

labelled (the training sentence, bottom side) and the other is unlabelled (the 
testing sample, top side). At each node the word form and its position in the 
sentence is shown.

Straight arrows represent syntactic dependencies. The square node repre­
sents the predicate that is going to be analysed (There can be multiple predi­
cates in a single sentence, but in this sample only the predicate “rose” is shown). 
Dashed arrows between a square node and an elliptic node represent a semantic 
relationship. These arrows have a semantic tag: for the labelled sentence (Al, 
A2 and A4). The alignment predicts the labels Al, A2 and A4 (producing two 
correct predictions and one wrong, thus the correct labelling is Al, A2 and A3).

The sub-tree which is labelled is called the source sub-tree and the one in 
which the projection is made is called the target snb-tree. If the mapping used 
does not produce the matches needed to project the label on the target sub-tree 
then the projection is invalid. In the case of using multiple projections to vote 
what label should be predicted (which is the case of using k-NN, explained in 
section 3.4) invalid projections will count as null votes.

4.6 Strategies to make predictions

There are multiple ways to use k-NN to select “n” sets of neighbors labelled 
samples to label “n” pre-identified arguments for a single predicate. This section 
details three different algorithms to do it which are implemented and mention 
briefly another two possible strategies to do it which are not implemented. No 
further strategies are mention because I could not imagine any other way to do 
it.

^Note that not all semantic relationships of T have to be predicted by S, the alignment 
can predict just part of the annotation.
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Figure 4.3: The projecting label process 
For clarity: dependency relations are drew at the arrows of the dependency in

stead of inside the dependant node.
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4.6.1 One argument at a time

Input: sub-tree to be labelled
Input: list of mappings sorted by ascending tree distance 
Output: label for the relationship 
foreach predicate (p) in T do

foreach argument (a) dependent on p do
foreach equivalence class EC in the sorted list do 

foreach mapping (map) in EC do 
if I) I ^ 0 then 

I knnPanel ^ sr{fmap{p), /map(a)); 
end 

end
if knnPanel is ready then 

I break loop;
end 

end
sr{p,a) ■<— knnPanel.getPrediction{) ;

end 
end

• ‘p’ is the node predicate in T.

• ‘a’ is a node argument in T.

• ‘map’ is a mapping between the sub-tree that has to be labelled and a 
sub-tree in the training data set.

• sr{p, a) gives the set of semantic labels of the relationship between the 
predicate node ‘p’ and the argument node ‘a’. \sr{x,y)\ > 0 is true if 
there is at least one semantic relationship from predicate node x and 
argument node y.

• fmapi^) gives the matched/image node of the node x through the maping 
‘map’. The method function is explained in Figure 3.1 on page 42.

• knnPanel is ready when the panel contains at least one sample and 
there are no ties on the voting.

• knnPanel.getPrediction{) is a method that return the set of labels who 
win the voting in the k-NN panel.

Algorithm 5: One-at-a-time strategy 
Algorithm 5 gives a pseudo code for the case that the requested k — 1, and
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accordingly the attempts to make a prediction starts with the first ecpiivalence 
class.

This strategy produces an independent k-NN panel for each of the predicates 
to be labelled, which may contain different amount of equivalence classes for 
each argument. The system predicts argument by argument without keeping 
any information used for the previous argument of the same predicate.

In general for k > I, a, prefix ‘PRE’, of the sequence of ecpiivalence classes 
is found whose size is closest to k, and the attempt to make a prediction starts 
with the equivalence classes with this prefix. Accordingly, the pseudo-code may 
be seen as describing the behaviour with A: > 1 if the first equivalence class is 
thought of as the above described prefix.

4.6.2 One-at-a-time ignoring equivalence classes

This is a naive simplified version of one-at-a-time strategy which assumes that 
each ecpiivalence class contains a single example, in fact the strategy consist on 
ignoring the existence of ecpiivalence classes wliicdi contain more than one sam­
ple. The version for A: = 1 does not recpiire an elaborated k-NN implementation 
because there is no panel, no voting, and so, there are no voting ties. Algorithm 
6, shows the pseudo code. The purpose of experimenting with this algorithm 
is to analyse the impact of the k-NN module on the system and the awareness 
that ecjuivalence classes usually contain more than a single .sample.
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Input: sub-tree to be labelled
Input: list of mappings sorted by ascending tree distance 
Input: k value
Output: label for the relationship 
foreach predicate (p) in T do

foreach argument (a) dependent on p do
foreach mapping (map) in the sorted vector do 

k- k-1;
if \sr(^fjjiapij)), f^fip{p)^\ ^ 0 then 

knnPanel i sv(^fYnapi,p)i 
if knnPanel is ready and k<l then

sr{p,a) <— knnPanel.getPrediction{) ; 
break loop; 

end 
end 

end 
end 

end
Algorithm 6: One-at-a-time strategy ignoring eciuivalence classes

4.6.3 All arguments at a time

One-arguinent-at-a-time permits the system to use a different k-NN panel size 
to predict each of the arguments of the same predicate.

An alternative way could be to force the system to use the same panel of 
samples to predict each of the arguments of a single predicate. Note that the 
same panel of samples will produce a different panel of votes for each argument 
of the same predicate. This happens because the mapping of a single sample 
will vote or project different label for the different semantic relationships on the 
same sub-tree.

In this way, all neighbours samples used have to vote for all semantic rela­
tionships that have to be predicted, and the prediction of the system is only 
ready when all panels are ready to produce a prediction. Algorithm 7 details 
the process.
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Input: sub-tree to be labelled
Input: list of mappings sorted by ascending tree distance 
Output: label for the relationship 
foreach predicate (p) in T do

foreach equivalence class EC in the sorted list do 
foreach mapping (map) in EC do

foreach argument (oi) relative to p do 
if /map(o))I > 0 then

I knnPanel[il.add(sr(/map(p) 5 fmap

end 
end
ready true;
foreach argumemt (oi) relative to p do 

if krinPanelji] is NOT ready then 
I ready = false ;

end 
end
if ready==tr%Le then 

I break loop ; 
end 

end 
end
foreach argument (aj) relative to p do 

I sr(p,a,;) <— knnPanel\i].getPredicticm,{)\
end 

end
• with this strategy for each predicate there are as many k-NN panels as 

argument nodes.

Algorithm 7: All-at-a-time strategy, k=l

4.6.4 Further Strategies to make predictions

The following strategies were not implemented.

4.6.4.1 Golden samples

Another alternative would be to ignore any sample which can not produce a 
valid vote for all semantic relationships to be predicted.
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4.6.4.2 Threshold mappings

Another alternative would be to ignore any sample which does not produce a 
certain percentage of valid votes for all semantic relationships to be predicted.

It is more flexible than ‘golden samples’ because in some cases it can be very 
difficult to find samples which can produce valid votes for all arguments.

4.7 Atomic settings

The atomic settings used on the tree distance system have an important impact 
on the performance of the system: it not only modihes the ranking of neighbours 
by distance, it can also modify the mapping between the nodes of the two taken 
sub-trees.

There is an irffinite range of possibilities for calibrating the atomic costs. 
This thesis explores the effects of four different atomic settings: Ternary (based 
only on syntactic information), Hamming (extending ternary with lexical infor­
mation) and their frame match versions (in which swapping predicates nodes 
of a different frame have an extra cost of one). Two other systems were used as 
baselines: Shape and Binary

Shape

• Swaps have a cost of 1.

Figure 4.4 shows the mapping sample for Shape settings for the example in 
Figure 4.3 on page 63.

Binary

Binary settings are named in this way because the atomic distance between two 
nodes can only be zero or one.

Swaps cost:

• 1 if POS or DepRel are different

• 0 otherwise.
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Figure 4.5 shows the same two trees in the way that the Binary system 
would see it (The Ternary Binary system concatenates POS and DepRel as a 
label for the node.

Ternary

The swap cost is the sum of the following costs:

• +0.5 if POS is different;

• +0.5 if DepRel is different;

It is named “Ternary” because there are three possible swapping cost out­
comes: 0, 0.5 and 1.

These costs are chosen to produce a smoother distance measure improving 
the Binary system. Figure 4.6 shows the mapping sample for Ternary settings 
for the example in Figure 4.3 on page 63.

Hamming

This settings is call Hamming because it gives ecpial weight to each label mis­
match. The swap cost is the sum of the following costs:

• ^0.25 if POS is different;

• ^ 0.25 if DepRel is different;

• 1^0.25 if Lemma is different;

• • 0.25 if Form is different;

This atomic cost setting is designed to use all information available. Figure 
4.7 shows the mapping sample for Hamming settings for the example in Figure 
4.3 on page 63.

Frame Match versions

The Frame Match versions of the atomic costs present an extra cost of one unit 
for swapping two predicate nodes from different frames.

For Frame Ternary the swap cost is the sum of the following costs:
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• +0.5 if POS is different;

• fO.5 if DepRel is different;

• 1 if one node is a predicate and the other is not or if both are predicates 
which belong to a different frame.

For Frame Hamming the swap cost is the sum of the following costs:

• 4 0.25 if POS is different;

• +0.25 if DepRel is different;

• +0.25 if Lemma is different;

• I 0.25 if Form is different;

• 1 1 if one node is a predicate and the other is not or if both are predicates 
which belong to a different frame.

Figures 4.Sand 4.9 shows the mapping sample for Frame Ternary and Frame 
Hamming settings for the example in Figure 4.3 on page 63.

Insertion and deletion cost

In all experiments insertion and deletion cost is equal to one unit. What is 
variable is the swapping cost.

Illustrations of the atomic settings

This section illustrates how Figure 4.3 on page 63 looks for the system when 
using each of the different atomic settings previously described. The numbers 
in the swapping arrows represent the cost of that particular atomic swapping.
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Figure 4.5: Binary settings

Figure 4.6: Ternary settings Figure 4.7: Hamming settings
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Figure 4.8: Frame Ternary settings Figure 4.9: Frame Hamming settings

4.7.1 Expected performance

The atomic settings are designed by increasing complexity, and h is expected 
that the more complex settings perform better than the simpler versions. There­
fore the following results are expected:

HI Shape < Binary

H2 Binary < Ternary

H3 Ternary < Hamming

H4 Ternary < Frame Ternary

H5 Hamming < Frame Hamming

H6 Frame Ternary < Frame Hamming

A<B means that the accuracy of the system using the A setting is lower than 
the accuracy of the system using the B settings.
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4.7.2 Future work
The possibility of considering smother similarities between nodes could include 
smother similarities between words: synonyms may have lower swapping cost 
and smother similarities between dependency relations, for instance NN and 
NNP relations are quite similar.

4.8 Important consideration on data set

Due to the excessive computational cost of the k-NN algorithm the training 
data sets of Czech and English were reduced by loading only the first 10,000 
sentences for Czech and the first 20,000 sentences in English.

This decision is a systematic nnder-sampling method, which is not necessar­
ily the optimal to preserve the performance of the system and can add the risk 
of reducing the scope of the domain, by picking all the samples of one sub-topic 
and ignoring all the samples of another sub-toi)ic. On the positive side, this 
decision should make the ex})erinients easier to replicate with more precision 
than what woidd be expected by random under-sampling. Sophisticated under- 
sampling methods may increase the accuracy but they are outside the scope of 
this thesis.

4.9 The k-NN choice

The system is not using k-NN to classify semantic structures or arguments, but 
to select a panel of samples. Each of those samples may contain annotation for 
multiple predicate-argument relations. Those relations will be projected into 
unlabelled query as a prediction.

In order to project a label it was necessary to have a one-to-one alignment 
between a labelled sub-tree and the unlabelled sub-tree. Tree edit distance 
algorithm produces a one-to-one alignment and a distance score.

Alternative algorithms such Tree Kernels (Moschitti et ah, 2008) can com­
pare tree structures but do not create the alignment need it for the projection. 
Tree Kernels can be use for classification, but not to project alignment. There­
fore k-NN was chosen as the machine learning algorithm.
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4.10 Similar systems

As far was the author of this tiiesis is are aware, there has been little work 
exploring an alignment approach to SRL, an exception being Furstenau and 
Lapata (2011). In their work they also consider projection of annotation from 
within a labelled dependency tree to an unlabelled one, but there are many 
points at which their work differs from that presented in this thesis. They work 
with the FrameNet annotation inventory (Baker et ah, 1998). They also align 
tree by applying a a graph-edit alignment notion, one which does not pay any 
attention to ancestry or linear order. The alignment score they use is similarity- 
based, and refers to lemma and dependency relationships. They do not consider 
alternatives, such a distance-based scoring. A further difference is that their aim 
is not per-se to annotate an unlabelled corpus in its entirety, but rather from 
amongst generated annotated versions of the unlabelled data (the expansion 
corpus in their terminology) to select cases to add as exemplars to a frame lex­
icon (the seed corpus in their terminology). Rather than basing the annotation 
of an unlabelled item, T, on its nearest labelled neighbours, {5i,..., Sn}, they 
take each seed item, S, in turn and use it to project annotation to its nearest 
neighbours in the expansion corpus, {Ti,.. .Tn}. For all of these reasons, it 
was not possible to make any meaningful quantitative comparisons with their 
work. Nonetheless, it seems reasonable to exi)ect the contrasts already described 
concerning cost settings and distance verstis similarity to apply to the kind of 
data-set expansion scenario they discuss and investigating whether this is so is a 
potential avenue for further research. Conversely it would be interesting to see 
how the findings are affected if the notion of alignments were replaced, which 
must be Tai mappings, with the notion of alignment from their work, which is 
left for future work.

4.11 Conclusion

This chapter explained the architecture of the Tree-SRL system, which performs 
the argument classification sub-task of a Semantic Role Labelling system. It 
started by introducing how the system extracts sub-trees containing a predicate 
with all its arguments from the dependency tree representation of the text. The
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alignments provided by the tree edit distance algorithm allow the system to 
transfer the labels from one annotated sub-tree to another one as a prediction, 
and the distance score to rank the alignment, which enables a k-NN module to 
select which of the alignments will be used on the prediction. There is more 
than one way to use the list of ranked alignments and the system implements 
three of theni,with their impacts to be analysed in Chapter 8.

The alignments and the tree distance score depends on the atomic costs 
for swapping, deleting or inserting nodes. This chapter proposes four atomic 
settings plus another two as base lines. For all atomic settings proposed the 
deletion and insertion cost is fixed to one unit. There are two base lines: Shape 
and Binary settings. The Shape setting assigns a cost of one unit to any swap 
independent of the content of the nodes being swept. The Binary setting assigns 
a cost of one or zero de])ending on the syntactic feature. The non-base line 
measures are Ternary, uses syntactic features and can produce the cost values, 
and Hamming,uses the lexical features producing up to hve different cost values. 
For both of these, there is a Frame Match version in which there is extra cost 
for swapping predicate nodes which belong to a different semantic frame. The 
expectation is that with the increasing complexity of the atomic cost settings 
the accuracy of the system will also increase, this would be tested in Chapter 
5. Regarding the parameter k of the k-NN module the default adopted value is 
one. This decision will be tested in Section 8.4 on page 203. The chapter ends 
referencing a similar system to the one proposed in this thesis.

The description of the source code, sanity tests, user manual and compu­
tational cost analysis, are i)laced in Api)endix B. The source code can be 
download from https://github.com/francoph/Tree-SRL.git
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Chapter 5

Distance outcomes

5.1 Introduction

This chapter presents the main results of the experiments, compares and com­
ments on them in detail. It starts with describing the baselines, and comparing 
the atomic measures to each other. Then it continues explaining details of 
the observation and hnishes by contrasting the impact of using tree structures 
against using linear structtire.

5.2 The base lines and inverse perplexity

Figure 5.1 shows the inverse perplexity of the set of semantic roles and the three 
base lines: Majority Label, Shape, and Binary settings.

In a text where all words or events are equally probable, the perplexity would 
be exactly the same as the size of the alphabet. Therefore, if the probabilities of 
the semantic labels would be balanced the majority label settings would be as 
accurate as the value of the inverse of perplexity. The frequency of the semantic 
labels is very imbalanced and that is why there is a large margin of difference 
between the inverse perplexity and the accuracy of the Majority Label.

All atomic measures settings including Shape and Binary were dehned in 
Section 4.7, page 68. It was unexpected^ that Shape (settings) performs better 
than Majority Label for all data sets.

Mhe author had an intuition that both would score similarly to each other
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Percentages Perplexity ‘ Majority Label Shape Binary
Chine.se 13.65 30.86 47.49 82.14
German 27.59 38.96 54.66 67.41
o-German 27.27 37.05 62.06 69.51
English 12.35 37.06 44.24 69.34
o-Fbiiglisli 11.41 35.33 44.27 63.08
Catalan 8.26 21.90 26.19 65.12
Spanish 8.33 20.17 26.73 64.97
Czech 8.32 29.98 35.17 66.28
o-Czech 8.15 29.08 35.18 64.42
Japanese 10.51 32.21 35.47 57.93
Average 13.58 31.26 41.15 67.02

Figure 5.1: Accuracy across tlie four Base lines and inverse perplexity of the 
distribution of labels

The semantic roles of the German language^ showed the highest inverse 
perplexity (over 27%) which is probably due to having the smallest alphabet: 
10 labels where the average for all ten data sets is 47.

Another observation is that the majority label base line and the inverse 
perplexity in German in-domain and out-of-domain get closer than in any 
other data set, but the Shape setting in out-of-domain performs better than 
in-domain.

The four lines do not always follow each other, for instance Spanish and 
Gatalan show a valley for Shape and Majority label but not for Binary and 
inverse perplexity.

^The set of roles can be seen as classes of a classification task.
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The Shape setting uses only the structural iiiformatiou and always perforins 
better than the Majority Label base line, suggesting that structure inforuiatioii 
is very useful for classifying arguuieiits. Figure 5.2 illustrates the couiparisou 
in a isolated way. Section 5.3.5 will give more details about Shape.

65%

Percentages Majority Label Shape
Chinese 30.86 47.49
German 38.96 54.66
o-German 37.0.5 62.06
English 37.06 44.24
o-English 35.33 44.27
Catalan 21.90 26.19
Spanish 20.17 26.73
Czech 29.98 35.17
o-Czech 29.08 35.18
J apanese 32.21 35.47
Average 31.26 41.15

Figure 5.2: Accuracy Majority Label vs Shape setting
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5.3 Contrasting swapping costs

This section is going to describe the main aspects of the results all together and 
after that it will turn into the further details of those aspects, its analysis and 
possible explanation for why the results are in such way.

5.3.1 Main observations

Figure 5.3 shows a graph with the accuracy for the seven languages^ on the 
evaluation data set including the three out-of-domain cases, along with three 
base lines and the Table below the graph shows the exact values.

The in-domain languages are sorted by the average accuracy of the fotir 
atomic measures followed by the out-of-domain results.

Table 5.1 shows an extensive comparison of four atomic measurements (ex­
cluding base lines) to each other showing if they are significantly different.

The hrst bi^ise line is the inverse perplexity. The second base line is the Ma­
jority label. The next two base lines Shape and Binary were already described 
in Section 4.7 at page 68 and discussed in Section 5.2.

All four atomic measures clearly out-perform Majority Label and Shape. 
And on average across all languages, “Frame Hamming” achieves the higher 
performance (see Figure 5.3 average column).

Table 5.1 compares extensively all four settings, and can be read as follows: 
(T) for Ternary settings, (H) Hamming, (FT) Frame Ternary and (FH) Frame 
Hamming. Each line of the table corresponds to one language, where the first 
one is Chinese. The first line of the Chinese comparisons: starts with “T-H” 
means that Ternary was compared with Hamming. Ternary (at the column 
‘first’) produces an accuracy of 83% and Hamming (at the column ‘second’) 
produces an accuracy of 83.93%. Results are given with two decimals. The last 
column of the table shows the difference between the first and second columns. 
At the right side of the comparison two stars appear meaning that the McNemar 
test detected a significant difference at a strict significant threshold (p=0.001), 
the other options are one star for significantly different (p=0.05) or an ecpial 
symbol to indicate that no significant difference was detected. The exclamation

^For deletion, insertion cost equal to one.
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Percentages Perple—
xity~^

Majority
Label

Shap Bina Tern Hamm Fram
Tern

Fram
Hamm

Chinese 13.65 30.86 47.49 82.14 83.00 83.93 84.78 81.79
German 27.59 38.96 54.66 67.41 68.25 80.82 86.03 90.50
o-German 27.27 37.05 62.06 69.51 69.10 72.53 74.62 77.89
English 12.35 37.06 44.24 69.34 70.12 77.57 77.98 79.86
(V English 11.41 35.33 44.27 63.08 65.77 66.68 69.83 69.69
Catalan 8.26 21.90 26.19 65.12 65.23 74.76 76.77 78.51
Spanish 8.33 20.17 26.73 64.97 64.89 73.95 75.04 77.61
Czech 8.32 29.98 35.17 66.28 65.84 73.28 69.99 72.74
o-Czech 8.15 29.08 35.18 64.42 64.73 72.56 69.24 72.23
Japanese 10.51 32.21 35.47 57.93 56.69 71.92 60.43 70.53
Average 13.58 31.26 41.15 67.02 67.36 74.80 74.17 77.43

Seven languages and three out of domain data sets 
The inverse perplexity of the semantic labels and three base lines was also drawn: (1) the 

prediction of a system that always predicts the majority label on the training data set, (2) a 
tree system blind to any label (Shape) where the swapping cost, insertion and deletion is 

always 1 and (3) a Binary system where the swapping cost is 1 if DepRel or POS labels are 
different, this base line is almost as good as the Ternary system 

The in-domain languages are sorted by the average accuracy of the four bars.

Figure 5.3: Accuracy of Tree edit distance
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Table 5.1: Extensive comparison (excluding base lines) of the experimental 
atomic costs

On the comparison between two settings: means that the McNemar test
detect a statistical difference with 99.9% confidence and means 95 % 

confidence. All following one to one comparisons on the same data set will 
follow the same notation. The total counts hoy many times an statistical

accuracy first second difference
T-H 83% 83.93%! 0.9238%

01 t-ft ** 83% 84.78%! 1.779%
c T-FH ** 83%! 81.79% -1.216%

X H-FT ** 83.93% 84.78%! 0.8552%
O H-FH *♦ 83.93%! 81.79% -2.14%

FT-FH ** 84.78%! 81.79% -2.995%
T-H 68.25% 80.82%! 12.57%

t-ft 68.25% 86.03%! 17.78%
E T-FH 68.25% 90.5%! 22.25%
0) H-FT ** 80.82% 86.03%! 5.214%
0 H-FH ** 80.82% 90.5%! 9.683%

FT-FH ** 86.03% 90.5%! 4.469%
T-H •• 69.1% 72.53%! 3.434%
T-ft ** 69.1% 74.62%! 5.528%

£ T-FH *♦ 69.1% 77.89%! 8.794%
<u
0 H-FT • 72..53% 74.62%! 2.094%

H-FH ** 72.53% 77.89%! 5.36%
FT-FH ** 74.62% 77.89%! 3.266%

T-H 70.12% 77.57%! 7.446%
JZ T-ft •• 70.12% 77.98%! 7.858%

T-FH ** 70.12% 79.86%! 9.731%
c H-FT 77.57% 77.98%! 0.4122%
U H-FH ** 77.57% 79.86%! 2.285%

FT-FH 77.98% 79.86%! 1.872%
T-H = 65.77% 66.68%! 0.9091%

■« T-FT ** 65.77% 69.83%! 4.056%
T-FH ** 65.77% 69.69%! 3.916%c

U H-FT ** 66.68% 69.83%! 3.147%
A H-FH ** 66.68% 69.69%! 3.007%

FT-FH = 69.83%! 69.69% -0.1399%
T-H •* 65.23% 74.76%! 9.534%

c T-ft •* 65.23% 76.77%! 11.55%
Ic T-FH 65.23% 78.51%! 13.28%
rt H-FT ** 74.76% 76.77%.! 2.013%
O H-FH ** 74.76% 78.51%! 3.751%

FT-FH ** 76.77% 78.51%! 1.738%
T-H 64.89% 73.95%! 9.066%

'n T-FT ** 64.89% 75.04%,! 10.15%
C T-FH 64.89% 77.61%! 12.72%
a H-FT * 73.95% 75.04%! 1.082%

7) H-FH ** 73.95% 77.61%! 3.653%
FT-FH *• 75.04% 77.61%! 2.571%

T-H 65.84% 73.28%! 7.437%
JS T-ft ** 65.84% 69.99%! 4.148%
u T-FH *• 65.84% 72.74%! 6.891%
N
0 H-FT ** 73.28%! 69.99% -3.289%

H-FH ** 73.28%! 72.74% -0.5456%
FT-FH ** 69.99% 72.74%! 2.743%

T-H *• 64.73% 72.56%! 7.83%
x T-FT ** 64.73% 69.24%! 4.502%
0) T-FH ** 64.73% 72.23%! 7.491%
U H-FT 72.50%! 69.24% -3.328%
6 H-FH = 72.56%! 72.23% -0.3385%

FT-FH 69.24% 72.23%! 2.989%
T-H ♦* 56.69% 71.92%! 15.23%

(A T-ft ** 56.69% 60.43%! 3.743%
c T-FH 56.69% 70.53%! 13.84%
a H-FT ** 71.92%! 60.43% -11.49%
(C

■-5 H-FH 71.92%! 70.53% -1.392%
FT-FH ** 60.43% 70.53%! 10.1%

accuracy lst>2nd 2nd> 1st difference
T-H *0. **0 *9 **9 7.438%

T-FT *0. **0 *10, **10 7.109%
c6 T-FH *1. **1 *9, **9 9.771%
0 H-FT ♦3, **3 *6, **4 -0.329%

H-FH *3. ♦■^3 *6, **6 2.332%
FT-FH *1 *8, **8 2.661%
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95%
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c? o-

The four bars on Figure 5.3 are drawn linearly. 

Figure 5.4: Accuracy of Tree edit distance

mark at the right side of a percentage in the first or second column indicates 
which of the values is higher. If the McNemar test detected a strict significant 
difference then the higher value, in addition to having an exclamation mark, 
will be written in bold letters. Each language contains six comparisons because 
they correspond to all the possible comparisons between the four settings.

The bottom of table 5.1 summarises the outcomes of pair-wise comparisons 
of the swap settings. Under Tst > 2nd’, appears two values at the side of on and 
two asterisks {*m**n), the value of (m) represents the amount of significantly 
different experiments (p = 0.05) in which (‘Tst>2nd”), and n represents the 
same but with stricter significance level (p = 0.001).

The upper side of the table shows the absolute values of accuracy and dif­
ferences per languages.

This table shows that the hypothesis about the hierarchy of atomic measures 
is more or less accomplish (see Section 4.7.1): Shape < Binary < Ternary < 
Hamming, Ternary < Frame Ternary and Hamming < Frame Hamming.
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5.3.1.1 Binary and Ternary

85%

80%

75%

70%

65%

60%

55%

-8^ o'*'
or tf* (jf* ^ J<> t? t,<}o' °

□ Binary 
■ Ternary

«- ,>'■ c/

fb
c?- a®'

accuracy Binary Ternary diflference
Chinese B-T ** 82.14% 83%! 0.8624%
German B-T = 67.41% 68.25%! 0.838%

o-Gerinan B-T = 69.51%! 69.1% -0.4188%
Englisli B-T ** 69.34% 70.12%! 0.7816%

o-English B-T ** 63.08% 6.5.77%! 2,692%
Catalan B-T = 65.12% 65.23%! 0.1064%
Spanish B-T = 64.97%! 64.89% -0.08457%
Czech B-T ** 66.28%! 65.84% -0.436%

o-Czech B-T == 64.42% 64.73%! 0.3097%
•Japanese B-T * 57.93%! 56.69% -1.241%

total B-T j»c2 * * *3, **3 0.341%
Two stars indicate strictly statistical difference, and one start indicates statistical difference.

Figure 5.5: Accuracy of Tree edit distance, Binary and Ternary

Binary perforins surprisingly similar to Ternary in spite of its simplicity. Figure 
5.5 contrasts both performances and shows the significant differences B-T. This 
comparison was omitted in Table 5.1 because Binary is considered a base line. In 
six data sets Ternary performs better than Binary but only three with strictly 
significant difference. Binary was found to be strictly significantly better in 
Czech, and significantly better in Japanese. The average difference is as small 
as 0.341% in favour of Ternary.
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5.3.1.2 Ternary and Hamming

90%

85%

80%

75%

70%

65%

60%

55% 1
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ES Ternary □ Hamming
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accuracy Ternary Hamming difference
Chinese T-ff ** 83% 83.939t! 0.9238%
German T-H ** 68.25% 80.82%! 12.57%

o-German T-H ** 69.1% 72.53%! 3.434%
English T-H *♦ 70.12% 77.57%! 7.446%

o-English T-H = 65.77% 66.68%! 0.9091%
Catalan T-H ** 65.23% 74.76%! 9.534%
Spanish T-H ** 64.89% 73.95%! 9.066%
Czech T-H ** 65.84% 73.28%! 7.437%

oCzech T-H ** 64.73% 72.56%! 7.83%
Japanese T-H ** 56.69% 71.92%! 15.23%

total T-H *0, **0 *9, **9 7.438%
Two stars indicate strictly statistical difference, and one start indicates statistical difference. 

The biggest gains are written in bold.

Figure 5.6: Accuracy of Tree edit distance, Ternary and Hannning

Figure 5.6 contrasts Ternary and Hamming i)erformances and shows the signif­
icant differences T-H. The accuracy for Ternary ranges from 56% to 83% and 
it is always out-performed by Hamming with strict signihcant difference except 
for the English out-of-domain data set. The average difference between Ternary 
and Hamming is 7.4%.

The main difference in design between Ternary and Hamming is that Ternary 
only uses syntactic features (Dependency Relation and POS) whereas Hamming
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also uses lexical features (Form and Lemma). The way Hamming settings uses 
lexical features is very rudimentary: it only checks if the feature has an identical 
value or not, in general using lexical features increases accuracy but this rudi­
mentary can reduce accuracy in some cases such Chinese, which will be discus 
in later sections.

Hamming ranges from 66% to 84%. The maximum differences between 
Ternary and Hamming were found in Japanese (15%) and German (13%).

By reviewing the literature it was observed that it is common to find sophis­
ticated algorithms to evaluate how similar two different words are; for instance 
Furstenau and Lapata (2011) used a co-occurrence algorithm created from a 
lemmatized version of the BNC. The system could work substantially better if 
one of these algorithms were to be used, but just by evaluating if lexical labels 
are equal or not the system increases its accuracy: Hamming performs better 
than Ternary.

Word similarity algorithms are left from the scope of this thesis as future 
work.
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5.3.1.3 Ternary and Frame Ternary

90%

85%

80%

75%

70%

65%

60%

55%

■
I
I

^ Hi p
o

3 Ternary I Frame Ternary

./

accur£u:y lernary Frame Ternary difference
Chinese T-FT ** 83% 84.78%! 1.779%
German T-FT ** 68.25% 86.03%! 17.78%

o-German T-FT ** 69.1% 74.62%! 5.528%
English T-FT ** 70.12% 77.98%! 7.858%

o-English T-FT ** 65.77% 69.83%! 4.0.56%
Catalan T-FT ** 65.23% 76.77%! 11.55%
Spanish T-FT ** 64.89% 75.04%! 10.15%
Czech T-FT ** 65.84% 69.99%! 4.148%

o-Czech T-FT ** 64.73% 69.24%! 4.502%
Japanese T-FT ** 56.69% 60.43%! 3.743%

total T-FT *0, **0 *10, **10 7.109%
This graph simplifies Figure 5.3.

Figure 5.7; Accuracy Ternary vs Frame Ternary

Figure 5.7 contrast Ternary and Frame Ternary. As it was expected,"* Frame 
Ternary performs better than Ternary with 7.16% difference on average, it is 
remarkable that Frame Ternary performs better with strict significant threshold 
difference for all ten data sets. German, Catalan and Spanish show the higher 
differences of 17.78%, 11.55% and 10.15%.

^As the complexity of the atomic measures increases it is expected the accuracy will 
increase as well. See section 4.7.1 on page 72 for further details.
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Section 5.3.3 will explain further details on about the effect of adding a 
frame mismatch, on Ternary, Hamming and Shape measures.

5.3.1.4 Hamming and Frame Hamming

90% □ Hamming H Frame Hamming

85%

80%

75%

70%

65%

ex' o> «?*’ 05- c/
O

1

accuracy Hamming Frame Hamming difference
Chinese T-FT ** 83.93%! 81.79% -2.14%
German T-FT ** 80.82% 90.5%! 9.683%

o-German T-FT ** 72.53% 77.89%! 5.36%
English T-FT ** 77.57% 79.86%! 2.285%

o-English T-FT ** 66.68% 69.69%! 3.007%
Catalan T-FT ** 74.76% 78.51%! 3.751%
Spanish T-FT ** 73.95% 77.61%! 3.653%
Czech T-FT ** 73.28%! 72.74% -0.5456%

o-Czech T-FT = 72.56%! 72.23% -0.3385%
.lapanese T-FT ** 71.92%! 70.53% -1.392%

total T-FT *3, **3 *6, **6 2.332%
This graph simplifies Figure 5.3.

Figure 5.8: Accuracy Hamming vs Frame Hamming

Figure 5.8 illustrates the comparison between Hamming and Frame Hamming 
settings.

As it was expected Frame Hamming performs better than Hamming, but 
not as notable as Ternary vs Frame Ternary. In three of ten data sets: Chinese, 
Czech and Japanese, Hamming performs better than Frame Hamming with
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an strictly significant threshold, and in out-of-doniain Czech, Hamming also 
performs better than Frame Hamming but no signihcant difference was found.

5.3.1.5 Frame Ternary and Frame Hamming

95%

90%

85%

80%

75%

70%

65%

60%

55%

saFrame Ternary CDFrame Hamming ■Ternary —Hamming

accuracy Frame Ternary Frame Binary difference
Chinese p^t-fh ** 84.78%! 81.79% -2.995%
German FT-FH ■** 86.03% 90.5%! 4.469%

o-German FT-FH ** 74.62% 77.89%! 3.266%
English FT-FH ** 77.98% 79.86%! 1.872%

o-English FT-FH = 69.83%! 69.69% -0.1399%
Catalan FT-FH ** 76.77% 78.51%! 1.738%
Spanish FT-FH ** 75.04% 77.61%! 2.571%
Czecli FT-FH 69.99% 72.74%! 2.74:1%

o-Czech FT-FH ** 69.24% 72.23%! 2.989%
Japanese FT-FH ■** 60.43% 70.53%! 10.1%

total FT-FH ■‘8, **8 2.661%

Figure 5.9: Contrasting Frame Ternary and Frame Hamming

Figure 5.9 shows the accuracy of Frame Ternary and Frame Hamming in Bars 
and Ternary and Hamming in lines, so differences between both can be seen 
easily.

Frame Ternary ranges from 60% to 86% and Frame Hamming from 69% 
to 91%. Frame Ternary and Frame Hamming seems to track each other more
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65 70
Ternary

(a) Ternary and Hamming correlation,(b) Frame Ternary and Frame Hamming 
Norm of residuals 10.328 correlation, Norm of residuals 8.0734

Figure 5.10: Accuracy correlation between Ternary to Hamming and Frame 
Ternary to Frame Hamming and their linear regressions

than Ternary and Hamming, as it can be observed on Figure 5.10 the graph 
correlating Frame Hamming with Frame Ternary have a Norm of residuals of 
about 8 which is lower than the norm of residuals of the correlation between 
Ternary and Hamming which is 10.3. Both norm of residuals are relatively high.

