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Abstract

Application development for wireless sensor-actuator networks (WSANs) is widely regarded as being a 

complex task: not only does the programmer need to orchestrate communication and data processing 

in a heterogeneous network of potentially resource-limited and unreliable devices, but he also needs to 

ensure timely operation of the system so that the temporal relationship between sensor readings and 

actuator stimuli is maintained. Macro-programming, originally proposed for the more general domain 

of wireless sensor networks (WSNs), is a programming paradigm in which applications are concisely 
specified using concepts whose semantics involve potentially large collections of network nodes, thus, 

significantly reducing the programming burden. However, macro-programming WSAN applications 

remains a largely unaddressed problem because the languages proposed to date have either focused 

on data transformations in the network while neglecting the temporal aspect of WSAN applications, 

or they do not offer any support for energy-efficient operation.

The synchronous programming programming paradigm was introduced in the 1980’s as a way 

to simplify the development of reactive and real-time systems. The paradigm offers a deterministic 

concurrency model in which all system components execute and communicate in synchrony according 

to discrete, global time. As a result, synchronous programs lend themselves to formal analysis and 

verification, as well as, allow establishing run-time reaction times at comprile time. These properties 

made the synchronous programming languages hugely successful in many control and safety-critical 

system applications such as, for example, avionics or nuclear power plant control.

This thesis proposes to blend the synchronous programming paradigm with macro-programming 

for the development of WSAN applications. The synchronous macro-programming model bounds the 

extent of network communications and imposes a global time regime on the operation of the whole 

network. We argue that this approach results in the ability to statically schedule all communications 

with the benefit of network energy conservation, as well as, providing predictable system response 

times. Furthermore, the global time regime enables network-wide synchronization of sensor sampling 

and actuation, which is an important property in many control-oriented WSAN applications.

Ill



The feasibility of this approach is demonstrated by means of the design and implementation of a 

synchronous, stream-based programming language - SOSNA. SOSNA is a macro-programming language 

because a single program defines the operation of a potentially heterogeneous network as a whole, 

rather than specifying the operation of individual nodes in terms of sending individual messages. The 

language implements the synchronous paradigm through network time synchronization and through 

scheduling of all network communications as sequences of network neighbourhood data exchange 

rounds. Heterogeneity is directly supported via the concept of hierarchically-organised abstract device 

classes, which are used by the compiler to automatically partition the global program into a number 

of sub-programs, each of which is to be executed on devices belonging to a particular class.

We have investigated the timeliness, energy-efficiency and reliability properties of SoSNA applica­

tions in a number experiments on a network of TelosB motes. Furthermore, several proof-of-concept 

applications running on a heterogeneous network of TelosB and MicaZ motes, as well as, on a custom- 

built simulator demonstrate key language features and show that synchronous WSAN programming 

is a practical concept.
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Chapter 1

Introduction

Wireless sensor-actuator ^ networks (WSANs) are an emerging class of networked embedded systems 

in which the task of controlling a physical phenomenon is realised with a number of spatially dis­

tributed sensors and actuators that are interconnected over wireless communication channels. Al­

though WSANs share some characteristics of the more established wireless sensor networks (WSNs) 

such as, for example, protentially scarce resources of network nodes, they differ significantly from W SNs 

in that real time becomes an important aspect of application design.
We address the problem of programming energy-efficient and timely WSAN applications by defin­

ing a synchronous application execution model in which all network communications are scheduled 

off-line and comprise a bounded number of fixed-duration network neighbourhood data aggregation 

rounds. The model rests on the central requirement that time in the network is synchronized and, 

when used as a basis of a macro-programming language, the model enables the compiler to establish 

a global application communication schedule at compile time, as well as, to generate application code 

capable of duty cycling and time-synchronized sensing and actuation. Macro-programming is a pro­

gramming paradigm that allows to concisely specify network behaviour in terms of constructs whose 

semantics may involve large collections of network nodes, thus simplifying the programming task. The 

high-level nature of the macro-programming constructs grants the compiler considerable freedom as 

to how they are realised in wireless networks and in this thesis we investigate a synchronous approach 

to macro-programming WSAN applications.
We demonstrate the applicability of the synchronous macro-programming model through the design 

and implementation of the stream-based, synchronous macro-programming language SOSNA. The 

language allows to concisely specify a diverse class of heterogeneous W'SN/WSAN applications using

^Some authors use the term actor to refer to the same concept.
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a range of generic constructs commonly found in macro-programming languages such as region-based 

computations or tree and neighbourhood-based data aggregation. The language provides support for 

expressing feedback, which is an important property of many control-oriented applications, as well 

as, it transparently handles application heterogeneity by automatically inferring the assignment of 

different fragments of the global macro-program to network devices of different classes. We evaluate 

the energy-efficiency and timeliness properties of Sosna programs in a series of experiments running 

on wireless networks of TelosB and MicaZ motes (Crossbow Technology 2009).

The rest of the chapter is organised as follows. Section 1.1 describes the core characteristics of 

wireless sensor-actuator networks and it discusses the challenges related to the development of WSAN 

applications. Section 1.2 discusses the use of time synchronization in both WSNs and W'SANs in 

order to motivate the central requirement of our model. Sections 1.3 and 1.4 introduce the two corner 

stones of the model, namely the macro-programming and the synchronous programming paradigms. 

We conclude the chapter with the presentation of the main contributions of the thesis and of the road 

map for the remaining chapters.

1.1 Wireless Sensor Actuator Networks

WSANs are envisioned to be used in a wide variety of application domains providing control in 

potentially large geographical areas. In the field of industrial process control, WSANs are seen as 

a way of reducing cost by eliminating increasingly complex sensor-actuator cabling. To this end. 

Song et al. (2008) develop the WirelessHART protocol for industrial control applications that require 

real-time wireless communications. In agriculture, Sikka et al. (2006) j)ropose to use WSANs in order 

to enable automatic control of cattle grazing on large fields with the aim of reducing the amount of 

effort required to maintain the fields, while Stipanicev & Marasovic (2003) investigate the suitability 

of WSANS for greenhouse climate control. In the field of building management systems, example 

applications range from structural control systems for earthquake response (Lynch et al. 2007) to 

automatic control of lighting and air-conditioning systems (Li 2006, Lin et al. 2002).

The CSOnet system (Montestruque & Lemmon 2008) is one of the best documented examples 

to date of a WSAN implementing distributed control over a large spatial area. The system is a 

metropolitan-scale W'SAN that exercises control over a city’s sewage system in order to minimise the 

frequency of overflows. Combined sewer overflow (CSO) is an event during which storm waters add 

up to sanitary flows and cause an overflow, which is typically directed to a nearby river. Naturally, 

CSO events pose an environmental threat and their frequency should be minimised. Also, since the
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federal law in the United States fines municipalities for each sewer overflow, there is a incentive to the 

development of a system that helps to reduce the annual cost of running a city’s sewage system.

CSOnet attempts to reduce the frequency of CSO events by allowing to temporally store the 

excess storm waters within the sewage system itself. Such an approach requires distributed real-time 

monitoring and control of waste water levels so that they are released to the river only when their levels 

exceed the sewer system’s capacity. To this end, CSOnet employs four types of devices: water level 

sensor nodes (INodes), communication relay nodes (RNodes), gateway nodes (GNodes) and actuator 

nodes (ANodes). The gateway nodes are responsible for providing connectivity to a wide area network, 

while the actuator nodes control waste water diversion structures directing the incoming water either 

to a waste water treatment plant or directly to the river.

In order to enable scalability, the system adopts a hierarchical architecture in which the global, 

metropolitan-scale network comprises a federation of smaller WSANs that are interconnected over an 

existing wide area network. Each of the individual WSANs controls a section of the sewage system 

and comprises multiple INodes, one ANode, at least one GNode and, depending on communication 

conditions, a number of RNodes. The INodes measure water levels upstream from their corresponding 

ANodes and the RNodes are used to connect SNodes and ANodes with the nearest gateway, in the 

case when there is no line-of-sight among the devices. In order to implement the distributed control 

law governing the use of the actuators, CSOnet follows a particular communication pattern, in which 

data from all INodes are routed to their corresponding gateways, which then exchange it with each 

other, compute the global control law and send appropriate commands to the actuators.

The control law implements a feedback-based optimal control strategy that minimises the amount 

of sewer discharged to the river. The strategy switches between two modes of which the first is used 

by those ANodes that have enough capacity to direct all of the incoming water to the waste water 

treatment plant, while the second mode is used by the remaining ANodes to compute the minimal 

amount of waste water to be directed to the river. The control law is scalable, i.e., the actuator nodes 

can make their decisions on their own once they know the current values of few global parameters the 

computation of which is simple (it involves summation of distributed values), and the value of one 

local parameter that is computed based on the information from neighbouring actuators.

CSOnet implements time synchronization across the entire network in order to both synchronize 

sensing and actuation, as well as to implement duty cycling for network energy conservation. A 

common time base for sensors and actuators is necessary in order to ensure correct execution of the 

control law, which is specified in the language of optimal control theory (see, for example, Athans & 

Falb 2006). On the other hand, since both the INodes and RNodes are relatively small battery-powered
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devices, duty cycling their activities becomes vital to the realistic applicability of the whole system. As 

far as control is concerned, the required levels of time synchronization accuracy are closely related to 

the dynamics of the controlled physical phenomenon, which in the case of waste water level changes are 

not stringent. The implementation of network duty cycling, however, poses additional requirements 

since misalignment in sleep periods across the network might lead to broken communication links 

and, thus, it might disrupt the operation of the whole system. Also, since CSOnet resynchronizes 

the network only once a day in order to conserve energy, it is expected that time synchronization be 

precise. As a result, the nodes are able operate at two per cent duty cycle, i.e., they stay dormant 

98% of time.

When network nodes are in the active mode, they engage in communications. Because the network 

operates in harsh environment of city sewer system, extra measures are taken in order to improve 

communication reliability. CSOnet takes a best effort approach that uses explicit packet acknowledges 

and retransmissions, which are performed maximally until the end of each active mode time slot. As 

a result, the system achieves 99% of end-to-end data yield and the small fraction of lost messages is 

tolerated by the control algorithm.

CSOnet is an example of a heterogeneous WSAN. Such networks comprise different types of devices 

that may range from various kinds of sensor and actuator nodes, through data processing nodes 

(controllers) to network repeaters and gateways. Homogeneous WSANs, on the other hand, comprise 

nodes with both sensing and actuation capabilities such as, for example, robot swarms (Oung et al. 

2010). Despite this variety, however, it is typically assumed that WSANs, among other types of 

nodes, comprise low-cost devices with scarce energy budgets, relatively short range and unreliable 

radio communications (Akyildiz & Kasimoglu 2004, Verdone et al. 2008).

WSANs share many similarities with wireless sensor networks. Multi-hop network topologies might 

be used as a result of the fact that long-range communications require a reliable communication 

medium and are energy consuming. Data from multiple sensor nodes might need to be fused in order 

to obtain reliable information because of the low-cost nature of sensor nodes. The underlying need 

for energy-efficient operation, as well as, the bandwidth limitations of wireless channels result in more 

emphasis being put on in-network data processing instead of simply communicating sensor readings 

to data processing nodes. This fact is further motivated by the work of Pottie & Kai.ser (2000) who 

showed that radio hardware might consume orders of magnitude more energy than the processor. Also, 

Raghunathan et al. (2002) discovered that there was no significant difference in energy consumption 

between a radio in the transmission and idle states. Hence, designing communication protocols that 

make extensive use of radio duty cycling is vital to achieving network lifetimes in the order of years.
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For example, Burri et al. (2007) propose a data gathering protocol for wireless sensor networks that 

integrates TDMA-style medium access protocol with a tree network topology so that duty cycles of 

the order of 0.2% are achieved, extending their network’s lifetime up to approximately five years.

There are, however, important differences between WSANs and WSNs. The addition of actuators 

to the network closes the loop of information flow in the system and introduces some real-time bounds 

on network operation as the system is now expected to react to changes in the state of the environment 

(Akyildiz & Kasimoglu 2004, Zhao & Guibas 2004). Such a view makes WSANs essentially a class 

of distributed control systems, one in which numerous sensing, control and actuation components 

are spatially distributed and communicate over potentially unreliable links. Akyildiz & Kasimoglu 

(2004) point out that control, being the main application goal, affects the range of suitable WSAN 

topologies making large multi-hop networks less useful since it is more difficult to provide them with 

communication timeliness guarantees. This view is supported by Arora et al. (2005) who, based on the 

experience gained during the deployment of a large sensor network, note that reliability of multi-hop 

communication spanning more than five or six hops may be insufficient for practical use.

WSAN application development is widely considered to be a very difficult and complex task. At 

the high level, the application could be viewed as a distributed control system that has to dynamically 
react to a changing environment in such way that the application’s goals are achieved. Formal control 

design methodology^ might need to be used at this stage as in, for example. Wan & Lemmon (2007) 
and Lynch et al. (2007). Then, a system architecture needs to be designed in such way that various 

functional and non-functional application requirements are satisfied. This includes choosing a network 

topology capable of providing the desired communication quality and timeliness levels. The control 

laws and logic need to be translated into a distributed coordination protocol that will orchestrate 

processing of information flowing from sensors to controllers and further towards actuators in a timely 

and, most importantly, energy-efficient manner. For example, Melodia et al. (2005) developed a 

dynamic cluster-based protocol that addresses both the timeliness and energy efficiency aspects of 

WSAN coordination. Additionally, since different hardware could be used for sensors, actuators 

and controllers, some of which having potentially severely constrained resources, the programming 

task might involve writing a number of different, but inter-communicating programs for a number of 

different hardware platforms.

Domain-specific programming languages can facilitate the development of W’SANs through au­

tomatic handling of certain aspects of their operation. Based on the above discussion, we conclude

^Unfortunately, there is no universal set of techniques that can be applied, especially in the WSAN domain. Sinopoli 
et al. (2003) discuss the suitability of existing models of computation for the WSAN domain while D’Andrea & Dullerud 
(2003) report initial results on methods for control of interconnected systems.
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that the following characteristics are common to many WSANs and hence should be supported by 

programming languages that target this domain.

• Network heterogeneity. Unified handling of different hardware and software platforms within 

a single overall framework can greatly simplify the development task. This includes also the 

ability to handle in an uniform manner the communication among devices of different kinds.

• Stringent resource constraints. It is envisioned that many WSANs will comprise devices 

with highly constrained resources. Therefore, programming tools should be able to produce 

application code that is efficient in terms of its time and space requirements. Also, since the 

many WSAN nodes are likely to be battery powered, support should be provided for automatic 

duty cycling of node’s hardware components including, in particular, the radio transceiver.

• Timely operation. The ability to establish bounds on program reaction times is of funda­

mental importance since the main task of WSANs is to interact with the surrounding physical 

environment. Because WSANs are distributed systems, their operation involves communication 

and, hence, system reaction times necessarily include delays introduced by communication i)roto- 

cols. Additionally, since many control algorithms rely on the ability to determine the time when 

sensors are sampled and when actuators are instructed, support is necessary for synchronization 

of the sensing and actuation tasks across the network.

• Data aggregation. One of the main advantages of WSANs (as well as WSNs) is the ability 

to use multiple sensors spread across an area. Therefore, support is necessary for fusion of data 

coming from multiple network nodes.

• Data propagation. The need to actuate based on the values of sensor readings translates to 

the need to communicate control decisions to the actuators, thus, making the established WSN 

base station-centric communication models insufficient for many WSAN applications.

• Feedback. Many control techniques combine information on past system states with the current 

state in order to improve the accuracy of control decisions. It is necessary, therefore, that WSAN 

programming models allow references to past program states, particularly in scenarios when the 

state may be distributed across different network nodes.

6
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1.2 Time synchronization in WSANs

Because network time synchronization is at the core of the synchronous macro-programming model, 

its feasibility for WSAN applications underlines the practicality of our approach. There is a large body 

of literature in the WSN domain on time synchronization protocols that take into consideration such 

WSN characteristics as limited hardware resources, tight energy budgets, unreliable communication or 

low-quality hardware clocks (see Romer et al. 2005 for an extensive survey). Many of these methods 

can be directly applied to WSANs, and even though there could potentially be space for further 

research exploiting, for example, the heterogeneous nature or some network topologies typical to 

WSAN systems, we are not aware of any significant work taking this approach. Hence, in the remainder 

of the thesis, we do not make a distinction between time synchronization methods for these two 

domains.
There are a number of important applications of time synchronization wireless sensor networks. 

Energy-efRcient network operation can be enabled if nodes are able to agree on their active and 

sleep operation periods. Such approach is taken, for example, by Hohlt et al. (2004) who propose 

a decentralised protocol for coarse-grained synchronization of communication over a tree topology. 

Madden et al. (2005) use a similar technique to schedule communications and sleep times of sensor 

nodes that process data queries. Time-synchronized sensor sampling is also required in applications 
performing distributed estimation tasks such as, for example, the VigilNet target tracking system 

(He et al. 2006), the counter-sniper system of Simon et al. (2004) or the volcano eruption monitoring 

system of Warner-Allen et al. (2005).
WSAN applications introduce additional requirements for time synchronization. Akyildiz k Kasi- 

moglu (2004) note that, apart from the need to base control decisions on sensor data sampled by 

different sensor nodes at approximately the same time, actuation may need to be exercised at some 

precisely chosen moment in order to achieve a given control goal. For example, Zhao et al. (2007) 

discuss an application that requires tight synchronization of a number of cameras operating at a foot­

ball field so that smooth image transitions could be composed. Lynch et al. (2007) and Montestruque 

k Lemmon (2008) need time-synchronized actuation so that their theoretically derived control laws 

could be correctly implemented on a real network, while Dalton et al. (2008) recognise this issue by 

providing explicit support for synchronized actuation in their programming language Desal, which 

was designed with WSAN applications in mind.

Time constraints on sensing and actuation in WSAN applications lead to constraints on commu­

nication and processing, which are typically performed after the sensors are sampled and before the 

actuators can stimulated. As advocated by Stankovic et al. (2003), timely communication and actu-
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ation are some of the most fundamental requirements of WSAN applications because they operate in 

close relation with the physical environment in which they are embedded. As a result of this fact, 

a number of real-time communication protocols have been proposed for the domain. For example, 

the Speed protocol (He et al. 2003) delivers soft real-time communication guarantees by maintaining 

a desired data delivery speed through the use of feedback control of a geographic routing protocol. 

Rowe et al. (2008) developed a reliable and energy-efficient TDMA communication scheme that makes 

use of custom-built hardware, in order to increase the accuracy and efficiency of global network time 

synchronization. A more fundamental approach is taken by Prabh (2007) who analysed the real­

time capacity of wireless sensor networks and developed a number of communication protocols that 

demonstrate the predicted timeliness levels.

We conclude that time synchronization is feasible in WSANs. The synchronous macro-programming 

model, however, does not specify any particular network time synchronization scheme because differ­

ent applications might have different requirements with respect to both the desired accuracy and the 

cost of time synchronization. We leave it, therefore, up to the implementation of the model to choose 

the time synchronization method and we require only that this method can be made transparent to 

tlie semantics of the model, e.g., its operation can be included in the global communication schedule.

1.3 Macro-programming

Macro-programming (Gummadi et al. 2005) is a relatively novel programming paradigm proposed as 

a way to radically simplify the development of distributed applications comprising many, wirelessly- 

communicating nodes by abstracting away most of the complexities involved in orchestrating com­

munication among them. Following the taxonomy in Sugihara & Gupta (2008), WSN programming 

models can be roughly classified into three main groups:

• node-level models that focus on specification of the behaviour of individual nodes,

• group-level models that offer abstractions that are related to groups of network nodes, for ex­

ample, n-hop network neighbourhoods or target-tracking groups,

• network-level models that operate on concepts that may potentially span across the entire net­

work.

Macro-programming languages fall into the last category and offer an unprecedented level of abstrac­

tion since fully-functional WSN applications can be written in as few as tens of lines of code, compared 

to hundreds, when node-level or even group-level programming models are used. This property has
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been consistently reported by different anthors - see, for example, Whitehouse et al. (2004), Luo et al. 

(2006) and Newton & Welsh (2004). The main idea behind macro-programming is to be able to address 

the operation of the whole network using programming constructs whose semantics spans across mul­

tiple network nodes. As a result, the compiler gains significant freedom as to how program execution 

proceeds within the network enabling, on one hand, optimisations that are out of reach for compilers 

of lower-level languages, while on the other, significantly adding up to the complexity of developing 

the compiler. Additionally, being high-level, macro-programming languages may introduce language 

expressiveness limitations when compared to lower-level programming languages simply because it is 

the compiler that arranges the details of network communication and not the programmer.

There is a considerable variety in the range of abstractions proposed by the existing macro­

programming languages and it is often motivated by a particular class of applications that the lan­

guages target. Some of the earliest works impose a database abstraction on the network and use a 

subset of the SQL language in order to dynamically query network nodes for their current sensor 

readings. Others take approaches inspired by functional programming languages treating the whole 

network as a single distributed computer, or by imperative programming languages adding program­

ming constructs that allow for convenient specification of distributed computations.

1.4 Synchronous Programming

The synchronous programming paradigm (Benveniste et al. 2003) was introduced in the 1980’s as a 

way of formalising the development of safety-critical real-time systems. The paradigm is founded on 

the synchronous hypothesis that states that program reactions to signals or events are instantaneous, 

i.e., they have a negligible duration. Synchronous programs, therefore, are driven by logical time that 

is defined as a sequence of system reactions to input events. Thanks to their deterministic model 

of concurrency and well defined semantics, the synchronous languages are well suited for formal 

verification, as well as, they enable calculation of program response times and memory use at compile­

time. This property made the approach hugely successful in such application domains as automotive, 

avionics, aerospace or nuclear power plant control where formal verification of safety critical code is 

mandatory. A number of synchronous languages has been developed over the last twenty years. Some, 

like Esterel (Berry & Cosserat 1985), Lustre (Caspi et al. 1987) and Signal (LeGuernic et al. 1991) 

are already industry standards for safety-critical embedded software development. Other, like Lucid 

Synchrone (Pouzet 2006), are research prototypes for experimentation with novel techniques.

The synchronous programming paradigm is a general concept unrelated to the syntactical details
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of the existing synchronous languages. As discussed by Benveniste et al. (1999), there are three key 

requirements for a programming language to be synchronous:

1. Program operation progresses in discrete steps and can be modelled as an infinite sequence of 

reactions.

2. It is possible that, within a single reaction, programs make decisions based on event absence. 

For example, program can output a default value if one of its inputs is absent.

3. Parallel composition of two sub-programs (e.g., two program modules, threads, streams, etc.) is 

defined by taking the pairwise conjunction of their individual reaction sequences, whenever the 

programs are composable according to language’s semantics.

Such an abstract formulation led to consideration of distributed implementations of synchronous lan­

guages. The globally asynchronous, locally synchronous (GALS) model that describes a network of 

asynchronously communicating processors that themselves operate synchronously was suggested to be 

the overall architecture. Benveniste et al. (1999) observed, however, that a reliable communication 

medium is required so that the synchronous semantics can be preserved: messages cannot be lost 

and have to be delivered in the same order as they were sent. Caspi et al. (1999) proposed a gen­

eral algorithm for distributing synchronous programs among a number of processors and later (Caspi 

et al. 2003) described a compilation technique of Lustre programs to the Time-Triggered Architecture 

(TTA), which is a distributed, synchronous and fault-tolerant communication bus architecture used in 

the real-time systems domain (Kopetz 1997). Ongoing work investigates di.stributing synchronous pro­

grams on less reliable architectures such as the loosely time-triggered architecture (LTTA) (Benveniste 

et al. 2007) or on event-triggered communication architectures (Romberg & Bauer 2004).

1.5 Contribution of the Thesis

This thesis proposes to blend the synchronous programming paradigm in the context of macro­

programming wireless sensor-actuator networks. As it was shown in previous sections, time-synchronized 

network operation is vital to many WSAN applications. Synchronous languages, on the other hand, 

because of their static and deterministic semantics give the compiler considerable freedom as to how 

program execution is realised and permit compile-time calculation of such important properties as pro­

gram response times or memory use. We propose a macro-programming model in which synchronous 

semantics are given to communication primitives so that, assuming network time synchronization, the 

operation of the whole network can be globally scheduled by the compiler. As a result, applications

10
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execute in a timely and predictable manner and they implement network-wide duty cycling for energy 

conservation. Also, the synchronized network operation allows for synchronization of sensor sampling 

and actuation among all network nodes.

The synchronous macro-programming model is centred around the network neighbourhood commu­

nication paradigm in which nodes located within each others’ radio communication range periodically 

exchange information. Whitehouse et al. (2004), in their work on the Hood programming abstraction, 

advocate that the neighbourhood communication paradigm is particularly well suited for WSN/WSAN 

applications because it is localised, i.e., it does not require any information that is not local to sensor 

nodes, as well as, because it naturally matches the broadcast nature of wireless communications. In 

the context of programming languages, neighbourhood-based communication is sometimes used as a 

means to implement local state sharing, for example, in the Desal (Dalton et al. 2008) programming 

language, or as a primitive communication operator, as in the Proto macro-programming language 

(Beal & Bachrach 2006).

Similarly to Proto, we use the neighbourhood communication primitive as an elementary building 

block that can be used to construct higher-level communication operators. Observing that WSAN 

applications must bound the processing time between .sensor sampling and actuation, we constrain 

the duration of the neighbourhood communication primitive to a fixed value and limit its use so 

that a static communication schedule of known size can be composed at compile time. In this way, 
network operation proceeds in cycles of fixed duration, each of which comprising a fixed number of 

neighbourhood communication rounds. The main consequence of static communication scheduling is 

that macro-programs are limited in terms of the extent of network communication to a certain number 

of hops - it is no longer possible to directly exchange information between two arbitrarily distant 

network nodes. The extent the communication bound, however, is application-specific rather than 

universal and this limitation is in agreement with what is expected of WSANs: as mentioned earlier, 

general considerations of the domain’s timeliness requirements lead to favouring smaller topologies 

while the reliability of multi-hop communication over five-six hops was reported to be below that 

required for practical use.

We demonstrate the feasibility of our model through the design and implementation of the syn­

chronous macro-programming language SOSNA. Inspired by the Lustre and Lucid Synchrone lan­

guages, SosNA offers a functional stream-based approach to programming heterogeneous WSAN ap­

plications. The macro-programming aspect of the language follows from the introduction of multi-hop 

network topologies that guide the aggregation and propagation of distributed stream values, as well 

as, from the way the language addresses network heterogeneity in which a single program defines the
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operation of the whole network by means of constructs whose semantics might span devices of different 

classes. Both aggregation and propagation are treated as primitive operations whose semantics are 

defined in terms sequences of network neighbourhood communication rounds and the extent of which 

is a compilation parameter tunable to reflect the application’s needs. SosNA is also a synchronous 

language in the sense of the definition from Section 1.4, meaning that all program streams are eval­

uated in lock-step according to the global logical clock. As a result, time-synchronized operation is 

imposed on the whole network so that timely communication among different network nodes can be 

realised. Heterogeneity, cis a fundamental characteristic of WSAN applications, is explicitly supported 

in SosNA by the concept of device classes that describe the different kinds of nodes that comprise the 

network, and which are hierarchically organised to reflect typical WSAN architectures as described, 

for example, by Akyildiz & Kasimoglu (2004). Device class information is used to annotate program 

streams so that the compiler can automatically partition the program into a set of sub-programs that 

are to be executed by network nodes of the corresponding types.

The contributions of this thesis are the following;

1. We merge the synchronous programming and the macro-programming paradigms for the devel­

opment of heterogeneous WSAN applications. We show that this approach carries a range of 

benefits, in particular, it permits to establish bounds on system response times at compile-time, 

to synchronize sensing and actuation in the network and to automatically generate application 

code that realises duty cycling for energy conservation.

2. W’e designed and implemented the synchronous macro-programming language SoSNA, which 

to the best of our knowledge, is the first macro-programming language to provide the above 

characteristics. We show that the language can be u.sed to develop a diverse class of WSAN 

applications, thus strengthening the case for synchronous macro-programming.

3. We show that synchronous macro-programming can be implemented on resource-constrained 

hardware platforms with measurable benefits. The timeliness and energy efficiency of SoSNA 

applications are assessed by means of a number of experiments performed on wireless networks 

of TelosB and MicaZ motes, as well as, memory usage of example applications is discussed based 

on the results of program compilation for the TelosB and MicaZ targets. We show that the 

applications execute in a timely manner and that our duty cycling policies result in a significant 

decrease in battery power consumption. Also, we show that the prototype Sosna compiler is 

capable of generating memory-efficient code that fits on resource-constrained devices.
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1.6 Thesis Outline

Chapter 2 reviews the existing work in the field of programming languages for wireless sensor and 

wireless sensor-actuator networks, as well as, it analyses the differences between synchronous macro­

programming and the existing methods for automatic distribution of synchronous programs. In Chap­

ter 3, we describe the synchronous macro-programming model and provide a description of the SOSNA 

programming language. The main features of the language are presented and are followed by a de­

scription of the language’s semantics and of its type system. Finally, a number of example programs 

are given in order to demonstrate that the language can be used to develop a diverse class of WSAN 

applications. Chapter 4 discusses the implementation of the SosNA compiler. The main program 

transformation stages are described, including type inference, scheduling and program partitioning. 

The second part of the chapter presents the NesC compilation target and it describes the overall 

framework of program execution in wireless network of TinyOS-supported devices. We evaluate the 

key characteristics SoSNA applications compiled to NesC target in Chapter 5 by presenting the results 

of a series of experiments performed on wireless networks of TelosB and MicaZ motes. The timeli­

ness and energy-efficiency properties are quantified and the chapter ends with the analysis memory 

requirements of the compiled applications. W'e conclude this dissertation with a discussion of the 

limitations of the existing SosNA implementation, as well as, of directions of its improvement and 

further research in Chapter 6.
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Related Work

This chapter reviews the existing work in the field of programming languages and frameworks for 

the domains of wireless sensor and wireless sensor-actuator networks. The chapter also presents the 

most prominent synchronous languages and it discusses the relationships between synchronous macro­

programming and the techniques for distributed execution of synchronous programs. A particular 

emphasis is put on macro-programming languages since these are the most related to our work, as 

well as, because a detailed review of all existing programming models for the WSN/WSAN domain is 

beyond the scope of this thesis. Since much of the work covered by this chapter is aimed at wireless 

sensor network applications we summarise it in terms of its applicability to the WSAN domain and 

reflect on the similarities to the work presented in this thesis.

2.1 Wireless Sensor/Actuator Networks

This section discusses the existing programming languages and frameworks for both the WSN and 

WSAN application domains. The structure of this presentation follows the general classification of 

WSN programming models proposed by Sugihara & Gupta (2008) and introduced in Section 1.3 which 

groups all WSN programming models into three broad categories; network-level, group-level and node­

level programming models. The authors partition the network-level programming model category into 

two subcategories corresponding to macro-programming languages and database abstractions respec­

tively. We make a small departure from this categorisation and discuss macro-programming languages 

and all other network-level programming models in separate sections. Then, we present group-level 

programming models and we conclude the section with an overview of node-level programming models.
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2.1.1 Macro-programming Languages

This section discusses the suitability of the existing macro-programming languages for WSAN ap­

plication development. We focus on four properties which are important to wireless sensor-actuator 

networks applications and which were motivated in Chapter 1: language support for timely execution, 

including the support for time synchronised sensing and actuation, language support for energy- 

efficient operation, network heterogeneity and the ability to express feedback-driven behaviour. We 

group the existing macro-programming languages into three general categories which correspond to 

the common characteristics of the languages. Because stream-based macro-programming abstractions 

appear to be the most commonly proposed, as well as, because the SOSNA programming language 

described in this thesis is also a stream-based formalism, we focus our attention on this group.

2.1.1.1 Stream Processing

Regiment (Newton et al. 2007) is a functional macro-programming language which was inspired by 

the idea of functional reactive programming (FRP) originally proposed by Elliott & Hudak (1997). In 

Regiment, the programmer views the network as a collection of spatially-distributed and time-varying 

signals which may correspond, for example, to sensor readings or to results of computations based on 

them. The concept of regions is used to group spatial collections of signals or other regions with the 

purpose of transforming them. Regiment offers a range of built-in region constructors which include 

spanning tree-based regions such as the k-hop network neighbourhood of a selected sensor node, a 

circle, i.e., a group of nodes located within a given physical distance from a node of choice, or regions 

formed through network neighbourhood information propagation. Regions can be transformed with 

the use of three generic region operations: function application to values held by region members, 

filtering out region’s members and folding all values comprising the region to a single value through 

iterative application of a user-specified function. This is similar to how SoSNA handles network data 

transformations and we describe it in more detail in Chapter 3. Regiment programs are transformed 

to static, asynchronous dataflow graphs of region operators and are compiled down to the Token 

Machine Language (Newton et al. 2005) after the application of an extensive set of optimisations. 

TML defines an event based communication model and has been developed to serve as an intermediate 

representation of high-level macro-programs. Regiment takes a base station-centric approach, i.e., the 

final result of a networked computation is expected to be routed towards a base station.

Wavescript is a stream processing language developed by Newton et al. (2008) and designed for 

applications which deal with high-volume, asynchronous data streams. Typically, high-rate stream 

processing systems report performance issues since time stamping of individual data values incurs
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additional cost. Wavescript improves on that by introducing the concept of signal segments which are 

used to group stream values in blocks of fixed size allowing, this way, the compiler to better optimise 

the code. The language does not provide any support for in-network data transformations but rather 

targets general-purpose stream processing applications. Nevertheless, thanks to automatic program 

distribution techniques developed by Newton et al. (2009), Wavescript can be used to build base 

station-centric WSN applications without the need to address the networked aspect of application’s 

operation.

Flask (Mainland et al. 2008) is another FRP-inspired programming language which targets resource- 

constrained stream processing WSN applications. Flask is a domain specific embedded language 

(DSEL) in the sense of the formulation given by Hudak (1998), i.e., it is embedded in a general- 

purpose functional language - Haskell in this case. The main focus of this work is to investigate novel 

translation and compilation techniques for the generation of efficient code on resource-constrained 

platforms. The language focuses on processing of asynchronous data streams but, in contrast Wave- 

script, it provides a generic neighbourhood communication primitive which can be used to implement 

higher-level networking primitives such as, for example, network-wide spanning tree-based data ag­
gregation.

A biologically-inspired approach to macro-programming is proposed by (Beal & Sussman 2005). 

As a result of their work on the Amorphous Computing project, the authors developed Proto - a func­

tional stream-based language for programming networks of potentially large number of highly resource 

constrained and locally communicating devices. Having originally thought of such applications as the 

Paintable Computer (Butera 2002), the authors extended the scope of the work and implemented a 

compiler for the WSN domain (Beal & Bachrach 200G). Proto is similar to Regiment in the sense, 

that programs are defined as transformations of spatial regions of time varying values. The regions, 

however, are not part of the type system hence all transformations other than point-wise function 

application have to be explicitly implemented by the programmer using the universal neighbourhood 

communication operator. Multi-hop communication is realised via feedback, i.e., through recursive 

use of the neighbourhood data exchange operator. In order to keep the program semantics general. 

Proto introduces the notion of amorphous medium abstraction which represents an idealised, contin­

uous computational substrate instantiated at runtime by a concrete network topology. The language 

provides explicit support for actuation which cannot be easily synchronized since application execution 

is only partially synchronous, i.e., it proceeds in rounds of equal duration while time among network 

nodes is not synchronized.

Another stream processing system is presented by Awan et al. (2007). COSMOS is a macro-
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programming framework which targets heterogeneous WSAN applications and which comprises the 

mPL programming language and the mOS portable operating system used for running mPL programs 

on different hardware platforms. COSMOS offers a static dataflow programming model, similar in 

essence to that of Wavescript, in which applications are composed as static graphs of stream processing 

components (the authors use the term functional components), windowing is used to pack multiple 

data items into a single block for optimisation reasons, and queueing is used to share data items 

among different components. In addition, the framework allows partitioning of the dataflow graph for 

networked execution. COSMOS differs from Wavescript primarily in linguistic terms: the language 

is not functional, instead the processing components are programmed in a subset of C and the mPL 

language is used to explicitly define component wiring and partitioning. Contrary to Wavescript, 

COSMOS targets a tiered system architecture in which heterogeneous devices of potentially different 

capabilities are hierarchically organised into a tree network topology. The language allows data to flow 

in both directions over the global tree topology thus giving way to the implementation of feedback 

which is an important component of many control systems. Additionally, support for in-network 

data processing is provided by a k-hop network neighbourhood communication component and the 

language is capable of expressing actuation since the processing components are programmed using a 

subset of C.

ATaG (Bakshi et al. 2005) is a visual macro-programming formalism which implements a static 

dataflow programming model similar to that of COSMOS. The processing nodes (tasks in authors’ 

terminology) are specified using an imperative language such as, for example, Java. The concept 

of abstract data items (which roughly correspond to stream output queues in COSMOS) is used as 

means of information exchange among tasks which might potentially reside on different network nodes. 

Abstract communication channels are introduced for the creation of new or reading the values of the 

existing data items. The channels may be specified to connect tasks residing on the same network 

node or they may be annotated to share data items among groups of nodes. The set of different 

sharing groups that can be expressed in the language defines the language’s communication model. 

ATaG allows sharing groups to be defined that range from k-hop network neighbourhoods, through 

network clusters, parent or children nodes within the global tree topology, to the set of all nodes in 

the network. Since the tasks can be placed on arbitrary network nodes, as well as, because they are 

specified in an imperative language, networked actuation can be expressed. Hence, ATaG can be used 

to develop applications for the WSAN domain.

Semantic Streams (Whitehouse et al. 2008) is a declarative sensor network query system designed 

with the goal of providing composable inference over data streams coming from heterogeneous sensors.
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The system is based on logic programming (Tarnir & Kandel 1995) and it allows to prove queries from 

sets of facts and relations defined over them. Semantic Streams assumes that a range of inference 

units are available to the programmer, each of which being an opaque component realising some 

elementary inference task like, for example, vehicle detection based on raw sensor data. The user can 

pose high-level queries such as, for example, the ratio of cars to trucks in an underground parking 

system, without having to worry which sensors to use, how to combine data from different sources 

or how to interpret raw sensor readings. Constraints can be introduced in order to specify non­

functional aspects of the query. For example, a detection confidence threshold can be given in cases 

when there are more than one answers to a query due to, for instance, the existence of several different 

.sensors with overlapping detection zones. Semantic Streams aims to be used for infrastructure-based 

sensor networks such as, for example, networks of climate sensors in buildings or presence detectors 

in parkings or streets because these networks usually are not energy-limited and there is no need for 

in-network processing since all sensor nodes are likely to be connected to the central server. As a 

result, the system is not well suited to the development of WSAN applications other than following a 

centralised control pattern.

Stream processing has been shown to be a good match for applications whose operation is driven by 

time-varying sensor data. Even though WSANs fit in this general description, the languages presented 

above differ in their capability to express a wide range of WSAN ajjplications. The most fundamental 

requirement for a WSAN programming language is the ability to express networked actuation, i.e., 

to be able to select and instruct, given the results of sensor data transformations, a suitable set of 

actuator nodes. Regiment, Wavescript and Flask are purely functional languages and take the base 

station-centric approach. Hence, the only way to realise actuation of some sort is to connect the 

output of the global computation to a centrally controlled actuator. Although such an approach 

would definitely find its use, it is not flexible enough for all conceivable WSAN applications.

Feedback is a general technique of using past system outputs in order to influence its current or 

future outputs and is a basic principle that drives the design of many control systems. It is desirable, 

therefore, that WSAN programming languages be able to express it. Regiment is the only macro­

programming language which is lacking means to either reference past stream values or to define some 

form of persistent state variables which could be used to store past stream values. Wavescript allows 

persistent variables to be explicitly defined while the other languages provide constructs to loop their 

dataflow graph definitions.

