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Abstract

Recent experimental advances in scanning tunneling microscopy make the measurement
of the conductance spectra of isolated and magnetically coupled atoms on nonmagnetic
substrates possible. The typical example is that of Co, Fe or Mn atoms deposited on CuN.
Notably, the conductance spectra are characterized by a competition between the Kondo
effect and spin-flip inelastic electron tunneling. In this thesis, the interaction between
electron spins and local spins is treated at the level of the non-equilibrium Green’s function
scheme for electron transport. It will be demonstrated that the Green’s function method
is capable of a semi-quantitative description of the competition between Kondo resonances
and spin-flip inelastic electron tunneling at a computational cost significantly lower than
that of other approaches. The theory is also extended to explain spin and non-spin
polarized STM probes and to cases when the spin-system is driven out of equilibrium.
The predictive power of the Green’s function method will also be implemented for hy-
pothetical experiments that could provide insight into future spintronics devices. Firstly,
the electric field induced spin-crossover effect, which has been predicted for two-centre
dimers and molecular nonowires, will be investigated. Using the second order pertur-
bation theory the conductance spectrum of a dimer containing spin 1/2 atoms will be
calculated and it will be shown that spin-crossover manifests itself as a large population
dependent dip in the conductance. Secondly, it will be predicted that a quantum spin Hall
current, spontaneously generated at the edge of a two-dimensional topological insulator,

acts as a source of spin-pumping for a magnetic impurity with uniaxial anisotropy, lead-
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ing to the possible manipulation of the impurity spin direction by means of an electrical

current without using either magnetic electrodes or an external magnetic field.
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Chapter 1

Introduction

1.1 Inelastic electron tunneling spectroscopy

Inelastic electron tunneling spectroscopy (IETS) has become an important tool for inves-
tigating the elementary excitations of nanoscale systems [1]. An excitation manifests itself
as an abrupt change in the differential conductance of a two-probe device as the voltage
sweeps across the excitation energy. This is the result of the opening of a new inelastic
transport channel for the electron tunneling. As the energy of the probed excitation sets
the critical voltage and the temperature range to observe IETS, it is not surprising that
the first experiments were all related to molecular vibrations of relatively high energy [2].

In this thesis, the spin degree of freedom of individual atoms will define the inelastic
channel as mentioned above. In particular the interaction between conduction electrons
and localized spins in transition metals with partially filled d shells is central to many
low-temperature spin effects, which may underpin the development of spintronics and
quantum information devices. When adsorbed on the surface of a metallic host (see Fig.
1.1(a)), magnetic transition metal atoms exhibit various distinctive features in the con-
ductance spectrum, which are indicative of many-body scattering between the conduction
electrons and the localized spins. These manifest themselves as conductance steps at volt-

ages corresponding to the quasi-particle energies of specific magnetic excitations and as
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Figure 1.1: (a) Schematic representation of STM experiments where the spin degree of freedom of
magnetic atoms on a metallic host are probed using an STM tip. (b) Cartoon showing the inelastic
process. An incoming electron from the tip excites the spin system from initial energy F; to final energy
Ey. The scattered electron is spin-flipped and lowered in energy by AF = Ey — E;.

zero-bias conductance peaks, known as Kondo resonances. The various features in the
conductance arise as the energy of the spin-scattered electrons is inelastically changed by
AF = Ey — E; when it travels from tip to substrate via the localized spins, as is seen in
the cartoon of Fig. 1.1(b). Here IJ; and E; are the final and initial states respectively of
the quasi-particle spin system. The first conductance features are associated to spin-flip
inelastic electron tunneling and can be described by second order perturbation theory
in the electron-spin coupling, but the second results from third order effects due to the
electron screening of the local spins.

Recently the continuous advances in low-temperature scanning tunneling microscopy
(STM) have allowed for the detection of excitations related to the spin degree of freedom.
This type of spectroscopy is usually named spin-flip IETS (SF-IETS). The first measure-
ments of SF-IETS were for single atoms randomly deposited on surfaces [3]. However,

STM techniques also open the possibility of assembling and manipulating entire nano-

structures [4] and of positioning magnetic ions on a surface at a desired position. This
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Figure 1.2: Experimental investigation of chains of Mn atoms on a CuN substrate [9]. The panel on
the left shows an STM topograph image of Mn chains and the panel on the right shows the conductance
steps indicating spin-flip events using IETS. For example, spin excitations for the Mn dimer are seen at
V = +6eV

enables the construction of atomic magnetic nano-structures and the study of the com-
plex magnetic excitations, resulting from the exchange interaction between the magnetic
ions and the substrate, and also between the magnetic atoms themselves. Such a novel
fabrication capability has produced a surge of experimental studies on the spin excitations
of magnetic nanostructures.

In particular, transition metal magnetic atoms on insulating surfaces, like Mn [5, 6] (see
Fig. 1.2), Co [7, 8], Fe [9, 10, 11] and molecular chains composed of Co-phthalocyanines
[12], have been the focus of intensive research in the last few years. This is accompanied
by investigations of spin-based logic in chains of Fe atoms [13, 14] which can be cou-
pled together to form all logical operations of a quantum bit. The atoms used in these
experiments all have partially filled d-shells, which are highly localized and responsible
for the magnetic moment, and extended s-like electrons, which are responsible for the
electron conduction. In general s and d electrons interact via exchange coupling so that
the magnetic structure is coupled to the conducting electrons. The magnetic atoms are
usually deposited on carefully prepared CuN-decorated Cu surfaces, where the typical

electronic coupling is weak enough that the magnetism is preserved, but it is sufficiently
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Figure 1.3: The emergence of the Kondo peak is observed at extremely low temperatures for a Co
atom deposited on CuN. The additional conductance steps at V ~ £5mV represent spin-flip events in
the s = 3/2 manifold [7]. The inset indicates the variation of the Kondo peak width as the Kondo
temperature increases.

strong to break the atomic central symmetry so that magnetic anisotropy develops. STM
experiments are then conducted to probe the IETS spectra.

The Kondo effect is the screening of a magnetic impurity due to the exchange coupling
between the localized spin and the conduction electrons in the surrounding environment.
It manifests itself as a low-energy peak in the conductance as the screened local spin
becomes a non-magnetic state and occurs at low temperatures. The detection of Kondo
scattering events in Co [7, 10] and Fe adatoms adsorbed on a CuN insulating substrate
have also been unearthed by the advent of IETS experiments. Co atoms in particular
exhibit interesting Kondo physics and STM experiments have demonstrated the depen-
dence of the Kondo peak on an applied magnetic fields, on the temperature and also on
the spatial extent of individual cobalt complexes [8, 15]. The reduced symmetry of the
surface leads to significant magnetic anisotropy, especially for Fe and Co. Fe is found to
have a large easy-axis anisotropy (D < 0), leading to a ground state spin close to that
of the maximum z-component of the integer S = 2. This results in four evenly spaced

conductance steps in the spectrum. For Co the large hard-axis anisotropy (D > 0) and
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Figure 1.4: Spin polarized STM experiments. Left panel: A Mn-terminated tip yields spin-polarization
in the tips electronic density of states. Right panel: The result of IE'TS experiments with a spin polarized
tip is seen here where the low-current spectra (blue) are recorded at a large tipsample distance and the
high current spectrum at a reduced tipsample distance. The inelastic step occurs at V = 4+0.7meV and
the bias asymmetry is indicative of a spin polarized tip. The Spin-state diagrams schematically show
transitions occurring for negative V at low and high spin-polarized currents, respectively.
the half-integer S = 3/2 spin produce a doublet ground state. It can be seen from Fig. 1.3
that the measured zero-bias Kondo resonance is then due to spin transitions between the
degenerate ground state levels [16]. In addition to the Kondo peaks observed in single Co
atoms, single tetracyanoethyelene (TCNE) molecules on Cu(111) are reversibly switched
among five states by applying voltage pulses with the tip of a scanning tunneling micro-
scope. One of these states exhibits a large Kondo peak at the Fermi energy and indicates
that it is magnetic. This can therefore represent a type of nanoscale “Kondo” switch
[17, 18]. Kondo resonances also manifests themselves in heavy fermions like URu5Sis [19]
(where the Kondo resonance in this case is a anomaly in the low bias bulk conductance)
and in magnetic dimers where the Kondo peak emerges from singlet to triplet transitions
120].

Interesting spin-probing and spin-manipulating features can be explored by a spin-

polarized STM tip, where the tip density of states is spin split between majority (spin up)

and minority (spin down) carriers. Spin polarization is achieved by placing a magnetic
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atom at the apex of the STM tip. This results in a bias asymmetry, with different con-
ductance step heights for positive and negative biases [6, 11]. Spin selection rules enforce
a suppression of the inelastic scattering depending on whether electrons tunnel from tip
to substrate or vice-versa. This results in a conductance profile which is asymmetric with
respect to the applied bias, whose magnitude depends directly on the polarization of the
tip. It is also well understood that by driving the spin out of equilibrium (by decreasing
the tip-to-sample distance) the conductance lineshape changes [6, 11] as is seen in Fig.
1.4. In this case one must assume that the tunneling electrons will influence the spin of
the atom as the time between two inelastic events (or the charging time) is small com-
pared to the spin relaxation time (the time taken by the spin to relax back to its ground
state). A tunneling electron can then encounter the local spin in an excited state far from
equilibrium. The population of the quantized spin states is then bias-dependent and for a
spin-polarized system this enhances the asymmetry of the conductance profile lineshape.

The recent rapid growth in the experimental activity has been matched by an equally
fast explosion of theoretical works. A general and now standard approach to calculat-
ing the conductance spectra of the various possible magnetic nanostructures is that of
combining a master equation solver for the quantum transport problem with a model
Hamiltonian describing the magnetic interaction [21]. This is an intrinsic many-body
approach, which in principle contains all the ingredients needed for solving the problem,
once the various transfer rates are known. As such it usually requires a large number of
parameters to be predictive. It is also difficult to incorporate the density of states of the
electrodes and as such is limited when looking to describe 2 or 3 dimensional systems.
An alternative strategy consists in treating the problem at the single particle level, by
using a tunnel Hamiltonian and/or the standard Tersoff-Hamann description [22] for the
STM current [23, 24, 25, 26]. This second class of computational scheme appears more
amenable to be implemented together with first principles electron transport methods.

However it still remains a hybrid theory, where the dynamic part of the problem needs to
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be approached at the model Hamiltonian level, although the level of sophistication may
include effects related to current generated non-equilibrium spin populations [27, 28].

Theoretical attempts to reproduce the conductance spectra have focused largely on
including second order scattering events, which cannot account for Kondo resonances but
fare well in reproducing the conductance steps and their relative intensities [23, 24, 25, 26,
27, 28, 29, 30, 31]. Addressing Kondo physics in Co is more involved and one has to look
for alternative techniques, such as Wilson’s numerical renormalization group theory [32]
informed by density functional theory (DFT). This is an inherently non-perturbative ap-
proach which was developed to counteract the failings of perturbation theory at energies
close to the Kondo temperature, Tx. The method creates a “logarithmically discretized”
conduction band where energy intervals become exponentially smaller as the Fermi energy
is approached. This makes the low-energy spectrum accessible and has formed the basis
of many theoretical descriptions of the Kondo phenomenon in Co [33, 34, 35, 36] and
in 2-channel phonon-assisted Kondo systems [37, 38]. Alternative techniques are based
on the Anderson model of exchange interaction between a local impurity and conduction
electrons. These are generally treated at a mean-field level [39, 40, 41] and achieve good
qualitative agreement with experimental results. The Kondo problem has also been ad-
dressed by using quantum Monte-Carlo methods [42] and more recently the validity of
time dependent density functional theory (TDDFT) in reproducing Kondo physics has
also been explored [43]. Although these schemes recreate well the conductance spectra
for magnetic atoms exhibiting the Kondo effect, they are numerically expensive.

In order to describe conductance spectra that exhibit both spin-flip conductance steps
and Kondo resonances, this work uses the standard theoretical approach to quantum
transport. This is the non-equilibrium Green’s function (NEGF) formalism [44, 45], whose
mean-field version can be combined with state of the art electronic structure theories to
produce efficient and predictive algorithms [46, 47]. It is to date the only fully quantita-

tive quantum transport approach capable of scaling to large systems [48] with multiple
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dimensions, i.e. it is the only one capable of performing simulations for materials set of
current technological relevance. As such, the NEGF method has an additional advantage
over the master equation approach. This will prove highly advantageous when investi-
gating IETS of magnetic atoms on 2D topological strips which will be introduced later
in the discussion. Importantly, inelastic contributions to the elastic current can also be
included within the NEGF formalism. In the case of scattering to phonons the problem
is usually treated perturbatively by constructing an appropriate self-energy at the level of
either the first (1BA) or the self-consistent Born approximation (SCBA) [49]. A similar
approach to the case of spin excitations is currently not available.

There are two main reasons for this gap. On the one hand, the separation between the
electronic degrees of freedom and those responsible for the inelastic excitations are well
defined in the case of nuclear motion (phonons) but less clear in the case of spins, since
even extremely localized spins have full electronic origin [50]. On the other hand, it is
also unclear whether the perturbative approach is valid for spins, i.e. whether a suitable
expansion parameter can be found. As such, as far as it is known, an expression for a
self-energy describing inelastic spin-flip events has not been derived so far.

In the present work this challenge is undertaken and a perturbative theory of spin-flip
spectroscopy based on the NEGF formalism for electron transport is formulated. The
theoretical analysis is based on a tight-binding Hamiltonian for the transport electrons,
which are locally exchange coupled to quantum spins. As such the formulation works
by assuming a separation between the transport electrons and the local spins and it is
constructed over the s-d model for magnetism [51]. An appropriate self-energy for the
spin-degrees of freedom up to third order in the interaction is calculated and this is used
in the standard NEGF scheme for transport. This self-energy is spin dependent and can
therefore be used to describe spin-polarized STM experiments which exhibit asymmetric
conductance spectra. By calculating the corresponding local spin self energy, the effect

that conduction electrons have on the magnetic atom can also be explored. This can be
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used to evaluate the population of different spin states when the spin system is driven out
of equilibrium by increasing the current.

An inherent bias asymmetry of the conductance traces of STM experiments on adatoms
also exists in non-spin polarized systems. This has been revealed experimentally [9]. In
particular this appears to be quite prominent for both single Mn atoms and Mn mono-
atomic chains. This feature has been previously ascribed to an effect arising from a
shifting of the density of states of the atom producing scattering. Such a density of state
effect generates a non-trivial slope in the conductance as a function of bias [53]. The
density of states shift however does not account for the asymmetry seen in the inelastic
step heights, which also depends on bias and on the ratio between tip and substrate cou-
pling to the sample [54, 55]. Here an alternative theoretical description based on the real
part of the interacting self energy is provided, which allows a better fit the experimentally
found conductance line-shape.

Within the approach developed in this thesis, a qualitative description of the behaviour
of the Kondo peaks for Co, when this is exchanged coupled to another magnetic atom,
will also be shown. However, due to the aforementioned restrictions of the perturbation
method when describing Kondo resonances it cannot be claimed that an exact quantitative
agreement with the experiments occurs. In addition for Fe, a quantitative description of
the conductance step over-shooting subsequent to inelastic tunneling due to a magnetic
excitation and to its decay as a function of bias is found. This was previously ascribed as
originating from non-equilibrium effects [27], but here it is demonstrated to simply arise
from the third order contribution to the interacting self-energy.

The NEGF formalism that will be outlined in this thesis to describe IETS experiments
will be highly dependent on accurate values for different control parameters that enter
the scheme. These involve the tip-to-sample coupling strength, the onsite energy of the
localized impurity, the spin quantum number of the impurity, the exchange coupling

between the local spins and the conduction electrons, the Lande g factor and also the
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axial and transverse anisotropy terms. All of these parameters will be extracted either
from DFT calculations or directly from experiments. Of particular interest also is the
calculation of the magnetic anisotropy energy (MAE) of certain adatoms on surfaces
[56, 57, 58]. A high MAE generally results in stable spin orientations which can be kept
over years. In this thesis DFT will be used to extract values for the anisotropy for various
magnetic atoms and in particular for an Fe-Cu dimer on CuN which until now has not
been investigated theoretically. In this case it has been shown experimentally that the
presence of the Cu atom drastically increases the anisotropy of the Fe-Cu system and
therefore results in a stable spin orientation with long relaxation time [59]. It has also
been suggested that the Fe-Cu system is also characterized by a larger than usual Lande

g-factor, as it was found in other cases [60], and the validity of this will also be tested.

1.2 Theoretical method as a predictive tool

Having shown how to use the NEGF theory to explain the results of certain experiments,
it is then useful to use the theoretical tools to predict future devices or novel experiments.
In particular, two different experimental schemes that have gone unexplored to date wil be
investigated and the theory will be used to predict what such experiments would reveal.

Firstly, the intriguing prospect of manipulating the magnetic configuration of the
spin system with an electric potential rather than an electric current will be explored.
It has been theoretically predicted that exchange coupling between local spins can be
controlled electrically both for a two centre dimer [61] and a molecular nanowire [62]. It
has been demonstrated that the dependence of the Stark shift of a given magnetic system
on its magnetic state results in an exchange coupling parameter that has a quadratic
dependence on the applied bias voltage. This enables spin-crossover from a low spin to
high spin configuration, a crucial effect in the development of quantum information and
spintronics devices [63].

In this thesis the possibility of using a scanning tunneling microscope (STM) to detect
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the dependence of the exchange coupling on an electrical potential will be investigated.
A bias-dependent conductance spectra of the most basic molecule comprising two cou-
pled spin 1/2 atoms will be calculated. Previous attempts to investigate the electrically
induced spin-crossover effect have focused on a classical description of the localized spin
[64]. The fully quantum mechanical approach of this work, however, is a more realistic de-
scription of a possible experimental investigation of the spin-crossover effect in molecules.
Furthermore, it can account for quantum excitations that are inaccessible by a closed
spin-model. It will be shown that a critical voltage Vi exists where the conductance
profile changes drastically during a spin-crossover between low spin and high spin. This
effect is highly dependent on the population of the localized spin system and ultimately
on the coupling between the STM tip and the localized spins.

Secondly it will be suggested that the quantum spin Hall (QSH) state can be coupled
with IETS to probe and manipulate single magnetic atoms without the need of a magnetic
field. The possibility of altering and controlling the spin-state of a single magnetic ion or of
a small magnetic cluster with an external probe without the need of an external magnetic
field represents a unique opportunity towards the understanding and the exploitation of
the magnetic interaction at the most microscopic level. Possible areas of application for
such ability may include spin-based quantum logic, where one necessitates to prepare,
manipulate and read spin-qubits.

The QSH state is a new topological phase of matter which has attracted extensive
attention in the past few years. It is a time-reversal invariant state characterized by a
bulk gap which has gap-less helical edge states with opposite spins counter-propagating
at a given edge. In a ground-breaking paper by Kane and Mele in 2005, it was shown that
at low energies a QSH effect can be generated on a graphene sheet, subject to a spin- orbit
interaction [65]. They also introduced the Z, topological invariant, which distinguishes
it from an ordinary insulator [66]. However, the spin-orbit interaction in graphene is

too small to realize this effect at realistic temperatures. Subsequently, Bernevig, Hughes
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and Zhang predicted that HgTe/CdTe quantum wells exhibit this novel phase [67]. This
prediction was soon confirmed by experiments [68, 69]. Three-dimensional analogs of
QSH state have also been found and are generically termed topological insulators (TIs).
More recently, evidence for helical edge modes in InAs/GaSb quantum wells has also been
found [70]. Interestingly, Silicene and two dimensional Germanium have been predicted
to exhibit QSH state at experimentally accessible temperatures [71, 72]. Furthermore,
there are theoretical proposals to realize a QSH phase in graphene by using non-magnetic
adatoms [73].

The proposal will be made that the QSH effect in Z5 TIs can be exploited to probe and
manipulate single magnetic atoms exhibiting a quantum spin. In Z, TIs, a spin-polarized
current exists along the edge of the TI. Therefore an atomic spin coupled to such an
edge can be manipulated in a similar way to spin-polarized STM experiments in the
presence of an external magnetic field. In this case however, the same spin manipulations
can be performed without the need of a magnetic field or a spin polarized tip. Although
some theoretical work has been done recently investigating Kondo signatures of transition
metal atoms [74] or spin baths coupled to TI edges [75], to the best of our knowledge,
IETS investigations of TIs remains unexplored. Here IETS conductance spectra will be
calculated using the NEGF formalism for single atoms on insulating substrates. It will
be shown how this technique, when coupled to the QSH current, describes spin probing

and manipulation on the edges of a TI.

1.3 Layout of thesis

The layout of the thesis is as follows. Chapter 2 will introduce the key concepts of DF'T
including the various approximation techniques that are employed for different systems.
Chapter 3 then focuses upon the electronic Green’s function formalism for electronic
transport when a perturbation is applied to a non-interacting system. This formalism

will then be implemented in Chapter 4 where the perturbation is introduced as the ex-
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change coupling between electron spins and localized spins. This will lead to a derivation
of the electron and local spin self-energies that can be expanded up to 3rd order in the
perturbation expansion both for spin and non-spin polarized electrodes. Chapter 5 will
then use the methods developed in Chapters 2, 3 and 4 to reproduce experimental con-
ductance spectra of the transition metal atoms Co, Fe and Mn as a means of testing the
validity of the formalism. The possibility of future IETS experiments will be probed in
chapter 6, where the formalism will be employed to describe the hypothesized electric field
induced spin crossover effect in two centre dimers and to investigate the spin manipulation
of magnetic impurities on topological insulator edges. Chapter 7 will then provide the

conclusions of the thesis.
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Density Functional Theory

The typical experimental setup for describing inelastic electron tunneling spectroscopy on
a number of magnetic atoms involves an STM tip and an underlying insulating substrate.
Since the STM tip is generally assumed to interact weakly with the magnetic atoms, the
insulating substrate determines the principle electronic quantities of the device i.e. the
magnetic anisotropy, the spin polarization, the coupling strength etc. The substrate is
generally composed of an insulating layer of CulN, which decouples the magnetic atom
from the bulk metallic Cu electrode. The entire device hence contains in excess of 100
atoms and represents a large many body problem. Describing such many-body systems
using computational techniques that are both accurate and efficient is therefore a major
electronic structure problem. The implementation of exact solutions to the many body
problem generally scales poorly with the size of the device therefore approximations must
be implemented. Techniques to describe the electronic structure of large systems range
from the tight-binding method to the Hartree-Fock method [76]. In this thesis the most
popular of ab-initio techniques, density functional theory (DFT) [77, 78, 79], will be used.

DFT is the most widely used approach to the many body problem due to its delicate
mix between accuracy and efficiency. The technique reduces a full many body problem
down to a series of single body equations defined within an effective potential which

includes all the many body interactions. The main approximations lie in the calculation

14
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of the exchange correlation functionals which is a quantity that includes all many body
interactions in the problem. Different varieties of exchange correlation functional are
implemented for varying degrees of accuracy in different systems, most of which will be
explored in this chapter.

The starting point for any many-body problem in quantum mechanics is the many-
body Schrodinger equation, which contains a Hamiltonian H acting on a many body

wavefunction 1 resulting in an energy F

Hy = Ev. (2.1)

Throughout the thesis the unit-less parameter h = 1 is assumed. The full many body

Hamiltonian is then written as follows

Ne,Nn
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where x; is the position operator for the ith electron and X; is the position operator for
the Ith nucleus. The first and second term represent the kinetic energy of the electron
with mass m. and the nucleus with mass M; respectively. The third term is the Coulomb
interaction between the nuclei, the fourth term is the interaction between the electrons
and the nuclei and the fifth term is the electron-electron interaction.

This problem can be simplified by employing the Born-Oppenheimer approximation
which exploits the fact that the nuclei are much more massive than the electrons My >>
me. Therefore it can be assumed that the nuclei remain fixed and unperturbed by the
motion of the much lighter electrons. This allows for a separation of the electronic and
nuclear components of the full many body wavefunction. The problem can then be reduced

to that of a calculation of the eigenvalues of the many-body electron Hamiltonian, which
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writes

=T+V+U, (2.3)

where it is now assumed that m, = 1. The operators T,V and U represent the kinetic
energy, the Coulomb potential between electrons and nuclei (and any external field) and
the electron-electron interaction respectively. The Schrodinger equation H|V) = E|¥)
is then solved, leading to the many-body wavefunction U({x;},{o:}) where x; are the
electron coordinates with spin o;. It then becomes a matter of defining a basis in which

to expand the wavefunctions so that the Hamiltonian can be numerically diagonalize.

2.1 Hartree and Hartree-Fock theory

One such expansion is the method employed by Hartree [76], where the wavefunction,
which is assumed to be spin degenerate, represents the simple product of single particle

wavelunctions

Up({xi}) = ¥r(x1)v2(x2) - . . Yn(Xn). (2.4)

After writing Eq. (2.3) in second quantization form and finding the variation of the
total energy with respect to the single particle orbitals, one arrives at the single particle

equation in an effective potential. This is defined as the Hartree equation

2

[— % + v(x) + v},(x)} Yi(x) = ei(x), (2.5)
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where ¢; are Lagrange multipliers and they approximate the ionization energies. The

Hartree potential is written as

Z/d '“f(f‘x , (2.6)

J#

which describes the density of a single orbital interacting with the potential of every other
orbital. This is the most basic example of a mean field approximation to the electron-
electron interaction. It must be solved self-consistently since the solution depends on the
orbital density which itself is calculated at each self-consistent step.

The next approximation in the expansion of the wavefunction includes the spin of the
fermionic electron and the takes into account the Pauli exclusion principle, which restricts
the occupation of a single orbital to two electrons carrying opposite spin. The total
electronic wave function must therefore be antisymmetric and this is trivially satisfied by
expanding the wavefunction in linear combinations of Slater determinants. In this format

the full wavefunction is expressed as

Yi(x1)xi(o1)  Ya(xi)xe(on) ... Un(x1)xn(o1)

U({x}. (o)) = 1/)1(X2):X1(02) 'l/’z(xz):X2(02) ’l/)N(X2):XN(02) @D

Yi(xn)x1(on) a(xn)xa2(on) ... ¥Un(xn)Xxn(oN)

Again imposing the variation principle (where the energy should be minimized by the

ground state wave-function) one arrives at the Hartree-Fock equation

2

— % +v(x) + UH(X)} Yi(x) — Z O /dx'wz/)j(x) = g;1;(x), (2.8)

X

where, in comparison to the Hartree equation, the summation is now performed over all
the j indexes. This eliminates the unwanted and unphysical self-interaction of an electron

with the potential generated by itself, which will be discussed further at the end of the



18 Chapter 2

chapter. Note also that the Hartree term in the square brackets becomes an integration

over the full charge density n(x) with
Z / d llz/)
x—x’

= /dx'm. (2.9)

The additional term is the exchange interaction which includes non-local terms such as
¥;(x) and is therefore much more difficult to solve than the Hartree equation.
Unfortunately, the Hilbert space for the above wavefunction technique grows like N4,
where N is the number of electrons, and therefore the problem becomes quickly in-
tractable. Attention is then shifted to density functional theory where the underlying
premise is that a calculation is made to determine the quantities n(x) and E rather than

the full many-body wavefunction, thereby decreasing the dimension of the Hilbert space.

