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Summary

Mathematically, spike trains are elusive processes. They encode information, 

although how this information is contained in a spike train is still not clear. Same- 

stimulus spike trains display structural similarities, yet noise is also always present, 

bounding the precision with which a signal can be transmitted. Taking these var­

ied factors into account is difficult, and here a geometrical approach is adopted in 

developing flexible mathematical descriptions of spike train properties.

Spike trains naturally form a metric space: a set with elements and a distance 

measure, known as a metric. However, having a metric space does not promise the 

existence of a set of coordinates to describe its elements, and in practice it is found 

that no natural spike train coordinates are available. This lack of coordinates makes 

the application of information theory, a widely used area in spike train analysis, 

challenging to implement. Here, models of spike train noise and information pro­

cessing are developed and phrased in terms of metric distances. Such models do not 

rely on the existence of spike train coordinates.

This thesis is divided into four parts. First, the normed vector space of Gaussian 

channel capacity theory is rephrased in terms of metric quantities. This is tested 

on the metric space of spike trains. This results in the first model of spike train 

noise in a metric space. Second, the noise found in the distribution of spike times 

is investigated using an edit-distance metric. This distribution is found to be well 

modelled by a hyper-Laplace. Third, a method of generating artificial spike trains 

is examined. Lastly, the geometry of spike trains is seen to embed the neurons 

themselves in a manifold-like structure called a statistical model. Low dimensional 

embedding methods are used to visualise the neurons in this space.

When developing neuronal models one would like those models to be both mathe­

matically consistent with the properties of spike trains, while remaining impartial to 

the nature of the temporal or rate encoding of information. The two metrics used to 

build the neuronal models in this work each contain a free parameter. This parame-



ter measures the presence of temporal and rate coding that exists in a particular neu­

rons spike trains. It is not fixed manually, but by using an algorithm which chooses 

the parameter that best clusters a neurons same-stimulus spike trains. Hence, the 

models developed here remain agnostic to neuronal coding schemes. Rather, it is 

the outcome of the same-stimulus clustering that determines which coding scheme 

best represents the spike train data.

The fact that spike trains are naturally described in a metric space is generally 

overlooked when calculating the values of quantities such as channel capacity and 

information. The metric space restriction is addressed in this work through devel­

oping mathematical models based only on measurements of distance between spike 

trains. Therefore, in each case it is the geometry of the space of spike trains that 

governs the quantities measured from the dataset.
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Chapter 1

Introduction

The central nervous system is a vast dynamic electrical and chemical network. Its 

core component is the neuron, which processes and transmits information. This 

information is communicated from neuron to neuron in the form of sets of spikes in 

electrical membrane potential, known as spike trains. Accurately interpreting the 

encoding of this information remains a difficult task.

Understanding spike train information encoding is fundamental to understanding 

the brain function. Here, a metric space approach is taken to calculate the max­

imum information a neuron can reliably transmit, and metric analysis is used to 

explore and generate noise models associated with a neuron’s spike trains. This will 

eventually lead to the development of a manifold which embeds networks of neurons 

on its surface. Key to all this is the idea that such spike train models naturally arise 

from the metric space geometry associated with the spike trains themselves.

1.1 Neurons, spikes and synapses

A neuron is a cell capable of changing the voltage difference existing between its 

inner and outer membrane in response to certain inputs. There are typically 100 

billion neurons in the human brain, where each neuron is connected to 10,000 other 

neurons on average, see Fig. I.IB. A neuron receives input from its dendritic tree.
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which conducts an incoming signal, see Fig. 1.1 A. The output is carried by its axon 

to all the other cells it is connected to, where the axon conducts the outgoing signal, 

branching along the way.

Differences in voltage between the inside and outside membrane of the cell are 

created and maintained by ion pumps [3]. These are situated in the cell membrane 

itself. These sophisticated pumps take ions from one side of the membrane and 

transport them to the other. One such pump, the sodium-potassium ion pump, 

transports two potassium ions in through the cell membrane and three sodium ions 

out. This results in a large concentration of potassium ions in the cell and a large 

concentration of sodium ions outside. Due to the sodium ions there is a net pos­

itive extracellular voltage difference relative to the intracellular membrane. The 

extracellular potential is taken to be OmV relative to the intracellular potential of 

approximately — 70mV.

A spike is triggered if the membrane potential is increased, known as depolar­

ization, to a certain threshold level. This level is typically around —55mV. Once 

this critical level is reached, ion gates in the membrane open and positively charged 

sodium ions flow from the outside to inside of the membrane. Firstly, due to the 

influx of positive charge, the inside of the membrane becomes less negative. Then, as 

positive charge continues to build it will typically reach a positive value of -|-50mV, 

the peak of the spike. At this stage the sodium gates close, and positively charged 

potassium ions flow to the outside of the membrane, until the resting potential is 

once again reached. The process for generating a spike takes less than a thousandth 

of a second. This depolarization, which we record as a voltage spike, travels down 

the axon of the cell.

The synapse is the junction between an axon of one neuron and a dendrite 

of another, see Fig. I.IC. At a synapse the plasma membrane of the signal passing 

neuron comes into close proximity with the membrane of the signal receiving neuron. 

Then, depending on the type of synapse, either a chemical neurotransmitter or in



a limited number of cases an electrical current is passed from axon to dendrite, 

allowing the spike to continue to the next neuron.

The pre-synaptic spike causes the second neuron to alter the dendritic membrane 

voltage. The magnitude of this change depends on both the synapse and the voltage 

dynamics of the second neuron itself. Many network models of neurons assign each 

synapse a certain strength, or weighting, defined as the amplitude of the change in 

the post-synaptic electrical potential due to the pre-synaptic potential. A higher 

synaptic weighting between two neurons will increase the probability of one neuron 

causing the other to fire, thus synaptic weightings isolate subsets of neurons within 

any network which will typically cause each other to fire. Certain neurons, inhibitory 

neurons, decrease membrane potential, thus reducing the probability that the neuron 

will fire.

If one neuron provokes another to fire then the synapse connecting them is 

strengthened, and similarly a failure to fire leads to a weakening in the synapse. 

Thus the set of weightings is itself changing, with the most probable propagation of 

spikes throughout the network determined by the set of synapses with the highest 

connection strengths. In this way electrical potential differences, called spikes, are 

passed through the network.

1.2 A typical electrophysiological experiment

As all datasets used throughout this work come from the auditory forebrain of the 

adult male zebra finch, an overview of the methods used by external laboratories to 

collect this extracellular data is given.

A male zebra finch learns its song during puberty. Female zebra finches lack the 

ability to sing, so the finch learns a large part of its song from its father. However, no 

two birds have the same song, and external factors will also effect the development 

of its song. The song can be seen to consist of vocal units called syllables, where



a group of vocal units is known as a motif. The finch’s song will not alter once 

learned, and is typically a few seconds in length, with song fine detail of the order 

of a few milliseconds.

Two days prior to the electrophysiological recordings a number of preparations 

are carried out on the finch. First, locations where electrodes will penetrate the 

finch brain have to be marked. At this stage a steel head support pin must also be 

fitted by gluing to the skull. The bird is anesthetized with isoflurane in 02. Skin 

and the top layer of skull underneath is then removed and the bifurcation point 

of the midsagittal sinus, commonly used as a coordinate reference point for field L 

brain regions, is used to locate regions for electrode penetration. These regions are 

marked with ink in areas 1.5 mm lateral and 1.2 mm anterior to the bifurcation 

point.

On the day of recording the bird is anesthetized using urethane. This involves 

three intramuscular injections of 20% urethane (70-90 micro litres) administered 

half an hour apart. The bird’s head is held in place using posts attached to the 

stereotax, which is essentially a metal clamp that can be varied in position. The 

lower region of skull and dura matter is removed from the regions previously marked. 

Two tungsten electrodes are then inserted 1200-2500 micrometers into these exposed 

regions using a micromanipulator. One of the electrodes forms a reference ground 

electrode, dipped in NaCl solution and inserted into CSF, the opposite hemisphere 

of the brain.

The bird is then placed in a sound attenuated chamber, a small padded room, 

facing a loudspeaker through which a conspecific song stimulus is played. The bird 

is positioned facing the speaker, with the speaker approximately 20cm away from 

its beak, and at the same level as the speaker. Neuronal responses are recorded at 

approximately 100 micrometer interval depths.

Every time a stimulus is played, the extracellular output is recorded in the fol­

lowing way. The electrode readings are sent to a preamp, which is used to boost



the gain of the signal before it is filtered. This signal is then filtered using a d.c. 

amplifier. The resulting filtered signal is between 300-5000 Hz. The component of 

the signal below 300 Hz comprises the local field potential, which is discarded for 

the purposes of this experiment, as is the component above 5000 Hz which has a 

high level of electronic noise.

The filtered signal is then sent to three sources for recording and direct out- 

putting. First, the soundcard is used to record the waveforms of the spikes. Second, 

the oscilloscope is used to view the spike waveforms. Third, the audiomonitor is 

used to listen to the spikes as they are recorded.

It is interesting to note that the spikes can have quite distinct sounds. For 

instance, the spike from an inhibitory neuron tends to have a sharper pitch to it 

than does the spike from an excitatory neuron.

Spike sorting algorithms are then applied to the raw waveform data in order to 

separate a spike from a particular neuron from those of its neighbouring neurons. 

The specifics of the actual sorting algorithms are under constant development, but 

in general different spike sorting methods share common techniques. To begin, select 

the set of spikes that are larger than a certain threshold voltage value. Observe, 

either using an algorithm or directly by viewing, stacked spike waveforms for time 

range 1 ms before peak and 1 ms after peak. Isolate ‘similar’ waveforms from the 

data. For instance one can use software to ‘draw’ an outline of a waveform and 

similar ones can be selected computationally from the stack. If, for a now sorted 

spike train, 99% of inter-spike intervals in a spike train are greater than 1 ms, then 

the spike train is classified as a single unit cell.

It should be noted that noise distorts the spike waveforms, so trying to select 

spikes from a particular neuron according only to waveform will be unreliable. Com­

bating this is difficult and depends on both the software used and the intuition of 

the physiologist.



1.3 Information in spike trains

Spikes encode information relating to the nature of the stimulus that caused the 

neuron to fire. This information is propagated throughout sections of the nervous 

system. At each stage the information is processed, that is, signals are sent to the set 

of neurons to which it is connected. The weightings of the synapses largely control 

the neuronal paths this information can take. While certain neurons, sensory neu­

rons, have to pass information about the stimulus, other neurons, motor neurons, 

will act on this information. Motor neurons project their axons outside the cen­

tral nervous system, allowing them to directly or indirectly control muscles. Thus, 

neurons allow for the brain function to both identify and respond to a stimulus.

Over a period of time, a list of times at which a neuron released a spike can be 

compiled, and the resulting list is a spike train, see Fig. 2.2. In general, information 

is viewed as being contained in spike trains rather than spikes.

The concept of spike train noise should be addressed, as often noise can be 

interpreted in a number of different ways. For instance, some electrophysiologists 

could regard noise as the spontaneous firing of a neuron with no stimulus present, 

while others might regard it as being the variability found between spike trains 

corresponding to the same stimulus. During this thesis, the latter interpretation is 

used. Neurons in zebra finch field L have been identified to encode conspecific song, 

[49, 44, 51, 50, 41], hence the variability found between spike trains corresponding 

to the same song sheds no additional information and can be regarded as noise.

It remains unclear as to how information is actually encoded within a set of 

spikes. Neuronal networks are in general extremely complex, with extensive inter­

connectivity. The responses of cells are found to depend on both their type and 

network location. There are two obvious methods of encoding information within a 

single spike train. The first is rate coding [1], where information is contained in the 

number of spikes generated during a certain time interval. The second is temporal 

coding [2], where instead information is contained in the timing of the spikes.



Whether single spike trains encode information temporally or on a rate basis 

remains a fundamental question in neuroscience. The temporal features of a spike 

train are generally discarded and focus is given to accurately modelling the rate. 

This has been used to impressive effect, for example in modelling the responses of 

motor neurons in brain machine interface. However evidence for temporal coding 

also exists, for instance in the spike coincidence detection found in the barn owl 

auditory system. Also, the speed at which information is passed throughout the 

visual system leaves the idea of a purely rate based coding system improbable. So 

by ignoring temporal coding features we seem to be leaving out some of the natural 

properties of spike trains. A compromise is a coding scheme that is a combination 

of both rate and temporal. This combination could itself vary depending on the 

changing properties of the neuron.

When a neuron receives input from a population of other neurons, rather than 

from just one, more possibilities exist to transmit information and the problem 

becomes more complex. For example, information could be transmitted by means 

of a rank code, [5], where information is contained in the relative timing of spikes 

received from different neurons during a certain interval. This allows for faster 

information processing, and is consistent with reaction times found in the visual 

system. Another example is of vector population coding, [6], where each neuron in 

a network represents movement in a certain direction, turning each firing rate into 

a vector, with the sum of these vectors encoding the direction of motion. During 

this thesis we examine the simpler case of single spike trains rather than population 

codes.

We are left with the idea that, for the purposes of information processing, dif­

ferent neurons function in different ways. During this research all data used is from 

the auditory part of the zebra finch forebrain, a region where spike trains exhibit ap­

parent temporal properties. However, rather than assuming either temporal or rate 

coding, it would seem best to develop models which in some way remain agnostic to
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respective coding beliefs, but which could instead be tailored to a particular neurons 

coding scheme by fixing some ‘coding parameter’. A spike train metric allows for 

such a model.

1.4 Spike train metrics

The set of spike trains form a metric space [31]. A metric space is a set of elements 

along with a method of measuring distance between the sets elements. Additionally 

this distance measure d{x,y), where x and y are elements of the set, satisfies four 

properties. The first property is called positivity, where d{x, y) > 0. The second is 

non-degeneracy, that is, d(x, y) = 0 if and only if x = y. The third is symmetry, 

where d(x, y) = d(y, x). Last is the triangle inequality, d{x, y) < d{x, z) + d{z, y) for 

any element of the set 2.

So a metric is a method for measuring the distance between elements of a set, 

and can be used to quantify the dissimilarity between two spike trains. Here, the 

concept of distance is an abstract one: the distance between two spike trains is 

directly related to how different the two trains are from one another. Now the word 

‘difference’ itself is ambiguous, conventionally it is taken to mean either a difference 

in the number of spikes from train to train, or differences in the positions of the 

spikes.

There are two types of metrics in common use: an edit-length distance metric 

[27] and a kernel based metric [25]. An edit length distance metric morphs one spike 

train into another through some combination of operations, such as adding a spike, 

deleting a spike, or shifting a spike. Each operation has a specific cost, and the total 

cost of turning one spike train into another is defined to be the distance between 

the two spike trains. A kernel based metric uses a kernel to map each spike train to 

a function. The Euclidean distance between two function mapped spike trains 

can then be measured, and this is taken to be the distance between the two spike



trains.

Key to the metric space approach is the notion that distances between spike 

trains are natural and relatively easy to define. A distance such as the van Rossum 

metric, or the Victor-Purpura metric, also possesses a very useful property: both 

contain a free parameter which reflects the fraction of temporal and rate coding 

associated with the neuron. This free parameter, generally a timescale, is chosen in 

such a way as to ensure spike trains corresponding to the same stimulus have shorter 

measured distances than spike trains corresponding to different stimuli. This is based 

on the reasonable notion that spike trains corresponding to the same stimulus should 

have a more similar structure to those corresponding to different stimuli.

The free parameter can be seen as ‘tuning the metric to the neuron’. In the 

case of the kernel based method the free parameter alters the shape of the kernel 

function, implicitly interpolating between coding schemes. For the cost based metric 

varying the value of its free parameter alters the weighting of the edit operations, 

also interpolating between coding schemes. The importance of the free parameter 

lies in the fact that general metric models of neuronal activity can be built which 

are not dependent on a particular assumption of coding scheme, but rather adapt 

to the apparent coding scheme of the data itself.

1.5 The discrete approach

Generally, metrics are not commonly used in the analysis of spike trains. Instead 

spike trains are converted into discrete sequences, which are then analysed using 

information theory, [7].

To apply the discrete approach one must firstly divide the time axis into a discrete 

set of time bins, each of width St say. The time bin size is typically chosen to be of 

the same length as the absolute refractory period of a neuron. Thus, while spikes 

can occur at any time, the discrete approach turns the spike train into a time series
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Figure 1.1: A typical neuron, network of neurons and synapse. A: Branching to 
the right are the dendrites, and to the left the axon. Center is the cell body, or 
soma. B: A simplified network of neurons. A neuron is on average connected to 
10,000 other neurons, although in some neurons such as the Purkinje this num­
ber is over 100,000. C: A synapse, where the signal is sent from the presynap- 
tic neuron to the postsynaptic receptor by means of a chemical neurotransmit­
ter. Pictures taken from: WWW.mqworks. com, www.anthropic-principle.org and 
WWW. def d. Colorado . edu respectively.

of uniform time intervals.

The spike train is then converted into a binary sequence: if a spike time occurs 

within a certain time bin a ‘one’ is assigned to that bin, else it is assigned a ‘zero’ 

[4, 24, 20, 8]. This binary sequence is then split into a set of short intervals, each of 

length T say, called words. Word length is typically chosen to reflect the behavioural 

response time of the neuron to the stimulus.

With sufficient data the distribution of words can be estimated. Information 

theory is based around the calculation of quantities dependent on underlying prob­

ability distributions and so can be applied to these spike train probabilities. If, for 

example, the normalized count of the zth word is given by pi, then the Shannon 

entropy of the spike train can be estimated using

H{T,6t) = - J^p,log2(pj (1.1)

Spike trains can be recorded from a sensory neuron during stimulation, and also
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for multiple repetitions of stimuli. The spike train response is known for two regimes, 

one where the stimulus varies, the signal response Y, and one where the stimulus is 

repeated, the noise response, Z. In the discrete approach, the distribution of words is 

calculated in each case and the difference between the entropy of the signal response 

and noise response is considered as a measure of the information transmitted:

I{X-,Y) = H{Y)-H{Y\X) 

= H{Y)-H{Z) (1.2)

where X is the input variable and

Y ^ X + Z. (1.3)

This approach introduced information theory into the study of spike trains. How­

ever, in addition to the theoretical aspects of the metric space that it ignores, it has 

a number of practical drawbacks. It suffers from a data sampling problem. For typ­

ical discretization size and word length, the number of possible words is extremely 

large and a typical electrophysiology experiment may not yield enough words to 

accurately estimate the entropy.

