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Summary

In this thesis, we look at the extraction of resonance parameters in lattice 
field theory. In particular we detail two major methods of dealing with res­
onances and consider them in a perturbative and nonpertnrbative context. 
We also explore a third method in less detail in a nonpertnrbative context. 
The first method is the well known Liischer’s method, which relates the infi­
nite volume phase shift, 6{p), of two particle scattering states to the energies 
of those states in a finite volume. It is po.ssible to extract resonance param­
eters via a fit to some expre.ssion for phase shift.
The second method is a recently proposed method which we call the his­
togram method. Here we construct a histogram which profiles the relative 
density of free and interacting two particle scattering states. It can be shown 
that this histogram is related to the phase shift and so provides an alterna­
tive to Liischer’s method.
We investigate first the performance of the two methods in a perturbative 
setting, using an effective version of the theory used in the nonpertnrbative 
calculations. We find that both methods give similar results for the reso­
nance parameters and, furthermore, that these results agree with the actual 
parameters computed in Minkowski space. The two particle spectrum, re­
quired as an input for both methods, is computed through the evaluation of 
a single finite volume Feynman diagram.
We then investigate the methods nonperturbatively, in a Monte Carlo sim­
ulation of the lattice 0(4) linear sigma model. We detail the application of 
both methods in a numerical context, as well as the relative strengths and 
weaknesses of each. Similar to the perturbative case, we find that both meth­
ods agree regarding the resonance parameters, provided the resonance is not 
too broad. For broad resonances we find that Liischer’s method provides 
better results.
We investigate a third method, which attempts to treat resonances on a sim­
ilar setting to other states in lattice field theory. For the case of a narrow 
resonance we find a good agreement with the other two methods.
Finally we compare and contrast each of the methods.
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1 Introduction

Particle physics is currently described using the framework of quantum field 
theory. Quantum field theory provides a mathematical structure which uni­
fies quantum mechanics and special relativity. It was developed initially in 
the late 1920s and early 1930s by Heisenberg, Pauli, Jordan and Dirac. There 
were problems with its initial formulation however and quantum field theory 
as we know it today comes into being in the late 1940s from the work of 
Schwinger, Feynman, Tomonaga and Dyson.
Although there are other possibilities for a relativistic quantum theory, quan­
tum field theory is in some sense the most natural possilhlity. A short argu­
ment for quantum field theory is as follows:

QFTl We wish to retain the basic formulation of quantum mechanics. A 
Hilbert space of states 1-L and unitary operator on 1-L implementing 
time evolution, given by U{t) = ^ where H is known as the
Hamiltonian operator. The time evolution of operators in the Heisen­
berg picture is given by U\t)OU{t).

QFT2 We need to implement relativistic covariance.

QFT3 The theory should have the clustering property. This means that par­
ticle clusters at large space-like distance from each other should be 
independent.

To satisfy property [QFT3], all operators on the Hilbert space should be 
functions of a basic set of creation and annihilation operators Up, n* obeying 
either of:

[ag,a*] = -p),

{a,, a*} = S^{q-p),

(1.1)

(1.2)

where q,p E

However to satisfy [QFT2] the operators should be functions of Minkowski



spacetime transforming as Tensor or Spinor fields. The simplest way to 
satisfy [QFT2] and [QFT3] is to express all operators as functions of basic 
Tensor/Spinor field operators whose Fourier components are the ap,a* oper­
ators, these operators being known as quantum fields. The Hamiltonian is 
then a function of these quantum fields and this, combined with the Heisen­
berg equations of motion for operators, which follow from [QFTl], imply that 
the fields ol)ey local field equations. A much more complete version of this 
argument can be found in Chapters 2-5 of [1].

One of the many formulations of quantum field theory is the path integral 
formalism. In this approach one calculates expectation values of quantum 
mechanical observables by integrating over some space of all possil)le field 
configurations. Formally:

:i.3)

On the left hand side of Eci.(L3), 0(0) is an operator representing some 
observal)le, Q is the vacnum and 'H is the Hilbert space. On the right hand 
side S is the s])ace of field configurations, O is the functional on this space 
corresponding to 0{(p), Sm{(P) is the action and P0 is the measure on the 
space of fields. 0 is left unspecified and may be a collection of a number of 
fields, each in tlifferent representations of the Lorentz group and the various 
internal symmetry groups. We use S^f for the action to denote that it is 
currently formulated in Minkowski space. We will switch to Euclidean space 
shortly.
The action S'a/(0) is given by

Siiiij)) = / CM{<t>)d'x, (L4)

where Cm{(P) is known as the Lagrangian density. Commonly a quantum 
field theory is specified l)y its Lagrangian density. Hereafter, as is typical, we 
will call the Lagrangian density just the Lagrangian.
When S'a/(0) contains no interaction terms the integral can be performed
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exactly, since it is, in some sense, an infinite dimensional version of Gaus­
sian integration. When Sm{<P) contains interaction terms one commonly 
applies perturbation theory. The action is split into two parts, Sm{4>) = 
5'o(0) + Sint{(p), where Sq is the action of a free theory and Sint contains the 
interactions:

O(0)e iSu{4>)+lSinti0) V(P. (1.5)

The coefficients of the interacting terms in Sint{(p) ai'e known as coupling 
constants. Perturbation theory consists of expanding the exponential 
which produces a series of free path integrals which can be performed exactly.

1^0(4,), Si^lt {(t))V(p

J li)

(l.G)

+

+ + • • •

An additional complication occurs in these computations beyond those of 
non-relativistic quantum mechanics, known as renormahsation. In brief, 
most of the terms in perturbation theory are infinite when computed naively. 
The solution to this problem involves realising that the coefficients appearing 
in the Lagrangian, the masses and coupling constants, are not the same as 
the i)hysical values of these quantities. The physical values being shifted or 
renormalised away from their “bare” values in the Lagrangian. Renorniali- 
sation consists of a systematic replacement of the bare quantities with their 
physical counterparts, which, for certain theories, completely removes the in­
finities. An interesting consequence of this jrrocednre is the discovery that the 
coupling constants are not fixed, but rather are a function of the energy scale.

The current knowledge of particle physics is encoded in the ciuantum field 
theory known as the Standard hlodel. The Standard Model was developed in 
the early 1970s and describes the Strong, Weak and Electromagnetic forces,



ignoring only gravity. It has withstood every experimental test to date, [2], 
The only one of its main predictions still untested is the existence of the 
Higgs boson.

For electromagnetic processes, perturbation theory provides results in ex­
cellent agreement with experiment. Similarly for weak processes and high- 
energy strong processes. However, for low energy strong processes, those 
most relevant for nuclear physics and meson and baryon properties, pertur­
bation theory can not be used.

The sub-component of the Standard Model which describes the strong force 
is known as Quantum Chromodynamics (hereafter QCD) and is described 
by the following Lagrangian;

1 ®
C = Tr {F,„,Fn + 5] Vh (0 - (1.7)

Ip = Y {d, - ^4,)

The i/y- are six fermion fields transforming under the fundamental (3) rep­
resentation of SU{3), as well as a single Lie-algebra-valned (su(3)-valued) 
field. A, transforming under the adjoint (8) representation, go is known as 
the bare strong coupling constant.

As mentioned above coupling constants are actually energy dependent, due to 
renormalisation. The strong coupling, g, grows as energy is decreased. This 
implies that the terms on the right hand side of Eq.(1.6) do not decrease 
in value for the case of the QCD Lagrangian, Eq.(1.7), and an observable 
0{(p) corresponding to low energy physics. In addition to this the asymp­
totic Hilbert spaces suggested by the perturbative method are not the correct 
ones. One would imagine Hin/out to be quark-gluon Fock spaces. However, 
due to nonperturbative effects, quarks and gluons are confined and the phys­
ical Hilbert space is spanned by Hadron states, so one should be dealing with 
J-hadron the asyuiptotic Hilbert space, with IF denoting a Fock space built



over the appropriate oue-particle states. Hence perturbation theory cannot 
be used for low energy QCD.

In this case one needs to evaluate the integral in Eq.(1.5) directly. However 
there is no general theory of such integrals, meaning it is often impossible 
to analytically solve them or estimate them. Hence we turn to a numerical 
evaluation of these integrals known as Lattice Field Theory, which is the 
main focus of this work.

1.1 Lattice Field Theory

The first .step to making the path integral numerically tractaljle is to reduce 
it from an infinite dimensional integral to a finite dimensional one. To do 
this, spacetime is reduced from the continuum to the discrete set Z'^. 
This reduces the integration variables from 0(x) to ^(n), wdiere n G 
The discrete set Z'* is known in this context as “the lattice’’ from which the 
method gets its name. The distance between the points of Z'^ is known as 
the lattice spacing, labelled a hereafter.
Even on 2^ the path integral is infinite-dimensional (although countably so). 
To reduce it to a finite dimensional integral, space and time are given a finite 
extent, labelled L and T respectively in the rest of this work. These two 
steps produce a reduced version of spacetime on which the path integral is 
finite dimensional:

P0(n) = Yld(p{n),
n

n G A, Ac Z'^, |A| < oo.

(1.8)

(1.9)

(1.10)

In Ihis work we will continue the fields periodically in both time and space:

0(x + Larif,) = (1.11)



where is a unit vector in the /i-direction and /r = 0,1, 2, 3. In this sense 
we are working with fields which live on a discrete version of T‘*. The reasons 
for periodicity in space will be explained in Sec. 2.2.2. It should be noted 
that when using fermionic fields, the fields must be anti-periodic in time. 
However w'e shall not use fermionic fields in this work.
As it stand the integral Eq.{1.8) is not well defined, which is due to the 
oscillating exponential The action will involve terms polynomial in
the field, for example:

(1.12)

Since there will be fields for which ||(/>”||i is arbitrarily large, we do not expect 
that this integral will converge.
For this reason Lattice field theory is formulated in Euclidean space, pro­
duced by sending t —>• —it, to give the Euclidean lattice path integral:

:i.l3)

where Se[<P) refers to the Euclidean action. Here the path integral features 
a damped exponential which produces a mathematical well defined
integral. From here on we refer to Se{4>) simply S{(p).
It also has additional benefit of producing an integral of a type which can be 
evaluated with Monte Carlo techniques. A justification of the continuation 
of the path integral to Euclidean space can be found in [3], with a full proof 
given in [4] and Chapter 19 of [5].

The actual numerical calculation of the expectation values < O > of an ob­
servable consist in generating an ensemble of field configurations, weighted 
by the probability distribution and taking the ensemble average of
0(0).

O(0(n))e ~ ^ X]
N

(1.14)



(f)i l)eing a single sample configuration and E = {0j} being the sample set of 
configurations generated with proljability Generating the configura­
tions with this probability ensures that our sample configurations are ones 
which dominate the path integral.

To place a scalar field theory on the lattice one discretises the derivatives 
that appear in the action. These appear in the free part of the Lagrangian:

^0 = ^0(-A + (1.15)

The Laplacian is discretised as:

A0(x) = - ^ — (20(j:) - 0(x + fl/7) - (j){x - aji)). (1.16)

There are some additional complications when putting a gauge theory on 
the lattice. Unlike the continuum case, one does not use the connections A/,, 
instead using the parallel transporters U^, defined as:

(IHfi,

(1.17)

(1.18)

where is tlie bare coupling constant and is the displacement vector in 
the /i direction. The f//, link tw'o nearby sites n and n + Jl. In this sense 
they are said to live on lattice links instead of lattice sites. A single gauge 
configuration is given by the values of Ui,{n) on every link. The U,i take 
values in the compact space of the gauge group, unlike the which take 
values in the non-compact Lie Algebra. This has two advantages. First of 
all it means that the lattice path integral measure, given by

(1.19)

where h is a lattice link between two points and dU is the Haar measure, 
is automatically finite. Secondly it means there is no need for gauge fixing.
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hence eliminating the delicate issues found in continuum gauge theories such 
as Fadeev-Poppov ghosts.
Using the U^, one can construct the holonomy, the parallel transporter from 
a point back to itself along some curve. The simplest such holonomy is one 
where the curve is just a square loop of one lattice spacing in extent, known 
as a plaquette, given by:

Up{n) = Up{n)U„{n + + u)Ul{n), :i.20)

where p labels the placpiette. Tt is a fundamental result in the theory of fiber 
l)undles that the holonomy about a square path of size is proportional to 
the curvature:

Tr{Up{n)) = (1.21)

which gives

-Tr{Up{n)^U^\n)) = Tr{Re{Up)) =

= Tr(l) + a^TT{Fp,,Fp,,{n)) + 0{a^).

(1.22)

(1.23)

Since the continuum action involves Fp,,Fpy{n), as can be seen in Eq.(1.7), 
one choice for the lattice action is the Wilson action:

S((7)=/35]|l-ise(rr(f/))|, (1.24)

with /3 = -p-. Using Eq.(1.23) it can be seen that:

S(U) = = ~FY^a'TT{F,.,F,„.(n)) + 0(a\

(1.25)

and thus the continuum limit of this action is the pure gauge part of Eq.(1.7). 

As for the fermion part of the QCD Lagrangian, in the continuum it ap-



pears as ij! (0) 0- The fermion fields are placed on the lattice the same way 
as scalar fields with The main subtlety is related to the dis­
cretisation of the Dirac operator 0. Any discretisation of the Dirac operator 
which is hermitian and leaves the lattice action local and translationally in­
variant, either breaks chiral S3'nnnetry or produces extra unpltysical fermion 
species called doublers, a result known as the Nielsen-Ninomiya theorem, 
[6, 7],

Quite often the observables 0(0) nsed in Lattice field theory are jwoducts of 
some local field, dl(x), composite or elementary, at two different space time 
points:

O = A[x)A[y), :i.26)

whose expectations values are known as correlation functions.

The advantage of using these operators is that their correlation functions 
decaj' exponential^ in time proportional to the masses of the particles which 
carry the quantum numbers of A. This can be seen by using the completeness 
relation:

(.4(0).4(()) = 5] (SM(0), $.) (<!.., A(t)n}, ;L27)

where the state Tj is the ?'-th state with the quantum numbers of A. Other 
states are excluded since for a state T with different cinantum nnmbers:

A>,A{o)n) - 0. (1.28)



If we allow the contraction operator e , which gives Euclidean time evolu­
tion, to act on the states $,■

^ (Q^(0), <!>,) (d>,, e-‘'^^(0)r2) =
i

(1.29)

(1.30)

we obtain the general time dependence of the correlator

M(0)^(t)) = ^.4, -Eit (1.31)

(1.32)

Hence measuring the correlation functions on the lattice provides a nonper- 
turbative method of extracting the spectrum of the theory and particularly 
the masses of particles. Using three-point functions or more general objects 
it is possible to get at other phj^sics besides the particle masses. This is 
important in QCD where we are interested in the nonperturbative physics of 
low energy strong processes and particles.

The formulation of a field theory in a finite volume has some interesting 
properties which affects the physics of particles. First of all there is the ef­
fect of the finite volume on the range of possible momenta. Instead of taking 
values in particle momenta can only take a discrete set of values based 
on the finite volume of the lattice:

27rn

n €

:i.33)

:i.34)

This restriction of momenta values afiects the analytic properties of correla­
tion functions. The Fourier transform of the correlation function

{A{0)Ait))= / (1.35)

10



can be written as an integral ever what is known as the Kallen-Lehmann 
spectral function, p\

D{iui, k) = clu '2

+UJ^
p(n)',k). (1.36)

It is a Irasic result of infinite volume field theory, assuming a mass gap, that 
the spectral function has a branch cut at which corresponds to the lowest 
energy multiparticle state. This branch cut is a result of the continuum of 
multiparticle states, in contrast to the isolated poles in the spectral function 
due to single particle states or Ironnd states. However in a finite volume, 
the restriction on the momenta means that the set of multiparticle states is 
discrete, not continuous and hence the rnultiparticle branch cut dissolves into 
a sequence of isolated poles. This effect will lie important in what follows.

As well as this, the discretisation of the spacetime means that the momenta 
can only assume a finite range, hence providing an ultraviolet cutoff, but this 
effect is not important in this work.

Another effect of the Lattice is the reduction of the full spatial rotation 
group 0(3) down to the cubic group Oh. This affects the f|uantum numbers 
of the particles as they appear on the lattice, since the representations of the 
cubic group do not have a one-to-one correspondence with those of 0(3).

The constructions above provide a nonperturlrative numerical method of cal­
culating low-energy strong force processes and masses. However there is a 
type of particle for which the above methods can not be applied directly. 
These particles are resonances, unstable particles which only manifest in the 
scattering processes of other particles. The tw'o major quantities of interest 
for resonances are their masses, Mji, and their widths or inverse lifetimes, L 
Resonances are quite common in QCD, for example the p resonance, hence 
the difficulty of accessing resonances is a major drawback in the numerical 
study of strong processes. The difficulty of analysing resonances by the usual 
methods of lattice field theory is two-fold:

11



1. Ultimately resonances are related to the dynamical process of scatter­
ing, something which is not preserved in Euclidean space, due to a 
result known as the Maiani-Testa theorem.

2. In finite volume the afjove mentioned restriction on momenta means 
that it is not possible for the resonance to decay, since conservation 
of momentum may require it to decay into particles having a value of 
momentum outside the set of discrete values. In this case the resonance 
will become a stable state. However due to presence of interactions it 
will mix with other stable states.