2.2 Density Functional Theory

2.2.1 Hohnberg-Kohn Theorem

The central idea behind DFT is that the many-body wavefunctions and the energy of
the many-body system are functionals of the external potential v(x), i.e. ¥ = ¥[y] and
E = E|[v], since this potential parametrizes the Hamiltonian. It has already been stated in
the previous section that working with the full many-body wavefunction is not amenable
so that the use of the electronic density of the system is sought as the principle means to
evaluating relevant quantities such as the total energy. The electronic density is defined

as

n(x) :N/.../|\I/(x,x1,x2,...,xN)|2dx2...de. (2.10)
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Hohnberg and Kohn [77] showed that the potential of a system of electrons is uniquely
specified by the ground state charge density for the same system. They first established
that, up to an arbitrary constant, the electron density n of a non-degenerate ground
state uniquely determines the external potential v(x). Therefore the electron density can
be used to ascertain all the electronic properties of the ground state of the system. This
drastically reduces the size of the calculations that one needs to be perform given that the
many-body wavefunction is no longer explicitly required. The many-body Hamiltonian

introduced in Eq. (2.3) can be re-written in terms of the electron density of the system

E[n] = (¥[n]|H|¥[n]),
= (U[n)|T + U + V|¥[n]),

— (U + D[l + (Ul [V [n]),

= [77]+/77’(X)1'(X)dx, (2.11)

where F[n] is independent of the external potential.
Hohnberg and Kohn also proved a second theorem which establishes that the electron
ground state which minimizes the above energy functional is the ground state electron

density. In other words

Eoln] = minn{ﬁ[n] + / n(x)v(x)dx}, (2.12)

which can be proved using the variational principle [80]. Therefore it can be seen that
DFT reduces the problem of an N part interacting system to that of finding a function
n(x), which minimizes the ground state energy functional Ey[n]. At this point a major
problem remains in that the form of F[n] is in general not known exactly. Therefore
approximations to this functional must be sought. Also note that DFT is useful only in
determining the ground state of a system and it is not accurate nor theoretically sound

when dealing with excitations. In such cases time dependent DFT (TDDFT) should be
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employed [81].

2.2.2 The Kohn-Sham Theory

With the Hohnberg and Kohn theorems at hand, Kohn and Sham [78] set about trans-
forming the problem of finding the ground state electron density to that of solving a series
of non-interacting single particle Schrédinger equations. Finding the best approximation
to the functional F' [n] is also paramount to the Kohn-Sham theory. In deriving the Kohn-
Sham equations, one must return to the expression for F[n] and note that from the second

Hohnberg-Kohn theorem one arrives at

Fln] = (Wgs[n]|T + U|¥gs[n]) = (2.13)

= (Ugs|T|¥as) + Enln] + Ex[n], (2.14)

where the first term is the kinetic energy which is generally unknown for an interacting
system due to the non local nature of the Laplacian operator. The second is the Hartree
term, which is known exactly and is calculated as

%mz/ﬁ/ﬁ@ﬁﬁl (2.15)

X —x/

The final term is the exchange/correlation energy and contains all the necessary terms
beyond the Hartree energy which up to this point are unknown and must be approxi-
mated. One finds that there is a large contribution from the first two terms and a small
contribution from the exchange energy.

At this point Kohn and Sham sought about looking for a better approximation to the
kinetic energy. They noted that a certain system was known where the kinetic energy
could be calculated exactly, the non-interacting system. They decided to implement
this kinetic energy under the proviso that the electronic density in the non-interacting

system was the same as that in the interacting one. As such the energy functional for the
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interacting system can be rewritten as

E[n] = To[n] + / dxn(x) [L(X) + %UH(X):| + Exc[n], {2:16)

where the new exchange correlation functional also includes the difference in the two

kinetic energy terms
Ey[n] = Ex[n] + (T[n] — To[n)). (2.17)
The total energy functional for the non-interacting system is then

Ey[n] = To[n] + /dxn(x)veﬁ(x), (2.18)

where it is assumed that an effective potential exists such that the density of the non-
interacting system matches that of the interacting one. Now, by deriving the variational
Euler-Lagrange equations [the functional derivative of both F[n] and Ey[n] with respect
to n(x)] and eliminating the term Ty[n], one arrives at an expression for the effective

potential

dExc[n)

e (2.19)

Vet [N(X)] = v(x) + vu[n(x)] +

This represents a single electron non-interacting system and therefore the problem is now
reduced to the self-consistent calculation of the following Kohn-Sham equations for the

one particle orbitals ¢;

vZ

=5 T Ueﬁ‘(x):l ¢i(x) = €;¢:(x), (2.20)

where n(x) = va filo:(x)|* and f; is the Fermi function. The problem has now been

reduced to a set of non-interacting Schrodinger equations.
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The Kohn-Sham set of equations can then be solved for the KS eigenvalues ¢; and the
KS eigenvectors ¢;, which are correspondingly used to calculate the new charge density
n(x). The charge density is then used to find the new expression for the effective potential
Veg in Eq. (2.16). This scheme is iterated until self-consistency is reached (i.e. until
the charge density doesn’t change between consecutive iterations). The Hohnberg-Kohn
theorems state that this must be the charge density of the actual system.

The Kohn-Sham orbitals £; do not represent physical quantities. They are the eigen-
values of the fictitious, non-interacting Kohn-Sham orbitals. However when using DFT
to calculate observables like the total energy, the sum over all the occupied Kohn-Sham
orbitals must be performed. Usually, the KS eigenvalues are used to calculate the band-
structure of materials so that they are interpreted as single particle energies (note however
that this is not justified by the theory itself). In this thesis the Kohn-Sham eigenvalues
will also be assumed equivalent to resonances in the transmission coefficients in transport
calculations.

At this point a theory has been developed that depends on the accuracy of the exchange
correlation functional Fy.[n]. This quantity incorporates the difference between the kinetic
energies of the non interacting and the interacting systems. It also includes the associated
error to using the Hartree approximation for the many-body interactions in the system.
Finally it takes into account that the final wavefunction might not be a single Slater
determinant. As such all many body effects are contained in this quantity. The following

subsection underlines the various approximation techniques used to evaluate this quantity.

2.2.3 Approximate Energy Functionals

The local density approzimation (LDA) [78] is the simplest approximation to the exchange
correlation functional and underlines all approximations to it. It is a local contribution
since the potential at a particular point only depends on the charge density at that point.

A homogeneous electron gas is used as the reference for the approximation. Instead of
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the exactl exchange correlation (XC) functional for the real interacting system (which
is unknown), an alternative is adopted where it is replaced with the XC energy of the
homogeneous electron gas. The exchange and correlation energy density at position x is
the one of the homogeneous electron gas calculated at the density at the same point n(x).

Therefore the approximate functional becomes:
B = / n(X)exe(x)dx, (2.21)

where £,.(x) is the XC energy density per particle of the homogeneous electron gas. This

is broken into an exchange and a correlation part respectively
Exe(n(x)) = ex(n(x)) + £c(n(x)), (2.22)

where the exchange part at a given density is known exactly [78]

[3"(")} = (2.23)

m

Although no exact expression is available for the correlation part of the functional, data
from highly accurate numerical methods like Quantum Monte Carlo is used to estimate
Ec(n(x)).

To take into account spin-polarized systems the local spin-density approximation
(LSDA) can be implemented by using the XC-energy for the homogeneous spin-polarized
electron gas. This becomes a functional of both the up spin (n;) and the down spin (n))

electron density.

B ) = [ o)z (9,1 (). (2.2

In situations where the electron density is approximately uniform i.e. metallic systems,

the LDA approximation is quite successful. However, in many cases a large gradient in
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the electron density exists which hinders the accuracy of the LDA. In this scenario the
generalized gradient approximation (GGA) [82, 83, 84] was developed to cater for such
occasions (useful in chemistry for the calculation of bond lengths). For GGA the XC
functional is also written in terms of the density and of the gradient of the electron

density
E)I;CDA[n] = /n(x)sxc(n(x), |Vn(x)])dx. (2.25)

This can be systematically improved upon by further increasing the number of derivatives
to the electron density however this also increases the computational effort required [83,
84]

There are certain systems where the treatment of the level of LDA/GGA fails in
delivering the required accuracy of certain quantities. These systems generally show
strong correlations. Where LDA /GGA breaks down is in the approximation’s inability to
cancel the self-interaction of electrons with themselves. This is called the self interaction
error (SIE) and is somewhat rectified by implementing hybrid functionals which partially
remove the SIE [85, 86]. The SIE does not exist in Hartree Fock methods and this
combined with GGA offers a useful rectification to the problem. Some strongly correlated
systems (systems that exhibit unusual electronic and magnetic properties due to a strong
electron-electron correlation) are also handled better by using the LDA+U method, where
U is a parameter that represents the screened electron-electron interaction [87, 88, 89, 90,
91]. The value of U is usually fitted to reproduce certain quantities like the band-gap or
the lattice spacing and results in better approximations of the electronic and magnetic
properties of strongly correlated systems like transition metal oxides. This will be dealt

with in the following section.
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2.3 LDA+U

The LDA+U method is established by separating electrons into two subsystems containing
(i) localized d or f shell electrons which can be described by a mean-field approximation
to Coulombic electron-electron interaction (the Hubbard model) as 3U >, 2 Tin; (where
n; are d-orbital occupancies) and (ii) delocalized s and p electrons which can be described
using the one-electron LDA potential. With this at hand, the total energy functional can

be rewritten as a correction to the LDA contribution
1
EXC = Ef§y —~UN(N - 1)/2+ 35U ) nin,, (2.26)

where the first term is the LDA-XC energy and the second one is the Coulomb energy due
to the d-d interaction of localized electrons with N = ). n, and subtracts from the LDA
energy functional. The last term is the Hubbard-like mean-field term. The Kohn-Sham
dependent potential is then obtained by finding the variation of the total energy with

respect to the charge density of a given ith orbital V;(x) = dE/dn;(x)
1
Vi(x) = Vipa(x) + U(§ - 'ni). (2.27)

Up until now direct and exchange Coulomb interactions inside a partially filled d
atomic shell have been neglected, therefore these must be included to obtain a sound
computational scheme to describe a single magnetic atom. This is achieved by identifying
the regions of space where the electronic states show strong atomic characteristics, called
‘atomic spheres’. In the case of d shell electrons this is largely the case anyway. The
localized orthonormal basis is expanded within these spheres as |inlmo) where i is the
site, n is the main quantum number, [ is the orbital quantum number, m is the magnetic

quantum number and o is the spin index. For the special case when a given nl—shell is
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partially filled, the generalized LDA+U functional is defined as follows:
EiSa+u = Elsoa + Bu + Eac, (2.28)

where Epspa is the standard local spin-density approximation energy functional and Ey

satisfies

Eufnl=5 3 {<m,m”|vee|m’,m,"'>n7nm,n;zm,,, (2.29)
{m)o

- [(m, m" | Vee|m!, m") — (m, m"|Voe|m”, m’)] nfnm,nfn,,m,,,}.

and V. is the screened Coulomb interaction amongst the nl-electrons. The last term in
the expression accounts for the double counting (subtracts the LDA XC contribution from

the functional) and is given by
1 1
Eqe = SUN(N =1)/2 - 5J[NT(NT —1) + N} (Nt = 1)), (2.30)

where N7 = Tr(n?, ,) and N = N'4+N!. The screened Coulomb and exchange parameters
are represented by U and J respectively. As shown previously, the variation of the total

energy on the charge density V.2, = dE/én? , yields an effective single-particle Kohn-

‘mm

Sham potential which is used in the final effective single-particle Hamiltonian

mm/’ m/'m

=y Z {(m,m"[Veelm',m’”)n"’ A [(m, m"|Vee|m', m") (2.31)

{m},c
1 1
== <m,m”|‘/€e[m/”,m,>} ngn//m///} Tl U(‘N - 5) + J(NU T 5)
The value for V.. can be approximated from the assumption that within the atomic

spheres, the interactions are largely atomic in nature and, as such, it is determined from

the LSDA approximation. The parameters U and J are retained as input parameters and
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for materials that concern this work are usually of the order of eV. Note however, that
there are also a number of ways to evaluate U and J from first principles, mostly based

on linear response theory [92], however this will not be evoked in this thesis.

2.4 DFT in practice

2.4.1 Basis Set

Having described a formula for reducing the many-body problem to that of solving a
series of one body Kohn-Sham equations in an effective field, which incorporates accurate
approximations to the many body interaction, now an appropriate basis-set is needed in

which to expand the KS orbitals ¢; appearing in the KS equation

2

[— % + vefr(x)] ¢i(x) = €:¢i(x). (2.32)

V4

Xa), one can expand the KS orbitals as |¢;) = > ¢|Xa), in order

For a generic basis set

to arrive at the following generalized linear eigenvalue problem

> (ol Hlxa)ef = & ) _{xslxa)es, (2.33)
Y Hpalf =€), Spatf, (2.34)
> (slHIxa)e! = € D {Xslxa)es, (2:35)
> Hacf =5y Sas, (2.36)
(H—-¢;S)c; =0, (2.37)
where S is the overlap matrix between basis set orbitals. The full solution requires matrix

diagonalization on operation, which scales with the cube of the dimension of the basis set

and it is generally performed by using computational libraries Lapack/Blas.
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The choice of basis set now become important as this determine the efficiency of the
calculation, the simplicity of use and the completeness. In general there are three classes
of basis set each with its own advantages and disadvantages:

The choice of basis set now becomes important as this determines the efficiency of the
process, the simplicity of use, and the completeness. In general there are three classes of

basis-set each with varying advantages and disadvantages.

e Plane waves: Here a finite number of plane-wave functions are used to expand the
basis set. A specific cutoff energy is chosen for a given calculation. These are simple
and describe every point in space, are in principle complete and moderately efficient.

(examples include VASP, WIEN2K etc.)

e Augmented functions: In this case the basis set is expanded in terms of hallow
Gaussian functions which more accurately represent the tail portion of the atomic
orbitals. These are in general quite complicated but very efficient since they do not

deal with the entire space. (examples include GAUSSIAN, ASW)

e Local orbitals, LCAO: Expansion is performed in this case over the single atomic
wavefunctions. These are somewhere in between the two and use sparse matrices
for computation. They are also the most chemically intuitive. (examples include

SIESTA, BAND)

The problem of choosing the correct basis set lies in the electronic structure of dif-
ferent atoms in the periodic table of elements, in particular the fact that atoms have
a shell structure with different numbers of electrons occupying the s, p, d and f shells.
Consequently, there are two classes of electronic states in solids; core states which are
localized with a weak spread of electrons over the material and valence states which are
delocalized and show a large spread of electrons over the material. Both states therefore
require a contrasting basis set expansion, one localized and one delocalized. A problem

then arises when one wants to use one basis set to describe a given material.
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Furthermore, the effective potential of a given material has quite different characteris-
tics close to and far away from the nucleus. Close to the nucleus the potential is deep and
Coulomb-like because it represents the 1/r strong repulsion close to the nucleus. In the
interstitial region between atoms and far from the centre of the nucleus, the effective po-
tential is described by smooth, flat potentials as electron screening takes place. A general
approximation

The problem with choosing the ’correct’ basis set lies in the electronic structure of
different atoms in the periodic table of elements, in particular the fact that atoms have
a shell structure with different numbers of electrons occupying the s, p, d and f shells.
Consequently there are two classes of electronic states in solids; those involving core states
which are localized and act like single atoms and also valence states which are delocalized
and generally result in a spread of electrons over the material. These are characterized by
Bloch waves and account for the binding properties of the material and involve principally
the outer shells of the atom. Therefore the problem arises when seeking to describe these
contrasting states with a single basis set.

Moreover, the effective potential of a given material has quite different characteris-
tics close to and far away from the nucleus. Close to the nucleus the potential has deep
Coulomb like wells that represent the 1/r strong repulsion close to the nucleus. In the
interstitial region between atoms and far from the centre of the nucleus, the effective
potential is described by smooth, flat potentials. A general approximation is taken to
overcome this problem called the pseudo-potential approximation where both the wave-
function and the effective potential are replaced by smoother functions which match the
originals at a given cut-off radius. The properties of this approximation will be discussed

in the following section.
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Figure 2.1: Representation of the pseudo wave function and pseudo-potential. The pseudo functions
match those of the exact all electron functions at a given cut-off radius r,

2.5 Pseudo-potentials

Most chemical, electronic and structural properties of materials are governed by the inter-
stitial region between nuclei which contain the outermost “valence” electrons. The energy
of the inner or “core” electrons is usually much lower and therefore will not take part in
bond formation or electrical conduction. These “core” states can then be omitted from
the entire self-consistent DFT calculation. The pseudo-potential approximation involves
removing the core electrons and the nuclear potential and replacing them by a weaker
effective potential called a “pseudo-potential”[79, 93]. This pseudo-potential acts on a set
of pseudo wave functions rather than on the true valence wave functions. The resulting
pseudo wave functions can be constructed to behave smoothly in the core region which
improves efficiency by ensuring that only a small number of plane waves are needed to
represent it. The pseudo wave function is constructed so as to match the exact valence
wave function beyond a certain cutoff radius r., as seen in Fig. 2.1.

It is also important to preserve the scattering properties of the atomic orbitals when
constructing a smooth pseudo wave function. These are different depending on the angular

momentum channel [ and therefore the resulting pseudo-potential is also dependent on [.
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The Phillips Kleinman construction of pseudo-potential is the general method used in
most pseudo-potential generation schemes [94]. It exploits the fact that strong oscillations
of valence wavefunctions in the core region result in non-orthogonality between valence
(v) and core (c) functions. In this sense a pseudo valence wave function can be defined

such that a non-zero overlap between different core states exists i.e.

|u)ps = |dv) + Z QAew|Be),s (2.38)

where o, = (@¢|¢)ps # 0. With this definition the new smooth pseudo wavefunction
is the eigenfunction of a pseudo-Hamiltonian with the same eigenvalues as the original

valence wavefunction

H o+ Z( ge)lde) (D l} |$u}oe = EulBolpe;

—* Hpsld)1'>ps = 51*\¢v>ps- (239)

Therefore an energy and angular momentum dependent pseudo-potential exists with an

extra non-zero term in the core region

ps—vo+§:s — £c)|de) (e, (2.40)

where the new pseudo wavefunction has a different norm and resultantly a different charge
than the original valence potential. As a result this scheme must be generalized to conserve
the norm of the pseudo-potential. This is achieved by constructing an energy indepen-
dent pseudo-potential that also depends on the angular momentum quantum number [.

This pseudo-potential is then transferable to other systems. The new pseudo-potential is
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expressed as

Vos = _ vhe(r)|im) (im| =

lmax

=v%(r) + Y _ Al (r)B, (2.41)

=0

where the sum rule has been invoked and [,,,, is the highest [ component in the core region.
The pseudo-potential is now broken into a local and non-local part up to and including
Imax. In order to construct a good pseudo-potential one must ensure both softness (so that
the wavefunction can be expanded in a small number of plane waves) and transferability
(that it remains accurate even when describing electronic configurations different from
what it has been designed from).

With all this at hand the following steps are taken to generate an optimal pseudo-

potential:

e The exact all-electron wavefunctions for a suitable atomic reference configuration is
calculated. This is generally the ground state configuration of a given atom i.e. for

Si: 352 3p2.

e A smooth pseudo wave function is constructed that matches the all-electron wave-
function beyond a suitably chosen cut-off radius ., ensuring also that the pseudo
wave function is node-less. The added criteria are that that the pseudo wave func-
tion matches the all-electron wave function beyond r. with continuous derivative.

Furthermore the norm is conserved for both i.e. one has the condition

/Orc drr?[gh(r)]* = /Orc drr[dl (). (2.42)

This ensures better transferability.

e The pseudopotential is calculated by inverting the radial Schrédinger equation
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At this point almost all the necessary tools for ab initio studies on large scale sys-
tems have been described. The final correction, called the spin-orbit correction, is also
important in this thesis since the systems that are dealt with include localized spins
which exhibit large magnetic anisotropies due mainly to the spin-orbit interaction. This

correction will be discussed in the final section.

2.6 Spin-orbit correction: onsite approximation

The spin-orbit interaction is a relativistic effect, which increases in magnitude as Z* for
central spherical potentials, where Z is the atomic number. Therefore, for transition metal
magnetic systems, such as those considered in this work, the effect becomes pronounced.
Such magnetic atoms, when placed on a non-magnetic substrate, can exhibit large easy-
axis and hard-axis anisotropies, due mostly to the spin-orbit interaction, an important
quantity which determines the local spin-relaxation time. It is therefore apparent that an
efficient implementation of the spin-orbit interaction must be developed within DFT and
the pseudo-potential method. This is briefly outlined below.

Kleinman and Bylander have shown how the generation of non-relativistic pseudo-
potentials can be extended to account for relativistic effects [95, 96]. This is achieved by
solving the all-electron Dirac equation for a single atom. From this a pseudo-potential
can be extracted. This now depends on the total angular momentum j = { +1/2. The

pseudo-potential can be written as
V= |5,m)V;(j,myl, (2.43)
Jymy

and includes all relativistic corrections up to order o?, where « is the fine structure
constant and [j,m;) are the total angular momentum states. The expression in Eq.

(2.43) can be recast in terms of the more familiar angular momentum and spin quantum
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numbers [ and m [97]

Vo = V25, £ 120 = Z[WU,(,, + VSOL.S, |l, m)(l,m], (2.44)
lym
where
AR | SR (2.45)
= N+ 1 1+1/2 1-1/2); i
~ 2
e b m[‘ﬁﬂm — Vicaya)

Here Vj represents the scalar part of the pseudo-potential containing the non-relativistic
pseudo-potential and also the scalar relativistic corrections. V,SO is the relativistic spin-
orbit correction. At this point, the spin-orbit corrected Kohn-Sham Hamiltonian now

looks like

Hyor =Too + V35, + VOO, + VI + VS, (2.46)

where the non-diagonal elements of the Hamiltonian originate from the spin-orbit potential
but also from the exchange and correlation potential, whenever the system exhibits a non-
collinear spin. The first term is the kinetic energy contribution, the second and third are
the scalar and spin-orbit contributions to the energy respectively and the fourth and fifth
are the Hartree and exchange correlational energies.

This Hamiltonian can then be diagonalized with the preferred basis set in order to
determine the total energy of the system. Anisotropy parameters for a given magnetic ion
deposited on a substrate can be determined from the difference between the total energy

calculated by aligning the atom magnetic moment along the z, y or z-axes.
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Zero Temperature Green’s Function

Formalism

This chapter deals with the procedure used when dealing with a system that experiences
a perturbation. This will be treated as a general perturbation V' and could represent the
interaction of an electronic system with an external field, with a phonon or, as introduced
in the previous section, the exchange interaction with a localized impurity. In particular
for problems of this nature that cannot be solved exactly, the Green’s function formal-
ism is generally employed to treat the problem perturbatively. The starting point is a
Hamiltonian which comprises an unperturbed part Hy (this can be solved exactly) and
the perturbation V' (unspecified for the moment). The initial non-interacting system is
completely described by Hy and the effects of V' are assumed small to ensure convergence
of the perturbation expansion. At this point the operators used in this scheme must be
transformed to take into account the interaction term. All the analysis will be performed
at zero-temperature for simplicity (this approximation is accurate when dealing with low

temperatures <1K) and with the help of reference [98].

35
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3.1 Interaction representation

The interaction representation must be used when dealing with a perturbation to a sys-
tem. In this representation it is assumed that both operators, O, and wavefunctions,
¥, have a time dependence, contrary to the Heisenberg and Schrodinger representations.
The Hamiltonian can then be separated into two parts where the commutation relation

[Ho, V] # 0 holds. The following quantities are defined

H=H;+YV, (3.1)

O(f) — P,iHotOP,_iHot, (32)

b (t) = U)¥(0), (3.3)

where the unitary operator U(t) = eote~#t ig introduced and the symbol “indicates that

one is in the interaction representation. This choice of operators ensures that the time

dependence of the wavefunctions is governed by the interaction V(t)

%x}(t) = —iV (t)d(t). (3:4)

The unitary operator also obeys the differential equation:

and with the initial condition [/(0) = 1 has the formal solution

o5 t i1 tn—1

Ut) = Z(~i)"/dt1/dt2... / dt, V(t)V (k) ... V(ta). (3.6)

n=0 0 0 0

After introducing the time ordering operator T, which arranges operators in order of

decreasing time from left to right, and after having redefined the time integration variables,
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one arrives at the following expression for the unitarity operator

/dtl/dtg /dt,,T[V (t)V (t2) ... V(ta)]. (3.7)

Ut) = Texp[—i/dtlv(tl)] (3.8)
0

Ut) = Z

In addition to the unitary operator the S matrix must also be defined. This is the operator

which propagates the wave function ¢ (t) from time ¢ to the time ¢
D(t) = 5t ) (t). (3.9)
The S-matrix also satisfies the differential equation
a A / Y /4
aS(t.f) = —iV(t)S(t, 1), (3.10)

with solution

t
St ¢) = Texp[ = zt/dtlv(tl)] (3.11)

tl
The S-matrix is important when dealing with the ground state of the full interacting
Hamiltonian, for which one has no information. The ground-state wave-function of the
unperturbed system (denoted by (50), however, can be found exactly. It can be shown
[99] that the relation between the ground states of the interacting and non-interacting

systems can be defined as

%(0) = 5(0, —o0) o (3.12)



38 Chapter 3

so that ¢)(—o0) = ¢. This indicates that at t = —oo the system is in the non-interacting
ground-state, &o. The operator S (0, —o0) then propagates adiabatically the wave-function

up to the present (¢t = 0), following the evolution dictated by the interaction potential V.