The data used in the original paper was obtained from fly recordings, where 

spike trains can be recorded for minutes to hours. The behavioural response time 

of the fly’s neuron is fast: of the order of ten milliseconds. In contrast, zebra 

finch conspecific songs are generally one second in length, with similar behavioural 

response times. Each behavioural response represents a word, and as the number of 

possible words, N, is given by

N = 2P (1.4)

where p = ( T / ^t), for longer words the space becomes increasingly difficult to 

sample from.
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The estimated entropy value depends on the discretization scale and on the 

word length. There is no obvious principle that can be used to fix values for either. 

Lastly, the discretization approach ignores the structural similarities of the spike 

trains. Two similar sequences from a spike train, which would produce a similar 

synaptic response, will map to different words, where there is no notion of some 

words being similar and others dissimilar.

A metric space approach is able to address these problems. Data sampling can 

be made more efficient in a metric-based bin-less approach to estimating the word 

distribution [30]. The estimated entropy no longer depends on the discretization 

scale and on word length, since the train is regarded as a continuous time interval. A 

metric-based bin-less approach can lead to the identification of structural similarities 

between spike trains; they can be clustered according to their spike train distances.

1.6 Thoughts on the metric space approach

Arguably the primary mathematical difficulty associated with the analysis of spike 

trains is their natural lack of a coordinate system. With only a set of distances rather 

than coordinates there is no obvious way of developing probabilistic models of spike 

trains, that is, spike trains have no obvious associated random variables. That is not 

to say a metric space approach does not provide useful insights into the neuronal 

system; given a tuned metric, spike trains can be clustered according to stimulus, 

and distances between spike trains corresponding to same stimulus presentations 

can be used to investigate noise models of spike trains. However, with respect to 

the application of information theory, we are left with few choices: either abandon 

it, rephrase it in terms of metric quantities, or just apply the discrete approach. 

During this thesis a rephrasing of the information theory channel capacity formula 

in terms of metric distances is proposed.

An interesting component of channel capacity formula rephrasing is a probability
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density model for the overall noise behaviour of a neuron. This is derived from 

the spike trains of the neuron. Hence, the noise associated with spikes induces 

distributions on the neurons themselves. The distributions of neurons will be seen 

to embed the neurons in what is termed a noise space. These neuronal spaces, 

which have associated coordinates, would seem the natural starting point for the 

application of classical information theory.

1.7 A thesis overview

The next four chapters constitute the areas of research this thesis addresses. A short 

overview of the concepts and findings of these chapters is now presented. This will 

hopefully both whet the reader’s appetite, and serve as a roadmap for the research 

material that follows.

Information theory is defined in a vector space, with vector coordinates given by 

random variables. Now any normed vector space is by definition a metric space, so 

by using a Euclidean norm to measure distances between vectors we are by definition 

rephrasing information theory in a metric space. This leads to a different way of 

thinking about information theory; instead of considering random variables we think 

of the distances between them.

While the normed vector space of information theory can be rephrased as a 

metric space, the primary question is how similar this metric space is to the metric 

space of spike trains. Additive Gaussian noise in information theory has a number of 

additional properties, the main being that distances measured between noise vectors 

are y-distributed. For consistency between spaces, distances measured between spike 

trains should also follow a y-distribution. This is found to be the case, allowing 

metric quantities calculated in the space of spike trains to be substituted for metric 

quantities that feature in the rephrased channel capacity formula. An example 

application is given, where the method is applied to spike trains from the auditory
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forebrain of zebra finch.

Spike trains are often variable, with the same stimulus producing different re­

sponses from presentation to presentation. These variations can be thought of as 

being composed of two different types of noise; variations in the spike times and 

variations in the spike count. The Victor-Purpora metric can be used to separate 

these two types of noise. The Victor-Purpura distance metric is an example of an 

edit-based metric. To measure the distance between two spike trains it performs a 

set of operations that transform one spike train into another. Each operation has 

an assigned cost, and the operations consist of adding, deleting, or shifting spikes. 

The shifting of spikes reflects the temporal variation, termed jitter, that is typically 

found in spike trains.

The Victor-Purpora metric can be used to extract only the temporal differences 

between spike trains in a given dataset. This allows the distribution in spike time 

variations to be calculated. This distribution is calculated for a collection of example 

datasets. For these data, the distributions are not Gaussian but, in most cases, they 

can be accurately modelled by a hyper-Laplace distribution.

Having uncovered the hyper-Laplacian model of spike train jitter, the question 

of how to use this result arises. One idea, and the approach adopted here, is to 

use a combination of the jitter distribution and variations in spike rate to generate 

artificial spike trains. Again, the Victor-Purpora metric can be used to extract the 

number of insertions and deletions that take place during a distance computation. 

From this the average number of insertions and deletions can be found separately, 

and hence so can the probability of insertion or deletion.

A spike train representative of the dataset is extracted, for instance a template 

or mean spike train, and its spikes are deleted with the probability of deletion 

previously found. Next, its spikes are jittered using values drawn from the neurons 

hyper-Laplace distribution. Spikes are then inserted using a Poisson process, with 

rate consistent with that of the average spike insertion. Lastly, each artificial spike
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train is tested, using rejection sampling, to ensure its noise properties could have 

been drawn from the original neurons ^-distribution with high probability. This 

entire process can be repeated until the required number of artificial spike trains is 

generated. Hence, combining the above noise processes provides a generative model 

for artificial spike trains.

When a metric is used to measure the distance between spike trains correspond­

ing to the same stimulus, the distribution of these distances associates a distribution, 

termed here as a noise distribution, with each neuron. This embeds each neuron in a 

distribution space known as a statistical model, which can be treated as a manifold. 

Each neuron is a point on the manifolds surface, with coordinates given by the free 

parameter values of that particular neurons noise distribution. Low dimensional 

embedding methods can be applied to the set of noise distributions to estimate 

both the dimension and structure of this neuronal noise manifold. Here, the isomap 

algorithm is used as we do not know whether this manifold is fiat or not, which 

depends on the curvature tensor of the space. Isomap, applied to the noise space of 

neurons, provides a technique for exploring models of neuronal noise. Specifically, 

both the x-distribution and the variation of noise throughout a network of neurons 

are visualized.

Appropriate sets of coordinates for the space are investigated. Firstly, the space 

is found to be strongly two dimensional, meaning that two coordinates are needed 

to specify each neuron. The average distance between same stimulus spike trains, 

which reflects the noise associated with a neuron, is found to be a reasonable choice, 

as is the standard deviation of the same stimulus distances. Lastly the distribution 

of firing rates throughout the space is plotted. Here, approximately eight percent of 

the neurons, those with elevated firing rates, are also seen to have the greatest level 

of noise, and are generally confined to a particular arm of the graph.

Data used here consists of extracellular spike trains from the large extracellular 

zebra finch dataset made available on the Collaborative Research in Computational
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Neuroscience database [40]. Data is obtained from 455 neurons throughout eight 

regions: L, LI, L2a, L2b, L3, Mid, CM and OV, of zebra finch auditory forebrain 

during playback of conspecific song. Neuronal noise can also be visualized through­

out the above networks of neurons. Strong variations between networks are not 

observed, with the exception of OV which is in general confined to the same bottom 

right arm which displays increased levels of noise and firing rates.
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Chapter 2

The channel capacity of a neuron

2.1 Introduction

The space of spike trains is a metric space [18, 31]. While distances representing 

dissimilarity can be defined between spike trains, it is not known how a mathematical 

integration measure can be defined on the space. As a consequence, there is no 

obvious way of calculating probability distributions on the space of spike trains.

As has been discussed, spike trains can be discretized, converted into series of 

zeros and ones. These sequences can then be divided into groups and the probability 

of one such group appearing estimated. However in doing this we lose the notion 

of similarity between trains, slightly different sequences will map to completely dif­

ferent numbers. Also the spikes themselves are part of a continuous time process in 

which, respecting the basic constraints of refractory periods, spikes can occur at any 

time and not in specific time bins. We are left with no obvious way of associating 

probabilities with spike trains.

Information theory can be applied to processes described by probability distri­

butions. It is phrased in terms of random variables, that is, a vector space. Therein 

lies the difficulty in applying information theory to spike trains, we have no such 

random variables. However, we can make use of the relationship between a vec-
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tor space and a metric space: any normed vector space is by definition a metric 

space with a Euclidean distance metric. It should be noted the converse does not 

hold, a metric space does not imply a vector space exists, that is, it does not imply 

coordinates can be associated with each point in the metric space.

Conventionally, artificial coordinates such as binary sequences are associated 

with spike trains and hence probabilities can be associated with trains, allowing for 

the application of information theory [20]. Here the opposite approach is taken, 

the vector space of information theory is rephrased in terms of its underlying metric 

quantities. In information theory, distances between Gaussian vectors follow a x- 

distribution. These Gaussian vectors exist in the vector space of information theory, 

and the distances in the metric space. The y-distribution then forms an observable 

link between the spaces. The idea is to test if metric distances between same- 

stimulus spike trains also follow a y-distribution. If so, then these distances can also 

be seen as measuring the length of hypothetical Gaussian vectors, and substituted 

for their corresponding metric quantities in information theory.

2.2 The van Rossum metric

We now introduce the first of two metrics used throughout this thesis: the van 

Rossum metric. This metric is both intuitive and easy to apply. It firstly maps a 

spike train to a function, then computes the distance between two such functions. 

As will be seen, the distance property of the metric will introduce an Euclidean 

structure to the space of spike trains, which can then be compared with the Euclidean 

metric space of information theory.

A spike train consists of a set of spike times u = {ui,U2, ■■,Un}. In order to 

calculate the van Rossum metric, the spike train is firstly filtered: it is mapped to
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Figure 2.1: The mapping of a spike train to a set of exponential functions.

a function of time, /(t; u):

u /(t;u) = Y,h{t Hi

i=l

(2.1)

where h{t) is a kernel often taken as [25, 26]

h{t) =
t < 0 

t > 0
(2.2)

and T is a timescale parametrizing the metric.

The metric on the space of real functions then induces a metric on the space 

of spike trains, specifically, if u and v are two spike trains, then the distance between 

them is

(2.3)dt.

As in kernel density estimation, [22], the precise shape of the kernel is not thought 

to be significant. However, the timescale is important. A standard method has been 

developed for calculating the optimal timescale [15] and is discussed in the next 

section.

2.3 The timescale of the van Rossum metric

The van Rossum metric contains a free parameter, r. This free parameter controls 

how quickly the exponential tail attached to each spike decays, and has important
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implications for the encoding of information in spike trains: by determining the 

width of the kernel assigned to each spike, different values of r interpolate the 

metric between rate and temporal coding schemes. At one extreme, as r tends 

to zero, the metric reduces to coincidence detection, counting only non-coincident 

spikes, as seen through

1 r°°lini d^(u, v) = - / u){t) - f{t\v)(t)) dt =
T Jo

M + N (2.4)

where here it is assumed that /(t; u) contains M spikes and /(t;v) contains N 

spikes.

In the other extreme, as r tends towards infinity, the metric approximately mea­

sures the difference in the total spike count:

1lim d^(u, v) = — / — Ne~^)'^ dt =
T^oo T Jo

(M - NY (2.5)

Thus the value of r can provide insight into the coding scheme of the neuron 

under examination: rate or temporal, or some combination. This often underesti­

mated property allows for an agnostic approach to the problem of choosing a neurons 

coding scheme. In theory metric models of neuronal activity make no assumption 

as to whether single spike trains encode information on a rate or temporal basis; it 

is only through the estimation of r that the coding scheme is decided upon. This 

can also be generalized to a network of neurons: a value of r can be found for each 

neuron, allowing the distribution of coding schemes throughout the network to be 

viewed through the kernel density estimation of r for the network.

2.3.1 Estimating the timescale

It is crucial that r is chosen so that distances between spike trains corresponding 

to the same stimulus are smaller than distances measured between the spike trains 

of different stimuli. An algorithm for this exists for the Victor-Purpora metric, and
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can be adapted to the van Rossum metric [15]. The method for finding r is now 

outlined.

Spike train data consisting of groups of spike trains corresponding to the same 

stimulus must be used. For instance, a particular auditory neuron may be stimulated 

to fire a spike through presentation of a conspecific song stimulus. If this song is 

played ten times, then the resulting ten spike trains form a same-stimulus group. In 

typical zebra finch datasets twenty different conspecific songs are played ten times 

each, resulting in twenty groups with ten spike trains in each group.

Let be a confusion matrix. Nij denotes the number of responses from stimulus 

i which are closest, on average, to responses from stimulus j. For an ideal dataset 

we should have Nij = 0 unless if z = j. The following algorithm is used to find 

optimal T.

N, a, n X n matrix, is initially filled with zeros. Remove a spike train from its 

stimulus group. Compute its average distance from both its own, and every other 

group. The distance from spike train i to the /cth cluster Ck is given by:

4 = ( d{hsY
seCk

l/z

(2.6)

Here z is used as a robustness exponent, generally chosen as -2, which helps give a 

smaller weighting to dataset outliers. Store the list of distances associated with the 

zth spike train. This list of distances must now be searched for its minimum value, 

say the pth entry for example, then increment the Nip entry of the matrix by -|-1.

Remove another spike train and repeat the same process. Do this for every spike 

train in the set, updating the matrix. Compute h, where h is termed the transmitted 

information defined by:

Nij{log2{Nij) - log2(5]] Nij) - log2( J] Nij) + log2(n)).
^J i J

(2.7)
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and Ntot defines the total number of spike trains.

Lastly we must maximize h with respect to r. The method used here is grid 

search: increment the value of r and repeat all the above steps to form a new 

matrix, each time storing the value of r and h. When all values of h for r within 

a certain range have been found, select the value of r for which /i is a maximum. 

This is the optimal value of r for the neuron.

For perfect clustering the value of h equals log2(C'), [], where C denotes the 

number of stimuli response classes. For instance in this case it would be log2(20) 

since there are 20 song stimuli. It can be helpful to normalize h and compute h, 

where h = /i/log2(n), yielding maximum h values of one. Neurons that show good 

clustering typically have values of h in the region of 0.7. It should be noted that h, 

termed the transmitted information, is a measure of how well the spike trains are 

clustered according to stimulus.

It is found that a simple grid search procedure is a practical way of finding an 

optimal r. While for large timesteps of r, that is of order 0.01, the value of h tends 

to increase or decrease monotonically, when more precise increments are used h is 

found to vary noisily, making a global value of r difficult to find. As a consequence, 

faster search procedures are discarded for the dependable grid search.

2.4 Information theory

Many events, such as the outcomes of a race or rolling a dice, have random outcomes 

that are best described using probability theory. For instance in a horse race each 

horse has a certain probability of winning. If each horse has the same odds of 

winning then predicting the winning horse is at its most difficult, that is, the race 

is in a state of maximum uncertainty. Information theory addresses the idea of 

quantifying the uncertainty associated with a probabilistic event [9].

The uncertainty associated with a horse race, where each horse x* has probability
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p{xi) of winning is given:

H{X) = - 'Y^pixi) log2P(xi). (2.8)

i=0

Here the random variable X is clearly discrete and hence so is the entropy, which is 

measuring the uncertainty associated with X.

The concept of entropy can be extended to that of conditional entropy. If we 

have two random variables X and Y then we may ask ‘what is the uncertainty in 

X given that we know the value of Y\ This is expressed as

H{X\Y) = - '^p{xi,yj)\og^p{xi\yj). (2.9)

Another closely related concept is that of mutual information. This measures 

the mutual dependence of one random variable on another in terms of entropy:

I{X,Y)^H{X)-H[X\Y) (2.10)

or equivalently:

I{X,Y) = '^p{xi,yj)\og2 P{xuyi)
(2.11)Piixi)p2{yj)

where pi and p2 are the marginal distributions of X and Y respectively. From 

the entropy definition of mutual information we can see that 1{X,Y) measures the 

decrease in uncertainty in X through knowing the outcome of Y, which can be 

interpreted as the information ‘passed’ between X and Y.

Should the random variables be continuous rather than discrete then the above 

equations can be altered accordingly, replacing probability distribution functions 

with probability density functions and integrating over the random variables. For
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instance, the continuous version of entropy, also called differential entropy, is

h{^) = - / f{x)log2f{x)dx 
J A

(2.12)

where X has probability density function f{X) with support A. Measure theory 

can be used as a means of relating discrete and continuous entropy, [?].

A number of important distinctions between discrete and differential entropy 

arise. Unlike discrete entropy, continuous entropy can take negative values. Also it 

is not invariant under change of variables, meaning it is not absolute. As entropy is 

used to quantify uncertainty, the lack of invariance under change of variables makes 

comparing differential entropy values difficult, and similarly it is hard to understand 

the meaning of negative entropy.

Again we can see that information theory is a theory based on probability distri­

butions or densities. But what is the distribution of a spike, or spike train? Without 

artificially deconstructing the train through binning, [4], no such distributions have 

been found to exist. While sets of probability distributions, probability vectors, live 

in a vector space, there exists the opportunity to phrase these vectors in terms of 

an Euclidean metric space by just introducing an Euclidean metric. The possibility 

exists then to rephrase this normed vector space in terms of metric space quantities. 

In practical terms this means rephrasing probability vectors in terms of the distances 

measured between such random vectors.

2.5 Gaussian channel capacity theory

Gaussian channel capacity theory quantifies the maximum mutual information that 

can be communicated with minimal error by a continuous time-discrete channel with 

Gaussian noise. Typically many of the theorems in information theory are based on 

taking the limits of mathematical functions, [9], hence since these limits in practice 

are not achievable the error can be minimized, but not eliminated. The signals
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themselves are continuous, but input to the channel is discrete. The channel at time 

i is modelled by a signal Xj, additive noise Zi and output Tj, so

y. = X + X (2.13)

where the noise are independent identically distributed (iid) Gaussian, and fzi{z) = 

fN{z,a). The time at which input to the channel takes place is discrete, but Xi 

itself is a continuous random variable [21].