For these reasons we need some method of accessing resonance data on the 
lattice. In what follows we will compare and contrast two main methods, as 
well as, in less detail, a recently proposed third method. The two main meth­
ods are the well kiK)wn Liischer’s formula, first applied to resonances in four 
dimensional field theory in [8](although the main ideas had l)een explored 
earlier, [9, 10, 11]) and a method we call the Histogram method proposed in 
[12]. The main aim is to understand the relative strengths and weaknesses 
of these methods.

In order to study resonances and how it may be possible to extract their 
properties in the finite volume world of lattice field theory, we turn now to 
the theoretical background of resonances and finite volume field theory.

12



2 Resonances and the Lattice

2.1 Resonance Theory

Resonances are basically unstable particles and due to this they cannot ap­
pear as either ingoing or outgoing scattering states and can only be detected 
by their effects on the scattering cross-sections of stable particles. Commonly 
this effect manifests as a rapid variation in the cross-section at energies near 
the mass of the resonance. A proper explanation of resonances in the context 
of scattering theory will be necessary in the rest of the thesis, so we will begin 
with a description of non-relativistic scattering theory, for a full treatment 
see [13]. The non-relativistic theory will be used to derive various results 
important for the field theory case.

A quantum mechanical system is specified Ijy two features, the Hilbert space 
of states and the Hamiltonian which governs time evolution. In non-relativistic 
quantum mechanics the Hilbert space can be taken to be L" ) where N 
is the nmnber of particles. The Hamiltonian governing the time evolution 
commonly has the general form;

H - A, + lT(r,:) + H(i (2.1)

where Aj is the Laplacian on the space of coordinates of the f-th particle, 
V’'(ri — Fj) is the inter-particle potential and lT(r,) is the single particle po­
tential exerted on the particles by some external force.
A Hamiltonian will typically have a set of states known as bound states. 
These are states obeying the eigenvalue equation — EiJ). These states 
correspond to the point spectra of H. There are also the scattering states 
7^_ and 7^+, these are defined to Ire the set of states whose time evolu­
tion approaches that of a free state in either the far future or the far past, 
specifically

hm \\U{t)i^-Uomo\\ = 0. (2.2)
t—>±oo

13



V’o is known as the in/out asymptote and Uo{t) is the free time evolution 
operator. The whole Hilbert space can be decomposed as H where
B is the set of all bound states and TZ is the set of all scattering states. 
Usually the assumption of asymptotic completeness is made:

n^ = n+ = 7^. (2.3)

So that all states have in and out asymptotes. The map between in and out 
states

5 : -> 7^+, (2.4)

is known as the 5-operator. Assuming asymptotic completeness, the 5- 
operator is unitary.

The collection of matrix elements of the 5-operator, (Vy50), are known as 
the 5-niatrix. A useful decomposition of the 5-matrix is to look at restric­
tions of it to states with a specific angular momentum, Si{p), with p being 
the momentum of the in-going state and I the angular momentum. Since 
resonances, Ireing particles, have a fixed angular momentum I this decompo­
sition is more useful in their study. An important property of the 5-niatrix 
can be seen by decomposing it into a ratio involving the .Jost function, ji{p)

Slip) =
Jij-P)
ji{p)

(2.5)

In loose terms, the Jost function j/(p) measures the out-going scattering wave, 
while ji{—p) measures the in-going scattering wave. In ciuantum mechanics 
bound states are typically gi\'en negative energies and scattering states posi­
tive energies. In terms of momentum, a bound state with i? < 0, corresponds 
to purely imaginary momentum p = ia. Considering this, if the momentum 
of the Jost function takes on an imaginary value corresponding to one of 
the energy eigenstates, then ji{ia) will vanish, since a bound state has no 
out-going scattering wave. Hence, by Eq.(2.5), there will be a pole in s/(p) 
at these momenta. Hence a bound state appears as a pole of the 5-matrix 
in the region {p : "isip) > 0} of the complex momentum plane.
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More precisely a potential

V[r) G ^ > 0, (2.6)

has a solution regular at the origin, namely

Xpi = ai{p)Xpi{r) - Pi{p)Xpi{r), (2.7)

with a and jS functions depending only on p and having the asjanptotic 
behaviour

(2.8)

In all these formula I is the angular momentum. corresponds to an ingoing 
scattering wave and and outgoing wave. If the potential V{r) possesses a 
bound state with energy —E, this corresponds to momentum p = ±.i\/2mE. 
Giving the asymptotic solutions the form:

(2.9)

for iE and

(2.10)

for —iE.
In the first case we see that the function y“ may not enter the as3unptotic 
expression for the wavefunction or else it would not be normalisable, so we 
see that we must have ai{p) = 0. In the second case y"'' cannot enter, so we 
must have A(p) = 0. Using the fact that the S-matrix can be written as:

A(p)
a/(p)’

(2.11)
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we see that the bound state produces a pole in the upper-half plane and a 
zero in the lower half plane.
Of course this still leaves open the issue of poles in the lower half plane 
{p : < 0}. These poles are the resonances, the unstable particles we are
looking for. First we will give a physical example of a resonance.

2.1.1 Example of a resonance

As an example of a resonance we shall take the Helium Atom, treated in 
much more detail in [14]. The Helium atom has the Hamiltonian

Ho

kXri,r2)

H = Ho + V(vur2), 
1-Ai

1
ri

An 1
r2'

h'l - ral

(2.12)

(2.13)

(2.14)

The interactions between the electrons in the helium atom are given by the 
potential V'(ri,r2). First let us look at the spectrum of the Hamiltonian, 
Ho, which is essentially two copies of the hydrogen atom. The bound state 
spectrum for the hydrogen atom, with Hamiltonian

H, = -A -
1

(2.15)

is gi\'en by

Er,
r? = l

So the bound state spectrum of Ho is

En.m i o o
71^ 7n‘^

n.771=1

(2.16)

(2,17)

The scattering states for the Hydrogen atom are basically those with energies 
above the bound states, so we have TZ{Hh) = [0, oo), where 7^(A) is the 
continuous spectrum of the operator A. If we think of Ho as two copies of 
the hydrogen atom, there can be scattering states in the interval [—1,0] by
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placing the first atom in its ground state and the second in a scattering state. 
Hence the scattering spectrum for Hq is given by

K(H„) = [-1,00). (2.18)

Comparing the two spectra for bonnd states, Eq.(2.17), and scattering states, 
Eq.(2.18), it can be seen that the bound states with n > 2, m > 2 are 
eml^edded inside the scattering spectrum.
When we include the interaction V'*(ri, r2) and obtain the total Hamiltonian 
H, these bound states inside the scattering spectrum will be lost, since the 
interaction will couple them to the scattering states and they will evolve, 
that is decay, into those scattering states given enough time. These “lost” 
bound states are the most typical example of resonances.

2.1.2 Resonances and scattering

We have mentioned that resonances corresi)ond to poles of the S-matrix in 
the lower half plane {p : ^(p) < 0}, similar to how bound states are poles 
in the upper half-plane and that resonances can be produced by the loss of 
l)ound states, such as in the example above. This leads to the typical picture 
of resonances as near bound states or metastable states. This also explains 
their effect on the scattering cross-section since the in-going particles will 
momentarily be bound in the metastable state of the resonance before it 
decays into out-going particles. A mathematically clearer example of this 
can be given by writing the Hamiltonian in a form where the potential can 
loe modified;

H = Ho + AV; (2.19)

where we take the potential to be negative for A = 1.
Let us assume that we start at some value of A where the Hamiltonian has a 
bound state, producing a pole in s/(p) in the upper half plane. As A is varied 
this pole must move, if A is increased the potential becomes more attractive 
and the bound state will decrease in energy, moving the pole further into the
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upper half plane. However if A is decreased the potential is become less at­
tractive and the pole will move toward the real axis. Eventually it will move 
into the lower half plane when the potential is weak enough that the state is 
no longer a permanently bound state. At this point it will be a resonance.

Instead of using momentum, a more useful picture for the methods we will
use shall be the complex energy plane. The relationship between energy and

2

momentum in non-relativistic physics is provided hy E — In terms of the 
whole complex plane, it can be seen that the momentum plane maps twice 
onto the energy plane. In terms of functions like the s;(p) this means that 
there will be two Riemann sheets when they are expressed as functions of 
energy si{E). The first Riemann sheet corresponds to the upjier-half plane 
and the real axis {p : A(p) > 0} of the momentum plane. This is known as 
the physical sheet, since the bound states and scattering states are located 
on it. The second Riemann sheet corresponds to the lower half plane and 
contains the resonance poles.

The branch cut between the two sheets is located on the real axis. In this 
way si{E) has poles, the bound states, at negative energy and another set of 
poles found by continuing through the Irranch cut, which are the resonances. 
In the example of the Helium atom above, prior to the inter-particle inter­
action being turned on the resonances appear as stable bound state poles 
on the physical sheet. When the interaction is turned on these poles move 
through the branch cut and into the second Riemann sheet. We will label 
the position of a resonance pole as E = Eff —

A quantity which is crucial in this work is the phase shift Si{E). The scat­
tering phase shift measures the shift in the phase of a scattering wave of a 
given angular momentum / as it passes through a potential. It is related to 
the S-matrix in the elastic region via

si{E) = (2.20)
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Using the Schwartz reflection principle, Eq.(2.5) and Eq.(2.20) its relation to 
the Jost function can be given as:

(2.21)

from which we can see that

S{E) = -arg(j,(£')). (2.22)

If the energy E of the ingoing particle is near a resonance pole, E = Efi — i^, 
then Jost function can be expanded about the pole with the linear approxima­
tion being reasonably accurate. The Jost function vanishes at the resonance 
position, since a pole of the S'-matrix is a zero of the Jost function, meaning 
the expansion is

= i {E - E) + 0{{E ~ E)'-). (2.23)
E=E

Then the scattering phase shift is 

S{E) = - arg(j)( (2.24)

= -arg((E-£')), (2.25)

(2.26)

Shg is the part of the phase shift due to direct scattering between the particles 
without an intermediate resonance state being formed. dVes(^) fli® part of 
the scattering entirely due to the resonance, from Eq.(2.25) it can be derived 
that it has the form;

Sres{E) = arctan
T

Er-E
(2.27)
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or equivalently

- / r^  ̂ f ~~

dres[E) - - = arctan ( ----— (2.28)

It can be seen from Eq.(2.27) that the scattering cross section will rapidly 
\'ary by tt as the energy passes near the resonance energy Er.

Finally a physical interpretation of the parameters Efi and F are necessary. 
If w'e take the resonance as a .state <I> we may imagine it as an eigenstate of 
the Hamiltonian with energy E = Er — then it evolves in time as:

^—iH t (2.29)

In this equation Er appears as the energy of the resonance, while F appears 
in a factor danijiing the wave-fnnction, causing it to die off at large times. 
This die off may be seen as the flecay of the resonance and hence F is the 
inverse life time of the resonance. A more rigorous analysis [13] involving the 
scattering wave-function shows that F and Er are indeed the inverse lifetime 
and the energy of the resonance respectively.

This quantum mechanical analysis of resonances is necessary in what fol­
lows, but when it comes to obtaining the re.sonance parameters on the lattice 
the resonances in that context are relativistic. It is somewhat more difficnlt 
to obtain the analogues of Eq.(2.27) and E(i.(2.28) in relativistic field theory, 
since there is no .lost function. However the S-matrix in field theory is related 
to residue of the correlation functions at on-shell four-momenta through the 
LSZ reduction formula. In this manner, in the relativistic theory, resonances 
can be found as a pole in the correlation function on the second Rieniann 
sheet. As mentioned in Sec. 1.1, the branch cut in this case is due to the mul­
tiparticle continuum. The relativistic analogues of Eq.(2.27) and Ec[.(2.28)
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are then;

^res(p) = arctan Ml - (2.30)

and

- 5 = a-ctan (-------—----- (2.31)

use Mfi rather than Eji in the relativistic context as there the energy of 
the resonance is just its mass.

2.1.3 Resonances on the Lattice

We now come to the difficulty of olrtaining information on resonances on the 
lattice. The difficulties specific to resonan(;es are due to the use of Euclidean 
spacetime and a finite volume.

The discretisation of the spectrum due to the finite volume has a drastic 
effect on the Kalkhi-Lehmann spectral function. As mentioned previously 
the multiparticle branch cut in the spectral function dissolves into a series of 
isolated poles. In other words, the spectral function will now be a meromor- 
phic function, this function will have no branch cuts and so no additional 
Riemann sheets. As resonances are poles on the second Riemann sheet this 
effectively eliminates them. From a more physical point of view it has already 
Ireen ])ointed out that the resonances cannot decay since in a finite volume 
this would involve a violation of conservation of momentum.

Hence in a finite volume the resonance appears as a stable eigenstate of 
the Hamiltonian. However due to the fact that there are terms in the Hamil­
tonian coupling the resonance to the multiparticle states which would be 
its decay products in infinite volume, the eigenstates of the finite volume 
Hamiltonian will be linear combination of these multiparticle states and the 
resonance state. Essentially the multiparticle sector will have absorbed the
resonance.
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Of course, a priori, this may not pose any difficulty provided there is some 
observable which can be measured on the lattice which is connected to infinite 
volume scattering processes. Unfortunately, the use of Euclidean spacetime 
makes it difficult to extract information on scattering processes due to a re­
sult known as the Maiani-Testa theorem [15].
In Sec. 1.1, in Eq.(1.31), we have seen that the Euclidean correlator contains 
information on the particle masses. Following this line of thought one would 
expect to be able to extract scattering information from a three-point, or 
higher, correlation function. If we imagine a scattering process with two par­
ticles of the same species, tt, in the final state, we may model the initial .state 
via some local operator J{x) with the correct quantum numbers. We will 
take the final state to have zero total momentum, since this will Ije the case 
in the simulations which follow. One would expect to measure scattering 
processes numerically by evaluating the following correlation function on the 
lattice:

= {(p{q,ti)(p{-q,t2)J{0)). (2.32)

Where 0 is the field associated with the outgoing particles and q their mo­
mentum.
Using the completeness relation, in analogy with Eq.(1.31), this can be shown 
to have the asymptotic form

lim G{ti,t2:q) = :~{TT.q\J{0)\7r,q) + 
q->oo 2_fc

<2^ — 00 ^
(2.33)

Where Z is the field strength factor given by (7r,g|0|U) = \fz and — 
2\/<7^ + xrP-.
This does not contain the quantity of interest, namely the amplitude

(tt, q\ TT, -(?; out| J(0)|0). (2.34)
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However this is not the region of the ti,t2 plane explored by lattice simula­
tions. Instead lattice simulations will take place in the region 0 <C t2 ^ 
and so we need the asymptotic form there.
The form for 0 <C ti can be obtain through the limit ti —)• oo,

Urn G{tut2;q) = /— <1-^00
^-Eah

Fq{t2) = (tt, gf|0g(t2)J(O)|O).

(2.35)

(2.36)

The function Fq can be separated into it’s connected and disconnected parts

Fq[t2)
\/‘̂Fq

(7r,(?;7r, -q; out\J{0)\0) 4- ^“'"‘(ta). (2.37)

The connected component itself contains a term arising from a pole at F = 
2Eq which produces a factor containing an ingoing matrix element and a 
second term Pq{t2). The three-point function is then

lim G{tut2\q) =
Cl —^•OO ^2>0

(2.38)

2E,
0 ^9^1 Ent-l.g -,,.2 - ((tt, (7; TT,-fjf;out|J(0)|0) + (7r,c/;7r,-(7;?n|J(0)|0))-k Pq(f2)

(2.39)

For g 7^: 0 the function Pq{t2) is of the form

Pq(t2) ~ (2.40)

where the coefficient E' is related to aii off-shell amjditude. It can be seen 
from this form that Pq{t2) contains no information on physical scattering. For 
the first term in Eq.(2.39), containing the average of the matrix elements, 
the term that one would wish to extract, namely (tt, g; tt, —g; out| J(0)|0), 
does appear. However as it appears in an average with the in-going matrix 
elements, the overall contribution is purely real and so it is not possible to 
extract scattering information, which is associated with the complex phase
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of the S-matrix elements. Only at the two particle threshold, g = 0, can any 
information Ire olrtained, as there the coefficient J- of Pq{t2) is related to the 
threshold scattering amplitude. This is the result known as the Maiani-Testa 
theorem. Fundamentally the theorem arises due to the loss of the complex 
phase in the form factor of the three-point function. This phase contains 
the scattering phase shift between in and out states, as proven in [16]. The 
Euclidean three-point function is purely real (up to trivial phases) and hence 
cannot contain this information. Only at threshold, where the Minkowski 
three-point function is itself real, can any information be extracted.

Hence the finite volume prevents the extraction of resonance data as it merges 
the resonance with the rest of the spectrum. However, more fundamentally, 
the Maiani-Testa theorem appears to prevent any direct method of measur­
ing scattering data via the appropriate r?-point functions. For this reason it 
is necessary to have some indirect method of evaluating the scattering pa­
rameters. The main idea in all the methods investigated here is that the 
resonances, having merged with the two-particle states, will have some effect 
on the spectra of the theory in a finite vohnne.
Since the resonance has merged with the rest of the spectrum its parameters 
will be difficult to extract in a single vohnne. However the fact that the mul­
tiparticle states are not bound states, but scattering states will affect their 
dependence on the vohnne in a critical way. As a function of the vohnne the 
energies of single particle states and bound states, En{L), will decay as an 
exponential in the volume. Two particle state energies however will decay as 
inverse power of L and the dependence will involve the infinite vohnne phase 
shift S{p).
The idea is to use the finite vohnne of the lattice world as a method to probe 
the scattering information f)f the field theory. This is the foundation of the 
first method of analysing resonances on the lattice, Liischer’s method.