The differences between Frame Ternary and Frame Hamming (average dif­
ference is 2.7%) are smaller than the differences between Ternary and Hamming 
(average difference is 7.4%).

Three data sets seem to be different. Chinese, because Frame Hamming has 
lower accuracy than Hamming, o-English because Frame Ternary and Frame 
Hamming seems to have the same accuracy; and Japanese because the differ­
ences are the largest among all data sets.

The Chinese case is due to the particularly low accuracy of the Frame Ham­
ming setting, which performs worse than any of the other three measures. This 
will be analysed in Section 5.3.2.3.

Figure 5.10 shows the correlations. Figure 5.10a shows the correlation be­
tween Ternary and Hamming and Figure 5.10b shows the correlation between 
Frame Ternary and Frame Hamming. Frame Ternary and Frame Hamming show 
better correlation with each other (Norm residuals = 8.0734) than Ternary and 
Hamming (Norm of residuals = 10.328).
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The Norm of Residuals (|-2|)^ is calculated as:

(5.1) 1^1 = - fiAccj)

Where I is each data set used, Accj is the accuracy for the first setting 
(Ternary or Frame Ternary) on the language I, Accf is the accuracy for the 
second setting (Hamming or Frame Hamming) on the language / and f{x) is 
the value y for the linear regression at position x.

5.3.1.6 Chinese

Chinese has the highest overall accuracy across languages, with even the very 
simplest settings reaching relatively high accuracy. Section 5.3.6 will show more 
observations of this phenomenon along with the German data.

5.3.1.7 Japanese

Japanese reports the worst in-domain results, especially for the two Ternary 
versions settings. This is probably due to the fact that, on insi)ection, the 
Japanese data gives 96.1% of syntactic dependencies the same dependency rela­
tion,® practically cancelling the contribution of the dependency relation feature.

An alternative, less satisfactory explanation is that the average amount of 
nodes per snb-tree is very high, which makes it difficult to hud an adequate 
mapping. Figure 5.13 in Section 5.3.8 illustrates this phenomenon.

5.3.1.8 Spanish and Catalan

The outcomes for the Spanish and Catalan data sets are very similar to each 
other. This is not unexpected as for the most part one is a translation of the 
other and they were annotated in the same way with the same set of labels. 
This was already mention at Section 2.4.2 on page 22.
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□ in-domain 
0 out-of-domain

E
E
<0
I

E

English Czech

in-domain out-of-dornain fall
c Ternary
g Hamming
fe Frame Ternary
^ Frame Hamming

68.25% 69.10% -0.85%
80.82% 72.53% 8.29%
86.03% 74.62% 11.41%
90.50% 77.89% 12.61%

js. Ternary
Hamming

^ Frame I’ernary
Frame Hamming

70.12% 65.77% 4.35%
77.57% 66.68% 10.89%
77.98% 69.83% 8.15%
79.86% 69.69% 10.17%

^ Ternary
^ Hamming
^ Frame Ternary

Frame Hamming

65.84% 64.73% 1.11%
73.28% 72.56% 0.72%
69.99% 69.24% 0.75%
72.74% 72.23% 0.51%

Figure 5.11: Out-of-domain falls

5.3.1.9 Out-of-domain

Regarding the out-of-domain evaluations (see Figure 5.11), the accuracy of the 
settings get degraded ~10% in both hamming measures and slightly less in the 
Ternary measures. This was expected because Ternary measures are completely 
independent of the lexical features, which makes them more independent of the 
domain. It is remarkable that all measures in Czech and the Ternary measure in 
German fail to drop from in-domain to out-of-domain as much as might be ex­
pected (drops are around one per cent). In German it even seems to increase the 
accuracy ~2% in Ternary a bit. One of the reasons for the German case could

®This definition of Norm of residuals happens to be the defairlt measure of the graphical 
tool in which the graph 5.10 was made (Matlab)

®It gives a perplexity for all dependency relations used of 1.17
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be that the accuracy of the in-doniaiii data set was already very low relative 
to other measurements. Hajic et al. (2009) mentioned that the German out- 
of-domain data set was sampled from the EUROPARL corpus (Koehn, 2005) 
and was chosen to maximize the lexical coverage containing a large number of 
infrequent predicates. This could explain that the Ternary setting, which does 
not use lexical features, was not affected by the change of domain, but all other 
settings were affected.

It is difficult to explain why Czech is relatively unaffected by a change of 
the evaluation domain. A clue to finding this could be that the order of the 
arguments in the out-of-domain data set is more similar to the training data 
set than the in-domain evaluation data. Table 5.2, shows the perplexity pro­
duced by the sequence of artificial labels created by concatenating all semantic 
argument labels for each predicate, plus the predicate, according to their word 
order. For instance, if a predicate “sell.01” has two arguments, the first one 
is “AO” and the second one is “Al” the representative label for that predicate 
will be “AOAlsell.Ol”. As can be seen, the perplexity of Czech for the training 
data set plus the out-of-domain evaluation data set is lower than the training 
data set plus the in-domain evaluation data set. It suggests that the order of 
arguments of the out-of-domain data set is more similar to the training data 
set than the in-doniaiii evaluation data set.

Another clue may be that the perplexity of frames of Czech is higher than 
that of any other language, suggesting that the training data set has a very 
broad topic scope and it may include the out-of-domain as a sub-topic. See 
Figure 5.12 at page 94.

Table 5.2: Perplexity of argument sequences plus predicate in and out-of-domain

Perplexity training
-l-evaluation

training
+odd

difference ternary
fall

hamming
fall

German 940.47 973.80 33.33 -0.85 8.29
English 13,160.40 13,164.60 4.20 4.35 10.89
Czech 18,442.30 18,271.10 -171.20 1.11 0.72

Absolute values and difTerences are not comparable across languages because the size of the in-domain 
evaluation and out-of-domain evaluation data sets are different, and the set of semantic roles are different as 

well. The important observation is if the difference between perplexity in and out-of-domain is positive or
negative.
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5.3.2 Frame Hamming < Hamming
In four out of ten cases, Frame Hamming scores lower than Hamming (See 
Table 5.8 at page 87): for Chinese, Czech and Japanese it happens with a 
strict significant difference and for out-of-domain Czech it happens without a 
signihcant signihcant difference.

One side effect of adding cost for frame mismatches can be a larger demand 
of samples per frame, otherwise bad samples from a same frame may be pro­
moted. Hamming may be more susceptible to such effect than Ternary, because 
lexical features are very diverse in contrast with syntactic features. Therefore, 
Hamming is more likely to promote samples which have more common words, 
which may not be good samples.

Another way to see it, could be that Chinese, Czech and Japanese have too 
many frames, perhaps the frame set is too detailed or each frame can have too 
many senses/meanings. Figure 5.12 show that these three languages have the 
higher frame perplexity of all data sets used.
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Frame perplexity 
Lemma perplexity

I I
C$>

Language Frame
perplexity

Lemma
perplexity

Amount
sub-trees

samples per 
frame perplexity

Chinese 1,774 2,787 102,813 57.96
German 431 911 17,400 40.:i6
English 1,009 1,009 91,250 90.45
Catalan 662 840 37,431 56.56
Spanish 801 840 43,824 54.69

Czech 6,0,'54 3,919 106,138 17.53
J apanese 2,465 719 25,712 10.43

Figure 5.12: Perplexity of frames and lemmas
Training data sets only

5.3.2.1 Out-of-domain Czech

In out-of-domain Czech, the differences between Hamming and Frame Hamming 
are not significant. One might expect that Frame Hamming is more likely to 
score lower than Hamming in out-of-domain data than in-domain data because 
the out-of-domain data is more likely to contain infrequent frames. As Frame 
Hamming will find very few samples of the same frame. Hence it will damage 
the performance of Frame Hamming more than Hamming.

5.3.2.2 Czech and Japanese

Czech and Japanese languages seem to have very high Frame perplexity for the 
amount of samples in the data set. Its perplexity suggests an average of 17.53 
samples per frame for Czech and 10.43 samples per frame for Japanese as seen
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in Figure 5.12, where the other data sets have between 40 to 90. It could be that 
those amounts of samples are insufhcient for Frame Hamming to work properly.

This hypothesis is re-enforced by a experiment run with the full data set 
of Czech. Table 5.3 shows that once the whole Czech data set is used to train 
the machine, the differences between Hamming and Frame Hamming become 
smaller and with the full data set there was no significant difference found.

Table 5.3: Czech Hamming vs Frame Hamming

accuracy Hamming Frame Hamming difference
reduce data set H-FH ** 73.28%! 72.74% -0.5456%

full data set H-FH = 77.11%! 77.08% -0.03569%

5.3.2.3 Chinese Frame Hamming

The under-performance of Frame Hamming on the Chinese data set is proba­
bly the most surprising of all, because it performs worse than the other three 
measures used.

A possible explanation about why the accuracy for Frame Hamming in the 
Chinese data set is i)articularly low could be that the variety of the lexical 
features with the variability of the predicate frames was especially high.

As Figure 5.12 shows, the Chinese data set has very high lexical perplexity 
and very high frame perplexity. Only the Czech data set has higher lexical 
perplexity than the Chinese.

Having very high perplexity of Lemma labels and very high perplexity of 
predicate frames makes the lexical features potential noise for the k-NN system, 
as they may be often too different. Therefore, in this situation it is not possible 
for the k-NN module to discriminate useful samples from the useless ones. This 
explains why Frame Hamming has the lowest accuracy of all measures compared 
(T,H and FT) when for all other languages it usually presents the higher results.

The high frame perplexity seems is due to the annotators as they probably 
decided to annotate a large amount of frames, it is important to note that 
Chinese has the third highest frame perplexity across the seven languages.

The high lemma perplexity is probably due to the selection of a broad lan­
guage domain rather than a intrinsic feature of the Chinese language. The 
question about if the Chinese language is richer in lemmas is out of the scope
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of this thesis.

5.3.3 Simple vs Frame

Table 5.4: Simple vs Frame matching

accuracy frame mismatch+0 frame mismatch-t-1 difference
S-FS ** 47.49% 56.31%! 8.812%

Chinese T-FT ** 83% 84.78%! 1.779%
H-FH ** 83.93%! 81.79% -2.14%
S-FS ♦* 54,66% 73.93%! 19.27%

German T-FT ** 68.25% 86.03%! 17.78%
H-FH ** 80.82% 90.5%! 9.683%
S-FS * 62.06% 65.83%! 3.769%

o-German T-FT ** 69.1% 74.62%! 5.528%
H-FH *♦ 72.53% 77.89%! 5.36%
S-FS ** 44.24% 58.05%! 13.81%

English T-FT ** 70.12% 77.98%! 7.858%
H-FH ** 77.57% 79.86%! 2.285%
S-FS ** 44.27% 50.17%! 5.909%

o-English T-FT ** 65.77% 69.83%! 4.056%
H-FH ** 66.68% 69.69%! 3.007%
S-FS ** 26.19% 52.02%! 25.83%

Catalan T-FT ** 65.23% 76.77%! 11.55%
H-Fll ** 74.76% 78.51%! 3.751%
S-FS *♦ 26.73% 50.74%! 24.01%

Spanish T-FT ** 64.89% 75.04%! 10.15%
H-FH ** 73.95% 77.61%! 3.653%
S-FS ** 35.17% 50.82%! 15.66%

Czech T-FT ** 65.84% 69.99%! 4.148%
H-FH ** 73.28%! 72.74% -0.5456%
S-FS ** 35.18% 50.89%! 15.71%

o-Czech T-FT ** 64.73% 69.24%! 4.502%
H-FH = 72.56%! 72.23% -0.3385%
S-FS ** 35.47% 47.47%! 12%

J apanese T-FT ** 56.69% 60.43%! 3.743%
H-FH ** 71.92%! 70.53% -1.392%

S-FS *0, **0 *10, **9 14.48%
total T-FT *0, **0 *10, **10 7.109%

H-FH *3, **3 *6, **6 2.332%
all *3, **3 *26 ,**25 7.973%

In order to investigate the effect of adding a cost for frame mismatch, further 
experiments were done adding Shape vs Frame Shape along with Ternary/Frame 
Ternary and Hamming/Frame Hamming.

Table 5.4 compares two settings in which the first column does not get any 
penalty for swapping two nodes of different predicates and the second one gets 
a cost of one. The atomic measures selected are Shape (baseline), Ternary and 
Hamming.
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As the accuracy of the basic settings is higher, the gain by adding a cost for 
swapping nodes of different frames decreases, for instance Frame Shape always 
outperforms Shape with an average difference of 14.48% a significant difference 
{p < .05) was observed ten times and strictly signihcant difference (p < .001) 
was observed nine times. Frame Ternary performs better than Frame Shape, 
and it always outperforms Ternary with strictly signihcant difference and an 
average difference of 7.1%.

The biggest difference is found in the shape setting, the second biggest dif­
ference in Ternary, and the smallest differences are found in Hamming, which 
on some occasions even reports a small decrement of accuracy.

As said in previous paragraphs the settings with a cost for matching nodes 
from different frames report higher accuracy, with three exceptions on the Ham­
ming versions, Chinese, Czech and Japanese.
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5.3.4 Frame flexible vs extreme

Table 5.5: Flexible frame vs strict

accuracy frame mismatch— I 1 frame mismatch= f 100 difference
FS ** 56.31%! 48.66% -7.65%

Chinese prp ** 84.78%! 68.21% -16.58%
PH ** 81.79%! 68.45% -13.34%
FS ** 73.93%! 70.39% -3.538%

German FT = 86.03% 87.62%! 1.583%
FH * 90.5%! 88.73% -1.769%
FS ** 65.83%! 44.97% -20.85%

o-German FT ** 74.62%! ,53.43% -21.19%
FH ** 77.89%! 54.27% -23.62%
FS ** 58.05%! 52.69% -5.368%

English PX ** 77.98%! 71.36% -6.626%
FH ** 79.86%! 72.76% -7.098%
FS ** 50.17%! 38.46% -11.71%

o-English PX ** 69.83%! 52.34% -17.48%
FH ** 69.69%! 53.6% -16.08%
FS ** 52.02%! 49.62% -2.403%

Catalan P’X ** 76.77%! 73.4,5% -3.326%
FH ** 78.51%! 73.21% -5.303%
FS ** 50.74%! 48.48% -2.258%

Spanish FT ** 75.04%! 71.95% -3.087%
FH ** 77.61%! 72.67% -4.939%
FS ** 50.82%! 39.69% -11.13%

Czech FT ** 69.99%! 52.22% -17.77%
FH *♦ 72.74%! 53.13% -19.61%
PS ** 50.89%! 40.02% -10.87%

oCzech FT ** 69.24%! ,52.81% -16.4.3%
FH ** 72.23%! 53.58% -18.64%
FS ** 47.47%! 33.18% -14.29%

Japanese PX ** 60.43%! 41.45% -18.98%
PH ** 70.53%! 46.15% -24.37%

FS ♦10, **10 *0, **0 -9.008%
total FT *9, **9 *0, **0 -11.99%

FH *10, **9 *0, **0 -13.48%
all *29, **28 *0 ,**0 -11.49%

The previous section shows that adding a cost on swapping nodes of different 
frame (or predicate nodes to non-predicate nodes) increases accuracy. These 
results suggest that using samples from different frames may always lead to a 
decrement in accuracy. If that is the case, it should work even better when 
the mismatch cost tends to infinite. In order to test this hypothesis, Table 5.5 
compares the results of the settings for an extra cost of adding one unit against 
adding a hundred units if the predicate nodes belong to different frames.

Table 5.5 shows the resnlts in which it can be seen clearly, that contrary to 
what one might expect, removing the samples of other frames has a negative
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impact. The only exception is German Ternary in which the accuracy improves 
without any significant difference.

5.3.4.1 Error analysis

The error analysis for the English in-domain data over Hamming shows that 
a substantial amount of predictions change from correct to incorrect and vice 
versa, but the average is negative because ~58% of the changes are to the wrong 
side.

From the predictions that become incorrect, ~ 38% are due to the system 
not being able to predict any label. This can be a conseciuence of not finding a 
single example that can project a label. Which probably is the result of banning 
the usage of examples from different frames.

If all the cases where frame extreme (banning use of samples of different 
frame) were to adopt the output of the first setting (which just adds an extra 
cost) the performance will be 78.02% which is still less than the first setting. It 
reinforces the hypothesis that banning samples from different frames decreases 
accuracy.

5.3.5 Shape

Observing in detail the log files produced by the shape settings it can be ob­
served that occasionally the system is not able to produce a prediction, occur­
ring 5.5% on average for all data sets. This type of failure is very dependent on 
the language, sometimes it is due to a draw in the voting and sometimes due 
to not finding any usefid mapping. For instance in the case of Japanese 48% 
of the non-predicted cases were due to not finding any useful mapping. The 
percentages of failures to predict a label in descending order per data set are: 
Japanese 19.98%, Czech ont-of-domain 10.72%, Czech 9.72%, English oiit-of- 
domain 3.92%, Chinese 3.59%, English 3.57%, German out-of-domain 1.68%, 
German 1.12%, Catalan 0.78%, and Spanish 0.08%. Spanish and Catalan ratios 
of unpredicted labels are especially low, lower than 1%.

The fact that Spanish and Catalan had a very low ratio of the system failing 
to make any prediction does not mean the system works well. As can be seen in 
Figure 5.2 at page 78, Shape produced its worst results for Spanish and Catalan.
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Table 5.6: Top three system performance in CoNLL-2009

Che
(Che et al., 2009)

Shell
(Dai et ah, 2009)

Merlo
(Gesmundo et ah, 2009)

87.00 English 
85.65 Japanese 
83.27 Czech 

82.64 Average 
82.44 German 
81.90 Spanish 
81.84 Catalan 
76.38 Chinese

87.69 English 
85.28 Japanese 
83.31 Spanish 
83.01 Catalan 

82.52 Average
81.22 German 
80.87 Czech
76.23 Chinese

86.03 English
84.91 Japanese
83.21 Czech
82.66 Catalan
82.43 Spanish

82.14 Average
79.59 German
76.15 Chinese

These data sets are among the ones with tlie least amonnt of nodes per sub-tree, 
witli makes tliem more likely to have a similar shape along different sub-trees. 
It also appears that all sub-trees for Spanish and Catalan are rooted on the 
predicate, which causes the sub-trees more likely to have the same shape and 
the mappings to be usable. One of the optimizations for the system to save 
memory was to save only the distance to the hrst nearest neighbours. This 
means that if a the first equivalence class has inor(' sami)les than the limit, then 
that equivalence class will be truncated, by removing the rest of the samples. 
Therefore the k-NN module can iise only a panel size up to that amount. As 
the Shape setting does not distinguish on the content of the nodes, the hrst 
equivalence class is always at least one thousand samples, so all the distances 
saved are equal.

5.3.6 The Chinese and German out-performance

Table 5.6 shows the Fi score for each language of the three best performing 
algorithms in the CoNLL-2009 evaluation close challenge, sorting the language 
by its performance. All three settings give the worst results in the Chinese data 
set, which is interesting because the tree-SRL system gives the best average 
results on that particular data set. Again, for all three settings the results of 
the German data are below the average which is also interesting because in Tree- 
SRL the results on German data are second best on average and achieve the 
highest performance of all experiments for Frame Hamming settings. It suggests
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that tree distance and labelling by alignment methods may be especially suitable 
for Chinese and German data sets. Another surprise is Japanese, which gives 
the worst results in the Tree-SRL but the second best for Chen, Shen and Merlo 
systems.

5.3.7 German data set

Table 5.7: Accuracy for all labels and for A0..A9 together

accuracy simple frame difference
0) all T-FT ** 8,3% 84.78%! 1.779%

ail H-FH ** 83.93%! 81.79% -2.14%
IS AO-9 T-FT ** 87.06% 90.44%! 3.38%
o AO-9 H-FH ** 88.7% 90.03%! 1.339%
c all T-FT ** 68.25% 86.03%! 17.78%
e all H-FH *♦ 80.82% 90.5%! 9.683%
o; AO-9 T-FT ** 68.25% 86.03%! 17.78%
O AO-9 H-FH ♦* 80,82% 90.5%! 9.683%
c
ci all T-FT ** 69.1% 74.62%! 5.528%
s all H-FH ** 72.5,3% 77.89%! 5.36%
(V

O AO-9 T-FT ** 69.1% 74.62%! 5.528%
6 AO-9 H-FH ** 72.,53% 77.89%! 5.36%

all T-FT ** 70.12% 77.98%! 7.858%
.W all H-FH ♦* 77.57% 79.86%! 2.285%bO
C AO-9 rp_prp ** 73.78% 83.3%! 9.521%

AO-9 H-FH ** 82.08% 86.63%! 4.55%
JS

Ol all T-FT ** 65.77% 69.83%! 4.056%
Hb all H-FH *♦ 66.68% 69.69%! 3.007%
a

CiJ AO-9 T-FT ** 73.16% 78.95%! 5.795%
6 AO-9 H-FH ** 74,79% 80.44%! 5.646%

all T-FT *0, **0 *5, **5 7.401%
all H-FH *1, **1 3.639%

"S all all *9 ,**9 5.52%
o AO-9 T-FT ♦0, **0 *5, **5 8.402%

AO-9 H-FH *0 *5, **5 5.316%
AO-9 all *0, **0 *10 .**10 6.859%

The German data set extracted from SALSA (Burchardt et ah, 2006) was orig­
inally annotated in FrameNet style and then semi-automatically translated to 
Propbank style. In the process the annotation was substantially simplified, 
which explains why the German data set has the lowest semantic labels per­
plexity of all data sets (probably the data were over-simplihed).

It seems that adjuncts are not annotated, for example the word “yesterday” 
is usually annotated in the English data set as an “AM-TMP” role of a predicate, 
but the word “gestern” which means yesterday in German, is not annotated as 
a semantic role.

101



The high performance of the Frame version could be a side effect produced by 
a good performance of the core arguments, which are more predicate-dependent 
and the fact that the adaptation for the CoNL2009 substantially reduce the 
annotation of adjuncts.

In that case it would be expected that for all languages the Frame versions 
will out-perform the simpler ones in core arguments. Table 5.7 shows the accu­
racy of the simple Ternary and Hamming settings against their frame versions 
for all arguments, and for the enumerated arguments “AO” to “A9”, which are 
shared among German, English and Chinese^.

As it was expected, the differences between the frame version and simple 
version become larger when only core arguments are evaluated. It stiggests that 
giving priority for samples of the same frame helps core arguments more than 
adjuncts.

German language does not show any difference because it only has enumer­
ated arguments. Therefore the results have to be identical.

5.3.8 Number of nodes per sub-tree

It seems to be a clear inverse correlation along all data sets (all languages) 
between accuracy and the number of nodes on the sub-tree to be labelled.

Figure 5.13: Ternary accuracy along number of nodes per sub-tree

^the other languages do not use “AO” to “A9” labels.
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Figures 5.13a and 5.13b for Chinese and Japanese ternary respectively.
The x-axis represents the amounts of nodes per sub-tree. Bars represent 

the percentage of saini)les at each amount of nodes (the total equals one). The 
linear line is the linear regression of the accuracy, and the dotted line is the 
cubic regression.

The x-values in the Japanese graph are larger because there are Japanese 
snb-trees with a larger amount of nodes.

5.4 Contrasting representations:

5.4.1 Tree vs Linear (Levenshtein)

Structural information is important. That is why this thesis examines tree 
algorithms and not just string algorithms. In order to observe the effect of 
structural information more clearly a new experiment was designed in which 
sentences were not parsed and Levenshtein (1966) distance was used in the 
calcnlations.

There is no Levenshtein implementation but a particular way to load trees 
into memory, in which each node still contains the dependency relation to its 
own head node. However, the sentences trees are represented as a string, one 
child per node, in the same order as w'as written in the sentence: the first word 
being the head of the tree and the last word of the sentence the unique leaf.

In order to observe the effects of removing the structural information in an 
isolated way, it is important to inclnde the information about the dependency 
relation, even if there is no specification for which is the head word node. Oth­
erwise the effect may be produced by removing the dependency relations rather 
than produced by removing the tree structures.

The way to extract samples or sub-trees is exactly the same without any 
change of the algorithm; the only difference is that the extracted sub-trees are 
strings.

In many different computational problems excessive information leads ma­
chine learning to degrade accuracy, and that is why feature reduction algorithms 
exist. Thus removing structural information could improve accuracy. However, 
the results imply clearly that structural information has a very important role
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in the functionality of the system.
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The top value corresponds to tree edit distance, the border value corresponds 
to linear distance. Both with deletion cost equal to one.

Figure 5.14; Drop of accuracy from tree distance to linear distance

Table 5.8 compares the results obtained with trees to results obtained with 
the linearised version.

Figure 5.14 shows the comparison grai)hically, where the solid bars cor­
respond to the values for linear trees, and the top of the bars represent the 
accuracy for tree edit distance.

As is evident, for all languages and almost all swap-settings, the alignment 
on the linear representation gives substantially poorer results than the alignment 
on the trees with an exception for Japanese Hamming. Almost all experiments 
imply that the string versions produce losses on accuracy with a strictly signif­
icant significance. The average loss is approximately 5.78%, but not all losses 
are equal. The frame versions are the most affected by the loss of structural 
information.
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Table 5.8: Tree distance vs linear
accuracy tree distance linear distance | difference |

S01 ^
S T **
.5 H **
g FT ••

FH **

47.49%! 45^7%
83%! 76.59%

84.78%! 77.33%
83.93%! 78.21%
81.79%! 78.11%

-1.826%
-6.416%
-7.451%
-5.716%
-3.677%

c S ••
i T
E H ••
g FT **

FH •*

54.66%! 45.62%
68.25%! 60.06%
86.03%! 67.78%
80.82%! 67.5%
90.5%.! 77.56%

-9.032%
-8.194%
-18.25%
-13.31%
-12.94%

5 s **
t T-
S3 H **
0 ft **
0 FH **

62.06%! 52.93%
69.1%! 64.24%
74.62%! 64.24%
72.53%o! 66.75%
77.89%.! 69.43%

-9.129%
-4.858%
-10.39%
-5.779%
-8.459%

^ s -
is T **
^ M *■"
U FT

FH ■**

44.24%.! 37.56%
70.12%! 66.41%
77.98%>! 73.3%
77.57%! 73.38%
79.86%.! 77.01%

-6.678%
-3.715%
-4.681%
-4.187%
-2.847%

.2 S ••
■S T ••
M „ ..
u ft —
0 PH •

44.27%)! 38.08%
65.77%! 61.5%
69.83%! 63.64%
66.68%! 65.63%
69.69%! 67.48%

-6.189%
-4.266%
-6.189%
-1.049%
-2.203%

c S =.
« T •*
3 H *»
« FT ••

FH ••

26.19%! 25.83%
65.23%! 59.85%
76.77%! 64.31%
74.76%o! 67.06%
78.51%>! 69.81%

-0.3547%
-5.374%
-12.46%
-7.698%

-8.7%
^ s ••
w y *•
1 H ••
a, px **CO

FH *♦

20.73‘!'o\ 23.79%
64,89%! 59.12%
75.04%! 64.47%
73.95%! 65.55%
77.61%! 69.39%

-2.943%
-5.767%
-10.56%
-8.406%
-8.22%

s *•
JZ X •*

OJ H ■**N
o ft **

FH **

35.17%! 32.07%
65.84%! 64.02%
69.99%! 68.94%
73.28%! 67.4%
72.74%! 69.87%

-3.1%
-1.825%
-1.055%
-5.882%
-2.868%

•=o X **
0) ^
5 «*
V ft •*

FH ••

35.18%! 32.47%
64.73%! 62.68%
69.24%! 68.33%
72.56%! 66.47%
72.23%! 69.26%

-2.708%
-2.053%
-0.9076%
-6.094%
-2.96%

0) S •
1 T ♦♦
§ H ••
g FT ••

FH

35.47%! 33.61%
56.69%! 52.32%
60.43% 65.85%!

71.92%! 56.03%
70.53%! 65.41%

-1.862%
-4.363%
5.417%
-15.89%
-5.116%

s
T

1 H
2 FT

FH
all

*9. **8 *0. *■^0
*10. **10 *0, **0

*9 **3 *1^
*9, **9 *0, **0
*10, **9 *0, **0
*47, **44 *1 ,**1

-4.382%
-4.683%
-6.652%
-7.402%
-5.799%
-5.784%
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Table 5.9: Tree vs linear without dependency relations
accuracy tree linear difference

s •• 47.49%! 45.67% -1.826%
(00* T 73.99%! 68.53% -5.452%

_c H ** 78.36%! 70.93% -7.433%
O FT *♦ 76.34%! 70.37% -5.972%

FH *• 75.53%: 71.21% -4.319%
S ** 54.669i! 45.62% -9.032%
'p 64.34%! 54.47% -9.87%

B H 80.07%! 64.15% -15.92%
1)
0 FT 84.45%! 63.59% -20.86%

FH *♦ 86.69%! 73.09% -13.59%
c s ♦* 62.06%! 52.93% -9.129%
B T ** 68.43%! 58.79% -9.631%
in H ** 72.45%! 60.55% -11.89%
O FT ♦* 73.45%)! 62.48% -10.97%
6 FH *♦ 76.47%! 66.25% -10.22%

s *♦ 44.24%! 37.56% -6.678%
in T ** 62.7%! 60.02% -2.675%

"mi H 74.91%)! 69.37% -5.54%C
a FT ** 72.88%! 68.33% -4.543%

FH 76.84%! 73.26% -3.573%
S ** 44.27%! 38.08% -6.189%
T 56.64%! 53.22% -3.427%U)c H •• 61.89%! 58.53% -3.357%

U FT ** 62.83%! 59.02% -3.811%
0 FH * 63.6%! 61.4% -2.203%

S = 26.19%! 25.83% -0.3547%rt 'p ** 47.06%! 45.24% -1.827%
H ** 65.88%! 56.46% -9.427%

«3
o FT 66.02%! 56.7% -9.321%

FH •* 69.8%)! 63.02% -6.784%
S ** 26.73%! 23.79% -2.943%

— ^p ** 47.16%! 44.99% -2.173%
B(C H ** 66.31%! 57.44% -8.871%
aCO FT 65.1%! 55.72% -9.378%

FH ** 70.33%! 62.83% -7.501%
S ** 35.17%! 32.07% -3.1%
^p ♦♦ 59.36%! 55.73% -3.636%

N H ** 69.13%! 62.57% 6.562%
0 FT ** 64.29%)! 59.51% -4.783%

FH ** 68.88%o! 63.8% -5.081%
s *♦ 35.18%! 32.47% -2.708%

uo T *• 59.01%! 55.99% -3.025%
N(j H 69.04%! 62.64% -6.404%

FT ** 64.11%! 60.02% -4.091%
FH ** 68.9%)! 63.68% -5.222%

<n S * 35.47%! 33.61% -1.862%
■p ** 55.97%! 51.95% -4.025%

ci H 71.32%! 65.6% -5.718%0.(t FT ** 59.64%! 55.78% -3.856%
FH *♦ 70.13%! 65.21% -4.928%

S •9, **8 *0, **0 -4.382%
T *10, **10 *0, **0 -4.574%

a H *10, **10 *0, **0 -8.113%
0 FT *10, **10 *0, **0 -7.758%

FH *10, **9 *0. **0 -6.342%
all *49, **47 *0 .**0 -6.234%
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5.4.2 Dependency Relations

In the previous experiment the nodes of the linear snb-trees kept the dependency 
relation to their head word, but without knowing which one was the head word. 
Therefore, the drop in accuracy was not generated by the loss of the dependency 
relation label, however the dependency relation label lost part of its meaning 
because the nodes lost the head word.

So the next experiment replicates the previous one but without dependency 
relations. Table 5.9 shows the results, showing similar drops in accuracy, rein­
forcing the same conclusions as before: structural information is fundamental 
for achieving high accuracy.

5.5 Conclusion

This chapter presented the main experimental results, it starts presenting three 
base lines; the majority label, the Shape stings, and the binary settings. Major­
ity label and Shape do not use any lexical or syntactic feature, for that reason 
it was expected similar j)erformance across them. However, the results show 
that Shape outperforms the Majority label base line, which implies that the 
structural information provided by the syntactic parser is very important for 
the argument classification task. It was confirmed at the end of the chapter by 
training the system with the structural information and without it (string repre­
sentation) and concluding that the system loses around 6% accuracy in average 
when structural information is removed. In regard to the comparison across the 
four settings; Ternary, Hamming, Frame Ternary and Frame Hamming, it was 
observed that as the complexity of the settings increases, the system is capable 
to achieve higher accuracy, with a few exceptions.

The Japanese data set reported the worst in-domain results, which is prob­
ably due to a poor annotation of the dependency relations. The outcomes of 
Spanish and Catalan are very similar to each other, which is probably due to 
the fact that most of their content is a translation of each other.

The analysis effect of the frame mismatch cost shows that having a frame 
mismatch cost is benehcial for the system as long as it does not ban samples 
from other frames, the value of the optimal cost will be analyzed in further

107



detail at the Chapter 6. It is an interesting observation that the Chinese and 
German data prodticed the worse resnlts in the CoNLL-2009 public evaluation 
but the best results on this system, it could imply that this system is more 
suitable for those languages or it could imply that argument identification was 
a harder task on those languages. One of the hnal analyses pointed out that 
the system is more accurate predicting smaller sub-trees (predicates with low 
amount of arguments).
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Chapter 6

Further parameter refinement

6.1 Introduction

This chapter is an attempt to optimize the parameters that had been used in 
the previous one by default. In particular the parameters about; deletion costs, 
weight between POS and Dependency Relations, weight between lexical and 
syntactic features, optimal vahie for the k of the k-NN module and optimal 
value for the frame mismatch cost.

As the goal of this chapter is to optimize parameters, the system will be 
evahiated with the development data set, because the intention is to re-evaluate 
the system using those optimal parameters on the evaluation data set.^ This 
intention makes the evaluation data set ineligible for the tuning. Because when 
a data set is used for tuning indirectly it becomes part of the training data, 
(as it was used to select the parameters). Training data should not be used to 
evaluate the system because it creates the illusion of a higher accuracy than it 
really performs.

