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Abstract

Recent experimental advances in scanning tunneling microscopy make the measurement 

of the conductance spectra of isolated and magnetically coupled atoms on nonmagnetic 

substrates possible. The typical example is that of Co, Fe or Mn atoms deposited on CuN. 

Notably, the conductance spectra are characterized by a competition between the Kondo 

effect and spin-flip inelastic electron tunneling. In this thesis, the interaction between 

electron spins and local spins is treated at the level of the non-equilibrium Green’s function 

scheme for electron transport. It will be demonstrated that the Green’s function method 

is capable of a semi-quantitative description of the competition between Kondo resonances 

and spin-flip inelastic electron tunneling at a computational cost significantly lower than 

that of other approaches. The theory is also extended to explain spin and non-spin 

polarized STM probes and to cases when the spin-system is driven out of equilibrium.

The predictive power of the Green’s function method will also be implemented for hy­

pothetical experiments that could provide insight into future spintronics devices. Firstly, 

the electric field induced spin-crossover effect, which has been predicted for two-centre 

dimers and molecular nonowires, will be investigated. Using the second order pertur­

bation theory the conductance spectrum of a dimer containing spin 1/2 atoms will be 

calculated and it will be shown that spin-crossover manifests itself as a large population 

dependent dip in the conductance. Secondly, it will be predicted that a quantum spin Hall 

current, spontaneously generated at the edge of a two-dimensional topological insulator, 

acts as a source of spin-pumping for a magnetic impurity with uniaxial anisotropy, lead-
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ing to the possible manipulation of the impurity spin direction by means of an electrical 

current without using either magnetic electrodes or an external magnetic field.
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Chapter 1

Introduction

1.1 Inelastic electron tunneling spectroscopy

Inelastic electron tunneling spectroscopy (lETS) has become an important tool for inves­

tigating the elementary excitations of nanoscale systems [1], An excitation manifests itself 

as an abrupt change in the differential conductance of a two-probe device as the voltage 

sweeps across the excitation energy. This is the result of the opening of a new inelastic 

transport channel for the electron tunneling. As the energy of the probed excitation sets 

the critical voltage and the temperature range to observe lETS, it is not surprising that 

the first experiments were all related to molecular vibrations of relatively high energy [2].

In this thesis, the spin degree of freedom of individual atoms will define the inelastic 

channel as mentioned above. In particular the interaction between conduction electrons 

and localized spins in transition metals with partially filled d shells is central to many 

low-temperature spin effects, which may underpin the development of spintronics and 

quantum information devices. When adsorbed on the surface of a metallic host (see Fig. 

1.1(a)), magnetic transition metal atoms exhibit various distinctive features in the con­

ductance spectrum, which are indicative of many-body scattering between the conduction 

electrons and the localized spins. These manifest themselves as conductance steps at volt­

ages corresponding to the quasi-particle energies of specific magnetic excitations and as

1
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magnetic atoms

QQQ .

(b)

Tip
Spin

System Substrate

Figure 1.1: (a) Sclieniatic representation of STM experiments where the spin degree of freedom of 
magnetic atoms on a metallic host are probed using an STM tip. (b) Cartoon showing the inelastic 
process. An incoming electron from the tip excites the spin system from initial energy F, to final energy 
Ef. The scattered electron is spin-flipped and lowered in energy by AE = Ef — Ej.

zero-bias conductance i)eaks, known as Kondo resonances. The various features in the 

conductance arise as the energy of the spin-scattered electrons is inelastically changed by 

AE = Ef — Et wlien it travels from tip to substrate via the localized spins, as is seen in 

the cartoon of Fig. 1.1(1)). Here Ef and E, are the final and initial states respectively of 

the quasi-particle spin system. The first conductance features are associated to spin-flip 

inelastic electron tunneling and can be described by second order perturbation theory 

in the electron-spin coupling, but the second results from third order effects due to the 

electron screening of the local spins.

Recently the continuous advances in low-temperature scanning tunneling microscopy 

(STM) have allowed for the detection of excitations related to the spin degree of freedom. 

This type of spectroscopy is usually named spin-flip lETS (SF-IETS). The first measure­

ments of SF-IETS were for single atoms randomly deposited on surfaces [3]. However, 

STM techniques also open the possibility of assembling and manipulating entire nano­

structures [4] and of positioning magnetic ions on a surface at a desired position. This
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Figure 1.2: Experimental investigation of chains of Mn atoms on a C’uN substrate [9], The panel on 
the left shows an STM topograpli image of Mn chains and the panel on the right shows the conductance 
steps indicating spin-flip events using lETS. For example, spin excitations for the Mn dimer are seen at 
V = ±6eV

enables the construction of atomic magnetic nano-structnres and the study of the coni- 

])lex magnetic excitations, resulting from the exchange interaction between the magnetic 

ions and the substrate, and also between the magnetic atoms themselves. Such a novel 

fabrication cai)abihtv has produced a surge of ex])erimental studies on the spin excitations 

of magnetic nanostructures.

In jrarticular, transition metal magnetic atoms on insulating surfaces, like Mn [5, 6] (see 

Fig. 1.2), Co [7, 8], Fe [9, 10, 11] and molecular chains composed of Co-phthalocyanines 

[12], have been the focus of intensive research in the last few years. This is accompanied 

by investigations of spin-based logic in chains of Fe atoms [13, 14] which can be cou­

pled together to form all logical operations of a quantum bit. The atoms used in these 

experiments all have partially filled d-shells, which are highly localized and responsible 

for the magnetic moment, and extended s-like electrons, which are responsible for the 

electron conduction. In general s and d electrons interact via exchange coupling so that 

the magnetic structure is coupled to the conducting electrons. The magnetic atoms are 

usnally deposited on carefnlly prepared CuN-decorated Cu surfaces, where the typical 

electronic coupling is weak enough that the magnetism is preserved, but it is sufficiently
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Figure 1.3: I’lie emergence of the Kondo peak is observed at extremely low temperatures for a Co 
atom deposited on CuN. I’lie additional conductance steps at V « ±5mV represent spin-flip events in 
the s = 3/2 manifold [7], I’he in.set indicates the variation of the Kondo peak width as the Kondo 
temperature increases.

strong to break the atomic central symmetry so that magnetic anisotropy develops. STM 

experiments are then conducted to probe the lETS spectra.

The Kondo effect is the screening of a magnetic impurity due to the exchange coujrling 

between the localized spin and the conduction electrons in the surrounding environment. 

It manifests it.self as a low-energy peak in the conductance as the screened local spin 

becomes a non-magnetic state and occurs at low temperatures. The detection of Kondo 

scattering events in Co [7, 10] and Fe adatoms adsorbed on a CuN insulating substrate 

have also been unearthed by the advent of lETS experiments. Co atoms in particular 

exhibit interesting Kondo physics and STM experiments have demonstrated the depen­

dence of the Kondo peak on an applied magnetic helds, on the temperature and also on 

the spatial extent of individual cobalt complexes [8, 15]. The reduced symmetry of the 

surface leads to significant magnetic anisotropy, especially for Ee and Co. Ee is found to 

have a large easy-axis anisotropy (D < 0), leading to a ground state spin close to that 

of the maximum ^-component of the integer S = 2. This results in four evenly sjraced 

conductance steps in the spectrnm. Eor Co the large hard-axis anisotropy {D > 0) and
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Figure 1.4: Spin polarized S'l'M experiments. Left, panel: A Mn-terminated tip yields spin-polarization 
in the tips electronic density of states. Right panel: 'i'he result of lE'l’S experiments with a spin polarized 
tip is seen here where the low-current spectra (blue) are recorded at a large tipsample distance and the 
high current spectrum at a reduced tipsample distance. 'Lhe inelastic step occurs at V' = ±0.7meV and 
the bias asymmetry is indicative of a spin polarized tip. 'I'he Spin-state diagrams schematically show 
transitions occurring for negative 'V at low and high spin-polarized currents, respectively.

the half-integer S' = 3/2 spin produce a doublet ground state. It can he seen from Fig. 1.3 

that the measured zero-bias Kondo re'sonance is then due to s])in transitions between the 

degenerate ground state levels [16]. In addition to the Kondo peaks observed in single Co 

atoms, single tetracyanoethyelene (TCNE) molecules on Cu(lll) are reversibly switched 

among hve states by applying voltage pulses with the tip of a scanning tunneling micro­

scope. One of these states exhibits a large Kondo peak at the Fermi energy and indicates 

that it is magnetic. This can therefore represent a type of nanoscale “Kondo” switch 

[17, 18]. Kondo resonances also manifests themselves in heavy fermions like URu2Si2 [19] 

(where the Kondo resonance in this case is a anomaly in the low bias bulk conductance) 

and in magnetic dimers where the Kondo jreak emerges from singlet to triplet transitions 

[20].

Interesting spin-probing and spin-manipulating features can be explored by a spin- 

polarized STM tip, w'here the tip density of states is spin split between majority (spin up) 

and minority (spin down) carriers. Spin polarization is achieved by placing a magnetic
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atom at the apex of the STM tip. This results in a bias asymmetry, with different con­

ductance step heights for positive and negative biases [6, 11]. Spin selection rules enforce 

a suppression of the inelastic scattering depending on whether electrons tunnel from tip 

to substrate or vice-versa. This results in a conductance profile which is asymmetric with 

respect to the applied bias, whose magnitude depends directly on the polarization of the 

tip. It is also well understood that by driving the spin out of equilibrium (by decreasing 

the tip-to-sainple distance) the conductance lineshape changes [6, 11] as is seen in Fig. 

1.4. In this case one must assume that the tunneling electrons will influence the spin of 

the atom as the time between two inelastic events (or the charging time) is small com­

pared to the spin relaxation time (the time taken by the spin to relax back to its ground 

state). A tunneling electron can then encounter the local spin in an excited state far from 

equilibrium. The population of the quantized spin states is then bias-dependent and for a 

spin-polarized system this enhances the asymmetry of the conductance profile lineshape.

The recent rapid growth in the experimental activity has been matched by an equally 

fast explosion of theoretical works. A general and now standard approach to calculat­

ing the conductance spectra of the various possible magnetic nanostructures is that of 

combining a master equation solver for the quantum transport problem with a model 

Hamiltonian describing the magnetic interaction [21]. This is an intrinsic many-body 

approach, which in principle contains all the ingredients needed for solving the problem, 

once the various transfer rates are known. As such it usually requires a large number of 

parameters to be predictive. It is also difficult to incorporate the density of states of the 

electrodes and as such is limited when looking to describe 2 or 3 dimensional systems. 

An alternative strategy consists in treating the problem at the single particle level, by 

using a tunnel Hamiltonian and/or the standard Tersoff-Hamann description [22] for the 

STM current [23, 24, 25, 26]. This second class of computational scheme appears more 

amenable to be implemented together with first principles electron transport methods. 

However it still remains a hybrid theory, where the dynamic part of the problem needs to
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be approached at the model Hamiltonian level, although the level of sophistication may 

include effects related to current generated non-equilibrium spin populations [27, 28].

Theoretical attempts to reproduce the conductance spectra have focused largely on 

including second order scattering events, which cannot account for Kondo resonances but 

fare well in reproducing the conductance steps and their relative intensities [23, 24, 25, 26, 

27, 28, 29, 30, 31]. Addressing Kondo physics in Co is more involved and one has to look 

for alternative techniques, such as Wilson’s numerical renormalization group theory [32] 

informed by density functional theory (DFT). This is an inherently non-perturbative ap­

proach which was developed to counteract the failings of perturbation theory at energies 

close to the Kondo temperature, Tn. The method creates a “logarithmically discretized” 

conduction band where energy intervals become exponentially smaller as the Fermi energy 

is approached. This makes the low-energy spectrum accessible and has formed the basis 

of many theoretical descriptions of the Kondo phenomenon in Co [33, 34, 35, 36] and 

in 2-channel phonon-assisted Kondo systems [37, 38]. Alternative techniques are based 

on the Anderson model of exchange interaction between a local impurity and conduction 

electrons. These are generally treated at a mean-field level [39, 40, 41] and achieve good 

qualitative agreement with experimental results. The Kondo problem has also been ad­

dressed by using quantum Monte-Carlo methods [42] and more recently the validity of 

time dependent density functional theory (TDDFT) in reproducing Kondo physics has 

also been explored [43]. Although these schemes recreate well the conductance spectra 

for magnetic atoms exhibiting the Kondo effect, they are numerically expensive.

In order to describe conductance spectra that exhibit both spin-flip conductance steps 

and Kondo resonances, this work uses the standard theoretical approach to quantum 

transport. This is the non-equilibrium Green’s function (NEGF) formalism [44, 45], whose 

mean-field version can be combined with state of the art electronic structure theories to 

produce efficient and predictive algorithms [46, 47]. It is to date the only fully quantita­

tive quantum transport approach capable of scaling to large systems [48] with multiple
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dimensions, i.e. it is the only one capable of performing simulations for materials set of 

current technological relevance. As such, the NEGF method has an additional advantage 

over the master equation approach. This will prove highly advantageous when investi­

gating lETS of magnetic atoms on 2D topological strips which will be introduced later 

in the discussion. Importantly, inelastic contributions to the elastic current can also be 

included within the NEGF formalism. In the case of scattering to phonons the problem 

is usually treated perturbatively by constructing an appropriate self-energy at the level of 

either the first (IBA) or the self-consistent Born approximation (SCBA) [49]. A similar 

approach to the case of spin excitations is currently not available.

There are two main reasons for this gap. On the one hand, the separation between the 

electronic degrees of freedom and those responsible for the inelastic excitations are well 

defined in the case of nuclear motion (phonons) but less clear in the case of spins, since 

even extremely localized spins have full electronic origin [50]. On the other hand, it is 

also unclear whether the perturbative approach is valid for spins, i.e. whether a suitable 

expansion parameter can be found. As such, as far as it is known, an expression for a 

self-energy describing inelastic spin-flip events has not been derived so far.

In the present work this challenge is undertaken and a perturbative theory of spin-flip 

spectroscopy based on the NEGF formalism for electron transport is formulated. The 

theoretical analysis is based on a tight-binding Hamiltonian for the transport electrons, 

which are locally exchange coupled to quantum spins. As such the formulation works 

by assuming a separation between the transport electrons and the local spins and it is 

constructed over the s-d model for magnetism [51]. An appropriate self-energy for the 

spin-degrees of freedom up to third order in the interaction is calculated and this is used 

in the standard NEGF scheme for transport. This self-energy is spin dependent and can 

therefore be used to describe spin-polarized STM experiments which exhibit asymmetric 

conductance spectra. By calculating the corresponding local spin self energy, the effect 

that conduction electrons have on the magnetic atom can also be explored. This can be
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used to evaluate the population of different spin states when the spin system is driven out 

of equilibrium by increasing the current.

An inherent bias asymmetry of the conductance traces of STM experiments on adatoms 

also exists in non-spin polarized systems. This has been revealed experimentally [9]. In 

particular this appears to be quite prominent for both single Mn atoms and Mn mono- 

atomic chains. This feature has been previously ascribed to an effect arising from a 

shifting of the density of states of the atom producing scattering. Such a density of state 

effect generates a non-trivial slope in the conductance as a function of bias [53]. The 

density of states shift however does not account for the asymmetry seen in the inelastic 

step heights, which also depends on bias and on the ratio between tip and substrate cou­

pling to the sample [54, 55]. Here an alternative theoretical description based on the real 

part of the interacting self energy is provided, which allows a better fit the experimentally 

found conductance line-shape.

Within the approach developed in this thesis, a qualitative description of the behaviour 

of the Kondo peaks for Co, when this is exchanged coupled to another magnetic atom, 

will also be shown. However, due to the aforementioned restrictions of the perturbation 

method when describing Kondo resonances it cannot be claimed that an exact quantitative 

agreement with the experiments occurs. In addition for Fe, a quantitative description of 

the conductance step over-shooting subsequent to inelastic tunneling due to a magnetic 

excitation and to its decay as a function of bias is found. This was previously ascribed as 

originating from non-equilibrium effects [27], but here it is demonstrated to simply arise 

from the third order contribution to the interacting self-energy.

The NEGF formalism that will be outlined in this thesis to describe lETS experiments 

will be highly dependent on accurate values for different control parameters that enter 

the scheme. These involve the tip-to-sample coupling strength, the onsite energy of the 

localized impurity, the spin quantum number of the impurity, the exchange coupling 

between the local spins and the conduction electrons, the Lande g factor and also the
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axial and transverse anisotropy terms. All of these parameters will be extracted either 

from DFT calculations or directly from experiments. Of particular interest also is the 

calculation of the magnetic anisotropy energy (MAE) of certain adatoms on surfaces 

[56, 57, 58]. A high MAE generally results in stable spin orientations which can be kept 

over years. In this thesis DFT will be used to extract values for the anisotropy for various 

magnetic atoms and in particular for an Fe-Cu dimer on CuN which until now has not 

been investigated theoretically. In this case it has been shown experimentally that the 

presence of the Cu atom drastically increases the anisotropy of the Fe-Cu system and 

therefore results in a stable spin orientation with long relaxation time [59]. It has also 

been suggested that the Fe-Cu system is also characterized by a larger than usual Lande 

g-factor, as it was found in other cases [60], and the validity of this will also be tested.

1.2 Theoretical method as a predictive tool

Having shown how to use the NEGF theory to explain the results of certain experiments, 

it is then useful to use the theoretical tools to predict future devices or novel experiments. 

In particular, two different experimental schemes that have gone unexplored to date wil be 

investigated and the theory will be used to predict what such experiments would reveal.

Firstly, the intriguing prospect of manipulating the magnetic configuration of the 

spin system with an electric potential rather than an electric current will be explored. 

It has been theoretically predicted that exchange coupling between local spins can be 

controlled electrically both for a two centre dimer [61] and a molecular nanowire [62]. It 

has been demonstrated that the dependence of the Stark shift of a given magnetic system 

on its magnetic state results in an exchange coupling parameter that has a quadratic 

dependence on the applied bias voltage. This enables spin-crossover from a low spin to 

high spin configuration, a crucial effect in the development of quantum information and 

spintronics devices [63].

In this thesis the possibility of using a scanning tunneling microscope (STM) to detect
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the dependence of the exchange coupling on an electrical potential will be investigated. 

A bias-dependent conductance spectra of the most basic molecule comprising two cou­

pled spin 1/2 atoms will be calculated. Previous attempts to investigate the electrically 

induced spin-crossover effect have focused on a classical description of the localized spin 

[64]. The fully quantum mechanical approach of this work, however, is a more realistic de­

scription of a possible experimental investigation of the spin-crossover effect in molecules. 

Furthermore, it can account for quantum excitations that are inaccessible by a closed 

spin-model. It will be shown that a critical voltage Vc exists where the conductance 

profile changes drastically during a spin-crossover between low spin and high spin. This 

effect is highly dependent on the population of the localized spin system and ultimately 

on the coupling between the STM tip and the localized spins.

Secondly it will be suggested that the quantum spin Hall (QSH) state can be coupled 

with lETS to probe and manipulate single magnetic atoms without the need of a magnetic 

field. The. possibility of altering and controlling the spin-state of a single magnetic ion or of 

a small magnetic cluster with an external probe without the need of an external magnetic 

field represents a unique opportunity towards the understanding and the exploitation of 

the magnetic interaction at the most microscopic level. Possible areas of application for 

such ability may include spin-based quantum logic, where one necessitates to prepare, 

manipulate and read spin-qubits.

The QSH state is a new topological phase of matter which has attracted extensive 

attention in the past few years. It is a time-reversal invariant state characterized by a 

bulk gap which has gap-less helical edge states with opposite spins counter-propagating 

at a given edge. In a ground-breaking paper by Kane and Mele in 2005, it was shown that 

at low energies a QSH effect can be generated on a graphene sheet, subject to a spin- orbit 

interaction [65]. They also introduced the Z2 topological invariant, which distinguishes 

it from an ordinary insulator [66]. However, the spin-orbit interaction in graphene is 

too small to realize this effect at realistic temperatures. Subsequently, Bernevig, Hughes
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and Zhang predicted that HgTe/CdTe quantum wells exhibit this novel phase [67]. This 

prediction was soon confirmed by experiments [68, 69], Three-dimensional analogs of 

QSH state have also been found and are generically termed topological insulators (TIs). 

More recently, evidence for helical edge modes in InAs/GaSb quantum wells has also been 

found [70]. Interestingly, Silicene and two dimensional Germanium have been predicted 

to exhibit QSH state at experimentally accessible temperatures [71, 72]. Furthermore, 

there are theoretical proposals to realize a QSH phase in graphene by using non-magnetic 

adatoms [73].

The proposal will be made that the QSH effect in TIs can be exploited to probe and 

manipulate single magnetic atoms exhibiting a quantum spin. In Z2 TIs, a spin-polarized 

current exists along the edge of the TI. Therefore an atomic spin coupled to such an 

edge can be manipulated in a similar way to spin-polarized STM experiments in the 

presence of an external magnetic field. In this case however, the same spin manipulations 

can be performed without the need of a magnetic field or a spin polarized tip. Although 

some theoretical work has been done recently investigating Kondo signatures of transition 

metal atoms [74] or spin baths coupled to TI edges [75], to the best of our knowledge, 

lETS investigations of TIs remains unexplored. Here lETS conductance spectra will be 

calculated using the NEGF formalism for single atoms on insulating substrates. It will 

be shown how this technique, when coupled to the QSH current, describes spin probing 

and manipulation on the edges of a TI.

1.3 Layout of thesis

The layout of the thesis is as follows. Chapter 2 will introduce the key concepts of DFT 

including the various approximation techniques that are employed for different systems. 

Chapter 3 then focuses upon the electronic Green’s function formalism for electronic 

transport when a perturbation is applied to a non-interacting system. This formalism 

will then be implemented in Chapter 4 where the perturbation is introduced as the ex-
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change coupling between electron spins and localized spins. This will lead to a derivation 

of the electron and local spin self-energies that can be expanded up to 3rd order in the 

perturbation expansion both for spin and non-spin polarized electrodes. Chapter 5 will 

then use the methods developed in Chapters 2, 3 and 4 to reproduce experimental con­

ductance spectra of the transition metal atoms Co, Fe and Mn as a means of testing the 

validity of the formalism. The possibility of future lETS experiments will be probed in 

chapter 6, where the formalism will be employed to describe the hypothesized electric field 

induced spin crossover effect in two centre dimers and to investigate the spin manipulation 

of magnetic impurities on topological insulator edges. Chapter 7 will then provide the 

conclusions of the thesis.
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Density Functional Theory

The typical experimental setup for describing inelastic electron tunneling spectroscopy on 

a number of magnetic atoms involves an STM tip and an underlying insulating substrate. 

Since the STM tip is generally assumed to interact weakl}^ with the magnetic atoms, the 

insulating substrate determines the principle electronic quantities of the device i.e. the 

magnetic anisotropy, the spin polarization, the coupling strength etc. The substrate is 

generally composed of an insulating layer of CuN, which decouples the magnetic atom 

from the bulk metallic Cu electrode. The entire device hence contains in excess of 100 

atoms and represents a large many body problem. Describing such many-body systems 

using computational techniques that are both accurate and efficient is therefore a major 

electronic structure problem. The implementation of exact solutions to the many body 

problem generally scales poorly with the size of the device therefore approximations must 

be implemented. Techniques to describe the electronic structure of large systems range 

from the tight-binding method to the Hartree-Fock method [76]. In this thesis the most 

popular of ab-initio techniques, density functional theory (DFT) [77, 78, 79], will be used.

DFT is the most widely used approach to the many body problem due to its delicate 

mix between accuracy and efficiency. The technique reduces a full many body problem 

down to a series of single body equations defined within an effective potential which 

includes all the many body interactions. The main approximations lie in the calculation

14
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of the exchange correlation functionals which is a quantity that includes all many body 

interactions in the problem. Different varieties of exchange correlation functional are 

implemented for varying degrees of accuracy in different systems, most of which will be 

explored in this chapter.

The starting point for any many-body problem in quantum mechanics is the many- 

body Schrodinger equation, which contains a Hamiltonian H acting on a many body 

wavefunction ip resulting in an energy E

(2.1)

Throughout the thesis the unit-less parameter h = I is assumed. The full many body 

Hamiltonian is then written as follows

= V---- ^
2me i=l ®

Nn

^ 2M,
7=1

Vf ^ 1 ^ e^Z/Zj 1 e^Z Ne

2 ^ |X/ X
i.I

X, 2 ^ Xi X,

(2.2)

where is the position operator for the fth electron and X/ is the position operator for 

the /th nucleus. The first and second term represent the kinetic energy of the electron 

with mass m.e and the nucleus with mass Mj respectively. The third term is the Coulomb 

interaction between the nuclei, the fourth term is the interaction between the electrons 

and the nuclei and the fifth term is the electron-electron interaction.

This problem can be simplified by employing the Born-Oppenheimer approximation 

which exploits the fact that the nuclei are much more massive than the electrons >> 

77?e. Therefore it can be assumed that the nuclei remain fixed and unperturbed by the 

motion of the much lighter electrons. This allows for a separation of the electronic and 

nuclear components of the full many body wavefunction. The problem can then be reduced 

to that of a calculation of the eigenvalues of the many-body electron Hamiltonian, which
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writes

Ne Vf 1 lA

i=l

= f + v + u,

2 |x,: - Xji

(2.3)

where it is now assumed that mg = 1. The operators T, V and U represent the kiiretic 

energy, the Coulomb potential between electrons and nuclei (and any external field) and 

the electron-electron interaction respectively. The Schrodinger equation i^|T) = E\'^) 

is then solved, leading to the many-body wavefunction T({x.,;}, {(7*}) where x./ are the 

electron coordinates with spin CTj. It then becomes a matter of defining a basis in which 

to expand the wavefunctions so that the Hamiltonian can be numerically diagonalize.

2.1 Hartree and Hartree-Fock theory

One such expansion is the method employed by Hartree [76], where the wavefunction, 

which is assumed to be spin degenerate, represents the simple product of single particle 

wavefunctions

'I'i/({Xi}) = 'i/’l(xi)-i/i2(x2) . . . ^/>„(X„). (2.4)

After writing Ecp (2.3) in second quantization form and finding the variation of the 

total energy with respect to the single particle orbitals, one arrives at the single particle 

equation in an effective potential. This is defined as the Hartree equation

+ u(x) ^^/(x) 'ipi{x) = Eitpiix), (2.5)
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where Si are Lagrange multipliers and they approximate the ionization energies. The 

Hartree potential is written as

w = E/ dx' (2.6)

which describes the density of a single orbital interacting with the potential of every other 

orbital. This is the most basic example of a mean field approximation to the electron- 

electron interaction. It must be solved self-consistently since the solution depends on the 

orbital density which itself is calculated at each self-consistent step.