A code consists of a set of codewords, sufficiently well separated to make them 

distinguishable despite the noise. Of course, since the noise is additive, the capacity 

of the channel is infinite unless there is some limit on Xi- In the traditional ap­

plication of this theory, which can be typified by radio communications, the most 

convenient constraint is a power constraint: for any codeword {xi,X2,. ■ ■ ,Xn) it is 

required that

(2.14)
i=l

The central result of channel capacity theory is that the capacity of a Gaussian 

channel is:
1 ( V

C = - log2 ( 1 H—^ ) bits per time unit. (2.15)

This is a bound on the maximum mutual information: information flow though the 

channel cannot exceed C with minimal error. This bound, (7, is calculated using the 

distribution which leads to the largest information flow rate: a Gaussian distribution 

with zero mean and with variance . A more detailed proof of this result can be 

found here: [?]. Calculating the actual information flow rate would require knowing 

the distribution of Xj, which we will see is not straight forward.
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2.6 Prom a vector to a metric space

Say we have a vector of k iid Gaussian random variables with zero mean:

Z — (Zi, Z2,..., Zk) (2.16)

where

fzi{zi) = fN{.Zi,a) =
r\/^

The length of such a vector is

(2.17)

z\ = Jzl + zl + ... + zl (2.18)

where |Z| follows what is called a non-standard y-distribution. In statistics sig­

nificantly more attention is paid to the y-squared distribution due to its role in 

hypothesis testing. The y-squared distribution is the distribution followed by a ran­

dom variable which is itself the sum of squared random variables, each following 

a standard normal distribution with mean zero and variance one. The standard y 

variable is distributed according to the square root of this summation of random 

variables. The non-standard y is just a slight alteration, where the underlying vari­

ables are drawn from a normal distribution with zero mean, rather than a standard 

normal distribution. The non-standard ^-distribution has the following probability 

density function:

/|Z|(|z| = x) = f^{x-,k,a) =
1

^/c2fc/2-ir(|)
^i;-lg-xV2cr2_ (2.19)

One derivation for this density can be found in the appendix: [?].

Consider now the hypothetical situation where there are k random variables, 

that is k coordinates, for a certain length L of spike train. Then a spike train would
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be seen as

Y = {YuY2,...,Yk) (2.20)

where X = {Xi, X2,..., Xk) is the input vector to the channel representing the 

information about the stimulus, Z = (Zi, Z2, ■ ■ ■, Z^) is the additive Gaussian noise 

vector in the channel and the variables follow the relationship Yi = X^ + Zi.

Consider the experimental set-up where the response to a repeated stimulus is 

recorded and the variation of the responses is taken to be noise. It is, of course, a 

very strong assumption, but assuming the variables in Z were additive iid, then by 

taking the distance between two Y vectors corresponding to the same stimulus we 

are computing

d(Y, Y') = J{Y, - YiY + (Y^ - YiY + ... + (Yfc - (2.21)

that is:

d(Y, Y') = J{X,-X[ + Z^- Z{Y + ... + (Xfc - X' + Zfc - Z')2. (2.22)

Now, since only spike trains corresponding to the same stimulus are being examined:

X = X' (2.23)

allowing the distance to simplify to

d(Y,Y') = J(Zi-Z() + (2.24)

hypothetical or equivalently:

d(Y,Y') = d(Z,Z') (2.25)
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So assuming the coordinate representation of a spike train, by taking the distance 

between two same-stimulus spike trains we are effectively finding the length of a 

Gaussian vector. This distance should in turn follow a ^-distribution.

It is easy to show that if Z and Z' are iid Gaussian variables with variance 

their difference is Gaussian with variance a? = 2ct^ and, hence:

fz-z'{z - z' = S) = fN{S; ad). (2.26)

Similarly for two Gaussian vectors Z and Z':

/|z-z'|(|z - z'l = c) = fxiC,k,ad). (2.27)

It is proposed here to turn this on its head and work back from an assumption 

that the distances have the x-clistribution /^(C; ^Td)- More precisely, while coor­

dinates for the space of spike trains have not been found, it is possible to calculate 

distances. In the analogy, it is possible to compute C, but Z is not defined. Of 

course, k in general is not an integer. While the derivation of the ^-distribution 

involves the summation of k Gaussian variables, once derived the density function 

places no integer constraint on k, it need only be a positive real number. Therefore 

k is not really the dimension of a spike train, but it is more like an average dimen­

sion, the average number of coordinates that would be required to describe length 

L fragments of spike train for that cell; as estimated by examining the noise.

2.7 Gaussian channel capacity theory and spike

trains

Ghannel capacity theory hinges on the calculation of quantities which can be viewed 

as distances. It is possible to rewrite the formula for C in terms of distance quan­

tities. It is noted above that a^ = 2a'^, the other quantity which appears in the
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formula for C is the power constraint In the classical Gaussian channel capacity 

theory a limit is imposed on the variance of a code word. The variance of the signal 

is in general not known, hence a power constraint must be used instead, such as an 

amplitude constraint or a frequency constraint. Here, while a number of possible 

power constraints could be applied to spike trains, we don’t need to use these as we 

can calculate the variance of the signal itself, notated the variance in the dis­

tribution of distances between different fragments, all same length, of spike trains 

corresponding to different stimuli. This is related to the variance in Tj, rather than 

the Xi we need. Of course, since Zj and Xi are independent, using the additive 

property of variance the corresponding Xj-related quantity is

.,2 _ c2 2 (2.28)

It remains to relate to the variable that actually features in the original 

capacity formula. This is not difficult but two differences between them need to be 

addressed. Firstly, the distance variance is related in the usual way to the variance 

of the random variable by

a = 2^^. (2.29)

The second difference is that z/j relates to the variance of Xi whereas is a con­

straint on the variance over an individual codeword. However, it can be seen from 

the derivation of the channel capacity in, for example [9], that this distinction does 

not matter.

2.8 A metric capacity

In summary, the distances between the output and noise vectors in the Gaussian 

channel define an associated metric space. Relations have been derived to relate the 

variance of the distances to the variance of the implied k coordinate variables. If the
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noise coordinates are additive Gaussian then the noise vectors in the metric space 

are x-distributed. Specifically the noise variance and the output variance 

can be calculated from the corresponding inter-fragment distance variances, crj and

The equivalent channel capacity in the related metric space is then

C = ^ log2 ( 1 + ^ ] bits per dimension

1 / '= - log2 I -f ) bits per dimension. (2.30)

The channel capacity in bits per second is

C = — log2 ) bits per second. (2-31)

where k is the average number of variables per length L of spike train.

2.9 The capacity of a neuron?

While a metric space consistent with the vector space of information theory has been 

obtained, there is no reason to assume that the properties of this metric space are 

consistent with the metric space of spike trains. Indeed, additive Gaussian channel 

capacity theory predicts the overall behaviour of distances in the metric space of 

information theory. As a consequence, the metric space of spike trains can also be 

searched for this behaviour, to check if channel capacity theory can be applied to 

the space of spike trains. First, the distances between spike trains corresponding 

to the same stimulus must behave as if they were x-distributed. Second, as a spike 

train is treated as equivalent to a length L of k variables, a decrease in L should 

lead to a linear decrease in k. Lastly, as each spike train is treated as the sum of 

k normal distributions with mean zero and variance cr^, the value of the variance 

should be roughly constant.
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2.10 Dataset used

Zebra finch spike trains are used to test for common properties of the two metric 

spaces. The dataset consists of sets of spike trains from 24 neurons. Each set of spike 

trains is recorded from a site in field L of the auditory fore brain of anesthetized zebra 

finch during playback of 20 conspecific songs. Each song is repeated ten times, to 

give a total of 200 spike trains. These spike trains, and the experimental conditions 

used to produce them, are described in [19, 32]. Data were collected from sites which 

showed enhanced activity during song playback. Of the 24 sites considered here, six 

are classified as single-unit sites and the rest as consisting of between two and five 

units [19]. The average spike rate during song playback is 15.1 Hz with a range 

across sites of 10.5-33 Hz. For the purposes of this data an average metric timescale 

value of r = 12.8 ms is chosen, following [15].

2.11 Three samples from the dataset

The primary assumption is that the distances between noise responses will have a %- 

distribution. For the data here, 900 distances are calculated for each cell; that is ten 

choose two, or 45, fragment pairs for each of the twenty songs. It will be seen below 

that the quantities required for calculating the capacity are estimated by considering 

the distribution of inter-fragment distances for different fragment lengths. Here, 

though, for the purpose of discussing how well the noise responses are modelled by 

a x-distribution, the fragments are chosen to be one second long. For each cell the 

distribution is approximated using kernel density estimation with a Epanechnikov 

kernel whose bandwidth is determined by least-squares cross-validation [22]. The 

actual process of kernel density estimation is outlined in the appendix: [?]. The L^- 

error between this curve and the x-distribution is then calculated; the appropriate 

X-distribution is chosen by using the moments to estimate k and <7^, as described 

below. The error of the 24 sites lies in the range [0.022,0.102], with average 0.054
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Figure 2.2: Example raster plots. These are example raster plots for the G, M and 
P sites. Each shows the ten responses to the same song, one of the twenty used 
to make the whole dataset. The spike trains are one second long and start at song 
onset.

and standard deviation 0.0196.

Of the 24 sites examined, three have been selected, based on their L^-errors, 

to demonstrate the detailed application of the theory. These are labelled G, M 

and P; abbreviating good, middling and poor: raster plots for these three sites are 

shown in Fig. 2.2 and a comparison between the noise response distribution and the 

^-distribution is given in Fig. 2.3. Additional processing was required for one of the 

24 sites. This site appeared to give an unusual result, further inspection revealed 

that three spike trains were anomalous, showing a non-biological firing pattern, 

that is, were the result of electrophysiological error. These specific spike trains were 

removed and the site became unremarkable; this site in not one of the three featured 

sites.

2.12 Evaluating the channel capacity formula

The formula for the channel capacity C requires three quantities, the two variances 

and crj, and k, the average number of dimensions per length L of spike train. This 

means that estimators are required for these quantities. Here, they are calculated 

from the moments of the distribution of distances between fragments of spike train.
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Figure 2.3: A comparison between the distance distributions for the noise responses 
and the corresponding x-distributions. Kernel density estimation is used to generate 
the probability density distribution of the distances, for the sites G, M and P. 
In each case, this is compared to the x-distribution, where the parameters of the 
distribution are estimated from the moments.

Rather than choosing a particular length of spike train, the moments are calculated 

for a range of lengths and curve fitting is used to extract a robust estimate.

2.12.1 Calculating k

Calculating k requires that the distribution of noise distances is fitted to a x* 

distribution. To do this the second and fourth non-central moments of a x-distribution 

are used. For the distribution f^{x;k,a)

{x^) — a^k 

{x^) = a'^k{k + 2). (2.32)

These equations are then solved for k\

k = 2{x^)2\2

(x'*) —

Let k{L) be k calculated, in this way, for fragments of length L.

(2.33)
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2.12.2 Calculating and cr^

To calculate and cr^ two types of variation need to be considered, the variance of 

the noise for crj and of the signal for For a given fragment length L, a set of inter­

fragment distances is calculated. This set is composed of two parts; the distances 

between the noise responses, the fragments responding to the same stimulus and the 

distances between the signal responses, that is the responses to different stimuli.

By linearity, the variation of the signal distances should be

C{L) = ke. (2.34)

and the variation of the noise distances;

4{L) = kaj. (2.35)

Here, (Jd{LY notate the variances of the distributions of signal and noise

distances respectively, measured between length L fragments of spike train. There 

are k coordinates per length of spike train. Note also that if only one coordinate 

were needed to represent the train, then the variances of the distributions of signal 

and noise distances would reduce to and cr^ respectively, simply variances and 

not functions of length.

As both ^d{L)^ and (rd{L)^ should vary linearly with L, the slope of the line 

formed using least squares estimation of crd(L)^ against L will yield an average 

variance per unit length. The calculation of average values of ^d{L) and Od{L) is 

illustrated for three example sites in Fig. 2.4 and the average value of k{L) for the 

same three sites in Fig. 2.5.
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37

Figure 2.4: The variance for signal and noise plotted against fragment length. In 
each case the upper curve represents ^d{L), the variance of the signal distances 
against the fragment length L, for sites G,M and P respectively. The lower curve 
represents crd{L), the variance of the noise distances against the fragment length L, 
for the same sites. In each case the behavior is well approximated by a fitted line 
with zero intercept.

G M

Figure 2.5: Plots of k{L)/2. For G, M and P the moments of the distance distri­
butions have been used to calculate k{L)/2 against fragment lengths, L, up to one 
second. The straight line represents the predicted least squares fit of the data.

2.13 Testing the noise model

2.13.1 The Anderson-Darling test of the ^-distribution

The primary test for consistency between metric spaces centers on testing whether 

or not distances between spike trains corresponding to the same stimulus follow 

a ^-distribution. It is important to test this model since it relies on the original 

assumption of additive Gaussian noise. Actually, it can be seen from the comparison 

of the kernel density estimated distribution and the x-distribution. Fig. 2.5, that 

it seems to work very well. It is, however, always difficult to make a more direct, 

quantitative, evaluation of the appropriateness of a statistical model. Usually the 

best that can be done is to attempt to significantly rule out the distribution using
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a statistical test and to show that this attempt fails. This is what is done here.

The Anderson-Darling goodness-of-fit test was chosen to hypothesis test the 

model [42]. The Anderson-Darling test relies on comparing a test statistic to a table 

of critical p-values and such tables are only available for a few specific distributions. 

The ^-distribution used in this thesis is not one of these and p-values are estimated 

here using a simple simulation.

The Anderson-Darling test defines a statistic calculated on a set of outcomes 

{Xi, X2, ■ ■ ■, Xn} ordered with Ai < A2 < ... < To test whether this data 

significantly differs from a distribution with cumulative F(x) the statistic

A^ = -n-S (2.36)

is calculated where

” 2A' — 1
5 = 5^ —— [ln(A(X,)) + ln(l - F(A„+i_,)].

k=l n
(2.37)

In the case being considered here, the distribution is a ^-distribution with k and 

a fitted to the dataset. To test that this is a good model, the statistic is calculated 

for the experimental data, the distribution of distances. This is then compared to 

the distribution of the statistic itself for data drawn according to the hypothesized 

cumulative distribution F. If the experimental value of the test statistic is greater 

than 0.95 of the values of the test statistic for data drawn according to F then the 

experimental data is said to differ significantly from F. In fact the result is usually 

phrased in terms of the fraction of simulated values larger than the experimental 

value, this is called the p-value and so a distribution is significantly ruled out if the 

corresponding p-value is less than 0.05.

Of course, a positive result in this context would be the failure to significantly 

rule out the distribution. This does not show that some other distribution would be 

still more suitable, however statements of that sort would be difficult to make since
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they rely on some overall distribution of possible statistical models. Nonetheless, 

the Anderson-Darling test is considered a useful and sensitive test of hypothesised 

statistical models [14],

Since there is no theoretical calculation of the distribution of the test statistics 

available and so the experimental value of the statistic is compared to a collection 

of values calculated for simulated data. For each site, a fragment length is chosen 

to make the /c-value close to being an integer, the granularity of the data makes 

this an imperfect process but, using an integer makes it easy to calculate simulated 

data. If [/c] is the integer which is nearly equal /c, then |[fc] — A;| has a range of 

[0.0003, 0.1661] with average 0.045428. The Box-Muller transform is used to generate 

a [/cj-vector of normal random variables with standard deviation aj,, where Ud is the 

standard deviation of the distances. The length of this vector has a ^-distribution. 

Applying this 900 times generates a sample of points {Ai,..., Agoo} from the x- 

distributed random variable. The Anderson-Darling method is then used to compute 

a theoretical test statistic from this set. This process is carried out 1000 times 

giving a distribution of values of the test statistic. The p-value for the experimental 

result is the fraction of these simulated values of the test statistic which are greater 

than the experimental value.

Using the Anderson-Darling method, the real test statistic for each cell was 

found and the corresponding p-values computed. The null hypothesis is that the 

distances follow a x-distribution k, ad), where k and ad are calculated from the 

moments of the distribution. At the significance level of 0.05 there was insufficient 

evidence to reject the null hypothesis for 23 out of the 24 sites. This means that 

the noise model presented here passes the Anderson-Darling test for all but one site. 

Out of the 23 cells that pass, the p-values are in the range of [0.055,0.988], with 

average p-value of 0.523 and standard deviation 0.28. One site does fail, its p-value 

is actually indistinguishable from zero, but this is not surprising for experimental 

electrophysiological data.
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To test the sensitivity of the test, it was applied using the wrong distribution. 

For a site with value k the hypotheses that the data is modelled by a x-distribution 

with [k] ± 1 and [fc] ±2 has been tested. It was possible to rule out the distributions 

with [k] + 1 for all sites and with [/c] — 1 for all but one site and in that case the 

p-value was low, 0.069. For [/c] ±2 the p-value was zero in every case, in other words, 

in each case, the value of the statistic for the experimental data was larger than all 

1000 values of the simulated data.

2.13.2 Variation of k and a with spike train fragment length

Both the standard deviation of the Gaussian distributions underlying the x-distribution, 

a, and the dimension of the noise vector, k, can be plotted as a function of the spike 

train length. Again, the analogy here being that as the fragment length is reduced 

so is the dimension of the fictitious vector of Gaussian coordinates. However, while 

k, the vector dimension should decrease linearly with decreasing fragment length, 

the standard deviation of the Gaussians should not, as it is independent of fragment 

length. This is of course not entirely true as the there exists some correlation w'ith 

the stimulus intensity and neural activity, but as can be seen for the three cells the 

standard deviation remains roughly constant, Fig. 2.6. As can also be seen, though 

not perfectly, k decreases linearly with decreasing fragment length, as was seen in 

Fig. 2.5. Least squares fitting can be used to find an average value of k for each 

cell.