6.2 Varying Deletion cost

The following graphs will show the accuracy of Ternary, Hamming, Frame 
Ternary and Hamming swapping settings across different deletion/insertion 
costs per each language:

^Details on the development data set can be found at Section 2.4.2 on page 22.
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deietion/insenion cost

(a) simple
deletion/insenion cost

(b) frame
cost: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
FH 1.726 18.27 33.37 68.93 73.37 74.45 74.87 75.04 78.88 79.07 78.77 77.96
FT 18.98 63.89 63.89 72.21 73.37 79.33 78.26 78.26 78.12 78.12 76.91 76.31
H 1.839 18.9 34.32 73.04 73.8 76.1 75.78 75.74 75.43 75.33 75.29 74.66
T 51.3 66.83 66.83 67.01 67.01 66.89 66.38 66.38 66.37 66.37 66.31 66.13

Figure 6.1: Tuning deletion cost in Catalan

Figure 6.3: Tuning deletion cost in Czech
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OeietiorVinsertion cost

(a) simple
deleliorVinsertion o

(b) frame
cost: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
FH 0.9863 20.86 26.81 58.21 67.86 69.23 70.21 70.09 80.97 81..34 81.28 80.51
FT 9.469 56.89 56.89 65.5 66.85 85.11 84.58 84.58 84.75 84.7 84.35 83.56
H 1.029 21.37 27.51 74.02 81.64 84.68 84.61 84.46 84.03 83.75 83.88 83.05
T' 51.28 82.96 82.96 83.68 83.73 83.96 83.17 83.17 83.11 83.09 82.8 82.08

Figure 6.2: Tuning deletion cost in Chinese

- Hamming |
- Tamaiy |

'"A"' Frame Hamming] 
Frame Ternary

0 0.2 0.4 0.6 0.6 1 1.2 1.4
deletion/insertion coal

1.6 1.6 2 0 0-2 0.4 0.6 0.6 1 1.2 
deletorVinsertton cost

1.4 1.6 1.6

(a) simple (b) frame
cost: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
FH 2.192 26.38 33.89 53.95 63.91 67.18 69.77 71.06 79.18 79.24 79.11 78.39
FT 5.459 44.05 44.05 58.55 61.96 77.07 76.94 76.97 77.2 77.15 76.55 75.58
H 2.2 27.03 34.65 70.16 75.81 76.96 77.05 77.09 76.79 76.59 76.58 75.8
T 26.63 66.81 66.81 68.64 68.83 69.36 68.64 68.64 68.66 68.64 68.4 67.78

Figure 6.4: Tuning deletion cost in English
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s-e
I 70

^ Hamming I
■ Temacy |

r—r

& Frame Hamming 
a Frame Ternary |

5e
§ 70 • //

r ■/-

/, 

f.....^ i

0 0.2 0.4 0.6 0.8 1 1.2 
deletwn/insenion cosi

1.4 1.6 1.8 2 0 0.2 0.4 0-6 0.6 1 1.2 
delebon/insenton cosi

1.4 1.6 1.8 2

(a) simple (b) frame
cost: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
FH 0.9741 17.15 32.26 66.93 71.44 72.71 73.47 73.74 77.5 77.7 77.92 77.04
FT 16.99 62.59 62.59 70.16 71.42 77..56 76.61 76.61 76.61 76.61 75.48 75.11
H 1.129 17.94 33.1 71.92 73.43 75..32 74.99 74.96 74.48 74.48 74.37 73.67
T 51.06 66.05 66.05 66.19 66.18 66.09 65.43 65.43 65.39 65.39 65.2 64.94

Figure 6.5: Tuning deletion cost in Spanish

Hammirtg 
- Ternary

Frame Hammir>g| 
- Frame Ternary |

^ A'

0 0.2 0.4 0.6 0.8 1 .2 1 4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1 6 1.8
deleitorVinsertion co deleiion/insenion cost

(a) simple (b)fi anie
cost: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
FH 3.162 17.78 26.75 77.35 87.61 88.97 90.09 90 90.34 90.43 90.09 89.74
FT 18.12 67.18 67.18 82.22 84.7 87.61 87.95 88.03 87.52 87.61 87.09 86.67
H 3.162 18.46 27.52 78.03 81.62 81.79 81.97 81.88 81.88 82.05 82.05 81.37
T 47.95 67.18 67.18 69.06 69.15 70.6 70.51 70.51 70.51 70.51 70.26 69.83

Figure 6.6: Tuning deletion cost in German
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I
B 70

Hamming 
- Ternary |

r'

Frame Hamming 
- Frame Ternary [

K
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Figure 6.7; Tuning deletion cost in Japanese

Table 6.1: Dataset si)lit by the inaxiinuin accuracy for different deletion costs

This table graphically summarizes were the maximum accuracy on the development data set 
for different deletion/insertion costs values was found. The column Max, specifies at which 
deletion value the high performance was found, the remaining other four columns 
correspond to the four atomic settings. Hamming and Frame Ternary seem to behave in a 
very similar manner.
For instance for Ternary settings at deletion cost 0.5 yield the maximum accuracy scores for 
German, Japanese English, Chinese, and Czech development data set.

Max Ternary Hamming Frame Ternary Frame Hamming
0.1
0.2
0.3 es
0.4 ca
0.5 ge,ja,en,chi,cz ja,es,ch,ca ja,es,ch,ca
0.6 cz
0.7 en ge
0.8 en,cz CZ

0.9 ge,ja,en,ch,ca
1 ge es

mcLcro avg 0.45 0.614 0.614 0.9

Deletion costs under zero lead the tree distance system to delete all nodes, 
thus deleting all nodes will have a negative distance which will be less than 
swapping all nodes at zero cost. Therefore, for any deletion cost under zero will 
lead to zero accuracy.
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As deletion costs get near zero the accuracy drops dramatically, at deletion 
costs equal to zero the accuracy is above zero because the implementation to 
produce the alignment have preference for swaps than for deletion and insertion 
when the cost is the equivalent.

A first glance is that Frame versions tend to start falling at higher deletion 
values than the simple versions (as deletion cost becomes smaller)

Simple Ternary in general is very stable across different deletion values in 
comparison with the other three measures.

6.2.1 Ternary

This section will explain the details of the trends on Ternary setting as deletion 
cost changes from the previous graphs.

As the deletion cost become lower, some type of swaps become imi)ossible 
because the cost of deleting and inserting become less costly than the cost 
of swapping them. Those singular points are analysed in the following sub­
sections.

6.2.1.1 Both labels are different

Table 6.2: Deletion 0.4 vs 0.5: swapping unrelated nodes: Ternary

accuracy del=.4 del=.5 difference
Chinese T * 83.73% 83.96%! 0.2261%
German T * 69.15% 70.6%! 1.453%
English T * 68.83% 69.36%! 0..5337%
Catalan T = 67.01%! 66.89% -0.1214%
Spanish T = 66.18%! 66.09% -0.09482%
Czech rp 9|c* 65.61% 66.31%! 0.6929%

Japanese T * 55.6% 56.74%! 1.145%
total T *0, **0 **2 0.5478%

In this case for Ternary the swapping of two nodes with both different labels 
to each other have a cost of 1. Therefore, this kind of swaps are not allow 
for deletion values under 0.5. Hence, it should be observable the effect between 
deletion cost 0.4 and 0.5. Table 6.2 contrast the results for both deletion values.

Making Ternary not able to swap unrelated nodes (0.4) reduces accuracy; 
it is shown to be strictly significant different only for Czech, and less strictly 
significant different for five languages, but the average difference is as small as
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0.55%. Spanish and Catalan score better without allowing that kind of swaps 
(deletion - 0.4).

The conclusion is that the swaps between unrelated nodes have almost no 
impact on the system performance.

6.2.1.2 One label is different

Table 6.3: Deletion 0.2 vs 0.3: one label is different: Ternary

accuracy del=.2 del=.3 difference
C^hinese 82.96% 83.68%! 0.7168%
German 'p ** 67.18% 69.06%! 1.88%
English p ** 66.81% 68.64%! 1.832%
Catalan T * 66.83% 67.01%! 0.1735%
Spanish T = 66,05% 66,19%! 0.1465%
Czech p ** 64.53% 65.62%! 1.09%

Japanese p 54.19% 56.08%! 1.884%
total T *0, **0 *6, **5 1.103%

If one label is different and the other is equal, the atomic swapping cost will 
l)e 0.5. Therefore, this kind of swap are not allowed for deletion values under 
0.25. Hence, it should be observable the effect between deletion cost 0.2 and 
0.3. Table 6.3 contrast the results for both deletion vahies.

Making Ternary not able to swap nodes with one different label (0.2) always 
has a negative impact, and it is shown to be strictly significantly different for 
five languages in spite of that the average differences is only around 1.1%. It 
means that this kind of swap also not very important for the performance of the 
system. This explains why Binary and Ternary measures perform in so similar 
way; See Figure 5.3 at page 80.

6.2.1.3 Ternary equality for 0.1 and 0.2

For Ternary the differences on accuracy between deletion/insertion cost —0.1 
and 0.2 are exactly zero. This is visible as a horizontal line in all Ternary 
plots. This phenomena is generated because the alignments and the ranking of 
alignments are identical. The alignments are equivalent because the less costly 
swap in Ternary is 0.5 and in both deletion settings the cost of deleting and 
inserting two nodes is less than 0.5 (0.2 and 0.4). It implies that nodes will 
be only swept if POS and DEPREL labels are identical at zero cost. Hence,
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the cost of an alignment will be dependent only on the deletion/insertion cost. 
Hence, the ranking of neighbours alignments will be the same, but the distance 
will be scaled because the alignments are the same and the only cost of the 
alignments are the deletion and insertion costs which in both cases are positive.

For instance, if an alignment contains 7 deletions/insertions and one perfect 
match (it can not contain imperfect matches as described before). The cost of 
the alignment will be 0.7 (for deletion =-0.1) and 1.4 (for deletion=0.2). For 
any amount of deletions/insertions the cost will be 0.1*x and 0.2*x, which keeps 
any alignment in the same order.

6.2.1.4 Both labels are equal

Table 6.4: Deletion 0 vs 0.1: ranking effect: Ternary

accuracy del=0 del ^0.1 difference
Chinese T ** 51.28% 82.96%! 31.68%
German 'J' ** 47.95% 67.18%! 19.23%
English '•p ** 26.63% 66.81%! 40.18%
Catalan •p’ Jit* 51.3% 66.83%! 15.53%
Spanish T *♦ 51.06% 66.05%! 14.99%
Czech pi ** 36.72% 64.53%! 27.8%

Japanese pi ** 29.52% 54.19%! 24.68%
total T *0, **0 24.87%

For values 0, 0.1 and 0.2 the tree edit distance implementation will generate 
the same alignment for two given trees. The results for 0 and 0.1 are different 
because for deletion cost equal zero any alignment for two given trees has a 
distance zero. Therefore, there is no ranking of alignments for deletion - 0, 
and that is what makes the accuracy to drop. Table 6.4 contrast the results 
for both deletion values. With ranking the system always performs strictly 
significantly better with a large margin of difference of 25%.

It is important to note that the system makes an approximation by taking 
the only first thousand samples into account and if the first equivalence class 
has more than a thousand samples it will be like removing random samples until 
the class only contains one thousand. In the case of deletion cost equal zero, as 
all samples are at the same distance, it should be considered that the selection 
was random of the thousand used samples was random.
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6.2.2 Frame Ternary

This section will explain the details of the trends on Frame Ternary settings 
as deletion costs change. Like in Ternary, as the deletion cost become lower, 
some type of swaps become impossible because the cost of deleting and inserting 
become less costly than the cost of swapping them. Those singular points are 
analyse in text that follows.

6.2.2.1 In the predicate both labels are different; 0.9 and 1

Table 6.5: Estimated percentage of atomic swaps per language for Frame 
Ternary for Predicate Nodes which belong to different frame

POS DepRel Chinese German English Catalan Spanish Czech Japanese
= 27.52 24.32 5.14 27.52 27.07 7..59 23.42

<> = 4.31 9.79 6.34 4.31 3.73 13.15 75.23
= <> 58.42 17.11 13.98 58.42 60.38 21.20 0.28

<> <> 9.75 48.78 74.54 9.75 8.83 58.07 1.07

Table 6.5 shows the probability for two random predicate nodes which belong 
to a different frame to have POS or De])Rel labels ecpial or different.

Table 6.5 reads as follows: symbol <> in the column POS means that in 
this particular row the label POS is different from one node to another, symbol 
= indicates that POS label are identical for both nodes. The same can be .said 
about the DepRel column. In the Ccxse of Chinese 9.75% of possible swaps differ 
in both labels. The table shows the percentage of swaps that will be banned as 
the deletion cost will decreases, because if one deletion and one insertion cost 
less than a swap, that type of swaps will never happen.aAI

Table 6.6: Deletion 0.9 vs 1: Frame Ternary

accuracy del=.9 del=1.0 difference
Chinese P’Y ** 84.7%! 84.35% -0.3449%
German FT = 87.61%! 87.09% -0.5128%
English prj. 77.15%! 76.55% -0.5986%
Catalan FX ** 78.12%! 76.91% -1.206%
Spanish FT ♦* 76.61%! 75.48% -1.129%
Czech FT ** 70.04%! 69.81% -0.2262%

Japanese FT = 57.92% 58.15%! 0.2216%
total FT *5, **5 *0, **0 -0.5422%

For Frame Ternary if there is a mismatch on the frame of the predicate node
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and both labels on the predicate node are different the swapping cost will be 2. 
Therefore, it should be observable a change between 0.9 and 1.

Table 6.6 contrasts the results for both deletion values. Allowing this kind 
of swap between unrelated predicate nodes have negative impact, but the dif­
ferences are very small even though the difference was highly significantly sig­
nificant in five languages. It is not a surprise that the differences are very small; 
as shown in Table 6.5 last row, this kind of swaps are quite rare for most of the 
languages even by making the swaps by random nodes, with English and Czech 
being the only exceptions where half of the swaps would have both different 
labels.

Table 6.5 do not intend to measure how difficult is task across the different 
languages but to measure who many possible swaps will be banned by changing 
the cost settings.

6.2.2.2 In the predicate one label is different: 0.7 and 0.8

Table 6.7: Deletion 0.7 vs 0.8: Frame Ternary

accuracy del=0.7 del=0.8 difTerence
Chinese FT * 84..'58% 84.75%! 0.1725%
German FT = 88.03%! 87.52% -0.5128%
English FT = 76.97% 77.2%! 0.22:16%
Catalan FT = 78.26%! 78.12% -0.1.388%
Spanish FT = 76.61% 76.61%! 0%
Czech prp ** 69.6% 70.04%! 0.4463%

Japanese FT = 58.66%! 58.29% -0.,3694%
total FT ♦0, **0 *2 -0.02553%

For Frame Ternary if there is a mismatch on the predicate node and one of 
the labels is different the swapping cost will be 1.5. Therefore, it should be 
observable a change between 0.7 and 0.8. In 0.8 two predicates from different 
frames will be able to be mapped to each other even with one different label 
(POS or DepRel). Table 6.7 contrast the results for both deletion values.

Interestingly there is rarely a signiheant difference detected, it means that 
this kind of swaps between predicate nodes from different frames with one dif­
ferent label (POS or DepRel) are not very relevant to the performance of the 
system.
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6.2.2.3 Both labels are different or in the predicate one is different

Table 6.8: Deletion 0.4 vs 0.5: swapping unrelated nodes: Frame Ternary

accuracy del=.4 del=.5 difference
Chinese FT ♦* 66.85% 85.11%! 18.26%
Gernian FT * 84.7% 87.61%! 2.906%
English PX ** 61.96% 77.07%! 15.11%
Catalan PX ** 73.37% 79.33%! 5.967%
Spanish PX ** 71.42% 77.56%! 6.137%
Czech PX ** 49.06% 69.82%! 20.76%

Japanese PX ** 43.96% 60.44%! 16.48%
total FT *0. **0 *7 12.23%

Even if POS and DepRel labels are equal the frame mismatch makes the atomic 
cost to be already 1. Therefore, swapping predicates of different frames will be 
not allowed for values under 0.5, also regular nodes with both labels different 
will be not allowed.

It has an important impact on the accuracy of the system. On average, 
the difference is 12.23%, always in favour of 0.5 for which 6 times was detected 
strictly significant difference.

This big drop was not detected for Ternary, which indicates that being able 
to use samples from different frames is important for the system performance. 
See Table 6.2 in page 114.

6.2.2.4 One label is different

Table 6.9: Deletion 0.2 vs 0.3: one label is different: Frame Ternary

accuracy del=.2 del=.3 difference
Chinese PX ** 56.89% 65.5%! 8.612%
German PX ** 67.18% 82.22%! 15.04%
English prp 44.05% 58.55%! 14.5%
Catalan FT ** 63.89% 72.21%! 8.317%
Spanish PX ** 62.59% 70.16%! 7.568%
Czech PX ** 34.42% 47.53%! 13.11%

Japanese PX ** 37.42% 43.11%! 5.689%
total FT *0, **0 10.4%

In this case the swapping cost will be 0.5. Therefore, this kind of swaps is 
not allowed for deletion values under 0.25. Hence, it shoidd be observable the 
effect between deletion cost 0.2 and 0.3. Table 6.9 contrast the results for both 
deletion values.
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Making Frame Ternary not being able to swap nodes with one different label 
(0.2) always has an important negative impact and it is shown to be strictly 
significantly different for all languages, with an average drop of 10.4%.

6.2.2.5 Frame Ternary equality for 0.1 and 0.2

For Frame Ternary as in Ternary the differences on accuracy between dele­
tion/insertion cost =0.1 and 0.2 are exactly zero. This phenomena is generated 
because the alignments and the ranking of alignments are identical. It was 
already explained for Ternary in Section 6.2.1.3 at page 115.

6.2.2.6 Both labels are equal

Table 6.10: Deletion 0 vs 0.1: ranking effect: Frame Ternary

accuracy del=0 del=0.1 difference
Chinese p'T ** 9.469% 56.89%! 47.42%
German FT ** 18.12% 67.18%! 49.06%
English FT ** 5.469% 44.05%! ,38.59%
Catalan prp 18.98% 6.3.89%! 44.92%
Spanisli p’X ** 16.99% 62.59%! 45.6%
Czech prp 3.4.56% 34.42%! 30.97%

Japanese prp ** 5.726% 37.42%! 31.7%
total FT *0, **0 41.18%

The same described for Ternary applies to Frame Ternary: for values 0 and 0.1 
the tree edit distance implementation will generate the same alignment for two 
given trees but for zero the ranking of alignments is lost.

Table 6.10 contrast the results for both deletion values. With ranking, the 
system always performs strictly significantly better with a large margin of dif­
ference of 41%.

6.2.3 Hamming

The cost of swapping on ffamming only can have five values depending on the 
amount of different labels between two nodes: 0,0.25,0.5, 0.75 and 1. it should 
be observable a singular point at each half of those values.
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6.2.3.1 Perfect label mismatch

Table 6.11: Deletion 0.4 vs 0.5: Perfect label mismatch

accuracy del—,4 del=.5 difference
Chinese H ** 81.64% 84.68%! 3.045%
German H = 81.62% 81.79%! 0.1709%
English ** 75.81% 76.96%! 1.147%
Catalan H ** 73.8% 76.1%! 2.298%
Spanish ** 73.43% 75.32%! 1.888%
Czech H ** 66.38% 74.12%! 7.744%

Japanese H * 71.07% 72.48%! 1.404%
total H *0. **0 *6, **5 2.528%

In case all labels were different the swapping cost will be 1. Hence, it should be 
observable a singular value at 0.5, because for values under 0.5 nodes with all 
different labels will be not be allowed to match each other. Table 6.11 contrast 
both values.

Except for Hamming on German language, for all other languages the fall 
is observable.

6.2.3.2 Three different labels

Table 6.12: Deletion 0.3 vs 0.4: Three different labels

accuracy del=0.3 del=0.4 difference
Chinese n ** 74.02% 81.64%! 7.615%
German ** 78.03% 81.62%! 3.59%
English H *♦ 70.16% 75.81%! 5.647%
Catalan H ** 73.04% 73.8%! 0.7546%
Spanish H ♦* 71.92% 73.43%! 1.508%
Czech H *♦ 53.8% 66.38%! 12.57%

Japanese H ** 66.35% 71.07%! 4.728%
total H *0, **0 *7, **7 5.202%

I expect that Form and Lemma are equal or different almost at the same ratio. 
Hence, at this point I expect that only POS or DepRel are equal, the singular 
value should be 0.375, under that value, this type of swaps will be not permitted. 
This should be observable comparing 0.3 and 0.4 values. Table 6.12 contrast 
both values.

For all languages a strict significant difference is detected with 5% difference 
in average. Hence, this type of swaps are important for the performance of the 
system.
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6.2.3.3 Different form and lemma

Table 6.13: Deletion 0.2 vs 0.3:Different form and lemma

accuracy del=.2 del=.3 difference
Chinese 27.51% 74.02%! 46.52%
German H ** 27.52% 78.03%! 50.51%
English ** 34.65% 70.16%! 35.51%
Catalan ** 34.32% 73.04%! 38.73%
Spanish H ** 33.1% 71.92%! 38.82%
Czech ** 11.3% 53.8%! 42.51%

Japanese H ** 15% 66.35%! 51.35%
total H *0, 43.42%

It is very likely that the lexical features will be different for most of the matches. 
Therefore, it is expected to find a singular value at 0.25, thus under this value 
the system will not map nodes with different labels for Lemma and Form. This 
should be observable comparing 0.2 and 0.3. Table 6.13 contrast both values. 
As expected the drop is very important: 43% in average and always with strictly 
signihcant difference.

6.2.3.4 One different label

Table 6.14: Deletion 0.1 vs 0.2:One different label

accuracy del=.l del=.2 difference
Chinese H ** 21.37% 27.51%! 6.133%
German 1^ ** 18.46% 27.52%! 9.06%
English H ** 27.03% 34.65%! 7.623%
Catalan H ** 18.9% 34.32%! 15.42%
Spanish 17.94% 33.1%! 15.16%
Czech H ** 5.814% 11.3%! 5.482%

Japanese ** 13.59% 15%! 1.404%
total H ♦0. **0 8.612%

It should be another singular point at 1.25, because under this value, only 
perfect matched nodes will be allowed. It should be observable comparing 0.1 
and 0.2. Table 6.14 contrast both values, as expected there is a significant 
difference for all languages with 8.6% difference in average.

122



6.2.3.5 Ranking

Table 6.15: Deletion 0 vs 0.1: Ranking

accuracy del=0 del=.l difference
Chinese H ** 1.029% 21.37%! 20.34%
German pj ** 3.162% 18.46%! 15.3%
English H ** 2.2% 27.03%! 24.83%
Catalan 1.839% 18.9%! 17.06%
Spanish ^ ** 1.129% 17.94%! 16.81%
Czech H ** 0.1569% 5.814%! 5.657%

■Japanese ** 1.0.34% 13.59%! 12.56%
total H *0 16.08%

Like in Ternary the alignments at deletion cost 0 and 0.1 are the same, but 
at cost zero the ranking of alignments is lost. Table 6.15 shows contrast both 
values showing a really important lost of accuracy which leads to reach almost 
zero accuracy.

6.2.4 Frame Hamming
Frame Hamming will have the same singidar points as Hamming plus a few 
more on the cases where predicates belong to different frames.

6.2.4.1 FFame mismatch + Perfect mismatch

Table 6.16: Deletion 0.9 vs 1: Frame mismatch f Perfect mismatch

accuracy del=.9 del=1.0 difference
Chinese FH = 81.34%! 81.28% -0.05928%
German FH = 90.4.3%! 90.09% -0.3419%
English FH = 79.24%! 79.11% -0.1226%
Catalan FH * 79.07%! 78.77% -0.3036%
Spanish FH = 77.7% 77.92%! 0.2155%
Czech FH = 72.32%! 72.22% -0.09782%

Japanese FH = 68.75%! 68.23% -0.5172%
total FH *1. **0 *0, **0 -0.1753%

It is unlikely for the system to swap two predicate nodes which do not share any 
labeP and different frame but if it happens the effect of this swaps would be 
observable comparing deletion costs for 1 and 0.9, because for any value under 
1 this kind of swaps are not permitted. Table 6.16 contrast both values.

^Remainder; each node contains for labels: Dependency relation, POS, Form and Lemma.

123



As expected no, significant difference is observed, not even for Spanish which 
shows its peak of performance on Frame ffamming at deletion cost 1.

6.2.4.2 Frame mismatch + Three label mismatch

Table 6.17: Deletion 0.8 vs 0.9:Frame mismatch ^ Three label mismatch

accuracy del=.8 del=,9 difference
Cliinese FH * 80.97% 81.34%! 0.3665%
German FH = 90.34% 90.43%! 0.08547%
English FH = 79.18% 79.24%! 0.0577%
Catalan FH = 78.88% 79.07%! 0.1908%
Spanish FH = 77.5% 77.7%! 0.1983%
Czech FH ** 71.45% 72.32%! 0.8681%

Japanese FH = 68.56% 68.75%! 0.1847%
total FH *0, **() *2^ 0.2788%

It is more likely for the system to swap two predicate nodes which differ on 
three labels. This kind of swaps are not permitted under a deletion cost equal 
to 0.875. Hence, it shoidd be observable comparing 0.8 and 0.9. Table 6.17 
contrast both values.

No important drop in accuracy was found in this step which is a surprise, 
because for most language the peak of performance was found at 0.9.

6.2.4.3 Frame mismatch + lexical labels

Table 6.18: Deletion 0.7 vs 0.8: Fi’ame mismatch+lexical labels

accuracy del=.7 del=.8 difference
Chinese FH ** 70,09% 80.97%! 10.88%
German FH = 90% 90.34%! 0,3419%
English FH ** 71.06% 79.18%! 8.121%
Catalan FH ** 75.04% 78.88%! 3.842%
Spanish FH ** 73.74% 77.5%! 3.767%
Czech FH ** 54,5% 71.45%! 16.96%

J apanese FH ** 47.73% 68.56%! 20,83%
total FH »0, **0 *6, **6 9.248%

If two predicates belong to two different frames then they are very likely to 
differ also in Form and Lemma labels. Hence, the swapping cost will be 1.5, 
which predicts a singular value at 0.75. Under this value almost all samples 
from different frames are not allowed. Table 6.18 contrast 0.7 and 0.8 values.
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As expected this kind of swaps have an important impact, showing an average 
of 9.24% improvement for cost 0.8 in Frame Hamming.

Table 6.19: Estimated percentage of atomic swaps per language for Hamming

£ 1
o 0)

0)
C r- C ^s s :i iS .S3 I

o o ta U m o ”

= <>
<>

0.00 0.12 0.2,3 0.,34 0.36 0.61 1.13
0.00 73.71 13.45 48.03 38.56 15.63 5.49

100.00 26.17 86.32 51.62 61.08 83.76 93..39

The assumption of Form and Lemma labels will be likely to be different 
at the same time is applicable to all languages except German. Table 6.19 
compares random nodes in which at least one of Form or Lemma labels are 
equal. In all languages except German, for two given nodes in which the Lemma 
label is identical the probability of also having an identical Form label is over 
50%.

The few cases in which Form remains equal but Lemma remains different 
corresponds to ambiguous words suc:h as left. For instance in the following two 
sentences of the evaluation data set:

(35) Many money managers and some traders had already left their offices 
early Friday afternoon on a warm autumn day - because the stock market 
was so quiet.

(36) And even if a nurse would wear flowers in her hair while on duty, if she 
were engaged she would know to wear them behind her left, not right, 
ear.

In Sentence 35 the word “left” has as lemma “leave” but in Sentence 36 the 
word “left” has as lemma “left” meaning location.

In other cases it seems that the divergence in form lemma correspond to 
differences between verbs and nouns forms:

(37) Then in a lightning plunge, the Dow Jones industrials in barely an hour 
surrendered about a third of their gains this year, chalking up a 190.58 - 
point, or 6.9 %, loss on the day in gargantuan trading volume.

125



(38) At 02:43 p.ni. EDT , came the sickening news: The Big Board was halting 
trading in UAL , “ pending news . ”

In Sentence 37 the lemma for the word “trading” is also “trading” because 
it is a noun, but in Sentence 38 the lemma for the word “trading” is “trade” 
because it is a verb.

Regarding samples with equal Lemma but different Form, most of the cases 
are due to the inflexion of the language but some of them are also due to 
differences between upper and lower case characters depending if the word is 
the first one of the sentence or not.

Table 6.18 also shows Frame Hamming settings in German data set as the 
exception because no signihcant difference was detected.

6.2.4.4 Perfect label mismatch

Table 6.20: Deletion 0.4 vs 0.5: Perfect label mismatch: Frame Hamming

accuracy del-^.4 del=.5 difference
Chinese FH ** 67.86% 69.2.3%! 1.369%
German FH * 87.61% 88.97%! 1.368%
English FH ** 63.91% 67.18%! 3.267%
Catalan FH ** 73.37% 74.45%! 1.084%
Spanish FH *♦ 71.44% 72.71%! 1.267%
Czech FH ** 48.13% 51.28%! 3.15%

Japanese FH * 46.4% 47.51%! 1.108%
total FH *0. **0 *7, **5 1.802%

As in Hamming, in case all labels were different, the swapping cost will be 1. 
Hence, a singular value should be observable at 0.5. This should happen because 
for values under 0.5 nodes with all different labels will be not allow to match 
each other. Table 6.20 contrast both values. The differences are small(1.8%) 
but always was significant.
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6.2.4.5 Three different labels

Table 6.21; Deletion 0.3 vs 0.4: Three different labels: Frame Hamming

accuracy del=0.3 del=0.4 difference
Chinese FH ** 58.21% 67.86%! 9.647%
German FH ** 77.35% 87.61%! 10.26%
English FH ** 53.95% 63.91%! 9.96%
Catalan FH ** 68.93% 73.37%! 4.432%
Spanish FH ** 66.93% 71.44%! 4.517%
Czech FH ** 36.62% 48.13%! 11.51%

Japanese FH ** 38.23% 46.4%! 8.164%
total FH *0, **0 + y 8.355%

As in Hamming, 1 expect that Form and Lemma are equal or different almost 
at the same time. Hence, at this point I expect that only POS or DepRel are 
equal, the singular value shoidd be 0.375, under that value, this type of swaps 
will be not permitted. This should be observable comparing 0.3 and 0.4 values. 
Table 6.21 contrast both values.

For all languages a strictly significant difference is detected with a difference 
of 8% which is larger than the one detected for Hamming. Hence, this type of 
swap is important for the performance of the system.

6.2.4.6 Different form and lemma

Table 6.22: Deletion 0.2 vs 0.3;Different form and lemma; Frame Hamming

accuracy del=.2 del=.3 difference
Chinese FH ** 26.81% 58.21%! 31.4%
German FH ** 26.75% 77.35%! 50.6%
English FH ** 33.89% 53.95%! 20.06%
Catalan PH ** 33.37% 68.93%! 35.56%
Spanish FH ** 32.26% 66.93%! .34.66%
Czech FH ** 10.89% 36.62%! 25.73%

.Japanese FH ** 14.96% 38.23%! 23.27%
total FH *0. **0 31.61%

As mention before it is very likely that the lexical features will be different for 
most of the matches. As for Hamming it is expected to find a singular value at 
0.25, thus under this value the system will not map nodes with different labels 
for Lemma and Form. This should be observable comparing 0.2 and 0.3. Table 
6.22 contrast both values. As expected the drop is very important: 31% always 
with strictly significant difference but not as large as for Hamming (43%).
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6.2.4.7 One different label

Table 6.23: Deletion 0.1 vs 0.2:One different label: Frame Hamming

accuracy del=.l del=.2 difference
Chinese PH ** 20.86% 26.81%! 5.95%
German PH *« 17.78% 26.75%! 8.974%
English PH *» 26.38% 33.89%! 7.508%
Catalan PH ** 18.27% 33.37%! 15.1%
Spanish PH ** 17.15% 32.26%! 15.12%
Czech PH ** 5.606% 10.89%! 5.282%

Japanese PH ** 13.63% 14.96%! 1.33%
total FH *0, **0 8.466%

There should be another singular point at 0.125, because under this value, only 
perfect matched nodes will be allowed. It should be observable comparing 0.1 
and 0.2, which are contrasted in Table 6.23. In fact it was found for all languages 
a strict significant difference with an average loss of 8.5%.

6.2.4.8 Ranking

Table 6.24: Deletion 0 vs 0.1: Ranking: Frame Hamming

accuracy del=0 del=.l difference
Chinese PH *» 0.9863% 20.86%! 19.87%
German PH ** 3.162% 17.78%! 14.62%
English PH *♦ 2.192% 26.38%! 24.19%
Catalan FH *♦ 1.726% 18.27%! 16.55%
Spanish FH *♦ 0.9741% 17.15%! 16.17%
Czech PJJ ** 0.1549% 5.606%! 5.451%

Japanese FH ** 1.034% 13.63%! 12.6%
total FH *0. **0 15.63%

Like in Ternary, Frame Ternary and Hamming the alignments at deletion cost 
0 and 0.1 are the same, but at cost zero the ranking of alignments is lost. Table 
6.24 shows contrast both values showing a really important lost of accuracy to 
almost zero.

6.3 Weighting POS vs DepRel: Ternary and Frame 
Ternary

Ternary and Frame Ternary settings refer to POS and DepRel labels treating 
them as equally important. In this section it is consider weighting the cost
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contribution of each of them. In particular it is introduced a parameter a
which is used in cost definition as follows:
if POS is different add a cost of a,
and if DepRel is different add a cost of 1 — a.
Deletion and insertion cost remains equal to one.

For a = 0 the system only uses Dependency Relation labels and ignores POS 
labels. For a = I the system only uses POS labels and ignores Dependency 
relation labels.

The following graphs (from 6.8 to 6.13) show how the accuracy of Ternary 
and Frame ternary settings change in relation to a. There are seven graphs, 
one for each language data set, the x axis represent the different values of a and 
the y axis represents the accuracy of the system measured on the development 
data set. It seems intuitive that the optimal a value should be found between 
zero and one, because otherwise the system would be promoting swaps in which 
POS is different or the dependency relation are different. Intuition was tested 
by i)lotting the values between -.05 and 1.05. As expected, outside the range 
between zero and one, accuracy drops. The accuracy scale is the same in all 
graphs in order to make them easy to be compared to each other. Also, optimal 
values are highlighted by a vertical dotted line starting at the value of optimal 
accuracy to the bottom of the graph.

Chinese

Figure 6.8: Tuning parameter alpha on Ternary Chinese development data
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Figure 6.9: Tuning parameter alpha on Ternary Czech development data

English

Figure 6.10: Tuning parameter alpha on Ternary English development data

Chinese, Czech and English data sets have in common that the maximum 
accuracy is reach with q = 1/2, which is a very intuitive value and corresponds 
to Ternary system.
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Japanese

Figure 6.11: Tuning parameter alpha on Ternary Japanese development data

Japanese also has a local maximum of accuracy in a = 0.5 for Ternary and 
Frame Ternary but the maximum accuracy is for a = 1. The reason behind 
that is that there is almost no annotation on Dependency Relations.

It is interesting to note that in the i^ublic evaluation as shown in Table 5.6 
on page 100, the systems perform fairly well in Japanese, in spite of the lack of 
dependency relation annotation.

Spanish

Figure 6.12; Tuning parameter alpha on Ternary Spanish development data
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Figure 6.13: Tuning parameter alpha on Ternary Catalan development data

Spanish and Catalan show a flat crests of maximums with an inflexion point 
in a = 0.5, over 0.5 the accuracy decreases. It happen for Ternary and Frame 
Ternary, but Catalan Frame Hamming seems to have the maximum value in
a = 0.5 but with a very small difference.

German

Figure 6.14: Tuning parameter alpha on Ternary German development data

The German graph looks very similar to Spanish and Catalan but it is 
unique in the sense that for Frame Ternary the maximum value is q = 0.45,
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but Ternary shows the inaxinniin value at a = 0.5.

Conclusions

The parameter o = 1/2 is not the optimal value for all languages but is optimal 
for most of the languages or very close the optimal value. Japanese is the 
most exceptional case because its data set lack annotation for the dependency 
relations what makes the optimal 0=1, however still have a local maximum at 
0.5. The lack of annotation dependency relations annotation seem to not affect 
the results in CoNLL-2009, in which Japanese is the second best predicted data 
in Table 100.