The next approximation in the expansion of the wavefunction includes the spin of the 

fermionic electron and the takes into account the Pauli exclusion principle, which restricts 

the occupation of a single orbital to two electrons carrying opposite spin. The total 

electronic wave function must therefore be antisymmetric and this is trivially satisfied by 

expanding the wavefunction in linear combinations of Slater determinants. In this format 

the full wavefunction is expressed as

T({x,:},{(Ti}) =

I^i(xi)xi((7i) 'tp2{^i)X2i<yi)

V^2(x2)X'2(o-2)

^N(xi)Xiv(o-l)

V^yv(x2)XA^(<72)

^l(xv)Xl(c^iv) ^2(XAr)X2(o-7v) ... ^’iv(xAr)X7v(crAr)

(2.7)

Again imposing the variation principle (where the energy should be minimized by the 

ground state wave-function) one arrives at the Hartree-Fock equation

-k u(x) -k U//(x) t/;i(x) - y] ()'
J

dx
>;(x')^,(x

X — X
-—V’j(x) = Si'tpiix), (2.8)

where, in comparison to the Hartree equation, the summation is now performed over all 

the j indexes. This eliminates the unwanted and unphysical self-interaction of an electron 

with the potential generated by itself, which will be discussed further at the end of the
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chapter. Note also that the Hartree term in the square brackets becomes an integration 

over the full charge density n(x) with

'M2
dx.'/IVb(x')l

X — X'

= / dx!/ n{x')
X

(2.9)

The additional term is the exchange interaction which includes non-local terms such as 

ipj{x) and is therefore much more difficult to solve than the Hartree equation.

Unfortunately, the Hilbert space for the above wavefunction technique grows like 

where N is the number of electrons, and therefore the problem becomes quickly in­

tractable. Attention is then shifted to density functional theory where the underlying 

premise is that a calculation is made to determine the quantities n(x) and E rather than 

the full many-body wavefunction, thereby decreasing the dimension of the Hilbert space.

2.2 Density Functional Theory

2.2.1 Hohnberg-Kohn Theorem

The central idea behind DFT is that the many-body wavefunctions and the energy of 

the many-body system are functionals of the external potential u(x), i.e. I' = Tfu] and 

E = E[v], since this potential parametrizes the Hamiltonian. It has already been stated in 

the previous section that working with the full many-body wavefunction is not amenable 

so that the use of the electronic density of the system is sought as the principle means to 

evaluating relevant quantities such as the total energy. The electronic density is defined

as

n(x) = N
j ■ ■ ■ j l^(x,Xi,X2, . . . ,XN)pdX2 . . .dXN.

(2.10)
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Hohnberg and Kohn [77] showed that the potential of a system of electrons is uniquely 

specified by the ground state charge density for the same system. They first established 

that, up to an arbitrary constant, the electron density n of a non-degenerate ground 

state uniquely determines the external potential n(x). Therefore the electron density can 

be used to ascertain all the electronic properties of the ground state of the system. This 

drastically reduces the size of the calculations that one needs to be perform given that the 

many-body wavefunction is no longer explicitly required. The many-body Hamiltonian 

introduced in Eq. (2.3) can be re-written in terms of the electron density of the system

E[7i\ = (T[ri]|i7|T[7r]),

= (T[n]|f+ f7 + \>|T[n]),

= (T[n]|f-f [7|T[n]) + (T[n]|l/iT[rj]), 

= F[n] -|- J ?7.{x)?'(x)dx. (2.11)

where F[n] is independent of the external potential.

Hohnberg and Kohn also proved a second theorem which establishes that the electron 

ground state which minimizes the above energy functional is the ground state electron 

density. In other words

[n] = min„|F[n] -I- / n(x)r;(x)(ix|, (2.12)

which can be proved using the variational principle [80]. Therefore it can be seen that 

DFT reduces the problem of an N part interacting system to that of finding a function 

n(x), which minimizes the ground state energy functional Eo[n]. At this point a major 

problem remains in that the form of F[ra] is in general not known exactly. Therefore 

approximations to this functional must be sought. Also note that DFT is useful only in 

determining the ground state of a system and it is not accurate nor theoretically sound 

when dealing with excitations. In such cases time dependent DFT (TDDFT) should be
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employed [81].

2.2.2 The Kohn-Sham Theory

With the Hohnberg and Kohn theorems at hand, Kohn and Sham [78] set about trans­

forming the problem of finding the ground state electron density to that of solving a series 

of non-interacting single particle Schrodinger equations. Finding the best approximation 

to the functional F[n] is also paramount to the Kohn-Sham theory. In deriving the Kohn- 

Sham equations, one must return to the expression for F[n] and note that from the second 

Hohnberg-Kohn theorem one arrives at

F[n] = {^Gs[n]\f + U\^Gs[n]) =

= (^'Gsjrj'I'Gs) + Eu[n] + E^c[n],

(2.13)

(2.14)

where the first term is the kinetic energy which is generally unknown for an interacting 

system due to the non local nature of the Laplacian operator. The second is the Hartree 

term, which is known exactly and is calculated as

Eii[n] = / dx / dx.‘,?r(x)n(x')
X — X'

(2.15)

The final term is the exchange/correlation energy and contains all the necessary terms 

beyond the Hartree energy which up to this point are unknown and must be approxi­

mated. One finds that there is a large contribution from the first two terms and a small 

contribution from the exchange energy.

At this point Kohn and Sham sought about looking for a better approximation to the 

kinetic energy. They noted that a certain system was known where the kinetic energy 

could be calculated exactly, the non-interacting system. They decided to implement 

this kinetic energy under the proviso that the electronic density in the non-interacting 

system was the same as that in the interacting one. As such the energy functional for the
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interacting system can be rewritten as

E[n] = To[n] + / rfxn(x) ^(x) + 2^h(x) + Exc[ti], (2.16)

where the new exchange correlation functional also includes the difference in the two 

kinetic energy terms

E^c[n] = E^cin] + {T[n] - To[n]). (2.17)

The total energy functional for the non-intcracting system is then

Eo[n\ = To[n] + / dxn(x)r;eff(x), (2.18)

where it is assumed that an effective potential exists such that the density of the non­

interacting system matches that of the interacting one. Now, by deriving the variational 

Euler-Lagrange equations [the functional derivative of both Efn] and £'o[u] with respect 

to n(x)] and eliminating the term To[7?], one arrives at an expression for the effective 

potential

neff[n(x)] = n(x) -k UH[n(x)] -h
SE^c[n]
(5n(x)

(2.19)

This represents a single electron non-interacting system and therefore the problem is now 

reduced to the self-consistent calculation of the following Kohn-Sham equations for the 

one particle orbitals 0,

+ ?4ff(x) 0i(x) = £i<;i),(x), (2.20)

where n(x) = /i|<?!>i(x)p and fi is the Fermi function. The problem has now been

reduced to a set of non-interacting Schrodinger equations.
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The Kohn-Sham set of equations can then be solved for the KS eigenvalues £i and the 

KS eigenvectors (pi, which are correspondingly used to calculate the new charge density 

7i(x). The charge density is then used to find the new expression for the effective potential 

t’eff in Eq- (2.16). This scheme is iterated until self-consistency is reached (i.e. until 

the charge density doesn’t change between consecutive iterations). The Hohnberg-Kohn 

theorems state that this must be the charge density of the actual system.

The Kohn-Sham orbitals £i do not represent physical quantities. They are the eigen­

values of the fictitious, non-interacting Kohn-Sham orbitals. However when using DFT 

to calculate observables like the total energy, the sum over all the occupied Kohn-Sham 

orbitals must be performed. Usually, the KS eigenvalues are used to calculate the band- 

structure of materials so that they are interpreted as single particle energies (note however 

that this is not justified by the theory itself). In this thesis the Kohn-Sham eigenvalues 

will also be assumed equivalent to resonances in the transmission coefficients in transport 

calculations.

At this point a theory has been developed that depends on the accuracy of the exchange 

correlation functional E,^c[n]- This quantity incorporates the difference between the kinetic 

energies of the non interacting and the interacting systems. It also includes the associated 

error to using the Hartree approximation for the many-body interactions in the system. 

Finally it takes into account that the final wavefunction might not be a single Slater 

determinant. As such all many body effects are contained in this quantity. The following 

subsection underlines the various approximation techniques used to evaluate this quantity.

2.2.3 Approximate Energy Functionals

The local density approximation (LDA) [78] is the simplest approximation to the exchange 

correlation functional and underlines all approximations to it. It is a local contribution 

since the potential at a particular point only depends on the charge density at that point. 

A homogeneous electron gas is used as the reference for the approximation. Instead of
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the exactl exchange correlation (XC) functional for the real interacting system (which 

is unknown), an alternative is adopted where it is replaced with the XC energy of the 

homogeneous electron gas. The exchange and correlation energy density at position x is 

the one of the homogeneous electron gas calculated at the density at the same point n(x). 

Therefore the approximate functional becomes;

J n(x)£:xc(x)dx, (2.21)

where c:xc(x) is the XC energy density per particle of the homogeneous electron gas. This 

is broken into an exchange and a correlation part respectively

:(”(x)) = £x(?^(x)) + £c(?l(x)), (2.22)

where the exchange part at a given density is known exactly [78]

c(^(x)) = --
3 r3n(x)

TT

1/3
(2.23)

Although no exact expression is available for the correlation part of the functional, data 

from highly accurate numerical methods like Quantum Monte Carlo is used to estimate

£c(n(x)).

To take into account spin-polarized systems the local spin-density approximation 

(LSDA) can be implemented by using the XC-energy for the homogeneous spin-polarized 

electron gas. This becomes a functional of both the up spin (nQ and the down spin (nQ 

electron density.

-LDA htCC] = J r?(x)exc(nT(x),77|(x))dx. (2.24)

In situations where the electron density is approximately uniform i.e. metallic systems, 

the LDA approximation is quite successful. However, in many cases a large gradient in
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the electron density exists which hinders the accuracy of the LDA. In this scenario the 

generalized gradient approximation (GGA) [82, 83, 84] was developed to cater for such 

occasions (useful in chemistry for the calculation of bond lengths). For GGA the XG 

functional is also written in terms of the density and of the gradient of the electron 

density

-■LDA n = J n(x)exc(«(x), |Vn(x)|)dx. (2.25)

This can be systematically improved upon by further increasing the number of derivatives 

to the electron density however this also increases the computational effort required [83, 

84]

There are certain systems where the treatment of the level of LDA/GGA fails in 

delivering the required accuracy of certain quantities. These systems generally show 

strong correlations. Where LDA/GGA breaks down is in the approximation’s inability to 

cancel the self-interaction of electrons with themselves. This is called the self interaction 

error (SIE) and is somewhat rectified by implementing hybrid functionals which partially 

remove the SIE [85, 86]. The SIE does not exist in Hartree Eock methods and this 

combined with GGA offers a useful rectification to the problem. Some strongly correlated 

systems (systems that exhibit unusual electronic and magnetic properties due to a strong 

electron-electron correlation) are also handled better by using the LDA-1-17 method, where 

17 is a parameter that represents the screened electron-electron interaction [87, 88, 89, 90, 

91]. The value of U is usually fitted to reproduce certain quantities like the band-gap or 

the lattice spacing and results in better approximations of the electronic and magnetic 

properties of strongly correlated systems like transition metal oxides. This will be dealt 

with in the following section.
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2.3 LDA+U

The LDA+U method is established by separating electrons into two subsystems containing 

(i) localized d or f shell electrons which can be described by a mean-field approximation 

to Coulombic electron-electron interaction (the Hubbard model) as (where

rii are d-orbital occupancies) and (ii) delocalized s and p electrons which can be described 

using the one-electron LDA potential. With this at hand, the total energy functional can 

be rewritten as a correction to the LDA contribution

= eSa - UN{N - l)/2 + if/ ^
i¥^j

(2.26)

where the first term is the LDA-XC energy and the second one is the Coulomb energy due 

to the d-d interaction of localized electrons with A^ = rii and subtracts from the LDA 

energy functional. The last term is the Hubbard-like mean-field term. The Kohn-Sham 

dependent potential is then obtained by finding the variation of the total energy with 

respect to the charge density of a given ith orbital Ui(x) = SE/5ni{x)

U(x) = Vlda(x) + ■ (2.27)

Up until now direct and exchange Coulomb interactions inside a partially filled d 

atomic shell have been neglected, therefore these must be included to obtain a sound 

computational scheme to describe a single magnetic atom. This is achieved by identifying 

the regions of space where the electronic states show strong atomic characteristics, called 

’atomic spheres’. In the case of d shell electrons this is largely the case anyway. The 

localized orthonormal basis is expanded within these spheres as \inlma) where i is the 

site, n is the main quantum number, I is the orbital quantum number, m is the magnetic 

quantum number and a is the spin index. For the special case when a given n/—shell is
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partially filled, the generalized LDA+U functional is defined as follows:

IT'XC _ I TP I TP^LDA+U - -^LSDA + + ^dc,pXC (2.28)

where £'lsda is the standard local spin-density approximation energy functional and Ey 

satisfies

^u[n] = \Y1 (2.29)

(m,m"|V;e|m',m"') - (?n, m')

{m},a

and Vee is the screened Coulomb interaction amongst the r?/-electrons. The last term in 

t he expression accounts for the double counting (subtracts the LDA XC contribution from 

the functional) and is given by

^dc = luN{N - l)/2 - ^J[N\N^ - 1) + iVi(iVi - 1)], (2.30)

where = Tr(u(^,^,) and N = N'^+NK The screened Coulomb and exchange parameters 

are represented by U and J respectively. As shown previously, the variation of the total 

energy on the charge density = 5E/6v!^^, yields an effective single-particle Kohn- 

Sham potential which is used in the final effective single-particle Hamiltonian

, = (m,m"j Vgg\m\ m"') (2.31)
{m},cT

The value for Vge can be approximated from the assumption that within the atomic 

spheres, the interactions are largely atomic in nature and, as such, it is determined from 

the LSDA approximation. The parameters U and J are retained as input parameters and
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for materials that concern this work are usually of the order of eV. Note however, that 

there are also a number of ways to evaluate U and J from first principles, mostly based 

on linear response theory [92], however this will not be evoked in this thesis.

2.4 DFT in practice

2.4.1 Basis Set

Having described a formula for reducing the many-body problem to that of solving a 

series of one body Kohn-Sham equations in an effective field, which incorporates accurate 

approximations to the many body interaction, now an appropriate basis-set is needed in 

which to expand the KS orbitals (f)i appearing in the KS equation

P
— -h t’eff(x) (?!)i(x) = Ci0j(x). (2.32)

For a generic basis set |Xq)) one can expand the KS orbitals as \(f>i) = |Xq), in order

to arrive at the following generalized linear eigenvalue problem

J^(X/3|^IXa)cr =
rt a

Oi Ct

'^{X^\H\Xa)Ci = Si ^(X/3|Xa)c^
fv a

^ H^cf = £. ^ .
O' Q

(H - £iS)cj = 0,

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

where S is the overlap matrix between basis set orbitals. The full solution requires matrix 

diagonalization on operation, which scales with the cube of the dimension of the basis set 

and it is generally performed by using computational libraries Lapack/Blas.
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The choice of basis set now become important as this determine the efficiency of the 

cafculation, the simplicity of use and the completeness. In general there are three classes 

of basis set each with its own advantages and disadvantages:

The choice of basis set now becomes important as this determines the efficiency of the 

process, the simplicity of use, and the completeness. In general there are three classes of 

basis-set each with varying advantages and disadvantages.

• Plane waves: Here a finite number of plane-wave functions are used to expand the 

basis set. A specific cutoff energy is chosen for a given calculation. These are simple 

and describe every point in space, are in principle complete and moderately efficient, 

(examples include VASP, WIEN2K etc.)

• Augmented functions: In this case the basis set is expanded in terms of hallow 

Gaussian functions which more accurately represent the tail portion of the atomic 

orbitals. These are in general quite complicated but very efficient since they do not 

deal with the entire space, (examples include GAUSSIAN, ASW)

• Local orbitals, LG AO: Expansion is performed in this case over the single atomic 

wavefunctions. These are somewhere in between the two and use sparse matrices 

for computation. They are also the most chemically intuitive, (examples include 

SIESTA, BAND)

The problem of choosing the correct basis set lies in the electronic structure of dif­

ferent atoms in the periodic table of elements, in particular the fact that atoms have 

a shell structure with different numbers of electrons occupying the s, p, d and f shells. 

Consequently, there are two classes of electronic states in solids; core states which are 

localized with a weak spread of electrons over the material and valence states which are 

delocalized and show a large spread of electrons over the material. Both states therefore 

require a contrasting basis set expansion, one localized and one delocalized. A problem 

then arises when one wants to use one basis set to describe a given material.
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Furthermore, the effective potential of a given material has cpiite different characteris­

tics close to and far away from the nucleus. Close to the nucleus the potential is deep and 

Coulomb-like because it represents the 1/r strong repulsion close to the nucleus. In the 

interstitial region between atoms and far from the centre of the nucleus, the effective po­

tential is described by smooth, fiat potentials as electron screening takes place. A general 

approximation

The problem with choosing the ’correct’ basis set lies in the electronic structure of 

different atoms in the periodic table of elements, in particular the fact that atoms have 

a shell structure with different numbers of electrons occupying the s, p, d and f shells. 

Consequently there are two classes of electronic states in solids; those involving core states 

which are localized and act like single atoms and also valence states which are delocalized 

and generally result in a spread of electrons over the material. These are characterized by 

Bloch waves and account for the binding properties of the material and involve principally 

the outer shells of the atom. Therefore the problem arises when seeking to describe these 

contrasting states with a single basis set.

Moreover, the effective potential of a given material has quite different characteris­

tics close to and far away from the nucleus. Close to the nucleus the potential has deep 

Coulomb like wells that represent the 1/r strong repulsion close to the nucleus. In the 

interstitial region between atoms and far from the centre of the nucleus, the effective 

potential is described by smooth, flat potentials. A general approximation is taken to 

overcome this problem called the pseudo-potential approximation where both the wave- 

function and the effective potential are replaced by smoother functions which match the 

originals at a given cut-off radius. The properties of this approximation will be discussed 

in the following section.
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Figure 2.1: Representation of the pseudo wave function and pseudo-potential. The pseudo functions 
match those of the exact all electron functions at a given cut-off radius Vc

2.5 Pseudo-potentials

Most chemical, electronic and structural properties of materials are governed by the inter­

stitial region between nuclei which contain the outermost “valence” electrons. The energy 

of the inner or “core” electrons is usually much lower and therefore will not take part in 

bond formation or electrical conduction. These “core” states can then be omitted from 

the entire self-consistent DFT calculation. The pseudo-potential approximation involves 

removing the core electrons and the nuclear potential and replacing them by a weaker 

effective potential called a “pseudo-potential” [79, 93]. This pseudo-potential acts on a set 

of pseudo wave functions rather than on the true valence wave functions. The resulting 

pseudo wave functions can be constructed to behave smoothly in the core region which 

improves efficiency by ensuring that only a small number of plane waves are needed to 

represent it. The pseudo wave function is constructed so as to match the exact valence 

wave function beyond a certain cutoff radius Tc, as seen in Fig. 2.1.

ft is also important to preserve the scattering properties of the atomic orbitals when 

constructing a smooth pseudo wave function. These are different depending on the angular 

momentum channel / and therefore the resulting pseudo-potential is also dependent on 1.
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The Phillips Kleinman construction of pseudo-potential is the general method used in 

most pseudo-potential generation schemes [94], It exploits the fact that strong oscillations 

of valence wavefunctions in the core region result in non-orthogonality between valence 

(v) and core (c) functions. In this sense a pseudo valence wave function can be defined 

such that a non-zero overlap between different core states exists i.e.

|0t;) T ^ ^ (2.38)

where = {4>c\(t>v)ps 7^ 0. With this definition the new smooth pseudo wavefunction 

is the eigenfunction of a pseudo-Hamiltonian with the same eigenvalues as the original 

valence wavefunction

c

= Cy\(f)n)ps. (2.39)

Therefore an energy and angular momentum dependent pseudo-potential exists with an 

extra non-zero term in the core region

h"ps — Vo + — ^c)\<Pc){4>c\, (2.40)

where the new pseudo wavefunction has a different norm and resultantly a different charge 

than the original valence potential. As a result this scheme must be generalized to conserve 

the norm of the pseudo-potential. This is achieved by constructing an energy indepen­

dent pseudo-potential that also depends on the angular momentum quantum number /. 

This pseudo-potential is then transferable to other systems. The new pseudo-potential is
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expressed as

^max

Im

,\oc/ (2.41)
;=o

where the sum rule has been invoked and l^ax is the highest I component in the core region. 

The pseudo-potential is now broken into a local and non-local part up to and including 

/max- In order to construct a good pseudo-potential one must ensure both softness (so that 

the wavefunction can be expanded in a small number of plane waves) and transferability 

(that it remains accurate even when describing electronic configurations different from 

what it has been designed from).

With all this at hand the following steps are taken to generate an optimal pseudo­

potential:

• The exact all-electron wavefunctions for a suitable atomic reference configuration is 

calculated. This is generally the ground state configuration of a given atom i.e. for 

Si: 3s^ 3p^.

• A smooth pseudo wave function is constructed that matches the all-electron wave- 

function beyond a suitably chosen cut-off radius Tc, ensuring also that the pseudo 

wave function is node-less. The added criteria are that that the pseudo wave func­

tion matches the all-electron wave function beyond Tc with continuous derivative. 

Furthermore the norm is conserved for both i.e. one has the condition

/ drr^[4>Lir)? = / drr^[(l)[^{r)f^ (2.42)

This ensures better transferability.

The pseudopotential is calculated by inverting the radial Schrbdinger equation
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At this point almost all the necessary tools for ab initio studies on large scale sys­

tems have been described. The final correction, called the spin-orbit correction, is also 

important in this thesis since the systems that are dealt with include localized spins 

which exhibit large magnetic anisotropies due mainly to the spin-orbit interaction. This 

correction will be discussed in the final section.

2.6 Spin-orbit correction: onsite approximation

The spin-orbit interaction is a relativistic effect, which increases in magnitude as for 

central spherical potentials, where Z is the atomic number. Therefore, for transition metal 

magnetic systems, such as those considered in this work, the effect becomes pronounced. 

Such magnetic atoms, when placed on a non-magnetic substrate, can exhibit large easy- 

axis and hard-axis anisotropies, due mostly to the spin-orbit interaction, an important 

quantity which determines the local spin-relaxation time. It is therefore apparent that an 

efficient implementation of the spin-orbit interaction must be developed within DFT and 

the pseudo-potential method. This is briefly outlined below.

Kleinman and Bylander have shown how the generation of non-relativistic pseudo­

potentials can be extended to account for relativistic effects [95, 96]. This is achieved by 

solving the all-electron Dirac equation for a single atom. From this a pseudo-potential 

can be extracted. This now depends on the total angular momentum j = / ± 1/2. The 

pseudo-potential can be written as

(2.43)

and includes all relativistic corrections up to order o-^, where a is the fine structure 

constant and |j, rUj) are the total angular momentum states. The expression in Eq. 

(2.43) can be recast in terms of the more familiar angular momentum and spin quantum
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numbers I and m [97]

l,m

where

21 I [(^ l)^+i/2 + ^-1/2],

21 +
-\yi+\/2 - V/_i/2]-

(2.44)

(2.45)

Here Vi represents the scalar part of the pseudo-potential containing the non-relativistic 

pseudo-potential and also the scalar relativistic corrections. is the relativistic spin- 

orbit correction. At this point, the spin-orbit corrected Kohn-Sham Hamiltonian now 

looks like

+ vz, + vZ' + V^ + (2.46)

where the non-diagonal elements of the Hamiltonian originate from the spin-orbit potential 

but also from the exchange and correlation potential, whenever the system exhibits a non- 

collinear spin. The first term is the kinetic energy contribution, the second and third are 

the scalar and spin-orbit contributions to the energy respectively and the fourth and fifth 

are the Hartree and exchange correlational energies.

This Hamiltonian can then be diagonalized with the preferred basis set in order to 

determine the total energy of the system. Anisotropy parameters for a given magnetic ion 

deposited on a substrate can be determined from the difference between the total energy 

calculated by aligning the atom magnetic moment along the x, y or 2-axes.
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Zero Temperature Green’s Function 

Formalism

This chapter deals with the procedure used when dealing with a system that experiences 

a perturbation. This will be treated as a general perturbation V and could represent the 

interaction of an electronic system with an external field, with a phonon or, as introduced 

in the previous section, the exchange interaction with a localized impurity. In particular 

for problems of this nature that cannot be solved exactly, the Green’s function formal­

ism is generally employed to treat the problem perturbatively. The starting point is a 

Hamiltonian which comprises an unperturbed part Hq (this can be solved exactly) and 

the perturbation V (unspecified for the moment). The initial non-interacting system is 

completely described by Hq and the effects of V are assumed small to ensure convergence 

of the perturbation expansion. At this point the operators used in this scheme must be 

transformed to take into account the interaction term. All the analysis will be performed 

at zero-temperature for simplicity (this approximation is accurate when dealing with low 

temperatures <1K) and with the help of reference [98].

35
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3.1 Interaction representation

The interaction representation must be used when dealing with a perturbation to a sys­

tem. In this representation it is assumed that both operators, O, and wavefunctions, 

•0, have a time dependence, contrary to the Heisenberg and Schrodinger representations. 

The Hamiltonian can then be separated into two parts where the commutation relation 

[i/o, V] 0 holds. The following quantities are defined

H = Ho+ V,

d{t) =

ii't) =

(3.1)

(3.2)

(3.3)

where the unitary operator U{i) = jg ji^itroduced and the symboF indicates that

one is in the interaction representation. This choice of operators ensures that the time 

dependence of the wavefunctions is governed by the interaction V{t)

dt ^(^) = (3.4)

The unitary operator also obeys the differential equation:

o

= -^\>(^)^7(^), (3.5)

and with the initial condition t^(0) = 1 has the formal solution

t ti tn — \

j y y dtnV{h)V{t2)...V{tn).
n=Q 0 0

(3.6)

After introducing the time ordering operator T, which arranges operators in order of 

decreasing time from left to right, and after having redefined the time integration variables,
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one arrives at the folio-wing expression for the unitarity operator

(-z)^
t t

U{t) — I + ^~ I dtI I dt2
n=l

t... j ht„r[y(ti)i/(t2)...v(t„)], (3.7)
0 0

U{t) = Texp
I

i j dtiV{ti) (3.8)

In addition to the unitary operator the S matrix must also be defined. This is the operator 

which propagates the wave function i^(t) from time t to the time t'

ip{t) = (3.9)

The 5-matrix also satisfies the differential equation

(3.10)

with solution

S{t,t') = Texp ~ ^ J dtiV{ti)
t'

(3.11)

The 5-matrix is important when dealing with the ground state of the full interacting 

Hamiltonian, for which one has no information. The ground-state wave-function of the 

unperturbed system (denoted by 0o), however, can be found exactly. It can be shown 

[99] that the relation between the ground states of the interacting and non-interacting 

systems can be defined as

^^(0) = 5(0, -c>c)0o, (3.12)
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so that oo) = 00- This indicates that at t = — oo the system is in the non-interacting 

ground-state, 0o- The operator 5(0, — oc) then propagates adiabatically the wave-function 

up to the present (t = 0), following the evolution dictated by the interaction potential V.