3.2 Green’s function formalism

One is now in the position to introduce the Green’s function formalism to treat the system

perturbation. At zero temperature the electron Green’s function, G, is defined as
Gax(t, ) = —i(|Tex(t)eh, (@)), (3.13)

where |) is the ground state of the full Hamiltonian, H. The c’s are the electron creation
(c") and annihilation (c) operators with the indexes A labeling the eigenstates of the
Hamiltonian, H = )", sAcf\cA, with eigenvalues ¢y. In order to convert this expression
from the Heisenberg to the interaction representation the S-matrix from the previous

section, Eq. (3.12), is used which gives

—io|Tx(£)e}, (#)S(00, —o0) o
o{[S (o0, —00)|)o

Ghv(t,t) = (3.14)

In Eq. (3.14) the Green function is the expectation value of an operator calculated over
the non-interacting ground state |)o, where the operators ¢ and ¢! are now written in the
interaction representation. By using the S-matrix expansion provided in Eq. (3.11) one

arrives at the final expression for the fully interacting Green’s function, which reads

—g)ntl s b 5 v 1 ”.“ é éT/ /
Gw(t,t’)=z( n)! /dtl.../dtn <\Tv(t0)<ls(ongtig)(lt>)OA(t)l>o_ (3.15)

n=0

At this point the formalism encounters a problem. In fact, although the ground state of

the system at t = —oo is well defined [from Eq. (3.12)], there is now no means of describing
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t o
(a)
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G=(tt) and G’(tt)
t i ' t’ > t
i — 3 (b)
G'(tt)

_ (©)

t
G'(60)
Figure 3.1: Feynman rules for non-equilibrium Green’s functions calculated over the contour running

from —oo to —oco. The four configurations are the lesser and greater Green’s functions (a) and the
time-ordered (b) and time-anti-ordered (¢) Green’s functions.

the ground state at the time ¢ = +o0o. This problem was overcome by Schwinger [100],
who proposed to write the time integral in the S-matrix in terms of two contributions,
one that evolves from (—oo,7) and the other from (7, —00). This process ensures that
eventually 7 will reach +00. The advantage of this idea is that the integration begins and
ends with a known ground state 1)(—oo) = ¢o. This is called the time loop method and
it is the primary way to deal with non-equilibrium systems. Therefore, the formalism is

adjusted accordingly. The S-matrix then becomes
S(—00, —00) = Tcexp[ - i/dﬁV(ﬁ)], (3.16)
o

where the time-loop contour C' has been defined as the one that runs over the time

intervals (—oo, 1) and then (7, —00), and the operator T¢ as the time-ordering operator
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along the entire loop. The full Green’s function expansion finally becomes

Conlr ) = 3 / i / o(ITeV(m). V()D& (517

o{1S (=00, —00) )0

Although the introduction of the C' contour solves the issue of the t = +o0 limit, it
also brings the drawback of introducing six new Green’s functions, depending on how the
times t and ¢’ are positioned over the loop contour. These are schematically represented
in Fig. 3.1. In the Heisenberg representation for operators such Green’s functions are

written as

() = (el ()ea®)]), (3.18)
() = =i(lex(®)el (), (3.19)
Giv(tt)=0(t—t)G3 (1) + 0 —t)Gn(t, 1), (3.20)
() =0 — )G\ (t,t) + 8(t — t)Gy(t, b)), (3.21)
(1) = G () — Gu(tt), (3.22)
Gy (t, 1) = GS x(t, 1) — Gy (t, 1), (3.23)

Here G< and G~ are respectively the lesser and greater Green’s functions, G* and Gt are
the time-ordered and time-anti-ordered Green’s functions and G* and G* are retarded
and advanced ones. More information about the properties of these six Green’s functions
can be obtained by considering the unperturbed Hamiltonian, i.e. by looking at the
non-interacting case, which can be solved exactly. After diagonalization the unperturbed
Hamiltonian takes the form Hy =), E)\CT\C)\, where ey are the eigenvalues. The Green’s
functions are then evaluated over the known ground state |),—o, whose energy is gy. In

this case, the explicit time dependence of the creation and annihilation operators can be
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found from the Heisenberg equation. For instance the one for the annihilation operatcr is

%c,\(t) = —i[Ho, cx(t)], (3.24)

which has solution (the initial condition is ¢, (0) = ¢y)

ex(t) = crexp(—ieyt). (3.25)
Likewise, the solution for the creation operator c! (t) is

cl(t) = clexp(+igt). (3.26)

If one now inserts such solutions into the expressions for the lesser and greater Green’s

functions provided by Eqgs. (3.18) and (3.19), these can be written as

G;X(f, t/) = Z'O-,\,)\/(l = ('n,\>)exp[—i5,\(t — fl)]. (327)

St t) = —idy x (na)expl—iex(t — t)], (3.28)

where the expectation value over the contour of the electron number operator, ny = (‘:r\(’,)\,
has been introduced and the fermion anti-commutation relations have been used. It is
notable that at thermal equilibrium the number operator average is given by the Fermi-
Dirac distribution (n,) = f(ex) = 1/[exp(Bey) + 1], with Fermi energy ep, and § =
1/(kgT) with kg being the Boltzmann constant. By using these relations the full energy

resolved dependence of all the six Green’s functions can be constructed. This is obtained
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by Fourier transform of their time-dependent counterparts

G<(\w) = 2mif (E2)8(w — £2), (3.29)
@ (%) = —2mill — Flex)[Blw =), (3.30)
G\ w) = ﬁ (3.31)
= d—_;%m (3.32)
G\ w) = FIATm (3.33)
G (X, w) = . (3.34)

w-—¢ex—11m

where 7 is a positive and satisfies n — 07, while 7, is positive for £, > ¢p and negative

for e\ < ¢p.

3.3 Wick’s theorem

In order to tackle the interacting problem one needs to return to Eq. (3.17) and ascertain
the rules, which determine the contour time ordering of the product of the V() operators.
These are different depending on whether the V’s describe electrons, phonons or, as in
this case, spins. Assuming that the perturbation is electronic in nature (for instance a
density-density operator representing Coulomb repulsion), one then needs to deal with

time ordering products of the form
_;\n+1 ¥ o 2 A1 /
Gruln =3 l)' /dﬁ . ./dTn()(lTCV(Tl) VNGl (4 )

2l o([S(=o0, —c0)o ’
C C

where there is always an equal number of creation and annihilation operators and an
operator that creates a state is always followed by an operator that destroys one. In this
case, the task is that of re-expressing Eq. (3.35) in terms of products of time ordered pairs

ol|Tc {5‘,\(7‘)@1,(7")}‘)0. Clearly, as there are \ pairs of operators, there are A! different
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possible orderings for such pairs. Using Wick’s theorem, which is extensively descrired

in ref. [101], there are three simple rules that can be gleaned for ordering the operatcrs.

1. There is a sign change whenever two neighbouring Fermi operators are interchanged.

Therefore the number of interchanges must be noted.

2. If there are a mixture of particles in the time-ordering bracket, i.e. if there exists
operators that do not commute, these can be separated into different time-ordering

brackets.

3. We recognize the time ordering of a product of operators with different time argu-

ments as the unperturbed Green’s function, namely
ol Tc {éz\(T)f’,Tv(T/)H)o = iGopx (T, 7). (3.36)

These rules will be implemented when performing the full time-ordering of the interaction
Hamiltonian, which will be introduced later in the chapter. This will show Wick’s theorem

in action.

3.4 Langreth’s theorem and Dyson’s equation

Wick’s theorem essentially allow the expansion of the fully interacting Green’s function
in terms of the non-interacting Green’s functions up to a given order, n. This can be
generalized at any order, n = oo, by Dyson’s equation. Dyson’s equation is a reformulation
of the general perturbation expansion of the full interacting Green’s function of Eq. (3.14)
in terms of a quantity called the self-energy. This quantity in itself can be evaluated

perturbatively and provides a compact way to describe the effect of a perturbation on a
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physical (non-interacting) system. Dyson’s equation takes the form
Gz, 7) = Gylr, ™) +/d7‘1/dT2G’0(T, m)2(11, 72)G(12, '), (3.37)
a &

where Gy is the unperturbed Green’s function and ¥ is the self-energy. In order to find
the real time components of this relation the reader should refer to Haug and Jauho
[102], who describe Langreth’s theorem for the evaluation of “contour-convolutions” as
the one written above. It can be shown that the retarded /advanced and the lesser/greater

components of the Green’s function are respectively

G®(r,7') = Gy (1, 7') + / dry / drGy (7, )BT (11, 73) " (1, 7)., (3.38)
C C

GS(r,7') = Go(r, ') + /drl /dTQGr(T. 7)25(11, 72)G*(12, T') (3.39)
c ¢
whose energy resolved components can be calculated by Fourier transform

@ (w) = Gi® (W) + G5 ()T (W) G (), (3.40)

G5 (w) = Go(w) + G (W) TS5 (w)G?(w) . (3.41)

3.5 General expression for the current through an
interacting region

The power of the Green’s function formalism will be demonstrated by describing the
perturbation to a close system originating from the coupling to two semi-infinite leads.
This is a problem that can be solved exactly within the approximations that will be
introduced. Such an approach coincides with the widely used non-equilibrium Green’s
function (NEGF) method, which has been extensively used in the literature [44, 45, 46]

to describe the electron transport problem. Here it will be discussed how to construct
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Figure 3.2: Schematic of the transport device containing two decoupled leads connected to a central
region, which contains information on the interactions in the system

a transport theory starting from the Green’s functions that have been covered in the
previous sections. At this point a specific Hamiltonian that describes an interacting

region sandwiched between M semi-infinite, non-interacting leads is introduced. This has

the form
M M
H= Hillt({C‘;; C/\}) o Z Hllcad + Z Héoupling' (342)
Higpq = Zfaibzibai- (3.43)
Zoup]ing =5 Z (‘/Cli)\bjxic/\ + h.C.), (344)
a A

Here Hj, is the Hamiltonian of the i-th lead with b (by;) creating (destroying) electrons
at the energy ¢,;, while Him({cf\; ca}) describes the interacting region and it is constructed
with the creation and annihilation operators (’:f\ and ¢, (they form an orthonormal set).

Finally H!

coupling

couples the i-th leads with the interacting region, through the hopping
matrix elements V,,; . Initially it is assumed that the leads are completely decoupled from
the scattering region, i.e. that V,;y = 0 for every i. One can then define the number
operator in each of the leads as n' = Yo bLibai. The rate of change of the expectation
value of this operator gives the current, I, flowing into the interacting region from the

i-th lead. This is simply

o= —%(n”) = —i([Hn]) =i) [Vai,A(bLicQ(t) — VA (chbai) (). (3.45)
a,\
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Clearly, one can now recast Eq. (3.45) in terms of the Green’s functions introduced
before. In this particular case one can define the hybrid real-time Green’s functions

describing the overlap between the i-th lead and the interacting region as

G ai(t ) = i(bL;(t)er(t)), (3.46)

siatt) = i<CJ,r\(t)bai(tl)>a (3.47)
so that the current can be written as

= Z [Vaiv\G;ai(t? t) - V(;i,)\GZi,/\(ta t)]:

aA
N / —62% Z [V"i-AGiai(w) - VZi.,\G;,,\(w)] : (3.48)
s a\

At this point there is still no expression for the lesser hybrid Green’s functions. Therefore,

in order to proceed, one must define the following contour ordered Green’s functions

Croi(T, ™) = —i{Te{ea(T)bL(T)}), (3.49)
Gaip(7,7') = =i{Te{bai(T)c) (7)), (3.50)
G (7, 7) = —i{Te{ea(r)ch (7)}), (3.51)
Gaiai(: ') = =i(To{bai(M)BL(T)}). (3.52)

Finally, by using the Dyson equation, the following expressions for G ,; and Gaiy are
obtained, in which the coupling between the interacting region and the leads appears

explicitly

G)\.ozi(Ta T/) = Z / dTlG}\,A’ (T, TI)VJi_A/Gai.ai(Tla Tl)v (353)
x Ve

G,\.m‘(T, T’) = Z/ dTlGai.m’(T, Tl)vai,)\’G/\’,A(TlaTl)' (3-54)
e
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Now, by following the contour integration rules and by using the relations defined
in Egs. (3.19) to (3.23) one arrives at the following real time expression for the hybrid

Green’s functions

Giailtrt) = 3 Vi [ 43 [G5t, 0G5t #) + G 10)Ga(t, )] (359)

oo

Z Vai,x / dt: |G it 1) G (1, ) + G it )Gy (11,1)], - (3.56)
which after Fourier transform becomes

Claile) =3 i | G ()G (@) + Gy (@) Gl i), (3.57)

Z‘mx{ i @G5 (@) + G ai(@)Gin (@)]. (3.58)

Finally the expression for the current can now be written as

: *® dw
I :/ E Z V V‘“ A [Gaz az(w)Gi/\’(w) ng az( )G;/\,(u})} =
—e0 a,\ N

= /::, %Z [Eiﬁf\/(w)Gi,\'(W) - ,\,\/( w)G3 (W )} -

AN

= /—oo %Tr{[ziq<(w)][G>(w)] -~ [Ei,>(w)][G< (w)]}’ (359)

o0

where the square brackets denote the matrix form of the operator describing the interact-
ing region. In the same equation the lesser and greater parts of the self-energy have been

defined in the same region as

)\ /\’ Z ai, )\Gaz az Vai,/\" (360)

These represent the rates at which a particle with energy w leaves (<) or enter (>) the

i-th lead. Equation (3.59) provides a rather transparent interpretation for the current,
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Figure 3.3: Schematic representation of resonant tunneling through a single onsite level when (a) the
bias window is just below the level and (b) the bias window includes the level. The current vs voltage
profile is for the process is shown in (¢) where the current is calculated in units of the saturation current

Iy =2I' T'g/T

which is nothing but the difference between the in-scattering rate and the out-scattering

one to and from the scattering region.

3.6 Current through single non-interacting level

As an illustration of the method developed so far the simple case of a non-interacting
region consisting of a single level with energy ¢ is considered (note that the index A is

no longer necessary and it has been dropped), whose Hamiltonian is simply

Hine = 5()(‘T(" (361)
It is further assumed that the level is coupled to only two semi-infinite, non-interacting
leads, respectively to the left, i = L and to the right, i = R. These are described by a
single-orbital tight-binding model with hopping parameter v, and on-site energy ¢, = 0.

The self energy associated to each lead is then

S W) =) ViGE, 0i(w) Vi (3.62)
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As the leads are semi-infinite and under the condition that the density of states of each
of the lead, p;(¢4), is known, the sum over o can be replaced with an integration over

energy

oo

SPw) =) / deopi(Ea) Vi (€6)GS, i (w)Vilea), (3.63)

«

{ ifi(w)Ti(w) (3.64)
_,,'[

1 - fi(@)Diw)

where the Green’s function derived in Eq. (3.29) has been used for non-interacting
fermions. A bias, V, is applied between the left-hand side and the right-hand side lead
so that the resulting chemical potential in each lead is shifted by p = eV/2 (e is the
electron charge), namely pp = ep + p and pr = p — p (note that each lead in isolation
is in equilibrium). Here the Fermi function is defined at the relative chemical potential,
namely fi(w) = 1/[exp(ﬁ%‘) + 1]. In the expression for the self-energy, Eq. (3.63), the
broadening function I';(g,) = 27p;(c4)|Vi(24)|* has also been introduced. This gives a fi-
nite lifetime to the energy level of the interacting region. Clearly such a broadening (and
consequently the lifetime) depends on the strength of the coupling to the leads. It can be
shown (see Appendix A) that the broadening function for the single-site, one-dimensional

tight-binding model is given by

2v? w— €02 ,
Pola) = 20011 & ( 0) , (3.65)
2%

where 7, is the hopping from the closest atom in the semi-infinite chain to the interacting
region, i.e. there is only a single non-vanishing V;, = 7;. In the wide-band limit, vy >> ¢,
which is assumed throughout this work, the broadening function becomes a constant

I'; = 297 /7. The resulting retarded and advanced self energies in the leads can then be
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found from the relation

E10w) = Y VaiGatai@)Var (3.66)

ar— ar, at
«

After substitution Egs. (3.33) and (3.34) the energy integral can be evaluated to obtain
Ly
7@ () = ki (3.67)

The full artillery to calculate the energy-resolved Green’s functions for the interacting
region is now available, which in turn allows one to access to the current. From advanced
and retarded Green’s functions defined earlier, one has the following energy resolved
relations in terms of the un-perturbed (or unconnected) interacting region (denoted with

the subscript 0)

Gr (W) = Gg(a)(w) + Gs(“)Z"(“)(w)Gr(a) (w),

1
- (3.68)

GS(w) = G"(W)TS(W)G(w), (3.69)

where the total self energy is defined as the sum over both contributions coming from the
left-hand side and the right-hand side lead £(w) = ). ¥;(w). The final expression for the

current through a single non-interacting level then takes the form

e /_Oo B W6 @) - T @6}, (3.70)
= /dwFLPFRp(w)[fL(w) — fr(w)), (3.71)

where the total broadening is I' = ) . I'; and the density of states in the interacting

region is p(w) = (T'/27)/[(w — &0)? + I'?]. With this expression, the standard result from
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scattering theory, namely the Landauer-Biittiker formula [45], has been recovered. In fact

Iy, I
allo—<orrr7] 2d

the current is simply the product of the transmission coefficient T'(E) = St

the difference between the Fermi functions of the two leads. In this particular case the
transmission coefficient has the form of a Breit-Wigner resonance at the energy level, ¢.
This relation indicates that current will flow only when the energy level is within the bias
window. The corresponding current-voltage plot (see Fig. 3.3) presents a characteristic
current step when the energy level first enters the bias window. With the convention for

the chemical potential in the two leads this happens when V = 2¢¢/e.
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Calculation of the Interacting Spin

Self energy

In this chapter the specific interaction between electrons and spins is introduced, upon
which a perturbative theory of spin-flip spectroscopy will then be formulated. The theo-
retical analysis is based on a tight-binding Hamiltonian for the conducting electrons (as
in the simple case of Chapter 3), locally exchange coupled to quantum spins. The formu-
lation is then based on the assumption of a separation between the transport electrons
and those contributing to form local spins, i.e. it is constructed over the s-d model for
magnetism [51, 52]. An appropriate self-energy is then constructed for the spin-degrees
of freedom up to the second order in the perturbation expansion and this is used in the
standard NEGF scheme for transport. The methodology is then applied to describing

SF-IETS in atoms and atomic chains and the results are compared with experiments.

4.1 Impurity Spin Models

The spin impurity model that will be used in this thesis stems from the Kondo formalism
[103] where an impurity atom at position x,, immersed in an electron continuum has an

associated wavefunction given by ¥ (x — X,), where L denotes a localized state. The

92
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continuum wavefunctions are defined by ¢ (x) and can have an overlap between each
other. The total many-body wavefunction is the sum of all the possible states of the

system.
\D(X) = Z Xa'(/)k(X)Ck s Z XawL(x = Xn)('Loa (41)
ko o

where the ¢’s are destruction operators of the given state. The Hamiltonian is as defined

in Chapter 1:

5 v e
A=Y |-t +olx -
- 2 +?(X)]+21 | =%y
e lNP
g T(x; ) U(x;,x;), (4.2
; (X)+2§ (i, %) )

where v is the potential of the host lattice which also includes that of the impurity and U
represents an electron-electron interaction. By using second quantization it is seen that

the first term, which does not contain any many body interaction, can be written as

[ ¥ T00udx = Y aucluio + Y cvchotin + 3 eyt
k,o g kk',o

+ Z Vk(CL,CLo = CTLUCkU). ':4.3)
k,o

The first two terms are the onsite contribution to the continuum and the local states
respectively. The third term is a potential scattering term between both type of states
and can generally be incorporated into the Hamiltonian with a suitable choice of the basis
wavefunctions. The important term here is the hybridization term between the continuum
and the local atom. This describes a process where electrons are exchanged between the
continuum and the local state and survives due to the orthogonality of the electron and
local spin system.

The magnetic properties of a system are investigated by examining the electron-
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electron interaction terms, which have the form
Hy = /dx/dx'\IJT(x)\IJ(x)U(x,x')\I/T(x’)\I’(x'). (4.4)

This results in a wealth of different terms, involving the local state and contributing
differently to the magnetic properties of the system.

(1) The first involves terms which look like

1
Hdirect == 5 Z Z Ukk’ CEUCLUC{(ﬂ’Ck'U/a (45)
kk/ 0,0’
where
e = /dx/dx’wf:(x)z/;k/(x)U(x,X')W)L(x'—xn)|2. (4.6)

which is a direct term and is generally ignored since it does not contribute to any magnetic
phenomena.

(2) The second comprises terms which look like

1
Hy = ) Z Z Faoth Br ol Bur (4.7)
kk’ o0’
where
T /dx/dxlwﬁ(x)wL(X — X)) U(x, X" )0} (X — %) U (X). (4.8)

This term represents a spin-flip process where an electron spin can be flipped as it scatters
from state k to &’. In order to uphold spin conservation this must be matched by a spin

flip of the local spin state. It is easily shown that this term can be restated in terms of
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the spin operator Sy, (see Appendix B for definition of spin operators)

= E E Jkk'ckack’a’CLa/CLa = — E E Jkk’ cka[a' aa'Ck’a / SL, (4.9‘

kk’ a,a’ kk’ a,o’

where [o] is a vector of Pauli matrices and Sy can be written in terms of the localised

spin creation and destruction operators as
Sy = (cTLTcLl 4 cTLchT)fc + z'(cTLchT - CJ'LTcLl)Sf 4 (CTLTCLT = C‘Llcu)i. (4.10)

This is called the s —d model and is exact for spin S = 1/2 but, to a good approximation,
can also be satisfied for any general spin with spin quantum number S. The s — d model
describes the interaction of conduction s-band electrons with more localized d-orbital
electrons, whose total spin component is represented by S. It is clear that the spin-flip
terms are those which cause mixing of the quantum state away from the z-axis. This is
the model that will be employed in the formalism here-on-out. This Hamiltonian form
is useful since conduction electron spins and local electron spins are orthogonal and can
therefore be treated separately.

(3) The third and final term involves four local operators and resembles the Anderson

Hamiltonian [104]. This looks like

HU = {f Z CEUCTLO-’CLU”CLU”'y (411)
where
= /dx/dx'le(x — %) |PU (%, X)) [ (%' — %)% (4.12)

Hy becomes the standard Hubbard Hamiltonian [105] if the orbital is non-degenerate

and can only support opposite spin states. In this case the sum in Eq. (4.11) is simply



56 Chapter 4

Figure 4.1: Schematic representation of the device investigated in this work. A scattering region,
comprising N spin-carrying atoms (light-blue circles) and described by the Hamiltonian Hg, is sandwiched
in between two semi-infinite electrodes (red circles). These mimic the substrate and the tip in a typical
STM experiment. The electrodes are non-spin polarized and they are described by the Hamiltonian Hgyu
and Hy,. In the scattering region the transport electrons are exchange coupled to local quantum spins
S;.

("(’J‘L](’LT«L(:“. It should be noted that a canonical transformation exists wherein the
Anderson/Hubbard model is transformed into a form similar to that of the Kondo model

with additional terms. In this thesis the Kondo s — d model will be used and it will be

treated as an approximation to a more general Anderson/Hubbard formalism.

4.2 Hamiltonian of scattering region

The typical experimental setup considered in this thesis is that of an STM measurement,
i.e. it comprises an STM tip positioned above one of the atoms of a magnetic nanostruc-
ture, which in turn is weakly coupled to a metallic substrate across an insulating barrier.
This system is modeled by a pair of non-interacting semi-infinite leads sandwiching a
scattering region, as outlined in Fig. 4.1. The left-hand side lead, the scattering region
and the right-hand side lead represent respectively the STM tip, the spin-coupled nanos-
tructure and the substrate. They are described respectively by the Hamiltonian Hyp,, Hs
and Hg,,. For simplicity we assume an identical electronic structure for both the leads

(i.e. they are made of the same material), which we describe by a one orbital per site
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tight-binding model with nearest neighbour interaction (as in Chapter 3).

To fix the ideas the assumption is made that the scattering region consists of N atoms
arranged in a chain structure (note that for this discussion the spatial arrangement of the
atoms does not necessarily need to be a chain form). The A-th atom carries a quantum
mechanical spin Sy and it is characterized by an on-site energy z,. It is assumed that
the tip and substrate can only couple to one atom at the time in the scattering region,
Le. that only one atom of the magnetic nanostructure is in electronic contact with the
electrodes. Such a coupling is given by the two hopping integrals vi,-s and ygu,-s. This
means that the electronic states of the scattering region are broadened by the interaction
with the electrodes by I'yj,—g = 273”)_5 fryg and Vg = 2“,31})_S /70, where 7, is again the
hopping parameter within the leads. It is assumed that g, > [iip—s and also €9 > T'syp—s,
leading to a constant density of states of the scattering region at the Fermi energy. This
assumption has two main consequences. On the one hand, the electronic interaction
among the atoms in the scattering region can be neglected (i.e. the creation of bonding
and anti-bonding levels is irrelevant ), as this will generate states far enough from the Fermi
energy to ensure a constant density of states. On the other hand, one can simplify the
interaction between the atoms in the chain and the substrate to an electronic coupling
to a single atom, as additional coupling (as far as it remains weak) will not introduce
additional density of states around ep.

The Hamiltonian of the scattering region then contains three parts Hs = H, + Hy, +
He_g,, where H,. is the tight-binding electronic part, H,, is the spin part and H. g,

describes the electron-spin interaction. More explicitly these three components are written
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respectively as

He=1¢0)  chotra (4.13)
Aa

N-1 N

Hy,=2Jaa ) Sa-Sari+ Y {gusB - Sy + D(S})* + E[(S5)" - (S)%},  (419)
A A

Hc~sp = Jsd Z (c;a[o-)\](l‘ﬂlcx\()t') Z SA . (415)

Aa,of

The electronic part consists only of an on-site potential, i.e. the electron hopping between
the sites is neglected [the electron ladder operators CL} /¢ create/annihilate an electron
at site A with spin a (=1, |)].

The spin-spin interaction between the localized spins {S,} is modeled by a nearest
neighbour Heisenberg Hamiltonian with coupling strength J4q. Furthermore an inter-
action with an external magnetic field B is included (up is the Bohr magneton and g
the gyromagnetic ratio) and so are both the uni-axial and transverse anisotropy of mag-
nitude D and FE, respectively [9, 106]. This form for the spin Hamiltonian is the one
proposed before to describe some of the SF-IETS experiments that recently appeared in
the literature [5]. Note, however, that the formalism does not depend on the particular
choice of such Hamiltonian, and additional terms, such as for instance the one describing
Dzyaloshinskii-Moriya interaction [107], can be included. It will be seen that the partic-
ular choice of Hg, determines the spectrum of the system and consequently the shape of
the IETS spectrum, but does not require any modifications of the formalism.