Table 6.25: Ternary comparing a extremes

accuracy a = 0 a = 1 difference

Chinese w-T ♦* 
w-FT ♦*

82.16%!
84.05%!

74.57%
78.17%

-7.583%
-5.885%

(German w-T * 
w-FT **

68.89%!
85.04%!

65.81%
80.77%

-3.077%
-4.274%

English w-T *♦ 
w-FT ♦*

66.84%!
73.82%!

62.44%
70.76%

-4.399%
-3.065%

Catalan w-T ** 
w-FT ♦*

64.95%!
75.65%!

48.34%
65.9%

-16.61%
-9.757%

Spanish w-T ** 
w-FT **

64.74%!
74.24%!

46.88%
63.05%

-17.87%
-11.2%

Czech w-T ** 
w-FT =

62.05%!
65.22%

59.98%
65.5%!

-2.064%
0.2751%

Japanese w-T ** 
w-FT **

43.7%
50.24%

56.52%!
59.96%!

12.82%
9.716%

total W-T
w-FT

*6, **5 
*5, **5

*1, -5.54%
-3.455%
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Table 6.26: Ternary comparing a extremes limits

accuracy Q = 0.05 Q = 0.95 difference

Chinese w-T ** 
w-FT **

82.41%!
84.16%!

80.73%
82.33%

-1.681%
-1.822%

German W“T = 
w-FT *

70%!
87.69%!

69.49%
85.64%

-0.5128%
-2.051%

English w-T ** 
w-FT **

68.04%!
75.97%!

65.61%
73.99%

-2.43%
-1.976%

Catalan w-T ** 
w-FT *♦

66.32%!
76.92%!

64.9%
74.46%

-1.422%
-2.463%

Spanish w-T ** 
w-FT **

65.39%!
75.41%!

63.47%
72.8%

-1.922%
-2.612%

Czech w-T ** 
w-FT =

64.91%!
68.28%

64.16%
68.47%!

-0.756%
0.1916%

Japanese w-T ** 
w-FT **

51.31%
54.64%

54.38%!
58.18%!

3.066%
3.546%

total W-T
w-FT

*5 **5
*5, **4

*1 -0.8085%
-1.027%

Table 6.27: Ternary comparing a patterns

aT max accuracy visual range maxims
Chinese 0.5 0.5 0.5
German 0.5 0.05 0.5
English 0.5 0.5 0.5
Catalan 0.3 0.05 0.5
Spanish 0.25 0.05 0.5
Czech 0.5 0.5 0.5

Japanese 1 1 1
Japanese has a local maximum at 0.5

Table 6.28: Frame Ternary comparing a patterns

a FT max accuracy visual range maxims
Chinese 0.5 0.5 0.5
German 0.45 0.05 0.45
English 0.5 0.5 0.5
Catalan 0.3 0.05 0.5
Spanish 0.5 0.05 0.5
Czech 0.5 0.5 0.5

Japanese 1 1 1
Japanese has a local maximum at 0.5

Tables 6.25 and 6.26 compares the accuracy of the system using dependency 
relations and using POS. For all languages (except Japanese) when the system 
use only dependency relations (q = 0) the performance is better than when 
it uses only POS (a = 1) (Table 6.25). Similar observations can be made by
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observing the vahies near the extremes a = 0.05 to a = 0.95 (Table 6.26). The 
only exception is Czech Frame Ternary.

It suggests that Dependency Relations give more useful information than 
PCS.

It is interesting that for all languages at least visually a = 0.5 is within the 
set of optimal values. See Tables 6.27 and 6.28, with the single exception of 
German Frame Ternary.

The Japanese data set shows the maximum vahies at a = 1 because the 
lack of Dependency Relation annotation, but surprisingly it was found a local 
maxims at a = 0.5.

For all languages for o- > 1, the system penalizes to match nodes with equal 
dependency relations, as it was expected, the accuracy drops even more than 
when fv = 1.

Again, for all languages for a < 0, the system penalized to match nodes 
with equal POS, as it was expected the accuracy always drops even more than 
with a = 0.
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6.4 Weighting lexical vs syntactic information: 
Hamming and Frame Hamming

Both Hamming and Frame Hamming refer to lexical (Lemma and Form labels) 
and syntactic (POS and DepRel) labels, treating both sets of labels as equally 
important. In this section it is consider different contributions for both sets of 
labels. It is introduced a parameter a to the Hamming and Frame Hamming 
measure in order to weigh the lexical features against the syntactic ones, so the 
swapping cost of two nodes is defined as:

• if POS is different add a cost of a/2,

• if DepRel is different add an extra cost of a/2.

• if Lemma is different add an extra cost of (1 — a)/2.

• if Form is different add an extra cost of (l-a)/2.

For q; = 0 the system only uses Lemma and Form and ignores POS and 
DepRel labels. For a = 1 the system become Ternary/Frame Ternary because 
it only uses POS and DepRel labels with the same weight as Ternary/Frame 
Ternary settings use it.

The following graphs (from 6.15 to 6.21) show how the accuracy of Hamming 
and Frame Hamming settings change in relation to a. There are seven graphs, 
one for each language data set, the x axis represent the different values of a and 
the y axis represents the accuracy of the system measured on the develoiiinent 
data set. It seems intuitive that the optimal a value should be found between 
zero and one, because otherwise the system would be promoting swaps in which 
POS is different or the dependency relation are different. Intuition was tested by 
plotting the values between -.05 and 1.05. As expected, like in the experiments 
on the Ternary settings, outside the range between zero and one, accuracy 
drops. The accuracy scale is the same in all graphs in order to make them easy 
to be compared to each other. Also, optimal values are highlighted by a vertical 
dotted line starting at the value of optimal accuracy to the bottom of the graph.

136



Figure 6.15: Tuning parameter alpha on Hamming Catalan development data

Figure 6.16: Tuning parameter alpha on Hamming Chinese development data
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Figure 6.17; Tuning parameter alpha on Hamming Czech development data

English

Figure 6.18: Tuning parameter alpha on Hamming English development data
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Spanish

Figure 6.19: Tuning parameter alpha on Hamming Spanish development data

Figure 6.20: Tuning parameter alpha on Hamming German development data
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Japanese

Figure 6.21; Tuning parameter ali)ha on Hamming Japanese development data

Conclusions

Table 6.29: Alpha values for maximum accuracy for each language on weighted 
Hamming and Frame Hamming

Each tag language is placed in the level in which its maximum accuracy was

English is 0.4.

max H FH
0

0.1 jP jp
0.2
0.3
0.4 en,ge
0.5 ca,es,ch,cz ca,es,cz,en,ge
0.6
0.7
0.8
0.9

1 ch

Table 6.29 shows for which value of a the maximum accuracy was found in each 
language for Hamming and Frame Hamming. For almost all cases 0.5 was the 
optimal value, which corresponds to the original definition of Hamming settings 
without a, in two occasions, the maximum value for Hamming is 0.4 which still 
is very close to 0.5. The two great exceptions to this trend are Japanese and 
Frame Hamming Chinese.
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In the case of Chinese, as shown before, Frame Hamming performed worse 
than any other measure, so it found a way to become identical to Frame Ternary 
by choosing o- = 1. In the case of Japanese, the annotation of Dependency 
Relations is very poor, it was expected that the system would tend to give more 
value to Form and Lemma labels, what is unexpected is that the weight for 
lexical features is nine times the weight of the syntactic ones.

Table 6.30: Hamming comparing a extremes

accuracy a = 0 a = 1 difference

Chinese w-II ** 7:5.44% 82.8%! 9.361%
w-FH ** 70.8% 84.35%! 13.55%

German w-H ** 78.72%! 70.26% -8.462%
w-FH * 84.79% 87.09%! 2.308%

English w-H *♦ 73.58%! 68.4% -5.178%
w-FH ** 74.15% 76.55%! 2.394%

Catalan
W-H -- 

w-FH **
65.62%
67.78%

66.31%!
76.91%!

0.6852%
9.133%

Spanish w-H
w-FH **

64.88%
66.57%

65.2%!
75.48%!

0.3189%
8.904%

Czech w-H * 66.,'56%! 65.56% -0.7988%
w-FH ** 65.82% 69.81%! 3.986%

Japanese w-H ** 
w-FH **

70.15%!
70.26%!

54.49%
58.15%

-15.66%
-12.12%

W-H -2.819%
total w-FH ***j *6. **5 4.02.3%

all *5 **4 *7 **6 0.6019%

Table 6.31: Hamming comparing a. extreme limits

accuracy a = 0.05 o = 0.95 difference

Chinese w-H ** 80.57% 83.41%! 2.835%
w-FH ** 78.3% 82.97%! 4.673%

German w-H ** 82.31%! 75.56% -6.752%
w-FH = 88.12%! 88.03% -0.08547%

English w-H ** 76.23%! 72.55% -3.678%
w-FH = 77.3% 77.49%! 0.1875%

Catalan w-H * 71.89% 72.71%! 0.8153%
w-FH ** 74.68% 77.92%! 3.235%

Spanish w-H * 70.58% 71.71%! 1.129%
w-FH ** 73.4% 76.55%! 3.146%

Czech w-H ** 71.02%! 69.94% -1.078%
w-FH * 69.85% 70.3%! 0.4504%

Japanese w-H ** 70.15%! 61.21% -8.94%
w-FH ** 70.45%! 61.88% -8.57%

W-H *3 ** 1 -2.238%
total w-FH 0.4337%

all *5. **5 **4 -0.9023%
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It is difficult to find out if lexical features are more important than syntactic 
ones or the other way around because it is very language dependent and fre- 
(piently what is better for Hamming gives opposite results for Frame Hamming. 
Tables 6.30 and 6.31 compare the accuracy for extreme a values. Table 6.30 
contrasts a = 0 and a = 1, and Table 6.31 contrasts a = 0.05 and a — 0.95.

In both tables lexical features ( a fis 0) seem to perform better for Hamming 
and syntactic features (a 1) seem to perform better for Frame Hamming 
(except in Chinese). It is interesting to note that Frame Hamming already adds 
some lexical features gained by promoting samples of the same frame.

For Japanese data lexical features are always better than the syntactic ones, 
again, it may be the effect of a poor dependency relation annotation which is 
almost non-existent.

6.5 Contrasting different k for k-NN

The following figures show the accuracy of the system of a wantecF k value on 
the development data set. The x axis which is drawn in a logarithmic s('ale 
represents the k value and the y axis represent the accuracy.

^The system will peak the closest “k” value to the one suggested to fit the closest panel 
for an equivalent class.
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Catalan

Figure 6.22: Tuning parameter k on Catalan development data set

Chinese

Figure 6.23: Tuning parameter k on Chinese development data set
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Figure 6.24: Tuning parameter k on Czech development data set

Spanish

Figure 6.25: Tuning parameter k on Spanish development data set
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Japanese

Figure 6.26: Tuning parameter k on Japanese development data set

English

Figure 6.27: Tuning parameter k on English development data set
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German

Figure 6.28: Tuning parameter k on German development data set

English and German seem to have its j^eak of performance at k=l (for 
Frame Hamming), and as the k gets extended the accuracy gets degraded. A 
speculation about the hnge difference between k=l and k^lO of the German 
data set'^ can be based on the fact that the size of the training data set. German 
has a very small training data set in comparison with the other languages in 
number of sub-trees. Therefore, forcing the system to use more samples may 
cause the system to use less related samples which will decrease accuracy. For 
the other languages (Spanish, Gatalan, Ghinese and Gzech) the graphs are very 
flat, swing and slightly increment of accuracy near k^lO but going down for 
higher values.

This observation is examined in Table 6.32, which contrasts the performance 
for k=l with k=10. The results point that k-10 performs better than k=l 
(except for German Frame Hamming), but the differences are marginal (less 
than 0.3% in average) in general and even smaller for the Frame versions (the 
ones with the higher performance).

Interestingly, with Frame Hamming the accuracy decreases faster than with 
Frame Ternary to the point that the accuracy lines cross each other.

^The differences are observable in Table 6.32 in which Frame Ternary and Frame Hamming 
show the largest drops in accuracy from k-l to k=10.
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Ternary has the most flat line because its first equivalence class is already 
very large, if the first equivalence class has more samples than the two k values 
that are compared the system will behave in an identical way for those two k 
values.

Ternary is the only atomic distance that seems to increase accuracy as the k 
value increases, it probably indicates that this measure is not adequate to select 
similar samples. Therefore, increasing the amount of samples the errors made 
by bad samples lose votes on the kNN system and the accuracy increases.

Table 6.32: Tree distance k =^1 vs k=10

accuracy k=l k=10 difference
a; 'P' ** 82.8% 83.31%! 0.5066%
a H ** 83.88% 85.14%! 1.2,56%

FT * 84.35% 84.73%! 0.3719%
O FH ** 81.28% 82.77%! 1.493%
c T = 70.26% 70.6%! 0.3419%d
B H = 82.05%! 81.79% -0.2564%
<V FT = 87.09%! 86.24% -0.8547%
O FH ** 90.09%! 86.24% -3.846%
j= T * 68.4% 68.77%! 0.3678%

H = 76.58%! 76.24% -0.3317%bOC FT = 76.55%! 76.5% -0.04327%U FH * 79.11%! 78.57% -0.5481%
c T = 66.31% 66.:i4%! 0.03469%

— H * 75.29% 75.73%! 0.4423%
FT = 76.91%! 76.78% -0,1.301%

O FH = 78.77% 78.99%! 0.22.55%
T = 65.2% 65.24%! 0.03448%w H ** 74.37% 75.24%! 0.8706%

ce
CL FT 75.48% 75..53%! 0.05172%

C/) FH * 77.92% 78.65%! 0,7327%
p' ** 65.56% 66.2%! 0.6419%
H ** 73.08% 73.63%! 0.5563%

N
o FT * 69.81% 70.02%! 0.2058%

** 72.22% 72.85%! 0.6236%
0)w T * 54.49% 55.34%! 0,8496%
c H ** 67.57% 69.63%! 2.069%
a FT = 58.15% 58.59%! 0.4433%

FH ** 68.23% 70.3%! 2.069%
T *0. **0 *4^ **2 0.3967%

— H *0, **0 *5, **4 0.6579%
.4^
o FT *0, **0 *2. **0 0.006376%

FH *4, **3 0.107%
all *2 **] *15 ,**9 0.292%
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Figure 6.29: Equivalence class German Ternary 
Probabilities of finding the n eciuivalence class under x ainotmt of samples

Figure 6.30: Equivalence class German Frame Hamming 
Probabilities of finding the n equivalence class under x amount of samples
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Figure 6.29 shows the probability of finding a particular ecpiivalence class 
under certain amount of neighbours (or panel size) for Ternary system over the 
German development data set, for example the probability of finding the first 
equivalence class by looking at the first hundred neighbours is around 70%. 
Figure 6.30 shows the probability of finding a equivalence class under certain 
amount of neighbours for Frame Hamming system over German development 
data set, for example the probability of finding the first equivalence class by 
looking at the first ten neighbours is above 95%.

The differences on how easy it is to find the first and second ecpiivalence class 
explains why there is so little variation on the accuracy of Ternary system: if 
the equivalence class is over the two values of ‘k’ that are being compared, the 
system will behave in a identical way for both values of k.

6.6 Frame Match cost

This section shows the effect of varying the frame mismatch cost on the de­
velopment data set. The following figures show the accuracy of the system for 
different mismatching cost for each language. The x axis corresi)ond to the 
mismatch cost and the y axis to the accuracy. It is intuitive to assume that 
negative mismatch costs degraded the accnracy of the system because they are 
to use samples from different semantic frame from the cpiery that has to be 
labelled. This intuition is confirm in the following figures.

149



Catalan

Figure 6.31: Tuning frame mismatch cost on Catalan development data

Figure 6.32: Tuning frame mismatch cost on Chinese development data
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Czech

Figure 6.33: Tuning frame mismatch cost on Czech development data

English

Figure 6.34: Tuning frame mismatch cost on English development data
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Spanish

Figure 6.35; Tuning frame mismatch cost on Spanish development data

Figure 6.36: Tuning frame mismatch cost on German development data
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Japanese

Figure 6.37: Tuning frame mismatch cost on Japanese development data

The residts for optimizing the frame nrismatch cost are very different from 
one language to another. Hence, some extra Tables are made to compare the 
trends in detail.

A notable observation is that Hamming drops its accuracy when the frame 
mismatch cost passes 1.5 (see details in Table 6.33), and Ternary when the 
frame mismatch cost pass 2 (see details in Table 6.33). Those two singularity 
points are remarkable for all languages except for German data in which the 
drop is very small in both cases and in one there is no significant difference, but 
still it is observable. This drop is dtie to the discard of samples from different 
frames to the sample to be labelled.

Table 6.33; Hamming frame cost 1.5 vs 1.6

accuracy fm=1.5 fm=1.6 difference
Chinese H ** 79.53%! 68.56% -10.97%
German H = 90%! 89.32% -0.6838%
English ** 78.23%! 71.07% -7.154%
Catalan H ** 77.71%! 73.5% -4.215%
Spanish H ** 76.64%! 72.36% -4.284%
Czech ** 70.08%! 53.97% -16.11%

Japanese H ** 66.83%! 46.99% -19.84%
total H *6, **6 *0, **0 -9.036%
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Table 6.34: Ternary frame cost 2 vs 2.1

accuracy fm=2 fm=2.1 difference
Chinese 81.65%! 68.13% -13.52%
German 'P ** 89.32%! 87.61% -1.709%
English p ** 77.56%! 68.61% -8.943%
Catalan p ** 77.6%! 73.14% -4.458%
Spanish p ** 75.94%! 71.42% -4.525%
Czecli p ** 68.49%! 52.21% -16.29%

Japanese p 57.37%! 43.11% -14.26%
total T *0. **0 -9.101%

In the case of Ternary, for a mismatch cost over 2, the cost of deleting and 
inserting both predicate nodes will be less than for swapping both of them even 
if the Dependency relation and POS labels are equal. In the case of Hamming, 
for a mismatch cost over 1.5, if predicates belong to different frames they are 
very likely to also differ word and lemma labels as well, which would add an 
extra cost of 0.5, what will make a cost over 2. What is more than inserting 
and deleting both predicate nodes.

In Hamming two samples can belong to different frames and still have the 
predicate nodes share the same word label, as the word can have a different 
meaning or frame, which explains the fluctuations for frame hamming for the 
mismatch range from 1.5 to 2. Hence, a mismatch cost over 1.5 will make most 
of the samples from other frames for Hamming unusable and a mismatch cost 
over 2 will make all samples from other frames for Ternary unusable. Over a 
mismatch cost of 2 the accuracy does not drop any longer, because all samples 
that belong to a different frame are umisable and increasing the cost of using 
them makes no difference. It can be observe that there is no difference between 
mismatch values of 2.1 and 2.2.

The Negative mismatch cost causes the system to avoid using samples from 
the same frame but still keep them usable. As expected, the accuracy drops 
as the mismatch cost becomes more negative. From what has been explained 
before it can be expected that optima mismatch cost should be in the range 
between 0 and 2.
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Table 6.35: Dataset split by the maxinmm accuracy for different frame mis­
match costs

Max Ternary Hamming
0

0.1
0.2
0.3
0.4

Chinese

0.5
0.6
0.7
0.8
0.9

Czech , Japanese, Spanish*

1
1.1

Chinese, Czech Catalan*, English

1.2
0.3
0.4

German

1.5
1.6
1.7
1.8 
1.9

Japanese, Spanish, Catalan

2 English, German
*Note: Spanisli and Catalan show both a local maxima on hamming at 1 and at 1.5.

Table 6.35 clusters the languages by its maximum accuracy along different 
frame mismatch costs. The way to read the table is: at frame mismatch cost 
1 for Ternary settings, Chinese and Czech show its maximum accuracy. It is 
observable that Ternary tends to occupy the higher region from 1 to 2, and 
Hamming the lower region from 0 to 1.2, which seems logical as the Hamming 
drops after 1.5. The maximum accuracy over the cost of frame mismatching 
seems to be language dependent and it is an interesting observation that when 
languages are sorted according to their maxims both Ternary and Hamming can 
produce the same order: Chinese, Czech, Japanese, Spanish, Catalan, English 
and German.

What makes German different? Probably the fact that German has fewer 
labels, makes the system to need less fewer training samples of each frame and 
consequently removing all samples of different frames will not lead to a great 
decrement on the accuracy of the system. In order to check this, the experi­
ment described in Section 5.3.2 about calculating the perplexity of the chain of 
semantic arguments is replicated for all languages. Figure 6.38 illustrates the 
results.
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• seq+frame: is the sequence of chains produced for each predicate created 
by concatenating all semantic labels in word order plus the label of the 
frame.

• frames: is the sequence of frame labels that appear on a data set.

• sequence: is the sequence of chains produced for each predicate created 
by concatenating all semantic labels in word order without the label of 
the frame.

• the function per{x) calculates the perplexity of a sequence of items x.

• fall Hamming is the percentage of accuracy drop between Hamming frame 
mismatch cost 1.5 and 1.6.

• fall Ternary is the percentage of accuracy drop between Ternary frame 
mismatch cost 2 and 2.1.

Iper(seq+frame)/per(frames) Befall Hamming [Zlfall Ternary —perplexity sequence

German Catalan Spanish English Chinese Czech Japanese

(normalized chain) 
per(seq+frame) 

/per( frames)

(brute chain)

per(sequence)
% fall 

Hamming
% fall 

Ternary
German 2.18 15.11 0.68 1.71
Catalan 7.78 178.82 4.22 4.46
Spanish 8.08 184.89 4.28 4.53
English 13.04 88.45 7.15 8.94
Chinese 8.65 108.59 10.97 13.52
Czech 3.05 18.87 16.11 16.29

Japanese 4.02 59.99 19.84 14.26

Figure 6.38: Perplexity on secpiences along languages
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The cohimn per{seq + frame)/per{frames) {normalized chain), is an at­
tempt to estimate how many sequences of roles per frame are. That is why the 
label of the frame is added to the sequence and later the perplexity is normal­
ized by the perplexity of all frames. As it was expected German data set has 
the lowest normalized chain measure.

The column per{sequence) {brute chain), is an attempt to estimate how 
many seciuences of semantic roles are across frames. As the values were sub­
stantially larger than the other in the graph it is drawn using the secondary 
scale at the right side of the graph.

German language have the lowest fall, probably its because it have very 
small variety of semantic arguments and sequence of arguments (low norifnalized 
chain), what means it fewer samples of each frame to work well; for that reason 
removing all samples from other frames did not cause a big damage. Catalan 
and Spanish have a drop on accuracy, substantially larger than German, but 
relatively small in comparison with the other languages. (It can be observed 
that the normalize chain score is higher, which probably means it needs more 
samples to work well, but at the same time it also have a very high brute chain 
score, meaning that the samples from other frames may be very hard to use 
as they do not share the same secpiences of roles, this second preposition may 
be the cause of having a moderate drop. Regarding Czech, this data set is 
substantially more annotated than any other language, it have the lowest ratio 
of arguments per predicate (see Figure 2.8 in page 27), at it contains many 
short sequences it is easy they repeat each other. Hence, the chain measures 
will be low miss-suggesting that the system needs a small amount of samples 
per frame to work well which is not the case).

Japanese is interesting because it the only language where Hamming falls 
more than Ternary, but this is a special case because for all other languages 
Ternary and Hamming almost fall from the same accuracy, but in the case of 
Japanese Ternary performs around 10% worse than Hamming at the dropping 
value.
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6.7 Conclusion

The goal of the experiments of this chapter was to find optimal parameters for 
the task across all languages.

Regarding the variation of the deletion cost, for ternary, hamming and frame 
ternary most of the languages seems to show their maximum of accuracy at 0.5 
and for frame hamming at 0.9. Distance settings with deletion cost equal to 0.5 
will be explored in Chapter 7.

Regarding the weighting between POS and Dependency relation six of the 
seven language data set used show that ecjual weight leads to the maximum 
or very close to the maximum accuracy. Equal weighting is the default value 
adopted in the experiments of the previous chapter.

Regarding the weighting between lexical and syntactic features also for most 
of the languages converge on a maxiimnn accuracy for equal weight. Equal 
weighting is the default value adopted in the experiments of the i)revious chap­
ter.

Regarding the k value of the k-NN module, the experiments tends to show 
slightly higher accuracy at k 10 than at k 1. However the differences are 
negligible (less than 0.3 % in average).

Regarding the tuning of the frame mismatch cost, the experiments do not 
converge across different languages, in ternary the optimal value varies from 1 
to 2 and in hamming from 0 to 1.2

The results of the experiments confirm that the default values of parameters 
are very close to the optimum.
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Chapter 7

Contrasting Distance and 
Similarity

7.1 Introduction

Tliis chapter compares tree-distance and tree-similarity. Section 7.1 exposes 
common assumptions on the ecpiivalence of both concepts. Section 7.2 com­
pares Tai-distance and Tai-siniilarity from a theoretical point of view defining, 
explaining and discnssing three kinds of equivalences and showing that some of 
them hold while others do not. Most of its content luis been already published 
by Emms and Franco-Penya (2012). And the hnal Section (7.3), experiment 
with Tai-distance and Tai-similarity in the Tree-SRL system showing the im­
pact of the differences between both concepts.

Assumptions about equivalence of distance and similarity The com­
parison measures for arrays and trees are commonly defined as ‘distances’ or as 
‘similarities’.

Statements like the one shown in Figure 7.1 or the wikipedia entry on Fig­
ure 7.2, reflect a common belief: That ‘distance’ and ‘similarity’ notions are 
almost synonyms and that the measures are straightforwardly interchangeable 
notions, meaning that whatever can be produced by a ‘distance’ measure can 
be reproduced or dualized by a ‘similarity’ measure and vice-versa.
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“To compare RNA structures, we need a score system, or alter­
natively a distance, which measures the similarity (or the differ­
ence ) between the structures. These two versions of the problem 
-score and distance- are equivalent.” (Herrbach et al., 2006)

Figure 7.1: Herrbach et al. (2006) statement about distance and similarities

Needleman and Wunsch formulated their problem in terms of 
maximizing similarity. “Another possibility is to minimize the 
edit distance between sequences, introduced by Vladimir Leven- 
shtein.” Peter H. Sellers showed (Sellers, 1974) that the two 
problems are equivalent.

Figure 7.2: Wikipedia entry on ‘Needleman-Wunsh’ (Wikipedia, 2012)

Such comments are common in the literature (Batagelj and Bren, 1995; 
Omhover et ah, 2006; Lesot and Rifqi, 2010).

7.2 Distance vs Similarity: a theoretical study

It is convenient to define tree similarity in a similar way as tree distance was 
defined^ but approaching the problem by maximizing a score assigned to an 
alignment, with swaps rewarded and deletions and insertions being punished.

Let C® be a ‘similarity’ table, indexed by {A} U E, where S is the alphabet 
of labels^, and where a : S T is any mapping from S to T, and then let 
0(q; : 5 !-)■ T) be defined by:

^See Section 3.3.2 at page 41 for details of tree distance definition.
^To keep notational overhead to a ininimuni, it will be use • for arbitrary members the 

label alphabet S.
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Definition 7.1; Similarity scoring of an alignment

The similarity scoring of an alignment is the sum of the similarity score of 
all its swaps minus the similarity penalty for all inserted and deleted nodes:

e{a:S^T)=
{i,j)£M i&'D j€l

F"roni this costing of alignments, a ‘similarity’ score on tree pairs is defined by 
maximisation:

Definition 7.2; Similarity scoring of a tree pair

The Tree- or Tai-similarity Q{S,T) between two trees S and T is the max- 
imnni value of 0(a : S ^ T) over possible Tai-rnappings from S to T, 
relative to a chosen cost table C®

a .......
1

^ c
11

_ . . - a a
..f ■■■T

a ■ ■'b b - - ' ■ ■■ b b
1 ' * . ^ -•r

b-
'

with
(7^(0;, A) = C®(A,x) = 0,

C^{x, x) = 2, C'^ix, y) = lforx^ y, 
the shown alignment score 0(q:) = 9 

Copy of Figure 3.3 at page 45, similarity version.

Figure 7.3: An illustration of tree similarity.

Applied to the same example as shown in Figure 3.3 at page 45, which is dupli­
cated as Figure 7.3 but with similarity score values, the shown alignment has 
score 0(a) = 9, which is maximal for the given C®.

0(5, T) can be computed via a simple modification of the (Zhang and
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Shaslia, 1989) algorithm^.
Like for A, some settings of the C®(cost-table) make little sense. Given the 

formulation in Equation 7.1, which subtracts the contribution from deletions 
and insertions, a setting where deletion or insertion cost entries are negative 
would give the counter-intuitive effect that a supertree of S would be more 
‘similar’ (in the sense of higher 0 score) to S than S itself. For this reason it 
is nearly universally assumed that deletion and insertion entries in C®can not 
be negative. Henceforth, it is assumed that ‘similarity’ 0 is always based on a 
table C® that satisfies Equation 7.1.

(7.1) yx,ye S(C®(x, A) > 0,C’®(A, t/) > 0)

7.2.1 Order-equivalence notions

For a given distance ‘distance’ A scoring"^ or a ‘similarity’ 0 scoring of align­
ments it can be defined at least the following three different kinds of orderings:

Definition 7.3.- Alignment ordering

Given fixed S, and fixed T, rank the possible alignments a ■. S ^ T by
A{q:S^ T)

Definition 7.4.- Neighbour ordering

Given fixed S, and varying candidate neighbours Ti, rank the neighbours Ti 
by A(5, Tj) - typically used in k-NN classification.

Definition 7.5.- Pair ordering

Given varying Si, and varying Tj, rank the pairings {Si,Tj) by A{Si,Tj) 
typically used in hierarchical clustering.

The comparison these orderings motivates the following definition:

^On the domain of vertical trees this coincides with the well known approach to sequence 
comparison, the (alphabet-weighted) string similarity (Smith and Waterman, 1981; Gusfield, 
1997).

'*A first introduced on page 44.
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Definition 7.6. A-dual

C^and C^are A-dual if the alignment ordering they induce is reversed.

Definition 7.7: N-dual

and C^are N-dual if the neighbour ordering they induce is reversed.

Definition 7.8; P-dual

and C^are P-dual if the pair ordering they induce is reversed.

For example, the following examples 7.9 and 7.10 are A-diials in this sense. 
This will be proven in section 7.2.2.

Example 7.9.- First A-dual example
C^{x,\) = l r C^{x,X)^{)

A withl^ C^{x,x) = 0 0 ^vithl C^{x,x) = 2
C^{x,y) = 1 [ C^{x,y) = 1

Example 7.10.- Second A-dual example
C^{x,X) = {).b f C'®(x,A) = 0

A with^ C^{x,x) = 0 0 uhthl C®(x,x) = 1
C^(a:,y) = 0.5 [ C®(x,?/) = 0.5

7.2.1.1 The conjectures

A natural question that presents itself is whether for every choice of , if there 
is a choice of C® which is an A-dual, N-dual or P-dual, and vice-versa. More 
precisely, there are the following conjectures:

(^) VC^3C'®(C^ and C® are A-duals)

{ii) VC®3C"^(C^ and C® are A-duals)
(i) VC^3C'®( and C® are N-duals)

A-duality

N-duality
[ii) VC®3C'^( and C® are N-duals)
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P-duality
(z) VC’^3C'®( and C® are P-duals)
(m) VC®3C'^( and C® are P-dnals)

It is important to know if these duality conjectures iiold or not, because if 
they do not hold it would imply that there is a substantive difference with the 
outcomes achievable by distance and by similarities.
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7.2.2 Alignment-duality results

The following lemma will be usebil for considering the A-dnality conjecture.

Lemma 7.11 For any C^, and some choice 5 such that 
0 < 5/2 < min{C^{-, A), C^(A, ■)) let C® be defined according to (i) below.

For any C®, and choice 5 such that 0 < 5 > max{C^{-,-)) let be 
defined according to (ii) below.

( C^{x,X) = C^{x,X) -5/2 ( C^{x,X) = C^{x,X) + 5/2
(t)l C^iX,y) = C^{X,y)-5/2 (ti) I C^{X,y) = C^iX^y) + 5/2 

[ C^\x, y) = 5 - C^{x, y) ( C^{x,y) = 5 - C^{x, y)

then in either case, for any a : S ^ T

(7.2) A(«) + e(a) = 5/2 x (^(1) + ^(1))
s€S t&T

Proof 7.12.- Proof of Lemma 7.11

If defining C® fjvm. by (i), by the choice of 5, the non-negativity re­
striction ofC^{x, A) and C®(A, y) should be preserved. If defining from 
C'® by (a), by the choice of 5, the non-negativity restriction of all entries 
in should be preserved.
Whether defining (7® from C^by (i), or from C^by (ii), it is straight­

forward to show: A(q) + 0(0) = 5/2 x (2|Ad| + \T)\ + \X\)
But then Equation (7.2) follows since: 2|Ad| + |D| + lX| =

Proof 7.13.- Proof of alignment sum property

A{a) + 0(a) = 5/2 x (2|Ad| + \V\ + \X\).
This is proven as follows:

If defining C® from C^by (i), for 0(a).-
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[S- C^(i J)I - A) - A72] - 1][C^(A. j) - i/2)
(ij)6M ieV jel

= + ^ + [C^(i,j)]-^[C^(z,A)]-^[C^(A,j)]
(zj)€A^ JeX

= U2\M\ + \V\ + \X\)-A{a)

If defining from C®by (ii), for A(q');
[<5 - C^ifj)] + ^[Ce(^, A) + <5/2] + j;[C^(A, j) + 6/2) 

i€'D jex

E ic®«.2)i + Ep®(>.^)I + Ep^(^-a)1
{ij)€M iev jei

{i,j)€M

= -(2|Ai| + |IA| + |I|)-(■?(<>)

Hence in either case the claim holds.

Theorem 7.14 A-duality (i) and (ii) hold

Proof 7.15; Proof of Theorem 7.14

A-duality (i): define C® according to (i) in Lemma 7.11. Given the con­
stant summation property of Equation (7.2), the ordering on align­
ments by A must be the reverse of the ordering by 0.

A-duality (ii): similarly define according to (ii) in Lemma 7.11

Example 7.16; Example 7.9 revisited 
The C® of Example 7.9 at page 163 can be seen as derived from 
the with <5 = 2. Table 7.1 shows outcomes for other choices 
of (5.

Table 7.1: Outcomes for different choices of S

C®{5 = 2) C®(<5= 1) C®{5 = 0)
{x, A) 1 0 0.5 1
{x,x) 0 2 1 0
{x,y) 1 1 0 -1
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As a corollary one can obtain the following concerning how one similarity 
table can be ‘shifted’ to an equivalent one, and similarly for distance tables;

Corollary 7.17 (‘shifting’) foj' any an alignment equivalent C®2
can be derived by the conversion (a) below, and for any C^i, an alignment 
equivalent C^2 can be derived by the conversion (b)

C®2(x,A) = C'®i(;r,A)-K/2 f CS(a;, A) = C^i(x, A) + ac/2 
(<i){ C®2(A,!,) = Ce,{A,!/)-K/2 (b) I C\(X,y) ^ + ^/2

C®2(a:.!/) = C'®i(a:,!/) + K [ C^2{x,y) = C^, + k

Proof 7.18; Proof of Corollorary 7.17

(a) is the composition of (ii), for some <5i, with (i), for some 62, giving 
K = 82 — bx- (b) is the composition (i), for some (^1, with (ii), for some 82, 
giving K = ^2 -

Example 7.19; Example 7.9 revisited again 
The three A-dualizing similarities C^{b = 2), C®(5 = 1) and 
C®((5 = 0) derived from the unit-cost distance table using vary­
ing 5 in the (i) conversion of Lemma 7.11 can be seen as related 
to each other by the (a) ‘shifting’ conversion of Lemma 7.17, 
with K = — 1 each time.