As explained in Chapter 1, timely sensing and actuation are important characteristics of many 

WSAN applications. All of the presented stream processing languages can implement synchronized

18



Chapter 2. Related Work

sensing by means of extending the run-time system with a time synchronization service because all 

these languages assume a periodic execution model in which application’s operation is driven by a 

local, periodic timer. Actuator synchronization, however, is more difficult of a problem since the 

duration of data processing and communication tasks must be known or be bounded. In fact, none of 

the discussed languages offers any guarantees or means to schedule timely actuation.

Energy-efficiency is another important issue in the WSAN domain. We noted in Chapter 1 that 

keeping low communication overhead is not sufficient to conserve energy in resource-limited sensor 

nodes because the radios when left in the idle (listening) state consume almost the same amount of 

energy as during sending or reception of messages. Unfortunately, none of the presented languages 

provides support for duty-cycled operation. Moreover, because all of these languages, apart from 

Proto, target processing of asynchronous data streams it is difficult to see how this mode of operation 

could be incorporated. Proto, on the other hand, is based on a partially-synchronous execution model 

hence it could be possible in theory, assuming network time synchronization, to construct a global 

duty cycle. However, because of the relatively low-level nature of the language’s only communication 

primitive - the neighbourhood data aggregation operator. Proto imposes a programming model in 

which data values need to be forwarded for unbounded number of hops, thus making one round of 

execution a time unit of relatively fine granularity. As a result, the introduction of automatic duty 

cycling at the level of one round would result in large application response times. Nevertheless, 

such a time-synchronized and round-based execution model is the basis of the work presented in 

this dissertation. Contrary to Proto, our model is based on a coarser-grained time unit of several 

neighbourhood aggregation rounds, the number of which is application-specific and established at 

comj)ile-time.

Extensive support for network heterogeneity among the presented macro-programming languages 

is provided only by COSMOS and ATaG. The former proposes a hierarchical model in which more 

powerful devices reside closer to the global tree network topology what is in agreement with WSAN 

topologies suggested in the literature (see Chapter 1 for an overview). The latter does not pose any 

limitations on the assignment of tasks to different hardware nodes. It is not clear, however, what 

the real implementation of the language would be like since the existing publications fail to present 

this matter with sufficient degree of detail. From among the remaining languages, only Wavescript 

provides a limited support for application execution on heterogeneous hardware. In this model, a 

base station is expected to do the bulk of application stream processing tasks and initial processing 

of sensor data may be delegated to a network of homogeneous sensor nodes.
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2.1.1.2 Imperative Languages

This section reviews macro-programming languages that follow the imperative programming paradigm. 

One of the key characteristics of this paradigm is that persistent variables are used to store application 

state and computation progresses through the updates of the variables’ values. This is in contrast to 

functional stream processing in which data values flow through a network of stream operators and 

they need not be allocated persistent storage. As a result, distributed state synchronisation is not 

required enabling, therefore, simpler distributed implementations. On the positive side, the imperative 

programming paradigm makes actuation easy to express and, since it is well established, it might be 

favoured by some programmers.

Macrolab (Hnat et al. 2008) is a macro-programming language built around the idea of distributed 

vectors. Borrowing its syntax from Matlab (a standard tool among scientists and engineers), the 

language offers a programming model in which data values stored at different network nodes are 

collectively represented as macrovectors. Each macrovector corresponds to a spatial collection of 

values which are addressed by network identifiers of the nodes which hold them. Macrovectors can be 

filtered, indexed and modified in a similar way to Matlab’s vectors and matrices. One of the language’s 

key features is the fact that the compiler can automatically choose how niacrovectors are represented 

in the network based on a target deployment network model. The authors describe the three currently 

supported macrovector representations. Centralised niacrovectors are stored entirely on on the base 

station and updates to their composite values are transmitted by the corresiionding network nodes. 

Fully decentralised representations store composite values on the corresponding network nodes and 

communication is required for macrovector operations involving fusion of different composite values 

(for example, finding macrovector’s maximum value). Finally, fully duplicated representations assume 

storing the whole macrovector at every network node and all updates to macrovector’s components 

need to be globally communicated. Macrolab explicitly targets the WSAN application domaiiC, 

hence actuation, feedback and synchronized sensor sampling (assuming a time synchronization service 

is included in the runtime system) can be easily realised in the language. Energy-efficient operation, 

however, is only partially supported since the compiler optimises application cost by focusing solely on 

minimisation of the number of messages sent and does not provide for duty-cycled network operation. 

Also, it is not clear whether synchronized actuation can be performed since programs can specify only 

periodic operation while the automatic selection of macrovector representation makes application 

communication times vary for different deployment topologies. Finall}^, heterogeneity is not directly

^The authors actually use the term Cyber-Physical Systems (CPS) but we see this a.s equivalent to what is referred 
to in the literature as WSANs.
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supported by the language since the compiler distinguishes only between the base station and the 

sensor nodes.

A sequential model of programming distributed wireless sensor network applications is investigated 

by Kothari et al. (2007). The Pleiades language has a C-like syntax and uses a special-purpose looping 

operator cfor to iterate over actions performed by different network nodes. Program execution in the 

network allows a degree of parallelism but the language’s semantics guarantee that its computational 

effect will correspond to some sequential ordering of network activities providing this way strong con­

sistency guarantees. Locking, synchronization and deadlock avoidance mechanisms are used to enable 

application control flow migration among different network nodes. Being an imperative language, 

Pleiades can easily express feedback, actuation and time-synchronized sensor sampling. However, 

even though the language was used to develop applications which require time synchronized operation 

like, for example, the pursuer-evader game in which WSN tracks an evading target and reports its po­

sition to autonomous pursuers, the overhead of application state synchronization significantly affected 

application response times (Kothari et al. 2007). Moreover, since the programming model does not 

address the temporal dimension of application execution, neither the compiler nor the runtime system 

can make decisions on the duration of program execution times. This makes both duty cycling and 

time-synchronized actuation difficult to achieve. In fact, the authors confine themselves only to the 

discussion of the messaging cost of their macro-programs.

A similar programming model is offered by the Kairos (Gummadi et al. 2005) language which 

embodies work that preceded the development of Pleiades. Contrary to its successor, Kairos does 

not give strong execution consistency guarantees, instead, the language provides means to define 

application-specific fault recovery mechanisms (Gummadi et al. 2007). As far as WSAN application 

development is concerned, both Kairos and Pleiades offer a similar degree of support.

The SpatialViews (Ni et al. 2004) programming language exploits a similar approach to program­

ming distributed computation in which sequential iteration over a set of network nodes is implemented 

using program state migration techniques. Service discovery and device localization mechanisms are 

used for defining spatial views which are collections of heterogeneous devices and over which programs 

iterate. SpatialViews extends Java and its programs are compiled into Java bytecode. This approach 

makes the language more suitable for the use on networks of more capable devices such as, for example, 

handhelds or laptops since most of the program heap (tens of kilobytes) needs to be communicated 

each time the program migrates. The authors investigate different state migration strategies for imple­

mentation of the distributed iteration operator including sequential migration along a network path, 

migration and state cloning using flooding waves or migration along a spanning tree topology. The
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language can naturally expresses actions of individual actuators but due to the sequential execution 

model, timely coordination of multiple actuators is not trivial.

A spatio-temporal approach to macro-programming WSN applications is explored by (Wada et al. 

2008). The Space/Time-Oriented Programming language (STOP) extends the Ruby programming 

language to provide a model in which spatial regions of network nodes can be defined for use over a 

given time span. An extensible set of predefined data collection operations is used to query sensor 

data over specified periods of time and a temporal database is used to log the collected sensor data 

for future reference. Macro-program execution is coordinated by a central server which either queries 

the database when past sensor readings are needed or it dispatches a set of mobile agents to query 

the sensor nodes for the required information. The language lacks support in-network actuation and 

hence its main goal are data collection and event detection tasks we conclude that it is not well suited 

for WSAN applications.

Automatic application partitioning and distribution is the core of the Magnet Operating System 

(Li>i et al. 2005) which provides applications with a single-system view of a distributed Java virtual 

machine. MagnetOS applications are automatically partitioned at the class-granularity and distributed 

across a heterogeneous ad-hoc network. Energy-consumption and system longevity metrics are used 
to optimise the placement and migration policies for thus created application components. Although 

the work targets wireless sensor network applications, the existing implementation supports only more 

capable devices such as, handhelds or laptops and it is not clear whether this approach translates to 

more resource-constrained WSN platforms. Also, the programming model offered by MagnetOS does 

not match well application scenarios in which multiple network nodes with duplicated functionality 

collaboratively perform a common task which is the case of many WSN/WSAN applications.

2.1.1.3 Other Approaches

In this section we discuss those macro-programming languages which elude easy categorisation. Woo 

et al. (2006) propose the spreadsheet abstraction to be used to program and manage wireless sensor 

networks. The authors extend Microsoft Excel, which is a popular office tool, with capabilities to 

embed, visualise and process sensor data streams. A tiered system architecture is proposed to be 

used in w'hich W'SN specific details are hidden behind a micro-server which transforms low-level data 

streams into a platform-independent XML-based data format. Aiming at enabling the use of W'SNs 

to non-technical users, the authors argue that management tasks such as network discovery or (re-) 

configuration, as well as, basic data stream transformations can be easily expressed in the spreadsheet 

paradigm.
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Macro-programming with Bayesian Networks is investigated by Mamei & Nagpal (2007). The 

authors show how Bayesian inference could be employed to realise such important WSN tasks as 

sensor calibration or signal classification. A number of experiments were performed in which small 

networks of two to four PDAs were used to calibrate and classify acoustic signals according to a 

global Bayesian signal model. Unfortunately, since the presented work is in its early stages any wider 

applicability of these ideas cannot be assessed.

Bischoff & Kortuem (2007) propose to use the macro-programming paradigm for configuration 

and maintenance of smart home infrastructures. The authors developed the Rulecaster language 

which provides a rule-based formalism allowing the programmer to partition the smart home into a 

number of logical spaces corresponding to, for example, different rooms and to define relationships 

between combinations of sensor readings and actions taken by actuators. For example, a user might 

be interested in an alarm being rised each time the kitchen oven is on while there is nobody at home. 

The Rulecaster compiler, apart from the rule specifications, requires a description of the whole smart 

home infrastructure to be provided so that it can partition the global program accordingly.

A market-based approach to macro-programming WSN applications is proposed by Mainland et al. 

(2004). In this model sensor nodes are represented as agents that trade services in return for virtual 
currency corresponding to their energy budgets. Services represent actions the agents take in order 

to realise the global computational goal as mandated by the user and they may include, for example, 

sending and reception of messages or sampling a sensor. The model does not require the agents to 

share any information but the current price vector which is updated infrequently what results in an 

emergent global network behaviour. The main goal of the work is to investigate novel approaches 

to development of energy-efficient applications in which the programmers are freed from the need to 

design energy-conservation strategies.

From among the above presented macro-programming frameworks only Rulecaster targets appli­

cations that require actuation. The other work is more experimental and focuses on some specific 

aspects of the operation of WSN applications. Rulecaster is the only language with explicit support 

for actuation. The language, however, since it targets smart home automation applications is de­

signed for scenarios in which actuation is applied immediately, once a given configuration of events 

occurs. Such an event-driven approach makes it difficult to express applications which require more 

sophisticated sensor data transformations or feedback-driven operation.
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2.1.1.4 Conclusions

This section reviewed the existing macro-programming languages in terms of their suitability for 

WSAN application development. We discussed their support for application timeliness and energy- 

efficiency, network heterogeneity and the ability to express feedback. We showed that those approaches 

that were designed with WSN applications in mind either focus entirely on sensor data processing or 

provide only a limited support for networked actuation. On the other hand, the actuation-enabled 

macro-programming languages do not explicitly address the need for time-synchronized actuation. 

Finally, none of the existing languages appear to support duty cycling what is a necessity when 

energy-efficient network operation is of importance.

2.1.2 Other Network-Level Approaches

Database abstractions were some of the earliest-proposed network-level programming models for the 

WSN domain. For example, SINA (Srisathapornphat et al. 2000) is a middleware platform proposed 

for the development of data-driven WSN applications. The middleware targets hierarchical network 

architectures and it enables applications to query sensor nodes for data using an SQL-like language, as 

well as, to perform more general computational tasks using a scripting language called SQTL - Sensor 

Querying and Tasking Language. Similarly, DSWare (Li et al. 2004) is a data-service middleware 

which provides the application layer with a more comprehensive set of services including real-time 

data delivery, reliable in-network storage and handling of unreliable or correlated sensor reports.

A similar, but a more general approach was taken by frameworks such as TinyDB (Madden et al. 

2005) or Coguar (Yao & Gehrke 2002) which proposed to use a declarative language such as, for ex­

ample, SQL to express queries on time-varying sensor data. In this model, queries are automatically 

translated into instructions for individual sensor nodes and are disseminated across the entire network. 

The query translator can make use of all available information on the network structure in order to 

optimise the query with a particular emphasis on the minimization of energy network consumption. 

Typically, these frameworks use a global spanning tree to connect all network nodes to a single data 

collection point called the sink. As data values are sent towards the sink, they are transformed, corn- 

pressed or aggregated in order to reduce the communication overhead. This approach is particularly 

well suited to applications in which the network is treated as a single data source and in which pro­

cessing and decision making is performed on a central server. Real-time considerations, feedback and 

actuation are outside of scope of this approach and are rather traded off for energy-efficient operation. 

For example, the TinyDB query processing middleware uses duty cycling in order to extend the net-
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work’s lifetime^. Heterogeneous sensor hardware, however, can easily be used within the framework, 

since the queries are purely data centric, i.e., they are not tied to any platform specific semantics.

Heinzelman et al. (2004) propose to include QoS requirements at the early stage of of application 

definition. The Milan middleware is a data service which allows applications to request desired data 

streams through specification of a set of data variables. The variables are defined in terms of groups 

of sensors contributing to their values and QoS requirements (e.g., the level of certainty) need to be 

specified both for sensors and for their compositions (the variables). The middleware then creates 

an execution plan which selects and tunes application’s networking protocols so that the desired QoS 

reqviirements can be met while minimizing energy consumption in the network.

The use of tiered network architectures is advocated by the authors of the Tenet system. Gnawali 

et al. (2006) argue that this approach significantly improves robustness and manageability of large 

sensor networks. In Tenet, the resource-constrained sensor nodes can execute several different appli­

cations simultaneously, each of which is represented as a linear dataflow graph of simple and reusable 

tasklets. Multi-node data fusion is performed by the master tier comprising resource-rich and more 

capable network nodes which, contrary to sensor nodes, can freely communicate which each other, 

possibly in a multi-hop fashion.

2.1.3 Group-Level Programming Models

Programming abstractions involving groups of network nodes such as, for example, k-hop neighbour­

hoods, network regions, spanning trees or target tracking groups address the need for collaborative 

in-network data processing in WSN/WSAN applications. Among the variety of proposed approaches, 

network neighbourhood data sharing appears to be a fundamental principle driving the design of 

different programming paradigms. Group-level programming models, even though they operate on 

concepts spanning multiple network nodes, differ from the network-level programming models in that 

they require explicit specification of actions performed by individual nodes. The group abstractions, 

therefore, serve only as a way to facilitate those application tasks which require collaboration of a 

group of network nodes.

Hood (Whitehouse et al. 2004) is a programming model which uses one-hop network neighbourhood 

data sharing as the main application communication primitive. .4pplications can define a range of 

virtual neighbourhoods which correspond to different filters on the values of shared variables called 

attributes. Hood was written in the NesC programming language (see Section 2.1.4) and it exposes a 

range of asynchronous interfaces for the creation and performing operations on the attributes, filters

^The Sosna programming language implements duty cycling during multi-hop stream aggregation in a similar way.
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and neighbourhoods. Mottola & Picco (200G) introduce a more general definition of the network 

neighbourhood. The authors propose that the neighbour relation be defined on a purely logical basis 

through the specification of predicates on such static or dynamic properties as, for example, node’s 

hardware capabilities or the current sensor readings. In this view, network neighbourhoods could 

span potentially across the whole network and the authors propose a new routing protocol in order to 

improve the efficiency of their approach. Similarly, Welsh & Mainland (2004) investigate programming 

abstractions that span beyond the one-hop neighbourhood. Abstract Regions allows programmers to 

define groups in terms of topological relations such as k-hop neighbourhoods or spanning trees, or in 

terms of such geographic properties like k nearest nodes or planar mesh topology neighbours. Shared 

variables are introduced as means of information exchange among nodes comprising regions and region 

reduction operations are used for folding all region values into a single one.

A more dynamic view is taken by Brown et al. (2007) who propose the Virtual Node programming 

abstraction in which groups of unreliable network nodes collaboratively implement a single virtual 

device. Virtual nodes are not bound to any particular network region and, contrary to the underly­

ing networking substrate, they offer a deterministic and fault-tolerant programming model in which 

applications are specified as state-based, distributed programs communicating through explicit mes­
saging. A similar idea of mobile group-based networked computation is exploited by Luo et al. (2006) 

who developed a programming model for applications related to tracking a number of targets mov­

ing through the network. Envirosuite is built on top of a target tracking middleware and it allows 

to associate arbitrary computation and actuation with the objects being tracked. The objects are 

labelled with abstract identifiers which form a dynamic network address space and a novel routing 

protocol is used in order to enable communication among different tracking groups. Envirosuite is 

part of a more general, real-time surveillance system VigilNet (He et al. 2006) which, among other- 

services, permits network-wide duty cycling for energy conservation. Liu, Chu, Liu, Reich & Zhao 

(2003) generalise the tracking group abstraction to accommodate a wider class of collaborative signal 

processing applications of which target tracking is just one example. The authors propose a state­

centric model in which leader-based collaboration groups are defined by specifying their scope and 

structure. Similarly to Envirosuite, computation is performed by group leaders and both the group 

leader and group members can change roles as the time progresses.

A rule-based approach to programming WSN applications is investigated by Terfloth et al. (2006). 

Their programming language FACTS offers an event-driven, stateful programming model in which 

applications consist of a set of rules defined over facts which are record-like data structures that can 

be transmitted among neighbouring network nodes. Although the language uses an explicit send prini-
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itive for triggering neighbourhood-based communication, reception of facts from neighbouring nodes 

is handled transparently what results in a communication model resembling neighbourhood data shar­

ing. An extension of the rule-based programming model to the WSAN domain is proposed by Sen & 

Cardell-Oliver (2006). The authors propose to use abstract communication channels for neighbour­

hood communication, as well as, they introduce a periodic rule triggering mechanism to capture the 

timely nature of WSAN applications. The authors note also that if a TDMA-style communications 

were used duty-cycled operation could be scheduled by the compiler. A similar approach is taken 

by the DESAL programming language (Dalton et al. 2008) where programs are specified as sets of 

time-triggered and periodic rules. DESAL additionally introduces n-hop neighbourhood application 

state sharing for seamless integration of network communication with rule-based reasoning, as well as, 

it globally schedules rule invocations in order to facilitate synchronized actuation.

Rule-based programming of cooperative control systems is investigated by Klavins & Murray (2004) 

in their work on the Computation and Control Language (CCL). The authors propose to specify high- 

level application logic by means of guarded commands which are program state update expressions 

conditioned on a set of boolean expressions also defined on program state. CCL relies on implicit 

global state sharing and the authors argue that this approach, although abstract, enables formal 

reasoning about temporal program properties.

Inspired by work on deductive database systems, Chu et al. (2007) developed a programming 

model in which a broad-range of sensor network applications can be concisely specified using logical 

predicates and rules on dynamically changing set of facts. The language uses local data sharing in 

order to enable reasoning on facts held by neighbouring nodes and its compiler is able to generate 

compact code that easily fits on the existing resource-constrained mote platforms.

Rule-based configuration of WSN applications is proposed by Frank & Romer (2005). The authors 

observe that many WSN algorithms implement coordination strategies in which network nodes take 

different roles, for example, clustering algorithms partition network nodes into cluster heads and cluster 

members, while duty-cycling algorithms split the network into active and sleeping parts. Generic Role 

Assignment is a declarative formalism which allows to specify different network roles based on logical 

predicates defined over temporal properties such as, for example, the values of current sensor readings, 

node battery state or the roles taken by neighbouring nodes. The formalism was incorporated to the 

TinyCubus middleware (Marron et al. 2005) which is a highly-customisable component framework for 

WSN applications.

Programming WSNs with mobile agents is explored by Fok et al. (2009). The Agilla middleware 

uses the tuple space shared memory paradigm (Gelernter 1985) in which agents communicate through
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reading and writing of tagged messages to a shared storage. Agilla builds upon the TinyLime mid­

dleware which provides an efficient implementation of tuple spaces tailored for multi-hop, resource 

constrained networks. TinyLime offers a model in which each network node has its own tuple space 

which is shared among agents residing on that node. Whenever two network nodes are within com­

munication range, TinyLime provides a uniform view of both tuple spaces implementing this way 

neighbourhood-shared memory. Agilla agents can freely migrate and fork in the network and in order 

to decrease the program transmission cost a high-level virtual machine is used to specify and execute 

agent code. Kwon et al. (2006) take a similar approach but instead of virtual machines they propose to 

use a restricted subset of the Scheme language along with an interpreter embedded on every network 

node, as well as, they use explicit communication among agents residing on neighbouring network 

nodes.

2.1.4 Node-Level Programming Models

This section presents an overview of lower-level programming models which do not facilitate networked 

computation but rather they provide means for implementing the desired functionality in terms of 

actions performed by individual network nodes.

Currently the most popular and the most established WSN; WSAN software development platform 

is TinyOS (Levis et al. 2004), an event-driven, lightweight operating system written in the NesC 

programming language (Gay et al. 2003). NesC is an extension of the C programming language and it 

offers a model in which applications arc partitioned into modules and wired together using bidirectional 

interfaces. Communication between the modules is asynchronous what means that time-consuming 

interface method calls are split into an invocation part and an acknowledgement part. This model of 

computation is sometimes referred to as the split-phase execution and it has been criticised for forcing 

the programmers to manually manage program concurrency what makes application development 

difficult and error-prone (Rorner & Mattern 2004).

TinyOS defines a static component model in which components are singletons, the structure of the 

whole application is known at compile time and applications are compiled into monolithic binaries. 

SNACK (Greenstein et al. 2004) is a programming model which improves on some of these shortcom­

ings. The language builds on TinyOS in that low-level components are implemented in NesC but, 

in addition, it views applications as compositions of parametrised services which can have multiple 

instances. These ideas eventually made their way to the second TinyOS release which now supports 

generic and parametrisable components (Levis, Gay, Handziski, Hauer, Greenstein, Turon, Hui, Klues, 

Sharp, Szewczyk, Polastre, Buonadonna, Nachman, Tolle, Culler & Wolisz 2005).
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In recognition of the fact that deployment of monolithic applications may be disadvantageous in 

situations when sensor nodes cannot be easily accessed for reprogramming, the Impala middleware 

(Liu & Martonosi 2003) offers a programming model in which application components can be replaced 

at runtime. Impala was developed for the ZebraNet wild animal tracking project and its applications 

follow an asynchronous execution model which requires implementation of an adaptation interface for 

runtime updates.

The drawbacks of the split-phase execution model are recognised by Cheong (2007) who proposes 

to use the GALS (globally asynchronous, locally synchronous) programming paradigm for WSN ap­

plication development. The notion of synchrony used in this work differs from the one used in the 

synchronous programming domain and it refers to the use of the blocking call mechanism, as opposed 

to, asynchronous, split-phase invocations. We will use the term synchronous flow of control in the 

rest of the dissertation to refer to this mode communication. The TinyGALS architecture, therefore, 

defines applications as compositions of high-level modules which communicate through buffered and 

asynchronous ports while control flow within the modules is synchronous.

SOL (Karpihski & Cahill 2007) is an imperative programming language which suppresses the 

split-phase execution model by offering a programming model in which synchronous flow of control is 

accompanied by a lightweight, static and deterministic concurrency model. Manual application state 

management, often found in TinyOS applications, is supported through the introduction of hierarchical 

state machines. SOL programs are compiled to efficient NesC code and generic mechanisms are 

provided for reuse of existing TinyOS libraries. A similar approach to WSN application development 

is investigated by Kasten & Romer (2005) in their work on the Object State Model (OSM). The 

authors propose a programming model in which applications are specified as hierarchical and parallel 

compositions of state machines but, contrary to SOL, OSM assumes event-triggered state transitions, 

while in SOL state changes have to be explicitly requested by the programmer.

Object oriented programming of WSN applications in Java is proposed by Simon et al. (2006). The 

authors developed a special-purpose implementation of the Java virtual machine which can be run 

directly on hardware without the need for operating system support. The Squawk virtual machine 

runs on memory-limited devices such as Sun^^^ SPOTS and it represents applications as objects 

which are authenticated and can migrate through the network. Threading support is provided along 

with non-preemptive garbage collection. Levis, Gay & Culler (2005) propose the use of application- 

specific virtual machines as a way to lower the application’s byte code size so that wireless network 

reprogramming can be more efficient. AVSM allows the programmers to tailor the virtual machine’s 

instruction set to the set of high-level operations that define the application’s logic. As an example,
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the authors show how the Abstract Regions framework (see Section 2.1.3) can be used as a basis of a 

virtual machine which operates on high-level spatial constructs. Additionally, in order to simplify the 

application development Levis (2005) developed TinyScript which is a high-level scripting language 

whose programs are compiled into the AVSM byte code. A similar approach is taken by Koshy & 

Pandey (2005) but, contrary to AVSM, VM* uses Java as the top-level language, as well as, performing 

an extensive byte code analysis in order to automatically generate the application-specific virtual 

machine definition. Also, VM* allows both the virtual machine, as well as, the application to be 

dynamically updated at runtime.

Programming WSN applications in plain C is considered by the authors of SOS (Han et al. 2005), 

MantisOS (Bhatti et al. 2005), Nano-RK (Eswaran et al. 2005) and Contiki (Dunkels et al. 2004) 

operating systems. The main contributions of this work arc in the area of efficient implementation 

of various operating system techniques, hence are beyond the scope of this dissertation. However, 

we note that the authors of the first three of the above listed operating systems argue for the use of 

threading and synchronous flow of control as a way to simplify application development, while the 

authors of Contiki, although it supports both event-driven and synchronous flow of control, advocate 

for the use of a lightweight, cooperative threading library called Protothreads (Dunkels et al. 2006).

2.2 Synchronous Programming Languages

This section presents some of the most established synchronous programming languages, as well as, 

discussing their applications to the WSN/WSAN domain. We conclude the section with a discussion 

of the differences between distributed implementations of synchronous languages and the synchronous 

macro-programming paradigm presented in this dissertation.

Esterel (Berry & Cosserat 1985) is an imperative synchronous programming language designed 

with control-dominated reactive systems in mind whose examples include real-time process control 

systems found in manufacturing or transportation domains, supervision of complex systems, peripheral 

drivers or human-machine interfaces. Esterel programs consist of a collection of nested, concurrently 

running threads which use control constructs similar to those of imperative languages like C and whose 

execution is synchronized to a single, global clock. Threads communicate through instantaneous and 

global broadcasting of signals - Esterel’s main data type. Esterel programs are statically scheduled 

to sequential code and are, therefore, guaranteed deterministic behaviour. This approach greatly 

simplifies formal reasoning about program behaviour since it abstracts away all details related to how 

concurrency is implemented on the target execution platform.
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Lustre (Caspi et al. 1987) is a declarative language based on the synchronous dataflow model (i.e., 

a synchronous interpretation of block diagrams). Lustre programs are essentially sets of equations 

defined on stream variables. Streams can be thought of as infinite sequences of values or as functions 

of time. For example, by writing “x = y + z” we mean that at each instant k (or in each time step

k) Xk = Vk + Zk holds. The concept of feedback is commonly used to define streams of time-varying 

values or a form of persistent state and it can be expressed in the language through the use of recursive 

stream definitions. For example, the following program:

n = 0 -> pre n + 1

constructively defines a stream of natural numbers by adding at each instant fc > 1 the value 1 to the 

stream value from the previous (i.e. k — F^) instant. The value 0 is used to initialise the process. 

Systems of equations and block diagrams are common modelling tools among control engineers and 

this led to Lustre’s wide adoption as a standard tool for building safety-critical embedded systems: 

the SCADE suite (Esterel Technologies 2009), which evolved from the Lustre v3 compiler, was used, 

for example, to develop most of the safety-critical software running on board the Airbus A380 airliner.

Signal (LcGuernic et al. 1991) is also a declarative synchronous dataflow language but, in contrast 

to Lustre, it is designed for open systems, i.e., systems composed of independent but interacting 

components (Benveniste et al. 2003). The language’s semantics are based on a mathematical model of 

multiple-clocked flows of data values and events. As opposed to Lustre which takes a functional point 

of view. Signal programs connect the flows by means of relations. The language’s formal properties 

led to the embedding of its complete semantics in the Coq theorem prover (Nowak et al. 1998) so that 

formal reasoning about program properties could be performed. For example, Kerboeuf et al. (2000) 

verified, using this approach, a digital controller of a steam-boiler.

Esterel, Lustre and Signal arc the three best known and established languages in the synchronous

l) rogramming domain. Each of them offers determinism and verifiability much needed when building 

real-time systems. These benefits, however, come at a price of reduced expressiveness what makes 

them unsuitable for less demanding but more general applications. A number of extensions, therefore, 

have been proposed in order to explore the possibilities of applying the synchronous programming 

paradigm to other, more general programming models. For example, the Lucid Synchrone program­

ming language (Pouzet 2006) extends Lustre to the functional programming domain by addition of 

a stream clock type system, higher-order streams and functions, parametrised state machines and 

events. The ReactiveML language (Mandel & Pouzet 2005) introduces dynamic process creation to 

the imperative programming model offered by Esterel, while the SugarCubes language (Boussinot & 

Susini 1998) embeds the synchronous model in Java.
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Ill the context of wireless sensor networks, synchronons languages are suggested to be used for 

environment modelling and virtual prototyping. Samper et al. (2006) argue that the broadcast nature 

of WSN communications, as well as, the parallelism inherent in wireless networks make synchronous 

languages suitable for modelling the operation of individual network nodes. The authors note that, 

since WSN applications are sensor data-driven, the real network energy consumption may strongly 

depend on the environmental event patterns occurring at run time. As a result, the synchronous 

paradigm is proposed to be used to model both the environment and the application with the benefit of 

increasing the estimation accnracy of network energy consumption. These ideas are further extend by 

Maraninchi et al. (2008) who propose to use the Lustre language to build detailed application energy 

consumption models. We see this work complementary to ours and, in fact, providing supportive 

arguments for the use of the synchronous paradigm for WSAN application development.

Synchronous programs, as we noted in Section 1.4, can be compiled for execution on distributed, 

multi-processor architectures. For example, the SCADE suite includes a compiler for the Lustre 

programming language which can generate code for program execution on the Time-Triggered Ar­

chitecture while Caspi et al. (1999) developed a more general, language-independent framework for 

distribution of synchronous programs. The synchronous macro-programming model, on the other 

hand, implements synchronous programming on a wireless network of sensors and actuators and conld 

be considered a distributed implementation of a synchronous program. Despite the overall similarity, 

however, there are some fundamental differences between both approaches which are explained below.

Synchronous programs are distributed by partitioning the code into a number of subprograms for 

execution on different processors. The subprograms are then extended with glue code which imple­

ments inter-processor communication according to the target deployment architecture. For example. 

Lustre allows to annotate different streams and stream operators (nodes in Lustre’s terminology) with 

processor identifiers and the compiler partitions the central program into a number of tasks which 

are statically scheduled, taking into consideration various timing constraints, for execution on the 

TTA architecture. Also, Delaval et al. (2008) propose a type system for automatic inference of such 

annotations for the Lucid Synchrone language. To summarise, the key characteristic of this approach 

is such that synchronous programs are mapped onto a distributed architecture which is known and 

well defined at compile time.

Our model takes a different approach. We introduce the neighbourhood data aggregation primi­

tive for use as a basis of all network communications. The operator’s semantics do not assnme any 

particular network topology, they allow network nodes to decide at runtime whether they want to 

participate in the aggregation process and they admit communication failures. In this model, high-
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level communication operators can be defined and have to be explicitly used by the programmer to 

implement distributed computation. As a result, the same program can be run on a wide range of 

different network topologies, including a degenerated topology of only a single node. Additionally, 

the SOSNA programming language allows, as a way to facilitate programming of heterogeneous ap­

plications, to annotate certain program streams for evaluation on different device classes. Similarly 

to Delaval et al. (2008), type inference is used to automatically discover device class information for 

the rest of program streams so that the global program can be partitioned. Although, this resembles 

the typical distribution of synchronous programs, we note that our model is more general because 

the partitioning is performed for execution on groups of devices rather than on individual processors. 

Also, the support for heterogeneous execution is, in fact, orthogonal to the distributed semantics of 

the synchronous macro-programming model.

2.3 Conclusions

This chapter discussed the existing programming languages and frameworks for programming WSN 

and WSAN applications. A particular emphasis was given to the macro-programming languages 

because they are the most relevant to our work. We showed that none of the actuation-enabled 

macro-programming languages provided support duty cycling and that application timeliness was not 
explicitly supported. Moreover, when more general programming models are concerned, the support 

for duty cycling is provided only by two frameworks, i.e., TinyDB and VigilNet, which do not support 

more general WSAN applications and rather focus on more specific application domains.

33



Chapter 3

Synchronous Macro-Programming

This chapter describes the synchronous macro-programming model. The model defines all network 

communications in terms of finite sequences of neighbourhood data aggregation rounds whose execu­

tion is bounded in time. Then, we present the SOSNA programming language that is a stream-based, 

functional formalism designed for macro-programming heterogeneous WSAN applications. We show 

that the synchronous macro-programming model is flexible so that it can accommodate such high- 

level macro-programming concepts as multi-hop stream aggregation and propagation, leader-based 

tree topology construction or region-based computations. We also show, that network heterogeneity 

can be handled in the synchronous macro-programming setting and describe the Sosna’s heterogene­

ity model, which is based on an abstract device class hierarchy and a global static cluster topology 

underpinning all SoSNA applications. SoSNA uses type inference in order to minimise the burden 

of data type and device class annotations. We overview the language’s type system and explain the 

global program partitioning technique, which is the basis of the language’s support for heterogeneous 

networks. Also, important language design choices such as handling of recursion are explained in or­

der to show that SoSNA applications conform to the synchronous macro-programming model. Finally, 

we discuss the applicability of the language to WSAN application development and give a range of 

examples in order to show the practicality of the approach, as well as, to motivate the design of the 

model.

3.1 The Synchronous Macro-Programming Model

Synchronous execution is the core characteristic of the synchronous macro-programming model. In 

fact, the model can be thought of as an extension of the synchronous programming paradigm in which
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foreach instant do 
read_inputs(); 
corapute_outputs(); 
write_outputs();

end

Figure 3.1: Abstract implementation of a synchronous program.

network neighbourhood communication is allowed to take place within a single time instant. We 

proceed, therefore, with an informal description of the synchronous programming paradigm and then 

follow with the presentation of the synchronous macro-programming model.

The synchronous programming paradigm is build around the central notion of the global logical 

clock that defines program execution as an infinite-in-time sequence of instantaneous reactions to an 

infinite sequence of input values. In this view, inputs correspond, for example, to sensor readings 

sampled at regular time intervals and reactions may represent actions taken by actuators at the rate 

defined by the global clock. The synchronous hypothesis states that all computations taking place 

between reading of an input and executing a reaction take a negligible time, hence are considered in­

stantaneous. Such a formulation, although natural in many control frameworks, is not a particularly 

practical one. The hypothesis, therefore, is used as an idealised system model to simplify reasoning 
about program behaviour. In practise, instant duration is entirely application-specific and it is mainly 

required that all computations finish before the instant ends (Potop-Butucaru et al. 2005). As a 

result, synchronous programs can be viewed as iteratively applying in every instant a reaction func­

tion whose task is to transform the inputs into the corresponding outputs. For example. Figure 3.1 

presents an abstract and generic implementation of a synchronous program in which reactions are pe­

riodically calculated by the compute_outputs function. Also, since many synchronous programming 

languages define their semantics recursively, the same logic applies to program components (i.e., units 

of concurrency) and it is up to the compiler to find the appropriate scheduling of computations and 

communications so that the abstract semantics can be realised.

Synchronous programs communicate through instantaneous broadcasts of signals that, depending 

on the language, may carry data values or may be abstract signalling concepts. In the context of the 

synchronous hypothesis, instantaneous broadcasting means that all program components awaiting a 

signal can read its value at the same time, every time it is broadcast. But since real-world implemen­

tations assume that instants have non-zero duration, instantaneous broadcasting is understood as the 

ability of all program components to read the signal value in the same instant in which it is emitted. 

Additionally, it is required that the reading be consistent, i.e., either all components see the signal as
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present or they all see it as absent throughout the instant duration, hence, making it is possible to 

decide upon signal absence.

The difference between the abstract notion of an instant and its implementation as a time interval 

of non-zero duration is crucial to the understanding of the synchronous macro-programming model. 

We use, therefore, the following definition to clarify the concept.

Instant is a unit of the abstract, logical and discrete time that drives the operation of synchronous 

programs. Within one instant, all program components read their inputs, communicate and 

write their outputs, advancing this way the overall program state by one logical step.

To illustrate these ideas we will use the Lucid Synchrone language (Pouzet 2006) as an example 

since it was the main inspiration for SOSNA. In Lucid, programs are composed of streams that are 

infinite-in-time sequences of data values that can be either present or absent in which case they are 

denoted with a special symbol •. The abstract signals correspond in the language to stream data values 
and broadcasting corresponds to passing values between streams that reference one another in very 

much the same way as variables reference other variables in traditional i)rogramming languages. The 

following example program defines the stream y in terms of values taken by the stream x. Numerical 

literals represent in this program constant streams and the if and > operators are evaluated by 

iteratively applying them to consecutive stream data values throughout the time.

y = if X > 3 then 1 else 0

The following table shows how both streams are evaluated (we assume that x is defined elsewhere or 

that it corresponds to a program input). Note that there is no delay between reading of the current x 

value and the computation of the current value of y so, despite the logical dependency, both streams 

are considered to be evaluated at the same time, hence are synchronous.

Stream Values

X 1 2 3 4 5 6 ...

y 0 0 0 1 1 1 ...

3 3 3 3 3 3 3 ...

1 1 1 1 1 1 1 ...

0 0 0 0 0 0 0 ...

Absent values are not directly representable in Lucid and, instead, are handled implicitly. The 

language takes a conservative approach and requires that stream value presence/absence times can 

be established at compile time so that the compiler can check whether program streams can be safely
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composed. For that purpose, Lucid associates with every stream a logical clock that can be thought 

of as a periodic stream of Boolean values representing stream presence and absence times. Consider, 

for example, the situation depicted in Table 3.1 in which two streams are driven by complementary 

clocks. It is not possible, in the synchronous semantics, to apply point-wise arithmetical operations 

to those streams because in every instant the value of one of the operands would be missing. Thanks 

to the ability to decide on value presence or absence, however, it is possible to meaningfully merge 

both streams into one that does not comprise absent values.

The synchronous macro-programming model extends the synchronous programming paradigm with 

the use of network neighbourhood communication as a primitive and atomic (non-divisible) operation. 

In contrast to the abstract communication among components in synchronous programs, network 

neighbourhood communication refers to message exchange among neighbouring network nodes over 

(wireless) communication interfaces. In the rest of the thesis, we will use the term communication in 

accordance with its usual meaning, i.e., message exchange over a communication interface, and not as 

it is often understood in the literature on synchronous programming.