3.2 Green’s function formalism

One is now in the position to introduce the Green’s function formalism to treat the system 

perturbation. At zero temperature the electron Green’s function, G, is defined as

Gx^x'{t,t') = -i{\Tcx{t)c\,{t')\), (3.13)

where |) is the ground state of the full Hamiltonian, H. The c’s are the electron creation 

(r^) and annihilation (c) operators with the indexes A labeling the eigenstates of the 

Hamiltonian, H = J];), with eigenvalues ex- In order to convert this expression

from the Heisenberg to the interaction representation the 5-matrix from the previous 

section, Eq. (3.12), is used which gives

Gx,\'{t, t') =
-io{\Tcx{t)c[,{t')S{oo, -oo)|)o 

o(|5(oo,-cxd)|)o
(3.14)

In Eq. (3.14) the Green function is the expectation value of an operator calculated over 

the non-interacting ground state |)o, where the operators c and are now written in the 

interaction representation. By using the 5-matrix expansion provided in Eq. (3.11) one 

arrives at the final expression for the fully interacting Green’s function, which reads

Gx,\'{t,t') = ^
,qn+l

n=0
n!

oo oo

/"*■-/ o(|rE(ti)...l/(t„)CA(t)4-(tO|)o
o(|-S'(oo,-oo)|)o

dt (3.15)

At this point the formalism encounters a problem. In fact, although the ground state of 

the system at f = —oo is well defined [from Eq. (3.12)], there is now no means of describing
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G"(t,t') and G^(t,t’)

G'(t,t')

G’(t,t’)

(0)

(b)

(c)

Figure 3.1: Feynman rules for non-equilibrium Green’s functions calculated over the contour running 
from —oo to —oo. The four configurations are the lesser and greater Green's functions (a) and the 
time-ordered (b) and time-anti-ordercd (c) Green’s functions.

the ground state at the time t = -foo. This problem was overcome by Schwinger [100], 

who proposed to write the time integral in the 5-matrix in terms of two contributions, 

one that evolves from (—cx:,r) and the other from (r, —oo). This process ensures that 

eventually r will reach +oo. The advantage of this idea is that the integration begins and 

ends with a known ground state '!/>(—oo) = (^o- This is called the time loop method and 

it is the primary way to deal with non-equilibrium systems. Therefore, the formalism is 

adjusted accordingly. The 5-matrix then becomes

5( —oo, —oo) = Tcexp dTiV{Ti) (3.16)

where the time-loop contour C has been defined as the one that runs over the time 

intervals (—oo, Ti) and then (ri, —oo), and the operator Tc as the time-ordering operator
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along the entire loop. The full Green's function expansion finally becomes

Ti=o "L

o(|rcC(ri)... l/(r„)cA(r)4/(T0|)o 

o(|5(-oo,-oo)|)o
(3.17)

Although the introduction of the C contour solves the issue of the t = +oo limit, it 

also brings the drawback of introducing six new Green’s functions, depending on how the 

times t and t' are positioned over the loop contour. These are schematically represented 

in Fig. 3.1. In the Heisenberg representation for operators such Green’s functions are 

written as

= e{t - t')GlAt,t') + 0{t' - 

= e{t' - t)G>At,t') + e{t - t')G<At,t')^ 

GrAt,t’) = GlyAt')-G<At,t'),

GtAtG') = GlAA')-G>At,t')-

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Here G^ and G^ are respectively the lesser and greater Green’s functions, G* and G^ are 

the time-ordered and time-anti-ordered Green’s functions and C and G^ are retarded 

and advanced ones. More information about the properties of these six Green’s functions 

can be obtained by considering the unperturbed Hamiltonian, i.e. by looking at the 

non-interacting case, which can be solved exactly. After diagonalization the unperturbed 

Hamiltonian takes the form Hq = eA(^l<^A) where ex are the eigenvalues. The Green’s

functions are then evaluated over the known ground state |)a=0) whose energy is Eq. In 

this case, the explicit time dependence of the creation and annihilation operators can be
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found from the Heisenberg equation. For instance the one for the annihilation operatcr is

dt exit) = -i[Ho,cxit)], (3.24)

which has solution (the initial condition is ca(0) = Cx)

exit) = cxexpi-iext). (3.25)

Likewise, the solution for the creation operator c^xi^.) is

4(0 = 4exp(+z£:A0- (3.26)

If one now inserts such solutions into the expressions for the lesser and greater Green’s 

functions provided by Ecis. (3.18) and (3.19), these can be written as

Gt^x'it,t') = idx,x'il - {nx))exp[-i£xit - ^')]> 

= -i5x.x'{nx)exp[-i£xit - t')].

(3.27)

(3.28)

where the expectation value over the contour of the electron number operator, nx — c\cx, 

has been introduced and the fermion anti-commutation relations have been used. It is 

notable that at thermal equilibrium the number operator average is given by the Fermi- 

Dirac distribution (nx) = fi^x) = l/[exp(/5£A) + 1], with Fermi energy Sp, and /5 = 

l/(A’Br) with fce being the Boltzmann constant. By using these relations the full energy 

resolved dependence of all the six Green’s functions can be constructed. This is obtained
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by Fourier transform of their time-dependent counterparts

G<(A,a;) = 2Trif{ex)5{uJ - Sx), 

G^{X,uj) = -27ri[l - f{ex)]S{uj - £>), 

G‘(A,a;) = 1

G'(A,a;) =

u; - ex + irjx 
-1

G^^Wio) =

UJ - ex- ITJX

1

G^^''(A,a;) =

Lij - ex+ ir]
1

u-ex- irj'

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

where 77 is a positive and satisfies 77 -t- 0“^, while rjx is positive for ex > and negative 

for ex < e'F-

3.3 Wick’s theorem

In order to tackle the interacting problem one needs to return to Eq. (3.17) and ascertain 

the rules, which determine the contour time ordering of the product of the V{t) operators. 

These are different depending on whether the C’s describe electrons, phonons or, as in 

this case, spins. Assuming that the perturbation is electronic in natnre (for instance a 

density-density operator representing Coulomb repulsion), one then needs to deal with 

time ordering products of the form

GA,A'(r,r') =
n=0

n!
dri... / dTf

c

o{\TcV{ti) ... l/(r„)cA(r)4/(rO|)o 
o(|-S'(-oo,-oo)|)o

(3.35)

where there is always an equal number of creation and annihilation operators and an 

operator that creates a state is always followed by an operator that destroys one. In this 

case, the task is that of re-expressing Eq. (3.35) in terms of products of time ordered pairs 

o{\Tc {cA(T)c]^,(r')}|)o. Clearly, as there are A pairs of operators, there are A! different
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possible orderings for such pairs. Using Wick’s theorem, which is extensively descriDed 

in ref. [101], there are three simple rules that can be gleaned for ordering the operatcrs.

1. There is a sign change whenever two neighbouring Fermi operators are interchanged. 

Therefore the number of interchanges must be noted.

2. If there are a mixture of particles in the time-ordering bracket, i.e. if there exists 

operators that do not commute, these can be separated into different time-ordering 

brackets.

3. We recognize the time ordering of a product of operators with different time argu­

ments as the unperturbed Green’s function, namely

o{\Tc {cA('r)4'(7-')}l)o = iGo,x,y{T, r') . (3 36)

These rules will be implemented when performing the full time-ordering of the interacffon 

Hamiltonian, which will be introduced later in the chapter. This will show Wick’s theorem 

in action.

3.4 Langreth’s theorem and Dyson’s equation

Wick’s theorem essentially allow the expansion of the fully interacting Green’s function 

in terms of the non-interacting Green’s functions up to a given order, n. This can be 

generalized at any order, n = oo, by Dyson’s equation. Dyson’s equation is a reformulation 

of the general perturbation expansion of the full interacting Green’s function of Eq. (3.14) 

in terms of a quantity called the self-energy. This quantity in itself can be evaluated 

perturbatively and provides a compact way to describe the effect of a perturbation on a
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physical (non-interacting) system. Dyson’s equation takes the form

G'(r,r') = G'o(r,r') + J dn J rfr2G'o(r, Ti)E(ri, r2)G'(r2, r'), (3.37)
c c

where Go is the unperturbed Green’s function and S is the self-energy. In order to find 

the real time components of this relation the reader should refer to Haug and Jauho 

[102], who describe Langreth’s theorem for the evaluation of “contour-convolutions” as 

the one written above. It can be shown that the retarded/advanced and the lesser/greater 

components of the Green’s function are respectively

Gd-Hr^r') = Gf)(r,rO + J dn J dr2G^"V, r2)G’’(")(^2, r'), (3.38)

c c
G^{t,t') = + J dTi J (ir2G''(r. ri)S^(ri,r2)G‘‘(r2,r') , (3.39)

c c

whose energy resolved components can be calculated by Fourier transform

Gd^^iuj) = Gd^\Lo') + Gd^\u;)^d^\uj)Gd^\uj),

G^iu) = GoH + G^(u;)E^(u')G^(uj)

(3.40)

(3.41)

3.5 General expression for the current through an 

interacting region

The power of the Green’s function formalism will be demonstrated by describing the 

perturbation to a close system originating from the coupling to two semi-infinite leads. 

This is a problem that can be solved exactly within the approximations that will be 

introduced. Such an approach coincides with the widely used non-equilibrium Green’s 

function (NEGF) method, which has been extensively used in the literature [44, 45, 46] 

to describe the electron transport problem. Here it will be discussed how to construct
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Figure 3.2: Schematic of the transport device containing two decoupled leads connected to a central 
region, which contains information on the interactions in the system

a transport theory starting from the Green’s functions that have been covered in the 

previous sections. At this point a specific Hamiltonian that describes an interacting 

region sandwiched between M semi-infinite, non-interacting leads is introduced. This has 

the form

M M

H — Ca}) + ^ -h ^2 -^coupling!
i i

^\cad ~ ^ ^^aibgibgi, 

a

^coupling = [Vaz,\bliCx + h.C.) ,

(3.42)

(3.43)

(3.44)
q.A

Here i/fcad the Hamiltonian of the f-th lead with b^ibai) creating (destroying) electrons 

at the energy 6^, while i/int({c|; Ca}) describes the interacting region and it is constructed 

with the creation and annihilation operators and c\ (they form an orthonormal set). 

Finally couples the z-th leads with the interacting region, through the hopping

matrix elements 14j,A- Initially it is assumed that the leads are completely decoupled from 

the scattering region, i.e. that I4j,A = 0 for every i. One can then define the number 

operator in each of the leads as n* = J2a baibai- The rate of change of the expectation 

value of this operator gives the current, P, flowing into the interacting region from the 

z-th lead. This is simply

a,A
(3.45)
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Clearly, one can now recast Eq. (3.45) in terms of the Green’s functions introduced 

before. In this particular case one can define the hybrid real-time Green’s functions 

describing the overlap between the i-th lead and the interacting region as

Gai^xiUt') = i{ciit)bai{t')),

(3.46)

(3.47)

so that the current can be written as

a,A

a.A
(3.48)

At this point there is still no expression for the lesser hybrid Green’s functions. Therefore, 

in order to proceed, one must define the following contour ordered Green’s functions

GX^aiir 1 )

Ga.i,\{T 1 ^ ) 

Gx,\'{r,T') = 

Gai,ai{'^i ^ )

-2(rc{cA(r)6C(r')}),

-i{Tc{bai{T)cl{T')}),

-f(rc{cA(T)4,(r')}),

-i{Tc{bai{T)bG{T')}).

(3.49)

(3.50)

(3.51)

(3.52)

Finally, by using the Dyson equation, the following expressions for Gx^ai and Gai,x are 

obtained, in which the coupling between the interacting region and the leads appears 

explicitly

Gx.ai{T,T') = [ dTiGx,X'iT,Ti)V*i^,Gai.ai{ri,T'), (3.53)
A' 4c

Gx.ai{T,T') = [ dTiGai,ai{T,Ti)Vai,yGx',x{Ti,T'). (3.54)
w JC
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Now, by following the contour integration rules and by using the relations defined 

in Eqs. (3.19) to (3.23) one arrives at the following real time expression for the hybrid 

Green’s functions

OO
*') = ElC. v / d

\f
— OC 

OO

dti

dti

+ G'A,A'(Cfl)G'“j£,j(ti,t') , (3.55)

which after Fourier transform becomes

A'

X’

Finally the expression for the current can now be written as

(3.57)

(3.58)

duj ^
~ 7-00 ^^ ^ Z. V'-,U.,qG<

°° a,A,A'
OO J

X! |Xa'(‘^)X.a'M - Sa,A'(^)*^X'(‘^)
OO 27r 
°° A,A'

= J" ^Tr{|E*’<Ml|G>(a.)| - |E''>H|[GUi.’)l}. (3.59)

where the square brackets denote the matrix form of the operator describing the interact­

ing region. In the same equation the lesser and greater parts of the self-energy have been 

defined in the same region as

= E k:.,ags (3.60)

These represent the rates at which a particle with energy u: leaves (<) or enter (>) the 

f-th lead. Equation (3.59) provides a rather transparent interpretation for the current,
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0.0

I/Io

0.5 1.0

Figure 3.3: Schematic representation of resonant tunneling through a single onsite level when (a) the 
bias window is just below the level and (b) the bias window includes the level. The current vs voltage 
profile is for the process is shown in (c) where the current is calculated in units of the saturation current 
lo = 2TLTn/r

which is nothing but the difference between the in-scattering rate and the out-scattering 

one to and from the scattering region.

3.6 Current through single non-interacting level

As an illustration of the method developed so far the simple case of a non-interacting 

region consisting of a single level with energy eo considered (note that the index A is 

no longer necessary and it has been dropped), whose Hamiltonian is simply

//int = £qC^c. (3.61)

It is further assumed that the level is coupled to only two semi-infinite, non-interacting 

leads, respectively to the left, i = L and to the right, i = R. These are described by a 

single-orbital tight-binding model with hopping parameter jo and on-site energy e, = 0. 

The self energy associated to each lead is then

eS(u,) = ^
a

(3.62)
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As the leads are serni-infinite and under the condition that tlie density of states of each 

of the lead, Pi(ea), is known, the sum over tv can be replaced with an integration over 

energy

T.fW) = Y, / (3.63)

-?:[i - f,{uj)]r,{uj)
(3.64)

wliere the Green’s function derived in Ecj. (3.29) lias been used for non-interacting 

fermions. A bias, V', is applied between the left-hand side and the right-hand side lead 

so that the resulting chemical potential in each lead is shifte'd by p = eV/2 (e is the 

electron charge), namely pL = «-iid //k = £f — (note that each lead in isolation

is in equilibrium). Here the Fermi function is defined at the relative chemical potential, 

namely ft{oj) = l/[exp(^|:^) + 1]. In the exju’ession for the self-energy, Ecj. (3.63), the 

broadening function rj(eQ) = 2ttpi{£c)\Vi{ea)\'^ has also been introduced. This gives a fi­

nite lifetime to the energy level of the interacting region. Clearly such a broadening (and 

consequently the lifetime) depends on the strength of the coupling to the leads. It can be 

shown (see Appendix A) that the broadening function for the single-site, one-dimensional 

tight-binding model is given by

7o
(3.65)

where y, is the hopping from the closest atom in the semi-infinite chain to the interacting 

region, i.e. there is only a single non-vanishing = yj. In the wide-band limit, yo >> eo; 

which is assumed throughout this work, the broadening function becomes a constant 

r, = 2yj^/yo. The resulting retarded and advanced self energies in the leads can then be
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found from the relation

= T,KiG''^&MVcr{a) (3.66)

After substitution Eqs. (3.33) and (3.34) the energy integral can be evaluated to obtain

= ±r-jr,: (3.67)

The full artillery to calculate the energy-resolved Green’s functions for the interacting 

region is now available, which in turn allows one to access to the current. From advanced 

and retarded Green’s functions defined earlier, one has the following energy resolved 

relations in terms of the un-perturbed (or unconnected) interacting region (denoted with 

the subscript 0)

1
~ UJ - Sq- SA“) ’

G^{lo) = G’'(a;)S^(a;)G“(a;),

(3.68)

(3.69)

where the total self energy is defined as the sum over both contributions coming from the 

left-hand side and the right-hand side lead E(<x;) = Yli Si(<^')- The final expression for the 

current through a single non-interacting level then takes the form

Ir
' —oo 
oo

(3.70)

(3.71)

where the total broadening is T = X^jT^ and the density of states in the interacting 

region is p{(jj) = (r/27r)/[(a; — £0)^ + T^]. With this expression, the standard result from
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scattering theory, namely the Landauer-Biittiker formula [45], has been recovered. In fact 

the current is simply the product of the transmission coefficient T{E) = 27r[(aj-£or^+r^] 

the difference between the Fermi functions of the two leads. In this particular case the 

transmission coefficient has the form of a Breit-Wigner resonance at the energy level, cq. 

This relation indicates that current will flow only when the energy level is within the bias 

window. The corresponding current-voltage plot (see Fig. 3.3) presents a characteristic 

current step when the energy level first enters the bias window. With the convention for 

the chemical potential in the two leads this happens when V =
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Calculation of the Interacting Spin 

Self energy

In this chapter the specific interaction between electrons and spins is introduced, upon 

which a perturbative theory of spin-flip spectroscopy will then be formulated. The theo­

retical analysis is based on a tight-binding Hamiltonian for the conducting electrons (as 

in the simple case of Chapter 3), locally exchange coupled to quantum spins. The formu­

lation is then based on the assumption of a separation between the transport electrons 

and those contributing to form local spins, i.e. it is constructed over the s-d model for 

magnetism [51, 52]. An appropriate self-energy is then constructed for the spin-degrees 

of freedom up to the second order in the perturbation expansion and this is used in the 

standard NEGF scheme for transport. The methodology is then applied to describing 

SF-IETS in atoms and atomic chains and the results are compared with experiments.

4.1 Impurity Spin Models

The spin impurity model that will be used in this thesis stems from the Kondo formalism 

[103] where an impurity atom at position x„ immersed in an electron continuum has an 

associated wavefunction given by — x„), where L denotes a localized state. The

52
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continuum wavefnnctions are defined by ?/>fc(x) and can have an overlap between each 

other. The total many-body wavefunction is the sum of all the possible states of the 

system.

'I'(x) = X<rV-'k(x)rk + X<t^l(x - x„)cl<^, (4.1)
k(7

where the c’s are destrtiction operators of the given state. The Hamiltonian is as defined 

in Chapter 1:

i=l
Ne

i¥=j
Ne

(4.2)
i=l

where v is the potential of the host lattice which also includes that of the impurity and U 

represents an electron-electron interaction. By using second quantization it is seen that 

the first term, which does not contain any many body interaction, can be written as

I Tt(x)T’(x)T(x)dx = E ^^kk' *"k'(T “i“
k,r7' <7 kk^cr

+ J^14(4^CL^ + 4^Ck<.). (4.3)
k,(T

The first two terms are the onsite contribution to the continuum and the local states 

respectively. The third term is a potential scattering term between both type of states 

and can generally be incorporated into the Hamiltonian with a suitable choice of the basis 

wavefnnctions. The important term here is the hybridization term between the continuum 

and the local atom. This describes a process where electrons are exchanged between the 

continuum and the local state and survives due to the orthogonality of the electron and 

local spin system.

The magnetic properties of a system are investigated by examining the electron-
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electron interaction terms, which have the form

Hu = J dx J cfx'^'^(x)^'(x){7(x, x')'I'^(x')4'(x'). (4.4)

This results in a wealth of different terms, involving the local state and contributing 

differently to the magnetic properties of the system.

(1) The first involves terms which look like

^direct ~ « ^kk'cLcLacL'CkV',

kk'

where

Ckk' = dx

(4.5)

y dxVk(x)i'k'(x)t/(x,x')|V'L(x' - X„)|^, (4.6)

which is a direct term and is generally ignored since it does not contribute to any magnetic 

phenomena.

(2) The second comprises terms which look like

Hsf = •^kk'cLcicr'4(T''^k'<7, (4.7)
kk' CT.cr'

where

Jkk' = dx J cixVk(x)V’L(x - x„)t/(x,x')i/^2(x'- x„)'0k'(x')- (4-8)

This term represents a spin-flip process where an electron spin can be flipped as it scatters 

from state k to k'. In order to uphold spin conservation this must be matched by a spin 

flip of the local spin state. It is easily shown that this term can be restated in terms of
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the spin operator Sl (see Appendix B for definition of spin operators)

9 — 9 >^kk'[<T]Q,Q/Ck'Q;') ‘ Sl, (4.9j
kk' a,a' kk' a,a'

where [cr] is a vector of Pauli matrices and Si, can be written in terms of the localised 

spin creation and destruction operators as

Si = (4|Ci| + c[^ci|)x + i{c{^CL] - c^^ci|)y + (4|Cit - 4|Ci|)z. (4.10)

This is called the s — d model and is exact for spin 5=1/2 but, to a good approximation, 

can also be satisfied for any general spin with spin quantum number S. The s — d model 

describes the interaction of conduction s-band electrons with more localized d-orbital 

electrons, whose total spin component is represented by S. It is clear that the spin-flip 

terms are those which cause mixing of the quantum state away from the z-axis. This is 

the model that will be employed in the formalism here-on-out. This Hamiltonian form 

is useful since conduction electron spins and local electron spins are orthogonal and can 

therefore be treated separately.

(3) The third and final term involves four local operators and resembles the Anderson 

Hamiltonian [104]. This looks like

Hrj = U E ^Lcr^Lcr'CLct'" , (4.11)
o.a'G" .a

where

f/ = / dx / dx'|?/>i(x - x„)pf7(x,x')|t/'i(x'- x„)|^ (4.12)

Uu becomes the standard Hubbard Hamiltonian [105] if the orbital is non-degenerate 

and can only support opposite spin states. In this case the sum in Eq. (4.11) is simply
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Figure 4.1: Schematic representation of the device investigated in this work. A scattering region, 
comprising N spin-carrying atoms (light-blue circles) and described by the Hamiltonian f/s- is sandwiched 
in between two semi-infinite electrodes (red circles). 'I'hese mimic the substrate and the tip in a typical 
S'l’M experiment. 44ie electrodes are non-spin polarized and they are described by the Hamiltonian /Cub 
and //tip. In the scattering region the transport electrons are exchange coupled to local quantum spins 
S,.

should be noted that a canonical transformation exists wherein the 

Anderson/Hubbard model is transformed into a form similar to that of the Kondo model 

with additional terms. In this thesis the Kondo s — d model will be used and it will be 

treated as an approximation to a more general Anderson/Hubbard formalism.

4.2 Hamiltonian of scattering region

The typical experimental setup considered in this thesis is that of an STM measurement, 

i.e. it comprises an STM tip positioned above one of the atoms of a magnetic nanostruc­

ture, which in turn is weakly coupled to a metallic substrate across an insulating barrier. 

This system is modeled by a pair of non-interacting semi-infinite leads sandwiching a 

scattering region, as outlined in Fig. 4.1. The left-hand side lead, the scattering region 

and the right-hand side lead represent respectively the STM tip, the spin-coupled nanos­

tructure and the substrate. They are described respectively by the Hamiltonian //tipi 

and //sub- For simplicity we assume an identical electronic structure for both the leads 

(i.e. they are made of the same material), which we describe by a one orbital per site
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tight-binding model with nearest neighbour interaction (as in Chapter 3).

To hx the ideas the assumption is made that the scattering region consists of N atoms 

arranged in a chain structure (note that for this discussion the spatial arrangement of the 

atoms does not necessarily need to be a chain form). The A-th atom carries a quantum 

mechanical spin Sa and it is characterized by an on-site energy Sq- H is assumed that 

the tip and substrate can only couple to one atom at the time in the scattering region, 

i.e. that only one atom of the magnetic nanostructure is in electronic contact with the 

electrodes. Such a coupling is given by the two hopihng integrals 7tip-s and 7sub-s- This 

means that the electronic states of the scattering region are broadened by the interaction 

with the electrodes by Ttip-s = and Tsub-s = 27sub-s/7o, where 70 is again the

hopping parameter within the leads. It is assumed that So 3> Ttip-s and also eo > Tsub-s, 

leading to a constant density of states of the scattering region at the Fermi energy. This 

assumption has two main consequences. On the one hand, the electronic interaction 

among the atoms in the scattering region can be neglected (i.e. the creation of bonding 

and anti-bonding levels is irrelevant), as this will generate states far enough from the Fermi 

energy to ensure a constant density of states. On the other hand, one can simplify the 

interaction between the atoms in the chain and the substrate to an electronic* coupling 

to a single atom, as additional coupling (as far as it remains w*eak) will not introduce 

additional density of states around ep.

The Hamiltonian of the scattering region then contains three parts Hs = He + ^sp + 

//e-sp, wdiere He is the tight-binding electronic part, H^p is the spin part and F/e-sp 

describes the electron-spin interaction. More explicitly these three components are written
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respectively as

A a
N-l N

= 2Jdd Sa • S,d-i + 5] {q^bB . S, + D{Slf + E[{S^,f - (5^)']},

Hesp '^sd (*^;^Q[^A]cvcv^^AaO ' ^ 

A a,ce'

A •

(4.13)

(4.14)

(4.15)

The electronic part consists only of an on-site potential, i.e. the electron hopping between 

the sites is neglected [the electron ladder operators c\^/c\a create/annihilate an electron 

at site A with spin a (=T)i)]-
The spin-spin interaction between the localized spins {Sa} is modeled by a nearest 

neighbour Heisenberg Hamiltonian with coupling strength J^d- Furthermore an inter­

action with an external magnetic field B is included (pe is the Bohr magneton and g 

t he gyromagnetic ratio) and so are both the uni-axial and transverse anisotropy of mag­

nitude D and E, respectively [9, 106]. This form for the spin Hamiltonian is the one 

proposed before to describe some of the SF-IETS experiments that recently appeared in 

the literature [5]. Note, however, that the formalism does not depend on the particular 

choice of such Hamiltonian, and additional terms, such as for instance the one describing 

Dzyaloshinskii-Moriya interaction [107], can be included. It will be seen that the partic­

ular choice of determines the spectrum of the system and consequently the shape of 

the lETS spectrum, but does not require any modifications of the formalism.

The electron-spin interaction Hamiltonian is constructed within the s-d model [51] 

where the transport electrons, s, are locally exchanged coupled to quantum spins, {Sa} 

(“rf’ indicates that the local moments originate from the atomic d shell). The electronic 

spins are described by the operator cJ^^[crA]QQ;'CAa',with cr being the vector of Pauli ma­

trices. The use of the s-d model means that it is implicitly assumed that an adiabatic 

separation occurs between the transport electrons and those forming the local spins. As
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a consequence a single interaction parameter, can be defined which is used to de­

velop a perturbation theory (note, however, that Jsd is not the perturbation expansion 

parameter, as it will be explained later). Such an approximation is valid in the limit 

of weak electronic coupling between the electron reservoirs and the scattering region, as 

in the case of the STM measurements that are described here. Note that going beyond 

such an approximation will require formulating an entirely electronic theory for inelastic 

spin transport. An Anderson-like impurity model as introduced in the first section can 

be a starting Hamiltonian for such a task [108], but this will require abandoning the 

perturbative approach and it is outside the scope of the present work.