The electron-spin interaction Hamiltonian is constructed within the s-d model [51]
where the transport electrons, s, are locally exchanged coupled to quantum spins, {Sx}
(“d” indicates that the local moments originate from the atomic d shell). The electronic
spins are described by the operator cf\a [0'\]aa’Crar,With o being the vector of Pauli ma-
trices. The use of the s-d model means that it is implicitly assumed that an adiabatic

separation occurs between the transport electrons and those forming the local spins. As
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a consequence a single interaction parameter, Jy4, can be defined which is used to de-
velop a perturbation theory (note, however, that Jy4 is not the perturbation expansion
parameter, as it will be explained later). Such an approximation is valid in the limit
of weak electronic coupling between the electron reservoirs and the scattering region, as
in the case of the STM measurements that are described here. Note that going beyond
such an approximation will require formulating an entirely electronic theory for inelastic
spin transport. An Anderson-like impurity model as introduced in the first section can
be a starting Hamiltonian for such a task [108], but this will require abandoning the

perturbative approach and it is outside the scope of the present work.

4.3 Many-body Green’s functions and interacting elec-
tron self energy

The Hamiltonian for the scattering region contains two terms, H. and Hg,, which in-
dependently can be diagonalized exactly, so that the problem is easily solvable when
Jsa = 0. However the electron-spin interaction H._sp, transforms the system into an
intrinsic many-body one, for which a perturbation theory will now be derived. The strat-
egy is that of first constructing the electronic many-body Green’s function at the 2nd
order [98, 109, 110, 111] in the electron-spin coupling and then, by Dyson’s equation,
evaluating the interacting self-energy. In particular, the procedure laid out in Ref. [98]
will be closely followed. Since a non-equilibrium situation at zero-temperature is consid-
ered, the starting point is the Schwinger [44] contour-ordered spin-dependent single-body

{3t })

Green’s function in the many-body ground state (note that for simplicity the symbol

over the operators, denoting the interaction representation, has been dropped),

[G(r. 7 )oor = =i{|Te{co(T)eh ()}) (4.16)
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where the time-average is performed over the full interacting ground state |). Note that for
clarity the spin index ¢ has been maintained but the site index A\ has been dropped. This
will be explicitly included only where necessary. By following the procedure highlighted
in the previous sections Eq. (4.16) can be expanded up to the n-th order in the interaction

Hamiltonian, H._p, as

[G(T,T))oer = Z (_Q!HH /dT1 " ./dTn X
C C

n

O<ITC{He—sp(Tl) s He—sp(Tn)Ca(T)C:r;'(T,)}|>0
: R e | .-,

where S is the time-evolution unitary operator defined in Eq. (3.11) and the time-averages
are now over the known non-interacting (Jq = 0) ground state |)o. The time integration
over 7 is ordered on the contour C' going from —oo to +oco and then returning from
+00 to —00, since the ground state of the non-equilibrium system can only be defined at
—o0 [102]. If the expansion is truncated to the first order one obtains a Zeeman-like term
which can be neglected as long as £9 > ¥ip-s(sub—s)- The first contribution of interest then
appears at the second order. This can be obtained by inserting the explicit expression for

H,. o (t) [Eq. (4.15)] into Eq. (4.16)

—4)3
[G(, T’)]g' i %de Z /dTl/de X

tone!,7.8,8" o C

x o{| Te{co(T)eh(m1) e (11) el (T2)cpr (2) b (7') })oo (I T {S (1) S (72) o0 aer [07] 5,
(4.18)

where the indexes 7 and j of the local spin operators and the Pauli matrices run over the
Cartesian coordinates z, y and z (not to be confused with the site index).
A full contour-ordered expansion must now be performed on both the electron and the

spin brackets. The electron bracket has six different time-ordering combinations, which
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are explicitly below

o{|To{co(7)eh (71)car (1) el (r2) e (72)h (7)) )o+

= o{|Te{co(7)ch () o X of| Te{ea (m)eh(72) H)o X o Te{ca (r2)eh, (7))ot
o{|Te{co(T)eh(m2)H)o X o{|Tefcar (T)eh (7))o X oI Te{ca(ma)ch (1)} o+

+ o{|Te{co (7)ch (1) Ho x ol Te{car (11)eh (7))o % o{|Te{ch(r2)ea (m2) }H)o+

+ o{|Te{es (T)eh(m2) o X oI To{ea (ra)eh (7))o x of| Te el (r)ea (1) H)o+

+ o{| Te{co (T)eh (7)o x o{|Te{ch (1)ea () H)o X o{| To{ch(m2)ea (m2) H)ot+

~ o{ITe{es (T)el (7))o X o{|Te{ea (m)eh(72) o X ol To{ca (r)ek (m)H)o-  (4.19)

The first and the second terms represent Fock-like Feynman diagrams [see Fig. (4.2)(B)],
while the third and the fourth ones correspond to Hartree-like ones (note that Hartree-
like diagrams vanish because of the spin selection rules as discussed later in this section).
Both these pairs are equal under index exchange. Finally, the last two combinations can
be eliminated since they represent unconnected Feynman diagrams, which vanish in the
averaging process [98]. This leaves a simplified expression which, when compared to Eq.

(4.16), gives

o{| Te{co(7)ch (1) car (1)l (72)ear (T2)ct (') o
= 2i360a50’55ﬁ’o" [G()(T, Tl)]acr[GO(Tla T?)]a’a' [GO(T2» Tl)]a’a"+

+ 2i350a5a’a’5ﬁﬂ' [GO(T, Tl)]ao[GO(TI» TI)]J/U/ [GO(TQ, 7'2)]55. (4.20)

In this case, since the averaging bracket is over the non-interacting ground state, Gy
represents the non-interacting electronic Green’s function and can be calculated exactly
(see Chapter 3).

Returning to Eq. (4.17) the spin bracket is now evaluated. The ground state of the

spin system alone (Jsq = 0) can be found by diagonalizing exactly Hy,. This is achieved
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by constructing the full spin basis {|n)} where n = —S,—S +1,...,+S. Note that this
step does not require any particular form for Hgp, although the details of the spin Hamil-
tonian determine the nature of the spin states and how these interact with the conducting
electrons. Note also that in the discussion of the results the labeling of the eigenvalues
of H, will be kept with the z-component of the total spin S, which in general is not a
good quantum number because of the presence of the transverse anisotropy. However,
such an anisotropy is typically small so that the notation remains approximately valid.

The resulting eigenvectors, |m), and eigenvalues, ¢,,, satisfy the Schrédinger equation

Hg,lm) = £,,/m) and they can be used to re-write the operators S*(7), for i = {z,y, 2},
as
SHr) = (m|S|n)dl,(r)dn(T) . (4.21)

Here d,, (d!) is an annihilation (creation) operator for a quasi-particle of the spin system.
The quasi-particles are then assumed to be fermionic in nature so that they obey the
anti-commutation rules [d},,d,] = d,., and [d},, d}] = [dn, d,] = 0. Such an assumption is
valid as long as the excitations considered are always around the ground state, i.e. under
the condition that the spin system can always efficiently relax back to the ground state
between spin-flip events. Note that in this situation only a single spin-state |m) can be
excited at a time, so that the particular particle statistics, bosons or fermions, becomes
irrelevant.

A contour-ordered spin Green’s function is then defined as follows

[D(7, ™) lam = = (| Te{da(7)dh, () }) - (4.22)

By inserting the expressions contained in Eqgs. (4.21) and (4.22) into the spin bracket and
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by computing the time-ordered contraction one finally obtains

OITe{S (1) 8% (12)}10) = = D _ (m|S*[n)(n| S’ |m) [Do(1, 72)lna[ Do (T2 71 )lmm »  (4:23)

m,n

where Dy is the unperturbed spin Green’s function.

The set of Egs. (4.20) and (4.23) can now be incorporated into the expression for
the second order contribution to the many-body Green’s function [Eq. (4.17]. Then, by
using Dyson’s equation [98], one can finally write the second order contribution to the

interacting self-energy which reads

(S (i, )% = =J& Y {160810%00r + [0']oor[07]as }

@.3,0

x [Go(m1,72)]8s ) (m]S'|n)(n|S?|m)[Do(r1, 72)ln.nlDo(72, T1) I - (4.24)

myn

If it is now assumed that the ground state electronic spin levels are degenerate (the
electrodes are not magnetic), i.e. [Golyt = [Go]y;, then the only quantity of interest is
the trace of the self-energy over spin indexes. By performing such a trace, the spin-

independent self-energy finally reads

e, 1)@ = —2J% Z |(m|SHn) [*Go(T1, 72)[Do(T1, 72)]nn[Do(T2, T1))mms - (4.25)
i,m,n

where the results Tr[o’c?] = §;; and Tr[o'] = 0 have been used. Note that the relation
Tr[a’:] = ( guarantees that the Hartree-like diagrams do not contribute to the self-energy.
Such a relation is not present when the interaction of the conducting electrons is with
atomic vibrations (phonons), hence in that situation the Hartree-like diagrams cannot
be a priori neglected. Interestingly, for the phonon case the Hartree-like diagrams drive
possible polaronic distortions in the system [112], which are expected not to have an

equivalent in the case of spin scattering.
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At this point the real-time quantities can be calculated, such as the lesser (greater) self-
energies, by using the Langreth’s theorem for time ordering over the contour, 7, € ' (C k)
and 75 € Oy(C}) [102]. € is the time ordering contour going from —oc to +oo and Cs is

the time anti-ordering contour going from 400 to —oo. It is found that

Zlnt(lll fl) = d Z | ’I’fll wz‘n l2 il,tQ)[Do ([1 tl)]n n[DoZ(t%tl)]m,m
_= —2J Z | mlS (fl,iQ)P (1 = Pm)e:ti(enwsn)(hﬂg) : (426)

1,m.mn

where in the second step Dog(tl.tg) has been written explicitly in terms of the spin-level
occupations, P, = d;’,d,,. It is reiterated that this form of the spin Green’s function is
correct in the limit that excitations are always close to the ground state and therefore the

latter expression is a good approximation. The dependence of 3 over the energy, I,

mt

can be found by simple Fourier transform

"l

n ‘ Pn D m (’0 (w :t an) ) (427)

Zit(' 2 = —2J2 Zlm

1,m,n

where Q,,, = €, — £, and where the + (—) symbol corresponds to £< (£7).

Electron-spin scattering events are now fully described by [an,( )]. In particular
Eq. (4.27) describes the process where an incoming electron with energy I experiences a
spin-flip process, which changes its energy by +£2,,,. This is the result of the electron-
spin interaction with the local spins. Such a process is schematically represented in
Fig. 4.2. Note that the probability for an excitation to occur is determined by the pref-
actors (m|S'|n)|?P,(1 — P,,), i.e. by the state of the spin system.

This section is concluded by discussing the limits of validity of the perturbative expan-
sion. From a first inspection of the Eq. (4.27) one could conclude that the strength of the
second order interacting self-energy is solely dependent on JZ,. This will indeed result in

a large perturbation parameter and thus in a possibly divergent perturbative expansion
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—¢

incoming e” spin system outgoing e

Figure 4.2: (A) Schematic representation of the inelastic process described by the greater self-energy,

Y. An incoming electron scatters against a localized spin and decreases its energy by (2,,. This is

transfer to the local spin system, which undergoes a spin transition [n) — |[m). (B) Feynman Fock-like
diagram describing the interaction in the time domain.

(see Table (5.3) for an estimate of the various parameters). However, both the lesser and
the greater Green's functions are proportional to the density of states of the scattering
region, p. In the weak coupling limit one has p ~ I'/=, where £ is the onsite energy of the
atom under consideration (the one under the tip) and I' is the total broadening due to the
electrodes, I' = I'ij,—s + I'sub—s. As a consequence one has that Zi%‘(w')(z) ~ g, where
a = pJy is a dimensionless quantity. By continuing the expansion to the third order
(see next section) one will find an additional contribution to the interacting self-energy
proportional to a?.J, i.e. it will be discovered that the perturbation expansion parameter
1s the dimensionless quantity a. Interestingly, a is the product between the Fermi level
density of state at the spin site and the exchange parameter Jy4, i.e. it is essentially the
Stoner parameter [113]. The convergence of the perturbation series is then guaranteed by

the weak coupling condition, which establishes that p is small and then o < 1.
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4.4 3rd order electron interacting self energy

Having described how to deal with the electron spin interaction up to the 2nd order, it is
now interesting to continue such a perturbative expansion further to third order and to
examine what effects this has on the conductance spectra. Our starting point is again the
interacting contour ordered Green’s function expanded up to order n, Eq. (4.17). Once
the explicit form for H._g, is introduced the third order contribution to the perturbative

series reads

/ ~i k
[G(T»T/\]S,)yf = £3—!)‘]53d Z /dT1/d72/d7-3 X

aa’ BB Y o C C
x (Te{cq(T)el(11)ca (T1)ch(2)e (T2)ch (73)ey (73)ch, (7) 1) %

x S {ToAS (1) S (1) S () Vo e [07] 30 [0y - (4.28)

i,k

Firstly the spin operators are considered. Following the procedure presented in the
previous section these are decomposed into products of quasi-particle operators obeying
the Fermi-Dirac statistics, thus that the i-th component (i = z, ¥, z) of the spin operator
S is written according to Eq. (4.21) and the corresponding Green’s function is that of

Eq. (4.22). By substituting these expressions into Eq. (4.28) one obtains

IG(7,7') ](d) = E%)AIJS Z /dTl/dTQ/de

aa’.B8' 7Y &

x (Tef{co(T)ch (1) e (11)cl () cgr ()l (73) ey (73) el () })

x Y ATe{dh, () dm (1)d] (72)du (72)d] (3)du (73)}) X

mm’ nn’ Il

x > (m|SHm') (n] S0} (1| S¥I') [0"]aa [07] g5 [ 0¥ ]y - (4.29)

.5,k

The chronological contractions are now performed by using Wick’s theorem for both the

electron and spin bracket. It has previously been stated that the electron brackets, the
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spin selection rules and the electronic spin-degeneracy impose a vanishing contribution
for any “fermion loop” contraction of the form (c'(7)c(7)). Therefore, one needs only
to consider the three Fock-like contributions to the electron bracket. These are all equal
under exchange of contour indexes. Furthermore the spin bracket brings two Fock-like
terms. Here we retain only one of them in order to simplify the discussion, but both have
been included in the numerical simulations that we will show later. With this information
in hand Eq. (4.29) can be written in terms of the known non-interacting electron and spin

Green’s functions

X [Go(T, T1)]oo[Go(T1, T2)]38[Go (T2, T3) |47 [Go(T3, T') ] o107 X

X Z [DO(Th TQ)]H.n[DU(TQ-, ﬂS)][,[[DO(TlSa Tl)]m.m X

m,n,l

x 37 (ml S ) (nl ST USH Mo s[04 [0 e (4.30)
irjik
Dyson’s equation is now used to extract from Eq. (4.30) the third-order contribution to

the interacting self energy, which takes the form

E(Tl,T3)(3) = 2’[J§d/dTQGo(Tl,TQ)Go(TQ.T;;)X
C

X 3" Du(11,72) Di(7a, 73) Dn(73,71) Y (i) (m| S7|n) (] S)0) 1] S*|m).  (4.31)

m,n,l 1,7,k

Note that in order to simplify the notation the diagonal elements of the non-interacting
spin self-energy have been written as D,,(7,7'). In the same Eq. (4.33) the electron spin
degeneracy has also been taken into account ([Goli; = [Go];;) and traced over the spin
indices. Finally it is noted that Tr[o‘c?c*] = 2iz; .

Equation (4.31) now needs to be expressed in terms of the real times (¢,t'), so that a

close expression for the energy resolved lesser and greater interacting self-energies can be
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explicitly written. Such a derivation is based on the Schwinger formalism for evaluation
of time-contour integrals [44, 102] and is illustrated in Appendix C. Finally the complete
expression for the interacting self-energies is obtain by adding the second order term

derived before, see Eq. (4.27), to give

Ta(w) = =273 3" Bl = P)GE(E £ Q) {6u Y [(mIS'm) P+
m,n,l ]
+ 2i(pJa) 3 e (ml S )l 911 115 m) x
ijk
17,74 w
x |1 = )
b e s A VEFVER) T (kal)? Ik

(4.32)

where the plus (minus) sign corresponds to < (>). If it is now assumed that the scattering
region is much more strongly coupled to the substrate than to the STM tip (y5**~5 >
7vYP=S) and £y > ep, one can approximate the tip density of states around ep with a
constant, p = (['/27)/[e3 + '?]. The weak coupling to the STM tip also ensures that the
spin system remains always close to equilibrium [27], i.e. in its ground state, so that Py~1.
A crucial feature of the third order contribution to the self-energies is the appearance
of a zero-temperature logarithmic divergence at the excitation energies (1,,,. This is
the fingerprint of the Kondo effect and will be the key ingredient to describe zero-bias
anomalies in the conductance spectrum as well as the details of the spectrum line-shape.
Note that the formalism and derivation leading to Eq. (4.32) has been proposed first for

describing the Kondo effect in quantum dots [20, 54].

4.5 Additional lineshape features

In the following section the NEGF formalism will be extended to spin scattering to include
the additional features necessary to describe transport in the case that the electrodes

are spin-polarized or when the current is intense. In particular, the spin interaction
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electronic self-energy will be generalized to the spin-polarized case and a second order
perturbative expansion for the spin propagator will be constructed, so that the non-
equilibrium occupation of the various spin-states will be evaluated. Finally, examples will

be shown of how the various levels of theory perform when applied to real problems.

4.5.1 Modifications to the interaction Hamiltonian and spin-
polarized electron self-energy

The same Hamiltonian as introduced in Eqs. (4.13-4.15) is used in this section with the
only difference being that the electron-spin interaction, Eq. (4.15), is now modified as

follows

Hc—sp = Jsd Z ((‘f\n[o‘,\]aazqa:) : S,\ 1 E( Z er\n(‘)\a- (433)
Aa

Ao,

H._g, now includes a second term, which represents the potential scattering elastic contri-
bution to the s-d interaction with strength sy (this is sometimes called the magnetoresis-
tive elastic term and will be included now in the perturbation expansion). The inelastic
ratio, x = £¢/Juq, is typically in the range of 1 to 2. This term was not included before
as it becomes important only in the case of spin-polarized electrodes.

The starting point for generalizing the theory to spin-polarized electrodes is once again
the perturbation expansion of the spin-resolved contour ordered interacting Green’s func-
tion, namely Eq. (4.17). Here only the tip is considered to be spin-polarized, with the
spin-polarization being described by a single parameter, 1. This means that the tip-
induced electronic broadening is different for the two spin species, namely [[p_s]yr =
(14 n)Ttip-s/2 and [Cyip-s];; = (1 — n)Tiip_s/2, where ['y,_g is the non-polarized broad-
ening. As a result one has [G5(E)];; # [G5(E)],;. One then needs to carry out the same
steps as in the previous expansion to the second order, with the only exception that the

trace over the spin indexes is not taken. The following expression for the spin resolved
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components of the interacting self-energy is then obtained

SEENT == I3 Y (GE(E & Qo) (SnmX PaSn + Pl = Pon)|S5al”) +

int
m,n

— J2 D [GF(E £ Quun)] 1 Pu(l — Pn)|S7, 1% (4.34)

m,n

[Zit(E)]ﬁ) =~ ‘]s2d Z[G?(E + an)]ll ( e 5nmXPnSrznn + Pn(l = Rﬂ)lsvizn’2)+

m,n

= Jia Y _IGF(E & Qa1 Pa(l = Pr)|S7nl” (4.35)

m,n

The lesser/greater self-energies describe the process where an incoming/outgoing electron
can excite/relax the spin system by €2,,, with a probability dependent on the occupation
of the spin levels P, and P, and on the spin selection rules S~ (note: ST = 5% +iS5Y
and ST = S* —iSY). The first term in both Eqs. (4.34) and (4.35) preserves the electron
spins in the scattering event and it is associated to the magnetoresistive elastic term of
the s-d Hamiltonian [see Eq. (4.33)]. The other contributions are inelastic in nature and

depend on the spin orientation of the incoming/outgoing electron from/to the tip.

4.5.2 The spin propagator

So far it has been assumed that the spin system is always in its ground state before a
scattering event, i.e. that there is no build up of spin population. This is justified by
the fact that in typical STM experiments the current is usually small, the temperature is
extremely low and the electrodes are not spin-polarized. The situation however changes
for spin-polarized electrodes and/or large current density. since a spin-flip scattering event
can be followed by a second one without the spin system having enough time to relax to its
ground state. In this case a realistic transport description should include the calculation

of the non-equilibrium spin population. The same argument goes for the inclusion of finite
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temperature in the problem.

Firstly, the following non-interacting case is considered in which there is no exchange
coupling between the current and the spins but the temperature is finite. It is taen
assumed that the spin system is adiabatically coupled to a heat-bath kept at temperature
T, which generates a weak broadening to the single spin states &,, of magnitude ksT.
In this non-interacting case the spin Green’s function (propagator) of Eq. (4.22) sinply

becomes

< I 0]
[DS(E)]mn = - 51)2 TR (436)

where (115 (E)lmn = 6ma(l — PQ)ksT and [1I§(E)]mn = 6mnPoksT, with P2 being the
ground state population at zero-temperature.

If the interaction with the conducting electrons is now switched on the spin population
becomes dependent on the bias as spins can be pumped from the spin-polarized electrodes.
The task is then that of calculating the non-equilibrium spin population P,, as these are
the relevant quantities entering the total electronic Green’s function. By combining the
first and second order contributions to the spin self-energy one can derive (see Appendix

D for details) a master equation for P,, in terms of the total spin self-energy IIS(E)

db,
dt

o %; / dE{[H>(E)]nm[D§(E)]mn — T(B)am [ DF ()l }. (4.37)

After some rearrangement this can be written in more compact form as

dB, 1
dt  hbar

> [Pl = B)Wiu — B(1 = P)Waa) + (P - B.)/5, (438)

where the bias dependent transition rate from an initial state [ to a final state n is

calculated after evaluating the integral in Eq. (D.7) from the appendix and 3 = 1/kgT.
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Its final form is given by

(pJTS‘d) Z; Gy = py + Ql"){XS:Ln<[Fn]TT[F7I']TT - [Fn]ll[Fn']ll)+

Wu = —4
1852 (ol [Prlis + [CaluPolis) + ISPyl + 17Tl Tyl f, - (4:39)

where ((z) = z/[1 — e~*/*8T] and p, is the chemical potential in lead n = {tip,sub}. The
form of (z) is such that for = 7’ the resulting transition rates W,,; are bias independent
and do not contribute to the current. They do however contribute to the spin relaxation
time, i.e. to the time taken for the spin to relax back to its equilibrium state. This
relaxation time gets shorter if the coupling between the sample and the leads increases.
Also, the smaller the inelastic energy transition €,,,, the longer the spin will remain in
its excited state before relaxing back to equilibrium. Again, one assumes that the onsite
energy is large enough so that the density of states of the sample remains constant in the
small energy window of interest, i.e. p=T/(g2 +T?).

Returning to Eq. (4.38), it is worth noting that one is interested only in steady state
transport, so that the relevant quantities are the non-equilibrium steady-state spin popu-
lations at a given bias. Therefore the condition dP,(t)/dt = 0 is evoked and Eq. (4.38) is
solved for the steady-state, by simply iterating from an initial trial population (P, = F}).
Finally the converged populations are used to evaluate the electronic spin-scattering self-

energy.

4.5.3 Real Part of the Electron Self Energy

In order to provide an explanation to the inherent bias-asymmetry that has been observed
in most of the STM inelastic conductance spectra for magnetic atoms probed by a non-
magnetic STM tip [5, 9], the expression for the full retarded self-energy must be revisited.

This is defined by the Hilbert transform (for simplicity only the non-spin polarized case
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will be considered)

lnt

dE’E> (E') + 35, (E
PV/ int E+E/mt( )+ (440)

{th( ) + z:1<nt(E‘,)} &

By using the expressions derived in Section 4.3 for the 2"? order lesser and greater self-

energies an analytic expression is found for the real contribution to the retarded self-energy

Re[Sine (B)?] = 2072 > |5, — P,)x (4.41)

zmn

1 (E + Qunn — piy)* + (kpT)?
—19
X F{Jﬂfo =1 ; Fn_S ln[(E = an - /‘1“7})2 + (kBT)Q:] } .

Such a final expression is heavily dependent on the on-site energy £¢ but it is also noted
that the ratio I'y;,—s/T'sub—s has a profound influence on the degree of asymmetry present in
the conductance spectrum. If I'yi,—s/Tsub—s = 1 then the asymmetry is removed. Provided
that I'yip—s < T'sub—s, which is a condition normally met in STM-IETS experiments, an
asymmetry will always be present. This is a result also found in references [20, 55]. The
condition I'jp—s < I'sup—s makes the real part of the self-energy an odd function of the
energy and the bias via its logarithmic dependence on the spin eigenvalues with opposite
polarity for 4+€,,, and —€,,,. Therefore one of the main physical causes of the bias
asymmetry in the conductance spectra is the uneven electronic couplings between the
scattering atoms and two non-interacting leads. As such this is a feature common to all
IETS experiments, including those using non spin-polarized tips or scattering to phonon.

In this work we solely focus on non spin-polarized tip and spin-excitations.
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4.6 Non-equilibrium Green’s function method for elec-
tron transport

Finally, before showing a sample of results obtained by applying the theory discussed
so far, one needs to generalize the electron transport scheme introduced in Chapter 3
to include the effect of the inelastic electron-spin interaction in the scattering region.
A two-probe device is considered, which is then divided into three distinct regions, two
semi-infinite leads representing respectively the STM tip and the underlying substrate
and a central scattering region (see Fig. 4.1). As mentioned before the leads act as charge
reservoirs and they are characterized by their chemical potentials, respectively g, and
Msub- An external bias is introduced in the form of a relative shift (symmetric) of the two
chemical potentials with respect to each other. The underlying assumption of the method
is that under the external bias there is no rearrangement of the electronic structure of the
leads, i.e. that the electron screening and the spin relaxation in the leads are efficient.
This simplifies the problem to that of calculating the retarded (and the advanced) Green’s
function of the scattering region [45, 46, 111] only

G(w) = },1_1,%[(“) — 46 — H,— I (w)] . (4.42)
Here H, is the electronic part of the Hamiltonian [Eq. (4.13)] and X*(w) is the retarded
self-energy, which now incorporates the effects of the leads and of the inelastic interaction.

In particular ¥(w) writes as

S int

£ () = Zip(w) + (@) + T (@), (4.43)

where X7, (w) and X7, (w) are respectively the STM tip and substrate retarded self-

tip
energies, while X7, is the scattering self-energy describing the electron-spin interaction.