General neighbourhood communication defined as network-local, connection-less and broadcast- 

based message exchange is a basic building block of many WSN/WSAN applications. For example, 

programming frameworks and languages such as Hood, Agilla or Desal use periodic neighbourhood 

communication to implement their core data sharing services while the Token Machine Language 
(an intermediate program representation language developed for the Regiment macro-programming 

language, see Section 2.1.1.1), builds upon a neighbourhood communication operator to implement 

multi-hop network gradients and region-wide data aggregation. Proto and Flask are two macro­

programming languages that use a neighbourhood data aggregation operator as a basic building block 

of complex network communication processes that may potentially span across network regions of 

arbitrary size. Beal &: Sussman (2005) show additionally that, assuming periodic execution. Proto’s 

neighbourhood data aggregation operator can be used to concisely express a wide range of biologically- 

inspired amorphous programs in a purely functional way.

The synchronous macro-programming model uses neighbourhood data aggregation as a basic build-

Stream Values
X Xq X4

y 2/1 2/3
merge c x y Xq 2/1 X2 2/3 X4

c true false true false true
not c false true false true false

Table 3.1: Merging of complementary streams in Lucid.
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ing block of higher-level and more complex network communication schemes. This means that within 

one instant a number of neighbourhood data aggregation operations might need to be performed. 

Following the abstract formulation of the synchronous hypothesis, we define neighbourhood data ag­

gregation as follows.

Neighbourhood data aggregation is a simultaneous, broadcast-based exchange of data items among 
neighbouring network nodes in which each of the participating nodes contributes at most one 

data item and which results in computation of an aggregate value by at least some of the par­
ticipating nodes.

In order to make the model as general as possible, we assume the following about the implementations 

of neighbourhood data aggregation;

1. data items may be lost or delivered selectively,

2. the order of data item delivery can be arbitrary,

3. data items may not be duplicated,

4. data items delivered after the round has ended are discarded.

Figure 3.2 depicts an example neighbourhood data aggregation operation in which each of the nodes 

calculates the sum of the received data items while sharing its own data item with its neighbours. 

Communication links in the figure follow a local network topology defined, for example, by physical 

wireless connectivity while multiple arrows stemming from the nodes represent broadcast transmission.

Similarly to how the synchronous hypothesis is formulated, we have to address the imperfections 

of real system implementations. If timeliness of program execution is to be achieved, issues such as
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wireless medium unreliability, delays resulting from wireless channel sharing, possible node failures or 

network topology changes lead to the requirement that each neighbourhood data aggregation operation 

must be realised within a time period of bounded duration. Therefore, we introduce the notion of a 

round of neighbourhood data aggregation.

Round of neighbourhood data aggregation (or simply a round) is a time period of known and bounded 

duration that refers to the duration of one neighbourhood data aggregation operation in real 

time.

The exact value of round duration is application-specific because different network configurations 

may have different timing properties, as well as, different applications may have different timing 

requirements.

Bounding the duration of data aggregation rounds implicitly brings the notion of common network 

time because the participating nodes must know when they are required to engage in communications. 

The synchronous macro-programming model, therefore, requires the provision of a global network time 

reference that is used to define the logical application clock and this requirement, as we showed in 

Section 1.2, does not pose a significant challenge to the existing WSAN technologies.

Because neighbourhood data aggregation is considered a primitive and atomic operation, multiple 

aggregation operations can take place within one instant. In terms of the abstract synchronous 

program implementation from Figure 3.1, this corresponds to the ability to use neighbourhood data 

aggregation within the compute_outputs function. As a result, the real time needed to execute 

one instant of program operation is non-negliglible. Therefore, in order to bound the amount of 

time needed to execute one program instant, we restrict the use of data aggregation, rejecting those 

synchronous macro-programs for which the total number of data aggregation operations taking place 

within one instant cannot be established at compile time. As a result, implementations of synchronous 

macro-programs are periodic compositions of a fixed number of data aggregation rounds.

Communication Cycle is a scheduling of all program neighbourhood data aggregation rounds that 

directly corresponds to the execution of one program instant.

The model does not enforce any particular communication scheduling strategy and it is only required 

that the standard data dependency constraints are satisfied, i.e., the results of one data aggregation 

round can be used after the round has finished. Figure 3.3 presents an example communication cycle: 

note that it is possible to schedule several data aggregation rounds for execution in parallel and that 

it is possible to introduce additional delays that may be used, for example, for computation or duty 

cycling.
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Figure 3.3: Two communication cycles comprising six data aggregation rounds each.

The scheduling of application’s communication cycle as a static composition of bounded-in-time 

data aggregation rounds must be established at compile time and, therefore, must be obeyed by all 

network nodes at runtime. Such a global approach to network communication scheduling has an im­

portant consequence: within one instant, network nodes can propagate information by only a bounded 

number of hops and this distance can be established at compile time since multi-hop communication 

can only be implemented in the model as a sequence of neighbourhood data aggregation rounds. The 

synchronous macro-programming model, therefore, takes a static approach, in which some network 

parameters such as, for example, the maximum extent of the underlying network topology must be 
known at compile time. For example, the SOSNA programming language introduces a compilation 

parameter that denotes the maximum depth of network spanning trees used to implement multi-hop 

data aggregation. This way, program text may be freed of assumptions on the deployment network 

topology without breaking the model’s central requirement.

.41though this might be limiting to some applications, the reliability and timeliness considerations 

suggest, as we discussed in Chapter 1, that smaller-extent topologies are preferable in the WSAN 

domain. On the other hand, global and periodic communication scheduling carries a number of im­

portant benefits: application reaction time, i.e., the duration of one instant, can be established at 

compile time and tuned to reflect application-specific requirements while sensor sampling and actu­

ation can be globally synchronized. Finally and most importantly, global communication scheduling 

gives way to automatic duty-cycling, which is a crucial characteristic of energy-efficient WSAN appli­

cations: sleep times can be automatically inserted into the global schedule and because network nodes 

know the durations of data aggregation rounds, they can choose at runtime to switch their radios 

off if, based on the current application state, they conclude that they can neither provide nor receive 

information relevant to the result of a given data aggregation round. In fact, it is exactly this property 

that allows the SosNA compiler to generate application code capable of energy-efficient execution.
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3.2 The SOSNA Programming Language

SoSNA is a stream-based functional language, originally inspired by the synchronous programing lan­

guage Lucid Synchrone (Pouzet 2006). SoSNA is also a synchronous macro-programming language, 

meaning that it implements the synchronous macro-programming model. The language targets po­

tentially heterogeneous and resource-constrained WSAN applications and its compiler can generate 

application code that runs in bounded memory and time, as well as, which is capable of duty cycling. 

SoSNA applications require a runtime network time-synchronization service for correct execution and, 

provided that the underlying operating system can guarantee real-time bounds on processing and 

wireless channel access, SosNA applications have bounded reaction times and implement synchro­

nized sensor sampling and actuation. The following sections describe the core features of the language 

and Section 3.4 presents a range of more advanced application examples discussing the language’s ap­

plicability to WSAN application development. The description of how SoSNA applications compiled 

by the current prototype compiler execute on wireless sensor networks are deferred to Chapter 4.

3.2.1 Functional, Stream-Based Programming

Streams, i.e., infinite-in-time sequences of values are the core concept of the language. SosNA offers 

a synchronous stream transformation model that is similar to that of Lucid Synchrone. Programs 

are defined as static compositions (networks) of stream operators, which are evaluated in synchrony 

in essentially the same way as it was presented in Section 3.1. Contrary to Lucid, SoSNA does not 

allow to infer stream value presence/absence patterns at compile time because stream value presence 

might depend on the results of neighbourhood data aggregation and hence it possesses a degree of 

uncertainty related to possible communication failures. In the rest of the presentation, we will use the 

the term scalar values to represent individual stream data values and the term null values to represent 

the • symbol, i.e., the absence of a stream data value in a given instant. Also, we will use the term 

stream values whenever the distinction between scalar and null values is not relevant.

Constant streams are Sosna’s most basic streams. They are represented by literals of various sorts 

such as integers, floating point numbers or strings. Constant streams are the equivalent of constant 

values in traditional programming languages and they represent streams whose values never change. 

Analogously to auxiliary variables in functional languages, auxiliary streams can be defined using the 

let expression for local declaration scoping or using the global stream definition form. The following 

example defines two local, constant streams pi and x, and a global stream s. Note that SoSNA does 

not require providing type annotations - all types are automatically inferred by the compiler.

41



3.2. The SOSNA Programming Language

(let (pi 3.1415)
(let (x 2.0)

{* X pi) ) )
(def s "A global and constant stream")

SoSNA uses the prefix notation of S-expressions, which is the basis of the LISP and Scheme program­

ming languages (see, for example Abelson & Sussman 1996). In this notation, language expressions 

are either literals, identifiers or lists of other expressions surrounded by a pair of parentheses. The 

first sub-expression of a list usually represents a language operator or a function while the other sub­

expressions are its arguments. Therefore, the inner-most let operator from the above program can 

be read as follows: let x equals 2.0 in the expression (* x pi), i.e., multiply pi by 2.

The distinction between streams and the values that comprise them is fundamental in Sosna and 

the language, as a result, can be partitioned into two distinct domains: the functional domain com­

prising functions, scalar variables and scalar constants, and the stream domain comprising streams, 

stream operators and other high-level constructs that are described in the following sections. Func­

tions in Sosna are pure, i.e., they are side effect-free and since they are first-order, meaning that they 

cannot be passed as arguments to other functions or returned as values, streams of functions cannot 

be defined in the language. The purpose of functions in SoSNA is to define scalar value transforma­

tions and, similarly to other functional languages, anonymous and recursive functions can be defined. 

The following code snippet shows example definitions of named and anonymous functions. The first 

function calculates the minimum of two values while the second one is anonymous and it applies the 

min function in order to compare its only argument z to the value 2. Note that the syntax of function 

application is the same as that of predefined operators and that the if operator does not require the 

“then” keyword - instead, the last two arguments represent both alternatives.

(def—fun (min a b)
(if (< a b) a b)

(lambda (z)
(min z 2) )

Functions can be applied to streams point-wise in time using the smap operator, which is the most 

fundamental stream operation in SoSNA. The operator applies a given function to each value of all 

of its argument streams and returns a stream of results of these applications. The semantics of this 

process are the following: in every program instant the result of the operator’s application is present if 

and only if the values of all argument streams are present in the same instant. The following program 

defines a stream that is a running minimum of two other streams and Table .3.2 presents its example
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Stream Values
X 1 4 3 1 3
y 3 2 1 1 2

(smap min x y) 1 2 1 2
(smap (lambda (z) (min z 2)) X) 1 2 2 1 2

(smap < X y) true false false false
Table 3.2: Example evaluation of the smap operator.

evaluation. The figure also shows that standard arithmetical, logical and relational operations such 

as, for example, the < operator, are treated in exactly the same way as user-defined functions.

(def stream_min (smap min x y))

In order to simplify definitions of basic stream transformations, SOSNA allows to omit the smap 
operator when the built-in arithmetical, logical and relational operators are used. The following two 

stream definitions are equivalent and the compiler implicitly adds smap operator instances when they 

are omitted. Both streams evaluate to a constant stream of the value 125.

(def X (* 5 (+ 10 15)))

(def y (smap * 5 (smap + 10 15)))

Note that the semantics of arithmetical expressions when considered outside of their enclosing program 

context can be ambiguous. Consider, for example, the expression (+ 10 15), it can correspond to 

the addition of two scalar values or it can be an implicit smap application to two constant streams. 

SosNA distinguishes between such cases by taking into consideration the enclosing program context. 

Therefore, the language defines two expression definition contexts: the function context and the stream 

context. The former corresponds entirely to function bodies and the latter to all other parts of the 

program. We will use the simplified function mapping notation whenever its definition context can be 

clearly established.

Null values can be implicitly introduced to programs through the use of stream filtering. The 

within operator takes a stream of Boolean values - the guard stream, as its first argument and one 

stream of an arbitrary type as its second argument. The operator returns a stream that is equal to 

the operator’s second argument whenever the guard stream takes the value true. In all other cases, 

i.e., when the guard stream takes the value false or when it takes the null value, the result stream 

takes the null value. The following program fragment demonstrates how stream thresholding can be 

realised. In short, the program filters out those values of the stream (* 2 x) that are evaluated in 

the case in which the stream x takes values greater than 5. An example evaluation of this program is 

presented in Table 3.3.
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Stream Values
X 2 4 6 2 4 6 ...

X > 5 false false true false false true ■ ...
thresh 12 12 ...

(merge 0 thresh) 0 0 12 0 0 12
Table 3.3: Example evaluation of the stream filtering program from page 43.

(def thresh
(within (> X 5)

(* 2 X) ) )

As we said in Section 3.1, the synchronous programming paradigm requires that it is possible to make 

decisions based on stream value absence. To this end, SosNA uses the merge operator that allows 

to substitute the values of one stream for the null values of another. The following program defines 

a stream that takes the value 0 each time thresh takes the null value. The results of an example 

evaluation are also presented in Table 3.3.

(def s (merge 0 thresh))

The Composition of within and merge operators can be used to define a form of the conditional 

if operator for use in the stream domain. Normally, the operator cannot be applied to streams 

in the same way as, for example, functions are because its semantics involve selective evaluation of 

its alternatives. Hence, the if operator can be applied only to scalar values within the function 

context. The stream programming paradigm assumes, on the other hand, that programs are networks 

of stream operators through which values are constantly flowing. Therefore, it is not possible to 

decide at runtime that some streams should not be evaluated. Instead, programmers are concerned 

with directing stream values through the operator network in such way that the desired computational 

result is achieved. We use the following program to explain the difference between the use of stream 

filtering operators and the use of the functional if operator.

(def a (merge y (within (< x y) x) ))
(def—fun (min x y)

(if (< X y) X y))
(def b (smap min x y))

As long as both x and y take non-null values, the a and b streams are computationally equivalent. 

The difference, however, manifests itself when the values of either x or y are absent. In the first case, 

a remains present as long as x and y are not absent simultaneously, while b takes non-null values
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Stream Values
X 1 2 2 1 1 ...
y 2 1 2 2 2 ...

(smap min x y) 1 1 1 1 ...
(merge y (within (< x y) x)) 1 1 2 2 1 1 ...

Table 3.4: The relation between the use of stream filtering operators and the use of the if operator.

only when both x and y are present. Table 3.4 presents an example evaluation of the program and 

Figure 3.4 depicts both stream definitions in form of stream operator networks.

The stream operators presented so far allow to express stream computations in which only the cur­

rent stream values are taken into consideration. In the operator network terminology, such programs 

correspond to acyclic operator networks. However, in many practical applications it is beneficial to be 

able to refer to stream values computed in instants preceding the current one. Consider, for example, 

a program that detects changes in the consecutive values of a given stream. It would be impossible 

to implement such behaviour without access to the stream’s past state. SoSNA follows the approach 

taken by Lustre and Lucid Synchrone and it offers a stream delay operator named fby. The oper­

ator simply defines a new stream whose current value is the one that the stream that is its second 

argument took in the previous instant, fby takes, therefore, two arguments; one providing the initial 

value for the resulting stream used in the first instant of program execution, and the other one being 

the stream to be delayed. The operator’s name is an abbreviation of the phraise “followed by” and it 

corresponds to the operator’s semantics: the initial value of the result stream is followed by all values 

of the delayed stream. The following program implements stream value change detection:

(def change? (smap != x (fby lx)))

The != function implements the “not equal” operation and the stream change? takes the value true 

whenever the value of x changes and the value false otherwise (Similarly to the Scheme programming 

language, SosNA allows such characters as ? or - be part of program identifiers). Table 3.5 presents 

an example evaluation of this program: note that null stream values are delayed in the same way as 

scalar values but the program does not consider them as a change. In order to achieve such effect the

©-

y X

smap > within merge
il
smap

Figure 3.4: Stream operator network representation of the example stream filtering programs.
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Stream Values
X 1 1 2 2 2 1 11...

(fby 1 X) 1 1 1 2 2 2 1 1 ■ ...
(smap != X (fby 1 x) f f t f f t f

Table 3.5: Example evaluation of the fby operator for change detection (abbreviations are used for 
the true and false values).

merge operator would have to be used.

Following Lustre and Lucid Synchrone, SosNA allows to define recursive streams that can be used 

to implement persistent state. Consider an application that needs to integrate (sum) all values of a 

given stream. Such program would need be able to accumulate consequent stream values. Recursive 

stream definitions together with the fby operator can be used to achieve this effect. The following 

program defines a stream that counts from 1 to infinity, increasing in every instant its previous value 

by one:

(def—rec n (+1 (fby 0 n)))

The next definition uses an auxiliary stream change_value to convert the Boolean values of the 

previously defined stream change? into integer values so that they can be summed by the recursive 

stream sum_of_changes.

(def change_value (smap (lambda (x) (if x 1 0)) change?))
(def—rec sum_of_changes (+ change_value (fby 0 sum_of_changes)))

Similarly to the first definition, sum_of_changes is iteratively evaluated by adding the current value 

of change_value to the previous value of sum_of_changes. The streams take the following values:

Stream Values
n 1 2 3 4 5 6 7 8 9 ...

change? f f t f f t f •
change_value 0 0 1 0 0 1 0 • • ...
sum_of_changes 0 0 1 1 1 2 2 • • ...

Note that null values propagate and unless the merge operator is introduced, sum_of_changes stays 

null forever, starting from the first instant in which change? takes the null value. An example 

improvement might replace all null values taken by change_value with a default value:

(def—rec sum_of_changes (+ (merge 0 change_value)
(fby 0 sum_of_changes)))
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Figure 3.5: Counting to infinity through recursive stream definition.

The above examples showed that recursive streams are constructed by referencing them within their 

own definitions. This approach is sound because SosNA uses the fby operator to delay these recursive 

references or, in other words, to make them refer to values already computed in past instants. Because 

recursive definitions such as (def-recx x) would be difficult to apply meaning to, SoSNA enforces 

all recursive stream references to be delayed.

Functions are the most fundamental way of creating reusable code in all functional languages. Since 

SoSNA uses functions to abstract transformations of scalar values only, a complementary concept is 

needed for the stream domain. To this end, the language introduces the notion of user-defined stream 

operators, or alternatively stream functions, which are direct analogs of scalar functions for use with all 

non-scalar constructs of the language. The distinction between scalar and stream functions allows to 

separate both domains with the main benefits of confining function recursion to the scalar domain and 

being able to use functions written in other programming languages. The following example program 

demonstrates named and anonymous stream function definitions whose syntax, with the exception of 

the initial keyword, is exactly the same as that of their scalar counterparts.

(def (IF cond x y)
(let (a (within cond x))

(merge y a)))
(big—lambda (init)

(letrec (count (+ 1 (fby init count))) 
count))

Both stream and scalar functions can use the let operator to introduce auxiliary stream and variable 

definitions respectively. The letrec operator has a similar purpose and syntax but it is used for 

auxiliary recursive definitions. The first stream function implements the earlier defined form of the 

if operator for streams (see Figure 3.4) while the second one returns a stream that counts to infinity 

starting from a given value (the first value of the init function parameter).

We conclude this presentation of Sosna’s core concepts with an overview of tuples, which are a
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common way, in many functional programming languages, of implementing anonymous records or, in 

other words, compositions of values of different types. Formally, tuple is a product type of a fixed 

number of other data types, including tuples themselves. SosNA allows to use tuples in both stream 

and functional domains but the semantics are slightly different in each case. In the functional domain, 

tuples have the usual meaning, i.e., conglomerates of values. For example, the following scalar function 

defines two tuples, one being a composition of two integers and the other combining the first tuple 

and a floating point value.

(lambda (x)
(let (tl (tuple 1 2))

(tuple t1 2.0)))

Tuples are ordinary values, hence they can be passed as arguments to functions and returned as results. 

SoSNA, currently, allows to access the tuple’s composite values only through pattern matching, which 

is a technique common in many functional languages. The following example shows how it works for 

both function arguments and auxiliary let definitions:

(def-fun (vector_add (tuple xl yl) vec2)
(let ((tuple x2 y2) vec2)

(tuple (+ xl x2) (+ yl y2))))

The program defines a function of two arguments, both of which are two-element tuples. The first 

argument does not have a name but instead is matched against two variables corresponding to each of 

its elements - xl and yl respectively. The second argument vec2 is also a tuple, but its elements are 

assigned to the x2 and y2 variables in the following let definition. The function returns, as a result, 

a tuple of sums of the first and second elements of the input tuples respectively, implementing this 

way a form of two-dimensional vector addition. SoSNA’s compiler efficiently translates tuples into C 

structures and pattern variables are implemented as C structure field references.

The same syntax for tuple creation and matching is used for the stream domain but, contrary to 

the functional domain, tuples can only be applied to streams (as opposed to other constructs) and are 

understood as streams of tuples. This, among other consequences, means that stream tuple definition 

is regarded as the point-wise in time application of the scalar tuple constructor to the consecutive 

values of the argument streams in the same way as arithmetical operations are performed on streams. 

The following program defines three constant streams of tuples:

(def vl (tuple 1 2))
(def v2 (tuple 3 4))
(def X y (smap vector_add vl v2))
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3.2.2 Building WSAN Applications

All of the programs presented in the previous section described abstract computations that had no 

contact with the outside world. SosNA targets WSAN applications, therefore, sensing and actuation 

are the only means applications may use for interaction with the outside world. The language addresses 

sensing and actuation through the notions of abstract program inputs and outputs, the semantics of 

which are defined by the underlying platform-specific libraries. The simplest, yet fully-functional 

SoSNA program is perhaps the mythical “Hello World” application:

(def—class PC)
(output (Display (at PC "Hello World")))

The def-class keyword defines an abstract device class called PC. Device classes serve as a way 

to address applications that are meant to be run in networks comprising several different classes 

of nodes, for example, sensor, actuator and data processing nodes, and they are described in more 

detail in Section 3.2.3. From an abstract point of view, the above program sends in every instant 

consecutive values of the constant stream "Hello World" to the Display actuator that is located 

on devices belonging to the abstract PC class. Naturally, the actuator can be implemented differently 

on different platforms and unless some form of standard libraries are developed, the programmers 

must provide an implementation of the actuator’s driver written in some lower-level language. This 

approach ensures generality and extensibility of the language and it taken by several other macro­

programming languages such as, for example. Flask, Macrolab or COSMOS (Mainland et al. 2008, 

Hnat et al. 2008, Awan et al. 2007).

Sensors are represented in SosNA by abstract program inputs that can be thought of as streams 

of time-stamped scalar values. Inputs are allowed to take null values in order to model event-based 

operation of some sensors (for example, motion detectors), as well as, to enable sensor state control, 

which is an important characteristic of many resource constrained WSN/WSAN applications. Inputs 

are not treated as ordinary streams because, in addition to sensor readings, they carry time stamps 

that represent the real time in which the sensor reading was taken. Therefore, stream operators cannot 

be used directly to transform inputs and the language provides two special-purpose operators vals 
and time for extraction of input’s data values and timestampsC The following program gives an 

example of how the operators can be used. Note that inputs are defined by specifying the device class 

on which they reside and the data type of their readings, as well as that there is no need to specify 

the device class of the displayed stream of tuples. Device classes are part of the type system and the

'Equivalently, the inputs could be defined as streams of tuples of data values and their timestamps but because of 
aesthetical reasons, we decided to use a special-purpose concept.
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Figure 3.6: The relation between the real time of detection events and the logical application time.

compiler can infer them in most cases. Here, since the device class information is initially associated 

with the light_sensor input, there is no need to add additional annotations.

{def—class MicaMote)
(def—input {light_sensor @ MicaMote : int))
(output (Display (tuple (vals light_sensor)

(time light_sensor))))

The main reason behind associating temporal information with input data values is to be able to 

keep track of the real time in which asynchronously operating sensors detect events in the application 

scenarios in which the logical ai)plication clock ticks at relatively low rates. It is cxirccted that, unlike 

in the case of many other embedded systems, WSAN applications will be operating at comparatively 

lower rates because of their need to transmit information wirelessly, as well as because of the likely 

need to duty-cycle their operations. Hence, the duration of program cycles in SoSNA api)lications 

may be large, compared to sensor sampling rates required by some applications such as, for example, 

sound processing.

In order to support applications in which either sensors need to be sampled at high rates or the real 

time of event detection is important, SoSNA requires input drivers (analogous to the output drivers) 

to provide the detection time stamp. High-frequency sensor sampling, therefore, has to be realised 

within the sensor driver and only high-level detection events can be passed to the application. If the 

driver detects more than one event within a single application cycle, only the most recent is considered 

as the input value for the subsequent instant. The main reason for such an approach is to guarantee 

bounded memory execution. Hence, unless more complex data types such as arrays are used for input 

data values, Sosna applications can receive in every instant at most one reading from from each 

sensor. Figure 3.6 presents an example scenario describing this idea.

Sosna programs are intended for execution in time-synchronized wireless networks of multiple 

devices with sensing/actuation capabilities. The language’s semantics require that, programs are
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executed at exactly the same rate across the entire network so that logical clocks of individual network 

nodes can run in lock-step. We allow network nodes to start program execution at arbitrary times, 

as well as, to restart the program when time synchronisation is lost for some reason. As a result, 

although program streams are evaluated in synchrony, different nodes may experience a shift in state. 

In the rest of this section, w'e assume, for simplicity, that all network nodes are of the same type, i.e., 

they belong to the same device class, and that they are running exactly the same program.

Since it is difficult to start all network nodes at the same time, the shift in the state of stream 

evaluation is likely to occur in many applications. This is not, however, a significant problem because 

the execution of SosNA applications is expected to be data-driven, i.e., to depend on the the values of 

regularly changing sensor readings and, hence, naturally correlate data processing among neighbouring 

nodes. We use the following program to explain the idea.

(def-class node)
(def—input sensor @ node : int)
(def-rec n (+1 (fby 0 n)))
(def detected

(within {> (vals sensor) 100) 
true)))

(output (Blin)c detected) )

The program defines two streams: n counts from 1 to infinity and detected takes the value true 

whenever sensor takes a value greater than 100. Network nodes running this program will blink their 

LEDs each time detected holds. Figure 3.7 presents an example networked execution scenario and 

the following table shows how three neighbouring nodes, each of which starting at a different time, 

would execute the program given a particular pattern of sensor readings.

Stream Valnes

node A

n 0 1 2 3 4 5 6 ...
detected t

node B

n • 0 1 2 3 4 5 ...
detected t

node C

n ■ • • • 0 1 2 ...
detected t
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Figure 3.7: Networked streams as dynamic regions.

As we can see, the shift in state occurs for the values of n. This is because n is a recursive stream 

and its definition is purely computational. It is possible, however, to make recursive streams and 

persistent state more dynamical. For example, the following stream counts the number of instants 

during which the detected stream reports true. We reuse the if stream function definition presented 

in the previous section.

(def—rec detect_n (+ (fby 0 detect_n)
(IF detected 1 0)))

Networked execution extends the stream semantics with an additional spatial dimension. Figure 3.7 

shows that every stream can be thought of as a dynamically changing spatial region defined by the 

values it takes across the network. Region membership in each instant can be defined as the set 

of nodes at which the stream takes non-null values. Indeed, this is the main reason for which the 

within stream operator received its name - the operator can be used to limit one region to the set of 

nodes located within another region and, as a result, its semantics involve both temporal and spatial 

filtering of stream values. Spatial regions have been shown to be a natural abstraction for many WSN 

applications and are used by several macro-programming languages such as, for example. Regiment 

and Proto (Newton & Welsh 2004, Beal & Bachrach 2006). In the rest of the chapter, we will use the 

region metaphor interchangeably with the local view in order to simplify presentation.

The fact that region membership may change in subsequent instants is an important property of the 

language allowing SoSNA programs to adjust to changes in the underlying communication topology. 

Although this approach is common among all functional macro-programming languages, care must be 

taken to ensure that algorithms that rely on region-based computations compute the desired results. 

This, however, cannot be guaranteed by the compiler since the possible levels of network instability
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cannot be predicted at compile time. Therefore, the language semantics state that throughout the 

duration of one program instant (the cycle) network topology is considered constant. Apart from that, 

SosNA takes the best-effort approach in which the system runtime is responsible for maintaining the 

most stable network topology and the most reliable communications possible throughout the entire 

program execution time. We discuss alternative implementation choices in Section 4.2.

Single-hop Stream Aggregation

Neighbourhood data aggregation is the simplest form of networked computation that can be im­

plemented in SosNA. The synchronous macro-programming model states that neighbourhood data 

aggregation is an atomic operation that must be completed within one instant, hence, the language 

defines it as an elementary stream transformation. We use the term neighbourhood stream aggregation 

to refer to the process that can be thought of as a point-wise application of neighbourhood data 

aggregation to the values of a given stream. The process involves, in essence, three core components;

• aggregated stream - the stream whose values are to be aggregated,

• initialisation stream - the stream whose values are used to initialise the result of aggregation on 
each of the participating nodes,

• aggregation function - the scalar function used to combine the values received from the neigh­

bouring nodes with the initial aggregation value in order to compute the aggregation result.

The operational semantics of neighbourhood stream aggregation are the following. In every instant:

1. all nodes at which the aggregated stream takes a non-null value (the sending nodes) broadcast 

this value to their neighbours,

2. all nodes at which the initialisation stream takes a non-null value (the receiving nodes) accept 

the aggregated stream values from their neighbours and use the aggregation function to compute 

the aggregation result for this instant.

Note that the sets of transmitting and receiving nodes do not have to be equal and that the program­

mer has implicit control over sending and receiving through the manipulation of the aggregated and 

initialisation streams.

Within one round of data aggregation, the participating nodes may receive several scalar values 

from their network members. We require that these values come one at a time, although their relative 

order is not specified. Consider an arbitrary instant t and a receiving node n: let ijj be the value the
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initialisation stream takes at time t, at the node n, let be the set of values n has received

from its neighbours at time t and let /(•,•) be the aggregation function. We define the result of 

neighbourhood stream aggregation at time t as:

...))

It

Nt>0

Nt=0

The formula describes a universal and common, in many functional languages, way of folding a 

list of elements to a value of a particular type. Different effects can be achieved when a particular 

aggregation function and the initialisation value are chosen. For example, by choosing the standard 

addition operator as the aggregation function and 0 as the initial value, all received values can be 

summed up together. Alternatively, the maximum of the received values can be calculated when the 

max aggregation function and 0 as the initialisation value are used. Note that it is possible that the 

aggregated and the initialisation streams have different data types as long as the aggregation function 

has the following general signature: f '. X xY —> T.

SoSNA uses the aggr operator to specify neighbourhood stream aggregation. The operator takes 

four arguments which, in addition to the above defined three aggregation components, include a 

specification of an abstract network topology. For simplicity, we confine ourselves in this presentation 

exclusively to neighbourhood topologies and defer further discussion to the later part of this section. 

The following stream function defines a universal spatial averaging procedure that takes as arguments 

the stream whose values are to be averaged and the topology along which the averaging is to be 

performed. The function is applied to the stream of sensor readings and to a one-hop neighbourhood 

topology. The aggregation process operates on tuples that comprise the sum of sensor readings and 

the number of values comprising the sum. The final result is a simple division of the sum by the 

number of data items.

(def (avg stream topology)
(let (x (tuple stream 1))

(let ((tuple sum n) (aggr vector_add x x topology))
(/ sum n))))

(output (Display (avg (vals sensor) (nhood nodes))))

Note that the initialisation and the aggregated streams are the same. This is because the aggregation 

procedure does not include the the value the aggregated stream takes (if present) at the receiving 

nodes. These values, however, can be added either after the aggregate value has been computed or 

they can be smuggled in as the initial value. Table 3.6 presents an example evaluation of the above
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Stream Values
node A

(vals sensor) 115 118 117 116 115 114 113 ...
n 3 3 3 3 3 3 3

sum 348 351 345 342 345 342 339 ...
Display 116 117 115 114 115 114 113 ...

node B
(vals sensor) 117 116 115 114 113 112 no ...

n 2 2 2 2 2 2 2
sum 232 234 232 230 229 226 223 ...

Display 116 117 116 115 114 113 Ill ...
node C

(vals sensor) 116 117 113 112 116 116 116 ...
n 2 2 2 2 2 2 2

sum 231 235 230 228 232 230 229 ...
Display 115 117 115 114 116 115 114 ...

Table 3.6: Example evaluation of the neighbour stream averaging function (integer calculations).

function when applied to a stream of sensor values. We use the physical network topology presented 

in Figure 3.7 and, additionally, assume that there are no communication failures.

The main reason we used a single aggregation process operating on a stream of tuples instead 

of two independent aggr operators is such that SOSNA does not guarantee data consistency across 

different aggregation operations. In other words, two different instances of the same aggregation 

process may return different results given a particular pattern of lost messages. Although the current 

SoSNA implementation schedules independent aggr operators to be executed in parallel by means of 

using the same radio message for their data items, reliance on this property would make reasoning 

about the properties of larger programs difficult, as well as, it would preclude the implementation of 

alternative communication scheduling policies.

Neighbourhood stream aggregation can be used in the recursive setting to implement, for example, 

persistent state that is robust to different node start-up times. In the following example nodes count 

to infinity and synchronise the counter value with their neighbours.

(def—rec sync_n
(let (prev_n (fby 0 syncj) )

{+ 1 (aggr min prev_n prev_n (nhood nodes)))))

In every instant, nodes synchronise their counters to the lowest value of those held by their one-hop 

neighbours. Since all nodes increment their counters, a given node’s counter value can decrease only as 

long cis there exist network nodes with smaller counter values. As a result, when this program is run in
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a multi-hop network with arbitrary node start-up times, synchronization of counting gradually spreads 

across the entire network leading to global convergence to the lowest counter value. The above program 

is an example of an amorphous algorithm that employs local communication for periodic spreading 

of network gradients in order to realise a spatial computational process that is robust to network 

failures and is independent of the underlying network topology. Beal & Bachrach (2006) show how 

such algorithms can be implemented in the Proto language using neighbourhood stream aggregation.

Contrary to Proto, SoSNA allows more sophisticated communication patterns to take place within 

one instant. Consider, for example, the case in which one aggregation expression depends on the result 

of another. Clearly, the corresponding data aggregation rounds cannot be scheduled for execution in 

parallel and hence must be executed one after another in the same instant. This property is the 

core characteristic of the language - instants may comprise complex communication patterns so that 

applications can realise the whole sensor data transformation path in bounded time. For example, the 

following stream definition realises three hop-wide sensor value averaging within one instant;

(def {avglhop stream)
(avg stream (nhood nodes)))

(def avg3hop (avglhop (avglhop (avglhop (vals sensor)))))

Multi-hop Stream Aggregation

In addition to the basic neighbourhood stream aggregation, the aggr operator can be used to perform 

multi-hop stream aggregation when the nhood expression is replaced with a multi-hop topology ex­

pression. SoSNA uses network spanning trees to direct the aggregation of stream values spread across 

larger network regions. Multi-hop stream aggregation is semantically similar to neighbourhood stream 

aggregation and it is also an atomic operation that is executed within one instant.

Data aggregation along multi-hop tree topologies is one of the most fundamental communication 

paradigms for wireless sensor networks. It allows to collect sensor data from multiple sensor nodes 

and conserve energy by fusing different data packets at tree nodes instead of forwarding every one 

of them to the root of the tree, which is often referred to as the sink. In the context of macro­

programming languages, tree-based data aggregation is often used implicitly as means to implement 

high-level data transformation primitives. For example, Madden et al. (2005) use tree-based periodic 

data aggregation as the underlying topology for dissemination and execution of their SQL-like queries 

while Newton et al. (2007) use a similar communication paradigm to implement abstract region data 

aggregation operators. In tree-based data aggregation, data flows from the nodes that are at the 

bottom of the tree towards their parents, i.e., their neighbouring nodes that are one-hop closer to the
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Figure 3.8: The flow of information in tree-based data aggregation (a), cluster topology comprising 
two trees (b), two overlapping cluster topologies defined in the same program (c).

sink node. The parent nodes fuse the received values to a single one and forward it one level up so 

that eventually the process ends at the root of the tree. Figure 3.8 (a) describes the flow of aggregated 

data along an example tree topology.

Cluster topology is a union of several disjoint network spanning trees. SOSNA defines cluster 

topologies in which all trees have bounded depth and uses them to direct multi-hop stream aggrega­

tion. Cluster topologies can be defined in the language either statically, or dynamically, based on the 

changing values of a given stream. SoSNA programs can define multiple, possibly overlapping cluster 

topologies, hence, individual nodes may take different roles with respect to different topologies. The 
idea is described in Figure 3.8(c) in which two different cluster topologies are defined over the same 

physical network topology. The arrows represent the parent/child relation among the topology mem­

bers while the dashed lines correspond to the physical wireless connectivity of the network. We use 

the term cluster heads to refer to the collection of network nodes that are the roots of all spanning 

trees comprising a given cluster topology and the term cluster members to refer to all nodes that are 

part of that topology. Multi-hop stream aggregation is defined in exactly the same way for both static 

and dynamic cluster topologies. Hence, in this section we focus only on dynamic cluster topologies 

and leave the description of static cluster topologies to Section 3.2.3.

Dynamic cluster topologies are constructed using a bounded-hop leader election protocol that 

selects the topology’s root nodes based on the values of a selection stream. Once the root nodes are 

chosen, all nodes participating in the process establish their roles within the topology based on the 

communication distance towards the closest root node. The process is repeated in each instant in 

order to reflect possible changes in the values of the selection stream. The election process comprises 

internally a fixed number of data aggregation rounds in which the participating nodes exchange their
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current values of the selection stream, forward the best leader value received so far, and keep track of 

the network identifiers of those nodes from which the best value was received so that the topology can 

be established in parallel to the leader election process. The number of aggregation rounds comprising 

the process defines the maximum depth of the resulting topology and is a compilation parameter that 

can be tuned to reflect application-specific requirements. The details of the protocol are presented in 

Chapter 4.

There are two ways of choosing the root nodes based on the values of the selection stream: we 

can pick either the locally largest value or the locally smallest one. Sosna uses, therefore, two stream 

operators clmax and clmin to construct dynamic cluster topologies based on the values of a given 

selection stream. The following program fragment aggregates sensor readings along a dynamic cluster 

topology in which the root nodes hold the largest sensor reading values in their network vicinity.

(def va 1 (vals sensor))
(def sum (aggr + val val (clmax val)))

Note that, similarly to neighbourhood stream aggregation, the local value of the aggregated stream 

at the receiving nodes is not included in the aggregation result unless explicitly added (e.g., as the 

initialisation stream). Also, the receiving nodes, because of the uni-directional nature of data aggre­

gation over trees, are always the topology’s cluster heads, hence, the result of aggregation is absent 

on all cluster members.

Assuming that the val stream is always present on all network nodes, the topology defined by this 

program will cover the whole network resulting in all nodes taking part in the topology construction 

and aggregation {processes. However, applications such as target tracking may require that the extent 

of communications is confined to a relatively small network region surrounding, for example, the 

physical object being tracked. Such an effect can be achieved in SoSNA through spatial filtering of the 

selection stream because the extent of a dynamic topology is also limited by the extent of the spatial 

region associated with the values of the selection stream. For example, assuming that the relevant 

sensor readings are those above 100, the following modification can be used to achieve the effect.

(def val (within (> (vals sensor) 100)
(vals sensor)))

As a result, the topology is created only around the tracked object as long as it is within the network’s 

sensing range. The topology’s cluster heads are likely to be the nodes located the closest to the object 

since they are the ones that receive the strongest signal. Also, as the object moves, the topology’s 

structure is reevaluated to reflect the change. Figure 3.9 depicts three consecutive instants of the 

topology’s evolution.
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Figure 3.9: The evolution of a dynamic topology in a simple target tracking application.