7.2.3 Neighbour and Pair ordering results
7.2.3.1 Distance to Similarity

The case of using h = 0 in the (i) conversion of Lemma 7.11 from to C® 
gives non-positive values for all non-deletioii, non-insertion entries in C®, and is 
an especially trivial case of dualizing a distance setting C^, with the effect that 
0(5, T) = —1 X A(5, T). Because of this, this distance-to-similarity conversion 
not only makes A-duals, but also N-duals and P-duals.
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Theorem 7.20 N-duality (i) and P-duality(i) hold

Proof 7.21.- Proof of Theorem 7.20

By choosing S = 0 in the (i) conversion of Lemma 7.11 from. to C®, it 
is obtained 0{S,T) = —1 x A(S', T), and hence 0(5i,Ti) < 0(52, T2) 
A(5i,ri) > A(52,r2)

This distance-to-siniilarity by negation is well known. On the other hand, 
concerning sinhlarity-to-distance, in the (ii) conversion of Lemma 7.11 from C® 
to one can only choose 5 = 0 if all C®{x,y) < 0, and clearly there are 
many natural settings of C® where that is not true, because there is a pair 
(x,y) for which C®(x,?y) > 0 then in order to avoid negative distances 5 should 
be positive, and this wotdd change the neighbour ordering.

7.2.3.2 Similarity to Distance

The remaining order-equivalence conjectures of section 7.2.1 are N-duality (ii) 
and P-dxiality(ii), concerning the similarity-to-distance direction. Of the re­
maining conjectures, P-duality(ii) is stronger than N-duality (ii). It is fairly 

to see that P-duality(ii) does not hold:

Theorem 7.22 P-d^iality (ii) does not hold: there are C® such that there is no 
such that C® and are P-duals.

Proof 7.23.' Proof of Theorem 7.22

It is clearly possible for C® to be such that there is no maximum value for 
0(5, r). For instance for C®(a,a) = C®(a, A) = C'®(A,a) = 1, its clear 
that 0(a, a) = 1, 0(aa, aa) = 2 and in general 0(a", a") = n.

Let C® be any table defining a similarity with no maximum. On the other 
hand, for each there will be minimum value of A{S,T).

Say a pair < 5, T > belong to a class {0}i if 0(5, T) = x.
Say a pair < S,T > belong to a class {A}y if A(5, T) = y.
Let be [Aj^g the class that contain the set of pairs < S,T > for which 
A(5, T) is the minimal.
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Suppose some is a P-dual to C®. There should exist a l)ijeotioii between 
the set of similarity classes {[0]s} and the set of distances classes of {[A]d}. 
Some similarity class [0]^^ of 0 must correspond to the minimum distance 
class [A]do-
Let [0]s^ be a higher 0 class than [0]s„.
Then [0]s„ must corresirond to some A class [A]^^ distinct from [Aj^g, and 
since [Aj^g is the distance-minimum, this must be a higher distance class. 
Then for (5o,To) € [A]dg, and (S'i,ri) G [A]a, you have A(S'o,ro) < 
A(S'i,ri), but also 0(S'o,To) < 0(S'i,ri). So the supposed dual (7^ does 
not reverse the pair-ordering of (7®.

Example 7.24,- Proof 7.23 illustrated
Let Band Abe P-duals.

As distance and similarity are defined a sum of atomic costs 
(swaps, insertions and deletions), the distance and similarity 
between two empty trees have to be zero: A( —,—) - 0( —
0.

If B{a,b) > 0 then Q{a,b) > 0( —what would imply 
that A{a,h) < 0 = A( —Ts negative distances are not 
permitted,^and Acan not be P-duals.

Of the order-relating conjectures of section 7.2.1 the only remaining one is 
N- duality (ii)^. It can be shown that there are neighboiir-orderings by a Tai- 
similarity which cannot be dualized by any Tai-distance whose deletion and 
insertion costs are symmetric.

Theorem 7.25 There is (7® such that there is no with C^{x, A) = C'^(A, x) 
such that C® and are N-duals

Proof 7.26.' Proof of Theorem 7.25

Let S = aa, and the set of neighbours be {a, aaa}.
Let (7® (a, a) = x > 0, and C®(a, A) = C®(A, a) = y > 0.

®That is the question of whether every neighbour-ordering via some C® can be replicated 
by a neighbour ordering via some
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• For {aa,aaa), the alignments with 2,1, and 0 a-matches haves scores, 
2x — y, X — 'Sy and —by, respectively, so the alignments maximising 
0 are those with two a-matches, and Q{aa,aaa) = 2x — y.

• For (an,o), the alignments with 1 and 0 a-matches have scores x — y 
and —3y, respectively, so the alignments maximising 6 have one a- 
match, and Q{aa,a) = x — y.

Consider what is required for the 0-decreasing neigbour ordering to be: 
[aaa, a],: 0(aa, aaa) > 0(aa, a) ^ 2x — y > x — y 
So there is a 0-decreasing neighbour-ordering [aaa, a].

Let C^{a,a) = x', and C^(a, A) = C^{\,a) = y'. Note this assumes 
symmetric insertion and deletion costs. For {aa,aaa), the alignments with 
2,1, and 0 a-matches haves scores, 2x' + y', x' -|- 3y' and by', respectively. 
Two cases can be distinguish: (i) 2y' < x' and (ii) 2y' > x'.

• For case (i), x' = 2y' -H e, for some no-zero e > 0, and the 2,1,and 
0 a-matches scores become by' -I- 2e, by' -h e and 5?;', respectively, so 
taking the minimum, A{aa,aaa) = by'.

• For case (ii), y' = x'/2+k, for some k > 0, and the 2,1,and 0 a-matches 
scores become 2.5.x' -|- k, 2.bx' -t- 3k and 2.5x' + 5k, respectively, and 
2-niatch case is amongst the minimal cases, so A{aaa, aa) = 2.bx' -\-k.

For (aa, a), the alignments with 1 and 0 o-matches haves scores, x' -\- y' 
and 3y' respectively. Again, two cases are distinguished: (i) 2y' < x' and 
(ii) 2y' > x'.

• For case (i), the 1 and 0 a-matches scores become 3y' + e and 3y' 
respectively, so taking the minimum, A{aa,a) = 3y'.

• For case (ii), the 1 and 0 a-match scores become 1.5x'-t-K and 1.5x'-|-3k 
respectively, and the 1-match case is amongst the minimal cases, so 
A{aa, a) = l.bx' -h k.
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Suniniarising the A possibilities:

A(aa,aaa)
(i) 2y’ < x’ 5y’ 3y’

(ii) 2y’ > x’ 2.5x’ -!- K 1.5x’ -I- K

In neither case (i) nor case (ii) is it possible to achieve a A- 
ascending neighbour ordering [aaa,a\, which was the 0-descending 
neighbour ordering which was achieved with the assumed C®.

Remark If the requirement about the N-dualizing have C^{x, A) = 
C^{X, x), is dropped then the argument does not go through. The 
0-descending neighbour ordering [aaa, a] can be replicated by a 
A-ascending neighbour ordering with C^{a,\) > C^{X,a). For 
most applications of alignment-based ‘distances’, such an asym­
metric setting of deletion and insertion costs would be considered 
unnatural.

7.2.3.3 Does N-duality imply P-duality?

This section attempts to find if N-duality implies P-duality and if that is the 
case it would mean that N-duality and P-duality are exactly the same duality.

Proof 7.27.- Partial proof for N-duality implies P-duality

If and C® are N-duals those imply are C® are P-duals?
A(S'o,To) < A(S'i,Ti) —)-0(5o,To) > 0(5'i,r])| being C‘^and P-duals ?

Assuming that it is always possible to find a sequence n of trees (Xi...Xn) 
between Tq and S] such that would satisfy:
A{So,To) < A(To, Ai) < A(Ai, A2) < ... < A(A„,5i) < A(5i,Ti)

yls 0 is and A are P-duals and in the previous sequence of inequalities each 
item in the sequence is a distance comparison which shares one tree with 
each of its neighbour items It is possible to create a new sequence of inequal­
ities by using the P-duality property: each A{Xm-i, X^) < A{Xm, Xm+i) 
would infer a Q{Xm-i,Xm) > 0(A„, A„+i)
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what leads to:

0(S'o,ro) > e(r„,Xi) > e(Xi,X2) > ••• > e(x„,5i) > e{SuT,)

Therefore, as the proof can work in both directions:
A{So,To) < A{SuT,) ^ e{So,To) > e{SuT,)

Remark The coiiipletion of the proof is left as an open question. It 
only requires to demonstrate that it will be always possible to find 
the sequences of trees S, Xo...Xn, T, which is partly explained in the 
following partial proof:

Proof 7.28.- Partial proof of existence of equisdistant trees se- 
quence

Let he a super alphabet which contains And Let be a distance 
cost table that contains , extending the entries by defining deletion, m- 
sertion at a cost C and swap costs for the new symbols of the alphabet in 
relation to the old symbols also at cost C.

Then it is easy to see that it is always possible to find a sequence of 
n = (2 * (m + p) + 1) (excluding S and T)trees such that the distance from 
one to the next will be constant C, where m is the amount of nodes of 
the source tree (S) and p the amount of nodes of the target tree (T). This 
sequence of trees will pass though the empty tree (with no nodes).

The difference between consecutive trees for the first m elements of the 
sequence, it that one node which content is a symbol E is swapped into 
a symbol G at a cost C.

At position rn of the seq^ience all nodes of that tree (e )■ differ­
ence between consecutive trees between m and m*2, is that any Xj^i have 
one node less than Xj and the deletion had a cost of C.

From m*2 to m * 2 -\- p the differences from one tree to the next would 
be adding a node of the G adopting the shape ofT at cost C, and from 
m * 2 n to the last positions of the sequence the nodes, the nodes will be 
turning into the nodes ofT also at a cost C.

Henceforth, ifA{a, a) = 0 then it is possible to find a sequence 
of trees, such that consecutive trees are at equal distance of each

173



other.

Remark It is left as an open question to find if it is possible to find 
a sequence of equidistant trees in case of having an atomic swapping 
cost between identical items over zero.

Example 7.29.- Equidistance sequence of trees
Let imagine an alphabet ^ = {a,b,c,d}, an extended alphabet 

= {a, b, c, d, a', b', c', d'}, a tree S = {abj and a tree T = [cdj. 
possible sequence will be:

5 = Ao = [ab],X,
A:2 = [a':bl X,

X, = H,
X, = [c'l , ^6 =

^7 = [cd'], X8 = [

7.2.4 Conclusions and Illustrations

In view of the outcomes noted in sections 7.2.2, 7.2.3.1 and 7.2.3.2 concerning 
the various ordering conjectures it can be concluded that:

• Any hierarchical clustering outcome achieved via A can be replicated via 
0, but not vice-versa.

• Any categorisation outcome using nearest-neighbours achieved via A can 
be replicated via 0, but not vice-versa.

In this sense ‘similarity’ and ‘distance’ comparison measures on sequences 
and trees are not interchangeable.

As far as the author of this thesis is aware this aspect of the choice between 
a similarity-based versus a distance-based comparison measure on sequences or 
trees has not been noted before (Emms and Franco-Penya, 2012).
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7.2.4.1 Comparison of neighbour orderings of A-duals

Lesot and Rifqi (2010) present an empirical quantified comparison to measure 
ecjuivalence degrees on orderings (Kendall, 1945), which they used for informa­
tion retrieval. An analogous study can ([uantify distance and similarity order­
ings on trees. Lemma 7.11 on page 165 (i) gives an A-dual conversion from 
distance to similarity. This conversion allows unlimited variants trough chang­
ing a parameter 5. This section analyses the degree of N-duality as S is varied. 
Table 7.2 gives some distance and similarity settings: the first cohmm gives the 
unit-cost settings for A and the columns to the right give different similarity 
settings C® derivable by the (i) conversion of Lemma 7.11 as is varied through 
various vahies.

Table 7.2: Unit-cost distance setting and several A-dual similarity settings.

dual C® for varying 6
CA 2 1.5 1 0.5 0.2 0.1 0

(x, A) 1 0 0.25 0.5 0.75 0.9 0.95 1
(.x,.x) 0 2 1.5 1 0.5 0.2 0.1 0
{x, y) 1 1 0.5 0 -0.5 -0.8 -0.9 -1
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Definition 7.30.' Kendal-Tau with ties

Let and N'^ be two assignments of ranks to the same set of objects, U 
(with the possibility of ties). Where:

V is the set of all two-element sets of distinct objects from U, n is the 
amount of objects in U, define a penalty function p on any {Ti,Tj} G V, 
such that

(i) p{{Ti,Tj]) = 1 if the order in is the reverse of the order in N'^, 

(li) p{{Ti,Tj]) = 0.5 if there is a tie in but not in N'^ or vice-versa 

(Hi) p[{Ti,Tj}) = 0 otherwise.

The Kcndall-Tau distance (with ties) between and N'^,
is:

{T„Tj}€V

X
rn X (m — 1)

An experiment was condncted to quantify liow close the similarities defined 
by the varying C'®tables come to being N-dnals for the distance. Using a set 
of 1334 trees, full sentences in dependency tree structure from the English data 
set, repeatedly a tree S was chosen, and neighbour files N^{S) and Nq{S) were 
computed, with N^(S) the ordering of the remaining trees by ascending A, and 
Nq{S) the ordering by descending 0. N^{S) and Nq{S) were then compared 
by the Kendall-tau measure r. For each 5 the average of this r comparison be­
tween the distance and similarity neighbour files is shown in Figure 7.4. Binary 
settings were used for A.

The bottom-left corner, for 5 = 0 is the special case of Lemma 7.11 which 
amounts to the well-known trivial distance-to-similarity conversion, Q{S,T) = 
— 1 X A(5, T), noted in section 7.2.3.1. In this case the distance and similarity 
neighbour files are identical. As the graph clearly shows, as S increases, the 
neighbour files exhibit progressively greater difference in ordering, until at <5 = 
2 the r score is 0.73, which corresponds to a tendency more towards order 
reversal than to replication. This experiment confirms that although each of
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Figure 7.4: Average Kendall-taii comparison 
Average Kenclall-tau comparison on neighbours using distance and derived 

similarities. Distance setting is the hrst cohnnn of Table 7.2. Similarity 
settings are further columns of Table 7.2 defined by varying S.

these similarity settings is an A-dual of the simple distance setting, they are 
not at all equivalent to each other as far as neighbour ordering is concerned.

The (ii) conversion of Lemma 7.11 on page 165 converts similarity settings 
to A-dual distance settings. Table 7.3 gives a similarity setting and then several 
distance settings derivable by the (ii) conversion as ^ is varied through various 
values. Whilst the first experiment treated these simply as identical or not, 
for this second experiment, the base-line similarity node label is compared via 
C'^{x,y) = 1 — ha7n{x, y), where ham{x, y) is the standard hamming distance 
explained in Section 4.7 at page 68.

Table 7.3: A similarity setting and several A-dual distance settings.

dual C'^ for varying 5
1 1.5 2 2.5 3 3.5 4

(x. A) 0.5 1 1.25 1.5 1.75 2 2.25 2.5
(x, x) 1 0 0.5 1 1.5 2 2.5 3
{x,y) 0 1 1.5 2 2.5 3 3.5 4
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Figure 7.5 plots the average r comparison between the similarity and dis­
tance neighbour files, as 5 is varied to give different distances. Again this 
experiment confirms that although each of the distance settings is an A-dual of 
the similarity setting, they are not equivalent to each other as far as neighbour 
ordering is concerned.

Figure 7.5: Average Kendall-tau comparison 
Average Kendall-tau comparison on neighbours using a similarity and derived 
distances. Similarity setting is the first column of Table 7.3. Distance settings 

are further columns of Table 7.3 defined by varying 5.

7.2.4.2 Comparison of similarity and distance clusterings

Theorem 7.22 concerned the non-replicability by distance of pair-orderings by 
similarity. To illustrate this, consider a set of strings {a^, a^, a^, a^,a^}. A table 
of pair-wise similarities of these was made with C^{a,a) = l,C®(a, A) = 1, 
and used to generate a single-link clustering,® shown as the the uppermost 
dendrogram in Figure 7.6.

No single-link clustering based on distance replicates this similarity clus­
tering. The middle dendogram in Figure 7.6 is the result with C^{a,a) = 
0, C^[a, A) = 1, with all five shown on the same level because A(a"*, = 1.

’So clusters are merged according to their ‘best’ single link.
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sim swap:1 del;1 single

dist swap:0 del:1 single

dist swap:1 del:1 single

r"

C\J

Figure 7.6: Similarity and distance clusterings.
The instance labels ih .. .il represent .. .a} .

The lowest dendograin in Fignre 7.6 shows a result with C^(a, a) = 1, C^(a, A) = 
1. d'he same structure was found holding C^{a,a) = 1, and allowing the dele­
tion insertion cost to vary between 0.5 and 5.5 (which are > C^{a,a)) and 
between 0.4 and 0.1 (which are < C^{a,a))

7.3 Distance vs. Similarity: compared in SRL

7.3.1 Contrasting Distance and Similarity

The first attempt to compare distance and similarity which will be explain in 
the following text. It was done by comparing tree edit distance with a A-dual 
similarity measure, a similarity measure which has deletion/insertion cost of 
zero, using (i) from Lemma 7.11, this means 5 = 2. Therefore, the swapping 
cost will range [1-2| because the swapping cost is defined as:

C^{x,y) = 2 - C^{x,y)

Table 7.4 shows the comparison. The differences between distance and sim­
ilarity are very small but clear. The results indicate that tree distance performs 
better than similarity because it was never detected a strict significant difference 
in favour of similarity.
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Table 7.4: Distance (d=l) vs similarity (swap[l-2])

180

accuracy distance
deletion=l

similarity
swap(l-2]

difference

a; T = 83% 83.04%! 0.03969%
c H * 83.93% 84.46%! 0.5304%
S FT = 84.78% 85.08%! 0.2995%O FH * 81.79% 82.27%! 0.4835%
c rp )|c4c 68.25%! 65.08% -3.166%cC
s H = 80.82%! 79.98% -0.838%
c; FT * 86.03%! 83.8% -2.235%O FH * 90.,5%! 88.64% -1.862%
ccd T * 69.1%! 66.16% -2.931%
s H = 72.53%! 72.03% -0.5025%
0;

O FT * 74.62%! 72.45% -2.178%
6 FH = 77.89%! 76.3% -1.591%

4= T * 70.12%! 69.39% -0.73%w H * 77.57%! 77.04% -0.5325%
G FT = 77.98%! 77.62% -0.365%u PII ** 79.86%! 78.62% -1.232%

JGw T * 65.77%! 63.95% -1.818%
"bb H = 66.68%! 65.94% -0.7343%cW FT = 69.83%! 69.51% -0.3147%
6 FH ^ 69.69%! 69.09% -0.5944%
c rpi 65.23%! 63.44% -1.783%

H = 74.76%! 74.37% -0.3902%
FT = 76.77% 76.83%! 0.05321%

O FH * 78.51%! 77.66% -0.8514%
rp ict 64.89%! 63.53% -1.353%

'g H = 73.95% 74.55%! 0.6004%
(6a FT = 75.04% 75.58%! 0.5412%cn FH = 77.61%! 77.35% -0.2537%

rp * * 65.84%! 65.2% -0.6425%
"oa> H ♦* 73.28%! 72.58% -0.6986%
N

O FT * 69.99%! 69.53% -0.4615%
FH ♦* 72.74%! 70.65% -2.083%

JG -^p 64.73%! 63.86% -0.8716%
8N ** 72.56%! 71.03% -1.534%
o1 FT ** 69.24%! 68.17% -1.066%
0 FH ** 72.23%! 69.32% -2.903%
o rp *4; 56.69%! 54.58% -2.106%
c ** 71.92%! 68.59% -3.329%
a PT ** 60.43%! 58% -2.426%

** 70.53%! 66.77% -3.762%
T *9 **g *0. **0 -1.536%
H *4 * *3 *1, **0 -0.7428%

■t-2o FT *5, **2 *0, **0 -0.8152%
FH *6, **4 *1, **0 -1.465%
all *24, **15 *2 ,**0 -1.14%



The only exception is the Chinese data set which accuracy is always better 
in tree similarity but only two times was a significant difference detected.

It looks odd that the swapping score of two nodes which are completely 
unrelated has to be more than zero. Therefore, a new set of experiments was 
designed in which tree similarity still has a cost of deletion insertion ecpial to 
zero, but the swapping score ranges |0-lj. This is the A-diial of distance settings 
with the same swap cost as before but with deletion/insertion = 0.5 and so

C®(x,y) = 1 - C^[x,y)

Table 7.5 shows the comparison. The results are also very clear, for the 
Ternary versions works better with distance, but Hamming version works bet­
ter with similarity, with the oidy exception of .Japanese in simj^le Hamming, 
•Japanese seem to be the only data set in which distance always performs better 
than similarity, this may happen because the sub-trees are far larger than in 
the other languages.

The liamming versions seems to work better for distance, when the costs 
are designed for distance, and for similarity, when the cost are designed for 
similarity. Therefore, in order to compare distance and similarity more fairly 
the maximnm score obtained for the two sets of settings was used to make 7.6 
table.

The results are in favour for tree distance, except for the case of Hamming 
which similarity performs slightly better, however in average tree distance seems 
to score 0.8% better.

The behaviour of the system over the .Japanese data set is remarkably dif­
ferent from the rest. The results are always in favour of tree distance with a 
notable significant difference which came to lie the largest average difference 
from all language data sets.

This is probably due to the fact that the sub-trees in the Japanese data set 
are larger than in any other data set, and tree similarity with its zero cost for 
deletions is giving preference to the largest sub-trees, which may not be optimal.

Figure 7.7 shows the alignment to the first neighbour of the second sub­
tree extracted from the Japanese data set for Hamming similarity (Figure 7.7a) 
and for Hamming distance (Figure 7.7b). Jn Figure 7.7a, the empty nodes are
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Table 7.5: Distance (d=0.5) vs similarity (swap[0-l|)

accuracy distance 
deletion =0.5

similarity 
swapjO-11

difference

T = 83.98%! 83.86% -0.1155%
Sc ** 85.06% 85.88%! 0.8227%
2 FT * 85.88%! 85.53% -0.3464%
O FH ** 69.27% 71.55%! 2.284%
c T = 67.41%! 65.74% -1.676%
e H = 81.38%! 80.82% -0.5587%u<v FX ** 87.71%! 85.01% -2.7%

O FH = 88.36% 89.85%! 1.49%
ric6 T = 68.84%! 67.09% -1.759%
e H = 72.7% 73.53%! 0.8375%
<v

O FT * 75.46%! 73.03% -2.429%
6 FH ** 53.6% 57.37%! 3.769%

T =. 70.79%! 70.48% -0..3092%22 H * 78.72% 79.43%! 0.7171%
FT = 78.75%! 78.49% -0.2619%
FH ** 70.05% 73.27%! 3.221%

CA T = 66.26%! 65.14% -1.119%
“bb H ** 64.9% 67.52%! 2.622%c
u FT = 68.39% 69.34%! 0.9441%
6 FH ** 47.48% 53.81%! 6.329%
c rp 65.7%! 63.88% -1.818%

H - 75.8%! 75.58% -0.2217%
<e FT ** 79.35%! 77.75% -1.596%O FH * 74.87% 75.56%! 0.6917%

'p 65.7%! 63.98% -1.717%
’c H = 75.16% 75.64%! 0.4736%cea FT ** 77.25%! 76.2% -1.049%(n FH ** 73.81% 74.89%! 1.082%

T ** 66.69%! 66% -0.6935%
0) H *♦ 74.05% 74.77%! 0.7138%N
o PP ** 70.05%! 69.37% -0.6858%

FH ** 51.23% 54.16%! 2.924%
T = 65.08%! 64.73% -0.3529%

N ** 72.23% 73.36%! 1.131%
U FX ** 68.19%! 67.28% -0.9076%6 PH ** 51.48% 53.37%! 1.894%
0) p ** 57.97%! 55.86% -2.106%
c H ** 75.34%! 71.32% -4.025%
a FX ** 61.52%! 58.94% -2.577%

FH = 47.24%! 46.77% -0.4702%
T *4^ **4 *0 **o -1.167%
H *5 **4 0.2513%

4Ô FT ♦8. **6 *0, **0 -1.161%
FH *0, **0 2.321%
all *13 **ji *13 ,**11 0.06134%
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Table 7.6: Max distance vs max similarity

accuracy max distance max similarity difference |
0/ T = 83.98%! 83.86% -0.1155%
c fj ** 85.06% 85.88%! 0.8227%

FT * 85.88%! 85.53% -0.3464%
O FH * 81.79% 82.27%! 0.4835%
c T * 68.25%! 65.74% -2.514%
s H = 81.38%! 80.82% -0.5587%k.a> FT ** 87.71%! 85.01% -2.7%
O FH = 90.5%! 89.85% -0.6518%
d T ♦ 69.1%! 67.09% -2.01%
s H = 72.7% 73.53%! 0.8375%
cu
o FT * 75.46%! 73.03% -2.429%
6 FH = 77.89%! 76.3% -1.591%

JZ T = 70.79%! 70.48% -0.3092%
H * 78.72% 79.43%! 0.7171%

c FT = 78.75%! 78.49% -0.2619%U FH ** 79.86%! 78.62% -1.232%
X(/> T = 66.26%! 65.14% -1.119%
To H = 66.68% 67.52%! 0.8392%c
W FT = 69.83%! 69.51% -0.3147%
i FH = 69.69%! 69.09% -0.5944%
c rp 4c]4( 65.7%! 63.88% -1.818%
CC H 75.8%! 75.58% -0.2217%

FT ** 79.35%! 77.7.5% -1.596%
O FH * 78.51%! 77.66% -0.8514%
X T ** 65.7%! 63.98% -1.717%
c H = 75.16% 75.64%! 0.4736%
da FT ** 77.25%! 76.2% -1.049%

CT) FH = 77.61%! 77.35% -0.2537%
'p 66.69%! 66% -0.6935%
H ** 74.05% 74.77%! 0.7138%

N
o FT * 70.05%! 69.53% -0.5226%

FH ** 72.74%! 70.65% -2.083%
X T = 65.08%! 64.73% -0.3529%yd) H * 72.56% 73.36%! 0.7995%
o FT ** 69.24%! 68.17% -1.066%
6 FH ** 72.23%! 69.32% -2.903%
OJCA rj-i jf;:4c 57.97%! 55.86% -2.106%
o; H ** 75.34%! 71.32% -4.025%cCa FT ** 61.52%! 58.94% -2.577%

FH ♦* 70.53%! 66.77% -3.762%
T *6, **4 *0, **0 -1.276%
H 0.03983%

o FT *8, **5 *0, **0 -1.286%
FH *5 **4 *1, **0 -1.344%
all *20, **14 *5 ,**2 -0.9664%
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inserted, and in Figure 7.7b small grey numbers in the nodes of the query sub­
tree represents deletions, in both sub-figures the matches are represented by 
sharing the same number across both trees, the numbers are given to the query 
in traversal post order. In the case of similarity this alignment represents the 
totality of the first equivalence class.

The query sub-tree (to be labelled) is the same for both alignments, only the 
training sub-tree changes. It can be seen that for this particular case similarity 
promotes a mappings to larger trees thoiigh making deletions/insertions free of 
cost. Large sub-trees like the one display in Figure 7.7a are seldom in other 
language data sets.
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Figure 7.7: Haniining alignments siij^rity and Distance, Japanese dataset 
Similarity settings tends to promote mappings to larger trees than distance 

settings in the ranking of neighbours, this is due to the zero cost for deletions
and insertions.



7.3.2 Normalization effect

Theorem 7.31 Normalising (dividing them by the amount of nodes) A-dual 
measures makes them N-duals and P-duals.

Proof 7.32; Proof of theorem 7.31

As previously mentioned in Proof 7.12 on page 165 for any given map­
ping: Twice the amount of swaps plus all deletions and insertions sum 
exactly the amount of nodes in both trees together:

2\m\ + \v\ + \i\ = '£.W + Y.W
ter

Therefore, normalising by amount of nodes in both trees is the same as 
normalizing by 2\M \ + \T>\ + |J| for any given mapping.
If equation 7.2 on page 165 is normalized, then:

A{a) + 0(o) = S/2 X

That makes: A{a) + Q{a) = S/2
As the value of S is independent of the pair of trees for any ma.pping x: 
A(a:) = S/2 — Q{x)
Let be a and fd two mappings between different pairs of trees.
If A{a) < A(/3) then:
(5/2-0(a) <S/2-e{(3)
0(q) > 0(/3).' what makes them A-dual, N-dual and P-dual.

The fact that normalised versions become A-dual and N-dual makes nor­
malised tree distance with deletion = 1 performs in an identical way than nor­
malised tree similarity with swapping cost |l-2] and normalised tree distance 
with deletion =0.5 performs in an identical way than normalised tree similarity 
with swapping cost [0-1]. This section compares the normalised measures to the 
l)rute measures.
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7.3.2.1 Distance

The results clearly point that the brute measures perform better than the nor­
malised ones, but even though 39 of 40 experiments show better accuracy on 
the brute measures and 26 times with strictly significant difference, the average 
difference is less than 1%. As they are both A-duals It is suspected that the 
brute measures rank better the neighbourhood.

The only case where the normalize version performs better than the brnte 
version is Frame Ternary on the German data set. It happens that the dif­
ferences between the brute and the normalize version on the prediction of the 
system are so seldom that the McNeniar test fail to identify 25 differences, which 
is a requirement for the test to work well.

Table 7.7 compares tree distance with its normalize version for deletion cost 
ecjual to one.

Normalised distance irromotes big trees because the cost is normalised by 
the amount of nodes they have. Large trees are likely to have more semantic 
relations than small ones what makes them more likely to contain infrecpient 
relations and to predict them, and this can make the system to reduce the 
accuracy of the majority classes (or labels) and increase the accuracy of the 
minority classes.

It is observable in Table 7.8. It was decided that AO, A1 and A2 are the ma­
jority classes and A3 to A9 the minority classes ignoring any other class. Those 
classes are present in Chinese, German and English, in which all annotations 
are different but all use this set of labels.

As it was expected, for the majority classes, the brute measures performs 
in average better than the normalised measures, and for the minority labels, 
the normalised measures performs in average better than the brute measures. 
The small size of the samples of the minority classes creates the illusion of not 
being significantly different, when in reality what happen is that for every single 
comparison of the minority classes was not possible to find 25 different samples. 
Therefore, the McNemar test is not applicable.
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Table 7.7: Tree edit distance vs normalized
deletion cost = 1

accuracy brute distance normalize difference
OJ rp 83%! 82.47% -0.5377%
c H ** 83.93%! 83.12% -0.8047%
2 PX ** 84.78%! 84.34% -0.4402%
O PH ** 81.79%! 80.75% -1.036%
c T = 68.25%! 68.06% -0.1862%
s H = 80.82%! 80.63% -0.1862%
a> FT = 86.03% 86.13%! 0.09311%

O FH = 90.5%! 90.41% -0.09311%
dd T = 69.1%! 68.43% -0.67%s H = 72.53%! 71.69% -0.8375%
OJ

O FT = 74.62%! 73.7% -0.9213%
6 FH ** 77.89%! 76.05% -1.843%

rp ** 70.12%! 69.52% -0.6012%
** 77.57%! 76.5% -1.074%

c prp 77.98%! 77.44% -0.5454%
FH ** 79.86%! 78.86% -0.992%

_c T * 65.77%! 65.17% -0.5944%
"bb H * 66.68%! 65.77% -0.9091%c
U FT * 69.83%! 69.06% -0.7692%
6 FH * 69.69%! 68.81% -0.8741%
C

rp 65.23%! 64.99% -0.2394%
ci
c5 74.76%! 73.88% -0.878%

-M
<6 FT = 76.77%! 76.73% -0.04434%

O PH ** 78.51%! 77.54% -0.9755%
T * 64.89%! 64.68% -0.2114%

'c H ** 73.95%! 73.33% -0.6258%
nJa FT * 75.04%! 74.77% -0.2706%

C/!) pp^ ** 77.61%! 76.83% -0.778%
*♦ 65.84%! 65.25% -0.5966%

"B H ** 73.28%! 71.99% -1.293%
N
o PX ** 69.99%! 69.36% -0.6348%

FH ** 72.74%! 71.05% -1.685%
rp jtcjfc 64.73%! 64.05% -0.6843%

OH
N H ** 72.56%! 71.14% -1.426%
u p-^p 69.24%! 68.3% -0.9364%
0 FH ** 72.23%! 70.61% -1.613%
0)w

rp 3|c>|( 56.69%! 55.28% -1.411%
d)c H ** 71.92%! 69.74% -2.182%
a PX ** 60.43%! 58.98% -1.448%

FH ** 70.53%! 68.18% -2.351%
T *8, **6 *0 **o -0.5732%
H *8, **7 *0, **0 -1.022%

0 FT *7 **5 *0, **0 -0.5917%
FH *9, **8 *0, **0 -1.224%
all *32, **26 *0 ,**0 -0.8526%
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Table 7.8: Distance vs normalized split by common and nncommon semantic 
relations

Deletion cost
accuracy Brute Normalized difference |
AO-2 T ** 87.44%! 87.15% -0.2871%
AO-2 H ** 88.97%! 88.49% -0.4785%
AO-2 FT * 90.72%! 90.51% -0.2034%

oc AO-2 FH ♦* 90.21%! 89.29% -0.9211%
Ic A3-9 T ^ 14.77% 15.91%! 1.136%
0 A3-9 H = 36.36% 37.5%! 1.136%

A3-9 FT = 37.5% 38.64%! 1.136%
A3-9 FH = 55.68% 59.09%! 3.409%
AO-2 T = 74.46%! 74.25% -0.2068%
AO-2 H 84.8% 84.8%.! 0%

c AO-2 FT ^ 89.66% 89.66%! 0%
B AO-2 FH = 92.45% 92.45%! 0%
V A3-9 T = 12.15% 12.15%! 0%
O A3-9 H = 44.86%! 42.99% -1.869%

A3-9 FT = 53.27% 54.21%! 0.9346%
A3-9 FH = 72.9%! 71.96% -0.9346%
AO-2 T = 77.05%! 76.2% -0.8467%
AO-2 H = 79.68%! 78.65% -1.035%
AO-2 FT ^ 81.37%! 80.43% -0.9407%

E AO-2 PH ** 83.91%! 81.94% -1.976%
n A3-9 T 4.58% 5.344%.! 0.7634%

A3-9 H - 14.5% 15.27%! 0.7634%
A3-9 FT = 19.85%.! 19.08% -0.7634%
A3-9 FH = 29.01%! 28.24% -0.7634%
AO-2 'p *• 75.47%! 74.88% -0.59%
AO-2 H ♦♦ 83.28%! 82.27% -1.016%
AO-2 FT ** 84.58%! 83.99% -0.59%
AO-2 FH ** 87.44%! 86.23% -1.209%

bCC A3-9 T = 28.55%! 28.24% -0.312%
U A3-9 H 50.08%! 49.61% -0.468%

A3-9 FT = 48.99% 49.61%.! 0.624%
A 3-9 FH 65.21%! 63.81% -1.404%
AO-2 T 74.34%! 73.54% -0.8065%
AO-2 H * 75.96%)! 74.7% -1.26%.fi(0 AO-2 FT ** 80.04%>! 79.08% -0.9577%

li) AO-2 FH ♦♦ 81.4%! 79.79% -1.613%
c A3-9 T = 5.714% 5.714%! 0%
0 A3-9 H = 8.571% 8.571%.! 0%

A3-9 FT = 17.14% 17.14%! 0%
A3-9 FH = 25.71% 25.71%! 0%
AO-2 T *3, **2 •0, **0 -0.5474%
AO-2 H *3, **2 *0. **0 -0.758%
AO-2 FT *3, **2 *0, -0.5383%

<A AO-2 FH *4. **4 *0, **0 -1.144%
0 A3-9 T •0, **0 *0, ■^♦o 0.3175%

A 3-9 H •0, **0 *0. ‘‘O -0.08749%
A3-9 FT •0, **0 *0, **0 0.3863%
A3-9 FH ♦0, **0 *0, **0 0.06142%
AO-2 all •13, **10 *0 ,**0 -0.7469%
A3-9 all *0, **0 *0 ,**0 0.1694%
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Table 7.9: Tree similarity vs normalize
swapping cost |0-1]

1 accuracy brute similarity normalize difference
<v rp 83.86%! 83.26% -0.599%

H * 85.88%! 85.41% -0.4691%
FT = 85.53%! 85.29% -0.2382%O FH ** 71.55% 72.18%! 0.6279%

c T * 65.74% 67.88%! 2.142%
g H = 80.82% 81.19%! 0.3724%
0) prp 85.01% 87.43%! 2.421%

O FH = 89.85% 90.6%! 0.7449%
cci T * 67.09% 68.93%! 1.843%
g H = 73.53%! 72.95% -0.5863%
<v
O FT * 73.03% 75.i:5%! 2.094%
o FH = 57.37% 57.54%! 0.1675%

42 T = 70.48%! 70.35% -0.1288%CA H = 79.43%! 79.29% -0.146%
c FT = 78.49% 78.66%! 0.1718%U FH ** 73.27% 74.17%! 0.9018%

X T = 65.14% 65.87%! 0.7343%
H = 67.52%! 66.85% -0.6643%cU FT = 69.;14% 69.58%! 0.2448%

6 FH = 53.81% .54.44%! 0.6294%
C rp 9|c4c 63.88% 65.27%! 1.392%cC
«3 H = 75.58% 75.6.5%! 0.07095%
«3 FT ♦* 77.75% 78.63%! 0.878%O FH * 75.56% 76.03%! 0.47%

42 -p ** 63.98% 65.07%! 1.082%
*s H * 75.64%! 74.93% -0.7019%aa FT » 76.2% 76.89%! 0.685%c/:i FH = 74.89% 75.04%! 0.1438%

T = 66%! 65.92% -0.07393%
a; H = 74.77% 75.02%! 0.2549%N

O FT * 69.37% 69.69%! 0.3238%
FH ** 54.16% 55.55%! 1.397%

42 T = 64.73% 64.74%! 0.01441%
SN H * 73.36% 74.13%! 0.7635%
u FT = 67.28% 67.67%! 0.389%0 FH ** 53.37% 55.11%! 1.736%
0)(/} T = 55.86% 56.7%! 0.8463%Q)c H ** 71.32% 74.57%! 3.254%
a FT * 58.94% 60.33%! 1.392%

>-5 FH ** 46.77% 49.67%! 2,896%
T *4^ **2 0.7252%
H *2, **0 *2, **1 0.2148%

o FT *0, **0 *6, **2 0.836%
FH *0, **0 *6, **5 0.9715%
all *18 ,**10 0.6869%
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7.3.2.2 Similarity

Table 7.9 shows the results contrasting tree similarity with swapping cost [0-l| 
to its normalize version.