Formally the action of the electron-spin interaction is similar to that of a current-voltage
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electrode, so that it can be interpreted as a fictitious lead, which conserves the total
current but breaks the electron and the spin phase-coherence. The leads’ self-energies are
defined in Eq. (3.59), where now i=tip, sub. Finally, the retarded electron-spin scattering

self-energy is found from the Hilbert transform of the lesser and greater counterparts [111]

) > / < /
PV/ dw’ th +th( )+__[E

W — w w) Sl E*nt )] (444)

mt mt

where PV denotes the principal value and where the full expressions for 7, (w) and 5, (w)
have been given in the previous sections. Note that at variance with a similar expression
for the self-energy describing electron-phonon scattering, in Eq. (4.44) there is no Hartree-
like contribution. This usually describes polaronic effects and it is known to cause the
breakdown of the Born approximation for strong electron-phonon coupling [112], the
absence of which makes this similar perturbative approach for spins quite advantageous.

In addition to the retarded self-energy also the lesser and greater ones and the Green’s

function can be expressed as a sum over all three contributions

S5 (w) = B5,(w) + 5, (W) + DR W) - (4.45)
G3(w) = G" (W) [Z5(w)]G*(w) , (4.46)

The external bias, introduced as a shift of the leads chemical potentials jiip = ep + €V/2
and gy, = €p +€V/2, enters in the leads self-energies via the replacement E — w +eV/2.

Finally, the current can be calculated at finite V' at any of the leads 7 as

L':/_w (55 W) ) - F @)EW)}, (4.47)

while the bias-dependent conductance is found by numerical differentiation of I; with
respect to the bias.

In concluding this section it is informative to discuss the expected magnitude of the
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inelastic contribution to the conductance with respect to the elastic one. The ratio be-
tween two such contributions essentially corresponds to the ratio between the interacting
and the non-interacting (Jsq = 0) Green’s functions. A simple calculation shows that
the unperturbed Green’s function differs by a factor of ¥, /T" from the fully interacting
one. In the previous section it was shown that to the second order self-energy goes as
Ei(ft) ~ aJsq. Therefore, to the second order, the ratio between the elastic and inelastic
contributions to the conductance turns out to be proportional to the dimensionless factor
a(Jyq/T) ~ (Jea/g0)?. Analogously, the third order contribution will account for a factor
a?(Jsq/T). With this at hand and by using the experimental parameters [see Table (5.3)],

one can conclude that the contribution originating from the second order expansion will

be significant, while that from the third order will be small.
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Examples of spin-flip scattering in

STM experiments

All the theoretical machinery developed so far will now be put to work to describe a recent
range of experiments, where an STM tip probes a magnetic nanostructure deposited on an
insulating surface. Results will be presented by looking at increasingly complex situations,

where increasingly higher levels of theory are necessary.

5.1 Density Functional Theory Calculations

First-principles total energy and force calculations were carried out using the projected
augmented-wave (PAW) method [114] as implemented in the Vienna Ab-initio Simulation
Package (VASP) for Fe, Mn and Co on a CuN substrate. VASP is a package for performing
atomic relaxation using a plane wave basis set. Exchange and correlation effects have
been taken into account by using the local spin-density approximation (LSDA). In order
to recreate the correct parameters for strongly correlated materials, which exhibit highly
localized d-shell electrons (as in this work) the LDA+U method has been employed. This
accounts for the on-site Coulomb interaction within the localized d-shell electrons. In

the following calculations, an energy cutoff of 400 eV is used in the plane-wave basis

7

B ——
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Figure 5.1: In-plane (left panel) and out-of-plane (right panel) structure diagram of the relaxed CuN
substrate with magnetic transition metal atom (red) sitting on top of a Cu atom (brown) and between
two N atoms (blue).

construction and the energy convergence criteria is 107° eV. The crystal structure was
optimized until the forces acting on atoms were less than 0.01 eV/A. For the Brillouin-
zone integration, a 2 x 2 x 1 Monkhorst-Pack mesh and Gaussian-smearing approach with
0=0.015 eV were used.

As mentioned, the system of interest consists of a 3d transition metal atom coupled
to a Cu substrate with a separating layer of N (i.e. through a CuN monolayer). The
lattice constant for the Cu fce lattice was taken as the experimental value of 3.61A since
the LSDA is known to over-bind. The lowermost layer of Cu atoms was fixed during
the relaxation process to their bulk positions. Five layers in the CuN slab are enough
to simulate the CuN surface and subsequent increasing of the number of layers does not
significantly affect the atomic structure and both the electronic and magnetic properties.
The relaxed structures for 3d transition metal atoms Fe, Mn or Co on CuN is illustrated
in Fig. 5.1. In particular a view from both the in-plane and the out-of-plane perspective
is shown. It is notable how the particular 3d atom sits on top of a Cu atom, which is then
pushed towards the bulk (note that the relaxation for the three different atoms of Fe, Co
and Mn remains unchanged). In the following it will be shown how the various model
parameters (substrate couplings, spin-exchange energies, magnetic anisotropies etc.) that

were introduced in the last chapter are estimated from DFT calculations.
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Atom M (Exp. Fit) M (LSDA) M (LDA+U)

Co 3.0 2.2 24
Fe 4.0 2.9 3.1
Mn 5.0 3.9 4.2

Table 5.1: Values of magnetic moment, M, in units of ug) projected over the single 3d atoms from
experiment [5, 6] and from theory. Results are repeated calculated with both the LSDA and LDA+U for
U = 5eV

5.1.1 Atomic magnetic moment and density of states

The magnetic moment projected over the localized 3d atom atop the CuN substrate
is calculated by using the PAW method for both the LSDA and the LDA+U. The
magnetization, M, was found in each case to be mostly concentrated on the localized
atom with little to no contribution coming from the underlying Cu or N atoms. Table
5.1 shows the corresponding values of M for each atom. In the case of LDA+U a value
of /' = 5eV was used. This value is in agreement with similar works for these materials
[115]. It is clear that the LDA+U method recreates the experimental values of M more
accurately than the LSDA. This is to be expected since the system in question involves
highly localized d-shell electrons which, as outlined in Chapter 2, is well described by the
LDA+U method.

The density of states (DOS) resolved over the s and d orbitals of each of the three
atoms is shown in Fig. 5.2, for the LDA+U method. It is clear that the magnetization
originates from the d-shell electrons because the majority to minority carrier splitting is
greatest in this case. It is also worth noting that the s-level contribution to the total
DOS is weak compared to that of the d-electrons. This reaffirms the approximation made
throughout this thesis that the density of states for current carrying electrons (i.e. s-
electrons) about the Fermi level is small enough to ensure that the perturbation parameter
pJyg as introduced in the last chapter remains below 1. As a final point, an approximate
value for the exchange coupling parameter Jyq can be extracted from the spin-polarized

splitting of the s-electron DOS, as this determines how the conduction electrons react to
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Figure 5.2: Total s (a) and d (b) projected DOS for the magnetic atoms Co, Fe and Mn. The majority
DOS is shown in black while the minority is shown in red (and negative).

the magnetic moment of the localized d-shell electrons. Although the splitting can also
be mediated by other factors, it is assumed that the coupling between the d and s-shell
electrons has the strongest impact on the splitting of the DOS. This is a rather crude
approximation but nonetheless offers an insight in to the order of magnitude of .Jq. This
approximation has also been applied by Lucignano et al. [116]. The broadening of the
main peaks in the s and d-density of states can also serve as a crude approximation to the

coupling parameter between atom and substrate I'y,;, introduced in the previous chapter.
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Atom AFEs(z—2x) D (Theory) D (Exp.)
Co +0.79meV  +0.35meV  +2.75meV
Fe -4.95meV -1.24meV -1.55meV
Mn -2.60meV -0.42meV -0.04meV

Fe-Cu -17.26meV -4.32meV =

Table 5.2: Values of the MAE in meV for Co, Fe, Mn and a Fe-Cu dimer on CuN. The correspording
values for the axial anisotropy parameter D is compared to the equivalent found from experiment 5, 6].

5.1.2 Magnetic anisotropy

The magnetic anisotropy energy (MAE) can be calculated by switching on the spin-srbit
interaction in the calculation performed with VASP. This is performed with spin pointing
along specific axes in order to acquire an approximation to the axial and transverse
anisotropy terms D and F respectively. Since in general the value for F is quite smell, it
is not informative to approximate its value using DFT since it is outside the bounds cf the
VASP accuracy (~ meV). To that end, the larger and more significant axial anisotropy
D will only be investigated.

From the previous chapter, the energy splitting due to the axial anisotropy was deined
as AE = DS?. Therefore, to find an approximation to this value, one must calculate the
total energy 4 with spin pointed along the x axis and the z axis. The difference betwveen
these two values AE(z — x) gives the total axial MAE. The value for D is then found
by normalizing AF4(z — ) to the value S? where S is the total (nominal) spin magaetic
moment of the localised atom. Table 5.2 shows the comparison between the experimental
and theoretical calculations for D for the single atoms of Co, Fe and Mn. Whereas the
sign of D is recreated by the VASP calculation (which indicates hard (-) or easy (+) axis
of anisotropy), the exact value is poorly recreated for Co and Mn but quite well for the Fe
atom. The reason for the disparity in the case of Co and Mn is unclear however a similar
result was found in previous DFT calculations for the MAE [117].

In addition to the three single magnetic atoms, the MAE was also calculated ‘or a

dimer consisting of Cu and Fe in light of an experiment performed by Loth et al. [59],
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Figure 5.3: In-plane (left panel) and out-of-plane (right panel) views of the relaxed CuN substrate with
an Fe (red) - Cu (brown) dimer sitting on top of a Cu substrate decorated by a single layer of N (blue)
which investigated the spin relaxation time of the dimer. Loth et al. showed experimen-
tally that the presence of a Cu atom on the surface drastically increases the anisotropy
of the Fe-Cu dimer and therefore results in a stable spin orientation with long relaxation
time [59]. It was suggested that the Cu atom has a zero net polarization and therefore
the Fe-Cu dimer acquires the spin of the single Fe atom on CuN, S = 2. An exact exper-
imental value for the axial and transverse anisotropy terms could not be found because
the axis of anisotropy could not be determined. Therefore, a calculation of the MAE for
the Fe-Cu dimer would shed some light on the situation.

Figure 5.3 shows the relaxed structure for the Fe-Cu dimer on the CuN substrate, again
with 5 layers of Cu where the bottom layers were fixed during the relaxation. Indeed, the
total magnetization associated to the Cu atom in the dimer was found to be zero and that
of Fe was 3.2up. This confirmed the experimental findings. From table 5.2 it was found
that D = —4.32meV, i.e. that the MAE of the dimer is roughly 3.5 times larger than that
of the single Fe atom. This also agrees with what is found experimentally, in that the
addition of the Cu atom drastically increases the MAE of the system. It will be shown
later in the chapter that the 3.5 fold increase (along with other assumptions) will recreate
well the experimental dependence of the spin-relaxation time on the magnetic field applied
to the Fe-Cu dimer. Due to the observed increase in magnitude of the axial anisotropy,

it was informative to investigate the corresponding change in the transverse anisotropy £
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as 1ts magnitude in this case might be significant enough that a VASP calculation could
be trusted. F was estimated from the change in total energy when the spin is pointing
along the x and y directions i.e. AFE4(y — z). Indeed a value of E = 0.54meV was found
which is well within the accuracy of a VASP calculation with spin-orbit correction. This

also agrees with the direction of transverse anisotropy found for a single Fe atom [5].

9.2 Mn mono-atomic chains on a CulN surface: second-

order theory

Having shown how to estimate the various model parameters from DFT, the discussion
continues by firstly looking at the SP-IETS spectrum of Mn mono-atomic chains of dif-
ferent lengths deposited on a CuN surface and probed, in a low current mode, by a
non-magnetic STM tip [9]. The main features of the experiments can be captured by the
second order perturbation theory for non-magnetic leads and equilibrium spin popula-
tions. In Table 5.3 all the parameters needed for the simulations are listed together with
their assigned values. These have been either inferred from experiments (Exp) [9] or have
been estimated from density functional theory (DFT) calculations performed in this work.
The local Mn spin is set to be 5/2, as proposed in the original experimental works [5, 9],
confirmed by DFT calculations and in agreement with the DFT analysis of Ref. [34]. The
spin-spin coupling parameter Jgq corresponds to an anti-ferromagnetic order between the
neighbouring Mn spins, a feature verified in the experimental conductance spectra. The
lead on-site energy is suitably set to zero and simply defines the reference potential. One
also notes that the value for Jy is determined from theory (splitting in the s-electron
DOS) to be of the order of 500 meV. The Fermi functions of the leads is evaluated at
the small temperature of 0.6 K. This allows one to include minor thermal smearing of the
electron gas in the leads and consequently of the conductance profile. Finally one notices

that the scattering region is expected to be significantly more strongly coupled to the
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Quantity Symbol Value Origin

Atomic Spin S g Exp.
Temperature iz 0.6 K Exp.

d-d exchange Jad +6.2 meV  Exp.

s-d exchange Jsd +500 meV ~ DFT

Fermi Energy Er 0 meV DFT

Lead hopping integral Yo 10000 meV ~ DFT
Channel (s-state) on-site energy €0 1000 meV  DFT
Substrate-channel hopping Ysub—S 500 meV DFT
Axial anisotropy D -0.037 meV  Exp.
Transverse anisotropy E 0.007 meV  Exp.

Table 5.3: Empirical parameters used in the numerical simulations presented in this work and their
assigned numerical values and origin. “Channel” here means the scattering region.
substrate than to the tip.

Figure 5.4(a) shows the calculated conductance spectra normalized against the elastic
contribution, Gy, [this is the conductance calculated for ¥, (F) = 0] for N-atom long
Mn chains (N < 4) in no external magnetic field. This is in favourable comparison
with the experimental findings as shown in Fig. 5.4(b). The most obvious feature is
the presence of a number of conductance steps characteristic of a specific chain, which
appear at well-defined biases. These correspond to critical voltages where a magnetic
excitation becomes possible. Such an excitation opens an additional conducting channel
(inelastic) and the conductance increases. Note that in general one does not necessarily
expect the conductance to increase at the excitation bias threshold. In fact, in the case
of inelastic scattering to phonons both conductance enhancements and suppressions have
been observed, with the latter originating from the suppression of the elastic channel
following the opening of the inelastic one. In general, however, SP-IETS experiments
show a conductance increase.

From the figure one observes that the relative conductance increase due to the inelastic
contribution is of the order of 1/4 (for N = 2, where the amplitudes of the spin matrix
elements of the self-energy are approximately unity). For the given choice of parameters

the scaling factor (Juq/e0)? is 1/4, so that precisely a relative conductance step of 1/4
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Figure 5.4: Theoretical (a) and experimental (b) conductance spectra for Mn chains of different lengths
N. The various spectra, except for N = 1, are offset for clarity. The tip is placed above the second atom
of the chain for chains with N > 2 and also over the first atom in the case of N = 3. One noticss the
strong dependence of the spectra on the chain parity.
1s expected. Such good agreement constitutes a strict validity test for the theory and
demonstrates that the perturbative expansion is the right tool to tackle these probems.
In the case of N = 3 and N = 4 the spectrum is calculated for the STM tip placed above
the second atom in the chain, but in Fig. 5.4(a), for N = 3, results obtained by placing
the tip above the first atom are also shown. Notably the spectra in the two cases are
relatively different as the size of the conductance step at around 17 meV seems to depend
on the specific atomic site probed by the tip. A similar occurrence is seen for N = 4.
When the calculated conductance profiles are compared with the experimental ores of
Fig. 5.4(b) a good qualitative agreement emerges. In particular one notices the intriguing
dependence of the conductance profile over the parity of the chains, with chains comprising
an odd number of atoms (odd chains) exhibiting a conductance dip at around V = 0,
which is absent for even chains. It is worth noting, however, that the spectra for N = 3
and N = 4 contrast slightly with the experimental spectra, which are asymmetric with
respect to the bias and also exhibit some slope at the conductance steps. It wil be
argued later in the chapter that such minor deviations are simply due to fine features in

the density of states. In order to recreate the conductance profile of the trimer (3Mn), an
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additional ferromagnetic second nearest-neighbour interaction between the local spins at
the edge of the chain must be included in the model [23]. The magnitude of this additional
exchange parameter is approximately half of that of J4q. The inclusion of such a second
nearest-neighbour coupling constant changes the position of the conductance step from a
second excited state at 27 mV to a first excited state at 16 mV. This correction is also
included in the calculations for N = 4, again giving good agreement with experiments.

Going into more detail of the conductance spectra, the case of odd chains and their
zero-bias conductance anomaly is first discussed. The ground state of each odd chain
has a net total spin Sy = 5/2. This is affected by the transverse and axial anisotropy,
which lift the ground state degeneracy and allow a transition between the ground state
and the first spin-flip excited state to occur. The excitation of such a transition results
in a conductance step at a voltage corresponding to the transition energy. Since the
anisotropy energies are small (see Table 5.3), the excitation energy is small as well and
the feature in the conductance profile appears near V=0. In contrast the even chains do
not show any zero-bias excitation, since the ground state is a singlet and does not carry a
magnetic moment. This is a direct proof that the magnetic interaction between Mn ions
is anti-ferromagnetic. Should this have been ferromagnetic, even chains would also have
shown zero-bias anomalies.

As mentioned above the conductance steps encountered at around V=0 correspond
to spin-flip events, i.e. to electron scattering processes that produce the transition [m =
5/2) — |m = 3/2) (m is the magnetic quantum number) but that also preserve the total
spin Siot = 5/2. The first net spin changing transition occurs for N = 2 and corresponds
to the large conductance step found at V' = Jgq/e = 6.2 mV. This is investigated in more
detail in Fig. 5.5, where the dimer’s spectrum calculated when a magnetic field is applied
along the z-direction is also included. The effect of the magnetic field is that of splitting
the single excitation line into three distinct conductance steps. In this case in fact the

anti-ferromagnetic dimer has a singlet (S;,;=0) ground state and a triplet (S, =1) first
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Figure 5.5: Theoretical (a) and experimental (b) conductance spectra for the N=2 chains in a finite

external magnetic field. For B # 0 we note a splitting of the conductance steps, corresponding to the
Zeeman split of the final triplet excited state. This is observed in the experiments of reference [9], which
are reported in panel (b).

excited state. Therefore, an excitation from the ground state to the first excited state
changes the net spin of the dimer. When a magnetic field is applied the degeneracy of
the triplet excited state is lifted and excitations having the three Zeeman-split levels as
final states are possible. This produces the three-fold splitting of the conductance steps
as seen to agree well with experiment in Fig. 5.5.

Figure 5.6 shows the conductance spectrum for the trimer (N=3). This chain exhibits
similar trends to those found for the dimer as a magnetic field is applied, i.e. there is a
Zeeman split of the zero-field conductance steps. From the figure one may notice that for
both the theoretical (a) and experimental (b) data there is a shift of the principle step
to lower voltages as the magnetic field is increased. It is recalled here that in order to
recreate the conductance profile of the trimer, an additional ferromagnetic second-nearest-
neighbour interaction must be included in the model [23].

In all the spectra investigated the most striking agreement with the experiments con-

cerns the correct prediction of the SF-IETS excitation voltages. In particular not all the
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Figure 5.6: Theoretical (a) and experimental (b) conductance spectra for the N = 3 trimer at different
magnetic field. We notice the shift of the first conductance step transition to lower voltages as the
magnetic field increases. This is in good agreement with STM experiments of reference [9], which are
reproduced here in panel (b).

possible spin excitations feature in the d//dV — V curve as a result of the spin-selection
rules. A careful analysis of the inelastic process, as outlined in the first section, reveals
why some excitations occur and why some other do not. In particular it is noted that the
proper selection rules for the transitions are governed by the prefactor in the self-energy.
namely |[(m|S?|n)|? [Eq. (4.27)]. This effectively selects which excitations are more proba-
ble to occur. For example, the full energy spectrum of the trimer has 6 = 216 eigenvalues
but only a small portion of these eigenvalues will contribute significantly to the scattering
self-energy. Consequently only a few transitions will have influence on the conductance
spectrum. This for instance explains why the first conductance step of the dimer is con-
siderably larger than that of other chains of different lengths. In fact our calculations
show that a transition from the singlet ground state (S=0) to any of the triplet excited
states (S=1; m= -1, 0, +1) has equal probability. This results in a conductance step

which is approximately three times larger than any single spin-flip event that occurs in

an odd chain.
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F 1gure 5.7: Normalized conductance spectrum for Co (S = 3/2) on CuN as a = pJyq is increased.
Note the emergence of a Kondo resonance at zero-bias, i.e. at the Fermi level. The curves are arbicrarily
displaced for clarity.

5.3 Kondo effect and improved lineshape: third or-

der calculations

In order to illustrate the effects of continuing the perturbation expansion to third order the
conductance spectra of Co and Fe atoms deposited on the CuN surface will be discussed.
This section therefore aims at rationalizing the experiments described in reference [10],
where both Co and Fe ions were investigated by low temperature STM spectroscopy.
Intriguingly in the experiment it is possible to place the two ions at different distances
from each other. Thus one can investigate how the spectrum of the Kondo active Co is
affected by the presence of Fe and, viceversa, as the spectrum of Fe is affected by the
presence of Co.

Figures 5.7 and 5.8 show the calculated conductance spectra respectively for single Co
and single Fe atoms on CuN as the dimensionless parameter a = p.Jy is varied (note that
the spectra are normalized relative to the elastic conductance, G). The a parameter

is the coupling constant of the perturbation expansion as discussed extensively in the
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Figure 5.8: Normalized conductance spectrum for Fe (S = 2) on CuN as a = pJyq is increased. Note
the transition from a constant conductance at the inelastic steps to a conductance that logarithmically
decays after the excitation. The curves are arbitrarily displaced for clarity.

previous chapter. This is varied by altering the coupling of the adatom to the substrate,
i.e. by changing 7°~*, which translates in modifying the value of the adatom density of
states at the Fermi level.

This time the parameters of the simulation are set as follows. The level broadening
due to the coupling to the substrate (the one coupled to the tip is neglected) is set at
Iab_s = 0.1eV for both Co and Fe. In order to ensure consistency in the approximations
Cab-s = (Ysub—s)?/W] Ysub—s = 1.5 eV is set with the substrate bandwidth being W =
20 eV. One then chooses gy = 1 eV to fulfill the criterion £y > ep = 0. The magnitude of
Jea for both Fe and Co is held constant at 0.5 eV (the same value used for the Mn chains).
Finally the axial and transverse anisotropy parameters are taken from the experimental
fits of Refs. [7, 9] and are D¢, = 2.75 meV, Eg, = 0 meV, D, = —1.53 meV and
Er. = 0.31 meV, while the adsorbed atoms spins are Sc, = 3/2 and Sp. = 2.

The discussion begins with the case of Co. The full diagonalization of the Hy, (Sco =
3/2) Hamiltonian gives a set of four (2S¢, + 1) eigenvalues and eigenvectors. In particular

the presence of a hard-axis anisotropy results in the following energy manifold €5 =
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{0.69,0.69,6.19,6.19} meV, i.e. in a doubly degenerate ground state. It is then found
that transitions between the degenerate ground states become allowed only on inclision
of the third order term in Eq. (4.32). This is because of the selection rules imposed
by the theory through the matrix elements (m|S'|n). Such a transition appears in the
spectrum of Fig. 5.7 in the form of a zero-bias Kondo peak, whose intensity increases as
the value of a gets larger. The same feature is completely absent if one truncates the
perturbation expansion to the second order. Note that the third order contribution to
the interacting self-energy scales as o, while the second order one goes as a. Herce it
follows that an increase of the adatom density of states (an increase of a) promotes the
third order contribution to the self-energy. As such the enhancement of the Kondo peak
intensity is directly related to the relative growth of the logarithmic divergence of Za in
Eq. (4.32). The same logarithmic divergence produces a second distinctive feature in the
dl/dV traces, namely the rise of the conductance following an inelastic excitation. This
can be seen, for instance, in the conduction step at 6 meV. Such a step originates from
the transition from the ground state to the first excited state. One may then note that
first the conductance rises sharply at the voltage corresponding to the excitation energy
and then slowly decays. Although the agreement between the results and experiments
will be returned to, one notes here that such conductance traces are qualitatively similar
to those found in the STM experiments of Refs. [7, 10], i.e. both the zero-bias Kondo
peak and the increase in conductance at the inelastic transition voltages are observed.
The results for Fe are presented next in Fig. 5.8. This time H, (Sr. = 2) has the
five eigenvalues namely e8¢ = {—6.30, —6.12, —2.46, —0.60, 0.18} meV, so that the ground
state is non-degenerate. At zero magnetic field all the transitions allowed by the third
order expansion are resolved in the conductance traces. In this case there is no zero-
bias Kondo peak as the ground state is non-degenerate. Near to the zero-bias region a

conductance dip is observed, which corresponds to an inelastic transition between the

first two lower lying spin states. Furthermore, as in the case of Co, the presence of a
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Figure 5.9: Normalised conductance spectrum for a Co adatom on CuN when it is exchange coupled
to Fe as Jyq is increased (Jqq = 0 means that there is no magnetic coupling between Co and Fe). Note
how the Co Kondo peak splits as the Fe atom acts as an effective magnetic field. The insert zooms in the
zero-bias region. The calculated spectra are in black, while the corresponding experimental data from
Ref. [10] are in red.
logarithmic conductance is found as an increase at the inelastic steps in the d//dV traces
(for instance note the well pronounced one at ~ 4 mV). Again, since such a feature is
directly related to the third order contribution to the interacting self-energy, it gets more
pronounced as « is increased. The same feature is observed experimentally in all non-
Kondo active adatoms, demonstrating the good level of description provided by the third
order expansion. Note that such a behaviour was previously explained by invoking a non-
equilibrium population of the Fe spin states [27]. This explanation however conflicts with
the fact that the same effect is seen also for low currents [9], namely when the adatom spin
state resides close to the equilibrium. Therefore, the experimental data is re-interpreted
as the manifestation of third order Kondo corrections to the spin-flip inelastic tunneling
spectra. This will be discussed further at the end of this chapter.