24



2,2 Liischer’s Method

The most olwious effect on the spectrum of im],)osing a finite volume is that 
it becomes discrete. However Liischer has shown that there are other conse- 
c|nences. The behaviour of the finite volume spectrum is related to infinite 
volume quantities otherwise inaccessible in Euclidean space. So rather than 
just being a source of systematic error, the finite volume can Ire used as a 
jrrobe of the system. There are two major finite volume effects.

2.2.1 Finite volume mass shift

The finite volume effects on single particle states and bound states was first 
described in [17]. Here it was found that the shift in the mass of a stable 
particde in a spatial box with periodic boundary conditions and infinite tem­
poral extent was related to the forward scattering amplitude.

In infinite volume and finite volume the ma.ss of a particle is found through 
the following respective equations for the poles of the correlation function:

-h — E(p) = 0,

p” + - T.{p)l = 0.

(2.41)

(2.42)

Where Ti{p)i and T^{p) are the finite and infinite volume self-energies.

The solutions to these equations are nr, the infinite volume mass and KP, 
the finite volume mass. The mass shift in finite volume is then d'rn = M — rn. 
Taking the finite volume pole equation (2.42) and expanding in powers of 
dm, ignoring terms of O {SiP), the mass shift is

Sm = mi
2m + i dpO

S(p)i)
+ 0{Sm^),

p = (im, 0).

(2.43)

(2.44)
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Hence to estimate 5m one only needs knowledge of the behaviour of the 
finite-volume self-energy at p. It is difficult to analyse on its own.
However, since the infinite volume self-energy vanishes at p, due to the stan­
dard renormalisation conditions

'^{p)l = 0,

it is possible to analyse E(p) - E(p)£ and ^E(;)) - 7^E(.(p) instead.

(2.45)

(2.46)

Using E(p) — E(p)l the cause of the mass shift becomes explicit. The Feyn­
man diagrams contributing to the self-energy are almost identical in the 
infinite and finite volume cases, since the vertices are unaffected l)y the vol­
ume size. The only difference is that in addition to the standard Feynman 
propagator lines, the finite volume Feynman diagrams have other topologi­
cal classes of propagators not po.ssible in the infinite volume case. Namely 
pr()i)agators that encircle the world. The difference Idetween the infinite and 
finite volume cases is then entirely due to these propagators, their effect be­
ing known as “virtual polarisation around the world”. A series of estimates 
on the size of Feynman diagrams containing these “around the world” prop­
agators^ shows that only the diagrams with one propagator going around 
the world once contribute significantly. The same estimates also provide the
following bounds:

S(p) -

d
dp^ dp^

(2.47)

(2.48)

using these bounds on Eq.(2.44) reduces the expression for the mass shift to

1
dm =

2 m (2,49)

^The theory befiiiid these estimates are covered in [18]
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In any self-energy Fe}’nrnan diagram, isolating a single line divides the dia­
gram into a part that contributes to the four-point function and a part that 
contributes to the two point function, a proof can be found in [18]. Hence if 
one isolates the only around-the-world propagator in each diagram and sums 
over all diagrams, the following result is obtained

S(/5)l =
d^q

Giiq, ~q)G4{p, q, -p, -q), (2.50)

G4 is the four-point function. Gl is the two point function with L denoting 
the fact that one of its external lines has gone around the world, which 
gives it faster decay properties. The contour of the integral in Eq.(2.50) can 
1)0 shifted due to the analyticity of the three jroint vertex r3 and four point 
vertex functions which make up q, —p, —q)- This shift in the contour 
basically eliminates G2 and replaces it with an exponentially decaying factor, 
leaving only this factor and G4{p,q,-p,—q). However G4{p,q, —p, —q) is 
just the Wick rotation of the forward scattering amplitude F{u), with u the 
crossing variable

EpEg -p-q
m. (2.51)

Hence one has

5m =------^ I+ 0(6”
Ib/rm^L tt ^ J

(2.52)
with A the three-particle coupling constant and y the parameter on the imag­
inary axis in the complex //-plane.

So with a detailed knowledge of how the mass of a stable particle changes 
with the volume, the behaviour of the forward scattering amplitude can be 
oljtained. Although this effect is not explicitly related to resonances, it is im­
portant to have knowledge of it. This is Irecause when deri^'ing the relevant
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formula for resonances in Sec.2.2.2 we use a contour shift valid only on the 
infinite volume propagator, so we must replace the finite volume propagator 
with the infinite volume one. The explicit formula for the mass shift controls 
this error. To estimate the size of the effect one often needs the simpler 
estimate:

dm = 0{e' 0- (2.53)

This estimate is obtained through pushing the contour of integration around 
the real-axis in the complex u plane. F{u) has poles at = ±|m and branch 
cuts starting at u = ±m, a result which can be seen by decomposing the four- 
point function into a sum of one-particle irreducible functions. In terms of y 
these poles occur at y — ±|m, so picking up the contributions at the poles, 
which dominate over those of the branch cut (as y appears in a decaying 
exponential) we have the estimate Eq.(2.53).
This estimate is the one we use in the numerical analysis of resonances.

2.2.2 Finite volume eflfects on scattering states

We now come to Luscher’s fundamental results about the behaviour of scat­
tering states in a finite volume. The results will only apply to two particle 
scattering states. The energies of these states are altered by the finite volume 
in two ways. First of all each individual particle in the pair has the virtual 
])olarisation discussed above. However there is also a .second effect resulting 
from their direct interaction with each other. It is this effect that is related 
to re.sonances.

This effect is derived in [19], although there was earlier work by DeWhtt 
[20] on the quantum mechanical case in a spherical box^. In this case one 
obtains a relation between the infinite volume scattering phase shift and the 
finite volume energy sp)ectrum.

To derive this effect it is necessary to consider the case of non-relativistic 
Quantum Mechanics and treat the Field Theory case by relating it back to

“A similar relation to the scattering phase shift is derived in DeWitt's work.
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the non-relativistic one. It is simpler to understand the two-dimensional ver­
sion of the effec:t, as derived in [21], so we will start there.

The two particle wave-function of two bosons in one spatial dimension is 
given by If the total momentum vanishes P = 0, then the wave-
function y) is only a function of the relative coordinate, r = x — y. If 
the two yjarticles are placed in a finite volume then the phase of the wave- 
function ?/'(^) will be altered in two ways.
First the phase will be shifted simply by motion through the volume giving 
the phase factor in momentum sj)ace. However it will also Ire elTected by 
the interaction between the two particles given by the inter-particle potential 
V{r). This will result in the scattering phase shift If the potential has
a short enough range, then S{p) will be the same as in infinite volume. If we 
impose periodic boundary conditions, then in order to satisfy these boundary 
conditions the total phase shift across the volume must vanish, meaning both 
factors must cancel.

p2i(5(p) _ ^~ipL (2.54)

This is the two dimensional version of what is known as “Liischer’s formula”. 
In the formula the p will be the momentum of the various two particle scat­
tering states in the volume L. Since these can be deduced from the energy 
spectrum, the formula provides a bridge between something measurable nu­
merically on the lattice, namely the energy ,S])ectrum and the infinite volume 
phase shift, which contains information on resonances.

For realistic situations we will the need the four-dimensional version of the 
formula.
We treat the infinite volume case first. Tliere are two massive spin 0 bosons 
in 3-dimensional space with vanishing total momentum P = 0. As before 
this implies that the wave-function y/.’(.T,?/), with x,y G is a function of 
the relative coordinate r = x — y. The Hamiltonian of the system has the
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form
(2.55)

Where /r is the reduced mass and A on the of the relative coordinate.

The potential is assumed to be and of finite range

V(r) = 0, r > B. (2.56)

For potentials of this type all solutions of the stationaiy Schrodinger equation 
HiJ) = Eijj are smooth (see [22], theorem IX.26). We can expand these 
solutions in terms of spherical harmonics

(2.57)
I ni= — l

and olrtain the radial Schrodinger equation ff)r the coefficients

£ 2d l{l + 1)

d£ r dr
+ ;r - 2/tV'(r) V’/m(?') = 0. (2.58)

Wliere p is related to the energy by E = ^. For a given I this radial 
equation has only one linearly independent solntion which is well-behaved. 
The dependence on rn comes only from a coefficient.

= bimUi{r\p). (2.59)

Where we label the solution by the momentum p associated with its energy 
eigenvalue E. Outside the potential we have the free Schrodinger equation 
and ui{r;p) must take the form

u,ir;p) = Q{p)jiipr) + P{p)ni{pr). (2.60)
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Basic scattering theory, see [13], shows that a and /3 are related to the scat­
tering phase shift through the formula

,m{p) ^ at(p) + ^A(p) 
c^i{p) - i0i{p)'

(2.61)

This concludes the infinite volume model, we now consider the finite volume 
case.

The particles are now located in a three dimensional box with all dimen­
sions of equal size L. In order to satisfy the periodic boundary conditions on 
the box, the wave-functions must obey

ij){r -h nL) = 'i/'(r)r 
n e Z^.

(2.G2)

(2.63)

The Hamiltonian remains formally the same, but the potential is altered to

Vdr) = ^ V{\r + 7iL\), (2.64)

in order to respect periodicity and the presence of interactions from around 
the world.

The spectrum of this Hamiltonian is discrete, since a finite volume imposes a 
quantisation condition in momentum space. We consider only the case where 
the extent of the finite volume world is larger than the range of the potential, 
L > 2B. This means there is a region

H = {r G + nL\>Hy neZ^}, (2.65)

where the Schrbdinger eciual ion is no different to the infinite volume case and 
we have the same asymptotic form for the radial wave-function

^Hmir) = him {oc{p)ji{pr) -b /3(p)n/(pr)}
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However in this region the wave-function is also a solution to the Helmholtz 
eciuation.

(A H- = 0. (2.67)

An important result is that if a solution of the Helmholtz eciuation has a 
raflial romponent which satisfies Eq.(2.66), then it coincides with a unique 
eigenfunction of the Hamiltonian in il.

In what follows it is necessary to make the assumption that the potential 
does not affect high angular momenta values. This is accomplished by mod­
ifying the potential with a projector Q\ onto the space of wave functions 
with I < A, where A is our angular momentum cut-off.

-1
HA = —V + Q^VL{r).

in
(2.68)

The mathematical necessity of this cut-off is that otherwise the analysis of 
the relation between the solutions of the Helmholtz equation and the energy 
eigenfunctions would be more difficult. The jihysical justification of this pro­
jection operator is that unless the energy is quite high the scattering phases 
Si{p) with large I are practically zero. Also this projection term causes vir­
tually no change in the spectrum unless A is extremely .small, the difference 
from the cut-off free spectrum vanishing exponentially in A.

There are two important facts about the Helmholtz equation on the torus. 
First of all, a solution to the Helmholtz equation satisfying

sup |r'^'*'V-'’(^)l < oCi
0<r<f

(2.69)

for some integer A is known as a solution of degree A. The point being that 
this A will be directly related to the angular momentum cut-off A.

Secondly the Helmholtz operator on the Torus has no zero modes and so 
its Green’s function G(r;p^) is a well defined distrilmtion. Thus every solu-
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tion of the Helmholtz equation of order A can Ire expanded as

A i

(2.70)
1=0 m=—l

Where Gim{r\p'^) are the angular components of G{r]p‘̂) and ipn their coef­
ficients. Gim{r:p^) itself can be expanded as

GUr;p")= (2.71)
/_iy r oo I'

(i>Hlm{r)ni{pr) + X X 0)j/'(pr)
/'=0 tn’ = -l'

The coefficients A4i,n.i'm' represent the mixing of the angular momentum 
inodes due to the finite volume. They are

M Im.Vm'

K

(—\Y ^ 7.1X X (2.72)^'A/2 Z—/ Z—/
3=\i-i'\s=~.i

-Eh
'27t' (2.73)

The Ci„i_jsp,n' are just teusorial coefficients and Zjs{l] q^) is the Zeta function 
on a torus, given by

.2^ _ 0)

ieZ3
(n2-K2)«’ (2.74)

commonlv known as Liischer’s Zeta function.

With this technical nomenclature in place we arrive at the fundamental the­
orem that there is a one to one correspondence between solutions of the 
Helmholtz equation on a torus of degree A which have the a.symptotic form 
of Eq.(2.66) and eigenfunctions of HNamely the eigenfunctions of H\ are 
equal to these solutions of the Helmholtz equation in Q.

The main point is that any eigenfunction of the Hamiltonian Hx will have
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two asymptotic forms in the region One form, Eq.(2.6G), coming from 
scattering theory and another form, Eq.(2.70), due to it being a solution to 
the Helmholtz equation.
If we match these two forms, by setting the expansion Eq.(2.70) for a general 
solution to the Helmholtz equation equal to the asymptotic form of Eq.(2.66) 
we obtain two equations for the coefficients

A

kmaiip) = X!
/'=0 ni'=-l‘

Vi>.
dTT Im

and
hmA{p) = Vlr.

(2.75)

(2.76)

To solve these equations we consider the problem abstractly. Let "Ha be the 
space of coefficients vim- Then Mim.i'm' is just an operator M(p) in this space. 
Similarly CYt{])) and f3i{p) can be considered as operators A and B through 
their action on the coefficients

[Av]i,„ = ai{p)vim, (2.77)

[Bv]ijn = /5/(p)t’/m-

One may then define a phase-shift operator through

^2iS ^
(A-tB)'

(2.78)

(2.79)

Expressed this way, the existence of a solution vim to Eq.(2.75) and Eq.(2.76) 
is eciui\"alent to

det[yl - BM] = 0. (2.80)

However we want this equation to involve the scattering phase shift, so we 
divide by the factor

det[{A - iB){.M - i)]. (2.81)
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This determinant never vanishes because M is hermitian and there is no 
value of p for which A = iB. Dividing Eci.(2.81) into Eq.(2.80) gives

det -B] =0, 
(M(p) + ?) 
(Af(p) - i)'

U =

(2.82)

(2.83)

Since p is related to the energy through E = this gives a relation between 
the scattering phase shift and the finite volume two particle spectrum. This 
is the four-dimensional version of Liischer’s formula.

Eor practical situations Eq.(2.82) is cumbersome and expensive. The rank of 
U is so the computation of this determinant becomes a problem when
A is large. However since the Helmholtz Green’s function is invariant un­
der the cubic group Oh, the coefficients Aiimj'm' are also cubically invariant. 
From the point of view of the Hilbert space T-Lx this means that the operator 
AI{p) commutes with the rotation operator and hence can be block diago- 
nalised with each l)lock acting on a specific re])resentation of the cul)ic group.

Most commonly one sets A < 4, since in most cases of interest di is neg­
ligible for / > 4. Also we choose cnbically invariant states, that is the 
representation, since the resonance we will study shall have angular momen­
tum I = 0 and will extract the spectrum related to it via cubically invariant 
lattice operators. This requires only the use of U{A^), that is the part of U 
which acts on A^ states in Bx of degree < 4.

det - U{At)] . (2.84)

However the space of cubically invariant Helmholtz functions with A < 4 is 
one-dimensional, so this is simply

^-^00,00 + i 

^^00.00 ~ ^
(2.85)
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From Eq.(2.73) we have .^/oo.oo = :;;37^-2^(l; 9^) and so

2,;^o(p) ^ ZQo{l-H?)+m^l'^K 

2oo(l;K2)-?:7r3/2K-

It is more useful to consider Eq.(2.86) in the form

tan(0(ft-.))

^{P) = + TTU,

(2.86)

Zoo(l;

Eq.(2.87) is the result commonly known as the Liischer’s formula.

(2.87)

(2.88)

Of course as it stands this result only applies to quantum mechanics, to 
he useful it must be applicalrle to quantum field theory. This is done by 
means of a map from fiuantum field theory to (juantum mechanics.

In fiuantum field theory one can decompose the four-point function into 
an infinite sum involving the Bethe-Salpeter Kernel /7(pi,P2)p3)d4) and the 
function G2{k).

Gi{pi,P2,Pz:Pi) = A'(p',p) +

/ d‘^kjK{p,ki
n=l ^

n— 1

nG2(A:,)A-(fj. *:,■+.)
J=1

G2(t) = G(fp + i)G(iF-fc

K{kn,p),

(2.89)

(2.90)

where G{k) is the propagator and P = pi -f p2, p = |(p3 — Pa) and p = 
|(Pi -P2).