The results on tree similarity point that normalize similarity performs bet­
ter than brute similarities, opposite results than with tree distance but same 
reason. Because tree similarity has a cost zero for deletion/insertion the system 
promotes very large trees, but this time normalizing will decrease the score of 
large trees because normalizing divides by the size of both trees. Again, big 
trees may contain infrequent semantic relations which would decrease the ac­
curacy of the frequent labels and increase the accuracy of the infrequent ones, 
which would have a negative overall impact.

This is observable in Table 7.10. As in Table 7.8, only enumerated arguments 
were used for this test and only in English, German and Czech.

The set samples of the minority classes are still very small, but at least in 
all experiments concerning English in-domain data set it was possible to find 
25 differences on the predictions, and in one case it was possible to detect a 
significant difference.

7.3.3 Combining normalized and brute?

It is difficult to combine normalized and brute measures because the scale of 
distances or similarities are very different, but what it is possible is to combine 
both measures by using brute measures to rank the neighbours and normalized 
measures to create the alignments or vice-versa. This experiment is out of the 
scope of the thesis.

7.4 Conclusion

This chapter introduced the concepts of Tai-distance and Tai-similarity on tree 
edit distance algorithms, and three order of equivalences: A-dual, if one can 
reproduce the same ranking of alignments for two given trees, N-dual if the 
neighbor ordering can be reproduced and P-dual if the pair ordering can be 
reproduced. Then it proves that the property of A-duality can be always hold,
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Table 7.10: Similarity vs normalized split by common and uncommon semantic 
relations

swap score|0-l|
accuracy similarity normalized difference
AO-2 86.58% 87.15%! 0.5742%
AO-2 H = 88.27% 88.49%! 0.2213%
AO-2 FT * 90.02% 90.51%! 0.4905%

c AO-2 FH * 88.86% 89.29%! 0.4366%
A3-9 T = 5.682% 15.91%! 10.23%

O A3-9 H = 46.59%! 37.5% -9.091%
A3-9 FT = 51.14%! 38.64% -12.5%
A3-9 FH = 65.91%! 59.09% -6.818%
AO-2 rp 70.84% 74.25%! 3.413%
AO-2 H = 83.76% 84.8%! 1.034%

c AO-2 FT ** 86.97% 89.66%! 2.689%
s AO-2 FH * 91.11% 92.45%! 1.344%u> A3-9 T = 13.08%! 12.15% -0.9346%

O A3-9 H = 45.79%! 42.99% -2.804%
A3-9 FT = 55.14%! 54.21% -0.9346%
A3-9 FH = 66.36% 71.96%! 5.607%
AO-2 T * 73.66% 76.2%! 2.54%
AO-2 H = 78.65% 78.65%! 0%

c AO-2 FT = 79.21% 80.43%! 1.223%
s AO-2 FH = 81.66% 81.94%! 0.2822%0)
o A3-9 T = 5.344% 5.:144%! 0%
6 A3-9 H = 18.32%! 15.27% -3.053%

A3-9 FT = 17.56% 19.08%! 1.527%
A3-9 FH = 32.82%! 28.24% -4.58%
AO-2 rp 73.5% 74.88%! 1.379%
AO-2 H ** 81.44% 82.27%! 0.8236%

JZ AO-2 FT ** 83.18% 83.99%! 0.8178%
AO-2 FH ** 85.05% 86.23%! 1.18%
A3-9 T = 30.11%! 28.24% -1.872%
A.3-9 H * 54.29%! 49.61% -4.68%
A3-9 FT = 51.17%! 49.61% -1.56%
A3-9 FH = 64.74%! 63.81% -0.936%
AO-2 rp 4;9|c 70.16% 73.54%! 3.377%
AO-2 H = 73.64% 74.7%! 1.058%

CO AO-2 FT = 78.33% 79.08%! 0.756%
AO-2 FH = 78.58% 79.79%! 1.21%c

a A3-9 T = 11.43%! 5.714% -5.714%
6 A3-9 H = 11.43%! 8.571% -2.857%

A3-9 FT = 17.14% 17.14%! 0%
A3-9 FH = 22.86% 25.71%! 2.857%
AO-2 T *0 **0 *5 **4 2.256%
AO-2 H *0, **0 0.6275%
AO-2 FT *0, **0 *3, **2 1.195%

"<5 AO-2 FH *0, **0 0.8906%
o

-4-3 A3-9 T *0, **0 *0, **0 0.3413%
A3-9 H *1 **o *0, **0 -4.497%
A3-9 FT *0, **0 *0, **0 -2.694%
A3-9 FH *0. **0 *0, **0 -0.774%
AO-2 all *0, **0 *12 ,**8 1.242%
A3-9 all *1, **0 *0 ,**0 -1.906%
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but not N and P-duality, everything that can be done by distance can be repro­
duce by similarity but not the other way around, the reason is because distance 
have a lower limit (negative distances are not distances) but similarity have no 
upper or lower limits. For the case in which distance and similarity are normal­
ized, A-duality implies N- and P-duality. The second half of the chapter is an 
empirical comparison of the Tree-SRL system using distance or similarity, and 
their normalized versions.

It is difficult to obtain clear conclusions from the results, distance seem to 
perform better than similarity but this is probably due to the fact that in the 
case of similarity the similarity deletion insertion score was fixed to zero, which 
promotes the infiucnce of large sub-trees on the training data. The minority 
classes (A3 to A9) benefit from the promotion of large sub-trees but not the 
majority classes (A0-A2) for this reason promoting small sub-trees leads to 
higher accuracy.
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Chapter 8

System variants

8.1 Introduction

This chapter examines alternative designs of tlie Tree-SRL system. It starts by 
comparing the results for two different methods for obtaining sub-trees. Then 
it compares two predictions methods: one using a different k-NN panel i)er 
argument and another using the same panel for all arguments. Then it contrasts 
the effect of the k-NN module against just i)icking random neighbours sorted 
by their distance, and finally as a final section it mentions stricter Tai-mapping 
for which experiments have not been carried out.

8.2 Sub-trees multiple vs one argument

This section examines the decision to include all arguments of each predicate in 
one sub-tree (one sub-tree per predicate) contrasting the accuracy of the system 
with the results obtained by including a single argument in the sub-tree (one 
sub-tree per argument).

The sub-trees with a single argument have fewer amount of nodes, therefore 
less context. For that reason it is expected that the accuracy of such a system 
would be lower than the one with multiple arguments, but the results suggest 
the opposite.

Observe the annotation for the predicate “expanding” on the following sen­
tence:

194



Table 8.1: Multiple vs one arguments

accuracy multiples 
arguments 

(large context)

single 
argument 

(small context)

difference

a> y ** 83%! 81.54% -1.461%
c H ♦* 83.93% 87.95%! 4.023%

FT * 84.78% 85.31%! 0.5232%
O FH ** 81.79% 83.18%! 1.389%
c •p ★ * 68.25%! 62.94% -5,307%c6C H * 80.82% 83.99%! 3.166%u
(D FT = 86.03% 86.41%! 0.3724%
O FH = 90.5% 90.88%! 0.3724%

T * 69.1%! 66.92% -2.178%
E H = 72.53% 73.53%! 1.005%
0/

O FT = 74.62%! 74.2% -0.4188%
6 FH = 77.89%! 77.55% -0.335%

T ♦ 70.12%! 69.58% -0,5454%W H ** 77.57% 84.08%! 6.506%bi3c FT ** 77.98% 80.61%! 2.624%
FH ** 79.86% 81.55%! 1.696%

CO T = 65.77% 66.29%! 0.5245%
"bC H ** 66.68% 72.48%! 5.804%c
u FT ** 69.83% 72.76%! 2.937%
6 FH ♦ 69.69% 71.89%! 2.203%
C. T ** 65.23%! 60.23% -5.002%
S H ** 74.76% 79.77%! 5.011%
•McC prp ** 76.77% 81.06%! 4.283%
o FH ** 78.51% 81.44%! 2.927%
-C

'■p * * 64.89%! 59.92% -4.964%
.i£’c H ** 73.95% 80%! 6.047%
<ca FT ** 75.04% 79.17%! 4.135%

CO PJ^ ** 77.61% 81.4%! 3.789%
rp *)|c 65.84% 66.65%! 0.8082%

uOJ H ** 73.28% 81.3%! 8.023%
N
o FT ** 69.99% 73.78%! 3.786%

FH *♦ 72.74% 77.15%! 4.418%
-C T = 64.73% 64.81%! 0.07203%c>cu ** 72.56% 80.32%! 7.758%
u FT ** 69,24% 72.8%! 3.566%
o FH ** 72,23% 75.7%! 3.472%
0)
CO T = 56.69% 57.74%! 1.053%0)c pj ** 71.92% 77.94%! 6.018%câ FT ** 60.43% 63.08%! 2,652%

FH ** 70.53% 73.14%! 2.614%
T *6, **4 *1, **1 -1.7%
H *0. **0 *9, **8 5.336%

o FT *0, **0 2.446%
FH *0. **0 *8, **7 2.255%
all *6, **4 *26 ,**23 2.084%
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(39) A quarter of a century ago [national service]was promoted as a way of 
curing the manifest inequities of the draft - by, of all things, expanding 
[the draftj^i.

represented in dependency tree structure in Figure 8.1.
From the predicate “expanding” it is possible to obtain a snb-tree with both 

arguments (Figure 8.2a) or two sub-trees with a single argument (Figure 8.2b). 
It is possible that the argument “service” could be well labelled without the 
need of the node “31 draft” in its sub-tree, and it is possible that the extra eight 
nodes over expanding give little help or even a negative impact for labelling the 
argument “draft”.

<r9was^ ...

CZ 6 ago 8 service'^ 10 promoted ^

/ i / \
national^ __ ,Ji.

6S i

CA 20 the^

Figure 8.1: Sentence with long dependency

Table 8.2 shows the results for tree edit distance using snb-trees with multi­
ple arguments and with a single argument. Except for Ternary system, all other 
measures indicate that one argument per sub-tree generates better accuracy.

This increment of accuracy is due to the increment on accuracy on the 
minority class labels (the less frequent ones). As it will be explained in the 
following sections, the majority class labels maintain their levels of accuracy, but
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expanding

(a) inultiple-arguments sub-tree

(b) single-arguments sub-tree

Figure 8.2: Equivalence classes on German Ternary 
Probabilities of finding the n*^ equivalence class under x amount of samples. 
The uppermost line corresponds to t|i^.^rst eqtiivalence class, lower lines for 

successively later equivalence classes.



the minority ones are better labelled in one argument sub-tree. This probably 
means that the system is capable of finding a better j^anel for labelling those 
minority class labels if the context of the majority ones is removed.

8.2.1 Ternary
Figure 8.3a shows that when using multiple arguments per sub-tree the proba­
bility to find the first equivalence class on the first hundred samples is over 70% 
on Ternary settings, and Figure 8.3b shows that when using single argument 
per sub-tree, the probability of finding the first equivalence class on the first 
hundred samples is under 30% on Ternary settings. This extreme differences on 
the size of the first eqtiivalence class was not observed in any other atomic cost 
setting (FT, H, FH).

Figure 8.4 shows the same comparison for Frame Ternary, in which the first 
three equivalence classes are easily observable. It is clear that the equivalence 
classes on the sub-trees of a single argument are slightly larger but the differ­
ences are not as notable as in the case of Ternary. This remark is important 
because Ternary seems to behave differently from all other atomic cost settings. 
Please note that the two graphs are not really comi)arable, because in the case 
of sub-trees containing one argument the amount of sub-trees extracted from 
the training data set is equal to the amount of arguments whereas in the case 
of multiple arguments the amount of sub-trees are equal to the amount of pred­
icates. The amount of arguments is substantially higher than the amount of 
predicates. Therefore, the first hundred samples represent a different percentage 
of the training samples which makes both graphs are incomparable.

It seems that Ternary system using one argument per sub-tree includes too 
many samples in the first equivalence class for the system to perform well. 
Including too many samples is a symptom of a poor selection of samples. It 
may reduce the accuracy of the majority labels by adding noisy samples to the 
prediction panels, and it may reduce even more the accuracy of the minority 
labels because rare labels in a huge panel will have very little chance to win 
the voting. Table 8.2 shows the accuracy of the enumerated arguments in two 
groups; again AO to A2 as the majority label groups, and A3 to A9 as the
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Figure 8.3: Equivalence classes on German Ternary 
Probabilities of finding the n*^ equivalence class under x amount of samples. 
The uppermost line corresponds to the first equivalence class, lower lines for 

successively later equivalence classes.
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Figure 8.4: Equivalence classes on German Frame Ternary 
Probabilities of finding the n*^ equivalence class under x amount of samples. 
The uppermost line corresponds to the hrst equivalence class, lower lines for 

successively later equivalence classes.
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minority labels group. ^
As expected in Ternary with single-argument sub-tree settings reduce accu­

racy for majority and minority labels. This is substantially true for the case of 
the Chinese dataset on the minority labels, because the accuracy drops to zero.

Ternary settings may be too simple to perform well with one-argument sub­
trees settings.

8.2.2 Frame Ternary, Hamming and Frame Hamming
As already said, the size of the equivalence classes did not change dramatically 
from multiple-argument sub-trees to single-argument sub-trees. It would be 
expected that adding extra samples in any case would lead to an increment of 
the most common labels on the training data set because they are more frequent 
on the samples: an increment of accuracy of the majority labels, and would also 
decrement the accuracy of minority labels. The decrement on minority labels is 
expected to be due to the fact that rare labels would have less chances to win 
the voting. However, results point the opposite. Majority labels sightly reduce 
accuracy (0.64% on average), and minority labels greatly increase accuracy with 
an important difference of 14.36% on average.

8.2.2.1 Discussion

Probably less context makes it easy to identify relevant samples for a given 
un-labelled semantic relationship. This may be related to the fact that all 
deletions, insertions or swaps have the same weight on the alignment regardless 
of how near they are from the two nodes involve in the un-labelled semantic 
relationship that have to be predicted.

It seems that one argument per sub-tree substantially benefits minority 
classes, the cause may be that there are few useful samples with the correct 
labels available in the firsts equivalent classes in the case of multiple argument 
sub-trees. Therefore less context may make those useful samples easy to be 
identified and it promotes them in the neighbourhood list.

^Majority and minority classes were defined for the first time in section 7.3.2.1 on page
187.
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Table 8.2: Multiple vs one argument split into majority and minority labels

accuracy multiples
arguments

single
argument

difference

AO-2 rp 87.44%! 84.14% -3.302%
AO-2 ** 88.97% 90.45%! 1.483%
AO-2 FT = 90.72% 90.97%! 0.2572%

c AO-2 FH * 90.21%! 89.63% -0.5802%
s A3-9 T = 14.77%! 0% -14.77%
O A3-9 H ** 36.36% 68.18%! 31.82%

A3-9 FT ** 37.5% 75%! 37.5%
A3-9 FH = 55.68% 84.09%! 28.41%
AO-2 rp 3|(:^ 74.46%! 69.7% -4.757%
AO-2 H * 84.8% 87.59%! 2.792%
AO-2 FT = 89.66%! 89.56% -0.1034%

S AO-2 FH = 92.45% 92.86%! 0.4137%S-Ic; A3-9 T = 12.15%! 1.869% -10.28%
O A3-9 H = 44.86% 51.4%! 6.542%

A3-9 FT = 53.27% 57.94%! 4.673%
A3-9 FH = 72.9% 72.9%! 0%
AO-2 T = 77.05%! 74.88% -2.164%
AO-2 H = 79.68% 79.87%! 0.1881%

c AO-2 FT = 81.37%! 79.77% -1.599%
AO-2 FH * 83.91%! 81.84% -2.07%

a>
U A3-9 T = 4.58%! 2.29% -2.29%
6 A3-9 H = 14..5% 22.14%! 7.634%

A3-9 FT = 19.85% 29.01%! 9.16%
A3-9 FH = 29.01% 42.75%! 13.74%
AO-2 ^ ** 75.47%! 72.46% -3.014%
AO-2 H ** 83.28% 86.79%! 3.511%
AO-2 FT ** 84.58% 86.37%! 1.782%

.22 AO-2 ppj 87.44% 88.3%! 0.8645%
A3-9 fp 28.55%! 22.15% -6.396%
A3-9 PJ ** 50.08% 70.67%! 20.59%
A3-9 FT ** 48.99% 62.56%! 13.57%
A3-9 FH ** 65.21% 78.47%! 13.26%
AO-2 p ** 74.34%! 69.1% -5.242%
AO-2 H = 75.96% 77.52%! 1.563%

CO AO-2 FT = 80.04% 80.39%! 0.3528%
AO-2 FH = 81.4% 82.11%! 0.7056%c

W A3-9 T = 5.714% 17.14%! 11.43%
i A3-9 H = 8.571% 17.14%! 8.571%

A3-9 FT = 17.14% 22.86%! 5.714%
A3-9 FH = 25.71% 40%! 14.29%
AO-2 T *4^ **4 *0. **0 -3.696%
AO-2 H *0, **0 *3 **2 1.907%
AO-2 FT *0, **0 *2^ **2 0.1378%
AO-2 FH *2, **0 *1, **i -0.1332%

o A3-9 T * 2 **2 *0, **0 -4.462%
A3-9 H *0, **0 *2, **2 15.03%
A3-9 FT *0. **0 *2. **2 14.12%
A3-9 FH *0, **0 * 2 ** 2 13.94%
AO-2 all *6, **4 *5 **4 -0.4459%
A3-9 all ♦ 2 ** 2 *5 ,**5 9.658%
AO-2 H,FT,FH ♦2, **0 *5 ,**4 0.6372%
A3-9 H,FT,FH *0, **0 *5 ,**5 14.364%
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It also seems that single-argument sub-tree settings sightly benefits to the 
majority classes. This is probably due to a better sub-tree selection.

The conclusion is that using sub-trees of a single argument makes the equiv­
alence classes to have more samples btit of better quality.

8.3 All-at-once vs one-at-a-time

Another possible variant of the system would be using multiple arguments per 
sub-tree, and forcing the k-NN module to luse the same panel for predicting all 
arguments of the same sub-tree.

The panel size will correspond to the equivalence class which will satisfy 
the individual requirement (no ties and having valid votes) for producing a 
prediction for each semantic relation to be predicted. The resulting panel size 
can be larger than what needs it for each individual semantic relation. For 
instance, assuming a (piery sub-tree with two semantic relations to be predicted 
A and B. A, can be predicted with a panel size of the first equivalence class, 
but not with the hrst two ecpiivalence classes, and B, can be not be predicted 
with the first equivalence class. In such case, A and B will be predicted using 
the first three or more equivalence classes in All-at-once settings, but using hrst 
and second equivalence class for one-at-a-time settings.

Table 8.3 shows the results, it suggests that using the same panel for all 
arguments have a positive impact, but the differences are so small that they 
can be dismissed: less than 0.02% in average.

In all 40 comparison there is no experiment showing more than 1% difference 
in accuracy, and in all experiments on German data the McNemar test fail to 
identify 25 different predictions, which invalidates the test.

8.4 Impact of using equivalence classes in k-NN

This section attempts to measure the beneht of using equivalence classes in 
k-NN classihcation. The system is compared with a variant in which each 
equivalence class contains a single sub-tree. This was created almost randomly 
by sorting the neighbour samples by their distance and re-defining its distance
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Table 8.3: One vs all arguments at a time

accuracy
argument 

by argument: 
different panel 

for each argument

all arguments at 
the same time: 

same panel 
for all arguments

difference

a; T * 83% 83.15%! 0.1443%
d;c H * 83.93% 84.09%! 0.1588%
S FT = 84.78% 84.82%! 0.03969%
O FH ** 81.79% 82.17%! 0.3861%
c T = 68.25%! 68.16% -0.09311%
s H = 80.82%! 80.73% -0.09311%
cD FT = 86.03%! 85.57% -0.4655%

O FH = 90.5%! 90.04% -0.4655%
Ba T = 69.1% 69.26%! 0.1675%
6 H = 72.53%! 72.19% -0.335%
0)
O FT = 74.62% 74.62%! 0%

1o FH = 77.89%! 77.72% -0.1675%
T = 70.12%! 70.12% -0.004294%
H = 77.57%! 77.51% -0.06012%

B FT * 77.98%! 77.7% -0.2834%U FH = 79.86% 80%! 0.146%
JS

CO T = 65.77%! 65.59% -0.1748%
H = 66.68%! 66.47% -0.2098%Bw FT = 69.83% 69.83%! 0%

6 FH = 69.69%! 69.23% -0.4545%

s T = 65.23%! 65.1.3% -0.09755%,
CQ H = 74.76% 74.94%! 0.1774%
ce FT ** 76.77%! 76.37% -0.4079%o FH = 78.51% 78.52%! 0.008868%

J= T * 64.89%! 64.61% -0.2791%
'b H * 73.95%! 73.67% -0.2791%
a FT ** 75.04%! 74.43% -0.6089%CT) FH = 77.61%! 77.47% -0.1353%

T = 65.84% 65.93%! 0.08923%
0/ H = 73.28% 73.35%! 0.07138%N

O FT = 69.99%! 69.96% -0.03314%
FH = 72.74% 72.8%! 0.06374%
T * 64.73% 65.06%! 0.3241%

N H = 72.56% 72.74%! 0.1729%
u FT * 69.24% 69.46%! 0.2233%6 FH * 72.23% 72.51%! 0.2809%
0) T * 56.69% 57.49%! 0.8087%
B H * 71.92% 72.39%! 0.4702%
a FT ** 60.43% 61.39%! 0.9592%I--5 FH * 70.53% 71.04%! 0.5078%

T * 1 **Q *3. **0 0.08851%
H *1, **o *2. **0 0.007349%

o FT *3, **2 *2, **1 -0.05768%
FH *0, **0 *3, **1 0.01705%
all *5, **2 *10 ,**2 0.01381%
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Table 8.4: 1-NN vs first neighbour on the list

accuracy 1-NN one neighbour difference
0) 83%! 77.41% -5.597%
c 83.93%! 81.27% -2.656%

PT ** 84.78%! 81.29% -3.489%
O FH ** 81.79%! 80.08% -1.71%
c 'p ♦* 68.25%! 55.77% -12.48%
E H * 80.82%! 79.24% -1.583%L. PX ** 86.03%! 83.43% -2.607%

O FH = 90.5%! 89.39% -1.117%
c5 -j-i ♦♦ 69.1%! 61.47% -7.621%
E H ** 72.53%! 68.26% -4.271%
<v
U FT ** 74.62%! 69.93% -4.69%
6 FH * 77.89%! 76.21% -1.675%

■-p 70.12%! 63.83% -6.295%
.22 H ** 77.57%! 75.16% -2.413%
c FT ** 77.98%! 74.73% -3.251%U PH *» 79.86%! 78.36% -1.499%
w ■r ** 65.77%! 59.62% -6.154%

“bb H ** 66.68%! 64.27% -2.413%cU p-'^p ** 69.83%! 65.49% -4.336%
6 FH ** 69.69%! 67.8% -1.888%
c -p >tc4i 65.23%! 58.75% -6.474%
CC H ** 74.76%! 69.76% -5.002%

FT *♦ 76.77%! 72.98% -3.796%
O FH ** 78.51%! 76.23% -2.279%

p ** 64.89%)! ,57.61% -7.281%
c H ** 73.95%)! 69.07% -4.879%
fSa PP ** 75.04%! 70.72% -4.313%

c/3 FH ** 77.61%! 75.75% -1.852%
p ** 65.84%! 58.25% -7.597%
H ** 73.28%! 70.02% -3.258%

N
o PX ** 69.99%! 64.94% -5.05%

FH ** 72.74%! 70.21% -2.529%
x: p 64.73%! 57.87% -6.865%(jD pj ** 72.56%! 69.09% -3.472%
o P^P ** 69.24%! 64.4% -4.84%
6 PPI ** 72.23%! 70.29% -1.93%

X ** 56.69%! 50.91% -5.774%a>c H ** 71.92%! 69.89% -2.031%
a PX ** 60.43%! 55.48% -4.946%

FH ** 70.53%! 68.18% -2.351%
T *10, **10 *0, **0 -7.213%

— H *10, **9 *0, **0 -3.198%
0 FT *10. **10 *0, **0 -4.132%

FH *9, **8 *0. **0 -1.883%
all *39, **37 *0 ,**0 -4.107%
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as the position on the sorted vector. Then it assigns different distances to 
samples that originally were placed at the same tree edit distance.

Without using equivalence classes, panels are extended by what is effectively 
a random walk throw the equivalence class.

(a) with equivalence classes, predicts moon (b) without equivalence c., predicts sun

Figure 8.5: Effect of eqtxivalence classes in k-NN 
Numbers indicate the order in which samples would be used by the system.

In the example at Figure 8.5, the settings which uses eciuivalence classes 
(see Figure 8.5a) would use the third equivalence class to make the prediction 
because the first has no valid votes and the second (with four items) produces a 
tie. In this example the prediction would be a “moon”. For the system without 
k-NN module, (see Figure 8.5b), the curve line represents the positions inside 
a sorted vector. For this particular sorted vector, the hrst two item does not 
produce any prediction, and the third one predicts a “sun”. At that point the 
system makes its prediction ignoring all other items.

Table 8.4 shows the results. As it was expected 1-NN performs better than 
just using a random neighbour in all experiments. In 37 of 40 experiments it 
performs better with a strictly significant difference.

As the atomic costs settings gets more complex the amonnt of neighbours 
of the first equivalence class reduces. This happens because the settings select 
samples in a smother way. Hence, it reduces the differences between using 1- 
NN and just the first neighbour on the list. However the difference for the most 
complex settings (Frame Hamming) are still remarkable (1.883% in average).
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8.5 Conclusion

This chapter explores some small variations in the architecture of the system, 
like extracting one sub-tree for each argument instead of extracting one sub-tree 
for each predicate. This strategy makes smaller sub-trees because it includes 
less context, surprisingly the accuracy is higher than using more context (mul­
tiple arguments per sub-tree), this happens because this strategy benefits the 
minority classes with a very small impact in the majority classes.

Another variation is to predict all arguments at the same time, by using the 
same k-NN panel of alignments for all arguments, the differences are negligible 
(0.014% in average).

Another variation was to re-assign distances to the vector of neighbours 
to hide the concept of equivalence class. Therefore, in the new set of distances 
each of the new equivalence classes contains a single sample. As it was expected, 
the accuracy drops, showing that it is important to design a system aware of 
('(piivalent classes.
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Chapter 9

Conclusions and future work

9.1 Findings

This section is a summary of the findings of tliis thesis described in the previous 
four chapters.

9.1.1 Regarding the four atomic measures:

• The differences in accuracy between majority label and shape indicate 
that the structural information contains very relevant information (Sec­
tion 5.2 on page 77). This was confirmed when linear representations were 
contrasted with tree representations. For all languages and swap-settings, 
when the system works with the linear representation it gives substan­
tially poorer results than the system works with the tree representation, 
with an exception for Japanese Hamming. (Section 5.4.1 on page 103) 
This it is observed with and without dependency relationships in the data 
set. (Section 5.4.2 on page 107).

• All four atomic measures clearly out-perform Majority Label and Shape, 
and on average Frame Hamming gives the best performance (Section 5.3.1 
on page 79).

• The hypothesis about the hierarchy of atomic measures is more or less ac­
complished (see Section 4.7.1 on page 72): Shape < Ternary < Hamming,
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Ternary < Frame Ternary and Hamming < Frame Hamming. Hamming < 
Frame Hamming seems to be the hypothesis with more exceptions:

1. In Chinese, Czech and Japanese, Hamming settings score higher than 
Frame Hamming settings, this could be due to a side effect of adding 
cost for frame mismatch. It would lead to a larger demand of training 
samples per frame, otherwise bad samples from a same frame may 
be promoted. (Section 5.3.2 on page 93)

2. Another point of view can be that the set of frames for those lan­
guages is too large, perhaps the frame set is too detailed or each 
frame can have too many senses/meanings. (Section 5.3.2 on page 
93)

3. The amount of samples in Czech (reduced version) and Japanese 
seems to be insufficient for Frame Hamming to work properly (Sec­
tion 5.3.2 on page 93).

4. The under-performance of Frame Hamming on the Chinese data set 
is surjjrising because it performs worse than the other tree measures 
used. A possible explanation could be that the variety of the lexical 
features with the variability of the predicate frames was especially 
high. Having very high perplexity of Lemma labels and very high 
perplexity of predicate frames, makes the lexical features potential 
noise for the k-NN module, as they may too often be different. There­
fore lexical features are not very tiseful to the system to discriminate 
useful samples from useless ones once there is already a cost for frame 
mismatch. (Section 5.3.2.3 on page 95)

Frame Ternary and Frame Hamming show better correlation to each other 
than Ternary and Hamming. (Section 5.3.1.5 on page 88)

9.1.2 Regarding language differences:

• Chinese has the highest overall accuracy. (Section 5.3.1.6 on page 90)

• .lapanese reports the worst results of all languages, especially for the 
two Ternary version settings. This is probably due to the fact that the
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Japanese data gives 96.1% of syntactic dependencies the same dependency 
relationship (perplexity = 1.17), but also to a very high average of nodes 
per sub-tree, what makes it difficult to find an adequate mapping. (Sec­
tion 5.3.1.7 on page 90).

The outcomes for the Spanish and Catalan data sets are very similar to 
each other. This is probably due to the fact that for most content, one is 
a translation of the other and they were annotated in the same way with 
the same set of labels. (Section 5.3.1.8 on page 90).

The best systems in CoNLL-2009 evaluation show relatively low results 
for Chinese and German in comparison to other languages. On the sys­
tem proi)osed in this thesis, higher accuracy was achieved for those two 
languages, what indicates that the techniques are especially suitable for 
Chinese and German. (Section 5.3.6 on page 100)

9.1.3 Regarding Out-of-domain:

• The out-of-domain evaluation got ~ 10% less accuracy than the in-domain 
in both hamming measures and slightly less in the ternary measures. This 
was expected because Ternary measures are completely independent of 
the lexical features, what makes them more independent of the domain. 
(Section 5.3.1.9 on page 91)

• It is remarkable that all measures in Czech language and Ternary measures 
in German failed to drop from in-domain to out-of-domain as much as 
they should (drops are around one per cent). In German it even seems 
to increase the accuracy (~2% in Ternary). One of the reasons for the 
German case could be that the accuracy of the in-domain data set was 
already very low relative to other measurements. The fact that Ternary 
settings does not use lexical features can explain why it is less affected by 
the change of domain. (Section 5.3.1.9 on page 91)

• The order of arguments of the out-of-domain data set is more similar 
to the training data set than the in-domain evaluation data set or the 
perplexity of frames of Czech is higher than that of any other language,
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suggesting that the training data set has a very broad topic scope and 
it may include the out-of-domain as a siib-topic (Section 5.3.1.9 on page 
91). It can explain the small drop in accuracy on Czech from in-domain 
to out-of-domain.