As a final test for the third order self-energy an exchanged coupled Co-Fe dimer is

considered, a situation already investigated experimentally in Ref. [10]. For small, but

finite, values of Jyq one notices a change in the d//dV traces of both Co and Fe, which
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Figure 5.10: Normalised conductance spectrum for a Fe adatom on CuN when it is exchange coupled
to Co as Jqq is increased (Jgq = 0 means that there is no magnetic coupling between Co and Fe). Note
that the intensity of the conductance step at 0.18 mV decreases with increased exchange coupling. The
calculated spectra are in black. while the corresponding experimental data from Ref. [10] are in red.
becomes more pronounced as Jyq increases. Figures 5.9 and 5.10 show the conductance
spectra calculated in the two situations where the tip is either positioned over Co (Fig. 5.9)
or Fe (Fig. 5.10). Again a value for a = pJg = 0.1 is used. In the figures the experimental
cata [10] is superimposed for comparison.

In this situation one notices a change in the d//dV traces of both Co and Fe as they
are brought close together, i.e. as Jyq increases. For Fe both the conductance steps around
zero-bias and that at 0.18 mV decrease in intensity with increasing Jyq. In contrast, Fe
i'self acts as an effective magnetic field that splits the zero-bias Kondo resonance present
in the spectrum of Co. Both these effects are observed in the experiments of Ref. [10].
Notably Fe does not simply act as a source of magnetic field on Co, as seen in the inset
of Fig. 5.9 for Jgq = 0.1 meV. In the figure one can clearly observe an additional Kondo
peak emerging at zero-bias in between the two principally split peaks. This is a unique
feature of the exchange coupling between Co and Fe. In fact the exchange coupled Fe-Co

cimer possesses (25c,+ 1) x (2Spe+ 1) = 20 eigenvalues and additional allowed transitions
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appear at each of the atomic sites. For instance for large Jyq the zero-bias region of the Co
spectrum becomes completely dominated by a conductance dip. This originates from the
opening of a spin transition between the ground state at -5.686 meV and the first excited
state at -5.379 meV. Such a transition, absent for the isolated Co adatom, has a spectral
intensity much larger than that of the Kondo resonance, which therefore disappears from
the spectrum.

A comparison will now be made between the theoretical data and the corresponding
experimental spectra [10]. Notably, whereas the calculated spectrum of Fe is in excellent
quantitative agreement with the experimental one, the same cannot be said for that of
Co, which only reproduces the experimental features at a qualitative level. In particular
the experimental Kondo resonance is much more pronounced than the calculated one
(note that the parameter o has been set in order to reproduce the experimental step
in the spectrum at ~ 4 mV). At this point one can only speculate on the reasons for
such a disagreement. Firstly, the s-d model is valid only in the limit where the tunneling
matrix element ¢ is small with respect to the adatom charging energy U. This is the
case in which a Hubbard-like model can be mapped onto the s-d one [118]. Such a
limit might not be satisfied for Co on CuN. In the event of a large /U ratio a more
rigorous 2-body (Hubbard-like) approach needs to be employed to describe electrons in
the localized d—states [119, 120], in the conducting s—states [35] and in situations with
anisotropic exchange coupling J2;” < JZ [121]. It must be pointed out that in the works
just mentioned a more accurate reproduction of the Kondo peak was revealed by using the

non-perturbative computational method called numerical renormalization group (NRG).
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5.4 Additional lineshape features: Spin-pumping

5.4.1 Spin relaxation time

In this section the various conductance lineshape features that occur due to both non-
equilibrium spin pumping and a spin polarized tip will be investigated. Firstly, however,
the effect of the coupling environment on the localized spin will be analyzed. Thais will
allow a calculation of an important parameter called the spin relaxation time, 7°. This
quantity defines the time that it takes for the localized spin to relax back to its grourd state
after being excited. In particular the magnetic field dependence of T} can be favourably
compared with the findings of Loth et al. [59], who, in a ground breaking paper. calculated
T explicitly for an Fe-Cu dimer, which exhibits a large magnetic anisotropy on a CuN
substrate. This property results in a correspondingly large T and spin memory.

In order to find an expression for T, Eq. (4.43) for the bias dependent transition rate
from an initial state [ to a final state n is recalled. In particular the special non-bias-
dependent case is investigated where the effect of the tip is neglected and the localized

spin is only coupled to the substrate (sub). The transition rates are then

S PICsn)? (5.1)

Wy = —4 ’]*d chlz"

where ((x) = x/(1 — e */*8T)) This represents the excitation and relaxation of the
localized spin due to an exchange interaction with electrons that are coming and going
from the substrate. The inverse of this quantity gives a characteristic decay time. As a
result, the time it takes for an excited spin system to relax back to the ground state n = 1

18

T, = {Z M"u] o (5.2)
l

The values for both the excitation energies 2, and the spin matrix elements |S;,|* are
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evaluated by diagonalizing the spin Hamiltonian originally introduced in Eq. (4.14) and
evaluating the resultant eigenenergies and eigenvectors. This Hamiltonian takes the fol-

lowing form

Hi, = gusB.S + D(5%)* + E[(5%) — (8)?), (5.3)

where ¢ is the Lande g-factor, up is the Bohr magneton and B is a magnetic field that
can be applied in an arbitrary direction. The axial and transverse anisotropy terms are
measured by D and F respectively.

The formalism for calculating 7} will be tested against one of the few experiments
(Loth et al. [14]) that achieved an accurate estimate of the spin relaxation time of a
single localized spin. In this experiment a single Fe atom is placed on a CuN substrate
(see section 5.1). An additional Cu atom is then placed in close proximity to the single
Fe atom to form an FeCu dimer. It was shown from the DFT calculations described in
section 5.1 that the Cu atom itself carries effectively no magnetization and therefore the
spin polarization of the dimer is dominated by the Fe atom which generally carries a spin
quantum number S = 2. A magnetic field of 7T is then applied along the easy axis of
magnetization (the z axis). This breaks the spin degeneracy of the spin system. However
it is found that the dimer does not reproduce the same conductance spectra of a single Fe
atom in a magnetic field of 7T (see Ref. [5]). In the single atom case the first conductance
step is found at approximately V' = 6meV. For the case of the FeCu dimer however, the
position of this conductance step is greatly increased to roughly V' = 16.7meV. The
proposed reason for this shift is that the proximity of Cu causes a strong increase in both
the axial and transverse anisotropy energies, a result verified by the DFT calculations.

The advantage of such a high magnetic anisotropy lies in the resulting long spin
relaxation time 7} when the FeCu dimer magnetic moment is excited out of its ground
state. The relaxation mechanism for a spin S = 2 system with large axial and transverse

magnetic anisotropy subject to a magnetic field of 7T can be represented by the schematic
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Figure 5.11: Spin relaxation mechanism for a spin S = 2 system. When excited above Vijesh the spin
rapidly decays to the low lying states of | 4+ 2) and | — 2). The spin relaxation time 7} is then defined as
the time taken for the decay from | —2) to | + 2).

in Fig. 5.11. Under such circumstances the spin eigenvalues m; can be considered an
approximately good guantum numbers so that there is very little mixing between the
spin states. As such, the ground state spin is approximately |+ 2) with first excited state
being close in energy to the ground state with an eigenvector of approximately | — 2).

92
S!,17 between these two states,

However, since there is a negligible spin matrix element
a transition is highly unlikely and there exists an energy barrier between the states. It
can be seen that the first strong excitation occurs between the ground state and the 2nd
excited state | + 1). In the experiment by Loth et al. the spin system can be excited by
applying a pump pulse that matches the difference in energy between the |+ 1) and the
| + 2) states. This is called the threshold voltage Vipresn. At this point the spin is excited
and rapidly decays back to the two low-lying energy states of | +2) and | — 2) at a speed,
which is undetectable with current measurement devices. The quantity T} is then defined
as the time that is needed for the spin to relax from | — 2) and | + 2) which occurs at a
much slower rate (measured times are T} ~ 200ns) and it is measured using a separate
and weaker probe pulse.

An intriguing result is that the spin relaxation time of the Fe-Cu dimer initially in-
creases as a function of the applied magnetic field but then at a certain point, ~ 67,

begins to decrease in value. In order to reproduce the result of this experiment, param-
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Figure 5.12: Conduction spectrum for the FeCu dimer. The first conductance step occurs at roughly
16meV. This large value is due to the increased axial and transverse magnetic anisotropy terms and
represents the threshold voltage Viphresh at which the spin system becomes excited.

eters must be chosen that fit both the conductance spectrum for the dimer and the T;
dependence on the magnetic field. The calculated conductance spectrum can be seen in
Fig. 5.12. The values of the anisotropy used to recreate this spectrum were inferred from
the corresponding values for the single Fe atom found empirically in Ref. [5], where the
axial anisotropy was found to be Dg. = —1.55meV and the transverse Fp. = 0.31meV.
DFT results indicated that D ~ 3Dg.. The assumption is then made that F ~ 2Fp,. since
DFT results for this parameter could not be trusted. Figure 5.13(a) shows the magnetic
field dependence B of the eigenenergies of Hy, and 5.13(b) shows the calculated 77 de-
pendence on B, which closely matches what was found by Loth et al.. This simulation is
based on the assumption that the applied magnetic field is tilted slightly with respect to
the easy axis of anisotropy by roughly 5°. It is mentioned in Ref. [14] that the easy axis
of anisotropy coud not be determined experimentally but that such a deviation could take
place. This effect is also key in interpreting the decrease of T} when B > 6T. The slight
angular deviation results in an increased spin mixing between the two low lying states of

approximately | 4+ 2) and | — 2) [even though the energy separation between both states
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Figure 5.13: (a) Dependence of the eigenenergies of Hg,, on the magnetic field B and (b) dependence
of the spin relaxation time 77 on B. In the latter it is seen that 7} begins to decrease for B > 61". This
is due to an increased spin mixing between the two low lying spin states resulting from a non zero angle
between the applied magnetic field and the easy axis of anisotropy.
is seen to increase linearly from Fig. 5.13(a)], which in turn increases the tunneling rate
between each one. This ultimately results in quicker relaxation time between | — 2) to
| +2). One point of note however is that both the conductance and the T} dependence
on B were fitted using a large Lande g-factor of roughly g = 4, which is drastically in-
creased on the usual value of g = 2. This was also suggested in private communications

with Sebastian Loth and the origin of which still remains unknown. DFT results will be

performed in future works to try and ascertain the reason for the increased value of g.

5.4.2 Intense current density

Having seen the basic mechanism for spin relaxation due to the interaction between the
spins and the conduction electrons from the underlying substrate, it is a natural step to
study the non-equilibrium effects originating when a bias is applied between the two leads.
The effects originating from driving the spin system out of equilibrium with an electronic

current will now be investigated. This attempts at explaining the experiments reported in
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Figure 5.14: Excitation spectrum for an antiferromagnetically exchanged coupled Mn dimer deposited
on CuN. The ground state is a S = 0 spin singlet. The first three excited state multiplets have respectively
spin S =1, S =2 and S = 3. In the figure the energy separation between the various spin multiplets is
indicated in units of the exchange parameter Jyq.

Ref. [6, 11], in which a STM tip (non-magnetic) is positioned above a Mn dimer deposited
onto a CulN substrate. The conductance spectra are measured for different tip to sample
distances. Varying the STM tip height is equivalent to changing both the current density
and the electronic coupling between the tip and the sample. Non-equilibrium effects then
appear as variations of the conductance profiles as a function of the STM tip height.

The parameters needed by the model can be extracted from table 5.3. It is also recalled
that the ground state of the dimer is a singlet (total spin S = 0). The first excited state
is a triplet with total spin S = 1 and the energy splitting between the ground state and
such first excited state is exactly Jgq. The next excited level is the quintuplet with total
spin S = 2 and it is separated from the first excited state by 2.J4q. This pattern continues
throughout the spin manifold (see figure 5.14). The axial and transverse anisotropies cause
the lifting of the spin multiplets degeneracy. In this case I'yip_g remains an adjustable
parameter with the chosen values ranging from 0.125 meV to 200 meV.

Figure 5.15 shows the conductance spectra (normalized by G, the conductance cal-
culated when Jgq = 0) obtained by simply taking the numerical derivative of the current
with respect to the bias. Three different tip to sample distance are considered, corre-
sponding respectively to weak (I'ip—s = 0.125 meV), intermediate (I'y,—s = 12.5 meV)

and strong (I'ip,-s = 200 meV) electronic coupling. The evolution of the conductance
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Figure 5.15: Normalized conductance spectra for the Mn dimer calculated at different tip to sample
distance, i.e. for different I'yj,_g coupling strengths. We notice that the stronger is the coupling, the more
the system is driven out of equilibrium. This results in the appearance of additional spin transitions,
which manifest themselves as steps or drops of the conductance as a function of bias.

lineshape as a function of I'y,_g is a direct consequence of the spin system being driven
out of equilibrium. For I';,—s = 0.125 meV the STM tip is far enough from the sam-
ple to ensure that the spin system is always in its ground state between two subsequent
electron tunneling events. Therefore the only transition detected in the G(V') profile is
that between the S = 0 ground state and the first excited state with S = 1. This has
an excitation energy equal to J4q and it does manifest itself as a conductance step at a
voltage V' = Jyq/e, with e being the electron charge.

As the tip is brought closer to the sample (I'yip,—s = 12.5 meV) the first excited triplet
level (S = 1) starts to populate. Now an incoming electron with sufficiently large energy
(2J44) can induce a second transition from the first to the second excited state. Note
that a spin transition from the ground state to the S = 2 state is highly unlikely with a
single electron tunneling process. This would be completely suppressed in the case of no
magnetic anisotropy and it is expected to have a negligible intensity for finite, but small,

values. Note that such a transition will become more probable if the spin system does
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Figure 5.16: Non-equilibrium population of the Mn dimer singlet (S = 0), triplet (S = 1) and quintuplet
(S = 2) states. The inset shows a magnified view of the population of the S = 2 state as it start to get
populated at approximately 12 mV.

not have enough time between tunneling events to relax back to the ground state. For
this case the transition appears as an increase of the conductance at the critical voltage
V' = 2J4q4/€ with a subsequent decay. The same spectroscopic feature is further enhanced
at an even larger current density (I'ip,—s = 200 meV), when a third conductance step
appears at 3Jqq/e. This is associated to a transition from the S = 2 to the S = 3 spin
state and it becomes possible only if the occupation of the S = 2 level is not zero, i.e. if
the system is driven to this highly excited state. It is clear that by appropriately fixing
the two adjustable parameters £, and I'y;,_s one can achieve almost perfect quantitative
agreement with the experimental data (see Fig. 2 of Ref. [6]).

The evolution of the population of the various spin states (up to S = 2) as a function
of bias is presented in Fig. 5.16. This is calculated in the case of strong tip to sample
electronic coupling I'y;,—g = 200 meV. In the figure one can note the strong spin-pumping
from the ground state into both the first and the second excited state. The excitation to
the third excited state occurs at approximately 18 meV but it is too weak to be observed

on this scale.
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Figure 5.17: Normalized conductance spectra for a single Mn atom explored by a non spin-polarized
STM tip at different tip to sample electronic couplings I'ii,—s. Here a magnetic field of 3 T is applied along
the z-axis. Comparison is made between calculations where the perturbation expansion is terninated
either at the second or the third order.

The reason for the enhancement of the conductance step and the subsequent decay
can be attributed to the bias dependence of the spin population, as described in Fig. 5.16.
It is noted that there is a large dip in the ground state population at the point when
the first transition occurs. Since eventually it is desirable to calculate the conductance,
the derivative of the population with respect to the bias must be evaluated, whch, to
a good approximation, will have the appearance of a Lorentzian peak. This ultimately
contributes to the conductance at the inelastic step as a peak and a subsequent dp (see
Fig. 5.15). Such an effect will only appear when the system is driven out of equilibbrium
by increasing the tip-sample coupling I'y;,—s. However, a second effect can also geaerate
a rather similar lineshape, namely the inclusion in the perturbative expansion of third
order contributions, presenting a Kondo-like logarithmic divergence, in the self-energy.

In order to make this point more clear and to qualitatively distinguish between these

two possible sources of lineshape, the case of a single Mn atoms probed by a nor spin-

polarized tip will be investigated, whose conductance spectrum is presented in Fig 5.17.
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Figure 5.18: Non-equilibrium population of the various spin states of Mn on CuN as a function of bias
for a non spin-polarized tip

Clearly it is observed that increasing I'y,_s has minimal effect on the conductance line-
shape. Even when I'yj,_s = 200 meV and the population is driven far from equilibrium,
as is seen in Fig. 5.18, no significant conductance overshoot is detected at the bias step.
This effect has been explored by Novaes et al. in Ref. [31], where it is claimed that
the conductance overshoot brought about by inelastic transitions is balanced by elastic
transitions that do not alter the state of the local spin, resulting in a flat spectrum. This
is in conflict with what is found in experiments, where a visible conductance peak and
subsequent decay is observed at the bias step [6]. Therefore it is claimed that third order
contributions to the perturbation expansion, where the logarithmic peak in this case is
dependent on the parameter pJyy and therefore exists even at equilibrium, are the main
contributors to the observed non-linear conductance. This can be easily seen from the

3rd order contribution to Fig. 5.17.



105 Chapter 5

5.4.3 Spin-Polarized current

A second way to induce spin-pumping, which does not necessarily require the use of
ntense current densities, is that of using spin-polarized electrodes. In this case the current
mjected into the spin-system carries a spin-imbalance, i.e. there are more electrons of a
particular spin-species. This means that spin-flip transitions are likely to change the
local spin always in the same direction (when the current is non-spin-polarized there is
an equal probability for spin-increasing and spin-decreasing transitions). If only one of
the two electrodes is spin-polarized (for instance the tip) an asymmetry in the d//dV (V)
curve is expected, since the spin-polarization of the current, and consequently the non-
equilibrium spin-population, depends on the bias polarity.

Here an attempt is made at reproducing a set of experiments from Loth et al. [6], in
which a STM is made magnetic by placing a single Mn atom at its apex. Such a tip is
then used to probe a single Mn atom deposited on a CuN substrate in the presence of a
strong magnetic field (3 T and 7 T). Due to the weak anisotropy of Mn on CuN (the same
parameters as those of table 5.3 are used), the strong magnetic field effectively produces
a Zeeman split of the 6 levels in the S = 5/2 manifold. The direction of the magnetic
field in these experiments is chosen so that the ground state of Mn corresponds to the
spin quantum number m = +5/2. Since the same magnetic field is applied to the tip and
to the atom to probe, their spins are collinear.

Figure 5.19 shows the calculated spectra for the system described above. In particu-
lar, a magnetic field strength of 3 T is considered and either weak (I’ tip-s = 0.5 meV),
intermediate (I'y,-s = 50 meV) or strong (Iyp-s = 200 meV) tip to sample couplings.
The on-site energy is fixed at 5 = 1.0 eV and the value of Jq = 0.5 eV is inferred from
DFT, which results in an inelastic ratio of y = 1.5. The tip spin-polarization constant
that best fits the experimental data is 7 = —0.3. In the weak coupling regime (when the
local spin remains always close to equilibrium) the local spin resides almost entirely in its

m = +5/2 ground state. Due to the spin-exchange selection rules and to the collinearity
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Figure 5.19: Normalized conductance spectra for a single Mn atom explored by spin-polarized STM
tip at different tip to sample electronic couplings I'yjp,—s. Here a magnetic field of 3 T is applied along
the z-axis. The asymmetry in the conductance profile is is due to the spin-polarization of the tip. Such
an asymmetry is more pronounced as the system is driven further away from equilibrium. Comparison
is made between second and third order calculations.
of the tip and the sample, only the minority carriers can excite the local spin out of the
ground state. For a tip spin-polarization of n = —0.3, there are more minority electrons
coming from the tip than those coming from the substrate. As a result, the intensity
of the inelastic interaction will change depending on the direction of the current. This
creates an asymmetry in the conductance spectrum with respect to the applied bias. The
additional lineshape features appearing in the weak coupling case (the conductance decay
following a conductance step) are due to the third order Kondo-like self-energy, which
produces a logarithmic decay at the conductance steps. This result is in good agreement
with experiments (see Fig. 4 of Ref. [6]).

When the spin of the Mn ion is driven further out of equilibrium, in particular in the
strong coupling case, the bias asymmetry becomes more pronounced. Such spin-pumping
phenomenon can be appreciated by looking at Fig. ??(a), where the populations of the

six spin states of the Mn atom are shown as a function of bias for strong tip to sample

coupling (Tyip—s = 200 meV). From the figure one can see that as the bias increases the
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Figure 5.20: (a) Non-equilibrium population of the various spin states of Mn on CuN as a
function of bias for spin-polarized tip and (b) the resulting average magnetization. These
have been calculate for a magnetic field of 3 T aligned along the z-axis and for strong tip
to sample electronic coupling I'yj,—s = 200 meV. We notice that as the spin is driven far
away from its equilibrium ground state the magnetization flips its direction.

m = +5/2 ground state gets depleted in favour of populating the other five excited states.
In particular already at around V' = —10 mV the population of the m = —-5/2 level is
larger than that of the ground state. In the figure the average magnetization is also
plotted. This is defined as (S%) = Y P,,5%,, [see panel (b)]. Intriguingly it is found
that for negative biases the spin is effectively flipped from m = +5/2 to m = —1 over
a 25 meV range. The local spin is no longer collinear to the tip polarisation, and hence
the inelastic signal for negative bias is weaker than that observed for positive. Therefore
one observes a large dip in the conductance at negative biases when the spin is driven far
from equilibrium and its polarization is effectively switched.

In Fig. 5.21 the calculated spectra for Fe is presented in the spin polarized case.
Parameters in this case are chosen to conform with the experimental data of Loth et al.
in Ref. [11]. The Fe atom is assumed to carry a quantum mechanical spin of S = 2
and it also exhibits a transverse easy axis anisotropy of D = —1.53 meV and an axial
anisotropy of £ = 0.31meV. We again assume a large value of the onsite energy, 2 eV,

and we examine the spectra in the strong coupling case of I'i,_s = 200 meV with a
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Figure 5.21: (a) 2nd and 3rd order conductance spectra for the Fe atom with spin polarization n = 0.35.
The magnetic field of 3 T is applied both parallel and perpendicular to the easy axis of the Fe atom. (b)
Second dervative of the current for the same spectra shown in (a).

tip polarization of = 0.35 and magnetic field strength 3T as used in experiments. In
Fig. 5.21(a) the conductance spectra for the two cases when the magnetic field is parallel
or perpendicular to the easy axis of the atom (the z—axis in this model) is presented.
As previously, it is presented for both second and third order calculations. Firstly, one
notices that the spin polarized tip affects the spectra only in the case of parallel magnetic
field where a clear bias asymmetry is produced. No significant asymmetry is found in
the perpendicular case. This conforms with the experimental findings and is due to the
fact that electron spins in the tip are no longer collinear with the localized spin of the Fe
atom.

As found in the previous chapter, the inclusion of third order contributions is vital
in reproducing the correct logarithmic decay at each of the conductance steps, which is
particularly noticeable for the perpendicular magnetic field. More significantly, experi-
mental spectra for the parallel case exhibit a zero bias conductance dip which is absent in
the second order spectra but appears strong when third order terms are included in the
perturbation expansion. This can also be seen in the calculation of the second derivative
of the current in Fig. 5.21(b) where a clear zero bias anomaly is evident in the third order

case.
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Plgure 5.22: Normalized conductance spectra for a single Mn single calculated by including the real
contribution to the interacting electron-spin self-energy for different on-site energies 5. Note that the
conductance asymmetry increases with decreasing =g, i.e. as the onsite energy moves closer to the Fermi
level.

5.4.4 Non-spin polarized asymmetry

Finally the discussion moves to the inherent asymmetry measured in the conductance
profile, which is usually observed even if the tip is not spin-polarized [6, 9]. This lineshape
feature is modeled by including the real part of the full interacting electron-spin self-energy
derived in the previous chapter [see Eq. (4.41)]. The structure of this contribution to the
self-energy shows an explicit dependence on the on-site energy, £, and also a logarithmic
peak of width kg7 at the onset of an inelastic transition (£ —pu, = £8,,,). The asymmetry
arises from the difference in polarity of the logarithmic peak for £€,,,. The self-energy
Is thus an odd function of both energy and bias. This results in the conductance profile
having a decrease of the step heights for V' = —Q,,,/e and an increase of them for
V =+4+Qn./e.

This approach is tested by considering the case of a non-spin-polarized tip and a single
Mn atom. The same anisotropy parameters are used as for the Mn dimer but, for the sake

of simplicity, the spin is always in its equilibrium state and one chooses I'y;,_g = 0.5meV.
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Figure 5.23: Comparison between the experimental (red) and theoretical (black) conductance spectra
for a Mn trimer on CuN probed by a non-magnetic STM tip. In the calculation the real part of the
interacting electron-spin self-energy has been included. This provides the conductance asymmetry with
bias. The experimental data is taken from Ref. [5]

Figure 5.22 shows the resulting conductance spectra for three different choices of the on-
site energy £o. It is clear that the closer 4 is to the Fermi energy (0 eV), the greater
is the bias asymmetry, while as £( is increased, the conductance profile becomes more
symmetric. In this respect, the formalism outlined here is in agreement with the Fano
lineshape argument [122] where the degree of asymmetry for electrons tunneling through
a single impurity is given by a ratio of the real to the imaginary contributions to the
interacting Green’s function [120].

As an additional test the case of a Mn trimer is considered, whose spectrum was
shown first by Hijibehedin et al. [5] to exhibit a large bias asymmetry when measured
with a non-magnetic tip. This system is modeled by choosing an antiferromagnetic nearest
neighbour exchange coupling JQQ) =2.3 meV. Furthermore, in order to accurately describe
the position of the principle conductance steps in the conductance profile, a ferromagnetic
second-nearest-neighbour interaction between the local spins of magnitude .J éi) =-1.0 meV

is included [23].
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The spin system is kept in equilibrium by considering a weak coupling between the
STM tip and the second atom in the trimer chain (I'ip,—g = 0.5 meV). The best fit to
the experimental data is found with ¢y = —1eV. Figure 5.23 shows the model fit to
the experimental data (from Ref. [5]). Whereas previous calculations did not predict any
conductance asymmetry it is clear from the figure that the inclusion of the real part of the
self-energy in the description produces a significant conductance asymmetry. This is most
prominent at the principle step height (=~ +£16.5meV) for each bias polarity. Although
the step height for the negative bias is not as small as that found experimentelly, the
qualitative trends are similar. In particular one notices the logarithmic conductance
increase (reduction) that occurs before (after) the onset of the step at V = +16.5meV,
which also originates from the third order contribution to the self-energy.

Based on a perturbative approach of the s — d model, here it has been shown that the
entire lineshape of the spin-flip IETS can be re-conciliated with experiments by considering
an expansion of the self-energy to the third order, which also includes its real part. As such
it has been shown that the conductance asymmetry can be described also if the electronic
orbitals forming the sample’s spin are not explicitly taken into account, indicating that
the origin of the asymmetry comes from a density of states effect. This has also been

suggested by Delgado and Fernandez-Rossier [29)].