4.3 Many-body Green’s functions and interacting elec­

tron self energy

The Hamiltonian for the scattering region contains two terms. He and Hsp, which in­

dependently can be diagonalized exactly, so that the problem is easily solvable when 

Jsd = 0. However the electron-spin interaction JTo-sp, transforms the system into an 

intrinsic many-body one, for which a perturbation theory wilt now be derived. The strat­

egy is that of first constructing the electronic many-body Green’s function at the 2nd 

order [98, 109, 110, 111] in the electron-spin coupling and then, by Dyson’s equation, 

evaluating the interacting self-energy. In particular, the procedure laid out in Ref. [98] 

will be closely followed. Since a non-equilibrium situation at zero-temperature is consid­

ered, the starting point is the Schwinger [44] contour-ordered spin-dependent single-body 

Green’s function in the many-body ground state (note that for simplicity the symbol 

over the operators, denoting the interaction representation, has been dropped).

= -i{\Tc{c^{T)cl,{T')}\) , (4.16)
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where the time-average is performed over the full interacting ground state |). Note that for 

clarity the spin index a has been maintained but the site index A has been dropped. This 

will be explicitly included only where necessary. By following the procedure highlighted 

in the previous sections Eq. (4.16) can be expanded up to the n-th order in the interaction 

Hamiltonian, H^sp, as

[G(r.T')W=^ -i) n+1
dri

n! 1 • dr„ X

X
o(|rc{i/e-sp(Tl) . . . i/c-sp(T-n)Ca(r)4,(H)}|)o

o(iS'(-oo,-oc)|)o
(4.17)

where S is the time-evolution unitary operator defined in Eq. (3.11) and the time-averages 

are now over the known non-interacting (Jsd = 0) ground state |)o. The time integration 

over r is ordered on the contour C going from — cx; to -l-cxo and then returning from 

-Hoc to —CO, since the ground state of the non-equilibrium system can only be defined at 

— CO [102]. If the expansion is truncated to the first order one obtains a Zeeman-like term 

which can be neglected as long as Sq 3> 7tip-s(sub-S)- The first contribution of interest then 

appears at the second order. This can be obtained by inserting the explicit expression for 

//e-sp(0 [Eq- (4.15)] into Eq. (4.16)

[E'(r,r')]S, = f f dro X

X o(|T'c{c^(r)4(ri)c„/(ri)cJ(r2)c;j/(r2)c^,(r')}|)oo(|Tc{5*(Ti)S'-^(r2)}|)oHaa'K]/3/3',

(4.18)

where the indexes i and j of the local spin operators and the Pauli matrices run over the 

Cartesian coordinates x, y and z (not to be confused with the site index).

A full contour-ordered expansion must now be performed on both the electron and the 

spin brackets. The electron bracket has six different time-ordering combinations, which
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are explicitly below

o(|rc{c<.(r)4(ri)c<,/(ri)4(T2)c^'(r2)4,(T')}|)o+

= o(|7b{c^(T)4(ri)}|)o X o(|7b{cc,'(Ti)4(r2)}|)o x o(|7c{c/3'(7-2)ci.(r )}|)o+

+ o(|7c{c<,(r)c^(r2)}|)o x o(|7c{ca'(ri)4,(r')}|)o x o(|7c{c„(r2)4,(Ti)}|)o+

+ o(|Tc{c^(r)4(ri)}|)o x o(17c{c«'(Ti)4,(rO}|)o x q{\Tc{c\{t2)c0'{t2)}\)o+

+ o(|rc{c<,(r)c^(r2)}|)o x o(|7c{c/3'(T2)c^,(r )}|)o x o(|71:7{4(n)f’a'(Ti)}|)o+

+ o(|rc{c<,(r)c^,(r')}|)o x o(|7c{4(ri)ca'(Ti)}|)o x o(|7c{4(^2)c/3'(r2)}|)o+

- o(|rc{c„(r)4/(r')}|)o x o(|Tc{c„/(ri)4(r2)}|)o x o(|7c{c^'(T2)4(n)}|)o- (4.19)

The first and the second terms represent Fock-like Feynman diagrams [see Fig. (4.2) (B)], 

while the third and the fourth ones correspond to llartree-like ones (note that Hartree- 

like diagrams vanish because of the spin selection rules as discussed later in this section). 

Both these pairs are equal under index exchange. Finally, the last two combinations can 

be eliminated since they represent unconnected Feynman diagrams, which vanish in the 

averaging process [98]. This leaves a simplified expression which, when compared to Eq. 

(4.16), gives

o{\Tc{Ca{T)ci{n)Ca'{Ti)cl{T2)Cp\T2)cl\T'))\)Q 

= 2z^5o'q(^q'/34'o''[^o(B Ti)\aa[GQ{Ti, T2)]a'a'[Go{T2i tO](t'o-' +

+ 2i^5crQ5Q'(7'4/3'[*^o(7') 7'i)](T<t[G'o(Ti, t')]ct'ct'[G'o(T2, T2)]/J^. (4.20)

In this case, since the averaging bracket is over the non-interacting ground state, Gq 

represents the non-interacting electronic Green’s function and can be calculated exactly 

(see Chapter 3).

Returning to Eq. (4.17) the spin bracket is now evaluated. The ground state of the 

spin system alone {J^a = 0) can be found by diagonalizing exactly i/gp. This is achieved
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by constructing the full spin basis {|n)} where n = —S', —S + 1, ...,+S. Note that this 

step does not require any particular form for Hsp, although the details of the spin Hamil­

tonian determine the nature of the spin states and how these interact with the conducting 

electrons. Note also that in the discussion of the results the labeling of the eigenvalues 

of Hgp will be kept with the ^-component of the total spin S, which in general is not a 

good quantum number because of the presence of the transverse anisotropy. However, 

such an anisotropy is typically small so that the notation remains approximately valid. 

The resulting eigenvectors, \m), and eigenvalues, Em, satisfy the Schrodinger equation 

Hsp\m) = Sml'i'n) and they can be used to re-write the operators for i = {x,y,z},

as

5'(r) = {m\S^\n)dl{T)dn{T) (4.21)

Here d,„ is an annihilation (creation) operator for a quasi-particle of the spin system. 

The quasi-particles are then assumed to be fermionic in nature so that they obey the 

anti-commutation rules [dl^,dn] = dmn and [dl^,dl^] = [dm,d„] = 0. Such an assumption is 

valid as long as the excitations considered are always around the ground state, i.e. under 

the condition that the spin system can always efficiently relax back to the ground state 

between spin-flip events. Note that in this situation only a single spin-state \m) can be 

excited at a time, so that the particular particle statistics, bosons or fermions, becomes 

irrelevant.

A contour-ordered spin Green’s function is then defined as follows

[D{t, r')]„,m = -i{\Tc{dn{T)dl{T')}\) . (4.22)

By inserting the expressions contained in Eqs. (4.21) and (4.22) into the spin bracket and
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by computing the time-ordered contraction one finally obtains

<0|rc{S'*(ri)S'-’(T2)}|0) = - ^ {m\S"\n){n\S^\m)[DQ{Tx,T2)\n,n[DQ{r2,Ti)\rn,m , (4.23)
m,n

wh“re Dq is the unperturbed spin Green’s function.

The set of Eqs. (4.20) and (4.23) can now be incorporated into the expression for 

the second order contribution to the many-body Green’s function [Eq. (4.17]. Then, by 

usiag Dyson’s ecpiation [98], one can finally write the second order contribution to the 

interacting self-energy which reads

ij-l3

X [Go{ti,T2)\i30Y A\S"\'>1){^'>\S^'rn)[Do{Tl,T2)]n,n[G>o{r2,rl)]m,m ■ (4.24)
m.n

If it is now assumed that the ground state electronic spin levels are degenerate (the 

electrodes are not magnetic), i.e. [Go]!! = [Go]jp then the only quantity of interest is 

the trace of the self-energy over spin indexes. By performing such a trace, the spin- 

independent self-energy finally reads

Sint('ri,'r2)^^^ = -2Jsd Y \{AS'\n)\‘^Go{Ti,T2)[Do{Ti,T2)]n,n[Doir2,Ti)]m,m, ■ (4.25)
i,171,71

where the results Tr[cr*cr'^] = Sij and Tr[cr®] = 0 have been used. Note that the relation 

Tr[cr*] = 0 guarantees that the Hartree-like diagrams do not contribute to the self-energy. 

Such a relation is not present when the interaction of the conducting electrons is with 

atomic vibrations (phonons), hence in that situation the Hartree-like diagrams cannot 

be a priori neglected. Interestingly, for the phonon case the Hartree-like diagrams drive 

possible polaronic distortions in the system [112], which are expected not to have an 

equix'alent in the case of spin scattering.
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At this point the real-time quantities can be calculated, such as the lesser (greater) self­

energies, by using the Langreth’s theorem for time ordering over the contour, Ti G C'i(C2) 

and T2 G C'2(C'i) [102]. Ci is the time ordering contour going from —oo to -Poe and C2 is 

the time anti-ordering contour going from -foe to —00. It is found that

i,m,n

= -24 ^ |(m.|5>.)|^Go^(C,t2)Pn(l - , (4.26)
i.m.n

where in the second step Df{ti,t2) has been wuitten explicitly in terms of the spin-level 

occupations, P„ = It is reiterated that this form of the spin Green's function is

correct in the limit that excitations are always close to the ground state and therefore the 

latter expression is a good approximation. The dependence of over the energy, E, 

can be found by simple Fourier transform

= -24 I] |(m|5i7;)pF„(l - F„,)Gf (a; ± fU) , (4.27)

where Q„m = — £n tmd where the + ( —) symbol corresponds to (S^).

Electron-spin scattering events are now fully described by [E^^(a;)]. In particular 

Eep (4.27) describes the process w'here an incoming electron with energy E experiences a 

spin-flip process, which changes its energy by This is the result of the eleotron-

si)in interaction with the local spins. Such a process is schematically represented in 

Fig. 4.2. Note that the probability for an excitation to occur is determined by the pref­

actors (r7i|5'*|n)pF„(l — F^), i.e. by the state of the spin system.

This section is concluded by discussing the limits of validity of the perturbative expan­

sion. From a first inspection of the Eq. (4.27) one could conclude that the strength cT the 

second order interacting self-energy is solely dependent on ,7^. This will indeed result in 

a large perturbation parameter and thus in a possibly divergent perturbative expansion
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Figure 4.2: (A) Schematic representation of the inelastic process described by the greater self-energy, 
An incoming electron scatters against a localized spin and decreases its energy by ilmn- riiis is 

transfer to the local spin system, which undergoes a spin transition |n) ^ \in). (B) Feynman Fock-like 
diagram describing the interaction in the time domain.

(see Table (5.3) for an estimate of the various parameters). However, both the lesser and 

the greater Green's functions are proportional to the density of states of the scattering 

region, p. In the weak conjtling limit one has p ~ T/sq, where eo F the onsite energy' of the 

atom under consideration (the one under the tij)) and F is the total broadening dne to the 

electrodes, F = Ftip-s + Fsub-s- As a consequence one has that S?(j(a;)^^^ ~ aJgd, where 

a = pJsA is a dimensionless quantity. By continuing the expansion to the third order 

(see next section) one will find an additional contribution to the interacting self-energy 

in'oportional to Q-^ Jgd, he. it will be discovered that the perturbation expansion parameter 

is the dimensionless quantity a. Interestingly, a is the product between the Fermi level 

density of state at the spin site and the exchange parameter J^, i.e. it is essentially the 

Stoner parameter [113]. The convergence of the perturbation series is then guaranteed by 

the weak coupling condition, which establishes that p is small and then q -C 1.
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4.4 3rd order electron interacting self energy

Having described how to deal with the electron spin interaction up to the 2nd order, it is 

now interesting to continue such a perturbative expansion further to third order and to 

examine what effects this has on the conductance spectra. Our starting point is again the 

interacting contour ordered Green’s function expanded up to order n, Eq. (4.17). Once 

the explicit form for iifc-sp is introduced the third order contribution to the perturbative 

series reads

aa'.^/3',77'c C C

X (rc{c<,(r)4(ri)c„/(ri)c^(T2)c;3.(r2)4(r3)cy(r3)4,(T')})x

J77 (4.28)
i,j,k

Firstly the spin operators are considered. Following the procedure presented in the 

previous section these are decomposed into products of quasi-particle operators obeying 

the Fermi-Dirac statistics, thus that the ?-th component {i = x, y, z) of the spin operator 

S is written according to Eq. (4.21) and the corresponding Green’s function is that of 

Eq. (4.22). By substituting these expressions into Eq. (4.28) one obtains

f f / dn X

aa'./3/3',77'^ C C

X (7c{c„(r)4(ri)c„/(Ti)4(r2)c^/(r2)4(r3)cy(r3)4,(r')})x 

^ {Tc{dlin)drn'{n)dl{T2)dn'iT2)d]{T3)dl^{T3)})x
mm' ,nn' M'

i,j,k
(4.29)

The chronological contractions are now performed by using Wick’s theorem for both the 

electron and spin bracket. It has previously been stated that the electron brackets, the
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spin selection rules and the electronic spin-degeneracy impose a vanishing contribution 

for any “fermion loop” contraction of the form {c^{t)c{t)). Therefore, one needs only 

to consider the three Fock-like contributions to the electron bracket. These are all equal 

under exchange of contour indexes. Furthermore the spin bracket brings two Fock-like 

terms. Here we retain only one of them in order to simplify the discussion, but both have 

been included in the numerical simulations that we will show later. With this information 

in hand Eq. (4.29) can be written in terms of the known non-interacting electron and spin 

Green’s functions

= I / ^^2 / dT3 X

c c c

X [Go(r, ri)]^<^[Go(Ti, r2)];3/3[G'o(r2, r3)].^^[Go(r3, T')]cr'a' x 

^ [^o{ri,r2)]n,n[^oi'T'2, '^3)];,/[^0(73, ri)]„,,,„x
m,n,l

X {m\S^\n){n\S^\l){l\S'''\m)[a%py]0. Jtct' (4.30)

Dyson’s equation is now used to extract from Eq. (4.30) the third-order contribution to 

the interacting self energy, which takes the form

=2iJ^^ j dT2Go{Ti,T2)Go{T2.T2,)x 

c

X Dn{Ti,T2)Di{T2,T2)Dm{Tz,Ti)Y^{2ieijk){m\S'-\n){n\S^\l){l\S’^\m). (4.31)
m,n,l

Note that in order to simplify the notation the diagonal elements of the non-interacting 

spin self-energy have been written as Dm{T,T')- In the same Eq. (4.33) the electron spin 

degeneracy has also been taken into account ([Gojn = [^o]ii) and traced over the spin 

indices. Einally it is noted that Tr[(T 'cr-^cr''] = 2ieijk.

Equation (4.31) now needs to be expressed in terms of the real times so that a

close expression for the energy resolved lesser and greater interacting self-energies can be
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explicitly written. Such a derivation is based on the Schwinger formalism for evaluation 

of time-contour integrals [44, 102] and is illustrated in Appendix C. Finally the complete 

expression for the interacting self-energies is obtain by adding the second order term 

derived before, see Eq. (4.27), to give

E* (a)) = -24 ^ P,(l
m,n,/ i

+ 2i{pJsd) y^£qfc(m|g'|n)(n|g^|/)(/|g^|m)x
ijk

11" . IFIn
^{E + V ± [k-BTf

+ ln
^{E + V±nnif + {k^TY

!]}■

(4.32)

where the plus (minus) sign corresponds to < (>). If it is now assumed that the scattering 

region is much more strongly coupled to the substrate than to the STM tip 

.^tip-S) ^ ggg approximate the tip density of states around with a

constant, p = (r/27r)/[£:o + E^j. The weak coupling to the STM tip also ensures that the 

spin system remains always close to equilibrium [27], i.e. in its ground state, so that Po~l- 

A crucial feature of the third order contribution to the self-energies is the appearance 

of a zero-temperature logarithmic divergence at the excitation energies il-mn- This is 

the fingerprint of the Kondo effect and will be the key ingredient to describe zero-bias 

anomalies in the conductance spectrum as well as the details of the spectrum line-shape. 

Note that the formalism and derivation leading to Eq. (4.32) has been proposed first for 

describing the Kondo effect in quantum dots [20, 54].

4.5 Additional lineshape features

In the following section the NEGE formalism will be extended to spin scattering to include 

the additional features necessary to describe transport in the case that the electrodes 

are spin-polarized or when the current is intense. In particular, the spin interaction
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electronic self-energy will be generalized to the spin-polarized case and a second order 

perturbative expansion for the spin propagator will be constructed, so that the non­

equilibrium occupation of the various spin-states will be evaluated. Finally, examples will 

be shown of how the various levels of theory perform when applied to real problems.

4.5.1 Modifications to the interaction Hamiltonian and spin- 

polarized electron self-energy

The same Hamiltonian as introduced in Eqs. (4.13-4.15) is used in this section with the 

only difference being that the electron-spin interaction, Eq. (4.15), is now modified as 

follows

^c—sp ^sd ^ ^ [^A]aa'^ Aq') ’ “h £q ^ ^ C
Xa ■ (4.33)

X a,a' X a

Hc-sp now includes a second term, which represents the potential scattering elastic contri­

bution to the s-d interaction with strength co (this is sometimes called the magnetoresis­

tive elastic term and will be included now in the perturbation expansion). The inelastic 

ratio, y = £o/Jsd, is typically in the range of 1 to 2. This term was not included before 

as it becomes important only in the case of spin-polarized electrodes.

The starting point for generalizing the theory to spin-polarized electrodes is once again 

the perturbation expansion of the spin-resolved contour ordered interacting Green’s func­

tion, namely Eq. (4.17). Here only the tip is considered to be spin-polarized, with the 

spin-polarization being described by a single parameter, 77. This means that the tip- 

induced electronic broadening is different for the two spin species, namely [Ttip-sjtT = 

(1 + ??)rtip_s/2 and [Ftip-slxi = (1 - 7?)rtip-s/2, where Ftip-s is the non-polarized broad­

ening. As a result one has [Gf(£^)]|-f ^ [G^(£^)]|7. One then needs to carry out the same 

steps as in the previous expansion to the second order, with the only exception that the 

trace over the spin indexes is not taken. The following expression for the spin resolved
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components of the interacting self-energy is then obtained

-12 |2 +4 EiG'f ± n™)i„ [sn^xPnSi,^+f„{i - F„)is:
m,n

- 4 EPo*(£ ± n„„)luP„{l - P„)|S+J^ (4.34)

+P*.(P)ll? = - 4 E[4*(p ± (- 4.„xP„sj.„ P„(1 - PJIS^J")
m,n

~ 4 ElGf (E ± f!„JltTP»(l - P™)I4„I". (4-35)

The lesser/greater self-energies describe the process where an incoming/outgoing electron 

can excite/relax the spin system by Qmn with a probability dependent on the occupation 

of the spin levels Pm and Pn and on the spin selection rules 5'^^’“' (note: S’"'' = -I- iS^

and .9“ = — iS^). The first term in both Eqs. (4.34) and (4.35) preserves the electron

spins in the scattering event and it is associated to the magnetoresistive elastic term of 

the s-d Hamiltonian [see Eq. (4.33)]. The other contributions are inelastic in nature and 

depend on the spin orientation of the incoming/outgoing electron from/to the tip.

4.5.2 The spin propagator

So far it has been assumed that the spin system is always in its ground state before a 

scattering event, i.e. that there is no build up of spin population. This is justified by 

the fact that in typical STM experiments the current is usually small, the temperature is 

extremely low and the electrodes are not spin-polarized. The situation however changes 

for spin-polarized electrodes and/or large current density, since a spin-flip scattering event 

can be followed by a second one without the spin system having enough time to relax to its 

ground state. In this case a realistic transport description should include the calculation 

of the non-equilibrium spin population. The same argument goes for the inclusion of finite
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temperature in the problem.

Firstly, the following non-interacting case is considered in which there is no exchaige 

coupling between the current and the spins but the temperature is finite. It is t.ien 

assumed that the spin system is adiabatically coupled to a heat-bath kept at temperature 

T, which generates a weak broadening to the single spin states Sm of magnitude k^T. 

In this non-interacting case the spin Green’s function (propagator) of Eq. (4.22) simply 

becomes

[Df{E)Un = [no^(^)]r
{E - smy + {kBTy ’

(4 36)

where [n^(E')]^_„ = - P^)kBT and [14^(£■)]„,„ = with P^ being the

ground state population at zero-temperature.

If the interaction with the conducting electrons is now switched on the spin populadon 

becomes dependent on the bias as spins can be pumped from the spin-polarized electro ies. 

The task is then that of calculating the non-equilibrium spin population P„, as these are 

the relevant quantities entering the total electronic Green’s function. By combining the 

first and second order contributions to the spin self-energy one can derive (see Appendix 

D for details) a master equation for in terms of the total spin self-energy n^(P)

dPr,. 1
+ 00

dt
= \Y. / c?^{[n>(P)U[Po<(P)U-n<(p)U[Do>(P)], (4.37)

Alter some rearrangement this can be written in more compact form as

dPr,
dt hbar

Y, [a.(i - - p,(i - Pn)wJ + (p,; - p„)//?, (4.38)

where the bias dependent transition rate from an initial state I to a final state u is | 

calculated after evaluating the integral in Eq. (D.7) from the appendix and P = l/AgT. |
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Its final form is given by

Wr,, = -4 {pJsd?
r

+ ^/n)|x'S’rm(^[r77]TT[r»?']TT [^r;] [r77'] j j +
r},r)'

+ is;/([r,lttir,.l„ + |r,lj,[r,,iu) + 15+pr,i,j[r,,|n + |s„-,Hr,]„|r,,iu}, (4,39)

where C(x) = x/[l — and is the chemical potential in lead p = {tip, sub}. The

form of C,{x) is such that for Vj = ij' the resulting transition rates 1T„/ are bias independent 

and do not contribute to the current. They do however contribute to the spin relaxation 

time, i.e. to the time taken for the spin to relax back to its equilibrium state. This 

relaxation time gets shorter if the coupling between the sample and the leads increases. 

Also, the smaller the inelastic energy transition Qmn, the longer the spin will remain in 

its excited state before relaxing back to equilibrium. Again, one assumes that the onsite 

energy is large enough so that the density of states of the sample remains constant in the 

small energy window of interest, i.e. p = V/{eQ + T^).

Returning to Eq. (4.38), it is worth noting that one is interested only in steady state 

transport, so that the relevant quantities are the non-equilibrium steady-state spin popu­

lations at a given bias. Therefore the condition dPn{t)/dt = 0 is evoked and Eq. (4.38) is 

solved for the steady-state, by simply iterating from an initial trial population {Pi = P°). 

Finally the converged populations are used to evaluate the electronic spin-scattering self­

energy.

4.5.3 Real Part of the Electron Self Energy

In order to provide an explanation to the inherent bias-asymmetry that has been observed 

in most of the STM inelastic conductance spectra for magnetic atoms probed by a non­

magnetic STM tip [5, 9], the expression for the full retarded self-energy must be revisited. 

This is defined by the Hilbert transform (for simplicity only the non-spin polarized case
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will be considered)

+ 00

Si„t(£) = VV I +
27r E-E' (4.40)

--{E>,(E') + S<,(£;')}

By using the expressions derived in Section 4.3 for the 2"'^ order lesser and greater self­

energies an analytic expression is found for the real contribution to the retarded self-energy

Re[EUEY^^] = 2p4 \SU"Pn{l - Pm)x
i,m,n

[E + ilmn “ /^r;)^ + bT^

(4.41)

X i/|27reo + ^ r^-s In
l{E -nrr.n- +

)

Such a final expression is heavily dependent on the on-site energy Sq but it is also noted 

that the ratio rtip-s/Fsub-s has a profound influence on the degree of asymmetry present in 

the conductance spectrum. IfFtip-s/Psub-s = 1 then the asymmetry is removed. Provided 

that Ptip-s < Pgub-S) which is a condition normally met in STM-IETS experiments, an 

asymmetry will always be present. This is a result also found in references [20, 55]. The 

condition Ttip-s < Tgub-s makes the real part of the self-energy an odd function of the 

energy and the bias via its logarithmic dependence on the spin eigenvalues with opposite 

polarity for O-flmn and —Qjnn- Therefore one of the main physical causes of the bias 

asymmetry in the conductance spectra is the uneven electronic couplings between the 

scattering atoms and two non-interacting leads. As such this is a feature common to all 

lETS experiments, including those using non spin-polarized tips or scattering to phonon. 

In this work we solely focus on non spin-polarized tip and spin-excitations.
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4.6 Non-equilibrium Green’s function method for elec­

tron transport

Finally, before showing a sample of results obtained by applying the theory discussed 

so far, one needs to generalize the electron transport scheme introduced in Chapter 3 

to include the effect of the inelastic electron-spin interaction in the scattering region.

A two-probe device is considered, which is then divided into three distinct regions, two 

semi-infinite leads representing respectively the STM tip and the underlying substrate 

and a central scattering region (see Fig. 4.1). As mentioned before the leads act as charge 

reservoirs and they are characterized by their chemical potentials, respectively //tip and 

//sub- An external bias is introduced in the form of a relative shift (symmetric) of the two 

chemical potentials with respect to each other. The underlying assumption of the method 

is that under the external bias there is no rearrangement of the electronic structure of the 

leads, i.e. that the electron screening and the spin relaxation in the leads are efficient. 

This simplifies the problem to that of calculating the retarded (and the advanced) Green’s 

function of the scattering region [45, 46, 111] only

G^iu;) = lim[(a; - i6)I - - E"(n,’)]"' ■
(5—»0

(4.42)

Here is the electronic part of the Hamiltonian [Eq. (4.13)] and E“'(a;) is the retarded 

self-energy, which now incorporates the effects of the leads and of the inelastic interaction. 

In particular S(a;) writes as

(4.43)

where E[jp(a;) and Eg^^(ci;) are respectively the STM tip and substrate retarded self­

energies, while E]),^ is the scattering self-energy describing the electron-spin interaction. 

Formally the action of the electron-spin interaction is similar to that of a current-voltage
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electrode, so that it can be interpreted as a fictitious lead, which conserves the total 

current but breaks the electron and the spin phase-coherence. The leads’ self-energies are 

defined in Eq. (3.59), where now z=tip, sub. Finally, the retarded electron-spin scattering 

self-energy is found from the Hilbert transform of the lesser and greater counterparts [111]

2ir UJ' — UJ
(4.44)

where VV denotes the principal value and where the full expressions for Ec(j(ci;) and 

have been given in the previous sections. Note that at variance with a similar expression 

for the self-energy describing electron-phonon scattering, in Eq. (4.44) there is no Hartree- 

like contribution. This usually describes polaronic effects and it is known to cause the 

breakdown of the Born approximation for strong electron-phonon coupling [112], the 

absence of which makes this similar perturbative approach for spins quite advantageous.

In addition to the retarded self-energy also the lesser and greater ones and the Green’s 

function can be expressed as a sum over all three contributions

E^(a;) = sSfa-) + ES,(u.-) + ES,(c.-)

G^{uj) = G'’(ca)[E^(c.O]G'“(ca) ,

(4.45)

(4.46)

The external bias, introduced as a shift of the leads chemical potentials ^tip = + eV/2

and fisuh = eF + eE/2, enters in the leads self-energies via the replacement E LO-EtVj^. 

Finally, the current can be calculated at finite V at any of the leads ? as

I.= I (4.47)

while the bias-dependent conductance is found by numerical differentiation of Jj with 

respect to the bias.