The four point function contains information on the two particle energy spec­
trum and thus this expansion can be seen as an expansion for the two particle 
energies. Analytic properties of the Bethe-Salpeter Kernel allow the contours
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of integration in this expansion to be shifted so that the function G2{k) takes 
on a non-relativistic form. Once expressed this way, the expansion is formally 
identical to the Born expansion for a non-relativistic theory, with the Bethe- 
Salpeter Kernel filling the role of a potential. This Born expansion can be 
seen as coming from an effective non-relativistic Schrodinger ecjuation for the 
two-particle wave-function

1
UE{r,r (2.91)

Wdiere the constant if, the “Schrodinger equation energy”, is related to the 
true physical relativistic energy by IK = 2\/m? T m.E. The same analytic 
properties of the Bethe-Salpeter Kernel imply that, as a potential, it sat­
isfies the conditions on a potential used in the quantum mechanical proof 
of Liischer’s formula, [23]. So the entire framework derived above for the 
non-relativistic c'ase can simply lie carried over to cinantnm field theory and 
Liisdier’s formula holds in this case as well. This effective Schrbdinger equa­
tion was first derived in [24],
The use of G{k), instead of Gi{k) in the definition of G2{k) is valid in large 
volumes because the error is as a result of the virtual polarisa­
tions discussed in Sec.2.2.1. Hence the use of Liischer’s formula in ciuantum 
field theory is valid only for volumes large enough that virtual polarisation 
around-the-world is a negligible effect. Another important consecpience of 
the effective Schrodinger equation, Eq.(2.91), found in [24] is that the Born 
expansion for it’s energies provides an asymptotic form for the two-particle 
spectrum which we shall use later in the numerical simulations. This form 
is:

® = E
2=1

mlJ
+ 0{L^ (2.92)

The form obtained in [24] is more detailed than this, but the full form will 
uot be required for the fits to which Eq.(2.92) is applied.
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Figure 1: Example of the spectrum as a function of volume in a theory with 
the resonance decay width vanishing, F = 0. In this scenario the resonance 
appears as a stable state.

2.2.3 Consequences of Liischer’s formula

Not only does Liischer’s formula give a relation between the two-particle 
spectrum and the phase-shift, it also implies unusual behaviour in the spec­
trum that can be traced back to sharp changes in the phase-shift associated 
with resonances.
If there is a resonance in the same channel as the two-particle states, then 
near the resonance energy the phase shift will experience a rapid change com­
parable to TT, as mentioned above. This behaviour in the scattering phase 
shift implies that the finite volume energy levels will rapidly rearrange them­
selves near the resonance energy.
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However there is a theorem in the theory of hermitian matrices which states 
that eigenvalues of a matrix depending on a single continuous parameter (in 
our case the Hamiltonian depends on the volume^) cannot cross as that pa­
rameter is varied. Combined with the rearranging of the energy levels above 
this means there will be an abrupt change in the energy levels where they 
avoid each other, known as avoided level crossing. How near the energy lev­
els are at the point of their closest approach is directly related to the decay 
width of the resonance. An example is provided in Fig. 1 and Fig. 2. In 
Fig. 1 we see the spectrum of a theory where there is no resonance. In this 
case we have the two particle spectrum of one species of particle and a stable 
one particle state of another which, up to the virtual polarisation effects of 
Sec.2.2.1, is independent of the volume.
However if the theory is adjusted so that stable one particle state couples to 
the two particle states, it becomes a resonance. In Fig. 2 we see the effect 
on the energy spectrum. The resonance has merged with the two particle 
states, however near the original mass of the resonance particle there is an 
avoided level crossing.

Liischer’s formula has been tested in a variety of theories such as Ising 
models[25], two-dimensional QED[26], the Gross-Neveau model[27] and has 
also been used to extract quantities in QCD itself, [28] [29] [30]. Hadronic 
resonances within QCD have been looked at in [31] using a generalisation of 
Liischer’s formnla for moving frames, [32].

2.2.4 Limitations of Liischer’s formula.

Liischer’s formula is restricted to the elastic region for four fundamental rea­
sons. Firstly, the result is actually proven in non-relativistic quantum me­
chanics, which is not suited to the description of inelastic scattering of the 
type 2 —> 4. Secondly, all the analyticity properties of the vertex functions 
and the Bethe-Salpeter kernel only hold in the elastic region. Thirdly the 
additional physics of the inelastic scattering coefficients r)i{p) are not taken

^More accurately the hermitian matrix here is the part of the Hamiltonian that couples 
the resonance and the stable particles.
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Figure 2: In this case the resonance can decay. This appears as an avoided 
level crossing near the mass of the resonance.

into account. Finally an extension of Liischer’s formula to the inelastic region 
would relate both the two particle and the four particle states to scattering 
data. However it is not clear how to decide if an energy eigenstate is four 
particle state in a finite volume, see [33] for a discussion. The restriction of 
Liischer’s formula to the elastic region is crucial as many resonances in QCD 
are found in the inelastic region. The possibility has been raised of using a 
Bethe-Salpeter wavefunction to derive Liischer’s formula in an alternative, 
albeit less rigorous, manner. An exposition of this Bethe-Salpeter wavefunc­
tion approach can be found in [34]. This approach has already been used in 
numerical calculations, [28], however it has also lead to a possible extension 
of Liischer’s formula into the inelastic region,[35]. There has also been a
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generalisation of Liischer’s formula to a simplified inelastic case, [36], where 
one still has 2-^2 scattering, but with two species of particles.
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2.3 Histogram Method

The second method for obtaining resonance parameters from the lattice is the 
Histogram method. This method focuses on how the volume dependence of 
the spectrum En{L) differs from its form in the case where the two particles 
do not scatter off’ each other, or S{p) = 0. The motivation for the method 
is the avoided level crossing shown in Fig. 2. At the mass of the resonance, 
a plateau occurs in the two particle spectrum, unlike the (i(p) = 0 energy 
levels. Hence at momenta close to the resonance mass there are far more 
energy levels present across all volumes than in the free case. The idea is 
that the difference between the amount of enei’gy levels present at a, given 
momentum in the two cases S{p) = 0 and S{p) ^ 0 can be quantitatively 
linked to the scattering phase shift.

Fir.st the range of volumes and momenta is limited to the fixed region

\PminiPmax\ ^ \Lmini ^mai\ i (2.93)

where PmimPmax fu'c usually chosen to encompass the entire elastic region 
Pmin = 0, Pmax = ■ The limit Lmax cx) will be taken in the end and
the choice of Lmin will be discussed below.

This region is then partitioned into boxes of equal width AL and height 
Ap. We then define a histogram, which counts the amount of energy levels 
present in a given momentum range [p,-, pi+i], where i = 1, • • • , N = 
across all volumes. Specifically the Histogram, W{pi), is given by;

N M

n = l .7=0

1, Pr,{Lj) G [Pi,P^+l]

0, Pr,{Lj) ^ [pi,Pi+l] 

Lr

fn{L,)

Lj Lyyiin jAL M
Lr

AL

(2.94)

(2.95)

(2.96)
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In the limit of vanishing AL and Ap, it can be shown that that

M
(2.97)

and so in this limit the histogram is:

N
W{p,) =CY,-r (2.98)

In the elastic region, we already know that Liischer’s formula Eq.(2.87) holds. 
VV lien differentiated with respiect to L this formula gives:

1 L ^ 27rd {p)
P'niL) P P<P'{k)

(2.99)

It is at this point that the choice of enters. For small values of L, the 
virtual polarisation effects of Sec.2.2.1 may make the use of Liischer’s formula 
invalid, hence Lmin is chosen to Ire some volume at which these effects are 
highly suppressed.
If we substitute Ecp(2.99) into Eq.(2.98) we obtain the following expression 
for the histogram

W{p,) = cf2'-^’’P
^ P p(p'(l^nip))'

(2.100)

In Eq.(2.100) we use the expressions L„(p) and 0 {k.„{p)). These invert the 
functional relations between the variables k, L and the momentum p, which 
allows the histogram to be viewed purely as a function of momentum. The 
relations can Ire obtained by using Liischer’s formula and the definition of k

Ln{p) = —0 ^ {'^n - d{p)),
P

K =
pL
in

(2.101)

(2.102)
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In this form the histogram is not particularly useful. It requires one to know 
the explicit values for the function 0(/v), which would make it no more than 
an rewriting of Liischer’s formula. However if we expand the expression 
Eq.(2.101) for the volume about the case where there is no scattering 6 = 0, 
we obtain

^TT ^TT 1
Ln{p) = —0“^(7r7r)------S{p) w—^ + O(d^). (2.103)p p 4) {0 ^{7rn))

Tins can be simplified Iry recognising that (ttu) are simply the values of 
Kr, in a theory without scattering, which we will label This gives

27r_ 27r 1
J^n(P) = —^n-------dip)--

P P 0(«n)
0(6^). hl04)

If Eq.(2.104) is substituted into Eci.(2.100), then we see that the histogram 
is given by

n = l ^ p 0'M V p
dip) S'ip)] +Oid^). (2.105)

The first term is exactly the histogram which would Ire constructed in a 
theory where the resonance is a stable particle and there is no scattering, 
dip) = 0, which we will call the free background. Subtracting off this free 
background C'(j'HTo(p), where Co is its normalisation constant, we have

N
27r Hp)
P </’'(«n,) V P

dip))+Oid^-).

(2.106)

Now, if we take L^ax quite large, then the number of energy levels which 
appear in the elastic region is quite large. For the fast majority of these 
energy levels d{p) << nn and so the C((5^) terms are negligible compared
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witli the first two terms. Hence in the large volume limit

N

- C'o-MVo(p)

The final olrservation is that

2nV-_

A 27r

hi

1 f d{p)
p \ p

-Sip)]. (2.107)

(2.108)

is independent of the the phase shift S{p) and the momentmn p and hence is 
just a constant that can be absorbed into the normalisation constant of the 
histogram and so for large L^ax we have

C-^Wip,) - CoHVoip) ~ ~ d{p)
P \ P

(2.109)

Eq.(2.109) shows that the total histogram, giving the relative density of en­
ergy levels Ijetween the free and interacting cases, is directly related to the 
scattering phase shift. The advantage over Liischer’s formula is that detailed 
knowledge of the function 0(h') is not required to obtain the scattering phase 
shift, the histogram is directly related to S{p) itself.

Unlike Liischer’s method, the histogram method has not been tested in re­
alistic lattice simulations. In [12] it is tested against synthetic data obtain 
from applying Liischer’s formula in reverse to obtain a model two particle 
spectrum from experimental measurements of S{p). In [37] it is tested in the 
case of non-relativistic cpiantum mechanics.
In a warm-up to a direct test of the method in comparison with Liischer’s 
method in a nonpertnrbative nnmerif'.al simulation of a ciuantum field theory, 
we first test the method in a perturbative setting. This allows ns to see how 
the method performs in the reali.stic case of relativist ic quantum field theory, 
but without the extra complications of Monte-Carlo errors on the spectrum. 
Also, in perturbation theory the value for the resonance width can be com­
puted directly in Minkowski spacetime, the calculation amounting to nothing
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more than a standard tree-level Feynman diagram. We proceed now with this 
calculation.
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3 Perturbative Calculations

In this section the linear sigma model is treated to first order as a test of the 
histogram method discussed in the previous section.

3.1 The model

For the perturbative calculation we consider a model which is similar to the 
one we will use in the numerical tests of the histogram method. That model 
will be the the 0(4) linear sigma model with an explicit symmetry breaking 
term.

'........ (3.1)C = + \{(p^ - u ) -

The reason for the explicit symmetry breaking term m^U(p4 is that this model 
displays spontaneous symmetry breaking which will result in massless Gold- 
stone bo.sons. However as Liischer’s formula only works in the case of massive 
field theories, an explicit symmetry breaking term is included in order to give 
these potential Goldstone bosons a mass.

For the perturbative calcvilations we use the following Lagrangian.

1 2

m + 4;/A(T^

I ~ CTIT ■iTT Acy TT 3 3 ' 3 3 (3.2)

Eq.(3.2) is inspired by the actual Lagrangian used in the simulations, namely 
Eci.(3.1). It has similar physics to the true Lagrangian as the particles it de­
scribes will carry an S0{3) Isospin charge, I. The pions are an Isospin triplet, 
7 = 1 and the sigma is an Isospin singlet, 7 = 0. Provided that rria- > 2?7?.^, 
the (T particle will be unstable and will only appear as a resonance in the 
7 = 0 channel. In the numerical simulations the Lagrangian Eq.(3.1) will also 
give rise to singlet and triplet states, however m„ will actually be a function 
of the parameters A and The major difference Iretween this perturbative 
Lagrangian and the one used in the simulations is that the resonance cou­
pling to the pions does not depend on the momentum of the pions.
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The first step in ajrplying the Histogram method is olrtainiiig the two-pion 
energy spectrum as a function of the volume. In infinite volume these states 
would form a continuum which would appear as a branch cut in some cor- 
I'elation function with the appropriate ciuantum numbers. In finite volume 
however, due to the discretisation of momentum, the spectrum of these states 
is discrete and they appear as isolated poles in the correlator. Hence we can 
find the spectrum by locating the poles of the correlation function in mo­
mentum space.

A good choice for the correlation function is the go two-point function. This 
is becau.se it has the right quantum numbers, / = 0, / = 0 and in the elastic 
region covered by Liischer’s formula, 2??r,r < E < 4?n^, the only isospin sin­
glet states are two-pion states. It is the scattering phase shift of these states, 
(5q(p) that contains information on the a re.sonance.

The GG two point function is given by

GUI) =
1

f22 + (mO)2-n^(Q)'
(3.3)

Where rn^ is the bare mass and nL(Q) is the finite-volume self-energy. In 
order to find the poles and hence the two particle spectrum, we must solve 
the pole equation

+ (m°)2 - H^Q) = 0. (3.4)

This will be done by computing the .self-energy to first order in the coupling, 
which shall be denoted n^^^(fi)^, and solving the approximate equation

- nr = 0-(2), (3.5)

3.2 Renormalisation

If computed naively the Eq.(3.5) will produce a divergent integral. This 
integral needs to be renormalised by replacing the bare mass with the physical
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mass. In infinite volume this would be acromplished via the renormalisation 
condition;

+ = 0, (3.6)

with the physical mass l)eing the solution, il = iMji, of Ec[.(3.6).

The reason that is used is that in infinite volume the a is once
again unstable, so its self-energy i^icks np an imaginary part through the op­
tical theorem. For unstable particles one renormalises their mass using only 
the real part of the self-energy, in analogy with stable particles.

In finite volume however the a is stable and hence there is no imaginary 
part to the propagator. Furthermore, the a is no longer an isolated pole on 
the unphysical sheet, instead it will have merged with the two pion poles. 
Hence in finite volume is a bare Lagrangian parameter with uo obvious 
physical counterpart. This makes it unclear what value of il should be chosen 
as the point to impose the renormaiisation conditions. For this reason we 
will simply use the infinite volume condition, Eq.(3.6), to choose the physi­
cal value of ml, i.e we take the physical mass as the solution to Eq.(3.6) at 
il — irrifj. This is simply a renormaiisation scheme, one wdiich is consistent 
with the infinite volume limit, and does not affect the results. So the physical 
value r??E is related to the bare one via:

- m,

(m“)" = + Se(nP>(jm„)).
(3.7)

(3.8)

Substituting this expression for the bare mass into the original pole equation 
(3.5) yields the result:

ir‘^ + (m.,)^-nf(Q)H = o (3.9)

Where the renormalised finite volume self-energy, is 11)^ qQ) —
3?en(^^(fi), the difference between the infinite volume and finite volume self­
energy. We retain 3?en*^)(fi) for all arguments not just im„ since the values
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in the whole elastic region are close enough to for this to be
valid.

3.3 Finite volume Feynman rules

For the linear sigma model in finite volume the Feynman rules relevant to 
this computation are

-Sijg, (3.10)
,2

for the vertices, where 5 = and

1
+ rnj

(3.11)

for the pion propagator.
The only new features in finite volume is that the momenta in the pion 
propagators must take the form

271
p = {u,pj, P = -j-n,

and all loop integrals are replaced by sums

r d^k r dij 1J ^

n e (3.12)

(3.13)

In the computations, we will use for the coupling and 'n^a foi' the 
masses rather than their expressions in terms of h and u. En will denote the 
free two pion energies En = + p'^, with p cpiantised as in Eq.(3.12).
We also measure all physical quantities in units of the vacuum expectation 
value, that is units with // = 1.

3.4 Computing the self-energy

is given by the diagram
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G

TT

/ \
G

\ /
\

TT

By the finite volume Feynman rules this is

— /■, I

ieZ3
nii'(n) = Ifj E 1

(3.14)

with a factor of 3 coming from the three jhons in the theory and 1 from the 
symmetry factor of the diagram. We obtain 14}" by subtracting off the 
infinite volume self-energy

dH:

1 1
uj^ + k^ + ml {u + nf + k^ + ml 

1 1

(3.15)

-I- -h ml (cc -I- iiy + ly + m.)

The standard procedure would be to simplify both of these expressions by 
using Feynman parameters to combine the denominators. However this will 
not get us far as the Euclidean energy Q is above the decay threshold for the 
energies we are interested in, and so there may be singularities in the domain 
of the Feynman parameter integration, see [38, 39]. Also, even though the 
expression as it stands is meant to be renormalised and thus is finite, this is 
not manifest due to the ultraviolet divergence in the finite volume surn'^.
To get around both of these problems we perform a Taylor expansion of the 
renormalised self energy alrout the point ft = 0, whi(4i is below the decay

^Ultimately this divergence is cancelled by the infinite volume integral.
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threshold

nf (S7)„ = n^iojR + + nt'(si)RI (2)/ ^2 d (2), T(2)/.-)Nrfi (3.16)

This is done for two reasons. Firstly it will be possible to calculate the 
first two terms and show that they are negligible, leaving the final Taylor 
remainder term where the ultraviolet convergence will be explicit. Secondly 
at 11 = 0 the infinite volume integral wfill be j^urely real, which wfill allow' the 
finite volume and infinite volume expressions to Ire comlrined in the first two 
Taylor terms.