9.1,4 Regarding the frame mismatch cost and its tuning

• The settings with a cost for frame mismatching report higher accuracy, 
with three exceptions on the Hamming versions, Chinese, Czech and 
Japanese (Section 5.3.3 on page 96), but banning swaps of predicate from 
different frames reduces accuracy. (Section 5.3.4 on page 98)

• The high performance of the Frame versions of German can be a side 
effect produced by a good performance of the core arguments, which are 
more predicate dependent and the fact of having a small set of arguments. 
(Section 5.3.7 on page 101)

• Increasing the frame cost on Frame Ternary has a singularity point at 
cost=-2, because after this value swaps of predicate nodes of different frame 
are not allowed. The same happens to Fianie Hamming at cost=1.5 be­
cause if the two nodes belong to different frame they are also very likely 
not to share the lexical labels. (Section 6.6 on page 153). German seems 
an exception because it is difficult to observe those singular points. The 
reason may be that this data set has a small variety of semantic argu­
ments and secpience of arguments what makes it need fewer amount of 
samples of each frame to work well. Hence, German data may not depend 
on samples of other frames as much as the other languages (Section 6.6 
on page 155).

9.1.5 Regarding the tuning of deletion/insertion costs

• Frame versions tend to start falling at higher deletion values than the 
simple versions as deletion cost becomes smaller (Section 6.2 on page 
109)
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• The ratio between the cost of deleting and inserting two nodes and their 
swaj) cost specifies singularity points where the accuracy changes in a 
remarkable way (Section 6.2 on page 109). For Ternary and Frame Ternary 
settings:

1. deletiom= l; This only applies to Frame Ternary: Banning swaps 
of predicates from different frames which also do not share POS and 
DepRel labels seems to have a slightly positive effect. (Section 6.2.2.1 
on page 117)

2. deletion^ 0.5: This only applies to Frame Ternary: Banning swaps of 
predicates from different frames even if they share POS and DepRel 
labels seems to produce an important reduction on the accuracy of 
the system. (Section 6.2.2.3 on page 119).

3. deletion=0.5: Banning swaps where both labels are different reduce 
accuracy, but the impact is very small. (Section 6.2.1.1 on page 114).

4. deletion 0.25: Forcing the system to only swap nodes where POS 
and DepRel labels are equal always reduce accuracy, (see Section
6.2.1.2 on page 115 for Ternary and Section 6.2.2.4 on page 119 of 
Frame Ternary)

5. deletion 0: The ranking generated by tree distance is fundamental 
for a good performance labelling, in comparison to using a random 
set of alignments. (See Section 6.2.1.4 on page 116 for Ternary and 
Section 6.2.2.6 on page 120 for Frame Ternary)

• For Hamming and Frame Hamming settings a different set of singularity 
points was found:

1. deletion=^0.75: This only applies to Frame Hamming: Banning swaps 
of predicate nodes which belong to a different frame and do not share 
lexical the lexical labels has a negative impact on accuracy (Section
6.2.4.3 on page 124).

2. deletion=0.5: Banning swaps of nodes that do not share any label 
always has a negative effect. (See Section 6.2.3.1 on page 121 for 
Hamming and Section 6.2.4.4 on page 126 for Frame Hamming).
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3. deletion^ 0.375: Banning swaps of nodes whidi share one or none 
common labels also always has a negative effect. (See Section 6.2.3.2 
on page 121 for Hamming and Section 6.2.4.5 on page 127 for Frame 
Hamming).

4. deletion=0.25: Banning swaps of nodes which do not share lexical 
features (Lemma and Form tend to swap at the same time) also has 
a very negative impact on accuracy (See Section 6.2.3.3 on page 122 
for Hamming and Section 6.2.4.6 on page 127 for Frame Hamming)

5. deletion- 0.125: Allowing only swaps of nodes which share all four 
labels, has a negative impact. (See Section 6.2.3.4 on page 122 for 
Hamming and Section 6.2.4.7 on page 128).

6. deletion 0: Like in Ternary: The ranking of generated by tree dis­
tance is fundamental for the correct labelling, in comparison to use 
a random set of alignments. (See section 6.2.3.5 on page 123 and 
6.2.4.8 on page 128.)

9.1.6 Regarding the tuning weights of different labels
• Perfect balance between dependency relations and POS is not the optimal 

value for all languages but it is optimal for most of the languages or at least 
very close to the optimal value for others. Japanese is the most exceptional 
case because its data set lacks annotation of dependency relationships 
which makes optimal to use only POS, yet it still has a local maximum 
when the weight of both features is balanced. (Section 6.3 on page 133).

• In the case of having to choose between dependency relations or POS to 
build a SRL system, the use of dependency relationships leads to higher 
accuracy. (Section 6.3 on page 133).

• In almost all cases, perfect balance between lexical and syntactic features 
was optimal, which corresponds to the original definition of Hamming. 
The two great exceptions to this trend are Japanese and Frame Hamming 
Chinese. (Section 6.4 on page 140)
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1. Chinese: As Frame Hamming performs worse tlian Frame Ternary, 
the optimal value removes all lexical features, making the settings of 
the system become Frame Ternary.

2. Japanese: As there are no dependency relationshii)s for this language, 
the lexical features have more weight than the syntactic ones; nine 
times more weight in fact.

• In the case of having to choose between lexical or syntactic features to 
build a SRL system, the features which lead to higher accuracy depend 
on the language. (Section 6.4 on page 140)

9.1.7 Regarding sub-trees:

There is an inverse correlation among all languages between accuracy and 
the amount of nodes in the sub-tree to be labelled. (Section 5.3.8 on page 
102 )

Extracting sub-trees which contain one argument per predicate leads to 
higher accuracy than extracting one sub-tree with all its arguments (Sec­
tion 8.2 on page 194).

9.1.8 Regarding the k-NN module:

The value k=10 tends to lead to better results than k=l. however the 
differences between different k values are really small. (Section 6.5 on 
page 142)

The k-NN module has an important impact on the results compared with 
just picking random neighbours placed at the same distance. (Section 8.4 
on page 203)

9.1.9 Regarding theoretical issues:

Any hierarchical clustering outcome achieved via A and any categorisation 
outcome using nearest-neighbours can be replicated via 0, but not vice- 
versa. (Section 7.2.4 on page 174)
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• For the group of settings tested, Tai-distance perforins better than Tai- 
siinilarity. (Section 7.3.1 on page 179).

• For distance brute measures work better than normalised (Section 7.3.2.1 
on page 187) but for similarity normalised versions work better than brute 
measures (Section 7.3.2.2 on page 191).

9.2 Demarcation of the findings

The fact that the data set from this thesis is based on the CoNLL-2009 evalua­
tion does not mean that the work is only concerns the CoNLL-2()09 evaluation.

Some conclusions are likely to be universal across all types of Semantic Role 
Labelling systems like: Banning the usage of samples from different frames 
decreases accuracy. From this conclusion it can expect that data annotated in 
PropBank style is easier to annotate for a SRL system than in FrameNet style.

Other conclusions are likely to be universal across most Natural language 
processing tasks e.g. The parsing information luis an important impact on 
the performance of the system, experiments bcises on parting sentences into 
trees outperform the ones based on string comparison. Another example is the 
conclusion that POS gives more useful information to the system than the labels 
of the dependency relations.

And finally, the conclusions on the comparison between tree-distance and 
tree-similarity should be of application not only for computational linguistics 
systems based on Tree edit distance, but to any other field of science where tree 
edit distance/similarity is used.

9.3 Future work

9.3.1 Stricter Tai-Mapping base algorithms
Tai (1979) mappings are not the only relevant mappings for the Tree-SRL, but 
they are the ones chosen to be used in this thesis.

One of the many alternative, Hochsmann et al. (2003) algorithm, produces 
alignments; which is a kind of Tai mapping with more restrictions than the

215



original Tai ones.
Other algorithms and types of inai)pings are not explored in this thesis but 

left as open cpiestions for fntnre work.
This option is interesting due to its increment of restriction over Tai-mappings, 

but it was not explored in this thesis as a first option because the regular dis­
tance based on Tai-mappings are more popular in the literature.

9.3.2 Lexical comparisons

Hamming and Frame Hamming measures used the lexical information in a sim­
pler way; by just looking to the form and lemma of the words and decide the 
cost depending on whether the labels are identical or not. It is common in the 
literature to find very sophisticated lexical comparison measures which take into 
account if the words are synonyms or their frequency.

There is risk that this module can increase the complexity of the system too 
much making the task of analysing results difficult, but it is expected that it 
will lead to better accuracy.

This open question was mentioned in Section 5.3.1.2 on page 84.

9.4 Open questions

As open questions I would like to leave for future research the following:

• How much would the system improve if it had a module for word similarity 
to make hamming smother atomic costs between words depending on their 
semantic similarity. Note this open question is already part of future work.

• The problem of argument identification and predicate sense disambigua­
tion:
It was part of the CoNLL-20()9 evaluation and they are the last mod­
ules need it to complete a full SRL, system. It would be interesting to 
solve this problem though Tai-distance, Tai-similarity or even other tree 
algorithms not based on Tai-mappings.

• Chapter 7, defines “Alignment ordering” based on the order of alignments 
between two given fixed trees (See Definition 7.3 on page 162), it could
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be define an “N-Aligninent ordering” based on the order of alignments 
between one fixed tree and one variable tree, and it could define a “P- 
Alignment ordering” based on the order of the alignments between pairs 
of trees. In that case the (piestion would be if “N-Alignment ordering” is 
equivalent to “Neighbour ordering” (See Definition 7.4 on page 162) and 
if “P-Alignment ordering” is equivalent to “Pair ordering” (See Definition 
7.5 on page 162).

• Also in Chapter 7 Section 7.2.3.3 on page 172 leave a partial proof (7.27) 
about if N-duality implies P-duality, completion of which is an open ques­
tion, but the partial prove would be completed if it would be possible to 
find a sequence of equidistant trees for any given pair < S,T >, which is 
also given as a partial proof (7.28 on page 173) and leave it as open ques­
tion for cases in which the atomic distance between two identical nodes is 
higher than one.
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Appendix A

Data Set description

A.l CoNLL-2009 data set
The CoNLL 2009 evaluation was a multilingual evaluation for seven languages: 
Catalan, Chinese, Czech, English, German, Japanese and Spanish. There is no 
single institution that annotated all languages with a uniform annotation. Each 
data set is described independently in this appendix.

A. 1.1 English

A.1.1.1 English data: Compilation

The corpus was generated through merging the following corpora:

• Penn TreeBank 3: Marcus et al. (1994) hand coded parses of the Wall 
Street Journal (used in the test, development and training data set) and 
a small subset of the Brown corpus (Francis and Kucera, 1979) (used only 
on the test data set).

• BBN Pronoun Co-reference and Entity Type Corpus Weischedel 
and Brunstein (2005) annotates Wall Street Journal.

Named entity categories include: Person, Organisation, Location, GPE, 
Facility, Money, Percent, Time and Date, based on the definitions of these 
categories in MUC (Chinchor and Robinson, 1998).
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From this corpus only Name Entities boundaries were used to derive de­
pendencies between Name Entities tokens, for example to create a NAME 
dependency from ‘Mary’ to ‘Smith’ given the NE mentioned ‘Mary Smith’.

• PropBank I (Palmer et ah, 2005) is already explained in section 2.2.2.

• NomBank (Meyers et ah, 2004) uses the same framework as PropBank 
to annotate arguments of nouns.

A. 1.1.2 English data: syntactic annotation

Originally Penn TreeBank Marcus et ah (1994) was written in constituent tree 
form, but in CoNLL-2009 used a dei)endency tree structure. The conversion 
from constituent tree to dependency tree requires identifying and labelling head- 
dependent relationships.

Head-dependent pairs are created from constituents by selecting one word 
in each phrase as the head and setting the others as its dei)endants.

This process was done using Johansson and Nugnes (2007) algorithm, which 
is optimised for the Penn TreeBank annotation.

A.1.1.3 English data: semantic annotation

The English data set is part of the PropBank for which semantic annotation 
was already described above.

The out-of-domain evaluation data come from the English side of the Prague 
Czech-Eiiglish Dependency Treebank (Cmejrek et ah, 2004). LEMMA, POS 
and FEAT features were not annotated in the original data set, so predicted 
values were used.

A. 1.2 Spanish and Catalan

A.1.2.1 Spanish and Catalan data: Compilation

The Catalan and Spanish datasets (Taul et ah, 2000) were generated from the 
AnCora corpora, and the annotation is identical for the two languages.
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The Catalan data set is compiled from the EFE Catalan news agency (around 
75 thousand words), ACN Catalan news agency (around 225 thousand words), 
and ‘El Periodico’ newspaper (around 200 thousand words).

The Spanish data set is compiled from the EFE Spanish news agency (around 
225 thousand words), and the Spanish version of ‘El Periodico’ (around 200 
thousand words) which corresponds to the same news in Catalan and Spanish, 
spanning from January to December 2000.

Part of the Catalan and Spanish data set is a translation and each other, 
which corresponds to the segment of ‘El j)eriodico’.

A.1.2.2 Spanish and Catalan data; Syntactic annotation

The transformation from constituent tree structures to dependency tree struc­
tures uses Civit et al. (2006) algorithm.

The predicted features PLEMMA, PPOS, and PFEAT had been predicted 
with the FreeLing Open source suite of Language Analysers in which PLEMA 
and PPOS accuracy is above 95%, and PHEAD and PDEPREL had been pre­
dicted by MaltParser, with an accuracy above 86% for both languages (Hajic 
et ah, 2009).

A.1.2.3 Spanish and Catalan data: Semantic annotation

The linguistic annotation is identical for both languages, and as in English, the 
core arguments are enumerated argl to arg4 and defined per each inedicate. 
argM (for adjuncts), argL (for complements of light verbs).

In addition the tags contain a thematic role. There are 20 thematic roles:

• ACT: Agent,

• AGI: Induced Agent,

• CAU: Cause,

• EXP: Experiencer,

• SCR: Source,

• PAT: Patient,

IV



TEM: Theme, 

ATR,: Attribute, 

BEN: Beneficiary, 

EXT: Extension, 

INS: Instrnment, 

LOG: Locative, 

TMP: Time, 

MNR: Manner, 

ORI: Origin,

DES: Goal,

FIN: Purpose, 

EIN: Initial State, 

EFI: Final State, 

ADV: Adverbial.

A.1.2.4 Spanish and Catalan data: Important considerations

The amount of long sentences is remarkable on this corpus. In the Catalan 
corpora 10.73% of the sentences are longer than 50 tokens, and 4.42% are longer 
than 60 (Hajic et ah, 2009)

For Hajic et al. (2009) the more remarkable features of the Catalan and 
Spanish data sets (CoNLL-2009) are:

1. all dependency trees are projective;

2. no word can be the argument of more than one predicate in a sentence;

3. semantic dependencies completely match syntactic dependency structures 
(no new edges are introduced by the semantic structure);



4. only verbal predicates are annotated (with exceptional cases referring to 
words that can be adjectives and past participles);

5. the corpus is segmented so multi-words, named entities, temporal expres­
sions, compounds, etc. are grouped together; and

6. segmentation also accounts for elliptical pronouns (there are marked as 
empty lexical tokens S with a pronoun POS tag).

A.1.3 Chinese

A.1.3.1 Chinese data: Compilation

The Chinese Corpus merged the Chinese TreeBank 6.0 (Xue et ah, 2005) and 
the Chinese Proposition Bank 2.0 (Xne and Palmer, 2008).

The TreeBank is composed from Xinhna newswire (mainland China), HongKong 
news, and Sinorama Magazine (Taiwan). The most recent expansion under 
DARPA GALE funding includes broadcast news, broadcast conversation, news 
groups and web-log data. The version of Chinese treebank used on this thesis 
is CTB 6.0, it includes newswire, magazine articles, and transcribed broadcast 
news 12.

A.1.3.2 Chinese data: Syntactic annotation

The conversion from constituent tree structures to dependency tree structures 
was done by the organisers of CoNLL2009, identifying the head of each con­
stituent by analysing the structural information and detecting six broad cat­
egories of syntactic relationships (predication, modification, complementation, 
coordination, auxiliary, and flat).

A. 1.3.3 Chinese data: Semantic annotation

As in the English data set, the Chinese Proposition Bank annotates the core 
arguments are numerate from zero to five and defined for each predicate. The 
version of Chinese Proposition Bank used on this thesis is CPB 2.0, excluding 
nominal predicates, thus its annotation was incomplete.

VI



A.1.4 Czech
A. 1.4.1 Czech data: Compilation

The Czech corpus is extracted from the Prague Dependency Treebank 2.0 (Ha- 
jic, 2005). which annotates the Prague Dependency Treebank using the follow­
ing new papersd

• Lidove noviny (daily newspapers), ISSN 1213-1385, 1991, 1994, 1995

• Mlada fronta Dues (daily newspapers), 1992

• Ceskomoravsky Profit (business weekly), 1994

• Vesnhr (scientific journal), ISSN 1214-4029, Vesnhr, s.r.o., 1992, 1993

The out-of-domain evaluation data comes from the Czech side of the Prague 
Czech-English Dependency Treebank (Cmejrek et ah, 2004), just like the En­
glish out-of-domain evaluation data.

A.1.4.2 Czech data: Syntactic annotation

For the out-of-domain data: LEMMA, PCS and FEAT features were not anno­
tated in the original data set, so predicted values were used.

FORM was annotated using the “form” element of the morphological layer. 
LEMMA was annotated also using the “lemma” element on the morphologi­

cal layer, taking only the initial strings. Therefore, the is no difference between 
homonyms.

The POS column was annotated using the morphological “tag” element, 
taking the first character.

The remaining characters of “tag” plus the special feature “Sem” correspond­
ing to a semantic feature of lemma were used to annotated FEAT.

HEAD was annotated using the PDT ord attribute.
The predicted features, PLEMMA, PPOS and PFEAT were generated by 

the (cross-trained) morphological tagger MORCE (Spoustova et ah, 2009)

'http: '/ufal.mff.cuni.cz/pdt2.0/doc,/pdt-guide/eii/html/ch03.html#a-data-sources
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A.1.4.3 Czech data: Semantic annotation

The PRED and APREDs columns were annotated from the tectogrammatical 
layer of PDT 2.0 and the valency lexicon PDT-Vallex. The details about the 
rules used can be found at (Hajic et ah, 2009).

A. 1,5 German

A.1.5.1 German data: Compilation

The German corpus is extracted from SALSA (Burchardt et ah, 2006) (TIGER 
newspaper corpus (Brants et ah, 2002)) which annotates the articles from the 
German newspaper Frankfurter Rundschau from all kind of domains.

The out-of-domain dataset was taken from (Pado and Lapata, 2005), which 
is a sample of EUROPARL corpus.

A. 1.5.2 German data: Syntactic annotation

The conversion algorithm to dependency structures was borrowed from the or­
ganisers of CoNLL-X (Bnchholz and Marsi, 2006) with minor modifications.

The predicted PLEMMA and PPOS was produce by Tree Tagger algorithm 
(Schmid, 1994), and PFEAT was predicted by Morphisto morphology (Zielinski 
et ah, 2009).

A.1.5.3 German data: Semantic annotation

Salsa is annotated with semantic roles from a FrameNet paradigm. Hence, the 
CoNLL2009 organiser mapped the semantic roles to PropBank arguments at 
the level of each frame.

The original annotation of SALSA was considerably simplified, for example: 
multi-word expressions annotation, annotations involving multiple frames for 
the same predicate and inter-sentence roles were removed.
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A. 1.6 Japanesse

A.1.6.1 Japanese data: Compilation

The Ja])anese data set come from the Kyoto University Text Corpus (Kawahara 
et ah, 2002) It contains approximately 40.000 sentences taken from Mainichi 
Xewsi)apers. Nearly 5.000 sentences are annotated with syntactic and semantic 
dependencies, and are used the training, develoinnent and test data set

The other 35.000 only have syntactic annotation and it was used for the 
training corpus.

A.1.6.2 Japanese data: Syntactic annotation

The original data set was annotated with dependency relationships based on 
phrases (Japanese hunsetsu). Therefore it was necessary to convert the data to 
word-based deijendency. The criteria for the conversion was the following: all 
words except the last word in a phrase depend on the next (right) word, and 
the last word in a ])hrase basically depends on the head word of the governing 
phrase.

PLEMA, PPCS and PFEAT were jiredicted using the morphological anal­
yser JUMAN and the dependency and case structure analyser KNP PHEAD 
and PDEPREL were predicted using the MSTParser ^

A.1.6.3 Japanese data: Semantic annotation

There are semantic annotations for predicate verbs and predicate nouns.
There are 41 surface cases, “ga” indicates nominative, “wo” indicates ac­

cusative and “ni” indicates dative. Semantic frame discrimination is not anno­
tated. Therefore, PRED contains the same annotation as LEMMA. The original 
data set contains co-reference annotations and inter-sentence semantic relations 
which were not used.

^http: / nlp.kiiee.kyoto-u.ac.jp/ nl-resource/juman-e.html 
^http: / / nlp.kuee.kyoto-u.ac.jp/ nl-resource/knp-e.html 
‘'http://sourceforge.net/ projects/ instparser
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A.2 Semantic Labels description

The symbol “|” is a separator that indicates an extra label for a semantic rela­
tionship, in this case the system have to predict both labels in order to count 
the prediction as correct.
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A.2.1 Catalan and Spanish

Amount labels: 45 CA-T CA-E CA-D ES-T ES-E ES-D 1
perplexity 11.12 11.15 10.93 11.22 11.05 11.08

total amount 84367 11275 11529 99054 11824 11600
argl-pat 2.2022e+01% 2.1898e+01% 2.26826-1-01% 2.04676+01% 2.01716+01% 2.05346+01%
argO-agt 1.8308e+01% 1.7845e+01% 1.8267e+01% 1.88806+01% 1.91816+01% 1.92166+01%
argl-tem 1.4502e+01% 1.4271e+01% 1.42686-1-01% 1.47236+01% 1.45476+01%, 1.42936 + 01%

argM-tmp 8.3872e+00% 8.5144e+00% 8.1534e+00% 8.1400e+00% 9.0240e+00% 8.75006+00%
arg2-atr 8.1015e+00% 7.6896e+00% 7.63296+00% 8.20466+00% 7.95846+00% 7.75006+00%

argM-adv 5.9917e+00% 6.0931e+00% 6.5400e+00% 7.6978e+00% 7.9753e+00% 8.07766+00%,
argM-loc 5.5910e+00% 6.1197e+00% 5.39516+00% 4.99536+00% 5.01526+00% 4.82766+00%
arg2-null 3.2572e+00% 3.6009e+00% 3.4175e+00% 2.48256+00% 2.18206+00% 2.50866+00%
arg2-ben 1.7874e+00% 1.9690e+00% 2.06446+00% 2.24626+00% 2.09746+00% 2.30176+00%
argl-null 1.7175e+00% 1.8803e+00% 1.70876+00% 1.76576+00% 1.55626+00% 1.75866+00%)
argM-cau 1.4958e+00% 1.6940e+00% 1.4052e+00% 1.5799e+00% 1.4716e+00% 1.57766+00%
argM-fin l.5516e+00% 1.5344e+00% 1.7174e+00% 1.4164e+00% 1.3447e+00% 1.42246+00%
arg2-loc 1.3619e+00% 1.3836e+00% 1.2577e+00% 1.60426+00% 1.39556+00% 1.59486+00%

argM-mnr 1.5563e+00% 1.5344e+00% 1.41386+00% 1.37106+00% 1.64076+00% 1.27596+00%
argO-cau 1.0715e+00% 9.3126e-01% 1.1363e+00% 1.22056+00% 1.41246+00% 1.12076 + 00%
argM-atr 8.8779e-01% 8.1596e-01% 8.76056-01% 6.52176-01% 7.35796-01% 7.3276e-01%
arg4-des 5.0138e-0l% 4.7007e-01% 3.90326-01% 6.2693e-01% 5.2436e-01% 5.17246-01%,

argL-null 4.7886e-01% 4.3459e-01% 4.4236e-01% 4.72476-01% 3.89046-01% 3.70696-01%
arg2-ext 3.0344e-01% 2.4834e-01% 3.29606-01% 2.87726-01% 2.79096-01% 2.58626-01%
arg3-ori 1.7661e-01% 3.1042e-01% 1.04096-01% 2.34226-01% 1.77606-01% 1.29316-01%
arg2-efi 1.5172e-01% 2.12866-01% 1.0409e-01% 1.82736-01% 2.02986-01% 2.15526-01%

arg3-ben 1.2090e-01% 1.24176-01% 2.08l7e-01% 1.47396-01% 1.26866-01% 1.29316-01%
arg4-efi 1.5646e-0)% 1..5965e-01% 1.56136-01% 9.48986-02% 1.69156-01% 1.37936-01%

argM-ext 1.0075e-01% 8.86926-03% 2.60216-02% 1.23176-01% 1.60696-01% 9.48286-02%
arg2-cxp 1.0194e-01% 2.66086-02% 7.80646-02% 8.68216-02% 5.07446-02% 1.37936-01%
arg3-ein 7.34a8e-02% .5.32156-02% 5.20436-02% 5.24976-02% 7.6116e-02% 3.44836-02%
arg3-fin - - - 7.57166-02% 3.38296-02% 5.17246-02%
argl-ext 4.0300e-02% 4.43466-02% 2.6021e-02% 2.92776-02% 4.22876-02% 2.58626-02%
arg2-fin 6.7562e-02% 6.20846-02% 7.80646-02%. - - -
argl-loc 1.7779e-02% 8.8692e-03% - 3.43256-02% 8.45746-03% 4.31036-02%
arg2-ins 1.4224e-02% - 1.7348e-02% 1.91816-02%) 1.69156-02% 8.62076-03%

arg3-exp 1.8965e-02% - 8.6738e-03% 1.31246-02% - 5.17246-02%
argO-exp 1.3038e-02% - - 1.91816-02% 8.45746-03% 8.62076-03%
argM-ins 5.9265e-03% 8.86926-03% - 2.12016-02% 8.45746-03% 8.62076-03%,
argO-src 7.1118e-03% - 8.6738e-03% 1.61536-02% 1.69156-02% 8.62076-03%
arg3-atr 1.7779e-02% 3.54776-02% 1.73486-02% 1.00966-03% - 8.62076-03%,
arg3-loc 1.7779e-02% 1.77386-02% 8.67386-03% 3.02876-03% - -

arg3-null 1.6594e-02% - - 1.0096e-03% - -
arg3-ins 7.in8e-03% - - 5.04786-03% - -

argO-null - - - 2.01916-03% - 1.72416-02%
arg2-tem - - - 2.01916-03% - -
argl-tmp - - 8.67386-03% - - -
argO-pat - - - 1.00966-03% - -

argM-LOC - - - 1.00966-03% - -
arg3-des - - - 1.00966-03% - -

Table A.l: Catalan and Spanish semantic labels
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A.2.2 English

Amount labels: 53 T E D ODD

perplexity 7.121 7.189 7.118 7.782
total amount 393699 23286 13865 2859

A1 3.7223e+01% 3.70576+01% 3.76636+01% 3.53276+01%
AO 2.5245e+01% 2.51486+01% 2.48546+01% 2.61286+01%,
A2 1.1872e+01% 1.13126+01% 1.15046+01% 7.93986+00%

AM-TMP 5.9302e-t-00% 6.7251e-l-00% 6.3325e+00% 4.26726+00%
AM-MNR 3.0066e+00% 2.92886+00% 3.09416+00% 4.61706+00%
AM-LOG 2.6383e+00% 2.55096+00% 2.45946+00% 3.04306+00%

A3 2.3955e+00% 2.22456+00% 2.17816+00% 6.29596-01%
AM-MOD 2.2944e+00% 2.34916+00% 2.27196+00% 3.18296+00%
AM-ADV 2.1694e+00% 2.24176+00% 2.07006+00% 5.10676+00%

AM-DIS 1.2256e+00% 1.37426 + 00% 1.45696+00% 7.69506-01%
R-AO 1.0259e+00% 9.6195e-01% 1.03866+00% 8.74436-01%

AM-NEG 9.2787e-01% 1.12516+00%. 8.87136-01% 2.06376+00%
A4 7.7826e-01% 5.02456-01% 6.05846-01% 5.59646-01%

C-Al 6.9952e-01% 8.37416-01% 1.00256+00% 1.04936+00%
R-Al 5,8598e-01% 6.6S64e-01% 5.91426-01% 7.34526-01%

AM-PNC 5.6718e-01% 4.93866-01% 5.76996-01% 5.94616-01%
AM-EXT 3.3249e-01% 2.83436-01% 3.38986-01% 2.09866-01%
AM-CAU 3.0988e-01% 3.09206-01% 3.31776-01% 2.79826-01%
AM-DIR 2.9109e-01% 3.65036-01% 2.45226-01% 1.85386+00%

R-AM-TMP 1.7882e-01% 2.23316-01% 2.23586-01% 3.49776-01%.
R-A2 7.2644e-02% 6.87116-02% 3.60626-02% -

R-AM-LOC 5.3848e-02% 9.01836-02% 6.49126-02% 1.39916-01%
R-AM-MNR 3.5814e-02% 2.57676-02% 4.32746-02% 6.99556-02%

A5 2.0828e-02% 2.57676-02% 2.16376-02% -
AM-PRD 1.7526e-02% 2.14726-02% 2.16376-02% 3.49776-02%

C-AO 1.62S6e-02% 2.14726-02% - 3.49776-02%
C-A2 1.5494e-02% - 2.16376-02% 3.49776-02%

R-AM-CAU 1.0414e-02% 1.71786-02% 2.16376-02% 6.99556-02%
C-A3 8.8900e-03% 8.58896-03% - -
R-A3 7.1120e-03% 4.29446-03% - -

G-AM-MNR 5.0800e-03% 4.29446-03%, 1.44256-02% 3.49776-02%
C:-AM-ADV 5.0800e-03% - - -

AM-REC 3.5560e-03% 8.58896-03% - -
AA 3.3020e-03% - 7.21246-03% -

H-AM-PNC 3.04806-03% - - -
C-AM-TMP 2.54006-03% 4.29446-03% - -
C-AM-EXT 2.7940e-03% - - -

C-A4 2.79406-03% - - -
C-AM-LOC 2.28606-03% - - -

AM 2.28606-03% - - -
R-A4 1.77806-03% 4.29446-03% - -

K-AM-ADV 1.27006-03% 8.58896-03% - -
G-AM-DIR 1.27006-03% 4.29446-03% 7.21246-03%, -

C:-AM-CAU 1.5240e-03% - 7.21246-03% -
K-AM-EXT 1.01606-03% 4.29446-03% 7.21246-03% -
c:.AM-PNC 1.27006-03% - - -
('-AM-DIS 7.62006-04% - - -

AM-PRT 5.08006-04% - - -
R-AA 5.08006-04% - - -

AM-TM 5.0800e-04% - - -
C-AM-NEG 2.54006-04% - - -

G-R-AM-TMP 2.54006-04% - - -
R-AM-DIR 2.54006-04% - - -

Table A.2: English semantic labels
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A.2.3 Chinese

Amount labels: 37 T E D

perplexity 6.435 6.529 6.652
total amount 231869 27712 18554

A1 3.04266-1-01% 3.0860e+01% 3.1249e-t-01%
AO 2.6556e-t-01% 2.5740e-t-01% 2.5693e+01%

ADV 1.9844e+01% 1.9295e+01% 1.8400e+01%
TMP 6.6141e+00% 7.2243e+00% 7.2006e+00%

DIS 4.4387e-t-00% 4.1390e+00% 3.9884e+00%
A2 3.5473e-t-00% 3.7276e-t-00% 3.7512e-|-00%

LOG 2.7964e+00% 3.0023e+00% 2.9589e+00%
MNR 1.4888e-t-00% 1.7934e-t-00% 1.9565e+00%
C-AO 9.1172e-01% 8.6244e-01% 9.8631e-01%
PRP 9.1819e-01% 7.7223e-01% 1.0025e+00%
C-Al 6.7797e-01% 8.6244e-01% 9.8631e-01%
DIR 3.8513e-01% 3.5003e-01% 2.8026e-01%

CND 3.6529e-01% 2.8147e-01% 3.8267e-01%
EXT 2.4712e-01% 2.2734e-01% 3.2338e-01%

A3 2.4410e-01% 2.8508e-01% 2.6409e-01%
TPC 2.4842e-01% 2.3456e-01% 1.8325e-01%
BNF 1.7553e-01% 2.0930e-01% 1.9403e-01%

A4 1.8976e-02% 3.2477e-02% 6.4676e-02%
FRQ 2.3289e-02% 2.1651e-02% 2.6948e-02%
C-A2 2.07016-02% 2.5260e-02% 2.1559e-02%
PRD 1.6820e-02% 1.0826e-02% 5.9286e-02%
DGR 1.0782e-02% 1.4434e-02% 1.0779e-02%
ASP 6.9004e-03% 1.0826e-02% -

QTY 3.0189e-03% 3.6085e-03% 1.0779e-02%
CRD 2.5877e-03% 1.0826e-02% -

C-C-AO 3.4502e-03% - -

ARCM 1.7251e-03% 3.6085e-03% -

PN 2.1564e-03% - -

VOC 1.2938e-03% - -

C-ARGM-TMP 1.2938e-03% - -

C-A3 8.6256e-04% - -

PSR 4.3128e-04% - -

A5 4.3128e-04% - -

C-ARGM-DIS 4.3128e-04% - -

T 4.3128e-04% - -

PSE 4.3128e-04% - -

C-ADV - - 5.3897e-03%

Table A.3: Chinese semantic labels
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A.2.4 Czech

Amount labels: 64 T E D ODD

peri>lexity 10.93 11.05 11.07 11.33
total amount 365255 39223 49071 13882

RSTR 3.0128e+01% 2.99776+01% 2.96846+01% 2.90816+01%
PAT 1.8363e+01% 1.85226+01%, 1.88566+01%, 1.75266+01%
ACT 1.67236+01^1, 1.64426+01% 1.63886+01% 1.80596+01%
APP 6.38326+00% 6.19026+00% 6.20736+00% 4.15656+00%,
LOC 4.42876+00% 4.47956+00% 4.44256+00% 3.31366+0054

TWHEN 3.86146+00% 3.92636+00% 3.90256+00% 3.53706 + 00%
MANN 1.98416+00% 2.12896+00% 1.98496+00% 1.73616+00%

EXT 1.6736e+00% 1.61136+00% 1.79946+00% 3.14086 + 00%
EFF 1.49106+00% 1.42016+00% 1.64256+00% 3.52256+00%

ADDR 1.33336+00% 1.46096+00% 1.37766+00^0 1.00136+00%
DIR3 1.23266+00% 1.27226+00% 1.2431e+00%o 8.35616-01%
MAT ].1272e+00% 1.16516+00% 1.02916+00% 2.03146+0054

ID 1.02266+00% 9.25486-01% 9.27230-01% 2.08906+0054
DIRl 9.80416-01% 9.15286-01% 9.65956-01% 8.93246-01%,
BEN 8.63236-01% 9.2038e-01% 8.6609e-01% 5.83496-01%

ACMP 7.53996-01% 8.26056-01% 7.37716-01% 5.04256-01%
REG 6.46406-01% 7.26616-01% 7.13256-01% 8.35616-0154

MEANS 5.84256-01% 6.39936-01% 5.93026-01% 3.81796-0154
CPHR 5.84806-01% 5.71096-01% 6.05256-01% 4.03406-01%
CRIT 5.39626-01% 5.15006-01% 5.74686-01% 2.66536-0194
CAUS 5.18546-01% 5.5835e-01% 5.78756-015^, 5.54086-01%