In concluding this section it is informative to discuss the expected magnitude of the
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inelastic contribution to the conductance with respect to the elastic one. The ratio be­

tween two such contributions essentially corresponds to the ratio between the interacting 

and the non-interacting (Jgd = 0) Green’s functions. A simple calculation shows that 

the unperturbed Green’s function differs by a factor of Sint/r from the fully interacting 

one. In the previous section it was shown that to the second order self-energy goes as 

~ aJsd- Therefore, to the second order, the ratio between the elastic and inelastic 

contributions to the conductance turns out to be proportional to the dimensionless factor 

a(Jsd/r) ~ {Jsd/^oY- Analogously, the third order contribution will account for a factor 

<^^('Ad/r). With this at hand and by using the experimental parameters [see Table (5.3)], 

one can conclude that the contribution originating from the second order expansion will 

be significant, while that from the third order will be small.
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Examples of spin-flip scattering in 

STM experiments

All the theoretical machinery developed so far will now be put to work to describe a recent 

range of experiments, where an STM tip probes a magnetic nanostructure deposited on an 

insulating surface. Results will be presented by looking at increasingly complex situations, 

where increasingly higher levels of theory are necessary.

5.1 Density Functional Theory Calculations

First-principles total energy and force calculations were carried out using the projected 

augmented-wave (PAW) method [114] as implemented in the Vienna Ab-initio Simulation 

Package (VASP) for Fe, Mn and Co on a CuN substrate. VASP is a package for performing 

atomic relaxation using a plane wave basis set. Exchange and correlation effects have 

been taken into account by using the local spin-density approximation (LSDA). In order 

to recreate the correct parameters for strongly correlated materials, which exhibit highly 

localized d-shell electrons (as in this work) the LDA-|-t/ method has been employed. This 

accounts for the on-site Coulomb interaction within the localized d-shell electrons. In 

the following calculations, an energy cutoff of 400 eV is used in the plane-wave basis

77
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Figure 5.1; In-plaue (left panel) and ont-of-plane (right panel) structure diagram of the relaxed C’uN 
substrate with magnetic transition metal atom (red) sitting on top of a Cu atom (brown) and between 
two N atoms (blue).

construction and the energy convergence criteria is eV. Tlie crystal structure was 

optimized until the forces acting on atoms were less than 0.01 eV/A. For the Brillouin- 

zone integration, a 2 x 2 x 1 Monkhorst-Pack mesh and Gaussian-srnearing approach with 

<7=0.015 eV were used.

As mentioned, the system of interest consists of a 3d transition metal atom coupled 

to a Cu substrate with a sei)arating layer of N (i.e. through a CuN monolayer). The 

lattice constant for the Cu fee lattice was taken as the experimental value of 3.61A since 

the LSDA is known to over-bind. The lowermost layer of Cu atoms was fixed during 

the relaxation process to their bulk positions. Five layers in the CuN slab are enough 

to simulate the CuN surface and subsequent increasing of the number of layers does not 

signihcantly affect the atomic structure and both the electronic and magnetic properties. 

The relaxed structures for 3d transition metal atoms Fe, hln or Co on CuN is illustrated 

in Fig. 5.1. In particular a view from both the in-plane and the out-of-plane perspective 

is shown. It is notable how the particular 3d atom sits on top of a Cu atom, which is then 

j)ushed towards the bulk (note that the relaxation for the three different atoms of Fe, Co 

and Mn remains unchanged). In the following it will be shown how the various model 

parameters (substrate couplings, spin-exchange energies, magnetic anisotropies etc.) that 

were introduced in the last chapter are estimated from DFT calculations.
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Atom M (Exp. Fit) M (LSDA) M (LDA+f/)
Co 3.0 2.2 2.4
Fe 4.0 2.9 3.1
Mn 5.0 3.9 4.2

Table 5.1: Values of magnetic moment, M. in units of i^lb) projected over the single 3d atoms from 
experiment [5, 6] and from theory. Results are repeated calculated with both the LSDA and LDA+f/ for 
U = 5eV

5.1.1 Atomic magnetic moment and density of states

The magnetic moment projected over the localized 3d atom atop the CiiN substrate 

is calculated by using the PAW method for both the LSDA and the LDA+{/. The 

magnetization, M, was found in each case to be mostly concentrated on the localized 

atom with little to no contribution coming from the underlying Cu or X atoms. Table

5.1 shows the corresponding values of M for each atom. In the case of LDA+f/ a value 

of [I = 5eV was used. This value is in agreement with similar works for these materials 

[115]. It is clear that the LDA+f^ method recreates the experimental values of M more 

accurately than the LSDA. This is to be exj)ected since the system in question involves 

highly localized d-shell electrons which, as outlined in Chapter 2. is well described by the 

LDA+f/ method.

The density of states (DOS) resolved over the s and d orbitals of each of the three 

atoms is shown in Fig. 5.2, for the LDA+f/ method. It is clear that the magnetization 

originates from the d-shell electrons because the majority to minority carrier splitting is 

greatest in this case. It is also worth noting that the s-level contribution to the total 

DOS is weak compared to that of the d-electrons. This reaffirms the approximation made 

throughout this thesis that the density of states for current carrying electrons (i.e. s- 

electrons) about the Fermi level is small enough to ensure that the perturbation jrarameter 

pJsd as introduced in the last chapter remains below 1. As a final point, an approximate 

value for the exchange coupling parameter Jsd can be extracted from the spin-polarized 

splitting of the s-electron DOS, as this determines how the conduction electrons react to
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Fig'Ul'e 5.2: 'Fotal s (a) and d (b) projected DOS for the iiiagiietic atoni.s Co, F> and Mn. The majority 
DOS i.s shown in black while the minority is shown in red (and negative).

the magnetic moment of the localized d-shell electron.s. Although the splitting can also 

l)e mediated by other factors, it is assumed that the coupling between the d and s-shell 

electrons has the strongest impact on the splitting of the DOS. This is a rather crude 

approximation but nonetheless offers an insight in to the order of magnitude of J^d- This 

approximation has also been applied by Lucignano et al. [116]. The broadening of the 

main peaks in the s and d-density of states can also serve as a crude approximation to the 

coupling parameter between atom and substrate Tsub introduced in the previous cha])ter.
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Atom AEa{z - x) D (Theory) D (Exp.)
Co +0.79meV -|-0.35nieV +2.75nieV
Fe -4.95meV -1.24meV -1.55meV
Mn -2.60meV -().42meV -0.04meV

Fe-Cu -17.26nieV -4.32nieV -

Table 5.2: Values of the MAE in nieV for Co. Fe, Mn and a Fe-Cu dimer on CuN. The correspoiding 
values for the axial ani.sotropy parameter D is compared to the equivalent found from experiment 5. 6].

5.1.2 Magnetic anisotropy

The magnetic ani.sotropy energy (MAE) can be calculated by switching on the spin-trbit 

interaction in the calcnlation performed with VAST. This is performed with spin itoiuting 

along specific axes in order to acquire an approximation to the axial and transverse 

anisotroity terms D and E respectively. Since in general the value for E is quite smdl, it 

is not informative to approximate its value using DFT since it is outside the bounds cf the 

VASP accuracy (~ meV). To that end. the larger and more significant axial anisotropy 

I) will only be investigated.

From the previous cliapter, the energy sjrlitting due to the axial anisotropy was denned 

as AE = DSj. Therefore, to find an approximation to this value, one must calculate the 

total energy E^ with spin pointed along the x axis and the 2 axis. The difference between 

these two values AEa{z — x) gives the total axial MAE. The value for D is then found 

by normalizing AEa{z — x) to the value S'^ where S is the total (nominal) spin magnetic 

moment of the localised atom. Table 5.2 shows the c’omparison between the experimental 

and theoretical calculations for D for the single atoms of Co, Fe and Mn. Whereas the 

sign of D is recreated by the VASP calculation (which indicates hard (-) or easy (+) axis 

of anisotropy), the exact value is poorly recreated for Co and Mn but quite well for tie Fe 

atom. The reason for the disparity in the case of Co and Mn is unclear however a similar 

result was found in previous DFT calculations for the MAE [117].

In addition to the three single magnetic atoms, the MAE was also calculated for a 

dimer consisting of Cn and Fe in light of an experiment performed by Loth et al. [59],
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Figure 5.3: In-plane (left panel) and out-of-plane (right panel) views of the relaxed CuN substrate with 
an Fe (red) - Cu (brown) dimer sitting on top of a Cu substrate decorated by a single layer of N (blue)

whicli investigated the spin relaxation time of the dimer. Loth et al. showed experimen­

tally that the pi'esence of a Cu atom on the surface drastically increases the anisotropy 

of the Fe-Cu dimer and therefore results in a stable spin orientation with long relaxation 

time [59]. It was suggested that the Cu atom has a zero net polarization and therefore 

the Fe-Cu dimer acquires the spin of the single Fe atom on CuN, 5 = 2. An exact exper­

imental value for the axial and transverse anisotropy terms could not be found bec:ause 

the axis of anisotropy could not be determined. Therefore, a calculation of the MAE for 

the Fe-Cu dimer would shed some light on the situation.

Figure 5.3 shows the relaxed structure for the Fe-Cu dimer on the CuN substrate, again 

with 5 layers of Cu wdiere the bottom layers were fixed during the relaxation. Indeed, the 

total magnetization associated to the Cu atom in the dimer was found to be zero and that 

of Fe was 3.2p,B- This confirmed the experimental findings. From table 5.2 it was found 

that D = —4.32meV, i.e. that the MAE of the dimer is roughly 3.5 times larger than that 

of the single Fe atom. This also agrees with wdiat is found experimentally, in that the 

addition of the Cu atom drastically increases the MAE of the system. It w'ill be shown 

later in the chapter that the 3.5 fold increase (along with other assumptions) will recreate 

w'ell the experimental dependence of the spin-relaxation time on the magnetic field applied 

to the Fe-Cu dimer. Due to the observed increase in magnitude of the axial anisotropy, 

it was informative to investigate the corres])onding change in the transverse anisotropy E
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a8 its magnitude in this case might be signihcant enough that a VASP calculation could 

be trusted. E was estimated from the change in total energy when the spin is ])ointing 

along the x and y directions i.e. AEA{y — x). Indeed a value of if = 0.54meV was found 

which is well within the accuracy of a VASP calculation with spin-orbit correction. This 

also agrees with the direction of transverse anisotropy found for a single Fe atom [5].

5.2 Mn mono-atomic chains on a CuN surface: second- 

order theory

Having showui how to estimate the various model ijarameters from DFT, the discussion 

continues by hrstly looking at the SP-IETS spectrum of Mn mono-atomic chains of dif­

ferent lengths deposited on a CuN surface and probed, in a low current mode, by a 

non-magnetic STM tip [9]. The main features of the experiments can be captured by the 

second order i)ertnrbation theory for non-magnetic leads and equilibrium spin popula­

tions. In Table 5.3 all the parameters needed for the simulations are listed together with 

their assigned values. These have been either inferred from experiments (Exp) [9] or have 

been estimated from density functional theory (DFT) c:alcnlations performed in this work. 

The local Mn sj)in is set to be 5/2, as proposed in the original experimental w'orks [5, 9], 

confirmed by DFT calculations and in agreement with the DFT analysis of Ref. [34]. The 

spin-spin coupling parameter corresponds to an anti-ferromagnetic order between the 

neighbouring Mn spins, a feature verified in the experimental conductance spectra. The 

lead on-site energy is suitably set to zero and simply defines the reference potential. One 

also notes that the value for J^a is determined from theory (splitting in the s-electron 

DOS) to be of the order of 500 meV. The Fermi functions of the leads is evaluated at 

the small temperature of 0.6 K. This allows one to include minor thermal smearing of the 

electron gas in the leads and consequently of the conductance profile. Finally one notices 

that the scattering region is expected to be significantly more strongly coupled to the
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Quantity Symbol Value Origin
Atomic Spin 5 5

2 Exp.
Temperature T 0.6 K Exp.
d-d exchange Jdd -1-6.2 meV Exp.
s-d exchange Jsd +500 meV DFT
Fermi Energy Ef 0 rneV DFT

Lead hopping integral 7o 10000 meV DFT
Channel (s-state) on-site energy 1000 meV DFT

Substrate-channel hopping 7sub-S 500 meV DFT
Axial anisotropy D -0.037 meV Exp.

Transverse anisotropy E 0.007 ineV Exp.

Table 5.3: Empirical parameters used in the numerical simulations presented in this work and their 
assigned numerical values and origin. “Channel’' here means the scattering region.

substrate than to the tip.

Figure 5.4(a) siiows the calculated conductance spectra normalized against the elastic 

contribution, Cei, [this is the conductance calculated for Sint(F') = 0] for A'^-atoin long 

Mn chains {N < 4) in no external magnetic field. This is in favourable comitarison 

with the experimental hndings as shown in Fig. 5.4(b). The most obvious feature is 

the presence of a number of conductance steps characteristic of a specific chain, which 

appe-“ar at well-defined biases. These correspond to critical voltages where a magnetic 

excitation becomes possible. Such an excitation opens an additional conducting channel 

(inelastic) and the conductance increases. Note that in general one does not necessarily 

expect the conductance to increase at the excitation bias threshold. In fact, in the case 

of inelastic scattering to phonons both conductance enhancements and suppressions have 

been observed, with the latter originating from the suppression of the elastic channel 

following the opening of the inelastic one. In general, however, SP-IETS experiments 

show a conductance increase.

From the figure one observes that the relative conductance increase due to the inelastic 

contribution is of the order of 1/4 (for N = 2, where the amplitudes of the spin matrix 

elements of the self-energy are approximately unity). For the given choice of parameters 

the scaling factor (Jsd/^o)^ is 1/4, so that precisely a relative conductance step of 1/4
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(a) (b)

Figure 5.4: I’heoretical (a) and experimental (b) conductance spectra for Mn chains of different lengths 
A'. 'I’he various spectra, except for N = 1, are offset for clarity. The tip is placed above the second atom 
of the chain for chains with N > 2 and also over the first atom in the case of N = 3, One notic-'S the 
strong dependence of the spectra on the chain parity.

is expected. Sucli good agreement constitutes a strict validity test for the theory and 

demonstrates that the perturbative expansion is the right tool to tackle these prob.ems. 

In the case of N = 3 and N = 4 the spectrum is calculated for the STM tip jrlaced above 

the second atom in the chain, but in Fig. 5.4(a), for N = 3, results obtained by placing 

the ti}) above the first atom are also shown. Notably the spectra in the two cases are 

relatively different as the size of the c;ondnctance stejj at around 17 meV^ seems to depend 

on the specihc atomic site probed by the tij). A similar occurrence is seen for N = 4.

When the calculated conductance profiles are compared with the experimental oi.es of 

Fig. 5.4(b) a good qualitative agreement emerges. In particular one notices the intriguing 

dependence of the conductance profile over the parity of the chains, with chains comphsing 

an odd nnmber of atoms (odd chains) exhibiting a conductance dip at around V = 0, 

which is absent for even chains. It is worth noting, however, that the spectra for A = 3 

and N = 4 contrast slightly with the experimental spectra, which are asymmetric with 

respect to the bias and also exhibit some slope at the conductance steps. It will be 

argued later in the chajtter that such minor deviations are simply due to fine featuies in 

the density of states. In order to recreate the conductance profile of the trimer (3Mn), an
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additional ferromagnetic second nearest-neighbour interaction between the local spins at 

the edge of the chain must be included in the model [23]. The magnitude of this additional 

exchange parameter is approximately half of that of Jjd- The inclusion of such a second 

nearest-neighbour coupling constant changes the position of the conductance step from a 

second excited state at 27 mV to a first excited state at 16 mV. This correction is also 

included in the calculations for N = 4, again giving good agreement with experiments.

Going into more detail of the conductance spectra, the case of odd chains and their 

zero-bias conductance anomaly is first discussed. The ground state of each odd chain 

has a net total spin S^ot = 5/2. This is affected by the transverse and axial anisotropy, 

which lift the ground state degeneracy and allow a transition between the ground state 

and the first spin-flip excited state to occur. The excitation of such a transition results 

in a conductance step at a voltage corresponding to the transition energy. Since the 

anisotropy energies are small (see Table 5.3), the excitation energy is small as well and 

the feature in the conductance profile appears near V''=0. In contrast the even chains do 

not show any zero-bias excitation, since the ground state is a singlet and does not carry a 

magnetic moment. This is a direct jrroof that the magnetic interaction between Mn ions 

is anti-ferromagnetic. Should this have been ferromagnetic, even chains would also have 

shown zero-bias anomalies.

As mentioned above the conductance steps encountered at around V'"=0 correspond 

to spin-flip events, i.e. to electron scattering processes that produce the transition \rn = 

5/2) ^ jm = 3/2) (rn is the magnetic quantum number) but that also preserve the total 

spin 5tot = 5/2. The first net spin changing transition occurs for V = 2 and corresponds 

to the large conductance step found at V = Jja/e = 6.2 mV. This is investigated in more 

detail in Fig. 5.5, where the dimer’s spectrum calculated when a magnetic field is applied 

along the ^-direction is also included. The effect of the magnetic field is that of splitting 

the single excitation line into three distinct conductance steps. In this case in fact the 

anti-ferromagnetic dimer has a singlet (5tot=0) ground state and a triplet (5tot=l) first
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(a) (b)

figure 5.5: Theoretical (a) and experimental (b) conductance spectra for the N=2 chains in a finite 
external magnetic field. For B / 0 we note a splitting of the conductance steps, corresponding to the 
Zeeman split of the final trijjlet excited state. I’his is observed in the experiments of reference [9], which 
are reported in panel (b).

excited state. Therefore, an excitation from the ground state to the first excited state ;
i

changes the net sjtin of the dimer. Wiien a magnetic field is applied the degeneracy of j 

the tri{)let excited state is lifted and excitations having the three Zeeman-split levels as I 
final states are possible. This ju'oduces the three-fold splitting of the conductance steps :

as seen to agree well with experiment in Fig. 5.5. I
i

Figure 5.6 shows the conductance spectrum for the trimer {N—3). This chain exhibits ^
i

similar trends to those found for the dimer as a magnetic field is applied, i.e. there is a j
i

Zeeman sj)lit of the zero-field conductance steps. From the hgure one may notice that for j 

both the theoretical (a) and experimental (b) data there is a shift of the principle step i 

tc) lower voltages as the magnetic field is increased. It is recalled here that in order to 

rtx'reate the conductance profile of the trimer, an additional ferromagnetic second-nearest- 

neighbour interaction must be included in the model [23].
I

In all the spectra investigated the most striking agreement with the experiments con- 

c(>riis the correct prediction of the SF-IETS excitation voltages. In particular not all the ;
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(a) (b)

Figure 5.6: 'rheoretical (a) and experimental (b) conductance spectra for the N = 3 triiner at different 
magnetic field. We notice the shift of the first conductance step transition to lower voltages a.s the 
magnetic field increases. This is in good agreement with S'l’M experiments of reference [9], which are 
reproduced here in panel (b).

possible si)in excitations feature in the (l//dV' — V curve as a result of the spin-selection 

rules. A careful analysis of the inelastic i)rocess, as ontlined in the first section, reveals 

why some excitations occur and why some other do not. In particular it is noted that the 

proper selection rules for the transitions are governed by the prefactor in the self-energy, 

namely |(m|S'*|n)|^ [Eq. (4.27)]. This effectively selects which excitations are more proba­

ble to occur. For example, the full energy spectrum of the trimer has 6^ = 216 eigenvalues 

but only a small portion of these eigenvalues will contribute significantly to the scattering 

self-energy. Consequently only a few transitions will have influence on the conductance 

spectrum. This for instance explains why the first conductance step of the dimer is con­

siderably larger than that of other chains of different lengths. In fact our calculations 

show that a transition from the singlet ground state (5=0) to any of the triplet excited 

states (5=1; m= -1, 0, -1-1) has equal probability. This results in a conductance step 

which is approximately three times larger than any single spin-flip event that occurs in 

an odd chain.
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5.3 Kondo effect and improved lineshape: third or­

der calculations

h igure 5.7: Normalized conductance spectrum for Co (S = 3/2) on CuN as a = pJ^d is incieased. 
Note the emergence of a Kondo resonance at zero-bias. i.e. at the Fermi level. The curves are arbitrarily 
displaced for clarity.

Ill order to illustrate the effects of continuing the perturbation exitansion to third order the 1 

conductance spectra of Co and Fe atoms deposited on the CuN surface will be discussed. 

This section therefore aims at rationalizing the experiments described in reference [10], 

where both Co and Fe ions were investigated by low temperature STM spectrosc^opy. 

Intriguingly in the experiment it is possible to jilace the two ions at different distmces 

from each other. Thus one can investigate how the spectrum of the Kondo active Co is 

affected by the presence of Fe and, viceversa, as the sj^ectrum of Fe is affected by the 

presence of Co. -

Figures 5.7 and 5.8 show' the calculated conductance spectra respectively for single Co : 

and single Fe atoms on CuN as the dimensionless parameter a = pj^d is varied (note that |
j

the spectra are normalized relative to the elastic conductance, Ggi). The a parameter j 

is the coupling constant of the perturbation expansion as discussed extensively in the ,
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Figure 5.8: Normalized conductance spectrum for Fe (S = 2) on C-’uN as a = pJsd is increased. Note 
tlie transition from a constant conductance at tlie inelastic steps to a conductance tliat logaritlimically 
decays after tlie excitation. Tlie curves are arbitrarily displaced for clarity.

previous chapter. This is varied iiy altering the coupling of the adatom to the substrate, 

i.e. hy changing which translates in modifying the value of tlie adatom density of 

states at the Fermi level.

This time the parameters of the simulation are set as follow's. Tlie level broadening 

due to the coupling to the substrate (the one coupled to the tip is neglected) is set at 

Tsiib-s = 0.1 eV for both Co and Fe. In order to ensure consistency in the approximations 

[Fsub-s = (7sub-s)^/lf ] 7sub-s = 1-5 eV is set with the substrate bandwidth being 11 = 

20 eV. One then chooses eo = 1 eV to fulfill the criterion Sq S> Sp = 0. The magnitude of 

Jsd for both Fe and Co is held constant at 0.5 eV (the same value used for the Mn chains). 

Finally the axial and transverse anisotropy parameters are taken from the experimental 

fits of Refs. [7, 9] and are Dco = 2.75 meV, Eqo = 0 rneV, = —1.53 meV and 

Epg = 0.31 meV, while the adsorbed atoms spins are Sco = 3/2 and Spe = 2.

The discussion begins with the case of Co. The full diagonalization of the Hgp {Sco — 

3/2) Hamiltonian gives a set of four (25co +1) eigenvalues and eigenvectors. In jiarticular 

the presence of a hard-axis anisotropy results in the following energy manifold =
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{0.69,0.69,6.19,6.19} meV, i.e. in a doubly degenerate ground state. It is then bund \
I
I

that transitions between the degenerate ground states become allowed only on inclision 

of the third order term in Eq. (4.32). This is because of the selection rules imposed 

by the theory through the matrix elements (ml^'ln). Such a transition appears ia the 

spectrum of Fig. 5.7 in the form of a zero-bias Kondo peak, whose intensity increaees as 

the value of a gets larger. The same feature is completely absent if one truncates the 

perturbation expansion to the second order. Note that the third order contribution to 

the interacting self-energy scales as while the second order one goes as a. Hei.ce it 

follows that an increase of the adatom density of states (an increase of a) promotes the 

third order contribution to tlie self-energy. As such the enhancement of the Kondo peak 

intensity is directly related to the relative growth of the logarithmic divergence of in 

Eep (4.32). The same logarithmic divergence produces a second distinctive feature ia the 

d//dl' traces, namely the rise of the conductance following an inelastic excitation. This 

can be seen, for instance, in the conduction step at 6 nieV. Such a stej) originates from 

the transition from the ground state to the first excited state. One may then note that 

first the conductance rises sharjily at the voltage corresponding to the excitation energy 

and then slowly decays. Although the agreement between the results and experiiaents 

will be returned to, one notes here that such conductance traces are cpialitatively siaiilar 

to those found in the STM experiments of Refs. [7, 10], i.e. both the zero-bias Kondo 

peak and the increase in conductance at the inelastic transition voltages are observed.

The results for Fe are presented next in Fig. 5.8. This time /igp {Sp^ = 2) has the 

five eigenvalues namely = {—6.30, —6.12, —2.46, —0.60,0.18} nieV, so that the graund 

state is non-degenerate. At zero magnetic field all the transitions allowed by the third 

order expansion are resolved in the conductance traces. In this case there is no zero- 

bias Kondo peak as the ground state is non-degenerate. Near to the zero-bias region a 

conductance dip is observed, which corresponds to an inelastic transition between the 

first two lower lying spin states. Furthermore, as in the case of Co, the presence of a
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Figure 5.9: Normalised conductance spectrum for a Co adatom on CuN when it is exchange coupled 
to Fe as Jjd is increased {Jdd = 0 means that there is no magnetic coupling between Co and Fe). Note 
how the Co Kondo peak splits as the Fe atom acts as an effective magnetic field. The insert zooms in the 
zero-bias region. The calculated spectra are in black, while the corresponding experimental data from 
Ref. [10] are in red.

logaiithniic coiKluctaiice is fouiicl as an increase at the inelastic steps in the dl jdV traces 

(for instance note the well itronounced one at ~ 4 mV). Again, since such a feature is 

directly related to the third order contribution to the interacting self-energy, it gets more 

pronounced as a is increased. The same feature is observed experimentally in all non- 

Kondo active adatoms, demonstrating the good level of description provided by the third 

order expansion. Note that such a behaviour was previously explained by invoking a non- 

eciuilibrium population of the Fe spin states [27]. This explanation however conflicts with 

the fact that the same effect is seen also for low currents [9], namely when the adatom spin 

state resides close to the equilibrium. Therefore, the experimental data is re-interpreted 

as the manifestation of third order Kondo corrections to the spin-flip inelastic tunneling 

spectra. This will be discussed further at the end of this chapter.

As a final test for the third order self-energy an exchanged coupled Co-Fe dimer is 

considered, a situation already investigated exj)erimentally in Ref. [10]. For small, but 

finite, values of Jdd one notices a change in the d//dV traces of both Co and Fe, which
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Figure 5.10: Normalised conductance spectrum for a Fe adatom on CuN when it is excliange coupled j 
t:) Co as Jdd is increased (.7dd = 0 means tliat tliere is no magnetic coupling between C’o and Fe). Note 
that the intensity of the conductance step at 0.18 mV decreases with increased exchange coupling. The 
(alculated spectra are in black, while the corresponding experimental data from Ref. [10] are in red.

becomes more pronounced as J^d increases. Figures 5.9 and 5.10 show tlie conductance 

spectra calculated in tlie two situations where the tip is either jtositioued over Co (Fig. 5.9) 

cr Fe (Fig. 5.10). Again a value for a = pj^d = 0.1 is used. In the figures the experimental 

cata [10] is superimposed for comparison.

In this situation one notices a change in the d//dV traces of both Co and Fe as they 

are brought close together, i.e. as Jdd increases. For Fe both the conductance steps around 

zero-bias and that at 0.18 mV decrease in intensity with increasing Jdd- In contrast, Fe 

i'self acts as an effective magnetic held that splits the zero-bias Kondo resonance present 

in the spectrum of Co. Both these effects are observed in the exj:)eriments of Ref. [10]. 