Multi-hop stream aggregation is an atomic operation in the sense that it is executed entirely within 

one instant. However, contrary to neighbourhood stream aggregation, the process internally comprises 

several rounds of neighbourhood data aggregation that are executed sequentially. We use the term 

aggregation steps to refer to the individual data aggregation rounds comprising the whole multi-hop 

aggregation process. The exact number of aggregation steps is a compilation parameter and is equal 

to the maximum depth of all spanning trees comprising a given cluster topology. Multi-hop stream 

aggregation has exactly the same syntax as neighbourhood stream aggregation: the aggr operator 

requires specification of the aggregation function, the initialisation stream, the aggregated stream and 

the cluster topology to be used to guide the process:

(aggr FISC)

The semantics of multi-hop stream aggregation along a cluster topology c of depth d > 0 are the 

following. In every instant, there are d aggregation steps. In each step k = 0,... ,d — 1 nodes that are 

at the level (depth) d — k in their corresponding spanning trees send a data value Vk to their parent 

nodes (the receiving nodes) that are at the level d — k — 1. The receiving nodes fuse the received 

values in the same way as during neighbourhood stream aggregation using the aggregation function F 

and an initialisation value ik- In order to facilitate the presentation, we introduce the aggrv operator 

whose semantics differ from the semantics of the aggr operator in that the operator deals with data 

values rather than streams.

The aggregation step sequence can be viewed as a composition of the following sequence of aggrv 

operator instances, for k = 0,... ,d — 1:

where vq = 5* and

= (aggrv F 4 Vk Cfc),

59



3.2. The SOSNA Programming Language

) [

Figure 3.10: Example neighbourhood aggregation topology c\ defined for the second (fc = 1) aggre­
gation step in a spanning tree of depth d = 3.

S* <;=J> k = 0,...,d —2Ad>l
p ^ k=d-l

where S‘ is the current value of the aggregated stream S, I' is the current value of the initialisation 

stream i, and where c^. are neighbourhood topologies defined as follows. Each c*. comprises those 

network nodes that belong to c and that are at the levels d — k and d — k - I in their corresponding 

spanning trees. Of those nodes, the first group are the senders of the aggregated data values and 

the second group comprises the receivers of the values sent by the nodes from the first group (see 

Figure 3.10).

Following the semantics of neighbourhood stream aggregation, for each fc = 0,..., d — 1 the result 

of the corresponding multi-hop aggregation step is present on the receivers of Cfc. Therefore, the final 

result Vd of the process will be present on the receivers of Cd-i, i.e., the c’s cluster heads. Also, 

because the values of the initialisation stream i are used only in the last aggregation step, their 

presence defines the presence of the result of the whole multi-hop aggregation process. Note that, 

since the remaining aggregation steps use the aggregated stream’s values as the initialisation value, 

both I and s streams have to be of the same type. Additionally, we can see that if we pick d = 1 

and substitute a general neighbourhood topology for cq the above definitions correspond the basic 

neighbourhood stream aggregation, as described in the previous section.

Stream propagation

In multi-hop stream aggregation data flows from cluster members to cluster heads and the result of 

the operation is present on cluster heads. Some WSAN applications may require, however, that the
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data flows in the opposite direction. Consider, for example, an application in which a controller needs 

to instruct sensor nodes as to the values of certain parameters such as, for example, sensor sensitivity 

or an adaptive detection threshold.

Stream propagation is an operation whose execution is guided by network topologies in the same 

way as in the case of stream aggregation but in which the direction of data flow is reversed. Both 

neighbourhood and cluster topologies can be used to propagate data along them and, similarly to 

stream aggregation, the propagation process is semantically equivalent to a sequence of neighbourhood 

data aggregation steps. Sosna uses the expand operator to express stream propagation and the 

operator takes the same arguments as the aggr operator: a propagation function, an initialisation 

stream, a propagated stream, and a topology that is used to guide the whole process:

(expand FISC)

In stream propagation the sending nodes, i.e., those for which the propagated stream takes non-null 

values and which, in the case of cluster topologies, are also cluster heads, send their current values of 

the propagated stream to all other members of the topology. The recipients of these data values use 

the propagation function and their local values of the initialisation stream to compute the local result 

of the propagation process and, in the case of cluster topologies, they forward this result further down 

their spanning trees.

Stream propagation is a form of proactive data sharing and can be useful in applications that 

require actuator coordination. For example, the following program uses multi-hop stream propagation 

in order to share the maximum value of the relevant sensor readings among sensor/actuator nodes so 

that they can decide individually on whether to actuate or not:

(def d (within (> (vals sensor) 100)
(vals sensor)))

(def top (clmax d))
(def avg_d (avg d top))
(def—fun (copy x y) x)
(def diff (— d (expand copy 0 avg_d top)))
(output (actuate (within (> diff 10) true)))

The program first spatially filters all sensor readings retaining those that are greater than 100, then 

a dynamic cluster topology is defined around nodes with maximal detection values so that the spatial 

average of the detection values can be computed (avg_d). We use the same, general averaging function 

that was defined in Section 3.2.2 but this time parametrising it with a multi-hop topology. The average 

value is then propagated back to cluster members by simply copying it, i.e., without transforming it
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in any way, so that the difference between nodes’ local sensor reading and the average reading value 

(diff) can be calculated and acted upon.

Homogeneous neighbourhood stream propagation (Section 3.2.3 discusses more general, hetero­

geneous topologies) is equivalent to homogeneous neighbourhood stream aggregation because these 

topologies do not distinguish any nodes and the sending/receiving roles are decided entirely based 

on the presence and absence patterns of the initialisation and the aggregated/propagated streams. 

Therefore, assuming no communication failures, the following expression will always evaluate to true 
for all device classes n:

(== (expand FIS (nhood n) )
(aggr FIS (nhood n)))

Multi-hop stream propagation can be seen essentially as reversed multi-hop stream aggregation. How­

ever, because the propagated data values flow down the topology’s spanning trees the description can 

be simplified. Therefore, following closely the presentation of multi-hop stream aggregation, we define 

the semantics of multi-hop stream propagation along a cluster topology C of depth d > 0 as follows. In 

every instant, there are d propagation steps. In each step /e = 0,..., d — 1, nodes that are at the level 

k in their corresponding spanning trees send a data value to their tree children that are at the level 

k + 1. The receiving nodes fuse the received values according to the rules of neighbourhood stream 

propagation using the propagation function F and an initialisation value i^. Note, that because every 

child node has only one parent, each receiving node will receive at most one value.

Analogously to the previous section, we introduce the expandv operator in order to express a 

single-hop neighbourhood data propagation step in terms of individual data values. Therefore, the 

propagation step sequence is a composition of the following sequence of expandv operator instances 

for fc = 0,..., d — 1:

Vk+i = (expandv F V Vk Ck)

where vq = 5* is the current value of the propagated stream s, P represents the current value of 

the initialisation stream i, and where Ck are neighbourhood topologies defined as follows. Each 

Ck comprises those network nodes that belong to c and that are at the levels /c or fc -I- 1 in their 

corresponding spanning trees. The nodes from the k^^ level send the propagated data values and the 

nodes that are one level below them are the receivers of these values (see Figure 3.11 for an example 

propagation step topology definition).

Contrary to multi-hop stream aggregation, SoSNA defines the final result of the propagation process 

to be present on all cluster member nodes for which the initialisation stream takes non-null values and
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>
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Figure 3.11: Example neighbourhood propagation topology Ci defined for the second (fc = 1) aggre­
gation step in a spanning tree of depth d = 3.

to be absent on the cluster head nodes. Therefore, each of Ufc for fc = 1,..., d becomes part of the final 

result since these values are computed by different sets of nodes and, hence, it is possible, depending 

on the choice of the propagation function, that the process ends with the topology members taking 

distinct values as their final result. This property may be useful, for example, to realise a process in 

which data items are propagated among cluster members conditionally, based on the result of their 

local computations. Finally, similarly to multi-hop stream aggregation, both the initialisation and the 

propagated streams are required to be of the same data type.

3.2.3 Network Heterogeneity

Heterogeneity is a common characteristic of wireless sensor-actuator networks in which sensing, actu­

ation and control might be performed by devices of different types and capabilities. SOSNA supports 

this variety through the concept of device classes that represent in programs different types of network 

nodes. The language does not relate device class definitions to any specific hardware platforms but 

rather treats them as abstract descriptors with application-specific semantics. Once defined, device 

classes are used to parametrise stream and topology definitions so that the global program can be 

automatically partitioned into a set of subprograms each of which to be executed on network nodes 

belonging to a different device class.

Device classes need to be explicitly specified for program inputs and static (as opposed to dynamic) 

topology definitions. Sosna’s type system allows the compiler to infer device class information for 

most of program streams but in cases when this is not possible the at operator can be used to hint 

the inference process. Consider the following program:
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(def—class motes)
(def-input sensor @ motes : int)
(output (Display (/ (vals sensor) 2))

(Report (at motes 1)))

Knowing that the sensor input is evaluated on devices from the motes class, the compiler infers that 

the Display actuator must be present on the same group of devices. In the second case, however, the 

device class of the constant stream l is unknown, hence, the stream needs to be explicitly annotated. 

Note, that the constant stream 2 is automatically inferred to be evaluated by the motes device class 

because it is referenced in the evaluation of an arithmetical stream expression involving a stream of a 

known device class.

SoSNA organises device class definitions hierarchically in order to provide a network-wide time 

synchronization model in which the top-level device class represents the global network time source. 

The model imposes a global spanning tree topology on the whole network and this tree directly 

corresponds to the global network time synchronization tree. This way, both the time synchronization 

and the static topology can be constructed at the same time without additional overhead. In order to 

find a balance between the determinism of static topology specification and the robustness to dynamic 

network topology changes, SoSNA programs define only the abstract relations among device classes 

leaving the organisation of network nodes within a device class up to the runtime system. Also, the 

language semantics do not specify which of the top-level device class nodes should be the time source 

for the whole network. Instead, runtime implementations can use different strategies to better fit the 

application scenario. For example, a single node can be dynamically chosen to be the global time 

source, or all nodes in the top-level device class can synchronise to an external NTP^ time server.

The choice of using static device class hierarchies instead of a more dynamic setting, in which 

relations among different device classes are established at run time, carries the benefit of increased 

predictability of program operation, as well as it simplifies reasoning about the possible interactions 

among different network nodes. Constraining the range of possible network topologies in the program 

code helps to ensure timeliness of network communications since no longer general routing mechanisms 

need to be used. Many different WSAN applications fit in this hierarchical and static architecture, for 

example, building management systems or the CSOnet system described in Section 1.1. Nevertheless, 

the model has also its limitations making it difficult, in particular, to support applications that employ 

many mobile network nodes.

Since device classes represent groups of network nodes, hierarchical device class composition corre-

^Network Time Protocol.

64



Chapter 3. Synchronous Macro-Programming

base

motes )

Figure 3.12: The relation between static clusters of an example device class hierarchy and its global 
network time synchronization spanning tree topology.

sponds to a certain partitioning of the global time synchronization tree. For each pair of device classes 

Co and Ci such that C\ is a subclass of Cq we define static cluster to be the maximal sub-tree of the 

the time synchronization tree that is rooted at a network node no G Co and comprising a number of 

network nodes n G Ci. For the same pair of device classes Co and Ci we also define static cluster 

topology to be a sum of all static clusters defined on Co and Ci. Additionally, we use the terms major 

device class and minor device class, to refer to Co and Ci respectively. Figure 3.12 demonstrates the 

relation between a hierarchy of two device classes and its corresponding static clusters defined on an 

example network time synchronization topology.

Static cluster topologies can be used to aggregate and propagate stream values in the same way 

as dynamic cluster topologies do. The clstat operator is used to define static cluster topologies and 

it takes one argument that is the name of a minor device class (the name of the major device class 

is inferred from the device class hierarchy). The following program defines the device class hierarchy 

depicted in Figure 3.12 and it implements aggregation of sensor readings that originate only from the 

motes device class.

(def-class base)
(def-class mote : base)
(def-input sensor @ motes : int)
(output (Report (aggr + 0 (vals sensor) (clstat mote))))

If we assume the time synchronization topology presented in Figure 3.12, then this program implements 

multi-hop stream aggregation, which proceeds independently along the three static clusters and the 

results of which are present on the three cluster heads, i.e., nodes from the base device class. In
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accordance with the semantics of multi-hop aggregation, the initialisation stream 0 is evaluated within 

the base device cla^s while the values of the aggregated stream come from the mote class.

Hierarchical device class organisation serves in Sosna as an abstract and general network model. 

Because many different physical network topologies may conform to the same device class hierarchy 

(for example, different static clusters may have different depths or they may comprise different numbers 

of base nodes), the language’s semantics do not assume anything more than the maximum depth of 

all static clusters. Since this value may be application-specific, Sosna treats it, similarly to the case of 

dynamic cluster topologies, as a compilation parameter. It is only a language design choice, however, 

that all static cluster topologies must have the same maximum depth because the synchronous macro­

programming model requires only that the extent of all communications within one instant is bounded. 

Hence different device classes could be specified maximal cluster depths on an individual basis.

Static clusters are used to guide information flow along the arcs of the device class hierarchy. 

Sosna allows also for one-hop communication among nodes from different device classes, as long as, 

they are subclasses of the same device class. Consider the following program in which actuators act 

based on the maximal values of detection reports provided by nearby sensor nodes.

(def—class base)
(def—class mote : base)
{def-class actuator : base)
(def—input light @ motes : int)
(def detection (within (> (vals sensor) 100)

(vals sensor)))
(output (act (aggr max 0 detection (onehop actuator mote))))

The onehop operator is used to define heterogeneous neighbourhood topologies. Stream aggregation 

along these topologies is performed in much the same way as in the case of homogeneous neighbourhood 

stream aggregation but with the difference that the sending and the receiving nodes belong to different 

device classes. The operator’s first argument specifies the device class of the receiving nodes while the 

second one defines the device class of the sending nodes.

Compilation of this program will result in three different node-local programs being generated for 

execution on devices from each of the three device classes. Because the base device class is used ordy 

as means to define the other two device classes and none of the program streams are evaluated by 

nodes of this class, the compiler generates for it only a minimal program whose task is act as the time 

source for the whole network. Therefore, deploying this application on a real network will require 

installation, in addition to sensor and actuator nodes, a single one node executing the code generated
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for the base device class so that it can enable execution of other nodes. In contrast to the base 

program, the mote program will include a driver for the sensor input, the code for evaluation of the 

detection stream and the data sending code for the aggregation operator. The actuator program 

will include a driver for the act actuator, data reception and fusion code for the aggregation operator 

and the code for the max function.

The automatic program partitioning technique employed by SOSNA rests on the general idea that 

only the semantics of communication operators, i.e., stream aggregation and propagation, can span 

different device classes allowing for a robust implementation because the operators can handle com­

munication failures in a controlled and concise manner. Section 3.3 describes SosNA’s type system 

and discusses the inference process in more detail.

3.3 The Type System

SoSNA implements the classical ML-style type system (Pierce 2004) that is a type discipline based 

on the simply-typed A-calculus (A_^) and extended with polymorphic let declarations. A-caloilus is 

a primitive but expressive formalism of functions and values used as the basis for most of functional 

programming languages. The simply-typed A-calculus is a typed interpretation of the A-calculus that 

uses, in its most basic form, only one type constructor —> to denote function types, let declarations 

(see Section 3.2.1 of an overview of how they are used in Sosna) extend A^ with polymorphic types, 

i.e., generic type definitions comprising type variables that may be substituted with different type 

expressions to form new type instances. We follow the terminology introduced in Chapter 10 of Pierce 

(2004) where the authors refer to the core language underlying the ML type discipline as ML-the- 

calculus and to the type system itself as ML-the-type-system. In the following sections, we introduce 

the basic concepts of the ML type discipline that forms the core of the SosNA’s type system. Then, we 

present the overall SoSNA’s type classification and discuss the typing of the language’s core constructs.

3.3.1 The ML Type Discipline

ML-the-calculus^ is a generic language that, in its simplest form, comprises constants (language liter­

als), identifiers (program variables), functions, function application expressions and local let defini­

tions. The language can be presented by the following grammar:

e ::= c \ x\ Xx.e \ e e \ let a: = e in e

®VVe present only a simplified description of the language and its type system. For a comprehensive presentation see 
Pierce (2004), Chapter 10.
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Types in ML-the-type-system are built from type constructors and type variables. The former 

may have an arbitrary number of arguments that can either be types or type variables and the 

latter are intended as a way of expressing partially-defined types. Type constructors that have zero 

arguments are called primitive types and can be used for the definition of such basic types as integer 

numbers or strings. The most fundamental type constructor in ML-the-type-system is the function 

type constructor ^ that, by default, takes two arguments that correspond to the type of a function’s 

argument and to the type of its return values. As a result, the set of all acceptable types can be 

presented in the form of a grammar of type constructors and type variables:

T ::= X I T ^ T I Int I Bool I ...

The key characteristic of the ML type discipline is the ability to assign polymorphic types to 

let-bound program variables. Consider, for example, a function that computes the length of a list. 

Clearly, this abstract computational task can be formulated independently of the type of the list’s 

elements and yet, if the function were to receive a monomorphic type, a different version would have 

to be implemented each time a list of elements of a different data type is us('d.

The let-bound identifiers are assigned generic types called type scheme.s. Type schemes have 

a general form VX.T where X represents a set of type variables that are considered bound within 

T. When let-bound identifiers are referenced in an expression, their corresponding type scheme 

variables are instantiated with concrete types (which in turn might comprise other variables), to 

form the identifier’s type instance. The resulting type is denoted as [X T]T and represents a type 

substitution that maps variables from X to types from T in the type scheme VX.T. For example, the 

length-computing function could be assigned the following type scheme:

length : VX.List(X) —> Int

and when applied to a list of Boolean values, this instance would receive a concrete type

[X M Bool]List(X) ^ Int = List(Bool) —» Int.

In order to present how ML-the-calculus’ programs are typed of we need to first introduce several 

definitions. A typing assumption x : r is a statement that says that the program identifier x has type 

T. A typing context F is a set of typing assumptions. The typing relation F h e : r states that the 

expression e has the type t in the typing context F. Sometimes we want to extend a typing context 

with an additional typing assumption about an identifier to form a new context in which case we write 

F; X : To H e : T]. Also, when the typing context is empty, we simply write h e : r meaning that e has 

type r without additional typing assumptions.
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r(a;) = cr 

r X : a

r-x:J\-e:V
r h Ax.e : T ^ T

r h ei : T ^ r r h 62 : T
r h Cl 62 : T'

(ml-Var)

-(ml-Abs)

(ml-App)

rheiicr r;a::CTl-e2:T 
r h let X = Cl in 62 : T

r h 6 : T X n ftv{T) = 0
r h 6 : VX.T

r I- 6 : VX.T

(ml-Let)

(ml-Gen)

r h 6 : [X T]T
(ml-Inst)

Figure 3.13: Typing rules for ML-the-type-system.

Figure 3.13 presents a set of typing rules that define ML-the-type-system. The upper part of each 

of these rules is called the premise and the bottom parts are referred to as conclusions. The typing 

rules should be read as follows: if the premise holds then the conclusion can be drawn. Therefore, the 

ML-Var rule says that if the typing context T contains a type scheme definition for the identifier x, 

then the variable reference expression x receives the type (scheme) cr. The ML-Abs rule establishes the 

typing of single-argument function definitions: if the function body expression receives type T' under 

the assumption that the function’s argument x has type T, then the function receives type T —> T'. 

The ml-App rule defines the typing of function application and its definition is straightforward: if 

the function expression 6i is assigned a function type and the argument expression 62 is assigned the 

type of the function’s argument, then the result of applying the function is the same as the function’s 

return type.

The ML-Let rule defines the typing of let expressions. Note that, contrary to the ML-App rule, 

the identifier x is assumed to have a generic type and hence the expression 61 is required to type- 

check as a type scheme. It is exactly the difference in treatment of functions and let expressions, 

i.e., that function arguments receive concrete types while let-bound identifiers receive generic types, 

that makes type inference for ML-the-calculus decidable, as opposed to more general formalisms (see 

Pierce 2004, p. 390).

The ml-Gen and ml-Inst rules are specific to ML-the-type-system and together with the notion 

of type schemes they distinguish the formalism from the simply-typed A-calculus. The rules are used 

respectively to introduce type schemes when they are needed (type generalisation) and to instantiate 

them when a concrete type is required. The ML-Gen rule converts a concrete type T into a type 

scheme by quantifying over some its type variables. The choice of these variables can be arbitrary, as 

long as, these variables are not free in T (a type variable X is free with respect to a type scheme VX.T 

when it occurs in T and X ^ X). Since the rules do not specify which variables need to be generalised
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T
S

C
K
N

Bool I Byte t Int | Float | Time | T x T | Xj | . 
Stream(T, C) | lnput(T, C) | T ^ T [ S ^ S | 
Topology(K, C, C) | DevClassld(C) | Unit | Xs 
TimeSrc | Subclass(C, N) | Xc 
NHood I CStatic | CDynamic | Xk 
Xn I no I Hi I ...

Figure 3.14: The grammar of SoSNA’s types.

nor what types should be substituted for type variables during type scheme instantiation they are 

not particularly useful for building a real type checker. Instead, they define the general steps any ML 

type checker would have to make in order to analyse a program while leaving the details of decision 

making unspecified.

3.3.2 Classification of Sosna’s Types

SOSNA divides all program types into two main categories: scalar domain types and stream domain 

types. The former category contains all scalar data types such as, for example, integer or floating 

point numbers while the latter comprises the types of all other language constructs. The language 

declares also several auxiliary type classes hut they cannot be directly ascribed to program expressions. 

Sosna’s types, therefore, conform to the type grammar presented in Figure 3.14.

For consistency reasons, each of the above type categories defines its own set of tyi)e variables that 

range only over types from this category. The first type category comprises scalar domain types and, 

besides primitive data types, it includes also tuple types. It is assumed that future versions of the 

language can extend this group with more versatile types such as, for example, arrays. The stream 

domain type category S comprises types of the core language constructs and they arc respectively: 

streams, inputs, scalar functions, stream functions, topologies, device class identifiers, and the program 

output.

The auxiliary C type category represents device class types. This is in contrast to the device 

class identifiers that represent abstract device classes in the language, as opposed to the type system. 

In the rest of this presentation we will use the term (abstract) device class only within the realm 

of language semantics while we reserve the terms device class identifiers and device class types to 

represent abstract device classes within the language and within the type system respectively.

The grammar of device class types directly corresponds to the hierarchical organisation of abstract 

device classes: each device class is a subclass of another class. Device class types additionally include
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device class names that comprise the N type category and which directly correspond to device class 

program identifiers serving as a way of distinguishing among different subclasses of the same class.

The auxiliary K type category represents different types of Sosna’s topologies. These types are 

used as sub components the Topology type together with two device class types that correspond to the 

device classes of a topology’s sending and receiving nodes. The category includes types representing 

neighbourhood, static and dynamic cluster topologies respectively.

Streams and Scalar Values

Because Sosna’s type system is split into two domains, i.e., the scalar domain and the stream domain, 

some of the language’s syntactical constructs receive their types based on the syntactical context in 

which they appear. Literals such as, for example, numerical constants, can refer either to constant 

streams or to constant scalar values. The rule of thumb that is used to disambiguate these cases 

is such that whenever an expression e is a part of a surrounding function body definition, its type 

belongs to the scalar domain. We use, therefore, two different typing relations h/ and to represent 

this distinction.

Constant streams in heterogeneous programs may be evaluated on devices of different classes 
because their semantics are universal. In order to represent this fact in the type system, SoSNA assigns 

polymorphic types to constant streams: each constant stream has a fixed data type but its device 

class is left unspecified until the context of the stream’s instance is established. We can summarise 

the rules governing the typing of integer literals as follows:

h/ 1 : Int

hs 1 : VXc.Stream(lnt, Xc)

The type inference algorithm infers correct type variable substitutions as it builds up the knowledge 

of relations among different type variables and all program expressions must receive concrete types 

after the algorithm finishes. It may happen, however, that there is not sufficient information to figure 

out all substitutions in which case the programmer needs to provide additional typing hints using, for 

example, the at operator, as described in Section 3.2.3.

Sosna’s type system defines streams in terms of the data type of their values and the class of 

devices they should be evaluated on. Contrary to other synchronous programming languages such as, 

for example. Lustre, SosNA does not allow for compile-time analysis of stream value presence/absence 

patterns throughout time. This is motivated by the fact that it is impossible to predict the results of 

stream aggregation/propagation due to the possible communication failures. Also, the use of region- 

based computations gives rise to stream definitions that, in every instant, may take null values on a
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fraction of network nodes while non-null values on the remaining nodes. Finally, the unpredictability 

of the values of program inputs (which, in the case of detection sensors, can also be null) further 

increases the complexity. As a result, stream value presence has to be in many cases established at 

runtime. An alternative approach would be to extend the type system with additional annotations 

describing streams that always take non-null values (e.g, constant streams), and then to propagate this 

information throughout the program according to the semantics of the language’s stream operators. 

However, due to the fact that such cases are likely to form a minor part of all program stream 

expressions, we decided to use runtime checks for stream value presence in all cases. Such an approach 

is a form of dynamic typing and popular programming languages such as, for example, Python apply 

it to the whole type system.

Inputs and Outputs

Contrary to constant streams, input declarations receive concrete types. For example, the following 

definition

(def—input x @ c : int)

results in the typing context F being extended with the assumption x : lnput(lnt, C) where C stands for 

any type from the C category such that F h c : DevClassld(C). Input values and their timestamps are 

accessed in programs through the use of the vals and time operators and the following rules define 

the typing process:

F hs e : lnput(T, C)

F l-j (vals e.) : Stream(T, C)
■(Vals)

F hj e : lnput(T, C)

F hs (time e) : Stream(Time, C)
-(Time)

The above rules say nothing more than: if the expression e is of type lnput(T, C) then the results of the 

expressions (vals e) and (time e) will have types Stream(T, C) and Stream(Time, C) respectively. 

Both T and C can be substituted any type from their respective categories, as long as, the substitution 

is consistent with all uses of the symbol within the context of a single rule.

The Unit type is used to describe the result type of the output operator. The type is used as 

means to ensure that all Sosna programs define the actuation expression and that this expression is 

evaluated at the end of each instant.
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Device Classes

SosNA assigns the top-level device class the type Subclass(TimeSrc, N), where N stands for a device 

class name corresponding to the program identifier associated with this device class. For example, the 

following declaration

(def-class base)

will result in the typing context being extended with the assumption base : Subclass(TimeSrc, Base). 

The TimeSrc type cannot be ascribed to any program device class because the type system needs 

to keep track of all device class names. Hence, the type is used only as means to annotate the 

top-level Subclass type and SosNA’s syntax enforces that there can be only one top-level class defini­

tion. Subclasses of the top-level device class are assigned nested Subclass types therefore are clearly 

distinguishable from the top-level device class type. The following example declaration:

(def-class mote : base)

extends the typing context with the following assumption:

mote : Subclass(Subclass(TimeSrc, Base), Mote)

The at operator can be used to enforce stream expressions with unknown device classes to be 

evaluated within a given device class. Such a type-enforcing semantics is attributed by some functional 

languages to the ascription operator that operates on general-purpose data types. SoSNA, however, 

uses the at operator only with respect to device class types of stream expressions:

r hj eo : DevClassld(C) T ei : Stream(T, C)

r \-s (at eo ei) : Stream(T, C)
-(At)

Topologies

There are four different types of topologies that can be defined in SoSNA: homogeneous and hetero­

geneous neighbourhood topologies, static and dynamic cluster topologies and the Topology type is 

used to express all of these possibilities. The following rules define the typing of the neighbourhood 

topology constructors:

r h, e : DevClassld(C)

r hs (nhood e) : Topology(NHood, C, C)
-(NHood)

r I-5 Co : DevClassld(Subclass(C, Nq)) T ei : DevClassld(Subclass(C, Ni)) 

r 1-5 (onehop cq ci) : Topology(NHood, Subclass(C, Nq), Subclass(C, Ni))
-(OneHop)
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As we can see, the Topology type carries two device class subtypes: the first one corresponds 

to the device class of topology’s receiving nodes while the second one represents the device class of 

the sending nodes. We can see that homogeneous topologies are just a special case of heterogeneous 

topologies. In the case of homogeneous topologies, both device classes are the same meaning that the 

sending/receiving roles are established entirely at runtime. Similar rules govern typing of the cluster 

topology constructors and we present only the case of the clmax operator because typing rules for the 

clmin operator are analogous. Note, that in its current formulation, the language allows only integer 

streams to be used to define dynamic cluster topologies.

r hj e : Stream(lnt, C)

r hj (clmax e) : Topology(CDynamic, C, C)
-(CLmax)

r hj e : DevClassld(Subclass(C, N))

r (clstat e) : Topology(CDynamic, C, Subclass(C, N))
-(CLstat)

Scalar Functions

SOSNA constrains scalar function to be first-order. This means, that scalar functions may not take 

other functions as arguments or return them as values. Indeed, the language’s type system allows 

scalar functions to operate only on types from the scalar domain which does not include the scalar 

functions type operator —Another consequence of such definition is that it is not possible in SoSNA 

to define a stream of functions or to refer to stream domain definitions from within a scalar function’s 

body (with the exception of other scalar functions). For simplicity of this presentation, we confine the 

presentation to the case of single argument functions but the definitions can be easily generalised to 

the multi-argument case. The following rule defines the typing of anonymous scalar functions (scalar 

abstraction).

T; X : T hy e : T'

r hj (lambda (x) e) : T —> T'
-(F-Abs)

This rule says simply that if the function body has type T' under the h/ typing relation and under 

the assumption that the function’s argument has type T, then the function has type T ^ T'. This 

formulation is practically the same as the one given by the ml-App rule and the only difference is 

that two different typing relations are used in order to separate the scalar and stream domains.

The two-domain approach to typing requires a similar modification in the case of scalar function 

application as defined by the ml-App rule of ML-the-type-system.

74



Chapter 3. Synchronous Macro-Programming

rh, eiiT^r T\-fe2-.J
(F-App)

rh^(ei 62):!'

Scalar functions, as we showed in Section 3.2.1, can be applied to non-null stream values point-wise 

in time. The following rule defines the typing of the smap operator (single-argument case).

r hs Cl : T —► T' r hs 62 : Stream(T, C)
------------------------------------------------------------------(Smap)

r hs (smap Cl 62) : Stream(T',C)

The smap operator when applied to a function of more than one argument enforces its both stream 

arguments to be evaluated on nodes of the same class. The following rule presents the typing of a 

two-argument smap operator. (Ti,T2) T' represents the type of a. two-argument scalar function.

Fh, ey :(Ti,T2)^r

r hj ei : Stream(Ti, C) F hj 62 : Stream(T2, C)

r I-5 (smap Cf ei 62) : Stream(T',C)
-(Smap

Stream Functions

From the typing point of view, stream functions are equivalent to the ordinary functions of ML-the- 

calculus because they are higher-order, i.e., they can take other stream functions as arguments or 

return them as values, as well as, because they are typed in exactly the same way:

F, X : S hj e : S'
--------------------------------------------------- (S-Abs)
r hs (big-lambda {x) e) : S =i> S'

Stream functions accept all stream domain constructs as arguments or as return values even though 

some of them such as, for example, device class identifiers have no runtime representation. This is, 

however, not an issue, because recursion is disallowed for stream functions and the compiler can, 

therefore, completely remove them from programs through in-lining.

3.3.3 Program Partitioning

SOSNA uses topologies to guide stream aggregation and propagation. The aggr and expand operators 

take a function, two streams and a topology as arguments and return a stream as a result. When the 

topology used is heterogeneous, the result stream is present on devices of a different class than the 

aggregated/propagated stream. The semantics of the aggregation and propagation operators spans, 

therefore, across different device classes and when the global program is partitioned these operators
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become the cut points of the process. The following rule defines the typing of the aggr operator (the 

expand operator is typed analogously)"*.

r hs e/ : (T2,Ti) ^ Ti T ei : Stream(Ti, Ci)

r 1-5 Cf : Topology(K, Ci, C2) T 62 : Stream(T2, C2)
(Aggr)

r hj (aggr ef ei 62 e*) : Stream(Ti, Ci)

Having presented the Sosna’s type system in sufficient detail, we can give an example of how 

the compiler automatically partitions a global heterogeneous program into a set of homogeneous 

subprograms. Consider the following application:

(def—class base)
(def-class mote : base)
(def—class actuator : base)
(def—input sensor @ mote : int)
(def data (smap sqrt (vals sensor)))
(def result (aggr max 0 data (onehop actuator mote)))
(output (act result))

Assuming the typing context T to comprise the following assumptions:

base : Subclass(TimeSrc, Base)

mote : Subclass(Subclass(TimeSrc, Base), Mote)

actuator : Subclass(Subclass(TimeSrc. Base), Actuator)

sensor : lnput(lnt, Subclass(Subclass(TimeSrc, Base), Mote))

sqrt : Int Int 

mcix : (Int, Int) ^ Int

we can state that

r 1-5 data : Stream(lnt, Subclass(Subclass(TimeSrc, Base), Mote))

and

r \~s result : Stream(lnt, Subclass(Subclass(TimeSrc, Base), Actuator)).

For each of the target device classes, the compiler has to filter the global program leaving only those 

stream and input definitions whose types indicate they should be evaluated on this device class. The 

aggr operator, since its semantics involve two different device classes (mote and actuator), is split

^The rule ignores, for simplicity, the additional type requirements for the aggregation function in case of aggregation 
over cluster topologies introduced in see Section 3.2.2.
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into a sending and receiving parts that are embedded in the mote and actuator local programs 

respectively.

3.3.4 Time and Space Bounds

SosNA programs execute in bounded memory and when a real-time flag is set, the compiler can 

generate code which is also guaranteed to execute in bounded time (provided that the network time 

synchronization protocol operates correctly). These properties are the consequences of the following 

properties of the language.

Scalar Domain

There are three main sources of unbounded memory consumption in functional programming lan­

guages: recursive data types, closures and recursive function calls. Although, all three are closely 

related when time and space program complexities are concerned, we discuss them separately because 

they constitute three important aspects of functional language design. The first category comprises 

types of data structures whose size is not fixed at compile time such as, for example, lists, trees or 

linked arrays. Typically, these data structures gain their size in purely functional programs as a result 

of their construction by recursive functions. Thus, their sizes are often related to the time complexity 
of these constructing functions. As a result, it is possible, using sophisticated type-theoretic tech­

niques, to bound the amount of memory necessary for program to execute by constructing specific 

type deriviations for all program functions. For example, Hofmann & Jost (2003) propose a technique 

to automatically derive linear bounds on heap space usage of first-order functional programs while 

Vasconcelos & Hammond (2003) propose a technique addressing a class of recursive, higher-order 

functions whose cost (either space or time) can be expressed as a primitive-recursive function. Un­

fortunately, although of significant practical importance, these techniques cannot be used to analyse 

all function definitions that can possibly be expressed in the A-calculus due to undecidability of the 

halting problem.

Closures are function definitions that are not closed, i.e., they reference variables outside of their 

definition scope, for example, internal variables of an enclosing function definition. When closures are 

used as values, as in many functional languages, these external variable references may escape their 

syntactic scope resulting in an additional memory cost because the garbage collector cannot free all 

of the memory of the enclosing function definition until it makes sure that all closures referencing it 

are no longer used. Since closures can be used to implement a wide range of recursive data structures 

(Abelson & Sussman 1996), the problem of bounding their memory cost is essentially that of programs
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with data structures of recursive types.

The use of recursive types and closures in a stream-based language that permits recursive stream 

definitions carries an additional risk. Because recursive streams are a form of infinite recursive func­

tion application, it is possible that unbounded size data structures be defined completely exhausting 

memory during program execution. Therefore, since investigation of the techniques for bounding 

memory use of such programs is outside of the scope of this work, we take preventive measures by 

disallowing both closures and recursive data types in the language. Due to the two-domain nature 

of Sosna’s type system, scalar function definitions cannot be nested and at the same time are not 

considered scalar values (e.g., cannot be returned by other functions as their results). Hence, closures 

cannot be defined and scalar functions can release all their memory once their evaluation finishes.

Recursive functions are in functional languages sources of uncertainty in both the time of execution 

and the memory used. As it was mentioned above, the undecidability of the halting problem makes it 

impossible, in the general case, to assert at compile time how long a given function would be executing 

and, as a result, how much memory it would need. Nevertheless, for many practical cases, it is possible 

to find an estimate. For example, Bonenfant et al. (2007) show how an accurate execution timing model 

of low-level abstract machine instructions, in conjunction with high-level source-based execution time 

bounds, can lead to accurate estimates of function execution times on concrete hardware architectures.

SoSNA takes a conservative approach and allows only those recursive calls that are made in the tail 

position, i.e., when there is no additional computation awaiting the result of the call. Tail-recursive 

functions have the well known property, that they can be transformed into looping statements that 

are computationally equivalent, but which have the convenient property of constant memory cost. 

This is caused by the fact that the looping statement can update the values of its temporary variables 

instead of having to allocate a new frame on the stack for each recursive call. Consider the following 

two implementations of a function computing the factorial of a natural number;

(def—rec (fact n)
(if (> n 1)

(* n (fact (— n 1)))
1) )

and

(def—rec {tail_fact n r)
(if (> n 1)

(tail_fact {— n 1) {* n r))
r) )
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(def—fun (fact n)
(tail_fact n 1))

In the first case, computing the factorial of a number n requires n partial results to be allocated on the 

stack because fact keeps recursively calling itself until n goes down to 1. In the other case, because 

the results are passed through function arguments the compiler can transform the function code into 

a loop expression executing in linear time but in constant memory.

SOSNA bounds execution time of its scalar functions by completely disallowing scalar function 

recursion when a special compilation parameter is set. This way Sosna’s scalar functions can be 

guaranteed to execute in bounded memory and time. It would be desirable, however, that a more 

sophisticated execution time estimation mechanism be implemented such as, for example, that of 

Bonenfant et al. (2007). Unfortunately, due to scope limitations, we have to leave this to the future 

work.

Stream Domain

As we briefly mentioned in the previous section, the SoSNA compiler in-lines all applications of stream 

functions removing them cornpletel}' from the target program. This can be done when either recursive 

stream functions are disallowed or when the recursion is required to be bounded so that extensive 

in-lining could terminate. SoSNA takes the simpler approach and bans stream function recursion 

completely. As a result, programs are transformed to synchronous stream networks of static, known 

at compilation time size and structure that are guaranteed to execute in bounded memory (Caspi & 

Pouzet 1996).

Bounded Communication Extent

SosNA implements all communication operators as sequences of a bounded and known at compile 

time number of neighbourhood data aggregation steps. Neighbourhood data aggregation rounds, 

on the other hand, are required to be executed within a bounded amount of time. As a result, all 

communication operators are executed in bounded time and the execution of each of the neighbourhood 

data aggregation rounds can be scheduled at compile time.

3.4 Programming in SoSNA

This section discusses a number of example programs in order to show how different types of WSAN 

applications could be implemented in Sosna. Because Sosna is only a prototype language targeting
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a relatively novel application domain it may not be suitable for development of WSAN applications 

all conceivable types. Therefore, the main intention of this section is to give some intuitions as to 

what can be achieved in the language rather than to try to map the whole WSAN application design 

space.

Amorphous Computing

Beal & Bachrach (2006) show how robust and biologically-inspired spatial programming can be 

achieved Proto, a stream-based programming language that uses neighbourhood stream aggregation 

as the only means of network communication. Spatial (amorphous) programs are constructed in Proto 

through the composition of gradients that are spatial flows of data values originating from a single 

node and radially expanding away throughout the network. The propagated data values typically 

increase with the distance from the source. The authors show that gradients are universal building 

blocks of spatial programs that are robust to node and communication failures, as well as, are adaptive 

to changes in the network topology. Proto implements gradients through recursive stream definitions 

involving neighbourhood stream aggregation.