Focusing first on the zeroth order term we have

35' 3^' d^k-
2^' .^^3 J 2 J " - (co’2 + e + m2 )2 ■

The sum can be replaced with an integral as follow's
(3.17)

I'i E J ~ J ^ ^ Y.s^ib-
nGZ3

27rn
~ir (3.18)

Resulting in

nf (0)fi = 3^^ / dH:

3g'^ / d'^k

2TvnE «■“ (i
1

(iu^ + k^ + m^ )2

L
1

{uj^ + k^ + m2 )2

(3.19)

Using the distributional version of Poisson’s summation formula, [40]

E (i - 21) E
ri GZ3

^2win-k (3.20)
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Tins simplifies the integral to

n®(0) R
^9^ E / 1 JLn k ^9 I jAi 1

2 \ ™0^2^ 2 / ^ ^'^..2 -L Z^2 j_ ^2^2■
(u;2 + fc^ + ,„2)2 (a;2 + fc + ml) 

(3.21)
However the n = 0 term is identical to infinite volume term, hence they 
cancel to give

ALnk

2i6Z^,7?^0 ' + »!)"
(3.22)

Expanding the integral in spherical coordinates for the spatial momentum 
we obtain:

nf(o)H = /
•oo noo rTT /•27r

du) / dk /

-oo .20 ./O .20

sin(fl)/r.2 3iL|n|A:cos(^?)

77.62^.217^0
m.2)2

(3.23)
where in| = y/A + ^2 + '3-

The integration of the angi.ilar variables can be performed quite easily, giving

nf’(o), E -00 Jo {uj-+ k + ml)- (3.24)

The m integral can be calculated via Cauchy’s residue theorem, using a con­
tour in the upper half u> plane. Performing this contour integral and picking 
up the poles gives the final integral

n?^(o)R =
2„23nA E „ sm{\n\kL)k 

dk-^ Jo |n|(/c^-h m2)3/2
neZ^.n^^O I Iv TT/

(3.25)

However the integral Eq.(3.25) is one of the definitions of the zeroth modified 
Bessel function of the second kind. Hence the zeroth order term is given by

nf*(0)fi = iT-’g
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Since the modified Bessel functions have a singularity at the origin, the pres­
ence of a n = 0 term would have produced the singular factor Ko{0). Hence 
the infinite volume integral renormalises the finite volume Feynman diagrams 
by removing the singularities of the modified Bessel functions.

For the first order term the integral, after the subtraction of the infinite 
volume term, is:

^ -t{2)
dn^ nr(o)R d^k

-1

,n^0' (uj^ + k'^ +
^iLnk (3.27)

with the extra power in the denominator coming from the derivative. 
Once again, integrating the angular variables can be performed easily giving

d nf(o)R
6ng‘^ ^ r^L°° dk

" |n|(a;2 + k^ + (3.28)

The u! integral just involves the same contour integration as the zeroth order 
term and so:

nf (o)^ =
2„2-971^9 sin(|n|A:L)A:

(iK ■4L V Jo '■">.|(A:2 + m2)V2'
neZ^.n/O I IV nJ

(3.29)

The integral Eq.(3.29) involves the definition of the first modified Bessel 
function of the second kind. The first order term is then

\n\Ki{LnmT^). (3.30)

Again the infinite volume integral has removed the singular factor iFi(O).

Due to the extremely fast rate of decay of the modified Bessel functions 
for large arguments, these terms are essentially negligible (see Fig. 3) and 
hence we will concentrate solely on the Taylor remainder term n^^^(D)|j'^.

We are now left only with the Taylor remainder. This term can be divided
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Figure 3: Behaviour of the first two modified Bessel functions. One can 
see that at even small L these terms are insignificant.

into its infinite volume and finite volume components:

nf (f!)™ = nf (!2)™ - (3.31)

The first to deal with is the twice subtracted finite volume self-energy. To 
calculate this it is simpler the evaluate the u integral in the original ex­
pression for the Feynman diagram, Eq.(3.14), and then perform the Taylor 
subtraction. Performing the u integral gives:

nf (Si) = f E 1 (3.32)
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Of course Eq.(3.32) is divergent, but we are only using it as a formal step in 
Taylor subtraction. The Taylor subtraction can then be performed using the 
formula

D =
1

on the term

- ^ ^ d(—
A + B~A~ A^^^XA^

1

(3.33)

(3.34)
02 + 4^2’

with A = and B — Vfi. Since the first two terms in Eq.(3.33) give the 
first two Taylor terms, the Taylor remainder is given by the final term:

E 1 1 13^^
E„_Ein^ + Er (3.35)

The infinite volume part is just the twice subtracted infinite volume integral. 
Performing the u integral first and then performing the subtraction, just as 
for the finite volume energy, gives

TR 3?e / d^p 1 1 1
(27r)3Ep02 + ^2^4y ’

Ep = +

(3.36)

(3.37)

This double subtraction lowers the degree of divergence from D = 0 to Z? = 
—2, so the integral is convergent. It can be evaluated quite easily using 
standard integration techniques, however an simpler estimate on its value is 
given by treating Ep 2p and shifting the lower limit of integration to m.j4

n(2^(Q) TR Ue (/
~ , p2 1 1

dp-
2p Q? 16p^

1
rriiO?

(3.38)

For values of Q corresponding to energies in the elastic region this term will 
be negligible, so it can be ignored.

Since we have shown that all other terms are negligible, due to dying off
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with the volume or at energies above the two-pion threshold, the self-energy 
to this order in the elastic region is

1 1 1
(3.39)

3.5 The two particle spectrum

Now that we have a simple expression for the self-energy we can use it in the 
pole equation, Eq.(3.9)

neZ3 n + n
(3.40)

We will change variables to the Minkowski energy E = zQ, as the spectrum

Figure 4: Energy Levels for different couplings = 2.6, mjr = 1.
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will given by poles at real values of this variable.

1 1

neZ3 n. n
= 0. (3.41)

This expression defines a meromorphic function of £, with poles located at 
E = a pole for each term in the sum. We will solve the equation by 
looking at the solutions near the = 1 poles. This is because one of the 
solutions near the = 0 pole will correspond to a state of two pions at rest, 
which will not contain information on the resonance. The other pole will be 
located beneath the two particle threshold and is in fact completely spurious. 
Other values of correspond to energies well above the resonance mass we 
shall choose, except at very large volumes, so we ignore them.
Near the v? = \ poles the E^ factor in the numerator is approximately E^, 
with |n| = 1. There are six = 1 poles in total so the equation for the 
energy levels is

Figure 5; Sigma beneath two particle threshold = 1.9, = 1 in units
of the vacuum expectation value.
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{maY -
9g^ 1
L3 Er, - 4^2

= 0. (3.42)

This is a bi-quadratic equation which can be solved quite easily with two 
solutions near the pole given by,

= + ml) ±J{El- m2)2 +
36g2
L^E„ (3.43)

The solutions are two energy levels given as a functions of L. In Fig. 4 
the energy levels for two different values of the coupling can be seen. One 
can see the features discussed in Sec.2.2.3, namely the avoided level crossing, 
with the gap between the energy levels increasing with g. From the original 
Lagrangian, Eq.(3.2), it is clear that the width of the resonance is propor­
tional to g^, hence this corresponds to the expected effect of the gap between 
the levels being related to the width F. It should also be noted that Eq.(3.43) 
is similar to perturbative estimates of the spectrum found in [10] and [41].

If we bring the mass of the sigma beneath the two particle threshold, we 
obtain the spectrum of Fig. 5. As expected we see no avoided level crossing, 
with the sigma appearing as a stable state with no dependence on L and the 
two particle state having the O(j^) dependence of a free two particle state. 
To apply the histogram method of [12] we require the free energy levels. 
Fig(6) shows the free and interacting levels necessary for the construction of 
the histogram in the case g = 0.5. We will detail the construction of the 
histogram in the next section, in the context of numerical simulations, for 
now we will simply say that the method produces the histogram of Fig. 7 
when applied to the data of Fig. 6. It should be noted that this histogram 
is unusually regular, since it is extracted from a perturbative calculation. 
The histograms obtained numerically will not be this regular. Fitting this
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Figure 6: Free and Interacting levels g = 0.5, = 2.6, = 1

histogram to the formula:

1
[E{py - ii/2]2 + Af2 r2 (3.44)

which is obtained from Eq.(2.109) via substitution of Eq.(2.30) we obtain as 
the width

^Histogram ^ 0.0343(2). (3.45)

Applying Liischer’s method we obtain the phase shift depicted in Fig. 8. This 
gives us the scattering phase shift, displaying the clear arc-tangent structure 
it should possess near a resonance. The construction of the phase shift using 
Liischer’s method will be detailed in the Sec.4.4, however we will just note 
that this phase shift was obtained using the more accurate estimation of 0(k) 
that will be detailed there. This can be fitted to

,, , TT /4p2 + 4M2-M2
5 ip)---- arctan —--------- ------------ -^ ’ 2 V MrY, (3.46)
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Figure 7: The histogram The peak occurs at the resonance mass.

from Eq. 2.31, giving the width:

j^Luscher ^ 0.0344(3). (3.47)

Already we can see that Llischer’s method and the histogram method agree 
quite well, reproducing the same width, only with slightly different errors. 
For both methods the errors are generated via a estimate on the size of the 
0{g^) corrections to the spectrum.

3.6 Comparison with Minkowski case

The advantage of working with a model in perturbation theory is that the 
results can be checked against the exact result coming from a calculation of
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Figure 8: The scattering phase shift from the perturbative energy levels.

the three-point function in Minkowski spacetime. The Minkowski calculation 
is quite routine, involving the evaluation of only a single Feynman diagram.
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Since there are no internal lines, the amplitude for this process is simply —6g, 
with a factor of 2 coming from the pions being bosons.

The width of the sigma in its rest frame can be obtained from the standard 

formula, [1]

1 f d^Pi f
2m,j J (27r)3(2£'p) J

d^P2
{2txY{2Ej,)J {2Trf{2Ep)

36g^(27r)^(5'^(pi +p2)d{Ei + E2-

(3.48)

which is just a typical phase-space integral giving:

^Minkowski 9g^
87rm.„

2 m,,
m.r

(3.49)

which, using the same parameters as those producing the Liischer and His­

togram estimates, gives a value for the decay width of

^Minkowski = 0.0344. (3.50)

The agreement between Eq.(3.50) and the two expressions Ecp(3.45) and 
Eq.(3.47) is quite good and so it would appear that the histogram method 

provides a good determination of the resonance width in a perturbative set­

ting. It should be noted that the Histogram estimate of Eq. 3.45 did not 

require detailed knowledge of the function 4){k) of Liischer’s method, which 

demonstrates that this method can capture the physical parameters of the 

resonance without this function.

We will now move onto the numerical simulations and test the relative 

strengths and weaknesses of Liischer’s method and the Histogram method.
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4 Numerical Simulations

We treat here the histogram method and Liischer’s method in a numerical 
context. The ultimate intended application for either of these techniques is 
the analysis of resonances in QCD. However we wish to compare and contrast 
these two methods as unambiguously as possible. For this reason we choose 
the linear sigma model as our field theory. This theory possesses a resonance 
from the outset which corresponds directly to terms which appear in the 
Lagrangian, hence there will not be issues relating to the background part of 
the scattering cross section 4p(p). Also it will be possible in this theory to 
obtain small relative errors on the two-particle spectrum, something which 
would be quite difficult in QCD. We will set up the model itself first, then 
give an account of how the spectrum is obtained. After that we describe 
the application of Liischer’s method and the Histogram method. Finally 
we compare and contrast them. Some elements of the results given in this 
section have been reported before in [42], [43].

4.1 The model

As mentioned, we wish to study resonances and the techniques for extracting 
resonance parameters from the lattice. However we do not wish to include 
the added complications of QCD itself. Instead we will study resonances in 
a simpler theory which allow us to use the methods and see their strengths 
and weaknesses without these additional complications.
The model we use is the is the 0(4) linear sigma model in the broken phase. 
This model has been used previously as a test of Liischer’s method, [44]. The 
Lagrangian is given by

1
£ d,,(p + A(0^ V> - 7/04 . (4.1)

In the broken phase the 0(4) symmetry will be broken down to an 0(3) 
symmetry. Since the dimension of 0{N) is there will be A" — 1 =
dim{0{N)) — dim{0{N — l)) Goldstone bosons associated with broken phase, 
in our case this gives three Goldstone bosons.
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However an explicit symmetry breaking included in Eci.(4.1).
This is because Liischer’s method relies explicitly on massive states. The 
spontaneous symmetry breaking alone will produce three massless Goldstone 
bosons, so we introduce the explicit breaking term to lift the masses of these 
Goldstone bosons. In the broken phase, with this Lagrangian we will have 
three stable massive particles and one unstable particle, the resonance a. We 
do not use the unbroken phase as this simply consists of four stable particles. 
We shall rewrite this Lagrangian to tie it more directly to the physics. We 
introdiu'c new fields a and pi, with the constraint that pipi = 1.

0. = [y + (j)pi , with i = 1, 2, 3, 4 ; (4.2)

We exjrand the potential around the classical minimum of the fields 0^0 = /y^. 
This is typical for a Irroken phase as the Lagrangian fields will no longer be 
directly associated with the particle spectrum. Using the identity pidpi = 0 
we obtain the Lagrangian as

1 1 1T = -i'~di.p,d„pi + -a df,p,df,pi + -di,ad„a + iyad,,pid„pi 

+Acr + 4// A(t + 4?yAcT — 7U" Qzy“p4 — mZ^ ^uapi^ . (4.3)

The a field is related to the massive 04 in the original Lagrangian and the 
pi are related to what would be the Goldstone bosons if it were not for the 
explicit symmetry breaking term.

This theory will describe three massive particles transforming as triplet of 
the internal SO{?>) symmetry group, as well as a massive particle in the sin­
glet representation of this group.
At the moment we cannot directly interpret the physical content of the La­
grangian Eq.(4.3), due to the presence of linear terms and it is not obvious 
that the explicit breaking term has given the pious a mass. It will turn out 
that the a field is related to the massive 04 term in the original Lagrangian, 
but also to the physical a resonance. The pi are then related to the three 
massive pions. This relation between the pi and the stable massive pion
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states is not easy to see. To demonstrate the relation, we will introduce the 
pion fields as Ireiiig related to SU{2) fields; this is similar to the treatment 
of the non-linear sigma model in [9].
We introduce an 5f7(2)-vahied field based on the pj fields as follows

U = P4 + iajPj , (4.4)

with j = 1, 2, 3 and aj are the Pauli matrices.
In the non-linear sigma model, the pions are typically related to the funda­
mental SU(2) fields via the relation

U = = cos ( ^ j + sin (4.5)

where u plays the role of the pion decay constant.
Using Eq.(4.4) and Eq.(4.5) we may say naively that the relation between 
the pj fields and the pions is given l)y:

p4 = cos

Pj
TT,-

sm
TT \ U

|7r|
V
Iff

(4.6)

(4.7)

We may replace the p fields in the Lagrangian by the use of a few identities. 
First of all we take the expression |Tr(f/ -|- f/^). For the p fields this gives:

Tx{U + U^)=P4. (4.8)

For the pion fields it is:

So we have

iTr([/ + f/t) = cos (4^ ) . (4.9)

p4 = cos
TT

(4.10)
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We also use the expression ^ Tv{dijUdii W). For the p fields this is

1 ^
-Tr{di,Ud,jU^) = '^d„Prd„,pi,

i=l

For the i)ioii fields this gives

1 1
- Tr(dj,[/d/,[/^) = di,nid,,TVi,

(4.11)

(4.12)
i=l

and so we have:

■1 1 ^ .
(4.13)

Z=1 i=l

Eq.(4.10) and Eq.(4.13) can then be substituted into the original Lagrangian, 
Eq.(4.3). Expanding the cos which has replaced the p4 field, we olrtain 
as our Lagrangian:

^ +•
1
—aditTTjdiiTTj + \a^ + 4;^^Aa^ + 4;^Act^ +

1
-m;_o7rj7rj

m:
(4.14)

Where the higher order terms include higher order couplings between the 
pious and the a resonance, as well as pion self-interaction terms.
We can see that the a field has mass

rn, (4.15)

and due to terms such as the three-point interaction uadpiSpi the sigma par­
ticle is unstable. We can also see that the parameter r7?7r.o that we introduced 
functions as the bare pion mass. So our explicit breaking term has given the 
Goldstone bosons a mass.
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Two things should be noted about the three-point interaction term. First of 
all it both depends on so the sigma resonance should be more unstable 
with decreasing values of i^. However we will not make direct use of this. It 
also contains a derivative. In momentum space this will give an extra term 
to the Feynman diagrams. So we expect the interaction between the pious 
and the sigma resonance to be stronger when the pions have larger relative 
momentum. The decay rate of the sigma resonance will also depend on A, 
since the a field self-coupling terms will affect the interactions between the 
(T-particle and the pions.
For certain values of the parameters the 0(4) symmetry will be restored and 
the theory will enter the unbroken phase. Since we do not want this to occur 
we must avoid the region of the A, ;/ parameter space in which the symme­
try is unbroken. For any fixed value of A the symmetry is restored when 
// is small enough. The point of this phase transition //*(A) increases with 
increasing A. In particular

lim ;/,(A)
A—

0.78 (4.16)

Hence we will always keep u above 0.78, specifically we use ;/ = 1 or 1.05, to 
guarantee that the symmetry remains broken.
A derivation of Eq.(4.16) is contained in Ref [44], although there, due to 
different parameters Ireing used, it appears as Ky ~ 0.304.
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4.2 Extracting the spectrum

With the model in place and a link established between its Lagrangian param­
eters and the physical parameters of the theory, we proceed to the numerical 
simulation of the theory. The theory is placed on a 64 x lattice, where L, 
the spatial extent of the lattice, will vary as required by both methods. The 
lattice action used was:

5 = ^ (-A0) (x) + A (0^(.t)<^(x) - u^Y -

(4.17)

where the Laplacian is as defined in Eq.(1.16).
The Alonte-Carlo simulations themselves were performed by Dr. Pietro Giu- 
dice on the Lonsdale computer cluster at Trinity College Dublin. The cluster 
consists of 1232 Opteron processor cores with a clock si)eed of 2.3 Ghz. For 
each choice of the parameters o, tl^e computational time was around 
one hundred hours for each specific choice of the volume L. This consisted 
of running the same set of parameters on ten different })rocessor cores, each 
with a different random seed. On each core the simulation took ten hours. 
This time was held fixed for each volume by making a different number of 
measurements for each volume. For instance in our first set of parameters 
below, with A = 1.4, mjr.o = 0.36, 225000 measurements were performed for 
the L = 8 case and 22000 for the L = 19 case.
The sample field configurations for the Monte-Garlo estimate of the path 
integral are obtained differently for the 04 field and the 0j fields, j = 1,2,3. 
For the 04 field, the configurations are olTained by the Metropolis algorithm. 
For the (pj fields they are obtained from an over-relaxation algorithm.
In order to apply either the Histogram or Liischer’s method knowledge is 
needed of the mass of the pion. For the Histogram method the mass is 
necessary in order to fit the histogram, however in Liischer’s method it is 
even more fundamental as it is recpiired in the dispersion relations. In both 
methods it is also a way of measuring if the virtual polarisation effects of 
Sec.2.2.1 are negligible. To obtain m.^ we expand the fields in terms of a par-
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tial Fourier transform (PFT). We Fourier transform the spatial coordinates, 
but leave the temporal coordinate untransformed.