Notably Fe does not simply act as a source of magnetic held on Co, as seen in the inset 

cf Fig. 5.9 for Jdd = 0.1 nieV. In the hgure one can clearly observe an additional Kondo 

l eak emerging at zero-bias in between the two principally split peaks. This is a unique 

feature of the exchange coupling between Co and Fe. In fact the exchange coupled Fe-Co 

cimer possesses (25co +1) x (25'Fe + 1) = 20 eigenvalues and additional allowed transitions
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appear at each of the atomic sites. For instance for large J^d the zero-bias region of the Co 

spectrum becomes completely dominated by a conductance dip. This originates from the 

opening of a spin transition between the ground state at -5.686 meV and the first excited 

state at -5.379 meV. Such a transition, absent for the isolated Co adatom, has a spectral 

intensity much larger than that of the Kondo resonance, which therefore disappears from 

the spectrum.

A comparison will now be made between the theoretical data and the corresponding 

experimental spectra [10]. Notably, whereas the calculated spectrum of Fe is in excellent 

quantitative agreement with the experimental one, the same cannot be said for that of 

Co, which only reproduces the experimental features at a qualitative level. In particular 

the experimental Kondo resonance is much more pronounced tham the calculated one 

(note that the parameter a has been set in order to reproduce the experimental step 

in the spectrum at ~ 4 mV). At this point one can only speculate on the reasons for 

such a disagreement. Firstly, the s-d model is valid only in the limit where the tunneling 

matrix element t is small with respect to the adatom charging energy U. This is the 

case in which a Hubbard-like model can be mapped onto the s-d one [118]. Such a 

limit might not be satisfied for Co on CnN. In the event of a large t/U ratio a more 

rigorous 2-body (Hubbard-like) api)roach needs to be employed to describe electrons in 

the localized d—states [119, 120], in the conducting .s—states [35] and in situations with 

anisotropic exchange coupling [121]- It must be pointed out that in the works

just mentioned a more accurate reproduction of the Kondo peak was revealed by using the 

non-pertvirbative computational method called numerical renormalization group (NRG).



95 Clupter 5

5.4 Additional lineshape features: Spin-pumping

5.4.1 Spin relcLxation time

Iti this section the various conductance lineshape features that occur due to both non- 

equilibrium spin pumping and a spin polarized tip will be investigated. Firstly, however, 

the effect of the coupling environment on the localized spin will be analyzed. Tais will 

allow a calculation of an important parameter called the spin relaxation time, T . This 

quantity defines the time that it takes for the localized s])in to relax back to its groui.d state 

after being excited. In particular the magnetic field de]rendence of T\ can be favourably 

compared with the findings of Loth et al. [59], who. in a ground breaking i)aper. calculated 

Ti explicitly for an Fe-Cu dimer, which exhibits a large magnetic anisotropy on a CuN 

substrate. This property results in a corresi)ondingly large T\ and spin memory.

In order to find an expression for Tj, Eq. (4.43) for the bias dependent transiti)n rate 

from an initial state I to a hnal state n is recalled. In particular the special ncii-bias- 

deiJendent case is investigated where the effect of the tip is neglected and the localized 

spin is only coupled to the substrate (sub). The transition rates are then

Til = —4 (Md)^ (5.1)

1 -1
(5.2)

where C(x) = x/{l — This represents the excitation and relaxation of the

localized spin due to an exchange interaction with electrons that are coming and going 

from the substrate. The inverse of this quantity gives a characteristic decay time. As a 

result, the time it takes for an excited spin system to relax back to the ground state n = 1 

is

The values for both the excitation energies and the spin matrix elements are
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evaluated by diagonalizing the spin Hamiltonian originally introduced in Eq. (4.14) and 

evalnating the resultant eigenenergies and eigenvectors. This Hamiltonian takes the fol­

lowing form

//,p = ^mbB.S + DiSn'^ + E[{Sn^ - (5^)^], (5.3)

where g is the Lande (^-factor, gs is Bohr magneton and H is a magnetic field that 

can be applied in an arbitrary direction. The axial and transverse anisotropy terms are 

measured by D and E respectively.

The formalism for calculating T] will be tested against one of the few experiments 

(Loth et al. [14]) that achieved an accurate estimate of the spin relaxation time of a 

single localized spin. In this experiment a single Fe atom is jjlaced on a CuN substrate 

(see section 5.1). An additional Cu atom is then placed in close proximity to the single 

Fe atom to form an FeCu dimer. It w^as shown from the DFT calculations described in 

section 5.1 that the Cu atom itself carries effectively no magnetization and therefore the 

spin polarization of the dimer is dominated by the Fe atom which generally carries a spin 

(luantum number 5 = 2. A magnetic field of 7T is then applied along the easy axis of 

magnetization (the 2 axis). This breaks the spin degeneracy of the spin system. However 

it is found that the dimer does not reproduce the same conductance spectra of a single Fe 

atom in a magnetic field of 7T (see Ref. [5]). In the single atom case the first conductance 

step is found at approximately V — 6meV. For the case of the FeCu dimer however, the 

position of this conductance step is greatly increased to roughly V = 16.7meV. The 

proposed reason for this shift is that the proximity of Cu causes a strong increase in both 

the axial and transverse anisotropy energies, a result verified by the DFT calculations.

The advantage of such a high magnetic anisotropy lies in the resulting long spin 

relaxation time Tj when the FeCu dimer magnetic moment is excited out of its ground 

state. The relaxation mechanism for a spin 5 = 2 system with large axial and transverse 

magnetic anisotropy subject to a magnetic field of 7T can be represented by the schematic
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-2)
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Figure 5.11: Spin relaxation mechanism for a spin S = 2 system. When excited above Khresh the spin 
rapidly decays to the low lying states of | + 2) and | — 2). lire spin relaxation time '1\ is then defined as 
the time taken for the decay from | — 2) to | + 2).

ill Fig. 5.11. Under such circunistaiices the spin eigenvalues nig can be considered an 

approximately good quantum numbers so that there is very little mixing between the 

spin states. As such, the ground state spin is approximately | + 2) with first excited state 

being close in energy to the ground state with an eigenvector of approximately | — 2). 

However, since there is a negligible si)in matrix element between these two states,

a transition is highly unlikely and there exists an energy barrier between the states. It 

can be seen that the hrst strong excitation occurs between the gronnd state and the 2nd 

excited state | + 1). In the experiment by Loth et al. the spin system can be excited by 

a])]dying a pump pulse that matches the difference in energy between the | + 1) and the 

1 + 2) states. This is called the threshold voltage V^thresh- At this point the spin is excited 

and rapidly decays back to the two low’-lying energy states of | + 2) and | — 2) at a speed, 

which is undetectable with current measurement devices. The quantity Ti is then defined 

as the time that is needed for the spin to relax from | — 2) and | + 2) which occurs at a 

much slower rate (measured times are Ti ~ 200ns) and it is measured using a separate 

and weaker probe pulse.

An intriguing result is that the spin relaxation time of the Fe-Cu dimer initially in­

creases as a function of the applied magnetic field but then at a certain point, 6T, 

begins to decrease in value. In order to reproduce the result of this experiment, param-
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Figure 5.12: (Conduction spectrum for the FeCu dimer. The first conductance step occurs at roughly 
16nieV. I'liis large value is due to the increased axial and transverse magnetic anisotropy terms and 
represents the threshold voltage Vlhresh af which the spin system becomes excited.

eters must be chosen that fit both the conductance spectrum for the dimer and the Tj 

d('])pndence on the magnetic field. The calculated conductance spectrum can be seen in 

Fig. 5.12. The values of the anisotropy used to recreate this spectrum were inferred from 

the corresponding values for the single Fe atom found empirically in Ref. [5], where the 

axial anisotropy was found to be Zlpe = — 1.55nieV and the transverse Epe = O.SlmeV. 

DFT results indicated that D ~ SEpp. The assumption is then made that E ~ 2Epe since 

DFT results for this parameter could not be trusted. Figure 5.13(a) shows the magnetic 

held dependence B of the eigenenergies of and 5.13(b) shows the calculated Ti de- 

])endence on B, which closely matches what was found by Loth et al. This simulation is 

based on the assumption that the applied magnetic held is tilted slightly with respect to 

the easy axis of anisotropy by roughly 5°. It is mentioned in Ref. [14] that the easy axis 

of anisotropy coud not be determined experimentally but that such a deviation could take 

place. This effect is also key in interpreting the decrease of Tj when B > 6T. The slight 

angular deviation results in an increased spin mixing between the two low lying states of 

a}:)proximately | + 2) and | — 2) [even though the energy seiraration between both states
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(a)

Magnetic Field (T)

Figure 5.13; (a) Dependence of the eigenenergies of H^p on the magnetic field B and (b) dependence 
of the spin relaxation time '1\ on B. In the latter it is seen that 1\ begins to decrease for B > 6'!’. This 
is due to an increased spin mixing between the two low lying spin states resulting from a non zero angle 
between the applied magnetic field and the easy axis of anisotropy.

is seen to increase linearly from Fig. 5.13(a)], which in turn increases the tnimeling rate 

between each one. This nltimately results in quicker relaxation time between | - 2) to 

1 + 2). One point of note however is that both the conductance and the Ti dependence 

on B were fitted using a large Lande g-factor of roughly g = 4, which is drastically in­

creased on the usual value of g = 2. This was also suggested in private coiniiiunications 

with Sebastian Loth and the origin of wdiich still remains unknown. DFT results will be 

performed in future works to try and ascertain the reason for the increased value of g.

5.4.2 Intense current density

Having seen the basic mechanism for spin relaxation due to the interaction between the 

spins and the conduction electrons from the underlying substrate, it is a natural step to 

study the non-equilibrium effects originating when a bias is applied between the two leads. 

The effects originating from driving the spin system out of equilibrium with an electronic 

current will now be investigated. This attempts at explaining the experiments reported in
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Figure 5.14: Excitation spectrum for an antiferromagnetically exchanged coupled Mn dimer deposited 
on C’uN. The ground state is a 5 = 0 spin singlet. The first three excited state multiplets have respectively 
spin S = 1, S = 2 and S = 3. In the figure the energy separation between the various spin multiplets is 
indicated in units of the exchange parameter Jdd-

Ref. [6, 11], in which a STM tip (nou-inagnetic) is positioned above a Mn dimer deposited 

onto a CuN substrate. The conductance spectra are measured for different tip to sample 

distances. Varying the STM tip height is equivalent to changing both the ctirrent density 

and the electronic coupling between the tip and the sample. Non-ecjuilibrinm effects then 

appear as variations of the conductance j^rofiles as a function of the STM tip height.

The parameters needed by the model can be extracted from table 5.3. It is also recalled 

that the ground state of the dimer is a singlet (total s]:)in S = 0). The first excited state 

is a triplet wdth total spin 5=1 and the energy splitting between the ground state and 

such first excited state is exactly J^d- The next excited level is the (luintni)let with total 

spin 5 = 2 and it is separated from the first excited state by 2Jdd- This pattern continues 

throughout the spin manifold (see figure 5.14). The axial and transverse anisotropies cause 

the lifting of the spin multiplets degeneracy. In this case Ttip-s remains an adjustable 

parameter with the chosen values ranging from 0.125 meV to 200 meV.

Figure 5.15 shows the conductance spectra (normalized by Gei, the conductance cal­

culated when Jsd = 0) obtained by simi)ly taking the numerical derivative of the current 

with respect to the bias. Three different tip to sample distance are considered, corre­

sponding respectively to weak (Ftip.s = 0.125 meV), intermediate (Ftip-s = 12.5 meV) 

and strong (Ftip-s = 200 meV) electronic coupling. The evolution of the conductance
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Figure 5.15: Normalized conductance spectra for the Mn dimer calculated at different tip to sample 
distance, i.e. for different Ttip-s coupling strengths. We notice that the stronger is the coupling, the more 
the system is driven out of equilibrium, 'this results in the appearance of additional spin transitions, 
which manifest themselves as steps or drops of the conductance as a function of bias.

liiieshape as a function of Ftip-s is a direct consequence of the sjrin system being driven 

out of equilibrium. For Ftip-s = 0.125 meV the STM tip is far enough from the sam­

ple to ensure that the spin system is always in its ground state between two subsequent 

electron tunneling events. Therefore the only transition detected in the ^(V) profile is 

that between the S' = 0 ground state and the first excited state with S = 1. This has 

an excitation energy equal to and it does manifest itself as a conductance step at a 

voltage V = Jdd/e, with e being the electron charge.

As the tip is brought closer to the sample (Ttip-s = 12.5 meV) the hrst excited triplet 

level (S' = 1) starts to populate. Now an incoming electron with sufficiently large energy 

(2Jdd) can induce a second transition from the first to the second excited state. Note 

that a spin transition from the ground state to the S = 2 state is highly unlikely with a 

single electron tunneling process. This would be completely suppressed in the case of no 

magnetic anisotropy and it is expected to have a negligible intensity for finite, but small, 

values. Note that such a transition will become more probable if the spin system does
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F(mV)

Figure 5.16: Non-equilibrium population of the Mu dimer singlet (5 = 0), triplet (5=1) and quintuplet 
(5 = 2) states. I’he inset shows a magnified view of the population of the 5 = 2 state as it start to get 
populated at approximately 12 mV.

not liave enough time between tunneling events to relax back to the ground state. For 

this case the transition appears as an increase of the conductance at the critical voltage 

V = 2,/dd/e w'ith a subsequent decay. The same spectroscopic feature is further enhanced 

at an even larger current density (Ftip-s = 200 nieV), when a third conductance ste]) 

apjmars at 3Jdd/e. This is associated to a transition from the S = 2 to the S = 3 spin 

state and it becomes possible only if the occupation of the 5 = 2 level is not zero, i.c. if 

the system is driven to this highly excited state. It is clear that by appropriately fixing 

the two adjustable parameters eo and Ftip-s one can achieve almost perfect quantitative 

agreement with the experimental data (see Fig. 2 of Ref. [6]).

The evolution of the population of the various s])in states (up to 5 = 2) as a function 

of bias is presented in Fig. 5.16. This is calculated in the case of strong tip to sample 

electronic coupling Ftip_s = 200 meV. In the figure one can note the strong spin-pumping 

from the ground state into both the first and the second excited state. The excitation to 

the third excited state occurs at approximately 18 meV but it is too weak to be observed 

on this scale.
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Figure 5.17: Normalized conductance spectra for a single Mn atom explored by a non spin-polarized 
S'l'M tijo at different tip to sample electronic couplings Ftip-s- Here a magnetic field of 3 T is applied along 
the z-axis. Comparison is made between calculations where the perturbation expansion is terninated 
either at the second or the third order.

The reason for the eiihancenient of the conductance .stej) and the subsequent decay ;
i

can be attrilnited to the bias dependence of the spin population, as described in Fig. 5.16.

It is noted that there is a large dip in the ground state population at the point when 

the first transition occurs. Since eventually it is desirable to calculate the conductance, 

the derivative of the population with respect to the bias must Ije evaluatc^d, wh.ch, to 

a good approximation, will have the appearance of a Lorentzian peak. This ultimately ; 

contributes to the conductance at the inelastic step as a peak and a subsecpient dp (see ; 

Fig. 5.15). Such an effect will only appear when the system is driven out of equilibrium ! 

by increasing the tip-sample coupling Fpp-s. However, a second effect can also geierate : 

a rather similar lineshape, namely the inclusion in the perturbative expansion ol third 

order contributions, presenting a Kondo-like logarithmic divergence, in the self-energy.

In order to make this point more clear and to qualitatively distinguish between these

two possible sources of lineshape, the case of a single Mn atoms probed by a non spin- .

polarized tip wall be investigated, whose conductance spectrum is presented in Fig. 5.17.
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Figure 5.18; .Non-equilibrium population of the various spin states of Mn on CuN as a function of bias 
for a non spin-polarized tip

Clearly it is observed that increasing Ftip-g has minimal effect on the conductance line- 

shape. Even when Ftip-s = 200 meV and the population is driven far from equilibrium, 

as is seen in Fig. 5.18, no significant conductance overshoot is detected at the bias step. 

This effect has been explored by Novaes et al. in Ref. [31], where it is claimed that 

the conductance overshoot brought about by inelastic transitions is balanced by elastic 

transitions that do not alter the state of the local si)in, resulting in a flat spectrum. This 

is in conflict with what is found in experiments, where a visible conductance peak and 

subsequent decay is observed at the bias step [6]. Therefore it is claimed that third order 

contributions to the perturbation expansion, where the logarithmic peak in this case is 

dependent on the parameter pJ^A and therefore exists even at equilibrium, are the main 

contributors to the observed non-linear conductance. This can be easily seen from the 

3rd order contribution to Fig. 5.17.
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5.4.3 Spin-Polarized current

A second way to induce spin-pumping, which does not necessarily require the use of

ntense current densities, is that of using spin-polarized electrodes. In this case the current

injected into the spin-system carries a spin-imbalance, i.e. there are more electrons of a 

particular spin-species. This means that spin-flip transitions are likely to change the 

local spin always in the same direction (when the current is non-spin-polarized there is 

an equal probability for spin-increasing and spin-decreasing transitions). If only one of 

Tie two electrodes is spin-jiolarized (for instance the tip) an asymmetry in the d//dC(y) 

curve is exjiected, since the sjiin-polarization of the current, and consequently the non- 

'■(juilibrium spin-population, depends on the bias polarity.

Here an attempt is made at reproducing a set of experiments from Loth et al. [6], in 

which a STM is made magnetic by placing a single Mn atom at its apex. Such a tip is 

Tien used to probe a single Mn atom deposited on a CuN substrate in the presence of a 

strong magnetic held (3 T and 7 T). Due to the w'eak anisotropy of Mn on CuN (the same 

parameters as those of table 5.3 are used), the strong magnetic held effectively produces 

a Zeeman split of the 6 levels in the S' = 5/2 manifold. The direction of the magnetic 

held in these experiments is chosen so that the ground state of Mn corresponds to the 

spin (juantiim number m = -t-5/2. Since the same magnetic held is applied to the tip and 

to the atom to probe, their spins are collinear.

Figure 5.19 shows the calculated spectra for the system described above. In particu­

lar, a magnetic held strength of 3 T is considered and either weak (r,ip_s = 0.5 nieV), 

intermediate (Ttip-s = 50 nieV) or strong (Ttip-s = 200 nieV) tip to sample couplings. 

The on-site energy is hxed at eq = 1-0 eV and the value of Jgd = 0.5 eV is inferred from 

DFT, which results in an inelastic ratio of y = 1.5. The tip spin-polarization constant 

that best hts the experimental data is ?/ = —0.3. In the w'eak coupling regime (w'hen the 

local spin remains always close to equilibrium) the local spin resides almost entirely in its 

in = 3-5/2 ground state. Due to the spin-exchange selection rules and to the collinearity
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Figure 5.19: Normalized conductance spectra for a single Mn atom explored by spin-polarized S'i’M 
tip at different tip to sample electronic couplings Ftip-s- Here a magnetic field of 3 I’ is applied along 
the z-axis. The asymmetry in the conductance profile is is due to the spin-polarization of the tip. .Such 
an asymmetry is more pronounced as the system is driven further away from equilibrium. C’omparison 
is made between second and third order calculations.

of tlie tip and the sample, only the minority carriers can excite the local spin out of the 

ground state. For a tip spiii-i)olarization of ?/ = —0.3, there are more minority electrons 

coming from the tip than those coming from the substrate. As a result, the intensity 

of the inelastic interaction will change depending on the direction of the current. This 

creates an asymmetry in the conductance spectrum with respect to the ap])lied bias. The 

additional lineshape features appearing in the weak coupling case (the conductance decay 

following a conductance step) are due to the third order Kondo-like self-energy, which 

produces a logarithmic decay at the conductance steps. This result is in good agreement 

with experiments (see Fig. 4 of Ref. [6]).

When the spin of the Mn ion is driven further out of equilibrium, in particular in the 

strong coupling case, the bias asymmetry becomes more pronounced. Such spin-pumping 

phenomenon can be appreciated by looking at Fig. ??(a), w'here the populations of the 

six spin states of the Mn atom are shown as a function of bias for strong tip to sample 

coupling (Ftip_s = 200 nieV). From the hgure one can see that as the bias increases the
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(a) (b)

Figure 5.20: (a) Non-equilibrium population of the various spin states of Mil on CuN as a 
function of bias for spm-polarized tip and (b) the resulting average magnetizatioi.. These 
have been calculate for a magnetic field of 3 T aligned along the 2:-axis and for strong tip 
to sample electronic coupling Ftip-s = 200 meV. We notice that as the spin is driven far 
away from its equilibrium ground state the magnetization flips its direction.

in = +5/2 ground state gets depleted in favour of populating the other five exciu'd states. 

In particular already at around V' = —10 mV the iiopulation of the in = -5/2 level is 

larger than that of the ground state. In the figure the average magnetization is also 

plotted. This is defined as (5^) = panel (b)]. Iritriguingly it is found

that for negative biases the spin is effectively flipped from rn = +5/2 to m = —1 over 

a 25 meV range. The local spin is no longer collinear to the tip polarisation, and hence 

the inelastic signal for negative bias is weaker than that observed for jiositive. Therefore 

one observes a large dip in the conductance at negative biases when the spin is driven far 

from equilibrium and its polarization is effectively switched.

In Fig. 5.21 the calculated spectra for Fe is presented in the spin polarized case. 

Parameters in this case are chosen to conform with the experimental data of Loth et al. 

in Ref. [11]. The Fe atom is assumed to carry a quantum mechanical spin oi S = 2 

and it also exhibits a transverse easy axis anisotropy of D = —1.53 meV and an axial 

anisotropy oi E = 0.31meV. We again assume a large value of the onsite energy, 2 eV, 

and we examine the spectra in the strong coupling case of Ftip-s = 200 ineV with a
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(a) (b)

Figure 5.21: (a) 2nci and 3rd order conductance spectra for the Fe atom with spin polarization rj = 0.35. 
'i'he magnetic field of 3 T is applied both parallel and perpendicular to the easy axis of the Fe atom, (b) 
Second dervative of the current for the same spectra shown in (a).

ti]) polarization of r/ = 0.35 and magnetic fiekl strength 3T as used in experiments. In 

Fig. 5.21(a) the conductance spectra for the two cases when the magnetic field is parallel 

or perpendicular to the easy axis of the atom (the 2—axis in this model) is presented. 

As previously, it is presented for both second and third order calculations. Firstly, one 

notic:es that the spin polarized tip affects the spectra only in the case of parallel magiu'tic 

held where a clear bias asymmetry is produced. No signihcant asymmetry is found in 

the perpendicular case. This conforms with the exjreriniental hndings and is due to the 

fact that electron spins in the tip are no longer collinear with the localized spin of the Fe 

atom.

As found in the previous chapter, the inclusion of third order contributions is vital 

in reproducing the correct logarithmic decay at each of the conductance steps, which is 

particularly noticeable for the perpendicular magnetic held. More signihcantly, experi­

mental spectra for the parallel case exhibit a zero bias conductance dip which is absent in 

the second order spectra but appears strong when third order terms are included in the 

perturbation expansion. This can also be seen in the calculation of the second derivative 

of the current in Fig. 5.21(b) where a clear zero bias anomaly is evident in the third order 

case.
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F(mV)

figure 5.22: Normalized conductance spectra for a single Mn single calculated by including the real 
(onlribution to the interacting electron-spin self-energy for different on-site energies £o- Note that the i 
(onduclance asymmetry increases with decreasing Sq- as the onsite energy moves closer to the Fermi \ 
level. i

5.4.4 Non-spin polarized asymmetry

Finally the discussion moves to the inherent asymmetry measured in the conductance 

profile, which is usually observed even if the tip is not s])in-])olarized [6, 9]. This lineshape 

feature is modeled by including the real part of the full interacting electron-spin self-energy 

derived in the previous chapter [see Eq. (4.41)]. The structure of this contribution to the 

self-energy shows an explicit dependence on the on-site energy, Eq- and also a logarithmic 

])eak of width k^T at the onset of an inelastic transition (E—= ±Q„}n)- The asymmetry 

arises from the difference in polarity of the logarithmic peak for The self-energy

is thus an odd function of both energy and bias. This results in the conductance profile 

having a decrease of the step heights for V = and an increase of them for

= 4 ^mn/e.

This approach is tested by considering the case of a non-spin-polarized tip and a single 

Mil atom. The same anisotropy parameters are used as for the Mn dimer but, for the sake 

of simplicity, the spin is always in its equilibrium state and one chooses rtip_s = O.SineV. '
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Figure 5.23: Comparison between the experimental (red) and theoretical (black) conductance spectra 
for a Ain trimer on C'uN probed by a non-inagnetic STM tip. In the calculation the real part of the 
interacting electron-spin self-energy has been included. This provides the conductance asymmetry with 
bias. 'The experimental data is taken from Ref. [5]

Figure 5.22 shows the resulting conductance spectra for three different choices of the on­

site energy eo- ft is clear that the closer eo fo the Fermi energy (0 eV), the greater 

is the bias asymmetry, while as Eq is increased, the coiuhictance profile becomes more 

symmetric. In this respect, the formalism outlined here is in agreement with the Fano 

lineshape argument [122] where the degree of asymmetry for electrons tnnneling through 

a single impurity is given by a ratio of the real to the imaginary contributions to the 

interacting Green’s function [120].

As an additional test the case of a Mn trimer is considered, whose spectrum was 

shown first by Hijibehedin et al. [5] to exhibit a large bias asymmetry wdien measured 

with a non-magnetic tip. This system is modeled by choosing an antiferromagnetic nearest 

neighbour exchange coupling =2.3 meV. Furthermore, in order to accurately describe 

the position of the principle conductance steps in the conductance profile, a ferromagiKdic 

second-nearest-neighbour interaction between the local spins of magnitude =-1.0 meV 

is included [23].
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The spin system is kept in equilibrium by considering a weak coupling between the 

STM tip and the second atom in the trimer chain (Ttip-s = 0.5 meV). The best fit to 

the experimental data is found with Eq = — leV. Figure 5.23 shows the mcdel fit to 

the experimental data (from Ref. [5]). Whereas i)revious calculations did not predict any 

conductance asymmetry it is clear from the figure that the inclusion of the real part of the 

self-energy in the description produces a significant conductance asymmetry. This is most 

prominent at the principle step height (w ±16.5meV) for each bias polarity. Although 

the step height for the negative bias is not as small as that found experimentally, the 

qualitative trends are similar. In particular one notices the logarithmic conductance 

increase (reduction) that occurs before (after) the onset of the step at T = -fl6.5meV, 

which also originates from the third order contribution to the self-energy.