Proto programs can be directly mapped to SoSNA because the language supports recursive stream 

definitions and neighbourhood stream aggregation. The following program defines a stream function 

implementing an unbounded-extent gradient through recursive-in-time neighbourhood stream aggre­

gation.

(def (gradient src class)
(letrec (n (+ 1 (IF src 0

(fby MAX_INT (aggr min MAX_INT (+ n 1) (nhood class))))))
(- n 1) ) )

This program is a SoSNA translation of the original gradient implementation presented by Beal & 

Bachrach (2006). The function takes a Boolean stream (or a region in the spatial interpretation) 

and returns a stream/region that is equal to 0 at each node for which (== src true). All nodes 

surrounding the source gradually increase their values as their hop distance from the source grows. 

The aggregation operator simply picks the minimum value of (+ n 1) from among those held by- 

node’s neighbours, starting from the MAX_INT constant that represents the maximum distance value 

the program can handle. The function is general, i.e., it can be used in any program because it is not 

tied to any particular device class definition.
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Distributed Data Aggregation and Actuation

The two most fundamental tasks of any WSAN application are sensing and actuation. There are, 

however, many ways in which the flow of information can be organised in the network. For example, 

WSAN might comprise only autonomous units with sensing and actuation capabilities, or they might 

comprise sensor nodes whose readings are aggregated at one or more controllers that, in turn, com­

municate with actuators. Other applications might use only two types of devices - sensor nodes and 

controller/actuator nodes.

Consider the application presented in Listing 3.1 in which two different types of sensors - temper­

ature sensors and presence detectors, together with a set of ventilators, the actuators, are deployed 

on two different floors of a building. The goal of this application is to minimise for each of the floors 

the use of ventilators by switching them on only when the temperatures exceed a threshold and when 

the presence detectors indicate there are people on the floor. We distinguish between floors to show 

how external constants, set during node programming can be used to differentiate between different 

nodes of the same type.

The program defines three device classes: a base station, a set of sensor nodes and ventilators. 

Each of the sensor nodes carries two sensors: a temperature sensor temp and a presence detector 

presence. The value of the external constant stream floor is assigned to each of the nodes when 

they are programmed, hence, we are able to differentiate among different devices of the same class. 

Similarly to constant streams, the external constant streams are initially assigned polymorphic types 

so that they can be referenced at devices of different classes.

The network operates as follows: in every instant, sensor nodes from each of the floors indepen­

dently aggregate readings of their sensors by sending them towards the base station that computes 

the average temperatures and presence information for each of the floors separately. Knowing these 

values, the base station calculates a simple control law according to which ventilators at each of the 

floors are switched on when the average temperature exceeds 30 degrees while at the same time the 

presence detectors are sensing people presence. Note that the program makes no assumptions as to 

the exact number of sensors nodes and actuators present in the system, nor it makes any assump­

tions about the nature of the physical network topology. This way the network configuration can 

be augmented without the need of reprogramming of the already deployed devices. Nevertheless, if 

realistic control algorithms were to be used, knowledge of the number of nodes comprising different 

classes might become necessary. This, however, can easily be done in the same way as spatial stream 

averages are computed, i.e., through counting the nodes in parallel to other communication tasks.

The program demonstrates several things. Firstly, it implements a more sophisticated architecture
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Listing 3.1; Distributed data aggregation and actuation SoSNA application.
(def—class base)
(def—class sensor_nodes : base)
(def—class vents ; base)
(def—input temp @ sensor_nodes : int)
(def—input presence @ sensor_nodes : bool)

(def—extern floor int)

9 (def (avg region sensor)
10 (let (values (within region (vals sensor)))
11 (let (sum (aggr + 0 values (clstat sensor_nodes)))
12 (let (n (aggr + 0 (within region 1) (clstat sensor_nodes)
13 (/ sum n) ) ) ) )
14

16 (def (present? region)
16 (let (values (within region (vals presence)))
17 (aggr or false values (clstat sensor_nodes))))
18

19 (def (ventilate region condition)
20 (let (init (within region true))
21 (expand and init condition (clstat vents))))
22
23 (def (needs—vent? region max—temp)
24 (and (> (avg region) max—temp)
25 (present? region)))

28

29

30

(def floor—1 (== floor 1)

(def floor—2 (== floor 2))

(output (Ventilator (merge (ventilate floor—1 (needs—vent? floor—1 30))
(ventilate floor—2 (needs—vent? floor—2 30)))
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in which the network comprises devices of three types that are grouped according to an application- 

specific criteria. Secondly, the program demonstrates how stream functions can be used to reuse 

repeatable stream transformation patterns and improve program readability. Finally, the program 

makes extensive use of stream filtering in order to control which network nodes should engage in 

collaborative stream processing tasks.

Target Tracking

Many macro-programming language publications use target tracking as a canonical application exam­

ple. Target tracking is concerned with estimation of the position of a physical entity moving through 

an area. In the context of wireless sensor networks, target tracking involves computing a series of 

object’s position estimates in a collaborative, local manner, i.e., by involving only those sensor nodes 

that are in object’s proximity (Liu, Liu, Reich, Cheung & Zhao 2003). Some researchers consider also 

an extended scenario in which the tracking estimates produced by the network are used by a team of 

autonomous robots trying to catch the target (Schenato et al. 2005). We confine ourselves to the basic 

target tracking scenario and show how persistent state can be associated with the moving object so 

that its additional characteristics can be estimated. Listing 3.2 approximates object’s position using 

the following centre of mass formula:

Ef V J\
_ i=0 p _ Z^i=0

2_,i=0 2^1=0

where Xi,yi are the coordinates of all nodes sensing the target and Sj are their respective sensor 

readings. We assume, that sensor nodes are assigned their physical positions offline and implement 

the persistent state as the number if instants in which the object is being detected in the network.

We assume that sensor readings above 100 imply object’s presence in an area. The obj_pos 

function first establishes a dynamic cluster topology so that the node that is possibly the closest to 

the object can aggregate current sensor readings from the surrounding nodes literally implementing 

the centre of mass formula. Perhaps, the most important part of the program is the definition of the 

distr_fby function that implements a form of a distributed stream delay: the stream s is expected 

to be present only on t’s cluster heads and since different nodes might be taking the cluster head 

role, the function’s task is to migrate the previous value of s to the current cluster head node. The 

state is not lost as long as previous cluster heads are within the current extent of the t topology. 

The function has a resetting behaviour, i.e., each time the object is lost (s takes a null value) or 

there is a communication failure, the initial value is used as a result so that the recursive stream 

obj_age can restart counting. Note, that because all definitions are dependent on the values of the
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Listing 3.2: Target tracking SoSNA application.

10

11
12

13

17

18 

19

(def—class nodes)
(def—input sensor @ nodes : int)
(def—extern pos_x : int)
(def-extern pos_y : int)
(def (obj_pos s t)

(let (total_mass (aggr + s s t))
(let (a (aggr + {* s pos_x) (+ s pos_x) t) )

(let (b (aggr + (* s pos_y) (* s pos_y) t)) 
(tuple (/ a total_mass) {/ b total_mass)))))) 

(def (distr_fby init s t)
(let (s (fby init s) )

(let (forward (lambda (new old) new))
(aggr forward (merge init s) s top))))

(def detection (within (> (vals sensor) 100)
(vals sensor)))

(def leader (clmax detection))
(def obj_x obj_y (obj_pos detection leader))
(def-rec obj_age (+ 1 (distr_fby 0 obj_age leader))) 
(output (Report (tuple obj_x obj_y obj_age)))

detection stream, computations are performed by only those nodes that actually sense the object. 

Also, actuation is performed only by the cluster heads of the leader topology.

Distributed Feedback

Feedback is general concept in which past system output is used to influence the current or future 

system output. Feedback-based techniques are commonplace in control design, hence, it is reasonable 

consider feedback in the context WSANs. Listing 3.3 implements an adaptive threshold algorithm 

in which sensor nodes adjust their detection thresholds based on the the global average, computed 

by a base station. As a possible application, consider a case in which the background signal level, 

such as for example, sun light is changing throughout the day and event detection threshold must be 

adjusted accordingly. The following program uses the basic exponential moving average to smooth 

out subsequent estimates of the adaptive threshold according to the formula:

St = aXt-i -l- (1 — a)St-i

The program calculates the average value of the detection stream similarly to the programs 

presented earlier in this section, i.e., by summing up all values and dividing the result by the number of 

received readings (the avg function). In order to explicitly handle the effects of possible communication 

failures the avg function rejects the computed result whenever it comprises data from less than six 

sensor nodes. Then, the sustain function is used (lines 22 and 24) to implement the substitution
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Listing 3.3: Distributed feedback SOSNA application.

22

23

(def-class base) 
(def-class nodes base)
(def-input light @ nodes float)

(def (avg s)
(let (zero (tuple 0.0 0.0))

(let ((tuple sum n)
(aggr vector_add zero (tuple 1.0 s) (clstat nodes)))

(within (> n 5)
(/ sum n)))))

(def (exp_mavg s)
(letrec (result (+ (* 0.2 s)

(* 0.8 (fby 0.0 result))))
result))

(def (sustain init x)
(letrec (y (merge (fby init y) x) )

y))

(def—rec detection
(let (thresh_at_base (sustain 0.0 (fby 0.0 (exp_mavg (avg detection)))) 

(let (detection_thresh (expand max 0.0 thresh_at_base (clstat nodes)) 
(within (> (vals light) (sustain 0.0 detection_thresh))

(vals ligth)))))

(output (Display (aggr max 0.0 detection (clstat nodes)))

of the previous stream value in the case the current one is absent. The function defines a recursive 

stream that is equal to the function’s input stream each time it takes a non-null value, and that is 

equal to its previous value each time the input stream’s value is absent.

The core part of this program is the definition of the detection stream that introduces two 

auxiliary streams. The thresh_at_base stream represents exponentially smoothed values of the 

global detection threshold and it is present only at the base station nodes, since its values involve 

the result of sensor data aggregation. The global detection threshold is defined over detection values 

from the previous instant (aggregation is performed under the fby operator) and its current values 

are propagated back to the sensor nodes (the detect ion_thesh stream) so that they can be used to 

filter out the current light sensor readings. As a result, the base station can display the maximum 

value of current detection reports.
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The SOSNA Compiler

The presentation of the Sosna programming language given in the previous chapter remained some­

what abstract because many technical details related to the execution of SoSNA programs in WSANs 

were omitted. The main reason for such a treatment is that we want to decouple the language’s 

semantics from its actual implementation so that it can be tailored to a particular target application 

execution platform. In this chapter, we present a prototype implementation of the SoSNA compiler, 

which currently supports two compilation targets: a custom-built SoSNA simulator and the NesC 
programming language. The simulator was written in the PLT Scheme programming language (Flatt 

& PLT 2009) and, in its current form, it allows to .simulate SosNA applications using a deterministic 

wireless communication model. While the simulator is intended for early application testing stages, 

the NesC target allows to run Sosna programs on wireless networks of TinyOS-supported devices (so 

called motes) and serves as the primary means of evaluation of the synchronous macro-programming 

model.

The chapter is organised as follows. Section 4.1 describes the main program transformation stages 

and briefly discusses the limitations of the existing compiler. The global communication scheduling 

algorithm is presented in Section 4.1.10 and the rules governing duty cycling in SoSNA applications are 

described in Section 4.2.4. Section 4.1.15 describes a low-level abstract machine model and language 

that are used as the core of the NesC compilation target and which are intended both to amortise the 

memory cost of absent stream values, as well as, to serve as a portable platform for different C-like 

compilation targets. We conclude the chapter with a description of the Sosna middleware which is 

a TinyOS library building on the Flooding Time Synchronization Protocol (Maroti et al. 2004) and 

driving the execution of SoSNA programs in mote networks.
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4.1 Program Transformations

Sosna is a high-level language, therefore, the gap between the semantics of the top-level program and 

its low-level realisation is large. The compiler implements a multi-stage transformation process that 

involves, among other tasks, translating the top-level program into the sequence of simpler languages, 

each of which being a step closer towards the compilation target language. The overall process is 

depicted in Figure 4.1 and it specifies both the transformation stages (oval boxes) and the most 

relevant intermediate languages (rectangles). The following subsections describe each element in more 

detail.

4.1.1 Parsing and Syntax Transformations

Because Sosna borrows its general syntax from Scheme, the parsing task can be significantly simplified. 

The compiler performs a two-phase process in which the top-level program is first transformed with a 

set of Scheme macros' in order to simplify its syntax and then it is parsed and translated to a simpler 

but equivalent language SoSNA Core. The macro transformations deal with translating all global 

program definitions into a nested sequence of def and let expressions. For example, the following 

I^rogram

(def-class base)
(def-input sensor @ base : int)
(def—fun (f X y)

(+ X y) )
(def result (smap f (vals sensor) 1))
(output (act result))

is translated to:

(def (class base)
(def (input sensor base int)

(let (f (lambda (x y) (+ x y)))
(let (result (smap f (vals sensor) 1))

(output (act result))))))

The nested sequence always ends with the output operator so that no program expressions can 

reference its result and, therefore, actuation can be scheduled at the end of the application schedule.

'High-level program syntax transformers. Since Scheme/Lisp macros are a well established programming concept, 
some people understand the term macro-programming as a programming style that makes extensive use of macros. This 
interpretation, however, bears little resemblance to the meaning ascribed to this term by the WSN/WSAN community.
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Figure 4.1: The main program transformation stages.
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The main function of the parser is to modify the language’s syntax with additional annotations 

for storing the type and source code information. The parser, however, performs two additional 

transformations. Firstly, judging by the syntactic context, the parser transforms all arithmetical 

stream expressions into the equivalent smap operator applications (see Section 3.2.1). Secondly, the 

parser removes all pattern matching expressions and all pattern variables replacing them with tuple 

element access operators. For example, the following function takes one argument that is a tuple of 

two elements whose values are assigned to the variables x and y.

(lambda((tuple x y) )
(+ X y) )

After translation, the pattern is replaced with a new, internal variable and every reference to x and y 

is replaced with a tuple field access expression:

(lambda (%v)
(+ (t2#l %v) (t2#2 %v)))

The t2#l and t2#2 operators return the first and the second element of a two-element tuple re­

spectively and the NesC compilation target implements them as structure field access operators. For 

example, the following code would be generated for this function if we assume that both x and y are 

inferred to be of type Int.

int tmp_fun(struct _tuple_int_int _v){
return _v.pl + _v.p2;

4.1.2 Sosna Core

The parser transforms the top-level Sosna program into the simplified Sosna Core language that 

serves as the input language for the type checker and which embodies the core SosNA’s concepts 

without the unnecessary syntactic sugar. SoSNA Core comprises two main classes of expressions 

that correspond to the language’s scalar and stream domains and we denote them by e/ and 

respectively. Figure 4.2 presents the grammar of the Sosna Core language. For simplicity, we include 

only two-argument tuples and single-argument functions - the extension to the multi-argument case 

is straightforward.

The / expression class represents all language’s built-in functions and it includes tuple construc­

tors, tuple element accessors, arithmetical, logical and relational operators, as well as, numeric type 

conversions operators. The c expression class represents all language’s constants (literals) while the
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f
c
t
e..

e/ ■■ =

tuple2 I #2 I #2 I + I _ I ^ I / I ,,
true I false | 0 | 1 | 2 | ... 
int I float I string | ...
c I / I r I Xx.Cf I Ax.Cg I Cj 65 I rec x.Cg \ let x = Cg in |
topclass X I subclass x Cg \ extern Cg t \ input Cg t \ output x Cg; ... a: e^; |
smap Cg Cg I fby Cg Cg | merge eg | within eg eg | at e* eg | vals | time Cg
clstat I clmin Cg | clmax Cg | nhood eg | onehop Cg Cg |
aggr eg eg eg eg \ expand Cg Eg Eg Eg
c I X I 65 ey I if 6/ then ey else ey | let x = Ef in ej

Figure 4.2: The grammar of the SosNA Core language.

t expression class represents all scalar type definitions used in specification of program inputs and 

external constants.

Stream domain expressions include respectively: constants (interpreted as constant streams), built- 

in functions, program identifiers, anonymous scalar functions, anonymous stream functions, stream 

function application expressions, recursive definitions, let definitions and references to all top-level 

program definitions, i.e., device classes, external constants, program inputs and outputs. The remain­

ing expressions in the eg class directly correspond to applications of all language stream and topology 

operators and their meaning was explained in Chapter 3.

The scalar domain is much more limited than the stream domain and it comprises respectively: 

constants (interpreted as scalar values), program identifiers, scalar function application and the con­

ditional operator if. Note, that scalar functions belong to the stream domain and they can only be 

applied within the scalar domain. This property is reflected in the definition of the Sosna’s type 

system and is intended as a way of preventing the construction of streams of functions (see also 

Section 3.3.4).

4.1.3 Type Inference

In the previous chapter we introduced SoSNA’s type system in terms of typing rules that defined 

types of the language’s expressions in terms of the types of their sub-expressions. Such formulation, 

although precise, is not of much use when the sub-expression types are not known or are incomplete. 

Type inference (or type reconstruction) is a process that allows to discover the types of program 

expressions based on their syntax and semantics. Consider the following definition:

let X — (within y 10) in x 
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Knowing that the within operator takes two arguments, of which the first one must be a Boolean 

stream while the second can be a stream of an arbitrary data type, as well as, knowing that 10 

represents a constant stream of integer numbers, we conclude that x must be a stream of integers. 

This reasoning describes the core idea behind type inference that can be a relatively simple procedure 

when programs comprise only expressions of simple types but which becomes more involved when 

more advanced concepts such as, for example, polymorphic types are introduced.

Sosna follows the ML type discipline, hence its type system includes polymorphic types. One 

of the biggest advantages of using an ML-style type system is such that type inference is decidable 

and, although the worst-case inference complexity is exponential, efficient algorithms exist for the 

common case (Pierce 2004). The Sosna compiler implements the constraint-based approach to ML 

type inference that is extensively presented in Chapter 10 of Pierce (2004).

Constraint-based typing is a technique that, instead of building a type derivation tree (a sequence 

of typing rule applications), constructs a set of type constraints, i.e., logical formulae defining certain 

relations among type variables. A program can be correctly typed only when its corresponding set of 

type constraints is satisfiable, i.e., there is an assignment of types to type variables such that all type 

constraints are satisfied. Constraint-based typing of ML-the-type-system is built around the concept 

of a constrained type scheme that is denoted as VX[C].T and represents a generic type whose abstract 

type variables X can be substituted only with the types that satisfy the constraint C. The language 

of type constraints is defined as follows^.

<7 ::= VX[C].T

C ::= true I false I Ti = T2 I C AC I 3X.C I def X : cr in C I X ^ T

The meaning of the first four constraints is intuitive; true is an always satisfiable constraint, false 

is never satisfiable, Ti = T2 is satisfied only when Ti is equal to T2 and Ci AC2 is satisfied when both 

Cl and C2 are satisfied. The existential constraint 3X.C states that there must exist a substitution of 

types to type variables [X 1-^ T] such that the constraint C can be satisfied. Also, all type variables in 

X are considered to be bound in the definition of C. The next constraint simply binds a type scheme 

to the identifier x in the definition of the constraint C and it is satisfied only when C is satisfied under 

the given binding of x. The last constraint defines type scheme substitution (instantiation) and it is 

satisfied only when the type T is an instance of the type scheme bound to x. A type T is an instance 

of a type scheme VX[C].T' if and only if 3X.(C A T = T') is satisfiable. Additionally, we use the two

^We simplify the abstract presentation given in Pierce (2004) in order to better reflect the implementation.
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following abbreviations:

VX.T = VX[true].T

let X : VX[C].T in C' = 3X.C A (def x : VX[C).T in C').

The type inference algorithm constructs a single type constraint C based on the structure of the 

input program and then it uses a unification-based constraint solving algorithm to find a satisfiable 

assignment of types to all program type variables referenced in C. We use the function [-J to represent 

the constraint generation process and for the case of ML-the-calculus we define it as follows.

|x : T] = X <1

{Xx.e : T] = 3XiX2.(let a: : Xi in [e : X2] A Xi Xj = T)

[ei 62 : T1 = 3X.(Iei : X ^ Tl A Ie2 : Xj)

|let 2: = ei in 62]] = let x : VX[[ei : XJJ.X in |e2 : TJ

The ['I relation builds the type constraint for the whole program by recursively traversing its 

structure. Because SOSNA assigns different types to certain expressions based on their syntactic 

context (see Section 3.3), we use two different constraint generation procedures to type the constructs 

of the scalar and stream domains respectively. For example, language literals such as integer constants 

are typed as constant scalar values within function bodies and as constant streams elsewhere. The 

following two constraint generation rules explain the idea.

[l:Tly = (T = lnt)

|1 : SJs = 3Xc.(S = Stream(lnt,Xc))

The second rule shows also how polymorphic types of constant streams are handled. As we ex­

plained in Section 3.3, constant streams are assigned the following types schemes a = VXc.Stream(T, Xc). 

Each use of a constant stream in a program defines this stream’s instance therefore, in accordance 

with the semantics of type scheme substitution we can say that

O'S = 3Xc. ^true A S = Stream(T, Xc)^ = 3Xc.(S = Stream(T, Xc))

Additionally, we discuss the typing of an example expression in order to give some intuitions of 

how the inference process works. Consider the following SoSNA Core expression;

let (/ Ax.l) (smap / 1.0)

The expression defines a function / that takes one argument of an unspecified type and that returns 

the value 1 (of type Int) as a result. The function is applied point-wise in time to a constant stream
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of floating point numbers so that the overall result of this expression is a constant stream of integer 

values. The following rule defines type constraint generation for smap operator (single-argument case).

^ |ei : Xj ^ XjJs A ^

|smap d 62 : SJs = BXjXjXc. |e2 : Stream(XT, Xc)ls A

^ S = Stream(Xy, Xc) y

The constraint generation process starts with the top-level expression:

|let / = Ax.l in (smap / 1.0) : SJs = let / : VXs[[Ax.l : Xs]|s].Xs in

[(smap / 1.0) :

then type scheme constraints are generated:

let / : VXs[3XTXV.(let x : Xt in [1 : XVIf A Xj ^ XV = Xs)].Xs in 

[(smap / 1.0) :

and simplified:

let / : VXsXt[Xs = Xt ^ lnt)].Xs in [(smap / 1.0) : S],

Finally, the bodies of the let constraints are processed and simplified:

let / : VXsXt[Xs = Xj ^ lnt)].Xs in

3Xc.(|/ d Float —> Intis A S = Stream(Float, Xc))

As a result, the function / received a polymorphic type that allows values of any type to be passed 

as arguments. The function is referenced only once hence it has only one instance that receives a 

concrete type Float —> Int. Note that the overall expression type is incomplete since it does not specify 

the device class on which the smap operator is evaluated. Such cases can be resolved in two ways: 

either the value of the Xc variable is discovered later (if this expression is a part of a larger one 

which provides the missing information) or the compiler reports an error suggesting the use of the at 

operator in order to explicitly name the device class.

After the program is typed, the compiler annotates every expression with its type but for clarity 

of presentation we omit these annotations in the following sections whenever this is possible. The 

knowledge of program types allows the compiler to control the use of recursion: programs that declare 

recursive stream functions can be rejected, recursive scalar function calls can be enforced to be in 

tail position (see Section 3.3.4) and recursive stream references can be accepted only when they occur 

in the context of the fby operator. Also, at this stage, the compiler can see whether all program 

expressions have complete types and reject those that do not. As a result, the at operator becomes 

redundant and is removed from the program.
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The output of the type inference module conforms to the Sosna Core language. However, subse­

quent program transformations, as described in the following sections, introduce program constructs 

that are not part of the SosNA Core language but rather correspond to the intermediate steps of 

the translation from Sosna Core to the Sosna Stream Core language which is summarised in Sec­

tion 4.1.13.

4.1.4 Polymorphism Removal

Sosna assigns polymorphic types to all let-bound identifiers so that it is possible to use them in 

different contexts, for example, functions can have partially-defined signatures and constant streams 

can be used in expressions from different device classes. This property, however, although useful, 

poses certain challenges when the implementation of such polymorphic constructs is considered. The 

following example SoSNA Core program defines a recursive stream whose type is incomplete with 

respect to its device class. The stream is used in two different contexts hence two type instances are 

created, each one comprising a different device class subtype.

let n = rec n.(smap -I- 1 (fby 0 n)) in 

output display at Cq n; blink at ci 7i;

The language’s semantics disallow the same stream to be evaluated on devices of two different 

classes. Therefore, the only reasonable way of handling this problem is to assume that there are two 

different instances of n, each one evaluated on devices of a different class. This is exactly how the 

compiler handles let polymorphism: for every let-bound identifier, all of its instances are collected 

and copies of this identifier’s expression are created and inserted to the program. As a result of this 

process, all let expressions are replaced with sequences of def expressions that have the same function 

but which require their identifiers to have concrete types. The above program would be translated as 

follows.

def n\ = rec ni.(smap -I- 1 (fby 0 rii)) in 

def 712 = tec ';i2.(smap -I- 1 (fby 0 112)) in 

output display n\\ blink 712;

The duplication process involves only identifier instances which receive different types. For example, 

if in the above example, the stream n was referenced twice but was assigned the same device class in 

both cases, only one definition would be added. Additionally, the algorithm, as a by-product, removes 

all let bindings that are not referenced in their corresponding let body expressions.
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4.1.5 Partial Evaluation

After program types have been concertised, the compiler removes all stream functions through exten­

sive in-lining of their definitions. The process is guaranteed to terminate because at this stage none 

of the program’s stream functions are recursive. Banning stream function recursion is a design choice 

that does not have much justification beyond the author’s preference. An alternative approach would 

be that of the Regiment macro-programming system (Newton et al. 2007) that requires recursion to 

be bounded, i.e., to terminate after a fixed number of steps so that the in-lining process can terminate. 

We do not see this aspect as essential to the overall contribution of the work, therefore, we chose the 

first approach. However, there is no technical objection that bounded recursion in-lining could be 

implemented within the existing compiler.

The in-lining procedure uses def expressions to limit the size of the resulting program. Consider 

the following example program that defines a stream function of one argument.

let / = Ax.(smap + x x) in 

/ (smap X 2 2)

In-lining of this function results in the following expression being generated:

def X = (smap x 2 2) in 

smap + X X

We can see that this way the expression smap x 2 2 is evaluated only once, before the evaluation of 

the function’s body starts, exactly as it would be the case during function evaluation at runtime. ^ 

Along stream function in-lining, the partial evaluation procedure evaluates all constant expressions 

and removes all constant def bindings. Therefore, the above example, after the function has been 

in-lined, reduces to the constant stream of the value 8.

4.1.6 Recursive Stream Transformation and Initialisation

Stream recursion in synchronous languages does not lead to unbounded memory consumption but 

rather can be efficiently implemented with little memory overhead. Recursive streams are defined 

in Sosna with the help of the fby operator whose task is to delay all references to the recursive 

stream identifier within the context of its definition. The operator can be thought of as defining a 

one-element buffer that stores the current value if its second argument (the delayed stream). In every 

instant, the operator uses the contents of the buffer as its current result while saving the current
^Some functional languages delay the evaluation of function arguments until they are actually needed and this 

approach is called lazy evaluation. Sosna takes a more conservative approach and uses strict evaluation order in which 
arguments are evaluated from the first to the last.
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value of its argument for use in the subsequent instant. The current version of the SOSNA compiler 

does not apply any particular optimisations and implements the fby operator in a simple way, i.e., 

by assigning a permanent state variable to every occurrence of the operator for use as its buffer. We 

use the following expression to explain how recursive stream definitions and the fby operator are 

implemented.

rec n.(smap + 1 (fby 0 n)

The translation first generates an initialisation expression for the fby buffer, then the value of the 

recursive stream is computed and after that the buffer is updated with the newly computed value of 

the delayed expression. When this program is run repetitively in a loop (recall from Section 3.1 how 

synchronous programs are executed), then this procedure essentially realises the recursive semantics.

init fbyo = 0 in

def n = smap + 1 fbyo in 

set_after n fbyo = n in 
n

The transformation procedure moves all init expressions to the top-level so that they can be imple­

mented as a global program initialisation procedure. To this end, the initialisation expressions must 

necessarily be constant. The compiler checks, therefore, whether all delayed streams are initialised 

with constant values and, as an optimisation, it evaluates all arithmetical expressions that are defined 

over constant streams.

The set_after expression changes the value of the given fby buffer requiring at the same time that 

this operation must be performed after the evaluation of its first argument has finished. Although this 

is clearly the case in the above program, the requirement gains significance during the operation of the 

communication scheduling algorithm that relies on data dependencies between different expressions.

4.1.7 Decomposition of Communication Operators

Section 3.2.2 explained the semantics of the stream aggregation and propagation operators in terms of 

sequences of single-hop data aggregation rounds. We also said that in the case of homogeneous neigh­

bourhood topologies stream aggregation is equivalent to stream propagation. The SoSNA compiler 

translates all aggr and expand operators to sequences of applications of a universal, neighbourhood 

data aggregation operator staggr. The operator’s semantics are general so that homogeneous and 

heterogeneous stream data aggregation and propagation can be accommodated. The core idea behind
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this unification is the low-level representation of topologies as tuples comprising a local node’s par­

ent’s network identifier and the level the node occupies in the topology. This representation is natural 

for cluster or tree topologies because the parent’s identifier and the distance to the tree’s root node 

are the least every topology member needs to know. For neighbourhood topologies, however, we use 

broadcast addresses as parent identifiers because a single parent node can no longer be distinguished. 

We use the term topology descriptor to refer to this low-level topology representation.

Similarly to the aggr and expand operators, staggr uses the presence and absence patterns of 

the initialisation and the aggregated streams to decide at runtime which nodes should participate in 

the operator’s evaluation (see Section 3.2.2 for details). Therefore, the main function of the operator 

is to translate high-level topology expressions into their low-level representations and to serve as a 

universal building block of all SoSNA’s communication primitives. In this sense, staggr implements 

the abstract and universal neighbourhood aggregation operation, as defined by the synchronous macro­

programming model in Section 3.1. The operator has the following syntax:

staggr f i s r d Ir Is

The first three arguments are the aggregation function, the initialisation and the aggregated streams 

representing the first three arguments of the corresponding aggr or expand operators and their se­

mantics is exactly the same as that presented in Section 3.2.2. The remaining arguments constitute 

the topology’s low-level representation. Their semantics is the following: r — {rp,ri) represents the 

receiver’s topology descriptor and d = {dp,di) represents the destination topology descriptor. Both 

are pairs of values of which the first is a network address while the second represents the level a node 

occupies in the topology. The netw'ork address has a different meaning is each case: it is the node’s 

parent in the case of the destination descriptor and it is the node’s own network identifier in the case 

of the receiver’s descriptor. The last two arguments of the operator, specify the receiving and sending 

topology levels, i.e., they define which topology levels should be receiving and which should be sending 

data during the operator’s evaluation. This information is sufficient for the sending nodes to know 

when to send and whom to send to, as well as, for the receiving nodes, to know when to receive and 

whom to receive from. The operator’s arguments have the following types (for certain T,T',Xc and

xh)--
/:(T',T)^T 

i : Stream(T, Xc) 

s : Stream(T', X(-) 

r : Stream(Netld x Byte,Xc)

In Section 3.2.2 we defined the operational semantics of neighbourhood stream aggregation and

d : Stream(Netld x Byte, X(-) 

Ir : Stream(Byte, Xc)

Is : Stream(Byte,Xc)
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propagation in terms of the presence/absence patterns of the initialisation and the aggregated streams. 

We implicitly assumed that the definition applied to all nodes that were members of the given neigh­

bourhood topology. The semantics of the staggr operator make no additional assumptions because 

the operator uses a concrete topology representation instead of an abstract one. In order to give the 

operator’s semantics we introduce the following auxiliary functions:

• current{s) returns the current value of the stream s or the null value if s is absent in the current 

instant,

• present{s) returns true when the current value of the stream s is present, and false otherwise,

• devclass{s) returns the stream’s device class identifier (e.g., an integer value) and devclass{self) 

represents the node’s own device class.

The operational semantics of a single round of neighbourhood stream aggregation denoted as:

staggr / i s {rp,ri) {dp,di) Ir Is 

are the following. In every instant:

1. A node sends the tuple [current{s), dp) when devclass{s&li) = devclass(s) and when:

present{s) A present{{dp,di)) A di = Is

2. A node receives the tuple {v,p) when devclass{seli) = devclass{i) and when:

present{i) A present{{rp,ri)) A Vp = p A j'l = Ir

Neighbourhood stream aggregation and propagation are the simplest to decompose. For example, 

the following expression

aggr -1-0 1 (nhood m)

is translated to
def m' = at m (smap tuple2 beast 0) in 

staggr -f 0 1 m'm' 0 0

where rn' is a topology descriptor corresponding to all neighbours from the m device class. We use the 

at operator only for presentation purposes in order to show that the topology descriptor is evaluated 

within the m device class. At this stage of program transformation, all instances of the at operator 

have been removed and the newly introduced constructs are explicitly assigned their types to match 

the typing of other program expressions. The values of the receiver’s and the destination topology
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descriptors, as well, as the values of the sending and receiving levels indicate that all nodes from the 

m device class should engage in communications and the result is determined by the presence/absence 

patterns of the initialisation and the aggregated streams, in exactly the same way as it was presented 

in Section 3.2.2.

Heterogeneous neighbourhood stream aggregation is handled similarly, but with the difference that 

the receiver’s and the destination topology descriptors belong to different device classes. We vary the 

topology levels in order to break the symmetry between both device classes so that nodes in the 

sending device class constitute the level 1 in the topology and the receiving nodes constitute the level 

0. For example, the following expression

aggr + 01 (onehop mu 7ns)

is translated to
def m'fj = at mn (smap tuple2 beast 0) in 

def m'g = at mg (smap tuple2 beast 1) in 

staggr + 01 m'g 0 1

Decomposition of multi-hop stream aggregation and propagation operators follows closely the 

process explained in Section 3.2.2: different tree levels are activated at different stages of the process 

and values are gradually flowing towards chister heads, in the case of stream aggregation, and outwards 

from cluster heads, in the case of stream propagation. We use heterogeneous data aggregation to 

exemplify the decomposition process and in the following example we assume that the static cluster 

topology has a maximum depth of three hops, we use the superclass{m) function to denote the super 

class of the device class m, and we omit for clarity the second argument of the extern operator.

aggr + i s (clstat m)

is translated to

def mg = at TO (extern static_cluster) in 

def mfi = smap tuple2 (extern id) (#2 ™s)
def m'ff = at superclass(m) (smap tuple2 (extern id) 0) in 

def To = staggr + s s to/j mg 2 3 in 

def ri = staggr + s ro m^ mg 1 2 in 

staggr + i ri m'^ mg 0 1 in

The static_cluster external definition represents the static topology’s descriptor, as reported by the 

underlying middleware. This value is not constant and may change in time along with the wireless
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network connectivity. Heterogeneous data aggregation and propagation use two different receiver’s 

topology descriptors: mn is evaluated on cluster members that, depending on the level they occupy in 

the topology, take also the receiving role, m'p^ is evaluated on the topology’s cluster heads which, since 

they belong to the different device class - superclass{m), have to be handled differently. The former 

is defined as a tuple comprising the node’s own network identifier and the level it currently occupies 

within the static topology. This way the receiving nodes will receive data values only from their tree 

children, i.e., nodes that are one level below them and which define them as the destinations for their 

data items. The latter is defined in the same way but the definition does not reference static_cluster 

since, on a different device class, it refers to a different cluster topology.

The above process closely matches the semantics of multi-hop stream aggregation given in Sec­

tion 3.2.2. Heterogeneous stream propagation is defined analogously but with the difference that 

the sending and receiving roles are reversed. Homogeneous stream aggregation and propagation are 

translated in a similar way but with the main difference that the static_cluster external definition is 

replaced with the dynamic cluster topology descriptor that is computed as a result of the evaluation 

of the clmax and clmin operators. Also, since all topology descriptors are evaluated within the same 

device class, there is no need for two different receiver’s topology descriptors. The following example 

explains the idea.

aggr + i s (clmax (vals sensor))

is translated to

def ms = clmax (vals sensor)) in

def nifi = smap tuple2 (extern id) (#1 in 

def To = staggr -|- s s mn ms 2 3 in 

def ri = staggr + s tq m^ ms 1 2 in 

staggr + i ri mn ms 0 1 in

Dynamic cluster topologies are constructed through the leader election process that involves a 

constant number of neighbourhood stream aggregation rounds in which both the leader and the 

topology are established. The process comprises a sequence of n staggr expressions that aggregate 

tuples of three elements: the current value of the selection stream, the current parent node’s network 

identifier and the current distance to the topology’s root node. The following code presents the
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translation of the (clmax s) expression.

def m' — within present{s) (smap tuple2 beast 0) in 

def ro = smap tupleS s (extern id) 0 in 

def ri = staggr Smax ?'o ro m'm' 0 0 in 

def r2 = staggr Smax ri r[ m'm' 0 0 in 

def rs = staggr Smax ’’2 m'm' 0 0 in 

smap tuple2 (smap #2 ^3) (smap #3 rs)

The leader election process is performed along the neighbourhood topology that is trimmed to the 

group of nodes for which the selection stream takes a non-null value (hence the within operator). 

Initially, all participating nodes consider themselves to be the topology’s roots (ro). Then, in each 

aggregation round, this view is updated when nodes receive tuples with better selection stream’s values 

(ri, r2, rs). The updated results are resent in the next round with a small modification that puts the 

node’s network identifier as the third element of the tuple so that the the node’s neighbours can store 

it as their parent’s identifier:

rl' = smap tupleS (#f ri) (#2 ^1) (extern id) 

r2' = smap tuples (#f r2) (#2 r^) (extern id)

Eventually, the node with locally the best value becomes the topology’s root because it did not receive 

a better value than its own while all other nodes that are within the distance of three hops from the 

root node consider themselves topology members and know their distance to the root, as well as, 

the network identifier of their tree parent. The final result, i.e., the dynamic topology descriptor, is 

computed by extracting the second and the third component from the result of the last aggregation 

round (rs).

The selection logic is implemented by either the Smax or the Smin functions and their definitions 

are added to the program when required. The following pseudo-code defines the Smax function (the 

Smin function replaces the first > relation with <).

Smax {s^id^d) {Smax^'^^maxidmax) ~

ii S > Sr, then

return (s, id, d + 1) 

else

if (s — ^max) A (d T I ^ dmax) then 
return (s, id, d + 1) 

else

return i^Smaxi^dmaxidmax)
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The code is mainly self-explanatory. We only note that the leader election process, in addition to 

selecting the node with the locally-best value of the selection stream, minimises the the distance to 

the root in situations where there are more than one leader with the same value of the selection stream 

within the n hops from each other.

4.1.8 Program Linearisation

Program transformations presented in the previous sections may add many auxiliary stream defini­

tions. For the purpose of scheduling the communication operators, the compiler needs to simplify 

the program’s structure and it does so by restructuring nested def expressions so that they can be 

considered sequential. Consider the following example expression:

def X = def yi = ei in

def y2 = 62 in 63
in 64

Such forms are legal in both SoSNA and SoSNA Core and can be introduced by both the programmer 

or as a result some of the program transformation stages, e.g., the decomposition of communication 

operators. In order to restructure the program in the way that reflects the order in which expressions 

are evaluated, the compiler performs the following basic transformation:

def t/i = ei in 

def 2/2 = 62 in 
def a: = 63 in 64

Additionally, the compiler ensures that all staggr operator instances have the following general form:

def X = staggr ... in e

as well as, it assigns temporary names to all anonymous functions and moves all function definitions 

to the top of the def sequence, preserving their mutual dependencies. As a result, the whole program 

is structured as a nested sequence of init, def and set_after, expressions and each of the identifier 

expressions are simple, i.e., they do not contain any of the above three nesting forms. The most-nested 

expression, i.e., the one that is evaluated at the end of the evaluation loop is the output expression.