—ixp 2n
Pi = ’ (4.18)

where varies over the lattice rij = 0, • ■ ■ , L, — 1 and V = L^. Using these 
fields we can extract the mass of the pion from the n = 0 field. This field has 
zero-momentum and hence will give the mass of the pion most directly. We 
use the standard method of extracting the mass from the exponential decay 
of the correlator

Q(f) = 0)) . (4.19)

for i = 1,2,3. The masses of all three pion fields should be the same within 
errors, due to the remaining 0(3) symmetry of the theory. We will refer to 
the bare mass in the Lagrangian as Wn- o and the physical mass of the jhon, 
as obtain from the zero-momentum correlator, as m-Tr.
In order to measure the two pion spectrum, the most fundamental data 
for both methods, we need a correlator with the correct quantum numbers. 
Obviously there are several classes of two pion states, with varying linear mo­
mentum, angular momentum and isospin. We pick our correlator according 
to the following requirements:

1. Both methods require states of zero total linear momentum.

2. Both methods will involve the scattering phase shift S\{p), from which 
the resonance parameters will be obtained. Since the sigma resonance 
has / = 0 and / = 0 it will only be seen in that channel. Hence we need 
two pion states of / = 0 and / = 0 to obtain do(p). One the lattice 
we will achieve this by using operators in the representation of the 
cubic group.

We will use N such operators, where N will be varied depending on the 
simulation parameters. More operators will be necessary for parameters cor­
responding to wider resonances.
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A set of — 1 operators obeying these conditions is given by

3

(Mt) = ; (4.20)
i=l

as well as a single operator given by the p = 0 PFT of the 04 field

ON{t) = Mo.t)M-a,o). (4.21)

Obtaining energy levels from a set of correlators snch as these is somewhat 
more complicated. To do so we use the method of [21]. First the matrix 

= (OiOj) is constructed. Each {OiOj) is the Monte-Carlo estimate of 
the correlations of the Oj and Oj ficdds.
One then solves the generalised eigenvalue problem

(4.22)

where t* must be small. We choose t* = 0 for reasons of numerical stability. 
In [21] it is shown that the generalised eigenvalues behave as follows:

_ ^ )^a (4.23)

with cv = 1, ■ • • , A" labelling the eigenvalues. is then then the energy of 
some state with the quantum numbers of these oi:)erators. The two particle 
energy levels can be labelled by n = (ni, n2,??.3) the components of the 
relative momentum between them.

4.3 Choosing parameters

To test the two methods we consider four different choices of parameters. For 
the first three cases we fix /y = 1 in order to ensure that we are in the broken 
phase. The basic idea is to look at a narrow, medium and broad resonance 
and finally the inelastic region.
These parameters were chosen after tuning over the course of several sim-
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Figure 9: Effective mass versus time as determined by the diagonalisation 
of the correlation matrix Cij. The dashed constant lines describe the free 
two-particle spectrum. Simulation parameters: = 1.0, A = 1.4, = 0.36,
volume=12^ x 64.

ulations. As mentioned previously the resonance width will depend on the 
relative momentum of the pions. For large relative momentum the resonance 
will be broad. If we keep the picture of resonances as bound states which 
become unstable when some interaction is turned on, we look at the energy 
levels which would be obtained if the interactions between the sigma field 
and pion fields were switched off. For the pion energy levels this is just given 
by the formula

E2n = 2y/m^+p^. (4.24)

For the sigma particle, the spectrum of interest just consists of a single sigma 
particle at rest, the mass of which is estimated by the effective mass extracted
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Figure 10: Spectrum of the theory for different values of the volume for the 
following simulation parameters: = 1.0, A = 1.4, m° = 0.36. The dashed 
lines describe the free two-particle spectrum.

from the i = 4 correlator in Eq.(4.21). A and are tuned so that the sigma 
mass intersects a chosen two pion energy level at a certain volume. If a two 
pion energy level with large relative momentum is chosen, then when the 
interaction is switched on, the sigma will couple to that two pion state and 
due to the high relative momentum it will become broad resonance. There 
are two ways the two pion energy level can have high relative momentum, if 
the parameters (ni,n2,n3) are large or if the volume is small, since

27r
p=~n n = (ni,n2,n3). (4.25)
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Figure 11: Spectrum of the theory for different values of the volume for the 
following simulation parameters: i/ = 1.0, A = 4.0, = 0.56.

The first set of parameters, giving a narrow resonance, are A = 1.4, m,r,o = 
0.36. These give an intersection between the sigma mass and the (1,0,0) 
energy level at L = 12, corresponding to a relative momentum of p ~ 0.524. 
The physical mass of the pion obtain from the PFT method mentioned above 
is rn^r = 0.460(2). The mass of the pion was found to stabilise near L = 7, 
indicating that the virtual polarisation effects are negligible at this volume. 
Hence, for this first set of parameters we take a volume range of L G [8,19].

An example of the use of the diagonalised correlation matrix, used to obtain 
the two particle spectrum, is depicted in Fig. 9. Here we see the behaviour 
of the effective masses obtained from each of the eigenvalues Xa{t) on the
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Figure 12: Spectrum of the theory with simulation parameters: u = 1.0, 
A = 200.0, mO = 0.86.

lattice of volume L = 12. Due to the diagonalisation method we can see an 
obvious plateau for each effective mass, mg//. We take as the Energy of a 
given two particle state, the value of m.eff at some chosen value of t where 
the plateau has already occurred for all energy levels and volumes. In the 
case of these parameters this point is t = 2.
Repeating this for several volumes builds up a profile of the dependence of 
the two-pion spectrum as a function of volume. This volume dependence of 
the spectrum is depicted in Fig. 10. Shown with dashed lines are the corre­
sponding free energy levels, which are necessary for the construction of the 
histograms. The relative error on the energy levels is in the range 0.5% - 1.0%.
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Figure 13: Spectrum of the theory for different values of the volume for the 
following simulation parameters, describing an inelastic scattering: v — 1.05, 
A = 0.85, m.o = 0.17.

A = 4,m^ o = 0-56 is the next set of parameters giving an intersection be­
tween the sigma mass and the (1,0, 0) energy level at L = 8, corresponding to 
a relative momentum of p ~ 0.785. The volume range is L € [6, 20] obtained 
from the stabilisation of the single pion mass. The onset of the effective mass 
plateau for the two-pion states ist = 1. The physical pion mass works out to 
be m-TT = 0.657(3). The two pion spectrum is shown in Fig. 11. The relative 
errors on the energy levels are 0.05% - 0.2%.

The final choice of elastic region parameters are A = 200, m7r,o = 0.86, giving 
a physical pion mass of = 0.938(3). This produces an intersection be­
tween the sigma mass and the (2, 0,0) energy level at L — 10, corresponding
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to a relative momentum of j? ~ 1.257. This is the broad resonance. The vol­
ume range is L G [6,15] and the effective mass plateau for the two-particle 
states begins at f = 1. The reason for the large value A = 200 is that the 
resonance width depends only weakly on A, so it must be raised to a high 
value in order to increase the resonance width. Also A is a bare parameter 
and so large values of A do not necessarily imply large values of its physical 
counterpart A^^. The spectrum is depicted in Fig. 12 with relative (statisti­
cal) errors 0.15% - 0.4%.

These are the main sets of parameters we focus on. However, as both 
Liischer’s method and the Histogram method are justified only in the elastic 
region, we take a set of parameters which produce a resonance in the inelas­
tic region in order to test their limitations. These parameters are v = 1.05, 
A = 0.85, = 0.17, the only set of parameters with % 1. The reason for
this can be seen from the original Lagrangian where Eq.(4.15) shows us that 
the mass of the sigma particle depends on the square of u, hence altering 
h> will increase the resonance mass more appreciably. The volume range is 
L G [8, 20] and the two particle effective mass plateau begins at t = 2.
These parameters give a physical pion mass of = 0.2213(5). However 
the parameters also cause an intersection between the sigma mass and the 
(1,0,0) energy level at L = 11. This corresponds to a relative momentum of 
p ~ 0.326. A two pion energy level with such relative momenta has energy 
E ^ 1.225 > 4m7r, hence the resonance will be in the inelastic region. The 
spectrum for this set of inelastic parameters is shown in Fig. 13. Here the 
relative errors are 0.08% - 0.4%.
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4.4 Numerical application of Liischer’s Method

We now have the two-particle spectra. Using these spectra and Liischer’s 
fonnnla, the scattering phase shift may be constructed. The use of Liischer’s 
formula consi.sts of five basic steps:

1. Using the Monte Carlo data, obtain the two particle energy spectrum 
En{L) as a function of the volume;

2. Using dispersion relations obtain a momentum, PniL), from the energy 
spectrum;

3. Eq.(2.87) will map the values Pn{L) to values of (5(p„(L));

4. If this procedure is repeated for several energy levels and volumes, a 
profile of S{p) is produced;

5. This profile can then Ire fitted against the Breit-W'igner form for S{p) 
in tlie vicinity of a resonance as given in Eq.(2.31). This fit should give 
the resonance mass M„ and width E^.

The first step has already been discussed above. To use Liischei'’s formula 
however we need to convert this information on the energy spectrum into 
information on the momentum spectrum. This is because 0(k) which appears 
in Liischer’s formula depends on momentum through:

27r
(4.26)

The most obvious way to convert from Energy to momentum is through the 
use of the dispersion relations. Here we encounter a choice, it is possible to 
use the continuum dispersion relations:

E = +p^, (4.27)

or the lattice dispersion relations

2 sinh
E

= 2
\ i=l

(4.28)
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In the course of our simulations both sets of dispersion relations were used. 
The most obvious advantage of using the lattice dispersion relations is that 
they will suppress the effects of lattice artefacts. However they will also have 
an effect on the phase shift profile constructed through Liischer’s formula. 
The two dispersion relations will be compared and contrasted below.
Either way, using the dispersion relations gives the momentum spectrum 
Pn{L) as a function of the volume. These can now be used to construct the 
scattering phase-shift. Let us quote Liischer’s formula with the momentum 
dependence made explicit;

^{p) = -<i>{p) +

tan(0(K.)) =
^oo(1;k2)-

(4.29)

(4.30)

It can be seen that without a method to evaluate the function 0(p), Liischer’s 
formula cannot be applied.
As mentioned in Sec.2.2.2, Zoo(s; k^) is a generalised zeta function as can be 
seen from its definition:

1
{n? — k?Y (4.31)

However this series expansion only converges for iRe(s) > |, where as Liischer’s 
formula requires s = 1. Instead of Eq.(4.31) the following integral represen­
tation is used:

-2oo(s;
1

+

ln|<A

(Stt)^

(ty ~

+ J dte*-^ ICyt) } .

(4.32)

-f- / dtts-l

r(s) i (47r)2(s - I) Jo
}C\t) - (47r)2t3/2
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Where

■w = ^w-(^E e“« . (4.33)
|n|<A

lC[t) can be defined in one of two ways:

H

JCit) =___^

(4.34)

(4.35)

The relation between the Zeta-function 2oo(s;k,^) and /C(t) is due the fact 
that }C{t) is the heat kernel of the Laplacian on a torus, which enters the 
toroidal Helmholtz equation that produces Zoq{s;k‘̂).

The expansion Eq.(4.32) converges for 5fte(s) > which includes the point 
of interest s = 1. The first integral in Eq.(4.32) can be evaluated more easily 
using the following t —>■ 0 asymptotic behaviour of the kernel IC^{t):

}C\t) = + 0(r'/2). (4.36)

The constant A is chosen to make the sum in the expansion of converge 
faster, ideally A > 3?e(«:^). The choice between the different expansions 
Eq.(4.34) and Eq.(4.35) for /C(t) depend on the value of t. Eq.(4.34) is used 
when t > 1 and Eq.(4.35) otherwise. The integral expression Eq.(4.32) can 
then be computed numerically to evaluate the function (f){p)
Some properties of 0(k;) should be noted. First of all it’s Taylor expansion 
consists solely of even terms:

(t>{p) = X] dnP
2n (4.37)

n=l

Secondly, due to the fact that 2oo(l; k^) has poles at integer values of p, the 
relation Eq.(4.30) implies that ^(n), n G Z, is some integer multiple of tt.
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Figure 14; S{p) using Lattice dispersion relations for: = 1.0, A = 1.4,
mO = 0.36.

This combined with the fact that it has an even Taylor expansion leads to 
the standard approximation of 0(n) as (}){n) ~ yrn^, which is then extended 
to all real numbers as </>(«;) ttk^. Evaluating 0(k) numerically shows that 
this is indeed an accurate approximation for integer values of k. However for 
other real numbers in the range 0.1 < k < 8.0, the evaluation reveals that

Mk)0.8704 < < 1.1353. (4.38)

For this reason we fitted 0(k) to the numerical values obtained from Eq.(4.32) 
in the range k e [0.1,1.5] using a non-linear Levenberg-Marquardt fit [46].
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Plot of (t)(K)

Figure 15: Plot of function 0(«;)

This gives the approximation of as

0(k) ^ (-0.09937)^* + (0.47809)k®+ 

(-0.62064)k^ + (3.38974)^c2 . (4.39)

The error between this approximation and the true value of 0(«:) is quite 
small, the deviation being

|0(k) - (t)appTox{i^)\ < 0.00002, K G [0.1,1.5] (4.40)

In this formula (j)approx{i^) is the approximation of Eq.(4.39). We will use 0(«:) 
to refer to both in the rest of the text, where the meaning can be inferred
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from context.
Both approximations of (t>{n) were used in applying Ltischer’s formula, they 
will be compared and contrasted below. It should also be noted that both 
approximations are inaccurate when considering k < 0.1, however such small 
values of k do not occur in the three cases considered here. It should also 
be noted that Eq.(4.39) does not have the same coefficients as the Taylor 
expansion of 0(k) and indeed at very small values of k one uses an expression 
involving inverse powers of k coming from the summation of the Taylor series. 
Additionally our approximation is for the region k € [0.1,1.5] only and is 
worse than the traditional approximation outside this interval. (/»(k.) is 
plotted in Fig. 15.
Applying the approximation Eq.(4.39) of 0(«;) to Liischer’s formula we obtain 
the value of the scattering phase shift at Pn{L) as;

h(n„(L)) = (0.09937) + (-0.47809) +

(0.62064) + (-3.38974) + vrn. (4.4i;

where n is the energy level from which Pn{L) was obtained. One simply ap­
plies this formula for all volumes and energy levels included in the simulation 
and a profile of S{p) is slowdy built up.

An example of such a phase shift prohle for the parameters A = 1.4, m,r,o = 
0.36, = 0.460(2) is displayed in Fig. 14.
It can be seen from Fig. 14 that the scattering phase shift displays the arc­
tangent profile that is typical in the vicinity of a resonance. With the scat­
tering phase shift obtained one then simply fits the scattering phase shift to 
the Breit-Wigner formula:

S{p)
TT

2
arctan

4p2 + 4i\/2 _ m2
MaTa

(4.42)

Of course the scattering phase shift is given by S{p) = Sbg{p) + Sres{p), where 
Sbg{p) is the scattering phase shift due to non-resonant scattering, the back-
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ground phase shift. 5res{p) has the form Eq.(4.42) and is the resonance part 
of the scattering phase-shift, so in applying Ec[.(4.42) it is assumed that 
^bcj{p) ~ 0. The split between Sbg{p) and Sresip) is somewhat naive, we sim­
ply define Sresip) fo the component of the phase shift coming purely from 
an isolated resonance. This is valid in our model as the resonance dominates 
the scattering as inspection of the numerical results displayed in Fig. 14 show 
a rapid increase in the phase shift by a factor of tt, typical of an isolated res­
onance as explained in Sec.2.1.