Based on a i)ertnrbative approach of the s — d model, here it has been shewn that the 

entire lineshape of the si)in-ffip lETS can be re-conciliated with experiments by considering 

an expansion of the self-energy to the third order, which also includes its real part. .4s such 

it has been shown that the conductance asymmetry can be described also if the electronic 

orbitals forming the sample’s spin are not explicitly taken into account, indicating that 

the origin of the asymmetry conies from a density of states effect. This has also been 

suggested by Delgado and Fernandez-Rossier [29].
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lETS as a predictive tool

Uj) until now the validity of the nonequilibrium Green’s function approach has been 

tested against known experimental works and good agreement has been achieved when 

examining higher orders of perturbation and in spin-polarized STM tips that are subject 

to intense current. Given the success of the method in describing such experiments, the 

obvious follow-on step is to use it as a predictive tool for prospective experiments that have 

not yet been performed. Two topics wall be treated in this chapter, namely the proposed 

electric held spin-crossover effect and spin impurities deposited on 2D topological insulator 

edges, each of which can be combined with S-P lETS to generate some intriguing results 

with interesting applications in the held of spintronics and quantum cornputng.

6.1 Electric field induced spin-crossover effect

It has been theoretically predicted that exchange coupling between local spins can be 

controlled electrically both for a two centre dimer [61]. In this work it has been postulated 

that the dependence of the Stark shift of a given magnetic system on its magnetic state 

results in an exchange coupling parameter that has a quadratic dependence on the applied 

bias voltage. This enables a spin-crossover from a low spin to high spin conhguration. In 

this section the possibility of using a scanning tunneling microscope (STM) to detect the

112
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dependence of the exchange coupling on an electrical potential will be investigated. A 

bias-dependent conductance spectrum of the most basic molecule comprising two coupled 

fully quantum mechanical spin 1/2 atoms will be calculated as opposed to a similar 

treatment for a classical localised spins[64].

6.1,1 Theoretical methods

The same single-orbital tight-binding model as in previous sections is used where a mag­

netic system (S) is coupled to tw'o non-interacting electrodes denoted as tip (tip) and 

substrate (sub). The scattering region containing the magnetic nanostructure consists of 

a one-dimensional chain of .V atoms. Each atom A carries a ciuantum mechanical spin 

and it is characterized by an on-site energy Eq. Again, it is assumed tliat the tip and 

substrate can only couple to one atom at a time in the scattering region thus broadening 
the electronic level £o through the interaction with the electrode by Ftip/suh- The total j 

broadening due to the leads is given by E = r,ip -I- Esui,. The total Hamiltonian is thus 

described by //s = /A + /Ap + F^e-sp where /fp is the tight-binding electronic jjart, //s,, is 

the spin ])art and /A-sp describes the electron-spin interaction. The Hamiltonian writes

N

He = £0 4aCAa ,

A Q
N-1

/Ap = 2Jdd(H) J] Sa ■ Sa+1 + J] • Sa,
A A

fA—sp Ad ^ ^ ' ^A-

(6.1)

(6.2)

(6.3)
A o.a'

The electron ladder operators c\^lcia create/annihilate an electron at site i with spin a 

(=Ti i) and onsite energy £o-

The spin-spin interaction betw'een the localized spins {Sa} is modeled by a nearest 

neighbour Heisenberg Hamiltonian with coupling strength Jaa- In this work it is assumed 

that spin-spin interaction takes on a quadratic bias dependence i.e. Jdd(I'") = a + hV"^ as
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suggested by Baadji et a/. [61] for spin crossover molecules. The parameter a is the zero bias 

value of and b dehnes the value of the critical voltage at which Jdd switches between 

ferromagnetic and anti-ferromagnetic order, Vc = ±1/—a/6. Furthermore an interaction 

wdth ,an external magnetic held B (/xb is the Bohr magneton and g the gyromagnetic 

ratio) is assumed.

Tire electron-spin interaction Hamiltonian is again constructed within the s-d model [51] 

where the transport electrons, s, are locally exchanged coupled to quantum spins, {Sa} 

{d indicates that the local moments originate from the atomic d shell). In this case the 

interaction strength is J^d and in Eq. (6.3) cr is a vector of Pauli matrices.

Diagonalization of Eq. (6.2) gives the eigenenergies (e„) and eigenstates (|n)) of the 

spin system in the interacting region. Erom chapter 4 it was found that the second order 

transition rates between two eigenstates |n) and |/) with a iion-spin polarized tip is given 

bv

B„; = 4 pJ'L
- /V - (6.4)

1,7} jy

where the spin matrix elements Sl^i = (nlS’*!/) with i = {,T,y,2} are that of a single 

spin ill the chain that is coiqiled to the tip (the index A is then drojiped). Furthermore 

it is recalled that ({x) = x/{l — and /q, is the chemical potential in lead

7] = {tip,sub}. It is also assumed that the onsite energy is large enough that the density 

of states of the sample remains constant in the small energy window of interest (meV). 

Therefore p = r/(eQ -I- F^). The above transition rates can be used to evaluate the bias 

dependence of the population of the spin system states from the steady state solution of 

the following

dP,n \ ^
dt ^ F„{1 - Pi)Wi„ - Piil - P„)Wni + (//)’ - P„)/f3, (6.5)

This is iterated until self-consistency is reached for an initial guess of the population
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(Pi = P?).

Up to second order in perturbation the normalized current through a single spin (as 

calculated in chapter 4) can be expressed compactly as a function of bias (see Appendix

E)

/(v)/r;e, = V + ^ ^ |5;,pF,(u)m(v’ - lu.),
i,mM

where the normalization constant is given by the elastic conductance

(6.6)

Ge, = ( 2̂e'-^\ pEtipUsub
h ) r (6.7)

and where /_(U — VLmk) = C(E — ^mk) — C,{ — V — flmr-)- The resulting normalized conduc­

tance, in addition to the elastic contribution, has two parts G'l and C2 that coi.tiil)ute to 

the total conductance C{V)

CriV) = |5;,/Fa.(V')^i_(V - a.A),

i.m.k

(hiV) =

G{\ ) = 1 -)- G1 (V ) -f- G2(1 )•

d

i.mM

(6.8)

(6.9)

(6.10)

In the equilibrium case when Pk is constant with bias for all k then G] becomes the only 

contributor and represents the conductance step whenever the bias coincides with the 

inelastic energy transition klmk- The conductance step height over the elastic conductance 

is then governed by the ratio However in the non-equilibrium case wlien Pk{V)

varies with bias both Gi and G2 contribute and result in more complicated non-linear 

conductances.
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Figure 6.1: (Color online) Upper Panel: 'I'otal contribution to the normalized conductance spectra for 
the spin 1/2 dimer. Lower Panel: Normalized conductance contributions to the total. The large dip in 
conductance at 12 inV represents the spin cros.sover critical voltage.

6.1.2 Results

As a test of the fully quantum mechanical treatment of electric field induced spin crossover 

in magnetic molecules the simplest case of a pair of sitin S =1/2 atoms coupled through 

the bias dependent spin exchange parameter Jdd(t ) = ^ + bV'^ is examined. At zero 

biasit is assumed that the local spins are coupled anti-ferromagnetically by the parameter 

a = +6nieV. Diagonalization of Eq, (6.2) reveals that at zero bias the resulting ground 

state of the spin system is a singlet with total spin //tot = 0. The excited state is a triplet 

with total spin Stot = 1 and is split from the singlet state by the zero bias exchange energy 

a = +6meV. A value for h = —().()4meV/(mV)^ is chosen in line with DFT predictions 

[61]. A spin-crossover between total spin states S'tot = 0 and 5tot = 1 is encountered 

wdien the voltage reaches the critical point Vc = ±y/—a/6 where Jdd(^) switches from 

anti-ferromagnetic (positive) to ferromagnetic (negative).

To construct a full conductance profile of the spin crossover event from Eqs. (6.8)- 

(6.10) one must chose values for the remaining parameters which are retrieved from both 

experimental and theoretical descriptions of similar STM setups. Firstly it is assumed that
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F(mV)

Figure 6.2; (Color online) Population of the singlet (black) and triplet (red) states for weak (solid line) 
and strong (dashed line) coupling to the tip.

the s-d exchange i.s Jsa = oOOineV as found from DFT calcnlations [116]. It is assumed | 

that the electronic energies of the dimer atoms are of the order of leV, far enough from

the fernii energy to ensure a constant density of states p in the low energy window of ]
I

interest. Tlie atoms are coupled to the underlying substrate strongly enough to produce 

a broadening of the onsite energies of Fs^n = 25()nieV. Furthermore it is assumed that the | 

tip is non spin-polarized and moyable such that conductance spectra can be investigated 

for a range of Fjip. The effect of magnetic fields on the spectra wall also be investigated j 

and a Lande ^-factor of 2 is assumed. All sjjectra are obtained at a temperature of 1.5K.

The top panel of Fig. 6.1 shows the total conductance (G) for the above parameters 

with the tijr positioned above one of the atoms in the dimer with a weak tip-atom coupling | 

of Ftip = 5meV. The bottom panel show's how the spectrnm is broken up into its various , 

components, Ci and G2 from Eqs. (6.8) and (6.9). It is clear that the main features of 

the total conductance (G) are reproduced by Gi wiiere the derivative of the population is 

not considered. The first conductance step represents the spin-excitation from singlet to 

triplet. The spin crossover then occurs at Vc = ±^/—a/h = ±12.25meV and is represented
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Figure G.3; Upper panel: Normalized conductance spectra of the spin 1/2 dimer for varying values of 
I'tip. L(5wer panel: C’orresponding colour plot, 'the conductance drop at Vc weakens for strong tip-atom 
couplings.

by a large clip in conductance. This is well explained by the bias dependent jtopulation 

plot in Fig. 6.2 (solid black and red lines). At the crossover point, a change in the ground 

state occurs and the population of the singlet state rapidly decreases from full (1) to empty 

(0) while the triplet states are equally filled from 0 to 1/3. As the voltage increases, the 

split between the new ground state triplet and new' excited state singlet becomes larger. 

A voltage is then reached ( 30mV) w'here a spin excitation between the new' ground and 

excited state occurs. The contribution of G2 is seen as an additional non-linear effect at 

the spin-crossover point brought about by the derivative of the population of the statc!S.

The upper and low'er panels of Fig. 6.3 show' that by increasing the coupling of the tip 

to the atom, the conductance spectra can be greatly modified. It can be clearly seen from
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' (dI/dV)/G^^ i «

Figure 6.4: Upper Panel: Normalized conductance spectra of the sjjin 1/2 dimer for varying values 
ol Ptip with applied magnetic field erf 20T. Lerwer Panel: C'orresponding colour plot. One notices the 
Zeeman splitting of the triplet levels.

both plots that the magnitude of the conductance dip at the crossover point becomes 

less severe. This is due to a change in the population of the states when the coupling 

is increased (see the dashed black and red lines of Fig. 6.2) where itumping out of the 

ground state into the excited state occurs before the onset of the sjrin-crossover. This 

also results in the enhancement of the first conductance step and resultant decay as was 

discussed in chapter 5.

Finally the effect of applying a magnetic field to the spin system is investigated. For 

the purpose of clear illustration a large value of 20T is applied in the 2 direction. It is 

pointed out to the reader how'ever that this value is in general experimentally unattainable. 

Figure 6.4 shows the variation of the spectra for different values of Ftjp. One notices in
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C(mV)

Figure 6.5; (C'olor online) Population of the singlet and triplet states for strong coupling of the tij) to 
the atom Garrimat\p. The large splitting of the triplet state populations is notable.

botli up])er and lower panels that the onset of the magnetic field splits the trijrlet into its 

Zeeman components which is manifested as three equal sized conductance steps around 

the zero-bias spin-exchange parameter. As in the zero-field case the magnitude of the 

conductance drop at the spin-crossover point decreases with increasing Ftip. The second 

conductance step ( 30mV) from ground state triplet to excited state singlet takes a slightly 

different form for increasing tip-atom coupling. The resolution of the Zeeman-split triplet 

states occurs at high couplings. This is explained by Fig. 6.5 where the populations of the 

4 states are now well separated at high tip-atom coupling. Due to the varied populations 

of the triplet states, the probability of a spin transition from the triplet state to the excited 

singlet state becomes highly dependent on Ftip.
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6.2 Spin-pumping and inelastic electron tunneling spei

troscopy in topological insulators

In this section it will be shown how a magnetic impnrity deposited at the edge of a 

TI and presenting a uni-axial magnetic anisotropy, wdiich makes it non-Kondo-active [74], 

can be manipulated by a quantum spin Hall (QSH) current. The topological nature of 

the QSH state has profound consequences on the SF-IETS conductance spectrum. At 

low current intensity there is a complete suppression of the conductance steps appearing 

at the critical biases characteristic of the activation of an inelastic spin-scattering chan­

nel [3]. In contrast, for currents large enough to produce spin-pumping the spin of the 

magnetic impurity is driven away from the anisotropy axis. This breaks the topological 

protection of the helical edge states and the conductance steps reappear. Intriguingly, in 

this situation there is a strong dependence of the SF-IETS conductance spectrum on the 

bias polarity. Again, the calculations are conducted by using the non-equilibrium Green’s 

function method for transjrort combined with a irerturbative ap{)roach to spin-scattering 

from magnetic impurities as introduced in the ju’evious chapters.

6.2.1 Kane-Mele Hamiltonian

The initial structure that will be dealt without considering the effect of a spin impurity 

is a Z2 2-D topological insulator (TI) ribbon on a honeycomb lattice with zig-zag edge 

geometry as in Fig. 6.6. The left and right leads are scpiare lattice structures coupled 

to the T.I. The Kane-Mele model to describe the single particle electrons in the device 

region with the following Hamiltonian Hkm

Hkm = ^0 GcLgo + H Y" c,Lc,q + ik/

ia {ij),a
y ' ]a0Cja-

{{ij)),a0

(6.11)
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• • •

Figure 6.6; Schematic representation of the device considered in tliis work, comprising a TI with 
iioneycomb lattice structure coupled between two semi-infinite square leads

The first term describes a staggered sub-lattice potential with on-site energy Sq and C 

being = -hi for the A sub-lattice and = —1 for the B one. Here (cj^) creates 

(annihilates) an electron at site i with spin a. The second term is the nearest neighbour 

hoi)i)iiig with strength H (C sets the energy scale of the problem). Finally the third 

term, which drives the topological phase, is a second nearest neighbour hopping with 

streng:th t2 {i = This describes the coupling of the electrons orbital motion to

their s])ins via the 2-component of the Pauli matrices The parameter v,j is -1-1 for

counter-clockwise hopping and —1 for clockwise. The dimension of the device is sinijdy 

2N = 2{nx X Uy) where is the number of atoms per zig-zag row riy and the factor of 

2 takes into account the electronic spin. The leads are assumed to be of a square lattice 

structure, the properties of which will be dealt with in the following section.

6.2.2 Two-dimensional lead self energy

The procedure for calculating transport properties of two dimensional systems is signif- 

icantl’y different to that used for one dimensional systems [123]. In particular, scalar 

(juantities of one dimensional arrays such as nearest neighbour couplings must now be 

recast in terms of matrices that describe the two dimensional structure of the TI ribbon 

and connecting leads. In the following the example of a square lattice is used to show 

how to calculate the self energy of a given lead, as introduced in Fig. 6.6. For simplicity 

n, = 4 is used where n, is the number of surface atoms in the lead. The central device
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On

Figure 6.7: Schematic illustrating the construction of the various coupling matrices in the 2D model. 
Each layer labeled by is coupled to its nearest neighbour by

region can take any structural form and it is assumed that it contains a total of N itoms.

The two matrices [q,,] and [/3,,] are introduced where ?/ = L, R. The schematic n Fig. 

6.7 shows how these matrices are constructed within given layers containing itoms. 

[q,,] contains the onsite energies and the intra-layer coupling whereas [/il,,] ccntains 

the inter-layer coupling, also with stength It is seen how the lead can be constructed 

layer by layer with each q,, coupled to the adjac'ent onc' by /J,,. These matrices aie then 

7is X tig in dimension and can be defined as

[^»/]nsXris

£■Cfj 0 0 tv 0 0 0 ’

^1] t,) 0
) [A;]risXns ^

0 tv 0 0

0 tv tv 0 0 t'V 0

. 0 0 L, £n / ^ 0 0 0 i

(6.12)

Following from this the surface Green’s function of the lead r/ can be defined by using 

Dyson’s equation and it is found that

= [{E -h ?0+)l - Or,- (6-13)

where 0“*“ is a positive infinitesimal and the identity matrix 1 is also x a* in dimension.
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Since the surface Green’s function is self-dependent, a self consistent approach is needed 

to evaluate its value at each energy E. As such the appropriate initial guess for the surface 

Green’s function is

= [{E + d)+)l - a,,] h (6.14)

The result is then iterated until self-consistency is reached.

The coupling between the lead and the central device region (of dimension TV) is 

described by the matrix [r,,]. This has dimension N x n., and using the nearest-neighbour 

approximation will describe coupling of strength G,,, between the outermost atoms in both 

the leads and the device region. The matrix then takes the following form

/

['^7;]A''xns

G,7, 0 0 0

0 0 0 0

0 G.r, 0 0

0 0 0 0

0 0 g,7, 0

0 0 0 0

\

v 0 0 0 t,

(6.15)

•v /

All the quantities that are needed to construct the self energy of the lead are now in place. 

This has the dimensions of the device region, N x TV, and through Dyson’s equation can 

be defined as

[S»;]nxA^ [Ajvxns [Vs,r)]nsXris [aIItisXN- (6.16)
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The self energies are complex quantities whose real part renormalizes the eigenstates in 

the device region. The imaginary part is also important and contributes to the broadening 

function which can be defined bv

|r,| = >|s„-E!,l. (6.17)

This results in a finite lifetime for each eigenstate in the device region.

For a given Hamiltonian H that describes the central device region, the retarded and 

advanced Green’s functions of the unperturbed system without spin interaction can be 

defined as

[C^oIn.n = {iE+ dH)l Er]-\

K]vxv = [{E - iO+)l - // - El - El]-i

(6.18)

(6.19)

where the resulting transmission function takes the form

T{E) = Tr[r,x:;(,r«f;"]. (6.20)

If a bias V is ap])lied between left and right lead the corresponding current and conduc­

tance profiles for the given device region can be calculated. To do this the definition 

is needed for the Fermi functions in each of the leads as a function of the energy E 

fi,{E) = 1/{1 + exp[(£’ — /i,,)/A-BT]}. This describes the electonic filling of each of the 

leads with the chemical potentials //,/, = -f V/2 and /Cfl = ep — V12. Following on from 

the original formalism for one dimensional transport introduced in chapter 3, the greater 

and lesser Green’s functions in the device region and self energies in the leads can be
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Figure 6.8: Schematic representation of the device with spin impurity (/) coupled to the U’l edge. The 
square leads have been replaced by the self energies and E/f

written as

[E<] = /,[r,]; [s>] = (1 - /,)[r„], (6.21)

(6.22)

6.2.3 Spin impurity on topological insulator edge

In this subsection a spin impurity is introduced that can be attached to a given site A in 

the honeycomb lattice discussed previously. The full contribution to the electronic part 

of the Hamiltonian //ei including the Kane-Mele Hamiltonian from Eq. (6.11) is

//el = l^KM c]^Cja + ^I c]^CXa,

a {I\),a

(6.23)

where 1 labels the spin impurity with onsite energy ej and the coupling to nearest neigh­

bour site A is given by tj. The spin is labeled by a and the total dimension is now 

2N = 2{nxny + 1). A schematic of the device with the spin impurity is seen in Fig. 6.8. In 

addition to the electronic part of the total Hamiltonian the spin degree of freedom of the 

localized impurity must be incorporated in which it is assumed that the given spin expe­

riences an axial anisotropy due to coupling to the underlying staggered lattice structure.
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Therefore

//sp = DSl (6.24)

where D is the zero field splitting parameter describing the nni-axial anisotropy which in 

this case is assumed to be in the plane along the z-axis. Diagonalization of the Hamihonian 

yields the eigenvalues e„ with eigenvectors |r;,), which are used to obtain the jjopnhtions
,1

Pn given by the Boltzmann distribution I

Pr, =
exp{-£ri/kBT)

Hm ex\^{-£m/kBT)'
(6.25)

One can also define the spin matrix elements which represent the transition probability 

from one state to another. These are given by (rn|5'*|r?.) = where i = and

= (5^ ± iSy).

The coupling between the localized spin and the current carrying electrons in the 

localized atom will again be considered here where it will be assumed that it cm be 

described bv the s-d interaction.

^^el—sp '-^sd / ^ l3'^i

a0
6.26)

where the strength of the interaction is Jsd find [a] is a vector of Pauli matrices. The 

coupling between electron spins and localized spins will again be treated perturbatively as 

done in previous chapters. The result is an interacting spin dependent self energy 'vliich 

when truncated at second order is proportional to the non-interaction Green’s fuixtion 

Co{E ± ^mn) where ilmn = describes the spin flip mechanism of an incoming

(‘lectron interacting with a localized spin S. It can be written in the followdng form for
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the lesser and greater interacting self-energy (recall Eq, (4.34) and (4.35))

[S.|(E)]f^/ = - ± Q^„)]n {Sr^mXPnS^nn + Pn{l - PmWmnl^)
m.n

- 4 ± - P..)|Pl„lt (6-27)
m.n

PSt(i?)]l? = - 4 ± + Pnil - PmWmnl")
m.n

- -/.d EPo*(® ± !2™)lttP»(l - P...)[Si,lt (6.28)

where y = ej/J^d is the inelastic ratio. It is also noted from previous results that by 

driving the current in the system (achieved previously by bringing the STM tip closer 

to the given adatom) a bias dependent population of the local spin states emerges and 

the si.)in system is out of equilibrium. This reflects the effect that the current carrying 

eh'ctrons has on the localized spin. If more and more electrons come in contact with the 

si)iii then it will not be allowed relax back to its gronnd state and the higher excited 

states will begin to be populated. This bias dependent population is treated within the 

local spin self energy (refer to chapter 4) and the resulting master equation governing 

each state |n) is given by

dP„
(it

^ =5^ F„(l - Pl)Wl^ - Pl{l - Pn)Wnl + (4 - P„)4, (6.29)

where the transition rates between initial state |/) and final state |n) is given by the 

expression;

I'n/ = - V ^ + |s;,naj.sp) / (e.so)
+ OC

i.oty(3

It will be shown in subsequent sections that this quantity is highly dependent on the 

strength of the parameters 4.,,. The greater the coupling, the more the system is driven
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Figure 6.9; (a) Band-structure of tlie TI ribbon constrained to 10 atoms along the y axis. The 1
edge states are spin filtered so that electrons with opposite spins propagate in opposite directions, (b) j 
Schematic of the situation when a potential difference is applied between the two leads it is seen that i 
spin down electrons travel anti-clockwise and spin up electrons travel clockwise. j

out of eciuilihriuin and higher excited states populated. I
i

W ith all this at hand the current and conductance at a given lead r/ can now be | 

constructed. This takes the following form

1,{V)= / Tr T.<{E)G>[E)-Y.>{E)C<{E) (IE, (6.31)

and the conductance is simply the derivative of the above quantity with respect to the 

bias. The Green’s function in this case is the full interacting one and is defined as follows:

GHE) = G'\E) [Ef (E) + E|(E) + i:t{E)\ GE{E). (6.32)

6.2.4 Results: Spin-flip mechanism on topological insulators

The discussion begins by first looking at the electronic structure and transport properties 

of the ribbon in absence of the magnetic impurity. Figure 6.9(a) shows the band-structure 

for such a zig-zag structure that extends to infinity along the x-axis and is constrained 

to a length of Uy = 10 along the y axis wdthout a spin impurity. The ratio tilG = 1/3
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(a dioice which preserves the topology [125]) and the onsite energy eo is chosen to be 

zero (the choice of £o is arbitrary and will have little effect on dynamics around the Fermi 

energy). At the Fermi energy e/;- = 0 it can be seen that two bands traverse the bulk 

band-gap and each are localized at the edges of the strip with degenerate copies for each 

edge. These ’edge states’ are spin filtered, meaning that electrons with opposite spins 

propagate in opposite directions with spin down electrons traveling anti-clockwise and 

spin up electrons traveling clockwise. Therefore if a potential difference is set up between 

the left and the right ends of a graphene strip the situation outlined in figure 6.9(b) is 

encountered when electric current flow's from left to right.

The transport proi)erties of the TI ribbon are investigated by calculating the spin- 

resolved transmission coefficients along a given edge [124] for a finite slab of the zig-zag 

structure. This quantity is defined as

r;„,(£F) = Ti„,|rL6"r„G“);<,,. (6.33)

where a is the spin index {a =T,i), labels the edges {s = top, bottom) and is 

the ai.dvanced Green’s function. The trace is over the number of atoms, 7ix, along the 

given edge and the transmission coefficient is evaluated at the Fermi energy, ep- As 

a matter of notation a {nx,ny) ribbon contains atoms in the direction of transj^ort 

and riy along the transverse one. When the Fermi level is fixed at the half-filling point 

the ribbon is insulating in the bulk, but presents edge topological protected states (here 

= b; = ti = 1, and G = fi/3, which ensures that the KM Hamiltonian describes 

a QSH state). In this situation we find for a (11, 6) ribbon, = 0.9, = 0.1,

j-bottom = Q 1 jjjjj j-bottom _ q g s^cli values demonstrate that the current along the 

QSH edges is spin-polarized, although not completely because of the finite size of the 

ribbon. Calculations for a (7, 4) ribbon give us = 0.85, = 0.15, = 0.15

and = 0.85.

The magnetic interaction between a 5 = 1 local spin and a (11, 6) ribbon is now'
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Figure 6.10: SP-IETS conductance spectrum for a 1’] (11. 6) ribbon with a 5 = 1 magnetic iiipurity 
attached at the upper edge. Note that the conductance step at tlie voltage characteristic of the iielastic 
excitation gets suppressed as the 1-2 parameter is increased, i.e. as the ribbon is brought well Jisde the 
topological region of the phase diagram.

investigated. In general the impurity is placed at the centre of the edge and a coupling 

Itaraineter, //, and an onsite energy, e;. is chosen to ensure that the density C'f states 

localized at the impurity site, pi{E), is approximately constant for energies, E. mound 

the Fermi level (this ensures the convergence of the perturbation scheme). The e.Kciange 

coupling, Jsd, is chosen so that the perturbation parameter, p/Jsd- is approxinia'ely 0.1. 

These conditions are satisfied for: sj = J^d — ^1/2 and /./ = i\/A. The spin degeneracy 

is lifted by an axial anisotropy 1) = —10“^ which corresponds to D = —2.0 m?V, if 

the nearest neighbour hopping in the ribbon is fixed at a reasonable value of l-i = 2 eV 

(A:bT = 0.05). The uni-axial anisotropy gives a degenerate ground state with the two 

spin states | — 1) and | + 1) separated from the first excited state |0) by \D\. As a result 

no Koiido-like behaviour is expected since no allowed transition between the degenerate 

ground state may occur. The second order perturbation expansion is then well j isdfied. 

The values t,, = = /i ensure that the spin system remains in equilibrium, i.e. in its

ground state, throughout the spin-scattering process.

Figure 6.10 shows the calculated conductance spectra, Cj{V), normalized to the F = 0

!