4.1.9 SosNA Stream Core

Linearisation is the last of the sequence of program transformations that gradually translate a Sosna 

Core program to the SoSNA Stream Core language. SoSNA Stream Core is a statically typed formalism
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f
c
Gi

Gd
e..

Bf :: =

tuple2 I #2 I ^2 I I _ I X I / I ... 
true I false j 0 | 1 | 2 j ... 
init X = c in {ei \ e^)
def X = Cs in Cd I set_after x x = Eg in | output x e^; . 
c I / I x I Ax.e/ I rec x.Xx.ef \ extern x \ input x \ 
smap Cg Eg I merge eg eg [ within eg Cg | vals Cg | time Sg | 
staggr Eg Eg Eg Eg eg eg Eg
c \ X \ Eg Ef \ if Ef then e/ else Ef \ def x = e/ in e/

.. X e,;

Figure 4.3: The grammar of the SoSNA Stream Core language.

in which programs can be seen essentially as sequences of stream expressions that are simple enough 

to be fully evaluated within the duration of a single round of neighbourhood data aggregation. This 

property is used by the scheduling algorithm to assign different expressions for evaluation during 

different data aggregation rounds resulting in a global communication and computation schedule.

Figure 4.3 presents the language’s grammar. Compared to Sosna Core (Figure 4.2) the grammar 

introduces two additional expression classes Ci and ej, that reflect the linear structure of SoSNA Stream 

Core programs, as well as, they reflect the fact that the initialisation expressions are the top-most 

program expressions. The stream expression category has been significantly simplified so that 

scheduling can be performed while the scalar domain was left unchanged because SoSNA considers 

the scalar domain independent of the stream domain so that in the future versions of the language 

the scalar domain can extend it.

4.1.10 Communication Scheduling

The current version of the SoSNA compiler implements a communication scheduling policy that tries to 

minimise the overall schedule length by scheduling several neighbourhood stream aggregation expres­

sions for execution in parallel. The algorithm analyses program data dependencies trying to maximise 

the degree of parallelism shortening this way the overall application cycle’s length.

Data dependency is a relationship between two program identifiers in which one references another. 

Because recursive stream definitions have been already decomposed, Sosna Stream Core programs 

cannot have recursive data dependencies. Therefore, data dependency analysis, when applied to the 

whole program, results in computation of the data dependency graph that is an acyclic, directed graph 

representing data dependencies among different program identifiers. The scheduling algorithm applies 

the data dependency analysis at the granularity of init, def, set_after and output identifiers 

treating their corresponding expressions as a basic unit of granularity. As an example, consider the
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Figure 4.4: Example scheduling of a data dependency graph.

following SOSNA Stream Core program fragment.

def mAT = ... in

def sum = staggr + s s rnjv nijv 0 0 in 

def ms = ... in

def 7?ifi = tuple2 (extern id) (^2

def ro = staggr max s s nift nis 1 2 in 

def r\ = staggr max 0 tq nin ms 0 1 in 

output act smap / ri s?/7n;

The program performs two data aggregation tasks: nodes sum the values of the s stream across their 

neighbourhoods {sum) and the maximum value of s is selected among nodes that are members of a 

two-hop wide dynamic cluster topology {nis and m/?). The result of program evaluation is present at 

the cluster topology’s root nodes and it is equal to the maximum value of s divided by the local value 

of sum. Figure 4.4 presents the data dependency graph for this program. Note that the evaluation 

order of expressions located at the same level in the graph can be arbitrary if we assume that all 

expressions from the level above it have been already evaluated.

The scheduling algorithm is concerned with partitioning the set of all program identifiers and their 

associated expressions into a bounded number of subsets that correspond to a certain partitioning of 

the dependency graph and which we refer to as communication rounds. The communication schedule, 

therefore, is a sequence of communication rounds all of which, with the exception of the first and 

the last one, containing at least one staggr expression. Different staggr expressions assigned to 

the same communication round are executed in parallel and the scheduling algorithm ensures that 

communication rounds cannot contain two staggr expressions that are dependent on each other. As a 

result, the duration of every communication round is exactly that of a single round of neighbourhood
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data aggregation and the duration of the whole schedule is a multiple of this value. Figure 4.4 

shows the relation between a program’s data dependency graph and its scheduling, the dashed boxes 

represent the composition of different communication rounds. Note that, although there cannot be 

dependent staggr expressions in the same round, dependencies among other expressions are allowed. 

This is because these expressions do not involve communication, hence their evaluation should take 

significantly less time than one neighbourhood data aggregation round. In the rest of the presentation 

we refer to these expressions as instant.

The scheduling algorithm requires the program to be simplified by un-nesting all nested init, 

def and set_after expressions. The transformation is simple and for the above example program it 

results in the following sequence of definitions that we refer to as schedule entries.

(def,s, ...),

(def, mjv, ■ ■ ■)) (def, sum, staggr -|- s s m/v niN 0 0),

(def,ms, ...), (def,m/j, tuple2 (extern id) (#| ms))

(def,ro, staggr max s s m/? ms 1 2)

(def,ri, staggr max 0 ri mn ms 0 1)

(output, act, smap / ri sum)

Each schedule entry, therefore, comprises three elements: type, which can take one of four different 

values: init, def, set_after and output, program identifier, and the corresponding expression. For 

each schedule entry e = {type,id,expr) we denote the set of program identifiers referenced in expr as 

depset{e) and we define the following function:

init type = init

instant <;=> type G {def, set after}

async <=> expr = staggr ...

output type = output

kind {type, id, expr) = <

Additionally, we define the relation on entry kinds to be:

init instant ^ async output

The algorithm operates in two phases: first it constructs an approximation of the final schedule by 

building a list of schedule levels each of which being a set of schedule entries of the same kind. 

We extend the notion of entry kinds to schedule levels by saying that a level L has a kind k when 

Ve G L.{kind e = k) and, additionally, denote the set of identifiers of all entries e £ L as {ids L). In 

the second phase, certain sequences of schedule levels are merged together in order to form schedule 

rounds. Pseudo-code for both phases is presented in Algorithm 4.1.
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Algorithm 4.1 The communication scheduling algorithm for the SosNA Stream Core language.

def independent e level = {{depset e) n (ids level)) = 0)

def insert e [] = {e}
I insert e level :: schedule = 
if independent e level then

if (insert e schedule) / false then 
return level :: (insert e schedule)

else
if (kind e) = (kind level) then 

return level U {e} :: schedule
else
if (kind e) -< (kind level) then 

return level :: [e] :: schedule
else

return false
else

return false

def partition entryList = 
schedule := [ ] 
foreach e G entryList do

if (insert e schedule) ^ false then 
schedule := (insert e schedule)

else
schedule := {e} :: schedule 

return reverse(schedule)

def merge instanti :: instant2 :: rest = merge (insteinti 0 instant2) :: rest 
I merge instant :: async :: rest = merge (instant 0 async) :: rest 
I merge instant :: output :: [] = instant 0 output)
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The first phase (the partition function) starts with the original schedule entry sequence and with 

an empty list as the initial schedule level sequence (we use the head :: tail notation to distinguish 

between a list’s head element and all remaining elements). The schedule level sequence corresponds 

to the reversed schedule, hence, the first level contains entries which would be executed at the end of 

the program’s cycle. The individual entries are inserted to the level list, one by one, by selecting the 

level possibly the closest to the end of the list. The entries are moving on through the schedule level 

list as long as their identifiers are independent of any identifiers in the given level (the independent 

function). Once a conflict is found, the entry is either added to the preceding level or, when it has a 

smaller kind, it is added to a newly created level located between the current and the preceding levels. 

If an entry cannot be added to an existing level list, a new level added at the beginning of the list, in 

order to accommodate it.

The first phase groups all init entries in the first schedule level and all output entries in the 

last schedule level because these entries are independent by definition. The resulting level sequence 

corresponds to a partitioning of the data dependency graph into a sequence of sets each of which 

containing independent entries of the same kind. Also, for any two levels Li and Lj such that i < j, 

we have:

Ve € Li.{independent e Lj)

The second phase is used as a post-processing stage and it simply merges all consecutive instant 

levels together, as well as, it merges all consecutive pairs of instamt and async, and instant and 

output levels. The symbol © represents merging of sequences and it corresponds to the fact that the 

ordering of entries becomes important as the merged levels are likely to contain dependent expressions. 

As a result of this grouping, the first set of entries comprises only init entries (if present in the 

program), the last one comprises only instant and output entries, and all other sets comprise at 

least one async entry. The first sequence, therefore, becomes the program initialisation sequence and 

the last one constitutes the actuation round while each of the remaining sequences becomes a single 

communication schedule round. The sequence of all communication schedule rounds followed by the 

actuation round constitutes the basic communication schedule which might be extended in the the 

target platform code generation stages with additional delays, e.g., sleep periods.

4.1.11 Send/Receive Transformation

The basic communication schedule is a sequence of communication rounds each of which comprising 

a number of staggr expressions. Each staggr expression represents a neighbourhood stream aggre­

gation round in which every node sends at most one data item. Scheduling several neighbourhood
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stream aggregation rounds in parallel can be done by putting all data items a node wants to send 

within the given communication round into a single message which is then decomposed by all of its 

receivers that extract the data items of interest. As a result of this approach, Sosna applications 

send at most one radio message in every communication round (when we assume that all required 

data items can be fit in a single message).

The send/receive transformation stage converts all staggr expressions into the corresponding 

abstract message sending expressions and into a set of data item receive expressions representing 

aggregation of the incoming data items at the receiver side. We use the example program presented at 

the beginning of the previous section to demonstrate the idea. The program is scheduled to comprise 

three schedule rounds that correspond to the scheduling presented in Figure 4.1. We use schedule 

entry identifiers simplicity:

lms,s,mN,mfi,sum,ro,], [ri], [act]

The transformation introduces the following two expressions that assign messages unique identifiers 

and define them in terms of the data items they comprise, as well, as in terms of the associated 

topologies:
send niQ = [(s, myv) (s, ru5)] 

send mi = [(ro,TOs)]

Topology descriptors need to accompany the data items because different data items might be destined 
for different receivers. The ride of thumb is the following: each data item is represented in the 

message by its value and by a network identifier which, in the case of neighbourhood topologies is 

equal to beast, in the case of aggregation over a cluster topology it equals to the parent node’s 

identifier while in the case of propagation over cluster topologies it represents the sender’s identifier 

so that the receiving nodes can accept messages only from their tree parents. In all three cases, the 

destination topology descriptor provides all necessary information. Additionally, in order to facilitate 

the subsequent program partitioning stage, different messages are composed for nodes of different 

device classes so that each message contains only those data items that originate in the given round 

from nodes of the same device class .

While the send expressions define the sending part of the staggr operator, the receive expressions 

define data item reception and aggregation. For each individual staggr expression a separate receive 

expression is generated and they take the following general form.

receive m f i n r resulti^

Following the notation introduced in Section 4.1.7, the parameters are respectively: the identifier of 

the accepted message, the aggregation function, the initialisation stream, the index of the received
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data item within the message, the receiver’s topology descriptor, the receiving level and the identifier 

of the stream that will be the result of this aggregation step. The following expressions are generated 

for the above example program.

receive mo + s 0 mAr 0 sum 

receive mo max s 1 mfi 1 ro 

receive mi max 0 0 m^ 0 ri

This information is sufficient for every node to know which messages it should receive. Also, at this 

stage, programs contain no expressions whose semantics spans two different device classes, therefore, 

they can be safely partitioned.

4.1.12 Program Partitioning

Knowing the types and device classes of all program expressions and having transformed the language 

so that all expressions have local semantics, the compiler can partition the global program into a set 

of device class-specific sub-programs. The task is relatively simple and involves running the same 

program filtering algorithm several times, each time parametrising it with a different device class 

identifier.

The filtering is performed at the level of individual schedule entries because they enjoy a convenient 

property that their expressions are evaluated entirely at a single device class. Because all language’s 

constructs have local semantics, no expression can directly refer a program identifier that is evaluated 

at a different device class. Therefore, for each device class, it is safe to remove from the global program 

all schedule entries that are annotated for evaluation at all other device classes.

The program partitioning stage performs additionally program translation from the scheduler’s 

representation to the the SosNA Stream Local language that defines programs as sequences of schedule 

rounds comprising sequences of basic program statements. The transformation stage outputs a set of 

localised programs each of which to be executed by devices of a different class.

4.1.13 Sosna Stream Local

The Sosna Stream Local language serves as an intermediate program representation language that is 

used by various compiler backends as the basis for generation of platform-specific code. Sosna Stream 

Local is an imperative language whose semantics are close to how individual devices would operate 

but at the same time they do not involve platform-specific details. Figure 4.5 presents the grammar 

of the language.
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f ::= tuple2 | #2 | ^2 | | | ^ | | ^ ^ ^
c ::= true j false | 0 | 1 | 2 | ...
fun ::= Xx.Cf \ rec x.Xx.Cf
program ::= functions (x — fun)* init (x = (c | nil))* (round stat*)'^ 
stat def x = Cj; | set x = e^; | output x e^; j

send X = [(esjes)"*"] | receive x f i n r In x 
Cs ::= c I / I X I extern x | input x | vals | time j

smap X Cs I merge Cg \ within Cg Cg 
Cf ::= c|x|xe/ | if e/ then ej else ej \ def x = e/ in e/

Figure 4.5; The grammar of the SoSNA Stream Local language.

SOSNA SOSNA
Program Compiler

SOSNA NesC TinyOS
Middleware Compiler

Target
-^1-------------- -

Program

Figure 4.6: The SoSNA compilation framework.
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The language structures programs as sequences of rounds that comprise possibly empty sequences 

of basic program statements. The statements are either stream expression definitions, stream identifier 

value update statements, output (actuation) statements, message send or reception statements. The 

scope of stream expression definitions is confined only to the round they are defined in allowing this 

way for memory reuse across different rounds. All stream identifiers declared in the init section are 

considered global, i.e., the memory they occupy cannot be freed. The init identifiers, in addition to all 

fby buffers (see Section 4.1.6) include also those stream definitions whose scope cannot be confined to 

a single round and they include, for example, the identifiers storing neighbourhood stream aggregation 

results (the nil value is used for their initialisation). Also, note that the language separates functions 

from stream expressions and explicitly assigns them names so that they can be referred to only through 

their identifiers.

Sosna Stream Local is intended as the input language for various compiler backends. The existing 

compiler implementation provides two backends that are the SoSNA Simulator and the SoSNA Machine 

language (SMachine). The former translates Sosna Stream Local programs into Scheme classes 

that are instantiated by the simulator to create objects representing SoSNA programs running on 

individual network nodes. The later is a virtual machine-like language that serves as a basis for 

efficient translations to C-based languages. The following two sections provide more detail on each of 

the backends and Figure 4.6 describes the overall SoSNA compilation process that involves an external 

compiler for the compilation of NesC-based translations of the SMachine target.

4.1.14 The Sosna Simulator

The simulator allows to run Sosna programs after they are compiled to a Scheme class whose interface 

comprises methods for creating objects representing program instances, as well as, for controlling 

program execution in terms of triggering the execution of individual schedule rounds. The current 

implementation of the simulator accepts as input;

• a graph that represents wireless network connectivity,

• a mapping of device class identifiers to graph nodes,

• a class representing the translated Sosna program that is used to create program instances for 

every node in the graph and to connect these objects according to the topology of the graph,

• an environment model that generates sensor readings for all network nodes (program instance 

objects) and which receives and accommodates all actuation signals coming from these nodes.

Ill



4.1. Program Transformations

isrr-
pos-x: IOC 
bos-yr 280

Mt-x; 19( 
>W-y:»W

(1:6 
!a0: 109.C

3r5“
m-x: i»d lOM-V.lK

aaimuiiima

BTS-
MM-x: 37(>0»-y:2»t

an-
nm-kIM
>p»y««

d:9 
!«0: 105.C

ar5~
Nf-x: U(
»0«-V:28(

arj-
m-x; 3M 
JOS-v: IM

an~
M»x:4M»0»-y37(

»steps: 7 nmj

Oevciasst #%mote“a yj

Topeiow ^^statk  _____^
vrl;[p(»-x

Vir2: pot-y_________________ ^

aialtti£l

Infp:
1 round » 7 steps 
#step;0 
#rounds: 5

Figure 4.7; The graphical user interface of the SOSNA Simulator.

Once the simulator constructs the network model, it sends to all program instances an initialisation 

signal that results in the execution of the init block described in Section 4.1.13. The simulator 

operates in a synchronous manner executing one application’s schedule round at a time. Before each 

round commences, the simulator generates a random permutation of all network node identifiers and 

sends a new-round signal to the nodes following this ordering. Internally, each round is split into 

two parts of which the first comprises the computation of the round’s instant expressions and mes­

sage sending while the second one involves processing of the received messages so that the results of 

data aggregation can be computed. The simulator employs a simplified channel model that currently 

deterministically (although in random order) delivers all messages to their destinations. Future ver­

sions of the simulator might extend this model by employing more realistic models of wireless signal 

propagation.

The simulator in its current form is intended for early design stages and it includes a graphical user 

interface (GUI) that allows to inspect the current values of program stream identifiers, as well as, it 

is capable of visualising a chosen topology descriptor. The simulator’s GUI is presented in Figure 4.7.
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4.1.15 SoSNA Machine

The SMachiiie language deals primarily with the evaluation of stream expressions as defined by the 

stream expression class in the SoSNA Stream Local grammar (Figure 4.5). Apart from the representa­

tion of stream expressions, the language has a similar structure to Sosna Stream Local which assumes 

partitioning the program into a sequence of schedule rounds. The main motivation for the language 

is the fact that the representation of absent stream values can be costly because every single stream 

operation involves checking if its arguments are not null. The language tries to avoid annotation of 

every stream expression with if/then/else statements and employs a general model in which stream 

operator arguments are stored as pointers on a stack so that value presence checking comes down to 

checking if the pointers are null. We focus, therefore, on the description of the core ideas underlying 

the language and on the presentation of its instruction set.

The language defines an abstract machine that comprises a heap for storing allocated stream 

values and a stack that stores pointers to these values. SMachine instructions allocate, free and 

modify the heap memory leaving pointers to their results on the stack. The core characteristic of the 

language is the ability of the compiler to figure out the worst-case heap and stack sizes required by 

the program because the language does not include looping constructs. This is an important property 

when building WSN/WSAN applications because memory resources are likely to be scarce, as well as, 

because bounding an application’s memory consumption at compile time improves its reliability.

Similarly to SoSNA Stream Local, SMachine programs start with the init section that allocates 

heap memory for all global stream identifiers while saving pointers to these memory blocks on the 

stack. Subsequent language instructions cannot release this memory and either allocate and free 

additional blocks or push references to already allocated memory blocks to the stack. This situation 

is depicted in Figure 4.8 in which the gray boxes represent globally allocated memory blocks and their 

corresponding pointers. We present the full instruction set of the language in Appendix A and in this 

section we confine ourselves only to the presentation the translation of an example Sosna Stream 

Local program fragment.

In Section 4.1.13 we noted that def statements confine the scope of their definitions to the enclosing 

schedule rounds. This is done by freeing the memory allocated by such statements at the end of the 

round. Consider the following definition:

def X = within C] 62 

... //other statements
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Figure 4.8: The relation between the SMachine’s heap and stack.

If we assume that x is a stream of type Int, then corresponding translation to SMachine is the following:

alloc Int 

... //’’within ei 62”

... //other statements 
free Int

In order to abstract away the details of low-level data representation, SoSNA Machine uses types to 

denote sizes of memory blocks and, as a result, the maximum program heap size. After SMachine 

programs are compiled to a particular target platform such as, for example, NesC or gcc C, The types 

are replaced with integer numbers representing type sizes in platform-specific units.

Stream expressions are evaluated in SMachine in a similar way as the ordinary arithmetical ex­

pressions are in other machine languages: pointers to arguments of SMachine operations are left on 

the stack and then they are replaced with the pointer to the operation’s result. All stream operations 

are allowed to allocate any amount of heap memory but they must finish execution with exactly one 

pointer allocated on the stack. Although this mode of operation makes the stack volume easy to 

track, the amount of allocated heap memory might depend on the values streams take at runtime. 

Consider the (within ei 62) expression^: the evaluation of 62 should not be performed when Ci is 

either absent or false. In such case, only the worst-case memory consumption can be computed 

when we assume that both e\ and 62 are evaluated. In order to cope with such situation all SMachine 

uses two instructions saveHeap and restoreHeap. The above example would be translated to the

^This is a Sosna Stream Local expression, hence, both ei and 62 may not comprise communication operators.
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following code.
alloc Int 

saveHeap

... //’’within ei 62” 

restoreHeap 

... //other statements 

free Int

The saveHeap instruction pushes to the stack a pointer to the current top of the heap while restoreHeap 

sets the top of the heap to be memory location pointed to by the pointer at the top of the stack.

If we assume, for simplicity, that ei = true and that 62 = y then the above program would be 

translated to:
alloc Int 

saveHeap

...ireC
present? 1 

ifXrue

ifTrue

else

pushNull

else

nop

restoreHeap 

... //other statements 

free Int

The within expression is evaluated as follows: first, the first argument is evaluated and a pointer 

to its value is left on the stack. The present? instruction consumes this pointer and pushes a new 

pointer to a Boolean value that is equal to true if the previous top pointer was not null, and that is 

equal to false otherwise. The ifTrue/else statement is a form of a controlled jump instruction and 

it executes its first branch if the top pointer (left by present?) points to true and it executes the 

second branch otherwise. Therefore, the first branch of the first ifTrue is executed when ei evaluated 

to a non-null value and the program proceeds to the evaluation of when this value was equal to 

true. In the case when ei was false a null pointer is pushed to the stack as the final result, as 

required by the operator’s semantics. In the case when ei was null, nothing needs to be done, as this
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is also the final result of the expression.

The above example shows how structured stream expressions are evaluated in SosNA Machine, as 

well as, it shows how memory is managed by the language. Sosna Machine instructions are directly 

translated to pointer manipulating C expressions that operate on two statically-allocated arrays rep­

resenting the stack and the heap. This translation has been implemented for the NesC programming 

language and is the basis of the NesC target of the Sosna compiler.

4.2 Execution in Mote Networks

Sosna applications can be executed in wireless networks of TinyOS-supported devices called the 

motes. TinyOS is an open source operating system designed for use on highly resource constrained 

devices and written in the NesC programming language (see Section 2.1.4 for an overview). TinyOS 

offers a very minimal model in which applications are compiled against the operating system’s (OS) 

source code to form a monolithic program that includes both the application code and the operating 

system. TinyOS applications are specified as graphs of asynchronou.sly communicating components 

and the operating system does not support preemption, hence, concurrency has to be manually man­
aged by the programmer. The system uses the concept of a task to represent a piece of computation 

that is executed in its entirety and whose execution can be delayed allowing for a way of breaking 

computationally-heavy procedures into fragments in order not to block the operation of other com­

ponents. TinyOS uses a static memory model, i.e., dynamic memory allocation is not possible unless 

implemented by hand.

The most recent version of the operating system - TinyOS2, supports several hardware platforms 

most of which have severely constrained resources. Table 4.1 compares the some characteristics of 

four popular mote platforms supported by the OS: MicaZ, Iris, TelosB and Imote2, all available 

from Crossbow Technology (2009). The devices, with the exception of Imote2 have very little RAM, 

limited program memory (i.e., non-volatile memory for storing the application code) and relatively 

slow processors. The table shows that RAM is the most constraining factor requiring compilers to 

focus primarily on optimising its use.

A variety of sensors are available for the mote platforms but mainly in form of external sensor 

boards that can be attached the motes through specialised connectors. The available sensors include 

light, humidity, temperature, acceleration. Earth’s magnetic field, image (video) and sound sensors, 

and TinyOS provides unified interfaces for controlling their operation.

In the following sections we describe how Sosna applications are executed in mote networks. First
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MicaZ Iris TelosB Imote2
Processor Clock 8MHz 16MHz 8MHz 3-416MHZ
RAM 4kB 8kB lOkB 256kB
Program Memory 128kB 128kB 48kB 32MB
Flash Memory 512kB 512kB 1MB 32MB

Table 4.1: Comparison of hardware capabilities of chosen TinyOS-supported mote platforms.

we overview the Flooding Time Synchronisation Protocol (FTSP) that underpins the synchronised 

operation of the whole network. Then we describe the SosNA Middleware, which is a library building 

on the FTSP protocol and driving the operation of SoSNA applications. We conclude the section with 

a discussion of how duty cycled is performed in mote networks.

4.2.1 Time Synchronisation

The Flooding Time Synchronisation Protocol (Maroti et al. 2004) is a relatively simple time syn­

chronisation protocol that targets WSN applications and that employs low-level radio message time- 

stamping in order to reduce the amount of communication needed to achieve synchronisation. The 

protocol operates by propagating a flooding wave of time synchronisation messages away from the 
time synchronisation root. Each of the time synchronisation messages carries a time stamp that rep­

resents the sender’s local time recorded at the time when the message was being transmitted to the 

wireless channel, bypassing this way much of the unpredictable delays introduced by the OS message 

processing. The nodes store time synchronisation message reception times in order to fit a linear 

regression model allowing them to estimate their clock drift and compensate for it in the global time 

estimation.

The protocol operates in a periodic manner regularly refreshing network time synchronisation. In 

addition to the flooding wave propagation, the protocol also provides for time synchronisation root 

election so that, on one hand, it can start operation without explicit configuration, and on the other, 

it can tolerate node failures by choosing a new leader when the previous one stops responding. This is 

done by counting at each node the number of time synchronisation refreshes (heartbeats) originating 

from the current root. After a node notices that the number of missing heartbeats exceeds a threshold 

it elects itself to be the new root and through a simple contention mechanism, similar to the SosNA’s 

leader election process, the new synchronisation root is selected to be the node with the lowest network 

identifier.
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Figure 4.9: The SoSNA Middleware.

4.2.2 The SoSNA Middleware

The SoSNA compiler delegates the low-level aspects of application operation to a runtime support 

middleware that is a collection of TinyOS components whose tasks are:

• to provide time synchronisation in the network,

• to start the application when time synchronisation is established and to stop it when time 
synchronisation is lost,

• to trigger execution of subsequent application schedule rounds,

• to handle sending of SoSNA messages.

The middleware comprises three core components that are: a modified version of the FTSP protocol, 

the SoSNA Round Protocol (SRP) that coordinates the operation of FSTP and triggers application 

round execution, and a message send component whose task is to send a message after introducing a 

random delay. Additionally, SoSNA applications require access to a radio control interface for switching 

the radio on and off. We use for this purpose the SplitControl interface which is implemented by 

default be the TinyOS communication module. Figure 4.9 shows the inter-dependencies among these 

components and the application code.

The SosNA middleware operates according to the following general application execution model. 

The application cycle starts with a time slot that we refer to as the service round and that is reserved 

for the operation of the time synchronisation protocol, as well as, for sensor sampling. The current 

implementation, for simplicity, assumes the service round to have the same duration as the application
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Figure 4.10: The general application time schedule.

rounds but this does not have to be the case in general. The service round is followed by a sequence 

of application rounds, of which the last one is the actuation round, as described in Section 4.1.13. 

The actuation round is followed by a global sleep round whose duration is a compilation parameter 

and can be arbitrary (including the duration of zero seconds). The duration of one application round 

is also a compilation parameter and its value has to be selected in accordance with the application’s 

requirements, in particular, it cannot be too short so that each node has enough time to send a 

message and to receive messages from all of its neighbours whose maximum number is specific to a 

particular deployment topology. There is no technical reason for limiting the upper bound on round 

duration other than application responsiveness because longer rounds result in longer application 

cycles. Figure 4.10 presents the overall composition of the application cycle.

The main task of the SoSNA Round Protocol is to control the propagation of the time synchro­

nisation wave generated by FTSP, to detect and to react accordingly when FTSP reports having 

lost synchronisation with the time source and to notify the application when a new cycle and a new 

round should begin. When the application is started it first initialises SRP with the following three 

parameters: the duration of one application round, the total number of rounds (including the service 

round) and the duration of the sleep period. As a result, the protocol switches the radio on and 

starts FTSP in order to synchronise the network for the first time. Once FTSP reports that the time 

is synchronised, SRP uses the current value of the global time to calculate the starting time of the 

nearest application cycle. This is done according to the following simple formula {Dcyde represents 

the total application cycle duration, and Tgiohal stands for the current value of the global time):

Tglobal
+ 1 X DcycleDcycle

SRP then sets a local timer to fire when Tstart elapses and sends to the application the newCycle 

signal. After that, SRP sets the timer to fire when the next cycle begins and, at the same time, it
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starts another timer to fire when each of this cycle’s rounds commences so that the application can 

be sent the newRound signal (see Figure 4.10).

Although the duration of application rounds is a compilation parameter, care must be taken 

to ensure that it is not too short, i.e., that there is enough time left to perform all computations 

and communications scheduled in each round. The current prototype SOSNA compiler leaves this 

entirely up to the programmer allowing for arbitrary durations of application cycles. Hence, if some 

computations take too long (e.g., an erroneous, unbounded-depth recursive function call), nothing 

can stop one round from running into another due to the lack of preemption in TinyOS. However, 

as we noted in Section 3.3.4, a fully-fledged compiler should employ some means to estimate the 

execution time of program’s scalar expressions and this seems to be within reach of the existing 

compiler technology. Alternatively, it is possible to come up with a reasonable choice for application 

round duration through an estimation of network topology density and communication throughput, 

as well as through analysis and profiling of function execution times.

At the beginning of each new cycle SRP uses FTSP to obtain the current value of the global time. 

When FTSP loses synchronisation with the root, it returns a null value, hence, SRP can reset the 

application by sending the outOfSync signal. The application then resets the heap and stack pointers 

and it invokes the initialisation procedure described in Section 4.1.13. At the same time, SRP moves 

to the initial state when the radio is switched on and synchronisation messages are being awaited. In 

the following sections we describe the system operation during the four main round types: the service 

round, the application round, the actuation round and the sleep round.

The Service Round

The service round is designed to accommodate time for sampling the sensors and for the operation 

of the time synchronisation protocol. Sensor sampling is performed by the application that requests 

sensor readings for all program inputs as soon as it receives the newCycle signal. TinyOS uses an 

asynchronous sensor sampling interface that requires that, first, sensor readings are requested and 

then the values are delivered by means of a call-back function. The SoSNA compiler declares a 

similar interface but which, in contrast to its TinyOS counterpart, additionally requires sensor drivers 

to provide the real time at which the sensor reading was obtained. The reason for it is such that 

program inputs might represent higher-level sensors that report only event detection values in which 

case the detection time might be different than, for example, the beginning of the cycle. This property 

of program inputs is explained in Section 3.2.2 and in Figure 3.6 and below we present the generic 

NesC interface for for Sosna’s sensor drivers.
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interface Input<dataTyype> { 
command error_t read();
event void readDone(error_t status, dataType data, gtime_t localTime);

}

Before a sensor reading is requested, the application clears the global pointer that points to its 

current value indicating this way that the input is null in this instant. This value is then overwritten 

when the sensor reading is reported by the sensor driver. In contrast to TinyOS, SoSNA breaks the 

connection between sensor value request and the value delivery report allowing this way null input 

values.

While the application is reading sensor values, SRP is controlling the FTSP protocol. The pro­

tocol’s low-communication overhead makes it ideally suited for use in SoSNA applications because it 

requires every node to send exactly one synchronisation message per one time synchronisation wave. 

SRP exploits this fact and schedules the protocol message to be sent in the service round. However, 

in order to minimise the overhead of maintaining the static cluster topology, the SoSNA Middleware 

augments the protocol by extending its messages to carry, in addition to time synchronisation-related 

information, two fields that denote the distance in hops to the global time synchronisation source and 

the distance to the node’s static cluster head. This way, the static cluster topology is constructed and 

refreshed each time the time synchronisation wave is propagated.

Because it would be impractical to assume that the whole time synchronisation wave should spread 

within the service round, the middleware splits the propagation across several application cycles. The 

procedure requires that the network is already synchronised and that network nodes know both the 

global time and their distance to the time source, as indicated by the static topology. First, the total 

application cycle number is computed as:

-*■ global Cn = --------
^cycle

The e represents a small correction that is added to account for possible timer inaccuracies in situations 

when the new cycle starts slightly earlier. A node sends the FTSP message when:

n modulo Lmax = Ln modulo Lmax

where Z,„ is the the node’s distance to the time source in the n-th application cycle and Lmax is a 

compilation parameter defining the tree refresh period. As a result, the time synchronisation wave 

gradually spreads one synchronisation tree level per application cycle. The Lmax parameter can 

be set to correspond to the maximum time synchronisation tree depth, in which case a new time
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synchronisation wave starts as soon as the previous one finishes, or it can be set to smaller or larger 

value to respectively decrease or increase the refresh rate.

The above condition is evaluated at the beginning of every service round and once it holds, SRP 

instructs the FTSP protocol to send the synchronisation message. Before this happens, however, 

SRP introduces a random delay d e \Q, Droundwhere Dround is a compilation parameter denoting 
the duration of one round of neighbourhood communication. This is a practical requirement, as we 

noticed during the evaluation, that due to the synchronised times of message sending, channel collisions 

occur causing loss of synchronisation messages and resulting in nodes loosing synchronisation and 

restarting. A possible explaination of this fact is the potential coupling among neighbouring nodes’ 

random number generators due to a faulty CSMA MAC protocol implementation. The bug causes 

the motes to start their transmissions at the same times because they repeatedly choose exactly the 

same transmission backoff intervals. This leads eventually to the failure of message tran.smission. As 

Chapter 5 shows, this approach significantly improves communication reliability.

The Application Round

Application rounds comprise both evaluation of instant expressions, as well as, sending and reception 
of application messages. Sosna’s semantics state that in every application round network nodes may 

send at most one message and may receive unbounded number of messages. Two practical issues arise 

when implementations are considered. Firstly, the application round duration has to be chosen to be 

long enough to allow for the worst-case channel contention which is related the maximum degree of 

the network connectivity graph. This value is application specific and should be established either by 

empirical means or by constraining the connectivity graph in some predictable way. Secondly, since 

wireless data packets packets have bounded capacity applications whose abstract messages cannot fit 

a single data packet either have to be rejected by the compiler or their transmission has to be split 

into several packets. Although the current implementation of the compiler takes the former approach, 

there seems to be little technical difficulty in extending it to handle more sophisticated transmission 

modes. Thanks to the single message-per-round policy, SOSNA applications allocate memory for only 

a single message buffer that is shared across all application rounds.

All application rounds follow the same pattern: first the message buffer is cleared, then all instant 

expressions are evaluated (including loading data items to the message buffer) then, if the message is 

not empty, it is sent out and, finally, if there are any data items expected to be received, appropriate 

data item handlers are added to the handler list for invocation upon neighbour message reception. 

Similarly to the time synchronisation messages, a random delay d € [0, Z?round/3] is introduced in
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order to avoid channel collisions resulting from synchronised sending.

As we said in Section 4.1.11, messages are sequences of data items and their associated destination 

topology descriptors. The minimum information that needs to be transmitted is the data item’s value 

and the destination network identifier comprising the destination topology descriptor. TinyOS uses 

16-bit network identifiers but the current compiler implementation splits them into 8-bit device class 

descriptors (the most-significant bits) and 8-bit node identifiers (the least significant bits). Network 

nodes are, therefore, uniquely identified by providing the full 16-bit address and can be distinguished 

within their device classes based on their 8-bit node identifiers. Because, the message identifier and 

the data item’s index in the message uniquely determine the sender’s and the receiver’s device classes, 

data items can be accompanied by only 8-bit destination addresses.

The current compiler implementation assigns a fixed index to every data item in a message. Bit 

fields are used to represent data value presence and absence in the given instant. In order to save 

space, all presence fields arc grouped in a single 16-bit integer field that limits the maximum number 

of data items per message to sixteen. This value is platform specific as different radios and MAC 

protocols might define different message sizes. For example, the TinyOS defines the the maximum 
message payload size for the TelosB platform to be 118 bytes while for the Mica2 platform to be 28 

bytes. The compiler can use this information to allow larger messages on more capable platforms.

Sosna messages are mapped onto NesC structures and unions. Every message contains the 8-bit 
message identifier and the 16-bit data item presence field that is followed by a sequence of pairs of 

data items and their 8-bit destination identifiers.

The Actuation Round

Actuation rounds may comprise instant stream expressions that correspond to the values of the pro­

gram outputs. Once computed, these values are passed on to the actuators. Similarly to sensor 

drivers, SoSNA specifies a TinyOS interface that needs to be implemented by all actuator drivers. The 

following code presents the interface.

interface Output<valType> {
command void write(valType val);

}

Contrary to the Input interface, Output does not declare a call-back function because the Sosna’s 

semantics assume that outputs return no values. It can be imagined, however, that actuation results 

such as, for example, the error code of the last actuator invocation can be useful to the programmer. 

Such functionality can be achieved by defining a virtual input driver that instead of a sensor value
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gives the result of actuation in the previous instant. Indeed, this is how we implement in Chapter 5 

actuation time measurement - actuator drivers simply log the time of the write command and return 

it in the next instant as a virtual sensor reading.

Actuator synchronisation is an important feature of the language. However, because we allow 

instant stream expressions to be evaluated before the actuators are instructed it is possible that these 

computations might affect the real time of actuation. We see two possible solutions to this problem. 

On one hand, if recursive functions are not used, the actual delays should be minimal because they 

involve the execution of a fixed number of arithmetical operations. On the other hand, if higher 

actuation synchronisation was required, the actuation round could be split in two parts of which the 

first one would be reserved for the computation while the second one would only trigger the calls to 

actuator drivers. The choice of any of these options does not affect the language’s semantics and, in 

fact, is implementation specific. Therefore, for simplicity, the prototype compiler implements the first 

approach.

The Sleep Round

The sleep round is reserved for power conservation in low-rate applications. It is a compile time- 

specified time period that does not involve any activities. The compiler can, therefore, generate 

code that switches the radio off and puts the processor to a low-power mode. Because TinyOS2 

automatically manages the processor’s power state, the only thing the application need to do is to 

switch the radio transceiver off. This, however, happens usually before the sleeping round commences 

and the following section discusses the details of the implemented radio duty-cycling policies.

4.2.3 Communication Reliability

Wireless communications are well known to offer lower reliability guarantees than wired communica­

tion links, therefore, attention must be paid to the robustness against likely communication errors. 

Chapter 3 described null stream values as means to implement region-based computations, as well as 

to handle possible communication failures. The SOSNA semantics neither specify the requirements nor 

give any guarantees for the reliability of the underlying communication medium. Instead, the language 

pushes the reliability issue down to the underlying runtime. The main reason for such a treatment 

is the fact that, although communication failures are unavoidable, generality considerations lead to 

the conclusion that addressing the problem beyond the point of its recognition, would unnecessarily 

complicate the language design simply because reliability levels vary among different communication 

media and protocols. Nevertheless, since tolerance to message loss is a crucial characteristic of many
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control algorithms, the question of robustness to communication failures is an important one.

Message loss can affect two general aspects of the operation of SosNA applications: time syn­

chronisation and program state. In the first case, it is up to the runtime to detect the situation in 

which individual nodes have desynchronized or that the time source has stopped functioning. The 

SosNA middleware uses the FTSP protocol to synchronize time across the network and the protocol 

can handle such situations by design (Maroti et al. 2004). At the beginning of every application round 

every network node can state, based on the information from FTSP, whether it is synchronized with 

the time source. Upon discovery of lack of synchronization, the middleware stops the execution of 

the SoSNA application and switches into the time synchronization mode awaiting until FTSP regains 

synchronization. When that happens, the application is reinitialised and restarted.