After performing a nonlinear fit of the data to Eq. 4.42 the results for the 
continuum and lattice dispersion relations are obtained using both approxi­
mations for (j){p). The lattice and continuvun dispersion results are given in 
table 1 and 2 respectively for each of the three simulation parameters.

Results: Lattice Dispersion Relations
Parameters (P{k)
u = 1.0, A = 1.4 = 1.35(2) 

F^ = 0.115(8)
A4 = 1.36(4) 
F. = 0.17(2)

i, = 1.0, A = 4 M„ = 2.03(2) 
F,, = 0.35(2)

M„ = 2.2(2)
F. = 0.42(5)

,y = 1.0, A = 200 44 = 3.1(7) 
r. = 1.2(5)

M, = 3(1)
U = 2(l)

Table 1: R.esonance mass and decay width using two different approximations 
for (P{k), with lattice dispersion relations.

There are two major sources of error in these results. First the propaga­
tion of error coming from the determination of the energy levels. Although 
the energy levels are determined quite precisely, the error is noticeably large 
when propagated to the phase shift. The second source of error comes from 
fitting the data to the functional form given in Eq.(4.42). The fit was a 
Levenberg-Marquardt fit, [46].
One thing to be noted is that the continuum dispersion relations give greater 
errors on both the mass and the width of the resonance, although the effect
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Results: Continuum Dispersion Relations
Parameters 0{k) 9

TTAv"

7/ = 1.0, A = 1.4 M, = 1.32(8) 
F,, = 0.117(9)

A4 = 1.4(1) 
r„ = 0.16(5)

u = 1.0, A = 4 M„ = 2.1(4)
F„ = 0.39(4)

44 = 2.2(4) 
4 = 0.42(5)

u = 1.0, A = 200 M„ = 3(1) 
r. = 1.2(7)

A4 = 3(1)
4 = 2(2)

Tal)le 2; Resonance mass and decay width using two different ap])roximations 
for (/)(/t), with continuum dispersion relations.

is stronger for the mass. The reason for this can be seen from Fig. 16. When 
the lattice dispersion relations are used the third energy level is mapped to 
the inelastic region and hence can not be used with Liischer’s formula. Us­
ing the continuum dispersion relations the third energy is included causing a 
slight distortion in the arctangent profile, as well as being completely spuri­
ous. This suggests the lattice dispersion are useful beyond the obvious effect 
of suppressing discretisation errors.

The use of the two different approximations of 0(k.) can be seen to affect 
the resonance width most strongly. This is because an inaccurate approxi­
mation of 0(k) will distort the mapping from p to S{p), in particular it will 
affect the arc-tangent ])rofile associated with a resonance. A variation in F 
will not produce much of a variation in the slope of the arc-tangent profile of 
d{p), hence unless the slope is resolved to high precision there will be a large 
error in F. This is the major advantage of using a good apjjroximation of 0(p).

It can also be noticed that in all three cases larger errors are obtained the 
broader the resonance is. This is also caused by a lack of resolution in the 
slope of the phase-shift. In Fig. 17 it can be seen that for a broad resonance 
the slope is quite flat, hence a large variation in F again produces very little 
change in the profile of S{p). In order to accurately measure the parameters 
of a broad resonance the slope of d{p) would have to be determined quite ac-
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86
Figure 16: (Top) S{p) using Lattice dispersion relations at: u = 1.0, A = 1.4,

= 0.36. (Bottom) Same parameters, but with continuum dispersion
relations. Both done with accurate approximation to (f>{p). In the continuum
case ^ = 0.8124 and in the lattice case ^ = 0.9768 

1/ 1/
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Figure 17: Phase shift for narrow and broad resonances.



Figure 18: Inelastic data with Liischer’s formula. For the case of = 1.0, 
A = 1.4, m-Tr.o = 0.36. (Onset of inelastic region marked).

curately. This would require a very good approximation of (;A(k), but also a 
very accurate measurement of the energy levels, since the error on the phase 
shift data must be small enough to tightly constrain the slope.

We will take the results using the lattice dispersion relations and the ap­
proximation Eq.(4.39) of </>(«) as the outcome of Liischer’s method when 
making a comparison with the Histogram method.

Finally we discuss the major limitation of Liischer’s method, the inelastic 
region. First of all we consider the the case of the narrowest resonance when 
the parameters are = 1.0, A = 1.4, m,r,o = 0.36, which is displayed in the
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Fig. 18. In the elastic region (to the left of the line), the results already 
discussed are obtained. However to right of the line is data obtain by using 
Liischer’s formula on momenta in the inelastic region. The breakdown of the 
formula is indicated by the existence of a point which, by exceeding tt, breaks 
unitarity. In general applying Liischer’s formula in the inelastic region pro­
duces these scatter plot type profiles for S{p). Fortunately for the three sets 
of parameters considered above the resonance exists in the elastic region, so 
this breakdowm of the formula is not a concern.

However for the final set of parameters u = 1.05, A = 0.85, = 0.17, =
0.2213(5), where the intersection between the sigma particles mass and the 
two pion energy level (1,0,0) occurs in the inelastic region, the breakdown 
of the formula means that no meaningful data about the resonance can be 
obtained as the results are uninterpretable.

This is a major restriction of Liischer’s method because, as mentioned in 
Sec.2.2.4, the resonances in QCD mostly occur in the inelastic region. With 
such a barrier in place and the lack of an inelastic generalisation of the 
formula (which may be difficult to obtain, for the reasons mentioned in 
Sec.2.2.4), the applicability of the method to the realistic case of QCD is 
limited.
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4.5 Numerical application of the Histogram Method

As mentioned in Sec.2.3, the Histogram method constructs a distribution 
containing information on the relative density of the energy levels between 
the free theory, where the sigma and the pions do not interact, and the 
interacting case. The formula once again is:

^W{p) - -^Woip) ^ - 
C Cq p

Hp)
p

- ^'(p) (4.43)

where C and Cq are the normalisation constants for the interacting and free 
distributions respectively. The formula becomes more accurate as the num­
ber of energy levels considered increases, with exact equality holding in the 
N oo limit, where N is the number of energy levels. However, the conver­
gence is quite rapid so in fact in the case of N = 6, considered below, N is 
large enough to justify use of the formula.

If we assume that the scattering phase shift obeys S(p) ^res(p), just as 
is assumed with Liischer’s method above, then this formula can be recast in 
the much more useful form of:

1
lE(py - Af2]2 + Jlf2 r2 (4.44)

Hence if we build this Histogram we should be able to recover information 
on the resonance. As mentioned, in [12] the method was only tested on syn­
thetic data. Here instead the method is tested on genuine Monte-Carlo data, 
the same data used with Liischer’s formula.

First of all, it should be said that the distribution as a function of energy 
W(B) is used, instead of the suggested W{p). The reason for this is so 
that the distribution can be constructed directly from the energy levels. The 
relation between the two distributions is:

W(p) = W(E) I ^ (4.45)
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Figure 19: Spectrum for i/ = 1.0, A = 1.4, = 0.36. The fit to Eq.(4.46) is
indicated in blue.

The multiplicative term ^ does not modify the Breit-Wigner shape near 
the resonance, so this does not affect the results.

Let us consider the parameters u = 1.0, A = 1.4, m7r,o = 0.36 as the model 
case and discuss the others only in terms of their major differences from this 
case. The method requires us to partition some chosen interval of the E, L- 
plane into boxes of some chosen width AL and height AE. An energy level 
is considered to be in one of these intervals [Ei, Ej], if at some volume Lk we 
have En[Lk) G [Ei,Ej\. The value of W{Ei) is then the number of energy 
levels in the range [Ei, Ej] across all volumes. An energy level located in one 
energy range at n different volumes is counted n times.
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Figure 20: The histogram W = W — Wq obtained from the spectrum in 
Fig.19.

Since the Monte-Carlo simulations only obtain the energy levels at spe- 
cihc integer values of L it is almost always the case that the value of 
is not known. To get around this problem the function is extrapolated to 
all values of L by using the asymptotic form of the scattering state energies 
obtained [24]. Specifically the Energy levels have the form:

C,y -y + o{L-^).^ mDZ=1
(4.46)

As already given in Eq.(2.92). The fit on the spectrum, for the v = 1.0, 
A = 1.4, m^n- o = 0.36 parameters, can be seen in Fig. 19. Fig. 19 also shows 
the free-particle spectrum which will be used to construct Wq{p). This is
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Figure 21: Energy levels of Fig. 19 with the free sirectrum continued.

obtained from the standard free lattice two particle spectrum:

E = 4sinh -1 ml + (4.47)

In order to produce results as accurate as possible we choose AL = 0.001 in 
lattice units and the range of L to be from the smallest volume considered to 
the largest, i.e. L G [8,19]. The energy bin width is taken to be AE = 0.005, 
again so as to have an accurate determination of the distribution.

The histogram obtained for these set of parameters is shown in Fig. 20 The 
main errors in the histogram are as follows:
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Figure 22: Histogram IF obtained from the continued free spectrum in Fig.21

1. Statistical Errors in W{p) coming from the Monte Carlo determination 
of the energy levels

2. Errors in W{p) due to the fit to Eq.(2.66).

3. Statistical Errors in IFo(p) coming from the Monte-Carlo determination 
of the single pion mass.

As it appears in Fig. 20, the histogram can not be said to have an obvious 
Breit-Wigner form. This is due to the sharp ”spikes“ in the histogram, to 
whose origin we now turn.
An investigation of the location of the spikes shows that they occur at any 
value of energy where the six energy levels En{L) intersect the the extremities 
of the volume at L = 8 and L = 19. This is because near the extremities of
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Figure 23: Energy levels of Fig. 21 where we have deleted the two levels that 
do not possess the appropriate free background.

the volume the interacting energy levels terminate with no free energy levels 
in the corresponding energy range. In Fig. 19 the second lowest energy level 
shows the effect. The free energy level needs to be continued beyond the 
volume range in order to line up with the interacting energy level. In other 
words, at the volume extremities the interacting energy levels are missing 
the free background that needs to be subtracted. Due to this, we continue 
the free energy levels as far as required. This is an easy task as they are 
given by Eq.(4.47) and so we easily obtain the modified spectrum Fig. 21. 
We then perform the subtraction again and obtain the histogram shown in 
Fig. 22 However it can be seen from Fig. 22 that there are still discontinu­
ities in the histogram, particularly one still persists at ~ 1.35. This is due
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Figure 24: The correct histogram IV obtained from the altered spectrum in 
Fig.23.

the another intersection of the energy levels with the boundaries, specifically 
£2(8) and £'4(19). For these energy levels, particularly £'2(8) the free energy 
levels would have to be extrapolated particularly far in order to remove the 
discontinuities. In fact in order to obtain the necessary free background it 
would probably be necessary to increase the number of energy levels. In or­
der to avoid this we simply remove these two energy levels from the analysis 
and concentrate on building the histogram only from spectrum depicted in 
Fig. 23. Here we have extrapolated the free energy levels as necessary and 
excluded the energy levels which would require a cumbersome amount of 
extrapolation. This will be the general procedure for all three sets of param­
eters. The histogram obtain from these energy levels is shown in Fig. 24. It 
can be seen that the histogram now displays the characteristic Breit-Wigner 
profile. We fit the histogram with the formula Eq.(4.44), using a sliding win-
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Figure 25; Data from Fig.24 that we fitted to determine the resonance pa­
rameters with the final curve fitting.

dow procedure around the peak as depicted in Fig. 25. The results for the 
resonance parameters are — 1.330(5) and F^ = 0.10(5), in good agree­
ment with the results of Liischer’s method.

For the second set of parameters A = 4.0, = 0.56 the procedure is much
the same. The histogram obtained from extending the free energy levels can 
be seen in Fig. 26. It should be noted that here the volume runs from L = 6 
to L = 20.
Again there are noticeable discontinuities at the energies E ~ 1.95 which 
corresponds to an intersection with the boundary L = 6 and at E ~ 2.00 
related to an intersection with L = 20. Again we simply exclude the two
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Figure 26: The histogram after continuing the free energy levels for the 
simulation parameters: A = 4.0, = 0.56.

energy levels (n = 2, 4 as before) that are missing their free backgrounds, 
to obtain the histogram shown in the left of Fig. 27. Once more the fit is 
performed on the data around the peak (bottom of Fig. 27). The resonance 
parameters obtained are as follows: = 2.01(2), F^j = 0.35(10).

For the final set of parameters A = 200, = 0.86, those corresponding
to a broad resonance, it was necessary to increase the number of energy lev­
els to = 13. This is because the resonance intersects with higher energy 
two pion states and so to resolve it we must include these extra energy levels. 
Also the resonance occurs at high enough energies that free energy levels be­
yond n = 6 form part of the necessary background for the n < 6 interacting
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Figure 27: (Top) The histogram W after using the correct background and 
excluding the two levels that are without a corresponding background. (Bot­
tom) Data we fitted to determine the resonance parameters with the final 
curve fitting.



Figure 28: The broad resonance histogram obtained by continuing the free 
spectrum

energy levels. For these parameters the volume L takes values from L = 6 
to 1/ = 15
Applying the same procedure as before the histogram shown in Fig. 28. We 
see that the histogram has a peak at E ~ 2.8, which is close to the val­
ues given by Liischer’s formula. However there are discontinuities which 
must be removed in order to construct the correct Breit-Wigner shape. This 
is achieved by excluding the interacting energy levels without a free back­
ground, as before. The resulting histogram is depicted in Fig. 29.

Unfortunately the histogram of Fig. 29 is flat, within errors. A Breit-Wigner 
profile cannot be resolved and so meaningful values of the resonance parame-
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Figure 29: The broad resonance histogram after the removal of the levels 
without a background.

ters cannot be extracted. However the fact that the histogram shows a peak 
near E Ri 2.8 indicates that perhaps the histogram does capture some aspects 
of the resonance, even if they do not survive our modifications. The most 
obvious method of improving the histogram would involve either or both of 
the following steps.

1. Decrease the errors on the determination of the spectrum. As men­
tioned above the histogram is flat within the errors. A more accurate 
determination of the spectrum would lead to a more finely resolved 
histogram, one in which the Breit-Wigner might possibly emerge.

2. Increase the number of energy levels. Since information on the reso­
nance is contained within the energy levels including more may lead to
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Figure 30: The inelastic region histogram with the initial range of volumes

a histogram w'ith a more obvious Breit-Wigner prohle. However it was 
found that no improvement occurred in the Histogram when = 16 
was taken.

Finally, with a view to the comparison of the two methods in the next section, 
a histogram is constructed in the inelastic region, with parameters u = 1.05, 
A = 0.85, rr7.° = 0.17. The range of volumes is L e [8, 20] and the number of 
energy levels is = 6 This case will be useful to study, not only because the 
resonance occurs in the inelastic region, but it also shows up further difficul­
ties with constructing the histograms that have not shown up in the previous 
cases, but which could occur even in the elastic case.

The basic histogram constructed using an extension of the free energy levels
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Figure 31: The inelastic region histogram with the altered range of volumes.

and removing the energy levels without a background is shown in Fig. 30. 
However a jump at E ~ 1.13 is still visible, which has a different origin to 
the discontinuities mentioned before. Looking at the inelastic spectrum in 
Fig. 13, it can be seen that the fourth energy level, corresponding to relative 
momenta (1,1,1) between the pions, is highly displaced from any free energy 
level. This is particularly noticeable in the range of volumes L 6 [18,20]. 
This is due to the strong effect of the interactions on the volume depen­
dence of this energy level. To solve this we change our range of volumes to 
L G [8,18] in order to remove the regions were the (1,1, l)-energy level de­
viates too strongly from the free energy levels. The problem may also have 
been solved by increasing the number of energy levels so that free energy 
levels in the same energy range as the (1,1, l)-level are included. However it
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is (lifficnlt to know how high N must be raised in order for this to be a valid 
solution. Raising the number of energy levels to N — 10 did not solve the 
problem.
W’ith this new range of volumes we repeat the procedure and obtain the 
histogram in Fig. 31. This histogram has a clear Breit-Wigner profile and 
so we preform the same fitting procedure as in the elastic case, giving us 
the resonance parameters M„ = 1.11(3) and F^ = 0.11(3). Of course the 
fitting formula, Eq.(4.43), can only be justified in the elastic region. \\e will 
comment on this and the comparison of this method with Liischer’s in the 
Sec.(4.6).
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4.6 Discussion and comparison of methods

the resonance examined with both Lhscher’s Method and the Histogram 
method, we turn now to a comparison of the two methods. First of all, we 
summarise the results obtained so far in table 3. The results for Liischer’s 
method are those taken using the approximation Eq.(4.39) for 0(k.) and with 
the lattice dispersion relations. On the most basic level the data reveals

Results
Parameters Liischer’s Method Histogram Alethod
u = 1.0, A = 1.4 A4 = 1.35(2)

F^ = 0.115(8)
= 1.33(5) 

r. = 0.10(5)
,y = 1.0, A = 4 M„ = 2.03(2)

F„ = 0.35(2)
M„ = 2.01(2)
F,, = 0.35(10)

,/ = 1.0, A = 200 A4 =3.1(7) 
r. = 1.2(5)

M„ = N/A 
r. = N/A

Table 3: A comparison between the Liischer’s method and the Histogram 
Method.

that the two methods give consistent results. Wdiere there is data for the 
Histogram method it agrees with the results from Liischer’s method within 
errors, wdiich demonstrates that the Histogram method continues to capture 
resonance parameters despite the absence of 0(k)) although the Histogram 
method has larger errors. Another trend is that the errors become greater 
the broader the resonance for both methods. This is interesting as there is 
no significant increase in the relative error of the two pion energy levels on 
which both methods are based. This implies that this increase in error isn’t 
purely a result of the Monte-Carlo error. Let us examine it for both methods.