2.14 Information channel capacities

Kernel density estimation was used to plot the probability distribution of the ca­

pacities of the 24 sites, see Fig. 2.7. The average channel capacity was found to be 

7.36 bits per second, with a standard deviation of 4.96 bits per second. The values 

for the G, M and P sites are given in Table 2.1.
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Figure 2.6: Plots of the variation of o for the sites G, M and P. Each is fitted with a 
line of zero slope. As the length of spike train is decreased, the variance of the noise 
is seen to fluctuate around a line of zero slope. This is consistent with the hypothesis 
of spike train noise being represented by k Gaussian variables of identical variance; 
as variables are removed from the L of train being examined the underlying variance 
of the remaining variables remains the same.

Cell error k C p-value

G 0.037 34 23.83 31.948 0.2564 8.189 0.324
M 0.041 29.4 21.94 36.9 0.2111 7.791 0.841
P 0.09 26.7 16.35 34.84 0.3538 12.333 0.174

Table 2.1: Numerical values for the featured sites. The column marked C gives the 
capacity for each time unit, that is, for a time interval of length l/k\ the capacity per 
second is given in the column marked Cs~^. The designation of good, middling and 
poor were made based on the error in the x distribution; this does not appear to 
affect the capacities in the same way and the Anderson-Darling p-values show that 
M cell is better modelled by the x-distribution than the G cell, even if the error 
is greater.

It is interesting to compare the channel capacity to the transmitted information. 

This was done for 24 cells, with a demonstratively linear relationship, seen in Fig. 

2.8, with coefficient of determination B? = 0.68.

2.15 Discussion

A novel method for calculating the channel capacity of spike trains has been pre­

sented. This is motivated by the idea that the space of spike trains can be most 

naturally thought of as a metric space. The new method appears to work well for
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Figure 2.7: A plot of the probability density against measured capacity for the 24 
sites. Kernel density estimation has been used to estimate a smooth distribution 
for the channel capacity. Interestingly, there is a bimodal split between four high 
capacity sites and 20 with lower capacity. Another notable feature is that the curve is 
not close to approaching zero at zero capacity. Kde is known to overspill boundaries 
and introduce biases at edges, hence the significance of the result of non zero capacity 
at the edge remains unclear.

the example dataset. The approach taken was to proceed as if there is a coordinate 

space and to then translate the calcnlation into distance-based quantities, giving a 

formula for the channel capacity on the metric space. Obviously, this approach could 

be more fully realized by giving a version of information channel capacity theory on 

a metric space which makes no mention of coordinates.

One difficulty with applying information theory to neuroscience is that the 

paradigm underpinning information theory is quite different from the situation which 

holds for electrophysiological data. For example, channel capacity describes a dis­

crete set of stimuli which are encoded in a discrete set of signals, signals which are 

in turn embedded with noise in a continuous space of outputs. This is hardly the 

situation that holds in the sensory pathways. Moreover, the theorems which are 

proved for information theory often become principles or techniques when applied 

in this less well-defined context.

These issues are nicely summarized in, for example, [11], where rate-distortion 

theory is suggested as the correct information theory framework for the sort of data 

discussed here. However, applying rate distortion theory to sensory electrophysiolog­

ical data is quite a challenge, it requires a well-defined stimulus space and a relevant 

rate distortion fnnction. It seems likely, though, that the technique suggested in this 

thesis, the redefining of coordinate-based information quantities as metric space ob-
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Figure 2.8: A plot of channel capacity per transmission against transmitted infor­
mation for the 24 sites. Data was then fitted using least squares, with resulted in 
an B? = 0.68 linear relationship.

jects and a model of noise based on an analogy with a coordinate-based noise model, 

will be useful in developing this rate distortion theory.

The van Rossum metric is used. This is because it has an Pythagorean 

structure in the interval length. There is also an Victor-Purpura metric [10] 

but the structure in that case refers to the individual spikes. Of course, this 

raises the question of what is the most suitable metric structure for spike trains. 

This has been studied for the data used here by evaluating the accuracy of distance 

based clustering [15, 16, 17]. However, these comparisons show that the metrics 

all have a similar performance. Furthermore, the clustering-technique is really only 

a good probe for the local metric structure. The question of the most appropriate 

metric structure for spike trains has not been answered; the van Rossum metric is 

certainly the metric which fits easiest into the metric space approach to information 

that is proposed here.
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Neural spike trains can be considered as point processes and developing a dis­

tance measure on spike trains from the perspective of point processes is a challenge 

to future approaches. Rate-distortion theory of point processes has suggested dis­

tance measures on spike trains [12, 13]. Although they may not seem natural in a 

neuroscientific context, a more comprehensive theory of information theory and the 

geometry of spike trains should make it possible to relate these metrics to spike train 

analysis. Conversely, it would be good to have a fuller account of what properties 

of spike trains distinguish them within the general family of point processes.

Both the gamma and log-normal distributions were also tested using the Anderson- 

Darling method, and both were found to pass. This should not, however, be seen 

to confuse the issue of the appropriateness of the ^'distribution. The x-distribution 

arises from the distribution of distances measured between Gaussian vectors in in­

formation theory. Other distributions do not. The X'distribution is used as a link 

between information theory and the metric space of spike trains. The other distri­

butions have not been shown to provide this necessary link. Hence, a.lthough it is 

interesting to note that insufficient evidence exists to rule out other distributions, 

this result yields no additional information on the capacity theory itself.

This method has been applied to a single example dataset; it will be interesting 

to establish how well it performs on other sets of spike trains. In particular, it 

will be interesting to see if the basic assumption that the inter-fragment distances 

for noise responses satisfy a x-distribution, is accurate. Conversely, it would be 

useful to generalize the discussion presented here to allow for other noise processes. 

Additional work would include an investigation of the signal distances to check if 

they too follow a X'distribution, indicating that the signal distribution has been 

optimized.

While the current method is specific to a single neural channel, a number of 

possibilities exist to extend it to a network model. Using a multi-neuron metric, 

a series of parallel channels can be treated as a single channel, and an approach
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analogous to the single neuron method could be used. There already exist a number 

of multi-neuron metrics [35], hence it remains to identify the most useful, with the 

possibility of altering it, and apply it to the prospective data.

Channel capacity theory also addresses the problem of computing the capacity of 

Gaussian channels in parallel [9]. If the neurons in question are not interconnected 

then we can treat them as parallel Gaussian channels. However, assumptions about 

the distribution of the input and the independence of the noise in each channel could 

make this difficult to implement. Indeed it is likely that the multi-neuron metric 

approach will be used; it is more general than that of parallel Gaussian channels 

and is also easier to apply.

2.16 Additional note

The methods and results described were published in the Journal of Computational 

Neuroscience (Volume 30, Number 1, 201-209 ).
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Chapter 3

The distribution of spike time 

jitter

3.1 Introduction

The Victor-Purpura metric is an example of an edit distance metric. A set of small 

edits is defined, comprising of moving spikes and adding or deleting spikes, along 

with an associated cost for each edit type. The distance between two spike trains 

is the minimum of all cost sequences of edits that transform one spike train into 

the other. One benefit of this metric type is that it pairs up spikes, one from one 

train and one from another, identifying which spikes should be considered as being 

related by noise-driven variations in timing.

The difficulty with analysing noise in spike trains is that there are two ways 

that a pair of spike trains resulting from the same stimulus can differ, [29]. The 

spike count can vary from train to train, with spikes present in one train absent 

in another. This is sometimes called unreliability. In addition, the time of specific 

spikes can vary between spike trains. This is called jitter. In the last chapter, the 

difficulty that this presents was avoided by studying noise on the metric space of 

spike trains [45]. Here, in contrast, the jitter component of the noise is studied on
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its own, using the Victor-Purpura metric to distinguish jitter from unreliability.

This new jitter algorithm is then applied to another zebra finch dataset and the 

distribution of jitter is studied. This distribution appears to be well-modelled by a 

hyper-Laplace distribution; the hyper-Laplace distribution is a sum of two Laplace 

distributions and so the jitter appears to be associated with two timescales. The 

lesser of these timescales is surprisingly small, having an average value of 3.9 ms for 

the data examined here, a timescale closer to that of the neurons refractory period. 

This indicates an unexpected precision in spike timing.

3.2 The Victor-Purpora metric

In the Victor-Purpura metric the distance between two spike trains is calculated by 

editing one so that it is the same as the other [27]. Each edit has an associated cost, 

and the distance between two spike trains is defined to be the minimum of the sum 

of the costs to turn one spike train into another. The set of operations is:

1. Insertion of a spike with a cost of one.

2. Deletion of a spike with a cost of one.

3. Moving a spike a distance At costs g||At||.

Here q is the free parameter of the metric and, like the timescale of the van Rossum 

metric, is chosen so two spike trains corresponding to same stimulus will typically be 

closer than spike trains corresponding to different stimuli. Again, an optimal value of 

q should be chosen using the information-based measure of the accuracy of metric- 

based clustering [27] previously described for the van Rossum metric timescale. 

As previously discussed, see section 2.3, the need to optimize q is one strength of 

the metric approach: as q interpolates between rate and temporal coding schemes, 

each neuron should by necessity have its own q value, or an alternative parameter 

reflecting the intrinsic coding scheme of the neuron. The dependence of the metric
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spike train u

q5ti:-'- lx .y-'-q5t2 lx lx

spike train v
V2 V3 V4

Figure 3.1: A diagramatic representation of the Victor-Purpura metric calculation. 
This illustrates the edits used to change the spike train u = {ui,U2,U3} to v = 
{vi,V2.,V3,V4}. ui is moved to vi at a cost of qdti = q\\ui — ni||, U3 to V2 at a cost of 
qSt2; U3 is paired to V2 because it is closer than U2. U2, V3 and V4 are all deleted at a 
cost of three. The total cost is 3 -1- q\\6ti -I- The above calculation is obviously 
dependent on q, and for high q values no spike shifting takes place, just insertion 
and deletion. The lowest possible cost is defined as the metric distance.

on the q parameter represents the natural dependence of the spike trains on coding 

scheme, and hence should not be excluded from the modelling process.

If the distance between two spikes is greater than 2/q then it is cheaper to delete 

one spike and insert another. Thus, q is an inverse timescale that limits the time 

range over which it is useful to move a spike. Of course, this does not mean any two 

spikes less than that distance apart are related by jitter, as there may be a choice 

of which spikes to pair together.

There is a convenient algorithm for finding the minimum cost required for the 

Victor-Purpura metric; this algorithm is adapted here to give the jitter distribution. 

The Victor-Purpura algorithm can be easily described using a spreadsheet analogy. 

Consider two spike trains

u = {ui,U2,... ,n„} 

V = {Vi,V2,. . . ,Vm}- (3.1)

Let Gij denote the distance between the truncated trains formed by the first i spikes 

of train u, which will be called u|j and the first j spikes of train v: v|j. Now, since
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the cost of inserting or deleting a spike is one,

Gifi = i and Gqj = j. (3.2)

which can be seen in the initial rows and columns of the spreadsheet samples in 

panels C and D of Fig. 3.2. From the properties of the minimum-cost path, it can 

be shown that the other entries of G can be found recursively starting at Gi_i using

Gi j — min {Gi-ij-i -I- q\ui — nj|, Gj-ij -I- 1, Gjj-i -h 1} (3.3)

These three possibilities correspond to the three edit types: jitter or inserting a spike 

or deleting a spike. The rows and columns are filled with each new position {i,j) 

chosen so that the entries Gi-ij, Gjj_i and Gi_ij_i have already been calculated 

[27, 47]. The distance between the trains u and v is then the bottom right entry in 

the completed spreadsheet, Gn,m-

Here, jitter is defined as the temporal distance between pairs of spikes, where 

one is moved to match the other in the minimum cost Victor-Purpura edit. The 

minimum cost edit can be reconstructed from the spreadsheet used to calculate 

the Victor-Purpura distance. Imagine keeping a second spreadsheet alongside the 

spreadsheet of Gy values: a directions spreadsheet. The entries in the directions 

spreadsheet are arrows pointing either upwards, t) to the left, •<—, or diagonally 

upwards and to the left, \. To maintain a spreadsheet analogy, a spreadsheet 

rather than matrix index order is used: Gi_ij and Gij-i are described as being 

respectively to the left and above Gij.

Each time an entry is added to the Gy-spreadsheet, it is chosen to be the mini­

mum of three possibilities. If

Gij — Gj_iy_i -|- Q\Ui Vj (3.4)
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is the minimum then the spikes Ui and Vj are related by jitter and the minimum 

cost edit between the truncated spike trains u|i and v|j is given by adding q\ui — Vi\ 

to the minimum cost edit between u|j_i and In this case, a diagonal arrow,

\, pointing from (i, j) to {i — 1, j — 1) is added to the (i, j) entry in the directions 

spreadsheet. Similarly, if

Gij = Gi-ij + 1 (3-5)

then, in the minimum cost edit relating u|j to v|j the spike Ui is deleted and the total 

cost is the sum of the cost of that deletion, one, added to the minimum cost edit 

relating u|i_i to v|j. In this case, a left arrow, 4— pointing from {i,j) to (z — 1, j) is 

added to the {i,j) entry in the direction spreadsheet. Finally, if Gij = Gij-i + 1 an 

up arrow, ti pointing to {i,j — 1) is added. The minimum path can now be deduced 

by following the arrows in the directions spreadsheet back from the (n, m) entry. 

The jitter values, Ui — Vj, correspond to the (z, j) entries with a diagonal arrow in 

the direction spreadsheet. This jitter may be positive or negative. An example of 

this calculation is given in Fig. 3.2.

3.3 The jitter algorithm

Any entry Gij in the Victor-Purpora spreadsheet gives the minimum cost required 

to transform the positions of the first z spikes of u into the positions of the first j 

spikes of V.

Each entry Gij has value of either Gij-i + 1, Gt-ij + 1 or Gi-ij-i + 9||Af||, 

where the minimum of the three possibilities is chosen. For each entry a record can 

be made of which of the three entries preceding it incurred the minimum cost. Say 

we use labels a, b and c respectively to denote whether the path of minimum cost to 

Gij is obtained from Gi-ij or Gi-ij-i respectively. Then each spreadsheet

entry has associated with it either a, b or c.

Obviously the edge entries form special cases where only two letters are possi-
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u Ui U2 «3
times 0.515 0.55 0.65 0.71 0.75 0.88 0.95
V Vl V2 Vs Vi

0 1 2 3
0 0 1 2 3
1 1 qSti 1 -f qSti 2 -|- qSti
2 2 1 + qSti q{6ti + Sts) 1 -f q{St\ -|- St2)
3 3 2 “h (i5t\ 1 -t- q{Sti -t- Sts) 2 -t- q{Sti St2)
4 4 3 “h Q^ti 2 -|- q{Sti -t- Sts) 3 4- qi^Sti -|- St2)

D
0 1 2 3 0 1 2 3

0 0 1 2 3 0 0 1 2 3
1 1 \ ■<- ■<- 1 1 \ ^
2 2 t \ \ 2 2 \
3 3 t t t 3 3 t
4 4 t t t 4 4 t

Figure 3.2: An example calculation of the jitter. Here, two example spike trains 
are considered, with spike times given in the table A. These times were also used 
for the illustration of the Victor-Purpura edit in Fig. 3.1. 6ti = Ui — Vi = 0.035, 
St2 = Us — V2 = 0.04, Sts = V2 — U2 = 0.06. For this example, g = 15 so that 
qSti = 0.525, q5t2 = 0.6 and qSts = 0.9, all the other intervals give costs greater 
than one. The spreadsheet for the metric calculation is given in B, the actual 
distance is given by the the bottom right hand entry 3 -I- g||5H -I- 5^211 = 4.125. C is 
the directions spreadsheet, a map of how the spreadsheet is calculated. A left arrow 
is shown when the new entry is calculated by adding one to the entry on the left, 
an up arrow when it is calculated by adding one to the entry above and a diagonal 
arrow when it is calculated by adding the cost of jitter to the entry diagonally up 
from it. The actual route, working back from the bottom-right entry, gives the 
actual sequence of edits. This route is given in D. The two diagonal arrows, 
along this route give the two jitter values, Sti and 5t2.
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bilities, and the entry Go,o has no letters associated with it. This allows a path of 

minimal cost to be traced out from the entry For example, if Gm,n has c asso­

ciated with it, then a record is made of the jitter || At|| added to the entry 

Next the letter associated with Gm-i,n-i is checked. If, for example, it has letter 

a, then a record is made that a deletion has occurred and Gm-2,n-i is considered 

next. The process continues until the Go,o entry is reached. At this stage a set of 

three lists has been compiled, corresponding to the history of insertions, deletions 

and jitters that took place along the path of minimal cost taken to reach Gm,n-

Every time the distance between two spike trains is computed a corresponding 

history of operations along the minimal cost path can be recorded. Again this 

history is divided into three categories, insertions, deletions and jitter. For a set 

of 200 spike trains, divided into 20 groups of ten spike trains corresponding to 20 

stimuli, 900 same-stimulus distances can be calculated. Addressing for the moment 

only the jitter aspect of the calculation and ignoring the history of insertions and 

deletions, a complete record of all fluctations in temporal structure, the jitter, is 

now available. Kernel density estimation can be used to estimate the probability 

density of the jitter distribution.

3.3.1 Data

A different dataset is used here than in the previous chapter. Data is from the large 

extracellular zebra finch dataset made available on the Collaborative Research in 

Computational Neuroscience database by the Frederic Theunissen laboratory at UC 

Berkeley [40].

The song corpus for the dataset generally includes 20 songs. The songs have 

variable length but all are at least one second long. Here, the first second is used 

for all songs. A small number of cells are excluded because they contain trials with 

no spikes. This leaves a total of 449 cells. The number of trials for each song 

varies, but is most commonly ten. The optimal value of q for each cell is calculated
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Figure 3.3: An example jitter distribution. An example cell has been chosen, which 
has a reasonably high number of jitter values, 18735. This means that the continuous 
jitter distribution can be estimated from the calculated values using kernel density 
estimation with a small band width kernel. The scaled jitter is used for the horizontal 
axis, with (p = q5t. Here, an Epanechnikov kernel is used with bandwidth 0.02. This 
cell has q = 54.05 and is labelled blabla0713_2_B in the dataset.

in the usual way, by evaluating the accuracy of metric clustering [27, 17]. These 

spike trains and the experimental conditions used to produce them are described in 

[49, 44, 51, 50, 41].