COND 5.2128e-01% 5.25206-01% 5.72646-01% 4.10606-01%
AIM 5.11156-01% 4.69116-01% 4.95206-0 l%o 4.61036-01%
THL 4.3449e-01% 4.13026-01% 4.6260e-01% 7.70786-01%

COMPL 3.14306-01% 3.49286-01% 3.50516-015;, 3.24166-01%
THO 2.74886-01% 2.6260e-01% 3.38296-01% 2.44926-0154

DPHR 2.4969e-01% 2.62606-01% 2.79196-01% 2.88146-01%,
TTILL 2.43946-01% 2.47306-01% 2.09906-01% 2.08906-01%
ORIG 2.1820e-01% 2.2181e-01% 1.87486-01% 4.53836-0154

COMPL2 2.21226-01% 2.11616-01% 2.30286-01% 2.01706-0194
DIFF 1.89466-01% 2.09066-01% 1.5895e-Ol5'o 4.6103e-0l54
TSIN 1.86726-01% 1.88660-01% 1.99716-01% 2.01706-0154
CPR 1.81526-01% 1.63176-01% 1.79336-01% 4.25016-0154

AUTH 1.6728e-01% 1.81020-01% 1.24316-01% 7.20366-02%
CNCS 1.53596-01% 1.60626-01% 1.46736-01% 1.6568e-01%

RESTR 1.48396-01% 1.14736-01% 1.48766-01% 5.04256-02%
TPAR 1.31966-01% 1.42776-01% 1.16166-011:^ 2.88146-01%

DIR2 8.92536-02% 1.09636-01% 8.96666-02% 2.16116-02%
RESL 8.02186-02% 8.66846-02% 9.98556-02% 1.22466-01%
TFHL 7.61116-02% 7.3936e-02% 8.55906-02% 4.322l6-02%o
SUBS 5.96846-02% 5.09906-02% 7.74396-02% 5.76296-02%

ACTIADDR 5.36616-02% 5.35406-02% 4.27956-02% 4.32216-02%
ACT|PAT 5.06506-02% 5.09906-02% 5.29846-02% 3.60186-02%
CONTRD 4.10676-02% 3.56936-02% 2.44546-02% 5.76296-02%

INTT 4.02466-02% 3.82436-02% 3.87196-02% 1.44076-02%
ACTICOMPL 3.6960e-02% 5.09906-02% 5.50226-02% -

TOWH 3.66876-02% 5.35406-02% 4.07576-02% 3.60186-02%
TFRWH 3.61396-02% 3.5693e-02% 3.2606e-02% 6.48326-0254

ADDRjPAT 1.17736-02% 5.09906-03% 1.01896-02% -
EFFjPAT 5.74946-03% 1.52976-02% 1.42656-02% -

HER 6.02326-03% 1.27486-02% 6.1136e-03% -
OKIGIPAT 1.6427e-03% 2.54956-03% 6.11366-0394 -

COMPL PAT 1.36896-03% - 2.03796-03% -
ACT EFF 2.7378e-04% 2.54956-03% 2.03796-03% -

ACMPIACT 5.47566-04% - - -
FPHR - - - 1.44076-02%

ADDRIMANN 2.7378e-04% - - -
MEANS! PAT 2.7378e-04% - - -

ACTjORIG 2.7378e-04% - - -
ACTjAIM 2.73786-04% - - -
BENIPAT 2.73786-04% - - -

ACTIDIR3 - 2.54956-03% - -
ACTjREG - 2.54956-03% - -

ACTITWHEN - - - 7.20366-03%

Table A.4: Czech semantic labels
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A.2.5 German

Amount labels: 10 T E D ODD
perplexity 3.579 3.742 3.736 3.771

total amount 34276 1073 1169 1193
AO 4.0393e+01% 3.8956e+01% 3.7810e+01% 3.7049e+01%
A1 3.9462e+01% 3.8211e+01% 3.8580e+01% 4.2498e+01%
A2 1.1836e+01% 1.2861e+01% 1.3430e+01% 9.4719e+00%
A3 5.8262e+00% 6.9897e+00% 7.6133e+00% 6.6220e+00%
A4 1.2808e + 00% 1.9571e+00% 1.8820e+00% 1.8441e+00%
A5 6.6227e-01% 3.7279e-01% 8.5543e-02% 9.22056-01%
A7 2.1006e-01% 2.7959e-01% 3.4217e-01% 1.0897e+00%
A6 1.8088e-01% - 1.7109e-01% -

A8 1.2837e-01% 3.7279e-01% 8.5543e-02% 5.02936-01%
A9 2.0422e-02% - - -

Table A.5: Gerniaii semantic labels
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A. 2.6 Japanese

Amount labels: 72 I L5 D
perplexity 8.554 8.485 8.438

total amount 43957 5316 2706
GA 3.29556+01% 3.22056+01% 3.34446+01%
WO 1.52246+01% 1.42966+01% 1.42286+01%
NO 1.48106+01% 1.61406+01% 1.48936+01%
NI 8.50836+00% 8.78486+00% 8.83226+00%

DE 6.09006+00% 5.92556+00% 6.02376+00%
TMP 5.44856+00% 5.73746+00% 5.54326+00%

TO 4.61816+00% 4.70286+00% 5.02596+00%
NoGap 3.85836+00% 3.83756+00% 3.73246+00%
TO-IU 3.27826+00% 3.4236e+00% 3.10426+00%
KARA 1.57886+00% 1.59896+00% 1.66306+00%

GA2 4.43626-01% 5.07906-01% 2.95646-01%
HE 4.39076-01% 3.38606-01% 5.54326-01%

TO-SHITE 3.8674e-0l% 4.7028e-0l% 4.80416-01%
NI-TSUITE 4.07226-01% 3.76226-01% 3.32596-01%

MADE 3.13946-01% 2.82176-01% 1.84776-01%
NI-YOTTE 3.00296-01% 2.25736-01% 1.47826-01%

NI-TAISHITE 1.59256-01% 1.88116-01% 1.84776-01%
YORI 1.45606-01% 9.4056e-02% 1.84776-01%

NI-KANSHITE 1.31956-01% 7.52456-02% 1.84776-01%
NI-MUKETE 9.78236-02% 5.6433e-02% 1.84776-01%

MADE-NI 9.55486-02% 9.40566-02% 7.39106-02%,
GA|WO 7.50736-02% 7.5245e-02% 3.69556-02%

WO-TSUUJITE 7.27986-02% 1.88116-02% -
NI-TOTTE 7.05236-02% - 7.39106-02%

WO-FUKUMETE 4.09496-02% 3.7622e-02% 1.47826-01%
NI-OITE 3.63996-02% 1.50496-01% -

WO-MEGUTTE 3.41246-02%, 3.7622e-02% 1.84776-01%
NI-KURABETE 4.32246-02% - -

GA|TO 3.18496-02% 3.7622e-02% 3.69556-02%
GA|NI 2.72996-02% 9.40566-02% -

NI-MOTOZUITE 2.50246-02% 3.76226-02% 1.10866-01%,
WO-NOZOITE 2.50246-02% - -

NI-TOMONATTE 1.82006-02% > -
NI-KARANDE 1.59256-02% - -
NI-TSUZUITE 1.59256-02% - -

NI-SHITE 1.59256-02% - -
DE|GA 1.13756-02% - 3.69556-02%

NI-KUWAETE 1.3650e-02% - -
TO-IUIWO 1.13756-02% - -

NI-KAGITTE 1.1375e-02% - -
NI-KAWATTE 1.1375e-02% - -

GA|NO 1.13756-02% - -
NO|GA 9.0998e-03% - -
NO|WO 9.0998e-03% - -

NoGapIWO 9.09986-03% - -
DE|NI 4.5499e-03% 1.88116-02% -

NI-SOTTE 6.8249e-03% - -
NoGapIGA 6.82496-03% - -
DE|NoGap 2.27506-03% - 3.69556-02%

DE|TO 2.27506-03% 1.8811e-02% -
GAITO-SHITE - 1.88116-02% 3.69556-02%
NI-NARANDE 4.5499e-03% - -
mAdeikara 2.27506-03% 1.88116-02% -

TMP|TO - 1.88116-02% -
NI|TMP - 1.88116-02% -

TO-IU |TO - 1.88116-02% -
DE|GA|WO - 1.88116-02% -

YORIINI 2.27506-03% - -
DEITO-IU 2.2750e-03% - -

Nl-OITEIGA 2.2750e-03% - -
KARAITMP 2.27506-03% - -

NI|WO-FUKUMETE 2.27506-03% - -
NOINI-MUKETE 2.2750e-03% - -

NoGapjTMP 2.27506-03% - -
NO 1 TO-IU 2.27506-03% - -

NI-AWASETE 2.27506-03% - -
TMP|WO 2.27506-03% - -
GA|TMP 2.2760e-03% - -

GA|YORI 2.27506-03% - -
GAITO-IU 2.27506-03% - -
NIIKARA 2.27506-03% - -
NO[TMP 2.27506-03% - -

Table A.6: Japanese semantic labels 
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A.3 Dependency relationship labels description
on sub-trees

Originally some data-sets had multiple root nodes in a single sentence. Those 
nodes have a dependency relation “ROOT”, with a non-existing head node. As 
the tree distance algorithm does not work with forest, an extra node was added 
to all sentences becoming the root of the tree and the head of the previous 
root nodes. This new root node has a dependency relationship “DepRel” with 
a non-existing head node. “Root” and “DepRel” are artificial labels, made to 
simplify the software. In some data sets those labels do not appear at all on 
the sub-trees, in other data sets those labels have an important frequency.

A.3.1 Catalan and Spanish

labels: IK CA-r CA-R CA-l) ES-T ES-E ES-D

perplexity 7.ir,88e ) 00 7.2082e f 00 7.20!7e+00 7.0995e-|-00 7.0093e-|-00 7.0896e fOO
total amount 121798 1627G 16634 142878 16999 16677

euj 2.4454e-h01% 2.4336e+01% 2.42526+01% 2.42396+01% 2.42136+01%, 2.37636+01%
cc 1.9572e+01% 2.0122e+01% 1.94006+01% 2.09966+01% 2.1507e-f01% 2.13356+01%
cd 1.93l8ef01% 1.8321e+01% 1.965.36+01% 1.91416+01% 1.95196 1-01% 1.94046+01%,
s 1.31Sle+01% 1.30870+01% 1.3.5936 + 01% 1.35786+01% 1.3336e-I-01% 1.38396+01%

sentence 1.0470e + 01% 1.09126+01% 9.91346+00% 9.53476+00% 9.57706+00%, 9.39026+00%
atr 4.0707e+00% 3.88306+00% 3.8956e+00% 4.32476+00% 4.16506+00% 3.93366+00%

creg 4.13.35e+00% 4.41756+00% 4.03996+00% 3.04326+00% 2.6766e-|-00% 3.07616+00%
ci 1.4056e+00%) 1.46846+00% 1.63526+00% 1.73016+00% 1.58246+00% 1.82296+00%

cpred 1.4902e+00% 1.45006+00% 1.52106+00%, 1.29486+00% 1.2648e-f00% 1.26526 + 00%
cag 8.3253e-01% 8.84746-01% 8.23616-01% 7.86696-01% 7.8828e-01% 8.27496-01%
ao 7.3236e-01% 6.75846-01% 9.13796-01% 7.98586-01% 7.35346-01% 7.67526-01%
sn 2.2414e-01% 2.64196-01% 1.80356-01% 3.35256-01% 4.29446-01% 3.41796-01%

inc 1.3711e-01% 1.78186-01% 1.7434e-01% 1.9177e-01% 1.94136-01% 2.27866-01%
grup.nom 4.9262e-03% - 6.01186-03% 2.79966-03% 1.17656-02% -

s.a 8.210.3e-04% - - 2.09976-03% - -
sp - - - 1.3998e-03% - 5.99636-03%

infinitiu 1.6421e-03% - - - - -
mod - - - 6.99906-04%, - -

Table A.7: DepRelation labels on the nodes of the sub trees for Catalan and 
Spanish
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A. 3.2 English

Amount DepRel labels; b5 T E D ODD

perplexity 1.3485e+01 l.a.'iOoe 1-01 1.3895e+01 1.3920e + 01
total amount 679902 39847 24206 5004

NMOD 1.8013e+01% 1.77186+01% 1.77156+01% 1.07916+01%
SBJ l.S967e+01% 1.61546+01% 1.57446+01% 1.71866+01%
OBJ 1.4989e+01% 1.50556+01% 1.38816+01%, 1.38496+01%

PMOD 7.7357e+00% 7.40836+00% 8.10966+00% 6.09516+00%
ROOT 7.61746+00^0 7.60916+00% 7.56016+00% 9.89216+00%

ADV 6.0562e+00% 5.49856+00% 5.74656+00% 1.05726+01%
VC 5.95126+00% 6.40956+00% 5.61846+00% 6.07516+00%

OPRD 2.92546+00% 3.03916+00% 3.29676+00% 2.31816+00%
TMP 2.77556+00^0 3.11696+00% 2.97456+00% 2.39816+00%

IM 2.55806+00% 2.68036+00% 2.84646+00% 2.19826+00%
CONJ 2.04546+00% 1.80696+00% 2.25156+00% 3.79706+00%

LOG 1.99596+001^ 2.32646+00% 2.43746+00% 2.11836+00%
su6 1.96226+00% 2.01776+00% 2.00786+00% 1.49886+00%

APPO 1.75116+0014 1.65136+00% 1.7764e+00% 7.59396-01%
COORD 1.64636+00% 1.49326+00% 1.94586+00% 3.89696+00%

PRD 1.27306+0014 1.36276+00% 1.56166+00% 1.65876+00%
DIR 8.4277e-01% 8.50756-01% 5.86636-01% 1.09916+00%
PRP 7.32316-01%, 7.60416-01% 7.02316-01% 8.19346-01%

MNR 7.19526-01% 5.32046-01% 5.41196-01% 1.05926+00%
A MOD 5.15526-01% 5.22006-01% 7.51886-01% 4.59636-01%

LGS 4.40656-01% 4.96906-01% 4.46176-01% 1.99846-02%
EXT 4.3183e-01% 4.29146-01% 3.75946-01% -
DEP 3.77116-01% 3.81466-01% 4.58566-01% 6.99446-01%

HMOD 1.4237e-0l% 1.65636-01% 1.11546-01% 5.99526-02%,
PRN 1.05316-01% 9.28556-02% 1.65256-01% 5.99526-02%,
DTV 8.6630e-02% 7.02696-02% 7.02316-02% 1.99846-02%

NAME 6.1038e-02% 4.76826-02% 4.54436-02% -
PRT 5.17726-02% 6.77596-02% 3.7181e-02% 3.5971e-01%

EXTR 5.1772e-02% 5.52116-02% 2.8918e-02% 1.9984e-02%
PUT 5.08906-02% 4.26636-02% 7.43626-02% 1.99846-02%

LOC-PRD 3.51526-02% 8.53266-02% 3.3050e-02% 1.9984e-02%
GAP-OBJ 1.47086-02% - 8.2624e-03% 5.99526-02%
GAP-SBJ 1.3384e-02% 2.50966-03% 1.2394e-02% 1.99846-02%

DEP-GAP 8.53066-0.3% 2..50966-0.3% 4.13126-03% 1.99846-02%
BNF 7.05986-03% 2.5096e-03% 8.26246-03% -

LOC-OPRD 5.58906-0.3% 5.0l92e-03% 2.06566-02% -
GAP-LGS 5.29496-03% 7.52886-03% - -

GAP-TMP 4.11826-03% 1.2548e-02% 1.65256-02% -
GAP-PRD 4.70666-03% 5.0l92e-03% - -
DIR-GAP 3.9712e-03% - 4.13126-03% -

EXT-GAP 3.3828e-03% 5.0192e-03% - -
P 3.52996-03% - 4.13126-03% -

GAP-LOG 3.0887e-03% 5.01926-03% 4.13126-03% -
GAP-VC 2.2062e-03% - 8.26246-03% -

TITLE 1.7650e-03% - - -
PRD-TMP 1.76506-03% - - -

GAP-PMOD 1.3237e-03% 2.5096e-03% - -

VOC 1.3237e-03% - - 1.99846-02%
PRD-PRP 1.17666-03% - - 3.99686-02%
ADV-GAP 1.47086-03% - - -

POSTHON 4.4124e-04% 2.5096e-03% 8.2624e-03% -
DTV-GAP 8.82486-04% - - -

SUFFIX 7.3540e-04% - - -
GAP-NMOD 5.88326-04% - - -

GAP-MNR 2.94166-04% - - 1.99846-02%
EXTR-GAP 2.9416e-04% - - -

AMOD-GAP 2.94166-04% - - -
GAP-PRP 1.47086-04% - - -

GAP-LOC-PRD 1.4708e-04% - - -
MNR-TMP 1.47086-04% - - -
DIR-OPRD 1.47086-04% - - -
MNR-PRD 1.47086-04% - - -
LOC-MNR 1.47086-04% - - -

GAP-OPRD 1.47086-04% - - -
GAP-SUB 1.4708e-04% - - -

Table A.8: English DepRelation labels on the nodes of the sub trees
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A.3.3 Chinese

Amount h)e])Rel labels: 38 T E D
perplexity 9,8937e+00 9,8475e t 00 9.90l9e^ 00

total amount 377664 45231 29981
COMP 2.7796e+01% 2.8007e+01% 2.8702e-l 01%.

ADV 1.7186e+01% 1.6977e+01% 1.62440+01%
SBJ 1.6914e+01% 1.6597e+01% 1.89010+01%
CJT 8.3227e+00% 8.6909e+00% 8.0985e+00%

ROOT 7.2557e+00% 7.0969e-t-00% 7.19790+00%
TMP 3.7862e+00% 4.14760-1-00% 4.1893e+00%

HKI.C 3.5095e+00% 3.4313e+00% 3.36550+00%
(MIN 2.1718e+00% 2.27060-1-00% 2.17470+00%

PRO 2.0839e + 00% 2.0031e+00%> 1.83120+00%.
I.OC 1.7621e+00% 1.830604-00% 1.86450+00%
ACX 1.7680e + 00% 1.74880-1-00% 1.6277e+00%
IPC 1.0536e + 00% 8.9983e-01% 8.7722e-01%

MNR 9.9930e-01% 1.01260-1-00% 1.1974e+00%
PR'r 7.6576e-01% 7.36220-01% 7.73820-01%
DIR 7.5305e-01% 7.76020-01% 6.63750-01%

cCJTN 6.4369e-01% 6.80950-01% 6.1372e-01%
PRP 4.8800e-01% 4.2007o-01% 5.0032e-01%

NMOD 4.4299e-01% 4.68710-01% 6.1039e-0l%
CND 4.390le-01% 3.42690-01% 4.002So-01%
EXT 3.7335e-01% 4.99660-01% 7.43800-01%
OBJ 3.1271e-01% 2.69730-01% 2.93520-01%
APP 2.7273e-01% 3.13940-01% 2.9018e-01%
UNK 2.4334e-01% 1.48130-01% 1.66770-01%
BNF 2.0547e-01% 2.0119e-01% 2.3348e-01%
FOC 1.6681e-01% 1.9456e-01^'o 1.13410-01%
LGS 1.4907e-01% 1.34860-01% 1.9346e-01%

lO 8.4996e-02% 8.18020-02% 1.16740-01%
OTHER 2.2507e-02% 8.84350-03% 1.0006o-02%

voc 1.8535e-02% 4.42170-03% 6.6709e-03%
AMOD 2.6479e-03% 2.2109e-03% -

DMOD 1.8535e-03% 2.21090-03% -

CJTNO 1.5887e-03% - -

CJTNl 1.0591e-03% - -

CJTN2 7.94360-04% - -

CJTN3 5.29S7e-04% - -
CJTN4 2.6479e-04% - -
CJTN5 2.6479e-04% - -
C.ITN6 2.64790-04% - -

Table A.9: Chinese DepRelation labels on the nodes of the sub trees
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A.3.4 Czech

Amount DepRel labels: 48 T' E I) ,OD D

perj)lexity 9.143804 00 9.3015e+00 9.2863O+00 8.8578e-f 00
total amount 912033 97928 122700 35790

Atr 3.7346e+017o 3.6463e+01% 3.6638eT01% 3.9276e+01%
Adv 1.2689e+01% 1.31996+01% 1.30516+01% 1,15206+01%
Obj 1.0430e+01% 1.06546+01% 1.05006+01% 1.06996-01%

Sb 1.0012e+01% 9.8440e+00% 9.90146+00% 1.01176+01%
AuxP 6.9143e+00% 6.78156+00% 6.97646+00% 6.21686+00%,

Atr M 3.4868e+00% 3.5884e+00% 3.48086+00% 2.59576+00%
Pred 3.0500e+00% 3.05536+00% 3.15246+00% 2.81366+00%

Coord 2.6414e+00% 2.66326+00% 2.72536+00% 2.28836+00%
Pnom 1.8170e+00% 1.86466+00% 1.82806+00% 1.82736+ 00%

Pred M 1.8243e+00% 1.97496+00% 1.80366+00% 1.41386+00%
Obj M 1.6633e+00% 1.77586+00% 1.56326+00% 2.10396+00%

Sb M l.4311e+00% 1.37866+00% 1,63576+00% 1.80506+00%
AuxC 1.3133e+00% 1.35306+00% 1.33016+00% 2.36106+00%

Adv M 1,14006+00^0 1.19376+00% 1.21606+00% 1.06456+00%
SxB l.OOlSe+OOli 1.0303e+00% 9.3073e-01% 8.15876-01%

ExD M 1.05276+00% 1.03146+00% 1.01966+00% 4.69406-01%
Apos 3.21376-01% 3.44136-01% 3.12966-01% 6.11906-01%

Coord M 3.25986-01% 3.59456-01% 3.68386-01% 1.76036-01%
AuxZ 3.13596-01'7c 2.86956-01% 3.26816-01% 3.63236-01%

Atv 2.8091e-01% 3.2575e-01% 3.0644e-01% 2.57066-01%
Atr Adv 2.14366-01% 1.67476-01% 2.36356-01% 5.58826-03%

Pnom M 1.53836-01% 1.67476-01% 2.17606-01% 1.81616-01%
AtvV 9.19926-02% 1.23566-01% 9.86156-02% 1.08976-01%

AtrAtr 8.02606-02% 5.20796-02% 9.12806-02% -
AuxG 5.64676-02% 5.41216-02% 3.66756-02% 6.11906-01%

Adv Atr 4.29816-02% 4.79946-02% 3.58606-02% -
AtrAdv M 3.24556-02% 2.65506-02% 3.26006-02% -

DepRel 3.01526-02% 2.04236-02% 2.44506-02% 6.70586-02%
Apos M 3.00436-02% 2.45086-02% 2.93406-02% 3.3529e-02%

AuxY 2.79606-02% 2.96146-02% 2.85256-02% 7.2646e-02%
Atv M 2.83986-02% 2.96146-02% 2.28206-02% 2.51476-02%

AuxT 1.9846e-02% 2.34876-02% 1.87456-02% 4.74996-02%
Aux6 9.64886-03% 1.73606-02% 1.14106-02% -

AtrObJ 7.01736-03% 8.16936-03% 8.15006-03% -
AtvV M 5.59196-03% 8.16936-03% 1.14106-02% 1.95596-02%

AuxV 5.70156-03% 6.1270e-03% 1.05956-02% 1.3970e-02%
AdvAtr M 5.37266-03% - 8.15006-03% -

ObJ^tr 4.38586-03% 6.12706-03% 1.63006-03% -
AtrAtr M 2.41226-03% 1.42966-02% 4.89006-03% -

AuxX 2.19296-03% 4.0846e-03% 4.07506-03% 8.3822e-03%
AtrObj M 1.53506-03% - - -

AuxK 9.86816-04% 2.04236-03% - -
AuxV M 6.57876-04% - - -

ObJAtr M 4.38586-04% - - -
AuxZ M 4.38586-04% - - -
AuxC M 3.28946-04% - - -

AuxR - - - 8.38226-03%
AuxY M 2.19296-04% - - -

Table A. 10: Czech DepRelatioii labels on the nodes of the sub trees
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A.3.5 German

Amount DepRel labels: 36 T E D ODD
perplexity 7.53l7e-r00 7.3907e + 00 7.3234e 4 00 7.6865e + 00

total amount 60913 1910 2048 2282
SB 2.707Se+01% 2.7592e+01% 2.8076e+01% 2.4759e+01%
OC 2.0253e+01% 1.7906e+01% 1.6553e+01% 2.6161e+01%

ROOT 1.9328e+01% 2.0419e+01% 2.0850e+01% 1.5557e+01%
MO 1.0059e+01% 1.0314e+01% 1.0986e + 01% 9.3777e+00%
OA 9.9814e+00% 1.0681e + 01% 1.1328e+01% 8.8519e+00%
CJ 2.8303e+00% 2.8796e+00% 2.3438e+00% 4.7765e-f-00%
OP 2.6086e+00% 2.7749e+00'/o 2.6855e+00% 1.7090e+00%
RC 2.3591e+00% 2.5131e+00% 2.0508e+00% 2.4102e+00%
DA 1.6056e+00% 1.5183e+00% 1.3184e+00% 2.0158e+00%
RE 9.7024e-01% 7.3298e-01% 6.8359e-01% 1.2270e+00%
PD 9.3904e-01% 1.2042e+00% 1.6113e+00% 4.8203e-01%

CVC 4.4654e-01% 1.0471e-01% 9.7656e-02% -

SBP 3.4804e-01% 3.6649e-01% 2.4414e-01% 3.9439e-01%
cc 2.2491e-01% 5.2356e-02^ 1.4648e-01% 8.7642e-02%

MNR 2.0029e-0l% 5.2356e-02% 1.4648e-0l% 1.7528e-01%
PAR 1.6089e-01% 2.6178e-01% 1.4648e-01% 9.2025e-01'X

NK 1.8879e-01% 1.0471e-01% 9.7656e-02% 2.19116-01%
AG 1.6417e-01% 3.1414e-01% 1.9531e-01% 4.38216-02%
RS 7.2234e-02% 5.2356e-02% 2.4414e-01% -

OG 6.7309e-02% 5.2356e-02% 4.8828e-02% 1.3146e-0l5^,
PG 2.6267e-02% - 9.7656e-02% -

APP 1.1492e-02% - - 3.0675e-01%
EP 1.3133e-02% - - 1.31466-01%
DH 1.80S9e-02% - - -

CM 8.2084e-03% - 4.8828e-02% 4.38216-02%
CD 8.2084e-03% 5.2356e-02% - -

SVP 4.925 le-03% 5.2356e-02% - 4.38216-02%
NG 4.9251e-03% - - 4.38216-02%
CP 3.2834e-03% - - 8.7642e-02%>
PH 4.9251e-03% - - -

DepRel 4.9251e-03% - - -

JU 3.2834e-03% - - -

OA2 3.2834e-03% - - -

SP 1.6417e-03% - - -

DM 1.6417e-03% - - -

AC - - * 4.38216-02%

Table A. 11: German Dei)Relation labels on the nodes of the snb trees

A.3.6 Japanese

Amount DepRel labels: 4 T E D
perplexity 1.1749e+00 1.1836e+00 1.1714e+00

total amount 146058 17511 9234
D 9.644164-01% 9.618064-01% 9.63836+01%,
P 3.395964 00% 3.689164-00% 3.57376+00%
I 1.23926-01% 1.08506-01% 2.16596-02%

ROOT 3.9026e-02% 2.28436-02% 2.16596-02%

Table A. 12: Japanese DepRelation labels on the nodes of the snb trees
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Appendix B 

Software

This appendix explains the code of the tree-SRL system.

B.l The code

The source code was written in C++, and it is composed of the following files:

file lines of code description

srl 2.cpp 804 This is the main executable hie.
tree.h 526 They contain the code describing the basic tree
tree.cpp 3.200 structures.
TreeDistance.h 189 They contain the code for tree edit distance and
TreeDistance.cpp 1.342 similarity algorithm.
DepTreeCorpus. h 153 They contain the code for loading and relabelling
DepTreeC or pus. cpp 3.317 a hie.
MAKEFILE contains the script to compile the code.

Table B.l: Description of the source code files

The compilation was tested in Linux, and all source code can be downloaded 
with Apache license from: https://gitlnib.com/francoph/Tree-SRL.git
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B.2 Sanity tests

This section describe a few tools and test done to verify the software works.

B.2.1 Self labelling

For any sub-tree the distance to itself should be the minimal possible distance 
(zero). Therefore, if a single data set file is used to label itself with k = 1, wrong 
I)redictions can only be made when multiple neighbours are counted.

In all the experiments where a data set was used to label itself, no single 
case was found of a sample in which a single nearest neighbour leads to a wrong 
prediction.

B.2.2 Nearest cut and k-NN

An artificial data set was created with eleven samples for labelling just one 
sub-tree with a single argument in which all samples were usable, with a first 
('(inivalence chxss containing one sample and the second etiuivalence class con­
taining another ten samples.

When the system was asked to use a k value equal or less than five, the 
panel size was reduced to one in order to fit the first equivalence class, but for 
any value of k equal or over six, the panel size changed to eleven in order to fit 
the second equivalence class.

B.2.3 Normalised distance and similarity

Theoretically if a distance and similarity measure are A-dual and N-duals then 
the system will produce the same results using any of them. Normalised distance 
A-dnal to normalised similarity accomplishes this property and as expected the 
results for both settings are identical.

B.2.4 Graphical inspections

A few modihcations in the source code can make the system search two specified 
sub-trees, produce an alignment to each other and display both sub-trees, and 
their alignment.
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B.3 User manual

This section describes how to use the inipleinentation of the system. 
Idle system should be executed witli the following parameters:

compusery

• -training + trainingFile
This is a required parameter where the argument is the name of the train­
ing file.

• -testing + testing File
This is a required parameter where the argument is the name of the testing 
file.

• -tag Tagforexperiment
This is an optional parameter but it is highly recommended to use it. Its 
argument is a string. This argument will be added to the hie name of the 
output hies and it is used to identify them and differentiate training and 
testing data set used on the experiment. If it is missing the system will 
produce a random label.

tnnning

-allArgumentsEqual
This is an optional parameter without arguments. It makes replaces all 
semantic labels into ‘argument’, and it is used to do experiments on ar­
gument identihcation.

-identihcatioiiTask
This is an optional parameter without arguments. It makes all non ar­
guments nodes in a sentence become an argument with a semantic label 
‘ ?NoPrediction’ to the predicate node, for each predicate. This is used to 
perform an identihcation argument task.

-deleteDepRel
This is an optional parameter without arguments. It replaces the labels 
for all dependency relationships into ‘hidden’. This was used to calculate 
the Leveinstain distance without using dependency relationships.
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• -atomicMeasiire
This is an optionai parameter. It aiiows the user to seiect the atomic 
measure for the tree edit distance moduie, where tiie options are:

— binary

— ternary

— iiamming

— shape

— ALPHATERNARY

— ALPHAHAMMING

Aii simiiarity versions are made by adding a prefix ‘s’ to the argument 
iai)ei.
Tile (iefauit vaiue if binary.

• -deita
This parameter is oniy compuisory wiieii using ALPHATERNARY or AL­
PHAHAMMING atomic measures.
If it is not siiecified by default tiie value is one. Tlie argument slioulci be 
a real number.

• -insertGost douiile
Tliis is an optional parameter witli one argument, it modifies tiie inser­
tion/deletion cost in tiie case of distance settings.
In the case of similarity settings insertion/deletion cost will be zero, init 
it will modify tiie swapping scores whicli are defined as two times the dis­
tance deletion/insertion cost minus the distance swapping cost.
By default the value of the argument is one. The argument should be a 
real number.

• -k number
This is an optional parameter with one argument which modifies the 
preferment k value of the k-NN module, by default its argument value 
is one. The argument should be an integer positive number.
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-normalise y|A^
This is an optional parameter, with one argument, which allows the user 
to normalise the distance or similarity scores. By default the system does 
not normalise. The argument can be ‘Y’ for normalising or ‘N’ for not 
normalising.

-multipleArguments Y|A/^
This is an optional parameter with one argument which decides if the 
system use sub-trees with multiple arguments or sub-trees with a single 
argument.
By default the system uses sub-trees with mrdtiple arguments.

-maxSentences number
This is an optional parameter with one argument which allows the user 
to limit the size of the data sets used to the specified amount of first 
sentences. The argument should be an integer positive number.

-leveinstan
This is an optional parameter without arguments. It will load the corpus 
as strings in word order and not as trees.

• -IN
This is an optional parameter without arguments. It will disable the k-NN 
module using eaeh sample as it is an eciuivalence elass.

• -predMatchCost double
This is an optional parameter with one argument.
The argument specifies the frame mismateh cost, which will add extra 
cost to the swamping costs of predicate nodes which belongs to different 
frame or swaps between predicate nodes and non-predicate nodes. The 
argument should be a real number, by default its zero.

statistics

• -getSingleRootedSentences
This counts how many roots have the sentences of the training data set.
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• -stats
This is an optional parameter. It shows statistics of the training data set.

• -nnllPrediction y'|A^
This is an optional parameter. It allows the user to use the null votes on 
the k-NN module as real votes, which if they win, the system will predict 
a non-label. By default it is deactivated.

• -compareDataSets
This is an optional parameter with unlimited arguments. It can be called 
only without any other parameters. The arguments will be considered as 
files to compare with each other. In this case the system will generate a 
table in latex format comparing the datasets, the tables in appendix A 
were generated with this function.
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orders

• -predict
This is an optional parameter without arguments. It gives the order to 
process the experiment, it need to have the neighbourhood distances pre­
calculated.

• -generateTables
This is an optional parameter without arguments. It gives the order to 
pre-calculate the neighbourhood distances, which will be used on the k-NN 
module for making the predictions. It will generate a file *.tre .

B.4 Computational Cost Analysis

This section describes the computational cost for labelling the testing data sets.
For classifying a single sample, it is recpiired to know the distance to all 

samples on the training data set, or at least the distance of the nearest ones, 
which usually requires knowing all the distances. Therefore, the cost of labelling 
a test-file will be quadratic in proportion to the size of the testing data set and 
the evaluation data set on the ainotmt of predicates.

As the experiments have to be carried out with different values for the 
parameter k, the software is designed for saving the table of distances in a 
temporal file, and in a second phase, use those temporal files for labelling the 
evaluation data set.

As the total amount of space required to save all files generated for each 

Table B.2: k-NN cost for the different languages
The estimated size in Gigabytes (GB) is made by estimating 12 Bytes per comparison, different data sets 

change four orders of magnitude in computational cost.
Czech and English training data sets were reduced in order to make them easy to process, but the reduction

was about a quarter of the original data set.
language Predicates 

training set
Predicates 
testing set

Millions of 
comparisons

Estimated 
size in GB

GB saving 
top 1,000

Czech 414,237 44,585 18,468.76 206.4 44.59
English 179,014 10,498 1,879.29 21.0 10.50
Chinese 102,813 12,282 1,262.75 14.1 12.28
Spanish 43,824 5,175 226.79 2.5 5.18
Catalan 37,431 5,001 187.19 2.1 5.00
Japanese 25,712 3,111 79.99 0.9 3.11
German 17,400 550 9.57 0.1 0.55
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different setting of tree distance is larger than our resources, oidy the top thou­
sand nearest or similar samples are saved in the distance file, it reduces the hard 
disk reqtiirements but not the computational time.
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