I
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Figure 6.11: Cartoon tlial describes the spin-flip scattering event. A riglit-going electron with up spin 
direction (top panel) is inelastically back-scattered by the magnetic impurity. In the process both the 
electron and the impurity spins are reversed (bottom panel). Note that, given the topological nature of 
the ribbon, spin-flip forbids electron transmission as the edge presenting a right-going spin-up state does 
not possess a right-going spin-down one.

conductaiice, Ce\, for tliree values of the parameter governing the QSH state, t‘2- For /2 = 0 

there are no topologically protected edges and the characteristic inelastic conductance 

step at a voltage V' = D/e is observed, when the transition from the ground state to |0) 

hecoiiies possible (e is the electron charge). However, as C is increased and the topological 

phase is entered, a suppression of the inelastic contribution to the conductance is observed, 

with an almost full suppression at the maximnm value of to = (i/3. The cartoon in 

Fig. 6.11 helps to understand the mechanism for sudi a suppression. At a positive bias, 

the right-going current is up spin-polarized. This means that the | — 1) ^ |0) transition 

scatters out spin-down electrons. These cannot propagate towards the right electrode 

since there is no right-moving spin-dowm state in the upper edge and, as a consequence, 

they are completely reflected. Hence, as spin-flip events can only lead to backscattered 

electrons, the inelastic channel does not contribute to the current. Note that the residual 

conductance increase in Fig. 6.10 for t-i = ti/3 is simply due to the finite size of the 

ribbon.
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Figure 6.12: (Color online) (a) Non-equilibrhiin population a.s a function of bias of the S' = 1 impurity 
spin states for a (7. 4) (broken lines) and a (11. 6) ribbon (solid lines). In panel (b) we show the average 
magnetization of the impurity for the same ribbons.

6.2.5 Results: Current driven local spin dynamics

llie possibility of manipulating the impurity spin direction is now investigated. This is 

achieved by increasing the overall conductance, i.e. by increasing the average current 

density. When one works with an STM setup Itringing the tip closer to the impurity [6] 

dotts the job, while here the control parameter is the electronic coupling between the leads 

and the ribbon, As such all the calculations that follow have been performed with

b.r; — C ■

The calculated populations of the various spin states are plotted as a function of bias in 

Fig. 6.12(a) for both a (11, 6) and a (7, 4) ribbon. A 5 = 1 spin in a uni-axial anisotropy 

field and in thermal equilibrium with an electron bath presents an equal probability to 

occupy the | -b 1) and the | — 1) states, i.e. for V = 0 one has F+] = P_2 = 1/2. As soon as 

the bias is increased at and above \D\/e, excitations to the |0) state become possible due to 

s])in-flip back-scattering. In this case however the current is intense, so that in between two 

scattering events the imjmrity spin does not have the time to relax back to the degenerate 

ground state. This means that now a spin-up electron (the majority species in the upper
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vm/e)
Figure 6.13: SP-IETS conductance spectrum for a TI (11, 6) ribbon with a S = 1 magnetic impurity 
attached at the upper edge. In this case the current is intense and drives the impurity spin away from 
the uni-axial anisotropy axis (see Fig. 6.10). Notably now there is a step in the differential conductance 
at the voltage corresponding to the inelastic transition j ± 1) —> jO), The magnitude and sign of such step 
depends on the bias polarity. In the inset the inelastic contribution to the conductance.

edge right-going channel) can also induce the transition |0) —» | + 1). The consequence is 

that the electronic current flowing at the upper edge, in virtue of its spin polarization and 

its intensity, produces a net flow of population between the two degenerate ground state, 

i.e. for V > +\D\/e one has P+i > P_i. In other words the impurity spin is driven by the 

current away from its uni-axial anisotropy axis. This can be fully appreciated by looking 

at Fig. 6.11(b), where the average magnetization (S^) — as a function of bias

is shown. Such spin-pumping is essentially identical to what happens for spin-polarized 

tips [28, 29] except that now one does not need either a magnetic electrode or an external 

magnetic held. Note that at a negative bias the effect is reversed, i.e. for V < —\D\/e one 

has P_i > P+i, and that placing the impurity on the lower edge is equivalent to reversing 

the bias polarity.

The effects of the spin-pumping on the shape of the conductance spectrum are finally 

presented in Fig. 6.13. This time the G{V) trace presents a step at the voltage corre­

sponding to the I ± 1) |0) transition, i.e. the electron transport becomes sensitive to

spin-flipping events. Such an appearance of the conductance step signals the suppression
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of the topological helical states induced by the transverse magnetization of the spin im­

purity [125]. Intriguingly, the magnitude and sign of the conductance step depends on 

the bias polarity. In particular it is noted that there is an inelastic contribution, vhich 

is symmetric with respect to the sign of V, and an elastic one which is anti-symnetric, 

i.e. the elastic current increases for V > \D\/e and decreases for V < —\D\/e. Plac­

ing the impurity on the opposite edge yields a mirror symmetric conductance trac^ (i.e.

1/^ -y).



Chapter 7

Conclusions

The interaction between conduction electrons and localized spins in transition metals 

with partially filled d shells is central to many low-temperature spin effects, which may 

underpin the development of spintronics and quantum information devices. The continu­

ous advances in low-temperature scanning tunneling microscopy (STM) have enabled the 

detection of excitations of spin origin, a spectroscopy which is usually named spin-flip 

inelastic electron tunneling spectroscopy (SF-IETS). Crucially, this allows one to char­

acterize the elementary spin excitations of magnetic nanostructures at the atomic level. 

When adsorbed on the surface of a metallic host, magnetic transition metal atoms exhibit 

various distinctive features in the conductance spectrum of SF-IETS experiments, which 

are indicative of many-body scattering between the conduction electrons and localized 

spins. These manifest themselves as conductance steps at voltages corresponding to the 

quasi-particle energies of specific magnetic excitations and as zero-bias conductance peaks, 

known as Kondo resonances. Many-body scattering events have been detected for Mn [5], 

Ee [9] and Co [7, 10] adatoms adsorbed on a CuN insulating substrate, with the latter 

exhibiting a Kondo peak at zero-bias. Furthermore, it has been shown that localized spins 

can be controlled by using out of equilibrium spin polarized STM [6]. The spin system 

can be driven far from equilibrium by manipulating the tip-atom distance and therefore 

can be forced into an opposite spin state. Such experiments on single atom systems form

136
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the basis of SF-IETS and provide an experimental background to the theoretical work 

undertaken in this thesis.

The purpose of this thesis is then to formulate a theory that can appropriately describe 

the aforementioned experiments. Although many of these experiments can be described 

at the level of master equation [23, 24, 25, 26, 27, 28, 29, 30, 31], the formulation omlined 

in this thesis is based on the nonequilibrium Green’s function method and a perturba­

tive description of the electron-spin interaction. This is proposed to have two principle 

advantages over the master equation approach. Firstly, it provides the prospect of expan­

sion to high orders in perturbation. To date, master equation treatments of the problem 

have stopped at the second order of perturbation. Secondly, using the Green’s function 

formalism offers the promise of describing more complicated systems in two and three 

dimensions while at the same time proving more amenable to linking with ab-initio meth­

ods like density functional theory. I’he latter in particular has a profound effect when 

considering lETS on 2D and 3D topological insulators [125], which is an area of increasing 

interest and the prospect of which is discussed in Chapter 6. Therefore it is proposec that 

the formalism outlined in this thesis, though similar to the master equation procedure, 

offers many more advantages when dealing with more complicated materials.

The discussion began in Chapter 2 where the fundamentals of density functional the­

ory was discussed with a view to using the ab-initio results as input parameters in the 

Green’s functional formalism for transport later in the thesis. Chapters 3 and 4 then high­

lighted how to use Green’s functions for both elastic and ineleistic transport calculaffons. 

Most notably. Chapter 4 introduced the s — d interaction which defines the coupling be­

tween conduction electrons and the localized spin and underpins the SF-IETS mechanism. 

In particular an expression for the interacting self-energy at the level of the first Born 

approximation in the electron-spin interaction was derived. This was used to calculate 

the current-voltage and the conductance-voltage curves for a ID system of magnetically 

coupled spins at finite bias and in a magnetic field. In Chapter 5 it was shown that results
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reproduce well the features of recent SF-IETS experiments for ID Mn chains using param­

eters mostly calculated from DFT and some taken empirically from the experiments. The 

severe dependence of the conductance spectra on the chain parity and the selection-rule 

suppression of certain transitions was a direct outcome of the theory. This proved that 

the NEGF approach is therefore a valid alternative to master equation based schemes.

Having shown the ability of the mechanism up to second order, it was natural to expand 

the perturbation series further. The effects of including third order contributions to the 

interacting self-energy were also investigated in Chapters 4 and 5. A close expression 

for the third order electron-spin self-energy was derived within the NEGF formalism. 

Two main features in the conductance spectra emerged from the formalism, namely a 

logarithmic decay of the conductance as a function of bias subsequent to a conductance 

step and zero-bias Kondo resonances. An almost perfect quantitative agreement was 

obtained for the spectrum of the non-Kondo active Fe adatom, but only a qualitative one 

for the Kondo active Co. The level of agreement is similar for both the situations where 

the adatoms are isolated or when they interact with each other via the Heisenberg-like 

exchange interaction.

The low computational effort needed by the method makes it a valuable alternative 

to full many-body treatments in describing spin inelastic phenomena at the atomic level. 

However, to improve the Kondo results, a more rigorous treatment, including two-body 

Hubbard terms in the Hamiltonian might better describe the Co conductance spectra.

The lineshape details of the conductance profile of Mn atoms deposited on CuX and 

probed with a STM tip which can or can not carry spin-polarization was also studied. 

In particular the asymmetry of the conductance with the bias polarity was investigated. 

Firstly, the perturbative approach is extended to spin-scattering to the spin-polarized case 

and considered an expansion of the complex part of the electronic propagator up to the 

third order. This allows the reproduction of the logarithmic decay of the conductance 

subsequent to a conductance step, which is observed in experiments but could not be
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explained by a second order theory.

When the current density was increased and the tip was spin-polarized the conduc­

tance profile started to develop a significant asymmetry with respect to the bias polarity. 

These were indicative of the spin system being driven out of equilibrium. A second order 

expansion of the spin-propagator capable of evaluating the non-equilibrium population of 

the various spin energy levels was derived. This was put favorably to the test agfinst a 

series of experiments probing single Mn and Fe ions with a spin-polarized STM tip in an 

intense magnetic field. Furthermore the same formalism was capable of describing exci­

tations occurring away from the ground state for a Mn dimer probed by a non-magnetic 

tip. Also in this case the agreement with experiments was very satisfactory.

Finally, in an attempt to describe the bias asymmetry in the case of non-spin-polarized 

STM tips an analytic expression for the real part of the electron-spin interacting self­

energy was derived. This contained logarithmic peaks at the excitation energies that are 

odd with respect to the energy and voltage. Such parity resulted in an asymmetry in the 

conductance profiles. The scheme was tested for the case of a Mn monomer anc a Mn 

trimer and compared reasonably well with experiments.

In Chapter 6 the prospect of applying the new formalism to predict possible future 

experiments and devices was explored. Firstly the detection of an electric field induced 

spin-crossover in a dimer containing two local spin 1/2 atoms using a STM-ger.erated 

conductance spectrum was predicted. This was achieved by imposing a quadratic bias 

dependence on the exchange coupling parameter between the two spins. It was shown 

that the conductance spectra exhibit multiple spin-flip and spin-crossover features which 

are strongly dependent on the population of the local spin states as the ground state 

switches from antiferromagnetic to ferromagnetic with increasing bias. The pumping of 

further transitions by increasing the tip-atom coupling constant is also seen afier the 

application of a strong magnetic field. Secondly, it was demonstrated that a quantum 

spin Hall (QSH) current flowing at the edge of a Z2 topological insulator (TI) can be
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used toi manipulate the spin of a magnetic impurity. This did not require either an 

external magnetic field or magnetic electrodes, i.e. it allows one to implement spintronics 

without magnetism. Importantly the fingerprint of the manipulation could be found in 

the conductance profiles themselves, making SF-IETS a tool for preparing, manipulating 

and reading a quantum spin in the solid state. It also served as an appropriate test of 

the formalism in describing higher dimensional systems. It was found that increasing the 

size of the TI resulted in larger spin polarization of the edge and could only be captured 

by a Green’s function formalism.

As regards to a future direction for the work undertaken in this thesis, focus must 

centre around the development of the magnetic impurity on a TI edge. The work presented 

in this thesis is very much in its infancy and further investigations must be performed. In 

particular, an intriguing situation is believed to arise when two or more magnetic atoms 

are placed on the TI edge. In this case it is conceivable that the two spins on one edge 

of tliP TI could be indirectly coupled each other through constant back-scattering of the 

conduction electrons. It would also be interesting to see what can happen if the two spins 

can be coupled at opposite edges of the TI. Furthermore, after gaining more insight into 

the fundamentals of the underlying physics of the problem, a model for a prospective 

read/write device should also be conceived. Since in general spin-pumping is achieved 

by bringing the leads closer to the scattering region in order to increase the amount of 

electrons in the scattering region, the proposed set-up in Chapter 6 makes this difficult 

to achieve in practice. It is proposed therefore that the amount of electrons entering the 

scattering region can be modulated by applying a gate voltage at each of the leads. This 

can be quite readily investigated for the model considered in this work.
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Appendix A

Surface Green’s function and

Broadening

The self-energy of the substrate (sub) and the tip (tip) as introduced in Chapter 3 for the n(n- 

interacting case of transport through a scattering region can be expressed as follows in termtof 

the surface Green’s functions, ^tip and ^sub, and the coupling matrices between the leads aid 

the scattering region HaS (ci=tip, sub)

^tip(^) — -f^tip-S 5tip(i^) -f^tip-S )

^sub(^) — -f^sub—S 5sub(^) -^sub-S

(Al)

(A2) I

The surface Green’s functions can be found by first constructing the Green’s function for in | 

infinite system and then by applying the appropriate boundary conditions [126]. For a single-ste 

nearest-neighbour one-dimensional tight-binding chain gn takes a simple close form |

— 5sub(^') — 6

k{u}) = cos’

70
I ( id -Eq

270

(A3)

(A4)

where /c(a;) and 70 are respectively the inverse dispersion relation {k vs. tn) and the hoppng 

parameter. Equal hopping parameters in the leads are assumed. The interaction between Ihe
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scattering region and the leads has the effect of broadening the scattering region’s discrete energy 

levels. The broadening function due to the coupling to the leads is defined as:

rtip(n^) — f(Stip(a;) E|jp(a;)), 

rsub(‘^) = f(Ssub(<^) - Ssub(‘^))>

(A.5)

(A.6)

which for coupling constants 7tip and 7sub can be rexpressed as [using Eqs. (A.1)-(A.4)] as

rtip(i^) = 

Esub

27?ip
70

^7s^ub

70

\/M tu - gp \ 2

270 / ’

1 _ u; - gp 
270

(A.7)

(A.8)



Appendix B

Spin operators

The spin operators that are used throughout this thesis and have been introduced first in section 

4.1 of Chapter 4) obey the following commutation relations for all directions i = {x,y,z} (note 

h = l)

[5*2, jSj] — (B.l)

where £ijk is the Levi-Civita symbol. A good quantum number is defined as the eigenvalue of a 

given operator whose eigenvectors remain the same, with the same eigenvalue, as time evolves. 

For a basis set that spans the spin quantum numbers m = {—S,—S + — 1,5} where S

is the total quantum spin it can be shown that the only ’’good” quantum numbers in the spin 

system are the eigenvalues of the operators 5^ and Sz

S'^\S,m) = 5(5 + l)|5,m), 

5^15, m) = m\S, m),

(B.2)

(B.3)

and these operators correspondingly commute [5^, 5^] = 0. It is useful also to define the raising 

and lowering operators S±, which obey the following relation for raising or lowering the quantum
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number m

5±|5,m) = ^S{S + 1) — m{m ± 1)|5, m ± 1), (B.4)

where S± = Sx ±iSy.

In the special case where where the total spin S = 1/2, the spin operators can be expressed 

in terms of the Pauli matrices

O'x —

0 1

1 0 V' “ /

1 0 

0 -1

\

y
(B.5)

where Si = t7j/2.



Appendix C

Derivation of third order self-energy

In this appendix it will be shown how the integral in Eq. (4.31) is evaluated over the time-ordered 

contour T2. The part of the self-energy in Eq. (4.31), which is of interest, will be denotel by I 

and it is written as follows

T(ri,r3)= Drain, Ti) J dT2Go{Ti,T2)Go{T2,n)Dn{Ti,T2)Di{T2,T3) . (C.l)
771,71,/ ^

In order to express the quantity above in terms of real time integrals over a contour goiig first 

from —oo —► -|-oo and then from -foo —» —oo [44] is performed so that only the ground-s:ate at 

t = —oc is well defined. The various branches along the contour result in four different Green’s 

function, which are illustrated in Fig. 3.1. These are respectively the lesser and the greater 

Green’s functions (G*^ and G>) and both the time ordered and anti-ordered Green’s furctions 

(G?^ and G*). The lesser (<) contributions to J enter into Eq. (C.l) as

^ D^{t3,ti)x 
m,n,l

-f-ooI j dt2GQ{ti,t2)GQ{t2,tz)Dl^{ti,t2)Df{t2,tz)

I

dt2Go(ti,^2)^0 {t2,h)Dn{ti,t2)Df {t2,fa)I (C.2)

— OO 

— OO

-f

+00
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where one defines 0^(1,t') — Gq + 0^(1,t') and = 0^(1,t') — 0^(1,t'). If these

expressions are now inserted into Eq. (C.l) eight integrals are obtained that can be evaluated 

separately. These are

+ 00

m,n,l
I

dr2Go(ti, t2)Go {t2, , t2)Df{t2, t^)

O
j dt2GQ(ti,t2)GQ {t2,tz)D^{ti,t2)Df (t2,tz)

— OO 

-l-COJ dt2GQ (ti,t2)GQ {t2, t3)D^{ti,t2)Df{t2, ts)
-OO

-f-oo

j dt2GQ {ti,t2)GQ {t2, tz)D^{tiJ2)Df {t2, tz)
-OO 

+ 00
- J dt2GQ{ti,t2)GQ{t2,tz)Dn{ti,t2)Df{t2,tz)

-OO 

+ 00J dt2GQ {ti,t2)GQ {f2,tz)D^ Df {t2,tz)

+ J dt2GQ{ti,t2)GQ{t2,tz)D^{ti,t2)Df{t2,tz)
— OO 

+ 00
- J dt2GQ{ti,t2)GQ{t2,tz)D^{ti,f.2)Df{t2,tz)'^ .

— OO 

+ 00

— OO 

+ 00

— OO 

+ 00

— OO 

+ 00

— OO 

+ 00

(C.3)

Importantly several of these integrals cancel each other, while a few other can be grouped 

together by using the various definitions of G^ and G'’/“ [98, 109]. By performing these simpli­

fications one finally obtains a much more compact expression

+ 00

m.n.l
'd^^{tl,tz) = 2 ^ D^{tz,tl)^ I dt2Gl{ti,t2)Go{t2,t3)Dn{tl,t2)Df{t2,tz)

o

dt2GQ{ti,t2)GQ{t2,tz)Dn{ti,t2)Df{t2,tz)^ , (C.4)

—oc 
+ 00
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which after performing the integration over t2 becomes 

T<(ti,t3) = 2 m -Pm)J j
771,n,/

X ^Gq{lo)Gq {uj + io' — £i)Pn5{u:' — £■„) + Gq{lo)Gq{u) + u)' — £'/)D^(n;^)| . (C.5)

Note here that Gq(u;) = l/(u> — eq + i^s) and Gq(u;) = rs/s(cj)/[(n-' — eo)^ + F^] (refer to 

Chapter 3). Again it is assumed that the coupling to the tip is negligible leaving only the 

contribution to the broadening from the substrate. This is governed by the Fermi function 

fsiio). The spin subsystem is assumed to be weakly coupled to a surrounding heat bath kept at 

a temperature T, which ensures that the system remains in thermal equilibrium. Therefore, to a 

good approximation, one can write = l/{uj — £rn + i^gT) and D^{u) = Pn6{uJ — Sm)- In

the latter it has been assumed that ksT is small enough that the lesser Green's function can be 

approximated by a delta-function multiplied by the occupation of the specific spin state. With 

this information at hand one notes that the first term in the curly brackets in Eq. (C.5) will 

not produce a logarithmic Kondo term but represents merely a small third order correction to 

the scattering and can thus be neglected, as also found in Ref. [98]. The second term contains 

the interesting third order contribution which after Fourier transform becomes

+w
I<{E) = 2j2Pii'^-Pm)G^{E + em-ei) J cL;G<{co)Re[D';,{E - to + 6^)]

m,n,l

(C.6)

Here the real part of has been kept since the only interesting quantity is InLr'’(£’) = \I^{E)-\- 

X>(E)]/2. The effect of ReT^(E) on the conductance is negligible in the case eq ^ ^F- It is also 

due to this fact that the density of states p around ep is approximately constant and therefore 

can be taken outside of the integral in Eq. (C.6). This leads to a new expression for I^{E), 

which reads

-V

I<(E) = 2'^ Pi(l-Pm)G<(E + em-si)p dujRe
m.n.l

1

-w
-{E — LJ £m ~ £n) + iksP

(C.7)
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Finally the integral is performed and the entire procedure for I^{E) is repeated. One then 

arrives at the final expression which reveals the logarithmic divergences present at the allowed 

transitions

iHe) = -2 PKl - Pm)Gf{E ±
m,n,l

L(£ + F±0™„)2 + (fcBT)2
(C.8)



Appendix D

Derivation of transition rates

In this appendix the steady-state non-equilibrium distribution of the population, P„i{V). of the 

spin system as the broadening due to coupling to the tip. Ftip-s, is increased will be calculated. 

In order to do so equation (4.22) is expanded up to the n-th order in the interaction Hamiltonian

[D{t, T')]n,m = X] i-i)n+1
n!

Jin...I

c c
dTn

(0|rc{/fe-sp(ri)... //e-sp(r„)d„(r)dL(r')}|0)

t/(—oo, —oo)

D.l)

where U is the time-evolution unitary operator and the time-averages are over the known non­

interacting (Jsd = 0) ground state |0). The time integration over r is ordered on the contour C 

going from —oo to -|-oo and then returning from -|-oo to —oo [102].

Inserting the expression for Ffe-sp from Eq. (4.15) into the above and expanding to second 

order one gets [note for ease of description the elastic contribution of Jq is omitted but is included 

in the final expression in Eq. (D.7)]

[^(^7-')]^% = f dT2 {0\Tc{cl{Ti)Ca'{n)cl{T2)c3f{T2)dn{T)dl{T')}\0)
^ > R Rl 'L 'La,a',13,0' fj

x^(0|rc{5*(ri)5^(r2)}|0)[a%,.H^^S iD.2)

where the indexes i and j run over the Cartesian coordinates x, y and 2 for the given spin 

connected to the tip. The operator breakdown of the spin from Eq. (4.21) is now substituted
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into Eq. (D.2)

k,k',l,l'c Q

X Y1 i^\'^c{Ca'{Tl)c^/3{r2)cp>{T2)cl{Ti)}\O)Y^Slk,Sfi,[(T%a,[(T^]p0:. (D.3)
n,a' ,0,13'

The time-ordered contractions of the two brackets in Eq. (D.3) can be re-written in terms of 

their respective non-interacting Green’s functions, Dq{t,t') and Gq{t,t') as follows:

[-D(r,T')]^?L = - sd X] / / <^'^2'5„fc^//c'(^m/'[Do(r, ri)]„,„[Do(ri,r2)]z,([Do(T2,r')]m,r

k,k',l,v[. ^

X ^^’0^a0'[GQ{n,T2)]pp[Go{T2,Ti)] aa ^ ^ Sf.f.1 (D.4)
a.a',0,0'

where the extra factor of 2 emerges from the fact that a second contraction of the time-ordered 

bracket merely exchanges t\ and T2. Then, by using Dyson’s equation [98], one can write the 

second order contribution to the interacting spin self-energy (IT) which reads

[n(ri, r2)]i^L = -2^sd '^2)]/3,9[Go(t2, ri)]aa -^2)]/,/ Y
a,13

(D.5)

where the assumption that the electrons are spin degenerate has been used thus omitting the 

spin index on Go(ri, r2) and including a factor of 2. The real-time quantities are now calculated, 

such as the lesser (greater) self-energies, by using the Langreth’s theorem for time ordering over 

the defined contour [102]. After including the elastic contribution one gets

[n^(ii,i2)]ll = - 24 ^[Go^(ti,t2)W[Gj(i2,fi)]aa5;[I?o%i>^2)]M
a,0

^ Y + ^i3^a0XSnm[^%0)- (D-6)

In computing the Fourier transform it is noted the two different expressions for the lesser and
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greater Green’s functions are

l a,/3_4

(D.7)

where one defines = P/ and P^^ = 1 —P; and D^{ti,t2)ij = P;^exp[—f£/(ti — ^2)/^]- Assum­

ing that the spin system is in thermal contact with a heat bath of temperature T, the energy 

levels £/ should be broadened by the factor (3 = ksT but this can be neglected for ease of cal­

culation since in general P << 1. However the broadening in the electronic Green’s function 

due to contact to tip and substrate is not disregarded as this is pivotal to the calculation of the 

non-equilibrium spin populations.



Appendix E

Explicit form for the current vs bias

In this section, an explicit form for the bias-dependent current introduced in Chapter 4 will 

be derived as this offers a more clear' picture of the physics behind the spin-crossover effect 

discussed in Chapter 6. The original form of the current in terms of the full many-body Green’s 

functions is recalled from Eq. (4.47)

/
+CX5

dui

■oo

E<{co)G>{u;)-T.>{co)G<{u;) (E.l)

where = E^/jj and E> = r,j(l — frj). = 1/[1 + )]. The full interacting lesser

and greater Green’s functions, as they appear in the above equation, are written in terms of the 

retarded and advanced Green’s functions and the interacting and lead self energies

gS=G'(eS + eS + eS)g“, (E.2)

(E.3)

where the density of states at the Fermi energy ep is p = r/[(£o)^ -f F^] and F = El -h Fr. 

The above approximation can be written by assuming that the onsite energy eq is far enough 

from the Fermi energy so that the density of states can be assumed constant. The interacting
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self-energy is the one derived earlier in Chapter 3

= V \{m\S^\n)\^Pn{l - Pm)Gf{u^±a (E.4)

Inserting this into the expression for the current one arrives at

— P
rLFfl r' + oo

{/l(w)[1 - /h(w)] - [1 - /L(i^)]//?(t^)

- 2Jsdf E \SLn\"Pn{l - Pm)fL{uj)[l - fdoJ -
i,m,n

+ 2Jsdf E \SU^Pn{l-Pm)[l-fL{u^)]fR{c^ + n^n)]}d^,

(E.5)

(E.6)

(E.7)

where a number of equal quantities have been canceled out. At this point one can use the 

following result

f jlrf ^Ti

1 — exp[- IJ>rj
keT

(E.8)

Finally, the explicit form of the normalized current with respect to the bias can be written as

/(l/)/Go = E + ^ ^ \SU?Pki.l - Pm)i-{V - ^mk),

i,Tn,k

(E.9)

where the quantity i-{V — ilmk) = C(^ “ ^mfc) — C(~^ ~ flmfc) has been defined. The normal­

ization constant is the non-interacting conductance Go =
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