3.4 Applying the jitter algorithm

For each pair, the order they were evaluated in is chosen randomly. This was to 

eliminate a very small bias in the sign of the jitter that would result from always 

evaluating a pair in the same order as the trials were measured. The bias is thought 

to arise from a slight slowing of the neurons spiking response to repeated stimulus. 

Typically a cell will have ten responses to twenty songs and, therefore, 900 such 

spike train pairs. The jitter values for all pairs are aggregated. This is a very large 

sample from the jitter distribution, for the 449 cells studied the average number of 

jitter values is 7075. There is considerable variation, the cell with the most values 

has 117923 and the one with the least has 266.
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A typical jitter distribution is shown in Fig. 3.3. This distribution is clearly not 

Gaussian. Infact, it is possible to rule out the Gaussian distribution for almost all 

of the jitter distributions. Of course, the jitter distribution has a compact support. 

For simplicity, the scaled jitter

(p = qSt (3-6)

is used and

-2 < 0 < 2 (3.7)

since spikes are only related by jitter if moving a spike is cheaper than deleting one 

and adding the other. This means that the Gaussian distribution that is used is 

actually a compact version restricted so

p{(p) =
1--- 101 <22 exp 

0

2<72 J (3.8)
otherwise

where

Z = VZK^evii (3.9)
\ V'^cr^

and erf(x) is the error function. Z is needed to ensure that p{(f)) integrates to one 

despite being cut off at ^ = ±2. For each cell, the closest Gaussian distribution was 

found by maximizing the log-likelihood of the calculated jitter values using the Brent 

algorithm [46]. This Gaussian best-fit is plotted for the example cell in Fig. 3.4A. 

It is clearly a poor fit.

Here again the Anderson-Darling test is used to evaluate goodness-of-fit quan­

titatively [42]. As no table of critical values exists for the hyper distributions, the 

Anderson-Darling statistic calculated from the real data will be compared to the 

distribution of values that the same statistic will have for artificial data drawn from 

the hypothesised distribution. This will allow for a hypothesis test of the data.

The proposition that the jitter distribution is Gaussian can be ruled out with
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Figure 3.4: Fitting probability densities to the example jitter distribution. In each 
case, a probability density has been fitted by maximizing the log-likelihood. The 
four densities are (A) Gaussian with = 0.334, (B) Laplace with b = 0.423, (C) 
hyper-Laplace with pi — 0.12, bi = 0.062 and 62 = 0.48, and (D) hyper-Gauss with 
Pi = 0.9, cr^ = 0.003 and b = 0.47. In each case, the kernel density estimate of 
the distribution is a solid line and the distribution fitted to it a dashed line. In 
the Anderson Darling test, the hyper-Laplace distribution (C) scores 0.171 and the 
hyper-Gaussian (D) scores 0.098, the other two score zero. Obviously the hyper- 
Laplace and hyper-Gaussian distributions match extremely well. Zooming in to the 
two graphs shows that the peak of the hyper-Gaussian falls slightly short of the 
jitter distribution.

53



significance greater than 99% percent for all the cells. From an inspection of the 

corresponding graphs, it is clear that the problem with the Gaussian distribution is 

that it does not have a heavy enough tail to match the data. A more leptokurtotic 

distribution is needed. One possibility is the Laplace distribution, the symmetrical 

version of the exponential distribution.

pW) = ;|exp (3.10)

where 6 is a scale parameter and Z the normalization factor. A Laplace distribution 

is an attractive possibility because of the relationship between it and Poisson pro­

cesses; waiting times for spikes generated by a Poisson process follow an exponential 

distribution, while intervals between such iid exponential variables follow a Laplace 

distribution. However, even this is not sufficiently leptokurtotic. To make the dis­

tribution compact, p((/)) is set to zero for |0| > 2 and the density is normalized by 

setting

Z = 26[1-exp(-2/6)] . (3.11)

Best fits were calculated by optimizing the scale parameter h using log-likelihood 

and the Brent algorithm, as for the Gaussian. The best fit for the distribution is 

shown in Fig. 3.4B and, although the fit looks quite good, the Laplace distribution 

fails the Anderson-Darling test with significance 95% for all but five of the 449 cells.

A still more leptokurtotic possibility is the hyper-Laplace distribution

(-f); l<^l<2

otherwise
(3.12)

with

Z = y [1 - exp (-2/6i)] + y [1 - exp (-2/62)] (3.13)

and Pi + P2 = 1- This distribution corresponds to a statistical process with a
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Figure 3.5: The values of b\. Kernel density estimation has been used to give the 
distribution of hi values for the 427 cells with hi < 0.8. The remaining 22 cells are 
sporadically distribution with isolated values going up to 20.52.

probability pi of behaving like a Laplace distribution with scale parameter hi and 

probability P2 of behaving like one with scale parameter 62. The parameters pi, hi 

and 62 were fitted by maximizing the log-likelihood as before. As there are multiple 

parameters, the amoeba algorithm is used [46]. The fit for the example cell is 

extremely good, see Fig. 3.4C. Infact, only for 65 of the 449 cells can the hypothesis 

be rejected with significance 95%. For simplicity, it is assumed that 61 < 62. Over 

all 449 cells, the average values are pi = 0.37 and 61 = 0.41. However, this value of 

hi is misleading since it is dominated by outliers. If the 22 values greater than 0.8 

are removed, the average becomes 0.16. The distribution of 61 values is graphed in 

Fig. 3.5. The value of 2/g is often interpreted as an indicative timescale for precision 

of spikes. However, the measurement of jitter seems to indicate that spike times are 

more precise than this: since (f) = q6t, an average hi value of 0.16 shows considerably 

finer temporal percision than 2/g would suggest. Dividing the average value of the 

smaller timescale by g, which is calculated over all 449 cells, gives 3.95 ms; this is 

considerably smaller than 49.2 ms, which is the average value of 2/g.

As a final example, a hyper-Gaussian distribution is considered. This is similar to 

the hyper-Laplace distribution in that it is composed of two different distributions.
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it has one Gaussian term and one Laplace term. Although the Anderson-Darling 

is extremely sensitive for large datasets, the hyper-Laplace and hyper-Gaussian dis­

tributions are very similar for suitable choices of parameters. The test only rejects 

the best-fit hyper-Gauss distribution 84 times at significance 95%. Visually, the 

hyper-Gauss appears to be a good fit. It is plotted for the example cell as Fig. 3.4D. 

As such it is hard to choose between the hyper-Laplace and hyper-Gaussian dis­

tributions by counting how many times each is rejected by the Anderson-Darling 

test.

The Anderson-Darling statistic can be considered as a measure of goodness- 

of-fit by examining the number of artificial values that are greater than the real 

value. The higher this number, the further the distribution is from being rejected. 

The average number of artificial values greater than the true value is 0.43 for the 

hyper-Laplace, larger than the 0.34 for the hyper-Gaussian. The score for hyper- 

Laplace distribution is greater than that for the hyper-Gaussian for 307 cells. Thus, 

the hyper-Laplace and hyper-Gaussian distributions both appear to explain the 

calculated jitter distributions but the hyper-Laplace distribution appears to give 

the better fit.

3.5 Discussion

Using additional book keeping, the usual spreadsheet method for calculating the 

Victor-Purpura metric is extended to give values for spike jitter. This method has 

been applied to an example dataset. The resulting jitter appears to be well described 

by a hyper-Laplace function.

The result is unusual in the sense that the jitter is non-Gaussian, but is instead 

drawn from a distribution which can be considered as bimodal, indicating that two 

timescales are needed to describe the jitter. In considering why jitter could have a 

hyper-Laplace distribution, let us first consider why it could have a simple Laplace
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distribution. This can be seen through examining a basic firing rate model.

One interesting issue concerns the jitter in individual spikes; are there some 

spikes that have a large amount of jitter and others that have small amounts, or 

do most spikes have both small and large jitter values? As a rough test of this the 

average size of the jitter for each spike was calculated. For each cell a histogram was 

constructed with 20 bins, with the bin width chosen so that the largest average value 

falls into the 20th bin. These bins where then tested for bimodality: the bins with 

values less than half the maximum value were set to zero to reduce noise and the 

discrete derivative formed by taking the difference of a bin and its succeeding bin was 

calculated. 232 cells showed evidence of bimodality under this definition. However, 

visual inspection shows that for many of these cells the second local maximum is 

a small fluctuation near the global maximum and many of the cells exhibiting this 

bimodality have small numbers of jitter values. The cells with bimodality have, 

on average 513.44 jitter values, compared to 1757.0 for the cells without. Thus, it 

seems likely that more sophisticated analysis, for example Hartigan’s dip test, will 

show that individual spikes tend to have both small and large jitter values, but this 

would require further analysis.

In a basic firing rate model the number of spikes a neuron generates during a cer­

tain time interval is typically modelled using a Poisson distribution [3]. The Poisson 

distribution itself is derived from the concept that, were one to wait for the instance 

of a spike, the distribution of waiting times follows an exponential distribution. The 

number of spikes occurring during an interval, assuming an exponential distribution 

of waiting times, is given by a Poisson distribution. Now a Laplace distribution 

governs the difference between two iid exponentially distributed random variables. 

Here we have used the Victor-Purpora metric to measure the difference between two 

spikes, which themselves, under a Poisson firing rate distribution, can be hypoth­

esised to have exponentially distributed waiting times. Hence differences between 

spikes from different trains would in theory have a Laplace distribution.
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The presence of a hyper-Laplace could be modelled using a ‘two state’ neuron: 

the neurons firing rate is modelled by two Poisson processes. The resulting spike 

train is not a superposition of the two processes, but rather the neuron fires in one 

Poisson state for some time interval, then switches to its second state to fire for 

another time interval. By using the Victor-Purpora metric to examine differences 

between paired spikes we are implicitly extracting two sets of differences, each cor­

responding to one of the two Poisson processes. The resulting distribution would 

then be hyper-Laplace.
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Chapter 4

A method of generating artificial 

spike trains

4.1 Introduction

The variation in the temporal structure of spike trains can be modelled using a 

hyper-Laplace distribution. Now assuming the variation in same-stimulus spike 

count, termed unreliability, can be measured, a mathematical description of the two 

separate regimes of spike train noise can be obtained.

Here, the idea is to develop an overall generative model for spike train noise 

through the combination of the hyper-Laplace model of jitter and a model of spike 

count unreliability. This model can then be applied to a spike train, allowing for a 

set of artificial trains to be generated; trains generated from the original spike train 

through alterations of its spike count and temporal structure in accordance with the 

jitter and unreliability models. These artificial trains should typically be found in 

the response space of a neuron for that particular stimulus.
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4.2 The noise distribution

If distances between spike trains corresponding to the same stimulus are computed, 

then the resulting collection of distances reflects the noise associated with that neu­

ron. This approach can be generalized to a set of stimuli and neurons: the distances 

between spike trains corresponding to both the same stimulus and neuron can be 

computed.

For a particular neuron, kde can be used to plot the estimated distribution of 

these distances. Fig. 4.1. It should be noted that other than smoothness, kde makes 

no assumption as to the specific type of density function the distances should follow. 

Instead, it provides an empirical estimation akin to a smoothed histogram.

The empirical distribution that results from kde is termed here as a noise dis­

tribution. Each neuron has its own noise distribution, although it is reasonable to 

assume that this distribution will change over time. For datasets involving short 

one to two second presentations of conspeciflc song to zebra finch, stationarity of 

the noise distribution is assumed.

In this way a noise distribution, which represents an overall characterization of 

noise, can be associated with each neuron. If a spike train from a dataset is altered 

both temporally and in its spike count using jitter and unreliability models, then 

distances between the resulting artificial trains should behave as if they were drawn 

from the neurons noise distribution with high probability. In this sense, the noise 

distribution is the final part of a generative model linking various noise models to 

each other.

4.3 Rejection sampling

When only an estimate of an unknown probability distribution exists, as is the case 

with kde, the technique of rejection sampling can be used to draw random variables 

from the estimated distribution [46]. Rejection sampling is based on repeatedly
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Figure 4.1: Kernel density estimation of noise distributions of three cells. The x- 
axis represents the van Rossum distance between spike trains. Neuronal data here 
is taken from the zebra finch auditory forebrain, with r = 12.8 ms

sampling random variables from an envelope distribution, then rejecting all but those 

that could have been drawn from the underlying distribution with high probability.

Let / denote the estimated density function, that is, the function we want to 

sample from. A suitable envelope function, g, can be chosen such that

f{x) < cg{x) (4.1)

where c is a constant that ensures the inequality holds. As will be seen, c must be 

large enough for the inequality to hold, yet the larger the distance between / 

and eg the slower the sampling process.

A sample x, drawn from g{x), is accepted as being drawn from f{x) if

u < fix)
cg{x)

(4.2)

with

f/(0,l). (4.3)

Here U{0,1) is simply the uniform distribution on interval [0,1], and u is drawn ran­

domly from f/(0,1) at the same time that x is drawn from g. In a practical way this 

constrains g somewhat: while g should have a shape close to that of the estimated 

distribution, suitable algorithms must also be available to allow easy sampling from 

g. This excludes more obscure but perhaps better fitting distributions from the
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process.

The more accurate the envelope function the less time it will take to sample from 

/ as the ratio of estimated density to envelope will generally be close to one, and 

most samples will be accepted. Rejection sampling will be used to compare artificial 

trains to those associated with a neurons noise distribution.

4.4 Unreliability and the Victor-Purpora metric

As has been previously described, the Victor-Purpora metric can be used to keep 

track of jitter associated with spike train responses to same stimulus presentations. 

However, this neglects another use of the metric; the metric can be used to document 

the unreliability associated with a neuron.

The number of spike deletion and insertion operations carried out during the 

comparison of two spike trains can be recorded in a process identical to the recording 

of spike jitter.

4.5 Families of spike trains

Both the jitter and unreliability distributions can be sampled from, in such a way as 

to allow for the generation of spike train noise. For instance, spikes of a particular 

spike train could be shifted according to the jitter distribution, and additional spikes 

could be inserted or deleted using a model consistent with spike train unreliability 

results. This generates a spike train which differs from the original through noise 

typically found in the dataset. If this process is repeated multiple times then a 

family of artificial spike trains would be associated with the original spike train.

The concept of a mean or template spike train is not new, [34]. One method 

of finding a mean spike train is through using a medoid clustering approach: if ten 

spike trains correspond to the same stimulus, then the spike train with the minimum 

average least squares distance to all the other nine trains is termed the mean spike
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train. The aim is to generate sets of artificial trains from this mean. These artificial 

spike trains will also be associated with that particular stimulus.

4.6 Spike deletion

Spike deletion is one of the three operations the Victor-Purpora metric can use to 

transform one spike train into another. Let Dij denote the number of spikes deletions 

implemented during the transformation of the fth train into the jth train, and let 

Ni and Nj denote the numbers of spikes in the fth and jth trains respectively. Then 

we can define as

O-k
2D^J

Ni + Ni
(4.4)

The index k represents the kth instance of a metric distance computation, and 

is the average number of deletions needed per train for the computation. Note that 

if no deletions take place the result is not stored as only jittering is needed for the 

transformation.

The probability of overall spike deletion, notated pd, is just the mean probability 

of di^.

= Et («)Pd
k=0

where n is the number of metric distance computations in which deletions have taken 

place.

Now lets say we have a template or mean spike train, denoted T. Each spike in 

T is firstly selected, then deleted if u passes the following test:

u < Pd (4.6)

where again u ~ f/(0,1). The resulting train is labelled Td-
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4.7 Spike jitter

The remaining spikes in must now be jittered, that is, shifted by time periods 

commonly associated with neuronal noise. To do this we must draw from the hyper- 

Laplace distribution of the neurons jitter. Doing this is a simple procedure, to draw 

from a Laplace distribution generate x ~ X where

X = n — bs{u) ln(l — 2\u\). (4.7)

Here /r and h are the free parameters of the Laplace, u f/(—0.5, 0.5), and

s(y) =
-1 ify<o 

+1 ify>o
(4.8)

Since the hyper-Laplace is a combination of two Laplacians,

H — + f2L{fj,2, ^2) (4.9)

random variables can be drawn from H by drawing from either I/(p,i, 61) with prob­

ability /i or L(n2,b2) with probability /2.

Every time a variable is drawn from H it is added to a spike in Td until all of Td 

has been jittered. The jittered train, Tj, is then

Tj — {ti -f- Si, + 5/}. (4.10)

The resulting train Tj is a template train that has been subjected to both spike 

deletion and spike jitter.
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4.8 Spike insertion

Just as the average number of deletions per spike train can be calculated, so can 

the average number of insertions. This leaves the task of actually inserting spikes. 

Here a Poisson process is used to do this. The process rate A is equal to the average 

number of insertions, and la is the average number of insertions per spike train 

comparison:

(4.11)-I-
The denominator of two is used because two spike trains are compared, hence the 

number of insertions will be on average half of the total number of insertions used 

in the spike train comparison.

A set of insertion spikes I = Zi, ..,im can then be generated using the standard 

Poisson process generator:

iq+l (4.12)

where u ^ U{0,1) and spikes are inserted until a spike occurs outside the interval 

A was measured over, in this case one second. The process ends once a spike occurs 

with a value greater than one second.

The set of insertion spikes I are then combined with the list of spike times in Tj, 

and the artificial train results. This represents a template spike train that has 

been subjected to all the operations of the Victor-Purpora metric, deletion, jittering 

and insertion.