The loss of application messages, i.e., messages carrying data items aggregated by the application’s 

communication operators, affects the result of subsequent computations in an application-specific 

way. Although Sosna requires that the middleware minimises the probability of such situations, 

the applications should always be aware that 100% communication reliability guarantee cannot be 

provided. There are many ways applications can handle possible communication failures, i.e. null 

results of stream aggregation and propagation, and the selection of a particular technique may differ 

among applications. For example. Section 3.4 describes the use of default and past stream values in 

recursive stream definitions that involve communication operators. Also, the section shows how one 

can u.se stream filtering to implement computations that have some minimal quality requirements (the 

avg function in Listing 3.3).

The prototype Sosna middleware takes the best-effort approach to communication reliability and 

does not address the loss of application messages. However, although such an implementation would be 

insufficient for many real-world applications, alternative solutions are possible. The implementation 

of reliable communications in W’SNs has two important aspects: maintenance of a stable network 

topology that is based on wireless link quality estimation and the implementation of communication 

error detection and recovery techniques. There is a body of work addressing the former aspect (e.g., 

Polastre et al. 2005) and techniques based on message overhearing permit implementations that have 

low communication overhead. In the latter case, although the real-time requirements add up to the 

complexity, there is a growing interest in the WSAN research community and promising results have 

already been achieved (Munir et al. 2010). Also, the industrial-strength WirelessHART protocol 

already implements reliable real-time communications with IEEE 802.15.4 radios using time-slotted 

message retransmissions and channel hopping (HART Communication Foundation 2010).
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4.2.4 Duty Cycling

The core characteristic of the SOSNA programming language and, hence, of the synchronous macro­

programming model is the ability of the compiler generate code for duty cycling network operation. 

Because the prototype Sosna compiler targets TinyOS-supported mote platforms, duty cycling motes’ 

microcontrollers is already handled by the operating system. Therefore, in the rest of the chapter we 

focus on duty cycling the operation of the radio transceiver noting that whenever motes switch their 

radios off, they could also be explicitely put in a low-power mode if this was necessary. There are four 

situations in which network nodes can switch their radios off during application execution.

Topology-directed radio duty cycling exploits the fact that multi-hop stream aggregation and 

propagation is performed by activating nodes at different tree levels, one level at a time. For example, 

when aggregating stream values along a four-hop deep cluster topology, only the nodes that are 

supposed to sending and receive data values in a given round should have their radios switched on. 

Therefore, in the first round of aggregation the nodes at levels one and two can switch their radios off, 

while in the last, fourth aggregation round, the nodes at the levels three and four can safely switch 

the radios off. This mode of operation can be used with both static and dynamic cluster topologies 
because network nodes know at runtime their position within the topology. Also, a similar approach 

is imp)lemented by Madden et al. (2005) in their work on the TinyDB system.

Stream filtering-based radio duty cycling leverages the property that sensor nodes can establish 

at runtime whether they need to send or receive messages in a given application round. Firstly, message 

sending can be omitted when all message’s data items take null values. Secondly, the semantics of 

neighbourhood stream aggregation allow sensor nodes to establish after the evaluation of the round’s 

instant expressions whether this round’s aggregation initialisation streams take null values in which 

case no data items should be aggregated. Network nodes, therefore, are able to assess at runtime both 

whether a message should be sent and whether any messages should be received. When the answer to 

both questions is negative, nodes can switch their radios off for the remaining time of the application 

round. If a message needs to be sent but no messages need to be received, the radio can be switched 

off after the sending has finished. In all other cases, the radio needs to either remain on, or needs to 

be switched on of it was previously off.

Heterogeneity-driven radio duty cycling can be used in situations in which different device 

classes have different communication patterns. For example, in a base station-centric application, 

the base station usually receives the result of the in-network data transformations at the end of tlie
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application cycyle in which case its radio would need to be switched on only in the last application 

round. This information is available to the compiler at compile time and it is possible to optimise the 

target code by taking it into consideration.

Time synchronisation duty cycling corresponds to duty cycling radio operation during execution 

of the time synchronisation protocol, i.e., within service rounds. Spreading of the synchronisation wave 

is essentially a case of stream data propagation, hence, topology-directed radio duty cycling can be used 

to minimise energy consumption during this phase of application operation. The Sosna middleware 

uses the value of the Lmax constant as the topology depth and switches the radio on only in those 

rounds in which the synchronisation messages should be sent and received. The duty cycling mode is 

used only when a node is time synchronised with the network time source and during the initialisation 

stage, as well as, when it looses synchronisation the radio is switched on until synchronisation is 

obtained.

The Sosna compiler implements the first three duty cycling techniques in a unified way by gener­

ating code that dynamically switches the radio off when the message buffer’s data item presence bit 

field indicates that there is no data to send. This is done by generating a code that clears this field at 

the beginning of every application round and then checks its value after the round’s instant expres­

sions have been evaluated. As regards message reception, all network nodes maintain a bounded-size 

list of data item handlers that are active in the given round. Similarly to the data item presence 

field, the handler list is emptied at the beginning of every round and then its state is checked once 

the round’s instant computations end. Duty cycling of the time synchronisation protocol, although 

similar in nature, is implemented by the Sosna Round Protocol and it relies entirely on the current 

cycle’s number, as described in Section 4.2.2. The performance of this radio duty cycling technique 

is evaluated in Chapter 5 where we analyse the total radio-on duration of applications running on 

networks of TelosB motes.

Duty cycling the radio transceiver is an operation that is related to network communication reli­

ability because erroneous radio on/off patterns may lead to message loss. The duty cycling policies 

outlined above make use of the fact that, thanks to the synchronized execution, individual network 

nodes know their communication patterns and, hence, are able to decide at run time whether it is 

safe to switch their radios off. Imprecision in network time synchronization or communication delays 

caused, for example, by the medium access protocol could lead, however, to situations in which mes­

sages are not delivered to their recipients. Similarly to the discussion on communication reliability 

in Section 4.2.3, we require that the underlying runtime provides timely communications because the
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SosNA semantics state that messages delayed beyond the duration of one round of data aggregation 

should be discarded. As regards the imprecision of the time synchronization protocol, tolerance levels 

can be adjusted by switching the radios slightly before and after the scheduled sleep intervals. Al­

though the prototype SosNA middleware does not implement this functionality, we analyse the effects 

of time synchronization imprecision on the synchrony of network operation in Section 5.2.
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Evaluation

This chapter analyses the operation of SosNA applications compiled to the NesC target and running 

on a wireless network of TelosB motes. Three generic application scenarios are used in order to 

demonstrate a range of different operational characteristics of SoSNA applications. The scenarios 

exemplify three different types of applications: base station-centric, low-power sensor data aggregation, 

heterogeneous networked actuation and target tracking. The evaluation of the obtained results is 

divided in two parts. First, we show that the applications execute in conformance with the synchronous 

macro-programming model, i.e., that their execution is synchronous and that it follows the global 

communication schedule. To this end we measure the degree of synchronisation of the application 

cycles among the motes and then we compare the motes’ message sending and reception patterns to 

the expected values, as well as, we present the overall values of the application output, as reported 

by some of the motes to the PC. Then, we evaluate the WSAN-specific characteristics of application 

execution by means of the analysis of energy-efficiency, synchronisation of sensing and actuation and 

binary code sizes of SoSNA applications.

Energy-efficiency is inversefy proportional to the rate at which network nodes consume their bat­

tery power and we provide accurate measurements of how battery voltage changes in time in a network 

comprising two types of nodes: those that duty cycle their radios, as well as, those that never switch 

their radios off. We show that the radio transceiver puts the heaviest strain on mote batteries sup­

porting this way our view that duty cycling radio operation is crucial to the development of truly 

energy-efficient WSANs. Having established that, we analyse the operation of the three application 

scenarios in terms of the amount of time the radio was switched on and we show that SoSNA can be 

used to build sophisticated WSAN applications that make very little use of the radio transceiver.
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The results of sensing and actuation synchronisation show that the maximum difference in sensor 

sampling and actuation times network-wide is in the order of several milliseconds demonstrating this 

way that SOSNA can be used to build timely and predictable WSAN applications. Finally, we show 

that the compiler can generate code that fits on the mote-class hardware devices and which makes 

efficient use of RAM memory which itself can be very limited on some hardware platforms. The results 

demonstrate that Sosna, can be used for the development of efficient WSAN applications that can 

be run on the existing hardware platforms.

The rest of the chapter is organised as follows. Section 5.1 explains the technical background of 

our experiments, as well as, it describes the three generic application scenarios that we use as the 

basis of the evaluation. The synchronous execution of SoSNA applications is analysed in Section 5.2. 

In Section 5.3.1, we show the difference between battery power consumption of motes that duty cycle 

their radio operation and of motes that never switch their radios off. Furthermore, we analyse the 

application scenarios in terms of the amount of time the radios were switched on and, in Section 5.3.2, 

we present the results of sensing and actuation. Finally, we discuss the memory overhead of SoSNA 

programs in Section 5.3.3 and we conclude the chapter with a summary in Section 5.4.

5.1 The Experimental Setup

All experiments presented in this chapter were performed on networks of TelosB motes. The devices 

are sold by Crossbow Technology (Crossbow Technology 2009), are powered by two A A batteries and 

have lOkB of RAM memory, 48kB of program memory and 1MB of flash storage. The motes are driven 

by the Texas Instruments MSP430 low-power microcontroller, which is a 16-bit processor operating 

at the frequency of 8MHz and which draws 1.8mA current in the active mode and 5.1pA in the sleep 

mode. The motes also have an IEEE 802.15.4/ZigBee compliant wireless transceiver capable of data 

rates of up to 250kbps and they include a light, temperature and humidity sensors. The transceiver 

consumes 23 mA in the transmit/receive mode, 21mA in the idle mode and Ip A in the sleep mode. 

Eigure 5.1 presents a TelosB mote network running one of our experiments.

We used the TinyOS 2.1.0 and the NesC 1.2.4 compiler to build the binaries for the TelosB motes. 

The PC-side support software used the standard TinyOS java support library and was run on the 

SUN Java 1.6.0_16 virtual machine under the Eclipse Platform version 3.4.2, on the Dell Optiplex 270 

desktop that had IGB or RAM memory and that run Ubuntu 9.04 Linux with kernel version 2.6.30.

Most of the presented results were obtained by periodically logging a number of parameters to the 

motes’ flash storage. Then, after an experiment was finished, a separate application was uploaded
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Figure 5.1: TelosB motes during the evaluation of the target tracking application scenario.

to each mote and the logged entries were downloaded to the PC. The logging component was being 

invoked at the beginning of every application cycle, thus, only when the nodes were time-synchronised 

and the application was running. Every log entry comprised the contents of the following NesC 

structure.

typedef nx_struct SosnaRoundReportMsg{ 
nx_uint32_t global_time; 
nx_uintl6_t radio_on_time; 
nx_uint8_t radio__off_count; 
nx_uint8_t received_messages; 
nx_uint8_t processed_messages; 
nx_uint8_t sent_messages; 
nx_uint8_t sensor_use; 
nx_uintl6_t voltage;

}

The total length of the structure is 13 bytes and we used the NesC network types (the “nx_” 

prefixes) in order to facilitate the transmission of the logged entries to the PC. The fields correspond 

respectively to: the global network time at the beginning of the cycle, the total time the radio was 

on in the previous cycle, the number of times the radio was switched off in the previous cycle, the 

total number of received messages in the previous cycle (including all overheard application and time 

synchronisation messages), the total number of data items processed in the previous cyclethe total

'Due to a bug in the logging component that we noticed after having finished all experiments, the received message 
counter was increased each time a message’s data item handler accepted an item instead of each time an application
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number of sent messages in the previous cycle, a bit field denoting which sensors were sampled in 

the previous cycle, and the battery voltage level, as reported by the microcontroller’s internal voltage 

sensor, at the beginning of the cycle.

We used the standard flash logging component LogStorageC and the maximum fiash volume of 

1048576 bytes. The internal voltage sensor reports 16-bit readings that are in the range of 0 — 4095 

units and they can be translated to Volts using to the following formula^.

Reading x 3V = 4095

The transformation results in the voltage levels in the range of 0 — 3V and in the case when the 

initial battery voltage is higher the sensor still reports the value 4095 which corresponds to 3V. The 

battery voltage level is directly related to the battery’s remaining power and can serve as an indicator 

of the battery energy consumption. The microcontroller’s data sheet (Texas Instruments 2004) states 

that supply voltage can range from 1.8V — 3.6V, therefore, when the battery voltage is above 3V we 

consider it full and when it drops below 2V we consider it empty.

All of the experiments involved reporting results to the PC. We implemented an actuator driver 

that was sending a message over the motes’ serial connection to a simple Java application that was 

displaying the contents of this message on the screen and then it was saving them to a file. For that pur­

pose, we used the standard TinyOS components for serial communications (SerialActiveMessageC) 

and the standard TinyOS Java tool chain that handles message reception over the serial link and that 

allows to automatically generate Java classes responsible for mapping of the message’s contents to 

Java data types (the mig tool).

5.1.1 Application Scenarios

We use three different application scenarios to analyse the energy efficiency and timeliness of SoSNA 

applications. The scenarios realise respectively: multi-hop stream aggregation along a static cluster 

topology, actuation in a heterogeneous network comprising sensors, actuators and controllers, and the 

event-based operation of a target tracking sensor network. The reasons behind the choice of these 

scenarios are threefold. Firstly, they are intended to demonstrate that Sosna can be used to develop 

a diverse class of WSAN applications. Tree-based data aggregation is one of the most fundamental 

applications in which sensor nodes periodically forward their sensor readings towards the tree root 

(the sink) aggregating them along the way. Synchronised actuation which involves periodic sensor 

data aggregation at network controllers communicating with each other in order to reach agreement
message was accepted for processing. We include this field for completeness however.

^According to the documentation in the VoltageC TinyOS component for the TelosB platform.
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on the commands that need to be sent to the actuators can be thought generic in such application 

domains as, for example, building management systems. Tracking a moving target, on the other hand, 

is a radically different application that requires sensor nodes to actively collaborate in the physical 

object’s proximity and to remain dormant elsewhere.

Secondly, we implement the three scenarios in such way that, instead of processing their sensor 

readings, the motes compute other parameters such as the degree of synchronisation of sensor sam­

pling and actuation, or application packet loss, so that we can quantify the application’s operational 

characteristics.

Finally, the scenarios demonstrate how Sosna applications operate under three different models 

of application dynamics. In each case, we used different values of the three core parameters that 

define the temporal aspects of the application’s operation: the duration of the application cycle, the 

duration of a single application round and the time synchronisation refresh period L^ax- In the tree 

aggregation scenario (TA), the duration of the application cycle is 20s, hence, the scenario defines 

a low-rate application that refreshes the time synchronisation every 80 seconds {L^ax = 4) and 

whose rounds last 500ms. The distributed actuation scenario (DA) has 8s application cycle duration, 

refreshes the time synchronisation every 32 seconds {Lmax = 4) and has 300?ns long application 

rounds defining, therefore, a medium-rate application. The target tracking scenario (TT) defines a 

high-rate application whose application cycle is 1.4s long, time synchronisation is refreshed every 11.2s 

[Lmax = 8) and whose rounds last for 200?ns. The following sections present all three scenarios in 

more detail.

Tree Aggregation

The tree aggregation application scenario exemplifies multi-hop stream aggregation along a static 

cluster topology. The Sosna program implementing the scenario is presented in Listing 5.1. The 

program computes the maximum difference in light sensor sampling times, as reported by the time 

operator (line 10), by aggregating a stream of tuples comprising the earliest and the latest sensor 

sampling times throughout the entire network (lines 12-15). The nodes use their current sampling 

time as both the minimal and the maximal sampling times (line 14) and maxSpread function (lines 5-8) 

separates the local minima from the maxima calculating the final result at the base station mote using 

a maximum time spread as the initial value (line 13). Additionally, the application calculates the total 

number of data items contributing to the aggregation of the sensing times by adding up the value 1 

for every node (line 17). Knowing that both aggregation expressions are independent and that the 

compiler schedules them for execution in parallel, there is no need to explicitly merge them, as it
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Listing 5.1: The SOSNA program for the tree aggregation application scenario.
(def—class base) 
(def—class motes base)
(def—input TelosLight @ motes int)

(def—fun (maxSpread (tuple newMin newMax) (tuple totalMin totalMax) 
(let {min (if (< newMin totalMin) newMin totalMin))

(let (max (if (> newMax totalMax) newMax totalMax)))
(tuple min max)))

10 (def sampleTime (time TelosLight))
11

12 (def minS maxS
13 (aggr maxSpread (tuple MAX_TIME (gtime 0))
14 (tuple sampleTime sampleTime)
16 (clstat motes)))
16

17 (def nPacIcets (aggr + (gtime 0) (gtime 1) (clstat motes)))
18

19 (output (Report (tuple minS maxS nPac)cets) ) )

(aggr + (gtime 0) ...)
1500ms

Service
Round
SOOms

(aggr maxSpread ...)
1 SOOms

Actuation
Round
SOOms

Sleep Round: 17.5s

Figure 5.2: Scheduling of the tree aggregation scenario.

was done for the more general case in Section 3.4. The base station, after computing the final result 

sends it to the PC via the serial connection (the Report actuator, line 19). The gtime keyword in 

line 17 casts the type of integer constants to the Time data type that represents the application global 

time and we use it in this context only so that the implementation of the Report actuator could be 

simplified by considering only tuples of elements of the same type. This limitation, however, bears no 

significant technical reason and can be removed in the future versions of the compiler.

We used the following compilation parameters for the evaluation of the scenario. The maximum 

static cluster depth (the number of application rounds comprising an aggregation operation over a 

static cluster) was limited to three hops. The duration of a single application round was set to 500ms 

while the sleep round was set to last for 17.5s resulting in the application cycle of 20 seconds (see 

Figure 5.2). The time synchronisation period was set to four application cycles resulting in the refresh 

rate of 80 seconds. The experiment was running for approximately twelve hours.

The scenario was deployed on a network of sixteen TelosB motes in an office environment. A
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Figure 5.3: The logical network topology of the TA application scenario and an example static 
cluster topology built over the logical topology.

logical communication topology was imposed on the network in order to allow the SOSNA middleware 

to construct a three hop-deep cluster topology along which the application aggregated its data (see 

Figure 5.3). The logical topology was defined by means of network identifiers that were cissigned to 

the motes at the deployment time.

Distributed Actuation

The distributed actuation scenario demonstrates a case for synchronised actuation over a multi-hop 

heterogeneous network, similar to the distributed data aggregation and actuation presented in Sec­

tion 3.4 (Listing 3.1). The scenario is intended as an example of a generic distributed control appli­

cation that comprises three different classes of network nodes: controllers, sensor nodes and actuator 

nodes, communicating over static cluster and neighbourhood topologies in order to implement an ab­

stract control law. We divided all network nodes in two groups that were deployed in two neighbouring 

offices distinguished by their numbers - 214 and 215. Each of the rooms had its own set of sensors and 

actuators, and there were two controllers of which one was located in the office 215 while the other 

was placed in the corridor connecting both rooms.

The application’s goal was to collect sensor readings from both rooms independently, then to use 

these values to compute control commands for the actuators in each of the offices separately. The 

information was flowing from the sensor nodes to the controllers which were synchronising their state 

in order to compute the control commands which were then sent to the actuator nodes for execution. 

Although we used the motes’ light sensors in order to generate the sensor readings, we did not intend 

to utilise in any meaningful manner. Instead, we use the scenario, in addition to demonstrating 

a complex heterogeneous WSAN application, to quantify the degree of actuator synchronisation in 

SoSNA applications. The actuator nodes, therefore, apart from calling their actuator drivers were 

also aggregating the actuation times recorded in the previous instant, in the same way as sensor
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sampling times were aggregated in the TA scenario. The final aggregation results were delivered to 

the controllers which again synchronised the received values and reported them to the PC.

Listing 5.2 presents the SOSNA application implementing the scenario. Lines 1-3 define the three 

device classes that correspond respectively to the controller nodes, the sensor nodes and the actuator 

nodes. In order to measure the actuation times, we use a virtual actuator SaveActuation (line 46) 

that, instead of controlling a hardware component, simply measures the global time at which it was 

invoked. The measured value is read in the following instant by a virtual sensor driver Last Actuation 
(lines 5, 42) and aggregated in much the same way as in the TA scenario (lines 35-44). The only 

difference is that we extend the aggregated tuples with an additional element (total_n) counting the 

number of nodes that contribute to this aggregation process.

The program aggregates the light sensor readings and the actuation times towards both controllers 

which share these values among each other so that the control commands can be computed. We 

implement the aggregation and sharing processes as a single stream function shared_aggr (lines 8-10) 

that takes five arguments representing respectively the aggregation function, the initial aggregation 

value, the aggregated stream, the destination device class (class_a) and the source device class 

(class_b). The function simply composes two stream aggregation operations: one along the static 

cluster topology of the source device class and the other one along a one-hop neighbourhood topology 

of the destination device class (the data sharing part). We use the function to find the maximum 

spread in actuation times throughout the network (lines 35-44) and to calculate average light levels 
in each of the offices.

The av_reading function (lines 12-18) implements a generic spatial stream averaging procedure 

that operates in a similar way to the one in Listing 3.1 but with the difference that it uses the 

shared_aggr Stream function instead of the plain aggr operator. The function is used twice - each 

time for a different room (lines 24,30) thus calculating average light levels for each room separately. 

The average values are used to compute control commands for the actuators (lines 23,29) that we define 

in a simple way as a difference between the desired and the current light levels (line 20). The control 

commands are then forwarded to the actuators (lines 25-27 and 31-33) and used to exercise actuation 

in line 46. The final result of the application’s operation constitute the values of the maximum spread 

in actuation times, the number of actuators that contributed to the computation of the aggregate 

actuation time spread (so that we can quantify packet loss) and the average light levels in both rooms. 

We pack these values into a single tuple of integer values and send them to the PC (lines 47-48).

Similarly to the TA scenario, we used a logical communication topology so that all stream aggre­

gation and propagation operations could be performed over a two-hop cluster topology. We run the
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Listing 5.2: The SOSNA program for the distributed actuation application scenario.
(def-class base)
{def—class sensor : base)
(def-class actuator : base)
(def-input TelosLight @ sensor : int)
(def-input LastActuation @ actuator : int)
(def—extern ROOM : int)

8 (def (shared_aggr f init stream class_a class_b)
9 (let (result (aggr f init stream (clstat class_b)))

10 (aggr f result result (nhood class_a))))
11
12 (def (avg_reading region sensor class_a class_b)
13 (let (f (lambda ((tuple new_s new_n) (tuple sum_s sum_n))
14 (tuple (+ new_s sum_s) (+ new_n sum_n))))
15 (let (s (within region (tuple (vals sensor) 1)))
16 (let ( (tuple sum_s sum_n)
17 (shared_aggr f (tuple 0 0) s class_a class_b))
18 (/ sum_s sum_n)))

22
23

27

28

29

30

31

32

(def—fun (control_law avg_reading) (— 500 avg_reading))
(def—fun (forward val init) val)

(def cmd_215 (smap control_law
(avg_reading (== ROOM 215) TelosLight base sensor))) 

(def act_215 (expand forward (within (== ROOM 215) 0)
cmd_215
(clstat actuator)))

(def cmd_214 (smap control_law
(avg_reading (== ROOM 214) TelosLight base sensor))) 

(def act_214 (expand forward (within (== ROOM 214) 0)
cmd_214
(clstat actuator)))

37

38

39

40

41

42

43

(def—fun (maxSpread (tuple new_min new_max new_n)
(tuple total_min total_max total_n)) 

(let (min (if (< new_min total_min) new_min total_min)) 
(let (max (if (> new_max total_max) new_max total_max) 

(tuple min max (+ new_n total_n))))

(def min_s max_s act_n
(let (t (time LastActuation))

(shared_aggr maxSpread (tuple MAX_TIME (gtime 0) 0)
(tuple t t 1) base actuator)))

(output (SaveActuation (merge act_214 act_215))
(Report (tuple (gtime->int (- max_s min_s)) 

act_n cmd_214 cmd_215)))
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(def min s max s act n...) 
900ms

(def emd 215 ... )
900ms

(def act 215 ...) 
600ms

Service
Round
300ms

(def cmd 214 ... )
900ms

(def act 214...) 
600ms

Actuation
Round
300ms

Sleep
Round

5.9s

Figure 5.4: Scheduling of the distributed actuation scenario.
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Figure 5.5: Experimental setup of the distributed actuation scenario.

application on the network of sixteen TelosB motes and Figure 5.5 presents the overall experimental 

setup. We used the following compilation parameters. The application round duration was set to 

SOOtns and the sleep round was set to 5.9s so that, given the maximum static cluster depth of two 

hops (see Figure 5.4), the duration of the application cycle was 8s. Network time synchronisation 

was refreshed every four application cycles, hence every 32 seconds. The experiment was running for 

approximately thirteen hours.

Target Tracking

The target tracking application scenario demonstrates how event-driven WSAN applications can be 

developed in SOSNA. The previous two application scenarios were based on communications performed 

over static cluster topologies, hence, their operation was regular, i.e., repeatable in every instant, as 

well as, it involved all network nodes. Event-driven applications involve activities that are performed 

only when an event of interest occurs and usually by nodes in relative proximity to the event detection 

area.

Target tracking is a canonical application in which the position of a physical object is being 

collaboratively estimated and tracked by the network nodes, as the object moves within the network’s 

coverage area. We evaluate the performance of a target tracking application that is similar to that
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presented in Section 3.4 (Listing 3.2) but which differs in one important respect. Instead of using real 

sensor readings, we define the object’s position computationally, i.e., by making all nodes calculate it 

based solely on the current value of network time. The reasons for taking this approach are twofold. 

Firstly, we want to be able to analyse the application’s characteristics in a controlled way, thus 

avoiding the irregularities and non-repeatability related to the detection and moving of a physical 

object. Secondly, because the main goal of the scenario is to demonstrate how region-based stream 

operations work in practise, as well as, to show how they can be used to minimise network energy 

consumption, the choice of the object detection method becomes of secondary importance and by 

using a simplified method we can rule out all factors that are not directly relevant to the experiment’s 

goals.

The application implementing the target tracking scenario is presented in Listing 5.3 and it operates 

as follows. First the current instant’s number is computed by dividing the network time by the duration 

of one application cycle (lines 14-16). We use the light sensor sampling time as the current network 

time because the sensor is sampled at the beginning of each cycle and we additionally increase the 

value by lOrus in order to ensure that all nodes compute exactly the same value^. We expect the 

network nodes to be arranged in a linear topology and to be assigned positions that are sequential 

numbers in [0,15]. Thus, we can obtain the object’s position by dividing the current instant’s number 

modulo 16 so that the object periodically visits all nodes one after another (line 18).

Once the object’s position is known, the distance to the object is calculated as the difference 

between the node’s position and the current object’s position (line 20), and the object proximity 

region is defined as the set of all nodes that are not further than two units (hops) away from the 

object (lines 22-23). Then, those nodes that are in the object’s proximity elect among themselves the 

one that happens to be the closest to the object and that node becomes the temporal tracking leader. 

We make the leader count the number of proximity group members by aggregating the value 1 for each 

of them (lines 25-26), in order to reflect the situation in which the leader needs to estimate the object’s 

position based on the tracking group members’ partial estimations. Finally, the leader transmits the 

aggregated value to the base station so that it could be transmitted to the PC (lines 28-30).

The application additionally demonstrates how actuator coordination can be achieved in SOSNA: 

all nodes that belong to the tracking group actuate by their switching on their LEDs based on their 

current distance to the object (line 31). Because, once switched on the LEDs continue to emit light, 

we need to explicitly make all other nodes switch their LEDs off.

We evaluated the target tracking scenario on a network of sixteen TelosB motes and one MicaZ mote

^This is a precaution measure and a shortcoming of the existing prototype implementation.
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Listing 5.3: The Sosna program for the target tracking application scenario.
1 (def—class base)
2 (def—class motes : base)
3 (def—input TelosLight @ motes : int)
4 (def—extern POS @ motes : int)
5 (def N_MOTES 16)
6
7 (def—fun (abs x) (if (< x 0) (—0 x) x))

9
10

12

13

19

20

27

28 

29

(def—fun (indicate distance)
(if (== distance 0) 1

(if (== distance 1) 2
(if (== distance 2) 4 0))))

(def cycle_n (gtime—>int (/ (+ (time TelosLight)
(gtime 10))

(gtime 1400))))

(def obj_pos (mod cycle_n N_M0TES))

(def obj_dist (smap abs {— mote_pos obj_pos)))

(def detection (within (< obj_dist 3) 
obj_dist))

(def obj_estimate (let (leader (clmin detection)) 
(aggr +11 leader)))

(output (Report (aggr (lambda (x y) x) (tuple 0 0)
(tuple mote_pos obj_estimate) 
(clstat motes)))

(Display (merge 0 (smap indicate detection))
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Figure 5.6: Experimental setup of the target tracking scenario.

(aggr...(clstat motes))
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200ms Round

200ms

Figure 5.7: Scheduling of the target tracking scenario.

that played the role of the base station. All TelosB motes were arranged in a linear communication 

topology but each of them was able to communicate directly with the base station (see Figure 5.6). We 

used the following compilation parameters. The application round duration was 200ms, the duration 

of the sleep round was zero while the maximum static cluster depth was set to one hop and the 

maximum dynamic cluster depth was two hops. .4s a result, the application cycle duration lasted 1.4s 

(Figure 5.7 describes the application’s scheduling). Because the application cycle was relatively short 

we set the time synchronisation period to be eight cycles, resulting in the 11.2s refresh rate. The 
experiment was running for approximately twelve hours.

5.2 Synchronous Execution

This section investigates whether the execution of the three application scenarios conforms to the 

synchronous macro-programming model. The most fundamental property of the model is that it 

imposes a global communication schedule on the operation of the whole network. As it was discussed 

in Chapter 4, the prototype SosNA compiler schedules application cycles as sequences of rounds. 

Each sequence starts with with a service round that is reserved for such tasks like network time 

synchronisation or sensor sampling. The service round is followed by a sequence of application rounds. 

Network nodes can send at most one message in every application round but may receive an unspecified 

number of messages. The sequence of application rounds ends with the actuation round that is a time 

slot reserved only for computation and actuation. Finally, the application cycles end with the sleep 

round that is a time period of arbitrary duration, including the duration of zero seconds.

We quantify the degree of synchronised application execution through the measurements of the
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Figure 5.8: Distribution of the cycle synchronisation error in the TA scenario.

global times at which application cycles were commencing at all motes. The global time values were 

computed by each of the motes through the conversion of the mote’s local time to the global time. 

The conversion was performed by the FTSP component and it involved clock drift compensation 

which was estimated on the basis of the received time synchronisation messages. The global time 

readings, therefore, do not represent the physical real time but rather correspond to the current value 

of the time synchronisation root’s local clock increased by an additional synchronisation error which, 

according to Maroti et al. (2004) should remain within several microseconds. However, since the FTSP 

implementation that is the basis of our prototype uses timers with binary millisecond resolution (1024 

ticks per second), we are limited in the accuracy of our measurements to the unit of little less than 

1ms (for simplicity the unit is referred to as one millisecond).

We denote the global starting time of the n-th application cycle by T„ and the total duration of 

the cycle by DeycU- We define the cycle synchronisation error according to the following formula:

Egync — ^n+1 Tfi E)(.y(.le
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Figure 5.9: Distribution of the cycle synchronisation error in the DA scenario.

When all motes are perfectly synchronised the cycle synchronisation error should be equal to zero 

meaning that all cycles have the same duration that is equal to the expected value. However, due to 

the global-to-local time conversion it is possible that the motes miscalculate the starting time of the 

next application cycle and, when the cycle is about to start, the global time value might be slightly 

different than previously expected.

Figure 5.8 presents the distributions of the cycle synchronisation error for the data collected dur­

ing the execution of the TA scenario. The results for all motes follow a pattern in which the cycle 

synchronisation errors are very similar fdr the motes located at the same level of the time synchro­

nisation tree. This is why the figure presents the results for only four motes that represent their 

corresponding time synchronisation tree levels. The results show that with high probability the cycle 

synchronisation error is bounded by 5ms, as well as, that the error increases with distance from the 

time source node. The error values for for the time source mote (the base station) seem to imply that 

the cycle synchronisation error is dominated by the effects of the operation of the time synchronisation 

protocol.

143



5.2. Synchronous Execution

X 10 Mote 5

-5

X 10

Time [ms] 
Mote 9

Time [ms]

X 10 Mote 8

-5

X 10

Time [ms] 
Mote 10

Time [ms]

Figure 5.10: Distribution of cycle synchronisation error in the TT scenario.

A similar regularity was discovered for the data coining from the DA scenario and the results 

presented in Figure 5.9 resemble those from Figure 5.8. The TT scenario arranged all motes in a 

one hop time-deep synchronisation tree, therefore it could be expected that the cycle synchronisation 

error values should liken those of the level-1 motes in the TA and DA scenarios, as well as, that the 

error levels for different motes should be similar. Indeed, this is the case and Figure 5.10 presents the 

results for the four arbitrarily chosen motes.

Although the synchronisation error in the order of several milliseconds might be sufficient for many 

WSAN applications, it is important to ensure that it can be tolerated within the synchronous macro­

programming model. The synchronous macro-programming model does not specify the required degree 

of network time synchronisation, nor it suggests the use of a particular time synchronisation protocol. 

Therefore, it is up to the model implementation to ensure execution correctness.

We did not note any irregularities in the execution either of the three application scenarios or 

of other test applications that are not discussed in this thesis. The main reason for this is that the 

synchronisation error is small relative to the duration of the application round (1% for the TA scenario,
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Figure 5.11: Distribution of the number of data items contributing to aggregation in all three 
scenarios and the distribution of the object position reports in the TT scenario.

1.7% for the DA scenario and 2% for the TT scenario). We review, therefore, the possible outcomes 

of the situation in which a mote starts its cycle little earlier or little later than expected.

The shift in the cycle starting time affects the starting times of this cycle’s application rounds 

because they are scheduled relative to it. Shifting the starting time of the service round affects the 

sensor sampling times, hence, it has application-specific consequences. Similarly, a shift in the starting 

time of the actuation round affects only the time of invoking the actuator drivers, while the shift in 

the sleep round time has no significant consequences. We focus the analysis on shifting the starting 

time of the application rounds.

Each application round starts with computation of the round’s instant expressions which might 

be followed by message sending and reception. When an application round is started little earlier, 

there are two possible consequences. The mote might send its message before the message’s recipients 

switch their radios on or even before the previous round ends resulting in its neighbours perceiving 

it as out of order and consequently dropping it. This situation, however, is not common because all
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message sending tasks are preceded by a random delay of one third of the round duration. On the 

other hand, the rare case when a message is lost, has only local temporal consequences as the model 

handles message loss and applications recover their state in the next cycle. Also, the computation 

at the beginning of the round may well cancel the effect of the earlier starting time in its entirety. 

Starting the round few milliseconds later may only result in delayed activation of the radio for message 

reception and sending. This, again, is not a serious issue because the mote’s neighbours delay their 

sending times, as well as, that a lost message is handled by the model by definition.

The degree of robustness to the imperfections of time synchronisation can be quantified when we 

analyse the output values reported by the base stations in each of the three scenarios. For example, the 

TA scenario realises data aggregation along a static cluster topology that results in the computation 

of the maximum spread in sensor sampling times and of the number of data values (or data items) 

that comprised the aggregate value. We defer the discussion of the sensor sampling time spread to 

Section 5.3.2 and discuss in this section only the number of the contributing data values.

The network comprises fifteen motes (plus the base station), hence the expected result should 

always be equal to fifteen. Channel collisions and possible time synchronisation errors might lead to a 

different results being returned. The results for all three scenarios (DA and TT computed analogous 

values) are presented in Figure 5.11. We can see that in all three scenarios the network was computing 

correct results and in most cases the computations involved all nodes that were supposed to contribute. 
We can also see that the number of lost data values slightly increases for the DA scenario and then 

further in the case of the TT scenario. The network remained operational in all cases, hence the 

missing values affect only the quality of the reported results (the figure shows that the target tracking 

application was constantly and correctly tracking the object because all of its periodic locations have 

been reported the same number of times).

It is difficult to definitively assign a cause to the correlation of increased packed loss with the 

decreasing cycle duration because each of the experiments was performed in different conditions and 

our experimental data does not provide sufficient information. Possible contributing factors include 

random message loss, time synchronisation errors or the experimental setup (all motes in the TT 

scenario were aligned close to each other, as in Figure 5.1 while in the other scenarios the motes were 

spread over the entire office area). Whichever the real cause was, there would be ways of tackling 

it because the current SoSNA execution model is by no means optimal. For example, if the time 

synchronisation was the source of the problem additional delays could be introduced to the global 

schedule in order to accommodate the error.
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5.3 WSAN-Specific Characteristics

In this section, we evaluate the WSAN-specific characteristics of SosNA applications running in mote 

networks. We analyse the performance of the SoSNA’s radio duty policies showing that the language 

can be used to develop energy-efficient WSAN applications. Then, we briefly discuss the degree of 

synchronisation of sensor sampling and actuation. These two metrics, although related to the main 

theme of the previous section, have application-specific semantics, i.e., the acceptable error levels 

are defined by the application domain rather than being related to the fundamental correctness of 

our approach. We conclude the section with the discussion of the binary code sizes resulting from 

compilation of SosNA programs to NesC and then further to the target platform executable code. We 

show that SosNA applications have low RAM memory usage and that the language can be used to 

develop applications for highly-resource constrained hardware platforms.

5.3.1 Energy Efficiency

We quantify the energy efficiency of SoSNA applications in two ways. First, we show that duty cycling 

radio operation makes a significant difference in terms of battery energy consumption. This result is 

in agreement with the results of Pottie & Kaiser (2000) and Raghunathan et al. (2002), as well as, it 

is widely acknowledged fact within the WSN community. Then, the obtained results are related to 

the theoretically achievable performance of the BoX-MAC protocol, which is the default low-power 

asynchronous MAC protocol in TinyOS 2.1.0. Additinally, we discuss the similarities between the 

Sosna’s scheduled tree data aggregation and the low-power data collection protocol Dozer. Finally, 

we analyse the radio duty cycling schemes of the three application scenarios described in the previous 

section. We show that in all three cases our approach allows to minimise the use of the radio transceiver 

without affecting the application’s operation.

We use a basic tree aggregation application presented in Listing 5.4 to compare the energy con­

sumption of motes duty cycling their radios with those that never switch their radios off. The appli­

cation simply aggregates light sensor readings along the static tree topology. The experiment involved 

five TelosB motes arranged in a two hop-wide communication topology that periodically logged their 

battery voltage levels. The application round duration was 150ms and the sleep round was 5.6s long 

resulting in the application cycle of six seconds. The time synchronisation refresh period was two 

cycles. The experiment was running for 120 hours (five days) and all motes were using brand new 

Duracell LR6/MN1500 AA batteries. Two of the motes did not duty cycle their radios while the 

remaining three did. Figure 5.12 presents the experimental setup and the results. The energy cost of
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Listing 5.4; Basic two-hop stream aggregation application.
(def—class base)
(def—class motes : base)
(def—input TelosLight @ motes : int)

(def result (aggr + 0 (sync TelosLight) (clstat motes))) 
(output (Report result))

o Radio constantly ON 

o Radio duty cycling

Figure 5.12; Battery power consumption with and without radio duty cycling.

flash logging was not accounted for because it was the same for every mote.