In Liischer’s method the increase in the error is directly related to a flat­
tening out of the phase shift as can be seen in comparing the two plots in 
Fig. 17. As already mentioned, when the slope of the phase shift is so flat, 
large variations in F produce very little variation in S{p). Hence an evalua­
tion of the width of a broad resonance will have larger errors due to this elfect 
even if the simulations are performed with the same accuracy as a narrow
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resonance.
For the Histogram method the resonance manifests as a Breit-Wigner profile 
in the histogram. The width of this Breit-Wigner profile is directly related 
to the resonance width. When the resonance is very broad, the profile is 
very fiat and higher precision will be needed to resolve the strnctnre of the 
histogram in which resonance information is contained.

So for both methods Irroad resonances cause difficulties because they are as­
sociated with some feature becoming less marked in the output data (slope of 
S{p), width of histogram), which causes a reduced sensitivity to the resonance 
parameters. In both cases the solution to the problem is either increasing the 
amount of data, namely the energy levels, or a more likely solution, increas­
ing the precision with which the energy levels are measured. High precision 
data will prevent the relevant features in either method from being lost in 
the noise.
Thi.s prolrlem with Irroad resonances affects the Histogram method more 
strongly. Liischer’s method was capable of producing resonance parameters 
in the broadest case, where as nothing was obtained from the Histogram 
method. This suggests that the characteristic structure of the Histogram 
method, namely the width of the histogram, is more sensitive to errors in 
the original spectral data than the phase shift of Liischer’s method. However 
it should be noted that the histogram in the broad case did initially display 
a possible peak at m.„ ~ 2.8 which could be in agreement with the results 
from Liischer’s method. This peak was removed when the interacting energy 
levels without a free background were removed. Hence it is possible that 
the Histogram method is not significantly poorer than Liischer’s method for 
broad resonances, l)ut rather that it suffers due to the amlriguity of its con­
struction, which we now discuss.

The major practical advantage of Liischer’s method is that it is straight 
forward to apply. One simply needs data on the two particle spectrum and 
information on the phase shift follows through the application of the formula 
Eq.(4.29). Since 0(k,) in Liischer’s formula Eq.(4.29) is a well defined func-
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tion which is independent of the theory being considered, it only needs to 
be calculated once. However the Histogram method, by contrast, involves 
several ambiguities:

1. The choice of Energy and Volume range, i.e. the subset Ej^ax] x
[Lmin^ Lmax] of the E, L plane we choose to use.

2. The resolution of both axis used in constructing the histogram, namely 
AE and AL

3. The amount of energy levels to include in the analysis. Of course 
the choice of the number of energy levels is also present in Liischer’s 
method, however in the Histogram method it is difficult to fix a choice 
since a higher number may become nece.ssary in order to have the cor­
rect free background.

4. Of the energy levels included in the analysis one must choose how many 
to disregard because they don’t possess a free background.

An incorrect choice for any these may result in an unusable histogram. The 
histogram method also requires the energy levels to be interpolated to all 
values tlirough the use of a polynomial fit. However this is not a major 
prolrlem since the use of such jrolynomials is theoretically justified and the 
errors on the fit are much smaller than other errors in the simulation. In 
fact as the polynomial fit is a numerical fit of a function known analytically, 
to some degree, this can be seen as the Histogram Method’s analogue of the 
numerical evaluation of 0(k.). Hence overall, because of its smaller errors and 
its unambiguous application, Liischer’s method would seem to be the better 
method for resonances in the elastic region. However we now discuss two 
possible advantages of the Histogram method.

The first is purely a visual one. The Histogram literally peaks at the mass 
of the resonance and so one can read of the mass of the resonance without 
detailed fitting. This may be an advantage in ca.ses where the jH’ecision is 
too low for either method to resolve the resonance parameters numerically in
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a valid way and would provide an indication as to the mass of the resonance. 
The second advantage is of less obvious merit, but is interesting. For Liischer’s 
method the results from the inelastic region are uninterpretable, however for 
the histogram method it was still possible to construct a reasonable his­
togram, with a clear peak and width, as shown in Fig. 31. The disadvantage 
is that the meaning of this histogram is not clear. Outside the elastic region, 
due to the breakdown of Liischer’s formula, there is nothing to connect the 
histogram to the scattering phase shift and hence the resonance. This prob­
ably excludes a determination of the resonance width using the histogram 
method in the inelastic region, but it is possible that it may still give some 
indication of the mass. As mentioned in Sec.2.2.3, avoided level crossing is a 
feature of the eigenvalues of any hermitian matrix. If the resonance is narrow 
this avoided level crossing will possess a marked plateau, leading to an over 
abundance of interacting energy levels in the energy range containing m.„- 
The plateau will occur simply through a combination of the mixing of the 
resonance with the stable states (which in the inelastic region will include 
four-particle states) and the avoided level crossing. This will lead to peak in 
the histogram at this value, independent of the validity of Liischer’s formula. 
So the Histogram method may be useful for basic visual estimates of the 
mass of a narrow inelastic resonance.

One final weakness of the two methods as they are ap])lied here is the sub­
stitution of the Breit-Wigner form for the scattering cross section Eq.(4.42). 
Both methods link the two-particle spectrum to the phase shift d{p). To go 
from S{p) to resonance parameters requires an assumption of the functional 
form of S{p). Using Eq.(4.42) assumes that the scattering phase shift is pure 
Breit-Wigner or that the resonance dominates the two particle scattering. 
The assumption of a negligible scattering background is valid for our model, 
as we see by inspection since the phase shift has a pure Breit Wigner profile. 
However in more general settings, such as QCD, there is no way to know the 
strength of the non-resonant background, since the physical particles are not 
clearly related to the Lagrangian fields. One possilrle way around this is to 
use a form for the phase shift S{p) suggested by perturbation theory (this is
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done in [47] for example by using one-loop results from chiral perturbation 
theory given in [48])or some other method and fit the results to this form.

109



5 Correlator method

A third and final method has also been tested on this same set of data. This 
method was proposed in [49] and shall be labelled the correlator method in 
what follows. The Correlator method aims to treat resonances on a similar 
footing to stable states in a lattice setting by extracting resonance parameters 
directly from some asymptotic estimate on the correlator. For stable states 
this is the well known exponential decay at large time. For resonances this 
method uses a more complicated asymptotic form at small times.

5.1 Asymptotic form of the correlator at small times

The Euclidean correlator D(t, x) for some local quantum field A is defined 
as in the Sec. 1.1, as

D(f, x) - / VM{t, x)A(0,= (Q, A(t, x)A^(0,0)Q) . (5.1)

The Fourier transform of the correlator D{iio,'k), given by 

D{t, = —iut—ikyi (5.2)
u) k

can, by the completeness relation, be expressed as an integral over the Kallen- 
Lelimann spectral function

k) = ^----- —pL(‘^,k)-
(J -lUJ

(5.3)

.4pplying the properties of pi derived from discrete symmetries in [50], namely 

pL{i^A)>Q pL{-^,-k) = ^Pl{'^A) = l^pL{^.-k), (5.4)

the Fourier transform can be expressed as:

nr r r b
Jq u + ^

(5.5)
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Of course the spectral function vanishes at values of uJ less than the minimum 
mass in the channel. In our case we will be looking at the two pion states as 
before, so this value is — 2m.,j and hence the integral can be rewritten 
as:

2<D{iu], k) = / —
J2mrr ^

2uj duj /
2 )• (5.6)

The basic idea of the method can now be explained. The infinite volume 
spectral function p has resonance poles on the second Riemann sheet. If 
the resonance is very narrow, F small, then these poles will come quite close 
to the branch cut and hence have an effect on the physical sheet “through 
the branch cut”. However away from the branch cut the difference pL — P 
vanishes exponentially via the regular summation theorem [24], so at large 
volumes the effects of these resonance poles will show up in pi and hence 
ultimately in the correlator itself.
We drop the dependence on k since it will not matter in what follows and 
does not occur in our correlators. If we let T —>■ cx), then we obtain from 
Eq.(5.6) and Eci.(5.1):

poo
D{t) = / duje~'^^pi{uj). (5.7)

J2m„

Now at large volumes pi can be replaced by p in the domain of integration.

poo
D(t) = / duje~‘^*' p{ijj). (5.8)

J 2m7r

In our case we will be dealing with a channel with angular momentum / = 0. 
In this case the spectral function has the form:

p{u:) W [u: - 2777,,)^/^ (5.9)
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in the elastic region when there is no resonance. If there is a resonance then 
it takes the form:

= 7--------- 77-------(uj — U}r){uJ — UJff)
(5.10)

If we shift integration variables in Eq.(5.8) to E = uj — 2m^, where the

V) ■'2resonance is found at Er = — 2m.pi) — and substitute Eq.(5.10) we
obtain:

D{t) = [
J2t

£’1/2

(E - Er)(E - E%} Q{E + 2mT,). (5.11)

If the resonance is narrow enough then the singularities oi Q[E + 2m.^) will 
be far enough away from the elastic threshold that its Taylor expansion 
will converge in the region of the complex plane containing the resonance 
poles. Of course it is not possible to know a priori how narrow the resonance 
must be, so we applied the method to our data for the narrowest resonance. 
Expanding Q{u) as ^ correlator is:

k=0
F 1 r dEE^^^/^e

^ ^ Jo , r2(F - (m^ - 2m,r))^ +

(5.12)

(5.13)

All of the F^ with k > 2 can be expressed using F° and F^ and so their 
contributions can be gathered together to give the following form for the 
correlator:

D(t) = e—£«) + F«) + £ -^|
fc=0 ^

(5.14)

The Xk parametrise the component of the scattering cross-section which is not 
due to the resonance, namely Sbg{p). In our model we expect these numbers 
to be small as the resonance dominates the scattering. This approximation of 
the correlator should be valid in the region where t ~ In order to perform
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Figure 32: Fit to sigma correlator u = 1.0, A = 1.4, = 0.36

this fit to the appropriate correlator, which in our case is the sigma correlator 
(the only local field with the correct quantum numbers), it is necessary to 
have a workable expression for the Xk, this is provided in [49]:

2EqE^^^t^Ea) = Rexit^Eji)----------:^lmx{t, E^), (5.15)

with the function x(^, Ej^) computable either via its integral representation:

dE
X{t, Er)

E-Er ’

or, more usefully, through the following expansion:

(5.16)

(5.17)
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Hence fitting the sigma correlator directly to the form Efi.(5.14), should pro­
vide a direct determination of the resonance parameters in a manner similar 
to how stable particle masses are obtained. The Liischer and Histogram 
methods get around the Maiani-Testa theorem via the indirect route of com­
puting the two particle spectrum across several volumes. This method avoids 
the theorem by returning to the only n-point function on which it has no ef­
fect, the two-point function, requiring only a computation at a single large 
volume, in order that the difference \pi — p\ be small.

5.2 The Fit

This method was not studied in as detailed a manner as the previous meth­
ods, however some results were obtained for the narrowest case. The medium 
and broad case do not produce meaningful results, it would seem, however 
this is to be expected as the method depends on assumptions related to a 
narrow resonance. An exam})le of a fit to the sigma correlator for the pa­
rameters V = 1.0, A = 1.4, m° = 0.36 is shown in Fig. 32.

Once ,Y(t, Ef() is well enough approximated, i.e. around i = 2 in Eq.(5.17), 
The fit produces good results. Including the Xk in Eq.(5.14) has no major 
effect on the results beyond k — 2, taking values of A; < 2 was found to 
give very poor results. Eig. 32 is taken with i = 1, k = 2, giving resonance 
parameters of = 1.5(2) and T^r = 0.11(3). The fitting window was taken 
as t G [1,9]. The fitting window does have a noticealde effect on the fit. In 
j)articular, a wider fit reduces the errors, l)Ut if the window is taken too wide 
unrealistic parameters are obtained. This is to be expected as the method 
relies on an asymptotic form at small times. All other parameters were found
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to 1)6 small in magnitude as would be expected, specifically:

= 1.32(5), 

r, = 0.107(7),

Co = -0.00122(4),

Cl = 0.00023(8),

To = 0.078(1), 

xi = 0.158(5).

2With the fit having a value of ^ = 0.8362 for the reduced chi-squared value. 
Much was not investigated for this method, particularly a more precise esti­
mate of the errors via the Bayesian analysis of [51] suggested in [49].

The main advantage of this metlKxl is that it recpiires only a fit to the cor­
relator in a single, large, volume. The disadvantage is the presence of extra 
parameters, in our case cq, Ci, .ro and .iq, which make the fit less unique. Also 
the method appears to be restricted to narrow resonances. However, over­
all the results are consistent with the two preceding methods. One possible 
advantage to this method is that it is only restricted to the elastic region 
via the estimate on the spectral function in Eq.(5.10). It may be possible 
to derive a similar estimate of the spectral function in the inelastic region 
and apply the method there. Also the method avoids a computation of the 
two particle spectrum, which may be prohibitively expensive numerically in 
a more complex theory.
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6 Conclusions

In this work, we have investigated and contrasted two major methods of de­
termining resonance parameters, both in a perturbative and nonperturbative 
setting. Both of these methods are similar in that they nse the two particle 
scattering spectrnm as input data.

The fir.st of the methods uses the well known Liischer’s formula. Given the 
input data of the scattering spectrum, the method rccinires an approxima­
tion of a known function, (^(a'.), as well as an ansatz for the scattering phase 
shift. The advantage of the method is that once these two requirements are 
met the method is relatively straight forw'ard to apply and, at least in the 
model tested here, capable of extracting resonance parameters across a wide 
range of resonance widths. Some disadvantages are that errors were found 
to increase with increasing resonance width and the additional errors coming 
from the approximation of 0(k.), although these are usually cpiite small and 
can be controlled.

The second method was the histogram method, which has been shown to 
give consistent results in both the perturbative and nonperturbative .set­
tings. In the perturbative setting the method reproduces the decay width 
found from the Minkowski space calcidation. In the nonperturbative setting 
it agrees with the results of Liischer’s method. Together these show that the 
removal of ^’(k) has not affected the measurement of re.sonance jrarameters. 
The advantages of the method are that it does not require an estimate on 

and that, as it is tied to the avoided level crossing, may be capable of 
visually indicating the presence of a resonance, even if the errors are too large 
to determine the parameters. The disadvantages come from the ambiguity in 
its construction, making it difficult to apply and the larger errors for broad 
resonances.

Overall, for the ease of application and the smaller errors, Liischer’s method 
appears to be the l)etter of the two. Both metliods however suffer from com-
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nion drawbacks. First of all they are rather indirect as, in separate ways, 
they recover the resonance from its influence on the two particle states. Sec­
ondly both methods are much better at handling narrow resonances than 
broad resonances, since some characteristic feature, necessary for a good fit, 
becomes less explicit and hence the fit isn’t as well constrained. In using ei­
ther methods, the spectrum must be very well determined in order to prevent 
a propagation of errors which will “wash out” this fundamental structure.

The most serious drawlrack however is that Iroth methods are confined to 
the elastic region, which severely restricts their use in understanding phys­
ically relevant resonances. To extend these methods to the inelastic region 
would recjuire a significant theoretical advancement in the understanding of 
finite volume field theory. To olrtain a u.seful expression for the inelastic 
region a proof directly from quantum field theory would Im recjuired. In ad­
dition to this, a better understanding of the analytic properties of the n-point 
functions, n < 6, and the Bethe-Salpeter kernel would be required, as these 
are not as well understood in the elastic region. However it should be men­
tioned that a histogram can still be constructed in the inelastic region and 
in the case of the model here had the expected Breit-Wigner type structure. 
However the method lacks a proof which would connected this Breit-Wigner 
])rofile to an explicit expression containing tlie scattering phase shift.

For these reasons a third method was investigated which uses some appropri­
ately chosen correlator, just as for stable particles. This means the method 
is more direct and similar to methods for stable particles, which allows it to 
avoid the problem of determination of the two particles spectrum in more 
complex theories. The initial results seem to be consistent with other meth­
ods, although there are more fitting parameters and the method is restricted 
to narrow resonances. The method also has the possibility of being extended 
to the inelastic region.

In conclusion, Llischer’s method and the Histogram method appear to be 
complementary in the case of elastic resonances below a certain width. For
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broad resonances it would appear to be better to use Liischer’s method, un­
less the spectrum has been determined quite accurately. The main challenge 
for studying resonances on the lattice however remains the inelastic region 
which would require either new methods, such as analysis of Bethe-Salpeter 
wavefunctions, or a non-trivial extension of current methods.
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