4.9 The rejection sampling of artificial trains

Multiple artificial trains can be created using the above generative model. However, 

these trains must be tested further. This is to ensure that metric distances measured 

between the artificial trains and the template train resemble distances drawn from 

the original noise distribution with high probability.
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Firstly, the van Rossum distance between each artificial train and the template 

train must be computed. While it is not necessary to use the van Rossum metric, 

and indeed the Victor-Purpora metric could be used instead, the metric is used to 

link this method with methods described in chapter five, where noise distributions 

generated using the van Rossum metric are used extensively.

Again kde can be used to estimate the density function underpinning the set of 

distances measured between the artificial and template spike trains, and this density 

is denoted g{x). The variable this density depends on, x, is a distance. The density 

g will effectively form our envelope function since we are sampling directly from it.

If the noise distribution is denoted h{x), then each artificial distance x, can be 

tested using

u < h{xi)
cg{xi)

(4.13)

where u ~ [/(0,1) and c are chosen as outlined before.

Each Xi corresponds to a distance between a particular artificial spike train and 

the template train. So if x* fails the rejection test then the corresponding artificial 

train is discarded from the set of artificial trains.

If the cardinality of the resulting set of artificial spike trains is smaller then re­

quired, more trains can be generated and rejection sampled until the desired quantity 

is achieved. This allows a family of artificial trains to be generated from a template 

spike train, with noise consistent with that typically found in the neurons dataset.

4.10 Discussion

The generative model of spike train noise was programmed in and was suc­

cessfully used to generate spike trains with noise consistent with that obtained from 

the data itself. A homogeneous Poisson process was used to insert spikes into the 

artificial spike train. One might question why a ‘two state’ neuron was not used 

to generate spikes. While a two state neuron could have been used, the number of
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spikes that need to be generated, typically of the order of about two, is low enough 

that it was thought a two state would add unnecessary complications to the process. 

Also the rejection sampling of the spike trains is used to filter out noise uncharac­

teristic of the original dataset, implicitly filtering uncharacteristic jitter. Should 

a whole spike train need to be generated, of length one second say for auditory 

forebrain data, then the use of a two state neuron is advocated.

The generative model depends on the timescales of the jitter distribution, and 

the timescale of the van Rossum metric. This should be seen in a positive light; 

a timescale can be seen to ‘tune’ a metric to reflect the level of temporal and rate 

coding present in the spike trains of that neuron. This varies from neuron to neu­

ron, hence each neuron should have its own set of timescales. This dependence of 

the generative model on these timescales allows for a more accurate model of that 

particular neurons spike activity.

An alternative approach would be to use a peristimulus time histogram, [33], 

constructing a histogram and drawing samples from it. The first drawback of this 

method is that it involves binning the spike trains, a process that, as has been 

previously discussed, is unnatural and difficult to apply to spike trains. Secondly, 

by focusing on binwidth only, this process ignores the other timescales found present 

in the data through the use of a metric space approach. Its advantage would be 

found in its simplicity of approach, but at a cost of ignoring the hyper-Laplace and 

noise distributions of the neurons themselves.

The method presented is a means of adding noise to spike trains. There are 

two obvious situations where this could be utilized: if we need to add noise to a 

spike train generator, or we need to generate spike trains that are close but not 

identical to a template spike train. Here the concept of template spike train is 

slightly ambiguous; it can refer to a spike train that is on average closest to every 

other spike train corresponding to a specific stimulus, so can be seen as a medoid 

spike train. It could also be generated through summing function mapped same-

67



stimulus spike traius, theu thresholdiug to retaiu domiuaut spikes. The selectiou of 

a template spike traiu is uot the focus of this work, iustead au implemeutatiou of 

combiued uoise models was preseuted.
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Chapter 5

The noise space of neurons

5.1 Introduction

Accurately associating probability distributions with spikes and spike trains is cer­

tainly an elusive process. The same cannot be said of neuronal coordinates however; 

parameters such as firing rate can be used to describe the state of a neuron, or 

phrased geometrically, embed the neuron on a manifold with local coordinates given 

by the chosen neuronal parameters.

An interesting development of information geometry [36] is that distributions 

are themselves elements of a structure analogous to a manifold know as a statistical 

model. Families of distributions typically have a number of unspecified parameters, 

termed here as free parameters. For example, the free parameters of a Gaussian 

are given by its first and second moments. The free parameters of a family of 

distributions form a set of coordinates for each distribution in this space. A simple 

example is that of the space of Gaussian distributions. Elements of the set are the 

Gaussian distributions themselves, while the coordinates of each Gaussian are given 

by particular values of its mean and variance. As only two parameters are needed 

to specify the coordinates of each element, this statistical model has a dimension of 

two.
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Like parametrizing the surface of a sphere, there are a number of sets of coor­

dinates available to parametrize the distribution space, and there is generally no 

reason to believe the free parameters form the most useful set. Indeed for the space 

of neurons different coordinate sets are used, with some proving more informative 

than others.

It has previously been asserted that the distances between same-stimulus spike 

trains follow a ^-distribution. In this way, a ^-distribution can be associated with 

each neuron from the dataset. This is equivalent to embedding the set of neurons 

on a statistical manifold, termed here as the noise space of neurons. As the x- 

distribution has two free parameters, the dimension of the related manifold is two.

Multidimensional scaling and principal component analysis are among a range 

of methods that can be used to isolate the geometric structure of a dataset. They 

do not assume that a parametric model for the dataset exists. Their application 

can, however, provide insights into which parametric models are appropriate for the 

dataset [28]. Hence, a parametric model can be derived from their results. For 

instance, if data is embedded on the surface of a relatively flat manifold, multi­

dimensional scaling provides a means of visualizing the surface of this manifold. 

Application of such a method will also estimate the dimension of the structure, that 

is, the number of parameters needed. This assumes of course that a structure exists 

in the first place.

One such method, a refinement of multidimensional scaling, is isomap. The 

advantage of using isomap over other methods is in its use of geodesic distances: 

isomap is able to estimate nori-Euclidean structures, that is, isomap is useful when 

data is embedded on a non-flat manifold. Hence, choosing isomap makes sense 

when the nature of the space remains uncertain. Here it is proposed to use isomap 

to estimate the dimensionality of the neuronal space. As a backdrop, this will again 

be testing the x assertion, as the dimension of the space should turn out to be 

approximately two.
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While isomap generates an Euclidean embedding of the space, the method is used 

with the knowledge that instability can result from the effects of noise on aspects of 

the algorithm. In certain cases [39], the introduction of noise to a system is found 

to produce disproportionately large changes in the Euclidean embedding. Here, 

the algorithm is first tested on noisy datasets with a known theoretical outcome. 

Distortions found in this application can be taken into account when applied to 

unknown datasets.

The dataset used here comprises of spike trains from 455 neurons, that is, 455 

points will be used to map out the geometry of the space. To further explore the 

spaces geometry it is useful to generate artificial data points, and scatter these 

throughout the space to highlight structure. Here a method is proposed to do this, 

which at the same time does not alter the structure or relative positions of the 

original points in the space.

5.2 Statistical model

A set of distributions form a space termed a statistical model [36]. This is analogous 

to a manifold, where each element in the space is itself a distribution, and the coor­

dinates of each element are given by the specific free parameters of its distribution. 

If a distribution is given as

(5.1)

then its corresponding statistical model is given:

s = {Pf=p(i;OI«=K',-,nes} (5.2)

where S C R" Again, analogous to a manifold, the dimension of the space is given
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by the number of free parameters:

dim(5) = n (5.3)

Distances between elements are computed using the Fisher metric, a Riemannian 

metric:

9ij{0 = j di{\ogp{x\0)dj{\ogp{x-,£;))p{x\i)dx (5.4)

where partial derivatives are taken with respect to the components of the ^ vector.

The Fisher metric allows the statistical model to be seen as a Riemannian man­

ifold, where the metric is invariant under coordinate transformations. Relating this 

to our dataset, if 455 noise distributions corresponding to 455 neurons are gener­

ated, the noise distributions are implicitly embedding the neurons on a Riemannian 

manifold. The Fisher metric cannot be computed without assuming specific types of 

density function for the noise distributions. This is because it is based on taking the 

partial derivatives of known distributions with respect to known free parameters, 

meaning that other metrics must be used to visualize the arrangement of neurons 

in the space.

5.3 Multidimensional scaling

The question of finding coordinates for a set of elements arises when only the dis­

tances between elements of the set are available. A simple example is having only 

the distances between, say, twelve cities, and wanting to reconstruct a two dimen­

sional map of their positions; an'Euclidean embedding of the higher dimensional 

space the cities live in. Multidimensional scaling (MDS) is an algorithm used to 

address this question [37]. Its application to the twelve cities example results in 

a two-dimensional map which approximates the actual positions of the cities. The 

approximate nature of the method is due to the fact that we generally do not have
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access to the exact geodesics between the cities; we have approximate distances, 

from which we can construct approximate coordinates.

MDS finds coordinates for a set of elements, such that Euclidean distances mea­

sured between these elements approximate the geodesic distances measured in the 

elements metric space. This process is now described.

5.3.1 A matrix of distances

MDS takes as input a square matrix dx{i,j) of Euclidean distances between all 

elements in a dataset. In the case of distributions, each element is represented by 

some function /*, so

4' = j(5-5)

where fi and fj are kde estimates of the density functions associated with the noise 

distributions of the zth and the jth neurons. Here the distance is used for two 

reasons: first, taking distances achieves a level of consistency with the standard 

application of isomap. Second, differences between distances and Anderson- 

Darling distances, another suitable choice of distance, computed while hypothesis 

testing the ^-distribution, were not significant.

The matrix Dx will then be given

Dy =

^ d\,l o!i,2 • ■ • di^rn ^

^2,1 ^2,2 • • ■ d2,m

y dm,\ drui2 ■ ■ ■ diyijn J

MDS aims to find a set of m coordinate vectors vi,..,Vm, elements of a Euclidean 

space V, such that

\vi-Vj\\ ^ dij (5.6)

for all i,j in 1,.., m.
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5.3.2 Decomposing the matrix

The cosine law can be used to decompose the matrix Dx- This law simply relates 

the distances between the vertices of any triangle, and a contained angle, with each 

other. For a triangle with vertices i, j and k, with sides dik and djk, and angle 

9jik between sides dij and dik, the cosine law gives

1
dijdik cos 9jik T ^jk) (5.7)

where we denote

so that

9jik ' dijdik COS 9.jik

9jik 2 ^jk)

(5.8)

(5.9)

If vectors are used instead of distances, then the cosine law can be seen as a method 

of writing any vector in terms of the scalar dot product of two other vectors, which 

all together form a triangle, with angle 9jik-

The cosine law can then be used to rewrite the matrix Dx as a matrix of scalar 

dot products, B. As B comprises of dot products it can be written in the form

B = XX'^ (5.10)

where X is a matrix and each Xi is a vector representing the coordinates of the zth 

cell, with the jth component of the ith cell given {Xi)j.

5.3.3 Torgerson double centering

The quantity bjik is centered on point i of the triangle. To allow for a more convenient 

representation, point i can be translated to the origin of the data, taken to be the 

center of mass of the data.
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Take the matrix Bi to be the matrix of scalar products of elements of bjik- The 

matrix has origin at point i. This point i can be translated to the centroid of all 

points, termed double centering the matrix, turning the matrix Bi into the centered 

matrix B* using

^ij ~ ~ ~ ^ hj + ^ ^ ^ bgh (5-11)
k k 9 h

The restatement of the cosine law, Eq. 5.9, is used for substitution leading to

-/ ^ n n \
''t = -2 (4^-E4--E4 + ;^EE4) (512)

V k k g h /

This is the centered matrix of dot products, centered using the column and row 

means of the original Bi matrix. This matrix is eigendecomposed;

B* = U*V*U*'^ (5.13)

where the coordinates of the centered points are given

X* = U*V*^ (5.14)

5.3.4 Coordinates

The X matrix is written in terms of its eigenvalues and eigenvectors, where for 

example if we had three points:

/ (Xi)l (^2)1 (X3)i
(^1)2 (^2)2 (^3)2 

y (-^1)3 (-^2)3 (-^3)3 j

or in general:

/ Ai 0 0

0 A2 0 

0 0 A3

(■^c)l — ^l^lc

\
Uii U12 Ul3

U21 U22 U23

'*^31 U32 U33 y

(5.15)
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where {Xc)i is the /th coordinate component of the cth point. Through decomposing 

the B matrix we can find the eigenvectors and eigenvalues of the matrix, and hence 

can find a set of coordinates for each point in the set.

5.4 Isomap

A method such as MDS is needed to estimate the intrinsic geometry of the dataset. 

Isomap [38], an extension of MDS, can be used for this purpose. Isomap differenti­

ates itself from MDS in that it calculates geodesics rather than Euclidean distances 

between elements of the dataset, thus estimating the intrinsic geometry of the space. 

Should the space be non-Euclidean, isomap is better suited to finding appropriate 

coordinates, rather than MDS which assumes an Euclidean space.

5,4.1 The nearest neighbour algorithm

Like MDS, isomap takes as input the square matrix Dx = dx{i,j) of Euclidean 

distances between all noise distributions from the dataset. It then edits this matrix 

to construct a second matrix Dq = dc{i,j) according to a nearest neighbour set of 

rules.

First, choose the value of a global variable, either K or e, corresponding to 

the number of nearest neighbours or Euclidean distance that, if within this nearest 

neighbour number or distance, two points in the dataset are classed as nearest 

neighbours. Fig. 5.1. Set do{i,j) = dx{i,j) if i and j are linked by an edge, and 

dcihj) = CX3 otherwise. This connects each neuron to its nearest neighbours using a 

Euclidean distance, but leaves out any large Euclidean distances, which presumably 

would not represent geodesics of the space.

Second, re-edit the matrix Dq, replacing all entries dciiij) by the minimum of 

dG{i,j) and dciijp) -k dcip^j), where p G l,..,n in turn, and n is the number of 

points in the dataset. Dg now contains the shortest path distances between all pairs
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Figure 5.1: Evaluating the distance between two cells based on a nearest neighbour 
method. Here K = 3, so a cell is connected to its three nearest neighbours, see A. 
This process is applied to every cell, and only a sampling of this is shown here, see B. 
The distance between two cells is defined as the minimum of the sum of Euclidean 
distances between connecting cells, rather than just the direct Euclidean distance 
between the two cells, see C.

of points. Any large Euclidean distances have been replaced with distances that go 

through the network, thus approximating geodesics.

This matrix Dq can be seen as an unwrapped version of the original Dx- The 

standard example application of isomap is to a space where all points lie on the 

surface of a roll, see Fig. 5.2: in this case Euclidean distances between points would 

cut through the surface of the roll, and the geometry of the structure is lost. In 

contrast, a nearest neighbour approach would trace paths that are approximately 

along the surface of the roll, refiecting the true geodesics of the space.

The accuracy of isomap increases asymptotically with increases in the number of 

data points. The denser the sets of data points, the smaller the Euclidean distances 

measured between data points and the more accurate the structure estimation be­

comes.

5.4.2 Optimal dimension

The approximate dimension of the data is determined by the number of eigenvec­

tors used to construct the Euclidean space embedding. To achieve this we firstly 

eigendecompose Dq. We are looking for a subset of coordinate vectors Vi for points 

in a Euclidean space V, such that, with minimal error, the subset minimize the cost
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Figure 5.2: The standard example application of isoinap to a rolled space. For the 
two points shown here, instead of treating the geodesic between them as being their 
Euclidean distance, which clearly ignores the structure of the space, the geodesic is 
taken to be the minimum distance through other connected points along the surface 
of the space. This image is taken from [38].

function

where Dy = {dvihj) =

E^MDG)-niDv) lz.2

represents the Euclidean embedding,

(5.16)

L2 =

A'E, and r] performs Torgerson double centering on the matrix.

If the embedding is constrained to p dimensions- it can be shown that the top p 

eigenvectors of riiDo) achieve a global minimum for the cost function. Obviously 

E decreases with increasing p, where p represents the dimension of the Euclidean 

space reconstruction.

The residual variance, defined as

r = l-R\rj{DG),v{Dv)) (5.17)

where R{X,Y) determines the linear correlation coefficient between entries X and
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Y, is used as a measure of the error between r]{DG) and reconstructed ri{Dv)- The 

residual variance r originally proved useful as a way of evaluating the difference in 

performance between isomap and other MDS methods, and has subsequently been 

adopted as the primary measure of error.

Interpreting the residual error is relatively straightforward. If the data is two- 

dimensional then trying to embed the data in a one-dimensional Euclidean space 

will produce a high residual error. On the other hand, if the two-dimensional data is 

embedded in a three-dimensional Euclidean space then there should be little change 

in residual error values between results from the two and three dimensional residual 

error values.

Unfortunately isomap does not yield an exact method of estimating the dimen­

sion of a dataset, but rather provides a graph of residual error against dimension. 

This leaves it to the analyst to decide upon the value of dimension where increases 

in dimension fail to produce sufficient decreases in residual error. The residual er­

ror rarely drops to near zero once the actual dimension has been found, but rather 

tails off in slow decline. Generally it is the ‘elbow’ of this curve that is taken as 

the datasets dimension, where the residual error ceases to decrease notably with 

increasing dimension.

5.4.3 Nearest neighbour choice

To decide which points should be regarded as connected to each other one must 

decide on either a classification according to nearest connected neighbours, K, or 

nearest neighbour radius, e. Eor example, if we set K = 3 then each data point will 

be connected to its three nearest data points under the Euclidean distance. If 

instead e = 1.4 is used then each point is connected to all data points within a 

radius of 1.4 units.

Like the selection of the optimal dimension, the choice of whether to use K or e 

is empirical, as is the ideal value that should be selected. In the limit of maximum
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K, if every point is linked to all others then isomap has been reduced purely to MDS 

and local geometry, should it have been non-Euclidean, is lost. In the low K limit, 

if each point is only connected to one or two of its nearest neighbours, then unless 

a dense, large dataset is used, the data will be viewed as islands of points separated 

by discontinuities, again breaking the geometric structure. The choice of whether 

to use K or e, or indeed their specific values, is less and less significant as the data 

size and density is increased.