The results indicate that radio duty cycling radio leads to significant energy savings. After five 

days of operation, the B and D motes exhausted most of their battery power, while the remaining 

three motes could have continued their operation for much longer time. The flat line at the top of the 

graph corresponds clipped voltage levels. The clipping was the effect of the voltage sensor’s operation 

for voltage values above 3F, hence, throughout the experiment’s duration the base station and the 

C motes retained their battery voltage level above 3V while the A mote was using up its energy at 

a higher rate. The difference in power consumption between A and C was caused by the fact that A 

had to listen for data items from C, thus had to keep its radio on for a longer time. We explain this 

fact in more detail in the next section. The small difference in power consumption between the B and 

D motes was most likely caused by a small variation in battery characteristics because both motes 

sent the same number of messages and did not switch their radios off.
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The base station mote and the C mote reported the most energy-efficient operation because they 

kept the use of their radio transceivers at the lowest level. Every second cycle, the motes were switching 

their radios on for the duration of the service round (150ms) in order to run the time synchronisation 

protocol. In every application cycle, the C mote was switching its radio on for the time needed to 

send its data item, i.e., for the duration of the random delay of maximum 150ms/3 — bOms plus the 

sending time that might involve additional random delay related to channel contention (we assume 

a maximum of 30rns). At the same time, the base station node was switching its radio on for the 

duration of one application round to receive data items from the A and B motes. As a result, when 

we consider the overall duration of the application cycle, we can say that the C mote was operating 

at the average duty cycle of 0.026 because:

1507ns -I- 2 X (50ms -I- 307ns) ^ ^ g g^g 
6000ms 2

Similar calculations lead to the result that the base station mote and the A mote were operating at 

the duty cycles of 0.036 and 0.05 respectively. We use these values to give a sense of the battery power 

consumption in the three application scenarios presented in the following sections.

As regards the effect of duty cycling on message lost, the experiment showed no significant difference 

among the duty cycling nodes and those that kept their radios on at all times. The A, B and Base 

motes were expected to receive two messages in every instant because, due to the physical proximity, 

all motes were in each others communication range. The percentage of messages received by the motes 

were 88.838%, 88.84% and 98.967% respectively. The noticeable difference in the message loss ratios 

among the Base node and the A and B nodes, although not related to the effect of duty cycling, 

requires further investigation because the existing experimental data does not permit to draw definite 

conclusions. However, it is likely that environmental interference can be put among the significant 

factors since the experiment was performed in a small apartment located just above a busy intersection.

Comparison to BoX-MAC

The obtained results clearly demonstrate the importance of duty cycling for battery-powered devices. 

They also show that radio transceivers consume a significant amount of energy while in the idle 

listening state. However, leaving the radios on at all times is a strategy only few would decide to 

use in more realistic scenarios. Instead, programmers have to either develop their own duty cycling 

communication protocols or resort to a generic technique called low-power listening (LPL), originally 

proposed by Polastre et al. (2004). The technique is based on the idea that receivers periodically 

switch their radios on to check whether there is a transmission going on, while senders precede their
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transmissions with preambles that are sufficiently long for the receivers to pick them up. Therefore, 

at the increased cost of packet transmission, motes save energy on idle listening.

TinyOS 2.1.0 implements a low-power listening medium access protocol called BoX-MAC (Moss 

& Levis 2008). The protocol repeatedly transmits the first packet sent after the radio was woken up 

(the preamble) while awaiting at the same time an acknowledgement from the receiver. The receiver, 

on the other hand, periodically switches the radio on in order to measure channel energy levels (clear 

channel assessment - CCA). Once channel activity has been detected, the receiver is able to receive 

the following packet retransmission. After the packet has been acknowledged, both the sender and 

the receiver retain their radios on for a short while allowing this way for subsequent transmissions to 

take place without the need to transmit the preamble again. The main advantages of this scheme are, 

thus, the ability to shorten the preamble duration thanks to reception acknowledgements, as well as 

to increase data throughput once the radios have been switched on.

Although, BoX-MAC achieves good results with point-to-point transmissions, broadcast commu­

nications pose a problem since it is costly to implement reception acknowledgements in the presence 

of multiple receivers. This makes the use of the protocol tricky in application scenarios involving 

neighbourhood data sharing. In particular, the the protocol would be of little use for SOSNA because 

the compiler packs multiple data items into a single message and, since the messages often have mul­

tiple destinations, broadcast transmissions are used. Nevertheless, in order to give a better sense of 

the energy savings the protocol can achieve, we can estimate its energy consumption for the above 

example application.

In order to make the comparison more meaningful, we analyse the operation of an application that is 

functionally equivalent to the above tree aggregation scenario. We consider, therefore, an application 

that samples sensors once every six seconds, transmits their values towards the base station while 

aggregating them along the way, and that synchronizes network time in order to synchronize sensor 

sampling. We do not require, however, that the messages be sent at any particular times, as it is in the 

case of the Sosna’s communication schedule. The application has the same communication patterns 

as the one in Listing 5.4, hence the A and B motes are the busiest ones: in every period each of the 

motes has to send one message to the base station, receive one message from the C or D mote, receive 

a time synchronization message from Base or propagate it down to C or D. In order to estimate the 

average radio on time we use the formula derived by Moss & Levis (2008) using the duration of two 

periods (12s) instead of one day. The following formula describes a rough estimation of the average 

time the radios of A and B motes are on in every two consecutive execution periods :

P T
’’’oniT) = — ■ 5.61ms -t- V ■ 50ms -t-1 ■ 2Qms + D ■ ~
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The meaning of the parameters is the following: T is the period between receive checks in milliseconds, 

P is the duration of the measurement period, V is the number of valid packet receptions, I is the 

number of invalid packet receptions (destined for a different node), and D is the number of transmitted 

packets. By taking P = 12000to.s, V = 3, D — 3, I = 7 (all overheard messages, assuming that all 

nodes could hear each other, as in the original experiment), we get:

ro„(T) = + T + 290

Since the optimal choice for T that minimises Ton is T = 164ms and ron(164TOs) = 925.55ms, we 

find that the radios of the A and B motes would be active 7.71% of time. Although this is a fairly good 

result, we can see that Sosna’s communication scheduling gives way to duty cycles that are two times 

lower. Also, even better results could be achieved if SosNA switched the motes’ radios off immediately 

after they have transmitted the time synchronization message (currently the radios stay on for the 

duration of the whole service round and, hence, the value of 150ms wa.s used in the calculations). 

Duty cycles could be lowered even further if the application’s sleep period was extended, in which 

case, BoX-MAC would consume more energy due to the continuous need to assess channel activity. 

Finally, real experiments would have to be performed in order to state BoX-MAC’s real energy cost 

since the formula does not account for the complexities of channel contention and random back off.

Comparison to Dozer

Dozer (Burri et al. 2007) is a data collection protocol that uses lightweight TDMA schedules in order to 

synchronize communications in the network so that the nodes can switch their radios on only when they 

need to transmit data. The authors observe that the traditional TDMA MAC protocols are difficult 

to implement on resource-limited wireless networks due to the cost of establishing and maintenance 

of a global communication schedule. Dozer tackles this problem by exploiting the fact that in many 

typical WSNs data is collected along a tree network topology towards a single base station node. 

Thus, instead of a global universal communication schedule, the protocol schedules communications 

locally among tree parent nodes and their tree children. The protocol does not require global time 

synchronisation and it uses beacon messages to synchronise every parent with its children for the 

duration of the subsequent communication period. The structure of the local communication schedule 

reflects the expected direction of communication flow in the network: in every communication period 

data is sent by tree children to their corresponding tree parents.

The protocol implements the global tree topology in a robust and reliable way. The children nodes 

select their parents based on communication link quality and the parent’s load (i.e., the number of
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its children), thus balancing the topology structure. Packet acknowledgements are used for all data 

travelling up the tree and the protocol adjusts to prolonged link failures and topology disconnections.

Dozer uses beaconing to maintain the communication schedules throughout time. The beacons are 

radio messages that inform the parent node’s children about the current communication schedule and 

the starting times of the next schedule, as well as they can be used to send short commands down 

the data collection tree. The protocol randomises starting times of the subsequent communication 

periods in order to avoid interference with those network neighbours that are members of a different 

schedule (children of a different parent node). This information is embedded in each beacon message 

and it causes the duration of each communication period to float around a mean value. Thanks to its 

flexible communication scheduling. Dozer is capable of very low-power operation. The authors report 

that, in an experiment with 40 motes deployed in an office building, the network was running with an 

average duty cycle below 0.2%.

Although SOSNA is a programming language that can implement much more sophisticated com­

munication schemes than tree-based data aggregation, it is interesting to compare network energy 

consumption of the example data aggregation program from Listing 5.4 to that of Dozer. Burri et al. 

(2007) report that the 0.2% duty cycle was achieved with the communication period duration of two 

minutes. The authors also relate duty cycles to the number of node’s children and to the duration of 

the communication period. As expected, the duty cycle increases with the number of children grows 
and it decreases as the communication period gets longer. Our experiment with the example SoSNA 

tree aggregation application resulted in duty cycles of 3.6% in the case of the A mote, 5% for the 

base mote and 2.6% in the case of the C mote (the communication period was 6s long). These values 

could be significantly lowered if a longer sleep period was selected. For example, extending it to two 

minutes would result in the duty cycles of 0.18%, 0.25% and 0.13% for the A, base and C motes 

respectively (the communication round duration is kept constant, hence the absolute radio on times 

do not change). In order to relate these numbers to Dozer, we need to note that our test tree topology 

was fairly basic. Thus, taking into account that the A mote had only one tree child, its duty cycle of 

0.18% corresponds to roughly 0.03% for Dozer in a similar scenario.

The results show that although SoSNA can achieve energy efficient operation, the use of a spe­

cialised communication protocol can further improve energy consumption. Nonetheless, the current 

implementation of the Sosna’s middleware is by no means optimal and further improvements are 

possible. For example, it would be interesting to employ some of the Dozer’s ideas, in particular, 

scheduling of tree children communications and the communication reliability techniques. However, 

due to a more general nature of Sosna’s programs, there does not seem to be an obvious way to in-
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corporate the Dozer’s approach. In particular, the floating duration of the protocol’s communication 

period make it difficult to bound network communication times.

Tree Aggregation

In the TA scenario, motes aggregate data values by sending them towards the base station along 

a three-hop static cluster topology (a tree). Multi-hop stream aggregation, as we described it in 

Section 3.2.2, is performed in n neighbourhood data aggregation rounds and in the case of the TA 

scenario n ~ 3. In the first round, motes from the bottom level of the tree (third level) send their 

data items to the nodes from the second level. The second round involves motes from the second level 

sending their data items to their tree parents at the first level, which send their aggregation result to 

the base station in the last, third round. In each round, the sending motes switch their radios on only 

for the time required to send the message while the receiving nodes switch their radios on for the entire 

round’s duration. Although the duration of one application round is known at compile time, sending 

a message involves a random delay, hence it cannot be predicted. 'We measured, therefore, the total 

amount of time mote radios were switched on in each application cycle (20s) and Figure 5.13 presents 

its distribution for motes from all tree levels, for data collected throughout the whole experiment 
(approximately twelve hours).

The results closely correspond to the expected application behaviour. The base station only 

receives data, hence it needs to switch its radio on only for the duration of one application round 

which, in this case, was 500ms. The graph, however, indicates that the mote’s radio was on either for 

500771S or 1000ms. This is caused by the operation of the time synchronisation protocol which made 

each mote switch its radio on for the duration of the service round (also 500?7is), every four cycles. 

The times for the level-1 and level-2 motes are similar because in both cases the motes aggregate data 

items and forward the results to their parents. Hence, their radios should be on for exactly 500ms 

plus the random delay of maximum 500ms/3 = 166ms and plus the sending time. We can see that 

in both cases, the maximum radio on time is 700ms or 1200ms, when the time synchronisation is 

performed. Finally, the times for level-3 motes are the lowest since the motes only send their data 

items to their tree parents. As expected, the times comprise either the random sending delay or the 

the sending delay plus 500ms for time synchronisation.

Figure 5.13 presents radio operation times for only four nodes out of sixteen. This is because the 

results are very similar for all motes that are at the same tree level. The figure, therefore, presents 

the results for arbitrarily chosen motes (one from each tree level) and the values are representative of 

the whole network.
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Figure 5.13: Distribution of radio operation times for motes at different tree levels in the TA scenario.

As we can see, the network behaves in a very predictable way, hence knowing the distribution of the 

message sending times, it is possible to estimate some of its operational characteristics at compilation 

time. For example, we can use the values presented in Figure 5.13 to approximate the overall node 

duty cycle. Using the average values of the radio on times and recalling that the application cycle was 

20s long, we can approximate the duty cycles of the nodes on each of the tree levels to be 0.038, 0.043, 

0.043 and 0.018 respectively. This means that all network nodes keep their radios off for over 95% 

of time and we can relate this value to the battery power consumption rate when we note that the 

lowest values presented in Figure 5.12 correspond to similar duty cycles. Also, because the network 

operates in a predictable way, we can see that there is space for further improvement of its energy 

consumption: if we limited the application round duration to 250ms the node duty cycles would have 

been approximately 0.013, 0.024, 0.024 and 0.011 for each of the tree levels respectively. Naturally, 

increasing the duration of the sleep round further improves the application’s energy efficiency.
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Figure 5.14: Distribution of radio operation times for motes at different tree levels in the DA scenario.

Distributed Actuation

The distributed actuation scenario is similar to the TA scenario in the sense that the motes communi­

cate along the static cluster topology. We use, therefore, the same reasoning to explain the distribution 

of mote radio utilisation times for different groups of network nodes. The results for the sensor and 

actuator nodes located at different tree levels are presented in Figure 5.14 while Figure 5.15 presents 

analogous values for one of the controllers. Similarly, to the TA scenario, the values are concentrated 

around two time points that represent application cycles with time synchronisation and without it.

The behaviour of the sensor nodes was very similar to the behaviour of the motes in the TA 

scenario (see Figure 5.13) because in both cases they were simply aggregating values along the static 

tree topology. The only difference was in the duration of the application round and the in the fact 

that the TA scenario used three hop-deep cluster topologies. The DA scenario uses the application 

round duration of 300ms hence the sending delay can take maximally 100ms. As a result, the level-1 

sensor nodes switch their radios on, in application cycles without time synchronisation, exactly for the 

duration of one round (to receive data items from level-2 sensor nodes) increased by the time needed
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Figure 5.15: Distribution of radio operation times for the base station mote in the DA scenario.

to send a message (little more than 100), while the time synchronisation adds additional 300;ns of 

radio utilisation per application cycle. The level-2 sensor nodes, on the other hand, need only to send 

one message in every application cycle resulting in the radio utilisation times being in the order of 

either 100m.s or 400ms depending on the cycle.

The operation of actuator nodes is slightly more sophisticated because the nodes engage both 
in data aggregation and in data propagation tasks. Figure 5.4 shows the communication scheduling 

for the actuator nodes and we can see that the operations are scheduled for execution one after 

another. The level-1 actuator nodes, therefore, in every cycle listen for data items from the level-2 

actuator nodes, send the aggregation results to the base station, listen for data items from the base 

station and forward the received values down to level-2 actuator motes. Hence, in cycles without time 

synchronisation, the level-1 actuator nodes switch their radios on for the duration of two application 

rounds plus double the time of sending one message, resulting in the radio utilisation times in the 

range of 600ms to 800ms. The results for level-2 actuator nodes are practically the same as for level-1 

sensor nodes because in every cycle both classes of nodes spend one round on listening for data items 

and send exactly one message.

As regards the controllers, in every cycle they listen for data items from both sensor and actuator 

nodes (the same round) then, they share the received values among each other (this round includes 

both sending a message and listening for a message from the other controller) and, finally, they send 

the control command to the level-1 actuator nodes. Hence, their radios need to be switched on for 

the duration of two application rounds plus the time to send one message.
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Figure 5.16; Network radio operation times in the XT scenario.

Target Tracking

Tiie target tracking scenario is radically different from the previous two scenarios because it defines a 

dynamic application whose operation is driven by external events, hence it cannot be predicted. The 

external events, i.e., the sequence of the physical object’s positions drives the network’s behaviour 

by engaging the motes that are located in the object’s proximity in the collaborative estimation the 
object’s position. The TT scenario uses region-based stream filtering so that nodes that are not sensing 

the object can stay dormant, i.e., they can keep their radio transceivers off. As a result, the exact 

patterns of the motes’ radio operation can no longer be predicted at compile time unless we know 

the exact trajectory of the object. We decided, therefore, to generate the trajectory computationally 

in a deterministic way so that the experiment can be repeatable and we can easier relate the motes’ 

behaviour to what is expected given the current state of the environment.

We define the object’s trajectory in such way that the object periodically visits all of the motes 

one by one, following their communication topology. The motes compute the current object’s position 

and based on the current distance to the object they either stay dormant or they engage in the leader 

election process that chooses the mote that is currently the closest to the object, i.e., the one at 

which the object currently is “residing”. Then, the local leader aggregates data from all of its dynamic 

cluster members and sends the aggregate value to the base station which is one hop away in the 

communication graph.
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Figure 5.17: Distribution of radio operation times for selected motes in the TT scenario.

Because the network operates synchronously, it is possible to visualise the object’s trajectory by 

plotting the radio operation times of all of the motes at the same time for certain number of application 

cycles. Therefore, before we analyse the exact radio utilisation times, we discuss the overall network 

behaviour based on Figure 5.16 that depicts the operation of the whole network for the duration of 

sixty four cycles. The horizontal axis represents the real time of the experiment while the vertical 

axis represents the physical locations of the motes (recall from Figure 5.6 that the motes are aligned 

linearly both in terms of their physical placement, as well as, in terms of their connectivity). The 

colours represent the amount of time a mote’s radio Wcis switched on in the given cycle - the warmer 

the colour, the longer the radio was being used for. The dark blue colour represents the zero radio 

use, i.e, motes staying dormant while vertical, light blue lines correspond to the time synchronisation 

periods. The figure clearly shows the expected network activity pattern as the object repetitively 

moves from the first mote (mote 0) to the last one.

The plot shows a number of interesting properties. Firstly, we can see that the network is capable of 

a low-power operation when there is no object to track. Secondly, we can see that the dynamic cluster
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leaders (nodes in the middle of the detection stripe) incur the highest energy cost because, in addition 

to participating in the leader election and aggregation processes, they also send the aggregation result 

to the base station. Finally, the figure shows that uniform, network-wide energy consumption can 

only be achieved when the object movement patterns uniformly cover the whole network area because 

otherwise some nodes will inevitably experience higher load. The figure shows, for example, that due 

to the alignment of the object’s movement with the time synchronisation period (eight cycles) the 

motes number 1,2,9 and 10 happen to have the highest energy consumption.

The exact values of the radio utilisation times are presented in Figure 5.17. We choose four motes 

for comparison: mote 5, whose activity periods do not overlap with the time synchronisation periods 

and three other motes whose activity periods do overlap with the time synchronisation periods but in 

each case in a different way. We do not provide measurements for the base station mote because its 

operation is deterministic, hence we consider it outside of scope of this scenario. The residts closely 

match the expected values but, in order to explain them we need to discuss radio duty cycling without 

taking the time synchronisation into consideration.

In each cycle, the behaviour of every mote depends on its distance to the tracked object. Motes 
remain dormant when they are not detecting the object, i.e., when they are more than two hops away 

from it, and they do not switch their radios on at all. When motes detect the object, they engage in 

the leader election process that, in the TT scenario, takes two application rounds to finish because 

the maximum dynamic cluster depth parameter was set to two hops. After the leader is detected and, 

hence, the dynamic cluster topology is established, the motes perform stream aggregation along it 

and the use of the radio transceiver is determined by the mote’s position within the cluster. Similarly 

to aggregation over static cluster topologies, the bottom-level motes send a single message and then 

switch their radios off, while the level-1 motes spend one round on listening for data items from the 

bottom-level motes and then send a message to the leader (the cluster head). The leader, on the other 

hand, listens for data items from the level-1 motes and then sends the result to the base station, hence 

it has a similar radio utilisation pattern to the level-1 motes. Therefore, given that the application 

round is 200m.s long, we can see that motes that are two hops away from the object switch their radios 

for the duration of two application rounds plus the sending time, resulting in the range of 400 — 500ms 

of radio utilisation in the whole cycle (1400ms). The motes that are one hop away from the object 

have the same radio utilisation pattern as the detection leader, i.e., three application rounds plus the 

sending time resulting in the range of 600 — 700ms. These values are evident in the radio utilisation 

results for the mote 5. The additional spike for the value of 200ms corresponds to the application 

cycles in which the mote was participating in time synchronisation. The results for the other three
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motes follow the same pattern but the values are additionally increased by the coincidence of time 

synchronisation which adds extra 200ms.

5.3.2 Synchronisation of Sensing and Actuation

The TA scenario implements an application that computes the maximum spread in sensor sampling 

times throughout the entire network. The results were collected by the base station node that for­

warded them via the serial link to the PC. The application uses the time operator to obtain the 

sensor sampling time and the returned value represents the global time at which the sensor driver 

was invoked by the application code. The sensor sampling time, therefore, may include, besides the 

time synchronisation error, additional delays induced by TinyOS. Figure 5.18 presents the maximum 

spread in sensing times as computed by the aggregation process and reported to the PC by the base 

station mote. The figure shows that with high probability all motes sample their sensors within nine 

milliseconds ( Figure 5.11 shows that the computed results are representative of the whole network 

because, in most application cycles, all data values were received).

If we compare the recorded values with the results of the cycle synchronisation error presented in 

Section 5.2, we can see that the synchronisation errors are likely to dominate the overall imperfections 

in sensor sampling times because the errors were confined with high probability to the range of —5ms 

to 5ms. Similar values were obtained for the maximum spread in actuation times, as measured during 

the execution of the DA scenario, see Figure 5.19. This result can also be seen as further evidence 

that the applications conform to the global communication schedule because none of the application 

rounds introduces additional delays, hence the rounds are likely to be executed within their scheduled 

time slots.

5.3.3 Memory Consumption

In Chapter 1, we said that WSANs may comprise devices with high resource constraints. The previous 

section discussed the energy-efficiency of SOSNA applications running on mote networks and it showed 

that the language can be used to develop applications with scarce energy budgets. Memory is another 

resource that might be severely limited on some hardware platforms. Table 4.1 provides an overview 

of hardware capabilities of some of the currently most popular sensor network platforms and it shows, 

for example, that the TelosB platform has only 48kB of program memory while the MicaZ platform 

has only 4kB of RAM memory. These values put serious constraints on the set programming tools 

that can be used for application development because such popular techniques like garbage collection 

or object orientation cannot be directly used and require optimisation.
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Figure 5.18: Maximum spread in sensing times in the TA scenario.

Figure 5.19: Maximum spread in actuation times in the DA scenario.
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Application
Complete No Logging Plain

RAM ROM RAM ROM RAM ROM
1170 36834 919 26288 657 22792

'^■^motes 954 38388 780 32364 691 27572
^■^base 1238 44708 987 34154 725 30772
DA^^sensor 952 36246 778 30230 691 25456
^^actuator 982 39556 729 28974 729 28974
TThase 1162 35068 911 24530 629 21344

962 40530 788 34522 703 29738

Table 5.1: Memory usage of SOSNA programs compiled for the TelosB target platform.

The SoSNA compiler generates NesC code which then needs to be compiled by the NesC compiler 

in order to build the target platform executable file. NesC is a programming language that targets the 

wireless sensor network application domain and whose compiler performs extensive optimisations in 

order to minimise the size of the executable code. The language offers a static memory management 

model that requires that all program memory must be statically allocated and no dynamic allocation 

is possible, unless implemented by the application itself. NesC is the basis of the TinyOS operating 

system which is a collection of NesC components that are linked against the application code at com­

pilation time in order to build the executable code containing both the application and the minimum 

of the required TinyOS components.

All three SosNA programs that implemented the three application scenarios described in Sec­

tion 5.1.1 were compiled for the TelosB platform, as well as, for the MicaZ mote platform. Table 5.1 

and Table 5.2 present the memory usage values that were reported by the NesC compiler after compi­

lation for the TelosB and MicaZ platforms respectively. The values in the RAM column represent the 

amount of memory allocated for all program data and variables as determined and statically allocated 

by the compiler while the ROM column represents the compiled program size without taking into 

consideration program data.

Each of the scenarios defines a heterogeneous application that comprises either two or three types 

of devices. The Sosna compiler generates a separate program for each of them and these programs 

need to be separately compiled into different executables. We refer to the device-specific parts of the 

global Sosna macro-program by using scenario names subscripted with the corresponding device class 

name, as defined in program listings in Section 5.1.1. In case of the TelosB platform, the programs 

were compiled in three different settings. The “Complete” column represents memory usage values 

that include all software components used in the experiments, i.e., the Flash logging component, as 

well as, the sensor and actuator drivers. Because these components are based largely on TinyOS
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Application
No Logging Plain
RAM ROM RAM ROM
1115 29580 875 26230

'^■^motes - - 903 32894
^^base 1178 40360 938 37130
^■^sensor - - 895 30230
^^actuator 933 34386 933 34386
TTfease 1096 27372 856 24322

- - 908 35852

Table 5.2: Memory usage of SOSNA programs compiled for the MicaZ target platform.

libraries the resulting program sizes do not give the true picture of the overhead the SoSNA-generated 

code. Therefore, all programs were additionally compiled with the logging switched off (the second 

column), as well as, substituting a simple sensor and actuator stubs in place of the TelosLight sensor 

driver and the Report actuator driver (the last column). The similar approach was taken in the case 

of the MicaZ compilation target but since the logging component, as of yet, does not support this 

platform. Table 5.2 gives only memory usage values for the “No logging” and “Plain” settings. Also, 

because the TelosLight sensor driver is platform specific, the table provides only the “Plain” setting 

values for those programs that use this component (TAmotes i DAjensor and TTmotes)-

The results show that SoSNA programs can be compiled to small executables and that they make 

efficient use of RAM memory. The results also show that support libraries take up non-negligible 

amount of the program memory putting additional constraints on the size of the application code. 

The tables show a significant difference in the memory usage for the two platforms. We believe that 

this is due to the fact that NesC internally uses a different C compiler to generate the binary code 

for each of the platforms and that the compilers may differ in the range of code optimisations they 

perform, as well as, that the target hardware architecture and the microcontroller’s instruction set 

may have different effect on the binary code sizes.

The last column of each of the tables is the most representative in terms of the memory overhead 

induced by the SoSNA application code. The results follow a clear pattern that relates the resulting 

program size to the number of data aggregation tasks the program implements. We can ignore the 

effect of other factors such as the scalar functions or the stream expressions evaluated by each of the 

programs because the three scenarios used minimal data processing, hence the communication expres­

sions dominate the program sizes. Because all SosNA’s communication expressions are decomposed 

into sequences of neighbourhood data aggregation operations, the size of the device-specific programs 

is dominated by the number of neighbourhood data aggregation operations they implement. Hence,
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Application
TelosB MicaZ

RAM ROM RAM ROM
NesC RadioCntToLeds 320 11526 300 11398
Sosna Minimal 601 19700 823 21920
Sosna 1-hop Aggr. 607 20152 834 22512
Sosna 2-hop Aggr. 655 21764 858 24786
Sosna 3-hop Aggr. 637 22668 850 25858
Sosna 4-hop Aggr. 637 23744 850 27184
Sosna 5-hop Aggr. 637 24830 850 28540

Table 5.3: Comparison of memory usage for a basic NesC application, a basic SoSNA application 
and SoSNA applications implementing stream aggregation along static cluster topologies of different 
depths.

the base station-specific programs are generally the smallest when compiled in the “Plain” setting.

This view is further supported by the results presented in Table 5.3 that compares the memory 

usage values of a simple SoSNA program implementing multi-hop stream aggregation over the static 

cluster topology. As we said in Chapter 3, the maximum depth of static cluster topologies is a compi­

lation parameter that naturally influences the size of the application code because deeper topologies 

result in more neighbourhood aggregation rounds needed to compute the final result. The table shows 

that extending the topology by one level results in over IkB of memory overhead. This value, how­

ever, represents the memory cost of a single neighbourhood aggregation round, i.e., it is related to 

the aggregation of a single stream expression. Therefore, two independent aggregation expressions, 

even when scheduled for execution in parallel, will result in double of the cost. This is a deficiency of 

our prototype compiler that generates an independent handler for each data item a program receives. 

Different data items directly represent the values of independently aggregated streams. Therefore, 

even if several data items are packed into a single message, each of them is independent and it receives 

a dedicated handler. The prototype compiler generates a very similar code of each handler resulting 

in repetitions that lead to the increased memory cost. One of the extensions we consider for the future 

work, is to reduce this cost by making message handling more dynamic by using a generic handler 

definition that is parametrised to handle data items of different types.

The Table also shows memory usage values for two additional applications. The first one, RadioC- 

ntToLeds, is a simple NesC application that is distributed with TinyOS and that periodically sends 

and receives radio packets containing increasing values of an integer counter. The application does 

not implement any data processing, hence its memory usage roughly represents the memory cost of 

the TinyOS’s radio stack, the LEDs driver and of a single millisecond tinier. Because all Sosna ap-
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plications include these components, the values can be used to approximate the total memory cost of 

the SosNA middleware together with the application code. The second application, Sosna Minimal, 

is a primitive program that outputs a constant integer stream to a simple actuator. The program’s 

memory usage corresponds roughly to the memory cost of the basic TinyOS components and of the 

Sosna middleware (hence also the time synchronisation protocol). The values can be used, therefore, 

as the basis for the estimation of the real performance of the Sosna compiler in terms of the memory 

requirements of its programs. For example, the real memory cost of the target tracking application 

TTmotes is in the order of 100 bytes of RAM memory lOkB of program memory, when compiled for 

the TelosB platform while, for the largest of all presented programs - DA base > the real memory cost 

of the application code is approximately 130 bytes of RAM memory and 21kB of program memory.

5.4 Discussion

This section presented the evaluation of operational characteristics of SosNA programs running in mote 

networks. Based on the generic application scenarios that implemented three typical WSN/WSAN 

applications, we showed that SoSNA applications operate in a timely manner and that their execution 

conforms to the abstract synchronous macro-programming model. We showed that the global com­

munication schedule imposed by the model allows to implement duty cycling policies that result in 

significant savings in terms of battery power consumption, as well as, they allow to develop WSAN 

applications that require synchronisation of sensing and actuation among network nodes. Finally, we 

analysed the memory cost of SoSNA applications and showed that the prototype compiler can generate 

efficient application code that can be run on resource constrained hardware platforms while leaving 

memory space for additional software components such as sensor or actuator drivers.

All experiments were performed on a network of seventeen TelosB and MicaZ motes deployed in 

an office environment. Although such a configuration demonstrates many important characteristics of 

a real wireless sensor network, it certainly does not validate the model in all conceivable deployment 

scenarios. In fact, the scale factor often manifests itself when larger networks are considered, increasing 

hardware and communication failure rates, node reboots, loss of time synchronization, as well as the 

wireless channel load. The prototype SosNA middleware can handle transient node, communication 

and time synchronization failures, and Section 4.2.3 discussed the limitations, as well as prospects 

for improvement of the employed techniques. Nevertheless, it would be desirable to evaluate Sosna 

applications in more general and realistic scenarios, i.e., running on larger networks and over longer 

periods of time. A possible step in this direction would be to use one of the existing WSN testbeds,
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e.g., the Harvard University’s Motelab (http://motelab.eecs.harvard.edu/). We put this, however, 

among the plans for future work along with the evaluation of alternative SosNA middleware designs 

that would incorporate reliable communications and improved duty cycling strategies.
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Chapter 6

Conclusions and Future Work

This thesis presented the synchronous macro-programming model that merges the synchronous pro­

gramming paradigm with the macro-programming paradigm for the development of energy-efficient 

and timely WSAN applications. In order to validate the model, we designed and implemented the 

synchronous macro-programming language SOSNA which is a stream-based functional formalism tar­

geting heterogeneous WSAN applications and whose compiler is capable of generating application code 

that automatically duty cycles operation of the radio transceiver. We evaluated the timeliness and 
energy-efficiency properties of SoSNA applications by means of running a range of generic applications 

on wireless networks of resource-constrained devices, commonly referred to as motes. We showed that 

the applications operated in a timely and predictable fashion, as well as, that the radio duty cycling 

policies, implemented by the prototype compiler and enabled by the synchronous macro-programming 

model, lead to significant decrease in battery power consumption. Also, we showed that the compiler 

was capable of generating memory-efficient application code that fits on resource-constrained hard­

ware platforms. In this section we overview the contributions of this work and discuss prospects for 

future research.

6.1 Contribution

The core difficulty in programming wireless sensor-actuator networks is related to the need to or­

chestrate sensor data processing and actuation in a distributed and timely manner while taking into 

consideration the possibly resource-constrained nature of the underlying hardware. The overall con­

tribution of our work is to show that the synchronous programming paradigm can be blended with the 

macro-programming paradigm for the development of energy-efficient and timely WSAN applications.
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Macro-programming is a programming paradigm originally proposed for WSN/WSAN applications 

in which the network behaviour is specified using constructs whose semantics spans potentially over 

large collections of network nodes. Macro-programming languages allow to concisely specify complex 

interactions among network nodes thus facilitating the programming task. We show that by giving 

synchronous semantics to a macro-programming language the compiler is able to schedule all network 

communications and to generate application code capable of duty cycling radio operation.

The central assumption of the model is such that the network must be time synchronised in 

order for the global communication schedule to be implemented, as well as, that the extent of all 

network communications must be bounded so that the predictability of system response times can be 

ensured. In Chapter 1, we discuss the core characteristics of WSANs and motivate our design choices 

by arguing that duty cycling the radio transceiver is crucial to ensuring energy-efRcient operation of 

networks comprising resource-constrained devices while the reliability of long-range multi-hop radio 

communication was shown to be below acceptable levels in large networks. We also show that the 

time synchronisation requirement is realistic given the current state of the art in the area of time 

synchronisation protocols for wireless sensor networks.

Chapter 2 reviewed the existing programming languages for wireless sensor and wireless sensor- 

actuator networks and we concluded that none of the languages that targeted general-purpose WSAN 

applications, i.e., which allowed to express sensor data transformations and actuation, provided sup­

port for both timely execution and radio duty cycling.

In Chapter 3 we formalised the synchronous macro-programming model in terms of neighbourhood 

data aggregation rounds which are the basic building blocks of high-level communication primitives 

that may be defined by languages implementing the model. Then, we presented the design of the 

SOSNA programming language and we showed that such high-level macro-programming constructs 

as multi-hop stream aggregation and propagation, leader-based tree topology construction or region- 

based computations can be defined in terms of the synchronous macro-programming model, i.e., as 

sequences of neighbourhood data aggregation rounds, thus giving evidence to the model’s applicability 

to WSAN application development. The chapter also discusses how network heterogeneity, which is 

an inherent characteristic of many WSANs, can be handled in the synchronous macro-programming 

setting. We showed that type inference and minimal program annotations can be used to automatically 

discover the partitioning of the global heterogeneous program into a set of device specific programs. 

Finally, the chapter discusses crucial language design choices such as disallowance of stream function 

recursion to ensure the compliance with the synchronous macro-programming model.

The implementation of a prototype SoSNA compiler is discussed in Chapter 4. The main purpose
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of the chapter is to demonstrate a set of techniques that can be used for efficient implementation of 

a synchronous macro-programming language. We described, therefore, the most important program 

transformation stages and showed how the abstract language semantics are translated into concrete 

scheduling and radio duty cycling policies. The second part of the chapter describes how SOSNA appli­

cations are executed in mote networks. We showed how the application schedules can be implemented 

in NesC, the core language of the popular TinyOS operating system, as well as, how network time 

synchronisation is maintained within the frame of the global communication schedule.

We concluded the thesis with the evaluation of timeliness and energy efficiency of SoSNA appli­

cations running on wireless mote networks. We built the evaluation around three generic application 

scenarios that served both as proof of concept implementations and as a basis for measuring of a 

number of application execution parameters. We ran the applications on networks of TelosB and 

MicaZ motes showed that our approach results in timely and predictable application behaviour and 

that it leads to measurable benefits in terms of battery power consumption. Finally, we analysed 

the memory overhead of the applications compiled for these hardware platforms and we showed that 

the prototype SoSNA compiler is capable of generating memory-efficient application code that fits on 

resource-constrained hardware.

6.2 Future Work

There are many possible directions for future work. The SoSNA programming language described in 

this thesis is intended a demonstration of the applicability of the synchronous macro-programming 

model, hence its design is open. The model, on the other hand, is general and can accommodate many 

extensions. We list therefore a number of interesting research avenues stemming from our work.

Reliable communications are a core requirement of real system applications. Therefore, it is nec­

essary to experiment with alternative SosNA middleware designs that would provide better reliability 

guarantees. A number of possible directions are possible following, for example, the ideas used in 

the design of the Wireless HART protocol, i.e., fine grained communication scheduling, retransmis­

sions, synchronous acknowledgements, channel hopping and channel black-listing. Also, maintenance 

of stable network topologies is an important aspect of any reliability infrastructure.

Real-time operation is a natural extension of the work. The prototype SoSNA compiler generates 

NesC code for execution in TinyOS which, unfortunately, is not a real-time operating system. It would 

be interesting, therefore, to experiment with compilation targets that offer some sort of timeliness 

guarantees. Also, the use of a different time synchronisation protocol, alternative scheduling strategies
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or more advanced program optimisation techniques are problems well worth investigating.

Heterogeneity support is another interesting research direction. So far, we considered only hetero­

geneity in processing hardware while assuming that all network nodes are able to communicate with 

each other. It is often the case, however, that different communication media are used to exchange 

information between devices of different classes. For example, in multi-tiered networks sensor nodes 

use low-power radio communications while the base stations might use more powerful means, including 

wire-line communications. How can we accommodate heterogeneity in communication media in the 

language without cluttering its syntax with unnecessary annotations?

.41ternative language designs are also worth considering. Is it possible to reconcile multi-rate 

streams with the synchronous macro-programming model? Clearly, some applications might require 

high-rate stream processing and the current language definition pushes it down to the implementation 

of the sensor drivers. Possible directions might include extensions to the language’s type system and 

a form of clock calculus to guarantee the safety of stream composition (Pouzet 2006) or the approach 

taken by Newton et al. (2008) who propose to use stream segmentation as a way of tackling the 

communication and the computational cost of high-rate stream processing.

Finally, it might be useful to consider a more general language formulation that allows the pro­

grammer to consisely define all SoSNA’s high-level communication primitives rather than having them 

hard coded in the language definition. Such design could perhaps extend the language’s applicability 

or expressiveness.
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Appendix A

Sosna Machine Instruction Set

alloc type

Allocates memory on the heap, places a pointer to it on the stack, 

free type

Deallocate the memory from the heap top, remove the top stack pointer. 

pushNull

Put a null pointer on the stack. 

pushVal V type

Allocate memory for the data value, leave pointer to it on the stack. 

pushRef i

Push copy the pointer located at the i-th position on the stack (from the bottom). 

pushPreg

Push the current value of the pointer register PREG.

pop n

Remove the top-level stack pointer. 

loadPreg

Set the value of the PREG pointer register to the value of the top stack pointer.
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clearPreg

Set the PREG register to null. 

saveHeap

Push the pointer to the heap top to the stack. 

restoreHeap

Set the heap top pointer to the value of the top stack pointer. Pop it from the stack, 

store di Pi type

Copy the data value pointed by the top stack pointer to the i-th global heap location, 

present? n

Allocate a Boolean value on the heap, push the pointer to it to the stack and set it to true 

if the top-n pointers are not null.

call /

Invoke the function f with the pointers to its arguments at the top of the stack, 

outp id

Invoke the actuator id passing it the value pointed by the top stack pointer.

halt

Finish the round (implemented cus a radio ON/OFF command)

nop

No operation.

osCall proc arg\ ... arpn handler

Call an operating system routine passing a result handler. 

initMsg id

Clear the message buffer’s data item presence bit field.

txrx7
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Check whether the current data item can be sent, 

tt — level?

Check whether the topology descriptor pointed by the top stack pointer matches the 

required topology level.

loadMsgItem id n

Store a value as one of teh message buffer’s data items. 

pushMsgItem id n

Push the message buffer’s data item to the stack and heap.
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