Chapter 6

IETS as a predictive tool

Up until now the validity of the nonequilibrium Green’s function approach has been
tested against known experimental works and good agreement has been achieved when
examining higher orders of perturbation and in spin-polarized STM tips that are subject
to intense current. Given the success of the method in describing such experiments, the
obvious follow-on step is to use it as a predictive tool for prospective experiments that have
not yet been performed. Two topics will be treated in this chapter, namely the proposed
electric field spin-crossover effect and spin impurities deposited on 2D topological insulator
edges, each of which can be combined with S-P IETS to generate some intriguing results

with interesting applications in the field of spintronics and quantum computng.

6.1 Electric field induced spin-crossover effect

It has been theoretically predicted that exchange coupling between local spins can be
controlled electrically both for a two centre dimer [61]. In this work it has been postulated
that the dependence of the Stark shift of a given magnetic system on its magnetic state
results in an exchange coupling parameter that has a quadratic dependence on the applied
bias voltage. This enables a spin-crossover from a low spin to high spin configuration. In

this section the possibility of using a scanning tunneling microscope (STM) to detect the

112
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dependence of the exchange coupling on an electrical potential will be investigated. A
bias-dependent conductance spectrum of the most basic molecule comprising two coupled
fully quantum mechanical spin 1/2 atoms will be calculated as opposed to a similar

treatment for a classical localised spins[64].

6.1.1 Theoretical methods

The same single-orbital tight-binding model as in previous sections is used where a mag-
netic system (S) is coupled to two non-interacting electrodes denoted as tip (tip) and
substrate (sub). The scattering region containing the magnetic nanostructure consists of
a one-dimensional chain of N atoms. Each atom A carries a quantum mechanical spin
S, and it is characterized by an on-site energy £y. Again, it is assumed that the tip and
substrate can only couple to one atom at a time in the scattering region thus broadening
the electronic level £, through the interaction with the electrode by I',/eun. The total
broadening due to the leads is given by I' = I'y, + I'up. The total Hamiltonian is thus
described by Hs = H. + Hg, + He_g, where H, is the tight-binding electronic part, Hy, is

the spin part and H,._g, describes the electron-spin interaction. The Hamiltonian writes

H, = ¢ Z cf\ac,\a . (6.1)
A
N-1 N
Hep = 2JaalV) Z S5 ¢ B + ZQNBB B, (6.2)
A A
He—-sp = Jsd Z (CKQ[U',\]Q&/(‘,\O/) * S,\. (63)
A a,of

The electron ladder operators cja /Cia create/annihilate an electron at site ¢ with spin «
(=1, 1) and onsite energy &.

The spin-spin interaction between the localized spins {S,} is modeled by a nearest
neighbour Heisenberg Hamiltonian with coupling strength Jqq. In this work it is assumed

that spin-spin interaction takes on a quadratic bias dependence i.e. Jyq(V) = a + bV? as
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suggested by Baadji et al.[61] for spin crossover molecules. The parameter a is the zero bias
value of J§; and b defines the value of the critical voltage at which Jaq switches between
ferromagnetic and anti-ferromagnetic order, Vi = j:\/——a—/b. Furthermore an interaction
with an external magnetic field B (up is the Bohr magneton and g the gyromagnetic
ratio) is assumed.

The electron-spin interaction Hamiltonian is again constructed within the s-d model [51]
where the transport electrons, s, are locally exchanged coupled to quantum spins, {Sx}
(d indicates that the local moments originate from the atomic d shell). In this case the
interaction strength is Jy and in Eq. (6.3) o is a vector of Pauli matrices.

Diagonalization of Eq. (6.2) gives the eigenenergies (£,) and eigenstates (|n)) of the
spin system in the interacting region. From chapter 4 it was found that the second order

transition rates between two eigenstates |n) and |l) with a non-spin polarized tip is given

by
P- ;
W nl — =4 gd Z I n[| Fnrn C Ky — Mgy — Qn[)~ (64)
i
where the spin matrix elements S!, = (n|S'|l) with i = {z,y,2} are that of a single

spin in the chain that is coupled to the tip (the index A is then dropped). Furthermore
it is recalled that ((z) = x/(1 — e ®/*s1)) and pu, is the chemical potential in lead
n = {tip,sub}. It is also assumed that the onsite energy is large enough that the density
of states of the sample remains constant in the small energy window of interest (meV).
Therefore p = I'/(e2 + I'?). The above transition rates can be used to evaluate the bias
dependence of the population of the spin system states from the steady state solution of

the following

dF,
dt

== Z [Pn(l - Pl)”’ln - Pl(l - Pn)w/rnl] T ('P7(1) - Pn)/ﬁa (65)
l

This is iterated until self-consistency is reached for an initial guess of the population



115 Chapter 6

(P =F).
Up to second order in perturbation the normalized current through a single spin (as
calculated in chapter 4) can be expressed compactly as a function of bias (see Appendix

E)

(V)/Ga =V + 2 *d D ISLUPPU(VYio(V = Qi) (6.6)

i,m,k

where the normalization constant is given by the elastic conductance

= (1) Refs 61

and where i (V — Q) = C(V — Qi) — C(—=V — Qi ). The resulting normalized conduc-
tance, in addition to the elastic contribution, has two parts (G; and G5 that contribute to

the total conductance G(V)

d
qrzrl dV i—("' - ka)~ (68)
1,m.k
Go(V) *d D ISEPi(V = Qo) = 4 P(V), (6.9)
im,k [ " av
G(V) =1+ Go(V) + G(V). (6.10)

In the equilibrium case when Py is constant with bias for all &£ then G} becomes the only
contributor and represents the conductance step whenever the bias coincides with the
inelastic energy transition €2,,,. The conductance step height over the elastic conductance
is then governed by the ratio pJ% /T. However in the non-equilibrium case when P (V)
varies with bias both ; and G5 contribute and result in more complicated non-linear

conductances.
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Figure 6.1: (Color online) Upper Panel: Total contribution to the normalized conductance spectra for
the spin 1/2 dimer. Lower Panel: Normalized conductance contributions to the total. The large dip in
conductance at 12 mV represents the spin crossover critical voltage.

6.1.2 Results

As a test of the fully quantum mechanical treatment of electric field induced spin crossover
in magnetic molecules the simplest case of a pair of spin S = 1/2 atoms coupled through
the bias dependent spin exchange parameter Jgq(V) = a + bV? is examined. At zero
biasit is assumed that the local spins are coupled anti-ferromagnetically by the parameter
a = +6meV. Diagonalization of Eq. (6.2) reveals that at zero bias the resulting ground
state of the spin system is a singlet with total spin Si,, = 0. The excited state is a triplet
with total spin Sio = 1 and is split from the singlet state by the zero bias exchange energy
a = +6meV. A value for b = —0.04meV/(mV)? is chosen in line with DFT predictions
[61]. A spin-crossover between total spin states S;, = 0 and Sy = 1 is encountered
when the voltage reaches the critical point Vo = +1/—a/b where J4q(V') switches from
anti-ferromagnetic (positive) to ferromagnetic (negative).

To construct a full conductance profile of the spin crossover event from Eqs. (6.8)-

(6.10) one must chose values for the remaining parameters which are retrieved from both

experimental and theoretical descriptions of similar STM setups. Firstly it is assumed that
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Figure 6.2: (Color online) Population of the singlet (black) and triplet (red) states for weak (solid line)
and strong (dashed line) coupling to the tip.
the s-d exchange is Jq = 500meV as found from DFT calculations [116]. It is assumed
that the electronic energies of the dimer atoms are of the order of 1eV, far enough from
the fermi energy to ensure a constant density of states p in the low energy window of
interest. The atoms are coupled to the underlying substrate strongly enough to produce
a broadening of the onsite energies of I'y,, = 250meV. Furthermore it is assumed that the
tip is non spin-polarized and movable such that conductance spectra can be investigated
for a range of I'y;,. The effect of magnetic fields on the spectra will also be investigated
and a Lande g-factor of 2 is assumed. All spectra are obtained at a temperature of 1.5K.
The top panel of Fig. 6.1 shows the total conductance (G) for the above parameters
with the tip positioned above one of the atoms in the dimer with a weak tip-atom coupling
of 'y, = bmeV. The bottom panel shows how the spectrum is broken up into its various
components, (;; and Gy from Egs. (6.8) and (6.9). It is clear that the main features of
the total conductance (G) are reproduced by GG; where the derivative of the population is
not considered. The first conductance step represents the spin-excitation from singlet to

triplet. The spin crossover then occurs at Vo = +1/—a/b = £12.25meV and is represented
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Figure 6.3: Upper panel: Normalized conductance spectra of the spin 1/2 dimer for varying values of
I'tip. Lower panel: Corresponding colour plot. The conductance drop at Vi weakens for strong tip-atom
couplings.
by a large dip in conductance. This is well explained by the bias dependent population
plot in Fig. 6.2 (solid black and red lines). At the crossover point, a change in the ground
state occurs and the population of the singlet state rapidly decreases from full (1) to empty
(0) while the triplet states are equally filled from 0 to 1/3. As the voltage increases, the
split between the new ground state triplet and new excited state singlet becomes larger.
A voltage is then reached ( 30mV) where a spin excitation between the new ground and
excited state occurs. The contribution of G5 is seen as an additional non-linear effect at
the spin-crossover point brought about by the derivative of the population of the states.
The upper and lower panels of Fig. 6.3 show that by increasing the coupling of the tip

to the atom, the conductance spectra can be greatly modified. It can be clearly seen from
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Figure 6.4: Upper Panel: Normalized conductance spectra of the spin 1/2 dimer for varying values
of I'yjp with applied magnetic field of 20T. Lower Panel: Corresponding colour plot. One notices the
Zeeman splitting of the triplet levels.
both plots that the magnitude of the conductance dip at the crossover point becomes
less severe. This is due to a change in the population of the states when the coupling
is increased (see the dashed black and red lines of Fig. 6.2) where pumping out of the
ground state into the excited state occurs before the onset of the spin-crossover. This
also results in the enhancement of the first conductance step and resultant decay as was
discussed in chapter 5.

Finally the effect of applying a magnetic field to the spin system is investigated. For
the purpose of clear illustration a large value of 20T is applied in the z direction. It is
pointed out to the reader however that this value is in general experimentally unattainable.

Figure 6.4 shows the variation of the spectra for different values of T'y;,. One notices in
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Figure 6.5: (Color online) Population of the singlet and triplet states for strong coupling of the tip to
the atom Gammayi,. The large splitting of the triplet state populations is notable.

both upper and lower panels that the onset of the magnetic field splits the triplet into its
Zeeman components which is manifested as three equal sized conductance steps around
the zero-bias spin-exchange parameter. As in the zero-field case the magnitude of the
conductance drop at the spin-crossover point decreases with increasing I'y;,. The second
conductance step ( 30mV) from ground state triplet to excited state singlet takes a slightly
different form for increasing tip-atom coupling. The resolution of the Zeeman-split triplet
states occurs at high couplings. This is explained by Fig. 6.5 where the populations of the
4 states are now well separated at high tip-atom coupling. Due to the varied populations
of the triplet states, the probability of a spin transition from the triplet state to the excited

singlet state becomes highly dependent on T'y;,.
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6.2 Spin-pumping and inelastic electron tunneling spe
troscopy in topological insulators

In this section it will be shown how a magnetic impurity deposited at the edge of a Z,
TI and presenting a uni-axial magnetic anisotropy, which makes it non-Kondo-active [74],
can be manipulated by a quantum spin Hall (QSH) current. The topological nature of
the QSH state has profound consequences on the SF-IETS conductance spectrum. At
low current intensity there is a complete suppression of the conductance steps appearing
at the critical biases characteristic of the activation of an inelastic spin-scattering chan-
nel [3]. In contrast, for currents large enough to produce spin-pumping the spin of the
magnetic impurity is driven away from the anisotropy axis. This breaks the topological
protection of the helical edge states and the conductance steps reappear. Intriguingly, in
this situation there is a strong dependence of the SF-IETS conductance spectrum on the
bias polarity. Again, the calculations are conducted by using the non-equilibrium Green's
function method for transport combined with a perturbative approach to spin-scattering

from magnetic impurities as introduced in the previous chapters.

6.2.1 Kane-Mele Hamiltonian

The initial structure that will be dealt without considering the effect of a spin impurity
1s a Zy 2-D topological insulator (TI) ribbon on a honeycomb lattice with zig-zag edge
geometry as in Fig. 6.6. The left and right leads are square lattice structures coupled
to the T.I. The Kane-Mele model to describe the single particle electrons in the device

region with the following Hamiltonian H gy,

HKM = €0 Z&-cgacia + 4 Z C:-raCja e 112 Z Vij(';’ta[o'z]aﬁcja‘ (611)
ia (ig).ex (1)),
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Figure 6.6: Schematic representation of the device considered in this work, comprising a TI with
honeycomb lattice structure coupled between two semi-infinite square leads
The first term describes a staggered sub-lattice potential with on-site energy o and §;

being & = +1 for the A sub-lattice and & = —1 for the B one. Here cl

i, (€ia) creates
(annihilates) an electron at site ¢ with spin a. The second term is the nearest neighbour
hopping with strength ¢; (#; sets the energy scale of the problem). Finally the third
term, which drives the topological phase, is a second nearest neighbour hopping with
strength t, (i = /—1). This describes the coupling of the electrons orbital motion to
their spins via the z-component of the Pauli matrices (¢%). The parameter v;; is +1 for
counter-clockwise hopping and —1 for clockwise. The dimension of the device is simply
2N = 2(n, x n,) where n, is the number of atoms per zig-zag row n, and the factor of

2 takes into account the electronic spin. The leads are assumed to be of a square lattice

structure, the properties of which will be dealt with in the following section.

6.2.2 Two-dimensional lead self energy

The procedure for calculating transport properties of two dimensional systems is signif-
icantly different to that used for one dimensional systems [123]. In particular, scalar
quantities of one dimensional arrays such as nearest neighbour couplings must now be
recast in terms of matrices that describe the two dimensional structure of the TI ribbon
and connecting leads. In the following the example of a square lattice is used to show
how to calculate the self energy of a given lead, as introduced in Fig. 6.6. For simplicity

ne, = 4 is used where ng is the number of surface atoms in the lead. The central device
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Figure 6.7: Schematic illustrating the construction of the various coupling matrices in the 2D model.
Each layer labeled by «, is coupled to its nearest neighbour by /3,
region can take any structural form and it is assumed that it contains a total of N itoms.
The two matrices [a,] and [3,] are introduced where 1 = L, R. The schematic n Fig.
6.7 shows how these matrices are constructed within given layers containing n, itoms.
[ov,)] contains the onsite energies ¢, and the intra-layer coupling ¢, whereas [3,] ccutains
the inter-layer coupling, also with stength #,. It is seen how the lead can be constructed
layer by layer with each a, coupled to the adjacent one by /3,. These matrices ar> then

n, X n, in dimension and can be defined as

€y f,) 0 0 tv] 0 0 0
ty & ty O f 0 t, 0 0
[aﬂ]"sX"s = ) [ﬁn]nsxns — B (612)
bt ey 0 0 ¢ O
0 0 ¢ & 00 0 t

Following from this the surface Green’s function of the lead 7 can be defined by using

Dyson’s equation and it is found that

[Gamlngsen, = [(B + 3071 — i — ﬂ;9s~77/j71]_1~ (6.13)

where 07 is a positive infinitesimal and the identity matrix 1 is also n, x n, in dimension.
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Since the surface Green'’s function is self-dependent, a self consistent approach is needed
to evaluate its value at each energy E. As such the appropriate initial guess for the surface

Green’s function is
[gg,v]]"vsX?ls = [(E + 7’0+)1 ] a71]‘1~ (614)

The result is then iterated until self-consistency is reached.

The coupling between the lead and the central device region (of dimension N) is
described by the matrix [7,]. This has dimension N x n, and using the nearest-neighbour
approximation will describe coupling of strength {., between the outermost atoms in both

the leads and the device region. The matrix then takes the following form

ey 0 0 0
0 0 0 0
0 twy 0 0
0 0 0 0 ,
[ﬂ]]NXnS = ) ) | L . (615)
0 0 t., O
0O 0 0 O

All the quantities that are needed to construct the self energy of the lead are now in place.
This has the dimensions of the device region, N x N, and through Dyson’s equation can

be defined as

[En]NxN = [ﬂ]]Nan [gs.n]nsxns [T;j]ns XN (616)
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The self energies are complex quantities whose real part renormalizes the eigenstates in
the device region. The imaginary part is also important and contributes to the broadening

function which can be defined by
[C,] =4[, — =} (6.17)

This results in a finite lifetime for each eigenstate in the device region.
For a given Hamiltonian H that describes the central device region, the retarded and
advanced Green’s functions of the unperturbed system without spin interaction can be

defined as

[Golnxn = [(E+i0T)1— H -, — g™, (6.18)

[Galnxw = [(E—i0%)1 — H — =} — £f]~! (6.19)
where the resulting transmission function takes the form
T(FE) = Tx[I' G rGg]. (6.20)

If a bias V' is applied between left and right lead the corresponding current and conduc-
tance profiles for the given device region can be calculated. To do this the definition
is needed for the Fermi functions in each of the leads as a function of the energy F
fo(E) = 1/{1 + exp[(E — p,)/kpT]}. This describes the electonic filling of each of the
leads with the chemical potentials p; = ep +V/2 and pg = ep — V/2. Following on from
the original formalism for one dimensional transport introduced in chapter 3, the greater

and lesser Green's functions in the device region and self energies in the leads can be
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Figure 6.8: Schematic representation of the device with spin impurity (I) coupled to the TI edge. The
square leads have been replaced by the self energies ¥; and Y

written as

[E;] = fn[ru] ; [Z>] =(1- .[7})[FI]]~ (6-21)

n

[G5] = [G5(ZF + £3)G3]. (6.22)

6.2.3 Spin impurity on topological insulator edge

In this subsection a spin impurity is introduced that can be attached to a given site A in
the honeycomb lattice discussed previously. The full contribution to the electronic part

of the Hamiltonian H including the Kane-Mele Hamiltonian from Eq. (6.11) is

Hg = Hgpm + € ZC‘IOCIQ +1; Z ch Crars (6.23)

a (1)),
where [ labels the spin impurity with onsite energy £; and the coupling to nearest neigh-
bour site A is given by t;. The spin is labeled by a and the total dimension is now
2N = 2(nzn,+1). A schematic of the device with the spin impurity is seen in Fig. 6.8. In
addition to the electronic part of the total Hamiltonian the spin degree of freedom of the
localized impurity must be incorporated in which it is assumed that the given spin expe-

riences an axial anisotropy due to coupling to the underlying staggered lattice structure.
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Therefore

Hey= DS, (6.24)
P 4

where D is the zero field splitting parameter describing the uni-axial anisotropy wlich in
this case is assumed to be in the plane along the z-axis. Diagonalization of the Hamiltonian
vields the eigenvalues £, with eigenvectors |n), which are used to obtain the populations

P, given by the Boltzmann distribution

exp(—en/kgT)
> exp(—em/ksT)

P, = (6.25)

Omne can also define the spin matrix elements which represent the transition probebility
from one state to another. These are given by (m|S'|n) = S! where i = +,—,z and
S* = (8% £i8Y).

The coupling between the localized spin and the current carrying electrons in the
localized atom will again be considered here where it will be assumed that it can be

described by the s-d interaction.

oo = Jia Z el [o]apcis-S, 6.26)

ofi

where the strength of the interaction is Jyq and [o] is a vector of Pauli matrices. The
coupling between electron spins and localized spins will again be treated perturbatively as
done in previous chapters. The result is an interacting spin dependent self energy which
when truncated at second order is proportional to the non-interaction Green’s furction
70(E £ Q) where ,,, = €,, — &,, and describes the spin flip mechanism of an incoming

electron interacting with a localized spin S. It can be written in the following form for
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the lesser and greater interacting self-energy (recall Eq. (4.34) and (4.35))

[E5(BNG = — I Y IGF(E £ Q) iy (nmX Pz + Pall = Pr)|Sinl?)

m,n

Js2d Z[Gog(Eian)]llP (1 — Pn) | nn|2 (6-27)

m,n

S5BNE = = I D ICE (B % Qna)lis (= GnmXPaSn + Pall = P)|Sial)

m.n

dz E * an ]TTP 1 ) )l ,m,|2 (628)

m.n

where y = g;/Jyq is the inelastic ratio. It is also noted from previous results that by
driving the current in the system (achieved previously by bringing the STM tip closer
to the given adatom) a bias dependent population of the local spin states emerges and
the spin system is out of equilibrium. This reflects the effect that the current carrying
electrons has on the localized spin. If more and more electrons come in contact with the
spin then it will not be allowed relax back to its ground state and the higher excited
states will begin to be populated. This bias dependent population is treated within the
local spin self energy (refer to chapter 4) and the resulting master equation governing

each state |n) is given by

dP

—Z |Pall = B)Win — Bi(1 = P)Wai + (P3 — Pa)/B, (6.29)

where the transition rates between initial state |I) and final state |n) is given by the

expression:
]2 +00
Wi = =4 ( (Snm9a8Ta + |Sul’lo5s| ) / dw[G§ (w)]ss[Go (W — Qui)laa-  (6-30)
i,0,8 —00

It will be shown in subsequent sections that this quantity is highly dependent on the

strength of the parameters t.,. The greater the coupling, the more the system is driven
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Figure 6.9: (a) Band-structure of the TI ribbon constrained to 10 atoms along the y axis. The
edge states are spin filtered so that electrons with opposite spins propagate in opposite directions. (b)
Schematic of the situation when a potential difference is applied between the two leads it is seen that
spin down electrons travel anti-clockwise and spin up electrons travel clockwise.
out of equilibrium and higher excited states populated.

With all this at hand the current and conductance at a given lead n can now be
constructed. This takes the following form

(V)= /Tr[z;(E) >(E) — £2(E) :<<E)}(1E. (6.31)

n

and the conductance is simply the derivative of the above quantity with respect to the

bias. The Green’s function in this case is the full interacting one and is defined as follows:

§

G3(E) = G"(E) {zLu«:) +I5(E)+ 55

mt

(E)} (). (6.32)

6.2.4 Results: Spin-flip mechanism on topological insulators

The discussion begins by first looking at the electronic structure and transport properties
of the ribbon in absence of the magnetic impurity. Figure 6.9(a) shows the band-structure
for such a zig-zag structure that extends to infinity along the x-axis and is constrained

to a length of n, = 10 along the y axis without a spin impurity. The ratio t,/t; = 1/3
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(a choice which preserves the topology [125]) and the onsite energy £¢ is chosen to be
zero (the choice of &g is arbitrary and will have little effect on dynamics around the Fermi
energy). At the Fermi energy e = 0 it can be seen that two bands traverse the bulk
band-gap and each are localized at the edges of the strip with degenerate copies for each
edge. These ’edge states’ are spin filtered, meaning that electrons with opposite spins
propagate in opposite directions with spin down electrons traveling anti-clockwise and
spin up electrons traveling clockwise. Therefore if a potential difference is set up between
the left and the right ends of a graphene strip the situation outlined in figure 6.9(b) is
encountered when electric current flows from left to right.

The transport properties of the TI ribbon are investigated by calculating the spin-
resolved transmission coefficients along a given edge [124] for a finite slab of the zig-zag
structure. This quantity is defined as

N (SF) = TI',,I[FLGTFR J‘Q]S , (633)

aa’ o’

where a is the spin index (a =1,]), s labels the edges (s = top, bottom) and G is
the advanced Green’s function. The trace is over the number of atoms, n,, along the
given edge and the transmission coefficient is evaluated at the Fermi energy, ep. As
a matter of notation a (n,,n,) ribbon contains n, atoms in the direction of transport
and n, along the transverse one. When the Fermi level is fixed at the half-filling point
the ribbon is insulating in the bulk, but presents edge topological protected states (here
tyjr = t, = t; = 1, and {, = t;/3, which ensures that the KM Hamiltonian describes
a QSH state). In this situation we find for a (11, 6) ribbon, Tj;* = 0.9, T|}” = 0.1,
TTbTO““”” = 0.1 and Ti"lOttom = 0.9. Such values demonstrate that the current along the
QSH edges is spin-polarized, although not completely because of the finite size of the
ribbon. Calculations for a (7, 4) ribbon give us 737" = 0.85, T|* = 0.15, THettem = 0.15
and lel"t't"’“‘ = (.85.

The magnetic interaction between a S = 1 local spin and a (11, 6) ribbon is now
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Figure 6.10: SP-IETS conductance spectrum for a ‘I'l (11, 6) ribbon with a S = 1 magnetic inpurity
attached at the upper edge. Note that the conductance step at the voltage characteristic of the irelastic
excitation gets suppressed as the t, parameter is increased. i.e. as the ribbon is brought well msde the
topological region of the phase diagram.

investigated. In general the impurity is placed at the centre of the edge and a coupling
parameter, f;, and an onsite energy, £;, is chosen to ensure that the density of states
localized at the impurity site, p;(FE), is approximately constant for energies, E. around
the Fermi level (this ensures the convergence of the perturbation scheme). The excrange
coupling, Jyq, is chosen so that the perturbation parameter, p;Jyq, is approximacely 0.1.
These conditions are satisfied for: ; = Jyq = t;/2 and t; = t;/4. The spin degereracy
is lifted by an axial anisotropy D = —107%¢;, which corresponds to D = —2.0 meV, if
the nearest neighbour hopping in the ribbon is fixed at a reasonable value of t; =2 eV
(kgT = 0.05). The uni-axial anisotropy gives a degenerate ground state with the two
spin states | — 1) and | + 1) separated from the first excited state |0) by |D]. As a result
no Kondo-like behaviour is expected since no allowed transition between the degererate
ground state may occur. The second order perturbation expansion is then well jisiified.
The values t,, = 4t,gr = 1, ensure that the spin system remains in equilibrium, i.e. in its
ground state, throughout the spin-scattering process.