5.5 Metric normalization

The free parameter r, used in the van Rossum metric, reflects the combination of 

rate and temporal coding detected in a neurons spike trains. As this quantity varies 

from neuron to neuron, the value of r must be estimated for each neuron in the 

dataset, rather than taking an overall average value.

Motivation for this lies in the fact that the data used is from a number of different 

brain regions and cell types, so there is no reason to assume r should be fixed. 

Different values of r scale the metric distances, which would make comparisons 

between different noise distributions difficult due to different r values.

To solve this problem the metric is normalized so that the distance measured 

between a spike train function containing a single spike and another containing no 

spikes is one unit:
poo

A / f'^{x)dx = l (5.18)
Jo

where
-(t-t,:)

fit) = (5.19)

Through basic integration we find

A = (5.20)
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Hence under normalization the van Rossum distance becomes

D (5.21)

It is this normalized form of the metric that will be applied to the dataset.

5.6 The space of Gaussian distributions

To learn more about the algorithm itself, isomap was first applied to a known sta­

tistical model. 1440 datasets were generated, where all 200 values in each set were 

drawn from a Gaussian distribution. Again the Box-Muller transform was used for 

this, and the elements of each dataset all had the same mean and standard devia­

tion. Gaussian means were chosen in the range [0.1,5.0] with increments of 0.1, and 

standard deviations were in range [0.1, 3.0] with increments 0.1.

Kde was used to estimate the distribution of each dataset. A matrix, Dy, of 

distances was then constructed. For example, dv{i,j) denotes the distance 

between kde estimate of the zth cell and the kde estimate of the jth cell. Isomap 

takes as input this matrix of inter-distribution distances.

Key to this idea is evaluating the performance of isomap under noisy conditions 

where the true result is already known. Isomap itself has proved a controversial 

tool for tackling noisy data [39], and there are no obvious methods of selecting K 

and the dimension of the space without a priori information of the space itself. 

Small changes in the value of A' or e can lead to large changes in the geometry of 

the space. This is because isomap is vulnerable to short circuit errors, where the 

nearest neighbours have been incorrectly identified, which can lead to many entries 

in the matrix of geodesic distances being incorrect, generating a different estimated 

geometry.

It was found that varying the nearest neighbour parameters had negligible effect 

on determining the optimum dimension, see Fig. 5.3. However, visualization of the
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Figure 5.3: A residual variance graph for A = 60 in blue, and K = 6 in green. Here, 
isomap has been applied to the space of Gaussian distributions. The x-axis denotes 
the number of eigenvectors used to construct the space, that is, the dimension of the 
space. The y-axis denotes residual variance. In this case we expect the space to be 
two dimensional, and the similarity between the two graphs demonstrates the lack 
of sensitivity of the Gaussian space dimensionality to changes in K. The dimension 
of the space is clearly identified as two.

Euclidean embedding was found to be distorted from its true embedding, see Fig. 5.4. 

Given enough data, the points representing Gaussian distributions should line up in 

a band, where the position of each point along the bands axes is determined by its 

mean and standard deviation values. This distinguishes the bands axes as a linear 

scaling of the mean and standard deviation. In reality this band is found to be both 

bunched and curved.

5.7 Data

Data used here is again from the large extracellular zebra finch dataset made avail­

able on the Collaborative Research in Computational Neuroscience database by the 

Frederic Theunissen laboratory at UC Berkeley [40]. Data is obtained from 455 

neurons throughout eight regions: L, LI, L2a, L2b, L3, Mid, CM and OV, of zebra
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Figure 5.4: A two dimensional embedding of the statistical model of Gaussian dis­
tributions, with K = 6. We can see isomap fails to unwrap the space fully, demon­
strated in the curvatnre of the lower section of the graph. In theory the graph should 
should have an uncurved, band like structure. The x-axis should distinguish the free 
parameter // of the Gaussian distribution, and the mapping between the x-axis and 
H should be linear, instead of the quadratic form demonstrated here. Varying the K 
parameter produces only very minor changes in the space. This information can be 
used when considering the noise space of neurons: less precedence should be placed 
on the choice of K, and we should expect the axes of the free parameters to be 
curved relative to the x and y axes that isomap identifies.

finch auditory forebrain during playback of conspecific song.

5.8 Construction and dimensionality of noise space

By computing only same stimulus spike trains for the dataset a total of 900 noise 

distances can be associated with each neuron. The probability density function of 

this distribution of distances can then be estimated using kde. Thus, each neuron 

has an associated empirical noise distribution with some unknown number of free 

parameters, and the set of noise distributions represent elements of the underlying 

statistical model.
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Figure 5.5: Plots of residual variance against dimensionality for K = 6 in green and 
h = 60 in blue. Data comprises noise distributions generated from the neuronal 
dataset. As can be seen, the largest decrease in error occurs when two rather than 
one eigenvectors are used. Introducing more eigenvectors just leads to a tailing off of 
error. Hence the data is seen to be highly two dimensional. For K = 60 the decrease 
in error is strongest when the dimension of the coordinate space in increased from 
one to two. Also for K = 60 the elbow of the graph, where this tailing off takes 
place, is easier to see as having an x-axis value of two.

Again square roots of the distances between all noise distributions from the 

dataset are computed, generating a matrix of inter-noise distribution distances. It is 

important to note the distinction that these distances are not between spike trains, 

but between distributions of spike train distances.

The collection of 455 cells is found to change little with respect to K, with values 

of A' G {6, ..,455}, see Fig. 5.5. The graphs do however indicate a dimensionality of 

two for the space, as can be seen from the ‘elbow’ of the graph. When K is decreased 

below a value of six the density of neurons is no longer sufficient to accurately 

estimate the local structure, causing the manifold to fragment into disconnected 

clusters.

The isomap algorithm allows for our first graph of the noise space of neurons, 

see Fig. 5.6. Strong similarities exist between the graph of the noise space, and the
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Figure 5.6; A two dimensional plot of the space of neurons, with K = 6. It can 
be seen, from the networks of neurons used here, that neuronal noise is typically 
limited to exist within certain bands. The meaning of these bands will be explored 
in the next section. It should be noted that little variation in the structure of the 
space presents itself as K, the number of connected nearest neighbours, is varied in 
the isomap algorithm.

graph of the space of Gaussian distributions. Both demonstrate a strong curvature 

in their graphs, indicating the isomap embedding is approximate rather than a direct 

mapping from free parameter to x and y axis. It is interesting to note both regions 

of outliers, and regions of increased density. The meaning of this map will now be 

explored.

5.9 Visualization of noise space

Isomap is used to visualize the noise space, but furthermore the distribution of 

neuronal parameters can also be examined in this space. For example, k and cr, the 

free parameters of the x-distribution, can be calculated from the moments of each 

noise distribution:

k =
2(x2)2
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and

(7^ = (5.23)2{x^) 2

where (x) denotes the expected value of x.

Each data point in the noise space can then be coloured relative to its k value 

using the standard matlab colour scale, with red denoting the highest values of the 

set and blue the lowest. An obvious advantage of doing this is that it allows one to 

see how each parameter correlates with the axes isomap has isolated.

If k is indeed one of the coordinates parametrizing the noise distribution, then it 

should scale linearly accordingly, visualized through the colour scale mapping, along 

one of the graphs axes. Likewise for a, which should be distinguished along the 

other axis.

The following plots demonstrate how isoniap singles out the dependence of k and 

a on the x and y axes respectively, see Fig. 5.7 and Fig. 5.8. For example, in the 

first graph each point is coloured according to its k value, and the variation in colour 

can be seen relative to the y-axis. In this instance, isoniap indicates that k can be 

choosen as a free parameter of the noise distribution. The graphs also demonstrate 

that, although clear dependencies between the axes and free parameters can be seen, 

better choices for the coordinate parameters can be made, which will vary linearly 

with respect to the x and y axes. This should not be taken as a failing arising from 

fitting the noise space with x coordinates. Instead it should be seen as, for the 

purposes of viewing the space, more convenient coordinates should be found.

5.10 [I and k

The average value of a variable drawn from a noise distribution, //, would seem 

a natural choice of parameter for the noise space. Its meaning is intuitive: the 

mean of each noise distribution represents the average distance between two spike 

trains corresponding to the same stimulus. This reflects the average level of noise
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Figure 5.7; Values of k, one of the free parameters of the x-distribution, are mapped 
in the form of colour onto the noise space plot. Values of k are given by the colourbar 
using the standard matlab colour scheme. The graph has been rotated to help view 
the A:-axis dependence. Values of k are clearly not sensitive to small changes in the 
y-axis. While this will be discussed in more detail, one can infer that the choice of 
k as one of the coordinates of the noise space is neither convenient nor particularly 
informative, and preference should be shown for another coordinate system.

associated with the neuron.

We can plot the mean of each noise distribution, in colour, on the noise space 

graph, see Fig. 5.9. As shown in the graph, the same bottom right arm has an 

increased level of noise. Increases in the level of noise scale linearly with the x- 

axis, as can be seen in the colour variation relative to the principal axis isomap has 

distinguished.

A small change in fi leads to large change in k, one of the two free parameters 

from the x-distribution. This is shown through integrating the non-standard x:

< X >4/x^e^ dx (5.24)
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Figure 5.8: Values of cr, the second free parameters of the x-chstribution, are mapped 
in the form of colour onto the noise space plot. Values of a are given by the colourbar 
using the standard matlab colour scheme. Like the plot of k, a clear order is found 
in the colouring of the cells, with cells aligning along the y-axis in accordance to 
decreasing a values. However, like k, the change in a with respect to the y-axis is 
not particularly strong, implying another parameter would prove a better choice of 
coordinate.

where

and

Z = cr''22-T(

poo
r(z) = /

Jo
dt

(5.25)

(5.26)

Substituting y = x/\/2a yields

< X >=
{V2a)^+^

Z
J y'^e dy (5.27)

Carrying out the substitution y^ = t yields

< X >=
{V2a) k-\-l

2Z
dt (5.28)
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Figure 5.9: A plot of the noise space of neurons, this time coloured by the average 
level of noise associated with each neuron. The cluster on the bottom right arm, 
the same cluster with elevated firing rates, are also seen to have the highest levels 
of noise amongst the neurons in the space.

This is now in a form that can be written in terms of T functions, and carrying out 

the integration gives
Tf —)< X >= \f2a (5.29)r(|)

As can be seen in Eq. 5.29, for fixed values of k the value of /r varies linearly 

with a. The dependence of ^ on A: is more complicated, and a plot for values of k 

typical of the dataset for a = 0.5 is provided, see Fig. 5.10.

This relation demonstrates that a small variation in /r produces a large variation 

in k. If the dataset is viewed in terms of its p colouring a more gradual change can 

be observed, relative to the non-linear jumps in the k colour. This points to the 

idea of /r being a more natural choice of parameter than k.

For values of k typical of this dataset a change in k will produce a non-linear 

change in /r. Hence, instead of visualizing the space in terms of k, which for the 

purposes of this dataset can be uninformative due to the general lack of variation 

of k, the dataset can be plotted with each neurons fi value coloured. The quantity

89



Figure 5.10: A plot of ji against k. Small changes in the value of ji produce large 
changes in the value of k. As k varies little over the dataset, /x can be seen as a 
more natural parameter choice as it is better at highlighting changes in the noise 
levels of neurons.

/j is useful in itself due to its simple and intnitive meaning: it measures the average 

noise associated with a neurons spike trains since it is the average value of the noise 

distances.

5.11 Noise throughout networks of neurons

The dataset consists of neuronal output, where each neuron is from one of eight 

networks of neurons, with some exceptional cases where the neurons network was 

not identified. We have seen how each neuron can be coloured according to its noise 

level. As a neurons position in the noise space characterizes the noise associated 

with it, the distribution of noise amongst a particular network can be visualized.

The above procedure can be taken one step further. Since the dataset comprises 

networks of neurons, the position of every neuron in the dataset can be plotted 

and coloured according to its network type. The resulting plot provides a visualiza­

tion of the distribution of noise between networks of neurons. This represents the 

distribution of noise throughout networks of neurons.
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Figure 5.11: A visualization of the noise space of neurons, with each neuron coloured 
according to the network to which it belongs. The networks are labelled L = 1, LI 
- 2, L2a = 3, L2b = 4, L3 = 5, CM = 6, Mid - 7, OV - 8, ‘none’ = 9. Here we 
observe that the noise associated with each network is distributed reasonably evenly 
across the noise space.

This procedure was applied to zebra finch auditory networks identified by exper­

imentalists as L, LI, L2a, L2b, L3, CM, Mid, OV. A ninth type is termed ‘None’, 

representing the set of neurons from the dataset that have not been successfully clas­

sified during recording and processing. As is seen in Fig. 5.11, at first no obvious 

clustering according to network type is observed. However, one particular network 

can be highlighted and the others coloured uniformly. Eight of the types have neu­

rons with noise characteristics that are distributed similarly throughout the noise 

space. One network of neurons, those of OV, are found to be primarily located in 

the bottom right arm, see Fig. 5.12.

5.12 Artificial noise space

As the dataset consists of 455 neurons, the noise space consists of 455 points. It is 

useful to generate more points artificially and scatter them through the space, which
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Figure 5.12: The network OV is highlighted in the noise space using colour coding L 
= LI = L2a = L2b = L3 = CM = mid = none = 0, OV = 9. It is noted that OV is 
in general restricted to the right of the x-axis equalling zero mark, and is primarily 
located in the bottom right arm.

would ‘fill out’ the space. This must be done w'ithout letting the artificial points 

distort the calculation of the space itself. The idea is to extract the eigenvectors of 

the original noise space, and distribute artificial points throughout this space. This 

should, at the very least, give a more complete view of the noise space.

5.12.1 Coordinates of an artificial data point

Decomposition of the B* matrix allows Euclidean coordinates to be found for the 

data points between which the distances are measured. If the distance between the 

artificial points distribution and all the real points distributions were computed and 

allowed to form part of the Dq matrix, then the generation of the noise space would 

be distorted by the artificial point. Here instead a method is presented to write the 

artificial points coordinates in terms of the eigenvectors of the original noise space. 

Let hac denote the dot product of the vector of coordinates of the artificial point
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Xa and the real point Xc

or component wise:

bac ^a-^c

^ac ^ ^ Xdi.XiUic

The eigenvectors of c can be removed from the right hand side:

(5.30)

(5.31)

c cl
(5.32)

Let /3; = Ylc^acUic- Again uic is just the cth component of the /th eigenvector for 

the noise space, which has already been obtained through the application of isornap 

to the noise space. This allows for the computation of /?/. To calculate hac we use 

the equation used to compute the elements of B*, Eq. 5.12, where a is substituted 

for the Ah index

"aj
-71 - 71 - 71 71

9 h
(5.33)

and the distances between the artificial points distribution and all the real points 

distributions have been calculated, forming daj for j G {1, ..,n}.

Noting ~ cXai ^i and substituting into Eq. 5.32 results in

y _ Pi
^al \ 

cXi
(5.34)

This equation then allows us to compute the Ah coordinate of the artificial point 

Xa, where I G {l,..,n} and there are n real cells. Thus any number of artificial 

points can be created, with coordinates generated from the (3 and A vectors.
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5.12.2 Landscaping the noise space

If data is drawn from a specific distribution, and kde used to estimate the distri­

bution, then using Eq. 5.34 this distribution can then be plotted as a point in the 

noise space. For example, say data is drawm from a Gaussian distribution with free 

parameters jji\ and a\. The kde of this data is calculated and distances between 

this and every real noise distribution computed. Combining this with a knowledge of 

the eigenvectors and eigenvalues of the original noise space, obtained using isomap, 

allows for the coordinates of the Gaussian to be plotted.

This process can be repeated many times, and in each case by choosing a different 

(/q cr) the space can be filled with points. Here approximately 3000 points are drawn 

from Gaussian distributions with varying // and a. In each case the distance between 

the artificial distribution and all the real distributions is computed. This process is 

demonstrated in Fig. 5.13 and Fig. 5.14.

One might question why a Gaussian, rather than a x-ffistribution, was used to 

generate the artificial points. The answer is that, for the purposes of coding, a 

Gaussian distribution is simple and efficient to implement. Also, for high values of 

the free parameter fc, typically values higher than fc = 4, the Gaussian distribution 

acts as an excellent envelope function for the y-distribution. Hence it can, for certain 

values of /c, be used as an alternate distribution to sample from. Each random 

variable which contributes to one of the 200 points that make up the artificial kde 

will be generated by one Gaussian, not the square root of the sum of the squares of 

many Gaussian random variables.

5.13 Firing rates, the noise space, and OV

The firing rate of a neuron, r, can be defined as the average number of spikes per 

spike train of length L:
.. ni

i=l
(5.35)
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Figure 5.13: A graph of approximately 3000 artificially generated points, scattered 
throughout the noise space of neurons. Each point is generated using a Gaussian 
distribution, with values of /r in the range [1.5,5], and values of a in the range 
[0.2,3]. Here each point is coloured according to its fi value, with values given by 
the colour scale. As can be seen from the colouring, each arm of the graph is given 
by some fixed value of /r, and values along that arm correspond to variations in the 
value of cr, as will be seen in Fig. 5.14.

where N{Si{L)) just denotes the number of spikes in the fth spike train s of length 

L. For the dataset used here L = 1 second. Hence a firing rate can be associated 

with each neuron, and in terms of the space the firing rates can be super-imposed 

in colour onto each data point, seen in Fig. 5.15. As can be seen in the graph, most 

neurons have the same firing rate of approximately ten spikes per second, with a 

second group of neurons, eight percent seen on the bottom right arm, with firing 

rates above thirty spikes per second.

It is interesting to compare the firing rates with neuronal noise. We know the 

mean of each noise distribution reflects the average level of noise associated with 

the neuron. Once again, we can plot the mean of each noise distribution, in colour, 

on the noise space graph, see Fig. 5.9. As shown in the graph, the same bottom 

right arm has an increased level of noise. This region is also dominated by neurons
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Figure 5.14: Another plot of the scattering of 3000 artificial points into the noise 
space. Here each arm of the graph represents a fixed value of /r, chosen from the 
range [1.5,5]. In this case it is cr that is coloured, with values chosen in the range 
[0.2,3], given by the colourbar. As can be seen, a controls the position of the 
artificial point in a particular arm.

from OV, implying that neurons from this network typically have increased levels 

of noise and firing rate.