Figure 6.10 shows the calculated conductance spectra, G(V'), normalized to the V = 0
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Figure 6.11: Cartoon that describes the spin-flip scattering event. A right-going electron with up spin
I I ght-going I

direction (top panel) is inelastically back-scattered by the magnetic impurity. In the process both the
electron and the impurity spins are reversed (bottom panel). Note that, given the topological nature of
the ribbon, spin-flip forbids electron transmission as the edge presenting a right-going spin-up state does
not possess a right-going spin-down one.

conductance, (G, for three values of the parameter governing the QSH state, ¢5. Fort, = 0
there are no topologically protected edges and the characteristic inelastic conductance
step at a voltage V = D/e is observed, when the transition from the ground state to |0)
becomes possible (e is the electron charge). However, as 1, is increased and the topological
phase is entered, a suppression of the inelastic contribution to the conductance is observed,
with an almost full suppression at the maximum value of ¢, = ¢;/3. The cartoon in

Fig. 6.11 helps to understand the mechanism for such a suppression. At a positive bias,

the right-going current is up spin-polarized. This means that the | — 1) — |0) transition
scatters out spin-down electrons. These cannot propagate towards the right electrode
since there is no right-moving spin-down state in the upper edge and, as a consequence,
they are completely reflected. Hence, as spin-flip events can only lead to backscattered
electrons, the inelastic channel does not contribute to the current. Note that the residual

conductance increase in Fig. 6.10 for ¢, = t,/3 is simply due to the finite size of the

ribbon.
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Figure 6.12: (Color online) (a) Non-equilibrium population as a function of bias of the S = 1 impurity
spin states for a (7. 4) (broken lines) and a (11, 6) ribbon (solid lines). In panel (b) we show the average
magnetization of the impurity for the same ribbons.

6.2.5 Results: Current driven local spin dynamics

The possibility of manipulating the impurity spin direction is now investigated. This is
achieved by increasing the overall conductance, i.e. by increasing the average current
density. When one works with an STM setup bringing the tip closer to the impurity [6]
does the job, while here the control parameter is the electronic coupling between the leads
and the ribbon, t.,. As such all the calculations that follow have been performed with
ben = 1.

The calculated populations of the various spin states are plotted as a function of bias in
Fig. 6.12(a) for both a (11, 6) and a (7, 4) ribbon. A S = 1 spin in a uni-axial anisotropy
field and in thermal equilibrium with an electron bath presents an equal probability to
occupy the |+1) and the | —1) states, i.e. for V = 0 one has P;; = P_; = 1/2. As soon as
the bias is increased at and above |D|/e, excitations to the |0) state become possible due to
spin-flip back-scattering. In this case however the current is intense, so that in between two
scattering events the impurity spin does not have the time to relax back to the degenerate

ground state. This means that now a spin-up electron (the majority species in the upper
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Figure 6.13: SP-IETS conductance spectrum for a TT (11, 6) ribbon with a S = 1 magnetic impurity
attached at the upper edge. In this case the current is intense and drives the impurity spin away from
the uni-axial anisotropy axis (see Fig. 6.10). Notably now there is a step in the differential conductance
at the voltage corresponding to the inelastic transition |+ 1) — |0), The magnitude and sign of such step
depends on the bias polarity. In the inset the inelastic contribution to the conductance.
edge right-going channel) can also induce the transition [0) — |+ 1). The consequence is
that the electronic current flowing at the upper edge, in virtue of its spin polarization and
its intemsity, produces a net flow of population between the two degenerate ground state,
i.e. for V> +|D|/e one has P;; > P_;. In other words the impurity spin is driven by the
current away from its uni-axial anisotropy axis. This can be fully appreciated by looking
at Fig. 6.11(b), where the average magnetization (S*) = > P,,SZ as a function of bias
is shown. Such spin-pumping is essentially identical to what happens for spin-polarized
tips [28, 29] except that now one does not need either a magnetic electrode or an external
magnetic field. Note that at a negative bias the effect is reversed, i.e. for V < —|D|/e one
has P_; > P, and that placing the impurity on the lower edge is equivalent to reversing
the bias polarity.

The effects of the spin-pumping on the shape of the conductance spectrum are finally
presented in Fig. 6.13. This time the G(V) trace presents a step at the voltage corre-

sponding to the | £ 1) — |0) transition, i.e. the electron transport becomes sensitive to

spin-flipping events. Such an appearance of the conductance step signals the suppression
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of the topological helical states induced by the transverse magnetization of the spin im-
purity [125]. Intriguingly, the magnitude and sign of the conductance step depenis on
the bias polarity. In particular it is noted that there is an inelastic contribution, vhich
Is symmetric with respect to the sign of V', and an elastic one which is anti-symnetric,
i.e. the elastic current increases for V' > |D|/e and decreases for V' < —|D|/e. Plac-
ing the impurity on the opposite edge yields a mirror symmetric conductance trac: (i.e.

V- -V).




Chapter 7

Conclusions

The interaction between conduction electrons and localized spins in transition metals
with partially filled d shells is central to many low-temperature spin effects, which may
underpin the development of spintronics and quantum information devices. The continu-
ous advances in low-temperature scanning tunneling microscopy (STM) have enabled the
detection of excitations of spin origin, a spectroscopy which is usually named spin-flip
inelastic electron tunneling spectroscopy (SF-IETS). Crucially, this allows one to char-
acterize the elementary spin excitations of magnetic nanostructures at the atomic level.
When adsorbed on the surface of a metallic host, magnetic transition metal atoms exhibit
various distinctive features in the conductance spectrum of SF-IETS experiments, which
are indicative of many-body scattering between the conduction electrons and localized
spins. These manifest themselves as conductance steps at voltages corresponding to the
quasi-particle energies of specific magnetic excitations and as zero-bias conductance peaks,
known as Kondo resonances. Many-body scattering events have been detected for Mn [5],
Fe [9] and Co [7, 10] adatoms adsorbed on a CuN insulating substrate, with the latter
exhibiting a Kondo peak at zero-bias. Furthermore, it has been shown that localized spins
can be controlled by using out of equilibrium spin polarized STM [6]. The spin system
can be driven far from equilibrium by manipulating the tip-atom distance and therefore

can be forced into an opposite spin state. Such experiments on single atom systems form
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the basis of SF-IETS and provide an experimental background to the theoretical work
undertaken in this thesis.

The purpose of this thesis is then to formulate a theory that can appropriately describe
the aforementioned experiments. Although many of these experiments can be descaibed
at the level of master equation [23, 24, 25, 26, 27, 28, 29, 30, 31|, the formulation outlined
in this thesis is based on the nonequilibrium Green’s function method and a perturba-
tive description of the electron-spin interaction. This is proposed to have two principle
advantages over the master equation approach. Firstly, it provides the prospect of expan-
sion to high orders in perturbation. To date, master equation treatments of the preblem
have stopped at the second order of perturbation. Secondly, using the Green’s furction
formalism offers the promise of describing more complicated systems in two and three
dimensions while at the same time proving more amenable to linking with ab-initio meth-
ods like density functional theory. The latter in particular has a profound effect when
considering IET'S on 2D and 3D topological insulators [125], which is an area of increasing
interest and the prospect of which is discussed in Chapter 6. Therefore it is proposec that
the formalism outlined in this thesis, though similar to the master equation procedure,
offers many more advantages when dealing with more complicated materials.

The discussion began in Chapter 2 where the fundamentals of density functional the-
ory was discussed with a view to using the ab-initio results as input parameters in the
Green’s functional formalism for transport later in the thesis. Chapters 3 and 4 then high-
lighted how to use Green’s functions for both elastic and inelastic transport calculazions.
Most notably, Chapter 4 introduced the s — d interaction which defines the coupling be-
tween conduction electrons and the localized spin and underpins the SF-IETS mechanism.
In particular an expression for the interacting self-energy at the level of the first Born
approximation in the electron-spin interaction was derived. This was used to calculate
the current-voltage and the conductance-voltage curves for a 1D system of magnetically

coupled spins at finite bias and in a magnetic field. In Chapter 5 it was shown that results




138 Conclusions

reproduce well the features of recent SF-IETS experiments for 1D Mn chains using param-
eters mostly calculated from DFT and some taken empirically from the experiments. The
severe dependence of the conductance spectra on the chain parity and the selection-rule
suppression of certain transitions was a direct outcome of the theory. This proved that
the NEGF approach is therefore a valid alternative to master equation based schemes.

Having shown the ability of the mechanism up to second order, it was natural to expand
the perturbation series further. The effects of including third order contributions to the
interacting self-energy were also investigated in Chapters 4 and 5. A close expression
for the third order electron-spin self-energy was derived within the NEGF formalism.
Two main features in the conductance spectra emerged from the formalism, namely a
logarithmic decay of the conductance as a function of bias subsequent to a conductance
step and zero-bias Kondo resonances. An almost perfect quantitative agreement was
obtained for the spectrum of the non-Kondo active Fe adatom, but only a qualitative one
for the Kondo active Co. The level of agreement is similar for both the situations where
the adatoms are isolated or when they interact with each other via the Heisenberg-like
exchange interaction.

The low computational effort needed by the method makes it a valuable alternative
to full many-body treatments in describing spin inelastic phenomena at the atomic level.
However, to improve the Kondo results, a more rigorous treatment, including two-body
Hubbard terms in the Hamiltonian might better describe the Co conductance spectra.

The lineshape details of the conductance profile of Mn atoms deposited on CuN and
probed with a STM tip which can or can not carry spin-polarization was also studied.
In particular the asymmetry of the conductance with the bias polarity was investigated.
Firstly, the perturbative approach is extended to spin-scattering to the spin-polarized case
and considered an expansion of the complex part of the electronic propagator up to the
third order. This allows the reproduction of the logarithmic decay of the conductance

subsequent to a conductance step, which is observed in experiments but could not be
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explained by a second order theory.

When the current density was increased and the tip was spin-polarized the conduc-
tance profile started to develop a significant asymmetry with respect to the bias polarity.
These were indicative of the spin system being driven out of equilibrium. A second order
expansion of the spin-propagator capable of evaluating the non-equilibrium population of
the various spin energy levels was derived. This was put favorably to the test against a
series of experiments probing single Mn and Fe ions with a spin-polarized STM tip in an
intense magnetic field. Furthermore the same formalism was capable of describing exci-
tations occurring away from the ground state for a Mn dimer probed by a non-magnetic
tip. Also in this case the agreement with experiments was very satisfactory.

Finally, in an attempt to describe the bias asymmetry in the case of non-spin-polarized
STM tips an analytic expression for the real part of the electron-spin interacting self-
energy was derived. This contained logarithmic peaks at the excitation energies that are
odd with respect to the energy and voltage. Such parity resulted in an asymmetry in the
conductance profiles. The scheme was tested for the case of a Mn monomer anc a Mn
trimer and compared reasonably well with experiments.

In Chapter 6 the prospect of applying the new formalism to predict possible future
experiments and devices was explored. Firstly the detection of an electric field induced
spin-crossover in a dimer containing two local spin 1/2 atoms using a STM-generated
conductance spectrum was predicted. This was achieved by imposing a quadratic bias
dependence on the exchange coupling parameter Jyq between the two spins. It was shown
that the conductance spectra exhibit multiple spin-flip and spin-crossover features which
are strongly dependent on the population of the local spin states as the ground state
switches from antiferromagnetic to ferromagnetic with increasing bias. The pumping of
further transitions by increasing the tip-atom coupling constant is also seen afier the
application of a strong magnetic field. Secondly, it was demonstrated that a quantum

spin Hall (QSH) current flowing at the edge of a Zs topological insulator (TI) can be
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used to manipulate the spin of a magnetic impurity. This did not require either an
external magnetic field or magnetic electrodes, i.e. it allows one to implement spintronics
without magnetism. Importantly the fingerprint of the manipulation could be found in
the conductance profiles themselves, making SF-IETS a tool for preparing, manipulating
and reading a quantum spin in the solid state. It also served as an appropriate test of
the formalism in describing higher dimensional systems. It was found that increasing the
size of the TI resulted in larger spin polarization of the edge and could only be captured
by a Green’s function formalism.

As regards to a future direction for the work undertaken in this thesis, focus must
centre around the development of the magnetic impurity on a TI edge. The work presented
in this thesis is very much in its infancy and further investigations must be performed. In
particular, an intriguing situation is believed to arise when two or more magnetic atoms
are placed on the TI edge. In this case it is conceivable that the two spins on one edge
of the TT could be indirectly coupled each other through constant back-scattering of the
conduction electrons. It would also be interesting to see what can happen if the two spins
can be coupled at opposite edges of the TI. Furthermore, after gaining more insight into
the fundamentals of the underlying physics of the problem, a model for a prospective
read /write device should also be conceived. Since in general spin-pumping is achieved
by bringing the leads closer to the scattering region in order to increase the amount of
electrons in the scattering region, the proposed set-up in Chapter 6 makes this difficult
to achieve in practice. It is proposed therefore that the amount of electrons entering the
scattering region can be modulated by applying a gate voltage at each of the leads. This

can be quite readily investigated for the model considered in this work.
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Appendix A

Surface Green’s function and

Broadening

The self-energy of the substrate (sub) and the tip (tip) as introduced in Chapter 3 for the nmn-
interacting case of transport through a scattering region can be expressed as follows in termsof
the surface Green’s functions, gip and gsub, and the coupling matrices between the leads ad

the scattering region H,_s (a=tip, sub)

Liip(w) = Hﬁip_s Gtip(w) Hiip-s , (A1)

z:sub(w) = Hgup-s gsub(w) H;Lub_s . (A2)

The surface Green’s functions can be found by first constructing the Green’s function foran
infinite system and then by applying the appropriate boundary conditions [126]. For a single-ste

nearest-neighbour one-dimensional tight-binding chain g, takes a simple close form

s ~ 1 1k (w
gtip(w) = Jsub(w) = ;(;e k) ) (A3)
k(w) = cos™? <w2;060> ) (A4)

where k(w) and 7o are respectively the inverse dispersion relation (k vs. w) and the hoppng

parameter. Equal hopping parameters in the leads are assumed. The interaction between te
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scattering region and the leads has the effect of broadening the scattering region’s discrete energy

levels. The broadening function due to the coupling to the leads is defined as:

Tuip (w) = i(Zeip(w) — =iy (w)), (A.5)

Toub(@) = #(Zaup (@) — T (@), (A.6)

which for coupling constants v, and ~su, can be rexpressed as [using Egs. (A.1)-(A.4)] as

2’731‘) u)—60 2
Tupli) = —224/1~ (F==2), (A7)

2"/szub & €0\ ?
) == ek 1 5 . A
Csub ((‘") Yo ( 20 ) ( 8)




Appendix B

Spin operators

The spin operators that are used throughout this thesis and have been introduced first in section
4.1 of Chapter 4) obey the following commutation relations for all directions i = {z,y,z} (note

h=1)
1855 85] = fes5k; (B.1)

where e;;; is the Levi-Civita symbol. A good quantum number is defined as the eigenvalue of a
given operator whose eigenvectors remain the same, with the same eigenvalue, as time evolves.
For a basis set that spans the spin quantum numbers m = {-S,-S +1,...,.5 — 1, S} where S
is the total quantum spin it can be shown that the only ”"good” quantum numbers in the spin

system are the eigenvalues of the operators S? and S,

528, m) = S(S +1)|S,m), (B.2)

S.|S,m) =m|S,m), (B.3)

and these operators correspondingly commute [S?, S,] = 0. It is useful also to define the raising

and lowering operators S.., which obey the following relation for raising or lowering the quantum
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number m

54|18, m) = \/S(S +1) — m(m £ 1)|S,m £ 1), (B.4)
where S+ = S; £1S,.
In the special case where where the total spin S = 1/2, the spin operators can be expressed
in terms of the Pauli matrices

= I yr g : (B.5)

where S; = 7;/2.



Appendix C

Derivation of third order self-energy

In this appendix it will be shown how the integral in Eq. (4.31) is evaluated over the time-ardered
contour 75. The part of the self-energy in Eq. (4.31), which is of interest, will be denotel by Z

and it is written as follows

m,n,l

I(m1,73) Z Dp (13,71 /dTQGO 71, 72)Go(72, 73) D (71, 72) Di(72, 73) - (C-l)
C

In order to express the quantity above in terms of real time integrals over a contour goirg first
from —o0o — 400 and then from +oo — —oo [44] is performed so that only the ground-siate at
t = —o0 is well defined. The various branches along the contour result in four different Creen’s
function, which are illustrated in Fig. 3.1. These are respectively the lesser and the greater
Green’s functions (G< and G”) and both the time ordered and anti-ordered Green’s furctions

(Gt and Gt_). The lesser (<) contributions to Z enter into Eq. (C.1) as

I<(t1,t3) = Z D;(tg,tl)x

m,n,l
+00
{/dtzGB(tLtz)G’g(tmts)Di(tl,t2)Dl<(t2,t3)
+ [ dtaGi(t, 1G5 (2, ta) Di(t ) D7 (1)} (€2)
+o00
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where one defines G§(t,t") = G (t,t') + Gi(t,t') and Gi(t,t") = G (t,t') — Ga(t,t'). If these
expressions are now inserted into Eq. (C.1) eight integrals are obtained that can be evaluated

separately. These are

Tk} = 3 Difta t)*

m,n,l

+oo
{/drgGS(tl,tz)GO<(t2,t3)D;(t1,t2)Dl<(t2,t3)

+00
+ /dtzGS(tht2)G§(f»2,t3)D§(t1,t2)Dz<(t2,t3)

—00
400

=+ / dtQGé(tl.tQ)Gg(tQ.t3)D;_(t1,t2)Dl<(t2,t3)

—0
+oo

+ /dtQGg(tl.tg)Gg(tg,tg)D,f(tl.tg)Df(tg.tg)

—00

+o00
- /dtgcg(fl.tQ)Gg(tQ,tg)Dﬁ(tl,tQ)Df(tQ,tg)

—00

+o00
+ /dtgcg(tl,fg)Gg(fg,tg)D,f(tl,tg)D;‘(tz,tg)

—00
+00

+ /dt2G§(t1,t2)GS(t2,ts)DS(tl,tz)Df(tmt:s)
=0
+o0

—/dt2G0<(tl,tg)Gg(tg,m)Drf(tl,tg)Df(tz,tg)}. (C.3)

=00
Importantly several of these integrals cancel each other, while a few other can be grouped

together by using the various definitions of GS and G7/¢ [98, 109]. By performing these simpli-

fications one finally obtains a much more compact expression

+0oo
I<(t1,t3) —1) Z D;(fg,fl){ / dtzGB(tl,tg)Gé(tQ,t‘g)Ds(tl,tQ)Df(tQ,tg)
m,n,l —
+o00
+/dtQG(f(tl,tg)Gg(tz,t3)D;(t1,t2)D,<(t2,t3)}, (C.4)

—0o0
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which after performing the integration over to becomes

I<(t1~t3) =2 Z P(1- Pm)//dwdw'ei(em—w—w’)(:l_c3)

m,n,l

x { G WIGF (W +0 — e)Pud(e — a) + G5 (W)G5 (w+u' — ) D)} . (C5)

Note here that Gj(w) = 1/(w — eg + iTs) and G (w) = Tsfs(w)/[(w — £0)? + T2 (refer to
Chapter 3). Again it is assumed that the coupling to the tip is negligible leaving only the
contribution to the broadening from the substrate. This is governed by the Fermi function
fs(w). The spin subsystem is assumed to be weakly coupled to a surrounding heat bath kept at
a temperature 7', which ensures that the system remains in thermal equilibrium. Therefore, to a
good approximation, one can write D] (w) = 1/(w — em +ikpT) and Dy, (w) = Ppd(w —&r,). In
the latter it has been assumed that kgT is small enough that the lesser Green's function can be
approximated by a delta-function multiplied by the occupation of the specific spin state. With
this information at hand one notes that the first term in the curly brackets in Eq. (C.5) will
not produce a logarithmic Kondo term but represents merely a small third order correction to
the scattering and can thus be neglected, as also found in Ref. [98]. The second term contains

the interesting third order contribution which after Fourier transform becomes

+W
TAE =2 Z P(1—Pn)G5(E+em —e) / dwG§ (W)Re[Dp(E — w+ em)] - (C.6)
m,n,l -W

Here the real part of D], has been kept since the only interesting quantity is ImZ"(E) = [I<(E)+
Z7(E)]/2. The effect of ReZ"(E) on the conductance is negligible in the case £ > ep. It is also
due to this fact that the density of states p around ep is approximately constant and therefore
can be taken outside of the integral in Eq. (C.6). This leads to a new expression for Z<(FE),

which reads

=
1
< _ s < e,
I5(E)=2)_ P(1- Pn)G5(E+em El)p/dwRe{(E_w+6m_En)+ikBT . (C)
-W

m,n,l
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Finally the integral is performed and the entire procedure for Z7(F) is repeated. One then
arrives at the final expression which reveals the logarithmic divergences present at the allowed
transitions

w2 ]

(E+V an)2 ks (kBT)z (C.8)

IS(E)=-2Y P(l-P.)Gs(E+ le)pln[

m,n,l



Appendix D

Derivation of transition rates

In this appendix the steady-state non-equilibrium distribution of the population, P, (V). of the
spin system as the broadening due to coupling to the tip, I'tjp—s, is increased will be calculated.

In order to do so equation (4.22) is expanded up to the n-th order in the interaction Hamiltonian

b

S fan [ (OTo{ He-sp(11) - - Hersp(ra) (1) () 10)

U(—o00, —00)

[D(r, T/)]rt.,m = Z ol

" @ ¢
D.1)

where U is the time-evolution unitary operator and the time-averages are over the known non-
interacting (Jsq = 0) ground state |0). The time integration over 7 is ordered on the contour C
going from —oo to 400 and then returning from +oo to —oo [102].

Inserting the expression for H._g, from Eq. (4.15) into the above and expanding to second
order one gets [note for ease of description the elastic contribution of Jy is omitted but is included

in the final expression in Eq. (D.7)]

—i)3
D =52 Y [an [an OTc(dme n)dmcs (m)dn(r)d)10)

2!
a0 ,B,6 c C

X Y {0|Te{S (1) 87 (72) }O) [0 aer [07] 55, D.2)

i7j
where the indexes i and j run over the Cartesian coordinates z, y and z for the given spin

connected to the tip. The operator breakdown of the spin from Eq. (4.21) is now substituted
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into Eq. (D.2)

—3)3
[D(r, ™ NE), = 2,) Th Y / dry / dry (0| Te{dn(7)d}(11)di (1) d] (72)dir (2)df, (') }0)
’ kk! LU

.G C

x> {0|Tc{cw (r1)ch(r2)ep (m2)ck (1) }0) Zskkfswla Jaar[0”)gp-  (D.-3)
a,a 8,6

The time-ordered contractions of the two brackets in Eq. (D.3) can be re-written in terms of

their respective non-interacting Green’s functions, Do(r,7’) and Go(7, 7’) as follows:

D72 =— T8 D /dﬁ/d725nk5uc' St [Do (T, 7)ln,n[Do(T1, 72)|1.1[Do(72, 7")]m,

kLIS &
Z b 30ap [Go(T1,72)]38(Go (T2, T1)]aa Z St Sh [0 aar[0%]gs,  (D-4)
a,o! 5,0 i,

where the extra factor of 2 emerges from the fact that a second contraction of the time-ordered
bracket merely exchanges 7 and 7. Then, by using Dyson’s equation [98], one can write the

second order contribution to the interacting spin self-energy (II) which reads

[H(TI-TQ)],,Q_ZH = —-2Jd Z Go 7‘1,7‘2)]@3[6'0(7’2,7’1 ]Qa Z[DO(Tl,TZ HZS lSlm ]ag[a']]ﬁ
Q,B l 7.7

(D.5)

where the assumption that the electrons are spin degenerate has been used thus omitting the
spin index on Go(71, 72) and including a factor of 2. The real-time quantities are now calculated,
such as the lesser (greater) self-energies, by using the Langreth’s theorem for time ordering over

the defined contour [102]. After including the elastic contribution one gets

[ (t1, 82))2), = — 2723 > | (G5 (t1.£2)) (G5 (t2. 11)]aa Z[Dog(tl,tZ)]l,l
a3 l

X Z (Snl [‘7 aﬁ[aj][ia + 5115a,6XSnm[ i]aﬁ)- (D.6)

In computing the Fourier transform it is noted the two different expressions for the lesser and
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greater Green’s functions are

2 o
MSEN2 =~ B PSS [ dalG5(aal6s (B - e))laa
l (7 5 A
> (52151% [0")asl0”)pa + 6i0apX Shm [Ui]aﬂ)a (D.7)

,J

where one defines P~ = P, and P;” = 1— F; and Dog(tl,tz)“ = Plgexp[—isl(tl — t9)/h]. Assum-
ing that the spin system is in thermal contact with a heat bath of temperature 7', the energy
levels £; should be broadened by the factor § = kgT but this can be neglected for ease of cal-
culation since in general 7' << 1. However the broadening in the electronic Green’s function
due to contact to tip and substrate is not disregarded as this is pivotal to the calculation of the

non-equilibrium spin populations.



Appendix E

Explicit form for the current vs bias

In this section, an explicit form for the bias-dependent current introduced in Chapter 4 will
be derived as this offers a more clear picture of the physics behind the spin-crossover effect
discussed in Chapter 6. The original form of the current in terms of the full many-body Green’s
functions is recalled from Eq. (4.47)

= /_ e [z;(w)m () = Z;(w)G<(w)}, (E.1)

o0

where X5 =Ty fy and 7 = Ty(1 - f). fp(w) =1/[1+ exp(“;c;%l’)]. The full interacting lesser
and greater Green'’s functions, as they appear in the above equation, are written in terms of the

retarded and advanced Green’s functions and the interacting and lead self energies

G5 =G"(TF+ 55 +35,)6", (E.2)
~E(2F+55+35), (E.3)

where the density of states at the Fermi energy e is p = I'/[(g0)? +T?) and T = 'y + I'r.
The above approximation can be written by assuming that the onsite energy &¢ is far enough

from the Fermi energy so that the density of states can be assumed constant. The interacting
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self-energy is the one derived earlier in Chapter 3

W)@ = =272 3" |(m|S|n) 2Pa(1 — Prn)GF (@ £ Qmn) - (B9

1mn

mt(

Inserting this into the expression for the current one arrives at

+o0
I =p22 [ i@t - fa@)) - 1= f1) o) (B5)
222 3 I5hnl*Pall = P ()l = e = )] (E6)
+255 3 180 PBa(l~ )l = fife Nfr(w+ Q)] b, (BT)

where a number of equal quantities have been canceled out. At this point one can use the

following result

el Hn — My — an
/ fn(w)[l - fn’(w - an)]dw = C(/"n - MUy — Qo) = St = (E~8)

—00 L= exP[— nkn—T]
B

Finally, the explicit form of the normalized current with respect to the bias can be written as

I(V)/Go=V +2 Sd > 1SRl = Pn)i—(V = Qumk), (E.9)

i,m,k

where the quantity i (V — Qi) = ((V — Qi) — ((=V — Qi) has been defined. The normal-

ization constant is the non-interacting conductance Gy = QpFL—FF’i.
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