The network OV has been previously studied experimentally, where it was found 

that neurons from the OV network have higher firing rates and higher neuronal 

variability than either Mid or Field L neurons, [52]. This is consistent with the 

findings of the noise space of neurons, which provides an additional mathematical 

backdrop to these experimental results.

5.14 Discussion

The embedding of neurons on a manifold allows for manifold based mathematics to 

be applied to neuronal data. Information theory is an example of an area where 

manifolds are needed, and it is natural to apply information theory directly to these 

neuronal distributions. Here the difficulty of finding a natural language to describe
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Figure 5.15; A plot of the noise space of neurons, coloured by the firing rate of each 
neuron. The bottom right arm highlights a group of neurons, approximately eight 
percent of the population, with increased firing rates, given by the colour scale. The 
cluster on the bottom right arm, as was seen previously, also have the highest levels 
of noise amongst the neurons in the space.

spike trains vanishes, as instead the properties of spike trains are used to generate a 

distribution that describes the neuron itself. The entropy of a noise distribution can 

be computed, as well as the mutual information between two noise distributions. 

This is combined with the Fisher metric, which defines the geometry of the space.

It is unrealistic to assume the noise distributions are stationary. The free pa­

rameters of the noise distributions clearly change over time. The evolution of the 

free parameters can be seen as the tracing out of paths along the noise distribution 

manifold. It would be interesting to observe the paths traced by the distributions. 

Obviously these paths are bounded by the limits of the free parameters of the dis­

tributions, however the opportunity exists to look for periodicities or limit cycles in 

the motion of the distributions.

When isomap was applied to the space of Gaussian distributions, curvature was 

found in the resulting band. Three factors could contribute to this curvature. First,
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noise is certainly present, which as previously discussed has a distorting effect on 

isomap. Second, the number of points and the density of points in particular regions 

will influence isomap. Third, the use of inter-distribution distances, rather than 

some other measure of distance, may effect isomap. It would be interesting to 

experiment with different distance measures to see how this effects curvature. While 

the Fisher metric may seem an obvious choice, this requires knowing the explicit 

form of the noise distribution, something we don’t have. An alternative would be 

the KL divergence, which while not considered here, could prove more suitable than 

the distance in reducing curvature.

It is important to note the difference between noise distributions and the jitter 

and unreliability associated with spike trains. This noise distribution is a distribu­

tion of distances, not spikes or spike trains. Our basic ‘unit’ is a distance. This 

of course is a natural side effect of taking a geometrical approach to the analysis 

of spike trains. Hence, if we compute the entropy of a noise distribution, we are 

computing the entropy associated with the noise distances. While these reflect the 

noise found in spikes, the distinction must be made between the two. Information 

theory is phrased in terms of distances, not spikes.

Using methods such as isornap we can produce a map of the noise space of 

neurons. The coordinates of each point are assigned based on how noisy the neuron 

is. Hence this is already a way of visualizing the noise properties of a network 

of neurons. It is easy to see the ‘noise categories’ into which each neuron in the 

network falls. Groups of networks of neurons have been plotted on the same map, 

and differences in the noise properties of the neurons examined. Here the differences 

between networks were found to be rather insignificant for the zebra finch data, with 

the exception of OV. Approximately ten percent of the neurons displayed both high 

firing rates and high levels of noise. Neurons with lower firing rates did not display 

such noise.

Based on the noise, firing rate, and proportion found, it may be reasonable to
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assume these are inhibitory neurons. However, the noise space highlights this region 

as being dominated by network OV, indicating that the noise space has isolated a 

cluster of neurons according to network type. A split in the noise space related to 

whether a neuron is inhibitory or exhitatory is also possible. To confirm this, at the 

very least, requires having the waveforms of the spikes.
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Chapter 6

Discussion

Throughout this work the natural geometry of spike trains has been used analyse 

tangible quantities related to information theory and noise. The aim, in virtually 

every case, was to help build a new mathematics of spike trains. By identifying 

a geometrical structure consistent with the known properties of spike trains, issues 

fundamental to spike train analysis can be re-examined through this new framework.

Information theory, which is phrased in terms of random variables, was rephrased 

in terms of distances between random variables. In doing so we created an instance 

of the concept that any normed vector space is by definition a metric space. The 

key issue however was not related to this rephrasing, but rather to investigating 

how similar the metric space of information theory was to the metric space of spike 

trains.

The noise properties of spike trains from zebra finch auditory forebrain were 

found to be well modelled by a x-distribution. Again, the x-distribution is the 

distribution that distances between the Gaussian noise vectors of information theory 

follow. Hypothesis testing, our only tool for such a task, was used to test for x- 

distributed noise distances. The strongest positive statement that can arise out of 

such a test is that ‘there is insufficient evidence to prove the data was not sampled 

from the hypothesised distribution.’ For the data considered, this was found to be
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the case.

The original channel capacity formula from information theory is based on the 

assumption of additive Gaussian noise. There is no reason to believe that spike 

train noise should in general behave in such a way, even though this was found to be 

the case in the dataset we considered. As a consequence, it is necessary to develop 

this capacity approach to encapsulate both additive and multiplicative noise, thus 

producing a more robust model.

The question of whether information theory itself is a suitable framework for the 

analysis of spike trains must be considered. Here this was not addressed; instead, 

since information based quantities are commonly computed during the analysis of 

spike trains, the idea was to show equivalent quantities could be calculated in the 

metric space of spike trains. However the use of these quantities, in this case capacity, 

was not addressed. For instance, the bimodal distribution of capacities found during 

the analysis could point to a split between excitatory and inhibitory neurons, but 

without further information relating to the dataset this cannot be confirmed. It was 

the nature in which information theoretic quantities should be calculated, rather 

than the quantities themselves, that was proposed.

On more familiar territory, a metric space examination of neuronal noise was 

found to shed new light on the form of the jitter distribution. The Victor-Purpora 

metric was used to isolate variations in the temporal structure of spike trains corre­

sponding to the same stimulus. The result was unusual in the sense that, instead of 

being Gaussian as could be expected, it was found to follow a hyper-Laplace distri­

bution. Another unexpected result is the bimodality of the distribution, indicating 

that two timescales are needed to describe the jitter.

Working from the result that jitter is hyper-Laplace distributed, a spiking model 

was proposed to provide one explanation for this behaviour. This involved what was 

termed a ‘two state’ neuron model. This model consisted of a neuron that operated 

in one of two firing states, each modelled by a separate Poisson process.
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This was justified through firstly considering a Poisson process firing rate model. 

By definition, waiting times for spikes occurring from such a process are exponen­

tially distributed. The time differences between spikes from two trains generated 

by the Poisson process are then, by definition, Laplace distributed. In our case 

we have found that these time differences, the jitter, are hyper-Laplace distributed. 

One explanation for this is that the neuron generates spikes according to one of two 

Poisson processes, which it flips between. Time differences between spikes would 

then obey one of two Laplace distributions, with the overall distribution given by a 

hyper-Laplace.

The field of neuroscience typically requires direct application of any theoretical 

models. It was thought that, given the new x-distribution and hyper-Laplace models 

of neuronal noise, the models could be used to generate spike trains with noise drawn 

from these distributions. This was found to be the case: a ‘template’ spike train can 

have its spikes deleted with a certain probability, jittered according to the associated 

hyper-Laplace, and spikes inserted using a Poisson process. The noise found in the 

resulting spike train is then tested, using rejection sampling, to see if it is typical 

of noise found in the dataset. If this is found to be the case it is kept, else it is 

discarded and the process repeated.

Lastly, the geometrical implications of noise distributions were examined. As­

sociating a noise distribution with a neuron means implicitly embedding it on a 

manifold. Embedding data on a manifold allows for coordinate systems to be as­

sociated with the neurons themselves, rather than the spike trains. This allows for 

coordinate based analysis such as information theory and information geometry to 

be applied to the neurons, rather than spike trains.

Key to this is the idea that instead of focusing on a specific description of a 

spike train, it is better to use the metric properties of spike trains to define an 

overall state of the neuron. For instance, a mathematical framework now exists to 

calculate quantities such as the entropy of a neurons noise distribution, the mutual
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information of two neurons noise distributions, and the Fisher information between 

any two known distributions.

A geometrical approach to spike train analysis means considering neuronal activ­

ity in a very different way. Neuronal activity is now thought of in terms of distances 

and not spikes. Our ‘basic unit’ is not a spike, but a distance. The noise distribution 

is by definition a distribution of distances, not of spikes. Quantities such as jitter 

and unreliability arise from distance calculations.

In a metric space approach similarities are defined in terms of both firing rate 

and temporal structure, with the metrics free parameter giving a weighting to both, 

based on the dataset under examination. As a rich backdrop, while spike trains 

exist in metric spaces their neuronal generators trace out paths on manifolds, with 

coordinates given by many of the observable parameters we have come to associate 

with the neurons themselves.
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Appendix A

Kernel density estimation

A.l Kernel density estimation

Kernel density estimation is a method of estimating the probability density func­

tion associated with a dataset. The resulting function is essentially a smoothed 

histogram, and provides a method of examining the density of a dataset without 

trying to fit a known distribution.

A. 1.1 Density estimation

A probability density function, denoted f{x), can be defined relative to a random 

variable X:

(A.l)f(x) = lim —P(x -h<X<X + h) ^ h-^o2h ^ ~ ~ '

where x E X. This probability can be approximated by what is termed here as the 

‘naive estimator’ f{x), where

f{x) = ——(number of (Ai,.., A„) falling in {x — h,x + h)) (A.2)2hn
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This can be re-expressed using a simple weight function:

w{x) =
0.5 I X |< 1

0 otherwise
(A.3)

This implies

i=l h
(A.4)

An immediate difficulty with this choice of weight is that f{x) is non-continuous, 

producing a stepwise graph. This can be avoided by using a smooth kernel A', a 

normalized density function:
/OO

K{x)dx = 1 (A.5)
■OO

which when substituted gives

(A.6)
i=l

Here h is the ‘window width’, also called ‘smoothing parameter’.

The kernel K determines the shape of the bumps associated with each data 

point, while h will determine their width. As h is reduced more erronious fine struc­

ture becomes noticable and we are essentially computing the sum of a set of delta 

functions. Conversely, as h becomes large detail from the probability distribution 

becomes obscured.

Now f{x) inherits the properties of K, so if K is Gaussian then f{x) will be a 

smooth curve with derivatives of all orders.

A.1.2 Choice of smoothing parameter

A number of methods exist for selecting the smoothing parameter based on an 

optimization process. Here we describe the method of least squares cross validation, 

used throughout the course of this work to select the smoothing parameter.
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The integrated square error is defined

J (fix) ~ = j J + / f (A.7)

The last term does not depend on f{x), so we need to minimize

R{f{x)) = J f{xf - 2 y f{x)f (A.8)

Define f{x)-i to be the density estimate constructed from every point except Ap

(A.9)

In turn we can define a function Mo{h) through:

M, i(^) = J f{x)^ “ ^ (A.IO)

Taking the expection of the second density estimate we see

E{-Y,fm-i) = E{f{x^u)
n ^'

= E{J f{Xn)-nf{x)dx)

= E{ [ f{x)f{x)dx)

(A.ll)

Hence E{R{f)) = E{Mo{h)), which reduces the problem of finding the smoothing 

parameter to that of an optimization problem of Mq over h. It can be shown [22] 

that the mean integrated square error can be best reduced using the Epanechnikov 

kernel,

Ke{t) =
1(1- -l<f<l

0 otherwise
(A.12)
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During this work the Epanechnikov kernel was used for all density estimation.
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Appendix B

The X“distribution

B.l X’distribution; sample derivation

Here one derivation of the x-distribution is presented. In principal it is comprised 

of two components, a derivation of the x-squared density function, and a change of 

variables to transform this into the x-distribution.

B.1.1 The x-squared density

Let A be a random variable with Gaussian probability density function f{x), where

fix) e (B.l)

and cr, ji, are the standard deviation and the mean respectively. 

By definition the moment generating function is then

rV^
(B.2)
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Just completing the square and integrating we obtain

\/l — 2(7^t
gl-2a^t (B.3)

Now by ensuring X'^ has mean /r = 0 we obtain

Vl - 2aH
(B.4)

Define random variable where the X* are i.i.d Gaussian

distributed with mean zero. Since the Xi are independent:

'^X.+Xiit) = ^ xAt) (B.5)

Therefore has moment generating function

'^xAt) =
(1 - 2aH)

(B.6)

It should be noted that a T distribution with free parameters a and A has moment 

generating function

^x{t) =
1

(1-1)^
(B.7)

and corresponding density function

fix] a, A) =
Aa^-a-lg-Ax

r(c.)
(B.8)

We can observe that the x^ moment generating function is just a special case of 

that of the T moment generating function, with A = ^ and a = f The probability 

density function of the x^ is therefore
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B.1.2 X“Square change of variables

The X distributed random variable, defined x = + ••• + is obtained from

the x-square distribution through using the transformation

p{y)=pi9 (y))
dx
dy

(B.IO)

where g ■ that is, g{x) = ^/x.

Applying the transformation yields the density function of the non-standard x- 

distribution:

f^{x;k,a) =
2i 23;*^

with X > 0, p, = 0.

(B.ll)
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Appendix C

Gaussian channel capacity theory

C.l The capacity of a Gaussian channel

An information channel is a channel with some input given by a random variable 

A, output given by Y, and noise given by Z. In the case of a channel with additive 

Gaussian noise this relationship is denoted:

y = A + Z (C.l)

The information capacity of a Gaussian channel is defined as the maximum mutual 

information between input random variable A and output random variable F, over 

all input distributions f{x) satisifying constraint Pav-

E(X^) < P, {C.2)

The information capacity is then

C = max/(a;):£;(jic2)<p^„/(A; y) (C.3)
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We can bound the mutual information:

/(X;y) = h{Y)-h{Y\X)

= h{Y) - h{X + Z \ X) 

= h{Y) - h{Z I X)

= h{Y) - h{Z) (C.4)

Defining Gaussian noise Z as Z ~ 0 where

4>{z) =
\/2'kN

e 2^ (C.5)

and E{Z^) - E{ZY = E{Z'^) = N we have

h{Z) = h{(f)) 
-1 

logae 

-1 
logs e 

1

In (j){x)dx

e 2N \ dx

\n(2'KN) H--------------[ x^e dx
2 logs e 2N logs e J

ln(27rA^) +
2log2 e 

1
2log2 e

2log2 e

ln(27rA^e) (C.6)

Simplifying slightly we obtain

h{Z) = - log2(27reA^) bits (C.7)

Therefore

I{X-,Y) = h{Y) - -log^{2TTeN) (C.8)
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Now a bound on the entropy h{Y) is introduced:

E{Y^) = E{{X + Zy)

= E{X^)+ 2E(X)E{Z) + E{Z^) 

= E{X^) + E{Z^) (C.9)

since E{Z) = 0. As and E{Z^) - E{Zf = E{Z^) = A we have

E{Y^) <Pav + N (C.IO)

A fundamental result of information theory is that a Gaussian distribution maxi­

mizes h{Y), where h{Y) = | ln(27re(7^) and cr^ denotes the variance of Y. We already 

have a bound on the variance of Y, which yields

/r(y)<^log2(27re(P„, + 7V)) (C.ll)

Combining the results for h{Y) and h{Z) we obtain

I{X-Y) < ilog2(27re(P„„-f iV))-ilog2(27re7V)

(C.12)

Since maxy(a.):E(w)2<p„^-f(A; y) we must have

C = flogAl + ^ (C,13)

giving the capacity of a channel with Gaussian additive noise.
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Appendix D

Discrete and continuous entropy

D.l Entropy through measure theory

Probabilities are probability measures with total measure of one. When entropy 

is phrased in the language of measure theory the distinction between discrete and 

differential entropy will be seen to be governed by the choice of an appropriate 

measure. Examination of this approach leads to an intuitive understanding of the 

non-absoluteness of entropy in both the discrete and continuous context.

D.1.1 Entropy: a measure theory approach

The general form of entropy is given

h{X) = -f f{x) log f{x)dfi{x) 
Jx

(D.l)

where /x is a Lebesgue measure. For example the Lebesgue measure /x(A) on the 

interval A = [a, 6] is 6 — a, the interval width.

If / is a simple function, then

/n

fdix = ain{Ai)

i=l

(D.2)
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Now if is a measurable set:

r "

/ fdfi = ^ aifi{Ai n E)
t=i

(D.3)

D.1.2 Discrete entropy

The general form of entropy reduces to the discrete form through use of a specific 

measure. If u denotes the counting measure, that is, when applied to a set the 

number of elements in that set, and if X is discrete, then

H{X) = - / f{x)logf{x)du{x) 
Jx
'^f{x)logf{x)
x€X

(D.4)

where du{x) = 1 for x G X.

D.1.3 The Radon-Nikodym theorem

Say z/ is a a-finite measure on a measurable space {X, S), and u is absolutely con­

tinuous with respect to /i, where /r is another cr-finite measure on the same {X, E), 

then there exists /, a measurable function on X, which satisfies

(A) = f fdn
J A

(D.5)

Now / is commonly written dv/d^i, the Radon-Nikodym derivative, and is seen as 

a probability density function. Note that // is sometimes known as the reference

measure.
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D.1.4 Entropy in terms of the Radon-Nikodym derivative

Entropy has already been stated as

h{X) = -l f{x) log f{x)dii{x) 
Jx

(D.6)

or equivalently

Here f{x) can be written as

h{X) = -E{\ogf{x))

fix) = dP/dfl

(D.7)

(D.8)

where P is some probability measure. Importantly we see that the entropy depends 

on two measures, the probability measure P and the reference measure /r. That is:

hiX) = -Eilog dP/dfi) (D.9)

We see that measure theory allows for a more general stating of entropy. The mea­

surable function / is a probability density where the ‘non-absoluteness’of entropy 

can be seen: entropy depends crutially on both the choice of probability measure 

and reference measure.
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